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ABSTRACT

For many engineering applications, the behavior of a system is largely repetitive as it performs
a given task many times. Although control strategies have traditionally sought to enable improved
behavior of these repetitive dynamic systems through enhanced reference tracking, system perfor-
mance is often dictated by a non-tracking, or economic, performance objective such as the maxi-
mization of efficiency or safety, or minimization of energy expenditure or monetary cost. Modern
control strategies often consider these economic objectives directly by leveraging tools available
from the field of mathematical optimization, but their success in practice is frequently hindered by
the presence of uncertainty in the system dynamics. To mitigate the harmful impacts of uncertainty
on the quality of decisions made by economic controllers, learning-enhanced control has become
a popular field of investigation.

The consideration of repetitive system dynamics within the field of learning-based control is
the focus of iterative learning control (ILC) and repetitive control (RC) research efforts. Here,
repetition facilitates performance improvements, as information about a system’s behavior from
previous task executions can be used to inform how to appropriately apply control in the future.

However, despite developments in the fields of ILC and RC, several limitations remain that
have prevented a more widespread adoption in practice. Namely, the simultaneous presence of
economic performance objectives, nonlinear plant dynamics, and system constraints has not been
thoroughly considered in the controller design.

This dissertation presents various methodologies for improving the economic performance of
constrained, nonlinear, repetitive systems through learning-based techniques. First, this disserta-
tion establishes a connection between repetitive system behavior and the iterative nature of numer-
ical optimization algorithms. Based on this insight, a controller is designed based on a sequential
quadratic programming algorithm wherein sensor measurements obtained from previous trials are
used to iteratively improve the system’s behavior with regards to economic performance and con-
straint satisfaction without the requirement of a high-fidelity system model. Conditions for which a
control trajectory can be identified that satisfies the constraints of the true system, and a subsequent
assessment of the optimality of the resulting converged closed-loop performance are presented.

Moreover, while ILC and RC are designed to mitigate the impacts of modeling errors, closed-
loop performance is nonetheless predicated upon the presence of uncertainty. Here, whereas ILC

xi



and RC have traditionally facilitated learning at the signal level through direct manipulation of the
control input from trial to trial, benefits may be achieved through the additional incorporation of
learning at the system level wherein historical data is leveraged to reduce the amount of uncertainty
that exists.

Consequently, a controller is developed for application to repetitive systems commonly studied
within the scope of RC, wherein uncertainty is reduced through the use of a novel adaptive control
scheme based on a parametric set membership update law. Specifically, by reducing the impacts
of periodic parametric uncertainties on the nominal system dynamics, improvements in economic
performance are achieved. Finally, this methodology is then extended to a class of repetitive sys-
tems investigated within the ILC literature subject to state-varying parametric uncertainty. Here,
the simultaneous use of signal-level and system-level learning is used to enhance economic perfor-
mance. Conditions are then established for guaranteeing the robust satisfaction of hard state and
input constraints. The recursive feasibility and robustly optimal closed-loop performance of these
predictive controllers is additionally guaranteed and demonstrated using a set of simulation case
studies.

xii



CHAPTER 1

Introduction

1.1 Motivation

While traditional control algorithms have been developed with the aim of improving a system’s
ability to track a reference signal, in practice, a system’s performance is frequently given by a
non-tracking, or economic, metric. For instance, in manufacturing applications, a system’s per-
formance may be measured by its throughput production rate. Meanwhile, in racing applications,
the system objective might be to minimize lap time, whereas the performance of electrical power
generation systems may be dictated by their ability to maximize energy production. In these cases,
the goal of accurate reference tracking does not properly encapsulate the true desired behavior of
such systems. However, despite the fact that a broad class of systems aim to achieve high economic
performance, reference tracking strategies remain the prevailing technique for most control appli-
cations. While careful reference design may be conducted such that these non-tracking objectives
are properly addressed in proxy by a reference-tracking controller, this process can be in and of
itself an arduous task [1].

Moreover, many classical control tools rely on fundamental assumptions on the system behav-
ior that rarely hold true in practice. For instance, controller design based on frequency-domain
transfer function models of a system generally require linearity and time-invariance of the system
dynamics. However, in reality, these assumptions only hold, at best, in approximation, and the
resulting behavior of the system may not align closely with a linearized estimate of the dynam-
ics. In fact, while in tracking control problems the reference is commonly used as the nominal
point/trajectory about which linearization of the system dynamics is performed, in reference-free
economic control applications, the identification of an appropriate nominal setpoint/trajectory for
linearization is often nontrivial.

Similarly, classical techniques are unable to explicitly address real-world restrictions or con-
straints that a system may be required to satisfy. These requirements, which may arise as actuation
bounds, obstacle avoidance constraints, and velocity/acceleration limits to name a few, can sig-
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nificantly restrict the domain over which the system is operated. With the increasing reliance on
embedded control systems for safety-critical applications such as autonomous vehicles, medical
devices, and avionic systems, the ability of a controller to properly navigate these constraints is of
paramount importance. Hence, the development of advanced control strategies is needed to ensure
safe and successful operation of these systems.

The considerations of economic performance objectives, nonlinear system dynamics, and con-
straints lend themselves to the field of optimal control. Leveraging mathematical optimization
tools, optimal control strategies can be employed to address each of these concerns simultaneously
[2]. However, the ability of these schemes to identify an optimizing control trajectory relies on the
availability of an accurate understanding of the system dynamics. In practice, the existence of dis-
turbances and noise hinder the efficacy of optimal control techniques. Moreover, with the advent
of more and more sophisticated engineered technologies, the task of generating system models
that are both accurate and simple enough to be directly integrated into a numerical solver becomes
increasingly difficult. These unavoidable presences of uncertainty ultimately cause suboptimal-
ity of performance or, even worse, can potentially lead to unstable system behavior. Therefore,
additional attention is required in order to ensure satisfactory behavior of the system.

To counteract these uncertainties, a variety of control methods may be implemented. Feedback
control has been a popular and predominant method for mitigating uncertainty, and can allow the
user to achieve high performance in the absence of an accurate system model. However, feedback
control is inherently reactive rather than anticipatory, meaning that undesired behavior must first
be observed before a corresponding corrective action takes place. Hence, suboptimality of control
derived solely through feedback is all but guaranteed. Alternatively, robust optimal control tech-
niques may be employed wherein a certain degree of system performance is achieved by designing
an acceptable control signal for a predefined class or set of uncertainties. While useful, these strate-
gies tend to be overly conservative at the expense of performance; protecting the system against
uncertainties that do not or are highly unlikely to exist.

Meanwhile, many systems operate repetitively. Although some engineered devices are designed
for unique, single-use applications, systems are frequently created to complete a limited set of tasks
numerous times. For instance, a manufacturing system may machine the same part many times, or
a racecar may be tasked with repeatedly traversing along a closed motion path. Alternatively, in
the case of electricity generation, energy systems are often operated under periodic environmen-
tal conditions or required to satisfy energy consumption demands that fluctuate cyclically. The
repetitive nature of these systems offers the opportunity to leverage data and generate an improved
understanding of the system behavior during its execution of a task. By learning in this manner,
more effective control of the system can be achieved by overcoming the overconservative nature
of robust techniques.
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The goal of this dissertation is to develop learning-based control strategies for uncertain repeti-
tive systems with economic performance metrics, as depicted in Figure 1.1. Specifically, this work
seeks to address fundamental limitations of existing control strategies as it pertains to challenges
in modeling, uncertainty mitigation, and robust performance. With the use of measured data, the
developed tools and accompanying theory will enable improved control for repetitive systems with
various modes of operation. Additionally, the consideration of system properties such as nonlinear
dynamics and constraints will enable these strategies to be used in a variety of applications.

Economic performance driven

Nonlinear and Constrained

Uncertain

Repetitive

�����������������  �����!�"�#���$$�������������

Optimizing

Robust

Learning-augmented

Figure 1.1: Properties of the class of systems considered in this dissertation, and the capabilities
desired from a controller in order to address or leverage these system properties. The orange lines
depict how the desired controller properties arise from the properties of the system.

1.2 Learning Control for Repetitive Systems

Research on learning-based control of repetitive processes has largely focused on two system
types: 1) continuously-operated systems, and 2) discontinuously-operated systems. For systems
that operate continuously, once the current iteration of the repetitive task concludes, the next iter-
ation immediately begins such that the initial condition of iteration j + 1 is equal to the terminal
condition of iteration j. As a consequence of this behavior, control decisions made at the cur-
rent iteration of continuously-operated processes have permeating effects on the system dynamics
in future iterations. For example, rotary systems can be considered one type of continuously-
operated repetitive system where a revolution of the system constitutes an ‘iteration’. Meanwhile,
for systems that perform discontinuous processes, it is assumed that an offline phase exists be-
tween iterations of a given task such that the initial condition of the system can be reset. Often
in discontinuous processes, the initial condition of the system is assumed to be the same at each
iteration (termed iteration-invariant), or is set to a user-selected value. As an example, a material
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handling robot that moves from its initial location to transport a part from one point in a manufac-
turing line to a new position before returning to rest at its original location to wait for a new part
may be classified as a discontinuous process system. The distinctions between continuously- and
discontinuously-operated systems are shown in Figure 1.2.

(a) A continuously-operated repetitive system
does not have an offline phase between itera-
tions. Consequently, the state trajectory from
one iteration transitions immediately to the state
trajectory at the subsequent iteration.

Offline initial 
condition reset

(b) A discontinuously-operated repetitive system
has an offline phase. Commonly, such systems
are reset, as depicted by the dashed lines, such
that the initial state condition is the same at each
iteration.

Figure 1.2: From an initial state at time 0 (blue circle), the system may traverse through the state
space as depicted by the solid lines, where the black, gold, and green line colors distinguish the
state trajectories at three different iterations.

Within the realm of learning-based control of repetitive systems, two control strategies come
to the forefront: Repetitive Control (RC) [3], and Iterative Learning Control (ILC) [4]. While RC
and ILC are similar, there are slight differences in their typical domain of application. Namely,
RC has historically been applied to continuously-operated systems while ILC has typically been
implemented for control of batch processes [5]. Regardless of this distinction, both RC and ILC
have their origins in reference tracking in the presence of repetitive uncertainties.

RC is based upon the internal model principle, which facilitates regulation through an internal
representation of a periodic reference or disturbance within the controller design [6]. RC has
been successfully used in a myriad of applications including the control of power supply systems
[7], computer hard disk drives [8], electrical machine drives [9], and substrate carrier systems
[10]. However, while RC has been successfully applied to address the problems of reference
tracking and disturbance rejection, it is not directly amenable to economic objectives. Specifically,
for systems subject to periodic disturbances with economic objectives, not only does a periodic
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reference not necessarily exist, but we may be interested in leveraging periodic disturbances rather
than simply attempting to attenuate their effects on the system behavior. Moreover, the design of
RC controllers has traditionally been performed based on frequency-domain models of the system
and the reference/disturbance signal [11]. However, controller design based on transfer function
analysis fundamentally assumes linearity of the system and time-invariance of uncertainties, which
may not be valid for more complex systems. While advancements within the field of repetitive
control have allowed for some extensions to nonlinear systems [12–14], the applicability of these
methods is often limited to a small class of nonlinearities.

For discontinuous process control, ILC has become a prominent field of study to mitigate the
impacts of model uncertainty and repetitive disturbances on system performance. The fundamental
intuition underlying ILC is that if a process is repetitive, measurements from previous executions
of the task may provide useful information that can be leveraged to improve system performance
in future task iterations. Here, by designing feedforward control signals offline based on histori-
cal system data, an ILC controller can compensate for performance losses that are a consequence
of repetitive uncertainties. Through this paradigm of ‘iteration-domain feedback’ wherein correc-
tive control actions are defined in the offline phase between task executions, ILC can be used in
conjunction with conventional real-time feedback controllers that are designed based on poten-
tially inaccurate plant models. Previous applications wherein ILC has enabled enhanced perfor-
mance through iteration-domain feedback include the control of industrial robotic manipulators
[15], chemical reactors [16], crane systems [17], and satellites [18], among others. Moreover,
while a significant portion of existing ILC strategies have been developed using frequency-domain
system analysis and controller design, the ILC research community has more readily adopted the
use of state-space system representations in comparison to its RC counterpart. Here, although lin-
earity of the system dynamics remains a common assumption within the ILC literature, extensions
to nonlinear systems are more easily facilitated. However, existing ILC theory is also primar-
ily focused on the reference tracking problem, rather than the problem of optimizing economic
performance. Hence, standard ILC schemes are only applicable to the systems of interest in this
dissertation if a higher-level reference shaping controller is also developed, which is a non-trivial
task.

To facilitate improvements in system performance through learning, RC and ILC leverage in-
formation available from previous iterations of a task in order to update the control signal that is
applied in future task executions. However, both RC and ILC traditionally rely on the assumption
that the duration of a given repetitive action is iteration-invariant: i.e. that the reference/disturbance
signal is periodic with a known period length in the case of RC, or that the trial duration is the same
at all iterations in ILC. This assumption can fundamentally restrict the achievable economic perfor-
mance of the system, particularly in cases where the system performance is dependent upon time or
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time-varying signals. Moreover, neither RC nor ILC were originally developed with considerations
of system constraints, which hinders their applicability to practical systems.

Due to recent advancements in the literature, many of the traditional limitations of RC and ILC
schemes noted above have begun to be addressed. For instance, the consideration of a limited class
of system constraints is enabled through a variant of ILC termed point-to-point ILC [19, 20]. Here,
reference tracking is only enforced at select timesteps along a system trajectory, rather than requir-
ing that a reference signal is tracked over the entirety of the trial duration. By relaxing the tracking
requirements in this manner, additional flexibility is afforded to the controller to address hard and
soft constraints imposed on the system that are linear with respect to the system input. This flexi-
bility is further exploited in other point-to-point ILC control schemes wherein economic objectives
dictate system performance. Here, reference tracking is only enforced sparsely, while the consid-
eration of economic performance objectives is embedded directly into the controller design. For
instance, sparse reference tracking requirements are defined as hard constraints in [21, 22], while
economic performance objectives define the cost function to be minimized. Alternatively, sparse
tracking error is used as only a single term in the system cost function in the Pareto optimal point-
to-point ILC scheme proposed in [23], while additional economic objectives define the remainder
of the system cost. However, while each of these strategies have enabled economic performance
objectives to be addressed through iterative learning, they are only directly applicable to a limited
set of system classes (e.g. systems with linear dynamics or constraints), and still require that a
sparse reference trajectory is known by the user.

1.3 Contributions

The primary contributions of this dissertation are now summarized.
Contribution 1: A mapping between numerical optimization methods and constrained eco-

nomic learning control of repetitive systems - Given that the class of systems considered in this
work is: i) constrained, and ii) seeks to optimize an economic performance metric, the choice to
leverage mathematical tools available from the field of optimization is a natural one. As noted ear-
lier, the primary difficulty with directly applying optimization tools in practice is the existence of
uncertainty, which degrades the predicted performance of the system. In spite of this, the following
observation is made: the repetitive behavior of the systems of interest, in some sense, mimics the
iterative behavior of many popular numerical optimization methods. Specifically, similar to how
numerical optimization methods seek optima by updating decision variables based on functional
behavior at previous iterates, data from a repetition of a system task may also provide valuable
insight into how system control can be improved in future task executions. However, due to the ex-
istence of uncertainty, knowledge that is typically utilized within numerical optimization methods,
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such as gradient or Hessian information, may be unavailable or only partially known. Therefore, to
overcome this limitation, the first primary contribution of this dissertation is the development of an
economic iterative learning controller for repetitive systems based on the modification of an exist-
ing numerical optimization algorithm. Here, systems that operate discontinuously are investigated,
and conditions for closed-loop stability and assessments of robust performance of the proposed
controller are outlined. The proposed control scheme, termed Sequential Quadratic Programming-
Based Iterative Learning Control (SQP-ILC), extends the types of economic performance metrics
that may be addressed by ILC schemes in the literature, allowing for new control objectives such
as the time-optimal control problem. Additionally, the proposed controller extends the class of
constraints that are addressed in the ILC literature, enabling control for repetitive systems whose
constraints may be described using smooth functions of the control sequence and time. This con-
tribution is presented in Chapter 2.

Contribution 2: Robust adaptive economic control for repetitive systems with periodic un-
certainties - Although RC has been developed to enable high-performing control of systems by
counteracting the effects of unmodeled behavior, this, as with any control technique, has its limi-
tations. Commonly, the ability of repetitive controllers to sufficiently compensate for uncertainties
can be hindered if the sources of uncertainty become unwieldy. For instance, as noted in [3], for
model-based RC and ILC methods, the robust closed-loop performance of a system can suffer
degradation due to modeling errors. In fact, if uncertainty becomes sufficiently large, closed-loop
stability may even be lost. Alternatively, if user-available system models are instead more accurate
than anticipated, the learning-based controllers can become unnecessarily conservative, resulting
in needless performance losses.

Given this correlation between system performance and model confidence, a natural inclina-
tion is to augment RC controllers with adaptive control strategies that are designed to reduce the
amount of model uncertainty. While adaptive control is in many ways similar to RC, an important
distinction must first be made. Namely, whereas RC directly modifies the control input, adap-
tive control methods implement modifications to parameters of the user’s model of the plant or
controller [24]. In other words, whereas RC incorporates learning by updating a signal, adaptive
control incorporates learning by updating a system.

Hence, the second primary contribution of this work can then be split into three subcomponents:

1. The development of an adaptive scheme for addressing a class of uncertainties commonly
addressed within the repetitive control literature. Namely, enabling the robust identification
of unknown model parameters for nonlinear systems with uncertainties that appear periodi-
cally in time.

2. The integration of this adaptive scheme with a control methodology, termed Robust Adap-
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tive Economic Model Predictive Control (RAEMPC), suitable for constrained, continuously
operated systems with economic performance objectives.

3. The identification of sufficient conditions for which robust constraint satisfaction and robust
convergence of closed-loop economic performance can be guaranteed.

In this way, the second contribution of this dissertation extends the capabilities of repetitive control
schemes to a broader range of constrained systems. This contribution is presented in Chapter 3

Contribution 3: Robust adaptive economic control for state-dependent uncertainties - In Con-
tribution 2, a class of systems with unknown model parameters or disturbances that influence that
system dynamics in a manner that is periodic in time is addressed. For instance, this methodology
may be appropriate if the system is required to operate in an environment where rotating machinery
causes unmodeled cyclic vibrations to occur [25], or if alternating current disturbances in powered
electronics applications lead to periodic uncertainties in downstream current signals [26]. How-
ever, perhaps more commonly, uncertainties are better described as varying as a function of the
state of the system, rather than varying periodically as a function of time. For instance, systems
operating in spatially varying flow fields [27] or vehicles driving over non-uniform terrain [28]
encounter state-dependent disturbances that do not necessarily appear periodically.

Additionally, while the methodology outlined in Chapter 3 is developed for a class of con-
tinuously operated systems that are commonly addressed within the RC literature, discontinuous
processes offer additional opportunities to exploit the repetitive behavior of the system to improve
system performance. In other words, if the system states can be reset between iterations to a known,
iteration-invariant value, then this point of similarity in the system behavior between trials enables
data from previous task executions to provide useful insight into how the system control can be im-
proved in future iterations. Consequently, the third primary contribution of this dissertation builds
directly off of the results of the second contribution by extending these results to systems with: 1)
state-dependent parametric uncertainty, and 2) discontinuous process behavior. More specifically,
the third primary contribution of this work can be split into the following subcomponents:

1. The development of a control scheme, termed Robust Adaptive Economic Iterative Learning
Control (RAEILC), for nonlinear, discontinuously operated systems wherein economic ob-
jectives are considered and input/state constraints are robustly enforced when state-varying
unknown model parameters and noise exist. Moreover, methods for integrating an outlined
class of adaptive methods that are able to robustly identify the state-varying model parame-
ters are developed.

2. Through the direct use of input and state data available from previous task executions, an
additional methodology for learning is developed and integrated into the aforementioned
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control algorithm that does not rely on the explicit use of a potentially inaccurate system
model. Consequently, conservativism commonly exhibited by similar robust strategies is
further mitigated.

3. The development of conditions for which recursive feasibility and robust monotonic reduc-
tions in the system cost can be guaranteed.

4. The creation of a specific adaptive scheme to robustly identify unknown state-varying model
parameters. This adaptive scheme updates user-known uncertainty sets wherein the nominal
model parameter estimates, as well as an upper bound on the parameter estimate error are
updated. A strategy for integrating this adaptive scheme with the RAEILC algorithm is also
developed.

To summarize, the third contribution of this dissertation enables two forms of learning to be
applied to the discontinuously operated systems traditionally addressed within the ILC literature.
Specifically, through the improved estimation of state-varying model parameters and the direct
manipulation of the control signal based on historical data, the economic performance of the system
can by improved without violating state and input constraints. This contribution is presented in
Chapter 4.

1.3.1 Organization

The remainder of the dissertation is organized as follows. Chapter 2 outlines the numerical
optimization-inspired controller described in Contribution 1. For Contribution 2, the adaption al-
gorithm and corresponding controller applicable to systems with periodic parametric uncertainties
are presented in Chapter 3 with additional theory presented in Appendix A. As per Contribution
3, the extension of this work to discontinuously operated systems with state-varying model pa-
rameters is presented in Chapter 4 with supplementary theoretical results given in Appendix B.
A numerical case study application of each of the developed controls schemes is presented in the
corresponding chapters. Conclusions drawn from this work are presented in Chapter 5, including
an assessment of potential application spaces for the contributions outlined in Chapters 2-4, and
future avenues of research to address limitations of this work. A preliminary approach for over-
coming some of these limitations is presented in Appendix C, wherein a control strategy based on
concepts originating within the field of game theory is outlined.

To prevent against verbose notation and to remain consistent with existing literature, several
variables are represented using identical notation across Chapters 2-4 to represent different values
or signals. For instance, the use of x in Chapter 2 is used to denote the decision variable of an
optimization problem to remain consistent with standard notation in the numerical optimization
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literature, whereas it is used to denote a system’s states in Chapters 3 and 4 to match the standard
convention found in the control theory literature. Therefore, the variable notation in each of these
chapters should be considered distinct from the notation used in other chapters. To serve as a
reference for the reader, a variable notation guide for each chapter is provided in Appendix D.
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CHAPTER 2

Economic Iterative Learning Control: Numerical
Optimization-Inspired Controller Design

2.1 Background and Motivation

For systems that perform tasks repetitively, learning-based controllers have proven to be a par-
ticularly valuable tool for improving system performance. In particular, the field of iterative learn-
ing control (ILC) has developed powerful strategies for achieving high performance when accurate
system model information is limited. While traditionally, ILC has aimed to counteract uncertain-
ties for the purpose of improved reference tracking [4], more recent developments have examined
the case of economic performance objectives. In [21–23] for example, ILC strategies are developed
for systems where accurate reference tracking is only enforced at a few locations. By leveraging
the control freedom afforded through this relaxation of the tracking requirements, system perfor-
mance with respect to economic performance objectives is more readily addressed. However, these
techniques are limited to linear systems and only consider cost functions that are described as func-
tions of the control inputs and outputs. In [29], this idea is expanded upon to address economic
objectives that are given as functions of time, as in the time-optimal control problem. However, the
strategy outlined in [29] remains limited to linear system applications, and while closed-loop con-
vergence results allow for a monotonic improvement in cost, convergence of the control trajectory
relative to an optimizing solution is not demonstrated.

Similar ideas are explored in [30] wherein a path variable parametrization is leveraged to con-
vert a traditional trajectory tracking problem to a path tracking problem. By relaxing the system
time requirements in this manner, the control algorithm is able to address a broad class of per-
formance metrics given as functions of the system inputs and outputs. However, this formulation
requires the reference path to be defined as a piecewise linear function, and, similar to [21–23],
does not allow for the system performance metric to be given as a function of time. Alternative
methods, such as those proposed in [31–33], use a learning-based Model Predictive Control (MPC)
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strategy to address economic performance metrics for uncertain iterative systems. Here, by lever-
aging measured experimental data, these strategies rely on the construction of control-invariant
safe-sets to ensure robust constraint satisfaction. An alternative ILC strategy inspired by economic
MPC is developed in [34] wherein data from previous iterations is explicitly incorporated into the
constraints of the optimal control problem that is solved to identify the control sequence. However,
while non-strict monotonic improvement in performance is demonstrated in [31–34], optimality of
the converged control solution is not guaranteed, even in the case where uncertainty does not exist.

Due to the fact that the systems of interest considered here are repetitive, an intriguing strategy
for controller design is to mimic mathematical optimization methods that minimize a cost func-
tion through the use of iterative updates to a selection of design or decision variables. This idea
has been explored, for instance, in [35] where a learning-based control scheme is proposed based
on the successive projection algorithm. Alternatively, [36] develops a controller based on the
forward-backward splitting algorithm, while a strategy inspired by barrier methods is employed
in [37]. However, in [35–37], only tracking objectives and linear systems are considered. An
optimization-based ILC strategy is proposed in [38] for nonlinear systems with potentially eco-
nomic performance objectives. However, robust convergence of the control signal relies on the
ability to compute a sufficiently accurate Jacobian of the system dynamics with respect to the
input sequence. Consequently, if the user model of the plant is poor, the domain of attraction cor-
responding to an equilibrium control sequence may be prohibitively small, resulting in a loss of
stability.

To address these issues, an ILC strategy is proposed for uncertain, potentially nonlinear, itera-
tive systems with economic performance objectives. This work extends the scheme outlined in [29]
by addressing performance metrics given as functions of the input sequence and time, while also
providing applicability to systems with soft output constraints. The proposed algorithm, which is
inspired by a numerical optimization strategy described in [39], utilizes a filter-based Sequential
Quadratic Programming (SQP) scheme wherein the optimal control problem is successively ap-
proximated at each iteration as a quadratic program. Here, additional trust-region constraints are
imposed as a measure to ensure robustness against uncertainty caused by modelling approxima-
tions and errors. The ‘success’ of a given trial is then measured using a filter that evaluates the
trade-off between low economic cost and large constraint violations based on information avail-
able from experimental data in comparison to previously completed iterations. By learning in this
manner, convergence to a low-cost control trajectory that satisfies system constraints is facilitated.

The contributions of this work are:

1. The development of a learning-based control scheme for iterative systems with input con-
straints and soft output constraints that is capable of addressing economic performance met-
rics given as functions of a system’s input sequence, as well as time.
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2. Analysis of the closed-loop convergence of the input and output trajectory demonstrating
convergence to a first-order critical point of the optimal control problem in the case of perfect
model knowledge.

3. Guarantees for convergence to feasible input and output trajectories in the presence of model
uncertainty, regardless of the initial selection of the control signal. Additionally, the eco-
nomic performance of the system at convergence is shown to depend upon the accuracy of
the user-estimated gradient of the constraint functions.

4. A simulation demonstration of the proposed algorithm where the time-optimal waypoint
tracking problem is considered for an actuation constrained two-mass, spring, damper sys-
tem.

To serve as a reference for the reader, a notation guide for the variables used in this chapter is
provided in Appendix D.2. The contents of this chapter have been submitted for publication to
IEEE Transactions on Automatic Control as [40].

2.2 System Description

In this work, systems given by the continuous-time dynamics of the form

ż = f cz (z, u),

y = fy(z)
(2.1)

are considered where z ∈ Rnz , u ∈ Rnu , y ∈ Rny denote the system states, inputs, and outputs
respectively. Using a zero-order hold on the inputs, system (2.1) is discretized as

zk+1 = fz(zk, uk, τk),

yk = fy(zk)
(2.2)

where k denotes a timestep index, and τk denotes the sample period length between timesteps k
and k + 1. Consequently, in this work the sample period is allowed to vary over time.

Suppose that the economic performance of the system over a given iteration of operation is
captured by the cost function

J =
nτ−1∑
k=0

J(uk, τk)

where a given iteration of a task is defined by the system behavior over nτ timesteps. Additionally,
denote the set of feasible inputs and outputs as U and Y . The set of feasible sample periods is
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similarly denoted as T which is given as

T = {τ : 0 ≤ τ ≤ τmax} (2.3)

where the zero lower bound ensures that the dynamics given in (2.2) evolve over positive time, and
τmax is a user-defined constant used to restrict the total trial duration to be no larger than τmaxnτ .
We assume resettability of the system such that the initial condition of the system is the same at
each iteration and is given by the constant z0.

The optimal control problem we seek to solve is then expressed as

minimize
yk+1,uk,τk,

k=0,1,...,nτ−1

nτ−1∑
k=0

J(uk, τk),

subject to zk+1 = fz(zk, uk, τk),

yk = fy(zk),

z0 = z0,

uk ∈ U, yk ∈ Y, τk ∈ T.

(2.4)

To simplify notation, we can equivalently express system (2.2) in the ‘lifted’ iteration domain
through concatenation of the inputs, outputs, and sample periods over an iteration. We define the
lifted input, output, and sample period vectors as

u =
[
u⊤0 u⊤1 . . . u⊤nτ−1

]⊤
,

y =
[
y⊤1 y⊤2 . . . y⊤nτ

]⊤
,

τ =
[
τ0 τ1 . . . tnτ−1

]⊤
.

Here, bold notation is used to distinguish the lifted-domain vectors from their time-domain coun-
terparts. The dynamic system given by (2.2) can then be equivalently expressed as

yk = p(k)(u, τ , z0) = fy

(
f (k)
z (u, τ , z0)

)
where the parenthetical superscript notation (k) is used to denote k recursive calls of fz as in

f (k)
z (u, τ , z0) = fz(fz(..., uk−2, τk−2), uk−1, τk−1).
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The lifted output vector y is then given as a function of u and τ according to

y = p(u, τ , z0),

=
[
p(1)(u, τ , z0)

⊤ . . . p(nτ )(u, τ , z0)
⊤
]⊤
.

Using the lifted notation, problem (2.4) can be more compactly written as

minimize
y,u,τ

J(u, τ ),

subject to y = p(u, τ , z0),

z0 = z0,

u ∈ U ,y ∈ Y , τ ∈ T .

(2.5)

Let x =
[
u⊤ τ⊤

]⊤
∈ Rnx . x then contains all the information required to construct a given

control trajectory, as it contains information about the input sequence as well as the time over
which the inputs will be applied. Since y is given by u, τ , and the constant z0, we can then further
simplify the optimal control problem given by (2.5) as

minimize
x

J(x),

subject to cRE(x) = 0,

cRI (x) ≤ 0

(2.6)

where cRE(x) and cRI (x) are vector-valued functions that describe the feasible set of (2.5). How-
ever, due to model uncertainty, the constraint functions cRE(x) and cRI (x) of the real system may
not be entirely known. Rather, estimates, cME (x) and cMI (x), of these functions based on a model
of the system dynamics are instead available to the user. The following assumptions are then made.

Assumption 1. The functions J(x), cRE , cRI , cME , and cMI are all twice continuously differentiable.

Assumption 2. Given a bounded domain X , there exist constants MR1 , MR2 , MM1 , and MM2

such that the derivatives of the real and user-model based constraint functions cRI and cMI are

bounded according to

∥∇xc
R
i (x)∥ ≤MR1 , ∥∇xc

M
i (x)∥ ≤MM1 , ∥∇2

xc
R
i (x)∥ ≤MR2 , ∥∇2

xc
M
i (x)∥ ≤MM2

for all x ∈ X and all i ∈ {I, E}.

Assumption 2 states that if the control signal is restricted to lie within some bounded domain
X , then the size of the first and second derivatives of the constraint functions with respect to the
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control signals are correspondingly bounded. This assumption may be satisfied if, for instance,
the input and output constraint sets U and Y are described by functions whose first and second
derivatives are locally Lipschitz continuous over X , and if the first and second derivatives of the
dynamics p are also locally Lipschitz continuous over X .

The primary difficulties in solving (2.6) come from the fact that the problem is, in general,
non-convex, as well as the lack of absolute knowledge about the true system dynamics that dictate
the behavior of the system with regards to economic performance and constraint satisfaction. We
therefore seek to derive a control scheme that addresses these issues by leveraging the fact that
the system operates iteratively. Namely, by utilizing information about the system behavior from
previous iterations of a task, an improved understanding of how to optimally control the system
may be achieved.

2.3 Methodology

To address optimal control problem (2.6), a control scheme based on SQP optimization methods
is employed. Specifically, a strategy similar to the trust-region SQP-filter algorithm described in
[39] is used. The use of this strategy is facilitated by the assumption on the resettability of the initial
condition at the beginning of each iteration of the system task, which allows for direct comparison
of the system performance and constraint behavior across multiple system trials. However, whereas
in [39] it is assumed that cRE(x) and cRI (x) are known over the entirety of Rnx , that is no longer the
case here due to the existence of model uncertainty. Rather, we assume that the values of cRE(xj)
and cRI (xj) are only known based on measurable data observed after conducting experiments using
a particular selection of the input and sample period sequences as denoted by xj . In other words,
evaluations of the constraint functions cannot be determined over the entirety of Rnx as cRE(x) and
cRI (x) are not known in closed form, but are instead limited to the locations within Rnx for which
an experiment has been conducted such that corresponding data is available.

Principally, the algorithm described in [39] solves the non-convex optimization problem of (2.6)
by iteratively solving a sequence of simpler convex problems of the form

minimize
s

mj(xj + s), (2.7a)

subject to cRE(xj) +AR
E(xj)s = 0, (2.7b)

cRI (xj) +AR
I (xj)s ≤ 0. (2.7c)

Here, at each iteration, j, we aim to identify a candidate step, sj , corresponding to an incre-
mental update to the control signal, as the solution to problem (2.7) from which to move from the
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current iterate xj . mj denotes a quadratic approximation of the cost function J(x) at xj given as

mj(xj + s) = Jj + ⟨gj, s⟩+
1

2
⟨s,Hjs⟩

where Jj = J(xj), gj = ∇xJ(xj), and Hj = ∇2
xJ(xj). A

R
E(xj) and AR

I (xj) in (2.7b) and (2.7c)
are the Jacobians of cRE and cRI evaluated at xj . However, due to the existence of uncertainty, AR

E

and AR
I are unknown, and thus (2.7) is not able to be solved by the user. Hence, problem (2.7) as

given in [39] is modified to an alternative subproblem, denoted as QP(xj), which is given as

(
QP (xj)

)
: minimize

s
mj(xj + s), (2.8a)

subject to cRE(xj) +AM
E (xj)s = 0, (2.8b)

cRI (xj) +AM
I (xj)s ≤ 0. (2.8c)

QP(xj) and (2.7) are similar, however the local constraint approximation of (2.6) is now dependent
upon AM

E (xj) and AM
I (xj), which denote the Jacobians of cME and cMI evaluated at xj . Since

AM
E (xj) and AM

I (xj) are obtained from the user-accessible constraint function model, and because
cRE(xj) and cRI (xj) are known after conducting an experiment at xj , QP(xj) is therefore able to be
solved by the user.

However, since (2.8a)-(2.8c) can only be expected to accurately approximate the cost function
and constraints of (2.6) in a neighborhood around xj , we wish to restrict the size of the step found
by solving (2.8). Hence, (2.8) is reformulated to an alternative problem, TRQP(xj,∆j), which is
given as

(
TRQP (xj,∆j)

)
: minimize

s
mj(xj + s), (2.9a)

subject to cRE(xj) +AM
E (xj)s = 0, (2.9b)

cRI (xj) +AM
I (xj)s ≤ 0, (2.9c)

∥s∥ ≤ ∆j. (2.9d)

Here, (2.9d) is included as an additional constraint that enforces xj+sj to lie within a trust-region

centered at xj with radius ∆j . Intuitively, this trust-region constraint ensures that the control signal
update will be sufficiently conservative such that overaggressive control actions made as a result
of inaccurate cost and constraint approximations are prevented.

Importantly, simply iteratively solving TRQP(xj,∆j) and setting xj+1 = xj + sj before incre-
menting iteration index j does not ensure convergence of the algorithm. This loss of convergence
may occur if ∆j is chosen to be too large and (2.9a)-(2.9c) do not sufficiently approximate the cost
and constraints of (2.6). Instead, careful selection of ∆j and selective updates to xj are required.
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2.3.1 Decomposition of sj

The solution, sj , to TRQP(xj,∆j) may be decomposed as

sj = nj + tj. (2.10)

Here nj corresponds to a ‘normal step’ wherein nj satisfies the constraints of TRQP(xj,∆j) such
that

cRE(xj) +AM
E (xj)nj = 0, (2.11a)

cRI (xj) +AM
I (xj)nj ≤ 0, (2.11b)

∥nj∥ ≤ ∆j. (2.11c)

The existence of nj relies on an assumption that TRQP(xj,∆j) has a non-empty feasible set. The
case for which this assumption does not hold will be addressed in Section 2.3.2. If the assumption
does hold, then nj can be found according to

nj = Pj(xj)− xj

where Pj(xj) is an operator that identifies the orthogonal projection of xj onto the feasible set of
QP(xj), and subsequently define

xNj = xj + nj.

We then make the assumption that when the maximum violation of the constraints at xj , denoted
by θj = θ(xj) where

θ(xj) = max

[
0,max

i∈E
|cRi (xj)|,max

i∈I
cRi (xj)

]
,

is small, that nj exists and that the size of nj is also proportionally small. This is formalized in
the following assumption.

Assumption 3. If θj ≤ δn, then nj exists and

∥nj∥ ≤ κuscθj

for some positive constants δn and κusc.

In other words, if the distance between the current iterate and the feasible region of (2.6) is
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small, as determined by the proxy measurement θj , we assume that the linearized feasible set of
TRQP(xj,∆j) exists and the distance between this set and xj approximately scales with θj . This
assumption has previously been leveraged in [41] and [42].

Meanwhile, in (2.10), tj corresponds to a ‘tangent step’ that seeks to reduce the value of
mj(x

N
j + tj) while also maintaining the constraint satisfaction of TRQP(xj,∆j) achieved by nj .

In order to achieve a significant reduction of the cost function, tj should not be limited to be too
small. In other words, xNj should be sufficiently far away from the trust-region boundary such that
we have enough design freedom to meaningfully reduce mj(xj + sj) −mj(x

N
j ). To accomplish

this, we modify (2.11c) to the more restrictive condition

∥nj∥ ≤ κ∆∆jmin
[
1, κµ∆

µ−1
j

]
(2.12)

where κ∆ ∈ (0, 1], κµ > 0, and µ ∈ (0, 1) are user-defined parameters. If (2.11c) is true, but (2.12)
does not hold, the size of tj would be restricted to be very small in order to ensure that sj remains
feasible for TRQP(xj,∆j). Consequently, it is unlikely that a significant decrease of mj would
be able to be achieved. In this case, we do not compute tj and instead treat TRQP(xj,∆j) as if it
were an infeasible problem. However, if condition (2.12) is met, then we say that TRQP(xj,∆j)
is compatible and proceed by computing tj , which solves (or approximately solves)

minimize
t

⟨gj +Hjnj, t⟩+
1

2
⟨Hjt, t⟩,

subject to AM
E (xj)t = 0,

cRI (xj) +AM
E (xj)(nj + t) ≤ 0,

∥nj + t∥ ≤ ∆j.

(2.13)

Additionally, the metric

χj =

∣∣∣∣∣∣∣∣∣∣∣∣

min
t

⟨gj +Hnj, t⟩,

s.t. AM
E (xj)t = 0,

cRI (xj) +AM
I (xj)(nj + t) ≤ 0,

∥tj∥ ≤ 1.

∣∣∣∣∣∣∣∣∣∣∣∣
(2.14)

is defined as a measure of determining first-order criticality. Importantly, note that if t = 0 is a
first-order critical point of problem (2.13), then χj = 0.
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Specifically, we seek to identify a tj such that the sufficient decrease condition

mj(x
N
j )−mj(x

N
j + tj) ≥ κtmdχjmin

[
χj
βj
,∆j

]
(2.15)

is met for some κtmd > 0 with βj = 1 + ∥Hj∥. Numerical strategies for computing a tj that
satisfies (2.15) are discussed in [43].

The case when TRQP(xj,∆j) is compatible is shown graphically for the simplified case when
nx = 2 with decision variables x1 and x2 in Fig. 2.1. Here we note that the feasible region of
(2.6) is, in general, both non-convex and unknown. However, by linearizing the constraints using
the available user-model of the system according to (2.8b) and (2.8c), the resulting feasible region
is known and convex, which greatly simplifies the calculation of a unique normal step nj , and the
subsequent tangent step tj .

2.3.2 The Restoration Procedure

In Section 2.3.1, we assumed that TRQP(xj,∆j) was compatible. However, this is not always
the case, as the feasible set of TRQP(xj,∆j) may be empty, or condition (2.12) may not hold. To
remedy this situation, we then seek to reduce the value of θj such that the condition of Assumption
3 and (2.12) hold.

Specifically, we aim to identify a step rj such that TRQP(xj + rj,∆j+1) is compatible. This
process, termed the ‘restoration procedure’, is performed by approximately solving the problem

min
x∈Rnx

θ(x) (2.16)

by identifying a sequence of iterates that converge to θ(x) = 0.
Following an attempted implementation of the restoration procedure, we consider two out-

comes. Either: 1) a sequence of iterates is identified such that θ(xj + rj) can be made to be
arbitrarily small, or 2) the sequence of iterates does not converge to a point of feasibility for prob-
lem (2.6). Both cases will be considered in Section 2.4.

Note: Problem (2.16) can effectively be treated as an ILC reference tracking problem, where
the goal is to identify an input u ∈ U such that a reference sequence that lies within the set Y with
corresponding sample period sequence τ ∈ T is tracked. A variety of existing strategies, such as
the one described in [37], exist to solve such a problem.

Alternatively, if a point x̄ is known such that x̄ lies in the interior of U ×T and y = p(x̄, z0) ∈
Y , then performing a line search along the segment connecting xj and x̄ will enable the user to
identify a step rj that results in arbitrarily small values of θ(xj+rj) due to the assumed continuity
of cRE(x) and cRI (x).
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Figure 2.1: A graphical representation of the normal step, nj , and tangent step, tj , when
TRQP(xj,∆j) is compatible. The green curves denote level sets of J(x) for different selections
of the decision variables (x1, x2), while the orange region represents the infeasible region of the
true optimal control problem, (2.6). This true infeasible region is approximated by the blue region,
which depicts the infeasible region of QP(xj). If xj is infeasible for QP(xj), nj is found by pro-
jection of xj onto the feasible set of QP(xj). tj then aims to reduce estimated cost function mj(x)
while remaining within the trust-region boundary depicted by the purple circle.

2.3.3 The SQP Filter

Once a step sj or rj has been identified as described in Sections 2.3.1 and 2.3.2, we seek to
identify whether the point xj + sj or xj + rj is successful. Namely, we wish to evaluate the
behavior of this prospective iterate with respect to two potentially competing objectives: 1) low-
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cost performance and 2) small constraint violation. To accomplish this, we first say that if for two
points xi and xk,

Ji ≤ Jk and θi ≤ θk,

xi dominates xk. In this case, input trajectory xk is of little use from a control perspective, as it is
outperformed by xi in terms of both cost and constraint violation. Hence, we are only interested
in iterates in the sequence {xj} that are not dominated by other iterates.

We then introduce the idea of a ‘filter’, F , which is a list of observed (θi,Ji) corresponding to
points xi such that xi is not dominated by any other observed iterate. In other words, either

Ji < Jk or θi < θk (2.17)

for each k ̸= i.
In the event that the pair (θ(xj),J(xj)) is being added to the filter, we will frequently refer

to this action as adding xj to the filter. This choice is made for the sake of brevity. The process
of populating the filter is equivalent to the identification of the Pareto frontier, wherein we seek
to identify points that provide some optimal trade-off between minimizing cost and reducing in-
feasibility. This concept is shown graphically in Figure 2.2 wherein the elements of the filter, as
depicted by black circles, generate a corresponding filter ‘boundary’ shown by the solid black line.
As new elements are added to the filter that satisfy condition (2.17), the boundary develops and
approaches the unknown Pareto frontier shown as the blue line.

To ensure that points added to the filter sufficiently reduce the distance between the filter bound-
ary and the Pareto frontier, we refine requirement (2.17) to a stricter condition. Namely, we state
that for a point, xi to be acceptable for the filter, it must satisfy

θ(xi) ≤ (1− γθ)θk or J(xi) ≤ Jk − γθθk (2.18)

for each (θk,Jk) ∈ F where γθ ∈ (0, 1) is a user-selected parameter. Further, we say that xi is
acceptable for the filter and xj if (2.18) holds for all (θk,Jk) ∈ F ∪ (θj,Jj). Then, the step sj

is only taken if xj + sj is observed to be acceptable for the filter and xj . Otherwise, (θ(xj +
sj),J(xj + sj)) would not sufficiently develop the filter boundary towards the Pareto frontier.
Hence, (2.18) prevents new points from being added to the filter that are arbitrarily close to the
existing filter boundary. Condition (2.18) is depicted in Figure 2.2 wherein any new iterates added
to the filter are required to lie below and to the left of the dotted brown line.
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Pareto fron�er
(unknown)

�(x)

J(x)

Figure 2.2: The SQP filter with five entries indicated as black circles. The dashed black lines
emanating from a given filter entry denote the boundary of the region of the (θ,J) space that is
dominated by that iterate. In other words, the iterate dominates all input trajectories corresponding
to (θ,J) values above and to the right of the dashed black lines. The solid black line is the filter
boundary that is cumulatively established by all of the current entries in the filter. Candidate entries
must lie below and to the left of the filter boundary margin indicated by the dotted brown line in
order to be acceptable for the filter.
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2.3.4 The SQP-ILC Algorithm

The proposed framework, termed the SQP-ILC algorithm is now summarized below as Algo-
rithm 1.

Algorithm 1 The SQP-ILC algorithm

Step 0: Initialization. Define an initial point x0 =
[
u⊤

0 τ⊤
0

]⊤, initial trust-region radius
∆0 > 0, and constants 0 < γ0 < γ1 ≤ 1 ≤ γ2, 0 < η1 ≤ η2 < 1, γθ ∈ (0, 1), κθ ∈ (0, 1),
κ∆ ∈ (0, 1], κµ > 0, µ ∈ (0, 1), ψ > 1/(1 + µ), and κtmd ∈ (0, 1]. Compute J0 and θ0. Set
F = ∅ and j = 0.
Step 1: Test for optimality. If θj = χj = 0, stop.
Step 2: Ensure compatibility. Attempt to compute normal step nj . If TRQP(xj,∆j) is com-
patible, go to Step 3. Otherwise, include xj in the filter and compute a restoration step rj for
which TRQP(xj+rj,∆j+1) is compatible for some ∆j+1 > 0, and xj+rj is acceptable for the
filter. If this is impossible, stop. Otherwise, define xj+1 = xj + rj and go to Step 7.
Step 3: Determine a trial step. Compute the tangent step tj and set sj = nj + tj .
Step 4: Test to accept the trial step.

• Run an experiment and evaluate θ(xj + sj) and J(xj + sj).

• If xj + sj is not acceptable for the filter and xj , set xj+1 = xj , set nj+1 = nj , and choose

∆j+1 ∈ [γ0∆j, γ1∆j]. If ∆j+1 <

(
1
κµ

) 1
µ−1

, set ∆j+1 =

(
1
κµ

) 1
µ−1

. Increment j by 1, and

go to Step 2.

• If

mj(xj)−mj(xj + sj) ≥ κθθ
ψ
j (2.19)

and

ρj =
J(xj)− J(xj + sj)

mj(xj)−mj(xj + sj)
< η1, (2.20)

set xj+1 = xj , ∆j+1 ∈ [γ0∆j, γ1∆j], nj+1 = nj , increment j and go to Step 2.

Step 5: Test to include the current iterate in the filter. If

J(xj)− J(xj + sj) < κθθ
ψ
j (2.21)

include xj in the filter F .
Step 6: Move to the new iterate. Set xj+1 = xj + sj and set ∆j+1 such that

∆j+1 ∈ [∆j, γ2∆j] if (2.21) is false

Step 7: Increment j by one and go to Step 1.

We note the following properties of Algorithm 1:
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1. Every iterate xj is acceptable for the filter at the beginning of each iteration, regardless of
whether or not it eventually gets added to the filter. This is because we either: 1) enforce
xj+1 = xj + rj to be ‘acceptable for the filter and xj’ when identifying rj during the
restoration procedure, or 2) only move to xj+1 = xj + sj if xj + sj is acceptable for the
filter.

2. The restoration step is never equal to zero. In other words, we cannot simply increase the size
of the trust region from iteration j and iteration j+1 in order to make TRQP(xj +rj,∆j+1)
compatible. This is because we add xj to the filter before computing rj , and therefore xj+rj

is not acceptable for the filter if rj = 0.

3. The restoration step is never run in consecutive iterations. This is because we require
TRQP(xj + rj,∆j+1) to be compatible.

4. No feasible iterate is ever added to the filter. Note that iterates are only added to the filter
in Step 2 or Step 5. In Step 2, xj is added to the filter when a restoration step is required.
Restoration is only required when xj lies too far in the infeasible region, so xj is not a
feasible point in this case. Meanwhile, to proceed to Step 5 from Step 4, we observe that
at least one of (2.19) or (2.20) must not hold. Note that if xj is feasible, that nj = 0, and
therefore xj + sj = xj + tj . Consequently, given the sufficient decrease condition in (2.15),
we have that mj(xj) −mj(xj + sj) ≥ 0, and it follows that (2.19) holds since θj = 0 for
a feasible xj . Therefore, to continue to Step 5, (2.20) must not hold, which implies that
J(xj) − J(xj + sj) > 0. Proceeding to Step 5, we see again, that if xj is feasible, then
θj = 0. Hence, (2.21) does not hold and any feasible xj is not added to the filter.

2.4 Convergence Analysis

The convergence behavior of Algorithm 1 is now studied. Although the SQP-ILC algorithm
has been modified from the strategy in [39] to allow for model uncertainty, we demonstrate that
the algorithm remains globally convergent. By this, we do not mean that there exists a unique limit
point, x∗, such that all iterate sequences converge to x∗. Rather, for global convergence, we require
that for any selection of the starting point x0 within the ‘global’ design space of Rnx , Algorithm 1
will yield a sequence of iterates that converge to some, potentially non-unique, point x∗.

We first define the following sets:

S = {j : xj+1 = xj + sj}
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which represents the indices corresponding to successful iterations wherein xj is updated based on
the calculated step sj , and

R ={j : nj does not satisfy Assumption 3 or ∥nj∥ > κ∆∆jmin[1, κµ∆
µ−1
j ]}

denotes the set of indices corresponding to iterations when the restoration procedure is run. We
then make the following assumptions.

Assumption 4. There exists some constant κumh > 1 such that ∥Hj∥ ≤ κumh − 1 for all j.

Assumption 5. The set of iterates {xj} remain in a closed, bounded domain X ⊂ Rnx .

Note that if U is restricted to be a bounded polytope, T is defined as in (2.3), with u0 ∈ U and
t0 ∈ T , selection of a restoration scheme that enforces xj + rj to lie within U × T will allow
Assumption 5 to be given by Assumption 1. This is because U and T are known, bounded affine
sets that are captured entirely by constraints (2.9b) and (2.9c). Hence, both xj + sj and xj + rj

will lie within U ×T for any j, and therefore the sequence {xj} will always remain within U ×T .
Since a continuous function over a closed, bounded set is bounded, it is immediately observed

from Assumptions 1 and 5 that there exist values Jmin and θmax > 0 such that

Jmin ≤ J(xj) and 0 ≤ θj ≤ θmax

for all j. Therefore, the portion of the (θ,J) space that contains elements of the filter can be
restricted to the rectangle

A0 = [0, θmax]× [Jmin,∞].

We will now present a series of 12 lemmas used to show convergence of the SQP-ILC algorithm.
These lemmas and supporting proofs are largely derived from the results of [39]. However, several
modifications must be made in order to allow for uncertainty in the constraint functions.

Lemma 1. Suppose Assumptions 3 and 5 hold and that θj ≤ δn. Then there exists κlsc > 0 such

that

κlscθj ≤ ∥nj∥ (2.22)

Proof. Define

Vj = {i ∈ E : θj = |cRi (xj)|}
⋃

{i ∈ I : θj = cRi (xj)}
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as the set of constraint subfunction indices corresponding to the most violated constraints of the
true system at iteration j. Using this definition of Vj , the proof then follows from [39, Lemma 3.1].

Hence, if the amount of constraint violation corresponding to a given iterate is sufficiently small,
the length of the normal step can be correspondingly lower bounded based on the value of θj .

Lemma 2. Suppose that finite termination does not occur, i.e., that the restoration procedure is

always successful and the condition of Step 1 does not hold. Further, given that Assumptions 1, 3,

and 5 hold, and that there exists a subsequence {ji} : ji /∈ R and

lim
i→∞

χji = 0 and lim
i→∞

θji = 0.

Then any arbitrary limit point, x∗, of the subsequence {xji} satisfies∣∣∣∣∣∣∣∣∣∣∣∣

min
t

⟨g∗, t⟩,

s.t. AM
E (x∗)t = 0,

cRI (x
∗) +AM

I (x∗)t ≤ 0,

∥t∥ ≤ 1.

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.23)

Proof. The proof is given by [39, Lemma 3.2]

Lemma 2 states that if we can take an infinite subsequence of the iterates such that, at every
limit point of this subsequence, the metric χji is equal to zero because either the gradient of the
objective function is equal to zero or the tangent step is equal to 0, and that the maximum constraint
violation of the limit points is equal to zero, then each of the limit points satisfies (2.23). In other
words, if the limit points are stationary points, or a useful tangent step cannot be taken without
violating constraints and the maximum observed constraint violation at these limit points is zero,
then the limit points satisfy (2.23).

For the following lemma, we first define the set

Z = {j : xj is added to the filter}

as the set of iterations for which xj is added to the filter.

Lemma 3. Suppose that finite termination does not occur. Given Assumptions 1 and 5, and that

|Z| = ∞, then

lim
j→∞,j∈Z

θj = 0.
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Proof. The proof is given by [39, Lemma 3.3].

Lemma 3 states that as long as the restoration procedure is always successful, the maximum
constraint violation of the iterates that are added to the filter converges to zero. This is based on
the idea that, since θj is bounded from Assumptions 1 and 5, and because the condition (2.18)
requires that new filter iterates cannot be arbitrarily close to the filter boundary, iterates added to
the filter must progress towards the condition θj = 0.

While Lemmas 1-3 are effectively equivalent to the statements developed in [39], the remaining
lemmas, with the exception of Lemmas 6, 10, and 11, present a departure from the analysis in [39].
These differences are a consequence of the use of AM

E and AM
I in place of AR

E and AR
I within the

optimization problems, the use of the modified compatibility condition (2.12) within Algorithm 1,
and the existence of model uncertainty.

Lemma 4. Suppose finite termination does not occur. Additionally, suppose Assumptions 1 and 2

hold, that j /∈ R, and that nj satisfies (2.22) such that

κlscθj ≤ ∥nj∥.

Then

θj ≤ κubt∆
µ
j (2.24)

and

θ(xj + sj) ≤ κubt∆
2
j +MP1∆j (2.25)

for some constants κubt ≥ 0 and MP1 ≥ 0.

Proof. The proof is given in Appendix A.1.

Hence, if the restoration procedure always succeeds, and the length of nj is lower bounded
by θj by satisfying Lemma 1, then for iterates where the restoration step is not calculated, θj and
θ(xj + sj) can be upper bounded based on the size of the trust region radius ∆j .

We now consider conditions for which a lower bound on the estimated cost reduction caused
by taking the step sj can be placed.

Lemma 5. Suppose that finite termination does not occur. Given Assumptions 1, 4, and 5, (2.12),
(2.15), that j /∈ R, that

χj ≥ ϵ (2.26)
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for some ϵ > 0, that

∆j ≤ δm = min

[
ϵ

κumh
,

(
2κubg

κumhκ∆κµ

) 1
µ

,

(
κtmdϵ

4κubgκ∆κµ

) 1
µ−1

]
(2.27)

where κubg = maxx∈X ∥∇J(x)∥. Then

mj(xj)−mj(xj + sj) ≥
1

2
κtmdϵ∆j.

Proof. Combining (2.15) and Assumption 4 we have that

mj(x
N
j )−mj(xj + sj) ≥ κtmdχjmin

[
χj
κumh

,∆j

]
.

From (2.26) and (2.27) this gives

mj(x
N
j )−mj(xj + sj) ≥ κtmdϵ∆j.

Recall that since m(x) is quadratic, m(xNj ) can be expressed as

mj(x
N
j ) = mj(xj) + ⟨gj,nj⟩+

1

2
⟨nj,Hjnj⟩.

The Cauchy-Schwarz inequality and definitions of κubg and κumh give

|mj(xj)−mj(x
N
j )| ≤ κubg∥nj∥+

1

2
κumh∥nj∥2. (2.28)

Compatibility condition (2.12), Assumption 4, and (2.27) then give

|mj(xj)−mj(x
N
j )| ≤

1

2
κtmdϵ∆j.

Lemma 6. Suppose that finite termination does not occur. Given Assumptions 1, 4, and 5, (2.15),
(2.26), that j /∈ R, and that

∆j ≤ δρ = min
[
δm,

(1− η2)κtmdϵ

2κubh

]
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where κubh > 1 is a constant such that for all j,

|J(xj + sj)−mj(xj + sj)| ≤ κubh∆
2
j ,

which is known to exist as demonstrated in [43]. Then

ρj ≥ η2.

Proof. The proof is given in [39, Lemma 3.6].

We now establish conditions for which a lower bound on the estimated improvement in perfor-
mance can be made based on the value of θj .

Lemma 7. Suppose finite termination does not occur. Given Assumptions 1, 4, and 5, (2.12),
(2.15), (2.22), (2.26), j /∈ R, and that

∆j ≤ δf = min

δm,( κtmdϵ

2κθκ
ψ
ubt

) 1
ψµ−1

 , (2.29)

then

mj(xj)−mj(xj + sj) ≥ κθθ
ψ
j .

Proof. From Lemma 4 and (2.29) we have

κθθ
ψ
j ≤ κθκ

ψ
ubt∆

ψµ
j ≤ 1

2
κtmdϵ∆j.

Using Lemma 5 gives us the desired conclusion

κθθ
ψ
j ≤ mj(xj)−mj(xj + sj).

Lemma 8. Suppose that finite termination does not occur. Suppose also that Assumptions 1, 2, 4,

and 5, (2.15), (2.26), and (2.27) hold, that j /∈ R, that nj satisfies (2.22), and that

θj ≤ δθ = κ
− 1
µ−1

ubt

(
η2κtmdϵ

2γθ

) µ
µ−1

. (2.30)
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Then

J(xj + sj) ≤ J(xj)− γθθj.

Proof. From Lemmas 4-6 and (2.30), we have that

J(xj)− J(xj + sj) ≥ η2 [mj(xj)−mj(xj + sj)] ,

≥ 1

2
η2κtmdϵ∆j,

≥ η2κtmdϵ

2

(
θj
κubt

) 1
µ

,

≥ γθθj.

Lemma 8 demonstrates under what conditions it can be assured that xj + sj is not dominated
by the point xj . Note that this does not necessarily mean that xj + sj is acceptable for the filter,
as there may be another point within F for which (2.18) does not hold.

We now establish under what conditions we can ensure that TRQP(xj,∆j) is compatible such
that a restoration step will not need to be applied at iterate j. Before proceeding, we introduce the
following assumption.

Assumption 6. κµ, µ, and κ∆ are selected such that

(
1

κµ

) 1
µ−1

< δR

where δR is the smallest number greater than zero in the set

δR = {δR : δR = γ0δm or
κusc
1− γθ

(
κubt

δ2R
γ20

+MP1
δR
γ0

)
− κ∆κµδ

µ
R = 0}.

Lemma 9. Suppose that finite termination does not occur. Additionally, suppose that Assumptions

1-6, and (2.26) hold, that (2.15) holds for j /∈ R, and that

∆j =

(
1

κµ

) 1
µ−1

. (2.31)

Suppose further that j > 0 and that

θj ≤ min [δθ, δn] .
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Then j /∈ R.

Proof. The proof is given in Appendix A.2

Lemma 10. Suppose finite termination does not occur. Suppose also that Assumptions 1-6 hold,

and (2.15) holds for j /∈ R. Additionally, suppose that |Z| = ∞. Then there exists a subsequence

{ji} ⊆ Z such that

lim
i→∞

θji = 0

and

lim
i→∞

χji = 0.

Proof. The proof is given by [39, Lemma 3.10].

Hence, if an infinite sequence of iterates are added to the filter, then a subsequence of these
iterates converges to a point where the maximum constraint violation is zero and the metric χji is
equal to zero because either the gradient of the objective function or the tangent step is equal to 0
at the point of convergence.

Now that we have considered the case when |Z| = ∞, we will now examine the alternative
when a finite number of elements are added to the filter such that |Z| < ∞. If this is the case, let
j0 denote the iteration such that xj0−1 is the last iterate added to the filter.

Lemma 11. Suppose finite termination does not occur and that |Z| < ∞. Suppose that Assump-

tions 1-6 and (2.15) hold for j /∈ R. Then

lim
j→∞

θj = 0.

Additionally, nj satisfies (2.22) for all j ≥ j0 sufficiently large.

Proof. The proof is given by [39, Lemma 3.11] and reproduced here for reference.
Consider an successful iterate with j ≥ j0 such that

xj+1 = xj + sj.

Since j ≥ j0, this means that xj is not in the filter. Hence j /∈ R and therefore ρj ≥ η1 such that

J(xj)− J(xj + sj) ≥ η1[mj(xj)−mj(xj + sj)],

≥ η1κθθ
ψ
j ≥ 0.

(2.32)
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Thus, the objective function is decreasing for all successful iterations with j ≥ j0. But since
Assumptions 1 and 5 imply that J(xj) ≥ Jmin for all j, this means that

lim
j∈S
j→∞

[J(xj)− J(xj+1)] = 0. (2.33)

Combining (2.32) with (2.33) gives the first claim of the proof and Assumption 3 and Lemma 1
give the second claim of the proof.

Lemma 12. Suppose that finite termination does not occur, and that |Z| < ∞. Additionally,

suppose that Assumptions 1-6 hold, and that (2.15) holds for j /∈ R. Then

lim
j→∞

χj = 0.

Proof. Lemma 11 along with Assumption 3 gives for j sufficiently large that

∥nj∥ ≤ κuscθj

must hold. Additionally, from Lemma 11, we have that (2.32) holds and therefore that (2.33) holds
for all j ∈ S, j ≥ j0.

For the purpose of obtaining a contradiction, suppose that (2.26) holds.
Combining (2.28), Lemma 11, and Assumption 3 together give that

lim
j→∞

[mj(xj)−mj(x
N
j )] = 0. (2.34)

Recall that we can decompose the estimated change in cost between iterations as

mj(xj)−m(xj + sj) = mj(xj)−mj(x
N
j ) +mj(x

N
j )−mj(xj + sj).

Along with (2.32), (2.33), and (2.34), we then have

lim
j∈S
j→∞

[mj(x
N
j )−mj(xj + sj)] = 0.

Eq. (2.15) gives

mj(x
N
j )−mj(x

N
j + tj) ≥ κtmdχjmin

[
χj
βj
,∆j

]
.

Combining with the fact that, by nature of the algorithm, ∆j ≥
(

1
κµ

) 1
µ−1

> 0 for all j, Assumption
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4, and the assumption that (2.26) holds such that χj ≥ ϵ for all j gives

mj(x
N
j )−mj(x

N
j + tj)≥κtmdϵmin

[
ϵ

κumh
,

(
1

κµ

) 1
µ−1

]
.

However, this contradicts (2.34). Hence, the assumption that (2.26) holds must not be true. There-
fore

lim
j→∞

χj = 0.

Hence, for the case when the algorithm adds only a finite number of iterates to the filter, the
metric χj converges to zero. We now show the primary claim of this chapter.

Theorem 1. Suppose that finite termination does not occur. Suppose that Assumptions 1-6 and

that (2.15) holds for j /∈ R. Let {xji} be the sequence of iterates produced by the algorithm.

Then either the restoration procedure terminates unsuccessfully, or there is a subsequence {ji} for

which

lim
i→∞

xji = x∗

and x∗ satisfies

θ(x∗) = 0 and

∣∣∣∣∣∣∣∣∣∣∣∣

min
t

⟨g∗, t⟩,

s.t. AM
E (x∗)t = 0,

cRI (x
∗) +AM

I (x∗)t ≤ 0,

∥t∥ ≤ 1.

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.35)

Proof. The claim of this theorem comes from combining Assumption 5 with Lemmas 10, 11, and
12 to show that as long as the restoration procedure is always successful

lim
j→∞

θj = 0 and lim
j→∞

χj = 0.

The proof’s claim is then given by applying Lemma 2.

Theorem 1 accepts the possibility that the restoration procedure terminates unsuccessfully. The
selection of a universal algorithm to implement the restoration procedure that eliminates this possi-
bility remains an open question. As discussed in Section 2.3.2, constrained ILC reference-tracking
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strategies are good candidates for the restoration procedure due to their ability to compensate for
uncertainties, particularly if a reference signal within Y with a corresponding input within U is
known. However, the exact ILC controller type will likely vary on a case-by-case basis.

If the restoration procedure always terminates successfully, Theorem 1 states that any of the
limit points of the sequence {xj} will satisfy (2.23). This claim says that at the converged points,
the system performance may not be improved without, according to the system model, violat-
ing constraints. If the model is accurate, this would imply that the algorithm is able to locate a
Karush–Kuhn–Tucker point of problem (2.6). Further, if the model is inaccurate, convergence to
the feasible region of (2.6) is still achieved. This is contrary to the result that would be obtained
by using a non-learning optimal control strategy, where the theorem would only be able to claim
(2.35) if cRi (x

∗) was replaced with cMi (x∗). Then, if the model is inaccurate and therefore cRi (x
∗)

and cMi (x∗) do not agree, convergence to a feasible point of (2.6) cannot be guaranteed. Addition-
ally, in the event that cMi (x) is more restrictive than cRi (x), as is the case for non-learning robust
control strategies, a degradation in performance is likely to be observed. Hence, the SQP-ILC al-
gorithm is able to provide the benefit of robust constraint handling, while also providing improved
performance guarantees.

2.5 Simulation Example

The SQP-ILC framework is simulated on the multiple mass-spring-damper system shown in
Fig. 2.3. The input is a force applied to one of the masses, and the output is the position of that
mass.

The continuous time dynamics are given by

ż(t) = Az(t) +Bu(t),

y(t) = Cz(t).

u
y

Figure 2.3: Mass-spring-damper system used for simulation.
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where

A =


0 1 0 0

−1.25 −1.25 0.25 1

0 0 0 1

1 4 −2 −8

 , B =


0

0

0

2

 ,
C =

[
0 0 1 0

]
.

(2.36)

However, suppose that the user only has access to an inaccurate model of the system with A
and B given by

A =


0 1 0 0

−2 −2 1 1

0 0 0 1

1 1 −2 −2

 , B =


0

0

0

1

 . (2.37)

Consequently, the discrete time dynamics are given by

fdz (zk, uk, τk) = eAτkzk +

∫ τk

0

eAσdσBuk,

fy(zk) = Czk.

(2.38)

Here, while the system is linear with respect to the system states and input, it is nonlinear with
respect to the sample period selection.

For this case study, the time-optimal waypoint tracking problem is investigated wherein the
objective is to move one of the masses from an initial position to two subsequent locations within
a predefined tolerance in as little time as possible.

More formally, the performance objective is given as J(u, τ ) = τ⊤τ where an iteration con-
sists of nτ = 80 timesteps. As the system dynamics and performance objective are twice contin-
uously differentiable with respect to (uk, τk), Assumption 1 holds. Moreover, from this definition
of the performace objective, Assumption 4 holds for a value of κumh = 3.

The waypoint tracking constraints are defined as

|y41 − 1| ≤ 0.2, |y81 − 0| ≤ 0.2 (2.39)

which is to say that the output should be equal to 1 and 0 at the 41st and 81st samples respectively
within a tracking tolerance of 0.2.

36



Table 2.1: Parameters for the SQP-ILC simulation

Parameter Value
γ0 0.1
γ1 0.5
γ2 2
η1 0.01
η2 0.9
γθ 10−4

κ∆ 0.7
κµ 5
µ 0.01
κθ 10−4

κtmd 0.01
ψ 2
∆0 6

The sets U and T are additionally given as

U = {uk : −40 ≤ uk ≤ 40,∀k ∈ 0, . . . , 80}, T = {τk : 0 ≤ τk ≤ 1,∀k ∈ 0, . . . , 80}. (2.40)

Since the sets U and T are compact polytopes, then, as noted in Section 2.4, the iterates xj

remain within a compact set X such that Assumption 5 holds. Moreover, the first and second
derivatives of the discrete time dynamics given by (2.38) are Lipschitz continuous over X , which
gives Assumption 2.

Constraints (2.39) and (2.40) are used to construct the functions cRI (x) and cMI (x) from the
relation yk+1 − fy(f

d
z (zk, uk, τk)) using the state space representations given by (2.36) and (2.37)

respectively. Recall that cRI (x) is unknown to the user, but is measurable during experiments for a
specific selection of x.

The algorithm was run for 100 iterations. For the restoration procedure, a line search strategy
was used by conducting a series of experiments along the segment connecting xj and x̄ where
x̄ is a point in the design space that lies in the interior of the feasible set U × T such that y =

p(x̄, z0) ∈ Y . r is then found by identifying a point along this segment for which θ(xj + rj)

is satisfactorily small. Optimization problems were solved using CVX, a MATLAB package for
convex optimization [44, 45]. The algorithm parameters for the simulation are given in Table 2.1.

The initial input sequence is u0 = 0 and the initial sample period vector is τ =
[

1
80

. . . 1
80

]⊤
.

Each trial has an initial condition of z0 = 0.
The evolution of the trial duration from iteration to iteration is shown in Fig. 2.4. Here, the
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color of the circles denote whether the corresponding iterate xj satisfied the constraints within
ξ-precision such that θ(xj) < ξ with ξ = 0.01. From an initial value of 1s, we see that the
trial duration is quickly reduced to a value of 0.15s by the 20th iteration. However, at this iterate,
the waypoint tracking constraints are not satisfied. Consequently, a restoration procedure was
conducted to identify a point with reduced infeasibility. By allowing the algorithm to continue to
run, the trial duration converges to a value of 0.36s while also satisfying the constraints within
ξ-precision. Hence, the economic cost of trial duration is able to be significantly reduced from the
nominal value of 1s while also ensuring that constraints are satisfied.

The converged output trajectory is shown in Fig. 2.5. Here the output is still able to track the
waypoints within the specified tolerances in spite of the reduction in trial duration. By allowing
the sample periods to vary by treating τ as a design variable, the time at which the waypoints are
required to be tracked as enforced by constraint (2.39) is flexible. Hence, the algorithm is able to
identify an updated sample period sequence that reduces the economic cost of trial duration.

Similarly, the converged input trajectory is shown in Fig. 2.6 by the dashed yellow line. Here,
the converged input remains within the saturation limits at all times. We further observe that the
converged control trajectory is very similar to the unknown optimal control signal, uopt, shown by
the solid blue line. Not only does u100 nearly mimic the bang-bang signal of uopt, but the durations
of the two signals are different by only 1.6%. In other words, the SQP-ILC algorithm is able to
very nearly identify the time-optimal control signal, in spite of the fact that an inaccurate system
model is used for the control signal identification. Hence, by incorporating learning, the algorithm
is largely able to overcome the existence of uncertainty and uncover a nearly globally minimizing
control solution.

As observed in Fig. 2.4, large constraint violations occurred at several iterations prior to con-
vergence. While this behavior is permissible for the simulation example described in this section,
it may be inadmissible for practical systems with safety-critical constraints. A potential strategy
to mitigate this phenomenon is to dynamically adjust the trust region radius ∆j to shrink as θj
increases. In this manner, large updates to the control signal (and therefore potentially large in-
creases to the constraint violation) can be prevented when the system constraints are already being
violated. This idea is successfully leveraged in [46] to enforce robust obstacle avoidance of a
robotic manipulator, but the implications of using this strategy on the converged performance of
the system remains a point of further investigation.

2.6 Conclusions

This work presents an ILC strategy for constrained systems with time and input-based economic
performance metrics. Namely, by treating the system timing as a decision variable, greater flexi-
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Figure 2.4: Trial duration corresponding to each iterate, xj . Black circles denote iterations where
the constraints are satisfied within ξ-precision, while red circles correspond to iterations wherein
constraints were violated beyond ξ-precision with ξ = 0.01.

bility is afforded in how the control signal is designed, to allow for performance metrics beyond
reference tracking to be addressed. This framework extends the capabilities of prior work given in
[29] by allowing for a much broader class of constraints. It is shown, in the case that the model
is accurate, that the algorithm identifies, at convergence, a first-order critical point of the optimal
control problem. Additionally, in the presence of model uncertainty, conditions are established for
which the closed-loop control trajectory converges to a solution such that the constraints are satis-
fied, while also outlining properties of the converged control trajectory with regards to economic
performance. These properties are demonstrated in simulation where the time-optimal point-to-
point control problem is solved for a constrained multiple mass-sping-damper system, reducing
the trial duration by 64% while maintaining accurate waypoint tracking.

Future work includes extensions to iteration-varying systems, as well as an exploration of sys-
tems with uncertain economic performance objectives and strict output constraints. Moreover, the
identification of the classes of system objectives and constraints that satisfy Assumption 3, and the
creation of methods for selecting the controller parameters given in Table 2.1 such that Assumption
6 holds remain points of further investigation.
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Figure 2.5: Output trajectory at iteration 100. The blue markers indicate the waypoint positions
with their corresponding tracking tolerance at timesteps 41 and 81 as designated in tracking con-
straint (2.39).

Figure 2.6: Input trajectory at iteration 100. The input remains within the designated saturation
limits enforced by (2.40).
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CHAPTER 3

Robust Adaptive Economic Model Predictive Control

3.1 Preliminaries: Tube-Based Model Predictive Control

In Chapter 2 a method was described for solving control problems for uncertain repetitive sys-
tems that operate discontinuously. Namely, the control problem was framed as a mathematical op-
timization problem wherein the control signal served as the decision variable. Here, the SQP-ILC
algorithm presented in Chapter 2 relied on the resettability of the system state between iterations.
While this control strategy borrowed much of its structure from numerical optimization methods,
forming practical analogous methods for continuously operated systems is not straightforward.
Rather, methods for control of economically driven, continuously operated systems has frequently
been considered within the field of optimal control wherein the control problem is similarly ex-
pressed as an optimization problem to identify an optimal input signal or control policy [2]. While
optimal control is a mature field of research that has enjoyed success for unconstrained linear
systems with quadratic costs, the development of practical extensions to nonlinear systems, con-
strained systems, and systems with more general performance objectives has remained a persistent
challenge. Namely, when considering these classes of systems, analytical solutions for the optimal
control signal rarely exist. Consequently identification of the control signal instead relies on the use
of numerical methods. However, the lack of an offline phase for continuously operated systems
necessitates that these optimization problems are solved in real time, which is often impossible
despite recent advancements in computing and processing speed.

To mitigate this issue, significant research effort has been directed towards the use of approx-
imate solutions to optimal control problems. In particular, interest has been centered within the
field of model predictive control (MPC) [47], which simplifies the optimal control problem to re-
duce the computational demand. Specifically, whereas optimal control problems require a control
trajectory to be derived over a long (potentially infinite) time interval, MPC lessens the numerical
burden by limiting the length of time over which input and state predictions are performed. The
standard method of operation within MPC algorithms is to leverage a measurement of the system
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state and a user-available model of the system dynamics to optimize the predicted inputs and sys-
tem states over a short time interval termed the prediction horizon. This procedure is repeated at
each timestep, wherein the end of the prediction horizon is incremented in real time. This so-called
‘receding horizon’ strategy is depicted in Fig.3.1.

Es mated 

op mal input

Predicted 

states

Current

state

Past state

Past

input

TimePredic on horizon

Figure 3.1: Rather than deriving the optimal input signal at all future times, MPC reduces the
computational load of optimal control methods by limiting the state and input predictions to a
truncated prediction horizon.

Classical MPC theory assumes that the underlying model used to propagate the plant dynamics
over the prediction horizon is an accurate reflection of the true system. Extensions of these meth-
ods to address the existence of uncertainty is the focus of robust MPC [48]. A variety of robust
MPC techniques, such as min-max MPC [49] and stochastic MPC [50], have been developed. Of
particular interest is tube-based MPC [51]. By leveraging known bounds on the error in the pre-
dicted state trajectory, tube-based approaches constrict the feasible space of the nominal system
in order to guarantee robust constraint satisfaction. Due to the computational tractability of this
approach, tube-based MPC has garnered significant popularity.

Commonly, as in [52, 53], tube-based MPC leverages known bounds on the uncertainty in the
system to define an invariant set [54] for the true system states, or an invariant set containing the
state estimation error given by the difference between the true system states and a prediction of the
states based on a nominal, undisturbed system model. Such an approach then enables guarantees
to be made regarding the robust performance and constraint satisfaction of the system by ensuring
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that the true states of the system remain in this invariant set or tube around the nominal state
trajectory. The computation of these invariant sets can be performed offline, which enables these
methods to be implemented in a way that is amenable for real-time operation.

Alternatively, the construction of the tube can be based on a forward propagation in time of
bounds placed on the state estimation error. Here, whereas invariant set methods rely on the calcu-
lation of a static set that the state estimate error is known to lie in, the tube geometry evolves over
the state prediction horizon based on knowledge of the underlying plant model. Consequently, by
using such a dynamic approach, the tube geometry is dependent upon the nominal system trajec-
tory. These homothetic tube methods wherein the tube size is dependent upon the system behavior
can enable reduced conservatism in comparison to their invariant set counterparts at the expense of
additional computational complexity [55, 56]. A graphical comparison of tube-based MPC based
on rigid invariant sets versus homothetic tubes is shown in Fig. 3.2.

True state

trajectory

Nominal state

trajectory

Current

state

Invariant set

tube

(a) The size of the tube is fixed over the prediction
horizon in invariant set tube-based MPC

Homothe�c

tube

True state

trajectory

Nominal state

trajectory

Current

state

(b) The size of the tube varies over the prediction
horizon in homothetic tube-based MPC.

Figure 3.2: Comparison between invariant set tubes and homothetic tubes (light blue area) for iden-
tical nominal state trajectories (dashed orange line). Homothetic tubes can enable more aggressive
control in comparison to invariant set tubes, but incur greater online computational demand as the
size of the tube over the prediction horizon serves as an additional decision variable in the control
input design. In both cases, starting at the current state (black circle), the true state trajectory (grey
line) stays within the tube centered around the nominal state trajectory. The blue ellipses denote
the tube geometry at each sample in the state prediction horizon.

However, while sufficient conditions for robust recursive feasibility and closed-loop stability
can be shown for tube-based MPC, the robust performance of these algorithms is still largely de-
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pendent upon the accuracy of the underlying system model used, and the user’s estimate of the
amount of uncertainty in the system. In the event that the user’s model of the system is highly
inaccurate, performance suffers due to inaccurate forecasts of future system behavior. Meanwhile,
if the available model of the system accurately reflects the true behavior of the system, but the
user’s estimate of the amount of uncertainty in the system is larger than what truly exists, then ro-
bust methods are frequently overconservative, where unrealized performance losses or unnecessary
costs are incurred to ensure robust constraint satisfaction.

3.2 Background and Motivation

In Section 3.1, the concept of tube-based MPC was introduced. Traditionally, this type of
control strategy has been developed for the case where the control objective is to drive the system
to a predefined equilibrium setpoint. However, in many applications, system performance is not
predicated solely upon setpoint tracking, but is instead dependent upon the optimization of an
economic performance metric. As a consequence of this, the performance stage cost may not be
positive definite with respect to a given equilibrium point of the system, which prevents traditional
regulation or tracking based robust MPC stability criteria from being directly applied to these
systems.

To address this issue, the field of Economic Model Predictive Control (EMPC) has enabled
the closed-loop stability and performance of systems with nontraditional performance objectives
to be studied [57]. As a consequence of the economic stage cost or the natural dynamics of the
system, the optimal behavior for a system controlled using EMPC is often repetitive [58]. Ensuring
stability in such cases is generally predicated upon satisfying a periodic dissipativity condition,
wherein the system trajectories do not necessarily converge to an equilibrium setpoint, but rather
a periodic orbit or limit cycle. The propensity of systems with economic objectives to have an
optimal behavior that is periodic has thus made repetitive systems a point of interest within the
field of EMPC [59, 60]. Additionally, robust EMPC strategies capable of explicitly addressing
uncertainties have been developed in [61–63], with considerations towards robust optimal periodic
trajectories given in [64, 65].

However, like many other robust control strategies, robust MPC/EMPC is often overly con-
servative. In particular, if the estimated bounds on the uncertainty impacting the system are too
large, the robust MPC/EMPC controller will unnecessarily protect the system against nonexistent
uncertainties. This behavior may result in less aggressive control, and therefore hindered per-
formance. To combat this, an alternative or supplementary strategy for mitigating uncertainty is
learning-based control. Here, the fundamental idea is that as new data is collected while the system
undergoes operation, additional information about the impact that uncertainties have on system be-
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havior or performance may be ascertained. This improved understanding about the uncertainties
can then be leveraged to improve the manner in which a control signal is applied.

In particular, the strategies of ILC and RC have played a crucial role towards developing the
use of learning-based control for repetitive systems. ILC has predominantly been applied to dis-
continuously operated systems, while RC literature has focused on continuously operated systems.
The lack of an offline phase required to satisfy the continuous operation condition has been the
predominant assumption for systems studied within the MPC literature as well, with a few excep-
tions as in [66]. This distinction has led to variations in the state of the art between the ILC and
RC fields. Recent efforts have enabled ILC strategies to address economic performance objec-
tives [22, 29, 30, 67], including systems with constraints as in [31, 34]. However, the need for
resettability of the initial condition limits the number of systems to which these strategies may be
appropriately applied. In contrast, the field of RC has had limited development towards addressing
systems with economic performance objectives. In [68], an economic cost is minimized through
the use of a hierarchical control structure wherein an outer-loop identifies an optimal periodic refer-
ence trajectory, while an inner-loop drives the system to track this reference trajectory. Meanwhile,
in [69, 70], the problem of sparse periodic reference tracking is addressed, wherein a relaxation of
system tracking requirements is exploited to address economic performance objectives. However,
[68–70] are not applicable to systems with general state and input constraints.

While RC and ILC directly update the control input based on historical system data, learning-
based schemes utilizing concepts from indirect adaptive control have enabled uncertainty to be
addressed by performing online updates to model parameter estimates. In particular, a common
strategy used within robust adaptive MPC approaches leverages data to update uncertainty sets,
wherein new data is used to shrink the domain over which uncertainties are known to exist. This
idea is utilized in [71–75] for application to linear systems, and in [76–78] for nonlinear systems.
However, [71–78], are only suitable for tracking or regulation problems, and are therefore not di-
rectly applicable to systems with economic performance objectives, nor can they address systems
with repetitive uncertainties. Indeed, developing adaptive MPC strategies that are capable of ad-
dressing economic objectives in the presence of uncertainty poses a unique challenge. In this case,
not only is the optimal behavior of the true system unknown due to the existence of uncertainty
and a non-trivial minimizer of the economic objective, but estimates of the economically optimal
behavior of the nominal system vary over time as a consequence of the adaptive model update.
Initial efforts to address economic objectives using adaptive MPC schemes include [79] and [80],
but both of these approaches are designed for specific applications and recursive feasibility and
stability results are not proven. Meanwhile, the scheme offered in [81] establishes conditions for
which the proposed robust adaptive MPC framework drives the states to converge to a target set
containing an economically optimizing point that is unknown a priori. However, this method does
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not consider the case when the uncertainties or optimal mode of operation is periodic, which limits
the types of systems and performance objectives that may be addressed. Additionally, the approach
in [81] relies on the ability to, at each timestep, identify an optimizing feedback policy that solves
a min-max optimization problem. While this strategy enables conditions to be identified such that
recursive feasibility and stability can be provably guaranteed, such a formulation is computation-
ally intractable in practice, and does not investigate the cases where uncertainties arise periodically
or where the optimal mode of operation is periodic.

Given these shortcomings, we seek to identify a control strategy applicable to nonlinear sys-
tems that are simultaneously: (i) continuously operated and subject to both periodic parametric
uncertainty and additive disturbances, (ii) constrained in the inputs and states, and (iii) evaluated
based on their ability to minimize an economic performance cost. Therefore, this chapter presents
the following contributions:

1. A model adaptation method that leverages historical state and input data to enhance the
user’s knowledge of the influence of parametric uncertainty on system behavior. Specifically,
rather than seeking to identify the value of unknown model parameters that are constant in
time, an update law is developed to modify estimates of unknown model parameters that
are allowed to vary periodically. An additional update law is proposed that modifies bounds
on the set over which the uncertain model parameters are known to exist. Conditions are
then established for which convergence of the estimated model parameters to the true model
parameters may be achieved, and for which the recursive contraction of the domain over
which the true model parameters are known to lie is guaranteed.

2. An RAEMPC algorithm that pairs the adaptive scheme with an optimization step to identify
a control signal that minimizes an economic stage cost while robustly enforcing input and
state constraints. Through the use of calculated invariant sets, the min-max formulation of
[81] can be avoided in favor of a computationally tractable rigid tube-based MPC optimiza-
tion problem. Further, by exploiting improved knowledge about the parametric uncertainty
obtained through the adaptive scheme, the developed controller can be more aggressive in
its decision making, thus reducing the conservatism of standard robust EMPC approaches
while maintaining robust constraint satisfaction under the influence of both periodic para-
metric uncertainty and bounded additive disturbances.

3. Sufficient conditions for which recursive feasibility of the MPC optimization problem and
convergence of the true system states to a compact set is guaranteed. Specifically, it is
demonstrated that the user’s estimate of an economically optimizing repetitive state trajec-
tory converges, and that the true system states converge to some bounded neighborhood
around this trajectory. Additional insight outlining conditions for which the nominal model
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parameters used to define the dynamic constraints within the optimization problem can be
guaranteed to be updated at each system repetition under sufficiently small state estimation
error are also provided.

4. A simulation study wherein the performance of the robust EMPC framework outlined in [65]
is compared to the proposed RAEMPC framework when applied to a nonlinear model of a
mechanical braking system.

To summarize, using a tube EMPC scheme, this work enables uncertain repetitive systems
with a wide variety of performance metrics to be robustly controlled. Additionally, conservatism
of existing tube EMPC strategies is mitigated through the use of a learning strategy to enable
more aggressive control, and therefore further improvements in performance in a computationally
feasible manner.

To serve as a reference for the reader, a notation guide for the variables used in this chapter is
provided in Appendix D.3. The contents of this chapter have been submitted for publication to
IEEE Transactions on Automatic Control as [82].

3.3 System description

We consider systems of the form

xk+1 = xk + F (xk, uk) +G(xk, uk)θk + vk (3.1)

where k ∈ I≥0 denotes a timestep index, and x ∈ Rnx , u ∈ Rnu , and v ∈ Rnx denote the system
states, inputs, and noise respectively. F : Rnx × Rnu → Rnx and G : Rnx × Rnu → Rnx×nθ

denote known, potentially nonlinear, continuous functions. θk ∈ Rnθ denotes a vector of unknown
model parameters. The states and inputs are restricted to lie within the compact, convex sets X
and U with Z ≜ X × U . We assume that the system is nc-periodic with cycle length nc such that
θk+nc = θk = θi where i ∈ I[0,nc−1] denotes an ‘intracycle step index’ with i = k mod nc. Such
may be the case if the system is impacted by repetitive disturbances, or if there exists uncertainty
in model parameters that vary over time in a periodic fashion. The specific instance wherein the
model parameters θk are constant is captured by the case nc = 1. Let j denote the ‘intercycle
step index’ given by ⌊ k

nc
⌋ which corresponds to the number of completed cycles. The timestep

dynamics of (3.1) given in terms of k can be equivalently expressed in terms of i and j as

xi+1
j = xij + F (xij, u

i
j) +G(xij, u

i
j)θ

i
j + vij,

= xij + F (xij, u
i
j) +G(xij, u

i
j)θ

i + vij
(3.2)
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where the second equality arises since θij has no dependency on j due to the periodicity of θk with

x0j+1 = xncj .

While the true values of parameters θi are unknown, suppose that at cycle j, a user-estimate, θ̂ij ,
of the parameters is known. The set of estimated parameters over a cycle is denoted using the
shorthand θ̂j ≜ {θ̂0j , . . . , θ̂nc−1

j }.

Assumption 7. At cycle number j, the model parameters θi lie within some known parame-

ter uncertainty set Θi
j = B(θ̂ij, z

Θij) where zΘ
i
j denotes the uncertainty set radius and zΘjmax ≜

max
i∈I[0,nc−1]

zΘ
i
j is well defined.

Satisfying Assumption 7, the parameter estimate error is then given as θ̃ij ≜ θi − θ̂ij ∈ Θ̃i
j ≜

B(0, zΘ
i
j). A collection of parameter estimate errors in a cycle is denoted as θ̃j ≜ {θ̃0j , . . . , θ̃nc−1

j }
and Θ̃j ≜ Θ̃0

j × . . .× Θ̃nc−1
j .

Assumption 8. The noise is bounded such that ∥vk∥ ∈ V ≜ {v ∈ Rnx : ∥v∥ ≤ vmax} where vmax

is a known constant.

Let H(Θ̃i
j) ≜ {G(x, u)θ̃ : x ∈ X , u ∈ U , θ̃ ∈ Θ̃i

j} denote the set of state disturbances
potentially caused by parameter estimate error θ̃ij . Since Θ̃i

j is known as a consequence of
Assumption 7, then H(Θ̃i

j) is also known. Consequently, by defining the uncertainty signal
dij ≜ G(xij, u

i
j)θ̃

i
j + vij ∈ Di

j where Di
j ≜ H(Θ̃i

j) ⊕ V , system (3.2) is alternatively expressed
as

xi+1
j = fθ̂ij

(xij, u
i
j, d

i
j) ≜ xij + F (xij, u

i
j) +G(xij, u

i
j)θ̂

i
j + dij. (3.3)

The shorthand notation fθ̂j ≜ {fθ̂0j , . . . , fθ̂nc−1
j

} will be used to denote the governing dynamics of
system (3.3) where appropriate. For given input and disturbance sequences u = {u(0), . . . , u(T −
1)} ∈ (U)T and d = {d(0), . . . , d(T − 1)} ∈ (Dj)

T where Dj ≜ D0
j ∪ D1

j ∪ . . . ∪ Dnc−1
j , the

resulting state sequence generated by system model fθ̂j is denoted as {xu
θ̂j
(0, x), . . . , xu

θ̂j
(T, x)}

with initial condition xu
θ̂j
(0, x) = x. Let (Uθ̂j ,Dj)

T (x) ⊆ (U)T denote the set of control sequences,
u, of length T such that u ∈ (U)T and xu

θ̂j
(t, x) ∈ X for all d ∈ (Dj)

T and t ∈ I[0,T ]. In
other words, (Uθ̂j ,Dj)

T (x) contains the feasible control sequences that are guaranteed to drive the
system to remain within the feasible set of states over the next T timesteps despite the existence of
parametric and additive uncertainties.

Given the existence of model parameter estimate error θ̃ij and noise vij , the true system dynamic
model given by (3.3) is unknown to the user. Rather, a nominal system model that is available to
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the user based on the current estimate of the unknown model parameters can be made according to

x̄i+1
j = fθ̂ij

(x̄ij, ū
i
j, 0) (3.4)

with corresponding state estimation error eij = xij − x̄ij . Although a variety of approaches may
be used to derive controllers based on nominal system model (3.4) while remaining robust to
disturbances dij , the ability of these strategies to achieve a high level of system performance is
inherently intertwined with the structure of Dj . Namely, the expected performance of the system
tends to degrade if Dj is large.

Of particular interest are systems whose performance is given by an economic cost function

ℓ(x, u) : X × U → R. In this work, ℓ(x, u) is assumed to be a continuous function. As noted
in [57], standard tracking or regulation MPC approaches typically consider ℓ(x, u) to satisfy the
condition

0 = ℓ(xs, us) ≤ ℓ(x, u) for all (x, u) ∈ Z (3.5)

where (xs, us) denote a known setpoint state and input pair corresponding to an equilibrium of the
system. However, for the case of systems with economic performance objectives, condition (3.5)
does not necessarily hold. Such may be the case if (xs, us) is unknown or does not exist, or if the
definition of the economic cost function is structured such that there exists an (x, u) ∈ Z with
ℓ(x, u) < ℓ(xs, us). Hence, economic cost functions encapsulate a broader class of systems whose
optimal mode of operation is unknown a priori or does not occur at a fixed equilibrium point.

3.4 Uncertainty Set Adaptation

In order to more effectively address the system’s robust economic performance, an adaptive
scheme, modified from the one developed in [77], is proposed. The goal of this scheme is to lever-
age historical data to reduce the size of Dj through systematic updates to the parameter uncertainty
set Θi

j between cycles while maintaining that θi ∈ Θi
j . In doing so, a robust controller, which will

be discussed in Section 3.5, can be more aggressive when designing the control signal to enable
improved system performance. Here, adaptation of Θi

j is performed in two ways: through updates
to the parameter estimate θ̂ij , which defines the center of Θi

j , as well as reductions of the uncertainty
set radius zΘ

i
j .
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3.4.1 Parameter Estimate Adaptation

We now detail the method for which the model parameter estimates are updated. Based on a
strategy developed in [77], this scheme relies on a sequence of auxiliary variables, ηk, upon which
the parameter estimate update law is based. However, whereas the update law in [77] is performed
in the time-domain, such an approach is not appropriate here due to the fact that θk is not a constant,
but rather a periodically time-varying parameter. This property necessitates modifications to the
frequency that updates to θij are performed, as well as the signals upon which the θij update law is
based.

First, the variable ωij is introduced, which is given as a filtered form of the regressor matrix
G(xij, u

i
j) according to

ωij+1 = ωij +G(xij, u
i
j)−Kωω

i
j, ωi0 = 0 (3.6)

for each i ∈ I[0,nc−1] with Kω ∈ (0, 1) chosen by the user. Here, the evolution of ω occurs over the
j−domain such that updates to ωij only occur once every cycle.

Given (3.6), at intercycle step j + 1 and intracycle step i, a filtered state variable, x̂ij+1, is now
constructed according to

x̂ij+1 =x̂
i
j + F (xij, u

i
j) +G(xij, u

i
j)θ̂

i
j+1 +Kωx̃

i
j − (1−Kω)ω

i
j(θ̂

i
j − θ̂ij+1) + xij+1 − xi+1

j (3.7)

where xij+1 is given by the measurement of the current state and x̃ij ≜ xij − x̂ij . This filtered state
variable definition necessarily differs from the one used in [77], due to the fact that θi only directly
appears in (3.2) periodically. Auxiliary variable ηij is subsequently defined as

ηij ≜ x̃ij − ωij θ̃
i
j. (3.8)

Substituting (3.2) for xi+1
j in (3.7) gives that the evolution of x̃ij in the j−domain can be ex-

pressed according to

x̃ij+1 =x̃
i
j +G(xij, u

i
j)θ̃

i
j+1 −Kωx̃

i
j + (1−Kω)ω

i
j(θ̂

i
j − θ̂ij+1) + vij. (3.9)

Then, combining (3.8) with the dynamics of the filtered regressor matrix in (3.6) and the x̃ dynam-
ics in (3.9), we have that

ηij+1 = ηij −Kωη
i
j + vij, ηi0 = x̃i0

for each i ∈ I[0,nc−1]. As vij is an unknown signal, ηij is therefore unknown as well. Therefore, an
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estimated auxiliary variable, η̂ij , is instead generated and is given by

η̂ij+1 = η̂ij −Kωη̂
i
j.

The resulting auxiliary variable estimation error, defined as

η̃ij ≜ ηij − η̂ij, (3.10)

then evolves according to

η̃ij+1 = η̃ij −Kωη̃
i
j + vij. (3.11)

Let Σi
j ∈ Rnθ×nθ denote the matrix obtained from

Σi
j+1 = Σi

j + (ωij)
⊤ωij, Σi

0 = βI (3.12)

for some user-defined constant β > 0. We observe that, because ωij is a real valued matrix with
β > 0, Σi

j is a symmetric, positive definite matrix. The dynamics of (Σi
j)

−1 are consequently given
by

(Σi
j+1)

−1 =(Σi
j)

−1 − (Σi
j)

−1(ωij)
⊤(I + ωij(Σ

i
j)

−1(ωij)
⊤)−1ωij(Σ

i
j)

−1, (Σi
0)

−1 =
1

β
I. (3.13)

As Σi
j is positive definite, this gives that (Σi

j)
−1 is also positive definite with λmax

(
(Σi

j)
−1
)
≤

1
β

. Further, as ωij is real valued and bounded as a consequence of the continuity of G(x, u), com-
pactness of Z , and definition of Kω, this then implies that there exists a constant γi > 0 such
that

γi ≤ ∥(I + ωij(Σ
i
j)

−1(ωij)
⊤)−1∥ < 1 for all j.

Through the construction of these user-generated variables, a parameter estimate update law
can then be designed according to

θ̂ij+1 = θ̂ij + (Σi
j)

−1(ωij)
⊤ (I + ωij(Σ

i
j)

−1(ωij)
⊤)−1

(x̃ij − η̂ij), (3.14)

= θ̂ij + (Σi
j)

−1(ωij)
⊤ (I + ωij(Σ

i
j)

−1(ωij)
⊤)−1

(ωij θ̃
i
j + η̃ij) (3.15)

where the first equality denotes the user-implementable update law, while the second equality
arises through the definitions of ηij and η̃ij in (3.8) and (3.10). From (3.15), we see that through
the use of the auxiliary variable, the parameter update law is dependent upon parameter estimation
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error θ̃ij , despite the fact that this variable is unknown. Hence, under sufficient excitation of ωij , the
existence of model parameter error can trigger an update to the model parameter estimates. This
will enable conditions to be established for which the parameter estimation error can be driven
towards zero.

As θi is assumed to exist within the uncertainty set Θi
j from Assumption 7, it is undesirable for

update law (3.14) to update θ̂ij such that θ̂ij+1 /∈ Θi
j . Therefore, (3.14) is refined to be of the form

¯̂
θij+1 = Proj

{
θ̂ij + (Σi

j)
−1(ωij)

⊤ (I + ωij(Σ
i
j)

−1(ωij)
⊤)−1

(x̃ij − η̂ij),Θ
i
j

}
(3.16)

such that ¯̂θij+1 ∈ Θi
j . Consequently, because Θi

j is a convex set with θi ∈ Θi
j ,

(¯̃θij+1)
⊤Σi

j+1
¯̃θij+1 ≤ (θ̃ij+1)

⊤Σi
j+1θ̃

i
j+1 (3.17)

where ¯̃θij ≜ θi − ¯̂
θij .

We now outline sufficient conditions to guarantee that the parameter estimation error converges
to zero.

Lemma 13. Define Vθ̃ij = (θ̃ij)
⊤Σi

j θ̃
i
j . If

∞∑
j=0

(
∥η̃ij∥2 − γi∥x̃ij − η̂ij∥2

)
<∞ and lim

j→∞
λmin(Σ

i
j) = ∞, (3.18)

then the application of parameter estimate update law (3.16) yields

Vθ̃ij+1
− Vθ̃ij

= −(x̃ij − η̂ij)
⊤ (I + ωij(Σ

i
j)

−1(ωij)
⊤)−1

(x̃ij − η̂ij) + (η̃ij)
⊤η̃ij (3.19)

and

lim
j→∞

θ̃ij = 0. (3.20)

Proof. The proof is similar to [77, Lemma 2] with some minor differences and is included in Ap-
pendix B.1. However, whereas [77, Lemma 2] establishes conditions for which the parameter error
converges to zero in the case of constant unknown model parameters, the modified construction of
the filtered state variable x̂ij according to (3.7) yields conditions for which property (3.20) holds
such that parameter error converges to zero in the case that the model parameters are periodic.

Given the dynamics of Σi
j in (3.12), the second condition of (3.18) effectively places a bench-

mark on the required excitation of ωij over time needed to ensure parameter estimate convergence
to the true parameter values. From the relationship between ωij andG(xij, u

i
j) in (3.6), this therefore
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implies that sufficient excitation of G(xij, u
i
j) is needed to ensure parameter convergence. Given

the dependence of x̃ij on G(xij, u
i
j) in (3.9), satisfaction of the first condition of (3.18) is also de-

pendent upon excitation of G(xij, u
i
j) such that parameter error θ̃ij sufficiently impacts x̃ij . Yet,

while Lemma 13 outlines conditions for which the parameter estimates converge to the true pa-
rameter values, even if these conditions are not met, the use of the projected update law in (3.16)
ensures that the parameter estimate error is, in the worst case, bounded by the initial parameter
error uncertainty set Θ̃i

0.

3.4.2 Uncertainty Set Radius Adaptation

Following the update to model parameter estimates θ̂ij , an update to the uncertainty set radius
zΘ

i
j is then performed. The combination of these two updates allows for the center and radius of

Θi
j to be updated between cycles. The update to zΘ

i
j mimics the strategy in [77] but, similar to the

update to θ̂ij , is performed periodically rather than at each timestep.
From Lemma 13, an expression is derived for the change in Vθ̃ij between parameter updates, and

therefore for the cycle-to-cycle change in θ̃ij . But, as θ̃ij is unknown to the user, the change in θ̃ij is
subsequently unknown. However, from the η̃ij dynamics given in (3.11) along with Assumption 8,

we have that (η̃ij)
⊤η̃ij ≤

(
vmax

Kω

)2
. This knowledge will enable us to place a known bound on the

cycle-to-cycle change in θ̃ij , which can be leveraged to construct an update law for zΘ
i
j . First, let

z̄Θij denote a candidate uncertainty set radius at cycle j corresponding to intracycle step i which is
given as follows:

z̄Θij =

√
V
z
Θi
j

λmin(Σi
j)
,

V
z
Θi
j+1

=V
z
Θi
j
− (x̃ij − η̂ij)

⊤(I + ωij(Σ
i
j)

−1(ωij)
⊤)−1(x̃ij − η̂ij) +

(
vmax

Kω

)2

, V
zΘ

i
0
= β(zΘ

i
0)2.

(3.21)

Then, the uncertainty set Θi
j = B(θ̂ij, z

Θij) is updated according to Algorithm 2.

53



Algorithm 2 Adaptive update to Θi
j

1: Initialize: i = j = k = 0.
2: while k ≥ 0 do
3: Calculate ¯̂

θij+1 from (3.16) and z̄iΘj+1 from (3.21).
4: if z̄iΘj+1 ≤ zΘ

i
j − ∥ ¯̂θij+1 − θ̂ij∥ then

5: (θ̂ij+1, z
Θij+1) = (

¯̂
θij+1, z̄

i
Θj+1).

6: else
7: (θ̂ij+1, z

Θij+1) = (θ̂ij, z
Θij).

8: end if
9: if k = K1nc − 1, K1 ∈ I≥0 then

10: j → j + 1, i→ 0, k → k + 1.
11: else
12: i→ i+ 1, k → k + 1.
13: end if
14: end while

Lemma 14. If θi ∈ Θi
0 and Assumption 8 holds, then the application of Algorithm 2 ensures that

Θi
j+1 ⊆ Θi

j (3.22)

and

θi ∈ Θi
j for all j. (3.23)

Proof. The proof follows closely to [77, Lemma 3] and is given in Appendix B.2. However,
whereas [77, Lemma 3] establishes conditions for which the parameter uncertainty set contracts
in the case of constant unknown model parameters, updating the uncertainty set center and radius
according to (3.16) and (3.21) such that the uncertainty set is only updated intermittently produces
property (3.22) which guarantees contraction of the parameter uncertainty sets Θi

j in the event that
the unknown model parameters are periodic.

Here we see that if the conditions of Lemma 14 are met, that result (3.23) gives that Assumption
7 holds. Through Lemmas 13 and 14 we have outlined conditions for which the model parame-
ter identification problem is solved, and the parameter uncertainty set contracts over time while
maintaining inclusion of the true model parameters as in Figure 3.3. Further, as a consequence of
(3.22), we have that Θi

j converges to some Θi
∞. Since θ̂ij denotes the center of Θi

j , this implies that
θ̂ij also converges to some θ̂i∞, with θ̂i∞ = θi if (3.18) holds.
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Figure 3.3: The evolution of the parameter uncertainty set over j = 0, 1, 2. The parameter uncer-
tainty sets (blue circles) have centers at θ̂ij and radii zΘ

i
j . After each update, the uncertainty sets

contract, but continue to contain the unknown true model parameters, θi (red star).

Importantly, the properties of the adaptive scheme given by Lemmas 13 and 14 are agnostic to
the control law, which affords us freedom when designing the controller. In effect, as θ̃ij shrinks
between cycles, the set Di

j does as well. This will allow more aggressive control to be employed
over time.

3.5 Proposed RAEMPC Framework

Now that the adaptive scheme has been developed, we can leverage the improved parameter
estimation in the control design. In Section 3.5.1, assumptions regarding the existence of invariant
sets are outlined and periodicity properties of the nominal system are explored. In Section 3.5.2,
the RAEMPC algorithm is outlined. Recursive feasibility and stability properties are investigated
in Sections 3.5.3 and 3.5.4.
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3.5.1 Error Invariance and Periodicity Properties

Suppose that the control input applied to the true system (3.3) is given according to the feedback
law

uij = ϕ(ūij, x
i
j, x̄

i
j). (3.24)

Then the state estimation error dynamics are given by

ei+1
j = fθ̂ij

(xij, ϕ(ū
i
j, x

i
j, x̄

i
j), d

i
j)− fθ̂ij

(x̄ij, ū
i
j, 0). (3.25)

Definition 1. From [62], a set Ωj ⊆ Rnx is Robust Control Invariant (RCI) if there exists a

feedback law (3.24) such that for all xk, x̄k ∈ X and ūk ∈ U with ek ∈ Ωj , ϕ(ūk, xk, x̄k) ∈ U and

ek+1 ∈ Ωj for all dk ∈ Dj .

Assumption 9. There exists a continuous feedback law ϕ : U ×X ×X → U such that an RCI set,

Ωj , exists for error dynamics (3.25) and limx̄→x ϕ(ū, x, x̄) = ū.

As in [53, 62], to ensure that constraints are robustly satisfied in the presence of uncertainties,
we restrict the nominal system (3.4) to lie within a tightened constraint set given as

Z̄j ≜ {(x̄, ū) ∈ Z : (x, ϕ(ū, x, x̄)) ∈ Z, ∀x ∈ {x̄}+ Ωj}. (3.26)

The projections of Z̄j onto X and U are denoted as X̄j and Ūj respectively. Define ∆θ̂ij+1 ≜

θ̂ij+1−θ̂ij as the change in the model parameter estimates between consecutive cycles. Analogously,
define ∆Θi

j+1 ≜ Θi
j ⊖Θi

j+1 and ∆Θ̃j+1 ≜ Θ̃j ⊖ Θ̃j+1. Consequently, at cycle j + 1, system (3.4)
can be rewritten as

x̄i+1
j+1 =x̄

i
j+1 + F (x̄ij+1, ū

i
j+1) +G(x̄ij+1, ū

i
j+1)θ̂

i
j+1,

=fθ̂ij
(x̄ij+1, ū

i
j+1, 0) +G(x̄ij+1, ū

i
j+1)∆θ̂

i
j+1.

(3.27)

Define the sets Ri(∆θ̂ij+1) ≜ {r ∈ Rnx : r = G(x, u)∆θ̂ij+1, (x, u) ∈ Z} and R(∆θ̂j+1) ≜

R0(∆θ̂0j+1) ∪ . . . ∪ Rnc−1(∆θ̂nc−1
j+1 ). Here, R(∆θ̂j+1) denotes the set of all possible differences in

the nominal state estimate as a consequence of updating the model parameters between iterations
j and j + 1. This leads to the following lemma.

Lemma 15. If θi ∈ Θi
0 for i ∈ I[0,nc−1], and Assumptions 8 and 9 are satisfied, then

1. Ωj+1 ⊕R(∆θ̂j+1) ⊆ Ωj ,

2. X̄j+1 ⊇ X̄j ⊕R(∆θ̂j+1), and Ūj+1 ⊇ Ūj .
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Proof. To demonstrate the first claim, assume for the sake of identifying a contradiction that Ωj+1⊕
R(∆θ̂j+1) ⊈ Ωj . Then there exists an ei+1

j+1 ∈ Ωj+1, (x̄, ū) ∈ Z̄j+1, and i ∈ I[0,nc−1] such that

ei+1
j+1 +G(x̄, ū)∆θ̂ij+1 /∈ Ωj. (3.28)

Substitution of error dynamics (3.25) and the definition of ∆θ̂ij+1 gives, for some x ∈ X such
that (x− x̄) ∈ Ωj , u = ϕ(ū, x, x̄) ∈ U , and v ∈ V , that

ei+1
j+1 +G(x̄, ū)∆θ̂ij+1

=eij+1 + F (x, u) +G(x, u)θ̂ij+1 +G(x, u)θ̃ij+1 + v − F (x̄, ū)−G(x̄, ū)θ̂ij,

=eij+1 + F (x, u) +G(x, u)θ̂ij +G(x, u)θ̃ij + v − F (x̄, ū)−G(x̄, ū)θ̂ij,

=fθ̂ij
(x, u, d)− fθ̂ij

(x̄, ū, 0)

where the second equality is derived from the definition of θ̃ij+1. However, from Assumption 9,
fθ̂ij

(x, u, d)− fθ̂ij
(x̄, ū, 0) ∈ Ωj . This contradicts (3.28), and therefore Ωj+1 ⊕R(∆θ̂j+1) ⊆ Ωj .

The second claim follows from the definition of Z̄j in (3.26).

Lemma 16. If θi ∈ Θi
0 and Assumption 8 are satisfied, and Ω0 exists, then the following properties

hold:

1. Dj+1 ⊆ Dj ,

2. Ωj+1 ⊆ Ωj .

Proof. Since Lemma 14 ensures that zΘ
i
j+1 ≤ zΘ

i
j , then Θ̃i

j+1 ⊆ Θ̃i
j and henceH(Θ̃i

j+1) ⊆ H(Θ̃i
j).

Consequently Di
j+1 ⊆ Di

j and therefore Dj+1 ⊆ Dj giving the first claim. Similarly, from Defini-
tion 1, since Dj+1 ⊆ Dj , this implies that there exists an Ωj+1 ⊆ Ωj giving the second claim.

Lemmas 15 and 16 establish criteria for convergence of the RCI set and feasible set sequences
{Ωj} and {Z̄}, and will enable the development of conditions that guarantee recursive feasibility
in Section 3.5.3.

Given the periodicity of the system model parameters, we are naturally interested in studying
system trajectories that are periodic or repetitive with period length P ∈ I≥nc . We distinguish the
difference between the terminology of a ‘cycle’ and an ‘iteration’ used within the remainder of the
chapter, where a cycle denotes a sequence of nc timesteps, while an iteration refers to a sequence of
P timesteps. It is assumed that P = KPnc for some KP ∈ I≥1 such that multiple cycles constitute
an iteration. To simplify further analysis, system (3.3) is lifted to the P -periodic orbit domain as
follows.
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Definition 2. Let

x̊ = (x0, . . . , xP−1) ∈ (X )P ,

ů = (u0, . . . , uP−1) ∈ (U)P ,

d̊ = (d0, . . . , dP−1) ∈ (Dj)
P .

The analogous P -step system of system (3.3) is defined as x̊(k+P ) ≜ fP
θ̂j
(̊x(k), ů(k), d̊(k)) where

fP
θ̂j
(̊x, ů, d̊) =

(
fθ̂0j

(xP−1, u0, d0), fθ̂1j
(fθ̂0j

(xP−1, u0, d0), u1, d1), . . .
)

and xP−1(0) = x ∈ X . For initial state x, control sequence u ∈ (U)PK , and disturbance sequence

d ∈ (Dj)
PK with K ∈ I≥1, the resulting state of the P -step system based on dynamic model fθ̂j is

denoted as

x̊u
θ̂j
(k, x) = (xu

θ̂j
(k − P + 1, x), . . . , xu

θ̂j
(k, x))

such that x̊u
θ̂j
(k + P, x) = fP

θ̂j
(̊xu

θ̂j
(k, x), ů(k), d̊(k)). The closed-loop P−step system states and

inputs are denoted as x̊k ≜ (xk−P+1, . . . , xk) and ůk ≜ (uk, . . . , uk+P−1).

Definition 3. A sequence of state/input pairs πj = {(x̄pj,0, ū
p
j,0), . . . , (x̄

p
j,P−1, ū

p
j,P−1)} is termed a

nominal feasible P -periodic orbit of system (3.4) if (x̄pj,t, ū
p
j,t) ∈ Z̄j and for t ∈ I[0,P−2], x̄

p
j,t+1 =

fθ̂ij
(x̄pj,t, ū

p
j,t, 0) with i = t mod nc and x̄pj,0 = fθ̂nc−1

j
(x̄pj,P−1, ū

p
j,P−1, 0). The sequence is termed a

minimal P-periodic orbit if x̄pj,t1 ̸= x̄pj,t2 for t1 ̸= t2, 0 ≤ t1, t2 ≤ P−1. Let ˚̄xpj = {x̄pj,0, . . . , x̄
p
j,P−1}

and ˚̄upj = {ūpj,0, . . . , ū
p
j,P−1} denote the projections of a minimal πj onto X̄j and Ūj respectively.

The set of all nominal feasible P-periodic orbits of system (3.4) is denoted as Πj .

The benefits of introducing the P -step system are two-fold. First, although system model (3.4)
is time-varying, by leveraging the periodicity of parameters θ̂ij , the P -step system is iteration-
invariant due to the assumption that P is a multiple of nc. Second, a P -periodic orbit, πj , of system
(3.4) is equivalent to an equilibrium point, (̊x̄pj ,˚̄u

p
j), of the analogous nominal P -step system which

enables simpler steady-state analysis to be used when investigating stability.
For the nominal system, the cycle-to-cycle variation in fθ̂ij(x̄, ū, 0) is solely dependent on the

change in the parameter estimates, θ̂j , and therefore on the parameter estimate error, θ̃j . Conse-
quently, the sequence πj is dictated by the current parameter estimate error. This dependency is
expressed using the notation π(θ̃j) = πj . Let

˚̄Pp

Θ̃j
≜ {(̊x̄p,˚̄up) ∈ (X̄ )P × (Ū)P : θ̃ ∈ Θ̃j, (̊x̄

p,˚̄up) ∈ π(θ̃)}
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denote the set of all possible minimal periodic orbits of the nominal system (3.4) for parameter
error uncertainty set Θ̃j .

Inspired by [62], the integrated stage cost ℓint(x̄, ū,Ω) is now introduced as

ℓint(x̄, ū,Ω) =

∫
x∈x̄⊕Ω

ℓ(x, ϕ(ū, x, x̄))dx. (3.29)

The intuition behind integrated stage cost (3.29) is that, given the uncertainty in the accuracy
of the nominal system state x̄, simply evaluating the stage cost at (x̄, ū) may not accurately reflect
the cost of the true system. Alternatively, by integrating the stage cost over the state estimation
errors given by RCI set Ωj , (3.29) produces an average of the costs associated with any possi-
ble states/inputs of the true system that may appear due to uncertainties. Without loss of gen-
erality, we assume that ℓ(x, u), and therefore ℓint(x̄, ū,Ωj), is nonnegative for all (x, u) ∈ Z .
As a consequence of Lemma 16, we then have that since Ωj+1 ⊆ Ωj and ℓ(x, u) ≥ 0, that
ℓint(x̄, ū,Ωj+1) ≤ ℓint(x̄, ū,Ωj). The integrated stage cost can also be expressed such that it is
compatible with the P -step system model as

ℓ̊int(̊x̄,˚̄u,Ω) =
P−1∑
t=0

ℓint(x̄
˚̄u(t, x̄), ūk,Ω)

where x̄ = (̊x̄)P−1.

Definition 4. The robust optimal periodic orbit π∗
j with optimal period length P ∗ of system (3.4)

is given by

(P ∗, π∗
j ) =argmin

P∈I≥nc
πj∈Πj

P−1∑
t=0

∫
x∈{x̄pj,t}+Ωj

ℓ(x, ϕ(ūpj,t, x, x̄
p
j,t))dx (3.30)

with (x̄pj,t, ū
p
j,t) ∈ πj .

From (3.30), the robust optimal periodic orbit can be interpreted as the nominal periodic trajec-
tory that results in the smallest integrated cost over the course of the orbit.

Lemma 17. If Assumptions 8 and 9 are met, and θi ∈ Θi
0 for all i ∈ I[0,nc−1], then {π∗

j} converges

to some orbit π∗
∞.

Proof. As a consequence of Lemma 14, we have that θ̂ij → θ̂i∞. Hence, by continuity of (3.3) with
respect to θ̂ij , we have that fθ̂ij(x, u, d) converges to fθ̂i∞(x, u, d) for all i ∈ I[0,nc−1], and therefore
Πj → Π∞. Additionally, from Lemma 16 it has been shown that Ωj converges to some set Ω∞.
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Hence the parameters Πj and Ωj of (3.30) converge. Since ϕ and ℓ are continuous, this implies that
{π∗

j} converges to π∗
∞.

If, in addition, we have that (3.18) holds, then π∗
∞ corresponds to the robust optimal periodic

orbit of the true system. For use in subsequent analysis, the operator (·)P−1 is introduced which
extracts the last element of its input argument. Additionally, for simplicity of notation, πj is used
to denote the robust optimal periodic orbit of system (3.4), π∗

j , in the remainder of the chapter,
rather than an arbitrary element of Πj .

3.5.2 The Robust Adaptive Economic MPC problem

The open-loop robust MPC optimization problem is now introduced, which is based on the
control strategy proposed in [65]. However, due to the fact that the adaptive scheme leads to
modifications of Θi

j , new considerations must be made to understand requirements for recursive
feasibility and stability of the algorithm, which will be addressed in Sections 3.5.3 and 3.5.4.
Whereas a traditional MPC controller would solve an optimization problem at each timestep, it
has been shown in [60] that, for periodic systems, stability when using this approach is difficult to
guarantee. Rather, the optimization problem is solved every P timesteps starting at time k = 0.
Let nh = KhP with Kh ∈ I≥1 denote the prediction horizon length and

JMPC
Ω (x̄, ū) =

nh−1∑
t=0

ℓint(x̄ū(t, x̄), ū(t),Ω) + V̄ f (x̄ū(nh, x̄)),

=

Kh−1∑
t=0

ℓ̊int(̊x̄ū(tP, x̄),˚̄u(tP ),Ω) + V̄ f (x̄ū(nh, x̄))

with
(
˚̄xū(0, x̄)

)
P−1

= x̄ denote the MPC cost function where V̄ f : X → R is a terminal cost
function. For some cost, J , the MPC optimization problem, P RAEMPC

θ̂
(J, x̄), is given as

minimize
ū∈(U)nh

J, (3.31a)

subject to ∀t ∈ I[0,nh−1], i = t mod nc, (3.31b)

x̄ū(t+ 1, x̄) = fθ̂i(x̄
ū(t, x̄), ū(t), 0), (3.31c)

(x̄ū(t, x̄), ū(t)) ∈ X̄ × Ū = Z̄, (3.31d)

x̄ū(nh, x̄) ∈ X̄ f
j , x̄

ū(0, x̄) = x̄, (3.31e)

where X̄ f
j denotes a terminal constraint set.

The notation of P RAEMPC
θ̂

(JMPC
Ω , x̄) is used to denote the use of system model fθ̂ to set dy-

namic constraint (3.31c), JMPC
Ω as the cost to be minimized, and x̄ as the initial condition of
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the MPC state prediction. The resulting solution of P RAEMPC
θ̂

(JMPC
Ω , x̄) at cycle j is denoted as

ū∗
j(x̄) =

(
ū∗0|j(x̄), . . . , ū

∗
nh−1|j(x̄)

)
which can be decomposed into P -step inputs ˚̄u∗tP |j(x̄) =

(ū∗tP |j(x̄), . . . , ū
∗
tP+P−1|j(x̄)) for t ∈ I[0,Kh−1]. The corresponding estimated state sequence is de-

noted as
(
x̄∗0|j, . . . , x̄

∗
nh|j

)
≜
(
x̄
ū∗
j (x̄)

θ̂j
(0, x̄), . . . , x̄

ū∗
j (x̄)

θ̂j
(nh, x̄)

)
.

Let x̄cand =
(
x̄cand0 , . . . , x̄candnh−P

)
with

x̄candτ+1 ≜ fθ̂ij+1
(x̄candτ , ūcandτ , 0), x̄cand0 = x̄0j+1

denote a candidate state sequence for the first nh−P +1 timesteps of P RAEMPC
θ̂j+1

(JMPC
Ωj+1

, x̄0j+1) where

ūcand =
(
ūcand0 , . . . , ūcandnh−P−1

)
with ūcandτ ≜ ϕ(ū∗τ+P |j, x̄

cand
τ , x̄∗τ+P |j) denotes the elements of the

corresponding candidate input sequence. The control algorithm is then given by Algorithm 3.

Algorithm 3 Robust Adaptive EMPC for periodic systems

1: Initialize: Parameter uncertainty sets Θa
0, a = I[0,nc−1], β > 0, Kω ∈ (0, 1), i = j = k = 0.

Feedback law ϕ(ū, x, x̄) with associated initial RCI set Ω = Ω0 for estimated model parameters
θ̂ = θ̂0. x̄00 = x00 = x0.

2: while k ≥ 0 do
3: if k = K1P,K1 ∈ I≥0 then
4: Set x̄ = x̄0j and t→ 0

5: if e0j ∈ Ωj and (x̄cand, ūcand) is feasible for the first nh − P timesteps of
P RAEMPC
θ̂j

(JMPC
Ωj

, x̄) with x̄candnh−P ∈ X̄ f
j then

6: Set θ̂ = θ̂j , Ω = Ωj , Z̄ = Z̄j , X̄ f = X̄ f
j .

7: end if
8: Solve P RAEMPC

θ̂
(JMPC

Ω , x̄)

9: end if
10: Apply ϕ(ū∗t|j(x̄), x

i
j, x̄

i
j) to the true system xi+1

j = fθ̂(x
i
j, ϕ(ū

∗
t|j(x̄), x

i
j, x̄

i
j), d

i
j), and simu-

late the nominal state dynamics as x̄i+1
j = fθ̂(x̄

i
jū

∗
t|j(x̄), 0).

11: Update Θi
j → Θi

j+1 according to Algorithm 2.
12: k → k + 1, i→ i+ 1, t→ t+ 1.
13: if k = K2nc, K2 ∈ I≥0 then
14: Identify Ωj+1 and corresponding Z̄j+1, X̄ f

j+1.
15: j → j + 1, i→ 0

16: end if
17: end while

Remark 1. As noted in [83], a consequence of only reupdating the control input by solving
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P RAEMPC
θ̂

(JMPC
Ω , x̄) every P timesteps as in Algorithm 3 is that the system’s closed-loop robustness

to disturbances is potentially diminished. An alternative strategy is to solve P RAEMPC
θ̂

(JMPC
Ω , x̄)

at every timestep, but with a periodically-varying horizon length. Specifically, at timestep k, the

prediction horizon can be set to nh − (k mod P ) and have only the input corresponding to the

first timestep of P RAEMPC
θ̂

(JMPC
Ω , x̄) applied to the system. From [84], by Bellman’s principle of

optimality, implementing control in this way does not impact the resulting analysis, but can allow

for improved robustness to disturbances. However, for the sake of simplifying notation, subsequent

feasibility and stability analysis is performed under the assumption that P RAEMPC
θ̂

(JMPC
Ω , x̄) is only

solved every P timesteps using a constant prediction horizon length.

Let Vδ(x, x̄) ≜ ∥x− x̄∥ and zΩj ≜ r(Ωj). We then make the following assumption.

Assumption 10. At cycle j, there exists a compact set X̄ f
j ⊆ X̄j such that ˚̄xpj ⊆ X̄ f

j , a feedback

law κ̊f : X̄ f
j → (Ūj)P , and a continuous terminal cost function V̄ f : X → R such that for all ˚̄x

with (̊x̄)P−1 ∈ X̄ f
j the following conditions hold:

1. κ̊f ((̊x̄)P−1) ∈ (Ūj)P ,

2. fP
θ̂
(̊x̄, κ̊f ((̊x̄)P−1), 0) ∈ (X̄ f

j )
P .

Additionally, for ˚̄x+ ∈ {˚̄x+ ∈ RnxP : Vδ((̊x̄
+)P−1, (f

P
θ̂j
(̊x̄, κ̊f ((̊x̄)P−1), 0))P−1) ≤ zΩj} a class K∞

function, α1, exists such that

V̄ f
(
(̊x̄+)P−1

)
− V̄ f ((̊x̄)P−1) ≤ − sup

h∈I≥j
(̊x̄p ,̊ūp)∈˚̄Pp

Θ̃j

(
ℓ̊int(̊x̄, κ̊f ((̊x̄)P−1),Ωh)− ℓ̊int(̊x̄p,˚̄up,Ωj)

)

+ α1

(
|(̊x̄, κ̊f ((̊x̄)P−1))|πj

)
.

Without loss of generality, assume that V̄ f (x̄) ≥ 0 for all x̄ ∈ X̄ f
j .

3.5.3 Recursive Feasibility

In this section we outline sufficient conditions that guarantee recursive feasibility of Algorithm
3. As a consequence of updating the estimated model parameters between cycles, the feasibility of
P RAEMPC
θ̂j

(JMPC
Ωj

, x̄) is not immediately guaranteed. In other words, solving the MPC problem using
a system model based on the current system parameter estimates and RCI error set is not necessarily
possible. Rather, it will be demonstrated in Section 3.5.3.1 that the problem P RAEMPC

θ̂
(JMPC

Ω , x̄) is
recursively feasible, wherein θ̂ and Ω correspond to some known model parameter estimates and
corresponding RCI error set. Then, in Section 3.5.3.2, sufficient conditions are outlined such that
feasibility of P RAEMPC

θ̂j
(JMPC

Ωj
, x̄) is guaranteed for the specific parameter estimates θ̂j and RCI error

set Ωj .
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3.5.3.1 Feasibility of PRAEMPC
θ̂

(JMPC
Ω , x̄)

Before proceeding, we first assume that the MPC problem is initially feasible.

Assumption 11. Problem P RAEMPC
θ̂0

(JMPC
Ω0

, x̄(0)) is feasible for x̄(0) = x̄00 = x00.

Theorem 2. If θi ∈ Θi
0 for i ∈ I[0,nc−1] and Assumptions 8, 9, 10, and 11 hold with X̄ f

j+1 ⊇ X̄ f
j ,

then Algorithm 3 is recursively feasible.

Proof. To demonstrate recursive feasibility of P RAEMPC
θ̂

(JMPC
Ω , x̄), we first observe that at a given

iteration, two potential outcomes exist:

1. The candidate state and input sequences x̄cand and ūcand are feasible for the first nh − P

timesteps of P RAEMPC
θ̂j

(JMPC
Ωj

, x̄) with x̄candnh−P ∈ X̄ f
j and e0j ∈ Ωj . In this case, as θ̂ = θ̂j and

Ω = Ωj according to Algorithm 3, feasibility of P RAEMPC
θ̂

(JMPC
Ω , x̄) is maintained as a result

of the first and second conditions of Assumption 10 despite the fact that the estimated model
parameters have been updated in system dynamics constraint (3.31c).

2. x̄cand and ūcand are not compatible for P RAEMPC
θ̂j

(JMPC
Ωj

, x̄), x̄candnh−P /∈ X̄ f , or e0j /∈ Ωj . Here,

per Algorithm 3, θ̂ and Ω are not updated to θ̂j and Ωj and instead maintain their values
from the previous iteration. The remainder of the proof will demonstrate that feasibility of
P RAEMPC
θ̂

(JMPC
Ω , x̄) is still maintained in this case.

For simplicity of notation, assume, without loss of generality, that P = nc such that if cycle j
begins at timestep k, then cycle j + 1 begins at timestep k + P . Let

w̄k(P ) ≜
(
˚̄wk(P ), ˚̄wk(2P ), . . . , ˚̄wk(nh)

)
where, for τ ∈ {0, P, . . . , nh},

˚̄wk(τ) ≜

 (ū∗τ |j(x̄
0
j), . . . , ū

∗
τ+P−1|j(x̄

0
j)), τ ≤ nh − P

κ̊f (x̄
ū∗
j (x̄

0
j )

θ̂
(nh, x̄

0
j)), τ = nh

denotes a candidate input sequence to be applied starting at timestep k + P based on the solution,
ū∗
j(x̄

0
j), to P RAEMPC

θ̂
(JMPC

Ω , x̄0j) at timestep k. It is now demonstrated that w̄k(P ) is feasible for
P RAEMPC
θ̂

(JMPC
Ω , x̄0j+1) at timestep k + P .

The initial condition of P RAEMPC
θ̂

(JMPC
Ω , x̄0j+1) at timestep k + P is given as x̄0j+1 = x̄k+P =

x̄
w̄k(0)

θ̂
(P, x̄0j). Then, at time t ∈ I[0,nh−P ] within the prediction horizon, the nominal state resulting

from applying input sequence w̄k(P ) to system fθ̂ is given as x̄w̄
k(P )

θ̂
(t, x̄0j+1). Since w̄k(0) ∈

(Ū)nh is feasible for P RAEMPC
θ̂

(JMPC
Ω , x̄0j) at time k, then x̄w̄

k(P )

θ̂
(t, x̄0j+1) ∈ X̄ .
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Since x̄
ū∗(x̄0j )

θ̂
(nh, x̄

0
j) = x̄

w̄k(P )

θ̂
(nh − P, x̄0j+1) ∈ X̄ f

j by design with X̄ f
j+1 ⊇ X̄ f

j , then

x̄
w̄k(P )
j+1 (nh − P, x̄0j+1) ∈ X̄ f

j+1. Assumption 10 then gives that x̄w̄
k(P )

j+1 (t, x̄0j+1) ∈ X̄ f
j+1 for

t ∈ I[nh−P+1,nh] such that constraint (3.31e) is satisfied with ˚̄wk(nh) ∈ (Ūj+1)
P .

Therefore constraints (3.31c)-(3.31e) are satisfied by input sequence w̄k(P ). Consequently,
P RAEMPC
θ̂

(JMPC
Ω , x̄0j+1) is feasible when P RAEMPC

θ̂
(JMPC

Ω , x̄0j) is feasible. Since P RAEMPC
θ̂0

(JMPC
Ω0

, x̄00)

is feasible from Assumption 11, P RAEMPC
θ̂

(JMPC
Ω , x̄) is recursively feasible by induction.

Similar to [65], Theorem 2 establishes conditions for recursive feasibility of P RAEMPC
θ̂

(JMPC
Ω , x̄)

but now allows for, potentially intermittent, updates to the estimated system model to improve state
prediction and enable more aggressive control as new knowledge of system behavior is obtained.
However, Theorem 2 does not establish the frequency with which updates to θ̂ are performed for
use within P RAEMPC

θ̂
(JMPC

Ω , x̄).

3.5.3.2 Feasibility of ūcand for PRAEMPC
θ̂j

(JMPC
Ωj

, x̄)

While conditions for guaranteed recursive feasibility of P RAEMPC
θ̂

(JMPC
Ω , x̄) have been estab-

lished in Section 3.5.3.1, Theorem 2 does not assess the frequency with which the most recent
model parameter estimates can be used for the dynamic model within the MPC optimization prob-
lem. This hesitancy to leverage updated system models ensures safe system operation, but comes
with the drawback of potentially overconservative control. To address this issue, we seek to iden-
tify conditions for which P RAEMPC

θ̂j
(JMPC

Ωj
, x̄) is guaranteed to be feasible such that more aggressive

control actions can be safely made.

Assumption 12. There exists some ρθ̄j > 0 such that for all (x̄i, ū) ∈ Z , (xi, ϕ(ū, xi, x̄i)) ∈ Z ,

and θ̄j ∈ Θj with Vδ(xi, x̄i) < zΩj ,

Vδ(x
i+1, x̄i+1) ≤ ρθ̄jVδ(x

i, x̄i), (3.32)

where xi+1 = fθ̄j(x
i, ϕ(ū, xi, x̄i), 0), x̄i+1 = fθ̄j(x̄

i, ū, 0).

If there is a ρθ̄j < 1 that satisfies condition (3.32), Assumption 12 gives that if the state esti-
mation error is sufficiently small at timestep k, that application of feedback law ϕ will result in a
contraction of the state estimation error at timestep k + 1 for the uncertaintyless system (d = 0).

A stronger condition on the selected feedback law is also established.

Assumption 13. Feedback ϕ is designed such that for all x1, x2 ∈ x̄⊕Ωj , ϕ(ū, x1, x̄) ∈ U implies

that ϕ(ϕ(ū, x2, x̄), x1, x2) ∈ U .

Assumption 13 is satisfied if, for instance, the feedback ϕ(ū, x, x̄) is of the form ϕ = u+ b(x−
x̄).
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Define

d̄max
Θ̃j ,A

(x̄, ū) ≜ max
i∈I[0,nc−1]

θ̃∈B(0,1)
a∈A

(
zΘ

i
j∥G(x̄, ū)θ̃∥+ ∥a∥

)
.

(3.33)

For a given state/input pair (x̄, ū), d̄max
Θ̃j ,V

(x̄, ū) represents an upper bound on the size of a corre-
sponding disturbance caused by parametric uncertainty and noise. We now show that an upper
bound can be placed on all possible disturbances that the system may encounter in a neighborhood
around (x̄, ū). Define

KG,Ωj ≜ sup
(x,x̄,ū)∈ΨΩj

∥G(x, ϕ(ū, x, x̄))−G(x̄, ū)∥
∥x− x̄∥ (3.34)

where ΨΩj ≜ {(x, x̄, ū) ∈ X × Z : (x, ϕ(ū, x, x̄)) ∈ Z, (x − x̄) ∈ Ωj}. KG,Ωj bounds the error
between the predicted regressor matrix, G(x̄, ū), and the true regressor matrix, G(x, ϕ(ū, x, x̄)),
for any potential true system state within the tube Ωj centered at x̄, and normalized by the size of
the state estimation error.

Note: KG,Ωj is guaranteed to exist if Assumptions 9 and 12 hold as a consequence of the
continuity of G(x, u) and compactness of Z . If, in addition, the conditions of Lemma 16 hold,
then KG,Ωj+1

≤ KG,Ωj since Ωj+1 ⊆ Ωj and therefore ΨΩj+1
⊆ ΨΩj .

Lemma 18. Let θi ∈ Θi
0 for all i ∈ I[0,nc−1], (3.18) hold, and Assumptions 8, 9, and 12 hold.

Define

dmax
Θ̃j ,A

(x̄, ū, c) ≜ d̄max
Θ̃j ,A

(x̄, ū) + zΘjmaxKG,Ωjc. (3.35)

Then, for any (x, x̄, ū) ∈ ΨΩj , δc ≤ zΩj with Vδ(x, x̄) ≤ δc,

dmax
Θ̃j ,V

(x, ϕ(ū, x, x̄), c) ≤ dmax
Θ̃j ,V

(x̄, ū, c+ δc),

and

dmax
Θ̃j ,V

(x̄, ū, c) ≥ dmax
Θ̃j+1,V

(x̄, ū, c) + dmax
Θ̃j ,{0}

(x̄, ū, c).

Proof. We first demonstrate that zΘjmaxKG,ΩjVδ(x, x̄) ≥ d̄max
Θ̃j ,V

(x, ϕ(ū, x, x̄)) − d̄max
Θ̃j ,V

(x̄, ū). By
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invoking the definitions of KG,Ωj in (3.34), zΘjmax, and Vδ(x, x̄), we have that

zΘjmaxKG,ΩjVδ(x, x̄) ≥ sup
i∈I[0,nc−1]

θ̃∈Θ̃ij

∥G(x, ϕ(ū, x, x̄))−G(x̄, ū)∥∥θ̃∥,

≥ sup
i∈I[0,nc−1]

θ̃∈Θ̃ij

∥G(x, ϕ(ū, x, x̄))θ̃∥ − sup
i∈I[0,nc−1]

θ̃∈Θ̃ij

∥G(x̄, ū)θ̃∥,

=d̄max
Θ̃j ,V

(x, ϕ(ū, x, x̄))− d̄max
Θ̃j ,V

(x̄, ū).

(3.36)

Additionally, as d̄max
Θ̃j ,V

(x̄, ū) is affine with respect to zΘ
i
j in (3.33), we have that

d̄max
Θ̃j ,V

(x̄, ū) = d̄max
Θ̃j+1,V

(x̄, ū) + d̄max
∆Θ̃j+1,{0}

(x̄, ū). (3.37)

Since, as noted earlier, KG,Ωj+1
≤ KG,Ωj , we also have that

zΘjmaxKG,Ωj ≥ max
i∈I[0,nc−1]

zΘ
i
j+1KG,Ωj+1

+ z∆Θij+1KG,Ωj+1
. (3.38)

Equations (3.36), (3.37), and (3.38) mimic conditions in [78, Eqs. (16b)-(16d)], with modifications
made due to consideration of the adaptive scheme. The remainder of the proof then follows from
[78, Proposition 2].

Before outlining conditions for guaranteed feasibility of P RAEMPC
θ̂j

(JMPC
Ωj

, x̄), without loss of
generality, we assume as in Theorem 2 that P = nc. From Algorithm 3, we have that x̄0j+1 =

x̄
ū∗(x̄0j )

θ̂j
(P, x̄0j). For t ∈ I[0,nh], let

x̄nomt+1 ≜ fθ̂ij+1
(x̄nomt , ūnomt , 0), x̄nom0 = x̄0j+1 (3.39)

denote a candidate state sequence for P RAEMPC
θ̂j+1

(JMPC
Ωj+1

, x̄) where ūnom ≜
(
ūnom0 , . . . , ūnomnh−1

)
=(

ūcand, κ̊f (x̄
nom
nh−P )

)
denotes the corresponding candidate input sequence.

Theorem 3. Let θi ∈ Θi
0 for i ∈ I[0,nc−1]. Additionally, let Assumptions 8, 9, 10, 12, and 13 hold.

Define

ct+1 = ρθ̂jct + dmax
∆Θ̃j ,{0}

(x̄∗t+P |j, ū
∗
t+P |j, ct), c0 = 0 (3.40)

for t ∈ I[0,nh−P ]. Then, if

Ωj+1 ⊕B(0, cτ ) ⊆ Ωj (3.41)
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for all τ ∈ I[0,nh−P−1], and X̄ f
j+1 is chosen such that

X̄ f
j ⊕B(0, cnh−P ) ⊆ X̄ f

j+1 (3.42)

is satisfied, then ūnom is feasible for P RAEMPC
θ̂j+1

(JMPC
Ωj+1

, x̄).

Proof. We first demonstrate that the distance between x̄nomτ and x̄∗τ+P |j is upper bounded by cτ for
τ ∈ I[0,nh−P−1] with ūnomτ ∈ Ūj+1. To show that this property holds at τ + 1, first assume that it
holds at step τ according to

Vδ(x̄
nom
τ , x̄∗τ+P |j) ≤ cτ . (3.43)

We then have that

Vδ(x̄
nom
τ+1 , x̄

∗
τ+P+1|j)

=Vδ(fθ̂ij+1
(x̄nomτ , ūnomτ , 0), fθ̂ij

(x̄∗τ+P |j, ū
∗
τ+P |j, 0)),

(3.44a)

=∥fθ̂ij(x̄
nom
τ , ūnomτ , 0) +G(x̄nomτ , ūnomτ )∆θ̂ij+1 − fθ̂ij

(x̄∗τ+P |j, ū
∗
τ+P |j, 0)∥, (3.44b)

≤∥fθ̂ij(x̄
nom
τ , ūnomτ , 0)− fθ̂ij

(x̄∗τ+P |j, ū
∗
τ+P |j, 0)∥+ ∥G(x̄nomτ , ūnomτ )∆θ̂ij+1∥, (3.44c)

≤ρθ̂j∥x̄
nom
τ − x̄∗τ+P |j∥+ d̄max

∆Θ̃j+1,{0}
(x̄nomτ , ūnomτ ), (3.44d)

≤(ρθ̂j + zΘj+1
max KG,Ωj+1

)∥x̄nomτ − x̄∗τ+P |j∥+ d̄max
∆Θ̃j+1,{0}

(x̄∗τ+P |j, ū
∗
τ+P |j), (3.44e)

≤(ρθ̂j + zΘj+1
max KG,Ωj+1

)cτ + d̄max
∆Θ̃j+1,{0}

(x̄∗τ+P |j, ū
∗
τ+P |j), (3.44f)

=ρθ̂jcτ + dmax
∆Θ̃j+1,{0}

(x̄∗τ+P |j, ū
∗
τ+P |j, ct) = cτ+1. (3.44g)

Equation (3.44a) arises by invoking (3.31c) and (3.39). Equation (3.44b) arises from the definition
of Vδ and (3.27). Equation (3.44c) results from the triangle inequality, while (3.44d) follows from
(3.32) and (3.33). Equation (3.44e) results from (3.36) and the definition of ūnomt . Equation (3.44f)
is a result of (3.43), and (3.44g) is given by invoking the definition of dmax

∆Θ̃j+1,{0}
(x̄∗τ+P |j, ū

∗
τ+P |j, cτ )

in (3.35) and the cτ dynamics given by (3.40). At t = 0, since x̄nom0 = x̄∗0+P |j , we have that
Vδ(x̄

nom
0 , x̄∗0+P |j) = c0 = 0. Hence, by induction, (3.43) holds for all τ ∈ I[0,nh−P−1]. In other

words, x̄nomτ ∈ x̄∗τ+P |j ⊕B(0, cτ ). Invoking (3.41) and (3.31d) gives that

x̄nomτ ⊕ Ωj+1 ⊆ x̄∗τ+P |j ⊕ Ωj+1 ⊕B(0, cτ ),

⊆ x̄∗τ+P |j ⊕ Ωj ⊆ X .
(3.45)

Consequently, from the definition of X̄j+1, we have that x̄nomτ ∈ X̄j+1. Additionally, following
from (3.45), Assumption 13, and the definitions of ūnomτ and Ūj , we have that ϕ(ūnomτ , x, x̄nomτ ) ∈ U
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for all x ∈ x̄nomτ ⊕ Ωj+1. Therefore, ūnomτ ∈ Ūj+1 for all τ ∈ I[0,nh−P−1].
We now demonstrate that (x̄nomτ , ūnomτ ) ∈ Z̄j+1 for τ ∈ I[nh−P,nh−1] and x̄nomnh

∈ X̄ f
j+1.

As indicated by (3.44g), we have that Vδ(x̄nomnh−P , x̄
∗
nh|j) ≤ cnh−P . Equation (3.31e), gives that

x̄∗nh|j ∈ X̄ f
j , and therefore x̄nomnh−P ∈ X̄ f

j+1 follows from (3.42). Assumption 10 then gives that
(ūnomnh−P , . . . , ū

nom
nh−1) = κ̊f (x̄

nom
nh−P ) ∈ (Ūj+1)

P with x̄τ ∈ X̄ f
j+1 ⊆ X̄j+1 for τ ∈ I[nh−P,nh]. There-

fore, (x̄nomτ , ūnomτ ) ∈ Z̄j+1 for all τ ∈ I[0,nh−1] and x̄nomnh
∈ X̄ f

j+1 such that ūnom is a feasible
solution to P RAEMPC

θ̂j
(JMPC

Ωj
, x̄).

Note: While meeting conditions (3.41) and (3.42) ensures that P RAEMPC
θ̂j

(JMPC
Ωj

, x̄) is feasible,
Theorem 3 does not guarantee that these conditions are satisfied at each iteration. If problem
P RAEMPC
θ̂j

(JMPC
Ωj

, x̄) is infeasible, Algorithm 3 dictates that older parameter estimates must be used
in the MPC optimization problem, which may result in degraded performance. To mitigate this
issue, additional constraints may be introduced in a similar fashion to the strategy given in [78]
such that (3.41) and (3.42) are guaranteed to be satisfied at the beginning of each iteration. This
technique can enable more aggressive control at the cost of additional controller complexity.

3.5.4 Stability Analysis

Following demonstration of recursive feasibility, conditions for ensuring closed-loop conver-
gence of the system trajectories are now investigated. As a consequence of transforming the nom-
inal system (3.3) to an equivalent P -step system, dissipativity-based approaches leveraged within
the economic MPC literature for steady-state convergence analysis are used.

Definition 5. The distance between the P -step state and input pair (̊x, ů) and orbit πj is given as

|(̊x, ů)|πj =
P−1∑
h=0

|(xů(h, (̊x)P−1), uh)|πj . (3.46)

Assumption 14. At cycle j, for t ∈ I[0,nh], let

xϕ,t+1 ≜ fθ̂j+1
(xϕ,t, uϕ,t, 0), xϕ,0 = x

denote a state sequence generated by the feedback input uϕ,τ = ϕ(ŭτ , xϕ,τ , x̆τ ) for τ ∈ I[0,nh−P−1]

and (uϕ,nh−P , . . . , uϕ,nh−1) = κ̊f (x̆nh−P ) where ŭτ ∈ U and x̆τ ∈ X with x̆0 = x and x̆nh−P ∈
X̄ f
j . In other words, (xϕ,t, uϕ,t) is a generalization of (x̄nomt , ūnomt ). The corresponding P−step

system states and inputs are denoted as x̊ϕ,t ≜ (̊xϕ,t−P+1, . . . , x̊ϕ,t) and ůϕ,t = (̊uϕ,t, . . . , ůϕ,t+P−1).

Assume there exists a continuous storage function λ̊ : RnxP → R and K∞ function α such that

the nominal P -step system at cycle j, fP
θ̂j

, is strictly dissipative with respect to associated periodic
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orbit πj and integrated stage cost function ℓ̊int. Specifically, for (̊x̄,˚̄u) ∈ (Z)P ,

λ̊(fP
θ̂j
(̊x̄,˚̄u, 0))− λ̊(̊x̄) ≤ sj (̊x̄,˚̄u)− α(|(̊x̄,˚̄u)|πj), (3.47)

where sj (̊x̄,˚̄u) denotes a supply rate given as

sj (̊x̄,˚̄u) = sup
h∈I≥j

(̊x̄p ,̊ūp)∈˚̄Pp
Θ̃j

(
ℓ̊int(̊x̄,˚̄u,Ωh)− ℓ̊int(̊x̄p,˚̄up,Ωj)

)
,

and that

sj+1(̊xϕ,τP , ůϕ,τP ) + λ̊(̊xϕ,τP )− λ(fP
θ̂j+1

(̊xϕ,τP , ůϕ,τP , 0))

≤sj (̊x̆τP ,˚̆uτP ) + λ̊(̊x̆τP )− λ̊(fθ̂j (̊x̆τP ,
˚̆uτP , 0)).

Additionally, for ˚̄x+ ∈ {˚̄x+ ∈ Rnx : Vδ((̊x̄
+)P−1, (f

P
θ̂j
(̊x̄, κ̊f (x̆nh−P ), 0))P−1) ≤ zΩj}, there exists

a K∞ function α2 such that

λ̊(̊x̄+)− λ̊(fP
θ̂j
(̊x̄, κ̊f (x̆nh−P ), 0)) ≤ α2(|(̊x̄, κ̊f (x̆nh−P ))|πj), (3.48)

and

α(a)− α1(a)− α2(a) > 0, a > 0, (3.49)

α1(|(̊x̆nh−P , κ̊f (̊x̆nh−P ))|πj) + α2(|(̊x̆nh−P , κ̊f (̊x̆nh−P ))|πj) < α(|(̊x̄,˚̄u)|πj), (̊x̄)P−1 /∈ X̄ f
j ,

(3.50)

α(|(fθ̂j (̊x̄, κ̊f ((̊x̄)P−1), 0), κ̊f ((̊x̄)P−1))|πj) ≤ α(|(̊x̄,˚̄u)|πj), (̊x̄)P−1 ∈ X̄ f
j (3.51)

are satisfied where the inequality in (3.51) is strict for all ˚̄x ̸= ˚̄xpj .

Given the assumption that ℓ(x, u) ≥ 0, and if Lemma 16 holds such that Ωj+1 ⊆ Ωj , then
sj (̊x̄,˚̄u) can be written as

sj (̊x̄,˚̄u) = sup
(̊x̄p ,̊ūp)∈˚̄Pp

Θ̃j

(
ℓ̊int(̊x̄,˚̄u,Ωj)− ℓ̊int(̊x̄p,˚̄up,Ωj)

)
,

= ℓ̊int(̊x̄,˚̄u,Ωj)− inf
(̊x̄p ,̊ūp)∈˚̄Pp

Θ̃j

ℓ̊int(̊x̄p,˚̄up,Ωj).
(3.52)

To aid in analysis, define the rotated stage cost ˚̄Lj (̊x̄,˚̄u) ≜ sj (̊x̄,˚̄u)+ λ̊(̊x̄)− λ̊(fPθ̂ (̊x̄,˚̄u, 0)), the

rotated P -step terminal cost ˚̄V f (̊x̄) ≜ V̄ f ((̊x̄)P−1)+λ̊(̊x̄), and the auxiliary objective J aux
j (x̄, ū) =
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∑Kh−1
t=0

˚̄Lj (̊x̄
ū
θ̂
(tP, x̄),˚̄u(tP )) + ˚̄V f (̊x̄ū(nh, x̄)).

To establish stability of the closed-loop system, we develop a series of lemmas that establish
convergence criterion of the nominal system (3.4), and subsequently bound the deviation of the
true system (3.3) from the nominal system. This is done by demonstrating that J aux

j (x̄, ū) can be
used as a Lyapunov function for the nominal system. While J aux

j (x̄, ū) is not necessarily known
by the user and therefore cannot be used within the MPC optimization stage, we first demonstrate
that the known function JMPC

Ωj
(x̄, ū) is a sufficient proxy.

Lemma 19. If θi ∈ Θi
0, (3.18) holds, and Assumptions 8 and 9 are satisfied, then the solutions to

P RAEMPC
θ̂

(JMPC
Ωj

, x̄) and P RAEMPC
θ̂

(Jaux
j , x̄) are equivalent.

Proof. We first observe that the constraints of these two optimization problems are identical.
Hence, if JMPC

Ωj
and J aux

j are minimized within the same location over this feasible set, then
P RAEMPC
θ̂

(JMPC
Ωj

, x̄) and P RAEMPC
θ̂

(J aux
j , x̄) are equivalent problems.

Expanding J aux
j (x̄, ū) using the definitions of ˚̄Lj , ˚̄V f , and, since Lemma 16 holds, the modified

definition of sj in (3.52) gives

J aux
j (x̄, ū) =

Kh−1∑
t=0

(
ℓ̊int(̊x̄ū

θ̂
(tP, x̄),˚̄u(tP ),Ωj)− inf

(̊x̄p ,̊ūp)∈˚̄Pp
Θ̃j

ℓ̊int(̊x̄p,˚̄up,Ωj)

+ λ̊(̊x̄ū
θ̂
(tP, x̄))− λ̊(fP

θ̂
(̊x̄ū

θ̂
(tP, x̄),˚̄u(tP ), 0))

)
+ V̄ f

(
(̊x̄ū

θ̂
(nh, x̄))P−1

)
+ λ̊(̊x̄ū

θ̂
(nh, x̄)),

=JMPC
Ωj

(x̄, ū) + λ̊(̊x̄ū
θ̂
(0, x̄))−

Kh−1∑
t=0

inf
(̊x̄p ,̊ūp)∈˚̄Pp

Θ̃j

ℓ̊int(̊x̄p,˚̄up,Ωj).

The second equality holds since ˚̄xū
θ̂
(tP +P, x̄) = fP

θ̂
(̊x̄ū

θ̂
(tP, x̄),˚̄u(tP ), 0). Because λ̊(̊x̄ū

θ̂
(0, x̄))−∑Kh−1

t=0 inf
(̊x̄p ,̊ūp)∈˚̄Pp

Θ̃j

ℓ̊int(̊x̄p,˚̄up,Ωj) is not impacted by the choice of ū, the cost functions J aux
j (x̄, ū)

and JMPC
Ωj

(x̄, ū) differ only by some constant value. Consequently, problems P RAEMPC
θ̂

(JMPC
Ωj

, x̄)

and P RAEMPC
θ̂

(J aux
j , x̄) are equivalent.

We now demonstrate how the third condition of Assumption 10 can be analogously mapped to
the rotated stage cost and rotated P -step terminal cost.

Lemma 20. Given Assumptions 10 and 14, for all ˚̄x ∈ {˚̄x ∈ (X̄j)
P : (̊x̄)P−1 ∈ X̄ f

j } and ˚̄x+ ∈
{˚̄x+ ∈ Rnx : Vδ((̊x̄

+)P−1, (f
P
θ̂j
(̊x̄, κ̊f ((̊x̄)P−1), 0))P−1) ≤ zΩj}, it holds that

˚̄V f (̊x̄+)− ˚̄V f (̊x̄) ≤ −˚̄Lj (̊x̄, κ̊f ((̊x̄)P−1)) + α1(|(̊x̄, κ̊f ((̊x̄)P−1))|πj) + α2(|(̊x̄, κ̊f ((̊x̄)P−1))|πj).
(3.53)
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Proof. From Assumption 10 it holds that

V̄ f
(
(̊x̄+)P−1

)
− V̄ f ((̊x̄)P−1)

≤ − sup
h∈I≥j

(̊x̄p ,̊ūp)∈˚̄Pp
Θ̃j

(
ℓ̊int(̊x̄, κ̊f ((̊x̄)P−1),Ωh)− ℓ̊int(̊x̄p,˚̄up,Ωj)

)
+ α1(|(̊x̄, κ̊f ((̊x̄)P−1))|πj).

Adding λ̊(fP
θ̂
(̊x̄, κ̊f ((̊x̄)P−1), 0))− λ̊(̊x̄) to both sides yields

V̄ f
(
(̊x̄+)P−1

)
+ λ̊(fP

θ̂
(̊x̄, κ̊f (x̄P−1), 0))− ˚̄V f (̊x̄)

≤ − sup
h∈I≥j

(̊x̄p ,̊ūp)∈˚̄Pp
Θ̃j

(
ℓ̊int(̊x̄, κ̊f ((̊x̄)P−1),Ωh)− ℓ̊int(̊x̄p,˚̄up,Ωj)

)
− λ̊(̊x̄)

+ α1(|(̊x̄, κ̊f ((̊x̄)P−1))|πj) + λ̊(fP
θ̂
(̊x̄, κ̊f ((̊x̄)P−1), 0)).

Applying (3.48) and the definition of ˚̄Lj gives (3.53).

Let X̄j,nh = {x̄ ∈ X̄j : ∃ū ∈ Ūnh(x̄) such that x̄ū
θ̂
(nh, x̄) ∈ X̄ f

j } denote the set of initial
conditions for which P RAEMPC

θ̂
(JMPC

Ωj
, x̄) is feasible. We now show that an input exists such that

auxiliary cost J aux
j decreases between iterations.

Lemma 21. Assume that θi ∈ Θi
0, and Assumptions 8, 9, 10, and 14 hold. Then, for all x̄ ∈ X̄j,nh

and j ∈ I≥0, it holds at iteration j that

Jaux
j+1(x̄jP+P , ū

nom)− Jaux
j (x̄jP , ū

∗
j(x̄jP )) ≤ 0

where the inequality is strict for any α(|̊x̄jP ,˚̄ujP |πj) ̸= 0.

Proof. The proof is given in Appendix B.3.

It is now demonstrated that the closed-loop state trajectories of true system (3.3) converge to a
tube around periodic orbit ˚̄xp∞.

Theorem 4. Let Assumptions 8, 9, 10, 11, and 14 hold with initial state x0 = x̄0 = x(0). Then the

true closed-loop state sequence converges asymptotically to the neighborhood ˚̄xp∞⊕Ω∞ about the

robust optimal periodic orbit ˚̄xp∞.

Proof. From Lemma 21 we have that

J aux
j+1(x̄jP+P , ū

nom)− J aux
j (x̄jP , ū

∗
j(x̄jP )) ≤ 0
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where the inequality is strict for any ˚̄xjP ̸= ˚̄xpj . Let the solution to P RAEMPC(J aux
j+1, x̄jP+P ) be

denoted as ū∗(x̄jP+P ). From Theorem 2 we have that ūnom is feasible, but potentially sub-optimal,
for P RAEMPC(J aux

j+1, x̄jP+P ). Then,

J aux
j+1(x̄jP+P , ū

∗(x̄jP+P )) ≤ J aux
j+1(x̄jP+P , ū

nom),

≤ J aux
j (x̄jP , ū

∗(x̄jP )).

Since the rotated stage cost ˚̄Lj and rotated terminal cost ˚̄V f
j are assumed continuous and Z̄ is com-

pact, the auxiliary cost sequence converges. This implies that lim
j→∞

α(|̊x̄jP ,˚̄ujP |πj) = 0. Therefore,

from (3.46), this implies that (̊x̄jP ,˚̄ujP ) → π∞.
As xk = x̄k + ek, Lemma 16 then gives that xk → ˚̄xp∞ ⊕ Ω∞.

3.6 Simulation Example

The RAEMPC algorithm outlined by Algorithm 3 is now applied in simulation to a bilinear
system whose dynamics are given by

xk+1 = −0.15xk +−0.01xku1,k + 0.05u2,k + 0.30θi + vk (3.54)

where uk ≜
[
u1,k u2,k

]⊤
. The cycle and iteration lengths are nc = P = 5 timesteps with the set

of unknown model parameters given by θ = {1.0, 3.9, 2.8,−0.8,−1.9}, and vk is bounded with
vmax = 0.1. This type of system model may be used to represent a mechanical braking system
as described in [85] where xk corresponds to the translational velocity of a wheel, u1,k represents
the normal force applied to the brake, and u2,k denotes the engine force. The initial parameter
uncertainty sets are given by Θi

0 = B(0.9, 3.5) for i ∈ I[0,nc−1]. The state and input constraint sets
are given as X = {x : −10 ≤ x ≤ 10} and U = {uk : 0 ≤ u1,k ≤ 30, 0 ≤ u2,k ≤ 10, u1,ku2,k =

0}. The user-defined constants used for the adaptive scheme are chosen as Kω = 0.99 and β = 1.
The economic stage cost is given as

ℓ(xk, uk) = ∥xk − xiref∥2 + 0.1∥uk,2∥2 + 1.5∥xk − xk−1∥2

where the first term penalizes tracking error with respect to some cyclic signal xref , the second
term establishes a cost on the applied engine force as a proxy penalty on fuel consumption, and
the third term penalizes translational acceleration of the wheel. The feedback law is given as
ϕ(ū, x, x̄) = ū. Consequently, from [86], the RCI set Ωj can be given as

Ωj = {e : −2zΘjmax − 0.67 ≤ e ≤ 2zΘjmax + 0.67}.
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Figure 3.4: State trajectories resulting from application of the REMPC algorithm (top) and the
RAEMPC algorithm (bottom). The solid lines denote the true states, while the dotted lines depict
the estimated states.

The prediction horizon is set to nh = 15 timesteps and the simulation is conducted over 200
timesteps, or 200

P
= 40 iterations. The Robust Economic Model Predictive Control (REMPC)

strategy proposed in [65], which does not incorporate an adaptive model update, is compared to
the RAEMPC strategy described by Algorithm 3. The state trajectories resulting from applying
the two control strategies are shown in Figure 3.4. Here, by supplementing the robust controller
with an adaptive update of the parameter estimates, the average squared state estimation error is
reduced from 0.44 in the REMPC case, to 0.16 in the RAEMPC simulation. The performance of
the two schemes, as measured by the P -step system cost, is shown in Figure 3.5. Although the two
controllers result in similar performance over the first two iterations, the use of an adaptive scheme
within the RAEMPC framework enables the system to rapidly improve its performance with an
average P -step stage cost of 40.3 over the course of the simulation, in comparison to an average
P -step cost of 72.1 when using the REMPC scheme.
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Figure 3.5: P -step stage cost corresponding to the true state-input pairs (̊x, ů) for the REMPC
scheme (solid blue line) and RAEMPC scheme (dotted green line).

The immediate result of incorporating an adaptive scheme into the controller is observed in Fig-
ure 3.6, wherein, by the end of the simulation, the normed parameter estimation error converges
and is reduced from its initial value for each intracycle step index. Despite the fact that this con-
vergence is non-monotonic, selective updates to zΘ

i
j as described by Algorithm 2 ensure that zΘ

i
j

is reduced monotonically while remaining an upper bound on ∥θ̃ij∥ as described by Lemma 14.

3.7 Conclusions

In this chapter, an RAEMPC framework is proposed for application to nonlinear systems sub-
ject to periodic parametric uncertainty and additive uncertainty. Sufficient conditions for ensuring
convergence of the model parameter estimates to their true values, as well as recursive contrac-
tion of the uncertainty sets are outlined. Additional conditions that guarantee robust constraint
satisfaction, recursive feasibility, and convergence of the true states to a neighborhood around the
economically optimal robust periodic orbit are also developed. By combining an adaptive scheme
with a robust MPC scheme, the typical overconservatism of robust MPC approaches can be miti-
gated, as an improved understanding regarding the nature of unknown model parameters facilitates
more aggressive and accurate control decisions to be made. This property is demonstrated through
a simulation study performed on a model of a mechanical braking system.

The identification of methods to evaluate satisfaction of Assumption 14 in practice remains a
point of further investigation.
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Figure 3.6: Parameter estimate error evolution under the RAEMPC scheme corresponding to each
of the unknown model parameters θi. Here, the normed estimation error ∥θ̃ij∥ is upper bounded by
the corresponding uncertainty set radius zΘ

i
j .
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CHAPTER 4

Robust Adaptive Economic Iterative Learning
Control

4.1 Background and Motivation

As discussed in Chapter 3, mitigating the impacts of inaccurate models or overly conserva-
tive control in robust MPC has motivated significant interest in learning-enhanced MPC strategies
[87]. In the specific case where state prediction errors manifest as a consequence of paramet-
ric uncertainties, augmenting robust MPC strategies with adaptive control schemes has become
a popular methodology [56, 66, 71, 76–78, 88]. These methods seek to improve performance
through the successive contraction of parameter uncertainty sets that the unknown model param-
eters are known to lie in. Here, by reducing the size of the parameter space that needs to be
considered to ensure robust constraint satisfaction, increased confidence in user-estimates of the
unknown model parameters can be achieved. Consequently, the overly conservative nature of stan-
dard robust MPC methods can be alleviated. Although extensions of these works have enabled
time-varying model parameters [73] and economic performance objectives [81] to be addressed,
the case where the unknown model parameters vary as a function of the system state has not been
explicitly investigated. While the above methodologies can be adjusted to handle this class of
uncertainty by treating the effects of state-dependent variations in the model parameters as noise,
doing so requires additional conservatism in the control, which may compromise system perfor-
mance. Moreover, of [56, 66, 71, 73, 76–78, 81, 88], only [66] has examined the case of iterative
systems and investigated how the repetitiveness of the system behavior can be leveraged to further
encourage learning.

As an alternative to MPC, ILC has become a popular strategy to enable learning for discontin-
uously operated repetitive systems. Here, whereas adaptive MPC methods have typically sought
to improve control through the identification of unknown model parameters, ILC instead seeks
to update the control signal directly by exploiting information available from previous trial data
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[4]. Although early efforts in ILC were focused on unconstrained systems with tracking objec-
tives [89], recent advancements in ILC have sought to address the existence of system constraints
[36, 37], while a select few others have also examined the case of constrained economic control
[22, 30, 34, 35]. However, theoretical guarantees on the robust performance of [22, 30, 34, 35]
have not been established. Consequently, the performance of these techniques may be compro-
mised when large parametric uncertainties exist.

Improving the robust performance of ILC methods by integrating adaptive methods into the
controller design has also been explored in the literature [90–97]. However, each of these works is
limited to at least one of the following restrictive system classes:

1. linear systems or input-affine systems,

2. unconstrained systems,

3. noiseless systems,

4. systems with constant unknown parameters, or where the change in the model parameters
from iteration to iteration is known a priori.

Consequently, while the robust performance of economic ILC methods for constrained systems can
suffer due to the existence of parametric uncertainties, existing strategies that utilize adaptation to
mitigate these effects have limited applicability.

In this work we propose a strategy that synthesizes tools available from the fields of robust
economic MPC and economic ILC, while also enabling adaptation for constrained, discontinuously
operated, repetitive systems with both unknown state-dependent model parameters and additive
disturbances. The following contributions are then presented in this work:

1. The development of a robust, adaptive, economic ILC (RAEILC) algorithm for nonlinear dis-
continuously operated systems wherein economic objectives are considered and input/state
constraints are robustly enforced through the construction of homothetic tubes. Moreover, in
addition to enabling the integration of adaptive parameter uncertainty set updates, learning is
further incorporated through the use of historical input and state data from previous task exe-
cutions. Here, by leveraging knowledge about Lipschitz continuity of the system dynamics,
conservativism commonly exhibited by similar robust strategies is further mitigated. Condi-
tions for which recursive feasibility and robust monotonic reductions in the system cost can
be guaranteed are also presented.

2. The development of an adaptive method applicable to uncertain nonlinear systems. This
uncertainty arises due to the existence of unknown state-varying model parameters that are
Lipschitz with respect to the system states, as well as the presence of additive disturbances.

77



This adaptive scheme updates user-known uncertainty sets wherein the nominal model pa-
rameter estimates, as well as an upper bound on the parameter estimate error, are updated.
A methodology for integrating this adaptive scheme with the proposed RAEILC algorithm
is described.

3. A comparative example of the proposed algorithm against a state-of-the-art adaptive MPC
algorithm applied to a simulated pendulum-cart system. An evaluation of the closed-loop
system performance and ability of the different adaptive schemes to identify the unknown
state-varying model parameters is presented.

To serve as a reference for the reader, a notation guide for the variables used in this chapter is
provided in Appendix D.4. The contents of this chapter are in preparation for submission to the
International Journal of Robust and Nonlinear Control as [98].

4.2 System description

In this section, the category of systems addressed in this chapter are described. Additionally,
the types of uncertainties, constraints, and objectives that these systems are subject to are also
presented.

The systems of interest constitute a subclass of batch-process repetitive systems commonly
investigated within the ILC literature [24]. Here, the systems iteratively execute a task wherein
a sequence of nt timesteps constitutes an iteration. Moreover, it is assumed that an offline phase
exists such that after the conclusion of an iteration, the state of the system is able to be reset to
some known value x0 that serves as the initial condition of the next iteration. The dynamics of the
systems considered in this chapter are given as

xt+1 = f(xt, ut) +G(xt, ut)θ(xt) + dt (4.1)

where t ∈ I[0,nt−1] denotes a timestep index, and x ∈ Rnx , u ∈ Rnu , and d ∈ Rnx represent the
system states, inputs, and noise. f : Rnx × Rnu → Rnx and G : Rnx × Rnu → Rnx×nθ denote
known, potentially nonlinear, continuous functions. θ : Rnx → Rnθ denotes the unknown state-
dependent parameters. The states are required to lie within the compact feasible set X = {x :

hx(x) ≤ 0} and the inputs are required to remain within the compact set U = {u : hu(u) ≤ 0}
where the constraint functions h = {hx hu} = {h1 . . . hnh} are assumed continuous. Define
Z = X × U . The following assumptions are placed on the system dynamics.

Assumption 15. The functions f , G, and θ are locally Lipschitz continuous over Z such that for
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any xa, xb ∈ X and ua, ub ∈ U ,

∥f(xa, ua)− f(xb, ub)∥P ≤ Lxf∥xa − xb∥P + Luf∥ua − ub∥,

∥G(xa, ua)−G(xb, ub)∥P ≤ LxG∥xa − xb∥P + LuG∥ua − ub∥,

∥θ(xa)− θ(xb)∥ ≤ Lxθ∥xa − xb∥P

where Lxf , Luf , LxG, LuG, Lxθ and the weighting matrix P are known.

Assumption 16. The noise is bounded such that ∥dt∥ ∈ D = {d ∈ Rnx : ∥d∥ ≤Md} where Md is

a known constant.

Although θ(x) is an unknown function, we make the following assumption.

Assumption 17. At each iteration, the user has knowledge of a set-valued function Θ̧j(x) : Rnx →
2R

nθ satisfying

θ(x) ∈ Θ̧j(x) = B(θ̧j(x), zΘ̧
j

(x)), ∀x ∈ X , j ∈ I≥0 (4.2)

where j denotes an iteration index. Here, the center θ̧j(x) and radius zΘ̧
j
(x) of the parametric

uncertainty set Θ̧j(x) are iteration- and state-varying. Moreover, it is assumed that θ̧j(x) and

zΘ̧
j
(x) are Lipschitz continuous over X .

θ̧j(x) corresponds to a user estimate of the true model parameters θ(x) at iteration j. As a
consequence of the compactness of X , the condition of Lipschitz continuity in Assumption 17
implies that Θ̧(x) is a compact set for all x ∈ X . From Assumption 17, the error in this parameter
estimate is bounded by the known set Θ̧̃

j
(x) such that

θ(x)− θ̧j(x) ∈ Θ̧̃
j
(x) = B(0, zΘ̧

j

(x)).

The dynamic model in (4.1) can be reexpressed in terms of θ̧j(x) as

xt+1 = f(xt, ut) +G(xt, ut)θ̧
j(x) + dw(xt, ut, dt),

= fθ̧j(xt, ut) + dw(xt, ut, dt)
(4.3)

where

dw(x, u, d) ∈ W
Θ̧̃
j
,D(x, u) = {dw = w + d : w = G(x, u)θ̧̃, θ̧̃ ∈ Θ̧̃

j
(x), d ∈ D}. (4.4)

Here, fθ̧j denotes the nominal system model based on the parameter estimate θ̧j(x) and dw is
a value that combines the noise and the effects of parametric uncertainty at iteration j. While
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various control methods exist to robustly handle the uncertainty introduced by dw, the ability of
these approaches to maintain a satisfactory level of system performance is closely linked to the
characteristics of the set W

Θ̧̃
j
,D(x, u). Specifically, if W

Θ̧̃
j
,D(x, u) is large, the performance of the

system is likely to suffer.
This tradeoff between robustness and performance is further accentuated when the system per-

formance is defined by an economic metric rather than a reference tracking objective. Namely,
in pure tracking applications the optimal behavior corresponds to system trajectories that track a
predefined reference signal regardless of the existence of uncertainty. However, the optimal system
behavior when performance is measured by an economic metric may be a priori unknown in the
presence of uncertainty. In this chapter, performance is given by the economic cost accrued by the
system over an iteration. Specifically, the system seeks to minimize costs of the form

J = Vf (xnt−1) +
nt−2∑
t=0

ℓ(xt, ut). (4.5)

Assumption 18. The stage cost ℓ(x, u) and terminal cost Vf (x) are continuous over Z . Without

loss of generality, we additionally assume that the ℓ(x, u) and Vf (x) are positive over Z .

The combination of economic costs, constraints, and state-dependent uncertainty makes the
task of robust performance optimization nontrivial. However, in the following section a control
strategy is presented that employs adaptive techniques and cycle-to-cycle learning. In this manner,
the proposed strategy aims to eliminate unnecessary compromises in performance that are made to
ensure constraint satisfaction.

4.3 Robust Adaptive Economic ILC

The proposed robust adaptive economic ILC framework is now presented. Section 4.3.1 outlines
various assumptions that must be met in order for the controller to be successfully applied. The
proposed control framework is presented in Section 4.3.2. Theoretical analysis of the RAEILC
algorithm is presented in Section 4.3.3, including an assessment of recursive feasibility and robust
performance.

4.3.1 Requirements

In this subsection, necessary conditions placed on the system, uncertainty description, and adap-
tive update to the parametric uncertainty set Θ̧j(x) are outlined.

The construction of a tube that bounds the error in the state trajectory predicted by the nominal
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model fθ̧j is required in order to robustly satisfy the constraints. While, as in [76, 77, 81], knowl-
edge of the Lipschitz continuity of the system dynamics can be used to design this robust tube, the
size of the tube grows exponentially along the prediction horizon, which results in very conserva-
tive control for large prediction horizons or for systems with large uncertainties. Consequently, a
strategy utilized in [78, 99] is also leveraged here for the construction of the robust tube wherein an
assumption on the existence of a stabilizing lower level feedback controller is made. Specifically,
it is assumed that system (4.1) is incrementally stabilizable such that, for a known control law, κ,
the following assumption holds.

Assumption 19. A Lyapunov function of the form Vδ(x, x̄) = ∥x − x̄∥P , a control law κ : X ×
Z → Rnu , and constants δloc, κmax > 0, and ρθ̧ ∈ (0, 1) exist such that for all (x̄, ū) ∈ Z ,

(x, κ(x, x̄, ū)) ∈ Z , Vδ(x, x̄) ≤ δloc, and all θ̧(x) ∈ Θ̧0(x):

∥κ(x, x̄, ū)− ū∥ ≤ κmaxVδ(x, x̄) (4.6)

and

Vδ(x
j+1, x̄j+1) ≤ ρθ̧Vδ(x, x̄) (4.7)

where xj+1 = fθ̧(x, κ(x, x̄, ū)) and x̄j+1 = fθ̧(x̄, ū). We further assume that κ is locally Lipschitz

in its arguments over X × Z in that there exist constants Lxκ, Lx̄κ, and Lūκ such that

∥κ(xa, x̄a, ūa)− κ(xb, x̄b, ūb)∥ ≤ Lxκ∥xa − xb∥+ Lx̄κ∥x̄a − x̄b∥+ Lūκ∥ūa − ūb∥

holds for all xa, x̄a, xb, x̄b ∈ X and ūa, ūb ∈ U .

We now show that [78, Proposition 1] can be extended to the case that the uncertainty set Θ̧(x)

is state dependent. Here it is demonstrated that any change in the contraction factor ρθ̧j incurred as
a consequence of updating the model parameter estimates can be upper bounded.

Lemma 22. Suppose that Assumptions 15, 17, and 19 hold with some θ̧j , ∆Θ̧ satisfying θ̧j(x) ⊕
∆Θ̧(x) ⊆ Θ̧0(x) for all x ∈ X . Then, for any θ̧j+1(x) where θ̧j+1(x) ∈ θ̧j(x) ⊕ ∆Θ̧(x) for all

x ∈ X , there exists a constant Lρ,θ̧,∆Θ̧ ≥ 0 such that

ρθ̧j+1 ≤ ρθ̧j + Lρ,θ̧,∆Θ̧. (4.8)
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Proof. Let ∆θ̧(x) = θ̧j+1(x)− θ̧j(x). Then,

Vδ(fθ̧j+1(x, κ(x, z, v)), fθ̧j+1(z, v))

= ∥fθ̧j(x, κ(x, z, v)) +G(x, κ(x, z, v))∆θ(x)− fθj(z, v)−G(z, v)∆θ̧(z)∥P ,

≤ ∥fθ̧j(x, κ(x, z, v))− fθ̧j(z, v)∥P + ∥G(x, κ(x, z, v))∆θ̧(x)−G(z, v)∆θ̧(z)∥P ,
(4.7)
≤ ρθ̧jVδ(x, z) + ∥G(x, κ(x, z, v))∆θ̧(x)−G(z, v)∆θ̧(z)∥P ,

≤ ρθ̧jVδ(x, z) + ∥G(x, κ(x, z, v))∆θ̧(x)−G(z, v)∆θ̧(x)∥P
+ ∥G(z, v)∆θ̧(x)−G(z, v)∆θ̧(z)∥P ,

≤ ρθ̧jVδ(x, z) + ϵ∆Θ̧∥G(x, κ(x, z, v))−G(z, v)∥P +GP
max∥∆θ̧(x)−∆θ̧(z)∥

where ϵ∆Θ̧ = max
∆θ̧(x)∈∆Θ̧(x),x∈X

∥∆θ̧(x)∥ and GP
max = max

(z,v)∈Z
∥G(z, v)∥P .

Due to the assumptions on Lipschitz continuity of G(z, v), θ̧j , θ̧j+1, and κ, we have that

Vδ(fθ̧j+1(x, κ(x, z, v)), fθ̧j+1(z, v)) ≤ ρθ̧jVδ(x, z) + ϵ∆Θ̧LG,κVδ(x, z) +GP
maxL∆θ̧Vδ(x, z)

for some LG,κ and L∆θ̧. Dividing by Vδ(x, z) on both sides gives the desired result:

ρθ̧j+1 ≤ ρθ̧j + Lρ,θ̧,∆Θ̧.

with Lρ,θ̧,∆Θ̧ = ϵ∆Θ̧LG,κ +GP
maxL∆θ̧.

Let

Ψ = {(x, x̄, ū) ∈ Rnx ×Z|(x, κ(x, x̄, ū)) ∈ Z, Vδ(x, x̄) ≤ δloc}

denote the set of true states, nominal states, and nominal inputs wherein the true state and feedback
are feasible and the distance between the true and nominal states is sufficiently small such that (4.7)
holds.

A scalar function w̃
Θ̧̃
j
,D(x, u) is now introduced which serves as an upper bound on the size

of the disturbance signal dw(x̄, ū, d) at the point (x̄, ū) ∈ Z . We assume that w̃
Θ̧̃
j
,D meets the

following conditions which closely mimic [78, Assumption 6].

Assumption 20. Suppose there exist set-valued functions Θ̧̃
j+1

, ∆Θ̧̃, Θ̧̃
j

satisfying Θ̧̃
j+1

(x) ⊕
∆Θ̧̃(x) ⊆ Θ̧̃

j
(x), and parameters θ̧j satisfying θ̧j(x) ⊕ Θ̧̃

j
(x) ⊆ Θ0(x) for all x ∈ X . Then, for

some set-valued function Θ̧̃(x), there exists a function w̃Θ̧̃,D : Z → R≥0 and scalar LΘ̧̃ ≥ 0 such

that for all x̆ ∈ X , (x, x̄, ū) ∈ Ψ and disturbances dw ∈ W
Θ̧̃
j
,D(x̄, ū) the following properties

hold:
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Vδ(x̆+ dw, x̆) ≤ w̃
Θ̧̃
j
,D(x̄, ū), (4.9a)

w̃
Θ̧̃
j
,D(x, κ(x, x̄, ū))− w̃

Θ̧̃
j
,D(x̄, ū) ≤ L

Θ̧̃
jVδ(x, x̄), (4.9b)

w̃
Θ̧̃
j
,D(x̄, ū) ≥ w̃

Θ̧̃
j+1

,D(x̄, ū) + w̃∆Θ̧̃,{0}(x̄, ū), (4.9c)

L
Θ̧̃
j ≥ L

Θ̧̃
j+1 + L∆Θ̧̃, (4.9d)

Lρ,θ̧,∆Θ̧ ≤ L∆Θ̧̃. (4.9e)

Condition (4.9a) requires that the size of the disturbance dw is upper bounded by w̃
Θ̧̃
j
,D(x̄, ū)

where Vδ serves as the distance metric. Condition (4.9b) requires that w̃
Θ̧̃
j
,D is Lipschitz contin-

uous with respect to the system states. Monotonic reductions in the value of w̃
Θ̧̃
j
,D(x̄, ū) and the

Lipschitz constant L
Θ̧̃
j as a result of updating the parameter uncertainty sets are enforced by (4.9c)

and (4.9d). Within the context of Lemma 22, Condition (4.9e) states that any increase to the con-
traction factor ρθ̧j resulting from an update to the model parameter estimates is smaller than the
corresponding decrease to L

Θ̧̃
j . An example definition of w̃Θ̧̃,D such that conditions (4.9a)-(4.9e)

hold will be presented in Section 4.4.3.
While w̃Θ̧̃,D(x̄, ū) places a bound on the size of the disturbance at (x̄, ū) given parameter un-

certainty set Θ̧̃, constraints cannot be robustly enforced using this information alone. Specifically,
if the nominal value of the system state does not coincide with the true system state, then the size
of dw may be larger than what is predicted at point (x̄, ū), which may result in a loss of constraint
satisfaction. Hence, an augmented version of w̃Θ̧̃,D(x̄, ū), denoted by w̃δ,Θ̧̃,D(x̄, ū, s), is introduced
as

w̃δ,Θ̧̃,D(x̄, ū, s) = w̃Θ̧̃,D(x̄, ū) + LΘ̧̃s. (4.10)

Given Assumptions 19 and 20, two important properties of w̃δ,Θ̧̃,D(x̄, ū, s) are provided by [78,
Proposition 2]. First, if Vδ(x, x̄) ≤ ∆s for some ∆s ≥ 0, then

w̃δ,Θ̧̃,D(x, κ(x, x̄, ū), s) ≤ w̃δ,Θ̧̃,D(x̄, ū, s+∆s). (4.11)

for any (x, x̄, ū) ∈ Ψ. From (4.10), not only does w̃
δ,Θ̧̃

j
,D(x̄, ū, s) provide an upper bound on

the size of dw at (x̄, ū), but by exploiting the Lipschitz continuity assumption placed upon w̃
Θ̧̃
j
,D

in (4.9c), this disturbance bound also holds at all points (x, κ(x, x̄, ū)) within a neighborhood of
(x̄, ū) that satisfy Vδ(x, x̄) ≤ s.

Second, suppose there exists some Θ̧̃
j
, Θ̧̃

j+1
, ∆Θ̧̃ satisfying Θ̧̃

j+1
(x) ⊕ ∆Θ̧̃(x) ⊆ Θ̧̃(x) ⊆
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Θ̧̃
0
(x) for all x ∈ X . Then

w̃
δ,Θ̧̃

j
,D(x̄, ū, s) ≥ w̃

δ,Θ̧̃
j+1

,D(x̄, ū, s) + w̃δ,∆Θ̧̃,{0}(x̄, ū, s). (4.12)

Equation (4.12) states that the bound w̃
δ,Θ̧̃

j
,D(x̄, ū, s) is reduced monotonically in response to iter-

ative updates to the parameter uncertainty set.

4.3.2 RAEILC Algorithm

The RAEILC algorithm is now described. The algorithm consists of two stages: 1) an online
control signal identification stage, and 2) an offline model parameter uncertainty set update. In this
section, the adaptive scheme for updating the parameter uncertainty set is addressed in a general
manner to facilitate the utilization of diverse parameter uncertainty methods. A specific method
for implementing the parameter estimation updates will be presented in Section 4.4.

Prior to running the control algorithm, constants ci ≥ 0, i ∈ {1, . . . , nh} are computed for each
constraint function hi such that

hi(x, κ(x, x̄, ū))− hi(x̄, ū) ≤ ciVδ(x, x̄) (4.13)

holds for all (x, x̄, ū) ∈ Ψ. Additionally, it is assumed that the user has knowledge of a feasible
input and state trajectory of the true system before the algorithm is initiated such that the following
condition holds.

Assumption 21. At iteration 0, there exists a known input sequence
∴
u0 = {∴

u00, . . . ,
∴
u0nt−2} ∈

(U)nt−1, and corresponding state sequence
∴
x0 = {∴

x00, . . . ,
∴
x0nt−1} ∈ (X )nt such that

∴
x0t+1 =

fθ(
∴
x0t ,

∴
u0t ) + d0t for t ∈ {0, . . . , nt − 2} and some {d00, . . . , d0nt−2} ∈ (D)nt−1 with

∴
x00 = x0.

Assumption 21 may be satisfied if historical data has been available where a feasible input
sequence has been applied to the system, and the resulting state sequence remains in X for the
entirety of an iteration.

∴
uj and

∴
xj are respectively termed the benchmark input and state sequences

at iteration j.
Given compactness of the uncertainty set Θ̧j(x) and continuity of G(x, u), define θ̧jmax =

max
θ̧∈Θ̧j(x),x∈X

∥θ̧(x)∥ and Gmax = max
(x,u)∈Z

∥G(x, u)∥. Define xj = {xj0, . . . , x
j
nt−1} and uj =

{uj0, . . . , u
j
nt−2} where xjt and ujt denote the measured state and input at timestep t of iteration

j. Moreover, for some signal a, let δajt = ajt −
∴
ajt . In the following, we will demonstrate that an

upper bound can be placed on ∥δxjt∥P .
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Lemma 23. Suppose that Assumptions 15, 16, 17, and 19 hold. For some (xt, x̄t, ūt) ∈ Ψ, let

ut = κ(xt, x̄t, ūt) and define the coefficients ρq,Θ̧, ρs,Θ̧, and ρ
ū,

∴
u,Θ̧

as

ρq,Θ̧ = Lxf + LxGθ̧max + LxθGmax,

ρs,Θ̧ = κmax(L
u
f + LuGθ̧max),

ρ
ū,

∴
u,Θ̧

= Luf + LuGθ̧max.

(4.14)

Then, for some (
∴
xt,

∴
ut) ∈ Z and dt,

∴
dt ∈ D,

∥δxt+1∥P ≤ ρq,Θ̧∥δxt∥P + ρs,Θ̧Vδ(xt, x̄t) + ρ
ū,

∴
u,Θ̧

∥ūt −
∴
ut∥+ 2σmax(P )Md. (4.15)

Proof. From (4.1) we have that

∥δxt+1∥P =∥f(xt, ut) + g(xt, ut)θ(xt) + dt − f(
∴
xt,

∴
ut)− g(

∴
xt,

∴
ut)θ(

∴
xt)−

∴
dt∥P ,

≤∥f(xt, ut)− f(
∴
xt,

∴
ut)∥P + ∥g(xt, ut)θ(xt)− g(

∴
xt,

∴
ut)θ(

∴
xt)∥P + ∥dt −

∴
dt∥P

Applying Assumption 15 and substituting in the feedback law for ut yields

∥δxt+1∥P ≤Lxf∥xt −
∴
xt∥P + Luf∥ut −

∴
ut∥+ LxG∥xt −

∴
xt∥P θ̧max + LuG∥ut −

∴
ut∥θ̧max

+ LxθGmax∥xt −
∴
xt∥P + 2σmax(P )Md,

=(Lxf + LxGθ̧max + LxθGmax)∥δxt∥P + (Luf + LuGθ̧max)∥κ(xt, x̄t, ūt)−
∴
ut∥

+ 2σmax(P )Md.

Invoking the triangle inequality and Assumption 19 gives

∥δxt+1∥P ≤(Lxf + LxGθ̧max + LxθGmax)∥δxt∥P

+ (Luf + LuGθ̧max)
(
∥κ(xt, x̄t, ūt)− ūt∥+ ∥ūt −

∴
ut∥
)
+ 2σmax(P )Md,

(4.6)
≤ (Lxf + LxGθ̧max + LxθGmax)∥δxt∥P

+ (Luf + LuGθ̧max)
(
κmaxVδ(xt, x̄t) + ∥ūt −

∴
ut∥
)
+ 2σmax(P )Md

which yields the desired result.
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Definition 6. For some (x̄, ū) ∈ Z and s ≥ 0, let the s-tube ΩX (x̄, s) and ΩU(ū, s) be given as

ΩX (x̄, s) = {x ∈ X : Vδ(x, x̄) ≤ s}, (4.16)

ΩU(ū, s) = {u ∈ U : ∥u− ū∥ ≤ κmaxs}. (4.17)

The s−tube ΩX (x̄, s) therefore denotes the set of states within a neighborhood of radius s
around the point x̄, while, following from Assumption 4.6, ΩU(ū, s) corresponds to the set of all
potential inputs that may be applied by the feedback law κ(x, x̄, ū) for some x ∈ ΩX (x̄, s).

Given the uncertainty in the system model and the existence of noise, the nominal model of
the system may not provide an accurate prediction of the cost accrued by the true system. Con-
sequently, seeking to minimize the nominal cost directly can result in unexpectedly poor perfor-
mance. Inspired by [62], we instead minimize an integrated cost, J int, accumulated between
timesteps t and nt − 1 which is given as

J int(x,u, s, t) = V int
f (xnt , snt) +

nt−1−t∑
k=0

ℓint(xt+k, ut+k, st+k)

where

V int
f (x̄, s) =

∫
ΩX (x̄,s)

Vf (x̄)dx̄, ℓint(x̄, ū, s) =

∫
ΩX (x̄,s)

∫
ΩU (ū,s)

ℓ(x̄, ū)dū dx̄.

Here, the integrated terminal cost V int
f and integrated stage cost ℓint produce an average of any

potential costs incurred by the true system.
The control signal is calculated by solving a shrinking horizon optimization problem, denoted

as R(Θ̧j, xjt ,
∴
xj,

∴
uj, t), at each timestep in an iteration where R(Θ̧, x,

∴
x,

∴
u, t) is given according to
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R(Θ̧, x,
∴
x,

∴
u, t) :

minimize
ū·|t,as,·|t,aq,·|t

V int
f (x̄nt−t|t, snt−t|t) +

nt−1−t∑
k=0

ℓint(x̄k|t, ūk|t, sk|t)
(4.18a)

subject to x̄k+1|t = fθ̧(x̄k|t, ūk|t), x̄0|t = x, (4.18b)

wk|t = w̃δ,Θ̧̃,D(x̄k|t, ūk|t, sk|t), (4.18c)

sk+1|t = ρθ̧sk|t + wk|t, s0|t = 0, (4.18d)

sk|t ≤ δloc, (4.18e)

qk+1|t = ρq,Θ̧qk|t + ρs,Θ̧sk|t + ρ
ū,

∴
u,Θ̧

∥ūk|t −
∴
ut+k∥+ 2σmax(P )Md,

q0|t = ∥∴
xt − x∥P ,

(4.18f)

as,k|t(hi(x̄k|t, ūk|t) + cisk|t) ≤ 0, (4.18g)

aq,k|t(hi(
∴
xt+k,

∴
ut+k) + ciqk|t) ≤ 0, (4.18h)

as,k|t + aq,k|t ≥ 1, as,k|t ∈ [0, 1], aq,k|t ∈ [0, 1], (4.18i)

k = 0, . . . , nt − t, i = 1, . . . , nh. (4.18j)

The solution of R(Θ̧j, xjt ,
∴
xj,

∴
uj, t) is denoted as (ūj∗·|t, a

j∗
s,·|t, a

j∗
q,·|t). We correspondingly denote

x̄j∗·|t, w
j∗
·|t , s

j∗
·|t, and qj∗·|t from (4.18b), (4.18c), (4.18d), and (4.18f). Let J int∗

Θ̧,
∴
x,

∴
u

denote the optimal

cost of R(Θ̧, x0,
∴
x,

∴
u, 0). The input is then set as ujt = ūjt = ūj∗0|t. Note that ujt = ūjt since in

(4.18b) we have that x̄0|t = xjt and κ(x, x, ū) = ū according to (4.6). The system dynamics and
initial condition of the optimization problem are enforced by constraint (4.18b) using the parameter
estimate θ̧(x). The evolution of the s−tube is defined by constraints (4.18c) and (4.18d) based on
the amount of parametric uncertainty given by Θ̧̃, and is restricted by constraint (4.18e) to be
sufficiently small. Leveraging the results of Lemma 23, constraint (4.18f) is used to construct
an additional tube, termed the q−tube, that places a bound on the true system states over the
prediction horizon based on the benchmark system behavior. Robust satisfaction of the state and
input constraints given by h(x, u) is ensured by constraints (4.18g)-(4.18i). The decision variables,
as,·|t and aq,·|t serve as coefficients to the hi functions and (4.18i) ensures that, for each timestep in
the prediction horizon, at least one of as,k|t or aq,k|t is positive. The rationale here is that both the
s−tube, which is centered around the nominal state trajectory, and the q−tube, which is centered
around the benchmark state trajectory, serve as acceptable bounds on the true system trajectory. In
fact, the true system states lie within the intersection of the s−tube and q−tube. Consequently, if
either the s−tube or q−tube can ensure that h(x, u) ≤ 0, then robust feasibility can be ensured.
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Figure 4.1: Starting from the initial state x0, the true system state trajectory x (red line) lies
within the intersection of the s−tube (light blue area), which is centered around the nominal state
trajectory x (blue line), and the q−tube (green area), which is centered around the benchmark state
trajectory

∴
x (green line). Robust constraint satisfaction is ensured by enforcing that at least one of

the s−tube or q−tube lies within the feasible region X (gray area) at each timestep.

This feature of R(Θ̧j, xjt ,
∴
xj,

∴
uj, t) allows the RAEILC algorithm to exploit the repetitive behavior

of the system and enables more aggressive control while maintaining system constraint satisfaction.
A graphical depiction of the s− and q−tubes is shown in Fig. 4.1.

The RAEILC framework is given in Algorithm 4

4.3.3 Theoretical Analysis

An analysis of recursive feasibility of R(Θ̧j, xjt ,
∴
xj,

∴
uj, t), convergence of the benchmark input

∴
uj , and of the robust optimal cost J int∗

Θ̧j+1,
∴
x
j

,
∴
u
j is now presented.
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Algorithm 4 Robust Adaptive Economic ILC

1: Given: Parameter uncertainty set Θ̧0(x), feedback law κ(x, x̄, ū), benchmark state and input

sequences
∴
x0 and

∴
u0, and user-defined parameter γ

uj ,
∴
uj
> 0. Initialize j = t = 0. Set the

initial state x00 = x0.
2: while True do
3: Calculate θ̧jmax and the contraction factor ρθ̧j .
4: for t ≤ nt − 2 do
5: Solve R(Θ̧j, xjt ,

∴
xj,

∴
uj, t).

6: Apply the input ujt = ūj∗0|t to system (4.1).
7: t→ t+ 1.
8: end for
9: Run the adaptive update to identify Θ̧j+1(x).

10: if R(Θ̧j+1, x0, 0,
∴
xj,

∴
uj, 0) is feasible and

J int∗Θ̧j+1,xj ,uj + γ
uj ,

∴
uj
∥uj − ∴

uj∥ ≤ J int∗
Θ̧j+1,

∴
xj ,

∴
uj

(4.19)

then
11: Set (

∴
xj+1,

∴
uj+1) = (xj,uj).

12: else
13: Set (

∴
xj+1,

∴
uj+1) = (

∴
xj,

∴
uj).

14: end if
15: j → j + 1, t→ 0
16: end while

4.3.3.1 Recursive Feasibility

Recursive feasibility of R(Θ̧j, xjt ,
∴
xj,

∴
uj, t) will be examined in two parts. First, time domain

recursive feasibility is addressed where it is shown that feasibility of R(Θ̧j, xjt ,
∴
xj,

∴
uj, t) implies

feasibility of R(Θ̧j, xjt+1,
∴
xj,

∴
uj, t + 1). Second, iteration domain recursive feasibility is demon-

strated wherein feasibility of R(Θ̧j, x0,
∴
xj,

∴
uj, 0) implies feasibility of R(Θ̧j+1, x0,

∴
xj+1,

∴
uj+1, 0)

The synthesis of these two results therefore yields feasibility ofR(Θ̧j, xjt ,
∴
xj,

∴
uj, t) at all times and

at each iteration.

Lemma 24. Let Assumptions 15, 16, 17, 19, 20, and 21 hold and suppose R(Θ̧j, x0,
∴
xj,

∴
uj, 0)

is feasible. Then R(Θ̧j, xjt ,
∴
xj,

∴
uj, t) is feasible and (xjt , u

j
t) ∈ Z for all t ∈ {0, . . . , nt − 1} at

iteration j.

Proof. We break the proof into parts as follows.
Part 1: Candidate solution To produce a candidate solution at time t+1, the feedback law κ is
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applied to the optimal solution obtained at timestep t according to

ūjk|t+1 = κ(x̄jk|t+1, x̄
j∗
k+1|t, ū

j∗
k+1|t). (4.20)

Assumption 20 gives that

Vδ(x
j
t+1, x̄

j∗
1|t)

(4.3)
= Vδ(x̄

j∗
1|t + dw, x̄

j∗
1|t)

(4.9a),(4.10)
≤ w̃

δ,Θ̧̃
j
,D(x̄0|t, ū0|t, 0)

(4.18c),(4.18d)
= wj∗0|t

(4.18e)
≤ δloc.

The difference between the state solution at timestep t and the candidate state trajectory can be
bounded as

Vδ(x̄
j
k|t+1, x̄

j∗
k+1|t)

(4.7)
≤ ρk

θ̧j
wj∗0|t ≤ δloc, k = 0, . . . , nt − t. (4.21)

Part 2: Tube dynamics We show that the following inequalities hold for k = 0, . . . , nt − t:

sjk|t+1 ≤ sj∗k+1|t − ρk
θ̧j
wj∗0|t, (4.22)

wjk|t+1 ≤ wj∗k+1|t, (4.23)

qjk|t+1 ≤ qj∗k+1|t. (4.24)

1) For k = 0: Inequality (4.22) is satisfied with

s0|t+1
(4.18d)
= 0

(4.18d)
= sj∗1|t − wj∗0|t.

To demonstrate (4.23) at k = 0, consider s0|t+1
(4.18d)
= 0 ≤ sj∗1|t ≤ δloc, and

Vδ(x̄
j
0|t+1, x̄

j∗
1|t) ≤ wj∗0|t

(4.18d)
= sj∗1|t − s0|t+1.

Eq. (4.11) then gives that

wj0|t+1

(4.18c)
= w̃

δ,Θ̧̃
j
,D(x̄

j
0|t+1, ū

j
0|t+1, s0|t+1)

(4.11)
≤ w̃

δ,Θ̧̃
j
,D(x̄

j∗
1|t, ū

j∗
1|t, s

j∗
1|t)

(4.18c)
= wj∗1|t.
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Meanwhile, (4.24) is satisfied at k = 0 as a result of the following

qj0|t+1

(4.18f)
= ∥δxjt+1∥P ,

(4.15)
≤ ρq,Θ̧j∥δx

j
t∥P + ρs,Θ̧jVδ(x

j
t , x̄

j∗
0|t) + ρ

ū,
∴
u,Θ̧j

∥ūj∗0|t −
∴
ujt∥+ 2σmax(P )Md,

(4.18b)
= ρjq∥δx

j
t∥P + ρjū,u∥ūj∗0|t −

∴
ujt∥+ 2σmax(P )Md,

(4.18f)
= qj∗1|t.

2) For k ≥ 0: From (4.18d), the tube size s satisfies

sjk+1|t+1

(4.18d)
= ρθ̧js

j
k|t+1 + wjk|t+1

(4.22),(4.23)
≤ ρθ̧js

j∗
k+1|t − ρk+1

θ̧j
wj∗0|t + wj∗k+1|t

(4.18d)
= sj∗k+2|t − ρk+1

Θ̧j
wj∗0|t.

Consider sjk+1|t+1

(4.22)
≤ sj∗k+2|t

(4.18e)
≤ δloc. Then, from (4.11), we have that wjk+1|t+1 ≤ wj∗k+2|t. For

the q−tube, we achieve the desired property through the following steps.

qjk+1|t+1

(4.18f),(4.20)
= ρq,Θ̧jq

j
k|t+1 + ρs,Θ̧js

j
k|t+1 + ρ

ū,
∴
u,Θ̧j

∥κ(x̄jk|t+1, x̄
j∗
k+1|t, ū

j∗
k+1|t)−

∴
ujt+k+1∥

+ 2σmax(P )Md,

(4.6)
≤ ρq,Θ̧jq

j
k|t+1 + ρs,Θ̧js

j
k|t+1 + ρ

ū,
∴
u,Θ̧j

(
κmaxVδ(x̄

j
k|t+1, x̄

j∗
k+1|t) + ∥ūj∗k+1|t −

∴
ujt+k+1∥

)
+ 2σmax(P )Md,

(4.14)
≤ ρq,Θ̧jq

j
k|t+1 + ρs,Θ̧j

(
sjk|t+1 + Vδ(x̄

j
k|t+1, x̄

j∗
k+1|t)

)
+ ρ

ū,
∴
u,Θ̧j

∥ūj∗k+1|t −
∴
ujt+k+1∥

+ 2σmax(P )Md,

(4.21),(4.22),(4.24)
≤ ρq,Θ̧jq

j∗
k+1|t + ρs,Θ̧j

(
sjk+1|t − ρk

θ̧j
wj∗0|t + ρk

θ̧j
wj∗0|t

)
+ ρ

ū,
∴
u,Θ̧j

∥ūj∗k+1|t −
∴
ujt+k+1∥

+ 2σmax(P )Md,

(4.18f)
= qjk+2|t.

Part 3: Constraint satisfaction We consider the candidate values ask|t+1 = as∗k+1|t and aqk|t+1 = aq∗k+1|t

for k = 0, . . . , nt − 1 − t. Consequently, constraint (4.18i) is trivially satisfied at time t + 1. We
have that

hi(x̄
j
k|t+1, ū

j
k|t+1) + cis

j
k|t+1

(4.13)
≤ hi(x̄

j∗
k+1|t, ū

j∗
k+1|t) + ciVδ(x̄

j
k|t+1, x̄

j∗
k+1|t) + cis

j
k|t+1,

(4.21),(4.22)
≤ hi(x̄

j∗
k+1|t, ū

j∗
k+1|t) + cis

j∗
k+1|t.

91



Thus, (4.18g) gives

ask|t+1

(
hi(x̄

j
k|t+1, ū

j
k|t+1) + cis

j
k|t+1

)
≤ as∗k+1|t

(
hi(x̄

j∗
k+1|t, ū

j∗
k+1|t) + cis

j∗
k+1|t

)
≤ 0.

Inequality (4.22) ensures that (4.18e) holds.
Additionally, we have that

aqk|t+1

(
hi(x

j−1
t+k+1, u

j−1
t+k+1) + ciq

j
k|t+1

) (4.24)
≤ aq∗k+1|t

(
hi(x

j−1
t+k+1, u

j−1
t+k+1) + ciq

j∗
k+1|t

) (4.18h)
≤ 0.

The simultaneous satisfaction of constraints (4.18g), (4.18h), (4.18i) ensures that (xjt+1, u
j
t) ∈ Z

for all t = 0, . . . nt − 1.

Now that conditions for recursive feasibility in the time domain have been established, we then
show that the updates to the estimated model parameters between task cycles do not result in a
loss of feasibility of R(Θ̧j, x0,

∴
xj,

∴
uj, 0) over the iteration domain. This requires the following

requirement to be placed on the adaptive scheme and initial problem feasibility.

Assumption 22. The parameter estimates θ̧j and θ̧j+1 and the set-valued functions Θ̧̃
j
, Θ̧̃

j+1
, and

∆Θ̧̃
j+1

that are generated by the adaptive scheme satisfy θ̧j+1(x)⊕ Θ̧̃
j+1

(x) ⊆ θ̧j(x)⊕ Θ̧̃
j
(x) and

Θ̧̃
j+1

(x)⊕∆Θ̧̃
j+1

(x) ⊆ Θ̧̃
j
(x) for all x ∈ X .

Assumption 23. At iteration 0 and timestep 0, R(Θ̧j, x0,
∴
x0,

∴
u0, 0) is feasible.

Lemma 25. Let Assumptions 15, 16, 17, 19, 20, 21, 22, and 23 hold. Then R(Θ̧j, xj0,
∴
xj,

∴
uj, 0) is

feasible for all j ∈ I≥0.

Proof. By nature of Algorithm 4, feasibility of R(Θ̧j+1, x0,
∴
xj+1,

∴
uj+1, 0) is enforced at any iter-

ation wherein an update to (
∴
xj+1,

∴
uj+1) has occurred. Hence, in the remainder of the proof, only

the case where (
∴
x,

∴
u) = (

∴
xj+1,

∴
uj+1) = (

∴
xj,

∴
uj) needs to be considered.

At time t = 0 of iteration j + 1, let

ūj+1
k|0 = κ(x̄j+1

k|t , x̄
j∗
k|0, ū

j∗
k|0),

aj+1
s,k+1|0 = aj∗s,k+1|0,

aj+1
q,k+1|0 = aj∗q,k+1|0.

(4.25)

denote a candidate solution to R(Θ̧j+1, x0,
∴
xj+1,

∴
uj+1, 0), where, due to the parameter change

∆θ̧j+1, the nominal model predicts

x̄j+1
k+1|t

(4.18b)
= fθ̧j+1(x̄j+1

k|t , ū
j+1
k|t )

(4.3)
= fθ̧j(x̄

j+1
k|t , ū

j+1
k|t ) +G(x̄j+1

k|t , ū
j+1
k|t )∆θ̧

j+1(x̄j+1
k|t ).
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We break up the proof into several parts. First, we show that the difference between x̄j∗·|0 and
x̄j+1
·|0 can be bounded by some quantity s̃j+1

k+1|0 such that

Vδ(x̄
j+1
k|0 , x̄

j∗
k|0) ≤ s̃j+1

k|0 , k = 0, . . . , nt. (4.26)

Here, we define

s̃j+1
0|0 = 0, s̃j+1

k+1|0 = ρθ̧j s̃
j+1
k|0 + w̃

δ,∆Θ̧̃
j+1

,{0}(x̄
j∗
k|0, ū

j∗
k|0, s̃

j+1
k|0 ). (4.27)

As x̄j+1
0|0 = x̄j∗0|0 = x0 from (4.18b), (4.26) is satisfied at k = 0.

To show that (4.26) is satisfied at k + 1, assume that (4.26) holds at step k. Then,

Vδ(x̄
j+1
k+1|0, x̄

j∗
k+1|0)

(4.18b)
= Vδ(fθ̧j+1(x̄j+1

k|0 , ū
j+1
k|0 ), fθ̧j(x̄

j∗
k|0, ū

j∗
k|0)),

≤ Vδ(fθ̧j(x̄
j+1
k|0 , ū

j+1
k|0 ), fθ̧j(x̄

j∗
k|0, ū

j∗
k|0))

+ Vδ(x̄
j∗
k+1|0 +G(x̄j+1

k|0 , ū
j+1
k|0 )∆θ̧

j+1(x̄j+1
k|0 ), x̄

j∗
k+1|0),

(4.7)(4.9a)
≤ ρθ̧jVδ(x̄

j+1
k|0 , x̄

j∗
k|0) + w̃

∆Θ̧̃
j+1

,{0}(x̄
j+1
k|0 , ū

j+1
k|0 ),

(4.9b)
≤ (ρθ̧j + L

∆Θ̧̃
j+1)Vδ(x̄

j+1
k|0 , x̄

j∗
k|0) + w̃

∆Θ̧̃
j+1

,{0}(x̄
j∗
k|0, ū

j∗
k|0),

(4.26),(4.10)
≤ ρθ̧j s̃

j+1
k|0 + w̃

δ,∆Θ̧̃
j+1

,{0}(x̄
j∗
k|0, ū

j∗
k|0, s̃

j+1
k|0 ),

(4.27)
≤ s̃j+1

k+1|0

where the second inequality arises from the triangle inequality.
We then show that the state x̄j+1

k|0 with a corresponding tube of radius sj+1
k|0 lies inside the tube

centered at x̄j∗k|0 with radius sj∗k|0. We first observe the following

wj+1
k|0

(4.18c)
= w̃

δ,Θ̧̃
j+1

,D(x̄
j+1
k|0 , ū

j+1
k|0 , s

j+1
k|0 )

(4.11),(4.26)
≤ w̃

δ,Θ̧̃
j+1

,D(x̄
j∗
k|0, ū

j∗
k|0, s

j+1
k|0 + s̃j+1

k|0 ),

(4.12)
≤ w̃

δ,Θ̧̃
j
,D(x̄

j∗
k|0, ū

j∗
k|0, s

j+1
k|0 + s̃j+1

k|0 )− w̃
δ,∆Θ̧̃

j+1
,{0}(x̄

j∗
k|0, ū

j∗
k|0, s

j+1
k|0 + s̃j+1

k|0 ),

(4.10),(4.18c)
= wj∗k|0 + L

Θ̧̃
j(sj+1

k|0 − sj∗k|0 + s̃j+1
k|0 )− w̃

δ,∆Θ̧̃
j+1

,{0}(x̄
j∗
k|0, ū

j∗
k|0, s

j+1
k|0 + s̃j+1

k|0 ).

(4.28)

This will enable us to demonstrate that

sj+1
k|0 + s̃j+1

k|0 − sj∗k|0 ≤ 0, k = 0, . . . , nt. (4.29)

Note that from (4.18d) and (4.27) sj+1
0|0 = sj∗0|0 = s̃j+1

0|0 = 0 such that (4.29) is satisfied at k = 0.
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Suppose at prediction step k that (4.29) is satisfied. Then,

sj+1
k+1|0 + s̃j+1

k+1|0 − sj∗k+1|0
(4.18d),(4.27)

= ρθ̧j+1sj+1
k|0 + wj+1

k|0 + ρθ̧j(s̃
j+1
k|0 − sj∗k|0) + w̃

δ,∆Θ̧̃
j+1

,{0}(x̄
j∗
k|0, ū

j∗
k|0, s̃

j+1
k|0 )− wj∗k|0,

(4.10)
= ρθ̧j+1sj+1

k|0 + wj+1
k|0 + ρθ̧j(s̃

j+1
k|0 − sj∗k|0) + w̃

δ,∆Θ̧̃
j+1

,{0}(x̄
j∗
k|0, ū

j∗
k|0, s

j∗
k|0)− wj∗k|0

+ L
∆Θ̧̃

j+1(s̃j+1
k|0 − sj∗k|0),

(4.8),(4.9e)
≤ (ρθ̧j + L

∆Θ̧̃
j+1)(sj+1

k|0 + s̃j+1
k|0 − sj∗k|0) + wj+1

k|0 + w̃
δ,∆Θ̧̃

j+1
,{0}(x̄

j∗
k|0, ū

j∗
k|0, s

j∗
k|0)− wj∗k|0,

(4.28)
≤ (ρθ̧j + L

∆Θ̧̃
j+1 + L

Θ̧̃
j)(sj+1

k|0 + s̃j+1
k|0 − sj∗k|0)− w̃

δ,∆Θ̧̃
j+1

,{0}(x̄
j∗
k|0, ū

j∗
k|0, s

j+1
k|0 + s̃j+1

k|0 )

+ w̃
δ,∆Θ̧̃

j+1
,{0}(x̄

j∗
k|0, ū

j∗
k|0, s

j∗
k|0),

(4.10)
= (ρθ̧j + L

Θ̧̃
j)(sj+1

k|0 + s̃j+1
k|0 − sj∗k|0)

(4.29)
≤ 0.

Hence, (4.29) holds by induction.
We then show that constraint (4.18g) continues to be satisfied. Here,

aj+1
s,k+1|t(hi(x̄

j+1
k|0 , ū

j+1
k|0 ) + cis

j+1
k|0 )

(4.13),(4.26)
≤ aj+1

s,k+1|t(hi(x̄
j∗
k|0, ū

j∗
k|0) + cis̃

j+1
k|0 + cis

j+1
k|0 ),

(4.29)(4.25)
≤ aj∗s,k+1|t(hi(x̄

j∗
k|0, ū

j∗
k|0) + cis

j∗
k|0)

(4.18g)
≤ 0.

We now show that (4.18h) continues to be satisfied. For this, we first demonstrate that

qj+1
k|0 ≤ qj∗k|0 (4.30)

for all k = 0, . . . , nt − 1. As xj+1
0 = xj0 =

∴
xj0 = x0, ∥δxj+1

0 ∥ = ∥δxj0∥ = 0. Consequently,
from (4.18f), qj+1

0|0 = qj∗0|0 = 0 such that (4.30) holds at k = 0. Suppose that (4.30) holds for
k ∈ {0, . . . , nt − 2}. Then,

qj+1
k+1|0

(4.18f)
= ρq,Θ̧j+1qj+1

k|0 + ρs,Θ̧j+1sj+1
k|0 + ρ

ū,
∴
u,Θ̧j+1

∥ūj+1
k|0 − ∴

uk∥+ 2σmax(P )Md.
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Since Θ̧j+1(x) ⊆ Θ̧j(x) for all x ∈ X , θ̧j+1
max ≤ θ̧jmax. Therefore,

qj+1
k+1|0

(4.14)
≤ ρq,Θ̧jq

j+1
k|0 + ρs,Θ̧js

j+1
k|0 + ρ

ū,
∴
u,Θ̧j

∥ūj+1
k|0 − ∴

uk∥+ 2σmax(P )Md,

(4.29),(4.25)
≤ ρq,Θ̧jq

j+1
k|0 + ρs,Θ̧j(s

j∗
k|0 − s̃j+1

k|0 ) + ρ
ū,

∴
u,Θ̧j

∥κ(x̄j+1
k|0 , x̄

j∗
k|0, ū

j∗
k|0)−

∴
uk∥+ 2σmax(P )Md,

≤ ρq,Θ̧jq
j+1
k|0 + ρs,Θ̧j(s

j∗
k|0 − s̃j+1

k|0 ) + ρ
ū,

∴
u,Θ̧j

∥κ(x̄j+1
k|0 , x̄

j∗
k|0, ū

j∗
k|0)− ūj∗k|0∥

+ ρ
ū,

∴
u,Θ̧j

∥ūj∗k|0 −
∴
uk∥+ 2σmax(P )Md,

(4.6)
≤ ρq,Θ̧jq

j+1
k|0 + ρs,Θ̧j(s

j∗
k|0 − s̃j+1

k|0 ) + κmaxρ
ū,

∴
u,Θ̧j

Vδ(x̄
j+1
k|0 , x̄

j∗
k|0)

+ ρ
ū,

∴
u,Θ̧j

∥ūj∗k|0 −
∴
uk∥+ 2σmax(P )Md,

(4.14),(4.26)
≤ ρq,Θ̧jq

j+1
k|0 + ρs,Θ̧js

j∗
k|0 + ρ

ū,
∴
u,Θ̧j

∥ūj∗k|0 −
∴
uk∥+ 2σmax(P )Md,

(4.30)
≤ ρq,Θ̧jq

j∗
k|0 + ρs,Θ̧js

j∗
k|0 + ρ

ū,
∴
u,Θ̧j

∥ūj∗k|0 −
∴
uk∥+ 2σmax(P )Md,

(4.18f)
= qj∗k+1|0.

Hence,

aj+1
q,k|0(hi(

∴
xk,

∴
uk) + ciq

j+1
k|0 ) ≤ aj∗q,k|0(hi(

∴
xk,

∴
uk) + ciq

j∗
k|t) ≤ 0 (4.31)

such that constraint (4.18h) continues to be satisfied.
Equation (4.29) gives that

sj+1
k|0 ≤ sj∗k|0

(4.18e)
≤ δloc

such that (4.18e) continues to be satisfied. Moreover, (4.25) ensures that aj+1
s,k|0 and aj+1

q,k|0 satisfy
constraint (4.18i). Consequently, the candidate solution given by (4.25) is feasible for (4.18).

Theorem 5. Let Assumptions 15, 16, 17, 19, 20, 21, 22, and 23 hold. Then R(Θ̧j, xjt ,
∴
xj,

∴
uj, t) is

feasible for all timesteps t ∈ I[0,nt−2] and iterations j ∈ I≥0.

Proof. The desired result is an immediate consequence of Lemmas 24 and 25.

4.3.3.2 Cost and Benchmark Input Convergence

Now that conditions for recursive feasibility have been established, convergence of the inte-
grated cost and benchmark input sequence is examined.
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Theorem 6. Suppose that Assumptions 15-23 hold. Then, the optimal integrated cost at timestep

0 monotonically decreases over the iterations such that

J int∗
Θ̧j+1,

∴
xj+1,

∴
uj+1

≤ J int∗
Θ̧j ,

∴
xj ,

∴
uj
.

Proof. By nature of Algorithm 4, J int∗
Θ̧j+1,xj ,uj

< J int∗
Θ̧j+1,

∴
xj ,

∴
uj

is enforced at any iteration wherein an

update to (
∴
xj+1,

∴
uj+1) has occurred. Hence, in the remainder of the proof, only the case where

(
∴
xj+1,

∴
uj+1) = (

∴
xj,

∴
uj) needs to be considered.

Let a candidate solution to P (Θ̧j+1, x0,
∴
xj+1,

∴
uj+1, 0) be given by (4.25), which, following from

Lemma 25, is feasible. We then show that this candidate solution does not result in an increase in
the integrated system cost. From (4.16) we have that

ΩX (x̄
j∗
k|0, s

j∗
k|0) = {x ∈ X : Vδ(x, x̄

j∗
k|0) ≤ sj∗k|0},

⊇ {x ∈ X : ∥x− x̄j+1
k|0 ∥P + ∥x̄j+1

k|0 − x̄j∗k|0∥P ≤ sj∗k|0},
(4.29)
⊇ {x ∈ X : ∥x− x̄j+1

k|0 ∥P + ∥x̄j+1
k|0 − x̄j∗k|0∥P ≤ s

j+1

k|0 + s̃j+1
k|0 },

(4.26)
⊇ {x ∈ X : ∥x− x̄j+1

k|0 ∥P ≤ s
j+1

k|0 },
(4.16)
= ΩX (x̄

j+1
k|0 , s

j+1
k|0 ).

Similarly, (4.17) gives

ΩU(ū
j∗
k|0, s

j∗
k|0) = {u ∈ U : ∥u− ūj∗k|0∥ ≤ κmaxs

j∗
k|0},

⊇ {u ∈ U : ∥u− ūj+1
k|0 ∥+ ∥ūj+1

k|0 − ūj∗k|0∥ ≤ κmaxs
j∗
k|0},

(4.29)
⊇ {u ∈ U : ∥u− ūj+1

k|0 ∥+ ∥ūj+1
k|0 − ūj∗k|0∥ ≤ κmax(s

j+1

k|0 + s̃j+1
k|0 )},

(4.6),(4.25),(4.26)
⊇ {u ∈ U : ∥u− ūj+1

k|0 ∥ ≤ s
j+1

k|0 },
(4.17)
= ΩU(ū

j+1
k|0 , s

j+1
k|0 ).

Given the definition of J int in (4.5) and Assumption 18, we then have that

J int(x̄j+1
·|0 , ū

j+1
·|0 , s

j+1
·|0 , 0) ≤ J int(xj∗·|0,u

j∗
·|0, s

j∗
·|0, 0).

Therefore, as ūj+1
·|0 corresponds to a feasible solution to P (Θ̧j+1, x0,

∴
xj+1,

∴
uj+1, 0), but is not nec-
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essarily optimal, the desired result is achieved:

J int∗
Θ̧j+1,

∴
xj+1,

∴
uj+1

≤ J int(x̄j+1
·|0 , ū

j+1
·|0 , s

j+1
·|0 , 0) ≤ J int∗

Θ̧j ,
∴
xj ,

∴
uj
.

Lemma 26. Suppose Assumptions 15-23 hold. Then, Algorithm 4 ensures that the sequence {∴
uj}j

converges to some
∴
u∞ over the iterations.

Proof. As a result of Theorem 6, we observe that J int∗
Θ̧j+1,

∴
xj+1,

∴
uj+1

≤ J int∗
Θ̧j ,

∴
xj ,

∴
uj

. As J int is continuous
from Assumption 18, then by the Weierstrass theorem, it attains a minimum over the compact set
Z . Consequently, J int∗

Θ̧j ,
∴
xj ,

∴
uj

converges, which, as a consequence of the benchmark input update

condition given by (4.19), implies that lim
j→∞

∥uj+1 − ∴
uj∥ = 0.

4.4 Uncertainty set adaptation

In this section, an adaptive scheme is proposed that addresses Assumptions 17, 20, and 22.
Here, the objective is to reduce the amount of uncertainty in the model parameter estimates while
continuing to ensure that θ(x) ∈ Θ̧(x)j . Consequently, the radii of the s− and q−tubes can be re-
duced when solving P (Θ̧j, xjt ,

∴
xj,

∴
uj, t), which can enable the controller to design more aggressive

input signals while continuing to guarantee robust constraint satisfaction.

4.4.1 Partitioned Parameter Adaptation

Based on the framework proposed in [77], an adaptive scheme is now proposed to identify
improved estimates of the model parameters θ(x). However, whereas [77] is restricted to the case
where the unknown model parameters are constant, here, the case where the model parameters
vary as a function of the system states is addressed. Consequently, additional consideration must
be taken to guarantee that θ(x) ∈ Θ̧(x)j for all x ∈ X without incurring unnecessary conservatism.

An immediate extension of the adaptive scheme proposed in [77] to the case where the unknown
model parameters are state-varying could be achieved by approximating the model parameters
as constants, and casting any impacts of state-dependent variations in the model parameters as
additive noise to the system. In other words, two modifications can be made: 1) the uncertainty set
would be defined as Θ̧j(x) = B(θ̧j(x), zΘ̧

j
(x)) = B(θ̧j, zΘ̧

j
) for a sufficiently large value of zΘ̧

j

such that θ(x) ∈ B(θ̧j, zΘ̧
j
) for all x ∈ X , and 2): the value of Md would need to be increased to

include the disturbances caused by variations in the model parameters. If the Lipschitz constant Lxθ
is known such that these variations can be bounded over X , this transformation is straightforward
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to perform. However, if X is big, or if Lxθ is large, significant conservatism is required in the
adaptive scheme to guarantee that the true model parameters remain within B(θ̧j, zΘ̧

j
) across X .

In other words, safe reductions in zΘ̧
j

can become difficult to achieve.
To mitigate this issue, an alternative approach is proposed that relies on less extreme approxima-

tions of the model parameters. Namely, rather than treating the model parameters as constant over
the entirety of X , we approximate the model parameters as being locally constant over user-defined
subsets of X . Here, by partitioning X into a group of subsets, we allow the model parameter esti-
mates θ̧(x) to vary from subset to subset, which enables θ̧(x) to serve as a more accurate estimate
of θ(x).

4.4.1.1 Partitioning of the State Space

We first outline the proposed method for partitioning the feasible state space. Let X⊇ ⊇ X
denote the smallest bounding hyperrectangle of X . We consider the case where X⊇ and X are
partitioned by a set of hyperplanes such that each partition of X⊇, denoted by X⊇

i , is a hyperrect-
angle. The resulting partitions of X formed by the hyperplanes, denoted individually as Xi, can
then each be classified as one of the following:

1. A ‘boundary’ partition, in that there exists an x ∈ Xi such that x ∈ ∂X , where ∂X denotes
the boundary of X .

2. An ‘interior’ partition, in that there does not exist an x ∈ Xi such that x ∈ ∂X .

As the sets X⊇ and X are partitioned using the same hyperplanes, and because X⊇ ⊇ X , the
element x ∈ Xi lies in one and only one partition of X⊇. Consequently, for notational convenience,
we index the partitions such that if x ∈ Xi, then Xi ⊆ X⊇

i . Specifically, Xi = X⊇
i when Xi is an

interior partition, and Xi ⊆ X⊇
i when Xi is a boundary partition. The remaining partitions of X⊇

wherein X⊇
i ∩X = ∅ do not share an index with any partition of X . This idea is shown graphically

for the case when nx = 2 in Fig. 4.2. Let np denote the number of Xi partitions. For the remainder
of Section 4.4.1 the partitions Xi will be leveraged to generate the proposed adaptive scheme. The
partitions X⊇

i will be revisited in Section 4.4.2.
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Figure 4.2: The feasible state set X (gray area) is bounded by the hyperrectangle X⊇ (green area).
The partitions are generated by hyperplanes (dashed green lines). X5 is the sole interior partition,
while all other Xi are boundary partitions that are subsets of their respective X⊇

i .

4.4.1.2 Parameter Estimate Update Law

The method for which the model parameter uncertainty sets are updated is now described.
This adaptive scheme follows closely to the method described in [77], but contains additional
considerations for the effects of state-dependence of the unknown parameters. As noted earlier, the
rationale behind the adaptive scheme is to approximate θ(x) as a piecewise constant function over
the feasible state space. Then, rather than attempting to identify the entirety of θ(x) simultaneously,
the estimate of θ(x) is treated as a constant over a given partition Xi, and the adaptive update law
will be applied over each partition independently.

Let

ϑXi = {ϑ : ϑ = θ(x), x ∈ Xi}

denote the set of all model parameter values that the system may take over state space partition Xi.
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Additionally,

(θXi , zϑ
Xi ) = argmin

θ,z

z

subject to ϑXi ⊆ B(θ, z)

denotes the center and radius of the smallest ball containing ϑXi . While θXi and zϑXi are unknown
to the user, we assume that an estimate, ẑϑXi is known that satisfies ẑϑXi ≥ zϑ

Xi .

Remark 2. If Assumption 15 holds such that θ(x) is locally Lipschitz continuous with Lipschitz

constant Lxθ , then ẑϑ
Xi can be computed as ẑϑ

Xi = Lxθr(Xi) where r(Xi) denotes the radius of Xi.

For partition Xi, suppose that a known parameter uncertainty set Θ̂j
Xi = B(θ̂jXi , z

Θ̂jXi ) exists
satisfying ϑXi ⊆ Θ̂j

Xi and that state and input data (x,u) = ({x0, . . . , xnt−1}, {u0, . . . , unt−2}) are
available from a previous experiment wherein the states of system (4.1) were in partition Xi for at
least a portion of the experiment. Let tXiin denote the timestep that the system enters partition Xi

and let tXiout denote the last timestep before the system exits partition Xi or the last timestep before
the experiment ends. We then wish to leverage data over the timestep sequence {tXiin , . . . , t

Xi
out} to

update the parameter uncertainty set Θ̂j
Xi . For simplicity of exposition we only describe the case

where the system enters partition Xi a single time according to the state sequence x. In the event
that the system enters partition Xi multiple times over the course of an experiment, the adaptive
update can be reinitialized at each tXiin . We first introduce a filtered form of the regressor matrix
G(xt, ut), denoted by ωt, which is given as

ωt+1 = ωt +G(xt, ut)−Kωωt, ω
t
Xi
in

= 0 (4.32)

for each t ∈ I
[t
Xi
in ,t

Xi
out]

with Kω ∈ (0, 1) chosen by the user.

Let θ̂t denote a placeholder estimate of θ(x) in partition Xi with θ̂
t
Xi
in

= θ̂jXi . Additionally, let

zΘ̂t denote a user-known estimate of an upper bound on the error of θ̂t with zΘ̂
t
Xi
in

= zΘ̂
j
Xi . We denote

the corresponding uncertainty set as Θ̂t = B(θ̂t, z
Θ̂
t ). Following (4.32), a filtered state variable, x̂t,

is then defined as

x̂t+1 =f(xt, ut) +G(xt, ut)θ̂t+1 + (Kω − 1)x̃t − (1−Kω)ωt(θ̂t − θ̂t+1), x̂tXiin
= x

t
Xi
in

(4.33)

where x̃t = xt − x̂t denotes the error of the filtered states. Let θ∗ denote an arbitrary point in ϑXi .
By substitution of (4.1), the dynamics of x̃t are then given as

x̃t+1 = G(xt, ut)
˜̂
θt+1 + (1−Kω)x̃t + (1−Kω)ωt(θ̂t − θ̂t+1) + vt, x̃tXiin

= 0 (4.34)
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where ˜̂
θt = θ∗ − θ̂t and vt is an element of the set

VXi = {v ∈ Rnx : v = c+ d, ∥c∥ ≤MXi
w , ∥d∥ ≤Md}. (4.35)

Here, MXi
w is some constant satisfying

MXi
w ≥ max

x∈Xi,u∈U
∥G(x, u)(θ(x)− θ∗)∥.

A valid value of MXi
w can be computed by the user as

MXi
w = 2ẑϑ

Xi max
x∈Xi,u∈U

∥G(x, u)∥. (4.36)

The signal vt corresponds to the disturbance resulting from the combination of the noise dt and the
error in approximating θ(x) as a constant over Xi.

We subsequently define an auxiliary variable ηt = x̃t − ωt
˜̂
θt, which, from (4.32) and (4.34),

evolves according to

ηt+1 = (1−Kω)ηt + vt, ηtXiin
= 0. (4.37)

Since vt is unknown, (4.37) cannot be solved directly by the user. Consequently, an estimate of η,
η̂, is generated by the dynamics

η̂t+1 = (1−Kω)η̂t.

From substitution of (4.37), this means that the auxiliary variable estimate error, η̃ = η − η̂, is
given by

η̃t+1 = (1−Kω)η̃t + vt. (4.38)

We further define a user-known excitation parameter Σ ∈ Rnθ×nθ according to

Σt+1 = Σt + (ωt)
⊤ωt, Σ

t
Xi
in

= βI (4.39)

for some user-selected β > 0. As ωt is real valued and because β > 0, from (4.39) we have that
Σt is symmetric and positive definite. The dynamics of the inverse of Σ are subsequently given as

Σ−1
t+1 =Σ−1

t − Σ−1
t ω⊤

t (I + ωtΣ
−1
t ω⊤

t )
−1ωtΣ

−1
t , Σ−1

t
Xi
in

=
1

β
I.
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From these signals, a parameter estimate update law of the form

θ̂t+1 = θ̂t + Σ−1
t ω⊤

t

(
I + ωtΣ

−1
t ω⊤

t

)−1
(x̃t − η̂t), (4.40)

= θ̂t + Σ−1
t ω⊤

t

(
I + ωtΣ

−1
t ω⊤

t

)−1
(ωt

˜̂
θt + η̃t) (4.41)

is proposed. By leveraging the experimental data, (4.40) provides a user-implementable update law
that can be translated to (4.41) as a consequence of the definitions of ηt and η̃t. Upon examination
of (4.41), we observe that the parameter update law relies on the auxiliary variable, which is
influenced by the unknown parameter estimation error ˜̂θt. Consequently, if ωt is adequately excited,
the presence of model parameter error can initiate updates to θ̂t.

In the form given by (4.40), the parameter update law can cause the model parameter estimates
to become unbounded. However, if it is known that ϑXi ⊆ B(θ̂t, z

Θ̂
t ), this issue can be mitigated.

Specifically, update law (4.40) is modified to

θ̄t+1 = Proj
(
θ̂t + Σ−1

t ω⊤
t

(
I + ωtΣ

−1
t ω⊤

t

)−1
(x̃t − η̂t), Θ̂t)

)
(4.42)

where Proj(·) denotes the projection operator such that θ̄t+1 ∈ Θ̂t. Consequently, because Θ̂t is a
convex set, if θ∗ ∈ Θ̂t, then

(˜̄θt+1)
⊤Σt+1

˜̄θt+1 ≤ (
˜̂
θt+1)

⊤Σt+1
˜̂
θt+1 (4.43)

where ˜̄θt = θ∗−θ̄t. As a consequence of the use of the projected update law in (4.42), the parameter
estimate error is, in the worst case, bounded by the set B(0, zΘ̂

t
Xi
in

).

Lemma 27. Let Assumptions 15 and 16 hold. Define V ˜̂
θt

=
˜̂
θ⊤t Σ

˜̂
θt. Then parameter update law

(4.42) ensures that

V ˜̂
θt+1

= V ˜̂
θt
− (x̃t − η̂t)

⊤ (I + ωtΣ
−1
t ω⊤

t

)−1
(x̃t − η̂t) + η̃⊤t η̃t. (4.44)

Proof. The proof is given in [77, Lemma 2]. However, whereas x̃t and η̃t are nonzero in [77] as
a consequence of additive noise and parameter estimation error with respect to constant unknown
model parameters, here these signals are nonzero as a consequence of additive noise and parameter
estimation error with respect to state-varying unknown model parameters.

The right hand side of (4.44) gives an upper bound on the error between the users parameter
estimate θ̂t and any arbitrary point in ϑXi . However, as η̃ is unknown to the user, this upper bound
cannot be computed in practice. In the following subsection, it will be demonstrated that this issue
can be mitigated.
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4.4.1.3 Uncertainty Set Radius Update Law

After updating the model parameter estimates θ̂t, the uncertainty set radius zΘ̂t is recalculated to
redefine the set Θ̂t.

Although Lemma 27 provides a closed-form expression for the size of ˜̂
θt, because ˜̂

θ
t
Xi
in

and η̃t
are unknown to the user, (4.44) cannot be solved. However, if Assumptions 15 and 16 hold such
that the user can identify the set VXi according to (4.35), then, the dynamics of η̃t given in (4.38)
enable the user to bound the size of η̃t according to

η̃⊤t η̃t ≤
(
Md +MXi

w

Kω

)2

. (4.45)

Using this insight along with (4.44), the uncertainty set radius update is proposed as

zΘ̂t =

√
V
zΘ̂t

λmin(Σt)
,

V
zΘ̂t+1

=V
zΘ̂t

− (x̃t − η̂t)
⊤(I + ωtΣ

−1
t ω⊤

t )
−1(x̃t − η̂t) +

(
Md +MXi

w

Kω

)2

, V
zΘ̂
t
Xi
in

= β(zΘ̂
t
Xi
in

)2.

(4.46)

where λmin(Σ) gives the smallest eigenvalue of Σ.
Now that the adaptive update to Θ̂t has been established according to update laws (4.42) and

(4.46), the update to Θ̂j
Xi is performed at the conclusion of the jth experiment as given by Algorithm

5.
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Algorithm 5 Adaptive update to Θ̂j
Xi

1: Given: Experimental state and input data (x,u), parameters Kω ∈ (0, 1), β > 0,
noise/disturbance bounds Md and MXi

w , and parameter uncertainty set Θ̂j
Xi = B(θ̂jXi , z

Θ̂jXi ).
2: Identify tXiin and tXiout.
3: Initialize Θ̂

t
Xi
in

= B(θ̂
t
Xi
in
, zΘ̂
t
Xi
in

) = Θ̂j
Xi and (θ̄, z̄) = (θ̂jXi , z

Θ̂jXi ).
4: for t ∈ I

[t
Xi
in ,t

Xi
out]

do

5: Calculate θ̂t+1 from (4.42) and zΘ̂t+1 from (4.46).
6: if

zΘ̂t+1 ≤ zΘ̂t − ∥θ̄ − θ̂t∥ (4.47)

then
7: Set (θ̄, z̄) = (θ̂t+1, z

Θ̂
t+1).

8: end if
9: end for

10: Update uncertainty set Θ̂j+1
Xi with

(θ̂j+1
Xi , z

Θ̂j+1
Xi ) = (θ̄, z̄). (4.48)

Assumption 24. At iteration 0, an uncertainty set Θ̂0
Xi is known that satisfies ϑXi ⊆ Θ̂0

Xi for each

partition, Xi.

Lemma 28. Suppose that Assumptions 15, 16, and 24 hold. Then implementation of Algorithm 5

over partition Xi ensures for all j ∈ I≥0 that

Θ̂j+1
Xi ⊆ Θ̂j

Xi

and

ϑXi ⊆ Θ̂j
Xi .

Proof. Assume Θ̂j+1
Xi ⊈ Θ̂j

Xi . Then, by the definition Θ̂j
Xi = B(θ̂jXi , z

Θ̂jXi )

sup
θ̂∈Θ̂j+1

Xi

∥θ̂ − θ̂jXi∥ > zΘ̂
j
Xi . (4.49)
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However,

sup
θ̂∈Θ̂j+1

Xi

∥θ̂ − θ̂jXi∥ ≤ sup
θ̂∈Θ̂j+1

Xi

∥θ̂ − θ̂j+1
Xi ∥+ ∥θ̂j+1

Xi − θ̂jXi∥,

≤ zΘ̂
j+1
Xi + ∥θ̂j+1

Xi − θ̂jXi∥,
(4.47)
≤ zΘ̂

j
Xi ,

where the second inequality arises from the definition of Θ̂j
Xi . However, this contradicts (4.49)

which gives the first claim.
For an arbitrary θ∗ ∈ ϑXi , suppose that

V ˜̂
θ
t
Xi
in

≤ V
zΘ̂
t
Xi
in

.

Additionally, from (4.44), (4.45), and (4.46) we have that V ˜̂
θt+1

− V ˜̂
θt

≤ V
zΘ̂t+1

− V
zΘ̂t

. Therefore,
V ˜̂
θt
≤ V

zΘ̂t
for all t. Hence,

∥ ˜̂θt∥ ≤

√
V
zΘ̂t

λmin(Σt)
= zΘ̂t .

Then, following from (4.48), if θ∗ ∈ Θ̂j
Xi , then θ∗ ∈ Θ̂j+1

Xi . Since θ∗ is an arbitrary point in ϑXi and
ϑXi ⊆ Θ̂0

Xi from Assumption 24, this therefore gives the second claim.

Hence, by using the proposed adaptive scheme given by Algorithm 5, the unknown model
parameter values remain within the parameter uncertainty set, which shrinks monotonically over
time.

4.4.1.4 Enforcing Lipschitz Continuity of θ(x)

In Sections 4.4.1.2 and 4.4.1.3 a methodology was proposed for updating the uncertainty sets
Θ̂j

Xi based on experimental data available from when the system states were in the set Xi. As
demonstrated in Lemma 28, this adaptive algorithm ensures that θ(x) remains in the uncertainty
set for all x ∈ Xi after the uncertainty set update has occurred. However, if Assumption 15
holds such that θ(x) is Lipschitz continuous, then the update to Θ̂j

Xi may also provide additional
insight into the behavior of θ(x) in other partitions. For instance, if application of Algorithm 5 over
partition Xa results in significant changes to Θ̂j

Xa such that ∥θ̂j+1
Xa − θ̂jXa∥ and zΘ̂

j
Xa−zΘ̂

j+1
Xa are large,

then the sets Θ̂j+1
Xa and Θ̂j

Xb may be quite different even though Lipschitz continuity should imply
that θ(x) should not change drastically over X . Consequently, application of Algorithm 5 on its
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own does not take full advantage of the user’s knowledge of the behavior of θ(x), which can result
in unnecessary conservatism in the model parameter estimation. Therefore we propose a method
for updating the uncertainty sets based on state data available in other partitions by leveraging
Lipschitz continuity of the unknown model parameters.

Let m(Xa,Xb) denote the maximum possible distance between a point in the set Xa and a point
in the set Xb according to

m(Xa,Xb) = sup
xa∈Xa,xb∈Xb

∥xa − xb∥P .

Additionally, let I(x) denote the set of indices of the partitions Xi that were entered over the course
of the state sequence x. A methodology that updates the uncertainty sets to enforce Lipschitz
continuity of the unknown model parameters is then given by Algorithm (6).

Algorithm 6 Enforcement of Lipschitz continuity of θ(x) on Θ̂j
Xi

1: Given: Experimental state and input data (x,u), parametersKω ∈ (0, 1) and β > 0, Lipschitz
constant Lxθ , matrix P , noise/disturbance bounds Md and MXi

w , and parameter uncertainty sets
Θ̂j

Xi = B(θ̂jXi , z
Θ̂jXi ) for each i ∈ I(x).

2: for i ∈ I(x) do
3: Update uncertainty set Θ̂j

Xi → Θ̂j+1
Xi by application of Algorithm 5.

4: for a ∈ I[0,np−1] \ i do
5: Redefine uncertainty set Θ̂j

Xa as

Θ̂j+1
Xa = Θ̂j

Xa ∩ Θ̂j+1
Xi ⊕B (0, Lxθm(Xa,Xi)) (4.50)

6: end for
7: end for

We now show that application of Algorithm 6 enables the set Θ̂j
Xa to be less conservative while

still maintaining robust identification of the unknown model parameters over Xa.

Lemma 29. Suppose that Assumptions 15, 16, and 24 hold. Then application of Algorithm 6 over

partition Xi ensures that

Θ̂j+1
Xa ⊆ Θ̂j

Xa (4.51)

and

ϑXa ⊆ Θ̂j+1
Xa . (4.52)
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for all a ∈ I[0,np−1] and j ∈ I≥0.

Proof. For the case where a = i, Lemma 28 gives the above two claims.
We then examine the case where a ̸= i. From the update law given by (4.50)

Θ̂j+1
Xa = Θ̂j

Xa ∩ Θ̂j
Xi ⊕B (0, Lxθm(Xa,Xi)) ⊆ Θ̂j

Xa

which gives claim (4.51).
From the assumption on Lipschitz continuity of θ(x) in Assumption 15, for xa ∈ Xa and

xi ∈ Xi we have that

∥θ(xa)− θ(xi)∥ ≤ Lxθm(Xa,Xi).

Consequently, as xa and xi are arbitrary points in Xa and Xi, and since ϑXi ⊆ Θ̂j+1
Xi , then

ϑXa ⊆ ϑXi ⊕B(0, Lxθm(Xa,Xi)) ⊆ Θ̂j+1
Xi ⊕B(0, Lxθm(Xa,Xi)).

Therefore, if ϑXa ⊆ Θ̂j
Xa , then ϑXa ⊆ Θ̂j+1

Xa = Θ̂j
Xa∩Θ̂

j+1
Xi ⊕B (0, Lxθm(Xa,Xi)). Since ϑXa ⊆ Θ̂0

Xa

from Assumption 24, then (4.51) holds for all j.

4.4.2 Generation of Θ̧j(x)

In Section 4.4.1 an adaptive scheme was proposed to generate uncertainty sets Θ̂j
Xi that: 1)

shrink monotonically, and 2) contain the true model parameter values in partition Xi at every itera-
tion. Specifically, over the partition Xi, Algorithm 6 generates a state-invariant parameter estimate
θ̂jXi and uncertainty set radius zΘ̂

j
Xi . However, for two partitions Xi and Xi+1 that are adjacent in

the state space, it does not hold in general that θ̂jXi = θ̂jXi+1
or zΘ̂

j
Xi = z

Θ̂jXi+1 . Consequently, if the
uncertainty set function Θ̧j(x) that is used by the RAEILC controller in Algorithm 4 were to be
defined as

Θ̧j(x) = Θ̂j
Xi if x ∈ Xi, i ∈ I[0,np−1],

then, while requirement (4.2) of Assumption 17 and Assumption 22 would hold, the assumption
of Lipschitz continuity of θ̧j(x) and zΘ̧

j
(x) would not be satisfied at the partition boundaries.

This loss of continuity not only results in a loss of Assumption 17, but also makes it difficult to
satisfy condition (4.9b) of Assumption 20 which effectively requires that the amount of uncertainty
introduced to the system dynamics is Lipschitz with respect to the system state. In this section we
identify a mitigation strategy to enable satisfaction of Assumption 17. Assumption 20 will then be
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addressed in Section 4.4.3.

Definition 7. As described in [100], suppose there exists a hyperplane, H , such that H ∩X⊇
i ̸= ∅

and that X⊇ lies entirely within a closed half-space generated by H . The set H ∩ X⊇
i , whose

dimension is n, is termed an ‘n-face’ of X⊇
i .

As with all polytopes, the hyperrectangle partition X⊇
i consists of n-faces whose dimensionality

ranges from 0 to nx. For instance, 0-faces correspond to vertices of X⊇
i , 1-faces represent edges of

X⊇
i , 2-faces are faces of X⊇

i , etc. The nx-face of X⊇
i is given by X⊇

i itself.
Using information about the n-faces of X⊇

i , we will now describe a method for further dividing
X⊇
i into a set of subpartitions. If υ is a 0-face (vertex) of partition X⊇

i , let F(υ,X⊇
i ) denote the

set of n-faces of X⊇
i for which υ is an element. Then, given a set F , let C(F) denote the set of

centroids of the n-faces in F . Consequently, C(F(υ,X⊇
i )) is the set of points corresponding to the

centroids of the n-faces of X⊇
i that contain the vertex, υ. The convex hull of C(F(υ,X⊇

i )), denoted
as conv(C(F(υ,X⊇

i ))), is a polytope since C(F(υ,X⊇
i )) is a finite set. In fact, conv(C(F(υ,X⊇

i )))

is itself a hyperrectangle that constitutes a subpartition of X⊇
i . Namely,

2nx⋃
a=1

conv
(
C(F(υa,X⊇

i ))
)
= X⊇

i (4.53)

where υa denotes the ath vertex of X⊇
i .

Let P(x) denote the set of indices, i, for which x ∈ cl(X⊇
i ) where cl(A) denotes the closure

of the set A. In other words, P(x) identifies which partitions, X⊇
i , that x belongs to or lies on the

boundary of.
For every element in C(F(υ,X⊇

i )), B(θ̧j(x), zΘ̧
j
(x)) is constructed as the smallest ball con-

taining the set
⋃
i∈P(x)B(θ̂jXi , z

Θ̂jXi ) such that

B(θ̧j(x), zΘ̧
j

(x)) ⊇
⋃

i∈P(x)

B(θ̂jXi , z
Θ̂jXi ). (4.54)

Note that θ̂jXi and zΘ̂
j
Xi may be undefined if X⊇

i ∩X = ∅. In this case, we say thatB(θ̂Xi , zΘ
Xi ) = ∅

in (4.54).
To define Θ̧j(x) over the remainder of conv

(
C(F(υ,X⊇

i ))
)
, θ̧j(x) and zΘ̧

j
(x) are calculated

at every x ∈ conv
(
C(F(υ,X⊇

i ))
)

through multilinear interpolation based on their values at the
sample points C(F(υ,Xi)).

Repeating this process for every vertex, υ, of partition X⊇
i allows Θ̧j(x) to be defined over

the entirety of X⊇
i . Conducting this process further at every partition satisfying X⊇

i ∩ X ̸= ∅
then enables Θ̧j(x) to be defined for every x ∈ X . This process of constructing Θ̧j(x) is shown
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graphically in Fig. 4.3.

Figure 4.3: An example of the construction of Θ̧(x) for nx = 2 and nθ = 1 over four partitions X⊇
i

(gray areas). The uncertainty sets Θ̂j
Xi = B(θ̂jXi , z

Θ̂jXi ) (yellow regions) are generated by Algorithm
6, but are not aligned at the boundaries of the partitions. For each partition, X⊇

i the centroids of
each of the n−faces of the system are identified (black dots are the centroids of the n−faces of
partition X⊇

1 .) For a vertex, υ, Θ̧j(x) is determined at each centroid that shares an n−face with
υ, i.e. at each element of C(F(υ,X⊇

1 )). For all x ∈ conv(C(F(υ,X⊇
1 ))) (area enclosed by the

dashed black lines), the values of θ̧j(x) (blue surface) and zΘ̧
j
(x) are determined via multilinear

interpolation of their values at the points in C(F(υ,X⊇
1 )). This process is repeated at every vertex

of each partition, but, for the purposes of visualization, is only shown here when the procedure is
applied at the vertex υ over each of the partitions such that Θ̧j(x) is depicted only for the x that lie
within the red square. This strategy serves to generate a Θ̧j(x) that is more conservative than the
sets Θ̂j

Xi , but enables continuity at the partition boundaries.

We will now demonstrate that θ(x) ∈ Θ̧j(x) for all x ∈ X . For this, we require the following
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lemma.

Lemma 30. For some set S, if S ⊆ B(xa, za) ∩B(xb, zb), then

S ⊆ B(λxa + (1− λ)xb, λza + (1− λ)zb) (4.55)

for λ ∈ [0, 1].

Proof. Suppose for some x ∈ S that x /∈ B(λxa + (1− λ)xb, λza + (1− λ)zb) such that

∥x− λxa − (1− λ)xb∥ = ∥λx− λxa + (1− λ)x− (1− λ)xb∥ > λza + (1− λ)zb.

By the triangle inequality and because λ ∈ [0, 1], we have

λ∥x− xa∥+ (1− λ)∥x− xb∥ > λza + (1− λ)zb.

But since x ∈ B(xa, za) ∩B(xb, zb), then

∥x− xa∥ < za, ∥x− xb∥ < zb,

so

λza + (1− λ)zb > λza + (1− λ)zb

which is a contradiction. Therefore, since x is an arbitrary point in S, we obtain (4.55).

Theorem 7. Suppose that Assumptions 15, 16, and 24 hold. Then, for all x ∈ X ,

θ(x) ∈ Θ̧j(x). (4.56)

Proof. To demonstrate (4.56), we will show that θ(x) ∈ Θ̧j(x) for x in an arbitrary partition Xi.
For vertex υ of partition X⊇

i for which X⊇
i ∩ X ̸= ∅, from (4.54) we have that

Θ̧j(x) ⊇ Θ̂j
Xi , ∀x ∈ C(F(υ,X⊇

i )). (4.57)

Suppose that we are interested in calculating the value of (θ̧j(x2nx+1−1), zΘ̧
j
(x2

nx+1−1)) at some
point x2nx+1−1 ∈ conv

(
C(F(υ,X⊇

i ))
)
. Evaluating (θ̧j(x2

nx+1−1), zΘ̧
j
(x2

nx+1−1)) via multilin-
ear interpolation based on the values of (θ̧j(x), zΘ̧

j
(x)) at the sample points in C(F(υ,X⊇

i )) re-
quires nx − 1 linear interpolations to be performed, where (θ̧j(xa), zΘ̧

j
(xa)) is evaluated based

on the points (θ̧j(x2(a−nx)−1), zΘ̧
j
(x2(a−nx)−1)) and (θ̧j(x2(a−nx)), zΘ̧

j
(x2(a−nx))) for a ∈ {2nx +

1, . . . , 2nx+1 − 1} and the points {x1, . . . , xnx} are the elements of C(F(υ,X⊇
i )).
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From Lemma 30, we have that, if Θ̧j(x2(a−nx)−1)) ∩ Θ̧j(x2(a−nx))) ⊇ Θ̂j
Xi , then Θ̧j(xa) ⊇ Θ̂j

Xi .
Since, from (4.57), we have that Θ̧j(x1), . . . , Θ̧j(xnx) ⊇ Θ̂j

Xi , then, by induction,

Θ̧j(x2
nx+1−1) ⊇ Θ̂j

Xi ,∀x
2nx+1−1 ∈ conv

(
C(F(υ,X⊇

i ))
)
. (4.58)

Moreover, as (4.58) holds for an arbitrary vertex υ of X⊇
i , and because X⊇

i ⊇ Xi, (4.53) then
gives that

Θ̧j(x) ⊇ Θ̂j
Xi ,∀x ∈ Xi. (4.59)

Since, from Lemma 29, θ(x) ∈ Θ̂j
Xi is guaranteed by the adaptive law, and as (4.59) holds for

any arbitrary partition Xi with X =
⋃
iXi, then θ(x) ∈ Θ̧j(x) for all x ∈ X .

As Θ̧j(x) is identified via multilinear interpolation, (θ̧j(x), zΘ̧
j
(x)) is therefore a polynomial

of order nx over the set conv
(
C(F(υ,X⊇

i ))
)
. Moreover, as conv

(
C(F(υ,X⊇

i ))
)

is compact, then
(θ̧j(x), zΘ̧

j
(x)) is locally C1 over X⊇

i . Given the definition of Θ̧j(x) in (4.54), we additionally
observe that on the boundary between the sets conv

(
C(F(υa,X⊇

b ))
)

and conv
(
C(F(υc,X⊇

d ))
)
,

that the points of C(F(υa,X⊇
b )) and C(F(υc,X⊇

d )) that lie on this boundary have identical values of
(θ̧j(x), zΘ̧

j
(x)). Consequently, interpolations performed along this boundary are based on identical

sample values and therefore yield equivalent values of (θ̧j(x), zΘ̧
j
(x)). Hence, (θ̧j(x), zΘ̧

j
(x)) is

C0 and piecewise C1 over X . As there are a finite number of sets conv
(
C(F(υ,X⊇

i ))
)
, this

implies that (θ̧j(x), zΘ̧
j
(x)) is Lipschitz continuous over the entirety of X such that Assumption

17 is satisfied.

4.4.3 Enabling Continuity of w̃Θ̧̃,D(x̄, ū)

If Θ̧j(x) is generated according to the method described in Section 4.4.2, we now propose a
definition of w̃Θ̧̃,D(x̄, ū) as

w̃Θ̧̃,D(x̄, ū) = max
θ̧̃∈Θ̧̃(x̄)

∥G(x̄, ū)θ̧̃∥P + max
d∈D

∥d∥P

such that conditions (4.9a)-(4.9e) of Assumption 20 can be satisfied.

Assumption 25. For all x ∈ X and j ∈ I≥0, zΘ̧
j
(x) is lower bounded by some zΘ̧min.

If MXi
w is calculated according to (4.36), Assumption 25 can be satisfied with

zΘ̧min = min
i∈I[0,np−1]

ẑϑ
Xi .
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To demonstrate (4.9a), consider some dw ∈ W
Θ̧̃
j
,D(x̄, ū). Consequently,

Vδ(x̆+ dw, x̆) = ∥dw∥P
(4.4)
≤ max

θ̧̃∈Θ̧̃j(x̄),d∈D
∥G(x̄, ū)θ̧̃ + d∥P ,

≤ max
θ̧̃∈Θ̧̃j(x̄)

∥G(x̄, ū)θ̧̃∥P + max
d∈D

∥d∥P = w̃
Θ̧̃
j
,D(x̄, ū).

To show (4.9b), we have

w̃
Θ̧̃
j
,D(x, κ(x, x̄, ū))− w̃

Θ̧̃
j
,D(x̄, ū)

= max
θ̧̃x∈Θ̧̃

j
(x)

∥G(x, κ(x, x̄, ū))θ̧̃x∥P + max
d∈D

∥d∥P − max
θ̧̃x̄∈Θ̧̃

j
(x̄)

∥G(x̄, ū)θ̧̃x̄∥P − max
d∈D

∥d∥P ,

≤ max
θ̧̃x∈Θ̧̃

j
(x)

∥G(x, κ(x, x̄, ū))θ̧̃x −G(x̄, ū)θ̧̃x∥P + max
θ̧̃x∈Θ̧̃

j
(x)

∥G(x̄, ū)θ̧̃x∥P

− max
θ̧̃x̄∈Θ̧̃

j
(x̄)

∥G(x̄, ū)θ̧̃x̄∥P ,

≤ zΘ̧
j

(x) max
θ̧̃x∈B(0,1)

∥G(x, κ(x, x̄, ū))θ̧̃x −G(x̄, ū)θ̧̃x∥P + max
θ̧̃x∈Θ̧̃

j
(x)

∥G(x̄, ū)θ̧̃x∥P

− max
θ̧̃x̄∈Θ̧̃

j
(x̄)

∥G(x̄, ū)θ̧̃x̄∥P .

As demonstrated in Section 4.4.2, zΘ̧
j
(x) is Lipschitz continuous for all j with some Lipschitz

constant denoted by LzΘ̧ . Consequently, by additionally leveraging the Lipschitz continuity of
G(x̄, ū),

w̃
Θ̧̃
j
,D(x, κ(x, x̄, ū))− w̃

Θ̧̃
j
,D(x̄, ū) ≤ LG,κz

Θ̧j(x)Vδ(x, x̄) +GP
maxLzΘ̧Vδ(x, x̄).

Let

zΘ̧max = max
x∈X

zΘ̧
j

(x)

denote the largest uncertainty set radius over the feasible state space and define

zΘ̧
j

ave =

∫
X z

Θ̧j(x)dx

V (X )

as the average value of zΘ̧
j
(x) over X where V (X ) denotes the volume of X . Then, for all x ∈ X ,

zΘ̧
j

(x) ≤ zΘ̧max

zΘ̧min
zΘ̧̃

j

ave.
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Let ϵz denote a value satisfying ϵzz
Θ̧
min ≥ GP

maxLzΘ̧ . Consequently, any L
Θ̧̃
j satisfying L

Θ̧̃
j ≥

LG,κ
z
Θ̧
max

z
Θ̧
min

zΘ̧̃
j

ave + ϵzz
Θ̧̃
j

ave gives (4.9b).
For (4.9c) we have

w̃
Θ̧̃
j
,D(x̄, ū) = max

θ̧̃∈Θ̧̃j(x)
∥G(x̄, ū)θ̧̃∥P + max

d∈D
∥d∥P = zΘ̧̃

j

(x̄) max
θ̧̃∈B(0,1)

∥G(x̄, ū)θ̧̃∥P + max
d∈D

∥d∥P .

Also,

w̃
Θ̧̃
j+1

,D(x̄, ū) = zΘ̧̃
j+1

(x̄) max
θ̧̃∈B(0,1)

∥G(x̄, ū)θ̧̃∥P + max
d∈D

∥d∥P ,

and

w̃∆Θ̧̃,{0}(x̄, ū) = (zΘ̧̃
j

(x̄)− zΘ̧̃
j+1

(x̄)) max
θ̧̃∈B(0,1)

∥G(x̄, ū)θ̧̃∥P .

Thus,

w̃Θ̧̃,D(x̄, ū) = w̃
Θ̧̃

+
,D(x̄, ū) + w̃∆Θ̧̃,{0}(x̄, ū)

such that (4.9c) holds.
For (4.9d) define

L
Θ̧̃
j = aLΘ̧̃

(
LG,κ

zΘ̧max

zΘ̧min
zΘ̧̃

j

ave + ϵzΘ̧z
Θ̧̃
j

ave

)
,

L
Θ̧̃
j+1 = aLΘ̧̃

(
LG,κ

zΘ̧max

zΘ̧min
zΘ̧̃

j+1

ave + ϵzΘ̧z
Θ̧̃
j+1

ave

)
,

L∆Θ̧̃ = aLΘ̧̃

(
LG,κ

zΘ̧max

zΘ̧min
z∆Θ̧̃
ave + ϵzΘ̧z

∆Θ̧̃
ave

)

for some aLΘ̧̃
> 1. From the definition of zΘ̧̃ave,

zΘ̧̃
j

ave = zΘ̧̃
j+1

ave + z∆Θ̧̃
ave .

Consequently (4.9d) holds.
Requirement (4.9e) is satisfied by choosing a value of aLΘ̧̃

large enough.
Hence, by adopting the adaptive scheme outlined in Sections 4.4.1 and 4.4.2, Assumptions 17

and 20 can both be satisfied.
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4.5 Simulation Example

A simulated case study of the RAEILC framework as given by Algorithm 4 is now presented.
Here a discretized cart-pendulum system is studied using a sample period of 0.04s with its dynam-
ics given by

xt+1 = xt + 0.04


ϕ̇t

39.2 sinϕt−0.2ϕ̇t−cosϕtϕ̇2t sinϕt+cosϕtut
8−cos2 ϕt

ṗt
9.8 sinϕt cosϕt−0.05 cosϕtϕ̇t+2u−2ϕ̇2t sinϕt

8−cos2 ϕt

+ 0.04


0

− cosϕtṗt
8−cos2 ϕt

0

− 2ṗt
8−cos2 ϕt

 θ(ṗt) + dt

with xt =
[
ϕt ϕ̇t pt ṗt

]⊤
where ϕt is the pendulum angle, ϕ̇t is the pendulum angular velocity,

pt is the cart position, and ṗt is the cart velocity. ut corresponds to an applied input force to the
cart. The parameter θ(ṗt) corresponds to the unknown drag coefficient of the cart, which varies as
a function of the cart speed. The feasible state and input sets are given by the inequalities

X =

{
x : |x| ≤

[
0.52 1.57 200 2.5

]⊤}
, U = {u : |u| ≤ 5} .

The noise, dt is bounded with Md = 0.001. The true model parameter θ(ṗ) evolves with the cart
speed according to

θ(ṗ) = 0.1e
− 8
ṗ2+0.01 ṗ2 + 0.9.

As θ(ṗ) is unknown to the user, parameter uncertainty sets are constructed. As θ is only expected
to vary as a function of the cart velocity, X is not partitioned along the ϕ, ϕ̇, or p dimensions of the
state space. Instead X is only divided along the ṗ dimension into np = 100 equally sized partitions.
Consequently, the uncertainty sets are given as Θ̂j

Xi = B(1, 0.99) for all i ∈ I[0,np−1]. To execute
the adaptive parameter identification scheme outlined in Section 4.4, the update law parameters are
chosen as Kω = 0.95 and β = 0.01.

The control objective is to maximize the position of the cart after nt = 201 timesteps with
an additional penalty placed on any deviations of the terminal state from the motionless, upright
pendulum and cart equilibrium. Specifically, the cost function is given by ℓ(x, u) = −0.04ṗ and
Vf = ϕ2 + ϕ̇2 + ṗ2.

The feedback law κ(x, x̄, ū) = ū + K(x̄, ū)(x − x̄) and matrix P are calculated by solving a
group of linear matrix inequalities as per [78] with a contraction factor ρθ̧0 = 0.9. The algorithm
is applied over 10 iterations and compared to a variant of the methodology described in [78] that
has been modified from a receding horizon to a shrinking horizon formulation.
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First, we compare the ability of the two adaptive methodologies to identify the true model
parameters. As [78] is unable to directly address the dependence of the unknown model parameter
on velocity, the impact of model parameter variations over X is instead treated as noise in this
case. Specifically, using this adaptation methodology, X contains only a single partition, X0,
which requires the value of MX0

w to be increased. In the context of (4.46), this makes a reduction
in zΘ̂t more difficult to achieve, which means that the adaptive algorithm in [78] requires additional
conservatism in the parameter estimation. This effect is observed in Fig. 4.4. Here, although
both algorithms are initiated with the same uncertainty set Θ̧0(x) for all x ∈ X , the RAEILC
algorithm is able to more confidently estimate the model parameters by iteration 10 as shown by
the reduction in zΘ̧

j
(x). Additionally, we see that the largest reductions in zΘ̧

j
(x) from its initial

value zΘ̧
0
(x) occur at larger values of ṗ. This is because the stage cost encourages the cart to

maximize its velocity. Consequently, a large majority of the historical state data that is available
for implementing the adaptive scheme corresponds to high velocities, which allows more learning
to occur in these partitions of the state space. Meanwhile, using the adaptation method from [78]
requires so much additional conservatism from the controller in order to compensate for the state-
dependent variations in the unknown model parameters that the uncertainty set Θ̧j(x) does not
shrink in size after 10 iterations. Consequently, any potential benefits to be gained by augmenting
the controller with an adaptive algorithm are not realized.
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Figure 4.4: Comparing the evolution of Θ̧j(x) when using the proposed adaptive scheme (area
covered by orange hatched lines) versus an adaptive strategy that does not take state-dependent
variations in the unknown model parameters into account (area covered by green hatched lines).
After the 10th iteration, both regions robustly contain the true model parameters (blue line), but the
proposed adaptive scheme is less conservative. Specifically, the sets produced by Θ̧j

RAEILC(x) are
smaller than those produced by Θ̧j

[73](x), particularly at higher cart velocities.

A comparison of the state and input trajectories of the cart that were measured during appli-
cation of the two control schemes is shown in Fig. 4.5. Here, by incorporating the partitioned
uncertainty set adaptation and using the q−tube in conjunction with the s−tube, the RAEILC al-
gorithm is able to apply more aggressive inputs in comparison to the control scheme outlined in
[78]. Consequently, the cart is able to achieve greater displacement while the system states and
input remain within the feasible set at all times. As a result, the cart is able to move 9.4% further
at the final iteration in comparison to the first iteration. Moreover, whereas the iteration-averaged
economic cost was -11.9 when using the controller from [78], the RAEILC incurred an average
cost of -12.8 over the 10 iterations.
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Figure 4.5: The state and input trajectories of the cart-pendulum system. The constraint boundaries
(dashed black lines) are not shown for the states ϕ, ϕ̇, or p, as the cart position never neared these
upper or lower limits. As the adaptive method used in [73] was unable to reduce the size of the
adaptive uncertainty sets after 10 iterations and does not enable reduced conservatism through the
use of the q−tube, no significant change in the control signal (ouside of the effects of noise) was
observed between Iteration 0 and Iteration 9 in this case.
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4.6 Conclusions

To enable improved economic control of uncertain nonlinear systems that perform repetitive,
discontinuously operated processes, an RAEILC algorithm has been described. The ability of
the framework to directly address the existence of unknown state-varying model parameters en-
able it to more accurately estimate the true system dynamics and consequently outperform similar
tube-based MPC strategies. Moreover, by leveraging data from previous task executions to relax
standard robust tube constraints, performance degradation caused by limits to the accuracy of the
model parameter estimates can be further mitigated. Despite the existence of this uncertainty and
noise, the proposed approach maintains recursive feasibility and convergence of the benchmark
control signal and integrated cost.

The development of a supplementary adaptive algorithm provides a computationally tractable
method for estimating the unknown model parameters with improved accuracy. Specifically, rather
than assuming that the parameters are constant over the feasible state space, the parameter estimate
update law treats the parameters as piecewise constant over the feasible state space. The efficacy of
this framework with regards to model parameter identification and system performance was then
demonstrated numerically to a simulated pendulum cart system.

The identification of methods to reduce the rate of growth of the q−tube remains a point of fu-
ture investigation. Moreover, for systems with long trial durations wherein the value of nt is large,
the number of decision variables and constraints may become too large for R(Θ̧j, xjt ,

∴
xj,

∴
uj, t) to

be solved in real time. Consequently, methods for addressing this issue through the incorporation
of terminal costs and constraints that enable reductions in the length of the prediction horizon are
of additional interest for future research.
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CHAPTER 5

Conclusions and Future Research Directions

The vast majority of engineered devices and systems are designed to complete a limited set of
tasks many times in a repetitive fashion. For these systems, achieving high performance during
each task execution becomes crucial as any suboptimality in performance would accumulate over
the device’s lifetime, resulting in unrealized utility. Moreover, with the advent of new and more
advanced technologies, the design complexity and required capabilities of engineered systems will
continue to grow. Hence, traditional control approaches that: 1) rely on system linearity, and 2)
are designed solely to improve reference tracking behavior, restrict the achievable performance of
these systems. In other words, nonlinearity in the plant dynamics, economic objectives wherein
performance is driven by metrics that extend beyond reference tracking error minimization, and
operational constraints placed on the system must all be considered to enable high performing
control. As uncertainty exists in any practical controls application, whether in the form of model-
ing errors or noise and disturbances, addressing each of these systems properties simultaneously
in a robust manner becomes an arduous task. Consequently, there exists a fundamental tradeoff
between achieving good performance and maintaining robustness. This tradeoff is further accen-
tuated when the amount of uncertainty in the system is large.

To reduce these impacts of uncertainty, learning-based approaches represent an enticing strategy
for controller design. Here, the fundamental notion is that if new knowledge about a system can be
developed based on available data, then a controller can be more assertive in its decision making. In
other words, accompanying control algorithms with a learning component can reduce the required
performance sacrifices that must be made for the sake of robustness. Fortunately, with the rapidly
improving developments in the fields of sensing, data processing, and data storage, information is
becoming more and more accessible. Consequently, research into formalized learning strategies
has enjoyed a rapid increase in popularity in recent years [101]. For the particular case where the
system of interest operates repetitively, repetitive control (RC) and iterative learning control (ILC)
have served as two primary benchmarks for learning-based methods within the controls research
commmunity.
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In this dissertation, two popular classes of repetitive systems within the RC and ILC literature
were investigated: continuously operated and discontinuously operated systems, which are dis-
tinguished based on the existence of an offline phase between task executions. By exploiting the
repetitive nature of these systems and historical data available from previous iterations/cycles, new
methods for learning-based control have been developed to improve economic performance while
remaining cognizant of system constraints. Specifically, the following contributions have been
made:

Contribution 1 - As described in Chapter 2, a novel methodology for learning-based control
of discontinuously operated systems is developed based on a numerical method originating from
the optimization research community. Specifically, by drawing parallels between the iterative na-
ture of numerical optimization techniques and the repetitive behavior of the systems of interest, a
mapping of a filter-based sequential quadratic programming (SQP) algorithm to an implementable
control law is created. Here, through the careful synthesis of measured data available from previ-
ous task executions and (potentially inaccurate) model-based gradient information, the effects of
uncertainty can be mitigated to achieve good performance while broadening the class of constraints
and performance objectives that are addressed within the ILC literature.

Contribution 2 - As given in Chapter 3, a control algorithm is proposed that combines the de-
sign flexibility of model predictive control (MPC) and learning capabilities of adaptive control for
application to economically driven, continuously operated repetitive systems. Specifically, a novel
parametric uncertainty set update is generated for the case wherein system uncertainties appear
periodically, and is integrated with a new economic MPC control law to ensure robust constraint
enforcement. Sufficient conditions to ensure the recursive feasibility and robust convergence of
the system’s economic performance have been developed. Here, for a standard class of systems
addressed within the RC community, uncertainty mitigation is enabled through improved estimates
of unknown model parameters.

Contribution 3 - In Chapter 4, the advancements made within Contribution 2 are extended to
discontinuously operated uncertain systems. Specifically, an adaptive methodology for identify-
ing unknown state-varying model parameters is developed and combined with a shrinking horizon
controller that is used to robustly enforce system constraints and promote good economic system
performance. Moreover, by leveraging the resettability of the system state between task execu-
tions and historical state and input data, learning is further encouraged to reduce the conservatism
incurred by purely model-based control methods. Conditions for which recursive feasibility and
robust monotonic reductions in the system cost can be guaranteed have also been presented. There-
fore, for systems commonly encountered within the ILC literature, methods for addressing system
constraints and economic objectives under a new class of uncertainties has been developed.
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5.1 Limitations and Future Research Directions

Through Contributions 1-3, this dissertation has outlined advancements in the field of learning-
based control for repetitive systems. With the development of the sequential quadratic program-
ming based iterative learning controller (SQP-ILC) outlined in Chapter 2, the robust adaptive eco-
nomic model predictive controller (RAEMPC) described in Chapter 3, and robust adaptive eco-
nomic iterative learning controller (RAEILC) presented in Chapter 4, the economic objectives of
constrained nonlinear systems that operate both continuously and discontinuously are able to be
addressed. While this work has progressed the applicability of RC and ILC to a broader range of
systems, the presented methodologies still have limitations that offer avenues for future research.

First, in each of the SQP-ILC, RAEMPC, and RAEILC controllers, smoothness of the dynamics
and performance costs is assumed in order to establish various theoretical properties of the control
schemes. While this is a standard assumption in a large portion of the control theory literature, this
requirement may be unreasonable or undesirable in practice. Consequently, the ability to incor-
porate discontinuities in the system dynamics through the use of hybrid models may be needed to
enable the development of both simpler and more accurate models in a manner that purely smooth
dynamic models cannot. As hybrid models are particularly prone to large prediction errors due
to modeling uncertainty, the augmentation of optimization-based control schemes with learning-
based techniques is an attractive strategy. Overcoming this smoothness assumption is nontrivial,
but if achieved, can significantly extend the applicability of the developed controllers. A poten-
tial avenue for addressing this issue includes the use of mixed-integer programming, which has
previously been applied to hybrid systems within the field of MPC [102].

Second, while the presented control schemes permit nonlinear system dynamics and objective
functions, doing so can result in the construction of nonconvex control problems. Consequently,
the proposed controllers are susceptible to convergence to local optima of system performance.
Moreover, the numerical complexity of solving nonconvex optimization problems limits the ability
to apply the RAEMPC and RAEILC algorithms in real time except for low-order systems or sys-
tems whose dynamics evolve over long timescales. Methods for bypassing the effects of noncon-
vexity remain a point of future research. One potential solution would be to leverage a linearized
approximation of the system dynamics and convex approximation of the objective function, but a
quantitative assessment on the effect of these approximations on closed-loop performance would
need to be formally conducted.

Third, each of the SQP-ILC, RAEMPC, and RAEILC controllers is based on the assumption
that the amount of uncertainty in the system dynamics is bounded and that this bound is known by
the user a priori. However, establishing this upper bound can be a nontrivial task whose difficulty
is exacerbated if the system is too complex for a physics-based uncertainty assessment to be made,
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or if the amount of uncertainty encountered by the system is state-dependent. In these cases, an
upper bound may only be determined by conducting an arduous uncertainty analysis process or by
performing a large number of potentially expensive experiments/simulations. While this limitation
can be addressed by setting the upper bound to be very large, doing so can result in significant
overconservatism and unnecessarily poor performance. Moreover, the proposed control schemes
only consider the case where disturbances introduced by the environment to the plant dynamics
are purely exogenous. However, in many practical applications, not only does the environment
influence the plant behavior, but the plant behavior causes dynamic changes in the environment
as well. Consequently, simply treating the environment as a purely external influence limits the
achievable utility of the proposed control algorithms. Rather, in such cases it is reasonable to
model the environment as another dynamic system. At present, problems wherein both the plant
and the environment are considered to be dynamic agents are perhaps most appropriately addressed
within the field of game theoretic control. An initial investigation into incorporating learning for
economically-driven repetitive systems based on game theoretic methods is presented in [103]
and provided in this dissertation within Appendix C. Here the problem of maximizing the power
production of a wind farm is considered, where not only are the dynamics and energy genera-
tion capabilities of the turbines dependent upon the environmental wind field, but the propagation
of low-speed wakes in the wind field is influenced by the controlled orientation of the turbines.
The integration of learning-based control strategies within a game-theoretic problem structure for
repetitive system applications is a relatively unexplored area within the RC and ILC literature, and
presents a particularly intriguing pathway for further research.

Finally, validation of all of these strategies on physical systems should also be performed to
provide a meaningful assessment of the assumptions made in this dissertation. While the simula-
tion case studies presented in Chapters 2-4 have been embedded with various features to mimic
the challenges that frequently arise when controlling physical systems, such as modeling errors,
nonlinear dynamics, disturbances, and noise, these case studies are limited to low-dimensional
systems. For more practical systems with potentially unmodeled high-order dynamics, the impact
of unmodeled dynamics on system behavior can potentially deteriorate the economic performance
guarantees outlined in this dissertation. Consequently, methods for bounding the impact of these
unmodeled dynamics and translating these behaviors as noise terms in the system model remains
a point of future work. Moreover, in Chapter 2, it was assumed that accurate measurements or
calculations of the system constraint functions can be obtained from experimental data, while in
Chapters 3 and 4 it was assumed that the system state can be accurately determined in real time.
However, limitations on the availability of accurate sensor data can preclude these assumptions
from being met. In particular, the presence of sensor noise and drift, resolution limitations, and
challenges with measurement availability and signal delays can all challenge the validity of these
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assumptions and limit the practical effectiveness of the proposed control schemes. Additionally,
while data processing and storage technologies have enjoyed significant advances in recent years,
employing the control algorithms presented in this dissertation in real time may be difficult. For
instance, the RAEMPC and RAEILC controllers both rely on the availability of the solution to a
nonlinear program at each timestep of system operation. For complex or high-dimensional sys-
tems, solving such nonlinear programs during online operation may be too difficult. Consequently,
the identification of strategies that intelligently leverage warm-starting of the numerical optimiza-
tion solvers and approximate solutions to the various optimization problems posed in this disser-
tation are of particular interest to minimize the computational demands placed on the embedded
controller.

5.2 Broader Impacts

The work presented in this dissertation has several ramifications within the field of learning-
based controls research and has effects on the future of modern controls work. First, this work
extends the range of systems that are addressed within the RC and ILC communities. Particu-
larly, constrained control in these fields has been confined to a small class of constraints or system
types, which has greatly restricted the practical applicability of these control strategies. By bridg-
ing the theoretical gap between RC/ILC, which have had limited application in industry to date,
and strategies that have enjoyed greater industrial popularity, such as MPC, a wider adoption of
learning-based control is possible. Here, RC and ILC are not meant to serve as complete re-
placements of standard control tools, but can be used, to some degree, in conjunction with more
established control strategies to improve their performance.

Additionally, the SQP-ILC algorithm presented in Chapter 2 provides a benchmark framework
for which other ILC strategies based on numerical optimization methods can be compared against.
The numerical strategy in [39] is only one optimization method upon which other ILC frameworks
may be based, and other methods may prove to be more efficient or enable improved performance
for particular applications. However, the methodology with which information from data and
model-based prediction is synthesized in Chapter 2 can act as a paradigm for future controller
development.

Further, the adaptation schemes outlined in Chapters 3 and 4 enable extensions to systems
with time-varying or spatiotemporally varying model parameters. The identification of time-
varying model parameters has been a persistent challenge within the adaptive controls commu-
nity [104], but by considering updates to parameteric uncertainty sets rather than solely updating
estimates of the unknown model parameters themselves, issues resulting from parameter drift or
time-dependence effects are perhaps more readily addressed while also facilitating integration with
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MPC control schemes.
While the technical contributions of this dissertation have taken steps to advance the state of

control theory, the results of this work also enable learning-based control to be used in a broader
practical application space than previously achievable. Broadly speaking, the energy industry pro-
vides a wealth of applications for learning-based control of repetitive systems. A particularly
exciting potential implementation of this work is the control of Airborne Wind Energy (AWE) sys-
tems operating in spatiotemporally varying wind environments that seek to maximize the amount
of energy that they generate [105]. Modeling these systems with a high degree of accuracy is diffi-
cult on its own, but doing so while remaining amenable to real-time control is even more so if not
impossible. When only low fidelity models of the AWE system and its operating environment are
available, learning-based methods have already shown great promise [106, 107], and the methods
outlined in this dissertation can be used to further augment the energy generation capabilities of
these systems. For instance, the adaptive scheme outlined in Chapter 3 may be used to robustly
identify a periodic wind disturbance that influences both the dynamics and energy generation ca-
pabilities of the AWE system. In other areas, tide-driven hydrokinetic energy and solar energy
systems that operate under repetitive power production cycles, as well as energy management sys-
tems that must navigate periodic electricity demands all provide potential platforms for which the
methods developed in this dissertation may be deployed.

Meanwhile, fully autonomous and semi-autonomous driving systems present an intriguing ap-
plication space for this work, where safety constraints must be rigorously enforced and a variety of
different economics objectives may exist (for instance, maximizing fuel efficiency [108] or rider
comfort [109], or minimizing travel time [110]). The wealth of sensor data that is collected by
these systems present exciting opportunities for extensions of the work presented in this disserta-
tion, where data available from previous trips or retrieved via communication from other vehicles
following similar paths along the road can enable performance improvements to be achieved. For
instance, historical information about spatially-varying road grades or conditions could be lever-
aged by the adaptive scheme in Chapter 4 to reduce the effects of uncertainty on the decisions made
by the RAEILC controller, thereby enabling more aggressive control actions to be taken while still
maintaining safe operation of the vehicle.

Finally, the manufacturing industry is another area where the products of this dissertation may
contribute. Here, given the highly regulated, structured, and self-contained nature of many manu-
facturing systems, this application space may prove to be one where the insights brought forth by
this dissertation can have the most immediate impact. Specifically, the trial-to-trial similarity in the
operating conditions of these systems could enable an SQP-ILC controller to reduce the time re-
quired to complete the production of a part such that throughput rate objectives can be maximized
[111], or encourage more sustainable practices by reducing the emissions or waste of materials
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that arise during the manufacturing process [112].
The results of this dissertation not only appear as improvements within the field of learning-

based control theory, but also lay a foundation for enabling effective economic control in a diverse
set of application spaces. By addressing the challenge of improving economic performance in
repetitive systems and highlighting the benefits of incorporating learning within controller devel-
opment, this research opens up opportunities for further exploration and innovation. The findings
and methodologies presented here can inspire future studies in controller design across various
domains, both in terms of advancing control theory and improving the utility of the technologies
of the future.
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APPENDIX A

Proofs for SQP-ILC Lemmas

A.1 Proof of Lemma 4

Lemma 4 is proven as follows.

Proof. Since j /∈ R, this implies that TRQP(xj,∆j) is compatible. Therefore nj must satisfy
(2.12) such that

∥nj∥ ≤ κ∆κµ∆
µ
j .

Hence, combining with (2.22) gives

θj ≤
κ∆κµ
κlsc

∆µ
j .

Thus (2.24) is demonstrated for any κubt ≥ κ∆
κlsc

.
The ith constraint for the real system at xj + sj can be written as

cRi (xj + sj) = cRi (xj) +∇cRi (xj)⊤sj +
1

2
s⊤j ∇2cRi (ζj)sj

for i ∈ E∪ I , which is obtained by applying Assumption 1 and the mean value theorem and where
ζj lies on the line segment [xj,xj + sj]. From (2.9b) and (2.9c) we have

cRi (xj) +∇cMi (xj)
⊤sj = 0, i ∈ E,

cRi (xj) +∇cMi (xj)
⊤sj ≤ 0, i ∈ I.
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Thus,

cRi (xj + sj) =
1

2
s⊤j ∇2cRi (ζj)sj + (∇cRi (xj)−∇cMi (xj))

⊤sj, i ∈ E,

cRi (xj + sj) ≤
1

2
s⊤j ∇2cRi (ζj)sj + (∇cRi (xj)−∇cMi (xj))

⊤sj, i ∈ I.

The triangle inequality then gives

|cRi (xj + sj)| ≤
∣∣∣∣12s⊤j ∇2cRi (ζj)sj

∣∣∣∣+ ∣∣(∇cRi (xj)−∇cMi (xj))
⊤sj
∣∣

for i ∈ E ∪ I . From the Cauchy-Schwarz inequality, we have

|cRi (xj + sj)| ≤
1

2
∥∇2cRi (ζj)∥∥sj∥2 + ∥∇cRi (xj)−∇cMi (xj)∥∥sj∥,

≤1

2
max
x∈X

∥∇2cRi (x)∥∥sj∥2 + ∥∇cRi (xj)−∇cMi (xj)∥∥sj∥.

From the triangle inequality, we have that

∥∇cRi (xj)−∇cMi (xj)∥ ≤ ∥∇cRi (xj)∥+ ∥∇cMi (xj)∥

for all x ∈ X . Invoking Assumption 2 then gives

∥∇cRi (xj)−∇cMi (xj)∥ ≤MP1 ≤MR1 +MM1

for some constant MP1 and

max
x∈X

∥∇2cRi (x)∥ ≤MR2 .

Therefore

|cRi (xj + sj)| ≤
1

2
MR2∥sj∥2 +MP1∥sj∥.

Constraint (2.9d) then gives

θ(xj + sj) ≤ |cRi (xj + sj)| ≤
1

2
MR2∆2

j +MP1∆j

for all i ∈ E ∪ I which gives (2.25) for

κubt = max

[
1

2
MR2 ,

κ∆κµ
κlsc

]
.
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A.2 Proof of Lemma 9

Lemma 9 is proven as follows.

Proof. Because θj ≤ δn, we know from Assumption 3 and Lemma 1 that

κlscθj ≤ ∥nj∥ ≤ κuscθj. (A.1)

Assume for the purpose of deriving a contradiction that j ∈ R. From (2.12) and (2.31), this means
that

∥nj∥ > κ∆κµ∆
µ
j . (A.2)

As the algorithm is designed such that the restoration step is never run in consecutive iterations,
this implies that j − 1 /∈ R.

Suppose that iteration j − 1 /∈ S. Lemma 8 gives

J(xj−1 + sj−1) ≤ J(xj−1)− γθθj−1. (A.3)

Since by nature of the algorithm xj−1 is acceptable for the filter at the beginning of iteration j− 1,
j − 1 /∈ S implies that xj−1 + sj−1 is not acceptable for the filter. Since (A.3) is satisfied, this
implies from (2.18) that

θ(xj−1 + sj−1) > (1− γθ)θj−1.

Since j − 1 is unsuccessful, xj = xj−1 and therefore θj = θj−1 which gives

θ(xj−1 + sj−1) > (1− γθ)θj.

Lemma 4 gives that

θ(xj−1 + sj−1) ≤ κubt∆
2
j−1 +MP1∆j−1.

Hence

(1− γθ)θj < κubt∆
2
j−1 +MP1∆j−1.
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Since, by nature of the algorithm, ∆j−1 ≤ ∆j
γ0

(1− γθ)θj < κubt
∆2
j

γ20
+MP1

∆j

γ0
.

Applying (A.1) and (A.2) gives

κ∆∆j < κuscθj <
κusc
1− γθ

(
κubt

∆2
j

γ20
+MP1

∆j

γ0

)
.

Dividing by ∆j and rearranging terms yields

κusc
1− γθ

(
κubt

∆j

γ20
+
MP1

γ0

)
− κ∆ > 0.

However, this violates Assumption 6 and (2.31). Thus iteration j − 1 must be successful, which
implies that

θj = θ(xj−1 + sj−1).

From the assumption that j ∈ R and Assumption 3, this gives

κ∆∆j < ∥nj∥ ≤ κuscθj = κuscθ(xj−1 + sj−1).

Again, we reuse Lemma 4 and the fact that for any iteration ∆j−1 ≤ ∆j
γ0

to find

κ∆∆j < κuscθ(xj−1 + sj−1),

≤ κusc
(
κubt∆

2
j−1 +MP1∆j−1

)
,

≤ κusc

(
κubt

∆2
j

γ20
+MP1

∆j

γ0

)
.

Hence

κusc

(
κubt

∆2
j

γ20
+MP1

∆j

γ0

)
− κ∆∆j > 0.

But Assumption 6, (2.31) and the fact that (1 − γθ) < 1 show that this is not possible. Therefore,
the assumption that j ∈ R is false, so j /∈ R.
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APPENDIX B

Proofs for RAEMPC Lemmas

B.1 Proof of Lemma 13

The proof of Lemma 13 is given as follows.

Proof. From (3.17), we have that

(¯̃θij+1)
⊤Σi

j+1
¯̃θij+1 − (θ̃ij)

⊤Σi
j θ̃
i
j ≤ (θ̃ij+1)

⊤Σi
j+1θ̃

i
j+1 − (θ̃ij)

⊤Σi
j θ̃
i
j = Vθ̃ij+1

− Vθ̃ij
.

From the definition of θ̃ij and (3.15), we have that

θ̃ij+1 = θ̃ij − (Σi
j)

−1(ωij)
⊤(I + ωij(Σ

i
j)

−1(ωij)
⊤)−1(ωij θ̃

i
j + η̃ij),

upon which substitution of (3.13) yields

θ̃ij+1 = (Σi
j+1)

−1Σi
j θ̃
i
j − (Σi

j)
−1(ωij)

⊤(I + ωij(Σ
i
j)

−1(ωij)
⊤)−1η̃ij. (B.1)

Substitution of (3.12), and the definitions of ηij and η̃ij into (B.1) yields

Vθ̃ij+1
− Vθ̃ij

= −(x̃ij − η̂ij)
⊤ (I + ωij(Σ

i
j)

−1(ωij)
⊤)−1

(x̃i − η̂ij) + (η̃ij)
⊤η̃ij (B.2)

which gives the first claim. Additionally, (B.2) gives

lim
j→∞

Vθ̃ij
=Vθ̃i0 +

∞∑
j=0

(
(η̃ij)

⊤η̃ij − (x̃ij − η̂ij)
⊤ (I + ωij(Σ

i
j)

−1(ωij)
⊤)−1

(x̃i − η̂ij)
)
,

≤Vθ̃i0 +
∞∑
j=0

(
(η̃ij)

⊤η̃ij − γi(x̃ij − η̂ij)
⊤(x̃i − η̂ij)

)
.

(B.3)

As a consequence of the first condition of (3.18), the right hand side of (B.3) is finite such that a
limit of Vθ̃ij exists. The second condition of (3.18) then gives the second claim.
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B.2 Proof of Lemma 14

The proof of Lemma 14 is given as follows.

Proof. Claim (3.22) will be demonstrated by contradiction. First suppose that Θi
j+1 ⊈ Θi

j . Then,
given the definition of Θi

j , there exists a θ̂ ∈ Θi
j+1 such that

∥θ̂ − θ̂ij∥ > zΘ
i
j . (B.4)

However, if Θi
j+1 ̸= Θi

j , Algorithm 2 requires that

∥θ̂ − θ̂ij∥ ≤ ∥θ̂ − θ̂ij+1∥+ ∥θ̂ij+1 − θ̂ij∥,

≤ zΘ
i
j+1 + ∥θ̂ij+1 − θ̂ij∥ ≤ zΘ

i
j

which contradicts (B.4). Therefore claim (3.22) holds.
We now note that as a consequence of the property (η̃ij)

⊤η̃ij ≤
(
vmax

Kω

)2
with θ̃i0 ≤ zΘ

i
0 , that

(3.19) and (3.21) imply that Vθ̃ij ≤ V
z
Θi
j
. Hence,

∥θ̃ij∥2 ≤
Vθ̃ij

λmin(Σi
j)

≤
V
z
Θi
j

λmin(Σi
j)

= (zΘ
i
j)2.

Therefore, θ̃ij ≤ zΘ
i
j for all j, which gives (3.23).

B.3 Proof of Lemma 21

The proof of Lemma 21 is given as follows.

Proof. We first expand J aux
j+1(x̄jP+P , ū

nom) as

J aux
j+1(x̄jP+P , ū

nom)

=

Kh−1∑
t=0

(
sj+1(̊x̄

ūnom

θ̂j+1
(tP, x̄jP+P ),˚̄u

nom
tP )− λ̊(fP

θ̂j+1
(̊x̄ū

nom

θ̂j+1
(tP, x̄jP+P ),˚̄u

nom
tP , 0))

+ λ̊(̊x̄ū
nom

θ̂j+1
(tP, x̄jP+P ))

)
+ ˚̄V f (̊x̄ū

nom

θ̂j+1
(nh, x̄jP+P )),

≤
Kh−1∑
t=0

(
sj (̊x̄

w̄jP (P )

θ̂j
(tP, x̄jP+P ), ˚̄w

jP (tP + P )) + λ̊(̊x̄
w̄jP (P )

θ̂j
(tP, x̄jP+P ))

− λ̊(fP
θ̂j
(̊x̄

w̄jP (P )

θ̂j
(tP, x̄jP+P ), ˚̄w

jP (tP + P ), 0))
)
+ ˚̄V f (̊x̄ū

nom

θ̂j+1
(nh, x̄jP+P )).
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where the inequality arises from Assumption 14 and the definition of ūnom. Similarly expanding
J aux
j (x̄jP , ū

∗
j(x̄jP )) yields

J aux
j (x̄jP , ū

∗
j(x̄jP ))

=

Kh−1∑
t=0

(
sj (̊x̄

ū∗
j (x̄jP )

θ̂j
(tP, x̄jP ),˚̄u

∗
tP |j(x̄jP ))− λ̊(fP

θ̂j+1
(̊x̄

ū∗
j (x̄jP )

θ̂j
(tP, x̄jP ),˚̄u

∗
tP |j(x̄jP ), 0))

+ λ̊(̊x̄
ū∗
j (x̄jP )

θ̂j
(tP, x̄jP ))

)
+ ˚̄V f (̊x̄

ū∗
j (x̄jP )

θ̂j
(nh, x̄jP )).

Since it holds by definition that ˚̄wjP (tP ) = ˚̄u∗tP |j(x̄jP ) for t ∈ I[0,Kh−1] and ˚̄wjP (nh) =

κ̊f (x̄
ū∗
j (x̄jP )

θ̂j
(nh, x̄jP )), then

J aux
j+1(x̄jP+P , ū

nom)− J aux
j (x̄jP , ū

∗
j(x̄jP ))

≤˚̄Lj (̊x̄
ū∗
j (x̄jP )

θ̂j
(nh, x̄jP ), κ̊f (x̄

ū∗
j (x̄jP )

θ̂j
(nh, x̄jP ))) +

˚̄V f (̊x̄ū
nom

θ̂j+1
(nh, x̄jP+P ))

− ˚̄V f (̊x̄
ū∗
j (x̄jP )

θ̂j
(nh, x̄jP ))− ˚̄Lj (̊x̄jP ,˚̄ujP ).

Lemma 20 and (3.47) give that

J aux
j+1(x̄jP+P , ū

nom)− J aux
j (x̄jP , ū

∗
j(x̄jP ))

≤α1(|(̊x̄
ū∗
j (x̄jP )

θ̂j
(nh, x̄jP ), κ̊f (x̄

ū∗
j (x̄jP )

θ̂j
(nh, x̄jP )))|πj)

+ α2(|(̊x̄
ū∗
j (x̄jP )

θ̂j
(nh, x̄jP ), κ̊f (x̄

ū∗
j (x̄jP )

θ̂j
(nh, x̄jP )))|πj)− α(|̊x̄jP ,˚̄ujP |πj).

We now consider two possibilities: that (̊x̄jP )P−1 /∈ X̄ f
j , or that (̊x̄jP )P−1 ∈ X̄ f

j . In the case
(̊x̄jP )P−1 /∈ X̄ f

j , (3.50) gives

J aux
j+1(x̄jP+P , ū

nom)− J aux
j (x̄jP , ū

∗
j(x̄jP )) < 0.

On the other hand, if (̊x̄jP )P−1 ∈ X̄ f
j , (3.49) and (3.51) give

J aux
j+1(x̄jP+P , ū

nom)− J aux
j (x̄jP , ū

∗
j(x̄jP ))

≤α(|(̊x̄ū
∗
j (x̄jP )

θ̂j
(nh, x̄jP ), κ̊f (x̄

ū∗
j (x̄jP )

θ̂j
(nh, x̄jP )))|πj)− α(|̊x̄jP ,˚̄ujP |πj) ≤ 0

where the second inequality is strict for any ˚̄x ̸= ˚̄xpj . Therefore, a reduction in Jauxj is achieved.
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APPENDIX C

Game Theoretic Wind Farm Control Based on
Level-k Cognitive Modeling

C.1 Background and Motivation

In many controls engineering applications, environmental disturbances have a significant im-
pact on system behavior and influence the desired manner in which the system is controlled. Nu-
merous strategies, such as internal model principle methods [6], active disturbance rejection con-
trol [113], and robust control [114], seek to account for these environmental disturbances when
designing the controller or control signal.

While the aforementioned methodologies have enabled the control of systems that operate in
a wide variety of environments, these approaches typically treat environmental disturbances as
purely exogenous entities. However, in many applications, not only does the environment influ-
ence the behavior of the controlled system, but the controlled system can have influence over the
environmental behavior as well. This phenomenon, termed a ‘bidirectional coupling’ between the
plant and environment, provides opportunities for a controller to better reject, or even exploit, en-
vironmental disturbances. Intuitively, if the plant can be controlled such that the environment is
influenced to behave in an advantageous manner, improvements in performance may be achieved.

However, a primary challenge with controlling bidirectionally coupled systems is that high-
fidelity environmental models may not exist or are not amenable to directly identify a control
signal/policy. Such may be the case, for instance, if the environmental dynamics are governed by
processes that are too complex for integration into a model-based controller.

One such example of bidirectional coupling is the task of maximizing the energy generated by
a wind farm. Here, the performance of the plant, which consists of a collection of turbines, is
dependent upon the behavior of the wind field environment. Moreover, the wind field is influenced
by the turbine dynamics as well. For instance, as a turbine extracts energy from the wind, a
wake is generated wherein the wind speed downstream of the turbine is reduced. This reduction
in wind speed hinders the power production capabilities of downstream turbines, resulting in the
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well-documented ‘wake effect’ [115]. Wake steering control is an active field of research where
the objective is to optimally deflect the wake so as to mitigate the power production losses of
downstream turbines [116]. Unfortunately, as the underlying physics describing the interactions
between the turbines and wind field are complex, directly incorporating wake effects in high-
fidelity within a wake steering controller is impractical due to the required computational demand.

To mitigate this issue, several model-free strategies have been developed to make the problem
of wind farm energy optimization more tractable [117–120]. Extremum seeking controllers, such
as those described in [117] and [118], aim to identify optimal control parameters without utilizing
a model of the wake dynamics. To bypass the need for a wake model, these approaches typically
require that the wind behavior changes slowly in comparison to the rate at which the control signal
is modified. However, due to the bidirectional coupling between the turbines and wind field, the
plant and environmental dynamics will generally evolve over similar timescales. Alternative strate-
gies given in [119, 120] pose the problem as a cooperative game where each turbine constitutes
an agent, and control parameters are iteratively updated between simulations. While monotonic
improvement in the baseline performance of the wind farm can be guaranteed in these cases, the
control design space grows rapidly as the number of turbines increases or as the control design
space is expanded. Consequently, implementing these algorithms in a high-fidelity simulation en-
vironment can become impractical for large-scale wind farms as it would require a large number
of computationally intensive simulations to be conducted.

Control approaches that directly leverage low-fidelity wake models in the control law update
have also been explored in the literature. For instance, dynamic programming approaches have
been proposed wherein a controls-oriented wake model is used to predict the impact of upwind
axial induction factors [121], and turbine yaw angles [122, 123], on downwind wake velocities.
While computationally inexpensive, these strategies rely on the assumption that the low-fidelity
models accurately describe the impact of the turbine control decisions on the wind field, which
may not hold in practice. Consequently, the performance predicted by the controller may not
reflect the true performance of the system.

Therefore, we seek to identify a methodology that merges the advantages of model-free and
low-fidelity control strategies for bidirectionally coupled systems. Namely, the high performance
that can be achieved through data-driven model-free methods, and the minimal computational
demands of low-fidelity methods. The contributions of this work are:

1. the development of a level-k cognition interpretation of bidirectionally coupled systems,

2. a control law that seeks to optimize plant performance when an accurate model of the envi-
ronmental dynamics is unavailable,

3. a simulation implementation of the proposed controller on a multi-turbine wind farm and
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comparison to alternative control strategies.

To serve as a reference for the reader, a notation guide for the variables used in this chapter is
provided in Appendix D.5. The contents of this chapter have been accepted to the 2023 7th IEEE
Conference on Control Technology and Applications (CCTA) as [103].

C.2 Problem Description

C.2.1 System Models

To describe the relationship between the plant and environment, we introduce the following
difference equation model:

xpi+1 = fp(xpi , x
e
i , ui, i),

xei+1 = f e(xpi , x
e
i , ui, i)

(C.1)

where i denotes a step index, xp and xe are the plant and environment states, and u is the control
input. Additionally, let the plant stage reward, zp, be given by

zpi = rp(xpi , x
e
i , ui). (C.2)

We assume that the plant states and reward, as well as the environmental states or substates that
influence the plant dynamics and reward are measurable.

The control objective is given by the optimization problem

maximize
{ui}∈U

ni−1∑
i=0

zpi , (C.3a)

subject to xpi+1 = fp(xpi , x
e
i , ui, i), x

p
0 = xp(0), (C.3b)

xei+1 = f e(xpi , x
e
i , ui, i), x

e
0 = xe(0), (C.3c)

zpi = rp(xpi , x
e
i , ui), (C.3d)

where ni is the optimization horizon length and U denotes the feasible control region which is
assumed to be convex.

As fp, f e, and rp may be unknown, problem (C.3) is not directly solvable by the user. However,
we assume that the user has access to estimates of the dynamic models and plant reward function
which are denoted as f̂p, f̂ e, and r̂p.
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C.2.2 Level-k Cognitive Theory

One method to address problem (C.3) would be to substitute the unknown functions fp, f e,
and rp with the known models f̂p, f̂ e, and r̂p such that an estimate of the optimal input sequence
can be derived. However, while this approach is intuitive, if a large amount of uncertainty exists
in these user-available models, there may be significant mismatch between the estimated optimal
input sequence and the solution to (C.3).

To mitigate this issue, we turn to a tool originating from Game Theory (GT) termed level-k

cognitive theory [124]. In equilibrium theory of games, it is conventionally assumed that each
player seeks to maximize their reward in a way that is mutually consistent, such that each player’s
expectation of other players’ decisions is correct [125]. However, it is often difficult to have a
completely accurate prediction of the behavior of others. Consequently, optimal decisions derived
through equilibrium theory are not observed in reality.

Alternatively, level-k theory considers games where players have limited understanding about
the methods that others use to make their decisions. Level-k theory posits that players may exhibit
different ‘levels’ in their reasoning, starting at some level-0, and that each agent considers their own
strategy to be the most sophisticated amongst all others. As suggested in [126], a level-0 player
is defined as one who makes decisions without consideration of the behavior of other players. A
level-1 player then makes a prediction of the reward-maximizing decision under the assumption
that all others are utilizing a level-0 decision policy. Generalizing to an arbitrary cognitive level,
k, a level-k player is one who assumes that all others are at level-(k − 1), generates predictions of
the decisions made by the other players, and makes a corresponding decision to maximize its own
reward. In the following section, we will describe how, by posing control problem (C.3) as a two
player non-cooperative game where the controller and environment act as agents, level-k theory
can be leveraged to combat model uncertainty.

C.3 Methodology

C.3.1 A Level-k Interpretation of Uncertain Bidirectional Coupling

In [127–129], level-k theory has previously been leveraged within the controls literature to ad-
dress human-to-human, human-to-automation, or automation-to-automation interactions wherein
all players are given as ‘sentient’ decision makers. Given that the environment is non-sentient in
our case, it may seem counterintuitive to describe the environment as a strategic decision maker.
Moreover, [127–129] rely on the assumption that the true dynamic and reward models are known
by the user in order to identify the level-k decisions, whereas fp, f e, and rp are unknown in this
work.
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Hence, to enable level-k theory to be applied when one of the players is a non-sentient envi-
ronment with unknown dynamics, we propose a specific structure of the stage reward, zei , that the
environment seeks to maximize over ni steps. First, we define the environmental ‘decision’ as the
sequence of environmental states over the optimization horizon, {xei}i. Here, despite the fact that
it is non-sentient, defining the environmental decision in this way will enable the environment to
be treated as a strategic player. Subsequently, for some control sequence {ui}i, we define zei as

zei =

−∥xe0 − xe(0)∥, i = 0

−∥xei − f e(xpi−1, x
e
i−1, ui−1, i)∥, i > 0.

(C.4)

Following (C.4), the true dynamics of the environment given by (C.3c) ensure that zei always
equals 0. In other words, regardless of the selection of {ui}i, the environment ‘chooses’ its state
sequence such that its reward is always maximized. In the context of level-k theory, this implies
that if {ui}i is a level-k control sequence, then the environment produces a level-(k + 1) state
sequence in response.

This gives the primary benefit of interpreting the plant-environment interactions under the
paradigm of level-k theory: although f e is unknown in analytical form, we know that the envi-
ronment always identifies an optimal decision in response to the controller’s decision. In other
words, although the user has uncertainty in the environmental model, it has certainty in the cogni-
tive level of the environment.

C.3.2 Level-k Decision Identification

In Section C.3.1, control problem (C.3) was framed as a non-cooperative game where the con-
troller and environment represent two players with different cognitive levels. We now describe
how the decisions of a level-k controller or environment may be determined.

We first require a baseline level-0 control, {ui|0}i, upon which level-k environmental decisions,
{xei|k}i, and level-k controller decisions, {ui|k}i, are based. To mimic level-k methodologies within
the GT literature, this level-0 controller decision may be given by a naive control sequence in U ,
and does not need to be derived using analytical or numerical methods. Let the level-k control and
environmental decision sequences be decomposed as {ui|k}i = {u0|k, . . . , uni−1|k} and {xei|k}i =
{xe0|k, . . . , xeni−1|k}. Similarly, let {xpi|k}i = {xp0|k, . . . , x

p
ni−1|k} denote the measured plant state

sequence that results from applying control sequence {ui|k}i to the true system.
The level-(k−1) environmental response to a level-(k−2) controller corresponds to the solution
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of

max
{xei }i

ni−1∑
i=0

zei ,

s.t. xpi+1 = fp(xpi , x
e
i , ui|k−2, i), x

p
0 = xp0|k−2,

xei+1 = f e(xpi , x
e
i , ui|k−2, i), x

e
0 = xe0|k−1,

zei =

−∥xe0 − xe0|k−1∥, i = 0

−∥xei − f e(xpi−1, x
e
i−1, ui−1|k−2, i)∥, i > 0.

(C.5)

As fp and f e are unknown, it is not possible to solve problem (C.5) directly using numerical opti-
mization methods. However, based on the assumption that the environmental states (or substates)
are measureable, we can instead run an experiment or simulation where the controller applies
{ui|k−2}i to the plant. By measuring the resulting environmental state sequence, {xei|k−1}i, the
level-(k − 1) environmental decision, {xei|k−1}i can be identified.

After {xei|k−1}i has been determined, a prediction of the optimal controller response is made.
First, we introduce the sequence {u∗i|k}i = {u∗0|k, . . . , u∗ni−1|k} which is given by solving the fol-
lowing optimization problem:

{ui0∗i|k }i = argmax
{ui}i∈U

ni−1∑
i=i0

zpi ,

subject to xpi+1 = f̂p(xpi , x
e
i , ui, i), x

p
i0
= xp

i0
|k−2,

xei+1 = f̂ e(xpi , x
e
i , ui, i), x

e
i0
= xe

i0
|k−1,

zpi = r̂p(xpi , x
e
i , ui)

(C.6)

with

u∗
i0
|k = κ({ui0∗i|k }i) (C.7)

for each i0 ∈ {0, . . . , ni−1}. Here, κ({ai}i) produces the first element of the sequence {ai}i. The
sequence {u∗i|k}i provides an estimate of the optimal control decisions to be made in response to
the state sequences {xpi|k−2}i and {xei|k−1}i that were generated by applying the control {ui|k−2}i.
In this manner, measured state data is incorporated directly in the identification of the control
signal, rather than relying solely upon model-based state predictions. The update law given by
(C.7) mimics a control structure that is typically utilized in MPC methods. However, whereas
MPC establishes feedback by setting the initial conditions of the predicted state trajectories as
xpi0 = xpi0|k and xei0 = xei0|k+1, in (C.6), feedback is instead introduced by leveraging the state
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measurements obtained by applying a level-(k − 2) controller.
However, {u∗i|k}i is likely to be a sub-optimal control decision for two reasons:

1. The functions f̂p, f̂ e, and r̂p may not accurately describe the true plant and environmental
dynamics and plant reward. Hence, predictions based on these functions will, in general, be
incorrect.

2. The initial conditions xp
i0
|k−2 and xe

i0
|k−1 used in problem (C.6) to identify the level-k con-

trol are obtained from data measured from interactions between a level-(k − 2) controller
and level-(k − 1) environment. However, as noted in Section C.3.1, application of a level-k
controller produces a level-(k + 1) environmental response. Hence, it cannot be guaranteed
in general that xp

i0
|k = xp

i0
|k−2 and xe

i0
|k+1 = xe

i0
|k−1. Consequently, u∗

i0
|k will be identi-

fied based on an inaccurate initial condition, resulting in inexact estimates of the true plant
performance.

Hence, to temper the effect of these sources of sub-optimality, the level-k control decision is
not set as {u∗i|k}i, but is instead given by

ui|k = ui|k−2 + β(u∗i|k − ui|k−2) (C.8)

for some user-defined β ∈ (0, 1). Note that {ui|k} ∈ U is guaranteed due to the convexity of
U . By defining the control law in this way, we can prevent the control signal from being dra-
matically changed in an improper manner due to calculations made from inaccurate models of the
environment and plant dynamics or plant reward function. Additionally, for systems with smooth
dynamics, restricting changes in the control decision ensures that the state trajectories between
cognitive levels are similar, which can reduce undesired performance losses caused by disagree-
ment between xp

i0
|k and xp

i0
|k−2, and xe

i0
|k+1 and xe

i0
|k−1 in (C.6).

As a tuning guide, small values of β should be used when there is low confidence in the dynamic
or performance models, or if the system dynamics are highly sensitive to changes in the control
signal. In this way, the controller becomes more conservative when large sources of uncertainty
exist at the expense of a reduced convergence rate.

C.3.3 J vs. k Model Development

As described in Section C.3.1, the environment is always exactly one cognitive level higher than
the controller. Since the environment is a more sophisticated decision maker than the controller,
and because the controller has imperfect knowledge of fp, f e, and rp, there may be significant
mismatch between the plant performance predicted by the controller and the true plant performance
that is observed after running an experiment.
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While one strategy to mitigate this mismatch would be to identify more accurate models, sys-
tem identification techniques that seek to accurately characterize the vector-to-vector mappings
f̂p and f̂ e, or vector-to-scalar mapping r̂p may be computationally intensive. This computational
complexity may become particularly burdensome if the number of plant or environmental states is
large or if the dimension of ui is high. Consequently, rather than identifying optimal control de-
cisions purely based on an unknown plant reward structure and unknown plant and environmental
dynamic models, we propose a strategy that instead seeks to identify the controller cognitive level
that yields the greatest plant reward. Here, while a model relating plant performance to cognitive
level may be unknown, generating an estimate of this relationship is computationally inexpensive,
as the plant performance and cognitive level are both scalar values.

We define Jk =
∑ni−1

i=i0
zpi|k as the experimentally measured cumulative plant reward where zpi|k

is the plant stage reward at step i observed by applying the level-k control decision. We subse-
quently define {Jk}k = {J0, J2, . . . , Jk̄} as the sequence of measured cumulative plant rewards
corresponding to cognitive levels {kk}k = {0, 2, . . . , k̄} where k̄ is the highest cognitive level of
the controller that has been experimentally applied to the plant.

Additionally, let g(k, θ) : 2N × Rnθ → R denote a user-defined function where 2N denotes
the set of even natural numbers. Here, g(k, θ) maps the controller’s cognitive level to an estimate
of the cumulative plant reward based on a selection of the function parameters θ. θ is the set of
parameters determined via regression analysis that best fits g(k, θ) from available cognitive level
data to the measured cumulative plant reward data. Let θk signify the calculated model parameters
based on the data {kk}k and {Jk}k.

After each experiment for which an input sequence given by a controller with a cognitive level
greater than or equal to 2(nθ − 1) has been applied, we compute θk which generates the sequence
{θk}k = {θ2nθ−2, θ2nθ , . . . , θk̄}. For a user-defined ng, {Θk

}k = {θk̄−2(ng−1), θk̄−2(ng−2), . . . , θk̄}
denotes a subsequence of {θk}k with mean µ(Θk̄). As the elements of θk may have varying magni-

tudes, we normalize {Θ
k
}k as {

◦
Θ
k
}k = {θk̄−2(ng−1)⊘µ(Θk̄), θk̄−2(ng−2)⊘µ(Θk̄), . . . , θk̄⊘µ(Θk̄)}

where ⊘ is the Hadamard division operator. We say that the sequence {θk}k has converged if

tr

(
C(

◦
Θk̄)

)
< ϵ (C.9)

for a user-defined ϵ > 0 where tr(A) gives the trace of A and C(
◦
Θk̄) is the covariance matrix

generated from {
◦
Θ
k
}k.

Remark 3. Condition (C.9) requires that the data from the last ng experiments has resulted in

sufficiently small modifications to the parameters θk. However, this criteria is simply a heuristic

strategy for evaluating convergence, and does not guarantee for all k > k̄ that θk ≈ θk−2. A loss
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of convergence may occur, for example, if the user’s selection of g(k, θ) poorly reflects the true J

vs. k relationship. Consequently, we suggest the user to adopt the following strategies to improve

the identification of the J vs. k model:

1. Testing a variety of candidate g(k, θ). As the structure of the true J vs. k relationship

is unknown, at the conclusion of each simulation/experiment, the user should fit the data

{kk}k and {Jk}k to multiple g(k, θ) functions. Criteria (C.9) should then be evaluated for

the g(k, θ) that most closely aligns with the model data.

2. Setting ng to be large and ϵ to be small. This strategy makes condition (C.9) more strict such

that greater confidence in parameter convergence can be achieved. However, this approach

will, in general, require more experiments to be conducted.

Identifying cases for which (C.9) guarantees that θk ≈ θk−2 for all k > k̄ is a point of further
investigation.

Since the cognitive level, k, and cumulative plant reward, J , are scalars, identification of a θ
that fits g(k, θ) to recorded data is inexpensive. This constitutes an additional benefit of leveraging
level-k theory in control design, as it allows us to bypass the computationally demanding task of
identifying f̂p, f̂ e, and r̂p in high-fidelity.

C.3.4 Game Theoretic Control Framework

The proposed GT strategy for control of uncertain bidirectionally coupled systems is given by
Algorithm 7.

Note in Step 5 that the controller cognitive level is set to the solution to (C.11) rather than the
maximizer of g, k∗. This is because g is only an estimate, and may not perfectly describe the
relationship between J and k. Hence, in (C.11), we set the controller’s cognitive level to the value
of k that achieves the greatest known plant reward for the true system.

C.4 Wind Farm Wake Steering Control

Algorithm 7 is now demonstrated via simulation of a wind farm using the multiphysics software
package FAST.Farm. Here, the wind farm, as depicted in Fig. C.1, consists of three 126m diameter
turbines based on NREL’s 5MW reference turbine [130] that are arranged colinearly along a line
termed the ‘x-axis’ with a spacing of 700m. To mitigate wake effects, wake steering is performed
via control of the turbine yaw angles. As an inlet condition to the simulation, the direction of the
freestream wind is parallel to the x-axis with its speed v∞ (m/s) at height h (m) given by the power
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Algorithm 7 GT control scheme for bidirectional coupling

Step 0: Given f̂p, f̂ e, r̂p, U , β, {ui|0}i, g, ng, and ϵ, initialize k = 0.
Step 1: Apply {ui|k}i to the plant and record {xpi|k}i, {xei|k+1}i, and Jk.
Step 2: If k ≥ 2(nθ − 1), find the θk that fits g(k, θ) to measured data {kk}k and {Jk}k.
Step 3: If k ≥ 2(nθ +ng − 2), evaluate convergence condition (C.9). If (C.9) is not met, skip to
Step 6.
Step 4: Identify k∗ as the solution to

k∗ = argmax
j∈2N

g(j, θk) (C.10)

Step 5: If k∗ < k, set k as

k = argmax
j

{Jj}j (C.11)

and stop. Otherwise, proceed to Step 6.
Step 6: Increment k as k = k + 2 and identify {ui|k}i from (C.8). Return to Step 1.

law

v∞(h) = v∞ref

(
h

87.6

)0.143

. (C.12)

A description of how FAST.Farm calculates the resulting time-varying wake dynamics can be
found in [131].

x-axis

Turbine 0 Turbine 1 Turbine 2

700m 700m

Freestream flow

Figure C.1: The configuration of the three turbine wind farm. The plant states are given by the
nacelle yaw angles of each of the turbines. xp0 corresponds to the yaw angle of Turbine 0.
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C.4.1 Control Algorithm Parameters

We now outline how the various parameters required by Algorithm 7 are defined to implement
the wind farm yaw controller with the goal of maximizing the total energy generated by the farm
over 600 seconds for a v∞ref of 15m/s.

First, the step index i is used to distinguish the various turbines in the wind farm. Specifically,
i = 0 corresponds to the upwind turbine, while i = 1 denotes the middle turbine, and i = 2 refers to
the most downwind turbine as depicted in Fig. C.1. The plant state, xpi , corresponds to the nacelle
yaw angle of Turbine i, while the control input ui corresponds to the commanded nacelle yaw
angle of Turbine i which is restricted to lie in the set U = {u|0◦ ≤ u ≤ 50◦}. For the purposes
of generating a simple low-fidelity model, the controller assumes that the wake propagation is
predominantly in the same direction as the freestream wind such that the environmental state xei is
given by the hub-height wind speed in the the x-axis direction at Turbine i.

The estimated plant reward function, r̂p(xpi , x
e
i , ui), makes a prediction of the generated power

at Turbine i given the yaw angle, hub-height wind speed, and commanded yaw angle of the tur-
bine. The low-fidelity model assumes that a low-level yaw controller exists that is capable of
rapidly driving the nacelle yaw angle to the commanded yaw angle such that xpi ≈ ui. Conse-
quently, r̂p(xpi , x

e
i , ui) is simplified as r̂p(xei , ui). Similarly, since the controller assumes that the

yaw angle of Turbine i + 1 is primarily given by ui+1, this means that the yaw angle of Turbine
i can be set without incurring yawing dynamics of Turbine i + 1 such that f̂p = ∅. Finally, the
estimated environmental dynamic model, f̂ e(xpi , x

e
i , ui, i), provides a prediction for how the na-

celle yaw angle, hub-height wind speed, commanded yaw angle, and turbine index at Turbine i
impacts the hub-height wind speed at Turbine i+1. The controller assumes that the environmental
dynamics are invariant with respect to the turbine index, which, combined with the assumption that
xpi ≈ ui, allows f̂ e(xpi , x

e
i , ui, i) to be simplified as f̂ e(xei , ui). While these assumptions may only

hold in approximation, we note that r̂p, f̂ e, and f̂ e are only low-fidelity models and are not ex-
pected to perfectly describe the true system behavior that is captured by the FAST.Farm simulation
environment but is not directly integrated into the control law given by (C.8).

To develop closed-form expressions for r̂p and f̂ e, a data-based approach is used. Here, a series
of single-turbine simulations are conducted wherein the nacelle yaw angle is set to a fixed value
between 0◦ and 50◦ and the inflow wind at the turbine is set to have a uniform velocity profile with
v∞ref in (C.12) ranging from 5m/s to 15m/s. Output measurements of the generated power and the
windspeed 700m downwind of the turbine are recorded over 600s of simulation which provides
sufficient time for the output signals to reach steady-state. r̂p and f̂ e are then generated from a
polynomial fit relating yaw angle and inflow wind speed to the measured steady-state power and
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downwind speed as

r̂p(xei , ui) =− 75.7 + 72.6xei + 0.9ui − 0.1xeiui − 0.1u2i − 10−3xeiu
2
i + 10−3u3i , (C.13)

f̂ e(xei , ui) =− 0.1 + 0.7xei − 8 · 10−3ui + 6 · 10−4u2i + 10−3xeiui − 8 · 10−5xe
2

i + 10−5xe
2

i ui

+ 9 · 10−5xeiu
2
i + 5 · 10−6u3i .

(C.14)

The definitions of r̂p and f̂ e in (C.13) and (C.14) are specific to the windfarm configuration and
freestream wind direction shown in Figure C.1. For different turbine configurations or inlet wind
directions, new low-fidelity models can be produced without incurring additional computational
complexity by modifying the location at which the downstream windspeed is measured. Addition-
ally, alternative modeling choices may also be used to generate r̂p and f̂ e. For instance, in [120]
and [123], the Park and Jensen wake model [132] is extended to include the effect of the upwind
turbine yaw angle on the downwind wake velocity. In [133], another modeling choice for r̂p is
suggested where power generation is related to the nacelle yaw through a factor of cosγ(xpi ) for
some potentially experimentally obtained value of γ.

To enable increased control authority, each turbine updates its yaw angle command every 3s
based on the level-(k− 1) environmental state and level-(k− 2) input at that time. In other words,
at time t, we determine ui|k based on the values of xei|k−1 and ui|k−2 measured at time t in the
previously run level-(k − 2) controller simulation. Consequently a modification to Jk is made
according to

Jk =

∫ 600

0

2∑
i=0

zpi|k(t)dt (C.15)

where zpi|k(t) is the stage reward of Turbine i at time t. The input update gain, β, used in (C.8) is
set as 0.2.

We choose g(k, θ) to have the form of an underdamped second-order system step response:

g(k, θ) = J0 +M − Me−ζωnk√
1− ζ2

sin
(
ωn
√

1− ζ2k + cos−1(ζ)
)

(C.16)

where θ = (M, ζ, ωn). In the context of the relationship between J and k, M (kilojoules) cor-
responds to the difference in energy generated by the wind farm when a level-0 control input is
applied versus the estimated energy generated when a level-∞ control input is applied. ζ dictates
how much estimated performance ‘overshoot’ there is relative to the performance of the level-∞
controller at some finite controller cognitive level. ωn, which has units of radians per cognitive
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level, or (rad/k), influences which cognitive level the expected maximum performance overshoot
occurs. As discussed in Section C.3.3, the specific form of g(k, θ) given in (C.16) was chosen from
a group of candidate functions as it provided the most accurate fit between the measured {kk}k and
{Jk}k data with ng = 5 and ϵ = 10−4.

The level-0 control input is given by ui|0 = 0◦ for all i and all t, and corresponds to aligning the
turbine rotors perpendicular to the freestream wind. This control decision is termed the ‘greedy’
control strategy, and is the conventional way in which yaw control is implemented in practice [120].
Using greedy control, each turbine seeks to maximize its individual power generation without
considering the effect of its decisions on farm-level power production.

C.4.2 Simulation Results

Algorithm 7 was implemented on the wind farm system wherein the θk convergence condition,
(C.9), was satisfied at k̄ = 76. The evolution of θk is shown in Fig. C.2, with θ76 = (2.8 ·
105, 0.58, 0.13). Here, although the values of M , ζ , and ωn change drastically at small values of
k, these parameters appear to approach equilibria as the controller’s cognitive level continues to
increase.

Figure C.2: Estimates of the J vs. k model parameters obtained at various controller cognitive
level values.
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For k̄ = 76, (C.10) gives k∗ = 30. The measured cumulative performance at each controller
cognitive level from k = 0 to k = 76 is depicted in Fig. C.3.

Figure C.3: Total energy generated by the wind farm over the 600s simulation for various control
schemes. The g(k, θ76) model predicts an optimal cognitive level of k∗ = 30 while the observed
optimal occurs at k = 26.

As shown in Fig. C.3, the g(k, θ76) model closely resembles, but does not perfectly match,
the measured J vs. k behavior. Consequently, k is not set to k∗ in future simulations, but solving
(C.11) instead identifies k = 26 as the optimal controller cognitive level. Comparing J26 to the per-
formance of the greedy controller, the proposed algorithm enables a 20.0% increase in generated
energy. We similarly compare the proposed control scheme to the purely model-based dynamic
programming strategy given in [123]. Here, through the incorporation of historical plant and en-
vironmental data within (C.6) and (C.11), the level-26 controller is able to increase the produced
energy by 1.5% in comparison to the controller given in [123]. Additionally, by not relying solely
upon model-based state predictions, the use of data augmentation enables the proposed algorithm
to be more robust to inaccuracies in the low-fidelity dynamic/reward models, and for the energy
generation performance to scale better for larger wind farm systems in comparison to [123].
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The wind field at the final timestep of the simulation of the level-27 environment is shown in
Fig. C.4. Here, the two upwind turbines have large yaw errors with respect to the freestream
flow, which deflects the wake away from downstream turbines. As the furthest downwind turbine,
Turbine 2 is able to maximize its individual energy production by setting its nacelle yaw angle to
nearly 0◦.

14 151311 1210

Wind speed (m/s)

Freestream wind direc on

Turbine 0 Turbine 1
Turbine 2

Figure C.4: Level-27 environment hub-height wind field after 600s.

C.5 Conclusions

In this work we have proposed a framework that leverages tools from level-k cognitive theory
for the control of systems that are bidirectionally coupled with their operating environments. The
proposed strategy seeks to combat model uncertainty in the system dynamics and reward by posing
the optimal control problem as a two player game wherein the environment acts as a more sophis-
ticated decision maker than the controller. By relying on only low-fidelity dynamic and reward
models, the controller is able to make computationally tractable predictions of the optimal control
strategy. Further, to combat the inaccuracy of these low-fidelity models, historical data is leveraged
to supplement predictions of the optimal control decisions in response to the environmental behav-
ior. The control scheme is demonstrated by simulation of a wind farm wherein energy production
is increased by 1.5% in comparison to a similar control strategy.

Future work includes the incorporation of a lower-level iterative learning controller to further
improve performance, despite the existence of plant model uncertainty. Additionally, identify-
ing methods to enable robust performance in the case of stochastic dynamics is a point of future
investigation.
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APPENDIX D

Variable Notation Guides

D.1 General Notation Guide

To help guide the reader, the table below provides a list of mathematical notation that is used
throughout this dissertation.

General Notation Guide
Variable Description
B(a, b) Closed Euclidean ball with center a and radius b
I Identity matrix
I≥a Set of integers greater than or equal to a
I[a,b] Set of integers in the range [a, b]

N Set of natural numbers
r(A) Radius of the smallest closed Euclidean ball that contains set A
R Set of real numbers
Proj{b, A} Orthogonal projection of element b onto set A
σmax(A) Largest singular values of matrix A
σmin(A) Smallest singular values of matrix A
∅ Empty set
|b|A Distance between a point b ∈ Rnb and set A ⊆ Rnb given as inf

a∈A
∥b− a∥

∥A∥ Euclidean norm of argument A, or the induced matrix norm if A is a matrix
⌊a⌋ Largest integer less than or equal to a
(A)n A× . . .×A
(·)⊤ Transpose operator
(·)−1 Inverse operator
A⊕ B Minkowski sum of sets A and B
A⊖ B Pontryagin difference of sets A and B
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D.2 Variable Guide for Chapter 2

To help guide the reader, the tables below provide a list of variable nomenclature that appears
recurrently throughout Chapter 2 - Economic Iterative Learning Control: Numerical Optimization-
Inspired Controller Design.

Chapter 2 Variable Notation Guide
Variable Description
AM
E Gradient of cME

AM
I Gradient of cMI

AR
E Gradient of cRE

AR
I Gradient of cRI

cME Equality constraint functions based on the user’s system model
cMI Inequality constraint functions based on the user’s system model
cRE Equality constraint functions based on the real system model
cRI Inequality constraint functions based on the real system model
E Set of equality constraint functions
f cx Discrete time state dynamics function
f cx Continuous time state dynamics function
fy Output dynamics function
F Filter
g Gradient of J
H Hessian of J
I Set of inequality constraint functions
J Stage cost (at a timestep)
J Cumulative (over an iteration) cost function
Jmin Lower bound on cost function
k Timestep index
m Quadratic approximation of J
MM1 Bound on the norm of the gradient of cME and cMI
MM2 Bound on the norm of the Hessian of cME and cMI
MR1 Bound on the norm of the gradient of cRE and cRI
MR2 Bound on the norm of the Hessian of cRE and cRI
MP1 Constant
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Chapter 2 Variable Notation Guide
Variable Description
n Optimization normal step
nτ Number of timestep samples constituting an iteration
nu Dimension of the input space
ny Dimension of the output space
nz Dimension of the state space
p(k) Output transition function that gives the value of yk
p Lifted output transition function
P Projection operator
r Restoration step
R Set of indices denoting iterations where a restoration procedure was per-

formed
s Candidate optimization iterate step
S Set of successful iterate indices
t Optimization tangent step
T Feasible sample period set
T Lifted feasible sample period set, T = T × . . .× T

u Inputs
u Lifted input sequence
U Feasible input set
U Lifted feasible input set, U = U × . . .× U

x Lifted control trajectory. The decision variable used in the optimization prob-
lems

xN Nominal decision variable plus the normal step
X Bounded domain of the lifted control trajectories
y Outputs
y Lifted output sequence
Y Feasible output set
Y Lifted feasible output set, Y = Y × . . .× Y

z System states
z0 Initial system state at each iteration
Z Set of iterations for which an iterate is added to the filter
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Chapter 2 Variable Notation Guide
Variable Description
β ∥H∥+ 1

γθ User-defined parameter
γ0 User-defined parameter
γ1 User-defined parameter
γ2 User-defined parameter
δf Constant
δm Constant
δn Constant
δR Constant
δθ Constant
δρ Constant
∆ Trust region radius
η1 User-defined parameter
η2 User-defined parameter
θ Maximum measured real system constraint violation
θmax Upper bound on constraint violation
κlsc Constant
κtmd User-defined parameter
κubg Bound on the norm of the gradient of J
κubh Constant
κubt Constant
κumh Constant
κusc Constant
κ∆ User-defined parameter
κθ User-defined parameter
κµ User-defined parameter
µ User-defined parameter
ρ Ratio of true cost decrease to quadratic approximation cost decrease
τ Sample period length
τ Lifted sample period sequence
τmax Maximum sample period length
χ First order criticality metric
ψ User-defined parameter
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D.3 Variable Guide for Chapter 3

To help guide the reader, the tables below provide a list of variable nomenclature that appears
recurrently throughout Chapter 3 - Robust Adaptive Economic Model Predictive Control.

Chapter 3 Variable Notation Guide
Variable Description
dij State ‘disturbance’ caused by θ̃ij and vij given as dij ≜ G(xij, u

i
j)θ̃

i
j + vij

dmax
Θ̃j ,A

(x̄, ū, c) Upper bound on the size of a disturbance in a neighborhood of size c around x̄

d̄max
Θ̃j ,A

(x̄, ū) Upper bound on the size of a disturbance given state/input pair (x̄, ū)

d̊ Disturbance to the P -step system
Di
j Known set bounding state disturbances caused by θ̃ij and vij given as Di

j ≜

H(Θ̃i
j)⊕ V

Dj Known set bounding all state disturbances within cycle number j given as Dj ≜

D0
j ∪ D1

j ∪ . . . ∪ Dnc−1
j

e State estimation error given as e ≜ x− x̄

fθ̂ij
(x, u, d) Dynamic map based on model parameter values θ̂ij

fθ̂j The sequence of mapping functions given by the various θ̂ij ∈ θ̂j given as
fθ̂j ≜ {fθ̂0j , . . . , fθ̂nc−1

j
}

fP
θ̂j
(̊x, ů, d̊) Dynamic map of the P -step system based on the sequence of model parameter

values, θ̂j
F (x, u) Known component of system dynamic model
G(x, u) Known regressor component of system dynamic model
H(Θ̃i

j) Known set bounding state uncertainty caused by θ̃ij given as H(Θ̃i
j) ≜

{G(x, u)θ̃ : x ∈ X , u ∈ U , θ̃ ∈ Θ̃i
j}

i Intracycle step index given by i = k mod nc

j Intercycle step index given by j = ⌊ k
nc
⌋

J aux
j (x̄, ū) Auxiliary objective function
JMPC
Ω (x̄, ū) MPC cost where ū denotes a nominal input sequence prediction
k Timestep index
KG,Ωj Upper bound on difference between G(x̄, ū) and G(x, ϕ(ū, x, x̄)), normalized

by ∥x− x̄∥
Kω Adaptation gain
ℓ(x, u) Economic cost function
ℓint(x̄, ū,Ω) Integrated stage cost
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Chapter 3 Variable Notation Guide
Variable Description
ℓ̊int(̊x̄,˚̄u,Ω) P -step integrated stage cost
˚̄Lj (̊x̄,˚̄u) Rotated stage cost
nc Cycle period length
nh MPC prediction horizon length
nu Dimension of u
nx Dimension of x
nθ Dimension of θi

P Iteration length. Assumed to be an iteration multiple of nc
P RAEMPC
θ̂

(J, x̄) MPC optimization problem defined by cost function, J , initial condition, x̄,
and system model parameters, θ̂

˚̄Pp

Θ̃j
Set of all possible minimal periodic orbits of the nominal system given pa-
rameter error uncertainty set Θ̃j

Ri(∆θ̂ij+1) Set of all possible changes to x̄ resulting from updating the model parameters
at intracycle step i between cycle numbers j and j + 1 according to ∆θ̂ij+1

R(∆θ̂j) Given as R(∆θ̂j) ≜ R0(∆θ̂0j ) ∪ . . . ∪Rnc−1(∆θ̂nc−1
j )

sj (̊x̄,˚̄u) Supply rate
u True system inputs
ū Nominal system inputs
ūcand Candidate input sequence for the first nh − P + 1 timesteps in the

P RAEMPC
θ̂j

(JMPC
Ωj

, x̄) prediction horizon.
ūnom Candidate input sequence for all nh timesteps in the P RAEMPC

θ̂j
(JMPC

Ωj
, x̄) pre-

diction horizon.
ūpj,t tth element of ˚̄upj
ů True P -step system inputs
˚̄u∗tP |j(x̄) P -step subsequence of ū∗

j(x̄) where ˚̄u∗tP |j(x̄) = (ū∗tP |j(x̄), . . . , ū
∗
tP+P−1|j(x̄))

˚̄upj Projection of πj onto the set Ūj
ū∗
j(x̄) Solution to P RAEMPC

θ̂
(JMPC

Ω , x̄) which can be decomposed as ū∗
j(x̄) =(

ū∗0|j(x̄), . . . , ū
∗
nh−1|j(x̄)

)
U Set of feasible u
(Uθ̂j ,Dj)

T (x) Set of length T input sequences that, starting from initial condition x, ensures
xt ∈ X for any disturbance sequence, d ∈ (Dj)

T . Given as (Uθ̂j ,Dj)
T (x) ≜

{u ∈ (U)T : xu
θ̂j
(t, x) ∈ X ,∀d ∈ (Dj)

T ,∀t ∈ I[0,T ]}
Ūj Projection of Z̄j onto U
v True system noise
vmax Known upper bound on the size of v
Vδ(x, x̄) Distance function given as Vδ(x, x̄) ≜ ∥x− x̄∥
V̄ f (x̄) MPC terminal cost function
˚̄V f (̊x̄) Rotated P -step terminal cost

153



Chapter 3 Variable Notation Guide
Variable Description
V Domain of v given as V ≜ {v ∈ Rnx : ∥v∥ ≤ vmax}
˚̄wk P -step subsequence of w̄k

w̄k Candidate input sequence to P RAEMPC
θ̂

(JMPC
Ω , x̄) in the event that x̄cand and

ūcand are not compatible for P RAEMPC
θ̂j

(JMPC
Ωj

, x̄). Decomposed into P -step

input sequences as w̄k(P ) =
(
˚̄wk(P ), ˚̄wk(2P ), . . . , ˚̄wk(nh)

)
x True system states
xa
θ̂j
(t, x) State of the true system given by fθ̂j at time t resulting from initial condition

x, applied input sequence a, and some disturbance sequence d ∈ (D)t

x̄ Estimated/nominal system states
x̄a(t, x̄) State of the nominal system given by fθ̂j at time t resulting from initial condi-

tion x̄, applied input sequence a, and the disturbance sequence d = (0)t

x̄pj,t tth element of ˚̄xpj
x̄cand Candidate state sequence for the first nh − P + 1 timesteps in the

P RAEMPC
θ̂j

(JMPC
Ωj

, x̄) prediction horizon
x̄nomt Candidate state at timestep t within the P RAEMPC

θ̂j
(JMPC

Ωj
, x̄) prediction horizon

with t ∈ I[0,nh]
x̂ Filtered system state
x̃ Filtered system state error given as x̃ ≜ x− x̂
x̊ True states of the P -step system
x̊a
θ̂j
(t, x) State of the true P -step system given by fP

θ̂j
at time t resulting from initial

condition x, applied input sequence a, and some disturbance sequence d ∈
(D)t

˚̄xpj Projection of πj onto the set X̄j

x̄∗t|j Predicted optimal nominal state at step t of the prediction horizon at cycle
number j. Given as x̄∗t|j ≜ x̄ū

∗
j (x̄)(t, x̄)

X Set of feasible x
X̄j Projection of Z̄j onto X
X̄ f
j MPC terminal state constraint set at cycle number j

X̄j,nh The set of initial conditions for which P RAEMPC
θ̂

(JMPC
Ωj

, x̄) is feasible
z∆Θij

Radius of ∆Θi
j

zΘij Radius of Θi
j at intracycle step i and cycle number j

z̄Θij Candidate radius of Θi
j at intracycle step i and cycle number j

zΘjmax Maximum uncertainty set radius at cycle number j
zΩj Radius of the smallest ball containing Ωj

Z The set of feasible true states and inputs given as Z ≜ X × U
Z̄j Tightened constraint set for x̄ and ū at cycle number j
α K∞ function
α1 K∞ function
α2 K∞ function
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Chapter 3 Variable Notation Guide
Variable Description
β Initial, user-selected eigenvalues of Σ
∆θ̂ij+1 Change in model parameter estimates between cycles j and j+1 at intracycle

step i. Given as ∆θ̂ij+1 ≜ θ̂ij+1 − θ̂ij
∆θ̂j Set of all ∆θ̂ij at cycle number j given as ∆θ̂j ≜ {∆θ̂0j , . . . ,∆θ̂nc−1

j }
∆Θi

j+1 Change in the uncertainty set between cycles j and j + 1 at intracycle step i.
Given as ∆Θi

j+1 ≜ Θi
j ⊖Θi

j+1

∆Θ̃j+1 Difference between sets Θ̃j and Θ̃j+1 given as ∆Θ̃j+1 ≜ Θ̃j ⊖ Θ̃j+1

η Adaptation auxiliary variable
η̂ Estimated adaptation auxiliary variable
η̃ Estimated adaptation auxiliary variable error given as η̃ ≜ η − η̂
θi Unknown model parameters at intracycle step i
θ̂ij User estimate of θi at cycle number j
θ̂j Set of θ̂ij at cycle number j given as θ̂j ≜ {θ̂0j , . . . , θ̂nc−1

j }
¯̂
θij+1 Projection of parameter estimate θ̂ij+1 onto Θi

j at intracycle step i and cycle
number j

θ̃ij Parameter estimate error at intracycle step i and cycle number j given as θ̃ij ≜
θi − θ̂ij

θ̃j Set of θ̃ij at cycle number j given as θ̃j ≜ {θ̃0j , . . . , θ̃nc−1
j }

¯̃θij Projected parameter estimate error at intracycle step i and cycle number j
given as ¯̃θij ≜ θi − ¯̂

θij
Θi
j Parameter uncertainty set at intracycle step i and cycle number j designed

such that θi ∈ Θi
j ≜ B(θ̂ij, zΘij)

Θ̃i
j Parameter error uncertainty set at intracycle step i and cycle number j given

as Θ̃i
j ≜ B(0, zΘ

i
j)

Θ̃j Product of sets Θ̃i
j at cycle number j given as Θ̃j ≜ Θ̃0

j × . . .× Θ̃nc−1
j

κ̊f Terminal feedback law
λ̊(̊x̄) Storage function
πj Nominal feasible P -periodic orbit of system fP

θ̂j
(̊x, ů, 0). Consists of a se-

quence of state/input pairs (x̄pj,t, ū
p
j,t). Dependency on θ̃j gives the alternate

notation π(θ̃j)
Πj Set of all πj
ρθ̄j Feedback error contraction factor
Σ Excitation matrix used for the adaptive law updates
ϕ(ū, x, x̄) Feedback law
ΨΩj Set of (x, x̄, ū) such that (x, ϕ(ū, x, x̄)) ∈ Z and (x− x̄) ∈ Ωj

ωij Filtered version of G(x, u) at intracycle step i and cycle number j
Ωj Robust control invariant set under feedback ϕ(ū, x, x̄) at cycle number j
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D.4 Variable Guide for Chapter 4

To help guide the reader, the tables below provide a list of variable nomenclature that appears
recurrently throughout Chapter 4 - Robust Adaptive Economic Iterative Learning Control.

Chapter 4 Variable Notation Guide
Variable Description
aq,k|t Coefficient for q−tube constraints

aj∗q,k|t Optimal q−tube constraint coefficient for R(Θ̧j, xjt ,
∴
xj,

∴
uj, t)

as,k|t Coefficient for s−tube constraints

aj∗s,k|t Optimal s−tube constraint coefficient for R(Θ̧j, xjt ,
∴
xj,

∴
uj, t)

ci Lipschitz constant of constraint function hi w.r.t. x under feedback κ
cl(A) Closure of the set A
conv(A) Convex hull of A
C(F) Set of centroids of the n-faces in F
d System noise
dw Disturbance signal resulting from combined effects of system noise and pa-

rameter estimation error
D Domain of the system noise
f Known component of system dynamic model
fθ̧ Nominal dynamic model based on parameter estimate θ̧
F(υ,X⊇

i ) Set of n-faces of X⊇
i for which vertex υ is an element

G Known regressor component of system dynamic model
Gmax Upper bound on the Euclidean-norm of G
GP
max Upper bound on the P−norm of G

h Constraint functions
hu Constraint functions defining U
hx Constraint functions defining X
i Partition index
I(x) Set of indices of the partitions Xi that were entered over the course of the state

sequence x

j Iteration index
J Economic cost function
J int Integrated economic cost over the s−tube

J int∗
Θ̧,

∴
x,

∴
u

Optimal integrated cost of R(Θ̧, x0,
∴
x,

∴
u, 0)
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Chapter 4 Variable Notation Guide
Variable Description
k Prediction horizon index
Kω User-defined parameter
ℓ Stage cost function
ℓint Integrated stage cost over the s−tube
Luf Lipschitz constant of f w.r.t. u
Lxf Lipschitz constant of f w.r.t. x
LuG Lipschitz constant of G w.r.t. u
LxG Lipschitz constant of G w.r.t. x
LG,κ Lipschitz constant of G w.r.t. x under feedback κ
LzΘ̧ Lipschitz constant of zΘ̧ w.r.t. x
L∆θ̧ Lipschitz constant of ∆θ̧(x) w.r.t. x
Lxθ Lipschitz constant of θ w.r.t. x
LΘ̧̃ Lipschitz constant of w̃ w.r.t. x under feedback κ
Lxκ Lipschitz constant of κ w.r.t. x
Lx̄κ Lipschitz constant of κ w.r.t. x̄
Lūκ Lipschitz constant of κ w.r.t. ū
Lρ,θ̧,∆Θ̧ Constant
m(Xa,Xb) Maximum distance between any point in Xa and any point in Xb

Md Upper bound on the size of d
MXi

w Upper bound on the size of the disturbance caused by state-dependent varia-
tions in θ(x) in the partition Xi

nh Number of constraint functions hi
np Number of partitions Xi

nt Number of timestep samples constituting and iteration
nθ Dimension of θ
p Cart position
ṗ Cart velocity
P Weighting matrix for distance metric Vδ
P(x) Set of partition indices of X⊇ for which x ∈ cl(X⊇

i )

q Upper bound on Vδ(x,
∴
x) under feedback κ

qj∗k|t Optimal value of the q−tube radius for R(Θ̧j, xjt ,
∴
xj,

∴
uj, t)

R(Θ̧, x,
∴
x,

∴
u, t) Shrinking horizon optimization problem

s Upper bound on Vδ(x, x̄) under feedback κ
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Chapter 4 Variable Notation Guide
Variable Description

sj∗k|t Optimal value of the s−tube radius for R(Θ̧j, xjt ,
∴
xj,

∴
uj, t)

s̃ Bound on the change in the s−tube radius
t Timestep index
tXiin Timestep that the system enters Xi

tXiout Last timestep before the system exits Xi

u Inputs
ū Nominal inputs

ūj∗k|t Optimal input for R(Θ̧j, xjt ,
∴
xj,

∴
uj, t)

∴
u Benchmark input sequence
U Set of feasible inputs
v Disturbance caused by noise and state-dependent variations in θ(x) over Xi

Vf Terminal cost function
V int
f Integrated terminal cost over the s−tube
VzΘ̂ Metric used to update zΘ̂

Vδ Distance metric function

V ˜̂
θ

Measure of the size of ˜̂θ
VXi Domain of disturbances caused by the combined effects of noise and state-

dependent variations in θ(x) over the partition Xi

w̃Θ̧̃,D(x, u) Upper bound on the size of dw at (x, u)
w̃δ,Θ̧̃,D(x̄, ū, s) Upper bound on the size of dw in a neighborhood of size s around (x, u)

wj∗k|t Optimal value of w̃
δ,Θ̧̃

j
,D for R(Θ̧j, xjt ,

∴
xj,

∴
uj, t)

WΘ̧̃,D Domain of dw
x System states
x0 Iteration-invariant initial condition
x̄ Nominal system states

x̄j∗k|t Optimal states for R(Θ̧j, xjt ,
∴
xj,

∴
uj, t)

∴
x Benchmark state sequence
x̂ Filtered system states
x̃ Filtered system state error
X Set of feasible states
Xi Partition of X
X⊇ Smallest bounding hyperrectangle of X
X⊇
i Partition of X⊇
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Chapter 4 Variable Notation Guide
Variable Description
zΘ̧(x) Radius of Θ̧(x)

zΘ̧
j

ave Average value of zΘ̧
j
(x) over X

zΘ̧max Upper bound on zΘ̧(x)
zΘ̧min Lower bound on zΘ̧(x)
zΘ̂ Upper bound on the size of the error θ̂ − θ(x)

zΘ̂Xi Radius of Θ̂Xi

zϑ
Xi Radius of the smallest ball containing ϑXi

ẑϑ
Xi Known upper bound on zϑXi

Z Set of feasible inputs and constraints, given by X × U
β User-defined parameter
γ
uj ,

∴
uj

User-defined parameter

δloc Constant

δu Difference between u and
∴
u

δx Difference between x and
∴
x

∆θ̧(x) Iteration-to-iteration change in θ̧(x)
∆Θ̧(x) Iteration-to-iteration change in Θ̧(x)

ϵz Constant
ϵ∆Θ̧ Upper bound on the size of ∆θ̧(x)
η Adaptation auxiliary variable
η̂ Estimated adaptation auxiliary variable
η̃ Estimated adaptation auxiliary variable error given as η̃ = η − η̂

θ Unknown state-varying model parameters
θ∗ Arbitrary point in ϑXi

θ̧(x) User-estimate of θ(x)
θ̧max Upper bound on the size of θ̧(x)
θXi Center of the smallest ball containing ϑXi

θ̂ Placeholder estimate of θ(x)
θ̂Xi Center of Θ̂Xi

θ̄ Projection of the placeholder model parameter estimate onto Θ̂
˜̂
θ Given as θ∗ − θ̂
˜̄θ Given as θ∗ − θ̄

ϑXi The set of values of θ(x) over Xi

Θ̧(x) Model parameter uncertainty set function
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Chapter 4 Variable Notation Guide
Variable Description
Θ̧̃(x) Model parameter error uncertainty set function
Θ̂ Placeholder model parameter uncertainty set over partition Xi given as B(θ̂, zΘ̂)

Θ̂Xi Discontinuous model parameter uncertainty set over partition Xi

κ Feedback control law
κmax > 0 Constant
ρq,Θ̧ Growth factor for q−tube w.r.t. q
ρs,Θ̧ Growth factor for q−tube w.r.t. s
ρ
ū,

∴
u,Θ̧

Growth factor for q−tube w.r.t. δu

ρθ̧ Feedback error contraction factor
Σ Excitation matrix used for the adaptive law updates
υ Hyperrectangle vertex
ϕ Pendulum angle
ϕ̇ Pendulum angular velocity
Ψ Set of (x, x̄, ū) such that (x, κ(x, x̄, ū)) is feasible and Vδ(x, x̄) ≤ δloc

ω Filtered version of G(x, u)
ΩU(ū, s) Tube around ū with radius κmaxs
ΩX (x̄, s) s−tube around x̄ with radius s

D.5 Variable Guide for Appendix C

To help guide the reader, the tables below provide a list of variable nomenclature that appears
recurrently throughout Appendix C - Game Theoretic Wind Farm Control Based on Level-k Cog-
nitive Modeling.

Appendix C Variable Notation Guide
Variable Description
f e Environment dynamics function
f̂ e Estimated environment dynamics function
fp Plant dynamics function
f̂p Estimated plant dynamics function
g Estimate of the mapping between the controller’s cognitive level and cumula-

tive plant performance
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Appendix C Variable Notation Guide
Variable Description
h Windfield height
J Measured cumulative plant reward over an experiment/simulation
k Level of cognitive decision making
k̄ Highest cognitive level that has previously been applied to the plant
k∗ Maximizer of g(k, θk)
M Gain parameter of the mapping g for the simulation case study
ng User-defined parameter
ni Optimization horizon length
nθ Dimension of θ
rp Plant Reward function
r̂p Estimated plant Reward function
u Control input
u∗
i0
|k Estimated optimal level-k control input at step i0

{ui|k}i Level-k control sequence, i.e. the controller’s decision
{u∗i|k}i Estimated optimal level-k control sequence

U Set of feasible u
v∞(h) Freestream wind velocity at height h
v∞ref Reference freestream wind velocity
xe Environment states
{xei|k}i Level-k environmental state sequence, i.e. the environment’s decision

xp Plant states
{xpi|k}i Level-k plant state sequence

ze Environmental stage reward
zp Plant stage reward
zpi|k Plant stage reward at step i observed by applying the level-k control decision

β User-defined parameter
ϵ User-defined parameter
ζ Damping ratio parameter of the mapping g for the simulation case study
θ Functional parameters for the mapping g
{Θ

k
}k Subsequence of θk

{
◦
Θ
k
}k Mean-normalization of {Θ

k
}k

κ Optimal control input identification policy
ωn Natural frequency parameter of the mapping g for the simulation case study
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[83] Matthias A. Müller and Lars Grüne. Economic model predictive control without terminal
constraints for optimal periodic behavior. Automatica, 70:128–139, August 2016. 61
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