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ABSTRACT

Modern software systems are deeply embedded into our daily lives; the failures of these systems
can therefore result in massive real-world harm. Consequently, considerable resources are spent
finding and fixing bugs in testing. Overall, the software industry spends billions of dollars each
year on fixing bugs, and ultimately loses trillions of dollars each year due to poor software quality
(as a result of bugs that escape testing and wreak havoc once deployed).

One particularly challenging domain of software development for developers is the area of Per-
sistent Memory (PM) programming, an abstraction where developers write software that accesses
and updates long-term storage with direct memory operations. The PM programming abstraction
has become popular in recent years due to new hardware advances in low-latency, byte-addressable
storage devices. Unfortunately, writing crash-consistent PM applications is challenging, as un-
timely program crashes can result in data corruption and loss if the application does not carefully
order updates to PM, and testing all possible crashes for data consistency is intractable. Further-
more, crash-consistency bugs are difficult to manually debug and repair, taking weeks or months
for a developer to correctly fix. Without advancements in PM testing and program repair tools,
developers will be unable to effectively write correct and efficient applications for modern PM
platforms, hampering the ease of their adoption.

Motivated by these PM software development challenges, this dissertation explores research
in developing software techniques that automate difficult and time-consuming PM development
tasks. We study PM system design, bugs, and bugs fixes and observe that we can automatically
provide scalable and high-coverage bug detection and correction by approximating the reasoning
performed by developers as they develop their applications. Based on this insight, we first explore
automated bug detection and correction for PM application bugs caused by the misuse of platform-
specific PM primitives. We develop a testing technique that prioritizes testing program paths that
heavily modify PM, as these paths are more likely to misuse PM. We implement this technique
in AGAMOTTO, a symbolic-execution tool that thoroughly explores PM applications to uncover
platform-specific bugs, which we use to find 84 new bugs while incurring no false positives. We
then develop a technique for generating fixes for PM platform-specific bugs that are provably
correct, coupled with heuristic performance optimizations that do not compromise correctness,
and implement the technique in a compiler tool, HIPPOCRATES.

xiv



Second, this dissertation explores automated bug detection for general crash-consistency bugs
in PM applications (i.e., bugs caused by the improper ordering of PM updates). We develop a
technique that automatically identifies groups of PM program behaviors that are likely to result in
the same crash-consistency bugs and only tests one behavior out of the group, thus providing high
testing accuracy (by testing all types of behaviors thoroughly) while also increasing efficiency (by
eliminating redundant testing on functionally-similar behaviors). We implement this technique in
SQUINT, a model-checking tool that selectively tests groups of PM program behaviors identified
from a dynamic program trace, which we use to find 108 PM crash-consistency bugs.

The works presented in this dissertation provide a holistic automated testing and program repair
solution for PM software developers. In sum, these tools have been used to find and fix over two
hundred PM bugs in real-world PM systems, demonstrating both the need for such tools and the
efficacy of the tools presented in this dissertation.
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CHAPTER 1

Introduction

We live in an era where computing is truly ubiquitous, where software abounds and technol-
ogy is embedded into the daily tasks of many people around the globe. Software is crucial to
many of us, but unfortunately, software can experience a wide variety of failures. These failures
range from simple programming mistakes, which can be relatively easy to correct before impact-
ing users, to complex ordering problems or performance degradations that may only manifest in
a non-deterministic fashion, making it challenging for developers to uncover these errors, even
though they can have a large impact on users when they do occur. Consequently, software compa-
nies spend considerable time and money testing their software for bugs [113] and then fixing those
bugs, costing the software industry billions of dollars each year in finding and fixing bugs [17, 171]
and trillions of dollars due to overall poor software quality [87].

While developing new software is tedious and error-prone due to the challenges of finding
and fixing bugs, developers must keep up with new software and hardware trends in order to
deliver high-quality systems and applications. One such emerging trend in the past few years
has been the uptick in applications leveraging PM. Recently, the software industry and software
researchers alike have taken renewed interest in PM programming [68, 71, 114, 140], which is a
programming abstraction that enables applications to address durable storage using direct memory
accesses [148]. PM has experienced this renewed interest due to recent hardware advances in low-
latency and byte-addressable storage, such as Intel Optane Pmem [34, 36] and Compute Express
Link (CXL)-attached non-volatile storage [27, 52], which now enables the development of highly
efficient storage systems using PM hardware and software abstractions [32, 77, 164].

Unfortunately, writing correct PM applications is challenging. First of all, modern PM plat-
forms often require developers to correctly use PM-specific memory ordering primitives (e.g.,
cache flush and memory fence instructions) to ensure that PM updates are written to the backing
storage device; the omission or incorrect use of these primitives can lead to data corruption, data
loss, or performance issues. Second, even if all PM updates are properly made persistent, those
updates may not be persisted in the correct order, leading to data inconsistencies or data loss if a
crash interrupts a PM program’s execution.
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To combat the cost and effort of testing applications and fixing bugs, there has been increased
research and development in software methods that developers can use to automate these tasks.
However, there are many challenges in building and using such methods. Testing tools cannot
feasibly test for all possible bugs and must therefore minimize the number of tests run to expose
the most bugs. Furthermore, program repair tools then must carefully repair programs to ensure
produced patches are effective and do not induced further program failures or incur high overhead.

The challenges of finding and fixing bugs are more than apparent for developers of PM applica-
tions. PM applications have large state-spaces that traditional crash-consistency testing approaches
cannot scale to test, as PM applications make fine-grained updates that result in many more crash-
states being generated than can be generated by typical, block-based storage systems [90, 116].
Furthermore, fixing PM bugs once they are found is challenging for the same reason that it is chal-
lenging to write correct PM code from the beginning: it is difficult to correctly order PM updates
such that the application is both correct and efficient, as more strictly ordered update sequences are
easier to reason about during development, but are often less efficient at run-time.

The challenges of building efficient and effective methods to help developers handle software
defects in PM systems motivates this dissertation. In this dissertation, we investigate the challenges
of testing programs and repairing bugs in modern systems, with a focus on systems with added
challenges due to their use of new PM platforms.

1.1 Persistent Memory Background and Challenges

Persistent Memory (PM) is a programming abstraction where programs address durable storage
(i.e., data that lives beyond a single execution of a program or boot cycle of a machine) via a
memory address space, the same manner in which volatile main memory (e.g., temporary stack
variables) is modified [9, 144, 148]. PM is an appealing programming abstraction because long-
lasting program data structures can be directly modified without requiring serialization and de-
serialization through other storage abstractions (e.g., file-system IO calls), simplifying storage-
interfacing code and allowing greater code reuse between volatile and non-volatile operations.

PM programming is not a new concept [148], but has seen a growth in research popularity
due to advancements in Non-Volatile Main Memory (NVM) hardware (e.g., ReRAM [3], STT-
MRAM [6], and most importantly, PCM [157]), as NVMs form the basis for efficient PM program-
ming platforms; a minimalism and highly efficient PM implementation can be to simply allow an
application to issue memory operations directly against a byte-addressable NVM. Most notably,
Intel has commercialized three versions of PCM-based NVMs in its Intel Optane Persistent Mem-
ory line of products [4, 34–36, 38, 69], which can offer PM accesses with latencies that are only
2–3× higher than the latencies of DRAM [147, 164]. With the use of efficient NVMs, the PM
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abstraction allows applications to directly interact with persistent data in an efficient manner.
Unfortunately, writing PM applications can be challenging, as it is difficult to ensure that the

application is both correct and efficient. There are three general types of crash-consistency bugs in
PM applications:

1. Persistence Bugs (also referred to as Platform-Specific Bugs or Application-Independent

Bugs). Many PM platforms require applications to issue specific instructions (i.e., persis-

tence or durability instructions) in order for memory writes to PM to become durable. For
example, PM applications that use Intel Optane DC Pmem [35, 36, 38] as their backing stor-
age device often require both cache-line flushes and memory fences to be issues to force PM
writes to leave the Central Processing Unit (CPU) cache and be written to the NVM hard-
ware [34, 69, 77, 137]. The misuse of these persistence instructions lead to persistence bugs.
There are two subtypes of persistence bugs: durability bugs, where required persistence in-
structions are omitted, resulting in data inconsistencies; and performance bugs, caused by
the unnecessary issuance of these instructions, which can degrade performance. These bugs
are considered application-independent because these persistence instructions must be used
correctly regardless of the application’s semantics.

2. Ordering Bugs (also referred to as Application-Specific Bugs). Even when persistence in-
structions properly ensure that PM updates become persistent, an application can issue up-
dates in an improper order that, when interrupted from a crash, results in data inconsistencies.
Ordering bugs are therefore caused by improper ordering between updates to semantically-
related PM data and arise regardless of whether applications include appropriate PM ordering
instructions. These bugs are application-specific because the proper order of PM updates is
dependent on how an application uses the persisted data and what the persisted data repre-
sents in the program state, which are application-specific properties.

3. Compiler Bugs. Certain compiler optimizations assume that certain types of memory op-
erations may be safely reordered or split apart without affecting the correctness of the ap-
plication. For example, some compilers assume non-atomic stores may be safely split into
multiple smaller stores in a procedure referred to as store tearing [58]. However, while these
transformations are safe for volatile-memory algorithms, the ordering and granularity of
stores does impact the crash-consistency properties of PM-modifying memory operations.
Ultimately, this results in code that, when considered in the unoptimized form written by
the developer, is not susceptible to crash-consistency bugs, but is once optimized by the
compiler.

Each of these three types of PM bugs can have a variety of different consequences. We list four
possible types of failures below:
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• Recovery failure. Recovery failures occur when a PM application crashes in such a way
that it failed to enforce consistency within its state contained in a crash-state that is re-
quired by its recovery code. Recovery failures can be caused by any of the three general
causes of crash-consistency bugs listed above. Finding recovery failures often requires less
application-specific knowledge because they can be automatically detected on an arbitrary
PM application (i.e., by attempting to restart the application after a crash).

• Data corruption. Alternatively, a PM application may initially recover from a crash, but
produce incorrect results or perhaps crash later in an execution due to incomplete modifi-
cation of internal data structures at the time of the crash. Data corruption bugs can also
be difficult to detect without application-specific oracles, because finding a data corruption
bug requires knowing an application’s intended behavior in the event of a crash (e.g., the
expected output of a specific operation).

• Data loss. Data loss occurs when an unexpected crash causes data to either not become
durable or to become unreachable, resulting in an application state where data goes missing.
Data loss bugs can also be difficult to detect without application-specific oracles, because
finding a data loss bug also requires knowing an application’s intended behavior in the event
of a crash (i.e., how much data, if any, can be lost).

• Performance degradation. Performance persistence bugs in particular can erode the per-
formance of PM applications. Persistence instructions often operate by enforcing specific
memory orderings in the CPU’s execution, which restricts the CPU’s memory parallelism.

These PM bugs can be difficult to both find and fix during the development of PM applications.
Due to the complexity and impact that PM bugs can have, we are motivated to investigate solutions
for automating the detection and correction of PM bugs in emerging PM storage systems.

1.2 Limitations of Prior Work

Finding PM Bugs While research in software engineering has explored automated bug detection
for a wide variety of different types of bugs and types of applications, finding PM crash-consistency
bugs requires specialized tooling to detect platform-specific PM and cope with the state space of
PM applications. Prior work has created tools and techniques for testing modern PM applications,
however existing approaches force developers to chose between scalability and coverage during
testing, limiting the practical usability of these tools. Existing approaches that scale to testing large
systems sacrifice testing coverage by dramatically limiting the scope of bugs they can find, result-
ing in many false negatives (i.e., missing bugs) [31, 41, 50–52, 56, 103, 104, 126]. On the other
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hand, existing approaches that provide high testing coverage by exhaustively testing all possible
ways that a PM application could crash and check if these crashes result in data inconsistencies or
the inability to recover [50, 57, 90, 97]. These high-coverage approaches, even with state-of-the-
art state generation optimizations, cannot scale to real-world systems, and are thus only usable to
developers who want to test extremely small PM applications or embedded libraries [57].

Fixing PM Bugs The challenge of automatically fixing bugs, while practically unexplored
specifically for modern PM systems, has been explored in many prior works for repairing com-
modity software systems [92, 93, 139] and techniques for general automated program repair are
increasing being deployed to repair bugs in production systems [60, 109]. These tools often lever-
age unsound approaches to repair bugs, which could result in patches that do not fix the original
bug or even introduce new bugs; due to the challenges of finding and manually repairing PM bugs,
such approaches could lead to the creation of subtle errors that are even more difficult for devel-
opers to uncover or reason about. A subset of automated program repair tools target narrower
classes of bugs and leverage domain-specific insights about the nature of those bugs to provide
stronger guarantees about the correctness of the fixes that they provide [67, 80]; however, these ap-
proaches still leave something to be desired, as they provide no sound or formal guarantees about
the correctness of their fixes.

1.3 Thesis Statement and Contributions

In this dissertation, we introduce new techniques for automating the detection and correction of
PM bugs in modern PM systems. Our overarching insight and thesis statement is that we can
efficiently and thoroughly automate bug detection and correction by approximating and au-
tomating the reasoning performed by developers as they write, test, and repair their appli-
cations. Our insight is drawn from observations about how developers organize their applications,
test their applications, and fix bugs in their applications. Developers often test applications by
identifying and testing execution paths which are the most prone to encountering the targeted
type of bug; ergo, replicating this approach to set priorities during automated path exploration
leads to accelerated discovery of PM bugs (Chapter 2). Developers then often endeavor to fix
bugs by trying to find the most efficient fix that does not compromise the correctness of the fix,
which inspires our approach towards correctly fixing PM bugs with heuristically-optimized fixes
(Chapter 3). Finally, developers often implicitly organize their application in a way that reveals
the crash-consistency requirements of the program (e.g., fields that must be consistent before a
crash are grouped into the same data structure). So, rather than trying to build testing approaches
that generalize crash-consistency requirements from other sample applications in order to scale
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testing [31, 41, 50–52, 56, 103, 104, 126], we instead focus on automatically uncovering the se-
mantics of the application-under-test to prune unnecessary testing. Overall, our approach results in
bug discovery that is simultaneously more scalable and more accurate than prior work (Chapter 4).

We explore our insight in the three projects that are detailed in this dissertation, which provide
ample evidence of the effectiveness of our approach in building techniques to automatically detect
and correct PM bugs. We summarize the contributions of this dissertation below:

AGAMOTTO Writing PM applications that are simultaneously correct and efficient is challeng-
ing, resulting in many PM applications that contain correctness and performance bugs. Prior work
on testing PM systems has low bug coverage as it relies primarily on extensive test cases and de-
veloper annotations. In our aim to build a system for that more thoroughly tests PM applications,
we first perform and present a detailed study of 63 bugs from popular PM projects. We identify
two application-independent patterns of PM misuse (i.e., persistence bugs) which account for the
majority of bugs in our study and can be detected automatically. We then present AGAMOTTO,
a generic and extensible system for discovering misuse of PM in PM applications. Unlike exist-
ing tools that rely on extensive test cases or annotations, AGAMOTTO symbolically executes PM
systems to discover bugs. AGAMOTTO introduces a new symbolic memory model that is able to
represent whether or not PM state has been made persistent. AGAMOTTO uses a state space explo-
ration algorithm, which drives symbolic execution towards program locations that are susceptible
to persistence bugs. We use AGAMOTTO to identify 84 new persistence bugs in 5 different PM
applications and frameworks while incurring no false positives.

HIPPOCRATES PM-specific testing and debugging tools can help developers find PM durability
bugs, however even with such tools, fixing durability bugs can be challenging. To understand why,
we extend our original study of durability bugs and find that although durability bug fixes seems
simple, the actual reasoning behind the fix can be complicated and time-consuming. Overall, the
severity of these bugs coupled with the difficultly of developing fixes for them motivates us to
consider automated approaches to fixing durability bugs. We therefore develop HIPPOCRATES, a
system that automatically fixes durability bugs in PM systems. HIPPOCRATES automatically per-
forms the complex reasoning behind durability bug fixes, relieving developers of time-consuming
bug fixes. HIPPOCRATES’s fixes are guaranteed to be safe, as they are guaranteed to not intro-
duce new bugs (“do no harm”). We use HIPPOCRATES to automatically fix 23 durability bugs in
real-world and research systems. We show that HIPPOCRATES produces fixes that are function-
ally equivalent to developer fixes and can generate code that is as efficient or more efficient than
developer-written durability code.
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SQUINT In this work, we introduce representative testing: a new PM crash-state reduction strat-
egy that simultaneously achieves high scalability and high coverage. Our key observation is that
many crash-states produced by a PM application can be considered equivalent because they evince
the same crash-consistency bug, even though the crash-states are not themselves equivalent. We
design a heuristic that approximates a small set of representative crash-states, or, a set of crash-
states that is equivalent to all of the crash-states that an execution can produce. We build SQUINT,
which uses representative testing to perform crash-consistency testing on only the small set of rep-
resentative crash-states. We demonstrate that SQUINT achieves high coverage, since it finds 108
bugs (53 new) across 19 real-world PM applications, and show that it achieves high scalability,
since it scales to real-world PM applications more effectively than existing works.

1.4 Dissertation Outline

The rest of this dissertation is organized as follows. We first focus on how to thoroughly test PM
systems for PM persistence bugs and present AGAMOTTO, a symbolic-execution approach to thor-
oughly testing PM applications for persistence bugs (Chapter 2). We then present HIPPOCRATES,
a compiler tool that can take PM durability bug reports from PM-testing tools like AGAMOTTO

and automatically fix them using provably-correct fixes (Chapter 3). We then present SQUINT, a
PM-testing tool that efficiently detects more general crash-consistency bugs in PM systems, and
further discusses what work is remaining in this project (Chapter 4). Finally, we conclude and
discuss possible future research directions based on the techniques and insights presented in this
dissertation (Chapter 5).
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CHAPTER 2

AGAMOTTO: How Persistent is your Persistent
Memory Application?

Persistent Memory (PM) is a helpful programming abstraction that developers can use to write
applications that directly modify persistent data, without the overhead of a file system. However,
writing PM applications that are simultaneously correct and efficient is challenging. As a result,
PM applications contain correctness and performance bugs. Prior work on testing PM systems has
low bug coverage as it relies primarily on extensive test cases and developer annotations.

In this chapter we aim to build a system for more thoroughly testing PM applications. We
inform our design using a detailed study of 63 bugs from popular PM projects. We identify two
application-independent patterns of PM misuse which account for the majority of bugs in our study
and can be detected automatically. The remaining application-specific bugs can be detected using
compact custom oracles provided by developers.

We then present AGAMOTTO, a generic and extensible system for discovering misuse of per-
sistent memory in PM applications. Unlike existing tools that rely on extensive test cases or anno-
tations, AGAMOTTO symbolically executes PM systems to discover bugs. AGAMOTTO introduces
a new symbolic memory model that is able to represent whether or not PM state has been made
persistent. AGAMOTTO uses a state space exploration algorithm, which drives symbolic execution
towards program locations that are susceptible to durability bugs. AGAMOTTO has so far identified
84 new bugs in 5 different PM applications and frameworks while incurring no false positives.

2.1 Introduction

PM is a promising programming abstraction that offers an appealing performance-cost trade-off
for application developers. New NVM technologies, such as Intel Optane DC PMem [69], can
offer developers a PM abstraction with latencies that are only 2–3× higher than the latencies
of Dynamic Random-Access Memory (DRAM) [147]. Moreover, such NVM technologies are
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cheaper than DRAM per gigabyte (GB) of capacity [4]. As byte-addressable memory, NVM can
also be accessed via processor load and store instructions. Application developers have already
started building systems that use NVM directly, without relying on heavyweight system calls to
ensure durability, including ports of popular systems such as memcached [39] and Redis [33].

While using PM directly via persistent data structures can offer good performance, it is chal-
lenging to write PM-based applications that are simultaneously correct and efficient [18, 26, 63,
106, 108, 119, 152, 165]. PM platforms often require the use of special persistence instructions to
enforce the crash-consistency of updates. For example, PM writes in the CPU cache may need to be
explicitly flushed to PM using specific instructions or Application Programming Interface (API)s,
and those PM flush operations may need to be ordered using memory fences to enforce crash con-
sistency. Incorrect usage of these mechanisms can result in persistence bugs which break crash-
consistency guarantees or degrade application performance. Persistence bugs are challenging to
diagnose because their symptoms are easily masked. For example, crash-consistency bugs may be
masked because PM writes are implicitly flushed when dirty (or updated) cache lines are evicted
from the CPU—furthermore, flushes which are required for proper crash consistency under one ex-
ecution path may be redundant and unnecessary under a different program execution path, leading
to performance degradations.

Several systems have been built to aid with testing PM applications; however, these existing
approaches are either specific to a target application or require significant manual developer effort.
Intel designed Yat [90] and pmemcheck [31] specifically to test the crash consistency and durability
of PMFS (Persistent Memory File System) [43] and PMDK (Persistent Memory Development
Kit) [32], respectively. To find bugs, Yat exhaustively tests all possible update orderings, and
pmemcheck tracks annotated updates. Both of these tools are specific to a single system (PMFS
and PMDK, respectively) and are hard to generalize. Other tools like Persistence Inspector [126],
PMTest [104], and XFDetector [103] are applicable to general PM systems, but require developer
annotations and extensive test suites to thoroughly test PM applications.

In order to determine the extent to which persistence bug finding can be automated (i.e., not
require program annotations) to test general systems, we perform a study of 63 bugs in PM appli-
cations and frameworks. We identify two application-independent patterns of PM misuse (missing

flush/fence and extra flush/fence) which cover the majority (89%, or 56 out of 63) of bugs in our
study and can be detected automatically. The remaining bugs are application-specific; for example,
many of the remaining bugs involve misusing transactions when updating data-structures. Existing
PM testing approaches do not identify application-independent patterns of misuse, and therefore
require annotations to detect any PM bug. In addition to classifying bugs based on their pattern of
PM misuse, we also classify bugs based on whether they affect performance or correctness.

Based on the insights gained through our study, we present AGAMOTTO, a framework for de-
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tecting bugs in PM applications that does not rely on extensive test cases. Instead, AGAMOTTO

uses symbolic execution [12] to thoroughly explore the state space of a program1. In addition to
expanding path coverage, symbolic execution also allows AGAMOTTO to detect persistence bugs
in an application without access to underlying physical PM resources. AGAMOTTO introduces a
memory model to track updates made to PM by the explored program paths, and supports bug

oracles which use the PM state to identify bugs in the program. AGAMOTTO automatically detects
persistence bugs using two universal persistence bug oracles based on the common patterns of PM
misuse identified by our study. The first is an unflushed/unfenced oracle that identifies modifica-
tions to PM cache lines that are not flushed or fenced (both a correctness and performance issue)
and the second an extra-flushed/fenced oracle that identifies duplicate flushes of the same cache
line or unnecessary fences (a performance issue [26, 106, 119, 152, 165]).

To identify application-specific persistence bugs, AGAMOTTO allows developers to provide
custom persistence bug oracles. To demonstrate the versatility of custom oracles, we implemented
two such oracles in AGAMOTTO to detect bugs related to misuse of PMDK’s Transaction API [32,
103, 104].

Analyzing large PM applications using traditional symbolic execution [12] leads to scalability
issues since the state space of possible executions grows exponentially with the size of the analyzed
program. AGAMOTTO uses a novel search algorithm that prunes the execution states it analyzes,
allowing AGAMOTTO to discover more bugs. Prior to symbolic execution, AGAMOTTO uses a
whole-program static analysis to determine instructions that modify PM (stores, flushes, etc.) and
assigns a unit priority to them. AGAMOTTO then assigns an aggregate priority to each instruc-
tion by back-propagating the unit priorities from each PM-modifying instruction—this makes the
aggregate priority a measure of the number of PM-modifying instructions reachable from a partic-
ular instruction. AGAMOTTO uses priorities to steer symbolic execution into program states that
frequently modify PM.

We used AGAMOTTO to find 84 new persistence bugs in real-world systems including PMDK
(a mature PM library) [32], memcached-pm [39], Redis-pmem [33], NVM-Direct [11], and
RECIPE [95]. In particular, we found 13 new correctness and 70 new performance bugs using
the universal persistence bug oracles, and 1 new correctness bug using a custom durability bug
oracle. We report all bugs to their authors, and so far 40 have been confirmed and none denied.

In this chapter we make the following contributions:

• We perform a detailed study of persistence bugs in PMDK as well as bugs found by prior
work, and present a new taxonomy of persistence bugs.

1AGAMOTTO is named after the “Eye of Agamotto” (i.e., the Time Stone in the Avengers franchise), which has
the power to allow the user to explore alternative timelines [156], like how AGAMOTTO allows users to symbolically
explore many execution paths for PM persistence bugs.
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• We build AGAMOTTO, a PM bug detection tool that can test real-world PM programs using
a novel state exploration algorithm. AGAMOTTO automatically detects bugs using two uni-
versal persistence bug oracles, without relying on user annotations or an extensive test suite.
AGAMOTTO is extensible with custom bug oracles that can detect application-specific bugs.
AGAMOTTO’s artifact is publicly available on GitHub [120].

• We use AGAMOTTO to find 84 new bugs in 5 applications and PM libraries, compared to
the 6 persistence bugs found in persistent applications by the state of the art (PMTest [104],
which finds 3 bugs, and XFDetector [103], which finds 3 bugs). AGAMOTTO does not incur
any false positives in our evaluation.

In the rest of this chapter, we first provide background on PM programming and describe the
challenges of PM bug finding (§2.2). We then present the results of our PM bug study and provide
common patterns of PM misuse that identify PM bugs (§2.3). Then, we discuss the high-level
design of AGAMOTTO and detail the persistence bug detection algorithms and search techniques
that power AGAMOTTO’s bug detection capabilities (§2.4). Next, we briefly discuss AGAMOTTO’s
implementation (§2.5) and evaluate the system with respect to both the number of bugs found and
the impact of these bugs (§2.6). Finally, we discuss related PM bug detection work (§2.7) and
conclude (§2.8).

2.2 Background and Challenges

We now provide a background on PM programming and difficulties associated with writing correct
and efficient PM programs.

2.2.1 Persistent Memory Programming

PM implementations support a programming interface that diverges from that of conventional
storage devices. Rather than using comparatively slow system calls to access persistent memory,
applications can accelerate PM accesses by directly mapping pages of PM into their address space
and performing byte-addressable load/store operations. Like volatile memory accesses, PM ac-
cesses and modifications may be cached and buffered in volatile memory (i.e., the CPU cache) in
order to increase performance.

The added performance comes at the cost of increased complexity for the application developer.
Volatile memory can retain updates to PM for an indefinite period of time (e.g., until a cache line
gets evicted). Ensuring that stores to PM are durable requires two steps. First, a developer must
issue a flush for the cache line that contains the updated data. Then, the developer orders flushes
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1 int *x = pm_alloc();
2 int *y = pm_alloc();
3
4 *x = 1;
5 clwb(x);
6 sfence();
7
8 *y = 1;
9 clwb(y);

10 sfence();

Listing 2.1: PM Programming Example. An example of PM programming on the x86 CPU
architecture.

using existing fence operations (e.g., SFENCE). Note that an unordered flush may not be written
to persistent memory before a crash, so fences are required for durability. Consider Listing 2.1,
which allocates two integers in persistent memory and issues ordered writes to the integers. In
order to guarantee that the write to x (line 4) is ordered before the write to y (line 8), a flush and
fence must occur between the updates (line 5 and line 6). To ensure that the write to y (line 8) is
durable, a flush and fence must occur after the write (line 5 and line 6).

The x86 Instruction Set Architecture (ISA) provides two flush instructions: CLFLUSHOPT and
CLWB. CLWB differs from CLFLUSHOPT in that CLWB hints the CPU to keep the cache line in the
cache whereas CLFLUSHOPT does not. x86 provides two fence instructions: MFENCE, which orders
all loads, stores, and flushes; and SFENCE, which orders all stores and all flushes. Additionally,
x86 provides CLFLUSH, which acts as both a flush and fence for a specific cache line (i.e., only
orders the flush that the CLFLUSH itself issues, other CLWB and CLFLUSHOPT instructions must be
ordered by a separate fence). Finally, x86 allows non-temporal stores, which bypass the cache and
thus do not require a flush but do require a fence for durability. Note that the classification of PM
instructions into flush and fence operations is not x86-specific. For example, ARM provides flush
(e.g., DC CVAP) and fence (e.g., DSB) operations [7, 135] with similar semantics to x86 flushes and
fences.

2.2.2 Challenges of Detecting Persistent Memory Bugs

PM interfaces for durability and performance are easy to misuse [103, 104] and the resulting per-

sistence bugs (i.e., misuses of persistence instructions) can be challenging to detect. Persistence
bugs exhibit many characteristics that make them difficult to detect. First, finding a persistence
bug requires identifying whether PM cache-lines are dirty, but the x86 ISA does not provide a
mechanism to determine the state of a cache-line. Thus, detecting a persistence bug requires mod-
eling PM state and instrumenting the program for tracking state updates, which is challenging to
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Project Missing Flush/Fence Extra Flush/Fence Other Total
PMDK 49 6 2 57
PMTest 1 1 1 3
XFDetector - - 3 3
Total 50 6 7 63

Table 2.1: Bug Survey. The results of our initial PM bug survey conducted on bugs reported in
PMDK [32] and on bugs discovered by PMTest [104] and XFDetector [103].

accomplish using traditional debugging tools. Second, in the case of correctness bugs, the root
cause and symptoms of a durability bug are often loosely tied together: while the symptoms of a
correctness durability bug is only revealed after a crash, the PM misuse (i.e., the root cause) may
be hundreds of thousands of instructions before the crash even occurred. Finally, persistence bugs
are easily masked by other system behavior. For example, flushes which are redundant in one
execution path of the program may be necessary under a slightly different execution path, while
correctness durability bugs may be masked by the CPU when evicting a dirty cache-line from its
cache.

Unfortunately, developers cannot solely rely on PM frameworks (e.g., PMDK [32]) to prevent
these bugs. As we show in §2.3, many applications use PM libraries incorrectly and even these
established libraries themselves may misuse PM.

2.3 Persistent Memory Bug Study and Classification

In this section, we present a study of PM bugs. We construct a corpus of 63 PM bugs from
a mature PM library, Intel’s PMDK [32], and persistence bugs from PM projects (PMFS [43]
and Redis-pmem [33]) that were found by state-of-the-art PM bug detection tools (PMTest [104]
and XFDetector [103]). We chose PMDK because it is a mature project with a thorough issue
tracker [75] representing a large collection of existing bugs. We use this corpus to identify common
patterns of PM bugs.

Table 2.1 shows a summary of our results2. Overall, we find that two application-independent
PM patterns explain the vast majority (56/63 bugs) of the reported persistence bugs. We find that
PM bugs can result in either correctness problems, which may lead to data corruption, or perfor-
mance problems. In particular, the missing flush/fence pattern, in which an update to persistent
memory is missing subsequent flush and/or fence operations, accounts for 50/63 bugs and can lead
to either correctness or performance issues. The extra flush/fence pattern, in which a cache-line is

2We provide a link to our bug study results in the AGAMOTTO GitHub repository: https://github.com/
efeslab/agamotto/blob/artifact-eval-osdi20/artifact/README.md
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1 // oid is a pointer to PM
2 if (if_free != 0) {
3 *oid = NULL;
4 // BUG: missing flush and fence
5 }

Listing 2.2: Missing Flush/Fence Bug Example. A missing flush/fence correctness bug adapted
from PMDK Issue #1103, PR #3907.

redundantly flushed or a fence instruction is issued that is not needed for PM durability, accounts
for 6/63 bugs and leads to performance degradation. The remaining 7 are caused by application-
specific violations, most of which involve a misuse of the PMDK transaction API. Note, our study
may be biased towards bugs that are detectable by existing PM bug detection tools, because PMDK
developers extensively use pmemcheck [31] to detect bugs. In the rest of this section, we present
examples of these bugs together with more detailed descriptions.

2.3.1 Missing Flush/Fence Pattern

The most common bug pattern in the bugs in our study is the missing flush/fence pattern, in part
because PMDK developers extensively use pmemcheck [31] which identifies this pattern of PM
misuse. In this bug pattern, an update to PM is not made durable because it is missing a subsequent
flush and/or fence operation. An example of the pattern is shown in Listing 2.2. Here, a pointer to
persistent memory, oid, is not flushed when if free != 0. If the program crashed and restarted,
the pointer might point to its old value, which could lead to rogue writes or malformed data reads.
This bug is fixed by adding proper flush and fence operations after the modification.

In contrast, the missing flush/fence pattern is detectable without any application-specific infor-
mation. In our study, instances of the missing flush/fence pattern are correctness issues, where the
program is unable to recover from a crash similar to the one in Listing 2.2. In our evaluation (§2.6),
we also found instances of the missing flush/fence pattern which are performance bugs. In these
instances, an application uses persistent memory to store volatile data, which hinders performance
due to the higher latency of PM accesses relative to DRAM accesses. Existing studies suggest that
placing volatile data in PM can decrease application performance by as much as 5% [42]. There
are PM data structures that intentionally include this pattern [106] as a programming simplifica-
tion. However, in the applications included in our study and evaluation, all instances of the missing
flush/fence pattern are persistence bugs.

2.3.2 Extra Flush/Fence Pattern

The other common pattern of persistent memory misuse which we identify in our study is the
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1 // array is an array of integers in PM with length = size
2
3 // resizes array in-place
4 resize_array(array, new_size);
5
6 // if size >= new_size, no copying occurs
7 for (size_t i = size; i < new_size; i++) {
8 array[i] = 0;
9 }

10
11 // BUG: when new_size < size, underflow!
12 for (size_t i = 0; i < new_size - size; ++i) {
13 clwb(array[i + size])
14 }
15
16 sfence();

Listing 2.3: Extra Flush/Fence Bug Example. An extra flush/fence performance bug adapted
from PMDK Issue #1117, PR #3860.

extra flush/fence pattern. In this pattern, a cache-line is redundantly flushed, or a fence instruc-
tion which is not needed for PM durability is executed. An example of this is shown in List-
ing 2.3. In this example, an array located in persistent memory is resized in-place using the call
to resize array, new elements are initialized to 0, and new elements are flushed to persistent
memory. However, when the size of the array is reduced (i.e., new size< size), an underflow in
line 12 causes unnecessary flushes and leads to a performance degradation [26, 119, 152, 165] (e.g.,
an additional flush and fence can add an average of 250ns (nanoseconds) of latency [105, 154],
where the base latency of uncached PM accesses can be as low as 96ns [77]).

Similar to the missing flush/fence pattern, the extra flush/fence pattern is detectable without any
application-specific information. The extra flush/fence pattern results in performance degradation.
As flush and fence instructions are used in non-PM contexts (e.g., fences provide semantics for
memory consistency), there may be instances of this pattern that are not persistence bugs. However,
in the applications in our study and evaluation, all instances of the extra flush/fence pattern are
persistence bugs.

2.3.3 Other Bugs

The remaining 7 bugs in the study are application-specific; i.e., in these cases, data is correctly
flushed to PM and there are no redundant flush operations, but the application misuses PM, leading
to performance or correctness issues. For example, Listing 2.4 depicts a bug adapted from the
memory pool allocator in PMDK which results in a correctness issue. In order to recover from a
crash, the values in header and pool must be consistent; however a crash at line 7 will result in
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1 // store pool's header
2 /* BUG: header made valid before pool data made valid */
3 header = ...
4 clwb(header);
5 sfence();
6
7 pool = ...
8 clwb(pool);
9 sfence();

Listing 2.4: Ordering Bug Example. An example correctness bug adapted from PMDK Issue
#14.

an updated value of header without an updated value of pool.

2.3.4 Summary and Insights

We summarize several key results we obtained and the insights we gathered from this bug study
which inform AGAMOTTO’s design decisions.

• The missing flush/fence and extra flush patterns are prevalent (56/63 of the bugs we found)
and application-independent. Hence, an automated approach (i.e., requiring little to no de-
veloper effort or source modification) could and should be used to detect them across a
variety of platforms.

• In our study, all instances of the missing flush/fence and extra flush/fence patterns are per-
sistence bugs; we hypothesize that this trend will hold for general PM applications. In our
evaluation (§2.6), we find that all instances of these patterns are persistence bugs across a
variety of PM libraries and applications (i.e., we find no false positives with these patterns).

• The remaining bugs, while less prevalent in our survey, are still potential sources of data
inconsistency or application inefficiency. An ideal tool should allow developers to specify
application-specific patterns without requiring extensive test cases and significant developer
annotations.

2.4 Design

In this section, we describe the design of AGAMOTTO. AGAMOTTO aims to achieve four high-level
design principles:
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Symbolic Execution Engine

Symbolic
State

B. Update State

+ PM Bug Oracles

C. Select Next State

+ PM State Selection

A. Execute Instruction

+ PM Memory Model

Figure 2.1: Components of AGAMOTTO. Green-shaded boxes are AGAMOTTO-specific contri-
butions to the existing symbolic execution engine.

Automation: Bug-finding can take a substantial amount of developer effort [111, 138]; AG-
AMOTTO aims to automate as much as possible to reduce this burden. For example, AGAMOTTO

is non-intrusive (i.e., requires no source-code modifications) and leverages basic test cases (e.g.,
existing unit tests or example code) to explore execution paths in an application.

Generality: AGAMOTTO can test any PM application, regardless of what PM libraries or APIs
that the PM application uses.

High Accuracy: AGAMOTTO aims to report no false positives (i.e., reporting a bug where there
is none) while also reducing false negatives (i.e., failure to find a bug).

Extensibility: AGAMOTTO can be easily extended to find application-specific bugs.

The major components of AGAMOTTO are shown in Figure 2.1 (green-shaded boxes represent
the key components unique to AGAMOTTO). AGAMOTTO relies on an existing symbolic execution
engine (KLEE [12] in our prototype) to explore the state space of a PM program. During this
exploration, AGAMOTTO uses a custom PM memory model (Figure 2.1, Step A) to express and
track updates to persistent memory regions (i.e., writes, flushes and fences). Since AGAMOTTO

tracks PM symbolically, it does not need access to PM resources in order to detect persistence bugs
in a PM application. As AGAMOTTO explores the state space of the program, it checks for PM
bugs using universal bug oracles (Figure 2.1, Step B), as well as any custom bug oracles that users
may provide. Universal oracles check for the missing flush/fence pattern and the extra flush/fence
patterns of PM misuse identified in our study. Custom oracles can check for application-specific
bugs, which may be correctness bugs (e.g., ordering bugs) and/or performance bugs (e.g., redun-
dant transaction operations) akin to prior work [103, 104].

At the heart of AGAMOTTO lies its PM-aware state space exploration algorithm (Figure 2.1,
Step C), which is effective in steering symbolic execution towards program locations that exercise
PM. In symbolic execution, inputs are symbolic (unconstrained) values in a program’s initial state.
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When the program reaches a branch depending on symbolic input, the current state is forked and
the constraints on input are updated depending on the branch condition. As states increase by
forking, symbolic execution needs to employ a state-space exploration strategy. Existing state
space exploration strategies, such as maximizing code coverage, are not optimized for finding PM
bugs, and thus waste resources exploring uninteresting paths.

Instead, before symbolically executing the program, AGAMOTTO uses a custom static analy-
sis to determine instructions that can modify persistent memory. AGAMOTTO then uses a back-
propagation algorithm to assign a weight to each instruction equal to the number of PM-modifying
instructions that are reachable from that instruction. AGAMOTTO prioritizes exploring the program
state whose currently-executed instruction has the highest such weight. We find that the number of
PM-modifying paths is much smaller than the total number of execution paths in practice, allowing
AGAMOTTO to thoroughly explore the set of executions that lead to persistence bugs (see §2.6).

When AGAMOTTO’s oracles detect a bug during state space exploration, AGAMOTTO relies on
its underlying symbolic execution engine to invoke a constraint solver and determine the inputs
that led to the bug, thereby creating a test case that a developer can use for debugging.

In the rest of this section we provide details regarding the key components of AGAMOTTO.

2.4.1 Persistent Memory Model and Persistent Memory State Tracking

AGAMOTTO facilitates persistence bug detection by tracking the state of persistent memory objects
in the program. For each PM allocation, AGAMOTTO tracks constraints on the durability state of
the allocated cache lines. The durability state of a cache-line indicates whether the cache line
is dirty (i.e., modified), pending (i.e., updates to the cache line are flushed but not ordered) or
clean (i.e., updates to the cache line are both flushed and ordered). As AGAMOTTO symbolically
executes, it updates constraints on the durability state of PM cache-lines to reflect the behavior of
the program. AGAMOTTO uses these constraints to identify execution paths that contain durability
bugs (i.e., when redundant flushes are issued, or updates are not properly ordered).

Identifying Persistent Memory Allocations In order to be application-agnostic and automated,
AGAMOTTO tracks persistent memory allocations from the system level, rather than tracking
high-level calls to persistent memory allocators (e.g., pmem alloc) [104]. Tracking PM allo-
cations at a system level trades off performance in favor of automation, since this approach over-
approximates PM allocations. AGAMOTTO marks all opened files that match a user-specified per-
sistent memory device regular expression (e.g., pmem/*) as PM files and treats memory-mappings
of PM files as persistent memory objects.
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Tracking Persistent Memory State When AGAMOTTO symbolically executes an instruction
that operates on a PM object, it generates constraints on the durability state of the cache-lines
that comprise the memory objects. A store instruction (e.g., x86 MOV) adds a constraint that the
destination of the store is in the dirty state. Flush instructions (e.g., CLWB and CLFLUSHOPT)
generate a constraint that denotes that the destination is in the pending state. Non-temporal stores
(e.g., x86 MOVNT are similar to regular stores, except their destination is immediately put into
the pending state (i.e., non-temporal stores are treated as a store+flush), as non-temporal stores
bypass the CPU cache but are weakly ordered (like flush instructions) and still require some form
of memory fence. Global fences (e.g., SFENCE, MFENCE) add constraints to indicate that all PM
cache lines are clean, whereas cache-line fences (e.g., CLFLUSH) add a constraint denoting that
their destination is clean.

2.4.2 Persistence Bug Oracles

AGAMOTTO uses the persistent memory state in order to support two types of persistence bug
oracles. First, AGAMOTTO provides two built-in Universal Persistence Bug Oracles, which check
for bugs based on the patterns we identify in our initial study (§2.3). Second, AGAMOTTO allows
developers to specify custom, application-specific persistence bug oracles, which we have used to
provide two oracles for PMDK’s transaction API [32].

2.4.2.1 Universal Persistence Bug Oracles

AGAMOTTO provides two universal persistence bug oracles, one that detects an instance of the
missing flush/fence bug pattern (indicating a correctness or performance bug), and one that detects
an instance of the extraneous flush/fence bug pattern (indicating a performance bug). We sketch
the algorithms in Listing 2.5. AGAMOTTO reports a missing flush/fence bug for each cache-line
in a persistent memory object that is not clean (i.e., the constraints on the persistent state indi-
cate that the cache-line may be dirty or pending) at the time when the persistent memory is no
longer addressable (due to either munmap or program exit). AGAMOTTO identifies an extrane-
ous flush/fence operation bug on any flush (i.e., CLFLUSH) to a cache-line which must already be
pending or clean based on the constraints on the persistent state. AGAMOTTO also identifies an
extraneous flush/fence bug on any fence (e.g., SFENCE or MFENCE) which has no pending flushes
to mark clean. For both of these oracles, AGAMOTTO reports program location information (e.g.,
stack frame and source code location) for the most recent update to each cache line that violates
the conditions checked by the oracle. In our evaluation (see §2.6), we show that these oracles do
not incur any false positives across a variety of PM frameworks and applications.
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1 # Unflushed Bug Oracle
2 def check_unflushed(state):
3 for pm_obj in state:
4 foreach cacheline in pm_obj if not cacheline.is_clean:
5 raise error(correctness)
6
7 # Extra Flush/Fence Bug Oracles
8 def check_extra_flush(state, cacheline):
9 if cacheline in state is clean:

10 raise error(performance)
11 def check_extra_fence(state):
12 if state has no pending updates:
13 raise error(performance)
14
15 # Call Oracles on instructions:
16 def executeInstruction(state, inst):
17 if (state.terminated or state.unmapped):
18 check_unflushed(state)
19 if inst is flush:
20 check_extra_flush(state, inst.cacheline)
21 do_flush(inst.cacheline)
22 if inst is fence:
23 check_extra_fence(state)
24 state.commit_pending()

Listing 2.5: Universal Persistence Bug Oracles. Pseudo-code for Universal Persistence Bug
Oracles and how they are used as AGAMOTTO explores the state space.

2.4.2.2 Custom Bug Oracles

In addition to the generic bug oracles, AGAMOTTO facilitates the use of custom bug oracles. Cus-
tom bug oracles are defined separately from the application, which allows them to be versatile tools
for detecting application-specific bugs. For example, a developer might use a custom oracle to val-
idate the correct usage of PM frameworks (e.g., identifying duplicate log entries in the PMDK
transaction log) or assert that certain structures are operated on in the correct way (e.g., checking
that PM referenced as struct foo is only ever modified in a PMDK transaction). Custom bug
oracles define a function that takes as input an explored program state (i.e., the current state of
symbolic memory and variables in the program) and an instruction; after each instruction is exe-
cuted within this state, AGAMOTTO calls all configured custom bug oracles. We provide two case
studies on designing and implementing custom oracles, which we use to find 4 application-specific
bugs that were reported by prior work and 1 new application-specific bug. Both of the custom
oracles that we present are precise, i.e., they do not introduce false positives. We describe them at
a high-level below, then discuss their implementation in §2.5.
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1 class PmemObjTxAddChecker : public CustomChecker {
2 bool in_tx;
3 // [address, address+size)
4 typedef pair<ref<Expr>, ref<Expr>> TxRange;
5 list<TxRange> added_ranges;
6
7 void checkTxBegin(Function *f, ExecutionState &state) {
8 if (!in_tx && f->getName() == "pmemobj_tx_begin") in_tx = true;
9 }

10
11 void checkTxAdd(Function *f, ExecutionState &state) {
12 if (f->getName() != "pmemobj_tx_add_common") return;
13 // 1. Get the address from the stack.
14 ref<Expr> address = f.getArgument(0);
15 ref<Expr> size = f.getArgument(1)
16 // 2. Get end bound
17 auto r_end = address + size;
18 auto new_range = TxRange(address, r_end);
19 // 3. Check for overlaps.
20 // If overlap, there's a bug!
21 if (overlaps(state, new_range))
22 reportError(state, RedundantTxAdd);
23 // 4. Add the new range.
24 added_ranges.push_back(new_range);
25 }
26
27 void checkTxEnd(Function *f, ExecutionState &state) {
28 if (f->getName() == "pmemobj_tx_end") in_tx = false;
29 }
30
31 public:
32 PmemObjTxAddChecker(...) {...}
33 // This is the entry point
34 virtual void operator()(ExecutionState &state) override {
35 checkTxBegin(getFunction(state), state);
36 checkTxAdd(getFunction(state), state);
37 checkTxEnd(getFunction(state), state);
38
39 if (!in_tx) added_ranges.clear();
40 }
41 };

Listing 2.6: Custom Oracle Example. A pseudo-code example of a custom oracle, designed to
check for redundant PMDK transaction “adds” (i.e., redundant log updates).
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Redundant Undo Log Oracle This oracle checks to ensure that data does not get logged in
PMDK’s undo log mechanism multiple times. We show a pseudo-code example of an oracle in
Listing 2.6. PMDK’s transaction API implements an undo log which is used to back up data
before it is modified—if a transaction is interrupted by a program error or a crash, the data can be
recovered from the log. A misuse of this API, however, can lead to redundant entries being created
in the undo log, which degrades performance. To track these errors, this oracle keeps track of
transaction boundaries (TX BEGIN, TX END) and the memory ranges backed up in the undo log. If
overlapping memory ranges are added during a single transaction, the oracle signals a performance
bug. We use this oracle to reproduce the application-specific performance bug found by PMTest in
PMDK’s example BTree data structure.

Atomic Operation Oracle This oracle ensures that a developer-specified structure is crash-
recoverable through correct use of a PMDK transaction. In particular, the oracle verifies that the
structure is only updated within a PMDK transaction and is properly added to the PMDK undo log.
We used this oracle to find 3 existing bugs; 2 in the PMDK Atomic Hashmap and 1 in Redis-pmem.

2.4.3 Persistent Memory-Aware Search Algorithm

AGAMOTTO uses symbolic execution to explore the state space of the program. In order to ana-
lyze large persistent memory applications, AGAMOTTO prioritizes exploring program states that
are most likely to modify persistent memory using a PM-aware search algorithm. We now first ex-
plain the static analysis that AGAMOTTO uses to compute exploration priorities. We then explain
the operation of AGAMOTTO’s state space exploration and why AGAMOTTO’s approach is more
effective at finding persistence bugs than traditional coverage-guided exploration heuristics.

2.4.3.1 Whole-Program Static Priority Computation

The goal of AGAMOTTO’s static analysis is to determine the number of reachable PM-modifying
instructions from each instruction in the program. That way, AGAMOTTO can guide symbolic
execution towards program locations that are expected to access PM heavily, and uncover more
bugs. This technique can be effective as the number of overall instructions expected to modify PM
is much smaller than the number of instructions which modify volatile memory [118].

To achieve this, AGAMOTTO first identifies all PM-modifying instructions in the program by
leveraging a sound, whole-program (i.e., interprocedural) pointer analysis [5, 21, 61, 62]. The
analysis maps each pointer in the program to a set of memory locations; soundness guarantees
that any two pointers which may alias will have a non-empty intersection of these sets of memory
locations.
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1 char *pbuf = mmap(<PM file>);
2 ... // (# of PM-modifying instructions)
3 do_read = /* user input */; // (2)
4 if (do_read) { // (0)
5 a = pbuf[x]; // (0)
6 foo(); // (0)
7 } else { // (2)
8 a = /* user input */; // (2)
9 pbuf[x] = a; // (2)

10 clwb(pbuf[x]); // (1)
11 // BUG: Missing sfence!
12 }
13 exit(0); // (0)

Listing 2.7: Priority Calculation Example. An example of AGAMOTTO’s static analysis. All
PM-modifying instructions are highlighted. Each instruction is annotated with a comment which
denotes the result of the priority calculation.

AGAMOTTO then determines whether a given memory location may have been allocated as
persistent memory. To do this, AGAMOTTO conservatively assumes that all mmap calls which
accept a non-negative or variable file descriptor may return a pointer to persistent memory. While
this approach over-approximates the persistent memory allocated by the program, as we show in
§2.6, it accelerates persistence bug finding compared to default exploration strategies. Note that
this conservative approach only affects the PM-aware search strategy, it does not introduce false
positives in AGAMOTTO’s PM state tracking.

Then, AGAMOTTO classifies each instruction in the program as a persistent memory-modifying
instruction if the instruction is a global fence (e.g., SFENCE), or, a store (e.g., x86 MOV), cache-
line flush (e.g., CLWB), or cache-line fence (e.g., CLFLUSH) that may point to a persistent memory
location.

AGAMOTTO only computes points-to information for pointers which may alias PM. For shared
libraries, AGAMOTTO first statically links the binary, then computes the alias information. If the
shared library is used to modify PM (i.e., has some shared memory modification function which is
used to modify PM), then that part of the shared library code will be analyzed.

Finally, AGAMOTTO uses a back-propagation algorithm to calculate the number of reachable
PM-modifying instructions for each program location. AGAMOTTO iterates through the interpro-
cedural control flow graph from the exit points in the program (e.g., calls to exit or return from
main) to the first instruction in the program. For each instruction, AGAMOTTO assigns the priority

of the instruction to be the sum of the weight of the current instruction (1 if the current instruction
is a PM-modifying instruction, 0 otherwise) and the maximum number of reachable PM-modifying
instructions from the current instruction.

We show a small example of this priority computation in Listing 2.7, where each instruction is
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3: do_read = ...

4: if (do_read)

 9: pbuf[x] = a

10: clwb(pbuf[x])

5: a = pbuf[x]

6: foo()

<body of foo()>

do_read = true do_read = false

Contains the PM persistence bug!

1

2

4

3

1

KLEE-Default Agamotto

Figure 2.2: State Space Exploration Comparison. State space exploration with two strategies:
(1) KLEE-Default (based on code coverage), (2) AGAMOTTO’s priority-driven exploration. This
example corresponds with the bug described in Listing 2.7.

annotated with the result of the priority calculation. Each PM-modifying instruction (pbuf[x] =

a and clwb(pbuf[x])) adds 1 to the priority and the priorities are back-propagated to the entry
point (Line 3).

2.4.3.2 State Exploration Strategy

AGAMOTTO relies on an existing symbolic execution engine, KLEE [12], to explore the possible
states of the program. Symbolic execution starts with an initial program state which contains a
current statement (similar to a program counter), a symbolic memory (where memory values are
unknown), and symbolic inputs (e.g., an unknown integer value). As the program statements are
symbolically executed, the symbolic execution engine simulates the effects of the program state-
ments on symbolic inputs and memory, and updates explored program state accordingly. Moreover,
the symbolic execution engine forks the explored state into two every time a branch that depends
on symbolic values is encountered.

After executing a program statement in an explored state, the symbolic execution engine selects
a new state to advance next. When selecting a state to explore, AGAMOTTO chooses the state
whose current statement has the highest statically-computed aggregate priority (i.e., number of
reachable PM-modifying statements from the current instruction).

Figure 2.2 shows an example of state space exploration for the the example code snippet List-
ing 2.7, where the state containing do read at the top represents the initial state of the program
and the buggy state where the program omitted an SFENCE instruction is in the else path. For
brevity, foo is depicted as a single statement that is explored at once.

The KLEE-Default strategy, which is a breadth-first exploration strategy augmented by ran-
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domized, coverage-guided prioritization, may explore states that are not useful to detecting the
bug. When applied to the code in Listing 2.7, the KLEE-Default exploration strategy will explore
the state in the if branch for a single statement (a = pbuf[x]) and switch to the state in the
else branch for another statement (a = ...). This cycle will repeat once more in the if branch
(foo()) and in the else branch (pbuf[x] = a, clwb(pbuf[x])); exploration will reach the bug
in a total of 4 state transitions.

AGAMOTTO, on the other hand, directly explores the else branch because its static analysis
assigns the else branch a high aggregate priority. Consequently, AGAMOTTO can discover the
bug with a single state transition.

Although the number of explored states in our example is small, in practice, the number of
states in a program is exponential in the number of branches that depend on symbolic input. Con-
sequently, AGAMOTTO’s exploration strategy allows it to discover many more bugs compared to
KLEE’s default strategy, as we demonstrate in §2.6.

2.5 Implementation

AGAMOTTO comprises a persistent memory model (∼400 Lines of Code (LOC) of C++), a static
analysis component (∼2600 LOC of C++), and a state space exploration component (∼100 LOC
of C++) built atop KLEEE [12]). AGAMOTTO also provides 2 custom bug oracles for validating
the use of the PMDK transaction API (∼180 LOC of C++ for both oracles and ∼200 LOC of C++
for shared custom oracle API functions).

Running real-world complex PM applications also required expanding KLEE by ∼4000 LOC
of C++. These additional changes were primarily to the environment model, which symbolically
simulates syscalls and operating system facilities, such as a file system. AGAMOTTO targets the
Intel x86 ISA since it is the most broadly-used platform for PM programming. Hence, AGAMOTTO

adds support to KLEE for interpreting PM-specific x86 instructions (e.g., CLWB). Supporting a
different ISA or persistency model [64, 86, 128] simply requires identifying the flush and fence
operations in the ISA. In addition, AGAMOTTO adds to KLEE support for common inline assembly
functions such as atomic instructions, as well as porting an extensive environment model for multi-
threading (i.e., POSIX threads) from Cloud9 [24], which was built on an older version of KLEE.
AGAMOTTO adds support for symbolic files to model and track the state of mapped persistent
memory and anonymous symbolic mmap. Finally, AGAMOTTO adds symbolic socket traffic to the
environment model, which allows an application to receive symbolic input over a socket. Symbolic
socket traffic allows AGAMOTTO to model client applications that send commands to a server
process.

Developing an automated bug finding tool for persistent memory presents key challenges. To
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identify persistent memory allocations in a PM framework agnostic way without relying on devel-
oper annotations, AGAMOTTO tracks allocations at the system level (e.g., calls to map a persistent
memory file). This represents a significant divergence from KLEE, which tracks allocations at the
libc interface (e.g., malloc and free), and introduces performance challenges. Applications of-
ten allocate megabytes (MBs) or GBs of PM, but KLEE is optimized for tracking memory objects
that are kilobytes (KBs) in size; treating each PM mapping as a single memory object leads to
poor performance when KLEE solves constraints. Instead, AGAMOTTO carefully partitions PM
into separate, yet logically adjacent, objects (empirically, we find 16 KB chunks to balance the
trade-off between solver time and management overhead). AGAMOTTO also tracks the set of live
PM objects to reduce time resolving symbolic addresses for global fence operations.

AGAMOTTO supports custom persistence bug checkers with a simple yet powerful interface.
Specifically, a developer implements a method that takes as input the state being explored symbol-
ically and asserts pre- and post- conditions on the state of persistent memory based on an under-
standing of how their application should behave. AGAMOTTO provides a library of basic utilities
(e.g., error reporting, calls to the symbolic solver) that comprise ∼200 LOC and allows bug ora-
cles to use type information provided by LLVM. AGAMOTTO provides 2 custom oracles to detect
application-specific PM bugs in PMDK and Redis (§2.4.2.2). We implement the Redundant Undo

Log Oracle in 96 LOC and less than a day of developer effort. The Atomic Operation Oracle ex-
tends the Redundant Undo Log Oracle—it comprises an additional 86 LOC on top of the inherited
functionality and also took less than a day to implement.

2.6 Evaluation

In this section, we evaluate the effectiveness and usefulness of AGAMOTTO. We start by giving
an overview of the 84 new bugs AGAMOTTO has found3 and the insights we gather from them
(§2.6.1). We also discuss the positive responses that we have received after reporting bugs to PM
application developers (§2.6.2). We then evaluate the performance of AGAMOTTO and how our
novel search tactic compares to the default symbolic execution search strategy in KLEE (§2.6.3).

Evaluation Targets We evaluate AGAMOTTO by testing representative state-of-the-art PM-
application and libraries consistent with the libraries and applications tested by prior work [103,
104]. We evaluate AGAMOTTO on two PM libraries. First, we test the PMDK [32] library from
Intel, the most active and well-maintained open-source PM project, which has been maintained
for over 8 years. Consistent with existing tools [104], we use example data structures provided

3We provide a link to our evaluations results in the AGAMOTTO GitHub repository: https://github.com/
efeslab/agamotto/blob/artifact-eval-osdi20/artifact/README.md
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with PMDK (e.g., BTree, RBTree and Hashmap implementations) and an application provided by
Intel [37] as drivers for our testing. In addition to PMDK, we test NVM-Direct [11], a PM library
developed by Oracle. To drive our testing of NVM-Direct, we use their example test application
they provide for demonstrating the API.

We additionally evaluate AGAMOTTO by testing three real-world PM applications. We test
Redis-pmem, a port of Redis, a popular in-memory database and memory caching service, to
PMDK that is maintained by Intel. We likewise select memcached-pm, a port of memcached, a
popular high-performance memory caching server, to PMDK developed by Lenovo. Finally we
test RECIPE’s P-CLHT index, a state-of-the-art persistent index representing a research prototype.
Note, we only test the P-CLHT index from RECIPE because the other four indices all use a volatile
allocator which prevents crash-consistency. Since KLEE symbolically emulates system calls with-
out running real kernel code, we are unable to test PMFS [43], an evaluation target that has been
considered by prior work [104].

We test each application by providing a symbolic environment model (e.g., providing symbolic
arguments and files with symbolic contents) rather than instrumenting the source code to create
symbolic variables. We test RECIPE’s P-CLHT index using their example application, which
manipulates the basic structure of the index through standard insertion, deletion, and lookup op-
erations. We use symbolic socket traffic (see §2.5) to test the Redis-pmem and memcached-pm
server daemons using partially symbolic packets (i.e., packets with some concrete values, like the
Redis command string, with symbolic values for the keys and values).

When testing applications that use PMDK (PMDK, Redis-pmem, and RECIPE), we enable both
universal bug oracles and our two custom bug oracles designed for PMDK (see §2.4.2.2). When
testing NVM-Direct, we only use the universal bug oracles.

When using AGAMOTTO to test an application, AGAMOTTO also tracks all persistent memory
use from the libraries used by the application. In the case that AGAMOTTO finds a bug in PMDK
while testing an application which uses PMDK (e.g., memcached-pm, Redis-pmem, or RECIPE),
we report the bug as a bug in PMDK.

Evaluation Setup We ran our experiments across two servers, one with a Intel(R) Xeon(R) Sil-
ver 4114 CPU @ 2.20GHz and one with a Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz. Each
individual experiment (a single run of AGAMOTTO) was limited to a max of 10 GB of DRAM and
1 hour of runtime. We show our software configuration in Table 2.2. Note that none of our ex-
periments use persistent memory hardware since AGAMOTTO symbolically models all interactions
with persistent memory.
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System Source (GitHub) Version
PMDK pmem/pmdk v1.8
RECIPE utsaslab/RECIPE/tree/pmdk 53923cf
memcached-pm lenovo/memcached-pmem 8f121f6
NVM-Direct oracle/nvm-direct 51f347c
Redis-pmem pmem/pmem-redis cc54b55

pmem/redis v3.2

Table 2.2: Tested Software Versions. Software configurations we test with AGAMOTTO; note
that we tested two different PM versions of Redis-pmem.

MC MP EP AS Total
System N K N K N K N K N K
memcached-pm 1 - 19 - 1 - - - 21 -
NVM-Direct 7 - 7 - 9 - - - 23 -
PMDK 1 1 14 - 6 - 1 3 22 4
RECIPE 1 - 7 - 6 - - - 14 -
Redis-pmem 3 - 1 - - - - 1 4 1

Total 13 1 48 - 22 - 1 4 84 5

Table 2.3: Bugs Found By AGAMOTTO. The bugs found using AGAMOTTO. For each bug
class (MC: Missing flush/fence Correctness, MP: Missing flush/fence Performance, EP: Extra
flush/fence Performance, and AS: Application-Specific), we report the number of new bugs AG-
AMOTTO found, N, and the number of bugs detected that were previously known, K.

2.6.1 Overview

We show a summary of our bug-finding results in Table 2.34. Overall, AGAMOTTO found 84 new
bugs across our 5 main test targets: 62 missing flush/fence bugs (13 correctness bugs and 48 per-
formance bugs), 22 extra flush/fence performance bugs and 1 new application-specific correctness
bug. We also detect all 5 persistence bugs found by prior work in user-space applications and
confirm that we find no false positives with our universal or custom oracles. Here, we describe the
bugs that we find in greater detail.

Missing Flush/Fence Bugs Using our built-in unflushed bug oracle, we found 62 new bugs;
we manually identified that 13 are correctness bugs and 48 are performance bugs. Of the 13
correctness bugs, 10 are caused by missing flushes and 3 are caused by missing fences—all of the
missing fence bugs are found in Redis-pmem. AGAMOTTO found the missing flush/fence bug in

4We provide the full detailed table in an online table available here: https://github.com/efeslab/
agamotto/tree/artifact-eval-osdi20/artifact#resources.
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PMDK that was reported by PMTest. Of the correctness bugs, AGAMOTTO finds 1 in memcached-
pm, 1 in PMDK, 1 in RECIPE’s P-CLHT index, 7 in NVM-Direct, and 3 in Redis-pmem. Of the
performance bugs, AGAMOTTO finds 19 in memcached-pm, 14 in PMDK, 7 in RECIPE’s P-CLHT
index, 7 in NVM-Direct, and 1 in Redis-pmem.

Extra Flush/Fence Bugs We found 22 new bugs using the extra flush/fence bug oracle. Of
these bugs, AGAMOTTO found 9 in NVM-Direct, 6 in PMDK library functions and 6 in RECIPE’s
P-CLHT index.

Application-Specific Bugs AGAMOTTO identified 1 new application-specific correctness bug
in the PMDK atomic hashmap example using the extra flush/fence universal bug oracle. Using
the atomic operation oracle, AGAMOTTO found all 3 application-specific correctness bugs which
were reported by XFDetector5 Using the redundant undo log oracle, AGAMOTTO detected the
application-specific performance bug in the PMDK example BTree structure that was discovered
by PMTest. AGAMOTTO is unable to find the application-specific performance bug that PMTest
found in PMFS because AGAMOTTO is unable to execute kernel code.

2.6.2 AGAMOTTO Reporting

We presented our initial results to Intel’s PMDK team, Oracle’s NVM-Direct team, and to the
authors of RECIPE and received overall positive feedback. At the time of writing, we have not
yet heard back from Lenovo developers regarding bugs in memcached-pm. PMDK developers
confirmed our findings about performance issues. Oracle’s developers confirmed they were aware
of some of the issues we reported and noted that “Resources for software development are always
in short supply, so the open source version of NVM Direct has suffered. I wish it was not so, but
it is. Your email may be the push that gets us to do something about it. Thank you.”6 RECIPE’s
authors confirmed and started patching all the bugs we reported to them and asked us to open-
source AGAMOTTO for continued testing. Despite existing tools for testing PM (one of which was
even built for RECIPE [95]), one of RECIPE’s authors stated that “These are some really good
finds, since it was difficult to debug our own code without having a proper tool.”

We conclude that AGAMOTTO has been successful in finding bugs that developers care about.
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Figure 2.3: Bug Detection Comparison. Comparison of the KLEE’s default search strategy to
AGAMOTTO’s search strategy.

2.6.3 Performance Analysis

Benefit of AGAMOTTO’s State Exploration Strategy We evaluate AGAMOTTO’s state explo-
ration strategy compared to the default search strategy in KLEE. We compare these two strategies
for all of our 5 test targets: memcached-pm (Figure 2.3a), NVM-Direct (Figure 2.3b), RECIPE’s

5XFDetector reports 4 new bugs, but one of these bugs is unrelated to persistent memory but detectable with their
fault injection framework.

6Oracle ultimately archived this project around June 2020.
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System Source Size
(KLOC)

Dependencies
(KLOC)

Static Analysis
Run time (min)

memcached-pm 18 36 2.20
NVM-Direct 1 14 0.02
PMDK 2 35 0.60
RECIPE 13 35 0.55
Redis-pmem 54 149 19.6

Table 2.4: Analysis Overhead. The offline overhead of AGAMOTTO’s static analysis. Thousand
lines of code (KLOC) is provided for program sources (the driver applications for NVM-Direct
and PMDK) and for shared libraries.

P-CLHT index (§2.6.3), on PMDK’s libpmemobj examples (§2.6.3), and on Redis-pmem (§2.6.3).
We run each exploration strategy for one hour, since one hour is short enough to integrate into a
development cycle but long enough to cover a substantial number of execution paths. In all cases,
AGAMOTTO’s search strategy finds all reported bugs in less than 40 minutes. For Redis-pmem, the
bugs we detect were exposed quickly, allowing both strategies to find all 4 in under 3 minutes. For
all of our tests, AGAMOTTO is able to find at least one bug in under 5 minutes, which suggests that
AGAMOTTO might even be usable during interactive debugging sessions.

We conclude that AGAMOTTO’s static-analysis guided search strategy is more effective in find-
ing bugs than the default state exploration strategy in KLEE.

Static Analysis Run-time We show the run time of AGAMOTTO’s static analysis in Table 2.4.
For most applications we test, the overhead of static analysis is low (less than 4 minutes) relative to
the length of time spent finding bugs. Redis-pmem has a larger static analysis run time, particularly
due to the number of external libraries it links with—however, the results of the static analysis can
be cached across many runs for external libraries.

2.6.4 Case Study: Persistent Memory Performance Bugs

Prior works on PM argues for the importance of the performance bugs that are identified by AG-
AMOTTO. For example, Pelley et al. show that extra flush and fence operations are detrimental to
application performance [128] and a study of memcached-pm found that storing volatile data in
PM reduces application performance by roughly 5% [42].

To further validate the importance of the performance bugs identified by AGAMOTTO, we per-
form a performance case study on the P-CLHT data structure from RECIPE. We manually fix the
performance bugs and then measure the performance of the data structure on concurrent insert op-
erations, i.e., load operations (each thread inserts new keys into the hash table). We chose insert
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Figure 2.4: Performance Bug Analysis. The results of the PM performance bug case study. The
write throughput (in kilo-operations per second) of the P-CLHT data structure before and after
patching performance bugs. “Original” denotes the unmodified P-CLHT structure and “Patched”
denotes P-CLHT after we patch the performance bugs.

AGAMOTTO PMTest XFDetector pmemcheck
Persistency
Inspector

Core
Mechanism

Symbolic
Execution

Trace
Validation

Fault
Injection

Binary
Instrumentation

Binary
Instrumentation

Accuracy High Low Medium Low Low
Automation High Low Medium Low Low
Generality Medium High Medium Very Low Low
Extensibility High High Low Low Low

Table 2.5: Prior Work Comparison. A qualitative comparison between AGAMOTTO and related
work, as measured by our design goals (§2.4).

operations, since they stress the update path on which these bugs were found. We report the per-
formance in Figure 2.4. The overall throughput increases dramatically, ranging between 24% to
47%. The main contributor to this throughput increase is moving commonly used locks from PM
to DRAM.

2.7 Related Work

Persistent Memory Frameworks Crash consistency mechanisms for persistent memory have
been considered for years [8, 16, 23, 26, 129]. The difficulty of designing crash-consistent
programs for persistent memory has inspired many persistent memory specific crash-consistent
frameworks which ease the burden on PM application developers. These frameworks either pro-
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vide a library interface that can be used in standard programming languages (PMDK [32], NV-
Heaps [25], LSNVMM [66]), provide language extensions to augment C/C++ with persistent data
types (e.g., Mnemosyne [154], NVL-C [40]), or both (e.g., NVM-Direct [11]). Some systems also
use transactional hardware mechanisms to provide more efficient updates to persistent memory
(NV-HTM [15], Crafty [53]). However, while these mechanisms may make programming easier,
they may still contain persistence bugs. Furthermore, this plethora of PM libraries and extensions
motivate the need for generalizable, automated debugging tools.

PM-optimized file systems offer some degree of crash consistency as well [30, 43, 88, 153, 159,
160], as many PM-optimized file systems offer full-data consistency, rather than just maintaining
metadata consistency [13]. However, these mechanisms require the application to use the POSIX
interface, as data journaling cannot be efficiently performed for direct-access files. Additionally,
applications can suffer from significant performance degredations by acccessing PM through the
file system rather than through direct memory mappings [77].

Tools for Detecting PM Bugs The state-of-the-art tools for detecting PM bugs are PMTest [104]
and XFDetector [103]. PMTest is a tracing system which transforms updates to persistent memory
into a trace of operations, which is asynchronously validated against programmer-defined rules for
persistent memory updates. PMTest is flexible and fast, but requires developer effort to generate
persistent memory rules and incurs a high rate of false negatives, as it must be driven by concrete
test cases. The authors of PMTest [104] manually instrument applications to find two similar
patterns to AGAMOTTO application-independent patterns: the extra flush/fence bug pattern and
a delayed flush/fence pattern, in which a delay in the durability of an PM update prevents crash
consistency. Delayed flush/fences are inherently application-specific (and thus require developer
effort), and there were no delayed flush/fence bugs in our study. XFDetector is a fault injection
framework designed to detect cross-failure bugs, which manifest when recovery code accesses data
which was not guaranteed to be safely persisted before a failure. While XFDetector is effective at
detecting semantic bugs with low developer effort, XFDetector still relies on developer-provided
concrete test cases. RECIPE [95] uses a PIN-based tool for testing their converted PM indices,
which also incurs a high false positive rate due to requiring extensive test cases. pmemcheck [31]
and Persistence Inspector [126], which are binary instrumentation tools built by Intel, require a
large amount of developer effort to use as they are heavily annotation based. We summarize the
high-level feature differences between AGAMOTTO and other PM bug detection frameworks in
Table 2.5.

Tools for Testing Crash Consistency Crash consistency testing has been the study of many
works on both legacy file systems and PM-optimized file systems [20, 45, 46, 85, 90, 110, 116].
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Many of these tools either test for semantic bugs specific to file systems or are only targeted for
block-based storage devices. Yat [90] specifically targets crash consistency testing for Intel’s Per-
sistent Memory File System (PMFS [43]). However, Yat tests crash consistency by computing all
possible instruction orderings to find crash consistency bugs—a task which can take over 5 years
to fully test [90].

Bug Taxonomies Many papers taxonomize software bugs in other contexts. In the storage
context, JUXTA [115] draws a distinction between shallow (roughly equivalent to application-
independent) and semantic (i.e., application-specific) bugs while CrashMonkey [110] studies the
effects and number of operations required to induce crash consistency bugs in file systems. More
generally, Li et al. [100] and Liu et al. [101] classify software bugs into universal bug classes (e.g.,
memory-related, concurrency and incorrect failure handling) and semantic (application-specific)
bugs. The key distinction between our study and these prior studies is our focus on persistent
memory systems.

The Thread Between Concurrency and Consistency Several works have identified a similarity
in data races [1, 82, 124] in concurrent programs and semantic crash consistency bugs [95, 103].
Traditional data races result in inconsistent data being read across threads of execution, which
many systems have been designed to detect and fix [2, 80, 83, 98, 132, 141]. Principles from data
race detection have been adapted to build PM crash consistency mechanisms (i.e., in RECIPE [95])
and PM semantic crash consistency detection tools (i.e., XFDetector [103]). When applied to
AGAMOTTO, these principles inform the design of custom bug oracles.

2.8 Conclusion

Persistent Memory (PM) can be used by applications to directly and quickly persist data without
the overhead of a file system. However, writing PM applications that are simultaneously efficient
and correct is challenging. In this chapter, we presented a system for more thoroughly testing PM
applications. We informed our design using a detailed study of 63 bugs from popular PM projects.
We then identify two application-independent (i.e., universal) patterns of PM misuse which are
widespread in PM applications and can be detected automatically.

We then presented AGAMOTTO, a generic and extensible system that leverages symbolic ex-
ecution for discovering misuse of persistent memory in PM applications. We introduced a new
symbolic memory model that is able to represent whether or not PM state has been made persis-
tent, as well as a state space exploration algorithm which can drive AGAMOTTO towards program
locations that are susceptible to persistence bugs. We used AGAMOTTO to identify 84 new bugs in
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5 different applications and frameworks, all without incurring any false positives and not requiring
any source code modifications or extensive test suites.
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CHAPTER 3

HIPPOCRATES: Healing Persistent Memory Bugs
Without Doing Any Harm

Programming Persistent Memory (PM) systems is error-prone, as the misuse or omission of the
durability mechanisms (i.e., cache-line flushes and memory fences) can lead to durability bugs
(i.e., unflushed updates in CPU caches that violate crash consistency). PM-specific testing and de-
bugging tools can help developers find these bugs, however even with such tools, fixing durability
bugs can be challenging. To determine the reason behind this difficulty, we first study durability
bugs and find that although the solution to a durability bug seems simple, the actual reasoning
behind the fix can be complicated and time-consuming. Overall, the severity of these bugs coupled
with the difficultly of developing fixes for them motivates us to consider automated approaches to
fixing durability bugs.

We introduce HIPPOCRATES, a system that automatically fixes durability bugs in PM systems.
HIPPOCRATES automatically performs the complex reasoning behind durability bug fixes, reliev-
ing developers of time-consuming bug fixes. HIPPOCRATES’s fixes are guaranteed to be safe, as
they are guaranteed to not introduce new bugs (“do no harm”). We use HIPPOCRATES to auto-
matically fix 23 durability bugs in real-world and research systems. We show that HIPPOCRATES

produces fixes that are functionally equivalent to developer fixes. We then show that solely us-
ing HIPPOCRATES’s fixes, we can create a PM port of Redis which has performance rivaling and
exceeding the performance of a manually-developed PM-port of Redis.

3.1 Introduction

Non-Volatile Main Memory (NVM) technologies aim to revolutionize the storage-memory hierar-
chy [119, 129]. NVM technologies such as Intel Optane DC [34, 69] are roughly 8× less expensive
than DRAM [4] and offer disk-like durability with access latencies that are only 2–3× higher than
DRAM latencies [77, 94, 147, 170]. These NVM technologies enable low-latency, high-throughput
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Persistent Memory (PM) abstractions that allow applications to access durable storage using the
conventional load and store instructions and thus offers persistence without needing heavyweight
file-system operations. Since becoming commercially available, popular applications (e.g., mem-
cached [39] and Redis [33]) and companies (e.g., VMware and Oracle [71]) have begun adopting
these highly-efficient PM implementations.

Alas, programming PM systems is error-prone [18, 26, 63, 106, 108, 118, 119, 142, 152, 165,
169]. Updates to PM are often cached in volatile CPU caches, and developers must explicitly flush
cache lines to guarantee that updates reach PM. Moreover, cache-line flushes are weakly ordered
on most architectures (i.e., cache-line flushes do not follow store order), so developers must insert
memory fences to order updates as necessary for crash consistency. The misuse of either of these
mechanisms results in durability bugs and compromises correctness.

To help developers fix durability bugs, a number of useful tools have been built to find such
bugs in PM systems [31, 103, 104, 122, 126]. Some tools use developer annotations and existing
test suites to find bugs in arbitrary PM programs (e.g., PMTest [104], XFDetector [103], and Per-
sistency Inspector [126]), while others find bugs in specific PM applications and frameworks (e.g.,
Yat [90] for PMFS [Persistent Memory File System] [43] and pmemcheck [31] for applications
using PMDK [Persistent Memory Development Kit] [32]). AGAMOTTO [122] (chapter 2) uses
symbolic execution to thoroughly discover durability bugs in PM storage systems without the need
for developer annotations or test suites.

However, even with effective PM-specific bug finding tools, fixing durability bugs in PM sys-
tems is challenging. In this chapter, we first analyze 26 bugs reported by Intel’s own bug finding
tool, pmemcheck, and manually fixed by developers. We find that these bugs are arduous to man-
ually debug and fix, even with the help of a state-of-the-art bug finding tool like pmemcheck. The
PM bugs in our study took on average weeks (23 days) and up to months (66 days) to fix and
required numerous attempts (13 commits on average) to correctly fix. We find that these PM bug
fixes are complicated due to a trade-off between performance and simplicity. Simple intraproce-
dural fixes insert a flush or fence in-line with the store that is missing one, making it very easy to
reason about the durability of the application. However, if the intraprocedural fix often accesses
volatile data (e.g., adding flushes within memcpy), the performance of the application may suffer
dramatically. Instead, a developer will employ a more complicated interprocedural strategy, in
which they add flush operations to other functions in the call stack that result in the missing flush.

One appealing solution is to consider automated fixing techniques for PM durability bugs, since
PM durability bugs are numerous (e.g., we found 84 new bugs in only 5 PM applications and li-
braries using AGAMOTTO, see §2.6) and time consuming to fix. Automated bug fixing tools are
increasingly being deployed in industry (e.g., at Janus Rehabilitation [60] and Facebook [109]).
Existing general purpose program repair tools use heuristics and/or tests suites to modify pro-
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grams [92, 93, 139]. These tools are best effort, i.e., produced patches may neither fix the bug nor
be bug-free, which makes them a poor fit for PM applications. Many of these applications use PM
for crash consistency; a buggy patch could lead to irreversible data loss. In contrast, tools which
target more specific classes of bugs (e.g., to automate concurrency bug fixing, such as CFix [80]),
have been able to provide stronger guarantees.

Our main insight based on our analysis of 26 bugs and their fixes is that PM durability bugs
can often be fixed safely, meaning the fixes are guaranteed to not incur new correctness bugs (i.e.,
the fixes “do no harm”). We observe that many durability bug fixes either require adding memory
orderings to the program or flushing specific cache lines. We find that durability bugs can be fixed
with three kinds of fixes which are guaranteed to not create new bugs: (1) intraprocedural fence
insertion; (2) intraprocedural flush insertion; and (3) persistent subprogram creation, which imple-
ments interprocedural fixes. Intuitively, these fixes only modify the program by adding memory
orderings, which we show cannot violate the original program’s memory ordering behavior (§3.4).

Based on our insights, we develop HIPPOCRATES, an automated PM bug fixing tool guaran-
teed to “do no harm”1. HIPPOCRATES uses the output of PM bug finding tools to create safe
fixes, thereby fixing durability bugs without introducing new bugs. HIPPOCRATES also uses a
safe heuristic that automatically performs the complex reasoning needed to compute an effective
location for an interprocedural fix. We show that this heuristic is also guaranteed to “do no harm.”

We use HIPPOCRATES to automatically fix all 23 of the durability bugs we find when using
pmemcheck to test PMDK [32], P-CLHT (from RECIPE [95]), and memcached-pm [39]. We
manually verify that HIPPOCRATES is able to correctly fix all the bugs using the bug finding tool
that originally found the bugs (pmemcheck). For the 11 PMDK bugs we reproduced and fixed, we
compare developers’ fixes and HIPPOCRATES’s automated fixes and find that in most cases (8/11),
HIPPOCRATES’s fixes are functionally identical to developer fixes. In the remaining cases (3/11),
HIPPOCRATES’s fixes are functionally equivalent, but the fixes inserted by the PMDK develop-
ers are slightly more machine-portable (i.e., PMDK’s fix determines which flush instructions are
available on the CPU at run-time).

We also show the effectiveness of HIPPOCRATES’s interprocedural fix heuristic with a case
study of Redis-pmem [33], a developer-created port of Redis designed to use PMDK. We test
Redis-pmem against Redis-HIPPOCRATES, a version where all flushes have been inserted by HIP-
POCRATES instead of by a developer, and show that Redis-HIPPOCRATES matches or exceeds the
performance of Redis-pmem (up to 7% increase in throughput on Yahoo! Cloud Serving Bench-
mark (YCSB) [28, 29] workloads).

Overall, we make the following contributions:

1HIPPOCRATES is named after Hippocrates, the Greek physician who wrote the Hippocratic Oath, a widely known
of Greek medical text on the professional ethical standards of physicians [125].
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• We provide an analysis of bugs found with a state-of-the-art PM bug finding tool and their
associated fixes, which motivates our design of HIPPOCRATES.

• Based on the insights of our analysis of existing durability bug fixes, we develop HIP-
POCRATES, a novel automated PM bug fixing tool. HIPPOCRATES uses safe fixes in con-
junction with a safe heuristic to safely modify PM programs to eliminate bugs that have been
detected by PM bug finding tools.

• We demonstrate that HIPPOCRATES is able to fix all 23 reproduced bugs while not introduc-
ing new bugs. HIPPOCRATES also generates fixes which do not incur unnecessary overhead,
rivaling and exceeding the performance of manually-developed durability mechanisms.

In the rest of this chapter, we provide background on PM programming and discuss the chal-
lenges of automatic PM bug fixing (§3.2). We then discuss our analysis of PMDK bugs and our
insights (§3.3). Next, we describe the design of HIPPOCRATES’s automated fixes and sketch proofs
of their correctness (§3.4) and discuss details of HIPPOCRATES’s implementation (§3.5). We then
evaluate the effectiveness and performance of HIPPOCRATES (§3.6). Finally, we discuss related
topics (§3.7), related prior work (§3.8), and conclude (§3.9).

3.2 Background and Challenges

3.2.1 Persistent Memory Programming

In order to take advantage of byte-addressable PM platforms, developers must modify existing
programs to use user-level persistence mechanisms, according to they type of PM being used.
These mechanisms are cache-line flushes (or non-temporal stores) and memory fences. The x86
ISA provides 3 cache-line flush instructions (CLFLUSH, CLFLUSHOPT, and CLWB) and 2 memory
fence instructions (MFENCE, which orders all memory operations including loads; and SFENCE,
which only orders store-like instructions and cache line flushes) [72, 73]. ARM provides similar
instructions with similar semantics (e.g., flush [DC CVAP] and fence [DSB] [7, 135]). Developers
need to ensure that updates destined for PM are flushed from the CPU cache, as the updates are
volatile until they leave the CPU cache and reach PM. Furthermore, instructions that flush the CPU
cache are generally weakly-ordered (i.e., can be reordered after subsequent memory instructions,
with the exception of CLFLUSH) with respect to other memory instructions (as are non-temporal
stores), so explicit memory-fences must be issued to force the execution of cache-flush instructions
at specific points during the program’s execution.

Misuse or omission of persistence mechanisms in PM programming can lead to durability bugs.
A durability bug occurs when an update to PM is not made properly durable, i.e., the update is not
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flushed from the volatile CPU cache or an update is not properly ordered. Durability bugs in PM
can be briefly classified as due to: a lack of a cache-line flush instruction (a “missing-flush bug”),
a lack of a memory fence (a “missing-fence bug”), or both (a “missing-flush&fence bug”). When
any of these bugs are present in a program, a crash that occurs may cause updates to be missing or
partially applied, causing data inconsistencies.

In this work, we specifically examine durability bugs. While there are other classes of PM bugs
(e.g., performance bugs resulting from overuse of cache flush instructions), we have demonstrated
that PM durability bugs are numerous (see §2.3, §2.6) and existing PM bug finding tools target
durability bugs (e.g., pmemcheck, Yat, PMTest, and AGAMOTTO). Moreover, durability bugs
are the only class of bugs that many existing tools can detect automatically (i.e., without source
annotations). We defer further discussion of other bug types to §3.7.

3.2.2 Existing Approaches for Finding Durability Bugs

The challenges and severity of durability bugs in PM systems have spurred many works in auto-
matic detection of PM bugs. PM durability bugs are difficult to detect as they are only observable
after a failure has occurred and data has been rendered inconsistent. This is because the durabil-
ity of updates to PM relies on the state of the CPU cache (i.e., whether or not cache lines have
been flushed), which is not directly observable in current CPU architectures. This means that bug-
finding tools for PM have to rely on some other mechanism in order to detect bugs (e.g., trace
validation [104], binary instrumentation [31, 103, 126], or a symbolic memory model [122]; see
§3.8 for further discussion).

One of the advantages of these PM testing tools is that they are all capable of generating a
trace of all PM operations that occur over the execution of the application under test, along with
the actual list of detected errors encountered during execution. This information is an important
feature that allows us to consider automated PM bug-fixing solutions.

3.2.3 Challenges of Automating Fixing Persistent Memory Bugs

One compelling technique for alleviating the challenges of building and debugging PM applica-
tions is automated bug fixing. Automated bug fixing tools are becoming an increasingly popular
approach, including in industry [60, 109]. Many of these systems are targeted at general-purpose
program repair and aim to fix any class of bugs by using heuristics [92, 93, 139] (see §3.8). How-
ever, these approaches are not ideal for solving durability bugs as the fixes produced by these
approaches may neither fix the bug nor be bug-free. This is problematic for PM applications, as
unsafe fixes may result in crash-consistency violations that cause irreversible data loss.

40



Issue
Numbers

Average
Commits

Average Days From
Open to Close

Max Days From
Open to Close Bug Type

440, 441, 444 - - - Core library/tool bug
442, 446, 447,
448, 449, 450,
452, 458, 459,
460, 461, 463,
465, 466

17 33 66 Core library/tool bug

940, 942, 943,
945 - - - API misuse

545, 585, 949,
1103, 1118 2 15 38 API misuse

Average 13 28 66

Table 3.1: Study of PM Bug Fixes. An overview of the 26 PMDK bugs and their fixes we analyze.
The first 17 are bugs with root causes within PMDK library code. The remaining 9 bugs are caused
by API misuse within PMDK’s unit tests.

In contrast to general bug-fixing approaches, tools which target more specific classes of bugs
have been able to provide stronger guarantees. For example, CFix [80] and AFix [79] (which target
concurrency bugs, see §3.8) are both able to generate fixes which either do not create new bugs, or,
reduce the likelihood of creating bugs. While the guarantees provided by AFix and CFix are not
formal, they employ a more principled and rigorous testing approach which inspires this work.

3.3 Study of Durability Bugs and Fixes

We want to investigate how PM bugs are fixed in order to consider methods for safely fixing these
bugs automatically. To this end, we first study the difficulty of fixing real bugs in PM systems
(§3.3.1), which motivates our desire to create an automated bug fixing solution. We then study the
fixes for these bugs (§3.3.2), which provide insights on how we can go about automatically fixing
these kinds of bugs. We then present our overall conclusions and insights from this study (§3.3.3).

Study Targets In this section, we present a study of durability bugs and their associated fixes
in Intel’s PMDK (Persistent Memory Development Kit), which is a mature collection of libraries
and tools for accessing Intel PM devices used in real-world systems such as Redis-pmem [33] and
memcached-pm [39]. We study all the 26 bugs in PMDK that were found using PMDK’s bug
detection tool, pmemcheck [31], and subsequently fixed. We chose these bugs because they are
well-documented and validated in PMDK’s issue tracker [70, 75], and pmemcheck provides rich
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information about detected bugs in the form of execution traces2.

3.3.1 Study of Bugs

We present an overview of our bug study in Table 3.1. Of the 26 bugs we study, 17 have their root
cause within the core PMDK libraries (e.g., libpmemobj) or core PMDK tools (e.g., utilities for
managing object pools). These bugs are particularly severe as they could lead to data corruption
for any application built on top of PMDK’s persistent object API. The remaining 9 bugs are caused
by the misuse of PMDK’s API. These API misuse bugs further demonstrate the difficulty of PM
programming.

Moreover, the bugs we study seem to have been arduous to debug and fully fix. In particular,
these bugs take a long time to reproduce using pmemcheck (as stated by one bug reporter and as
confirmed by us in our own testing), which hampers the development and validation of a fix that
fixes the bug. We also observe that these bugs were not fixed quickly; each bug required an average
of 13 commits to create a passing build, taking an average of 23 days (up to 66) to close the issue.

3.3.2 Study of Bug Fixes

To better understand how developers fix durability bugs, we further study fixes implemented by
PMDK developers for the bugs we analyze. To that end, we study the associated commits for all of
the 26 bugs. We find that although the verbal descriptions of the fixes are all very similar (e.g., “add
missing persists”), the actual fixes of each bug vary in their implementation. We broadly classify
these fixes into two categories: intraprocedural fixes, which insert flushes and fences in-line with
stores to PM, and interprocedural fixes, which insert flushes and fences in a separate function
context. We provide real examples and describe the difference between these two fix categories
below and then discuss why they are challenging to implement.

Intraprocedural fixes We provide an example of an intraprocedural fix in Listing 3.1. These
durability fixes are where persistence mechanisms are inserted within the same function (intrapro-
cedurally) as the memory-modifying instruction. In Listing 3.1, the original modification on Line 2
was made durable by inserting a flush and fence immediately after the update to oid, rather than
in a different function.

Interprocedural fixes We provide an example of an interprocedural fix in Listing 3.2. These
durability fixes are where persistence mechanisms are inserted outside of the function context

2Providing this information from AGAMOTTO is also possible, but would require more extensive modifications to
KLEE (§2.5).
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1 if (if_free != 0) {
2 *oid = NULL; // oid is a pointer to PM
3 // FIX: insert missing flush and fence
4 CLWB(oid);
5 SFENCE;
6 }

Listing 3.1: Intraprocedural Fix Example. An example missing-flush&fence bug with an in-
traprocedural fix, adapted from PMDK Issue #1103.

1 if (/* condition */) {
2 memcpy(pmem_addr, vol_src, nbytes);
3 // FIX: insert missing flush and fence
4 pmem persist(pmem addr, nbytes);
5 }

Listing 3.2: Interprocedural Fix Example. An example missing-flush&fence bug with an inter-
procedural fix, adapted from PMDK Issue #463.

(interprocedurally) of the memory-modifying instruction(s). In Listing 3.2, the original modifica-
tions occur within the memcpy function, but the fix (pmem persist, which flushes and fences all
cache lines in the address range) is deferred until memcpy returns. Interprocedural fixes are also
employed for non-library functions as well (e.g., an internal checksum function) and can occur
multiple frames above the original PM modification (i.e., the original PM update occurs in many
nested function calls below the fix).

Challenges of inserting fixes While the scope of these modifications can be small, it is chal-
lenging for developers to ensure their fixes simultaneously achieve crash-consistency and good
performance. Specifically, the reasoning behind determining whether a fix should be intraprocedu-
ral or interprocedural is challenging as this has serious implications on performance (see §3.6.3).
For example, inserting intraprocedural fixes into memcpy would make reasoning about durability
easier, but would incur performance penalties for invocations of memcpy on volatile data (residing
in DRAM) as well as limiting memory parallelism with the increased number of memory fences.
An interprocedural fix (such as in Listing 3.2) can be more efficient, but can be trickier to place
correctly in the program such that crash-consistency requirements are not violated (i.e., ensuring
an interprocedural fix occurs before an operation which may cause system shutdown). These trade-
offs and technical challenges explain why fixing durability bugs is difficult, even though the fixes
themselves can be very small. This is also an important trade-off in practice, as over half (16/26,
62%) of the bugs in our study were fixed with interprocedural fixes.

43



3.3.3 Key Insights

Our primary insight that drives our design is that for PM bugs, we can create safe fixes (i.e.,
the fixes do not introduce new bugs) which are best-effort with respect to performance, rather than
making fixes which are best-effort with respect to correctness (like general-purpose automatic bug-
fixing tools we discuss in §3.2.3). All PM durability bugs can be fixed using only intraprocedural
fixes, which are easy to reason about automatically because they are made of relatively simple
operations (i.e., flush and fence insertion). Interprocedural fixes can then be used as a means for
improving performance; when they cannot be safely employed automatically, a safe intraprocedu-
ral fix can be used instead.

3.4 Algorithms and Design of HIPPOCRATES

Based on our insights, we design HIPPOCRATES, an automated bug fixing tool targeted at safely
fixing PM durability bugs. HIPPOCRATES strives to achieve these four design principles:

Ease of use: An automated bug fixing tool should require little developer effort to use. To this
end, HIPPOCRATES does not require any input from the developer other than the output of an
automated PM bug finding tool.

Do no harm: An automated bug fixing tool should not introduce any new bugs which may impact
program correctness. To this end, HIPPOCRATES only introduces bug fixes that are guaranteed to
not introduce new bugs.

Performance of fixes: An automated bug fixing tool should strive to achieve best-effort fixes
with regard to performance. To this end, HIPPOCRATES employs heuristics that strive to place
fixes in optimal locations while provably not impacting the correctness of the inserted fixes.

Offline overhead: Additionally, an automated bug fixing tool should complete its operations in
a reasonable amount of time so that it can be used as part of the development cycle for maintaining
systems. Existing automated bug fixing solutions are able to produce fixes overnight.

3.4.1 Overview

The system overview of HIPPOCRATES is shown in Figure 3.1. HIPPOCRATES expects a PM-
specific execution trace where each event in the trace includes the source line where the event
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Figure 3.1: HIPPOCRATES System Overview.

occurred, the stack trace at the time of the event, and PM-specific information (e.g., the size and lo-
cation of PM being modified or flushed, or that the instruction is a memory fence, or that a bug has
been detected). Many PM-specific tools are capable of generating this information; pmemcheck
provides a trace with this information by default, and other tools like PMTest and AGAMOTTO

can be easily modified to provide the same level of information. This trace is then given to HIP-
POCRATES (Step 1) in combination with the application under test so HIPPOCRATES can fix bugs.
HIPPOCRATES then uses the trace to locate the original operation which caused each bug detected
by the bug finder (e.g., the unflushed store which causes a missing flush bug) (Step 2). HIP-
POCRATES then computes all required fixes (Step 3), applies the fixes, and compiles the modified
application (Step 4).

HIPPOCRATES goes through a three-phase process to compute fixes (Step 3): first, it computes
the simplest possible fix using only intraprocedural fixes; second, HIPPOCRATES performs “fix re-
duction,” where fixes that would create a redundant flush or fence are merged; and third, it performs
a heuristic transformation to determine if fixes should be “hoisted,” i.e., if any intraprocedural fixes
(i.e., fixes in-line with the PM modification) can and should be converted into an interprocedural
fix (i.e., in a caller function).

We now discuss the generation of fixes in HIPPOCRATES and provide proof sketches for their
correctness.

3.4.2 HIPPOCRATES’s Bug Fixes and Proof Sketches

Based on the analysis of our bug study, we identify three code transformations to fix a broad range
of durability bugs: (1) the intraprocedural insertion of memory fence instructions, used to fix
missing fence bugs; (2) the intraprocedural insertion of CPU cache flush instructions, used to fix
missing flush bugs; and (3) interprocedural durability fixes, used to fix missing flush and missing
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fence bugs when intraprocedural fixes would result in poor performance. These transformations
are composable, e.g., a missing-flush&fence bug can be fixed by applying both an intraprocedural
flush fix and an intraprocedural fence fix. We first discuss each one of these fixes and sketches of
their correctness proofs, before discussing how HIPPOCRATES selects which kind of fix to apply
(§3.4.3).

Notation To present our proof sketches, we use a notation similar to prior work [89]. All symbols
indicate individual memory instructions or atomic units of memory instructions, i.e., X and Y are
separate instructions or blocks of atomic memory instructions (e.g., an Intel TSX transaction [74]
is treated as a single atomic unit). We denote an update to PM as X (i.e., a store to X), a flush
to PM as F (X) (i.e., a cache-line flush which flushes X), a fence instruction as M , and any
other instruction as I . The notation X → Y denotes “X happens-before Y .” Similarly, X ↛ Y

denotes “X does not happen-before Y .” The happens-before relationship is transitive [89]. For all
instructions, if X is executed before Y in a given thread, X → Y .

Definitions We define flushes and fences based on the semantics of flush and fence instructions
implemented in current CPU architectures [7, 72, 73], as proposed in previous work [76].

A cache-line flush (or just flush) F (X) is an instruction which writes update X to PM at some
point in time after F (X) is executed, potentially evicting X from the cache hierarchy.

A memory fence (or just fence) M is an instruction which performs two actions: (1) it causes
all memory updates in M ’s thread of execution to become visible across all threads in a shared
memory system (i.e., for all updates W such that W → M and all readers R which execute on any
thread after the point in time when M is executed, R will read W ); and (2) for all instructions I
and updates X , such that there exists a flush operation, F (X), with X → F (X) → M → I , M
causes X to be written to PM before I (i.e., M creates a durability ordering, see below).

An update X to PM has an associated durability event XD. XD is ordered before another
instruction I if and only if X is flushed and fenced before I , formally, XD → I ⇐⇒ there exists
a flush F (X) and fence M such that X → F (X) → M → I . We define the ordering of XD → I

to be a durability ordering. Informally, if XD → I , that means that X is durable before I .
We define a bug as the possibility of incorrect program behavior. For our use case, which does

not consider real-time constraints, incorrect behavior is limited to generating incorrect outputs. A
bug is new, if and only if the possibility of new incorrect behavior is introduced into the program.

We define a fix as safe, if it can be inserted into a program without incurring any new bugs. As
cache-line flush and memory fence instructions do not modify the program state (i.e., the values
contained in registers or memory), the safety of PM fixes only requires reasoning about modifica-
tions to the program’s memory ordering and durability behavior.
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1 void foo(char *pm_addr) {
2 pm_addr[0] = ...
3 CLWB(pm_addr);
4 // FIX: insert a memory fence
5 SFENCE();
6 // Without the fence, the system may lose data
7 E Crash occurs here E
8 }

Listing 3.3: Missing-Fence Bug Fix Example. An example missing-fence bug that is fixed by the
intraprocedural insertion of a memory fence (i.e., an SFENCE instruction).

3.4.2.1 Intraprocedural Memory Fence Insertion

We show an example of a missing-fence bug fixed by an intraprocedural memory fence insertion
in Listing 3.3. Without the SFENCE instruction inserted on §3.4.2.1, the CLWB instruction would
not be ordered before the system crashed, potentially leading to data loss or data inconsistencies
(see §3.2.1). Inserting a fix for this kind of bug can always be done safely; we provide a proof
sketch below.

Definition Formally, a bug B(X)fence, indicating a missing memory fence, occurs when a pro-
gram requires XD → I for durability, but there does not exist a fence, M , such that X → F (X) →
M → I .

Lemma 1 It is safe to insert a memory fence M into a program. We prove this by contradiction.
Assume that inserting a fence M causes a new bug in a program. By definition, M has two actions:
(1) it causes all memory updates in M ’s thread of execution to become visible across all threads
in a shared memory system; and (2) for all instructions I , updates X , such that there exists a flush
operation, F (X), with X → F (X) → M → I , M causes X to be written to PM before I . The
new bug must be caused by one of these two actions, which we handle below:

(1) In this case, the bug must be caused by the updates in M ’s thread of execution becoming
visible across all threads in a shared-memory system after the execution of M . Formally, the
bug is a result of a memory update on M ’s thread of execution (W ) and a memory read on a
different thread (R), such that W → M , R occurs after M and R observes W (i.e., R reads W ).
In an execution without M , R may still observe W . For example, after executing W , but before
executing R, enough time passes (e.g., due to the execution of other instructions) such that W
becomes visible. Thus, M does not introduce the possibility of R observing W , so the bug cannot
be caused by memory updates becoming usable across threads.

(2) In this case, the bug is caused by a new durability ordering. Formally, the bug is caused by
an instruction, I , and an update X such that X → F (X) → M → I . In an execution without M ,
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1 void foo(char *pm_addr) {
2 pm_addr[0] = ...
3 // FIX: insert a flush
4 CLWB(pm addr);
5 // Without the flush, the system may lose data
6 SFENCE();
7 E Crash occurs here E
8 }

Listing 3.4: Missing-Flush Bug Fix Example. An example of a missing-flush that is fixed by a
intraprocedural cache-line flush insertion.

XD may still occur before I due to cache evictions. Therefore, inserting M does not introduce the
possibility of XD → I , so this is not the cause of the bug.

Thus, the bug cannot be caused by (1) or (2), so M cannot cause the new bug, which is a
contradiction. E

Theorem 1 If B(X)fence exists and M is a memory fence inserted into the program such that

X → F (X) → M → I , then the insertion of M safely fixes B(X)fence.

M fixes B(X)fence by definition and is safe to insert by Lemma 1. Therefore, inserting M safely
fixes B(X)fence. ■

3.4.2.2 Intraprocedural Cache-Line Flush Insertion

Listing 3.4 shows an intraprocedural cache-line flush fix, in which a CLWB is inserted (§3.4.2.2)
to write the modification of pm addr[0] to PM.

Definition Formally, a bug B(X)flush, indicating a missing (cache-line) flush, occurs when a
program requires XD → I for crash-consistency, but there does not exist a flush, F (X), such that
X → F (X) → M → I .

Lemma 2 It is safe to insert a flush F (X) into a program. We prove this by contradiction.
Assume that inserting flush F (X) causes a new bug in a program. By definition, F (X) only
performs one action: F (X) writes update X to PM at some point in time after F (X) is executed,
potentially evicting X from the cache hierarchy, so the new bug must be caused by X either being
written to PM or evicted from the cache hierarchy after F (X). However, without executing F (X),
X may still be evicted from the cache, and thus also written to PM, due to memory pressure. Thus,
F (X) does not introduce the possibility of X getting written to PM or being evicted from the
cache, so F (X) does not cause the bug. This is a contradiction. E
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Theorem 2 If B(X)flush exists and F (X) is a flush inserted into the program such that X →
F (X) → M → I , then the insertion of F (X) safely fixes B(X)flush.

F (X) fixes B(X)flush by definition and is safe to insert by Lemma 2, so F (X) safely fixes
B(X)flush. ■

3.4.2.3 Intraprocedural Flush and Fence Insertion

Listing 3.1 shows an example of a missing-flush&fence bug. These bugs are a composition of the
two earlier classes (i.e., a missing-flush bug and a missing-fence bug); we show that they can be
safely fixed by applying both intraprocedural fix techniques.

Definition Formally, a bug B(X)flush&fence, indicating a missing flush and fence, occurs when
a program has both B(X)flush and B(X)fence bugs, i.e., the program requires XD → I for crash-
consistency, but there does not exist a flush F (X) nor a fence M , such that X → F (X) → M → I .

Theorem 3 If B(X)flush&fence exists and F (X) is a flush and M is a fence that are both inserted

into the program such that X → F (X) → M → I , then the insertion of F (X) and M safely fixes

B(X)flush&fence.

Inserting F (X) and M such that X → F (X) → M → I , fixes B(X)flush&fence by definition
and is safe by Lemma 1 and Lemma 2. Therefore, inserting F (X) and M such that F (X) → M

safely fixes B(X)flush&fence. ■

3.4.2.4 Interprocedural Fixes

Intraprocedural fixes are often expensive. Consider Listing 3.5, a program in which all PM up-
dates (i.e., the write made by update through the call to modify) must be durable before Line 30.
Fixing this bug intraprocedurally (in update(...)) is tempting, but leads to performance is-
sues since update frequently operates on volatile memory. Specifically, modify(vol addr) on
Line 22 results in a call to update(vol addr, ..., ...), which modifies volatile memory.
So, adding a CLWB and SFENCE directly in update(...) will lead to durability mechanisms be-
ing unnecessarily used on non-PM regions of memory. Instead, an interprocedural fix (i.e., outside
of update) is desirable. Yet, generating an interprocedural fix can be challenging; for example,
an interprocedural fix that modifies foo must determine the PM updates made by modify, which
depends on the semantics of modify (e.g., local variables used to calculate PM addresses, etc.).
For example, a correct interprocedural fix must identify the value of addr[idx] in Line 2 in order
to flush all modified cachelines, but the value of idx passed to update from modify (Line 6) may
depend upon user input and be challenging or even impossible to calculate statically. In practice,
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1 void update(char *addr, int idx, char val) {
2 addr[idx] = val;
3 }
4
5 void modify(char *addr) {
6 update(addr, ..., ...);
7 }
8
9 // New function generated by HIPPOCRATES

10 void update PM(char *addr, int idx, char val) {
11 addr[idx] = val;
12 CLWB(&addr[idx]);
13 }
14
15 // New function generated by HIPPOCRATES
16 void modify PM(char *addr) {
17 update PM(addr, ..., ...);
18 }
19
20 void foo(char *vol_addr, char *pm_addr) {
21 for (int i = 0; i < INT32_MAX; i++) {
22 modify(vol_addr);
23 }
24
25 modify(pm addr);
26 // The above call is replaced with:
27 modify PM(pm addr);
28 SFENCE();
29
30 E Crash occurs here E
31 }

Listing 3.5: Persistent Subprogram Transformation Example. An example interprocedural
fix as implemented by HIPPOCRATES as a persistent subprogram transformation. The functions
labeled “new” (and highlighted) are generated by HIPPOCRATES during the persistent subprogram
transformation. Line 25 is replaced with Line 27 during the transformation.

developers use their own semantic knowledge of their software to bridge this gap. However, ap-
plying the same approach to HIPPOCRATES breaks the ease-of-use design principle since it would
require substantial input from developers.

To obtain the performance benefits of interprocedural fixes without requiring developer annota-
tions, HIPPOCRATES introduces the persistent subprogram transformation. This operation reuses
the semantic information which already exists in the subprogram (defined as a function and all
nested functions called by it) to identify which modifications need to be made durable. A per-
sistent subprogram transformation duplicates a subprogram, inserts flushes after every store that
modifies persistent memory, and places a single memory fence after the call site to the modified
subprogram. The resulting persistent subprogram guarantees that all the PM modifications are

50



flushed while minimizing the number of memory fences. Furthermore, since the flushes are based
on the subprogram’s original semantics, the persistent subprogram only flushes cache lines that are
modified.

For example, modify PM (Line 16) is the persistent subprogram of modify. The subprogram
creates and calls update PM, a copy of update in which all PM modifications are immediately
flushed (Line 12). In addition, a fence is added to the end of modify PM so that updates becomes
durable. By copying the subprogram, modify PM() reuses the semantics of modify (e.g., local
variables used to calculate PM addresses, etc.) to ensure that all modifications are durable.

HIPPOCRATES reuses subsets of a persistent subprogram to reduce the impact of persistent
subprogram transformation on code size. For example, consider if update was also called in a
function, permute (not shown). If HIPPOCRATES performs a persistent subprogram transforma-
tion on permute, the resulting persistent subprogram (permute PM) would need to be modified
to call a persistent version of update (update PM). Since a persistent version of update was
created in an earlier persistent subprogram transformation (i.e., when modify PM was created),
HIPPOCRATES modifies permute PM so that it directly calls the existing update PM rather than
creating another persistent version of update for permute PM to call (e.g., HIPPOCRATES does
not have to create update PM 2). In our testing (§3.6.3), we find that the overall code size increase
is negligible (only 0.05% increase in the end binary on average).

HIPPOCRATES attempts persistent subprogram transformations for durability bugs that require
XD → I where X (the modification to PM) is in a separate function context from I (the instruc-
tion by which X must be durable). For example, in Listing 3.5, all modifications must be made
durable before §3.4.2.4 (i.e., I is the victim of a system crash). HIPPOCRATES uses a heuristic
(described below) to determine which function in the call stack should be the start of the persistent
subprogram. HIPPOCRATES considers functions on the call stack between the function containing
X (in this case, update) and the function on the call stack called by the function containing I (in
this case, the function being called by foo is modify) to be candidates for the start of the per-
sistent subprogram. HIPPOCRATES does not select the function containing I (foo) nor functions
which call the function containing I (any callers of foo) because a separate intraprocedural fence
M would need to be inserted before I (such that X → F (X) → M → I would still hold), which
would limit the performance benefits of the transformation. In this case, if foo were the start of
the persistent subprogram, a fence would be needed before the crash and at the end of foo, which
adds more fences than is needed and is undesirable for performance. HIPPOCRATES uses the bug
finder trace (see §3.4.1) to identify I .

We now demonstrate the safety of this transformation.
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Theorem 4 If B(X)Q is a bug where Q ∈ {fence, flush, flush&fence} indicating the program

requires XD → I , for some instruction I outside of the function containing X , F (X) and M are

flush and fence operations inserted into the subprogram such that X → F (X) → M → I , then a

persistent subprogram transformation safely fixes B(X)Q.

By duplicating the function and replacing the call site with a call to the duplicated function, the
memory ordering behavior, durability orderings, and all other semantics are unaltered, rendering
the initial duplication safe. Inserting fence M at the end of the duplicated function and flush F (X)

after X are both safe (by Lemma 1 and Lemma 2). Furthermore, these both fix B(X)Q by the
definition of the bug: for Q = fence, M fixes B(X)Q; for Q = flush, F (X) fixes B(X)Q; and
for Q = flush&fence, F (X) and M such that F (X) → M fix B(X)Q. Therefore, the persistent
subprogram transformation safely fixes B(X)Q. ■

3.4.3 Optimization of HIPPOCRATES’s Fixes

After HIPPOCRATES determines all bug locations and inserts intraprocedural fixes (Step 3, Phase 1
in Figure 3.1), HIPPOCRATES performs “fix reduction” by combining redundant bug fixes (Phase
2) based on source code location and operation. For example, two fixes which introduce flush
instructions F1(X) and F2(X) which both flush X can be safely reduced to a single fix which
creates flush F (X), as this will still satisfy X → F (X) → M → I . Likewise, fixes which create
memory fences M1 and M2 where X → F (X) → M1 → I and X → F (X) → M2 → I can
be safely reduced to a single fix which creates fence M , as this will still satisfy X → F (X) →
M → I . After all possible fix reductions are made, HIPPOCRATES determines which fixes should
be “hoisted” (Phase 3), i.e., should instead be implemented as interprocedural fixes using the safe
heuristic described below.

Heuristic description The heuristic uses a whole-program, interprocedural alias analysis to de-
termine whether to transform an intraprocedural fix into an interprocedural fix, and if so, to de-
termine which level in the function call stack to make the transformation. The heuristic aims to
identify the persistent subprogram transformation that is least likely to operate on volatile data in
order to avoid using persistency mechanisms on volatile data—the same intuition behind avoiding
an intraprocedural fix in memcpy (§3.3.2). Listing 3.6 provides an example of the calculation for
Listing 3.5.

The heuristic first marks all pointers as “PM” or “not PM” based on whether or not the pointer
in the source code is associated with a PM modification event in the bug finder trace. For each bug,
the heuristic constructs a list of candidate fix locations. The possible fix locations consist of (1) the
original PM-modifying instruction and (2) the call sites of all functions in the call stack of the orig-
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inal PM-modifying instruction. If HIPPOCRATES performs a fix at (1) the original PM-modifying
instruction, it will use an intraprocedural fix (i.e., by adding a flush/fence after the PM-modifying
instruction). Otherwise (2) the system implements an interprocedural fix (i.e., performing a per-
sistent subprogram transformation on the function called by a call site and updating the call site to
call the transformed function). In Listing 3.6, the list of considered sites for the missing flush bug
on Line 3 consists of Lines 19, 8, and 3.

The heuristic computes a score for each fix location in the list of possible fix locations. For the
pointer argument to the PM-modifying instruction (1) or for each pointer argument to a call site (2),
the heuristic calculates the score as the number of PM aliases (i.e., number of aliases to pointers
marked as “PM”) minus the number of non-PM aliases (i.e., number of aliases to pointers marked
as “not PM”). A low score for a particular call site indicates that the call site frequently passes
non-PM arguments to the called function, and it is thus more likely that a persistent subprogram
transformation would operate on volatile memory. So, the heuristic chooses the fix location that
has the highest score as the location to apply the interprocedural fix.

Note that the heuristic assigns a score of −∞ to call-sites that do not pass any arguments along
with all parents of this call site in order to prevent unnecessary persistent subprogram transfor-
mations. Intuitively, if a function has no parameters, it is either directly allocating PM or PM is
being modified through global pointers; in either of these cases, performing a persistent subpro-
gram transformation on the parameterless function or its parents provides no potential reduction in
performance penalties (i.e., accidental durability mechanisms on volatile data) and therefore serves
no purpose.

In Listing 3.6, the heuristic calculates a score for each candidate fix location. In Line 3, addr
aliases both vol addr and pm addr from foo, so the line has 1 PM and 1 non-PM alias and a
score of 0. For the call site on Line 8, the heuristic considers all pointer arguments, in this case
only addr, which has 1 PM alias, 1 non-PM alias, and a score of 0. Finally, the call to modify on
Line 19 has 1 PM alias (through pm addr), 0 non-PM aliases, and a score of 1. Since the call to
modify on Line 19 has the highest score, the heuristic performs a persistent subprogram transfor-
mation on modify and updates Line 19 to call the updated function, resulting in the transformed
program shown in Listing 3.5.

Proof sketch of heuristic correctness Since the persistent subprogram transformation is a safe
operation guaranteed to fix bugs (Theorem 4), the heuristic can insert a persistent subprogram at
any point in the call stack as long as the durability ordering requirement for I is satisfied. The
heuristic will only choose from fix locations which satisfy the durability ordering requirement
for I . Therefore, the heuristic will insert safe and correct interprocedural fixes. The heuristic
may also insert intraprocedural fixes. Intraprocedural fixes inserted by these heuristic are safe and
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1 void update(char *addr, int idx, char val) {
2 // non-PM alias: 1, PM alias: 1 = score: 0
3 addr[idx] = val;
4 }
5
6 void modify(char *addr) {
7 // non-PM alias: 1, PM alias: 1 = score: 0
8 update(addr, ..., ...);
9 }

10
11 void foo(char *vol_addr, char *pm_addr) {
12 for (int i = 0; i < INT32_MAX; i++) {
13 // (This call contributes +1 non-PM alias)
14 modify(vol_addr);
15 }
16
17 // (This call contributes +1 PM alias)
18 // non-PM alias: 0, PM alias: 1 = score: 1
19 modify(pm_addr);
20 E Crash occurs here E
21 }

Listing 3.6: Heuristic Calculation Example. An example heuristic calculation performed on
Listing 3.5 to determine where to place the interprocedural fix.

guaranteed to fix the bug (Theorems 1, 2, 3). The heuristic therefore inserts safe intraprocedural
and interprocedural fixes—as these are the only fixes produced by the heuristic, the heuristic inserts
safe fixes. ■

3.5 Implementation

HIPPOCRATES is implemented primarily as an LLVM [91, 149] compiler pass (comprising 3300

LOC [155]) which locates the sources of the bugs, computes the appropriate fixes, and applies
them (Figure 3.1, Steps 2–4). Step 1 (parsing bug finder output) is performed by Python scripts,
which account for 1100 LOC (including some Python scripts used for orchestrating linking and
running PMDK unit tests). We use an implementation of Andersen’s alias analysis [5, 21] for the
whole-program alias analysis we perform to compute our heuristic.

3.5.1 Collecting Traces and Identifying Bug Locations

Manually parsing the output of bug traces is challenging due to the size of these traces; for example,
the pmemcheck traces in the Redis experiment are over 350 MB in size. This contributes to the
difficulty of manually fixing PM durability bugs. Automating this process (Figure 3.1, Step 1),
however, is fairly straightforward.
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HIPPOCRATES relies on complete and accurate traces to identify bug locations in the LLVM
bitcode, so we disable optimizations and function inlining, This limitation only applies to trace
generation—a binary that includes HIPPOCRATES fixes can be fully optimized. Furthermore,
compiling applications without optimizations for generating the PM bug trace is a non-issue with
regards to performance, as the currently-available PM bug-finding tools are designed as offline
testing tools due to their high overhead (ranging from 33% [104] to 400× [103]).

The main engineering challenge is mapping from source lines to LLVM Intermediate Repre-
sentation (IR) using debug information (Figure 3.1, Step 2); however, HIPPOCRATES only requires
this information for instructions that operate on PM, which simplifies the task. In practice, we use
whole-program LLVM (WLLVM [136]) and are able to compile our applications into native ma-
chine code and into LLVM bitcode without having to make any modifications to the applications.

In principle, HIPPOCRATES can accept input from any PM bug finding tool; it currently supports
pmemcheck and PMTest. HIPPOCRATES requires an input trace that contains the type, binary
location, and call stack of each PM operation. pmemcheck provides this by default; we found it
easy to port PMTest to provide the same information and expect the porting effort for other PM
bug detection tools, such as AGAMOTTO, to be similarly easy.

3.5.2 Implementation of Fixes

As HIPPOCRATES is implemented in LLVM and computes its fixes on LLVM bitcode (Figure 3.1,
Step 3), all fixes are generated (Figure 3.1, Step 4) as LLVM IR. Decompiling (mapping assembly
or IR instructions back to lines of higher-level language code) is a difficult problem, however
there are tools [81] which can convert LLVM IR back into C source code. This problem is made
easier for HIPPOCRATES, as the generated fixes are simple; HIPPOCRATES inserts flush and fence
instructions and duplicates functions, which are easy changes to automatically perform on source
code.

3.6 Evaluation

In this section, we evaluate the effectiveness and usefulness of HIPPOCRATES. We start by val-
idating the effectiveness of HIPPOCRATES (i.e., “Can HIPPOCRATES fix bugs?”); we then qual-
itatively evaluate the accuracy of HIPPOCRATES’s fixes (i.e., “Are HIPPOCRATES’s fixes similar
to a developer’s fixes?”); we then evaluate the performance of HIPPOCRATES’s fixes (i.e., “Does
HIPPOCRATES create efficient fixes?”); finally, we discuss the offline overhead of running HIP-
POCRATES (i.e., “How expensive is running HIPPOCRATES?”).
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Evaluation Targets We evaluate HIPPOCRATES by testing representative state-of-the-art PM-
applications and libraries. First, we test HIPPOCRATES on PMDK [32] libraries from Intel, as
PMDK is the most active and well-maintained open-source PM project, which means it has a
large set of validated bugs and fixes that we can use to assess the accuracy of HIPPOCRATES. We
additionally evaluate HIPPOCRATES using three real-world PM applications to test the scalabil-
ity and performance of HIPPOCRATES’s fixes. We select memcached-pm [39], a PMDK-port of
memcached, a popular high-performance memory caching server, that is maintained by Lenovo.
We also test RECIPE’s P-CLHT index [151], a state-of-the-art persistent and recoverable index
representing a research prototype. Both memcached-pm and P-CLHT contain bugs which are de-
tectable by pmemcheck, so we use them to evaluate the effectiveness of HIPPOCRATES on larger
systems. Finally, we test Redis-pmem [33], a PMDK-port of Redis, a popular in-memory database
and memory caching service, that is maintained by Intel. pmemcheck does not detect any bugs in
Redis-pmem, so we use Redis-pmem as a baseline to compare the performance of HIPPOCRATES’s
fixes against a manually-developed bug-free implementation. We selected these targets as they are
representative of the state-of-the-art PM-applications and libraries and have been tested in prior
work [103, 104, 122].

Evaluation Workloads We evaluate HIPPOCRATES’s effectiveness and accuracy on PMDK us-
ing the failing unit tests associated with the issues identified in our initial study of durability bugs
and fixes (§3.3). We test P-CLHT using an example application used in RECIPE’s evaluation,
which manipulates the basic structure of the index through standard insertion, deletion, and lookup
operations. We use YCSB [28, 29], a popular key-value store set of workloads, to test the Redis-
pmem and memcached-pm server daemons.

Experimental Setup We run all of our experiments on a server with a Intel® Xeon® Gold 6230
CPU @ 2.10GHz. The server is equipped with 4 Intel Optane DC Series 100 NVDIMMs, each
with 128GB capacity. The server is also equipped with 256 GB of DRAM.

3.6.1 Effectiveness

From our original study of 26 PMDK bugs, we attempt to reproduce the documented bugs by using
the specified revision of PMDK specified in the initial bug report along with an up-to-date version
of pmemcheck. Using this methodology, we are able to reproduce 11 bugs of the bugs in our
study. To augment our evaluation, we also find 2 previously undocumented bugs in P-CLHT [95]
and 10 previously undocumented bugs in memcached-pm. We are able to find all 23 of these bugs
using pmemcheck, as all of these systems use PMDK libraries for their persistence mechanisms
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Issue Numbers HIPPOCRATES Fix Developer Fix Qualitative Fix
Comparison

452, 940, 943
Intraprocedural flush
(CLWB) Interprocedural flush

Functionally equivalent;
PMDK’s fix is more portable

447, 458, 459,
460, 461, 585,
942, 945

Interprocedural
flush+fence

Interprocedural
flush+fence Functionally identical

Table 3.2: Comparison of HIPPOCRATES’s Fixes. Qualitative comparison of HIPPOCRATES

fixes and PMDK developer fixes.

(libpmem, libpmemobj) and PMDK is properly instrumented to allow for pmemcheck to detect
durability bugs.

HIPPOCRATES automatically repairs all 23 bugs we find and reproduce. We validate HIP-
POCRATES’s fixes by re-running pmemcheck against the repaired programs to determine that they
no longer contain durability bugs. We further re-run the 11 bugs through PMDK’s unit test frame-
work and confirm that all unit tests succeed.

3.6.2 Accuracy

We present a qualitative comparison between HIPPOCRATES’s fixes and developer fixes for the
PMDK unit tests we were able to reproduce in Table 3.2. 8 of the 11 fixes (73%) were function-
ally identical to the PMDK developer fixes (issues #447, #458, #459, #460, #461, #585, #942,
and #945). In all of these cases, HIPPOCRATES applies an interprocedural fix which functions
identically to the developer fix, where the developers either used a persistent version of a func-
tion or inserted a specialized flush function to implement the interprocedural fix. We discuss the
differences in the other 3 fixes (27%) below.

Direct versus indirect flushing For issues #452, #940, and #943, HIPPOCRATES generates
an intraprocedural flush fix, whereas PMDK developers insert a libpmem flush function. HIP-
POCRATES’s fix produces correct functionality, as the data that needs to be flushed is within the
size of a single cache line, however the fix generated by PMDK developers is potentially more
machine-portable, as libpmem flush functions determine which kind of cache line function instruc-
tions are available at runtime. HIPPOCRATES could be modified to insert more generic fixes with
some engineering effort, but some high-performance applications may prefer direct fixes instead.
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Figure 3.2: Performance Analysis of HIPPOCRATES’s Fixes. Performance of the three persistent
versions of Redis with 95% confidence intervals. HIPPOCRATES is able to provide fixes which are
on-par with manual approaches.

3.6.3 Performance of Fixes

We want to ensure that HIPPOCRATES does not incur any undue performance degradation.
Through our testing, we found that pmemcheck did not detect any bugs in Redis-pmem [33],
indicating that this port of Redis had been thoroughly tested and debugged by developers. This
makes Redis-pmem a good baseline to compare HIPPOCRATES’s fixes against a system with all
manually-developed durability mechanisms.

We perform a case study of Redis-pmem to compare HIPPOCRATES’s abilites to the hand-tuned
fixes of PMDK developers. We first remove all flushes in Redis-pmem. We leave memory fences,
however, in order to preserve semantic ordering information which is required for proper crash
consistency. We then run pmemcheck over this non-persistent version of Redis to generate a bug
trace which can be consumed by HIPPOCRATES. We then run HIPPOCRATES over this trace to
generate a version of Redis-pmem which has all of its persistence mechanisms auto-generated by
HIPPOCRATES (RedisH-full). We confirm that pmemcheck does not detect any durability bugs in
RedisH-full (as is the case with our Redis-pmem baseline).

We also create a persistent version of Redis which fixes the persistence problems of the
non-persistent Redis without using HIPPOCRATES’s heuristic (RedisH-intra). By disabling HIP-
POCRATES’s heuristic, HIPPOCRATES only applies intraprocedural fixes. While such fixes are
sufficient for fixing durability bugs, they may also impact performance. HIPPOCRATES applies 50
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PMDK
(Unit Tests)

P-CLHT
(RECIPE) memcached-pm Redis-pmem

Combined
KLOC 37 48 54 203

Time 6s 2s 2.2s 5m09s
Memory 345MB 148MB 147MB 870MB

Table 3.3: Offline Overhead of HIPPOCRATES.

fixes to make Redis persistent. In RedisH-intra, all of these fixes are intraprocedural. In RedisH-full,
12/50 (24%) of the fixes are interprocedural (10 are implemented 1 function above the PM modi-
fication and 2 are 2 functions above).

To compare the performance of these three persistent versions of Redis, we run each version
with YCSB workloads [29] using a popular YCSB driver [28]. We use an entry and operation
count of 10 thousand and run 20 trials for each workload. We report the throughput for all standard
workloads (A–F) plus the time for the “load” operation (which sets up the initial state of the
database for the other workloads). We show the results of this case study in Figure 2.4.

RedisH-full provides equal or slightly better performance than Redis-pmem (7% higher through-
put on the “load” operation, which is the workload with the most durability operations, with the
other workloads having equal performance within the 95% confidence intervals). This demon-
strates that the fixes provided by RedisH-full are comparable to manual developer strategies for
creating durable PM applications. HIPPOCRATES’s ability to provide this quality of fixes is due to
its analysis that enables the use of interprocedural fixes, as RedisH-full is between 2.4–11.7× faster
than RedisH-intra.

3.6.4 HIPPOCRATES’s Overhead

Runtime Overhead We measure the overhead of HIPPOCRATES on all of our target systems
and present the results in Table 3.3. This overhead is the offline overhead, meaning that it is only
experienced during offline testing—HIPPOCRATES itself does not incur additional overhead (other
than the overhead of the durability mechanisms it creates, see §3.6.3). This overhead is for fixing
all bugs present in each system. HIPPOCRATES has low spatial and temporal overhead (at most
taking around 5 minutes to run and less than 1 GB of memory), which allows HIPPOCRATES to be
easily integrated into a developer’s workflow.

Impact on Binary Size One potential consequence of the persistent subprogram transforma-
tion is increased code bloat due to function duplication, which could potentially lead to worse
instruction cache (i-cache) performance. To mitigate this effect, Hippocrates performs persistent
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subprogram transformation once for each function and reuses transformations across interproce-
dural fixes if possible. The Redis experiment (§3.6.3) shows that Hippocrates creates minimal
code bloat: Hippocrates introduces only 105 new lines of LLVM IR to flush-free Redis (an in-
crease of 0.013%), which results in a binary that is only 4 KB larger than the manually-developed
Redis-pmem (an increase of 0.05%). The performance results from the Redis experiment (§3.6.3)
suggests that the performance benefits from interprocedural fixes outweigh the effect of additional
i-cache pressure.

3.6.5 Results Summary

In our evaluation, we showed that HIPPOCRATES is effective, fixing all of the 23 bugs we found
and reproduced using pmemcheck (§3.6.1). HIPPOCRATES is also accurate, fixing 8 of the 11
PMDK unit test bugs in ways functionally identical to developer fixes, while fixing 3 of the 11
bugs in functionally equivalent ways (§3.6.2). HIPPOCRATES’s fixes also yield good performance,
equalling or exceeding the performance of manually-developed durability mechanisms (§3.6.3).
Finally, we show that HIPPOCRATES has low offline and size overhead (§3.6.4).

3.7 Discussion

Here we discuss some qualitative details about HIPPOCRATES’s capabilities.

Fixing other kinds of PM bugs HIPPOCRATES only targets PM durability bugs (i.e., missing
flush/fence bugs). By only targeting durability bugs, HIPPOCRATES can take input from the widest
variety of PM bug finding tools and fix these critical correctness bugs.

Many PM bug finders report PM performance bugs (i.e., extraneous flush/fence bugs). How-
ever, fixing performance bugs (i.e., by removing flushes/fences) requires information about all
possible execution paths (e.g., a flush may be extraneous in one execution and required for cor-
rectness in another). Existing PM bug detection tools cannot explore all execution paths of a large
application, so it would be impossible to safely fix PM performance bugs except for in the simplest
cases (e.g., redundant flush instructions in the same basic block). We therefore avoided trying to
automatically fix PM performance bugs to avoid compromising HIPPOCRATES’s “do no harm”
design philosophy.

Some PM bug finders can also report PM ordering bugs (e.g., PMTest, XFDetector, and AG-
AMOTTO), which are crash-consistency bugs caused by the improper ordering of durable updates
in PM (e.g., A is persisted before B, but B should have been persisted before A, and so if the
program crashes after persisting A, the program is left in an inconsistent state). Fixing such bugs
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often requires reordering sequences of memory updates (e.g., moving the store to B before A),
which can have unintended side effects (e.g., memory races in concurrent programs). Safely fixing
these PM ordering bugs would require PM bug finders to output information about the safety of
reordering memory operations (no existing PM bug finder can do this) or would require developers
to provide safety specifications to HIPPOCRATES to encode this information. These approaches
violate HIPPOCRATES’s design goals (providing safe fixes and providing automatic fixes, respec-
tively), so HIPPOCRATES does not support fixing such bugs.

Automatically providing durability The results of the Redis experiment (§3.6.3) raise the ques-
tion of whether or not HIPPOCRATES can automatically provide durability to applications. HIP-
POCRATES not only “does no harm”, but HIPPOCRATES’s fixes are provably correct (Theorems
1, 2, 3, and 4). However, HIPPOCRATES cannot currently provide automated durability because
HIPPOCRATES can only fix bugs that are identified by an automated PM bug detection tool; current
tools struggle to scale to entire programs and provide limited support for identifying all missing-
fence durability bugs. HIPPOCRATES can still provide some automation, however—if a developer
only specifies ordering points (i.e., memory fences), HIPPOCRATES can automatically inject cache
line flushes when used in conjunction with a PM bug finder such as pmemcheck. This method of
automation is essentially how we performed our experiment on Redis-pmem (§3.6.3).

3.8 Related Work

Persistent Memory Programming Frameworks As programming for PM using CPU primi-
tives can be especially tedious and error-prone, prior work has examined many different frame-
works and APIs for making PM programming easier and more intuitive. These range from special-
ized libraries (such as PMDK [32], NVM-Direct [11], and Pangolin [169]), to modified memory
allocators (like Mnemosyne [154] and NV-Heaps [25]) to PM-specific language extensions (such
as NVL-C [40] and NVM-Direct’s preprocessor [11]). Various works also focus on logging mech-
anisms [16, 19, 55, 66] in PM to provide low-overhead memory consistency. However, these works
do not prevent durability bugs, as APIs can be misused or can contain internal bugs (as we show
in §3.3).

Persistent Memory Debugging Tools As discussed in §3.2.2, the challenges of debugging PM
durability bugs has spurred many recent works in PM-specific bug detection [142]. PMTest [104]
is a trace-validation framework, where each PM operation produces a trace event that is asyn-
chronously validated to detect a durability bug. Some other tools use binary instrumentation to
detect durability bugs. pmemcheck [31] is a binary instrumentation tool designed by Intel for
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PMDK, which is based on Valgrind [123]. Persistency Inspector [126] is another tool developed
by Intel, based on proprietary binary instrumentation included in Intel Parallel Studio XE. XFDe-
tector [103] is a fault-injection tool based on Intel PIN, which is specifically tailored at finding
crash consistency bugs caused by buggy PM update orderings.

General-Purpose Automated Program Repair Many systems are able to perform general-
purpose program repair and solve any class of faults by using heuristics [92, 93, 139]. In par-
ticular, genetic programming (or Genetic Improvement [130]) is an increasingly popular method
for automatic program repair. GenProg [92, 93], for example, uses a genetic programming method
to mutate programs to generate fixes for off-the-shelf programs. Janus Manager [60] and Sap-
Fix [109] use genetic programming at industry scale, with SapFix supporting many of Facebook’s
core systems.

Automated Concurrency Bug Repair Work on automatically repairing concurrency bugs orig-
inally inspired us to look for more provably-correct ways to fix PM bugs. AFix [79], for example,
specifically targets atomicity violations, and is able to correctly fix a majority of the bugs it tar-
gets and reduce the occurrence of bugs in all other cases. CFix [80] targets a wider variety of
concurrency bugs—CFix accepts bug reports from a variety of concurrency bug finders [127] and
produces fixes which are rigorously tested in a principled manner to provide some correctness
guarantees.

3.9 Conclusion

Persistent Memory (PM) technologies aim to revolutionize the storage-memory hierarchy with
disk-like durability at near-DRAM access latencies. However, even with specialized PM-bug find-
ing tools, fixing durability bugs is challenging. We studied 26 PM bugs and their fixes and found
that PM durability bugs can be fixed with fixes that are guaranteed to be safe. Based on our in-
sights, we developed HIPPOCRATES, an automated PM bug fixing tool guaranteed to “do no harm.”
We used HIPPOCRATES to automatically fix all 23 durability bugs we found and reproduced. We
further showed that HIPPOCRATES creates durability fixes that rival and exceed the performance
of manually-developed durable code.
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CHAPTER 4

SQUINT: Scaling Persistent Memory
Crash-Consistency Testing via Representative

Testing

Persistent Memory (PM) is a popular programming abstraction that enables direct memory access
to durable data structures. PM provides applications with performance benefits, but makes it more
difficult for applications to ensure consistency in the event of an untimely program crash. PM
crash-consistency testing helps developers with this task, but are confronted with testing an expo-
nential number of crash-states, or, the durable program state produced when a program crashes.
Consequently, prior PM crash-consistency testing work forces developers to sacrifice either cover-
age (i.e., the tools miss bugs) or scalability (i.e., the tools cannot test large systems).

In this work, we introduce representative testing: a new PM crash-state reduction strategy that
simultaneously achieves high scalability and high coverage. Our key observation is that many
crash-states produced by a PM application can be considered equivalent because they evince the
same crash-consistency bug, even though the crash-states are not themselves equivalent. We design
a heuristic that approximates a small set of representative crash-states, or, a set of crash-states that
is equivalent to all of the crash-states that an execution can produce. We build SQUINT, which uses
representative testing to perform crash-consistency testing on only the small set of representative
crash-states. We demonstrate that SQUINT achieves high coverage, since it finds 108 bugs (53 new)
across 19 real-world PM applications, and show that it achieves high scalability, since it scales to
real-world PM applications more effectively than existing works.

4.1 Introduction

Persistent Memory (PM) is a programming abstraction that enables developers to address durable
storage using direct memory accesses [148]. While the PM abstraction has existed for decades [10,
144], recent hardware advances in low-latency and byte-addressable storage, such as Intel Optane
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Pmem [34, 36, 77, 164] and CXL-attached non-volatile storage [27, 52], have spurred renewed
interest in PM programming [68, 71, 114, 140].

Unfortunately, writing crash-consistent PM applications is challenging. A crash-consistency

bug occurs when an untimely program crash during an otherwise correct execution produces a
crash-state (i.e., the application state contained in non-volatile storage at the time of the crash) from
which the application cannot recover. Software testing is the de facto approach for finding crash-
consistency bugs in file systems and the applications that use them, but traditional tools struggle to
scale to PM applications due to the massive state-space of unique crash-states that a PM application
can produce. The large crash-state space of PM applications can be attributed to two reasons: First,
applications update PM at a finer granularity using store instructions when compared to typical
block-based storage systems [116]. Second, most modern PM platforms reorder the PM stores
that are issued between explicit ordering instructions (§4.2.1). In sum, a single execution of a
PM application can produce an exponential number of unique crash states, parameterized by the
number of PM stores issued during the execution.

The research community has developed PM-specific crash-consistency testing tools to aid de-
velopers in building correct PM applications, but existing tools either sacrifice scalability (i.e., they
cannot test large systems) or bug coverage (i.e., they miss crash-consistency bugs) in the face of
the enormous PM crash-state space. One class of PM testing tools scales to large systems by either
only testing for a narrow class of crash-consistency bugs [31, 41, 56, 103, 104, 122, 126] or by
only testing crash-states that are created by patterns of PM updates that match the patterns of PM
updates of bugs from other PM applications [50–52]. Unfortunately, such tools have low coverage
as they miss crash-consistency bugs that fall outside the tested bug classes or that are not caused by
known and tested buggy patterns (§4.2.4). Some of these tools even produce false positives (i.e.,
reporting correct behavior as a bug) when the tested application can recover from a crash-state
produced by a “buggy” pattern found in previously-studied applications.

Alternatively, another class of PM testing tools [50, 57, 90, 97] achieve high coverage by
employing model-checking techniques that generate all possible crash-states and testing them
for crash consistency using a testing oracle (e.g., an application’s built-in consistency checks).
The state-of-the-art in PM model checking uses Dynamic Partial Order Reduction (DPOR) tech-
niques [44, 57], an advanced technique from the testing community, to reduce the number of crash
states that it must test. Nevertheless, existing model checking tools fail to scale to real-world PM
systems [57] due to the volume and fine-granularity of PM updates in these applications.

In this work, we propose a new state-space reduction technique, representative testing, that
builds on DPOR to scale PM model checking to real-world applications. Our key insight is that
the crash-consistency of crash states is often highly correlated, even when those crash states are
not identical. For example, if c1 and c2 are crash-states produced by a program crash immediately
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before the same instruction i in a function foo, but from foo’s invocations in different contexts,
then the crash consistency of c1 is likely to be the same as the crash-consistency of c2, even though
the two crash-states are independent. Representative testing would limit its testing to only c1 or
c2, while existing PM DPOR techniques would test c1 and c2 since they are produced by different
sequences of PM stores.

Representative testing employs this insight as a new equivalence relation on top of DPOR: the
technique considers crash-states to be equivalent if the crash-states are likely to exhibit the same
crash-consistency bugs or lack thereof (i.e., the crash-states have highly-correlated crash consis-
tency). The approach only tests a single representative crash-state from each equivalence class.
Representative testing scales strictly better than DPOR since it produces at most the equivalence
classes from DPOR (representative testing always places equivalent crash states, as determined
by DPOR, into the same equivalence class). In practice, we observe that representative testing
prunes the crash-state state space to scale to significantly larger PM applications than prior model
checking tools (§4.6).

Alas, soundly identifying crash-states that have correlated crash-consistency is intractable, as
a naive approach requires testing all crash-states from a given execution. So, we analyze PM use
(and misuse) in existing applications to identify an update behavior-based heuristic that approx-
imates correlated crash-states without performing crash-consistency testing on each crash-state.
The heuristic identifies sequences of PM updates that produce crash-consistency correlated crash
states. First, it splits the PM updates from the execution into update behaviors, sequences of PM
updates to the same data object that occur with high temporal locality. Then, the heuristic identifies
one update behavior, u1, as representing another update behavior, u2 if u1 and u2 operate over an
object of the same type (regardless of whether the operations assign the same value or when u1

and u2 are executed relative to one another) and u1 imposes a subset of the ordering constraints
imposed by u2. Intuitively, u1 represents u2 because each of the crash-states producible by crash-
ing the program after each update in u2 is correlated with a crash-state producible by crashing the
program after some updates in u1. The heuristic is unsound, so it reduces the bug coverage of
representative testing. Nevertheless, in practice, we observe that the heuristic achieves higher bug
coverage than existing tools given practical testing restrictions (§4.6).

We build SQUINT, a model-checking tool for testing PM crash-consistency that uses represen-
tative testing and the update behavior heuristic. SQUINT traces the execution of a PM application
to identify all PM updates. Then, the system uses the update behavior heuristic to identify the set
of representative update behaviors. It applies DPOR to create the crash-states of only the represen-
tative update behaviors rather than the entire program trace [57]. If the application cannot recover
from a crash-state produced by an update behavior, u1, SQUINT also tests the update behaviors
that were represented by u1 to identify all instances of a particular type of crash-consistency bug
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throught the application.
Experimentally, we show that representative testing is effective by using SQUINT to find

PM crash-consistency bugs across 19 well-tested PM applications. SQUINT finds 108 crash-
consistency bugs, including 53 new bugs. We found 52 of these new bugs in applications that
were rigorously tested by prior work [41, 50, 51, 102–104, 122], demonstrating the efficacy of
representative testing. We also compare SQUINT and representative testing against Jaaru [57], the
state-of-the-art DPOR-based model checking tool for PM, and find that SQUINT is able to find
8.5× as many bugs as Jaaru can within a 2 hour testing time limit.

In summary, we make the following contributions:

• We design representative testing, a state-space reduction method that reduces the crash-state
testing space by eliminating the testing of crash-states that are likely to evince the same
crash-consistency bugs.

• We build SQUINT, a PM testing tool that implements representative testing by automati-
cally finding update behaviors that approximate the characteristic set of crash-states in an
execution of a PM application.

• We use SQUINT to evaluate representative testing and find 108 PM crash-consistency bugs
(53 new) in real-world PM applications, demonstrating the efficacy of representative testing
over prior PM crash-consistency testing approaches.

4.2 Background

4.2.1 Persistent Memory and Persistent Memory Technologies

Persistent Memory (PM) is a programming abstraction in which programs address durable storage
using the same memory instructions that they use for main memory [9, 144, 148]. When using PM,
an application maps persistent data into its address space rather than using expensive file-system
IO calls to update block-storage devices [77, 164]. The PM abstraction can be implemented in
many ways. For example, PM can be implemented as a software abstraction on top of a file system
(e.g., mmap) with libraries [32, 169], or language run-times [40, 158]. PM can also be implemented
via direct access to non-volatile main memory (e.g., Intel Optane Pmem [34, 36, 77, 164]) or other
non-volatile hardware mechanisms (e.g., CXL.mem with non-volatile storage [27, 52]).

Most PM platforms require explicit memory ordering instructions (e.g., memory fence instruc-
tions, CXL’s Global Persistent Flush, or msync) to enforce a specific ordering between PM up-
dates. Without these memory ordering instructions, the underlying PM implementation is free to
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1 // Assume entry spans multiple cache lines
2 typedef struct entry {
3 uint8_t key[KEY_LEN];
4 uint8_t value[VALUE_LEN];
5 bool valid;
6 } entry_t;
7
8 void insert(key, value) {
9 entry_t *new_entry = ...;

10 new_entry->key = key;
11 new_entry->value = value;
12 new_entry->valid = true;
13 E Crash occurs here E
14 // Bug: updates to key, value, and valid fields may be
15 // reordered, causing valid=true with empty key or value
16 PERSIST(entry);
17 }
18
19 void check_consistency(entry_t *entry) {
20 if (entry->valid) {
21 assert(strlen(entry->key) > 0);
22 assert(strlen(entry->value) > 0);
23 }
24 }

Listing 4.1: Crash-Consistency Bug Example #1. A simplified excerpt of a crash-consistency
bug in Level hashing [172].

reorder updates, which improves memory throughput but may violate crash-consistency require-
ments [106, 121]. In this paper, we focus on such platforms that reorder PM stores since they are
more common due to their increased efficiency.

4.2.2 Persistent Memory Crash-Consistency Bugs

An application is crash-consistent if it operates as intended even if there is an application crash.
For example, a crash-consistent application could restart and resume processing new user requests
without losing previously input data. A crash-consistency bug occurs when an application’s state
becomes inconsistent due to the interruption of a sequence of updates that cannot be recovered
through recovery mechanisms (e.g., rolled back, re-executed, or ignored). Crash-consistency bugs
can arise due to programmer error (e.g., updates written in the wrong order) or due to compiler
bugs that alter the intended order of persistent updates [58].

Consider the example crash-consistency bug in Listing 4.1. The application inserts a new key-
value pair into a hash table entry and sets the valid field to true (lines 9–12). This update order
would ensure crash-consistency, but the updates to these fields are not guaranteed to be persisted
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Partial Order
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*A = 0;
PERSIST(A);
*B = 1;
*C = 2;
PERSIST(B, C);

Program Source Code

{} {A=0}

{A=0,B=1}

{A=0,C=2}

{A=0,B=1,C=2}

{A=0,C=2,B=1}
Not generated; communitive
with above state

*

(a) Partial Order Reduction

Dynamic
Partial Order
Reduction

*A = 0;
PERSIST(A);
*B = 1;
*C = 2;
PERSIST(B, C);

Program Source Code

A @ addr 0x100
B @ addr 0x200
C @ addr 0x208

Runtime Information

{}

{A=0}

{A=0,B=1}

{A=0,B=1,C=2}

(b) Dynamic Partial Order Reduction

Figure 4.1: POR versus DPOR. A comparison of how DPOR compares to POR when performing
model checking on PM applications.

due to the lack of PERSIST1 calls and therefore may be persisted in any order. Therefore, if a crash
occurs after the valid field is set (line 12) but before the key and value are guaranteed to be
persisted (line 16), the updates to key and value may be lost, resulting in inconsistent data and
crash-consistency violations (e.g., an assertion failure on line 20).

4.2.3 (Dynamic) Partial Order Reduction

Partial Order Reduction (POR) is a technique to reduce a testing tool’s state space. POR uses static
program analysis to identify commutative operations and elide testing states that differ only the the
order of such operations. We show an example of how POR works when generating crash-states
to test the program in Figure 4.1a. Since PM updates cannot be reordered around PERSIST calls,
POR identifies that any crash state containing B=1 or C=2 must contain A=0. Furthermore, since
stores to different addresses are commutative (e.g., applying B=1 and C=2 in either order will result
in identical crash-states), POR elides crash-states that differ only in the ordering of these stores.

1The details of persistence functions vary on the underlying PM platform.
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While POR reduces redundant crash-states, Dynamic Partial Order Reduction (DPOR) provides
further savings by leveraging ordering constraints that are only observable at runtime. DPOR ex-
ecutes the program multiple times and traces the execution, collecting information on ordering
constraints and re-executing the program to generate new, non-redundant states [44]. Figure 4.1b
shows an example of DPOR applied to PM. DPOR identifies the same constraints and commutative
relationships as POR, but also determines that B and C are allocated on the same cache line. Thus,
on Intel CPUs, which ensure total store ordering, C=2 cannot be persisted unless B=1 is also per-
sisted [134]. Therefore, DPOR will not generate the state marked with an asterisk in Figure 4.1a,
since C=2 cannot be persisted without B=1 in this execution. With such runtime information,
DPOR generates fewer states that POR.

4.2.4 Prior PM Crash-Consistency Testing Approaches

PM crash-consistency testing is challenging due to the wide variety of ways that crash-consistency
bugs can occur in applications and the vast number of possible crash states. Ergo, researchers
have developed numerous PM crash-consistency testing tools. In general, there are two main
approaches: exhaustive testing and application-specific/bug-specific pruning.

Exhaustive testing tools use stateless model checking [54] to test for PM crash-consistency bugs
by testing all possible PM crash states [57, 90, 97] and thus achieve high crash-state coverage.
The state-of-the-art tool, Jaaru [57], uses PM-specific DPOR methods to avoid testing equivalent
crash-states. For example, crash-states c1 and c2 may not be byte-for-byte equal, but the recovery
procedure of the PM application only reads from a small set of memory locations that are equal
in both c1 and c2, making the recovery (i.e., the post-crash execution) identical and thus makes c1
and c2 functionally equivalent [57]. However, even DPOR testing tools cannot scale to real-world
systems (§4.6).

To overcome the scalability problems of exhaustive testing, most prior approaches eschew
POR/DPOR techniques and instead aim to prune the crash-state testing space by testing crash-
states or executions that match patterns extrapolated from known PM bugs and well-studied appli-
cations [22, 31, 41, 50–52, 58, 102–104, 122, 126]. However, extrapolating patterns from known
bugs and applications leads to false negatives when the crash-consistency requirements of a PM
application do not conform to extrapolated patterns or when new, unseen patterns of bugs are en-
countered (as we demonstrate by finding new bugs in applications that have been extensively tested
by prior work; §4.6.3).
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1 void replace(old_key, new_value) {
2 entry_t *new_entry = ...;
3 entry_t *old_entry = ...;
4 new_entry->key = old_key;
5 new_entry->value = new_value;
6 new_entry->valid = true;
7 old_entry->valid = false;
8
9 PERSIST(new_entry);

10 PERSIST(old_entry);
11 }

Listing 4.2: Crash-Consistency Bug Example #2. A simplified excerpt from another crash-
consistency bug in Level hashing [172]. entry t is defined in Listing 4.1.

4.3 Representative Testing

Prior work in PM crash-consistency testing demonstrates the limitations of pure DPOR-powered
model checking in testing real-world PM applications. The goal of this work is to develop a
new state-space reduction technique that can improve upon DPOR-based approaches without the
application-specific or bug-specific optimizations introduced by other prior works, as they intro-
duce many false negatives and/or false positives.

We analyze PM use across existing applications and observe that many crash-states that are
not equivalent according to existing DPOR relations are equivalent with regard to the crash-
consistency bugs that they manifest. Consider the example in Listing 4.2. In the replace function
(Line 1), the level hash table updates an existing hash table entry by inserting the new value into
a new entry, setting it as valid (Line 6), and invalidating the old entry (Line 7). The replace

function should be atomic, but it does not enforce orderings in the updates (between lines 4–6).
Consequently, the update may become visible (i.e., valid set to true) before key and value are
persisted and cause a crash inconsistency. This update to a level hash entry is the same crash-
consistency bug as the insert function in Listing 4.1: the ordering constraints on the updates
to new entry are the same in both the insert and replace functions (i.e., no ordering con-
straints are enforced between updates to key, value, and valid) which causes the same consis-
tency violation in the check consistency function (Listing 4.1, Line 19). We can therefore say
that crash-states created by crashes in insert are equivalent to crash-states created by crashes in
replace.

This observation is comparable to observations made in concurrency and distributed system
testing works [96, 117, 133]. These works overcome the limitations of DPOR by further limiting
state-space exploration using either global exploration bounds (e.g., number of thread preemptions
in concurrent systems), or domain-specific knowledge (e.g., ordering constraints between different
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1 void insert_ordered(key, value) {
2 entry_t *new_entry = ...;
3 new_entry->key = key;
4 PERSIST(&new_entry->key);
5 new_entry->value = value;
6 new_entry->valid = true;
7 // A crash here exposes some, but not all, of the bugs
8 // found in the original insert function (see Listing 4.1).
9 E Crash occurs here E

10 PERSIST(new_entry);
11 }

Listing 4.3: Synthetic Crash-Consistency Bug with Added Ordering Constraints.
insert ordered is a synthetic version of insert (Listing 4.1) with an added ordering con-
straint. With the added ordering constraint, insert ordered exposes some, but not all, of the
crash-consistency bugs that insert can expose.

messages or failure events in distributed systems). While these approaches are often unsound (i.e.,
can miss bugs) or are only sound within a set bound, these techniques are able to find deep bugs in
real-world systems that cause state-space explosion for DPOR techniques.

Based on our observation, we propose representative testing, an approach to crash-state re-
duction that identifies and tests a small set of crash-states, C, from an execution such that every
crash-state that can be generated by the execution is equivalent to a crash-state in C. In other words,
representative testing aims to test a small set of crash-states that represent the other crash-states in
the execution.

Unfortunately, it is intractable to identify such a representative crash-state set as such a brute-
force approach requires generating and exhaustively testing every crash-state in an execution.
Therefore, we derive a method to approximate this characteristic crash-state set to employ rep-
resentative testing.

We further observe that many PM applications create equivalent crash-states from update be-

haviors—updates to single PM data structures with high temporal locality. Consider the example
in Listing 4.2. The crash-consistency violation that occurs is dependent on a single data structure—
entry t. Furthermore, the set of updates that cause the entry t to become inconsistent happen
only within the context of the replace function, regardless of the history of other updates that
may or may not have happened to that entry t instance. We observe that the crash-consistency
of many PM applications rests on the consistency of individual data structures, which implies that
the crash-consistency of update behaviors is crucial and central to the crash-consistency of PM
applications.

This observation leads us to the update behavior heuristic, a heuristic for approximating true
representative testing. Since multiple different updates can expose the same crash-consistency
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Figure 4.2: Functional Overview of SQUINT.

bugs, our insight is that one, representative update behavior to a particular type of data structure
can be tested on the behalf of the other updates. If a crash-consistency bug is found due to the
ordering constraints enforced (or not enforced) in the representative update, it is then likely that the
represented behaviors can create crash states that are also crash inconsistent. Since this heuristic
only requires the analysis of a program trace rather than all possible crash-states resulting from
that trace, this heuristic is an efficient approximation for true representative testing.

The update behavior heuristic selects representative behaviors that update the same or more
fields of the data type while enforcing the same or fewer ordering constraints on that object than
other update behaviors. Consider the example in Listing 4.3, which contains a version of the
insert function (called insert ordered) that attempts to fix the crash-consistency bugs of the
original function, but only inserts an additional ordering constraint between the key and value

update (Line 4). Therefore, for a particular update (e.g., insert or replace operation), the rep-

resentative update is the largest update (i.e., updates the most fields) that has the fewest ordering
constraints, as this update will generate the most crash-states that can be tested for representa-
tive crash-consistency violations (fewer ordering constraints allows for more possible orderings
and therefore more possible crash states). For example, in the case of the level hash table en-
try, either insert or replace could be the representative update for the update behavior in
insert ordered, as insert ordered has more ordering constraints and thus creates fewer
possible crash-states.

4.4 Design of SQUINT

We now discuss how we design and implement representative testing in SQUINT. SQUINT imple-
ments representative testing by identifying update behaviors in the execution of a PM application,
grouping them together by the ordering constraints they enforce, and then testing a representative
update behavior from each group for crash consistency (i.e., the update behavior heuristic). In
order to create and test a characteristic set of crash-states, SQUINT needs to identify which PM
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stores and ordering instructions constitute a single update behavior. Therefore, SQUINT employs
a heuristic approach that approximates if PM operations are related based on (1) the data types
modified, (2) the instance of the data types, and (3) the temporal locality of the the PM operations
(§4.4.3) in order to automatically (i.e., without developer effort) identify update behaviors.

SQUINT is based on PM crash-consistency model-checking workflows (see Figure 4.2), which
first execute a PM application to generate a trace of PM operations (i.e., stores, cache-line flushes,
and memory fences) and then perform crash-consistency testing by testing the PM application’s
ability to recover from crash-states that result from all possible update orderings. However, unlike
prior exhaustive testing approaches, SQUINT only tests crash-states generated by representative
update behaviors rather than all possible crash-states. Furthermore, for each update behavior that
SQUINT tests, SQUINT further reduces the number of generated crash-states by leveraging DPOR
state-reduction techniques.

Specifically, SQUINT first traces PM operations during execution (Step A). SQUINT then con-
verts this trace into a persistence graph that contains all PM stores in the execution as nodes and
all ordering constraints between PM stores as edges (Step B). SQUINT divides the graph into sub-
graphs by analyzing the data structures and temporal locality of PM instructions from the execution
(Step C); each subgraph represents an update behavior from the original execution. SQUINT then
places subgraphs (i.e., update behaviors) into groups by adding a subgraph to a group if the group’s
representative (i.e., the largest subgraph in a group) includes a superset of the PM updates and or-
derings of the other subgraph (Step D). SQUINT finally uses crash-consistency model checking

(Step E) to test all possible crash-states from each representative subgraph.
Crash-consistency model checking, as also described in prior work [57, 90, 97], validates crash

states using a consistency-checking routine (e.g., a specialized function or application recovery
code). Since SQUINT uses crash-consistency model checking, it does not report false positives
(i.e., all bugs are true bugs), but may report false negatives (e.g., if the checking routine cannot
detect the bug).

We now discuss each step of SQUINT’s testing process in detail (§4.4.1–4.4.5), then discuss
SQUINT’s limitations (§4.4.6).

4.4.1 Tracing PM Operations (Step A)

SQUINT traces PM operations during an execution of the PM application under test, comprising
a list of PM update operations (§4.2.1) in the order in which they are executed by the CPU. (A)
in Figure 4.3 provides an example PM program snippet and (B) in Figure 4.3 shows the resulting
trace. Different program executions may generate traces that follow different paths through the
program that perform different PM updates—we discuss trace coverage in §4.4.6. SQUINT can

73



Data Type Information

STORE;X,A;0;...
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X.C = 2;
PERSIST(X);

(A) PM Application

Figure 4.3: Persistence Graph Construction (Step B).

use a single PM operation trace to reason about all of the ways that PM updates in the trace could
be reordered at run-time, since operations in the trace describe all memory ordering constraints on
PM updates for the given program input (§4.4.2).

4.4.2 Persistence Graph Construction (Step B)

Next, SQUINT uses the PM operation trace (Step A) to create a persistence graph, which contains
all of the ordering constraints that the application enforced between all of the PM stores in the
execution. A persistence graph represents each PM store in the trace as a node, and represents the
ordering constraints between PM stores as edges. (C) in Figure 4.3 shows the persistence graph
generated by the application, (A), and the execution trace, (B). In this example, the store to X.A

is persisted before either store to X.B or X.C, and so the node representing the store to X.A

has outgoing edges to X.B and X.C. The updates to X.B and X.C are not ordered with respect
to each other, so there is no path from either X.B to X.C or X.C to X.B. Since the execution
persists both X.B and X.C before the end of the code snippet, the nodes have outgoing edges to
subsequent nodes in the graph.

The PM operation trace only contains run-time information about each operation (e.g., memory
addresses, binary code addresses, and stack traces) and does not contain the data-type information
required for identifying update behaviors (§4.4.3). So, SQUINT augments the PM operations in
the trace with data-types by using debug information from the recorded binary code address to
identify which fields are updated by each update in the persistence graph. To improve accuracy,
SQUINT identifies the original data-type of each PM update by following the recorded stack traces
backwards to determine the original type of all type-casted data types (e.g., when updates are made
indirectly via memset). We discuss the details and limitations of this process in §4.5.
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Figure 4.4: Type Subgraph Creation. An example of how the persistence graph is grouped into
type subgraphs (Step C1).

4.4.3 Subgraph Creation (Step C)

After constructing the persistence graph (Step B), SQUINT splits the persistence graph into sub-
graphs to identify the program’s update behaviors. Alas, there are an exponential number of possi-
ble subsets of PM operations, and thus an exponential number of ways to group PM operations to-
gether to describe an update behavior. Nevertheless, two properties of PM programs allow SQUINT

to automatically identify the update mechanisms in an execution: first, PM programs typically
place semantically-related data fields in the same data structure, and second, semantically-related
PM updates usually occur with high temporal locality.

SQUINT uses the aforementioned observations to build a heuristic method to identify update
behaviors in the persistence graph. First, SQUINT groups updates together based on data-type
(Step C1) and data-type instance (Step C2). Then, SQUINT groups together updates that occur
close together temporally, by splitting the persistence graph into epochs (Step C3). We outline
these three steps below:

(C1) Split the persistence graph into type subgraphs First, SQUINT splits the persistence graph
into subgraphs by data type since crash-consistency is a property of data types. SQUINT must rea-
son about subgraphs that capture ordering requirements among the constituent types of a composite
type (e.g., a struct that has another struct as a field) since constituent types in a composite type may
have crash-consistency ordering requirements. Ergo, a node may be placed in multiple type sub-
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(a) Split Criteria #1.
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(b) Split Criteria #2.

Figure 4.5: Epoch Splitting Example. An example of how an instance subgraph (all shaded
nodes) is split into epoch subgraphs (Step C3) by using information from the full persistence
graph.

graphs if the type corresponding to the nodes is used in a composite type. Figure 4.4 provides
an example, where nodes of type struct inner are included in the type graph of both struct

inner and struct outer. In contrast, node Z is of type struct unrelated, which is not a
composite type, and therefore node Z only appears in one, single-node subgraph. SQUINT per-
forms this analysis for all, non-primitive data types, which includes types likes structures, classes,
and arrays.

(C2) Split type subgraphs into instance subgraphs Next, SQUINT splits each type subgraph
produced in Step C1 into an instance subgraph, since the individual object is the unit of crash
consistency. Each node in the type subgraph refers to a specific object (i.e., instance of a data-
type) based on the address and field offset of the node’s PM store. SQUINT assigns each node in a
type subgraph to an instance subgraph based on the object the node references.
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(C3) Split instance subgraphs into epoch subgraphs Finally, SQUINT splits each instance sub-
graph produced in Step C2 into an epoch subgraph. We only need to test individual update behav-
iors for crash consistency. We therefore split the instance subgraphs (which span the entire program
execution) into epoch subgraphs that represent individual update behaviors, with operations that
have high temporal locality.

For example, consider the persistence graph in Figure 4.5. The graph contains the instance
subgraphs of X (represented by the shaded nodes for updates to X) and Y (Y.Q). The three
distinct update regions for X (Epochs 1–3) can only all be distinguished when considering nodes
outside of X’s instance subgraph. While Epochs 1 and 2 are split based on a data-structure specific
criteria (see below; Figure 4.5a), the boundary between Epochs 2 and 3 can only be drawn when
considering the update to Y.Q from Y ’s instance subgraph, as update Y.Q sits between the two
Epochs (Figure 4.5b). Ergo, SQUINT breaks each instance subgraph temporally into epochs by
using information from the full persistence graph (§4.4.1) to place PM updates that occur close-
together in time into the same epoch subgraph.

SQUINT uses two criteria to choose the boundary of an epoch subgraph. First, SQUINT splits
the subgraph for instance X into epochs at all PM instructions I in the execution such that all
stores to X that were issued before I are persisted before I and I updates a previously updated
field of X . Once an epoch is created this way, the tracking for repeated fields resets at the begin-
ning of the new epoch. In Figure 4.5a, this criteria demarcates Epoch 1 from Epoch 2, since the
execution again updates X.A (instruction I in the definition) after it persists all prior updates to X

({X.A,X.B,X.C,X.D}). Since the field tracking is reset at the beginning of Epoch 2, another
epoch is not created for the updates to X.B and X.C, even though they were previously modified
in Epoch 1.

Second, SQUINT splits the instance subgraph into epochs between updates in the subgraph of U ,
U1 and U2, if there exists a PM update V in the execution such that V does not update U and U1 is
persisted before V and V is persisted before U2. We also show an example of this splitting criteria
in Figure 4.5b in how Epochs 2 and 3 are divided. Here, the update to Y.Q is persisted between
two updates to X (X.C and X.D). Since X.C is persisted before Y.Q and Y.Q is persisted before
X.D, this breaks the flow of updates to X , and so SQUINT splits this part of X’s instance subgraph
into Epochs 2 and 3.

The resulting epoch subgraphs are the update behaviors in the execution.

4.4.4 Grouping Update Behaviors (Step D)

After identifying the program’s update behaviors (Step C), SQUINT groups behaviors by their
representatives. SQUINT considers one behavior to represent another if one behavior contains a
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Figure 4.6: Update Behavior Grouping Example. An example of how the update behaviors
found in Figure 4.5 are grouped by similarity and how Epoch 1 is chosen as the representative
(Step D).

superset of the PM updates as the other while enforcing the same or fewer ordering constraints
as the other. By this definition, the representative behavior will contain a superset of possible up-
date orderings and therefore create a superset of equivalent crash-states. SQUINT uses the largest
update behavior (i.e., allows for the most unique update orderings) in each group as the represen-
tative. Using the largest update behavior as the representative ensures that the representative for
each group represents all group members by the transitivity of representative relation (e.g., if U1

represents U2 and U2 represents U3, U1 represents U3).
SQUINT forms groups as follows. SQUINT iterates through all identified update behaviors in

sorted order, from largest update behavior to smallest. It adds each update behavior to every
existing group that represents it, where a group represents an update behavior if the behavior has
a subset of updates and possible update orderings of the largest behavior in the group (i.e., the
representative of the group). Formally, if RG is the representative update behavior of group G,
then an update behavior A is represented by RG if A contains a subset of nodes in RG and the
subset of nodes in RG have the same or fewer ordering constraints as A. SQUINT considers two
nodes equal if they update the same field in the same data-type, but does not consider which
instance is updated since crash-consistency is a property of data-types, not individual instances.
If there is no group that represents the update behavior, then SQUINT forms a new group for the
update behavior. By adding each update behavior to all groups that represent it, SQUINT will
not incur false negatives by failing to test an update behavior that is represented by two groups,
only one of which is determined to be buggy (i.e., the representative of only one group creates
crash-inconsistent states).
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Figure 4.7: Crash-Consistency Test Generation. An example of how SQUINT would perform
testing (Step E) of Epoch 1 (as found in Figure 4.6).

Figure 4.6 provides an example of how the epochs in Figure 4.5 are placed into a group. Since
Epoch 1 is the largest (i.e., has the most nodes) and SQUINT traverses epochs in sorted order,
Epoch 1 is the first to be placed into the group. Then, Epoch 2 is added to the group because Epoch
1 represents Epoch 2; Epoch 2 contains a subset of the nodes in Epoch 1 ({X.A,X.B,X.C} ⊂
{X.A,X.B,X.C,X.D}) and the ordering constraints in Epoch 2 are a superset of the ordering
constraints among equivalent nodes in Epoch 1 (for the subset of nodes {X.A,X.B,X.C}, Epoch
1 has the same ordering constraints as Epoch 2). Lastly, Epoch 3 is added to the group; Epoch
3 also contains a subset of the nodes in Epoch 1 (as {X.D} ⊂ {X.A,X.B,X.C,X.D}) and the
ordering constraints in Epoch 3 are the same as the ordering constraints among equivalent nodes
in Epoch 1.

Epoch 1 is the representative of the group because only Epoch 1 represents all other mem-
bers in the group. Note that not all group members represent one another; Epoch 2 does not
represent Epoch 3 because Epoch 3 does not have a subset of the nodes in Epoch 2 ({X.D} ̸⊂
{X.A,X.B,X.C}). However, since Epoch 1 represents both Epochs 2 and 3 (i.e., Epoch 1 can
create crash-states that are equivalent to all of the crash-states of Epochs 2 and 3), they are in the
same group.

4.4.5 Model Checking (Step E)

Finally, SQUINT tests the representative update behavior for each group using a model checker
(Step E). The model checker performs crash testing on each representative update behavior by
generating all possible crash-states that can result from crashes that occur during the execution
of the behavior (i.e., all possible permutations of updates that comply with the update ordering
constraints in the behavior according to PM DPOR methods [57]) and testing each crash-state
for crash consistency. For each crash-state, SQUINT runs the application in recovery mode and
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checks if the application detects an inconsistency in the persistent data; all applications we test
are able to restart using an existing crash-state and can therefore be run in a recovery mode. For
example, if an inconsistent state is detected, SQUINT’s model checker expects the application to
terminate with an error code or throw an exception (i.e, a fail-stop bug oracle), thus indicating that
a crash-consistency bug has been found (§4.2.2).

If any of the crash-states generated by the update behavior cause a crash-consistency bug,
SQUINT uses a delta-debugging inspired algorithm [168] to iteratively identify the most recent
non-buggy update and isolate the bug location and produces a report for the user. If a representa-
tive update behavior contains a bug, SQUINT then tests the remaining update behaviors in the group
that contain PM updates from source code locations that have yet to be tested. This follow-up test-
ing of represented update behaviors explicitly enumerates all source code locations that contain
the crash-consistency bugs that representative testing already identified, helping developers fix
each instance of crash-consistency bugs in their application.

Figure 4.7 shows how SQUINT tests the representative update behavior from Figure 4.6.
SQUINT passes the update behavior to the model checker along with the original PM operation
trace (Step A, §4.4.1). The model checker replays and persists all updates before the represen-
tative update behavior, since these updates are required to produce a valid crash image (e.g., the
updates in Epoch 1 are not reachable without executing the preceding trace). After reaching the
store associated with the X.A node, the model checker tests all possible orderings that the stores
in Epoch 1 could be persisted, shown in Figure 4.7.

4.4.6 Limitations

False Negatives Since representative testing and the update behavior heuristic are unsound re-
duction techniques (§4.3), SQUINT will have false negatives. Specifically, SQUINT has false nega-
tives when: (1) SQUINT’s update behavior heuristic does not work well for a given application, (2)
our representative testing observations do not apply well to the tested PM application; or (3) an ap-
plication silently fails in the presence of a crash-consistency bug (e.g., it produces erroneous output
instead of stopping). However, we experimentally find that SQUINT incurs fewer false negatives
than prior work (§4.6.3).

PM Concurrency Bugs Like most prior PM testing tools, SQUINT targets single-threaded PM
crash-consistency bugs and does not track update orderings across threads (due to the limitations
of our implementation; §4.5). So, while SQUINT can and does test multi-threaded systems (e.g.,
memcached-pm [39], Redis-pm [33], and HSE [114]), and can find crash-consistency bugs within a
single thread’s execution (§4.6.1), it misses PM crash-consistency bugs that only arise due to multi-
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threading. In the future, SQUINT could incorporate thread interleavings into its update behavior
inference (§4.4.3) as additional PM ordering operations. Representative testing is complementary
to existing PM concurrency testing tools [22, 52], as representative testing could be used to reduce
the crash-state space needed to test concurrent PM applications.

4.5 Implementation

We implement our prototype of SQUINT in ∼6500 LOC of C++ (as counted by SLOCCount [155]).
SQUINT performs program analysis using LLVM-10 [91, 150]. We compile all of our test appli-
cations with WLLVM [136], a drop-in LLVM replacement, which simplifies the task of compiling
large systems into executables with accompanying LLVM bitcode.

Since SQUINT analyzes programs after optimizations have been applied, SQUINT is capable
of detecting PM compiler bugs (§4.2.2) in a tested program. For example, if a single store at
the source-code level is transformed into multiple PM stores, our tracing tool will detect multiple
stores, allowing SQUINT to perform testing and expose bugs that can occur within orderings of
these stores.

SQUINT uses pmemcheck [31], a valgrind [123] tool for PM tracing, to generate PM traces.
SQUINT traces PM applications as they operate on unit test program inputs—these inputs could
also be driven by fuzzing [102, 107, 161] or symbolic execution [12, 122]). Since pmemcheck

works on Intel’s PMDK library and PMDK works for applications with or without access to PM
hardware (e.g., PMDK can run on block file systems with mmap), SQUINT can be used to test a
wide variety of PM applications with different PM implementations.

Toolkit Limitations Our implementation inherits three limitations from pmemcheck. First,
pmemcheck only supports user-space applications, which prohibits SQUINT from testing PM file
systems. Replacing pmemcheck with a kernel-tracing tool would allow SQUINT to add kernel
support. Second, pmemcheck does not support tracing concurrency operations (§4.4.6). Third,
pmemcheck is tailored to testing PM applications that use Intel’s PMDK library for low-level
persistence primitives (e.g., PERSIST) calls and PM file initialization. All but one of our test ap-
plication’s supported pmemcheck already, with HSE [114] requiring fewer than ten lines of source
code modification in order to function with pmemcheck.

4.6 Evaluation

In this section, we evaluate the effectiveness and efficiency of SQUINT. First, we present an
overview of the crash-consistency bugs found by SQUINT (§4.6.1) and discuss our interaction
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with developers in reporting the new bugs discovered by SQUINT. We then analyze SQUINT’s
scalability (§4.6.2) and compare SQUINT’s results to prior works (§4.6.3).

Evaluation Targets We evaluate SQUINT with a variety of persistent data structures and real-
world applications, all of which were tested by prior work with the exception of HSE [114]. We test
6 persistent data-structures provided by PMDK [32] and implemented using PMDK’s persistent
object allocation and transaction update API (libpmemobj [143]). We also evaluate 5 persistent
data structures from RECIPE [49, 95, 151] as well as 5 PM key-value store indices that were tested
by WITCHER [49, 50]. Finally, we use SQUINT to test 3 server applications: we test memcached-
pm [39], a PM port of memcached (a popular memory caching service [146]) developed by Lenovo;
a PM port of Redis [33] (another popular memory caching service [14]) ported by Intel; and HSE
(Heterogeneous-Memory Storage Engine) [114], a key-value storage engine developed by Micron.

Evaluation Setup We evaluate our test targets using existing inputs (e.g., unit tests and coverage
tests), similar to prior work [50, 51, 104, 122]. We test targets from WITCHER using the exact
random inputs provided in WITCHER’s artifact [49]. We run our experiments on a server with a
Intel Xeon Gold 6230 CPU (2.10 GHz), four 128 GB Intel Optane Series 100 Pmem DIMMs, and
256 GB of DDR4 DRAM (2667 MHz).

4.6.1 Bugs Detected by SQUINT

We present the results of SQUINT’s testing in Table 4.1. SQUINT found 108 bugs across the 19
systems. In our testing, we find 53 new bugs: 6 in PMDK’s Array data structure, 26 in the persistent
key-value indices, 17 in RECIPE data structures, 2 in memcached-pm, 1 in Redis-pm, and 1 in
HSE. With the exception of HSE, all of these systems were previously tested by prior work [50,
51, 102, 103, 122], yet these new bugs were not found by any prior tool. We reported the 53
new bugs to their project maintainers. Of these 53 bugs, 49 have been confirmed by the project
maintainers so far: all except for the 2 memcached-pm bugs and 1 Redis-pm bugs.

4.6.2 Scalability of Representative Testing

We evaluate the scalability of representative testing by comparing how quickly it finds bugs to
Jaaru [57], the state-of-the-art PM model checker that leverages DPOR crash-state reduction tech-
niques. In the original artifact, Jaaru is configured to skip library and data structure initialization—
however, we find some early crash-consistency bugs that occur during the initialization of data
structures that can cause the first few entries in a key-value store to be lost on a crash. Therefore,
we evaluate Jaaru both including and excluding initialization code (“Jaaru” and “Jaaru-NoInit”,
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Category Application Total Bugs New Bugs

PMDK
Data

Structures

Array 7 6
BTree 6 0
CTree 1 0
Hashmap (Atomic) 4 0
Hashmap (TX) 2 0
RBTree 2 0

Key-Value
Indices

CCEH 4 2
Fast Fair 7 3
Level Hash 34 17
WOART 3 2
WORT 2 2

RECIPE
Indices

P-ART 4 2
P-BwTree 3 2
P-CLHT 13 7
P-HOT 7 5
P-Masstree 3 1

Server
Applications

HSE 2 1
Memcached 3 2
Redis 1 1

Total 108 53

Table 4.1: SQUINT’s Testing Results. SQUINT finds 108 bugs (53 new); 52 of the new bugs are
in systems tested by prior work.

respectively). Furthermore, due to compatibility issues of running Jaaru on newer versions of
PMDK, we also implemented Jaaru’s DPOR algorithm (“DPOR”) in SQUINT’s model checker
to more clearly compare DPOR and representative testing. We use SQUINT and the three base-
line testing strategies on each of our testing targets and count the number of bugs found by each
approach over time. We set a maximum time limit of 2 hours for all application categories.

Figure 4.8 shows the bugs found over time for three of the four categories of testing targets:
PMDK Data Structures (Figure 4.8a), Key-Value Indices (Figure 4.8b), and RECIPE Indices (Fig-
ure 4.8c). We omit comparison against the server benchmarks because we were unable to run
Jaaru on these systems; furthermore, the 6 bugs occur early in these application’s executions, so
both “RepTest” and “DPOR” configurations of SQUINT find all 6 bugs within 11 minutes. Each
graph sums the results of the individual tests (e.g., Figure 4.8a shows that SQUINT finds 22 bugs
after crash-testing each of the PMDK indices in parallel for ∼28 minutes).

Representative testing outperforms DPOR approaches in all benchmarks. SQUINT finds all
of the reported bugs before the time limit (28 minutes for PMDK data structures, 50 for Key-
Value indices, and 98 minutes for RECIPE indices). In contrast, none of the baselines finds all
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Figure 4.8: SQUINT versus DPOR Baselines. A comparison of SQUINT (“RepTest”) to three
baselines: Jaaru [57], configured to test the entire application (“Jaaru”) and to skip program
initialization (“Jaaru-NoInit”); and Jaaru’s algorithm implemented in SQUINT’s model checker
(“DPOR”). The × marker indicates the completion of testing if it occurred before the time limit,
which only occurred for SQUINT.

of the bugs within the time limit: The DPOR baseline outperforms both Jaaru configurations, but
finds roughly half of the bugs found by representative testing. Jaaru performs even worse, the
Jaaru-NoInit and Jarru baselines find 12% and 5% of the bugs found by representative testing,
respectively. Note, given an infinite testing budget, the baselines would find all of the bugs found
by SQUINT; however, SQUINT allows developers to scale PM crash-consistency testing to large
applications and find crash-consistency bugs quickly.

4.6.3 Coverage Comparison to Pattern-Based Approaches

We evaluate the coverage of representative testing by comparing the number of PM crash-
consistency bugs found by SQUINT to those found using pattern-based tools. For each prior tool,
we sum the number of crash-consistency bugs found in each application that was tested by both
the tool and by SQUINT, ensuring to test the same version of each application with SQUINT as
was tested with the prior tool. We do not compare with PMFuzz [102], which does not report the
number of crash-consistency bugs it found, nor Yashme [58], which uses different compiler and
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Application Version(s) Also Tested By
Array v1.4, v1.8 PMDebugger, WITCHER

BTree v1.4
AGAMOTTO, PMTest,
XFDetector, WITCHER

BTree v1.8 Jaaru, WITCHER
CTree v1.4 PMTest, XFDetector, WITCHER
CTree v1.8 Jaaru, WITCHER
Hashmap (Atomic) v1.4 PMTest, WITCHER
Hashmap (Atomic) v1.8 Jaaru, PMDebugger, WITCHER

Hashmap (TX) v1.4
AGAMOTTO, PMTest,
XFDetector, WITCHER

Hashmap (TX) v1.8 Jaaru, WITCHER

RBTree v0.3
AGAMOTTO, PMTest,
XFDetector, WITCHER

RBTree v1.8 Jaaru, WITCHER
WOART, WORT, Fast Fair, CCEH, Level Hash,
P-ART, P-BwTree, P-CLHT, P-HOT, P-Masstree

ad69038 WITCHER

P-CLHT fc508dd AGAMOTTO, WITCHER

Memcached 8f121f6
AGAMOTTO, PMDebugger,
XFDetector, WITCHER

Redis 3.2-nvml
AGAMOTTO, PMDebugger,
XFDetector, WITCHER

HSE v2.1 -

Table 4.2: Tested Application Versions. The versions of applications we tested and the prior
works which also test those versions. All applications were tested using PMDK 1.8.

benchmark versions. Finally, we do not compare to testing tools that only detect PM concurrency
bugs (PMRace [22], DURINN [52]), as SQUINT only detects single-threaded bugs (§4.4.6).

SQUINT finds between 7 and 42 more crash-consistency bugs than five pattern-based prior
works. Specifically, SQUINT finds 7 more crash-consistency bugs than AGAMOTTO, 7 more than
PMDebugger, 10 more than PMTest, 42 more than WITCHER, and 9 more than XFDetector. Fur-
thermore, SQUINT finds all the crash-consistency bugs reported in prior works with the exception
of two bugs: SQUINT fails to detect two bugs from WITCHER, Bug #28 [47] and Bug #36 [48],
which WITCHER found in BwTree and P-HOT, respectively. Both of these bugs cause the recov-
ery code to leak memory, but do not cause the recovery code to crash. Ergo, SQUINT tests the
erroneous PM updates but does not identify them as failures.

Overall, we find that representative testing provides higher scalability than existing DPOR ap-
proaches while providing high coverage relative to pattern-based approaches.
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4.7 Discussion

eADR-enabled PM Intel Optane Pmem 200 Series [36] (an updated version of the 100 Se-
ries [34]) includes a new feature called Extended Asynchronous DRAM Refresh (eADR). eADR
ensures that stores to PM are persisted after executing, eliminating the need for explicit cache-
line flushes and eliminating missing-flush bugs (§4.2.2). PM applications must still issue memory
fences on eADR platforms to force weakly-ordered to become persistent (e.g., non-temporal stores
on x86-64) [137], and memory fences are also required for preventing stores from being reordered
on architectures that do not provide total-store-ordering (TSO). Ergo, while eADR platforms elim-
inate missing-flush bugs, they are still susceptible to missing-fence bugs, compiler bugs [58], and
application-specific bugs (§4.2.2) Overall, PM crash-consistency testing tools are still needed, as
the crash-state space of PM applications is still large even for eADR-enabled PM.

Test Case Generation SQUINT can only detect a crash-consistency bug if the PM operation
trace (Step A, §4.4.1) contains an update behavior that evinces the bug. SQUINT currently uses
unit tests, example inputs, and randomly generated inputs [50] to drive its PM testing and analysis.
Adopting test generation approaches (e.g., fuzzing [102, 107, 161], symbolic execution [12, 122])
could increase the number and size of the PM operation traces for SQUINT to analyze. This would
increase the number of update behaviors that SQUINT could test and could potentially reduce false
negatives.

4.8 Related Work

Persistent Memory Programming Libraries Rather than creating custom implementations of
common durability techniques (e.g., undo logging), many PM developers use PM programming
libraries in their PM applications [25, 32, 112, 143, 154, 163, 169]. While small PM libraries
can be exhaustively tested [57], crash-consistency bugs can arise from API misuse or through
sequences of API calls which may not be tested in library-only model checking. Since SQUINT

effectively prunes the testing space for PM applications, SQUINT can find crash-consistency bugs
in application code, programming library code, and in the interface between the two.

Persistent Memory Language Extensions One method of implementing the PM abstraction is
to incorporate PM concepts directly into programming language design [40, 65, 145, 158]. PM
language extensions allow developers to directly define and operate on PM objects without having
to insert ordering instructions (§4.2.1), as they are automatically inserted by the compiler [40, 158].
However, these language extensions cannot automatically prevent crash-consistency bugs, as they
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are unaware of application-specific ordering requirements. Ultimately, PM language extensions do
not eliminate the need for PM crash-consistency testing.

File-System Crash-Consistency Testing Many prior works explore crash-consistency testing in
file systems [20, 45, 46, 59, 78, 85, 110, 116, 131, 166, 167]. These approaches predominately
leverage either bounded pruning [110, 116] or application/bug-specific customization [20, 59, 78,
84, 85, 162, 166, 167]. Even though crash-consistency testing is well explored for file systems,
crash-consistency testing for PM applications requires special attention, as PM applications face
exponentially larger testing spaces due to the finer granularity of PM updates.

Copy-paste bugs Copy-paste bugs are bugs caused when developers incorrectly copy-and-paste
code, which can introduce bugs when the duplicated code does not operate correctly outside of
its original context [99]. The key insight and observations behind representative testing, however,
do not rely on code duplication in update behaviors to generate equivalent crash-states. Overall,
copy-paste bugs are orthogonal to PM crash-consistency bugs. In our evaluation, we do not find
copy-paste errors as the cause of any of the PM crash-consistency bugs found by SQUINT.

4.9 Conclusion

Prior Persistent Memory (PM) crash-consistency testing tools fail to adequately help developers
overcome the challenges of writing crash-consistent PM applications, as they either fail to scale to
real-world applications or incur false negatives by extrapolating from application- or bug-specific
patterns. To overcome these challenges, we developed representative testing, a new PM crash-state
reduction strategy that considers crash-states equivalent if they produce the same crash-consistency
bugs. We subsequently implemented the update behavior heuristic to approximate and test a small
set of representative crash-states that evince a representative set of crash-consistency bugs in the
application. We implemented representative testing and the update behavior heuristic in SQUINT

and used it to find 108 bugs (53 new) across 19 PM applications, demonstrating the coverage
of representative testing over prior approaches. We also showed that SQUINT is scalable, as it
finds 8.5× as many bugs as the state-of-the-art DPOR model-checking tool. We conclude that
representative testing is a scalable and accurate testing approach for PM applications.
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CHAPTER 5

Conclusion and Future Work

In this dissertation, we proposed our novel insights on how to design automated bug detection and
correction tools that are scalable, thorough, and easy for developers to use. We observed that by
approximating the reasoning performed by developers during the development life cycle of their
applications, we were able to build automated tools and techniques that find and fix bugs without
forcing developers to chose between scalability and coverage.

We applied this observation to the area of modern PM application development, which provides
exciting opportunities for developers looking to design low-latency storage systems, but comes
with many pitfalls in the difficulty of designing simultaneously efficient and correct systems. We
first presented AGAMOTTO and HIPPOCRATES, which we designed to help developers find and fix
platform-specific PM bugs by prioritizing the exploration of execution paths most prone to these
bugs and then automatically fixing these bugs with provably-correct and heuristically-optimized
fixes. We then presented SQUINT, a tool which prunes the exploration of crash-states in crash-
consistency testing by automatically uncovering semantic similarities in bugs that would be ex-
posed in different crash-states in order to scalably and thoroughly uncover application-specific PM
ordering bugs. These tools have been used to find and fix over two hundred PM bugs across a wide
variety of modern PM applications, systems, and programming libraries, and thus demonstrate the
efficacy of our methodology in designing automated tools to help developers write correct and
efficient systems.

In the rest of this section, we describe some future work directions that could leverage the in-
sights provided in this dissertation to explore bug detection and correction in non-PM applications.
We first describe how our insights could drive further detection and correction of platform-specific
bugs in non-PM platforms. We wrap up by describing how our insights could advance the state-
of-the-art in state-space reduction policies for model-checking approaches in other applications
domains.
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5.1 Automatically Finding and Fixing Platform-Specific Bugs

In our work on AGAMOTTO (Chapter 2) and HIPPOCRATES (Chapter 3), we demonstrated the ef-
ficacy of building tools to target platform-specific (and application-independent) bugs in modern
PM systems. We further demonstrated how needed such tools are to uncover developer miscon-
ceptions and errors when developing applications for new platforms based on the results from
our evaluations of AGAMOTTO and HIPPOCRATES (§2.6 and §3.6, respectively). We argue that
this approach applies broadly, as emerging hardware platforms (e.g., new CPUs with new memory
models, hardware-accelerated networking) and software platforms (e.g., blockchain programming,
cloud computing platforms, domain-specific APIs) can require platform-specific operations to be
performed for applications to function properly, and platform-specific debugging tools would help
developers identify and correct platform misuses before their applications are deployed. As the
diversity of programming platforms continues to expand, we believe that this approach to finding
and fixing platform-specific bugs will encourage the adoption of new technologies and increase
trust in the correctness of early systems built for these new technologies.

5.2 Automating Semantic State-Space Reduction Policies

In our work on SQUINT (Chapter 4), we demonstrated the efficacy of accurately reducing the
number of program states explored by leveraging automatically-discovered application semantics,
resulting in both accurate and efficient crash-consistency testing for modern PM applications. As
we discussed previously (§4.3), somewhat similar approaches have been taken in model-checking
works targeting concurrent systems [117, 133] and distributed systems [96]. However, these works
generally either enforce global exploration bounds that do not sufficiently leverage application
semantics or require developer input in the form of specifications or annotations in order to lever-
age more application-specific information, which increases the burden on developers. We believe
that building automatic techniques for uncovering application semantics, akin to how SQUINT

automatically discovers update behaviors (§4.4), can be leveraged to incorporate more semantic
information into future model-checking tools while simultaneously increasing the ease of use of
these tools. We further believe that advances in Artificial Intelligence (AI)-powered program anal-
ysis will enable tool developers to at least partially generate algorithms for pattern discovery; e.g.,
assist in the generation of techniques like SQUINT’s persistence graph splitting procedure (§4.4).
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