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ABSTRACT

The molecular heterogeneity of cancer makes it challenging to delineate the underlying
mechanisms and optimize therapeutic avenues. Large-scale cancer datasets across multiple
dimensions (such as omics and clinical data types, or cancer systems including patients and
cell lines) offer assistance towards mitigating these challenges via a granular yet holistic
view of the disease. While integrative approaches have the potential to both unmask novel
functional mechanisms and prioritize therapeutic targets, their development and implemen-
tation is challenging due to data variety and the underlying dependence within/between
such datasets. In this dissertation, I focus on developing Bayesian statistical procedures
that can take advantage of the diversity offered by such databases while taking into ac-
count the associated biological and statistical challenges.

In Chapter II, I develop TransPRECISE, a multiscale Bayesian network modeling frame-
work, to analyze the pan-cancer patient and cell line interactome. I assess pan-cancer path-
way activities of patients from 31 tumor types and cell lines from 16 lineages, along with
the cell lines’ response to 481 drugs. TransPRECISE captures differential and conserved
proteomic pathway circuitries between multiple patient and cell line lineages. Tumor strat-
ification using these learned networks uncovers distinct clinical subtypes of patient cancers
characterized by different cell line avatars. High predictive accuracy is observed for cell
line drug sensitivities using Bayesian additive regression tree models with TransPRECISE
pathway scores as predictors.

In Chapter III, I propose fiBAG, an integrative hierarchical Bayesian framework for
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modeling the fundamental biological relationships underlying cross-platform molecular
features of cancer. Using Gaussian process models, iBAG identifies upstream functional
evidence for proteogenomic biomarkers. By mapping said evidence to prior inclusion prob-
abilities, a calibrated Bayesian variable selection (cBVS) model is built to identify biomark-
ers associated with an outcome of interest. Simulation studies show that cBVS has higher
power to detect disease-related markers than non-integrative approaches. Via an integra-
tive proteogenomic analysis of 14 cancer datasets, several known and novel genes/proteins
associated with cancer stemness and patient survival are identified.

While multi-omic patient databases have sparse drug response, cancer model systems
databases provide extensive pharmacogenomic profiles, albeit with lower sample sizes,
resulting in reduced statistical power. For this reason, in Chapter 1V, I propose BaySyn
- a hierarchical Bayesian evidence synthesis framework that detects functionally relevant
driver genes based on their associations with upstream regulators and uses this evidence to
calibrate Bayesian variable selection models in the (drug) outcome layer. I use BaySyn to
analyze multi-omic patient and cell line datasets across pan-gynecological cancers. BaySyn
mechanistic models implicate several known functional genes in GO and KEGG gene sets
of interest in the cancers assessed. Further, the BaySyn outcome model makes more dis-
coveries than its uncalibrated counterparts under equal Type I error control.

In Chapter V, I focus on incorporating tumor heterogeneity in clinicogenomic mod-
els. To this end, I propose GPVIBES, a Gaussian process-based varying coefficient model
using Bayesian variable selection, to model the association between a biomarker and an
outcome as a function of a hierarchical covariate equipped with horseshoe prior-based
shrinkage. Simulation studies with one or more hierarchical covariates show that at the
same signal-to-noise and sample-size-to-dimensionality ratios, GPVIBES yields improved

selection performance alongside accurate estimates of the coefficient function, compared
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to other varying-coefficient-based models. A pan-cancer integrative analysis of 16 cancers

identified modulation of proteomic associations via several known signatures.
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CHAPTER I

Introduction

Background Across several applied corridors of research, complex and high-dimensional
datasets are becoming increasingly common, focusing on a wide range of natural and in-
terdisciplinary sciences. Thus, data integration methods, equipped to handle complex, het-
erogeneous datasets in order to synthesize information from them in a systematic manner
have become increasingly common in the recent times (Boehm et al., 2022). Across many
scientific domains, data integration approaches have relied on several common techniques
to achieve a few broad goals — (i) to aggregate and synthesize information in a synchronized
manner, and (ii) to learn complementary information from sources that by themselves may
not be complete enough to provide a clear answer to the scientific question at hand. Thus,
the primary challenges of creating and implementing such procedures are also common
across different sciences — the size, complexity, heterogeneity, and possible interdepen-
dence of the data sources can all contribute to the said overall challenge (Mirza et al.,
2019)). Biological datasets, in particular, are of no exception — it has become increasingly
customary to use multiple omics (i.e., data on several components contributing to cellu-
lar functions, such as genomics, proteomics, metabolomics, epigenomics, and transcrip-
tomics) and phenotypes (potentially both genetic marker-based or related to survival or

health indicators) simultaneously to uncover the mechanisms underlying a disease or opti-



mize therapeutic solutions governing them (Vahabi and Michailidis, 2022). These methods
cover an extensive spectrum of methodological research and may belong to categories such
as learning protein interaction and functions (e.g., Wang et al. (2013a); Ma et al. (2014);
Alonso-Lopez et al. (2019); Vitrinel et al. (2019)), identifying biomarker association and
prioritization of such markers (e.g., Hwang et al. (2012); Bromberg (2013); Leclercq et al.
(2019)), optimization and discovery of therapy and/or drug regimens (e.g., Katsila and Mat-
soukas (2018); Hudson (2021); Pak et al. (2023)), and personalized medicine (e.g., Harris
et al. (2014); Ozer et al. (2020)). In particular, data integration methods have been partic-
ularly useful in precision oncology (Nicora et al., 2020), which is the primary application

area of this thesis, as I discuss next.

Precision oncology: data availability and potential for integration Cancer is a complex disease
characterized by accumulation of small changes at a cellular level across several molecular
layers (Byrne et al., 2006; Gentles and Gallahan, 2011; La Porta and Zapperi, 2017). Thus,
to build a holistic view of a cancer of interest it is essential to consider multiple features
of the disease via several platforms that can provide complementary and high-resolution
snapshots. Pan-omic-clinical integrative approaches, hence, are of supreme importance
in cancer (Boehm et al., 2022). Innovation towards such procedures has particularly been
fueled by the increasing availability of data via databases covering not only multiple se-
quencing platforms, clinical results, and phenotypes, but also different cancer microenvi-
ronments such as patient tumors and model systems. Such databases may focus on pa-
tients (e.g., International Cancer Genome Consortium (ICGC, Zhang et al. (2019a)), The
Cancer Genome Atlas (TCGA, Weinstein et al. (2013)), Pan-Cancer Analysis of Whole
Genomes (PCAWG, Hoadley et al. (2018)), The Cancer Proteome Atlas (TCPA, Li et al.

(2013, 2017a))), model systems (e.g., Genomics of Drug Sensitivity in Cancer (GDSC,



Yang et al. (2012)), the Cancer Cell Line Encyclopedia (CCLE, Barretina et al. (2012)),
the MD Anderson Cell Lines Project (MCLP, Li et al. (2017b))), along with drug profiling
(e.g., NCI60 (Grever et al., 1992), the Library of Integrated Network-Based Cellular Signa-
tures (LINCS, Keenan et al. (2018)), Broad Institute Connectivity Map (CMAP, Lamb et al.
(2006); Lamb (2007); Subramanian et al. (2017)), The Cancer Dependency Map (DepMap,
Tsherniak et al. (2017))), and so on. This dissertation is focused on formulating integra-
tive procedures that can accommodate different combinations of such data and guide the
detection of cellular cancer mechanisms as well as potential avenues for treatment, as is

described next.

Outline and progression of the dissertation projects In essence, there are at least two distinct
dimensions along which integrative methods in precision oncology must successfully be
implemented — (i) the variability and heterogeneity in multiplatform data must be acknowl-
edged and utilized, (ii) the difference in cancer microenvironments in the patient’s tumor
and a model system must be incorporated in the integrative procedure. This dissertation
focuses on a sequence of research projects aiming to assess these dimensions both indi-
vidually and simultaneously, as summarized in Figure 1.1. The individual chapters are
organized as follows. Chapter II focuses on TransPRECISE, a Bayesian network-based
integration procedure to combine and compare multi-system proteomic pathways. Trans-
PRECISE analyzes the pan-cancer patient and cell line interactome — to both globally as-
sess cell lines as representative models for patients, and develop drug sensitivity prediction
models. TransPRECISE captures differential and conserved proteomic pathway circuitries
between multiple patient and cell line lineages and uncovers distinct clinical subtypes based
on tumor stratification using the learned networks. Chapter III describes fiBAG, a hierar-

chical Bayesian framework to integrate multi-omics and clinical data from patients. fiBAG



identifies upstream functional evidence for proteogenomic biomarkers and mapping said
evidence to prior inclusion probabilities, builds a calibrated Bayesian variable selection
(cBVS) model to identify the biomarkers associated with an outcome of interest. cBVS
shows higher power to detect disease-related markers than non-integrative approaches.
Chapter IV covers BaySyn, a multi-stage Bayesian pipeline to integrate multi-platform
data across both patient tumors and cancer models. While multi-omic patient databases
have sparse drug response, cancer model systems databases, despite covering a wide range
of pharmacogenomic platforms, provide lower sample sizes, resulting in reduced statis-
tical power. To address this, BaySyn detects functionally relevant driver genes based on
their associations with upstream regulators and combines evidence from multiple systems
to calibrate Bayesian variable selection models in the (drug) outcome layer. The calibrated
BaySyn outcome model makes more discoveries than its uncalibrated counterparts under
equal Type I error control. Chapter V is focused on development of GPVIBES, a Gaus-
sian process-based varying coefficient model using Bayesian variable selection. GPVIBES
models the association between a biomarker and an outcome/phenotype using a Gaussian
process specification as a function of the hierarchical covariate equipped with horseshoe
prior-based shrinkage. Using simulation studies based on synthetic datasets with one or
more hierarchical covariates, the performance of GPVIBES is compared with existing vary-
ing coefficient-based frequentist and Bayesian procedures. At the same signal-to-noise and
sample size to dimensionality ratios, GPVIBES yields improved selection performance in
terms of the AUC and Matthew’s correlation coefficient, alongside accurate estimates of
the regression coefficient function. A pan-cancer integrative analysis is also performed
using GPVIBES, based on data from 16 TCGA cancers, utilizing overall survival as the
outcome, more than 200 proteomic expressions as the biomarkers, and a total of 68 immune

signatures as the hierarchical covariates. The pan-cancer analysis identifies several known



key signatures, such as the modulation of the association of EGFR and YAP protein ex-
pressions with survival by CD8 T lymphocyte proportion in the tumor microenvironment
for BRCA. Each chapter contains method-specific review of relevant literature along with
presentation of the developed methodology and the analysis results. We conclude with a

discussion on future research directions in Chapter VI.

Key scientific and statistical themes The progressive chapters of this dissertation are inher-
ently connected via two thematic axes. First, the chapters and the methods presented in
them are linked via the scientific challenges that motivate them from the context of can-
cer data integration. As presented in Figure 1.1, the methods utilize increasingly multi-
platform and multi-system data to decipher cancer mechanisms and improve detection of
biomarker associations and identification of potential therapeutic targets. In each project,
the primary target is to summarize subsets of the cellular oncological mechanism. In Chap-
ter 11, this is achieved by modeling the interactions between the proteins in a pathway of in-
terest. In Chapter III and Chapter IV, this is performed by modeling the association between
proteogenomic biomarkers and their corresponding upstream DNA-level information. Fi-
nally, in Chapter IV, the tumor microenvironment is accommodated in the model via captur-
ing the modulation of proteomic expression and its association with outcomes/phenotypes
by component-specific summaries of the tumor microenvironment. Further, in all the chap-
ters, a key focus is on estimating the association of cellular expression-level summaries with
outcomes of interest — such as the the association of proteomic pathway scores with drug
response in Chapter II, the association of proteogenomic expression with cancer stemness
index and overall survival in Chapter III, the association of mRNA expression with drug
response in Chapter IV, and finally the association of proteomic expression with overall

survival in Chapter V. The second axis of connection between the chapters stems from
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several methodological techniques employed. In all chapters, we use Bayesian machine
learning procedures to incorporate information from the data at hand and any potential
prior knowledge — either from previous, existing studies, or from multi-level models in
the framework itself. In particular, I use a Bayesian network regression model in Chap-
ter II for modeling the protein-protein interaction in the pathways. A Gaussian process
speficiation is used to capture potential nonlinear effects or interactions in both the mecha-
nistic models in Chapter III and Chapter IV, and for the varying coefficients in Chapter V.
Bayesian variable selection procedures are employed via the Bayesian additive regression
tree-based drug response models in Chapter II, the calibrated spike-and-slab prior-based
outcome models in Chapter III and Chapter IV, and the beta-binomial prior-based selection
procedure in Chapter V. Further, in Chapter V, we induce sparsity in the varying coeffi-
cients using a horseshoe prior specification on the coefficient parameters corresponding
to the basis expansion of the modified squared exponential kernel. Last but not the least,
since each project focuses on outcome association models that contain multiple covari-
ates, corrections for multiple comparisons become essential. Since each outcome model
allows us to compute a posterior probability of inclusion for each covariate, this is typically

performed via false discovery rate control procedures employed on these probabilities.

Scientific end-user resources of the chapters Each chapter in this dissertation is aimed at elic-
iting interpretable outputs from the integrative models that can guide future oncological
investigation and decision-making, as is discussed below. To ensure improved accessibil-
ity in part of users from all scientific domains, I built interactive R shiny-based dashboards
for each project summarizing the key overview of the computational framework, some de-
tails on the sample size and the cancer types in the data used for the integrative analyses,

and the end-user outputs. Each dashboard also offers the processed datasets and source



codes for download, in order to maintain reproducibility of the results presented in this

dissertation.

e In Chapter II, the key end-user outputs are the estimated cancer- and sample-specific
proteomic pathway networks, and the rankings of the pathways specific to their associ-
ation with a given drug/treatment regime for a specific cancer tissue. The patient and
cell line level networks provide a summary of the conserved and differential pathway
circuitry for each cancer type, and the pathway rankings provide a prioritization of po-
tential drug targets for future investigations for specific cancers. The shiny dashboard

for this chapter is available at https://bayesrx.shinyapps.io/TransPRECISE/.

e In Chapter III and Chapter IV, the mechanistic evidence quantities (log- or pseudo-
Bayes factors) quantify the functional relevance of a gene/protein for a given can-
cer, and also at a pan-cancer level for cancer groups of interest. The posterior in-
clusion probabilities for each gene/protein from the calibrated outcome models help
prioritizing the proteogenomic biomarkers in terms of their association with the out-
come. The specific magnitude and direction of this association, adjusted for the pres-
ence of other biomarkers, is provided by the estimated coefficient parameter from
the outcome model. The shiny dashboard for Chapter III is available at https://
bayesrx.shinyapps.io/Functional_iBAG/, and the shiny dashboard for Chap-

ter IV is available at https://bayesrx.shinyapps.io/BaySyn/.

o In Chapter V, the estimated posterior inclusion probabilities quantify the selection of
a proteomic covariate in terms of its association with the outcome (survival in the real-
data analyses). The association itself is now no more quantified as a point estimate,
but is estimated as a function of the value of the hierarchical covariate (some immune

signature score for the real-data analyses). Thus, this offers a quantification of the
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modulation of the association between the outcome and the proteomic covariate due
to these tumor microenvironment summaries. The shiny dashboard is available at

https://bayesrx.shinyapps.io/GPVIBES/.
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CHAPTER 11

Personalized Network Modeling of the Pan-Cancer Patient and Cell
Line Interactome

2.1 Introduction

Precision medicine aims to improve clinical outcomes by optimizing treatment to each
individual patient. The rapid accumulation of large-scale pan-omic molecular data across
multiple cancers on patients (ICGC (Zhang et al., 2019a), TCGA (Weinstein et al., 2013),
PCAWG (Hoadley et al., 2018), TCPA (Li et al., 2013, 2017a)) and model systems (GDSC
(Yang et al., 2012), CCLE (Barretina et al., 2012), MCLP (Li et al., 2017b)), along with
extensive drug profiling data (NCI60 (Grever et al., 1992), LINCS (Keenan et al., 2018),
CMAP (Lamb et al., 2006; Lamb, 2007; Subramanian et al., 2017), DepMap (Tsherniak
etal., 2017)) have generated information-rich and diverse community resources with major
implications for translational research in oncology (Goodspeed et al., 2016). However, a
major challenge remains: to bridge anticancer pharmacological data to large-scale omics
in the paradigm wherein patient heterogeneity is leveraged and inferred through rigorous
and integrative data-analytic approaches across patients and model systems.

Complex diseases, such as cancer, are often characterized by small effects in multiple
genes and proteins that are interacting with each other by perturbing downstream cellular
signaling pathways (Boyle et al., 2017; Creixell et al., 2015; Yao et al., 2018). It is well

established that complex molecular networks and systems are formed by a large number

10
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of interactions of genes and their products operating in response to different cellular con-
ditions and cell environment, i.e., model systems (Bandyopadhyay et al., 2010). To date,
most, if not all approaches for mechanism and drug discovery have been constrained by the
biological system (patients or cell-lines) (Geeleher et al., 2014; Kim et al., 2018), specific
cancer lineage (Sinha et al., 2017; Sun and Liu, 2015), or by prior knowledge of specific
genomic alterations (Domcke et al., 2013; Jiang et al., 2016). Hence, there is a critical need
for robust computational methods that integrate molecular profiles across large cohorts of
patients and model systems from multiple lineages in an unbiased data-driven manner to
delineate specific regulatory mechanisms, uncover drug targets and pathways, and develop
individualized predictive models in cancer.

Recently, a network-based framework called PRECISE (personalized cancer-specific
integrated network estimation model) has been developed to estimate cancer-specific net-
works, infer patient-specific networks, and elicit interpretable pathway-level signatures
(Ha et al., 2018). Using a large cohort of patients from TCGA across 30+ tumor types,
PRECISE identifies pan-cancer commonalities and differences in proteomic network bi-
ology within and across tumors, allows robust tumor stratification that is both biologi-
cally and clinically informative, and has superior prognostic power compared to multiple
existing approaches (Ha et al., 2018). In this chapter, I present translational PRECISE
(TransPRECISE, in short), a generalization of the PRECISE framework, to establish the
translational relevance of these pathway signatures. Briefly, TransPRECISE uses a multi-
scale Bayesian modeling strategy that infers de novo differential and conserved networks
of intra-pathway circuitry between the two biological systems (patients and cell lines) for
multiple cancers. Further, it identifies cell line “avatars” for patients based on pathway
activities, and also develops machine learning based predictive models for drug sensitivity

in both cell lines and patients to potentially guide pathway-based individualized medical



12

decision-making. I also have developed an online, publicly available, comprehensive in-
teractive database and visualization tool of our findings along with software code, hosted
at https://bayesrx.shinyapps.io/TransPRECISE/.

2.2 Datasets and Methods

2.2.1 Cancer Patients’ Proteomic Data

I used a dataset of 7,714 patient samples across 31 different cancer types available from
the Cancer Proteome Atlas (TCPA) (Li et al., 2013, 2017a), as summarized in Table S2.1.
TCPA offers reverse-phase protein array (RPPA)-based proteomics datasets, profiled using
extensively validated antibodies to nearly 200 proteins and phosphoproteins. The func-
tional space of the antibodies covers major functional and signaling pathways relevant to
human cancers. For this work, I used a total of 12 pathways, including DNA damage re-
sponse, EMT, hormone signaling, apoptosis, TSC/mTOR, and RAS/MAPK (Table S2.2).

2.2.2 Cancer Cell Lines’ Proteomic and Drug Sensitivity Data

I used RPPA-based protein expression data for cell lines available via the MD Anderson
Cell Lines Project (MCLP) (Lietal.,2017b). In set of 640 cancer cell lines spanning across
16 lineages, each cell line has RPPA expression data based on the same set of proteins as
in the patient tumors (Table S2.3). Additionally, I used drug sensitivity data from the
Genomics of Drug Sensitivity in Cancer (GDSC) (Yang et al., 2012) database, with the
sensitivity of 481 drugs assessed on a subset of 254 cell lines (Table S2.4). For the entirety
of this chapter, I denote cell line samples in lowercase and patient samples in uppercase

letters.

Imputing missing cell line expressions Unlike the patient tumor expression data, the cell lines
expression data has some amount (approximately 6%) of missing values. I use the func-

tion impute.knn from the Bioconductor package impute (Hastie et al., 2011) for impu-
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tation. For the k-nearest neighbor imputation implementation to run, each sample must
have < 50% of missing data across all the variables, and each variable must have < 80% of
missing data across all the samples. The original RPPA data set collected from MCLP has
expression data on 651 cell lines from 194 genes that are common with our patient tumor
RPPA dataset. Using the missing data upper bounds, I end up with 648 cell lines. I further
removed eight more cell lines from some lineages (prostate (3), cervix (1), thyroid (1) and
missing lineage (3)) that had too small sample sizes to be useful in fitting a stable Bayesian
graphical regression model. I also removed one gene by the missing data criterion. Thus,
I obtained our final set of 640 cell lines from 16 different cancer lineages with data on 193
proteins. I executed the imputation on this global profile consisting of all proteins at hand,
instead of only the subset of proteins in the 12 functional pathways of interest, since the
imputation would be more informative this way and would not reflect any undue bias to-
wards possible interactions within and between the pathways of interest. After completing
imputation, I simply use the subset of the imputed data set with the proteins in the pathways
of interest.

2.2.3 TransPRECISE Framework

The TransPRECISE implementation can broadly be classified into three modules (Fig-
ure 2.1). The first module takes as input the combined proteomics data from patients and
cell lines (as described above). The second module implements a Bayesian network model-
ing framework, providing the cancer-specific pathway networks and sample-specific path-
way scores as outputs. The final module predicts patient drug responses based on models
trained on the cell lines. The network module uses a Bayesian regression model, in which
each protein is regressed on all the other proteins in the same pathway. The selected set of
interacting protein-protein pairs then constitute the population-level cancer-specific path-

way network. Given this population-level cancer-type-specific network, I deconvolve it to
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the sample-specific networks and scores, using the status of each protein (node) in the net-
works as neutral, suppressed, or activated. I then use these cancer-specific networks for
pan-cancer and across model systems identification of conserved and differential pathway
activities. In the final module, I use these sample-specific scores for identifying matching
avatar cell lines for patient samples and predicting drug sensitivity. In the rest of this sec-

tion, I describe the computational steps and details behind the TransPRECISE framework.

Step 1: Bayesian estimation of cancer-specific pathway networks [ aim to estimate cancer-specific
pathway networks using Bayesian regression methods on each of the proteins. I begin with
fixing one cancer type in one model system and one of the 12 pathways of interest. In this
pathway of interest, for an interactive relationship among proteins, let w;; = w;, be the
weight connecting protein i and protein j, with the number of proteins in the pathway of
choice denoted by p. I'set w; = w;; = 0.5Vi # j and w; = 0 Vi. Suppose y, is the
n X 1 vector containing expression values of protein i for n samples from the fixed cancer
lineage. For protein i, the n X 1 expression vector y,; (centered with its mean) is modeled

as the following.

2.1 vi= D B,y +e=2Zp +¢,
i

where g, ~ N ,(0,, O'?I »)- B 1s the vector of all the regression coefficients, and Z; is the
design matrix consisting of expression data for all the other proteins. I employ Zellner’s

g-prior (Agliari and Parisetti, 1988) on B, as the following.

2.2) Bilg=N, 0, ,.03(Z'Z/g)™.

The hyper-parameter g reflects the prior on f; = 0. A higher value of g implies

more probable deviation from f;, = 0, and I assigned g = n by default, which yields
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the unit information prior in this case. I also set the prior for o, to be proportional to
al.'l. Then I performed a full enumeration of the joint model across all proteins as spec-
ified by the conditional distributions specified by Equation (2.1) using the Markov chain
Monte Carlo (MCMC) algorithm. After performing all node-wise regressions following
the above model, I select the median probability model to infer the posterior pathway net-
work. Specifically, for each pair of proteins i and j, a cancer-specific edge between them
is established if both §;; and §;; correspond to posterior inclusion probabilities (PIPs, de-
fined as the sum of the posterior model probabilities for models where the covariate protein
was included) > 0.5. Since a regression for protein i on protein j adjusts for all the other
proteins present in the pathway, the connection is present only if the partial correlation
between the expression profiles of the two proteins for samples from that cancer is high.
Thus, biologically, an edge between two proteins in a pathway for a specific cancer simply
means that the data has enough evidence for the two proteins to be associated based on
their partial correlation after adjusting for the other proteins in the pathway.

Thus, learning the network structure put on the pathway based on the edges defined
as above (with edge-specific weights determined by the posterior inclusion probabilities)
allows us to learn the wiring of the pathway for the specific cancer type. I define rewiring
of a pathway network as the changes in these sets of edges and weights between the same
set of nodes i.e. proteins for a pathway from cancer to cancer and model system to model
system. Biologically, rewiring of a pathway across different patient and cell line cancers
essentially captures the changes in the network topology based on various stress conditions

that are either static or dynamic.

Step 2: Construction of patient-specific networks via deconvolution I further obtain a cancer-

specific network with sample-specific labels on the nodes (proteins). Specifically, the ac-
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tivation statuses of the nodes are evaluated by estimating the posterior predictive density
for each protein for each sample. To determine the activation status of a protein i for a
sample j (y;;), I compute the posterior probabilities of the protein expression to lie in the
o-interval around 0 (p?j), to be greater than 6 (p;;.), or less than —6 (pi_j). Then, I decide
whether a protein is neutral, activated, or suppressed, depending on the maximum of these
three posterior probabilities. Thus, samples from the same cancer lineage may have differ-
ent node labels as suppressed, neutral, or activated, while the structure of the networks stay
same across all such samples. Using 6 = 0.5, I calculate TransPRECISE networks across
all samples for each of the 31 patient cancers and 16 cell line cancers, and each of the 12

pathways.

Step 3: Calibrating patient-specific pathway scores and status To compute an aggregated path-
way activity score for each sample, I derive summary measures from the TransPRECISE
networks obtained from previous step, indicating the entire pathway as neutral, activated,
or suppressed. Under the TransPRECISE networks, the number of nodes that are con-
nected to proteini (|{j : i « j}|) is denoted by C,. For a given pathway with p genes, the
pathway activity scores for a sample j are given by the following equation, where e is one
of 0, +, or —.

p
(23) K= 2 P (Ci+ D/p.

i=1

Note that these sample-specific pathway scores are weighted averages of the posterior
probabilities for the corresponding statuses of the proteins with the number of connected
proteins informing the weights. Therefore, hub proteins in the pathway that exercise more
control over the network through higher number of interacting proteins get higher weights
towards determining the cumulative network score. For a given pathway and sample j,

the TransPRECISE pathway status — which indicates whether the pathway is suppressed,
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neutral, or activated for the sample — is then decided by the maximum of the three Trans-

PRECISE pathway scores (K‘J'.S).

2.2.4 Post-processing of Cancer- and Sample-specific TransPRECISE Networks

Comparing network activity levels across model systems For a given cancer lineage with re-
spect to a pathway, based on the fitted network wiring, I want to quantify the signaling in
the pathway for the specific cancer. From a biological perspective, signaling is the indica-
tion that there are sufficient non-random interactions between the proteins in that pathway
among the samples from the cancer of interest. I also define the term cross-signaling as the
evidence that two cancers (among patients and cell lines i.e. across model systems) exhibit
similar levels of signaling in the same pathway. For this purpose, I define a quantity termed
the connectivity score.

Briefly, the connectivity score (CS) is the ratio of the observed number of edges in the
cancer-specific network to the total number of possible edges in the pathway (p(p — 1)/2,
if the pathway has p proteins). The suggestion of significant interaction exhibited within
a pathway for a cancer type is then quantified by finding a randomCS proportion based on
the CS, a low value of which indicates higher nonrandom interactions in the pathway for
that cancer type. Briefly, for each cancer type and pathway, I randomly select the same
number of proteins as in that given pathway from the pool of all proteins across the 12
pathways. After constructing TransPRECISE networks from a total of 1000 such random
permutations of the proteins, a 1000 iterations of the CS (called randomCS, coming from
the underlying null distribution if there were no significant interaction within the pathway,
in addition to the possible interactions already present in the global pool of proteins) for

that cancer type and pathway are obtained. The randomCS proportion corresponding to
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this cancer type and pathway pair is then defined by the following equation.

1000
(2.4) Pesy, = 2, 1(CS, > CSp,.)/1000.

s=1

Here 1(e) is an indicator function, C.S; is the randomCS value obtained from the st
permutation and C.Sy,, is the actual CS value obtained from the data. Now, suppose I have
a patient cancer type P and a cell line cancer type C. For a pathway G fixed, I say that the
triplet P-G-C is connected in terms of similar network activity, if I have both p,  and
Pcs. ; < € for some small chosen value of e. A higher value of e would result in a higher
number of connections and decreasing the cutoff would lead to more refined sets of edges

that have strong suggestion towards conserved network activity.

Correlating patient and cell line tumors based on PRECISE scores For a given pathway, the net-
work aberration score of a sample j is defined as K;F + K7, where the two terms are the
respective activated and suppressed TransPRECISE scores, as defined in the previous sub-
section. Using the resulting TransPRECISE network aberration score matrix across the
12 pathways as the input data, I obtain a robust pan-cancer and pan-model systems strat-
ification. The data matrix has 8354 rows, the first 7714 of them corresponding to one
patient each and the next 640 corresponding to one cell line each, and 12 columns, each
corresponding to a pathway. Based on the Euclidean distance of the score matrix, I apply
hierarchical clustering using Ward’s method (Ward Jr, 1963). To determine the number of
clusters, I use the gap statistic (Tibshirani et al., 2001).

2.2.5 Drug Response Prediction using TransPRECISE Scores

Conversion of continuous drug sensitivity data to binary The drug sensitivity data (continuous,
ICy,) were collected from the GDSC and the conversion to binary sensitive/resistant re-
sponses were executed following the methods used in the CCLE, as described below (Yang

et al., 2012; Barretina et al., 2012; Haibe-Kains et al., 2013).
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1. Extract the drug sensitivity measurements, either ICs, or AUC (I use ICj, for illustra-

tion throughout).
2. Sort increasing log(ICs,) values of the cell lines to generate a waterfall distribution.

3. If the waterfall distribution is nonlinear (Pearson correlation coefficient to the linear
fit < 0.95), estimate the major inflection point of the log(ICs,) curve as the point on
the curve with the maximal distance to a line drawn between the start and end points

of the distribution.

4. If the waterfall distribution appears linear (Pearson correlation coefficient to the linear

fit > 0.95), then use the median ICy instead.

5. Cell lines with lower ICs, values than this cut-off are defined as sensitive, and those

with ICs,, values higher than this are called resistant.

I additionally require at least five sensitive and resistant cell lines each after applying

these criteria, to ensure the stability of the trained models.

Training models for cell lines’ drug response Out of the 254 cell lines that have drug sen-
sitivity information, eight cancer lineages can be obtained with at least 10 samples (Ta-
ble S2.4). For each lineage-drug combination with at least 10 non-missing responses, I fit
a Bayesian additive regression tree (BART) (Chipman et al., 2010) model using the package
bartMachine (Kapelner and Bleich, 2013) with the predictors being the 12 pathway net-
work aberration scores and the response variable being the binary (sensitive/resistant) drug
response. | compute the area under the receiver operating characteristics curve (AUC) for
each model with a five-fold cross-validation, and only keep those models for further infer-
ences that had test-set AUC > 0.85. I obtain the ranking of predictors in each model using

the variable inclusion proportions, defined as the number of times a covariate is selected
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in a model within the 1000 iterations after a 250-iteration burn-in.

Predicting patient drug responses (binary) For each of the eight cell line lineages with at least
10 samples in the drug sensitivity data, I use the corresponding models for predicting the
drug sensitivity in patient tumors with the same tissue type. The predictions are in a con-
tinuous scale of 0 — 1, and I mark a sample as “sensitive” if the predicted response is > 0.5.
I define the response rate of a patient cancer with respect to a drug as the proportion of
samples labeled sensitive within each for that cancer-drug combination and rank the drugs

within each cancer type in decreasing order of these response rates.

Evaluating prediction performances [ further evaluated the predictive performance of our
TransPRECISE algorithm using the drug exposure data for TCGA patients obtained from
the Gene-Drug Interactions for Survival in Cancer (GDISC) study (Spainhour and Qiu,
2016; Spainhour et al., 2017). GDISC integrates gene copy number data, drug exposure
data, and patient survival data to infer gene-drug interactions impacting survival. In addi-
tion to the collection of all analyzed gene-drug interactions in 32 cancer types organized
and presented in a searchable web-portal, GDISC provides the standardized drug exposure
data, which is the resource used by us to quantify predictive capabilities of our pipeline
(Spainhour and Qiu, 2016; Spainhour et al., 2017). I computed the proportion of correct
predictions for 10 TCGA cancer types and 51 drugs that are common between our cell lines
drug sensitivity data obtained from the GDSC and the GDISC drug exposure data. I used
Bayesian additive regression tree (BART) models as before for this purpose. Briefly, for a
specific cancer type and a drug with n patient samples, let us denote the true drug expo-
sure vector from the GDISC as Y (binary), and the predicted response as described in the
previous subsection as Y (continuous in [0, 1]). Then, the proportion of correct prediction

is computed as 2 1(Y, = I(f’i > 0.5))/n.

i=1
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2.3 Pan-cancer Multi-system Proteomic Analyses

2.3.1 Differential and Conserved Rewiring and Circuitry of Cancer-specific Networks

Using the de-novo cancer-specific population-level networks (from Step 1 of TransPRE-
CISE), I evaluated intra-pathway edge rewiring (Section 2.2.3) across lineages of the two
model systems to identify highly conserved and differential edges, and to link patient and

cell line tumor types by measuring intra-pathway circuitry.

Network rewiring across model systems I determined the extent to which protein-protein edges
in each of the pathways were shared across tumor sites in the patients and the cell lines. I
found highly conserved edges across lineages for both cell lines and patients (Figures 2.2,
S2.1-S2.10). All of the 12 pathways had at least one link that was shared across more than
20 lineages among the patient cancer types, and 11 pathways (with the exception of hor-
mone signaling) had at least one link that was shared across more than eight lineages among
the cell line lineages. The conserved edges were further classified into three categories: (a)
patients-cell lines, (b) patients only, and (c) cell-lines only. For category (a), I identified
significant correlation of CCNE2-FOXM1 (10 cell line lineages, 17 patient cancer types)
in a cell cycle, CTNNB1-SERPINE]1 (eight cell line lineages, 17 patient cancer types) in
EMT, and RB1-RPS6 (eight cell line lineages, 20 patient cancer types) in TSC/mTOR

pathways, respectively.

Linking tumor types between model systems based on network circuitry | investigated the shared
cross-signaling between cell line and patient tumor types. As a measure of the level of
cross-signaling (Section 2.2.3) of a specific pathway network, I defined the connectivity
score (CS) as the ratio of the observed number of edges in a given network to the total
number of possible edges in the pathway, as more edges imply a higher level of cross-

signaling within a pathway (Table S2.5). In addition, I quantified the level of significance
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for the observed CS value by comparing it with CS values obtained from random permuta-
tion of the network, called randomCS; lower values of randomCS provide evidence against
the observed CS value being obtained under random chance (Section 2.2.4). Based on the
randomCS, I evaluated the similarity between cell line and patient tumor types in terms of
network cross-signaling. Specifically, I declared two lineages were similar for a pathway
if both of them showed high levels of cross-signaling (i.e., low randomCS proportions).
Some key triplets of cell line-pathways-patient are summarized in Figure 2.3.

2.3.2 Pan-cancer Stratification across Model Systems Based on TransPRECISE Scores

I deconvolved the global population-level networks to obtain sample-specific pathway-
level functional summaries of the proteomic crosstalk within a pathway—in other words,
for a given pathway, each sample has three different scores for activated, neutral, and sup-
pressed statuses of the pathway. For the tumor stratification, I used the network aberration
score defined as the sum of the activated and suppressed TransPRECISE scores for each
sample.

For linking cell lines and patients, I computed the Pearson’s correlation for aberration
score vectors (across twelve pathways) from each cell line-patient pair. Majority of the cell
line-patient pairs for sarcoma-SARC (green), kidney-KIRC (light green), breast-BRCA
(orange), and brain-LGG and GBM (light green and yellow) (edge colors in Figure 2.4
parenthesized) showed absolute correlations > 0.9. Interestingly, the pancreatic and brain
cancers were highly correlated across model systems: 93% of GBM-pancreas pairs (be-
sides 99% of pancreas-HNSC pairs and 92% of the PAAD-head&neck pairs) had absolute
correlations > 0.9, and most of these connections appear to be driven by high aberration
scores in the DNA damage response pathway (Figure 2.5).

To find robust pan-cancer stratification across model systems, I applied hierarchical

clustering using the complete linkage method (Sorensen, 1948) on the correlations of the
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Figure 2.3: Sankey diagrams for patient and cell line cancers with conserved pathway-specific connectivity.
A. The columns contain cell line cancers, pathways, and patient cancers from left to right, respectively. A
cell line cancer tissue is connected to a pathway if the connectivity score (CS) for that cancer type-pathway
pair (defined as the proportion of edges out of all possible undirected edges in the pathway that are held
by that cancer type) is more than 900 out of 1000 randomCS values computed for that cancer type, with
repeated random selection of the same number of proteins as in the pathway from the pool of all proteins
across the 12 pathways. The connection between a patient cancer type to a pathway is also determined by the
same rule. The length of the middle (pathway) column pieces indicate the participation of that pathway in
driving the conservation across the two model systems. As seen in panel A, Ovary and uterus cell lines were
connected via the hormone signaling (breast) pathway with BRCA; lung, kidney, and stomach-oesophagus
cell lines were linked together with two clusters of patient cancers (KICH, KIRP, PRAD, LGG and LUSC,
UCEC, STAD) via the RTK pathway. B. The sankey diagram contains only the subset of cell line cancer (i.e.,
patient cancer pairs that have same tissue-specific lineage), and the cutoff for CS values is higher than 800
of the 1000 randomCSs obtained using the random selection of proteins. Panel B presents clear confirma-
tions of conservation of activities across model systems within cancer tissues, some specific examples being
bladder-core reactive-BLCA, kidney-RTK-KICH & KIRP, kidney-hormone receptor-KIRC, ovary-hormone
signaling-OV, and stomach-hormone receptor-ESCA & STAD. C. The sankey diagram contains only the
subset of the edges that are originating from the head and neck cancer cell line type, and the cutoff for CS
values is higher than 800 of the 1000 randomCSs obtained using the random selection of proteins.
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Figure 2.5: Heatmap depicting network aberration scores (combined activation and suppression TransPRE-
CISE pathway scores) for the GBM and LGG cancer patients and pancreas cell lines across 12 proteomic
signaling pathways. The leftmost annotation bar indicates sample types.
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aberration scores. Among the 29 optimal clusters across patients and cell lines (Figure 2.6
and Table S2.6), most of the cell lines have mixed membership with patient tumors in eight
clusters (C2, C3, C4, C9, C13, C14, C19, and C23), while cluster C29 includes only cell
lines (48 out of 640 in total, 7.5%). The cluster C4 showed a high level of fidelity in lin-
eages between cell line and patient tumor types; it includes 81% of ovary cell lines and
11% of OV patients, 72% of head&neck cell lines and 38% of HNSC patients, and 20% of
pancreas cell lines (another 70% of them being located in C2 with notable aberration of
RAS/MAPK pathway), and 80% of PAAD patients exhibiting high aberration in apoptosis
and DNA damage response pathways (Table S2.7). Within cluster C4, I observed signif-
icant correlations between the patient-cell line samples from ovary-PAAD, OV, BLCA,
skin-PAAD, and head&neck-BLCA, HNSC (Figure 2.7). More specifically, the HNSC
samples were almost exclusively divided into the two clusters, C4 (n = 78, 38%) and C15
(n = 122, 60%), that include 38 (73%) head&neck cell lines and 5 (100%) oesophagus
cell lines, respectively (Table S2.6). The co-occurrence of squamous cell carcinoma of
the head&neck and esophageal cancer is not uncommon (McGuirt et al., 1982; Jain et al.,
2013).

2.3.3 Characterization of head&neck Cancer Cell Lines and Patients

I focused on a case study using only the head&neck cell lines in conjunction with all
the patient samples from TCGA. As presented in Figure 2.3C, I observed connections from
the head&neck cell lines to the patient cancers across the pathways at a threshold of ran-
domCS proportion < 0.2. One significant observation is that the head&neck cell lines are
connected to the HNSC samples via several pathways including RTK, apoptosis, cell cycle
and EMT. Notably, the set of patient cancers, for which at least 75% of the sample-sample
pairs with the head&neck cell lines have highly correlated network aberration scores across

all pathways, includes the BRCA, CORE, LGG and GBM samples but does not include the
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Figure 2.6: Avatar cell lines identification and selection of driving pathways using network aberration scores.
A. Heatmap depicting network aberration scores (combined activation and suppression TransPRECISE path-
way scores) after running unsupervised hierarchical clustering of the score matrix consisting of 8354 samples
(7714 patients across 31 cancer lineages and 640 cell lines across 16 cancer types) and 12 proteomic signal-
ing pathways. 29 clusters are identified by gap statistic. Out of the three annotation bars, the topmost one
indicates tumor types, the middle one indicates whether the sample is a patient or a cell line, and the bottom
one indicates cluster participation according to which the samples are grouped. B. Kaplan-Meier curves de-
picting difference between survival times of HNSC patients that are clustered in clusters C4 and C15 using
the hierarchical clustering method on TransPRECISE network aberration scores. C. Heatmap depicting net-
work aberration scores (combined activation and suppression TransPRECISE pathway scores) after running
unsupervised hierarchical clustering of the score matrix consisting of all patient samples and only the head
and neck cell line samples across the 12 pathways. Out of the three annotation bars, the leftmost one indicates
whether the sample is a patient or a cell line, the middle one indicates the cancer type, and the rightmost one
indicates cluster participation according to which the samples are grouped.
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lung

Figure 2.7: Circos plot summarizing joint membership of patient and cell line samples in cluster C4. An
edge exists between a patient cancer type and a cell line cancer lineage if more than 10% of total number of
samples for both of the lineages are located in cluster C4. The edge strengths are determined by the product
of the two percentages for the two nodes (lineages) scaled by 100. The edge colors pertain to the cell line
cancers that the edge originates from, and the lengths of the innermost node pieces indicate the neighborhood
size of the corresponding node. The two circular axes in the exterior indicate relative strengths of the edges
originating from the same node, and the pieces here are colored by the opposite node to which that edge is
connected, with the edges now arranged according to decreasing order of strength.
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HNSC samples, which is in line with the findings from Figure 3C since those connections
were stronger than the connection with HNSC (Figure 2.4B). In hierarchical clustering of
the head&neck cell lines and all the patient samples, a subset of the head&neck cell lines
cluster with a subset of the HNSC patients with high aberration in the DNA damage re-
sponse pathway. In the hierarchical clustering based on all patients and cell lines, I found a
significant difference in the survival outcome between HNSC patients in C4 and C15: the
median survival was 456 days and 654 days for C4 and C15, respectively, with a p-value
of 0.02 (Figure 2.6B). The patients in C15 that were represented by esophagus cell lines
showed better survival than those in C4, which includes head&neck cell lines — this in-
dicates that our TransPRECISE scores captured distinct prognostic information in HNSC
patients. Moreover, the patterns of pathway activity and status were significantly different
between the two clusters. The HNSC patients in both C4 and C15 had high aberration
scores in apoptosis, PI3K/AKT and DNA damage response pathways. Specifically, for the
DNA damage response pathway, the two clusters exhibited significantly distinct TransPRE-
CISE statuses; 72% patients in C4 showed suppression and 65% patients in C15 showed
activation (Chi-squared test p-value < 0.0001).

2.3.4 Drug Response Prediction using TransPRECISE Scores

Training drug response prediction models in cell lines For the subset of cell lines where drug
sensitivity data are available (Table S2.4), I used Bayesian additive regression trees (BART)
(Chipman et al., 2010), a machine learning method, to build predictive models from the
network aberration scores for the 12 pathways. For each cancer, I fit BART, with drug re-
sponse (sensitive or resistant) as a binary outcome and TransPRECISE scores as predictors,
for the drugs having profiles of > 10 cell lines for that cancer type.

I found that TransPRECISE scores conferred high predictive power, translating to high

median test-set areas under the receiver operating characteristic curves (AUCs) across the
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lineages; all lineages had median AUCs > 0.8, with lung, breast, and colon being the top
three, having median AUCs > 0.9 (Figure 2.8). From the radar plot summarizing the top
pathway predictors across all drugs for each lineage (Figure 2.9A), I observed some notable
evidence of predictive affinity for certain pathways to specific lineages: hormone receptor
in breast, core reactive, RTK and TSC/mTOR in colon, RAS/MAPK in liver, DNA damage
response and PI3K/AKT in lung, apoptosis, cell cycle and EMT in ovary, and DNA damage
response and TSC/mTOR in pancreas cell lines. Further, I investigated pathway interaction
in predicting drug sensitivity (Figure 2.9B, S2.11). The breast cancer related pathways,
breast reactive, and hormone receptor pathways were highly synergistic in predicting the

responses of five drugs including ML311 in breast cancer cell lines (Bashari et al., 2016).

1.0-

09-
0.8-
0.7
0.6-

liver uterus skin ovary pancreas colon breast lung

Figure 2.8: Performance of drug sensitivity prediction models across cell line lineages. Each column exhibits
a violin plot for AUCs from all the fitted BART models for the corresponding cancer type for each drug with
at least 10 responses available for the samples in that lineage.
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Figure 2.9: Performance of pathways in drug response prediction for cell lines across cancer lineages, based
on test-set AUC values evaluated from five-fold cross validation. A. For a tissue type, I only look at the
subset of drugs for which I have at least 10 response profiles from cell lines in that lineage and at least 0.85
test-set AUC using a five-fold cross-validation in the BART models. Then, for each pathway I compute the
proportion of times it is the top predictor in models for such drugs. The radar plot shows these proportions
in a In(1 + )-transformed scale. The significance and ranking of each of the twelve pathways in a model
are quantified by posterior probabilities of inclusion in such a final predictive model for drugs. B. Networks
showing the number of times (within models satisfying the criteria in panel A) a pair of pathways are the top
two predictive pathways in a BART model. Panel i is for the breast cancer cell lines and panel ii is for the
lung cancer cell lines.
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Predicting drug sensitivity in patient tumors For each of the cell line cancer lineage, for which
the training models were fitted with the TransPRECISE pathway scores (as above), I predict
drug sensitivity in patient tumors within matched tissue type (total 10 lineages). I found
drugs that had 100% response rate especially in BRCA, CORE, LIHC, PAAD and SKCM,;
some of which are under clinical investigations in their respective cancers (Table S2.8). For
example, all BRCA patients were predicted to be responsive to Ibrutinib that targets Bruton
tyrosine kinase (BTK) with RAS/MAPK, PI3K/AKT, EMT as the top predictive pathways
(Table S2.8). Using patient drug exposure data from GDISC, I evaluated the models’ pre-
dictive performances, following procedures described in Section 2.2.5. For all the CORE
patients our model trained on the colon cell lines for the drug lapatinib predicts the true ex-
posure correctly (note the same drug-cancer drug combination was also predicted to have
a 100% response; Table S2.8). Further, for > 90% of the OV patients our model fitted on
the ovary cell lines managed to correctly predict the response to the drug paclitaxel, which,
by very current standards, remains an integral part of the chemotherapeutic treatment of

ovarian cancer (Boyd and Muggia, 2018; Kampan et al., 2015; Kumar et al., 2010).

2.4 Discussion and Future Work

Overview The investigation of patient tumors and cell-line interactome offers insights into
the translational potential of preclinical model systems. This requires development of an-
alytical models that capture the molecular heterogeneity of a cancer type in an unbiased
manner and accurate calibration of aberrant biological pathways. I propose TransPRE-
CISE, a multi-scale Bayesian network modeling framework, whose overarching goals are
three-fold: identify differential and conserved intra-pathway activities between two differ-
ent model systems (patient tumors and cell lines) across multiple cancers; globally assess

cell lines as representative in vitro models for patients based on their inferred pathway
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circuitry; and build drug sensitivity prediction models for both cell lines and patients to
aid pathway-based personalized medical decision-making. To the best of our knowledge,

TransPRECISE is the first computational approach that provides a conflation of these goals.

Application to multi-system pharmacoproteomic datasets As a proof-of-concept study, I illus-
trate the utility of TransPRECISE using RPPA-based proteomic expression profiles from
patients and cell lines across several functional pathways, and cell lines’ drug response.
The protein interactions that were present in both model systems offer valuable insights
into the shared pathway circuitry across model systems, which has potential translational
utility to study the role of tumor microenvironment. For example, the robust link CCNE2-
FOXM1 within cell cycle pathway has been identified to have important implications in
modulations of several cancers, such as breast (Zanin et al., 2019), prostate cancer subtype
1 (Ketola et al., 2017), hepatocellular carcinoma (Zhang et al., 2019b), and osteosarcoma
(Grant et al., 2013). The aberration of the highly shared edge CTNNB1-SERPINE]1 in
EMT pathway has been found to effect the growth of malignant cell masses in several
cancers, including cancers of the gastric system (Tanabe et al., 2016; Xu et al., 2019), pan-
creatic cancer (Wu et al., 2019), and breast cancer (Asiedu et al., 2011). I also found high
degree of fidelity to their histological sites between model systems based on the level of
network cross-signaling, e.g., RTK pathway in kidney cancers (Patel et al., 2006), and the
hormone signaling pathway in ovarian cancers (Hao et al., 2019; Zhang et al., 2017). As
further validation, TransPRECISE implicated cross-signaling in EMT pathway in SKCM
and UCEC, which are expected since the SKCM cohort contains many metastatic sam-
ples (Akbani et al., 2015) and UCEC includes epithelial-like endometrioid samples as well
as mesenchymal-like serous samples (Levine, 2013). TransPRECISE implicated the hor-

mone receptor pathway in lung cancer, which is another known observation that is being
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studied for its translational potential (Chen et al., 2017b). Our sample-specific inference of
pathway activity provided robust tumor stratification across model systems that includes
distinct prognostic information (Figure 2.6). These robust edges and cross-signaling of
pathways across model systems and cancer sites will potentially provide complementary
information in terms of disease characterization and therapeutic targets. Our Bayesian
prediction models using the pathway scores on cell line’s drug sensitivity provided high
prediction accuracies (median test-set AUC > 0.8 across all drugs and all cancers) and
selected cancer-specific pathway signatures in predicting drug response, such as hormone
receptor-breast (Lumachi et al., 2013), and TSC/mTOR-pancreas (Ayuk and Abrahamse,
2019; Iriana et al., 2016). Our training models using cell lines were used to predict patients’
drug response and validated with their known sensitivities. For example, ibrutinib, which
had high predicted sensitivity for all the BRCA samples, has been investigated for its impact
on HER2-amplified breast cancers (Chen et al., 2016). Similarly, lapatinib, in combination
with trastuzumab, has recently been tested clinically for HER2-amplified metastatic col-

orectal cancer (Sartore-Bianchi et al., 2016).

General applicability of TransPRECISE to state-of-the-art proteomic datasets One of the key strengths
of the TransPRECISE algorithm is its generalizability, as it can be applied to any disease
system that has matched genomic or molecular data on model and primary samples. For
example, the transition from RPPA to other advanced high-throughput platforms and de-
velopment of databases, such as CPTAC (Ellis et al., 2013), opens up the opportunity to
include more proteins (thus, more pathways) in the network analyses: leading to a more
global coverage of the proteomic crosstalk between model systems. Further, the PRECISE
(Haetal., 2018) pipeline, which lies at the core of the TransPRECISE analyses, allows inte-

gration of upstream regulatory information and multi-omics layers such as mutations, copy
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number, methylation and mRNA expression. These modalities can be leveraged for better
and holistic rewiring of pathway circuitry. Finally, our framework can be, in principle,
applied to emerging model systems, such as patient-derived xenografts (Lai et al., 2017;
Siolas and Hannon, 2013), and organoids (Drost and Clevers, 2018), that allow better reca-
pitulation of the human tumor microenvironment. In summary, TransPRECISE offers the
potential to bridge the gap between human and pre-clinical models to delineate actionable
cancer-pathway-drug interactions to assist personalized systems biomedicine approaches

in the clinic.

Data and material availability [ have created an online, publicly available R shiny app (avail-
ableathttps://bayesrx.shinyapps.io/TransPRECISE/) thatis a comprehensive database
and visualization repository of our findings. All codes used in generating our results are

available, along with the documentation, onhttps://github.com/bayesrx/TransPRECISE.


https://bayesrx.shinyapps.io/TransPRECISE/
https://github.com/bayesrx/TransPRECISE
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2.5 Supplementary Figures
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Figure S2.1: Pan-cancer summary of protein networks for breast reactive pathway. i. Heatmap depicting
strengths of all possible protein-protein edges within the pathway, across all 47 patient and cell line tumor
lineages, quantified by the posterior inclusion probabilities of the edges based on the fitted Bayesian graph-
ical regression model. ii. Left panel exhibits a network with its edges weighted and labeled by the edge
consistencies (ECs), which are quantified by the number of patient tumor types holding that particular edge,
also presenting the a priori known strength of the edge using the protein-protein interaction score from the
STRING database. The right panel is the corresponding network across cell line cancers.
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Figure S2.2: Pan-cancer summary of protein networks for cell cycle pathway. i. Heatmap depicting strengths
of all possible protein-protein edges within the pathway, across all 47 patient and cell line tumor lineages,
quantified by the posterior inclusion probabilities of the edges based on the fitted Bayesian graphical regres-
sion model. ii. Left panel exhibits a network with its edges weighted and labeled by the edge consistencies
(ECs), which are quantified by the number of patient tumor types holding that particular edge, also presenting
the a priori known strength of the edge using the protein-protein interaction score from the STRING database.
The right panel is the corresponding network across cell line cancers.
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Figure S2.3: Pan-cancer summary of protein networks for core reactive pathway. i. Heatmap depicting
strengths of all possible protein-protein edges within the pathway, across all 47 patient and cell line tumor
lineages, quantified by the posterior inclusion probabilities of the edges based on the fitted Bayesian graph-
ical regression model. ii. Left panel exhibits a network with its edges weighted and labeled by the edge
consistencies (ECs), which are quantified by the number of patient tumor types holding that particular edge,
also presenting the a priori known strength of the edge using the protein-protein interaction score from the
STRING database. The right panel is the corresponding network across cell line cancers.
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Figure S2.4: Pan-cancer summary of protein networks for DNA damage response. i. Heatmap depicting
strengths of all possible protein-protein edges within the pathway, across all 47 patient and cell line tumor
lineages, quantified by the posterior inclusion probabilities of the edges based on the fitted Bayesian graph-
ical regression model. ii. Left panel exhibits a network with its edges weighted and labeled by the edge
consistencies (ECs), which are quantified by the number of patient tumor types holding that particular edge,
also presenting the a priori known strength of the edge using the protein-protein interaction score from the
STRING database. The right panel is the corresponding network across cell line cancers.
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Figure S2.5: Pan-cancer summary of protein networks for EMT pathway. i. Heatmap depicting strengths of
all possible protein-protein edges within the pathway, across all 47 patient and cell line tumor lineages, quan-
tified by the posterior inclusion probabilities of the edges based on the fitted Bayesian graphical regression
model. ii. Left panel exhibits a network with its edges weighted and labeled by the edge consistencies (ECs),
which are quantified by the number of patient tumor types holding that particular edge, also presenting the
a priori known strength of the edge using the protein-protein interaction score from the STRING database.
The right panel is the corresponding network across cell line cancers.
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Figure S2.6: Pan-cancer summary of protein networks for hormone receptor pathway. i. Heatmap depicting
strengths of all possible protein-protein edges within the pathway, across all 47 patient and cell line tumor
lineages, quantified by the posterior inclusion probabilities of the edges based on the fitted Bayesian graph-
ical regression model. ii. Left panel exhibits a network with its edges weighted and labeled by the edge
consistencies (ECs), which are quantified by the number of patient tumor types holding that particular edge,
also presenting the a priori known strength of the edge using the protein-protein interaction score from the
STRING database. The right panel is the corresponding network across cell line cancers.
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Figure S2.7: Pan-cancer summary of protein networks for hormone signaling (breast) pathway. i. Heatmap
depicting strengths of all possible protein-protein edges within the pathway, across all 47 patient and cell line
tumor lineages, quantified by the posterior inclusion probabilities of the edges based on the fitted Bayesian
graphical regression model. ii. Left panel exhibits a network with its edges weighted and labeled by the edge
consistencies (ECs), which are quantified by the number of patient tumor types holding that particular edge,
also presenting the a priori known strength of the edge using the protein-protein interaction score from the
STRING database. The right panel is the corresponding network across cell line cancers.
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Figure S2.8: Pan-cancer summary of protein networks for PI3K/AKT pathway. i.

strengths of all possible protein-protein edges within the pathway, across all 47 patie

Heatmap depicting
nt and cell line tumor

lineages, quantified by the posterior inclusion probabilities of the edges based on the fitted Bayesian graph-
ical regression model. ii. Left panel exhibits a network with its edges weighted and labeled by the edge
consistencies (ECs), which are quantified by the number of patient tumor types holding that particular edge,
also presenting the a priori known strength of the edge using the protein-protein interaction score from the
STRING database. The right panel is the corresponding network across cell line cancers.
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Figure S2.9: Pan-cancer summary of protein networks for RTK pathway. i. Heatmap depicting strengths of
all possible protein-protein edges within the pathway, across all 47 patient and cell line tumor lineages, quan-
tified by the posterior inclusion probabilities of the edges based on the fitted Bayesian graphical regression
model. ii. Left panel exhibits a network with its edges weighted and labeled by the edge consistencies (ECs),
which are quantified by the number of patient tumor types holding that particular edge, also presenting the
a priori known strength of the edge using the protein-protein interaction score from the STRING database.
The right panel is the corresponding network across cell line cancers.
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Figure S2.10: Pan-cancer summary of protein networks for TSC/mTOR pathway. i. Heatmap depicting
strengths of all possible protein-protein edges within the pathway, across all 47 patient and cell line tumor
lineages, quantified by the posterior inclusion probabilities of the edges based on the fitted Bayesian graph-
ical regression model. ii. Left panel exhibits a network with its edges weighted and labeled by the edge
consistencies (ECs), which are quantified by the number of patient tumor types holding that particular edge,
also presenting the a priori known strength of the edge using the protein-protein interaction score from the
STRING database. The right panel is the corresponding network across cell line cancers.
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Figure S2.11: Shared presence of pathways in cell line drug sensitivity prediction models. For each lineage,
I only look at drugs with at least 10 response profiles available within cell lines from that lineage and the
corresponding BART model having a >0.85 test-set AUC based on five-fold cross-validations. Edge weights
indicate the number of times the two nodes (pathways) are the top two predictors within all such BART
models for a lineage. Each panel corresponds to a different lineage, as follows: i. colon, ii. liver, iii. ovary,

iv. pancreas, v. skin, vi. uterus.
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2.6 Supplementary Tables

Table S2.1: Summary of patient tumor sample sizes according to lineages.

Cancer Lineage Study Abbreviation Number of Patients
Adrenocortical carcinoma ACC 46
Bladder Urothelial Carcinoma BLCA 343
Breast invasive carcinoma BRCA 878

Cervical squamous cell carcinoma

CESC 171
and endocervical adenocarcinoma
Cholangiocarcinoma CHOL 30
Colon/Rectum adenocarcinoma CORE 491
Lymphoid Neoplasm Diffuse

DLBC 33

Large B-cell Lymphoma
Esophageal carcinoma ESCA 126
Glioblastoma multiforme GBM 232

Head and Neck

HNSC 203

squamous cell carcinoma
Kidney Chromophobe KICH 63

Kidney renal
KIRC 469
clear cell carcinoma
Kidney renal

KIRP 217

papillary cell carcinoma
Brain Lower Grade Glioma LGG 432

Liver hepatocellular carcinoma LIHC 184
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Table S2.1: Summary of patient tumor sample sizes according to lineages.

Cancer Lineage Study Abbreviation Number of Patients
Lung adenocarcinoma LUAD 362
Lung squamous cell carcinoma LUSC 325
Mesothelioma MESO 61
Ovarian serous
ov 431
cystadenocarcinoma
Pancreatic adenocarcinoma PAAD 122
Pheochromocytoma and
PCPG 82
Paraganglioma
Prostate adenocarcinoma PRAD 351
Sarcoma SARC 224
Skin Cutaneous Melanoma SKCM 355
Stomach adenocarcinoma STAD 392
Testicular Germ Cell Tumors TGCT 122
Thyroid carcinoma THCA 380
Thymoma THYM 90
Uterine Corpus
UCEC 439
Endometrial Carcinoma
Uterine Carcinosarcoma UCS 48

Uveal Melanoma UVM 12
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Table S2.2: Summary of the genes that the 12 pathways consist of.

Pathway

Genes / Proteins

Apoptosis

Breast reactive

Cell cycle

Core reactive

DNA damage response

EMT

Hormone receptor

Hormone signaling (Breast)

PI3K/AKT

RAS/MAPK

RTK

TSC/mTOR

BAD, BAK1, BAX, BCL2, BCL2L1,
BID, BCL2L11, CASP7, BIRC2
CTNNBI1, CAV1, GAPDH, MYHI11,
RABI11A, RAB11B, RBMI15
CDK1, CCNB1, CCNEI1, CCNE2,
FOXM1, CDKNI1B, PCNA
CTNNBI1, CAV1, CLDN7, CDHI1, RBM15
TP53BP1, ATM, BRCA2, CHEK1, CHEK?2,
XRCC5, MRE11A, TP53, RADSO0,
RADS51, XRCCl1
CTNNB1, CLDN7, COL6A1, CDHI,
FN1, CDH2, SERPINE1
AR, ESR1, PGR
BCL2, GATA3, INPP4B
AKT1, AKT2, AKT3, GSK3A, GSK3B,
INPP4B, CDKNI1B, AKT1S1,
PTEN, TSC2
ARAF, JUN, RAFI,

MAPKS, MAPK1, MAPK3, MAP2K1,
MAPK14, RPS6KAI, YBX1
EGFR, ERBB2, ERBB3, SHCI1, SRC

EIFAEBP1, MTOR, RPS6KB1, RB1, RPS6
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Table S2.3: Summary of cell line expression sample sizes according to lineages.

Cancer Lineage Number of Cell lines

bladder 11
blood 101
bone 20

brain 6
breast 57
colon 35
head and neck 53
kidney 29
liver 17
lung 124
ovary 47
pancreas 20
sarcoma 29
skin 46
stomach-oesophagus 13

uterus 32
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Table S2.4: Summary of drug sensitivity data availability for cell lines. DR: drug response.

Cancer Lineage

Cell lines with Average DR Available

DR Data / Cell line

bladder 3 73

blood 4 132
bone 7 85
brain 1 88

breast 35 105
colon 23 96
head and neck 3 84
kidney 6 93
liver 13 75
lung 72 87
ovary 25 78
pancreas 17 82
sarcoma 4 64
skin 15 105
stomach-oesophagus 9 81
uterus 17 78
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CHAPTER 111

Functional Integrative Bayesian Analysis of High-dimensional
Multiplatform Genomic Data

3.1 Introduction

Rapid advancements in collection, processing, and dissemination of multi-platform molec-
ular patient data has resulted in enormous opportunities to aggregate such data in order
to understand, prevent, and treat diseases. This has catalyzed development of integrative
methods that can collectively mine multiple types and scales of multi-omics data, in order
to provide a more holistic view of the human disease evolution and progression (Subra-
manian et al., 2020). Specifically, in context of cancer, a disease driven predominantly
by agglomerations of several molecular changes (Sun et al., 2021), the importance of syn-
thesizing information from multi-platform omics and clinical sources to understand the
cellular basis and behavior of the disease is even further underscored. Cellular oncological
mechanisms, triggered at different molecular levels of the DNA — RNA — Protein path,
can confer profound phenotypic advantages (or disadvantages). While significant improve-
ments have been made in multi-omics data integration methods to unveil such mechanisms,
focused on both prognosis (Duan et al., 2021) and treatment (Finotello et al., 2020), the pre-
cise functions governing these mechanisms needs detailed and data-driven de-novo evalu-
ations. Our work, in the same vein, aims at two different but inter-related scientific axes:

(1) selection of biomarkers associated with cancer prognosis and clinical outcomes, (ii)
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learning the mechanism of these biomarkers’ effects upon such outcomes via integrating

upstream molecular information - we provide some additional scientific context below.

Classes of integrative omics models  First, I briefly discuss existing integrative omics approaches
in order to contextualize the need for our framework. Broadly, most of the existing inte-
grative statistical methods can be classified into two categories - horizontal (meta-analysis
type) and vertical (multi-omics) integration procedures (Tseng et al., 2015). Horizontal
meta-analysis methods focus on integrating data on similar omics features from different
sources such as laboratories, cohorts, sites, etc; examples include works by Tu et al. (2015)
and Angel et al. (2020). Vertical integrative methods, on the other hand, are focused on
integrating data sets on the same cohort of samples obtained from different omics experi-
ments, wherein the data sets can be vertically aligned; examples include works by Cheng
et al. (2015) and Kaplan and Lock (2017). (See Richardson et al. (2016) and Morris and
Baladandayuthapani (2017) for a comprehensive review of integrative methods.) Most,
if not all such studies perform the integration in an agnostic manner — they neither take
into account known biological structures nor utilize data illustrating functional roles of the
markers of interest. Incorporating such structures and molecular regulatory information
into integrative models can improve both the power to detect true biomarkers of a disease

and the understanding of their cellular roles in the progression of it, as I discuss next.

Importance of functional information Broadly, by functional information, 1 mean the knowl-
edge of the molecular functions of the cellular genomic, epigenomic, and transcriptomic
elements, leading to disease outcomes. Incorporation of such information in biomarker
association models is important due to several reasons. First, different omics components
of the molecular configuration of a disease, while interconnected and hierarchical, can

provide complementary information. A recent review by Buccitelli and Selbach (2020)
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indicates how in the DNA — RNA — Protein path, termed the ‘gene expression path-
way’, lower or higher correlations of the expressions of proteins and their coding genes
may be observed due to changes in the functional regulatory elements. Second, specifi-
cally for cancer, recent literature indicates that recurrent regulatory structures drive tumor
progression through aberrations at different omics levels via common master regulatory
mechanisms (Califano and Alvarez, 2017). Finally, experimental validation and character-
ization of functional information on a biomarker-by-biomarker basis is resource-intensive
- especially with many plausible candidates. Thus, computational models that can identify
and incorporate functional information about genes/proteins (referred to as proteogenomic
data henceforth) into the models rather than post-hoc analyses in a natural, inherent way
can facilitate this understanding and can lead to de-novo data-driven prioritization of the
relevant biomarkers, especially for translational and clinical utility. To this end, I pro-
pose a framework called Functional Integrative Bayesian Analysis of High-dimensional
Multiplatform Genomic Data (fiBAG, in short), that allows simultaneous identification of
upstream functional evidence of proteogenomic biomarkers and the incorporation of such

knowledge in Bayesian (biomarker) selection models to improve signal detection.

Goals and utility of iBAG Our scientific goals are multifold. I focus on integrating high-
dimensional multi-omics data and clinical responses in an approach similar to that of Wang
et al. (2013b), deciphering and delineating functional roles of proteogenomic markers us-
ing mechanism-driven (mechanistic) models, and incorporating this functional information
into outcome models, thus providing functional relevance to the findings. In particular, I
want to contextualize the available functional information such as the type of proteoge-
nomic activity following existing literature such as Gevaert et al. (2013) and Song et al.

(2019). Using evidence from these mechanistic models, I then guide selection and hence
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the degree of penalization/prioritization of covariates in the final outcome models. Fig-
ure 3.1 provides a broad-scale summary of how the fiBAG procedure achieves these goals.
The first column describes the upstream data utilized to infer functional information. For
the purpose of this work, I only use copy number and DNA methylation; other data plat-
forms having potential functional relevance (such as microRNA) may also be utilized. The
middle column describes the three axes of mechanistic information that I intend to infer
on using gene and protein expression data, namely, driver gene (dashed line), driver pro-
tein (dashed-dotted line), and cascading protein (dotted line). I describe the construction
of these mechanistic models in more detail in the following Section(s). The third and fi-
nal column describes the “calibrated" outcome model, where summary information from
the mechanistic models are incorporated alongside outcome data to improve selection of
genes and proteins. Briefly, our study offers both methodological novelty via proposing
a calibrated Bayesian variable selection procedure for the outcome model, and scientific
innovation via performing integration of both patient outcomes and tumor features with

omics data.

Methodological novelty Using a mapping function to calibrate numerical evidences of sig-
nificance obtained from the mechanistic models to a prior inclusion probability scale, I
inform the outcome model of prior functional evidence in favor of specific proteogenomic
candidates. Our method is flexible — the calibration function can be adapted according
to the choice of the mechanistic model and the resulting quantification of significance.
This hierarchical evidence sharing procedure allows our method to integrate data across
any number of genomic, epigenomic, and other relevant platforms of choice. Using Gaus-
sian processes to identify the mechanistic evidence, our model is better equipped to pick

up nonlinear cellular associations than a standard linear model, as used in Wang et al.
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(2013b), and is computationally simpler, eliminating the needs of choosing the number of
knots and incorporating penalization in a spline-type setting, such as the approach taken
by Jennings et al. (2013). I calibrate the evidence summarized from these models to the
Bayesian variable selection setting by proposing a generalized version of the spike-and-slab

prior originally proposed by George and McCulloch (1997), termed the calibrated spike-

and-slab prior. This calibrated prior structure improves the selection of the covariates by
borrowing strength across multi-platform data, choosing to continuously up-weight prior
inclusion probabilities of biomarkers in a data-driven manner. While I take the spike-and-
slab route to build an adaptive and flexible mechanism to incorporate external knowledge
in this work, other existing methods perform the incorporation of such a priori information
in an outcome model via adaptive shrinkage, penalization, or some different prior struc-
ture. Using simulation studies under multiple synthetic and real data-based scenarios, |
compare both the selection and estimation performances of our method against standard
penalized regression (Tibshirani, 1996), grouped penalized regression (Boulesteix et al.,
2017), and prior-informed selection (Velten and Huber, 2021; Zeng et al., 2021a) methods.
Our method exhibits comparable selection and estimation performances with state-of-the-
art methods for higher sample size to number of covariates ratios, and exhibits substantial
improvement in performance over them for low-sample high-dimensional settings. I also
offer computational flexibility using both Markov chain Monte Carlo (MCMC) implemen-
tation and a computationally efficient expectation-maximization based variable selection
procedure (Rockové and George, 2014). I further perform pan-cancer integrative analyses

of proteogenomic data with disease features previously unexplored in such settings.

Scientific innovation Multiple works from recent biostatistical literature have focused on in-

corporating existing evidence or external information into final models of interest via vari-
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ous approaches, such as data-adaptive shrinkage (Boonstra et al., 2015), adaptive Bayesian
updates (Boonstra and Barbaro, 2020), or calibrated maximum-likelihood type procedures
(Chatterjee et al., 2016). Our method is different from such approaches in the sense that it
offers a framework to both learn de novo evidence within the pipeline and incorporate the
said evidence into the final outcome models. As discussed before, omics elements at dif-
ferent hierarchical levels of the gene expression pathway may provide partly independent
and complementary information (Buccitelli and Selbach, 2020). Our integrative approach
allows learning such information across interconnected axes of functional acitivity such
as DNA, RNA, and protein level quantifications. Additionally, our integrative analysis of
pan-cancer proteogenomic data from the Cancer Genome Atlas utilizes both traditional
prognostic outcomes (survival data) and recently developed cellular descriptors of cancer
growth (stemness indices) to identify the proteogenomic signature driving such features,
along with the molecular basis of these signatures. Cancer stem-like cells lead to sustained
proliferation via resisting apoptosis, evading growth suppression, and exhibiting increased
invasive and metastatic potential (Fulda, 2013; Adorno-Cruz et al., 2015). Ilook at the chal-
lenge of identifying the cellular molecular basis of the behavior of such stem-like cells, by
using the mRNA-based stemness index (SI) proposed by Malta et al. (2018) as an outcome
variable. From the survival and stemness outcome analyses across four common groups of
cancers: Pan-gynecological, Pan-gastrointestinal, Pan-squamous and Pan-kidney, I iden-
tify both known and novel markers associated with the outcomes alongside insights on their
functional roles. In particular, the genes RPS6KAT1 (protein p90RSK) and YAP1 (proteins
YAP and YAPPS127) are identified as top driver genes in the pan-gyne cancers, along with
significant associations with the stemness outcome across multiple cancers in the group;
both have been known to be crucial agents impacting gynecological cancers. Similarly, our

analyses found the gene ERBB2 (protein HER?2) to be positively associated with stemness
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for gastrointestinal cancers, supported by existing literature.

The rest of the chapter is organized as follows. Section 3.2 describe fiBAG both con-
ceptually and with the mathematical details of the mechanistic and outcome models and
the evidence calibration function, along with the computational steps behind the fitting,
estimation, and selection procedures for the two models. Section 3.3 summarizes sim-
ulation studies in both synthetic and real data-based settings comparing our method to
existing benchmarks. Section 3.4 summarizes results from our pan-cancer integrative pro-
teogenomic analyses. I conclude the chapter with a discussion on the methodological and
biological aspects of our work, along with some potential future directions in Section 3.5.
All our results are available, alongside all the codes for our method and generating the
plots, in an interactive R-Shiny dashboard, hosted at https://bayesrx.shinyapps.io/
Functional_iBAG/.

3.2 fiBAG Model

3.2.1 Conceptual Factorization of the Multi-omics Model

I begin with the data structure and some notations. Let n denote the number of samples,
q, be the number of genes, and g, be the number of proteins in the dataset of interest. The
gene (MRNA) expression data matrix G and the protein expression matrix P respectively
have dimensions n X ¢, and n X q,. Further, let the data matrices corresponding to the
upstream covariates copy number alteration and DNA methylation be denoted as C and
M, respectively, each having n rows. Let Y denote the n X 1 outcome data vector. Thus,
the proteogenomic, upstream, and outcome data available for a cohort of samples can be
aligned vertically (i.e. matched across samples). I write the joint model of the outcome

and the proteogenomic data conditional on the upstream data as

3.1 P1Y,G,P|C,M, 0] = P[Y|G,P,0,] P[G,P|C,M, 0] .

7 \
' v

Outcome M echanistic
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Here, 0 = (0,,0) denotes a conceptual parameter (possibly multi-dimensional) that
connects the two layers of models. The omics-only part (P[G,P|C,M, 0,]) represents
the mechanistic model, which concerns the functional mechanisms of proteogenomic ex-
pression as driven by DNA-level cellular activities. Via the parameter @, this mechanistic
information is then learned and incorporated into the outcome model (P[Y|G, P, 0, ]). The
parameter vector @ enables the mechanistic layer to inform the outcome layer, in line with

our scientific aims of integrating functional information.

Biological rationale for the factorization The connection between the two layers drives poten-
tially improved identification of proteogenomic features in the final outcome model. This
conceptual framework aligns with the idea that different tumors, although potentially driven
by changes in different agents or genomic locations, are controlled by a recurrent regulatory
architecture where genomic alterations cluster upstream of functional proteins (master reg-
ulators) (Califano and Alvarez, 2017). The interconnections between these regulators form
the tumor checkpoints that can potentially be useful as biomarkers and therapeutic targets.
Further, epigenetic and genetic changes determining a cancer cell state can be intertwined,
and the mutual dependencies between such traits can contribute to tumor progression via
sequential layers of cellular activity (Alizadeh et al., 2015). Thus, it makes sense to model
multi-platform omics data in a way where functional contributions to the variability in ex-
pressions of genes and proteins can be inferred separately and can be utilized to calibrate the
identification of the roles of those genes and proteins in tumor progression. Over the next
few subsections, I describe the specific approaches undertaken in this work to formulate

these two model layers to utilize this biological framework.
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3.2.2 Mechanistic Models

I are interested in three axes of mechanistic information (one for each gene and two for
each protein) based on the available upstream data (Figure 3.1). I first describe the math-
ematical settings and the interpretations of the three axes. Let j denote the index for the
specific proteogenomic biomarker of interest in a mechanistic model, with the understand-
ing that it is a gene if j € {l,...,q,}, and a protein if j € {q, + 1,...,9, + q,}. For
biomarker j and sample i, let the corresponding sub-vectors of C and M be denoted by C;;
and M, ;, respectively. I now describe the general forms of the models corresponding to the

three mechanistic axes.

1 . T T\T
Driver gene model: G fi;((CHLMDT) + ey,

. . ) _ T MT\T
Driver protein model: P, = fzj((C[j,Ml.j) )+e2[j,

Cascading Protein model: P, = f;((G;,C[,M]))") +ey,,

L

Here the e s denote the error components. The upstream to gene correspondences are
defined by the physical location of the coding segment of the gene in the genome. All
copy repetitions within the gene frame and methylation sites across a window of +500 kb
are taken into account. The gene to protein correspondences are defined using which gene
codes for which protein. The upstream to protein correspondences are defined by compos-
ing the previous two. The three models can be biologically interpreted in the following

way.

1. Driver gene: Whether the regulations corresponding to the gene are unique at tran-
script levels, and whether there is a significant relationship between the genomic/epigenomic
events and the resulting gene expression which, in turn, drives cancer progression and

outcomes (Gevaert et al., 2013).
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2. Driver protein: Whether the regulations corresponding to the protein are unique
at transcript levels, and whether there is a significant relationship between the ge-
nomic/epigenomic events and the resulting protein expression which, in turn, drives

cancer progression and outcomes.

3. Cascading protein: Whether the protein-specific regulations transit through multiple
prior omics levels, i.e., whether there is a cascade of effects via the DNA — RNA —

protein path (Song et al., 2019).

The middle column of Figure 3.1 describes the data structures as presented in the above
equations. For each model, I are interested in a null hypothesis of the type f, = constant.
Compelling evidence against such hypotheses would provide evidence for the correspond-
ing mechanistic activity being present for the gene/protein in question. For example, a
strong level of evidence for the driver gene model would mean that the upstream DNA-
level events impact the expression of the gene of interest significantly; the other models
can be interpreted similarly. I now describe the characterization of these relationships via
suitable modeling choices for the f.s, and the hypothesis testing setting to quantify the

strength of evidence in the data.

Characterization of / via Gaussian processes The flexibility of our mechanistic model setting
lies in the freedom in choosing the specific form of /. The simplest choice would be a linear
function - which would lead to multiple linear regression models. These models, explored
by Wang et al. (2013b), are easy to handle computationally and easy to interpret, since
the regression parameters are explicitly available for inference (estimation/testing). How-
ever, they could miss potentially nonlinear associations prevalent across the multi-omics
levels of cellular activity (Solvang et al., 2011; Litovkin et al., 2014). A more sophisticated

choice of f, allowing such nonlinear associations would be to use a set of basis functions
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to describe f (such as using a spline model, as explored by Jennings et al. (2013)). Such
models, however, require specifications of the knots based on a priori knowledge and de-
mand additional penalization to obtain a stable fit, rendering the procedure to be more
computationally intensive and less interpretable. To allow computationally tractable and
interpretable identification of nonlinear associations while avoiding the need to specify
knot locations over a multivariate domain, [ use Gaussian process (GP) models. GPs have
been utilized in the context of genomic data in past literature including modeling gene ex-
pression dynamics (Rattray et al., 2019), transcriptional regulations (Lawrence et al., 2007),
and pathway analyses (Liu et al., 2007). Our simulation studies indicate that in scenarios
with a high degree of non-linearity among the covariates in the generating model, GPs are
better equipped in capturing significant associations than linear models (Section 3.3).

I now describe the GP specifics for the driver gene mechanistic model here; the other
models can be expressed similarly. To recall, the j™ driver gene model is written as
G, = flj((CiTj,MiTj)T) + e,;;, where I assume e,;; < N(O, sz). Let us also denote fl(;.) =

fi j((CiTj, MiTj)T) for all i. Then, the GP prior on f; is placed as follows:
GPprior:  (f,),.... fi)" ~N(O,K,)),
Covariance matrix: K, = K, j((Cl.Tj,Ml.Tj)T, (Cij, MZJ. T,

[lu—v||?
fu=vify,

Kernel function: K, ;(u,v) = grfjexp( -
1j

2
The hyperpriors specify rlzj ~ Inverse—Gamma(%, 12011

all our analyses, I set g = n. Although I use the standard squared exponential kernel, a

) and 4,; ~ exp(4g, ;). For

common default choice (Micchelli et al., 2006), other kernels can be adopted as well.

Hypothesis tests for drivers and cascades via Bayes factors [ describe our Bayesian hypothesis

testing procedure for the mechanistic models using our driver gene models; the other mod-
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els can be tested similarly. For the j driver gene model, I test H,, j - Jf1; = constantvs Hy; :
H,, is false (equivalent to Hy; : K;;(e,*) = 0). I compute a log of the Bayes factor (IBF)
corresponding to the comparison of the full model vs the null (mean) model to perform
the test. Bayes factors (BFs) are particularly useful in this setup from both a statistical and
a scientific point of view. From a methodological perspective, elegant almost sure con-
vergence results for Bayes factors are available for rather general settings under standard
assumptions (Chatterjee et al., 2020). Further, Bayes factors have been successfully uti-
lized to quantify significance and compare model performances in omics models in past
literature (Stephens and Balding, 2009). For our case, the final expression of the IBF for
the driver gene model j, ignoring the constants a,, b,, c,, and a (dependent on data dimen-
sions and hyperparameters), is given below (other models can be derived similarly). The

integral in Equation (3.2) is computed numerically. For any matrix A, A_; denotes the jh

column of A, and A,, denotes the i™ row of A.

n ( f’_ Gi_)z
IBF,; = [an+bnln<a+ Gl.zj—zl_l—j>
i=1 €n

1
20K, /72 + 1|2

—d Ay;]/ In(10).

(3.2) + In / exp(—4g;;4;,) . 0
0 {G.j(Klj/le +DG,; + a)} '

I decide the strength of the evidence posed by the IBF from a mechanistic model using
the following standard significance ranges: < 0.5 (no evidence), 0.5 — 1 (substantial), 1 -2
(strong), and > 2 (decisive) (Kass and Raftery, 1995). For each gene, I have one 1BF from
the driver gene model, whereas for each protein, I have a maximum of two such 1BFs from
the driver and cascading protein models. I now describe our approach to calibrate these
evidence quantities into the variable selection models for the outcomes of interest.

3.2.3 Calibrated Bayesian Variable Selection

Functional information is captured by the IBFs from the mechanistic models - each IBF

summarizes the strength of evidence for the functional role of the corresponding gene/protein.
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The IBF metric is particularly useful for two reasons - first, it provides us with an inter-
pretable, unidirectional and continuous scale of evidence strength, and second, across a
large proteogenomic panel, it provides a highly parallelizable procedure to gather scalar
evidence of functional relevance which are useful numerical quantities in their own terms
and pertinent prior information for future models, such as our outcome model.

Thus, following Equation (3.1), I want to incorporate this mechanistic information into
our final outcome model. I pose this problem in context of a general regression framework
where some quantitative summaries of covariate importance are available beforehand, and
such information is to be combined with the mechanics of a typical variable selection set-
ting. Generally, I denote such prior information as €, with €; denoting the possibly multi-
dimensional evidence summary for covariate j (i.e., IBF for gene/protein j in our case). I
intend to inform the final outcome model using these evidences in terms of selection/non-
selection of the predictors. Specifically, if there is sufficiently strong evidence in favor
of a covariate, I want to up-weight its probability of inclusion. Otherwise, I want to put
a uniform probability on selection/non-selection for that particular covariate. To achieve
this, I utilize a hierarchical Bayesian framework with spike-and-slab priors for each effect,
with the spike probabilities calibrated using the evidence available. The rest of this sub-
section describes the components of our fiBAG outcome model, called calibrated Bayesian

variable selection, or cBVS in short.

Notations Following notations introduced at the beginning of this section, let Y; denote
the outcome for individual i. For the purpose of exposition, I assume that the outcome of
interest is continuous, and each Y; is assumed to be observed. Generalizations to censored
or categorical outcomes are straightforward. Let us denote the design matrix corresponding

to any additional covariates (other than genes and proteins, such as clinical information or
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demographics) by B, . The combined design matrix will have a dimension p =1 + g, +

q, + q,. I then propose a hierarchical Bayesian outcome model, as described below.

Y, = B+B By+Gl s +P po+e, Vie{l,..,n},
iid

e, ~ Normal(0,6°), Vie{l,..,n}.

Let g .., denote the complete regression coefficient vector. I set up a hierarchical cali-

px1

brated spike-and-slab prior on its last g, + g, components, as described below. A standard

v Vi

conjugate prior is put on the residual variance parameter as 6> ~ Inverse- Gamma(

(Bo> B Bi> Bp)" = BlYy rqx1-0 ~ Normal(0,D, ),

¥ijlo;, ~ Bernoulli(w;), Vj€{l,..q,+4q,}

2

;

Beta(r(e ), Vj€(l,.q,+4q,),

F(€, ))

where D, . = oA A = diag{v,1,,,, 7,0, +(1=y)vy, ... ,ng+qpvl+(l—ng+qp)uo}

YT pXp

where v; > v, > 0 are respectively the slab and spike variances, and where F is a calibra-

tion function mapping the evidence &; to the prior inclusion probability ;.

Calibration functions for external information The function 7 in the outcome model maps
the functional evidence from the mechanistic models to a parameter scale to inform the
Beta hyperprior for selection of each covariate. The specific mathematical properties and
form of this function depends on the user-specific context of what type, range, and scale
of functional evidence is being used. Further, it is possible to garner multiple quantities
of evidence from different sources for each covariate of interest, and depending on the
scenario, the calibration function may take inputs in R¥ for some K > 1.

For the suitability of exposition, I describe a specific form of the mapping function
used for our analyses where it is assumed that the evidence measures &; are in the form

of scalar summary statistics s;. As explained in the previous subsection, I have a single
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evidence quantity (the IBF from the driver gene model) for each gene and a maximum
of two evidence quantities (IBFs from the driver and cascading protein models) for each

protein. For genes (i.e., j € {l,...,q,}), I set s; = IBF,;, and for proteins (ie., j €

1j°
{g,+1,...,9,+q,}), Isets; = max(IBF,;, IBF;;). The choice of taking the maximum of
the two available 1BFs for a protein is justified because the incorporation of this information
in the outcome model is intended to improve selection of covariates that are important at
a cellular functional level and the specific source of such functional activity is immaterial
in the final model. Our calibration function then needs to be a map from R — R that can
reflect the changes in the strength of evidence in the 1BFs in the desired ranges.

For 1BFs, the strength of evidence is unidirectional (i.e., higher evidence quantity im-
plies higher strength of the evidence). In such a scenario, a mapping function is required to
be non-decreasing. Such a mapping function can either be discrete or continuous, and the
jumps of the discrete curve or the slope of the continuous curve can be tuned depending on
the importance to be put on different scalar values of the evidence. In particular, I follow
the standard IBF significance ranges as described before to a parameter describing a Beta
prior distribution for the covariate-inclusion probabilities @;. The shape of the IBF to Beta
prior mean curve and the representative densities for some 1BF values of interest in each
of the standard IBF significance ranges (< 0.5 (no evidence), 0.5 — 1 (substantial), 1 — 2
(strong), and > 2 (decisive)) for the calibration function used in this work are summarized
in Figure 3.2. Effectively, I build a function having the following properties.

o If the mechanistic models do not provide us with enough evidence regarding the func-

tional utility of a gene/protein, I put a uniform prior (mean prior probability = 0.5)
for the corresponding selection probability parameter in the outcome model. This is

illustrated by the leftmost point on the X axis of Figure 3.2A.

o If the mechanistic models provide us with strong evidence, on the other hand, I put a
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strong prior with a large prior mean on the selection probability parameter. This is

illustrated by the increment in the Y axis of Figure 3.2A.

This construction enables the functional evidence to inform selection/estimation in the
outcome model, while retaining the flexibility to still allow the model to ignore prior evi-
dence, if necessary, for the proteogenomic markers without any observed association with
the outcome of interest, as are illustrated by our pan-cancer applications presented in Sec-
tion 3.4.

I perform the following steps to obtain the shape parameters of the final Beta prior as
F(€;)=TF(s;)and 1/F(E;) = 1/F(s,). Note that thus the prior mean for w; takes the form
F(s){F(s)+ I/F(sj)}_l, and the corresponding variance is [{F(s;)+ 1/7L’(sj.)}2 {F(s)+
1/F(s))+1 }] ~'. Ifirst ensure that all small positive and non-positive IBFs from the mech-
anistic model are effectively truncated to zero (no evidence, to be mapped to a uniform
prior), by setting s;f = max(s;, 107°). Then, our mapping function evaluates G(s ) =
% [{1+4(s7/3)275} 7" +1]. Finally, I compute F(s;) = (2G(s))* = 16G*(s,) to ensure sharp
increase in prior mean probability of inclusion when IBF increases from 1 to 2. Effectively,
F(e) is a composition of three functions.

1
1+ (sj/3)-2-75
scale of the prior probability calibration curve along with its asymptotic behavior and

o A four-parameter logistic (sj - ) allowing us to control the shape and

lower bound.

e A linear map (x — %(x — 1)) that takes [0, 1] to [0.5, 1] enabling us to make the prior

noninformative when the 1BF is small or negative.

e A polynomial map (¢ — (2¢)*) allowing additional control over the steepness of the

resulting prior probability calibrated means.

The tuning parameters with values 3 and 2.75 are chosen via computational checks
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across ranges of [2,4] and [2, 3], respectively. The calibration functions for the other pa-
rameter values are presented in Figure S3.1-S3.14. For this specification, the prior mean
probability of inclusion for a covariate ranges from 0.5 (when the IBF is O or negative)
to approximately 1 (when the 1BF is large, say > 5). The calibrated prior mean proba-
bilities for some representative points from these intervals are as follows, with respect to
Figure 3.2B: 0.502 (IBF = 0.25, bottom-right), 0.543 (IBF = 0.75, top-right), 0.726 (IBF

= 1.5, bottom-left), 0.962 (IBF = 3, top-left).

Benefits and utilities of calibration The benefits of this calibrated model formulation are mul-
tifold. First, by modifying the calibration function 7, our framework allows the user to
incorporate any form of model summary information (such as z-scores, p-values, etc.) into
the outcome model. Unlike existing grouped shrinkage-based procedures, this eliminates
the restriction of only using external information through categorical covariates. Second,
unlike the shrinkage-based or Bayesian approaches where the external covariates directly
inform the final model, our model only relies on the supply of the summary statistics s, -
rendering the computations less challenging and allowing the use of any upstream dataset,
however large, in learning the functional information from multiple categorical/continuous
sources. In the same vein, any such calibration function can easily be adapted to a scenario
where multiple sources of evidence are available for a single covariate rather than just a

single summary statistic s;. For example, if there are K 1BFs (& ; = (BFy;, ..., 1BFg)))

1j°
available from as many mechanistic models for the jth biomarker, then I can think of the

calibration function as a composition: F (&€ )= F(Fy(E 1)), where F| can be similar to the

Fluse,and F, : R¥ — R aggregates the multiple lines of evidence to a single scalar value
K

s;. One possible choice for this is a linear map, as s; = F,(€;) = Z a,;1BF, ;. Here a; ;s
k=1

are convex weights specific to biomarker j, interpreted as quantifications of the importance
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of each source of evidence. Several choices of the a, ;8 are possible, as described below.
1. Average evidence: «,; = 1/K (takes a simple average of all available evidences).

2. Maximal evidence: «;; = I (IBij = kfer{rll?.x.,K}lBFk/ j) (only takes into account the
strongest evidence available from any source). This is akin to the approach I used for

the proteomic markers with two mechanistic models.
K

3. Precision-weighted evidence: «,;, = p;;/ Z py; (weights the evidences by some
k=1
metric of reliability of the evidences, such as p, ;= %1;.2 where %,fj is the estimated

noise variance for the source mechanistic model of IBF, ).

This provides an additional layer of flexibility that allows the user to choose how many

sources of evidence to use and how best to combine them.

Parameters of interest and model dependence structure Having described the mechanistic and
outcome layers of the modeling framework and established the connection between them
via the evidence calibration function, I now revisit Equation (3.1) to interpret the conceptual
parameters in context of our modeling scheme. For the mechanistic models, the quantities
0 represent the parameter vector for the Gaussian process models, namely, {(z;;, 4;;) @/
varies across each mechanistic model available for each gene/protein j}. The quantification
of evidence is not performed via direct estimation of these parameters but via computing
and calibrating the Bayes factors corresponding to each model. Therefore, one compo-
nent of @, is driven by 0, via the evidence calibration. The rest of 8, is specified by
(ﬁT, yT, o', o), ie. the parameters of interest from the outcome model. The inferential
task then is to fit the outcome model, estimate the parameters of interest (ﬁT, yT, o, o),
and perform covariate selection based on the posterior distribution of (y”, @")". The over-
all dependence structures in the mechanistic and outcome model settings are summarized

in Figure 3.3. In the next section, I describe our model-fitting procedures.
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Figure 3.3: Plate diagram summarizing the dependence structure across the variables, parameters, and hy-
perparameters in fiBAG. Panels (A) and (B) respectively summarize the mechanistic and outcome models.
C,M, B, G, and P each have n rows and are matched across samples, along with the outcome vector Y. B, G,
and P respectively have g, g, and g, columns. C and M respectively represent copy number and methylation
data. All the parameters and data structures are described in full detail in Section 3.2.
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Generalizations to non-Gaussian outcomes  Such generalizations typically involve minimal changes
to the outcome model. As an example, I discuss an extension to survival outcomes briefly.
Let us denote Y, = log T; as the possibly unobserved log-survival time and C, as the possi-
bly unobserved censoring time for individual i. The observed response for individual i is
(Z;,96;), where Z; = min{log T;,log C;} and 6, = I(T; < C;). Under the assumptions that
the censoring distribution is free of f and y and that the censoring times are independent of
the true outcomes conditional on f and y, changing the outcome model from Gaussian to
an accelerated failure time model with log-Normal outcomes only introduces truncations
of the censored (unobserved) outcomes in the log-posterior. Therefore, the only change in

the model fitting procedure occurs in the expression of the full log-posterior.

3.2.4 Model Fitting and Parameter Estimation

Mechanistic model fitting As described in Section 3.2.2, I are interested in quantifying the
functional evidence for each gene/protein via the GP-based mechanistic model using the
IBF - therefore, I do not require a full Bayesian exploration of the model. To ensure com-
putational efficiency, I directly compute the IBF following expressions as in Equation (3.2).

This requires the evaluation of an integral, which I perform numerically.

Outcome model fitting As described in the previous subsection, the complete set of parame-
ters to be estimated by cBVS is (87, y7, ", 6)". B” provides estimates of the effect sizes of
the proteogenomic covariates on the outcome, and the (y”, @’ )" guides their selection. The
parameter estimation is focused on the posterior of (87, y”, ", 6)". For large proteoge-
nomic panels, this posterior will be computationally resource-intensive to directly sample
from. The question, therefore, is of a trade-off between computational simplicity and esti-
mation accuracy. Due to this reason, I offer three implementations of cBVS in increasing

order of computational efficiency — a standard Markov chain Monte Carlo (MCMC) using
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Gibbs sampler to sample from the complete posterior, a selection-only MCMC to sample
from the marginal posterior of y, and an expectation-maximization based variable selec-
tion (EMVS) procedure to approximate the posterior modes of the parameters. Briefly, the
selection-only MCMC focuses on estimating y first and then estimates f using a Bayesian
model averaging-type procedure (Hinne et al., 2020), and the EMVS sacrifices the full
posterior along with error estimates to achieve fast point estimation (Rockové and George,

2014). The exact details of each are as follows.

1. Full MCMC: The simplest approach is to perform a complete Markov chain Monte
Carlo (MCMC) procedure to sample from the joint posterior — I utilize a Gibbs sam-
pler for this. For both continuous and survival outcomes, I use the rjags (Plummer
et al., 2016) package in R. The rjags model descriptions are available in our shiny app

hosted at https://bayesrx.shinyapps.io/Functional_iBAG/.

2. Selection-only MCMC: One way to mitigate the time- and resource-intensiveness
of the full MCMC is to focus on y only - by integrating (8", @”, ¢)" out of the joint
posterior. This results in II(y|Data, Hyperparameters), to be then approximated via
MCMC. The final estimates for @ are computed by taking the average of the traversed
MCMC path for y post burn-in. The components of f are estimated using a Bayesian
model averaging-type procedure (Hinne et al., 2020), taking a convex combination
of draws from their conditional posterior at every step, weighted proportionally to
the negative log posterior evaluated at that step. Since this MCMC only performs
a search across a lattice space of size 27, it results in significant improvements in
computation times. The overview of the selection-only MCMC procedure is pre-
sented in Algorithm 3.1. The codes are made available via our shiny app hosted at

https://bayesrx.shinyapps.io/Functional_iBAG/.


https://bayesrx.shinyapps.io/Functional_iBAG/
https://bayesrx.shinyapps.io/Functional_iBAG/
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3. E-M based variable selection (EMVS): The fastest alternative to a full MCMC is to
sacrifice approximating the full posterior (along with error margins) and to only focus
on point estimates of the parameters of interest. For this purpose, I adapt the EMVS
procedure by Rockova and George (2014) for our continuous and survival settings.
The EMVS procedure estimates the posterior mode instead of approximating the full
posterior, resulting in faster iterations. The model codes for the implementation of
EMVS in our setting are available in our shiny app hosted at https://bayesrx.

shinyapps.io/Functional_iBAG/.


https://bayesrx.shinyapps.io/Functional_iBAG/
https://bayesrx.shinyapps.io/Functional_iBAG/
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Algorithm 3.1. Selection-only MCMC algorithm

a(s;)
0. Initiate the MCMC with y = y 4, Where 7,y ; ~ Ber(—————),V,.
a(s;) + o
J

1. With probability 1/3 each, select one of the following steps and perform the

corresponding task.

(a) Add: Randomly pick one of the y ,; indices with value 0, change it to 1,
and call the resulting vector y,.,,. If there is no index j where y 4 ; = 0,

perform 1.2.

(b) Delete: Randomly pick one of the y_, indices with value 1, change it to
0, and call the resulting vector y,,,,. If there is no index j where y 4 ; = 1,

perform 1.1.

(c) Swap: Randomly pick one of the y , indices with value 0, and indepen-
dently, randomly pick one of the y 4 indices with value 1. Swap the values
of these two indices, and call the resulting vector y . If there is no index
J where y,q; = 1, perform 1.1. If there is no index j where y,,; = 0,

perform 1.2.

2. Compute log(p*) := min{0, logII(y,..|.)) — log(Il(y4l.))}. The proposed

is then accepted with probability p*.

YHeW

3. Iterate between 1-2 until convergence.

Model summaries The MCMC/EMVS procedures provide us with posterior inclusion prob-
abilities (PIPs) o; and regression coefficient estimates ,B} for each covariate in the model.
A cut-off on the PIPs is computed using a false discovery rate adjustment procedure at a

specified level of significance, treating the 1 — @; as p-value type quantities. Suppose the
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estimated posterior probabilities of inclusion are denoted by {®;,j € {1,....q, + q,}}.
Then, I define p-value type quantities p; = 1 —®;,Vj € {l,...,, +q,}, and sort them in
the increasing order of magnitude as { p;, j € {l,....,,+q,}}, with the understanding that

for each j, p;‘ = Py, forsome k; € {1,...,, +q,}. Let the cumulative sums of these ordered

quantities be denoted by r; = 2 p;f for each j. Let j* :=min{j : r; > a}, where a is a
pre-specified level for the falselzii]scovery rate control. Then I infer that the covariates with
indices kq, ..., k - are selected in the outcome model.

I now have all the computational tools to implement the fiBAG framework. In the next

two sections, I respectively describe our simulation studies and our pan-cancer proteoge-

nomic analyses using fiBAG.

3.3 Simulation Studies

To illustrate the utilities of cBVS, I performed two simulation studies. Simulation 1
deals with continuous outcomes in synthetic datasets, comparing metrics of selection and
estimation from the cBVS procedure with existing benchmarks across a class of variable
selection methods. I include both penalized/grouped penalized selection procedures and
Bayesian prior-based selection procedures as benchmarks. Simulation 1 is expected to as-
sess cBVS for both low and high sample size to dimension ratios and quantify the improve-
ment and/or preservation of performance along this spectrum compared to the benchmarks.
In Simulation 2, the data generation procedure is informed by the patient datasets for breast
invasive carcinoma from the Cancer Genome Atlas. The next two subsections describe the
design, settings, and results from these two simulation studies.

3.3.1 Simulation 1: Synthetic Data-based Simulations

Data generation and choices of true effects To compare performances across a grid of vary-

ing sample size/number of covariates (n/p) ratios, I fix the number of proteogenomic
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biomarkers generated in the simulated datasets at p = 200 and vary the sample size across
n = 50, 100, 200, 400, 800, covering a range of n/p = 1/4 to 4. For simplicity, I assume
that there is only one upstream covariate for each biomarker. 100 replicates are generated

for each n. I follow the steps described below to generate one such replicate.

e Upstream covariates U, , (comparable to copy number/methylation data in the bio-

nxp

logical setting) are generated such that each U;; ~ N(O, 1).

e Let X, denote the design matrix of the proteogenomic expression data for the out-
come model. Then the generating model for the j™ expression is X, ; w N, U, 1),
Vi € {1, ..., n}. The mechanistic effect size §; controls the level of evidence reflected
by an IBF for the mechanistic model of X,; on U,;. The correspondence between
values of & ; and the four levels of IBF: no evidence, substantial, strong, and decisive,

is established numerically.

Among the 200 X, ;s, the first 60 are distributed into four groups of 15 each, in the
order of no evidence, substantial, strong, and decisive, followed by two groups of five
at the levels strong and decisive, respectively. Those first 60 are distributed further
into varying outcome effect sizes in the later steps to cover the complete range of
combinations of prior evidence and effect size. The latter two groups will be assigned

no true effects to include an in-built checkpoint for false positive evidences.

e Among each group of 15 for the four levels of prior functional evidence, I put three
groups of five X ;s with effect sizes f;s generated respectively at the low (U (0, 0.2)),

medium (U (0.4, 0.6)), and high (U (0.9, 1.1)) levels. All the other p;s are set = 0.

This results in 12 groups of covariates of size five each, because there are 12 possible
combinations from the three levels of effect sizes and the four levels of evidences.

Additionally, I have two groups of size five each with strong/decisive level of evidence
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but no true effect. All other 130 covariates have no evidence and no true effect.

e Finally, I generate the continuous outcome data as Y, iy N p(ﬁTX,.,, ).

Brief overview of benchmark methods [ compare the performance of the cBVS model against
three classes of methods that perform variable selection based on different approaches. 1
use one Bayesian variable selection method without any external evidence, namely, the
expectation-maximization based variable selection (EMVS) (Rockova and George, 2014)
- as an uncalibrated counterpart to cBVS. I also include two penalized selection procedures
- additional to LASSO (Tibshirani, 1996), I include a grouped penalized selection pro-
cedure termed Integrative LASSO with Penalty Factors (IPF-LASSO) (Boulesteix et al.,
2017). The reason behind including a grouped penalized regression procedure is that the
prior evidence levels provide a natural grouping for the covariates to be used in a vari-
able selection setting. I choose IPF-LASSO in particular since it has previously shown
promise in integrative omics-based personalized medicine context. Finally, I implement
two recently proposed Bayesian variable selection methods incorporating external infor-
mation, namely, graper (Velten and Huber, 2021), which incorporates categorical external
covariates only, and xtune (Zeng et al., 2021a), which can handle continuous covariates
as well. Our simulation scheme (i) allows a comprehensive comparison of calibrated vs

non-calibrated methods and (ii) provided a benchmark for calibration to evaluate cBVS.

Summary of metrics used Each method provides a coefficient estimate . For LASSO, I get
a ¥ corresponding to the best-fit 4. For each of the other methods, I compute @, on which
I use the FDR-based adjustment method as described in Section 3.2.4 to infer selection. I
compute several standard metrics of selection performance, namely, area under the receiver
operating characteristic curve (AUC), scaled AUC between 0.8 to 1 specificity (AUC20),

true positive rate (TPR), false positive rate (FPR), and Matthew’s correlation coefficient
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(MCC). The use of MCC is particularly useful since at a specified selection threshold it
aggregates performance summary from both the TPR and FPR metrics. Using AUC and

AUC20 allows threshold-free evaluation of selection performance.

Results and discussion The results from Simulation 1 are summarized in Figure 3.4A. In
terms of AUC, our calibrated outcome regression model performs the best for the smallest
n/p ratio = 1/4, and is only second to graper by a very small margin for the n/p ratios
= 2,4. In terms of MCC, our calibrated outcome regression model is only second to xtune
for n/p ratios = 1/4,1/2, and is only behind graper and xtune for the n/p ratios = 1,2,
and 4. In terms of R?, our calibrated outcome regression model performs the best in both
ends of the n/p ratio spectrum, i.e., n/p = 1/4,1/2,4, and is marginally behind graper and
xtune for the n/p ratios = 1,2. These summaries indicate several utilities of the calibrated
outcome regression procedure. First of all, based on the metrics summarized, calibra-
tion based on prior evidence seems to have an evident benefit, as all the methods utilizing
prior evidence (cBVS, graper, xtune) outperform those not incorporating any prior evi-
dence (EMVS, LASSO, IPF-LASSO) across all the n/p ratios used and across all metrics.
Further, as evident from the AUC summaries, cBVS offers an improved preservation of se-
lection performance for n/p ratios < 1 over the methods incorporating external covariates,
while maintaining a comparable and satisfactory level of performance in the more favor-
able scenarios, i.e., n/p > 1, as well. This is particularly reassuring, since unlike MCC or
other standard metrics of selection, AUC is a threshold-free summary which enables us to
sum up the performance of the methods across the whole spectrum of lenient to stringent

selection criteria.
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3.3.2 Simulation 2: Real Data-based Simulations

Data generation and choices of true effects Before the pan-cancer multi-platform proteoge-
nomic analysis using data from the Cancer Genome Atlas, I perform a modified version of
Simulation 1, based on breast invasive carcinoma (BRCA) patient data. I aggregate and an-
notate DNA methylation, copy number alteration, proteogenomic expression, and censored
survival data for BRCA following Section 3.4. Since the rest of the simulation scheme is
mostly similar to Simulation 1, I only summarize the changes briefly below.

I denote the upstream covariate data and the proteogenomic expression data for BRCA
respectively by U, and X, ,. Note that since a single proteogenomic biomarker may have
multiple corresponding methylation sites and copy number changes, generally, ¢ > p. In
particular, for the BRCA data [ use, » = 790 and p = 365. For each X, i I fit mechanistic
model(s) on the corresponding U, ;s, and compute IBFs, as described in Section 3.2.2. 1
then group these 1BFs as before (< 0.5 (no evidence), 0.5 — 1 (substantial), 1 — 2 (strong),
> 2 (decisive)), and assign the group-specific means of the IBFs to the X ;s belonging to
the group as their level of prior evidence in the simulation. I then build a cBVS model us-

ing survival outcome data to estimate . I cluster B into four groups based on the three

px1-

quartiles of their absolute values, and assign the group means to each group to arrive at the

final g This leads us to a total of 4 X 4 = 16 combinations of prior evidence X out-

px1*
come effect size. The outcome data generation procedure, benchmark methods, summary

metrics, and number of simulations remain the same as before.

Results and discussion The resulting metrics are summarized in Figure 3.4B. Notably, cBVS
performs the best among all the methods compared in terms of AUC, AUC20 and FPR,
and is at the second place, only behind graper, for MCC. Again, two calibrated selection

methods (cBVS, graper) outperform uncalibrated selection methods (EMVS, LASSO, IPF-
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LASSO) in terms of all metrics but TPR. Thus, cBVS is well-equipped for the real data
scenarios to be encountered in the pan-cancer setting.

3.3.3 Additional Simulation Studies

Comparing linear models and Gaussian processes in capturing non-linear evidence I perform a
simple simulation study to compare the performances of Gaussian process models and
linear models in capturing significance based on data generated from varying orders of
non-linear associations. Hypothetically, with increasing proportion of non-linearity in the
generating model, the Bayes factors from the Gaussian process models should be better able
to quantify significance than those from the linear models. To perform this, our generating

models are defined as the following.

e For a given sample size n = 100 and number of covariates p = 5, I generate X, ,

where each X;; " UuQ,1).

e The fully nonlinear model is defined as the following.

Y, ~ N(10cos(X;,) — 15)(1.22 + 10exp(—X;3) X, — 8sin(X3) cos(X ) +20X;, X5, 1),

p
1e., Y ~ N(Z ﬁjfij, 1). Forl € {0,1,...,5}, a 20/% nonlinear model is then

1
j=1
generated from the following distribution.

! p
Y~ NOQLB S+ D, BiXy D).
=1

J j=I+1

e For each non-linearity scenario, 100 independent replicates are generated. For each
replicate, the Bayes factors corresponding to the Gaussian process model (as de-

scribed in Section 3.2.2) and the linear model are computed.

As seen in Figure 3.5, for 0% and 20% levels of non-linearity, the median IBF from
the linear models is larger than that from the Gaussian processes, whereas this pattern is

reversed for all the higher levels of non-linearity. Noticeably, the difference between the
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Figure 3.5: Results from Simulation comparing Gaussian processes and linear models. The x-axis is in
increasing order of non-linearity (in terms of the mean function of the outcome based on the covariates)
in the generating model. The y-axis presentes box plots across 100 replicates of the IBFs from Gaussian
processes and linear models.

two sets of 1BFs increase steadily with increasing non-linearity. This supports our claim
that the Gaussian process models are better equipped in identifying evidence based on data
originating from nonlinear generating models.

3.4 Integrative Pan-cancer Proteogenomic Analyses

3.4.1 Data Description, Cleaning, and Analysis

Pan-cancer multi-omics data [ analyze pan-cancer multi-platform proteogenomic data from
the Cancer Genome Atlas (TCGA). I include 14 cancers across four cancer groups, clas-
sified by commonalities in the sites/tissues of occurrence. For each cancer, DNA methy-
lation, copy number alteration, and proteogenomic expression data are obtained. The list
of cancers for each group are presented below. The sample size summaries across differ-
ent platforms for each cancer are available in our shiny app hosted at https://bayesrx.

shinyapps.io/Functional_iBAG/.


https://www.cancer.gov/tcga
https://bayesrx.shinyapps.io/Functional_iBAG/
https://bayesrx.shinyapps.io/Functional_iBAG/
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e pan-gyne: breast invasive carcinoma (BRCA), cervical squamous cell carcinoma
and endocervical adenocarcinoma (CESC), ovarian serous cystadenocarcinoma (OV),

uterine corpus endometrial carcinoma (UCEC), uterine carcinosarcoma (UCS).

e Pan-kidney: kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC),

kidney renal papillary cell carcinoma (KIRP).

e Pan-squamous: esophageal carcinoma (ESCA, squamous), head and neck squamous

cell carcinoma (HNSC), lung squamous cell carcinoma (LUSC).

¢ Pan-gastrointestinal (pan-GI): colon and rectum adenocarcinoma (CORE), esophageal

carcinoma (ESCA, adeno), stomach adenocarcinoma (STAD).

Outcome data [ investigate two different outcomes. I use the censored survival data avail-
able from TCGA and implement the cBVS model to identify cancer-specific proteogenomic
biomarkers associated with survival. However, survival outcome alone does not provide
biologically interpretable insights into the molecular progression of the disease. To this
end, I use another outcome called mRNA-based stemness index (SI, in short) - a metric of
cancer growth in terms of its cellular features. Briefly, SIs for TCGA cancers are computed
using a one-class logistic regression model trained on pluripotent stem cell samples from
the Progenitor Cell Biology Consortium dataset (Daily et al., 2017; Malta et al., 2018).
The SIs quantify the stem-cell-like behavior of the tumor of interest. I build cBVS models

selecting proteogenomic biomarkers associated with Sls.

Modeling For each cancer, the mechanistic model analyses and hypothesis tests for each
gene and protein are performed using GPs as described in Section 3.2.2, and IBFs are
computed. Two cBVS models - one using stemness and one using survival data - are built

for each cancer, using the selection-only MCMC procedure as described in Section 3.2.4
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to estimate (87, ®", 6)" in each. For each gene and protein, I thus obtain five quantities
of interest: 1BF, and (ﬁ @ j)T - one each from each outcome model. An overview of the

analysis pipeline is presented in Figure 3.6.

Scientific Questions Our analyses are driven by three broad scientific aims. First, I intend to
identify cancer-specific and pan-cancer functional drivers and cascades from the proteoge-
nomic candidates using the functional evidence learned via the mechanistic models. Sec-
ond, using the cBVS models, I select cancer-specific biomarkers associated with changes in
the survival and stemness outcomes. Finally, I assess the mechanistic and outcome model
results in conjunction to evaluate the utility of calibrating outcome models using mecha-
nistic evidence. 1 present the numerical results in the following two subsections, followed
by the biological interpretations and discussions of the results in Section 3.4.5.

3.4.2 Mechanistic Model Results for TCGA Cancer Groups

I summarize the mechanistic model outputs in a pan-cancer fashion for the pan-gyne and
pan-GI cancer groups in Figure 3.7; the rest of the groups are presented in Figure S3.15-
S3.20. Figure 3.7A, C exhibit heatmaps summarizing IBF classes for the gene-protein pairs
which have some evidence across at least three-fourth of the cancers in at least two out of
the three mechanistic model types, along with corresponding upset plots in Figure 3.7B,
D describing the number of genes/proteins that are at the decisive level of significance for
the three mechanistic models across the intersections of the different cancers.

For the pan-gyne cancers, 26 gene-protein pairs are at strong/decisive level of evidence
across at least four cancers in at least two out of the three mechanistic model types, includ-
ing genes such as RPS6KA1 (protein p90RSK), YAP1 (proteins YAP and YAPPS127), and
DIABLO (protein SMAC) (Figure 3.7A). The largest sharing of decisive driver gene sig-

natures is observed across BRCA, CESC, OV, and UCEC, and that for cascading proteins
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is observed across BRCA, OV, and UCEC (Figure 3.7B).

For the pan-GI cancers, eight gene-protein pairs are at strong/decisive level of evidence
across all three cancers in at least two out of the three mechanistic model types, including
genes such as ERBB2 (proteins HER2 and HER2PY 1248), CCNE1 (protein CYCLINEL1),
and MAPK®9 (protein JNK2) (Figure 3.7C). The largest number of decisive driver gene,
driver protein, and cascading protein signatures is observed from CORE, and the largest
numbers of pan-cancer signatures for the driver gene and the cascading protein models are
observed between CORE and ESCA (Figure 3.7D).

3.4.3 Stemness cBVS Results for TCGA Cancers

I summarize the stemness outcome model outputs for each TCGA cancer using plots
showing —log,,(1 — @) on the y-axis and B on the x-axis for the nine cancers with the
largest sample sizes in Figure 3.8; the rest are available in our shiny app at https://
bayesrx.shinyapps.io/Functional_iBAG/. The shiny app also contains bar diagrams
of the IBFs for the selected genes/proteins and histograms with density plots of 1BFs for
the predictors not selected, for each cancer. Here, I discuss the results from the BRCA and
CORE analyses since they are the cancers with the largest sample sizes in the pan-gyne
and pan-GI groups, respectively.

For BRCA, no protein is selected using the 10% FDR cut-off on @ from the stemness
cBVS model. Several genes are selected, such as YAP1, DIABLO, and RAPTOR (Fig-
ure 3.8A). The genes selected cover a large span of evidence range from the mechanis-
tic models, with genes like JUN and COL6A1 having no functional evidence and DVL3,
MYHI11, EIF4G1 at the decisive level of evidence, indicating that cBVS is capable of iden-
tifying associations even in the absence of prior evidence, as has been noted in the simu-
lation studies before too (Section 3.3). The histogram indicates that a vast majority of the

non-selected genes and proteins have little to no evidence from the mechanistic models,


https://bayesrx.shinyapps.io/Functional_iBAG/
https://bayesrx.shinyapps.io/Functional_iBAG/

95

‘s[epow onstueyoaw urejoxd Surpeosed (1) pue ‘ureloxd ISALIP (11) ‘QUaZ JOALIP (T) 9} J0J 90UBIYIUSIS JO [QA] JAISIOIP Y} I8 surejoid/sauad
Jo 1oquunu 2y) Suniquyxa sjofd jesdn (q/g) 219y umoys ore sadA) [pow SNSIUBYOAW 21U} 9} JO INO OM] ISBI[ JB UI SIOURD ) JO %G/ ISBI[ JB SSOIOB JOUIPIAD
owos Yim sired urajord-ouad oy A[uQ *(RAISIONP) 7 < ‘(Suoms) 7 — T ‘(fenueisqns) [ — ¢ ‘(@0UIPIAL OU) G°() > Sk pauyap are sa3uel Jq[ oyl (O/v) (g pue D
spoued) (ewOUIDIBROOUIPE YorWOIS) (VLS ‘(Bwourored [eadeydoss) y)SH ‘(BWOUIOIZO0UIPE WNJOI PUE UO[0d) YO :sIedoued dnoi3 [H-ued ay) pue (g pue v s[o
-ued) (ewodIESOUIDIED AULIAN) SO ‘(BWOUdIRd [BLIdWOPUL snd1od aundin) DD ‘(BWOUIOIBI0UIPRISAD SNOIIS UBLIBAO) A ‘(BWOUIOIBI0UIPE [EIIAIO0PUS pUB
BWOUIDIRD [[99 snowrenbs [821A130) DSHD (BWOUIDIRD JAISBAUL 1SBAIQ) Y| :s1ooued dnoi3 auk3-ued oy} 10§ S}[NSAI [OpOW JNSIUBYIAW JO Arewiwung :/°¢ 9IngL|

s190ue) s190ue) s190ue)
] vos3 ﬂ . vos3 M . avis
° ﬂ avis . H avis o ﬂ vos3
. 3100 . 3100 . 3100 o
0 0 JE— 0 [V
— — . — . T 5
1
s
g g z : @
g g w3l £
9 o g : 0
o2 2 3 (']
hd hy = 3
S P o e w
4 4 H H
] 2 o & E O
@ @ i o=
o [ »
o - aan zasua
() () [0}
s190uE) s190u8) s190u8) nd |
] son son son S 7 i § :13 £1i¢%
[ 0830 M o 0830 M o 0830 2 H H :
L] “ o3on m L] “ o3on @ " o3on H ] H abuey (4g)o160| d
ﬂ . ) ° u 20 u ° o H H H
. vous ® vous . vous W
5
H s z : <
3 3 o g £ =]
o g g g H ®
< "g H )
3 El g R )
g g 8 H
0 8 51 8 H 3 =}
a a @ & [}
]
o0z w

() ) 0]

(a)




96

but 194 of them are at the strong and decisive levels of evidence and yet not selected by
cBVS due to the absence of sufficient association with the outcome data.

For CORE, two genes - PEA15 and KDR are selected using the 10% FDR cut-off on &
from the stemness cBVS model, both negatively associated with the stemness index as can
be seen from the sign of the estimated regression coefficients (Figure 3.81). Both the genes
selected are at the decisive level of functional evidence. The histogram again indicates that
a vast majority of the non-selected genes and proteins have little to no evidence from the
mechanistic models - however, 179 many are at the strong/decisive levels of evidence and
are still not selected by cBVS.

3.4.4 Survival cBVS Results for TCGA Cancers

I summarize the survival cBVS outputs for each TCGA cancer using plots showing
—log,,(1 — &) on the y-axis and § on the x-axis for each cancer. Further, I present bar
diagrams exhibiting the 1BFs for the selected genes and proteins and histograms with den-
sity plots of 1BFs for the predictors not selected. To ensure a cleaner presentation, I in-
clude these results only in the shiny app hosted at https://bayesrx.shinyapps.io/
Functional_iBAG/. Here, similar to the previous subsection, I discuss the results from
the BRCA and CORE analyses.

For BRCA, no gene is selected using the 10% FDR cut-off. The only protein selected
is Collagen VI, which has decisive functional evidence. Again, a vast majority of the non-
selected predictors had little to no functional evidence. For CORE, no gene/protein is
selected at the 10% FDR threshold.

3.4.5 Biological Findings and Implications

Majority of the proteogenomic biomarkers identified in our analyses have supporting
evidence from past literature in terms of their roles in cancer mechanism. In this subsec-

tion, I discuss some of these results in the light of past evidence regarding their molecular
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mechanisms in cancer progression and patient survival. All associations discussed below

are significant at a 10% level of FDR control.

RPS6KAT1 gene and p90RSK kinases in gynecological cancer progression The gene RPS6KA1
(protein p90RSK) has decisive evidence for all but two mechanistic models in the pan-gyne
cancers (Figure 3.7A). The gene has been known to be differentially expressed in endome-
trial cancer tissue as opposed to benign endometrial tissue (Mamoor, 2021). Specifically,
it is known to have a favourable prognostic effect on clinical outcomes in endometrial can-
cers (Bradfield et al., 2020). The p90ORSK protein is selected in the survival cBVS model
for OV. p90RSK has been known to impact metastatic seeding of ovarian cancer cells,
effecting the invasiveness of the cancer via activating a self-reinforcing cell autonomous
circuit (Torchiaro et al., 2016). The RPS6KA1 gene is also significantly associated with

the increased risk of breast cancer (Shareefi et al., 2020).

YAP1 gene and YAP proteins in gynecological malignancies The gene YAPI1 (proteins YAP,
YAPPS127) has decisive evidence in all mechanistic models for all gynecological cancers
except UCS (smallest sample size in the group, n = 57) (Figure 3.7A). YAP is a crucial
agent impacting gynecological cancers. As a transcriptional co-activator within the Hippo
pathway, over-activation of YAP leads to uncontrolled cell growth and malignant transfor-
mation in gynecological malignancies, including cervical, ovarian, and endometrial can-
cers (Wang et al., 2020). Further, YAP expression is associated with a poor prognosis for
gynecological cancers - activation of YAP induces cancer cell proliferation and migration
(breast: Guo et al. (2019), cervical: He et al. (2015), endometrial: Tsujiura et al. (2014)).
This aligns with our identification of YAPI as negatively associated with stemness for

BRCA (Figure 3.8A) and with survival for OV and CESC.
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DIABLO gene as a marker of gynecological tumors Another interesting candidate emerging
from the mechanistic models is the gene DIABLO (protein Smac), which has been pro-
posed as a biomarker for gynecological tumors, so far with little knowledge about its cel-
lular mechanism. A recent study shows some evidence in favor of a positive association
of Smac/DIABLO expression levels with estrogen receptor positivity in breast cancer (Es-
pinosa et al., 2021). Our cBVS analyses identify higher DIABLO expression to be asso-
ciated with higher tumor stemness for two gynecological cancers (BRCA and UCS, Fig-
ure 3.8A), which is in line with prior knowledge (Arellano-Llamas et al., 2006; Arbiser,
2018). On the other hand, DIABLO is associated with higher survival for OV, supported
by earlier evidence - higher expression of DIABLO is a good prognostic sign for ovarian
and endometrial cancers (Dobrzycka et al., 2010, 2015). However, neither DIABLO nor

its corresponding protein Smac as top candidates in the mechanistic analyses.

HER? as a therapeutic target in gastrointestinal cancers The gene ERBB2 (protein HER2) has
decisive evidence for all mechanistic models in the pan-GI group, emerging as the top
candidate (Figure 3.7C). HER2 overexpression has been known to be a frequent molecular
abnormality in gastric cancers via gene amplification (Gravalos and Jimeno, 2008). HER2
has also been considered as a molecular therapeutic target for patients with advanced gastric
cancer (Abrahao-Machado and Scapulatempo-Neto, 2016). In our cBVS analyses, both
ERBB2/HER?2 are positively associated with stemness for ESCA and STAD, which aligns
with past knowledge - increased expression of HER?2 leads to quicker growth and poorer

progression of gastric and esophageal cancers (Malaguti et al., 2015; Lee et al., 2019).

EGFR exhibiting contradictory associations with gastrointestinal cancers The EGFR gene/protein
emerge jointly on top in the pan-GI mechanistic models, with consistent decisive evidence

(Figure 3.7C). Among gastric cancer patients, 2—-35% are reported to have EGFR protein
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overexpression and/or gene amplification (Adashek et al., 2020). However, the utility of
EGFR as a therapeutic target has been questionable at best so far, with no general consensus
on its prognostic value in gastric cancer (Arienti et al., 2019). While some studies have
indicated that high EGFR gene amplification is associated with poor outcome (Kandel
et al., 2014), others have suggested the opposite (Aydin et al., 2014). In line with this,
cBVS found contradictory associations - EGFR gene expression is negatively associated

with both stemness and survival for ESCA but positively associated with both for STAD.

3.5 Discussion and Future Work

Overview [ propose fiBAG, a hierarchical Bayesian framework to perform integration of
multi-omics data and outcomes. Using GPs, I quantify the functional roles of proteoge-
nomic biomarkers along three axes of interest (driver gene, driver protein, cascading pro-
tein). Then, using a Bayesian variable selection procedure with a calibrated spike-and-slab
prior on the regression coefficients, I incorporate this functional evidence in the outcome
model to improve covariate selection and effect size estimation. The framework offers
novelty and utility in multiple directions. First, it offers the user liberty in terms of multi-
platform integration, in the sense that depending on the data available, the mechanistic and
outcome layers can be appended or modified along with additions or alterations of the com-
plete set of parameters of interest. For example, I use DNA methylation and copy number
alterations as upstream covariates in our mechanistic models, but other information such
as miRNA expression could easily be incorporated. Second, the calibrated spike-and-slab
prior addresses the more general statistical question of incorporating external information
in a variable selection setting - by updating the mapping function used to calibrate evi-
dences to a prior probability scale, the procedure can be adapted to other settings where

the numerical evidences are in a different scale and/or sourced from different models. Our
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calibrated regression framework, i.e., cBVS is compared with multiple benchmarks via
simulation studies in synthetic and real data-based settings. The benchmarks include un-
calibrated Bayesian variable selection (EMVS), standard and grouped penalized regression
(LASSO and IPF-LASSO), and Bayesian variable selection incorporating external infor-
mation (graper and xtune). I use selection metrics like AUC and MCC and estimation
metrics such as MAD and MSE to evaluate performances across a broad spectrum of n/p
ratios. cBVS outperforms all the uncalibrated methods across all n/p settings, and performs
comparably with the calibrated methods in the high n/p settings. For low n/p, cBVS offers

improvement in selection compared to other calibrated methods (Figure 3.4).

Pan-cancer applications Our framework is cancer-specific (each mechanistic and outcome
model is built for each cancer separately and then assessed in a pan-cancer fashion) for
several reasons. First of all, non-omics covariates (B - e.g., demographic information such
as gender or age, and clinical information such as cancer stage) would potentially be entirely
different across cancers, and may have widely different scales of measure. Further, even
the outcomes may not always be normalized across cancers - while a scaled outcome like
the mRNAsi does not pose this problem, survival, for example, may differ considerably
across different cancers. Finally, the mechanistic models need to be run separately for each
gene and protein, and depending on the cancer of interest, the functional roles of these
genes and proteins are potentially different, effectively rendering the measures of evidence
to be cancer-specific as well. Having established the improved utility of our method in an
evidence-based setting, I analyze pan-cancer multiomics data from TCGA, across a total of
four cancer groups (pan-gyne, pan-kidney, pan-squamous and pan-GI) and 14 cancers. Our
real data analyses identify both known and novel associations at cancer-specific and pan-

cancer levels, such as the identification of the roles of RPS6KA1 gene and p90RSK kinases



102

in progression of gynecological cancers, and the potential utility of the EGFR gene and
protein as therapeutic targets for ESCA where their expressions are negatively associated

with survival outcomes.

Sensitivity analysis in real data applications A key point of interest in validating such detec-
tions is to ensure that the implemented procedure is not overly sensitive to the hyperpa-
rameter specifications and that the results are not driven majorly by these choices. To this
end, I performed the stemness outcome model analysis for the five pan-gynecological can-
cers using not only the specific set of tuning parameters for the calibration function in the
calibrated spike-and-slab prior as described in Section 3.2.3, but also additional parameter
values. To recall, the core part of the four-parameter logistic function contains the transfor-
mation (s7/3)™>". For the tuning parameter in the exponent, a grid between [2.5, 3] with a
spacing of 0.125 (five values) is used, and for the tuning parameters in the denominator, a
grid between [2.5, 3.5] with a spacing of 0.25 (five values) is used. I tabulate the proteoge-
nomic biomarkers selected across each of the 25 combinations of the tuning parameters
for each of the cancers. The 18 proteogenomic biomarkers selected for BRCA stemness
outcome models as exhibited in Figure 3.8 are consistently selected in 21 out of the 25
tuning parameter combinations, with the exceptions all being cases where the denominator
1s 3.5. As can be noted from the mathematical form of the calibration function, increase in
this parameter implies a decrease in the prior inclusion probability for the same value of
mechanistic evidence, which leads to non-selection of some signals with strong or decisive
evidence. As can be observed in Figure S3.10-S3.14, an even higher value of four for the
denominator parameter leads to further lower prior inclusion probabilities for even 1BFs
higher than two (i.e. decisive). Overall, the results indicate that as long as the calibra-

tion is performed based on parameters that allow the prior mechanism to incorporate the
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evidence up to a reasonable strength of belief, the exact selection results would not vary

substantially.

Flexibility and scientific novelty of the analysis scheme The flexible covariate-specific mechanis-
tic modelling approach offers the feasibility of utilizing platforms with larger expression
pools such as the National Cancer Institute Clinical Proteomic Tumor Analysis Consor-
tium (CPTAC). Further, more cancers or cancer groups can be included in the analysis
pipeline as well, since the cBVS model fitting is cancer-specific and I offer three options
in decreasing order of computational complexity (full MCMC, selection-only MCMC, and
EMYVS). All these features make the whole procedure highly parallelizable (covariate level
for mechanistic models and cancer level for outcome models) - the computation times for
the simulation and real data settings described in this chapter reassure the utility of our
pipeline in this direction. An important novelty of our integrative analyses is the use of
mRNA-based cancer stemness indices as outcomes. Indeed, tumor stemness is a pertinent
determinant of cancer growth and prognostic outcomes, and only recently there have been
efforts to quantify stemness based on cellular signatures (Malta et al., 2018). To the best
of our knowledge, our study is the first to look at potential associations of stemness with a
pool of proteogenomic biomarkers in an oncological context. A relevant question, however,
would be whether the associations identified are meaningful or artifacts of the construc-
tion of the index. To answer this, I looked at the machine learning procedure employed by
Malta et al. (2018), specifically at the ranking of the biomarkers according to decreasing
absolute value of weight in the final trained model. Reassuringly, none of our identified
proteogenomic biomarkers across all the cancers belonged to the top 50 of the list, and very
few belonged to top 100, 500, and 1000, with the highest magnitude of the weight among

these selected covariates being at the order of 107>,
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Future directions and reproducibility This work indicates a number of potential avenues for
future statistical research. First, the flexibility in choosing the calibration function suggests
that the function can even potentially be data-driven (such as choosing the tuning param-
eters via some pre-hoc analysis of the data). The cBVS framework can also be adapted to
settings slightly different from ours - such as the link function being non-linear, or using
bivariate outcomes and so on. To offer seamless interactive visualization of our integrative
analysis results, I have built an R Shiny app, hosted at https://bayesrx.shinyapps.
io/Functional_iBAG/. All our model and figure codes have been made available pub-
licly via the app. I strongly believe that fiBAG will offer significant prognostic/therapeutic

utility in oncological treatment and research.

3.6 Supplementary Figures
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Figure S3.1: Evidence calibration function for tuning parameters (2, 2). The left panel summarizes the
relationship between the beta prior mean and the 1BF from the mechanistic model. The right panel presents
the corresponding beta densities at IBF = 0.25, 0.75, 1.5, and 3.
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Figure S3.6: Evidence calibration function for tuning parameters (3, 2). The left panel summarizes the
relationship between the beta prior mean and the 1BF from the mechanistic model. The right panel presents
the corresponding beta densities at IBF = 0.25, 0.75, 1.5, and 3.
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the corresponding beta densities at IBF = 0.25, 0.75, 1.5, and 3.
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Figure S3.10: Evidence calibration function for tuning parameters (4, 2). The left panel summarizes the
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Figure S3.12: Evidence calibration function for tuning parameters (4, 2.5). The left panel summarizes the
relationship between the beta prior mean and the 1BF from the mechanistic model. The right panel presents
the corresponding beta densities at IBF = 0.25, 0.75, 1.5, and 3.

Standard Deviation = 0.289

Prior Beta Density
=025

for log10 BF

0.00 025 050 075

Standard Deviation = 0.288

Prior Beta Density
=075

for log10 BF

0.00 025 050 075 1.00

Standard Deviation = 0.277

Beta Prior Mean

Prior Beta Density
forlog10 BF = 1.5

0.00 025 050 075

Standard Deviation = 0.146

Prior Beta Density
for log10 BF = 3

2 3
log10 of Bayes Factor 0.00 0.25 0.50 0.75
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Figure S3.15: Mechanistic model heatmaps for the pan-kidney cancers. Each cancer column consists of three
sub-columns, one each for the three mechanistic models (driver gene, driver protein and cascading protein).
The IBF ranges are defined as: < 0.5 (no evidence), 0.5 — 1 (substantial), 1 —2 (strong), > 2 (decisive). Only
the gene-protein pairs which are at the decisive level of significance across all four cancers in at least two out
of the three mechanistic model types are shown here.
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Figure S3.16: Mechanistic model upset plots for the pan-kidney cancers. Upset plots exhibit the number
of genes (panel A) or proteins (panels B-C) that are at the decisive level of significance (IBF > 2) for the
(A) driver gene, (B) driver protein, and (C) cascading protein mechanistic models respectively, stratified by

intersections across cancers.
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Figure S3.17: Mechanistic model word clouds for the pan-kidney cancers. Word clouds summarize pan-
cancer mechanistic model results for genes (panel A) or proteins (panels B-C) for the (A) driver gene, (B)
driver protein, and (C) cascading protein mechanistic models. The size of the gene/protein names are pro-
portional to (no. of cancers where the gene/protein is at the decisive level of significance)®. Here, decisive
is defined as IBF > 2.
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Figure S3.18: Mechanistic model heatmaps for the pan-squamous cancers. Each cancer column consists
of three sub-columns, one each for the three mechanistic models (driver gene, driver protein and cascading
protein). The IBF ranges are defined as: < 0.5 (no evidence), 0.5 — 1 (substantial), 1 — 2 (strong), > 2
(decisive). Only the gene-protein pairs which are at the decisive level of significance across all four cancers
in at least two out of the three mechanistic model types are shown here.
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Figure S3.19: Mechanistic model upset plots for the pan-squamous cancers. Upset plots exhibit the number
of genes (panel A) or proteins (panels B-C) that are at the decisive level of significance (IBF > 2) for the
(A) driver gene, (B) driver protein, and (C) cascading protein mechanistic models respectively, stratified by
intersections across cancers.
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Figure S3.20: Mechanistic model word clouds for the pan-kidney cancers. Word clouds summarize pan-
cancer mechanistic model results for genes (panel A) or proteins (panels B-C) for the (A) driver gene, (B)
driver protein, and (C) cascading protein mechanistic models. The size of the gene/protein names are pro-
portional to (no. of cancers where the gene/protein is at the decisive level of significance)®. Here, decisive
is defined as IBF > 2.



CHAPTER IV

Bayesian Evidence Synthesis for Multi-system Multiomic Integration

4.1 Introduction

With the advent of sophisticated techniques and platforms, large-scale datasets cover-
ing multiple layers of cellular omics are becoming increasingly available (Subramanian
et al., 2020; Conesa and Beck, 2019). Consistent advancements have been made in the
last few years towards adding more dimensions to these high-throughput datasets, namely
(1) additional to patient-level disease databases, model systems such as cell lines, patient-
derived xenografts and organoids are being studied extensively in context of cancer and
other diseases (Ruggeri et al., 2014; Kim et al., 2020); (2) assessing clinical information and
therapeutic response with omics data to make pharmacogenomic discoveries is becoming
increasingly common (Relling and Evans, 2015; Roden et al., 2006). Multiple challenges
arise during investigations of such datasets, including but not limited to computational in-
efficiency, complex nature of associations among the omic variables considered, and the
biological interpretability and clinical implications of the results (Tarazona et al., 2021).
Specifically in context of cancer, the necessity to not only detect biomarker associations
with drug/treatment regimens but also to assess the functional relevance and mechanism
of such associations is paramount, potentially guiding future therapeutic advances. Thus,

novel algorithms that integrate multi-omics patient and model systems profiles can poten-
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tially reveal novel biomarkers, drug targets and predictive models in cancer.

Multi-dimensional data integration in cancer To address the wide range of complexity and
variability in both detection and management of cancer, a number of multi-omics ap-
proaches have been able to uncover intricate molecular mechanisms and discover prog-
nostic candidates (Chakraborty et al., 2018). Data integration approaches have proven
particularly useful - both vertical (multiple experiments on a common cohort of samples)
(Kaplan and Lock, 2017; Cheng et al., 2015) and horizontal (meta-analysis of different
cohorts) (Angel et al., 2020; Tu et al., 2015) integration methods have been developed
(Tseng et al., 2015). To simultaneously identify pharmacogenomic associations and cor-
responding functional mechanisms, singular usage of either of these dimensions is insuf-
ficient due to the richness of the currently available omics databases. Multi-omics patient
databases of cancer such as The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013),
while rich in transcriptomic, proteomic and other levels of omics profiles, do not typically
provide comprehensive and systematic drug response on the same cohort of patients, re-
stricting utilization of these profiles directly in pharmacogenomic contexts. Model systems
databases such as the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012) and
Genomics of Drug Sensitivity in Cancer (GDSC) (Yang et al., 2012) provide both molec-
ular profiles and drug sensitivity information on the same set of models, but the cancer-
or lineage-specific sample sizes of such databases are lower than their patient counterparts
and association models built solely on them may suffer from the lack of sufficient statis-
tical power to detect all the true signals. In this work, I propose a solution to this, based
on a multi-stage hierarchical Bayesian framework that synthesizes information from both
patient and model system databases across multiomic levels to improve the identification

of novel cancer driver genes and association with drug responses.
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A Bayesian evidence synthesis procedure Our integrative framework is called BaySyn: a multi-
stage hierarchical Bayesian evidence synthesis pipeline for analysis of multi-system mul-
tiomic data. The first stage identifies cancer driver genes by detecting transcriptomic as-
sociations with upstream changes, which are then utilized to inform biomarker association
models in the second stage to improve selection. Specifically, the first stage uses additive
Gaussian process regression models to detect potential nonlinear associations of gene ex-
pression data with corresponding copy number and methylation profiles for both cell line
cancer lineages and patient cancer types. To tackle the issue of lower sample size in cell

line data, I propose multi-lineage versions of these mechanistic models that can decon-

volve lineage and upstream main effects as well as any potential interactions, in addition to
single-lineage versions of the same. Evidence synthesized across a common pool of genes
from the two sources is then used in a calibrated Bayesian variable selection procedure
in the second stage to identify genes having high association with an outcome variable of
interest, such as drug response data. Specifically, the evidence quantifications from the

mechanistic models are used in these outcome models to upweight the prior probability of

selection of different biomarkers in a spike-and-slab prior setting. A conceptual schematic
of the procedure is presented in Figure 4.1, providing a high-level summary of the multi-
model system evidence synthesis through the mechanistic models and calibrated biomarker
selection via the outcome models. I apply our framework to multiomic CCLE and TCGA
datasets from pan-gynecological cancers (breast, ovary, and uterus lineages). Our mecha-
nistic models provide cancer-specific and cross-lineage evidence that implicate several rel-
evant functional genes such as PTPN6 and ERBB2 in the KEGG adherens junction gene
set. Furthermore, our outcome model is able to make higher number of discoveries in drug
response models than its uncalibrated counterparts under the same thresholds of type I er-

ror control, including detection of known lineage-specific biomarker associations such as
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BCL11A in breast and FGFRLI in ovarian cancers.

The rest of the paper is organized as follows. Section 4.2 summarizes the multi-stage
data integration framework. Section 4.3 describes the CCLE and TCGA data processing
and analysis procedures, along with summarization of interesting results. I finish with a
brief discussion of our proposed procedure and findings in Section 4.4. All the processed
datasets, R codes for the pipeline, and the complete set of real data results are available
for access via an interactive R Shiny dashboard at https://bayesrx.shinyapps.io/
BaySyn.

4.2 The BaySyn Framework

Multi-stage integration pipeline I propose BaySyn, a multi-stage hierarchical Bayesian evi-
dence synthesis pipeline for multi-omics and multi-systems data, as outlined in Figure 4.1.
For a given set of samples (patients/model systems), I build gene-specific mechanistic mod-
els to infer functional relevance of the genes in the samples of interest based on the asso-
ciation of the gene’s expression pattern with its upstream covariates such as copy number
changes or DNA methylation. Particularly, in case of model systems, certain cancer lin-
eages may contain a low number of samples and the mechanistic models may suffer from
a lack of sufficient statistical power to identify true associations with upstream factors.
Therefore, I build two versions of the mechanistic models depending on the sample size
scenarios - a multi-lineage model that can borrow strength across samples from different
lineages (used in this work for modeling the cell line samples; Section 4.2.1), and a single-
lineage version that can be applied to a set of samples from a single cancer lineage/type
(used in this work in context of the patient samples; Section 4.2.2). Based on statisti-
cal summaries of significance of the upstream factors for each gene from these models, I

then build the outcome-specific Bayesian hierarchical variable selection models (outcome
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models, in short; Section 4.2.3) that can incorporate such prior information and borrow
strength to improve selection of genes. The specifics of each type of model are described
in full detail in the rest of this section.

4.2.1 Multi-lineage Mechanistic Models

Mechanistic models For the mechanistic models, I investigate a gene of interest specifically
in relation with its upstream factors to detect whether it is a functional driver, and repeat the
procedure across the complete pool of genes included in the analyses. This approach offers
a highly parallelizable framework, and the efficiency only depends on the computational
resources used by each individual model. Further, the class of genomic associations with
upstream factors that I are interested in may be highly nonlinear, as has been indicated in
past cancer literature (Solvang et al., 2011; Litovkin et al., 2014). Therefore, I intend to
equip our models with sufficiently flexible specifications that can identify a broad range
of association patterns. Keeping these useful features in mind, I describe the mathemat-
ical details of the multi-lineage mechanistic models in this subsection and single-lineage

mechanistic models in the next subsection.

Notations [ begin with setting up some notations. Let M denote the number of lineages

across which I intend to borrow strength in a single mechanistic model, and let {n,, ... ,n,,}
M

denote the lineage-specific sample sizes, withn = Z n, being the total sample size. Across
c=1

atotal of j € {1, ..., q} genes, let G;; denote the (continuous) normalized expression data
for the j™ gene in the i™ sample. Let L, denote the lineage (tissue/cancer type) of the i

sample, and let U;; = (U, U, jpj)T denote the p; X I vector of upstream information

j] 9 eee g
from sample i matched to gene j. Our mechanistic models are gene-specific, allowing

different sample sizes for each gene. However, for simplicity of notations, I describe the

models assuming a fixed n.
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Model structure For the jth gene, I build an additive multi-lineage mechanistic model con-
taining separable components for the main effects of lineage and each upstream covariate,
along with any possible interactions of lineage with the upstream factors. Assuming the
G, ;S to be mean-centered, the general mathematical form of such a model is presented in
the following equation.
Dj pj

@D Gy= fiL) + D FuUp) + Yl LaUg)+ &y

—— v=1 v=1 ——

o / . 7

Lineage main effect ~ ~ Error
Upstream main effects Interaction effects

Vi € {1, ... n}. The simplest choice is to specify each component f, as a linear model.
Such models have been explored in context of cancer omics (Wang et al., 2013b). Although
they are computationally simple, they may not be fully able to capture the general range
of cellular association patterns. An obvious nonlinear extension is to use splines to con-
struct piece-wise linear mean profiles. Such approaches have also been explored in this
context (McGuffey, 2015). However, there are multifold challenges — including specifying
the number of knots (hence the degree of adaptable nonlinearity) and increasing computa-
tional intensity with increasing number of covariates. To build a general class of additive
association models while maintaining a reasonable extent of computational efficiency, I
use Gaussian process (GP) models.

To build an additive GP model with interaction effects, I adapt an existing approach pro-
posed in context of longitudinal data (Timonen et al., 2021). In a repeated measures setting,
this approach provides a way to incorporate sample-level baseline effects and treatment ef-
fects in a nonlinear fashion. I extend this idea to our scenario to include lineage-level
baseline effects (treating the experiments on cell lines from the same lineage akin to a
repeated experiment setting) and changes in the effects of upstream covariates across dif-
ferent lineages. While samples belonging to cancers sharing some larger group-specific

commonalities (e.g. all gynecological cancers) may share patterns of mechanistic impacts
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of upstream platforms on gene expressions, there may still be cancer-specific differences
in the exact effects. Briefly, I use a GP equipped with a zero-sum (zs) kernel for the main
effect of the categorical lineage variable, one with an exponentiated quadratic (eq) ker-
nel for the main effects of the continuous upstream variables, and a product of the zs and
eq kernels for their interactions, following existing approaches (Kaufman and Sain, 2010;
Timonen et al., 2021). I now discuss the specifics of the GP model along with the prior

choices.

GP specification and priors I build a Gaussian likelihood by first assuming ¢;; v N(O, af),
and I then build the f, components using GP priors for each component. For each com-
ponent f,, let us define f © =1 f.x), ..., f,(xn)]T where x; generally denotes the vector
of all possible covariates for sample i. I assume that this has a multivariate normal prior
as f© ~ N, (0,K®) where the n X n covariance matrix has entries th) = a’£.(X,, Xp).
There are a few things worth noting about this model. First, the components f, are as-
sumed independent a priori, hence their sum is also a zero-mean GP with kernel £(x, X)=
Z a_zé,(x, x/) (Williams and Rasmussen, 2006). Second, each a.z controls the marginal
V;lriance of the corresponding component, while the base kernel function £, controls the
component’s shape and the induced covariance structure. Third, in our applications, ker-
nels 2,; and %, s are functions of the lineage and upstream covariates only, respectively,

while the kernels £; s are functions of all available covariates. The final step in the model

3jv
building is to choose the specific kernel functions for each component according to the

types and scales of the covariates they take as inputs, as described below.

1. For component 1 (one categorical covariate), I use the zero-sum (zs) kernel. The

marginal variance is denoted by alzj. Assuming that the model includes samples from
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1 if L, =1L,
a total of M lineages, the kernel is defined as £,,(L;, L) =

1
—— else.
1-M

Note that this choice of kernel function is equivalent to assurfling the lineage effects

follow a standard random effects model with a zero-sum constraint on the random

effects. Namely, this is equivalent to assuming that f;(L) ~ N(O, afj) for L =
M

1,..., M independently, with the constraint that z f1;(L) = 0.
L=1

2. For component 2 (only continuous upstream covariates), [ use the exponentiated quadratic

(eq) kernel on each covariate. The kernel for the v'" upstream covariate correspond-
2
(Ui ju Uhju)
212

2jv

ing to gene j is defined as £,;,(U,;,, U,;,) = exp(— ). The j™ marginal

variance is denoted by a; . .
jv

3. For component 3 (interactions between categorical lineage information and contin-
uous upstream covariates), I use the product of zs and eq kernels on each interac-

tion. For the v™ interaction, the kernel is defined as %5;,((L;, U;,)", (L,. U,;,)") =
(Ui'v - l]h'v)2
%1;(L;, L) exp(— : 2 :
3jv
2010). The j™ marginal variance is denoted by agjy.

) following existing approaches (Kaufman and Sain,

Each marginal standard deviation «a, is given a Student—t;r0 prior, and each length-scale
parameter /, is given a Log-Normal(0, 1) prior, independently. The residual variance pa-

rameters af are assigned an Inverse-Gamma(2, 1) prior.

Model fitting The interest is in building mechanistic models that would allow us to test
for different main and interaction effects of interest. Due to the nature of the zs kernel,
the interaction components will also have the zero-sum property (Timonen et al., 2021),
which makes it simple to extract and interpret the interaction effects separately. I use a dy-

namic Hamiltonian Monte Carlo (HMC) sampler as implemented in the R package 1gpr
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to obtain draws from the posterior distributions of the parameters, and arrive at the pos-
terior of the functional components analytically for Gaussian likelihood (Timonen et al.,
2021). While selection of the specific components and hence covariates is possible based
on ranking Bayesian variable relevance statistics or following a minimal subset selection-
type approach using such statistics, I are more interested in quantifying the significance of
the main and interaction effects as separate collectives, and follow the approach described

below.

Model comparison and hypothesis testing Since I are interested in evaluating the roles of lin-
eage, upstream factors, and any possible interactions in explaining the variability in gene

expressions, I are interested in testing the following hypotheses for the j gene.

1. Lineage main effect: H,,; : f|;, = constant.
2. Upstream main effects: H,; : f,;, = constant,Vv € {1,...,p;}.

3. All upstream effects: Hy,;; : f,;,, f3;, = constant,Vv € {1,...,p;}.

To perform these tests, I need to be able to construct models that contain the additive
components of interest and compare them against submodels without those components. 1
use log-posteriors of the parameters in a model to perform the model comparisons, com-
puting HMC-based pseudo-Bayes factors (pBF, ;s) as scalar summaries of component sig-
nificance. First, I describe the models I construct and the log-posterior (LP) quantities for

each below. Here G ; = (G, ...,G,)".

(M1) Lineage-only model: Components f,, and f5, in Equation (4.1) are not included. The

expression for the log-posterior of this model is given below. Here A = —g In(27)
21°(10.5)

V20xI'(10)
Vo, +Vy; where V, = 671, and V,;;, = a] £,,(L,, Ly,).

and B = In

are constants free of the model parameters and data. X,; =
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LPy; = In[2(G,jlay;, 07).72(67). 72(ay )]

= In[Q27)” z|211| 2exp{——GT2'1G }.r(z)-la;ﬁexp(—aj-z)

2
21°(10.5) _2rdos) o, 11) 105[(0(1] > 0)]
'\/202T(10) 20
In|Z,| +G'Z!G, X o,
—A+B-— 5 —6ln0'j—0'j_ = 10.5In(1 + 55) + In I (a; > 0).

(M2) Upstream-only model: Components f, and f;, in Equation (4.1) are not included.

The expression for the log-posterior of this model is given below. Here X,; = V,+V,;

where V,;, = Z azjv}ézjv( ijvr Unjn)-

LPy; =In[2(Gjlay,, .. @y s s oo by - 00).2(00). | [ {20 ) 201
v=1

_ - -1 P -1_-6 )
= In[(27)"2|Z,;| 72 exp{ G.jf.zj G,1.I'(2) ey exp( o )

Pi 2
G 2I°(10.5 v
H{ (10.5) (+ @y,

V/202T(10) 20

)~ I (ay;, > 0))

Dj 2
. 1 (In(/,;,))
) ) (E——T
v=1 27[12JU
n+p, In |XZ -|+GTZ 1G
= JA+ij— ad A —6ln0'.—o-._2
n 2 J
2
~10.5 Zln(l + 2"’) + Zln](azjv > 0)

- Z In(ly;,) — % Z(ln(lzjv))z.
v=1 v=1

(M3) All main effects model: Components f;, in Equation (4.1) are not included. The

expression for the log-posterior of this model is given below. Here X5, =V, +V; +

In|Zy| +GIZI'G,
+1)B - 5 ! —6Ino; -0}
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2
(114
—10.5In(1 + 55 +1In I (a;; > 0)
2

p; a pj P; bj
2jv 1
~ 105 Z; In(1 + 2—(’)) + z_‘f In I(ay;, > 0) - Z{ In(ly,) = z_‘f(m(lm))z.

(M4) Interactions model: All components in Equation (4.1) are included. The expression
for the log-posterior of this model is given below. Here X,, =V, + V|, +V,, + V;,

Dj
Where V3jih - Z agjvé:;jy((Ll’ Utjl))T (L hjv)T)
v=1

In|Z, | +GTE;'G,

oj 4

2

—6ln0'. —0'._2

n+2p,

o, 2 o?
1j 2/0
—105In(l + 55) +In I(a; > 0) ~ 105 Z In(l + =)+ Z In I(a,,, > 0)
pj 3% 1 17/
~10.5 )" In(1 + ’”) + Z In I(ay,, > 0) - Zln(lzju - Z(ln(lzjv))
v=1 v=1

- Z In(ly,,) — Z(ln(lg,u))

Sequential evidence detection using pBFs Based on these quantities I now perform the tests of
hypotheses as follows. I focus first on model M3 to test whether the lineage component
has any effect at all, and move on to M4 (including interactions) only if the answer to

the previous question is yes. For model M3, let .S denote the number of draws from the

HMC sampler, and let ([);S) = (aij_) , ag,)l, s g)p , l;sj)l, e l;sj)p (.S))T denote the vector of
sampled parameter values at the s™ iteration, s € {1,...,.5}. Let LP;;) and LPz(j.) denote

the values of LP;; and L P,; respectively, evaluated at ¢§s).
s
Let pBF,; = é Z(LP;JS.) - LPZ(;)) be defined as the pseudo-Bayes factor for testing
Hy; @ fy; = const;nt (lineage main effect). Note that this quantity is an approxima-
tion for the log-Bayes factor (IBF) for comparing models M3 and M2 under equal model
priors. To compute the 1BF, one has to compute the expected posteriors for each mod-
els, followed by taking a ratio of the two quantities, followed by a log. Here, I are com-

puting an empirical average of the difference of log-posteriors of the model parameters
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based on the HMC samples. I use standard cut-offs for significance used for IBFs at a
log;(¢)-scale: < 0.5 (no evidence), 0.5 — 1 (substantial), 1 — 2 (strong), and > 2 (decisive)
(Kass and Raftery, 1995). From now on, by pBF I always mean a quantity already in this
scale. If this test indicates non-significance (neither strong nor decisive evidence), I test
Hyy; @ [, = constant,Vov € {1, ..., p;} (upstream main effects), by comparing M3 with
s

M1 via computing pBF;; = % Z(LPS(;.) - LPS)) / In(10) following similar notations as
before. The mechanistic evidencsezif' 1 18 then set equal to pBF ;.

If pBF,; falls in the strong or decisive evidence range, I test Hyyy; @ fop0 f350 =
constant,Vv € {1, ...,p j} (all upstream effects), comparing M4 with M1. For model M4,

following our previous notations, let .S again denote the number of draws from the HMC

(s) (s) (s) (s) l(S) Z(S) l(S) l(S) O_(S))T
b 9 ]

o a EYIERTRRL

) _ (.05
sampler, and let v —(% a 3 By by by

’ 2j1’ ey aZij’
denote the vector of sampled parameter values at the s iteration, s € {1,...,5}. Let

()

LP‘S.) and LPI(;) now denote the values of LP,; and LP,; respectively, evaluated at y”.

s
Let pBFy;; = % E(LP;;) - LPI(;)) / In(10) be defined as the pseudo-Bayes factor for all
(main + interactic:;; upstream effects. Based on pBF;;;, I can then: (1) assign a level of
significance using the standard cut-offs as before, and (2) assign the mechanistic evidence
for gene j as &;; = pBFy;;;. The entire testing procedure is then performed independently
for each of the g genes, as described in Figure 4.2.

4.2.2 Single-lineage Mechanistic Models

These models do not include any lineage main or interaction effects. Thus, from Equa-
tion (4.1), the full models reduce to the following for the j™ gene, using same notations as
before.

bj
(4.2) G;= Y fU;) + & .Vie{l,..n}.
v=1 N——
%{—J Error

Upstream main effects
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. . Evidence No Evidence Substantial Strong Decisive
Build main effects-only model | . .
pBF (-0, 1/2] (1/2,1] 1,2] (2, )
B
G= fi(L) + ;fZV(Uv) + e

Lineage main effect & Error
Upstream main effects

p BFL > 1 | Build model with interactions |

| Test for lineage effect |

A/

Pi Py
G=F(L)+ D FulU) + D Full,U,) +=
v=1 v=1

| Multi-lineage Evidence |

Learning Hoy, : fi = constant Interaction effects

CO m p u te p B FL | Test for all upstream effects |

| Gene-specific models (j) |

Hou N Hor : oy, f3, = constant, Vv

| Build upstream effects model | Assign 81 = pBFUI
| Single—lineagg Evidence | bj
Learning G=> fi(Uy)+e
v=1 | Test for upstream main effects |
| Test for upstream main effects | HOU ' f2v = Constant, VV
Hy : f, = constant, Vv > Assign &; = pBF,
Assign &, = pBF pBF, <1

Figure 4.2: The sequential evidence detection procedure for identifying driver genes within the mechanistic
layer of the BaySyn framework. All pseudo-Bayes factors (pBFs) are assumed to be at the log;(e)-scale.

I'use the same eq kernel parametrization for the GP priors on each f, as I used for the f,
components in the multi-lineage models. I now test H,, j - f ;p = constant, Yvel{l,...,p i }
for each gene. I compare the full model in Equation (4.2) with a noise-only null model, as

described below.

(M5) Null model: Components f, in Equation (4.2) are not included. The expression for

the log-posterior of this model is given below. Here A, G,;, and V; are as before.

.j’

LP;; = In[2(G,

af)-/z(af)]
_n _1 1 _ 1 — _
= In[(27) 2|V, zeXp{—EG.TjVOjIG,j}.FQ) laj(’exp(—aj 2)
B In|V;| + G.TJ.V(;J.IG,]. )

=A —6lno. — 07"
2 J J

(M6) Full model: Components f, in Equation (4.2) are included. The expression for the

log-posterior of this model is given below. Here X5, = V. + Vs, where V;;,, =
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pj (U _ Uhju)2

ijv
Zaﬂ;é]v( ljU’UhjU) a Xp(_ .

), and A, B are as before.
v=1 21120

Pj
LPy =[2G lay,....q;,, 1, ... 1, 002060 [ [{ 2 20,)}]
v=1

= In[Q27)” 2|251| zexp{——GTz-lc; }.r(z)-laf%xp(—o.-z)

D; 2 2
L 2I(10.5 p (In(/;,))
T+ 2051, > 0)). H{ exp(-—2)]
I 1/202T(10) \/ L,
n+p, In |X.| + GTZ G
= ij+ij > ! _6Inc, — 062
n 2 J J

p; a? p; pj Dj
3 1
~105 Zl In(1 + 52 + 21 In I(a;, > 0) - Zl In(l;,) = 5 Z}(ln(l,u»z.

For testing Hy; : f;, = constant,Vv € {1,...,p;}, I compare M6 with M5 via com-
puting pBF, = % Z(LPéjs_) - LPj(JS_)) / In(10), where all the quantities are defined similar
to the previous subsszéction. I assign the mechanistic evidence £, = pBF, for the gene of
interest. As before, I use the following standard significance ranges for these quantities to
categorize levels of evidence: < 0.5 (no evidence), 0.5 — 1 (substantial), 1 —2 (strong), and
> 2 (decisive) (Kass and Raftery, 1995). This procedure is then performed independently
for each of the g genes, as described in Supplementary Figure 4.2.

4.2.3 Outcome Model

For a given pool of genes, it is possible to compute multiple lines of evidence (€; =
(CP P ;)" for gene j). For example, for a given gene j, | may compute one pBF from
a multi-lineage model built on cell line samples, and another pBF from a single-lineage
model built on patient samples (E = 2). With interest in some disease- or therapy-related
phenotype/outcome Y and the selection of biomarkers associated with it, the goal is to
inform the outcome model about any level of evidence captured in these £,,s in a covariate-

specific way to possibly improve selection.
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1. Sufficiently strong evidence in favor of a covariate = higher prior probability of

inclusion.

2. Otherwise, a uniform prior is placed on selection/non-selection for that particular

covariate.

As in Section 3.2.3, I utilize a hierarchical Bayesian setting with calibrated spike-and-
slab priors, described below. Let Y, be the mean-centered continuous outcome for the i™
sample. As described in Section 3.2.3, simple extensions to categorical/censored outcomes
are possible, but in this work I only focus on continuous outcomes. The mathematical form

of the updated calibrated Bayesian variable selection (cBVS) model is then the following.

M-

(43) Yt= ﬁj G,’j+ n; ,iE{l,...,n}.
j=1 N—— N——
Gene expression coefficients Error

Model and prior specifications The errors #, are iid N(0, 7%),Vi € {1,..,n}. A standard
conjugate prior is used for 7% ~ Inverse-Gamma(%, %). Let p = (B, ... ,ﬂq)T denote the

g-dimensional vector of regression coefficients. I place a calibrated hierarchical spike-and-

slab prior on f, similar to Section 3.2.3.

B16,7 ~N,(0,D; ),

6;10; ~ Bernoulli(9,), Vj € {l,...q},

0, ~ Beta( F(€)), %) Vj el ..qh
J

Here Dy, = 7°A;, where Ay is the g X ¢ diagonal matrix A; = diag{s,v, + (1 —
61)Vgs ---» 6,0+ (1 =6,)vy} and v; > v, > 0 are respectively the slab and spike variances.
The binary latent variables 6, are variable inclusion indicators with 6, = 1 meaning that

the jM variable is included in the model. F is a calibration function mapping the evidence

vector €, = (&}, ..., E; ) to the prior covariate inclusion probability 6 ;. The advantages
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of the hierarchical formulation coupled with the evidence calibration function F are multi-
fold. First, by adapting 7, our framework allows the user to incorporate other significance
quantities (such as p-values) into the final outcome model. Any external upstream informa-
tion, including categorical and continuous covariates, can be used in the mechanistic layer
to compute such summary statistics. Finally, by tuning F appropriately, our framework

allows the user to control the impact of the prior information on selection, as I show below.

Choice of evidence calibration function I use a calibration function F on Rf — [0, 1] to ag-
gregate multi-dimensional prior evidence into a scalar prior probability. This calibration
function has to serve two primary purposes. First, it should be able to aggregate multi-
dimensional prior evidence into a scalar prior probability, which means it needs to be a
function on R® — [0, 1]. Second, since the evidence quantities in our case belong to a
continuous and nondecreasing spectrum of evidence strength, the function needs to pre-
serve this unidirectional nature — increment in one source of evidence while keeping the
others fixed should result in equal or higher calibrated prior probability. To serve these two
purposes, I decompose the function as F(€;) = F(F(€)). F, : RE — R aggregates
the multiple lines of evidence to a single scalar value £ ;- Lexplore a linear map for this, as
E
3 L =F(E) = Z w;,£,,. Here w;,s are convex weights specific to gene j, interpreted as
quantifications (i; 1the importance of each source of evidence for that gene. Several choices

of the oS are possible, as described below.
1. Average evidence: w;, = 1/E (takes a simple average of all available evidences).

2. Maximal evidence: w;, = | (8 e = e/eI{I;l"c'l').(’E}g je,) (only takes into account the strongest

evidence available from any source).

E
e = Pie/ Z p;. (weights the evidences by some

e=1

3. Precision-weighted evidence: w;

2

metric of reliability of the evidences, such as p e = &j‘ez where 8je is the estimated
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noise variance for the source model of £, ).

F, : R = [0, 1] maps the scalar evidence summary & , to the beta parameter. In our set-
ting, this function is required to have the following features: for small positive or nonposi-
tive £ ; (indicating small to no evidence for gene j) the beta parameter should be close to one,
resulting in a prior distribution close to U(0, 1) for 5 for larger values of E : the prior distri-
bution should put increasing mass towards one. The rate of increase is guided by the cut-off
ranges for the £ s as described before (Kass and Raftery, 1995). Since these requirements
are similar to that of the calibration function used in fiBAG, I use the calibration function
from Section 3.2.3 as F; here. — namely, F,(€,) = [[1 + {max(£,,107%)/3} 717" + 1%,
As illustrated previously in Figure 3.2, the prior distribution of ; shifts from an uniform

prior to one concentrated close to one with increase in prior evidence strength.

Variable selection Inference is centered around the posterior 2(8, 6,0, 7|Y, G, €, v, 4, v,, v,),

where f, 6, and 0 are the g X 1 vectors of all S, o S, and 6 IS respectively, Y, is the out-

nx1
come vector, G, is the design matrix, and €, ;. is the matrix of the &;,s. I approximate
this using a Gibbs sampler implemented via the rjags R package (Plummer et al., 2016).
I obtain posterior estimates of the parameters (i.e., ﬁjs, 0 s, and 7) as their corresponding
empirical posterior means. Model selection is performed using the collection of 1 — 0 ., as
p-value type quantities and applying a false discovery rate (FDR) control procedure (Bal-

adandayuthapani et al., 2010), as described previously in Section 3.2.4.

The overall BaySyn procedure is then summarized in Algorithm 4.1.
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Algorithm 4.1 The BaySyn Procedure
: procedure MECHANISTIC MODEL

1
2 procedure MULTI-LINEAGE EVIDENCE SYNTHESIS > For model system data
3 forj in 1 -» pdo > p = number of genes
4: Build multi-lineage mechanistic model
5: Compute evidence &
6 end for
7 end procedure
8 procedure SINGLE-LINEAGE EVIDENCE SYNTHESIS > For patient data
9 forj in 1 — pdo
10: Build single-lineage mechanistic model
11: Compute evidence &),
12: end for
13: end procedure
14: end procedure
15: procedure OUTCOME MODEL > For model system data
16: procedure EVIDENCE CALIBRATION
17: forj in 1 —» pdo
18: Compute hyperparameter F(&)) > F: calibration function, £; = (€}, €j2)T
19: end for
20: end procedure
21: procedure CALIBRATED BAYESIAN VARIABLE SELECTION
22: Build cBVS model with one outcome and p covariates
23: Estimate parameters ﬁ, é, and 7
24: Apply FDR control on 0
25: end procedure

26: end procedure
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4.3 Multi-system Multi-platform Integrative Analyses of Pan-Gynecological Can-
cers

I perform an integrative analysis of cancer cell lines data from CCLE and patient sam-
ples from TCGA (Barretina et al., 2012; Weinstein et al., 2013). Using multi-lineage mech-
anistic models for cell line samples and single-lineage mechanistic models for patient sam-
ples, I quantify gene-specific associations of expression with corresponding copy number
and methylation data. I then use the pBFs from these two sources to inform and build
cBVS models of drug response on gene expression based on the cell line samples. Specif-
ically, our multi-lineage mechanistic models on the cell line samples borrow strength by
combining data across three gynecological lineages - breast, ovary, and uterus. The single-
lineage mechanistic models on the patient samples are built separately for each of the three
corresponding TCGA cancer types by tissue - breast invasive carcinoma (BRCA), ovarian
serous cystadenocarcinoma (OV), and uterine carcinosarcoma (UCS). The outcome mod-
els on the cell line samples are built in a lineage-specific way for a collection of drugs of
interest in gynecological cancers. Our investigations are aimed broadly at answering two

sets of questions.

1. T assess within-system and between-system patterns of functional evidence garnered
by the mechanistic models (i.e., a gene may have strong mechanistic evidence of as-
sociation with the upstream factors for the cell lines only, the patients only, both, or

none).

2. Iidentify panels of genes whose expressions are associated with responses to specific
drugs in the cell line samples, potentially offering novel introspection into treatment

selection and the cellular mechanisms/targets of such drugs.
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4.3.1 Data Processing and Analysis Pipeline

Multi-omics cell line and patient data Gene expression, copy number, and DNA methylation
data on cancer cell lines from CCLE, drug response data from GDSC, along with annotation
information to match genes to upstream information, are downloaded from the depmap
portal (Tsherniak et al., 2017). Gene expression, copy number, and DNA methylation data
on TCGA patient samples, along with annotation information matching genes to upstream
covariates, are downloaded from the Xena browser (Goldman et al., 2020). Only the genes
satisfying the following set of requirements in the cell lines data from CCLE are included

in all analyses.

1. Minimum sample size of 100 across breast, ovary, and uterus lineages.

2. At least two matched upstream covariate (copy number or methylation) available in

the dataset

3. The coefficient of variation (CV, percentage scale) across the merged multi-lineage
gene expression data is at least 25 (genes with too low CV have low variability in the

samples of interest and are less informative for the second-stage cBVS model).

These cleaning steps result in a panel of 5,792 genes that pass all the tests. All these
genes are included in the mechanistic and outcome model building procedures. Expression
data for each gene is mean-centered before the analyses. Among the drugs available in the
CCLE dataset, only those with at least 20 samples in all three lineages were included in
the outcome model analyses, resulting in a total of 65 drugs/treatments. IC50 values (log-
scale) are used as outcome variables in the drug response models, after mean centering for
each drug X lineage combination. Summary information on each dataset are available in

Figure S4.1-S4.6 and Table S4.1.
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BaySyn analysis of gynecological cancers For each gene, a multi-lineage mechanistic model
with M = 3 (breast, ovary, uterus) is constructed (termed the CL model hereafter) and
hypothesis tests are performed as described in Figure 4.2. Further, for each gene, three
single-lineage mechanistic models (one for each cancer type — BRCA, OV, UCS) are built
on the patient samples and upstream effects are quantified following Figure 4.2. As a post-
model fitting investigation, I perform gene set enrichment analyses (GSEA) (Subramanian
et al., 2005) using these four sets of evidence (CL, BRCA, UCS, OV) for the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000) and gene ontology
(GO) gene sets (Ashburner et al., 2000; Consortium, 2021). For our analyses, I use the
gene set enrichment (GAGE) procedure implemented in the gage R package due to the
reason that our pBFs are on a different scale than typical expression levels or fold-change
summaries (Luo et al., 2009). The gene set-specific hypothesis that I test is whether the
set in question exhibits significantly higher level of activity as summarized by the evidence
statistics compared to the genes outside the gene set, due to the unidirectional nature of
the pBFs. For each lineage, drug-specific response association models are built using the
cBVS procedure, and variable selection is performed using a 10% FDR control threshold.

4.3.2 Results

Utility of borrowing strength to detect mechanistic evidence Figure 4.3a summarizes the num-
ber of genes inferred to be at the decisive level of evidence (in favor of associations with
corresponding upstream covariates) across the three single-lineage models for each TCGA
patient cancer type and the multi-lineage model for the cell lines data. The connected dots
at the bottom indicate the intersection of the mechanistic models for which the number of
genes summarized by the bar height are decisive. The top three combinations of models in
terms of detecting decisive evidence all belong to some combination of the TCGA data sets

(BRCA only, BRCA and OV, BRCA and UCS - in decreasing order). However, except for



140

the BRCA dataset which utilizes > 750 samples for all genes to build the mechanistic mod-
els, the cell lines mechanistic models borrowing strength across three lineages detect more
unique signals (4™ in the ranking) than the other TCGA datasets. This further validates
the utility of building joint nonlinear association models with main and interaction compo-
nents that can identify shared patterns of association across smaller datasets which would
potentially be missed in dataset-specific models. The list of genes uniquely identified by

the cell lines mechanistic model is available in Table S4.2.

KEGG gene set enrichment analyses illustrate utility of mechanistic evidences To assess the utility
of the mechanistic evidence quantities and to validate their use in future detection of novel
functional drivers, I perform GSEA using the four evidence sources and the KEGG and GO
gene sets. I only discuss the KEGG results here; the GO results are presented in the shiny
app at https://bayesrx.shinyapps.io/BaySyn. Several KEGG gene sets have been
implicated to have significant roles generally in cancer (Chen et al., 2017a; Yuan et al.,
2018) and specifically in gynecological cancers (Campos-Parra et al., 2016; Yang et al.,
2018; Zhang et al., 2018; Chen et al., 2020). The results from our KEGG GSEA are sum-
marized in Figure 4.3b, exhibiting the seven gene sets with FDR-controlled g-value < 0.2.
The gene set-specific mechanistic evidences are summarized in Figure 4.3c-d for the top
two KEGG gene sets; the rest are presented in Figure S4.7-S4.11. The top gene set identi-
fied in the KEGG analyses is the herpes simplex infection pathway (p-value = 3.88x 107!°)
(Figure 4.3b). This gene set contains a large cluster of genes exhibiting decisive evidence
across majority of the mechanistic models, as can be seen in Figure 4.3c. Following these
genes are two major clusters - one containing genes at the decisive level for the BRCA,
OV, and CL mechanistic models, and one containing genes at the decisive level for all

three TCGA cancers. The consistent nature of functional evidence across this gene set is


https://bayesrx.shinyapps.io/BaySyn
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in agreement with findings from past investigations - multiple studies have indicated the
prognostic value of members of this pathway in gynecological cancers - including breast
(Ghouse et al., 2020), ovarian (Nakamori et al., 2003), and endometrial (Zhou et al., 2022)
cancer. The second-highest gene set in the KEGG analyses is the adherens junction gene
set (p-value = 5.52 X 1073) (Figure 4.3b). The genes PTPN6 and ERBB2 exhibit decisive
levels of mechanistic evidence in all four models (Figure 4.3d). Different upstream mech-
anisms of the ERBB2 gene have been implicated in different gynecological cancers, such
as copy number changes in ovarian tumors (Dimova et al., 2006) and somatic mutations in
breast cancer (Hou et al., 2020). The EGFR gene has also shown promise as a potential
therapeutic target in multiple gynecological cancers (Reyes et al., 2014; Kim et al., 2015),
which is in alignment with our findings of some signal in all the TCGA and cell line models

(Figure 4.3d).

Calibrated drug response models identify high-association lineage-specific biomarkers I build cal-
ibrated hierarchical Bayesian variable selection-based drug response models for each lin-
eage X drug combination across all 65 drugs and all three cell line lineages. Figure 4.4a
presents a wordcloud where each gene is weighted by the total number of times it is se-
lected in a drug response model at the 10% FDR-controlled cutoff. The genes BAHCCI,
ALOX12P2, and SYCP2 emerge as the top candidates, with selection in 14, 12, and 12
models respectively. While this summary allows us to identify general candidates for future
pharmacogenomic investigations, it does not indicate any potential lineage-specific utility
of these genes. To this end, Figure 4.4b summarizes the number of times the top genes
across all drug response models are selected in each lineage. For breast, genes BAHCCI,
BCLI11A, and SYCP2 are at the top, with respectively eight, eight, and six detected drug

associations. The role of BCLI 1A in triple-negative breast cancer (TNBC) stemness is well
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known, and it is considered to be one of the first utilizable targets for treatment of TNBCs
(Errico, 2015). A similar confirmation can be obtained for SYCP2, which has recently been
identified as a prognostic biomarker in breast cancer (Wu and Tuo, 2019). However, to the
best of our knowledge, BAHCC1 has not so far been identified to have breast cancer-specific
functional roles, which renders it as a novel detection that deserves deeper investigations.
Top genes in the two other lineages also include both novel and known functional drivers
- such as ALOX12P2 (nine selections, novel) and FGFRLI1 (eight selections, known) (Tai

et al., 2018) for ovary and FBXO17 (seven selections, novel) for uterus.

Calibration improves statistical power to detect gene-drug associations To assess the discoveries
for specific lineage X drug combinations, I focus on two drugs with known use in specific
cancer lineages - docetaxel for breast and cisplatin for ovary. The number of discoveries
across different FDR thresholds for these are presented in Figure 4.4c-d and the corre-
sponding discoveries are summarized in Table S4.3-S4.4. Similar plots and tables for all
other models are available in our R Shiny dashboard at https://bayesrx.shinyapps.
io/BaySyn. Evidently, compared to an uncalibrated Bayesian variable selection procedure
implemented via the BMS R package, cBVS models make more discoveries at the same level
of error control, allowing a continuum of assessment for top candidates emerging across
increasing control thresholds. This indicates the utility of synthesizing mechanistic evi-
dence and calibrating the outcome models with such evidences. Several examples of cell
lines-based discoveries guided by evidences discovered in patient data emerge. For ex-
ample, the model for docetaxel response in breast cell lines identify an association with
the gene GRKS at 10% FDR control. Cell lines overexpressing GRKS have previously
been observed to demonstrate an increase in resistance to docetaxel in male gynecological

cancers (Black et al., 2018), and our finding suggests that it deserves further investiga-
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tions in female gynecological cancers as well. Another top discovery at the same FDR
threshold is the gene CD83, expression of which is known to be enhanced by docetaxel in
metastatic breast cancers (Buoncervello et al., 2012). For the response model of cisplatin
in the ovarian lineage, multiple solute-carrier family (SLC) genes are selected at the 10%
FDR threshold. These genes are known potential biomarkers of ovarian cancer and are
under investigation for prognostic utility (Chen et al., 2021). Another interesting discovery
is that of the CDCA7 gene from the cell division cycle pathway, silencing of which has
recently been shown to downregulate cisplatin resistance in lung cancer subtypes, making
it a potential therapeutic target (Zeng et al., 2021b). Our finding seems to indicate sim-
ilar scope in ovarian cancer, demanding further investigation. Notably, all four of these
discussed findings had no cell lines-based mechanistic evidence, but had decisive evidence
from at least one TCGA source — which further underscores the importance of synthesizing

evidence across model systems.

4.4 Discussion and Future Work

Overview [ propose BaySyn, a hierarchical multi-stage Bayesian evidence synthesis proce-
dure for multi-system multiomic integration. BaySyn detects functionally relevant driver
genes based on their associations with upstream regulators and uses this information to
guide variable selection in outcome association models. I apply our framework to multi-
omic cancer cell line and patient datasets for pan-gynecological cancers. pBFs from the
mechanistic layer of BaySyn exhibit high enrichment in previously known KEGG gene sets
and detect driver genes known to have functional roles in the cancers studied. Calibrated
outcome models for drug responses identify several confirmatory and novel lineage-drug-
gene combinations providing further evidence on the profitability of our approach towards

future precision oncology endeavors.
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General applicability of BaySyn to enriched multi-system multiomic datasets Several features of
our framework makes it readily adaptable to more general settings and richer datasets. The
calibrated spike-and-slab prior can be generalized to include any number (more upstream
platforms such as miRNA or mutation) and form (other evidence metrics such as p-values)
of prior information by tuning the calibration function accordingly. The outcome model
can easily be extended to include other biomarkers such as proteomics. While I use cell
lines data to illustrate the integrative approach across model systems, it is straightforward
to apply our pipeline to datasets from cancer model systems with higher fidelity to human
tumors (Goodspeed et al., 2016) - such as organoids (Drost and Clevers, 2018) or patient-
derived xenografts (Invrea et al., 2020) - as such databases become increasingly compre-
hensive and available. Further, both the stages of our framework are highly parallelizable
and individual runs are quite efficient - a single gene-specific multi-lineage mechanistic
model with interactions takes approximately 20 minutes on average to complete, while a
single lineage-drug specific outcome model takes approximately 12 minutes on average
(both based on runs on a single core of a 2015 Macbook Air with 8 GB memory and Intel
15 processor). Thus, extending our analyses to include larger gene-drug panels with similar

sample sizes is straightforward with existing parallel computing resources.

Methodological and scientific limitations Certain improvements are of interest given the bio-
logical context of our work. First, although I assess mechanistic relevance at a gene-by-
gene basis, at a molecular level, genes interact in functional pathways to result in down-
stream modifications. This motivates joint models for driver genes in a multivariable set-
ting accounting for underlying gene-gene interactions. Second, the relatively low lineage-
specific sample sizes in cell lines data make fully Bayesian exploration of the posteri-

ors feasible in the outcome models. Higher data dimensions would result in increased
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computation times; where-in approximate Bayesian computation schemes such as the E-
M based variable selection (Roc¢kova and George, 2014) or variational Bayes (Fox and
Roberts, 2012) would need to be employed. Third, while our framework allows integration
of covariate-specific prior information in a variable selection framework, more granular
information (both sample- and covariate-specific) may be available, allowing improved
learning of the molecular functions driving the changes in an outcome of interest. For ex-
ample, sample-specific data on tumor heterogeneity may be available, and such data may
need to be incorporated in the outcome models driving changes in the covariate effects.
Finally, as outlined in Section 4.2, in the presence of multiple lines of evidence, how best
to aggregate them depends heavily on the context - while multiple possible approaches ex-
ist, a case-specific decision must be made to ensure best utilization of the evidences. A
data-driven procedure of choosing evidence weights would eliminate this requirement. |

leave these tasks for future exploration.

Reproducibility To ensure easier access to all our integrative analyses results and analysis
codes in part of the readers, I have made these resources publicly available at an interac-
tive R Shiny dashboard hosted at https://bayesrx.shinyapps.io/BaySyn. I believe
that BaySyn, in its current form, will prove to be a useful resource in context of precision

oncology and guide future pharmacogenomic investigations.


https://bayesrx.shinyapps.io/BaySyn
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4.5 Supplementary Figures

DRP MTL

Figure S4.1: Sample size summaries across the different platforms for breast cell lines from CCLE. The
acronyms for the different data platforms are as the following - CNC: copy number, GEP: gene expression,
MTL: DNA methylation, DRP: drug response.

DRP MTL

Figure S4.2: Sample size summaries across the different platforms for ovary cell lines from CCLE. The
acronyms for the different data platforms are as the following - CNC: copy number, GEP: gene expression,
MTL: DNA methylation, DRP: drug response.
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DRP MTL

Figure S4.3: Sample size summaries across the different platforms for uterus cell lines from CCLE. The
acronyms for the different data platforms are as the following - CNC: copy number, GEP: gene expression,
MTL: DNA methylation, DRP: drug response.

CNC MTL

GEP

Figure S4.4: Sample size summaries across the different platforms for BRCA patients from TCGA. The
acronyms for the different data platforms are as the following - CNC: copy number, GEP: gene expression,
MTL: DNA methylation, DRP: drug response.
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CNC MTL

GEP
Figure S4.5: Sample size summaries across the different platforms for UCS patients from TCGA. The

acronyms for the different data platforms are as the following - CNC: copy number, GEP: gene expression,
MTL: DNA methylation, DRP: drug response.

CNC MTL

GEP

Figure S4.6: Sample size summaries across the different platforms for OV patients from TCGA. The
acronyms for the different data platforms are as the following - CNC: copy number, GEP: gene expression,
MTL: DNA methylation, DRP: drug response.
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Figure S4.7: Heatmap summarizing levels of mechanistic evidence for the genes in KEGG non-small cell
lung cancer gene set. Genes in the rows are ordered based on clusters resulting from the evidence statistics.
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Figure S4.8: Heatmap summarizing levels of mechanistic evidence for the genes in KEGG tight junction
gene set. Genes in the rows are ordered based on clusters resulting from the evidence statistics.
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Figure S4.9: Heatmap summarizing levels of mechanistic evidence for the genes in KEGG ERBB signaling
gene set. Genes in the rows are ordered based on clusters resulting from the evidence statistics.
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KEGG Pathway:
hsa05160 Hepatitis C

Figure S4.10: Heatmap summarizing levels of mechanistic evidence for the genes in KEGG hepatitis C gene
set. Genes in the rows are ordered based on clusters resulting from the evidence statistics.
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Figure S4.11: Heatmap summarizing levels of mechanistic evidence for the genes in KEGG endometrial
cancer. Genes in the rows are ordered based on clusters resulting from the evidence statistics.
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4.6 Supplementary Tables

Table S4.1: Summary information on sources and platforms for multiomic cancer cell line and patient data.
Only 10 samples are available for the Methylation450 platform for OV, which is why Methylation27 was used
instead.

Cell Lines Data (CCLE and GDSC)
Data Platform Download Link
Gene expression RNAseq .TPM RSEM Link
(log2 transformed using a pseudo-count of 1)
Gene-level (log2 transformed with a pseudo-count of 1).
Copy Number Inferred from WGS, WES or SNP array depending on availability. Link
Calculated by mapping genes onto segment level calls and computing a weighted average.
Methylation Reduced representation bisulfite sequencing (promoter CpG clusters). Link
Multiple dose-response parameters available. .
Drug Response P 12505 uied. Link
Metadata — Link
Patient Data (TCGA)
Data Platform Download Link

BRCA
Gene Expression Tllumina HiSeq 2000 (log2 transformed RSEM normalized count). ucs
oV

BRCA
Copy Number Gene-level copy number variation (CNV) estimated using GISTIC2. ucs
(0%

. . . BRCA
Methylation Illumina Igﬁnlum HumanMelhylat10n4§0 platform (BRCA, UCS) ucs
Illumina Infinium HumanMethylation27 platform (OV) ov

Table S4.2: Mechanistic evidence summary for genes with decisive evidence only from the cell lines multi-
lineage model.

Patient Model Genes
BRCA UCS ov
No Evidence | No Evidence | No Evidence See shiny app
Substantial | No Evidence | No Evidence | ADAMTS4, PCDHGA3, RTP3, SMCI1B
No Evidence Strong No Evidence AGBL1, CNPY1, PLA2G12B
No Evidence | No Evidence Strong APOC?2, Cl160rf86, UPK3B, ZNF626
Substantial Substantial | No Evidence AQP12B
No Evidence Substantial No Evidence CASR, MORC1
Strong No Evidence | No Evidence CCT8L2, HES5, MAB21L1, MFAP2
No Evidence | No Evidence Substantial ELF3, PCDHGAS, PLBD1
Strong No Evidence Strong IER3
Strong No Evidence | Substantial RIN1
No Evidence Strong Strong ZNF880



https://ndownloader.figshare.com/files/34989922
https://ndownloader.figshare.com/files/34989937 
https://depmap.org/portal/download/api/download?file_name=ccle%2FCCLE_RRBS_TSS_CpG_clusters_20180614.txt&bucket=depmap-external-downloads
https://depmap.org/portal/download/api/download?file_name=processed_portal_downloads%2Fgdsc-drug-set-export-658c.5%2Fsanger-dose-response.csv&bucket=depmap-external-downloads
https://ndownloader.figshare.com/files/35020903
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA.BRCA.sampleMap%2FHiSeqV2_PANCAN.gz
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA.UCS.sampleMap%2FHiSeqV2_PANCAN.gz
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA.OV.sampleMap%2FHiSeqV2_PANCAN.gz
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA.BRCA.sampleMap%2FGistic2_CopyNumber_Gistic2_all_data_by_genes.gz
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA.UCS.sampleMap%2FGistic2_CopyNumber_Gistic2_all_data_by_genes.gz
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA.OV.sampleMap%2FGistic2_CopyNumber_Gistic2_all_data_by_genes.gz
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA.BRCA.sampleMap%2FHumanMethylation450.gz
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA.UCS.sampleMap%2FHumanMethylation450.gz
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA.OV.sampleMap%2FHumanMethylation27.gz
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Table S4.3: Summary for genes selected in the docetaxel response model for breast cell lines. PIP denotes
the posterior inclusion probability in the calibrated Bayesian variable selection model. The last four columns
indicate the level of mechanistic evidence determined by the pBFs from the corresponding models for that

gene.

Gene PIP CL BRCA ov UCS
LIPH 0.9995 | No Evidence Decisive Decisive No Evidence
ZNF728 0.9992 Decisive No Evidence | No Evidence | No Evidence
TNFRSF25 | 0.9992 | No Evidence Decisive Decisive No Evidence
BTG3 0.9986 Decisive Decisive Decisive Strong
ANXA9 | 0.9984 Decisive Decisive Decisive Strong
Z1C4 0.9984 | No Evidence Decisive No Evidence | No Evidence
CD83 0.9983 | No Evidence Decisive No Evidence | No Evidence
BLMH 0.9983 | No Evidence Decisive Decisive No Evidence
SLIT3 0.9982 | No Evidence Decisive No Evidence Strong
ITPR1 0.9982 | No Evidence Decisive No Evidence | Substantial
CTSC 0.9982 Strong Decisive Strong Decisive
KIAA1614 | 0.9981 | No Evidence Decisive No Evidence Strong
GRKS5 0.9979 | No Evidence Decisive No Evidence Strong
ADAMI19 | 0.9978 Decisive Decisive No Evidence Strong
ZBTB42 | 0.9977 | No Evidence Decisive Decisive Strong
HDACI11 | 0.9977 | No Evidence Decisive Decisive Substantial
MICAL1 | 0.9975 | No Evidence Decisive No Evidence Strong
CNFN 0.9975 | No Evidence Decisive Decisive Strong
S1PR2 0.9974 | No Evidence Decisive Decisive No Evidence
FSCNI1 0.9974 | No Evidence Decisive Strong Decisive
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Table S4.3: Summary for genes selected in the docetaxel response model for breast cell lines. PIP denotes
the posterior inclusion probability in the calibrated Bayesian variable selection model. The last four columns
indicate the level of mechanistic evidence determined by the pBFs from the corresponding models for that

gene.

Gene PIP CL BRCA ov UCS
RHOB 0.9974 | No Evidence Decisive Substantial Substantial
MFGES 0.9973 | No Evidence Decisive Substantial Substantial
PRR15 0.9973 Decisive Decisive No Evidence | No Evidence
TAF4B 0.9972 | No Evidence Decisive Decisive No Evidence
PKNOX2 | 0.9971 | No Evidence Decisive No Evidence Decisive
LRRCCI1 | 0.9971 | No Evidence Decisive Decisive No Evidence
AEBP1 0.9971 Decisive Decisive No Evidence | No Evidence
SCML2 0.997 | No Evidence Decisive No Evidence Strong
LZTSI1 0.997 | No Evidence Decisive No Evidence | Substantial
FAT2 0.997 | No Evidence Decisive No Evidence | No Evidence
PTK6 0.997 Decisive Decisive Decisive Strong
HAL 0.9968 | No Evidence Decisive Decisive No Evidence
ACVRLI | 0.9968 | No Evidence Decisive No Evidence Strong
TMEMS51 | 0.9968 | No Evidence Decisive Decisive Substantial
SLC6AS5 | 0.9967 Decisive No Evidence Decisive No Evidence
ZNF670 | 0.9967 | No Evidence Decisive Decisive No Evidence
NEBL 0.9966 | No Evidence Decisive Strong Substantial
SHISA2 0.9966 | No Evidence Decisive No Evidence Decisive
CNGA3 0.9966 | No Evidence Decisive No Evidence | Substantial
RAB39B | 0.9966 | No Evidence Decisive No Evidence | No Evidence
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Table S4.3: Summary for genes selected in the docetaxel response model for breast cell lines. PIP denotes
the posterior inclusion probability in the calibrated Bayesian variable selection model. The last four columns
indicate the level of mechanistic evidence determined by the pBFs from the corresponding models for that
gene.

Gene PIP CL BRCA ov UCS
WBP2NL | 0.9966 | No Evidence Decisive No Evidence Strong
BAHCC1 | 0.9965 | No Evidence Decisive No Evidence Decisive

CXXC5 0.9965 | No Evidence Decisive Decisive Decisive
PRSS41 0.9965 Strong Decisive No Evidence Strong
SUSD3 0.9965 Decisive Decisive Decisive Substantial
GATA3 0.9965 Decisive Decisive No Evidence Decisive
SDR16C5 | 0.9964 | No Evidence Decisive No Evidence Strong
METRN | 0.9964 Decisive Decisive No Evidence | No Evidence
ST8SIA6 | 0.9964 | No Evidence Decisive No Evidence | No Evidence
MYRIP 0.9963 | No Evidence Decisive Substantial Strong
BTN1A1 | 0.9963 | No Evidence Decisive No Evidence | No Evidence
FUT11 0.9963 | No Evidence Decisive Decisive No Evidence
SLC23A1 | 0.9963 | No Evidence Decisive Substantial Substantial
ZNF283 0.9962 | No Evidence Decisive Decisive Substantial
TMEM65 | 0.9962 Decisive Decisive Decisive Strong
KIF21B 0.9962 | No Evidence Decisive No Evidence | Substantial
DNAJC5B | 0.9962 | No Evidence Decisive No Evidence | No Evidence
APBB2 0.9962 | No Evidence Decisive Strong No Evidence
VAMP1 0.9962 | No Evidence Decisive Decisive No Evidence
LINC00226 | 0.9962 Decisive No Evidence | No Evidence | No Evidence
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Table S4.3: Summary for genes selected in the docetaxel response model for breast cell lines. PIP denotes
the posterior inclusion probability in the calibrated Bayesian variable selection model. The last four columns
indicate the level of mechanistic evidence determined by the pBFs from the corresponding models for that
gene.

Gene PIP CL BRCA ov UCS
LRP12 0.9962 | No Evidence Decisive Decisive Substantial
MIPOL1 | 0.9962 Decisive Decisive Strong Substantial

GPC2 0.9962 | No Evidence Decisive No Evidence | No Evidence

PRKCA 0.9961 | No Evidence Decisive Strong Strong
ISYNA1 0.9961 Decisive Decisive Decisive Strong
RGS20 0.9961 | No Evidence Decisive Strong Substantial

ANGPT1 0.9961 | No Evidence Decisive No Evidence | No Evidence
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Table S4.4: Summary for genes selected in the cisplatin response model for ovary cell lines. PIP denotes
the posterior inclusion probability in the calibrated Bayesian variable selection model. The last four columns
indicate the level of mechanistic evidence determined by the pBFs from the corresponding models for that

gene.

Gene PIP CL BRCA ov UCS
CDCA7 | 0.9992 Strong Decisive No Evidence | No Evidence
SLC24A3 | 0.9986 | No Evidence Decisive No Evidence | No Evidence
SLC27AS5 | 0.9986 | No Evidence Decisive Decisive Strong
PXDC1 0.9986 Decisive No Evidence | No Evidence | No Evidence
PLVAP 0.9985 | No Evidence Decisive No Evidence | No Evidence
MUC4 0.9985 | No Evidence Decisive Strong No Evidence
TNFAIP2 | 0.9983 Decisive Decisive Decisive Substantial
CYBA 0.9982 Decisive Decisive Decisive Strong
TBL1X 0.9982 | No Evidence Decisive No Evidence Decisive
TRIM21 | 0.9979 | No Evidence Decisive Decisive Substantial
EPPK1 0.9979 Decisive Decisive Decisive Strong
CROT 0.9978 Decisive No Evidence Decisive Substantial
PTH2R 0.9978 Decisive Decisive No Evidence Decisive
BANKI1 0.9978 | No Evidence Decisive Decisive Strong
PRR18 0.9978 | No Evidence Decisive No Evidence Strong
KLF2 0.9977 | No Evidence Decisive No Evidence | No Evidence
MGST2 | 0.9977 Decisive Decisive Decisive Strong
CADM1 | 0.9977 | No Evidence Decisive Decisive Decisive
ZNF652 | 0.9977 Decisive Decisive Decisive Strong
ZNF506 | 0.9977 Decisive Decisive Decisive No Evidence
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Table S4.4: Summary for genes selected in the cisplatin response model for ovary cell lines. PIP denotes
the posterior inclusion probability in the calibrated Bayesian variable selection model. The last four columns
indicate the level of mechanistic evidence determined by the pBFs from the corresponding models for that

gene.

Gene PIP CL BRCA ov UCS
PCDHGB4 | 0.9976 | No Evidence | No Evidence Decisive No Evidence
ESPN 0.9976 | No Evidence Decisive Decisive Decisive

ZNF572 | 0.9976 Decisive Decisive Decisive Decisive
CST6 0.9976 Decisive Decisive No Evidence | No Evidence
LTB 0.9976 | No Evidence Decisive No Evidence | No Evidence
ITGA3 0.9976 | No Evidence Decisive Decisive Strong
PODN 0.9975 | No Evidence Decisive No Evidence | No Evidence
RGS2 0.9975 | No Evidence Decisive No Evidence | No Evidence
SRR 0.9975 | No Evidence Decisive Decisive No Evidence
FZD9 0.9975 | No Evidence Decisive Decisive No Evidence
ATP2B2 | 0.9975 | No Evidence Decisive Decisive Decisive
MICAL2 | 0.9974 | No Evidence Decisive Decisive No Evidence
TNFAIP3 | 0.9974 | No Evidence Decisive No Evidence Strong
TRPV2 0.9973 Decisive Decisive No Evidence | No Evidence
PHLDB2 | 0.9973 | No Evidence Decisive No Evidence Strong
ASS1 0.9973 Decisive Decisive Decisive Decisive
HOXB7 | 0.9972 | No Evidence Decisive No Evidence | Substantial
CSorf38 | 0.9972 Decisive Decisive No Evidence | No Evidence
EPHA2 0.9972 Decisive Decisive Decisive No Evidence
LY6K 0.9972 Decisive Decisive Decisive Decisive
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Table S4.4: Summary for genes selected in the cisplatin response model for ovary cell lines. PIP denotes
the posterior inclusion probability in the calibrated Bayesian variable selection model. The last four columns
indicate the level of mechanistic evidence determined by the pBFs from the corresponding models for that

gene.

Gene PIP CL BRCA ov UCS
BLMH 0.9971 | No Evidence Decisive Decisive No Evidence
EPHB1 0.9971 | No Evidence Decisive No Evidence Decisive

BCL2L11 | 0.997 | No Evidence Decisive Decisive No Evidence
SMIM22 0.997 Decisive No Evidence | No Evidence | No Evidence
F11R 0.997 Strong Decisive Decisive No Evidence
CMTM3 0.997 Decisive Decisive Decisive No Evidence
IL15 0.997 | No Evidence Decisive Decisive No Evidence
SLC16A7 | 0.997 | No Evidence Decisive Decisive No Evidence
DLX1 0.997 | No Evidence Decisive Decisive No Evidence
LHFPL2 0.997 | No Evidence Decisive Substantial Substantial
PAK6 0.997 | No Evidence Decisive Decisive Strong
PTPRZ1 | 0.9969 | No Evidence Decisive No Evidence Decisive
SEMA6B | 0.9969 Strong Decisive Decisive Decisive
PPMIM | 0.9969 | No Evidence Decisive Substantial | No Evidence
ZNF425 | 0.9969 Strong Decisive Decisive Substantial
TET1 0.9969 | No Evidence Decisive No Evidence | No Evidence
EPB41L4A | 0.9969 | No Evidence Decisive Decisive Strong
KRTS 0.9968 | No Evidence Decisive Decisive Decisive
DENNDIB | 0.9967 | No Evidence Decisive Decisive Substantial
OR2TI11 | 0.9967 Decisive No Evidence | No Evidence | No Evidence
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Table S4.4: Summary for genes selected in the cisplatin response model for ovary cell lines. PIP denotes
the posterior inclusion probability in the calibrated Bayesian variable selection model. The last four columns
indicate the level of mechanistic evidence determined by the pBFs from the corresponding models for that
gene.

Gene PIP CL BRCA ov UCS
EVPLL 0.9967 | No Evidence Decisive No Evidence | No Evidence
SLCO6A1 | 0.9966 | No Evidence Decisive No Evidence | No Evidence
IF127 0.9966 Decisive Decisive No Evidence Decisive
GDPD3 0.9966 | No Evidence Decisive Strong No Evidence
AGBLI1 0.9966 Decisive No Evidence | No Evidence Strong
HOXC4 | 0.9966 | No Evidence Decisive Decisive Decisive
SDR42E1 | 0.9966 Decisive Decisive No Evidence Decisive
SUSD2 0.9966 | No Evidence Decisive Decisive No Evidence
NUPR1 0.9966 Decisive Decisive No Evidence Strong
MCTS2P | 0.9966 Decisive No Evidence | No Evidence | No Evidence
B4GALT6 | 0.9965 | No Evidence Decisive Decisive No Evidence
ST14 0.9965 Decisive Decisive Decisive Decisive
NPEPL1 | 0.9965 | No Evidence Decisive Strong No Evidence
TMC4 0.9965 | No Evidence Decisive Decisive No Evidence




CHAPTER V

Bayesian Gaussian Process-based Varying Coeflicient Models for
Incorporating Tumor Heterogeneity in Clinicogenomic Studies

5.1 Introduction

One of the key characteristics of cancer that needs to be addressed in order to accurately
prevent, diagnose, and treat the disease is tumor heterogeneity. Traditionally, tumor hetero-
geneity was defined and understood in genetic terms, focusing on the intra- and inter-tumor
divergence within the same tissue propagated by cellular genetic contributions (Marusyk
and Polyak, 2010). More recently, the scientific literature on tumor heterogeneity has ex-
panded its focus to admit epigenetic and potentially non-genetic sources of such variation
(Pe’er et al., 2021). In general, diversity within and between tumor cell clusters can be
exhibited through modulation of the cellular oncological mechanism via different sources
- for example, evolutionary mechanisms may contribute to differential expression of the
disease across populations (Heng et al., 2011), non-genetic components to intra-tumor het-
erogeneity are observed commonly via the tumor epigenome and immune microenviron-
ments (Black and McGranahan, 2021), and even ethnic or demographic features may inter-
act with the disease progression resulting in distinct patterns of incidence and/or mortality
(Roshandel et al., 2014). In general, clinicogenomic studies attempt to study clinical out-
comes or phenotypes in conjunction with genomic and other omics datasets to in order to

identify potential therapeutic targets and assess treatment response (Veltman and Lupski,
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2015). While population-level inferences based on integrative approaches implemented
in the clinicogenomic context are exciting prospects towards improving therapeutic paths
and controlling disease progression, the individuality of a single patient tumor should be
taken into account while implementing such procedures to arrive at personalized detection
of aberrant cellular function and the treatment of the same. In this regard, the next para-
graph provides an overview of the manifestation of tumor heterogeneity within and across

cancers and its relevance in integrative quantitative procedures.

The existence and relevance of tumor heterogeneity Several studies from the past few decades
have yielded substantial evidence in favor of the existence and role of tumor heterogeneity
in multiple cancers. Some examples include breast cancer (Martelotto et al., 2014), col-
orectal cancer (Zlatian et al., 2015; Testa et al., 2018), prostate cancer (Brady et al., 2021),
and lung cancer (Lim and Ma, 2019). Recent precision oncology literature has majorly
tended to signify tumor heterogeneity as a systemic barrier against successful treatment —
for example, El-Sayes et al. (2021) point out that in the case of immunotherapy, the im-
mune system’s response against specific tumor antigens may induce selective bias towards
antigen-negative cells, which, in turn, is a common cause of relapse. Thus, quantifying
such heterogeneity at a tumor-specific (or even further granular) level and incorporating
such quantifications in integrative statistical models carry utmost importance. It is crucial,
at this stage of the discussion, to distinguish between inter- and intra-tumoral heterogene-
ity. The differential behavior between multiple tumors can be inferred from multi-platform
molecular profiles of such tumors, obtained via collaborative efforts such as TCGA. On
the other hand, even within a single tumor, compositions of cell types may interact with
the cancer mechanism and treatment efforts. Quantifying the latter is substantially more

challenging at the level of bulk-sequencing data; single-cell and other such deep sequenc-
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ing procedures offer great potential in this regard (Levitin et al., 2018). This is where the
concept of tumor microenvironment becomes crucial — in addition to malignant cells, the
population of cells contributing to the heterogeneity in the tumor microenvironment diverse
immune cells (lymphocytes, myeloid cells, dendritic cells, etc.), cell types involved in the
tumor’s blood supply, and other stromal populations. Quantitative summaries that rely
on this information, then, can be helpful to guide personalization of statistical integrative

models, as is discussed next.

Scientific and clinical importance of the tumor microenvironment Broadly, tumor microenviron-
ment is defined as the ecosystem housing a tumor inside the body, including immune cells,
the extracellular matrix, and blood vessels. A tumor and its microenvironment constantly
interact with and influence each other, and the result of such interactions may be bene-
ficial or detrimental towards the disease progression. The non-malignant cells and other
components have unique immunological capabilities determining the potential of the tu-
mor to progress and survive, and quantifying such influences is necessary to accurately
decipher the cancer mechanism (see Arneth (2019) for a comprehensive review). Sev-
eral quantitative pipelines have been proposed in the recent decades in order to perform
this exact task: some of these methods rely on machine-learning based combination of
bulk sequencing data with purified immune cell samples (e.g., CIBERSORT by Chen et al.
(2018)), some utilize normalization and deconvolution techniques followed by constrained
regression procedures (e.g., quanTIseq by Plattner et al. (2020)), and some others perform
clustering-driven identification of immune signature sets from a large class of expression
signatures (e.g. immune signature scores constructed by Thorsson et al. (2018)). The hu-
man tumor immune microenvironment cell-type composition database provides an exten-

sive online compendium of quantifications obtained via more than ten such methods across
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more than 500 datasets including all TCGA datasets (Wang et al., 2023). Such resources of-
fer an excellent promise towards our overarching goal — developing integrative procedures
that can accommodate these quantifications in addition to the multi-system multi-platform
datasets explored in the previous chapters will allow individual-specific assessment of tu-
mor characteristics. For example, the outcome models in Chapter III and Chapter IV es-
timate biomarker associations globally for a system-specific dataset — however, there may
be distinct sub-types of the samples driven by different proteogenomic markers, as evi-
denced in previous cancer studies (breast: Skibinski and Kuperwasser (2015), bladder:
da Costa et al. (2018), pancreas: Cros et al. (2018)). Therefore, the associations of the
same biomarker with the same outcome may be different depending on which subset of
samples we are looking at. To identify such distinctions in an integrated fashion, it then be-
comes necessary to allow association models to estimate individually varying coefficients.
We now discuss the existing statistical procedures allowing such integrative analyses, and

specific gaps addressed by our approach.

Association models incorporating individual characteristics The interest in assessing whether
the association between two variables is different depending on the value of one or more
other variables has generally been explored in previous statistical literature, both within
and outside the context of precision oncology. In parametric or semiparametric regression
settings, interaction terms between covariates of interest and other variables have been
widely used to answer questions similar to that of us. Examples of these include inter-
actions among risk factors in logistic regression models of case-control status (Qiu et al.,
2008), gene-environment interactions in logistic and Cox regression models (Wu et al.,
2011), and interactions of disease predictors with miRNA functionality in penalized re-

gression models (Qabaja et al., 2013). While such models provide simple and interpretable
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estimates of the associations of interest, they assume a linear parametric form for the mean
of the outcome of interest (modulo the use of a link function), thus restricting any possible
shifts due to the interactions to also be linear. As previously discussed in Chapter III and
Chapter IV, cellular oncological mechanisms can departure substantially from linear pat-
terns of association. Hence, modeling approaches that capture interactions beyond linear
parametric forms are necessary.

A particular class of statistical models that eliminates the requirement of linear inter-
actions relies on using varying coefficients, wherein the regression coefficients themselves
are modeled as functions of hierarchical covariates that can impact the association inferred
from these coefficients (Hastie and Tibshirani, 1993). Several recent works have explored
this class of models utilizing different specifications of the varying coefficient functions to
perform efficient selection and estimation. Such approaches include Bayesian hierarchical
varying-sparsity regression by Ni et al. (2019), nonparametric varying coefficient spike-
and-slab lasso for Bayesian estimation and variable selection by Bai et al. (2019), and vary-
ing coefficient models using Bayesian additive regression trees by Deshpande et al. (2020).
All these methods address the nonlinearity in the coefficient function estimation using dif-
ferent formulations — Ni et al. (2019) and Bai et al. (2019) utilize a spline-based expansion
of the varying coefficients, and Deshpande et al. (2020) use additive regression trees to for-
mulate the same coefficients. In similar spirit, I propose a Gaussian Process-based Varying

coefflcient model using Bayesian variablE Selection (GPVIBES), as described below.

Statistical and scientific novelty GPVIBES relies upon a Gaussian process (GP) regression
procedure to model the varying coefficients as explicit functions of the hierarchical co-
variates. The procedure is developed with an incorporation of Bayesian variable selection

priors associated with the varying coefficients themselves. Therefore, GPVIBES offers
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two distinct axes of statistical advantage: flexibility in modeling a general class of patterns
of the modulation of covariate effects (allowed by the GP modeling of the coefficient pa-
rameters), and sparsity in terms of the number of nonzero coefficients (controlled by the
Bayesian variable selection mechanics). This conflation of estimation and selection, as is
shown via synthetic simulation studies, leads to a computationally efficient inference pro-
cedure inheriting the merits of the previous approaches while improving scalability of the
procedure for high-dimensional datasets. The simulation studies also provide evidence in
favor of GPVIBES yielding improved estimation and selection metrics compared to the
other varying coefficient-based procedures under similar sample size to number of covari-
ates ratios and at the same level of type I error control. To illustrate the utility of GPVIBES
in real clinicogenomic studies, I perform an integrative analysis using data from 16 TCGA
cancers on more than 200 proteomic (reverse-phase protein array) expressions, 68 immune
signatures summarizing the tumor microenvironment, and overall survival as the outcome
of interest. The pan-cancer integrative study identifies several known key signatures, such
as the modulation of the association of EGFR and YAP protein expressions with survival
by CD8 T lymphocyte proportion in the tumor microenvironment for BRCA.

The rest of the chapter is organized as follows. Section 5.2 describes the GPVIBES
procedure including the methodological details regarding the Gaussian process and vari-
able selection specifications, along with details on the computational algorithm. Sec-
tion 5.3 summarizes the settings and the key results from the simulation studies com-
paring the performance of GPVIBES with other procedures. Section 5.4 presents the
integrative pan-cancer clinicogenomic analysis in conjunction with immune signatures
and highlights the key confirmatory and novel results. The chapter is concluded with a
discussion on the methodological and scientific aspects of the work and possible future

directions in Section 5.5. All the real data results, along with the processed datasets,



168

Cellular Mechanism Patient-level Information

Varying Coefficient *
Model o o
. Clinical Outcome/
Proteomics < 1 < - Phenotypic Information | —
. -
Model
Outputs
B L 1. Selection of proteomic
Tumor .*\ v Y Quantified by expressions.
Microenvironment o 3{)‘ Immune Signatures 2. Varying coefficient estimate for
200 each selected protein.

Figure 5.1: Overview of the GPVIBES model in the clinicogenomic context. The Bayesian variable selection
model is built with a patient-level outcome modeled on proteomic expressions. The regression coefficients
are specified as functions of quantitative summaries of the heterogeneity in the tumor microenvironment.

and the computational codes are available in an interactive R shiny dashboard hosted at
https://bayesrx.shinyapps.io/GPVIBES/.

5.2 The GPVIBES Model

5.2.1 Notations

Let the dataset of interest consist of n samples (patient tumors in the context of the
motivating biological problem), and let i be the index denoting the sample of interest (thus
i € {1,...,n}). Let it also be assumed that the data is annotated in such a way so that
the information from different clinicogenomic platforms can be aligned horizontally, i.e.,
matched at a sample level. Let the outcome of interest for the i™ sample be denoted by
Y,. The variable Y is assumed to be continuous and mean-centered across samples for
ease of exposition. Generalizations to other classes of outcomes (such as survival) are

straightforward and are discussed in Section 5.2.6. Let p be the total number of covariates

of interest, and let X i denote the value of the covariate j for the sample i. In the scientific


https://bayesrx.shinyapps.io/GPVIBES/
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context of this project, this denotes the expression of the candidate biomarker j for patient
i. For exposition, let us assume a single hierarchical covariate for now, denoted by Z, for
the i™ sample. In context of the scientific motivation for this chapter, this will indicate the
value of an immune signature of interest for the i sample. Generalizations to more than
one such covariate is also straightforward, and is described in Section 5.2.6.

5.2.2 The Clinicogenomic Biomarker Selection Model with Varying Coefficients

Following the notations introduced above, the fundamental clinicogenomic model with

varying coefficients can be generally written as follows.

(5.1) Y, = ) B(Z)X, +e,.
j=1

The errors €, are assumed to be iid with distribution N (0, 6%). (+) denotes the varying
coefficient function for the j covariate. Depending on how we mathematically specify
the form of the f;(e)s, there can be two distinct approaches to building this model. The
key difference between the two approaches lies in the fact that one approach attempts to
perform the selection of the global effects of the candidate biomarkers and the estimation of
the hierarchical covariate effects within them simultaneously via a joint prior structure, and

the other approach parametrizes §;(e) in a way such that these two procedures are controlled

by separate mechanisms. We discuss these two approaches below.

Simultaneous selection and estimation In this case, we directly specify each f;(¢) as a Gaussian

process (GP), writing the following.
(52) ﬂJ(Z,) = fj(Z,)

The GP specification then follows from putting the following prior structure on the
f;(e)s. Let us denote fj(") = f;(Z), and f; = (f;”, ,f;"))T. Then, the GP prior is

specified as:
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ind

(5.3) f, ~ N,0,.K)).

Here the (i, k)™ element of the covariance matrix K; is given by G?K (Z,, Z}), where
K ;(e) is a suitable kernel function. We discuss the choice of this function and how it affects
the computations in Section 5.2.3. Assuming such a choice is fixed, the selection and
estimation procedure then relies on the prior specifications for the o;s. The general form

of a prior that can accommodate our needs is as follows.
(5.4) o; ~ (1 =y, o +v;D;.

Here y; is a selection indicator for the 7™ biomarker effect. It is possible to specify
prior distributions on these parameters using information from previous studies or other
models, such as the calibrated priors discussed in Chapter III. Otherwise, it is possible to
place standard beta-binomial type variable selection priors on these parameters. We discuss
such choices in Section 5.2.4. D;, on the other hand, is a prior distribution with support
(0, ), covering the case when c; > 0, 1.e., the jth covariate is deemed to have a non-zero
association with Y. This prior may or may not be indexed by j, depending on whether
we are interested in placing independent or shrinkage priors on them. Such choices are

discussed in Section 5.2.4.

Deconvolved selection and estimation Following Kuo and Mallick (1998), it is possible to

rewrite Equation (5.2) as the following.
(55) ﬁj(Zl) = ijj(Zi)-

All the notations are the same as the previous paragraph. Essentially, this formulation

separately specifies priors on each of the components concerning selection and estimation.
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For the selection indicators Yj» We can follow the same prior structures described in Sec-
tion 5.2.4 depending on whether prioritization of the biomarkers based on prior evidence is
necessary. For the functional components due to the hierarchical covariates, the GP spec-
ifications can remain the same as described previously. The key difference now is in the
specification of the prior for ¢;. Since the y;s already take care of the biomarker selection
separately, we can directly write 6; ~ D;. D, can then be specified using the same priors
described in Section 5.2.4. For all the computations described in the rest of the chapter,
the deconvolved selection and estimation specification of the model as described in Equa-
tion (5.5) is used.

5.2.3 Kernel Function for Gaussian Process Specification of Varying Coefficients

A common default choice for the kernel functions K;(e)s is the squared exponential
(SE) kernel, specified as K;(Z;, Z,) = exp(=b,(Z;, — Z k)z). A typical parametrization is
performed using b, = 1/ 2/112., where 4; is interpreted as a length-scale parameter (Ula-
pane et al., 2020). It is possible to fix the value of this parameter in advance, following
approaches such as that of Sun et al. (2020). In this particular approach, several values
of the /Aljz. are chosen on a grid specified by the observed values of (Z, — Z,)*/2 over
i,k € {1,...,n}. However, while this reduces the number of parameters to be dealt with,
this does not get rid of the large covariance matrices in the GP prior. Thus, any computa-
tional procedure would involve the calculation, addition, and inversions of these matrices,
potentially affecting efficiency. Hence, we follow an alternative approach using a modified
SE (MSE) kernel, which reduces the variance structures using basis expansions. We fol-
low the same parametrization as used by Wu et al. (2022). The MSE kernel is written as

follows.

(5.6) K(Z,Z)=exp(—a(Z} + Z}) = b(Z, — Z)).
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As is obvious from the expression, a ;= 0 reduces the MSE kernel to the SE kernel. The
advantage of using the MSE kernel is that the eigendecomposition of the MSE kernel has a
closed form expression. For a general d-dimensional case, if the decomposition includes a
maximal polynomial degree of M, then the decomposition involves L = <M; d) basis
vectors. Since this formulation involves a GP prior on a single hierarchical covariate, the
interest lies in individual effects of the hierarchical covariates, meaning that d = 1 in this
case. This implies that L = M + 1. For the covariance kernel K| (e), let the eigenvalues
be denoted by #;, and the corresponding basis functions are y;,(¢), / € {I,..., L}. Then
using this decomposition, our biomarker selection model from Equation (5.1) with the

specification described in Equation (5.5) can be written as the following.

p L
(5.7) Y, = Zyj D 0,U; +e,.

Here U ;s are our new covariates of interest in the selection model, defined as U, =
\/n_j,u/j,(Z )X ;. Note that these are fully known and this reduces our model to a linear
form. The @ /S are now our regression coefficients of interest, with 6 i~ N(O, af), retaining
the variance parameters from the GP prior. All the prior choices discussed in the previous

subsection can be used as before.

5.2.4 Prior Choices for Selection and Estimation Parameters

For the overall noise variance ¢?, a standard prior of the form IG(ay, ) 1s used. The
other parameters that require the specification of priors for completing the description of
the model are the p selection indicator parameters y; and the p kernel variance parameters

af. The rest of this subsection describes the potential prior choices for these.

Priors for selection indicators Both the simultaneous and deconvolved selection and estima-
tion procedures involve the selection indicators y;s, respectively as a spike-and-slab-type

indicator quantity in the priors for the kernel variances, and as an explicit multiplicative
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component of the varying coefficient. One option is to therefore utilize these parameters
to prioritize candidate biomarkers X ;s with available prior evidence £; (possibly multi-
dimensional). As specified in Section 3.2.3, let us write the prior on y; as y; ~ Ber(®)).
Then, it is possible to specify a hierarchical calibrated prior as @; ~ Beta(F(€)), 1/F(E))).
F(e) can be chosen depending on the type and scale of the evidence quantities and the im-
portance to be placed on the said evidence. For the computations that follow in the rest
of this chapter, such a calibrated prior structure is not utilized. Instead, a standard Beta-
Bernoulli specification is used, by writing ¥, o Ber(p), and then p ~ Beta(a, b). Here
p represents the prior proportion of selected covariates, thus directly quantifying sparsity.
The hyperparameters a, b can either be chosen based on information available about the

relevance of the covariates in the model or in a noninformative manner.

Priors for variance parameters Recall that based on notations introduced previously, the
marginal prior distribution on the kernel standard deviation parameters o; is denoted as
D;. The simplest possible choice of such a prior setting is to assume that the o ;s are inde-
pendent of each other, and all the D;s are the same. A natural option would be to assume
a? ~ 1G(ay, By) under D;, similar to the prior placed on the overall noise variance. While
this leads to a computationally simple specification and straightforward approximations of
the posterior, since the a?s represent the overall variability in GP components due to the
same hierarchical covariate, it is prudent to utilize a prior specification that can exploit the
possible interdependence between these parameters to ensure lesser false signals. In these
lines, a shrinkage-type prior D on ¢ = (o4, ..., ap)T can be employed. Some potential

choices are discussed next.

e Following Zhang et al. (2014), a possible choice for D is to specify the prior as shown

below.
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(5.8) log(c) ~N,(0,,7° ).

p?
T2
p

It is then possible to utilize a shrinkage prior as 1']2 " Exp(£%/2), and then some

non-informative prior on each of 7 and ¢&.

e Following Bitto and Frithwirth-Schnatter (2019), it is possible to build a prior on the
variance parameters that does not convert them to a log scale, thereby eliminating the
potential issue about the interpretation of a zero variance in the log scale. The prior

looks as follows.

(5.9 af ~ Gamma(1/2, 1 /25.2).

(5.10) 77 ~ Gamma(a, a&?/2).

As in the previous case, non-informative priors can then be used for a and &.

e An interesting choice of prior is inspired by the idea of the horseshoe prior proposed
by Carvalho et al. (2009). Following them, it is possible to write af = 621’21’/2. Then,

the prior specification on the local shrinkage parameters is as follows.
(5.11) 7, ~C*(0,1).

Here C*(0, 1) is a half-Cauchy distribution, which is also used as the prior distribution

for 7.

The horseshoe is particularly interesting in the context of this chapter since it provides a

way to perform aggressive shrinkage on the varying coefficients that are constant at 0, thus
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reducing false discovery further, in conjunction with the selection. The heavy tails induced
by the prior still allows the non-zero varying coefficients to move away from zero and be
approximated flexibly via the GP. This behavior is confirmed via the simulation studies
described in Section 5.3, where the horseshoe-GP combination is observed to perform
empirically well in terms of making true discoveries while controling the false positives.
Hence, for the remainder of this chapter, all computations are based on this specification.

5.2.5 Conditional Posteriors and their Approximation

Summary of key modeling choices To sum up the discussions and modeling decisions made

in the previous subsections, I begin here with a brief overview of how the final model is

formulated. The linearized form of the model after the basis expansion of the MSE kernel

is given by Equation (5.7). The errors ¢, are assumed to be iid with distribution N (0, c2).
2 2

The kernel variance parameters are assumed to have the form 0;=0 1'21'?. The priors on

each parameter of interest are as follows.

1. 62 ~ IG(ay, fy). 3.7~ CH0, 1), 5. 7, ~ Ber(p).

2.0, i N (O, 621'27.'?). 4. 7 o Cc*(0,1). 6. p ~ Beta(a, b).

With this specification, the Bayesian computational task is then to draw samples from
the joint posterior of the parameters of interest, namely, n((a, 7,7,0,7, p)TlY, U,Z,a,
bo- a, b). Here 7 is the p X 1 vector of the 78, 0 is the pL X 1 vector of the 9].,5, y is the
p X 1 vector of the y;s, Y is the n X 1 vector of the ¥;s, U is the n X pL matrix of the Uy;;s,
and Z is the n X 1 vector of the Z;s. I now discuss how to perform this task based on the

model formulation.

Conditional posteriors and sampling In all the following expressions, 7(+|P7) indicates the

posterior distribution for a parameter given all the parameters but itself, all the hyperpa-
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rameters, and all data. For some of the parameters, an explicit closed-form conditional
posterior can be obtained, and a straightforward sampling procedure can be implemented
to update them. For the others, it is necessary to use some existing alternative approaches

to perform the update efficiently. I summarize all these steps below.

n

1. 2(*|P7)) = IG((n + pL)/2 + a;, (SSE + SS6)/2 + f,). Here SSE = ) ¢?, where

i=1
L
e, =Y, — Zp“ 7, ). 0,U,,; and SSO = i > 02/
j=1

1=1 j=1 I=1

2. The global scale parameter 7 and the local scale parameters z;s do not yield a closed-
form solution for the conditional posterior. However, once 7 is fixed, the ;8 are
independent in the posterior under the assumed setting. Hence, following Polson
etal. (2014), = can be updated first, and then the ;s can be updated in a single block.
All these updates are performed via slice sampling, an implementation of which is

available in the R package horseshoe.

3. 2(0PC) ~ NpL<G-luf Y, GZG‘1>. Here G = U'U, + H', U, is the n x pL
matrix of the y,U;;s, and H = r’diag(ti1,, ..., rjl ). For the high-dimensional
settings typical to the motivating biological scenarios in this chapter, it is expensive
to perform this stage of the sampling. Hence, I utilize a data augmentation-based
alternative approach proposed by Bhattacharya et al. (2016), implemented in the R

package horseshoe. This algorithm scales linearly with the data dimension.

n L
- - p
4. For each j, ﬂ'()fj|7)( )) ~ Ber(w,/(l + ll/j)>~ Here y; = -, exp((Z ZHJIUJH‘
i=1 I=1
Y, - 0j,Uj,l.)> / 20'2>. Note that these updates can be made independently, and the

;s can be computed parallely after each previous set of updates.

p p
5. 2(p|P) ~ Beta(a+ Y y;.b+p— ) ).

J=1 J=1



177

Unless otherwise specified, for the rest of this chapter, the sampling procedure as above

is implemented with the following choices.
1. a; = 0.01, bj = 100, and M = 30 in the MSE kernel specifications.
2. The hyperparameter values are chosentobe a=b =1, oy, = f, = 0.5.

3. Two parallel MCMC chains, each with 10,000 burn-ins and 20,000 draws, with a
thinning factor of 2.

5.2.6 Generalizations of Interest

Generalization to censored survival outcome It is straightforward to generalize the GPVIBES
model as discussed in this section to a censored survival outcome using a log-normal accel-
erated failure time (AFT) specification. For a censored survival outcome setting where T’
represents the true survival time variable and C represents the censoring time variable, the
observed outcome variables in the data are assumed to be Y = log(min(7', C)), and event
indicator 6 = I[T < C]. Then, prior to each sampling step for the parameters as described
above, it is necessary to update the censored survival times (i.e. for which 6 = 0) by sam-
pling from their conditional distributions given the rest of the data, and all the parameter
values at the latest update, and the hyperparameters. This update can be performed using
the same truncated normal distribution used in Chapter III for the generalization described

in Section 3.2.3.

Generalization to multiple hierarchical covariates In specific settings, it may be of interest to
incorporate multiple hierarchical covariates Z,s in the GPVIBES model. For example, in
the context of the biological motivation for this chapter, there may be multiple immune sig-
natures or cell type summaries describing different but potentially interacting components
of the tumor microenvironment, and assessing the modulation of the biomarker associa-

tions in the collective presence of these signatures may be interesting. In such a scenario,
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it is straightforward to generalize the GPVIBES model and the sampling algorithm to ac-
commodate multiple hierarchical covariates.

To outline this briefly, let the updated notations be as follows. Let Z,, denote the value
of hierarchical covariate r for sample i, » € {1,..., R}. Then, the deconvolved form of
the varying coefficients can be written as the following, generalizing the Gaussian process

specifications to additive Gaussian processes (AGP).
R

(5.12) Bi(Z)=v; ), [(Z,).
r=1

In this updated setting, then, let f;? = f,(Z,), and £, = (£, ... ,f;f))T. The AGP

jr?’

prior is specified as:
(5.13) f, ~N,0,K,).

Here the (i, k)th element of the covariance matrix K jr 18 given by aer Z

ri’

Z.), where

K;,(e) is the MSE kernel function, expressed in the following way.

(5.14) K, (Z

ri’

Zrk) = exp(_ajr(zfi + Zer) - bjr(Zri - Zrk)z)‘

The same basis expansion technique as described in Section 5.2.3 can be applied to
each kernel separately. For the covariance kernel K, (e), let the eigenvalues be 7;,, and
the corresponding basis functions be y;,,(¢), I € {1,..., L}. In this case, the aggregated
GPVIBES model can be written as the following.

p
(5.15) Y= 210 D 0,U,, +e,.
=1 =1 I=1

Here Uj s are the new covariates of interest in the selection model, defined as U ;. =

rli jrli

V1inW;n(Z,)X ;. Note that these are again fully known and this reduces the model to a
linear form. The 6,,;s are now the regression coefficients of interest, with 6,,, ~ N (0, ofr),

retaining the variance parameters from the AGP prior. Then, the horseshoe prior setting can
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be implemented by decomposing afr = ¢’

T2Tfr. The sampling procedure can accordingly
be updated, and all the computational choices regarding the sampling and the hyperparam-

eters can remain the same.

5.3 Simulation Studies

To assess the selection and estimation performance of GPVIBES, I perform two simu-
lation studies where the outputs of GPVIBES are compared to outputs from other varying
coefficient-type models. In Simulation 1, the synthetic data is generated from a mechanism
with only one hierarchical covariate Z that modulates the effects of the model covariates
X on the outcome of interest Y. In Simulation 2, the data is generated from a setting with
two hierarchical covariates that modulate the covariate effects additively. In both scenar-
10s, the outcome variable is assumed to be continuous, a total of p = 100 covariates are
assessed, each setting is replicated 100 times, and standard selection and estimation metrics
are summarized, as described in the rest of this section.

5.3.1 Simulation 1: Single Hierarchical Covariate

Data generation Let the sample size in a given simulation setting be denoted by » and the
preferred signal-to-noise ratio be denoted by SNR. For a particular simulation replicate,
the following steps are performed to generate the hierarchical covariate, covariate, and

outcome data.

1.Z = (Z,,...,Z,)" is chosen to be the equidistant grid of size n between the range

[0, 1].

2. Among the p = 100 signals, the last 90 are assumed to be zero. This means that the

varying coefficient function () = 0 for all j > 10.

3. For the first five varying coefficients, each is assumed to take a form f,(z) = ¢, f;(2),

where ¢; is chosen such that the integral L*-norm of the function on the region [0, 1]
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/ 1
is exactly 1. This means that for each j € {1,...,5},¢; = ( / sz(z)dz)_l. The
0

functions chosen are as follows: f,(z) = 1, f5(z) = z, f3(z) = z°, f,(2) = (z—0.5)%,
f5(z) = sin(9z). The intention behind choosing these functions is to ensure that
the performance of the modeling procedures being assessed can be evaluated for all
types of functions including constant, linear, polynomial, and more nonlinear than

polynomials (such as trigonometric).

4. Foreach j € {6, ..., 10}, §;(z) = —p,_s(z). This is done to ensure that the assessment
is performed for both positive and negative functions of the same absolute signal level.

5. Let X; denote the value of the j covariate for the i sample. Then for all j and i,

X, < N, 1).

. p
6. Then, the outcome is generated as Y, b N(Z Bi(Z)X;, 1/SNR2) for each i.
j=1

The sample size n is varied over 200, 500, 1000, 2000, and the SNR is varied over

0.5,1, 1.5, 2, resulting in a total of 16 simulation scenarios.

Competing methods and model outputs GPVIBES is implemented as described in Section 5.2.5.
GPVIBES yields two quantities of interest: an estimated posterior inclusion probability
7; for each covariate, and corresponding estimates ] .(Z,) for each varying coefficient at
each observed value of the hierarchical covariate. I use one competing varying coefficient
model with similar flavor, namely, VCBART, which models the varying coefficients using
a Bayesian additive regression tree formulation (Deshpande et al., 2020). The number of
chains and sampling iterations, along with all other relevant details, are kept exactly the
same as that of GPVIBES. The model outputs from VCBART are also exactly same as that
of GPVIBES - however, the posterior inclusion probabilities are no more estimates of an

explicit selection indicator y;; rather, they are posterior average inclusions of a tree corre-
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sponding to the hierarchical covariate in the model. Further, two nonparametric varying
coefficient modeling procedures are used, following Bai et al. (2019), as implemented in
the R package NVCSSL. The first of these, denoted by VCFREQ hereon, is a frequentist
version of the model using basis expansions with LASSO-based regularization on groups
of basis coefficients. For the implementation in this simulation study, the optimal regular-
ization parameter A is chosen from a grid of size 10,000 between [1073, 10°], equidistant
in the log,,(¢) scale, based on minimum AIC of the regularized model. This model pro-
vides a binary inclusion decision for each covariate and corresponding estimates of the
varying coefficient similar to the previous two procedures. The second version, denoted by
VCSSLL henceforth, is a Bayesian version of the model with spike-and-slab lasso spec-
ifications. This model is implemented with a fixed slab hyperparameter A, = 1, and the
spike hyperparameter A, chosen from a grid of size 10,000 between [1, 10°], equidistant in
the log,,(s) scale, based on minimum AIC of the regularized model. The outputs of this

model are the same as that of VCFREQ.

Evaluation metrics for selection and estimation Two classes of metrics are used to evaluate the
performance of the competing methods. First, based on the continuous posterior inclusion
probabilities or the binary selection indicators, we compute several standard metrics for se-
lection performance based on the true generating mechanism. For the two procedures that
yield a continuous posterior inclusion probability for each covariate, variable selection is
performed using FDR control on these probabilities at a 10% level, following the same pro-
cedure described in Section 3.2.4. Based on these, true positive rate (TPR), false positive
rate (FPR), Matthew’s correlation coefficient (MCC), and true positive rates specifically
for the linear and nonlinear functions (TPRL and TPRNL) are computed. Using a grid of

selection cut-offs for GPVIBES and VCBART, and the grid of regularization parameters
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for VCFREQ and VCSSLL, area under the receiver operating characteristic curve (AUC)
and scaled AUC between specificity of 0.8 to 1 (AUC20) are also computed. These met-
rics are threshold-free and provide an overall evaluation of the selection performances. For
estimation, we compare the n X p varying coefficient matrix # and its estimate provided
by the procedures, via the mean squared error (MSE). An overall MSE is computed, along
with versions of it for specific subsets of the effects: MSETrue (for the first 10 true signals),
MSE-False (for the last 90 signals which are zero), MSELinear (for the four linear effects,
j € {1,2,6,7}), and MSENonLinear (for the other six nonzero nonlinear effects). These
metrics are helpful in assessing the overall estimation performance as well as variations in

the performance specific to particular classes of effects.

Key results The first set of interesting results from Simulation 1 are provided by the sim-
ulation metrics. These are summarized in Figure 5.1 and Table S5.1-S5.7. Across all
signal-to-noise ratios and all sample sizes, GPVIBES is the best in terms of MCC, indicat-
ing excellent selection performance at the 10% FDR threshold (Figure 5.1C). In particular,
this result is driven by the fact that GPVIBES yields the lowest number of false positives
compared to all the other competitors (Figure 5.1B). This indicates that the Bayesian vari-
able selection deconvolved via the y;s combined with the sparsity control using the horse-
shoe prior performs satisfactorily in terms of filtering the false signals out. GPVIBES also
yields AUCs which are either the best or second best among all the competitors across all
the simulation scenarios, as can be seen in Figure 5.1D. This indicates a commendable
selection performance across thresholds between 0 and 1, since AUC is a threshold-free
summary of selection performance over this range.

The estimation metrics summarized in Figure 5.2 and Table S5.8-S5.12 make the case

in favor of GPVIBES even further compelling. As can be observed in Figure 5.2A-E,
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Figure 5.1: Simulation 1 results for the selection metrics. The height of each bar is the average value of
the metric across 100 replicates. The signal-to-noise ratio varies across the columns, as labeled at the top.
The sample size varies across the rows, as labeled at the right. The abbreviations are as follows: TPR -
true positive rate, FPR - false positive rate, MCC - Matthew’s correlation coefficient, AUC - area under the
receiver operating characteristic curve, AUC20 - scaled AUC in the range of specificity between 0.8 and 1.
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GPVIBES produces the least replicate-averaged mean squared error across all simulation
scenarios and for all kinds of signals (overall, true, false, linear, and nonlinear). To further
illustrate the significance of this performance, the true and estimated varying coefficient
functions for one linear and nonlinear signals are visualized in Figure 5.3-5.4. It is easy to
observe that for low sample size (n = 200, 500) and low signal-to-noise (SNR = 0.5, 1)
combinations, GPVIBES (red lines) approximates the true functions better than its com-
petitors, reinforcing the reason behind the excellent performance in terms of the MSE even
for these scenarios. For the higher sample size (n = 1000, 2000) and low signal-to-noise
(SNR = 1.5, 2) combinations, all procedures produce comparable results.

5.3.2 Simulation 2: Multiple Hierarchical Covariates

For Simulation 2, most of the key details remain the same as Simulation 1. Hence, in

the rest of this section, the major differences from Simulation 1 are pointed out.

Data generation The choices for the signal-to-noise ratios, and the number of simulation
replicates remain the same as those in Simulation 1. The sample size n is chosen to be
100, 400, 900, 1600. For each n, the two hierarchical covariates Z, and Z, are taken to be
grids of length \/Z, similar to Z in Simulation 1. All possible pairings across the two grids
then result in a total of n observations. A total of p = 60 covariates are generated, with the
last 54 of them corresponding to signals (varying coefficients) fixed at zero. The first three
varying coefficients are each assumed to follow the additive form f,(z,, z,) = ¢;(f},(z,) +
fi2(2,)). Again, ¢; is chosen such that the integral L?-norm of the function on the region
[0,1]? is exactly 1. The functions are chosen to be the following: f,(z) = f5,(z) = z,
f12(2) = fr(2) = (z—0.5), f22(2) = f3,(z) = sin(9z). These functions are chosen so that

we can use all possible combinations of linear, polynomial, and trigonometric functions

to assess estimation performances. As before, the next three non-zero varying coefficients
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Figure 5.2: Simulation 1 results for the estimation metrics. The height of each bar is the average value
of the metric across 100 replicates. The signal-to-noise ratio varies across the columns, as labeled at the
top. The sample size varies across the rows, as labeled at the right. MSE means the overall mean squared
error across all 100 varying coefficients. For any label W, MSEW means the MSE computed only across the
varying coefficients for which the generating mechanism is W. W varies across true (nonzero), false (constant
at zero), linear, and nonlinear.
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are assumed to be the negatives of these first three coefficients. The generating mechanism

for the covariates and the outcome remain the same.

Competing methods and evaluation metrics The nonparametric varying coefficient models
VCFREQ and VCSSLL as proposed by Bai et al. (2019) and implemented in the R package
NVCSSL can only accommodate a single hierarchical covariate Z, interpreted as time vari-
able for repeated measurements in their setting. Hence, these procedures are omitted from
the comparative evaluation scheme for this particular simulation. The details regarding
the implementation of VCBART and GPVIBES remain the same as those in Simulation 1,
along with the selection and estimation metrics used there. Note that in this case it is possi-
ble to separately estimate the functional components individually from the overall additive

varying coefficients.

Key results The simulation and estimation metrics are summarized via bar diagrams in
Figure 5.5. As in Simulation 1, GPVIBES yields better metrics than VCBART across
all simulation scenarios. In particular, GPVIBES maintains near-perfect true positive rate
while still maintaining lower false positive rate than VCBART except for the scenarios
where n = 1600 and SNR > 1. The estimation performance is also excellent, as is evi-
denced by the MSEs across different categories of the signals. In all of these categories,
GPVIBES yields substantially lower replicate-averaged MSE than VCBART. This indi-
cates that even for models with more than one hierarchical covariate of interest, GPVIBES
performs accurate estimation of the true signals via the varying coefficients specified as

Gaussian processes.
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Figure 5.5: Simulation 2 results for the selection and estimation metrics. The height of each bar is the average
value of the metric across 100 replicates. The signal-to-noise ratio varies across the columns, as labeled at
the top. The sample size varies across the rows, as labeled at the right. The abbreviations are as follows:
TPR - true positive rate, FPR - false positive rate, MCC - Matthew’s correlation coefficient, AUC - area under
the receiver operating characteristic curve, AUC20 - scaled AUC in the range of specificity between 0.8 and
1, MSE - overall mean squared error. For any label W, MSEW means the MSE computed only across the
varying coefficients for which the generating mechanism is W. W varies across true (nonzero), false (constant
at zero), linear, and nonlinear.
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5.4 Integrative Clinicogenomic Pan-cancer Analysis incorporating Immune Signa-
tures

In order to illustrate the utility of GPVIBES in the scientific context, I perform an in-
tegrative analysis of pan-cancer data from The Cancer Genome Atlas (TCGA) using pro-
teomic expressions as the covariates of interest and overall survival as the outcome. The
role of the hierarchical variables summarizing the heterogeneity in the tumor microenvi-
ronment is played by cellular composition-based signatures computed from the genomic
profile of the tumor samples. First, I describe the source of and some key overview regard-
ing the data.

5.4.1 Data Description

Data on all 32 of the TCGA cancers are obtained from the Xena browser (Goldman
et al., 2020). The overall survival times along with the censoring information are obtained
from the combined phenotype dataset, the proteomic expressions are obtained from the data
covering the reverse-phase protein array platform, and the immune signatures constructed
by Thorsson et al. (2018) are obtained from the cellular signature data release. I begin
with annotating all the three platforms using the TCGA patient tumor barcodes, and retain
only the samples available across all platforms. Only the 16 cancers that retain at least 200
samples after this step are utilized for all the analyses hereafter. The smallest sample sizes
are available for KIRP and OV (201 each), while the highest sample size of 860 is available
for BRCA. A summary of the sample sizes is presented in Figure S5.1. The proteomic data
contains a total of 210 proteins, and a total of 68 immune signatures (including key cellular
components such as B cell, T cell, CD8-T cells, Chemokines, and Interleukins) are available

in the data.
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5.4.2 Implementation of GPVIBES and Scientific Questions

For each cancer-signature combination, a single GPVIBES model is built, using the
single signature as the hierarchical covariate Z and all the 210 proteins as the X covari-
ates. The details regarding the Bayesian implementation (i.e., number of chains, number of
burn-ins, post burn-in iterations, and thinning proportion) remain the same as those used
in Simulations 1 and 2. As before, GPVIBES yields, for each of the 16 X 68 = 1,088
models, two sets of estimates for each protein j: the posterior probability of inclusion 7;,
and the estimated varying coefficients ﬁj(Zi) at the observed signature values. Based on
these outputs, the interest lies in answering two primary scientific questions. First, at a
pan-signature level, it is interesting to assess whether there are cancers that exhibit higher
modulation of the proteomic associations with survival via the tumor immunogenic hetero-
geneity than the rest of the cancers. For these cancers, it is also interesting to note whether
there are specific proteins that are selected in the GPVIBES models more often, indicating
strong evidence for pan-cancer and/or cancer-specific associations with survival. Second,
for a particular signature, there may be key proteins that are modulated via this signature
for a specific set of cancers. The exact form of these modulations can be quantified using
the estimated varying coefficients.

5.4.3 Key Results and Biological Interpretations

Cross-cancer variability of immunogenic modulation Figure 5.6A summarizes the total pro-
portion of varying coefficients found to be significant at a 10% FDR control cut-off across
all signature-specific models for each cancer. While the sample size availability for each
cancer (hence the statistical power offered by the data) directly contributes to this quanti-
tative summary, there are additional evidences of immunogenic modulation of proteomic

associations with survival. For example, KIRC, SARC, THCA, and SKCM - four cancers
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which all have lower number of samples than BRCA in our dataset, are found to capture
more significant modulations than BRCA at the same level of type I error control. The
majority of these cancers (or certain subgroups of them) are known to be immunologically
hot, meaning that they trigger strong immune responses (KIRC: Bi et al. (2021), THCA:
Du et al. (2021), SKCM: Li et al. (2023)). While SARC is known to be immunologically
cold, recent efforts have explored the use of immunotherapeutic agents in the management
of sarcomas (Rytlewski et al., 2021). To further investigate these modulations, the pro-
portion of signatures for which a protein was deemed to be significant is summarized at
a cancer-specific level in Figure 5.6B. Here, only the proteins that were significant for at
least half of the signatures in at least six out of the 16 cancers are presented. Several known
associations are identified here, such as the protein EGFR which is found to be significant
in 100% of the signature-specific models for both of the gynecological cancers BRCA and
OV. Aberrant EGFR expression is known to be correlated with disease progression, resis-
tance to radiation and chemotherapy, and poor clinical prognosis in BRCA (Kumaraswamy
et al., 2015). It is also known as a prognostic biomarker and therapeutic target in ovarian
cancer (Mehner et al., 2017), thus aligning the findings from GPVIBE regarding it with

existing biological knowledge.

Differential and conserved immunogenic modulation of proteomic associations across cancers Fig-
ure 5.7 summarizes the cancer-specific posterior inclusion probabilities of the top proteins
for three tumor microenvironment signatures: (A) B cell, (B) Interleukin-12, and (C) PDL1.
Certain cancers and proteins exhibit strong levels of evidence in favor of immunogenic
modulation - for example, the cancer KIRC and the protein PEA15 are on top across all
three signatures. PEA15 is known to be prognostic in multiple stages of renal cell carci-

nomas (Han et al., 2017). Another conserved association is observed for the cancer BRCA
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Figure 5.6: Pan-cancer summary of variable selection in the integrative analysis. In panel (A), the height of
each bar represents the proportion of varying coefficients selected across all 68 models and 210 proteins for
the corresponding cancer. In panel (B), the Y axis presents only the proteins which are significant in more
than 50% of the immune signature-specific models across at least six of the 16 cancers. For each cancer-
protein combination, the size of the bubble is proportional to the proportion of immune signature-specific
models in which the varying coefficient corresponding to the protein is statistically significant at a 10% level
of FDR control.
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and the protein fibronectin. Previously, a dynamic relationship between tumor and stromal
cells within the tumor microenvironment has been established in breast cancer, in which
the levels and fibrillarization of fibronectin in the extracellular matrix are modulated dur-
ing different stages of disease progression (Libring et al., 2020). On the other hand, a key
example of differential signal is presented by the association of ribosomal protein S6 ex-
pression with overall survival in BLCA, which is statistically significant in the B cell and
PDL1 models, but not in the Interleukin model. The therapeutic potential of S6 has been
explored in recent oncological research (Yietal., 2021). However, Interleukin-12 is already
well established as an option for intravesical immunotherapy in bladder cancers (Nguyen
et al., 2021). The fact that GPVIBES identifies the S6 association for other signatures but
not for Interleukin-12 may suggest a mechanistic modulation of the S6 expression in pres-
ence of high Interleukin-12 activity in the tumor microenvironment, potentially guiding

future investigations.

Contradictory associations of PEA15 with overall survival in KIRC To illustrate the utility of the
flexible Gaussian process-based modeling of the varying coefficients via GPVIBES, the
association of PEA15 with overall survival in KIRC is further discussed as a case study
here. The estimated varying coefficients for the same signatures considered in Figure 5.7
are visualized in Figure 5.8. While all three estimates lie on both sides of the constant zero
signal depending on the value of the signature score, the significant regions based on the
95% posterior credible intervals differ. The significant portion of the varying coefficient
is positive for the B cell model, while the same is negative for the other two models. As
discussed in the previous paragraph, PEA15 is a known prognostic agent in renal carcino-
mas. However, several studies have indicated that changes in the tumor microenvironment

such as phosphorylation of agents in the ERK signaling cascade can modify PEA15 from
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(B) Interleukin-12 (A) B Cell

(C) PDLA1

Figure 5.7: Signature-specific pan-cancer summary of selection. In each panel, for a specific immune sig-
nature, a heatmap is presented across all cancers in the rows and the top proteins in the columns. The color
coding in the heatmap cells corresponds to the posterior inclusion probability 7 for the particular gene in the
column in the signature-specific model for the cancer in the row. The rows and columns are ordered accord-
ing to the average posterior inclusion probability across each dimension.
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a tumor suppressor to a tumor promoter. In the GPVIBES estimates, PEA15 expression
is positively associated with overall survival in KIRC for high positive B cell score, but is
negatively associated with the same for small positive Interleukin-12 score and negative
PDL1 score. These results illustrate the potential that GPVIBES offers to identify tumor
microenvironment elements that play crucial roles in modulating roles of genomics in pa-

tient survival.
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Figure 5.8: Estimated varying coefficients from signature-specific models for the protein peal5 and cancer
KIRC. In each panel, the dark dashed horizontal line is at zero, the blue solid line indicates the estimated
varying coefficient, and the blue dashed lines indicate the upper and lower 95% pointwise posterior credible
intervals for the same. The green solid line on top of each panel indicates the regions where the intervals do
not contain the zero lines.
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5.5 Discussion and Future Work

Overview In this chapter, I propose GPVIBES, a Gaussian process-based varying coeffi-
cient model framework using Bayesian variable selection. GPVIBES offers flexible model-
ing options for varying coefficients as functions of hierarchical covariates via the Gaussian
process specification while enforcing sparsity in the number of selected associations via an
amalgamation of Bayesian variable selection and shrinkage techniques. Simulation studies
using synthetic datasets with one or more hierarchical covariates across a broad spectrum
of sample size to number of covariates ratios and signal to noise ratios exhibit substantial
improvements in the part of GPVIBES in terms of both selection and estimation compared
to other varying coefficient-based parametric and nonparametric models. To illustrate the
utility of GPVIBES in integrative clinicogenomic studies in context of precision oncol-
ogy, I perform a pan-cancer analysis of overall survival and proteomics data from TCGA
using immune signatures as the hierarchical covariates. Our analysis uncovers several in-
teresting and interpretable results, such as the differential behavior of PEA15 expression in
context of survival of KIRC patients across different signatures. Additional to the flexible
yet sparse modeling schema that GPVIBES offers, a key improvement is due to the com-
putational advantages that GPVIBES offers against the other varying coefficient models,

as is discussed next.

Sensitivity to kernel hyperparameters A key point in the process of building a GPVIBES
model is the choice of hyperparameters driving the MSE kernel-based expansion tech-
nique. As described in Section 5.2.5, I use fixed values of the kernel parameters a and b
across all simulation and real data scenarios, along with a fixed degree M for the maxi-
mal polynomial included in the expansion. Initial investigations into the approximation of

known nonlinear functions indicate that a small value for a in the order of 1072 or 1073 is
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sufficient, since the role of a is only to ensure that the expansion is possible, which is the
case as long as a > 0. Similarly, for b, a value in the order of 10* for some k > 2 is usually
sufficient, It is possible to tune these parameters to a specific hierarchical covariate. One
such option is provided by the procedure followed in Sun et al. (2020). For a given Z,
they compute quantile-based summaries of (£, — Z j)z, and choose multiple values of the
lengthscale parameter A = 1/ \/ﬂ across a grid. Then, an optimal value is chosen based
on cross-validating model performance. A similar approach can be followed for choosing
a and b in the setting described in this chapter. For the class of nonlinear associations
modeled in this chapter, approximations with polynomials of a maximum degree M = 30
suffice. Initial simulations indicate that depending on the data input, even approximations
of maximum degree M = 10 or 15 may be sufficient. Since majority of our models use a
single hierarchical covariate, the approximation even with M = 30 is superfast and does
not pose any substantial computational burden, which is the reason why it is used as a fixed,

singular choice.

Computational efficiency of GPVIBES An attractive feature of GPVIBES is its computational
efficiency. Due to the fast data augmentation-based update of the regression coefficients
in the horseshoe setting, as well as the deconvolution of the selection and estimation me-
chanics in the Gaussian process specification, GPVIBES can handle large datasets at ease.
This is illustrated in Figure S5.2, which summarizes the average time in seconds per unit
operation in Simulation 1 for each method. As can be observed, despite being a fully
Bayesian procedure, GPVIBES is the fastest among the methods compared. To illustrate
the utility of GPVIBES in context of integrative clinicogenomic studies, the runtimes of
GPVIBES across the signature-specific models are summarized via individual boxplots for

each cancer in Figure S5.3. As can be observed, all runtimes for all the cancers are under
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one hour, with the third quartile of runtimes falling under 10 minutes for all cancers except
KIRC, which is the cancer with the second largest sample size. This makes GPVIBES an
extremely realistic option for clinicogenomic studies with large omics panels and several

hierarchical signatures of interest.

Future directions From a scientific perspective, a key direction of interest to pursue as a
follow-up to the research performed in this chapter is to incorporate higher quality ge-
nomic data in the integrative analysis. The proteomic data used in this case comes from a
reverse-phase protein array, which only includes a targeted set of proteins which are of on-
cological interest. However, deeper proteomics panels covering additional dimensions of
cellular oncological activity such as phosphorylation are becoming increasingly available.
An example of this, as mentioned in previous chapters, is given by the National Cancer
Institute’s Clinical Proteomic Tumor Analysis Consortium (Ellis et al., 2013). Emerging
data dissemination efforts such as LinkedOmics have made such data available for mul-
tiple cancers, aligned with other omics platforms including mRNA expression and copy
number variation, along with sample-specific phenotypes and clinical variables (Vasaikar
et al., 2018). Thus, there is promising potential towards integrative GPVIBES analysis
with more enriched datasets. From the methodological angle, two particular developments
are of interest. First, in this chapter, the GPVIBES model with more than one hierarchical
variables was only explored in Simulation 2. It would be interesting to assess the compu-
tational evolution of such a model with increasing number of hierarchical variables, and
any potential challenge for substantially higher dimensions. Additionally, in the scientific
context, employing such a model may be of interest since many tumor microenvironment
components can potentially interact among themselves. Including such signatures in a sin-

gle model may be beneficial to uncover underlying tumor growth mechanisms. The other
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methodological pursuit of interest is to combine the idea of biomarker prioritization via
calibrated priors as discussed in Chapter III and Chapter IV. Such a component can be
implemented via changing the prior structure on the ;s following Section 5.2.4. It would
be interesting to investigate whether such a combined modeling scheme is feasible com-
putationally, and if yes, whether it results in more interpretable estimates and improved

selection.

Reproducibility All the analysis codes developed for the purpose of this chapter, along with
the processed datasets are available on the R shiny dashboard hosted athttps://bayesrx.
shinyapps.io/GPVIBES/. The dashboard also serves as an interactive domain for the
visualization and presentation of all the results from our pan-cancer integrative clinicoge-

nomic analyses.

5.6 Supplementary Figures
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Figure S5.1: Sample sizes of TCGA cancers used in the integrative clinicogenomic analysis. In each case,

the sample size indicates the total number of samples for which data from all three sources - overall survival,
immune signatures, and proteomic expressions - are available.
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Figure S5.2: Average runtimes per unit operation for Simulation 1. The height of each bar is the average run-
time per operation across 100 replicates. For GPVIBES and VCBART, unit operation means a single update
in the MCMC procedure. For VCFREQ), unit operation means fitting the model for a single regularization
parameter. For VCSSLL, unit operation means one iteration of the posterior approximation procedure for a
single regularization parameter. The signal-to-noise ratio varies across the columns, as labeled at the top.
The sample size varies across the rows, as labeled at the right. MSE means the overall mean squared error
across all 100 varying coefficients.
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5.7 Supplementary Tables

Table S5.1: True positive rate results from Simulation 1. n denotes the sample size, SNR denotes the signal-
to-noise ratio. Each cell contains the average value of the metric across 100 replicates (with the standard
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deviation across the 100 replicates in parentheses).

n  SNR GPVIBES VCBART VCFREQ  VCSSLL
0.5 0.937(0.13) 0.390(0.20) 0.992 (0.03) 0.959 (0.08)

soo L 0995(0.02) 0.402(0.16) 1.000(0.00) 0.998 (0.01)
1.5 0.996(0.02) 0.350(0.21) 1.000 (0.00) 1.000 (0.00)

2 0994 (0.02) 0.424(0.17) 1.000 (0.00) 1.000 (0.00)

0.5 1.000(0.00) 0.248(0.14) 1.000 (0.00) 1.000 (0.00)

so0 L 1000(0.00) 0242 (0.15) 1.000(0.00) 1.000 (0.00)
1.5 1.000(0.00) 0.228 (0.13)  1.000 (0.00) 1.000 (0.00)

2 1.000 (0.00) 0.218(0.14) 1.000 (0.00) 1.000 (0.00)

0.5 1.000(0.00) 0.147 (0.11) 1.000 (0.00) 1.000 (0.00)

000 1 1:000(0.00) 0.164(0.13) 1000 (0.00) 1.000 (0.00)
1.5 1.000(0.00) 0.140 (0.10) 1.000 (0.00) 1.000 (0.00)

2 1.000 (0.00) 0.136(0.10) 1.000 (0.00) 1.000 (0.00)

0.5 1.000(0.00) 0.180(0.12) 1.000 (0.00) 1.000 (0.00)
o001 1:000(0.00) 0.074(0.09) 1.000(0.00) 1.000 (0.00)
1.5 1.000(0.00) 0.055(0.07) 1.000 (0.00) 1.000 (0.00)

2 1.000 (0.00) 0.054 (0.07) 1.000 (0.00) 1.000 (0.00)

Table S5.2: True positive rate for the linear functions results from Simulation 1. n denotes the sample size,
SNR denotes the signal-to-noise ratio. Each cell contains the average value of the metric across 100 replicates

(with the standard deviation across the 100 replicates in parentheses).

n  SNR GPVIBES VCBART  VCFREQ  VCSSLL

0.5 0.968(0.13) 0.345(0.25) 0.998 (0.03) 0.983 (0.07)

oo 1 1:000(0.00) 0.405(0.22) 1.000 (0.00) 1.000 (0.00)
1.5 1.000 (0.00) 0.328 (0.27) 1.000 (0.00) 1.000 (0.00)

2 0.998(0.03) 0.420(0.27) 1.000 (0.00) 1.000 (0.00)

0.5 1.000(0.00) 0.260 (0.21) 1.000 (0.00) 1.000 (0.00)

so0 L 1000(0.00) 0200(0.19) 1.000(0.00) 1.000 (0.00)
1.5 1.000 (0.00) 0.222(0.21) 1.000 (0.00) 1.000 (0.00)

2 1.000(0.00) 0.212(0.21) 1.000 (0.00) 1.000 (0.00)

0.5 1.000(0.00) 0.112(0.16) 1.000 (0.00) 1.000 (0.00)

oo 1 1.000(0:00) 0.160 (0.21) 1.000 (0.00) 1.000 (0.00)
1.5 1.000 (0.00) 0.120(0.15) 1.000 (0.00) 1.000 (0.00)

2 1.000(0.00) 0.138(0.16) 1.000 (0.00) 1.000 (0.00)

0.5 1.000(0.00) 0.162 (0.20) 1.000 (0.00) 1.000 (0.00)
o001 1:000(0.00) 0.060(0.12) 1000 (0.00) 1.000 (0.00)
1.5 1.000 (0.00) 0.050 (0.11) 1.000 (0.00) 1.000 (0.00)

2 1.000(0.00) 0.040 (0.09) 1.000 (0.00) 1.000 (0.00)
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Table S5.3: True positive rate for the nonlinear functions results from Simulation 1. n denotes the sample
size, SNR denotes the signal-to-noise ratio. Each cell contains the average value of the metric across 100

replicates (with the standard deviation across the 100 replicates in parentheses).

n  SNR GPVIBES VCBART VCFREQ  VCSSLL
0.5 0917(0.15) 0.420(0.24) 0.988 (0.04) 0.943 (0.10)
soo L 0992(0.04) 0400(0:20) 1.000(0.00) 0.997 (0.02)
15 0.993(0.03) 0.365(0.26) 1.000 (0.00) 1.000 (0.00)
2 0.992(0.04) 0.427(0.20) 1.000 (0.00) 1.000 (0.00)
0.5 1.000(0.00) 0.240 (0.20) 1.000 (0.00) 1.000 (0.00)
so0 L 1000(0.00) 0270 (0.20) 1.000(0.00) 1.000 (0.00)
1.5 1.000 (0.00) 0.232(0.16) 1.000 (0.00) 1.000 (0.00)
2 1.000 (0.00) 0.222(0.17) 1.000 (0.00) 1.000 (0.00)
0.5 1.000(0.00) 0.170 (0.16) 1.000 (0.00) 1.000 (0.00)
oo 1 1.000(0.00) 0.167(0.16) 1.000(0.00) 1.000 (0.00)
1.5 1.000 (0.00) 0.153(0.15) 1.000 (0.00) 1.000 (0.00)
2 1.000 (0.00) 0.135(0.13) 1.000 (0.00) 1.000 (0.00)
0.5 1.000(0.00) 0.192(0.17) 1.000(0.00) 1.000 (0.00)
000 L 1:000(0.00) 0.083(0.12) 1.000(0.00) 1.000 (0.00)
1.5 1.000(0.00) 0.058 (0.10) 1.000 (0.00) 1.000 (0.00)
2 1.000 (0.00) 0.063(0.10) 1.000 (0.00) 1.000 (0.00)

Table S5.4: False positive rate results from Simulation 1. n denotes the sample size, SNR denotes the signal-
to-noise ratio. Each cell contains the average value of the metric across 100 replicates (with the standard

deviation across the 100 replicates in parentheses).

n  SNR GPVIBES VCBART VCFREQ  VCSSLL
0.5 0.085(0.06) 0.402(0.10) 0.730 (0.05) 0.600 (0.24)
oo L 0.122(0.06) 0409 (0.07) 0.683(0.05) 0.527(0.20)
1.5 0.128 (0.06) 0.350 (0.15) 0.663 (0.05) 0.558 (0.21)
2 0.126(0.05) 0.396(0.09) 0.636(0.07) 0.587 (0.27)
0.5 0.085(0.04) 0.239(0.06) 0.998 (0.00) 0.972 (0.05)
sop 1 0.104(0.06) 0244(0.06) 0997 (0.01) 0.965 (0.06)
1.5 0.118(0.05) 0.227(0.05) 0.994 (0.01) 0.972 (0.05)
2 0.123(0.05) 0.243(0.07) 0.993(0.01) 0.978 (0.04)
05 0.071(0.04) 0.156(0.05) 1.000(0.00) 1.000 (0.00)
0o 1 0:095(0.05) 0.144(0.05) 1000 (0.00) 1.000 (0.00)
1.5 0.119(0.05) 0.134(0.05) 1.000 (0.00) 1.000 (0.00)
2 0.143(0.06) 0.143(0.05) 1.000 (0.00) 1.000 (0.00)
05 0.052(0.04) 0.156(0.05) 1.000(0.00) 1.000 (0.00)
o001 0077(0.04) 0.060(0.04) 1.000(0.00) 1.000 (0.00)
1.5 0.131(0.05) 0.049(0.03) 1.000 (0.00) 1.000 (0.00)
2 0.192(0.07) 0.041(0.03) 1.000 (0.00) 1.000 (0.00)
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Table S5.5: Matthews correlation coefficient results from Simulation 1. n denotes the sample size, SNR
denotes the signal-to-noise ratio. Each cell contains the average value of the metric across 100 replicates

(with the standard deviation across the 100 replicates in parentheses).

n  SNR GPVIBES VCBART  VCFREQ  VCSSLL
0.5 0706 (0.12) -0.008 (0.12) 0.183 (0.03) 0.227 (0.12)

oo 1 0659(0.10) -0.004(0.09) 0211(0.03) 0.293(0.12)
1.5 0.651(0.11) -0.001(0.10) 0.220(0.02) 0.278 (0.12)

2 0.647(0.08) 0.017(0.10) 0.234(0.03) 0.280 (0.21)

0.5 0.733(0.10) 0.007 (0.10) 0.006 (0.01) 0.028 (0.05)

sop 1 0698(0.11) -0.001 (0.1 0.009(0.02) 0.038 (0.05)
1.5  0.668(0.10) 0.001 (0.10) 0.016(0.02) 0.033 (0.05)

2 0.658(0.09) -0.017(0.10) 0.018(0.02) 0.027 (0.04)

05 0.769 (0.10) -0.007 (0.10) 0.000 (0.00) 0.000 (0.00)

oo 1 0713(0.10) 0017 (0.12)  0.000 (0.00) 0.000 (0.00)
15 0.663(0.09) 0.005(0.09) 0.000 (0.00) 0.000 (0.00)

2 0.627(0.10) -0.005 (0.09) 0.000 (0.00) 0.000 (0.00)

0.5 0.821(0.11) 0.020(0.10) 0.000 (0.00) 0.000 (0.00)

000 L 0750(0.09) 0.018(0.11) 0.000(0.00) 0.000 (0.00)
1.5  0.643(0.08) 0.007 (0.10) 0.000 (0.00) 0.000 (0.00)

2 0.557(0.09) 0.024(0.11) 0.000 (0.00) 0.000 (0.00)

Table S5.6: AUC results from Simulation 1. n denotes the sample size, SNR denotes the signal-to-noise
ratio. Each cell contains the average value of the metric across 100 replicates (with the standard deviation

across the 100 replicates in parentheses).

n  SNR GPVIBES VCBART VCFREQ  VCSSLL
0.5 0.855(0.05) 0.496 (0.10) 0.714(0.05) 0.899 (0.07)

oo L 0872(0.04) 0497 (0.08) 0702 (0.04) 0.929 (0.08)
1.5  0.870(0.04) 0.496 (0.09) 0.683 (0.04) 0.921 (0.08)

2 0.873(0.04) 0.513(0.08) 0.663 (0.04) 0.880 (0.08)

0.5 0.886(0.03) 0.507 (0.07) 0.990 (0.01) 0.994 (0.00)

sop 1 0.886(0.04) 0497 (0.08) 0990 (0.01) 0.990 (0.01)
1.5 0.889(0.03) 0.502(0.07) 0.986(0.01) 0.991 (0.01)

2 0.887(0.04) 0.487(0.08) 0.987 (0.01) 0.992 (0.01)

05 0.885(0.04) 0.499(0.06) 0.991(0.01) 0.994 (0.00)

oo 1 0887(0.03) 0511(0.08) 0989 (0.01) 0.991(0.01)
1.5 0.888(0.04) 0.504(0.06) 0.991(0.01) 0.991 (0.01)

2 0.881(0.04) 0.497(0.06) 0.989(0.01) 0.991 (0.01)

05 0.887(0.03) 0.516(0.06) 0.988(0.01) 1.000 (0.00)
o001 0-881(0.04) 0503 (0.06) 0.990(0.01) 1.000 (0.00)
1.5 0.885(0.03) 0.517(0.05) 0.987(0.01) 1.000 (0.00)

2 0.881(0.03) 0.509(0.05) 0.986 (0.01) 1.000 (0.00)
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Table S5.7: AUC20 results from Simulation 1. n denotes the sample size, SNR denotes the signal-to-noise
ratio. Each cell contains the average value of the metric across 100 replicates (with the standard deviation

across the 100 replicates in parentheses).

n  SNR GPVIBES VCBART VCFREQ  VCSSLL
0.5 0.186(0.20) 0.001 (0.01) 0.739 (0.14)  0.404 (0.29)

oo 1 0229(0:22) 0.000(0.00) 0.821(0.10) 0.411(0.34)
1.5 0.176(0.19) 0.000 (0.00) 0.844 (0.09) 0.357 (0.34)

2 0.220(0.21) 0.001(0.01) 0.867(0.08) 0.313 (0.37)

05 0217 (021) 0.029(0.06) 0.745(0.15) 0.648 (0.21)

so0 L 0259(022) 0029(0.05) 0754 (0.14) 0.624 (0.18)
1.5 0252(021) 0.031(0.06) 0.760 (0.14) 0.669 (0.18)

2 0242(0.23) 0.026(0.05) 0.769 (0.14) 0.675 (0.17)

0.5 0.228(0.21) 0.045(0.05) 0.678(0.17) 0.734 (0.16)

oo 1 0255(0:20) 0.046(0.04) 0.696 (0.19) 0.724(0.16)
1.5 0272(021) 0.039(0.04) 0.733(0.19) 0.713 (0.16)

2 0221(0.21) 0.038(0.04) 0.687 (0.18) 0.739 (0.15)

0.5 0.204 (0.22) 0.054 (0.05) 0.566(0.20) 0.785 (0.15)

oo L 0:226(020) 0.013(0.02) 0616(0.19) 0.794 (0.13)
1.5 0.252(0.22) 0.008 (0.01) 0.611(0.19) 0.792 (0.14)

2 0233(0.21) 0.007(0.01) 0.601 (0.19) 0.761 (0.17)

Table S5.8: Overall MSE results from Simulation 1. n denotes the sample size, SNR denotes the signal-
to-noise ratio. Each cell contains the average value of the metric across 100 replicates (with the standard

deviation across the 100 replicates in parentheses).

n  SNR GPVIBES VCBART VCFREQ  VCSSLL
0.5 0.032(0.01) 0.185(0.06) 0.071(0.01) 0.127 (0.05)

oo L 0013(0.01) 0.134(0.04) 0.033(0.01) 0.054(0.02)
1.5 0.007(0.01) 0.132(0.06) 0.023(0.01) 0.033 (0.01)

2 0.005(0.01) 0.138(0.08) 0.017 (0.01) 0.025 (0.02)

0.5 0.009 (0.00) 0.209 (0.08) 0.133(0.02) 0.203 (0.06)

sop 1 0.002(0.00) 0.170(0.08) 0.033(0.00) 0.063 (0.02)
1.5 0.001(0.00) 0.146 (0.07) 0.013 (0.00) 0.032 (0.01)

2 0.001(0.00) 0.143(0.06) 0.007 (0.00) 0.022 (0.01)

0.5 0.004(0.00) 0.269(0.07) 0.202(0.03) 0.605 (0.14)

oo 1 0:001(0.00) 0.181(0.06) 0.030(0.00) 0.229(0.07)
1.5 0.001(0.00) 0.175(0.06) 0.010(0.00) 0.094 (0.02)

2 0.000(0.00) 0.168 (0.05) 0.004 (0.00) 0.047 (0.01)

05 0.002(0.00) 0.204(0.02) 0.037 (0.00) 0.043 (0.00)
o001 0-001(0.00) 0.132(0.01) 0.007 (0.00) 0.011(0.00)
1.5 0.000(0.00) 0.122(0.01) 0.003 (0.00) 0.005 (0.00)

2 0.000(0.00) 0.118(0.01) 0.001 (0.00) 0.003 (0.00)
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Table S5.9: Nonzero functions MSE results from Simulation 1. n denotes the sample size, SNR denotes
the signal-to-noise ratio. Each cell contains the average value of the metric across 100 replicates (with the
standard deviation across the 100 replicates in parentheses).

n  SNR GPVIBES VCBART VCFREQ  VCSSLL
0.5 0254(0.11) 0.487(0.09) 0.425(0.07) 0.585 (0.20)

soo L 0106(0.05) 0441 (0.07) 0244 (0.05) 0304 (0.10)
1.5 0.057(0.05) 0.444 (0.08) 0.179 (0.04) 0.212 (0.09)

2 0.046 (0.05) 0.444(0.11) 0.145(0.05) 0.179 (0.12)

0.5 0.061(0.02) 0309 (0.11) 0.277(0.05) 0.312(0.12)

so0 L 0017(0.00) 0258(0.09) 0.094(0.02) 0.130 (0.04)
1.5 0.008 (0.00) 0.240 (0.08) 0.045 (0.01) 0.088 (0.03)

2 0.005(0.00) 0.238(0.07) 0.029 (0.01) 0.074 (0.03)

0.5 0.026(0.00) 0.283(0.07) 0.250(0.06) 0.641 (0.21)

oo 1 0008(0.00) 0201(0.06) 0.046(0.01) 0.252(0.11)
1.5 0.004 (0.00) 0.199 (0.06) 0.016 (0.00) 0.100 (0.03)

2 0.002(0.00) 0.189(0.05) 0.008 (0.00) 0.050 (0.02)

0.5 0.013(0.00) 0.210(0.03) 0.040(0.01) 0.044 (0.01)

soo0 L 0:004(0.00) 0.139(0.02) 0.009(0.00) 0.012 (0.00)
1.5 0.002(0.00) 0.127 (0.02) 0.004 (0.00) 0.005 (0.00)

2 0.001(0.00) 0.124(0.02) 0.002 (0.00) 0.003 (0.00)

Table S5.10: Zero functions MSE results from Simulation 1. n denotes the sample size, SNR denotes the
signal-to-noise ratio. Each cell contains the average value of the metric across 100 replicates (with the stan-

dard deviation across the 100 replicates in parentheses).

n  SNR GPVIBES VCBART VCFREQ  VCSSLL
0.5 0.008 (0.00) 0.151(0.06) 0.032(0.01) 0.076 (0.04)

oo 1 0.003(0.00) 0.100(0.04) 0.010(0.00) 0.026 (0.01)
1.5 0.001(0.00) 0.097 (0.06) 0.005 (0.00) 0.013 (0.01)

2 0.001(0.00) 0.104 (0.08) 0.003 (0.00) 0.008 (0.01)

0.5 0.003(0.00) 0.198(0.07) 0.117(0.02) 0.191 (0.06)

sop 1 0.001(0.00) 0.160(0.08) 0.026(0.00) 0.056(0.02)
1.5 0.000(0.00) 0.135(0.07) 0.010(0.00) 0.026 (0.01)

2 0.000(0.00) 0.133(0.06) 0.005(0.00) 0.016 (0.00)

05 0.002(0.00) 0.267(0.07) 0.197(0.03) 0.601 (0.14)

oo 1 0:000(0.00) 0.179(0.06) 0.028(0.00) 0.227(0.07)
1.5 0.000(0.00) 0.172(0.06) 0.009 (0.00) 0.093 (0.02)

2 0.000(0.00) 0.166 (0.05) 0.004 (0.00) 0.046 (0.01)

05 0.001(0.00) 0.204(0.02) 0.037 (0.00) 0.043 (0.00)
o001 0:000(0.00) 0.132(0.01) 0.007 (0.00) 0.011(0.00)
1.5 0.000(0.00) 0.122(0.01) 0.003 (0.00) 0.005 (0.00)

2 0.000(0.00) 0.118(0.01) 0.001 (0.00) 0.003 (0.00)
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Table S5.11: Linear functions MSE results from Simulation 1. n denotes the sample size, SNR denotes
the signal-to-noise ratio. Each cell contains the average value of the metric across 100 replicates (with the
standard deviation across the 100 replicates in parentheses).

n  SNR GPVIBES VCBART VCFREQ  VCSSLL
0.5 0.175(0.12) 0.266(0.11) 0.352(0.09) 0.623 (0.28)

soo L 0062(0.02) 0221(0.09) 0.193(0.05) 0321 (0.14)
1.5 0.034(0.02) 0.229(0.12) 0.138(0.04) 0.220(0.12)

2 0.028(0.03) 0.219(0.10) 0.113(0.05) 0.192(0.16)

0.5 0.049(0.02) 0224 (0.12) 0.241(0.06) 0.326 (0.14)

so0 L 0014(0.00) 0.175(0.10) 0.077(0.02) 0.143 (0.05)
1.5 0.007 (0.00) 0.150(0.08) 0.037 (0.01) 0.100 (0.05)

2 0.004(0.00) 0.144 (0.07) 0.024 (0.01) 0.092 (0.05)

0.5 0.023(0.01) 0270 (0.08) 0.248(0.09) 0.642 (0.30)

oo 1 0007(0.00) 0.176(0.07) 0.045(0.02) 0.268 (0.14)
1.5 0.003(0.00) 0.178(0.06) 0.016 (0.01) 0.104 (0.05)

2 0.002(0.00) 0.170 (0.06) 0.008 (0.00) 0.050 (0.03)

0.5 0.011(0.00) 0.204(0.04) 0.040(0.01) 0.045 (0.02)

000 L 0:003(0.00) 0.133(0.03) 0.009(0.00) 0.012(0.00)
1.5 0.001(0.00) 0.121(0.02) 0.004 (0.00) 0.005 (0.00)

2 0.001(0.00) 0.119(0.02) 0.002 (0.00) 0.003 (0.00)

Table S5.12: Nonlinear functions MSE results from Simulation 1. n denotes the sample size, SNR denotes
the signal-to-noise ratio. Each cell contains the average value of the metric across 100 replicates (with the

standard deviation across the 100 replicates in parentheses).

n  SNR GPVIBES VCBART VCFREQ  VCSSLL
0.5 0.026(0.01) 0.181(0.06) 0.059 (0.01) 0.107 (0.05)

oo 1 0011001 0.130(0.04) 0.027(0.01) 0.043(0.02)
1.5 0.006(0.00) 0.128 (0.06) 0.018 (0.00) 0.025 (0.01)

2 0.005(0.00) 0.135(0.08) 0.013(0.00) 0.018 (0.01)

0.5 0.007 (0.00) 0.209 (0.08) 0.129 (0.02) 0.198 (0.06)

sop 1 0.002(0.00) 0.170(0.08) 0.031(0.00) 0.060(0.02)
1.5 0.001(0.00) 0.145(0.07) 0.012(0.00) 0.029 (0.01)

2 0.001(0.00) 0.143(0.06) 0.007 (0.00) 0.019 (0.01)

0.5 0.003(0.00) 0.269(0.07) 0.200(0.03) 0.603 (0.14)

0o 1 0:001(0.00) 0.181(0.05) 0.029(0.00) 0.228(0.07)
1.5 0.000(0.00) 0.175(0.06) 0.009 (0.00) 0.094 (0.02)

2 0.000(0.00) 0.168 (0.05) 0.004 (0.00) 0.047 (0.01)

05 0.002(0.00) 0.204(0.02) 0.037 (0.00) 0.043 (0.00)
o001 0:000(0.00) 0.132(0.01) 0.007 (0.00) 0.011(0.00)
1.5 0.000(0.00) 0.122(0.01) 0.003 (0.00) 0.005 (0.00)

2 0.000(0.00) 0.118(0.01) 0.001 (0.00) 0.003 (0.00)




CHAPTER VI

Conclusion

Overview In this dissertation, I developed several Bayesian integrative statistical proce-
dures motivated by problems in context of precision oncology. In Chapter II, I devel-
oped TransPRECISE, a Bayesian network-based integration procedure to combine and
compare multi-system proteomic pathways. In Chapter III, I worked on fiBAG, a hi-
erarchical Bayesian framework to integrate multi-omics and clinical data from patients.
In Chapter 1V, I formulated BaySyn, a multi-stage Bayesian pipeline to integrate multi-
platform data across both patient tumors and cancer models. Finally, in Chapter V, I pro-
posed GPVIBES, a Gaussian process-based varying coefficient modeling procedure using
Bayesian variable selection to integrate tumor microenvironment summaries in clinicoge-

nomic models.

Methodological and Scientific Contributions From a methodological perspective, in each chap-
ter, I have investigated the mechanics of the proposed procedure in great detail. In Chapters
III and V, I performed extensive simulation studies to compare the methods developed by
me against state-of-the-art methods developed to tackle similar problems. In all chapters, I
have tested the utility of the methods and the interpretability of the results via performing
large-scale pan-cancer integrative analyses of patient and model system data from biolog-

ical databases of interest. I assessed these results in context of existing scientific knowl-
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edge by investigating the existing clinical oncological literature extensively and aligning
such knowledge with outputs from my models. In each chapter, I discuss potential future
directions both through the scientific and methodological axes that can further boost the
growing knowledge base of integrative biostatistical research. To ensure reproducibility of
the model results and accessibility of the scientific outputs in part of readers from all knowl-
edge domains, I have developed R shiny-based interactive dashboards for each chapter, as
listed in Chapter I and described in each individual chapter. These dashboards provide
software codes and processed datasets to reproduce the results reported in this dissertation,
as well as an interactive collection of such results for the users to probe into. I sincerely
believe that these collections will contribute significantly both to the utility and merit of

this dissertation as well as to the advancement of the greater scientific cause.

Evolution of increasingly enriched multi-omic and clinical datasets The rapid advancement of ge-
nomic sequencing methods in terms of both computational efficiency and cellular granular-
ity has multiplied the opportunities in the integrative and personalized inference paradigms
by manifolds. While evolution of techniques such as next-generation sequencing has made
aggregation of high-sample-size patient data repositories possible, single cell and spatial
omics methods have begun to offer increasingly microscopic and structured observation of
the tumor microenvironment (Kumar et al., 2019; Kashima et al., 2020). However, pub-
licly available repositories aggregating such novel datasets are typically in progress and yet
to achieve completion, with new samples and cancer types still being recruited and pro-
cessed. Hence, the data applications illustrated in each chapter of this dissertation relies
on omics databases reliant on bulk sequencing techniques, both for patients (TCGA) and
cancer model systems (CCLE). Such databases provide complete, processed, and normal-

ized multi-omics datasets that have repeatedly been validated in recent studies and utilized
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to map pan-cancer and cancer-specific features of the genome. However, all the statistical
procedures developed in this dissertation can be generalized for the purpose of applications
to databases of higher depth. For the purpose of exposition, I discuss one such deep omics
dataset, namely, the National Cancer Institute’s Clinical Proteomic Tumor Analysis Con-
sortium (CPTAC, Ellis et al., 2013). Across three stages of data collection completed so
far, CPTAC provides information on more than 1,500 samples across more than 10 cancer
types. The data types available include DNA-level information based on whole genome
sequencing, mRNA expression quantifications based on whole exome sequencing, harmo-
nized deep- and phospho-proteomic expression data, along with clinical and biospecimen
information. Such high-resolution multi-platform data increases the potential to uncover
cellular mechanisms of cancer along with therapeutic opportunities in a data-driven man-
ner. At the same time, the deeper sequencing techniques lead to higher complexity and
variability in the datasets, leading to a necessity to adapt the methods proposed in this dis-
sertation to such real datasets in a suitable manner. I conclude with a discussion of how

this can be executed in the case of CPTAC, as described below.

Applicability of the developed methods to CPTAC data The proteomic data used in this disser-
tation is based on reverse-phase protein array (RPPA), which only focuses on a specific
handpicked set of proteins (around 200 in number) that are of functional and therapeutic
importance in the cancers assessed. However, CPTAC provides a global proteomic pro-
file of the samples, with both standard and phosphorylated proteins included, making it
possible to glean the functional changes in the cellular cycle in a more comprehensive
manner compared to a targeted panel such as RPPA (Deb et al., 2020; Liu et al., 2022).
Typically, a cancer-specific CPTAC proteomics panel contains anywhere between 7,500-

12,000 proteins. This does not demand any major changes in the pathway-specific Bayesian
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neighborhood selection model in Chapter II or the protein-specific Gaussian process-based
mechanistic models in Chapter III and Chapter IV, since these models can be parallelized
respectively across the pathways and the proteins. Rather, CPTAC datasets contain the
potential to assess the functional relevance of more proteins and pathways than those as-
sessed previously. The calibrated Bayesian variable selection (cBVS)-based outcome mod-
els in Chapter III and Chapter IV and the varying coefficient-based Bayesian variable selec-
tion model in Chapter V, on the other hand, utilize all the proteomic expressions together.
Hence, to generalize their applications to the CPTAC panel, these variable selection models
need to be able to accommodate p = 1, 000 or more variables at once. The simulation stud-
ies in Chapter III indicate that for n/p ratios > 1/4, the cBVS model performs reasonably.
In Chapter V, the simulation studies illustrate that the varying coefficient-based variable
selection model performs convincingly for n/p ratios > 1. For cases where the sample size
is not sufficient to accommodate all the protein expressions from CPTAC, the proteomic
panel is required to be filtered to a smaller dimension. Compared to RPPA datasets which
typically contain 5 — 10% of missing data, CPTAC proteomic datasets contain higher pro-
portions of missing data, sometimes ranging to more than 50%. Hence, cut-offs based on
data missingness and quality can be employed to select only the proteins with the highest
sample sizes for incorporation into the models. Further, at a cellular level, proteins typ-
ically act in pathways in an interconnected manner. Such biological knowledge may be
leveraged to include representatives from such pathways to bring the overall number of

proteomic candidates further down.
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