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ABSTRACT

For many engineering applications, the behavior of a system is largely repetitive as it performs
a given task many times. Although control strategies have traditionally sought to enable improved
behavior of these repetitive dynamic systems through enhanced reference tracking, system perfor-
mance is often dictated by a non-tracking, or economic, performance objective such as the maxi-
mization of efficiency or safety, or minimization of energy expenditure or monetary cost. Modern
control strategies often consider these economic objectives directly by leveraging tools available
from the field of mathematical optimization, but their success in practice is frequently hindered by
the presence of uncertainty in the system dynamics. To mitigate the harmful impacts of uncertainty
on the quality of decisions made by economic controllers, learning-enhanced control has become
a popular field of investigation.

The consideration of repetitive system dynamics within the field of learning-based control is
the focus of iterative learning control (ILC) and repetitive control (RC) research efforts. Here,
repetition facilitates performance improvements, as information about a system’s behavior from
previous task executions can be used to inform how to appropriately apply control in the future.

However, despite developments in the fields of ILC and RC, several limitations remain that
have prevented a more widespread adoption in practice. Namely, the simultaneous presence of
economic performance objectives, nonlinear plant dynamics, and system constraints has not been
thoroughly considered in the controller design.

This dissertation presents various methodologies for improving the economic performance of
constrained, nonlinear, repetitive systems through learning-based techniques. First, this disserta-
tion establishes a connection between repetitive system behavior and the iterative nature of numer-
ical optimization algorithms. Based on this insight, a controller is designed based on a sequential
quadratic programming algorithm wherein sensor measurements obtained from previous trials are
used to iteratively improve the system’s behavior with regards to economic performance and con-
straint satisfaction without the requirement of a high-fidelity system model. Conditions for which a
control trajectory can be identified that satisfies the constraints of the true system, and a subsequent
assessment of the optimality of the resulting converged closed-loop performance are presented.

Moreover, while ILC and RC are designed to mitigate the impacts of modeling errors, closed-

loop performance is nonetheless predicated upon the presence of uncertainty. Here, whereas ILC
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and RC have traditionally facilitated learning at the signal level through direct manipulation of the
control input from trial to trial, benefits may be achieved through the additional incorporation of
learning at the system level wherein historical data is leveraged to reduce the amount of uncertainty
that exists.

Consequently, a controller is developed for application to repetitive systems commonly studied
within the scope of RC, wherein uncertainty is reduced through the use of a novel adaptive control
scheme based on a parametric set membership update law. Specifically, by reducing the impacts
of periodic parametric uncertainties on the nominal system dynamics, improvements in economic
performance are achieved. Finally, this methodology is then extended to a class of repetitive sys-
tems investigated within the ILC literature subject to state-varying parametric uncertainty. Here,
the simultaneous use of signal-level and system-level learning is used to enhance economic perfor-
mance. Conditions are then established for guaranteeing the robust satisfaction of hard state and
input constraints. The recursive feasibility and robustly optimal closed-loop performance of these
predictive controllers is additionally guaranteed and demonstrated using a set of simulation case

studies.
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CHAPTER 1

Introduction

1.1 Motivation

While traditional control algorithms have been developed with the aim of improving a system’s
ability to track a reference signal, in practice, a system’s performance is frequently given by a
non-tracking, or economic, metric. For instance, in manufacturing applications, a system’s per-
formance may be measured by its throughput production rate. Meanwhile, in racing applications,
the system objective might be to minimize lap time, whereas the performance of electrical power
generation systems may be dictated by their ability to maximize energy production. In these cases,
the goal of accurate reference tracking does not properly encapsulate the true desired behavior of
such systems. However, despite the fact that a broad class of systems aim to achieve high economic
performance, reference tracking strategies remain the prevailing technique for most control appli-
cations. While careful reference design may be conducted such that these non-tracking objectives
are properly addressed in proxy by a reference-tracking controller, this process can be in and of
itself an arduous task [1].

Moreover, many classical control tools rely on fundamental assumptions on the system behav-
ior that rarely hold true in practice. For instance, controller design based on frequency-domain
transfer function models of a system generally require linearity and time-invariance of the system
dynamics. However, in reality, these assumptions only hold, at best, in approximation, and the
resulting behavior of the system may not align closely with a linearized estimate of the dynam-
ics. In fact, while in tracking control problems the reference is commonly used as the nominal
point/trajectory about which linearization of the system dynamics is performed, in reference-free
economic control applications, the identification of an appropriate nominal setpoint/trajectory for
linearization is often nontrivial.

Similarly, classical techniques are unable to explicitly address real-world restrictions or con-
straints that a system may be required to satisfy. These requirements, which may arise as actuation

bounds, obstacle avoidance constraints, and velocity/acceleration limits to name a few, can sig-



nificantly restrict the domain over which the system is operated. With the increasing reliance on
embedded control systems for safety-critical applications such as autonomous vehicles, medical
devices, and avionic systems, the ability of a controller to properly navigate these constraints is of
paramount importance. Hence, the development of advanced control strategies is needed to ensure
safe and successful operation of these systems.

The considerations of economic performance objectives, nonlinear system dynamics, and con-
straints lend themselves to the field of optimal control. Leveraging mathematical optimization
tools, optimal control strategies can be employed to address each of these concerns simultaneously
[2]. However, the ability of these schemes to identify an optimizing control trajectory relies on the
availability of an accurate understanding of the system dynamics. In practice, the existence of dis-
turbances and noise hinder the efficacy of optimal control techniques. Moreover, with the advent
of more and more sophisticated engineered technologies, the task of generating system models
that are both accurate and simple enough to be directly integrated into a numerical solver becomes
increasingly difficult. These unavoidable presences of uncertainty ultimately cause suboptimal-
ity of performance or, even worse, can potentially lead to unstable system behavior. Therefore,
additional attention is required in order to ensure satisfactory behavior of the system.

To counteract these uncertainties, a variety of control methods may be implemented. Feedback
control has been a popular and predominant method for mitigating uncertainty, and can allow the
user to achieve high performance in the absence of an accurate system model. However, feedback
control is inherently reactive rather than anticipatory, meaning that undesired behavior must first
be observed before a corresponding corrective action takes place. Hence, suboptimality of control
derived solely through feedback is all but guaranteed. Alternatively, robust optimal control tech-
niques may be employed wherein a certain degree of system performance is achieved by designing
an acceptable control signal for a predefined class or set of uncertainties. While useful, these strate-
gies tend to be overly conservative at the expense of performance; protecting the system against
uncertainties that do not or are highly unlikely to exist.

Meanwhile, many systems operate repetitively. Although some engineered devices are designed
for unique, single-use applications, systems are frequently created to complete a limited set of tasks
numerous times. For instance, a manufacturing system may machine the same part many times, or
a racecar may be tasked with repeatedly traversing along a closed motion path. Alternatively, in
the case of electricity generation, energy systems are often operated under periodic environmen-
tal conditions or required to satisfy energy consumption demands that fluctuate cyclically. The
repetitive nature of these systems offers the opportunity to leverage data and generate an improved
understanding of the system behavior during its execution of a task. By learning in this manner,
more effective control of the system can be achieved by overcoming the overconservative nature

of robust techniques.



The goal of this dissertation is to develop learning-based control strategies for uncertain repeti-
tive systems with economic performance metrics, as depicted in Figure 1.1. Specifically, this work
seeks to address fundamental limitations of existing control strategies as it pertains to challenges
in modeling, uncertainty mitigation, and robust performance. With the use of measured data, the
developed tools and accompanying theory will enable improved control for repetitive systems with
various modes of operation. Additionally, the consideration of system properties such as nonlinear

dynamics and constraints will enable these strategies to be used in a variety of applications.

System Properties Desired Controller Properties
Economic performance driven Optimizing
Nonlinear and Constrained
Robust

Uncertain

Repetitive T——

Figure 1.1: Properties of the class of systems considered in this dissertation, and the capabilities
desired from a controller in order to address or leverage these system properties. The orange lines
depict how the desired controller properties arise from the properties of the system.

Learning-augmented

1.2 Learning Control for Repetitive Systems

Research on learning-based control of repetitive processes has largely focused on two system
types: 1) continuously-operated systems, and 2) discontinuously-operated systems. For systems
that operate continuously, once the current iteration of the repetitive task concludes, the next iter-
ation immediately begins such that the initial condition of iteration j + 1 is equal to the terminal
condition of iteration j. As a consequence of this behavior, control decisions made at the cur-
rent iteration of continuously-operated processes have permeating effects on the system dynamics
in future iterations. For example, rotary systems can be considered one type of continuously-
operated repetitive system where a revolution of the system constitutes an ‘iteration’. Meanwhile,
for systems that perform discontinuous processes, it is assumed that an offline phase exists be-
tween iterations of a given task such that the initial condition of the system can be reset. Often
in discontinuous processes, the initial condition of the system is assumed to be the same at each

iteration (termed iteration-invariant), or is set to a user-selected value. As an example, a material



handling robot that moves from its initial location to transport a part from one point in a manufac-
turing line to a new position before returning to rest at its original location to wait for a new part
may be classified as a discontinuous process system. The distinctions between continuously- and

discontinuously-operated systems are shown in Figure 1.2.

Offline initial
condition reset
2 Tof 2

X1 L1

(a) A continuously-operated repetitive system (b) A discontinuously-operated repetitive system
does not have an offline phase between itera- has an offline phase. Commonly, such systems
tions. Consequently, the state trajectory from are reset, as depicted by the dashed lines, such
one iteration transitions immediately to the state that the initial state condition is the same at each
trajectory at the subsequent iteration. iteration.

Figure 1.2: From an initial state at time O (blue circle), the system may traverse through the state
space as depicted by the solid lines, where the black, gold, and green line colors distinguish the
state trajectories at three different iterations.

Within the realm of learning-based control of repetitive systems, two control strategies come
to the forefront: Repetitive Control (RC) [3], and Iterative Learning Control (ILC) [4]. While RC
and ILC are similar, there are slight differences in their typical domain of application. Namely,
RC has historically been applied to continuously-operated systems while ILC has typically been
implemented for control of batch processes [5]. Regardless of this distinction, both RC and ILC
have their origins in reference tracking in the presence of repetitive uncertainties.

RC is based upon the internal model principle, which facilitates regulation through an internal
representation of a periodic reference or disturbance within the controller design [6]. RC has
been successfully used in a myriad of applications including the control of power supply systems
[7], computer hard disk drives [8], electrical machine drives [9], and substrate carrier systems
[10]. However, while RC has been successfully applied to address the problems of reference
tracking and disturbance rejection, it is not directly amenable to economic objectives. Specifically,

for systems subject to periodic disturbances with economic objectives, not only does a periodic
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reference not necessarily exist, but we may be interested in leveraging periodic disturbances rather
than simply attempting to attenuate their effects on the system behavior. Moreover, the design of
RC controllers has traditionally been performed based on frequency-domain models of the system
and the reference/disturbance signal [11]. However, controller design based on transfer function
analysis fundamentally assumes linearity of the system and time-invariance of uncertainties, which
may not be valid for more complex systems. While advancements within the field of repetitive
control have allowed for some extensions to nonlinear systems [12—14], the applicability of these
methods is often limited to a small class of nonlinearities.

For discontinuous process control, ILC has become a prominent field of study to mitigate the
impacts of model uncertainty and repetitive disturbances on system performance. The fundamental
intuition underlying ILC is that if a process is repetitive, measurements from previous executions
of the task may provide useful information that can be leveraged to improve system performance
in future task iterations. Here, by designing feedforward control signals offline based on histori-
cal system data, an ILC controller can compensate for performance losses that are a consequence
of repetitive uncertainties. Through this paradigm of ‘iteration-domain feedback’ wherein correc-
tive control actions are defined in the offline phase between task executions, ILC can be used in
conjunction with conventional real-time feedback controllers that are designed based on poten-
tially inaccurate plant models. Previous applications wherein ILC has enabled enhanced perfor-
mance through iteration-domain feedback include the control of industrial robotic manipulators
[15], chemical reactors [16], crane systems [17], and satellites [18], among others. Moreover,
while a significant portion of existing ILC strategies have been developed using frequency-domain
system analysis and controller design, the ILC research community has more readily adopted the
use of state-space system representations in comparison to its RC counterpart. Here, although lin-
earity of the system dynamics remains a common assumption within the ILC literature, extensions
to nonlinear systems are more easily facilitated. However, existing ILC theory is also primar-
ily focused on the reference tracking problem, rather than the problem of optimizing economic
performance. Hence, standard ILC schemes are only applicable to the systems of interest in this
dissertation if a higher-level reference shaping controller is also developed, which is a non-trivial
task.

To facilitate improvements in system performance through learning, RC and ILC leverage in-
formation available from previous iterations of a task in order to update the control signal that is
applied in future task executions. However, both RC and ILC traditionally rely on the assumption
that the duration of a given repetitive action is iteration-invariant: i.e. that the reference/disturbance
signal is periodic with a known period length in the case of RC, or that the trial duration is the same
at all iterations in ILC. This assumption can fundamentally restrict the achievable economic perfor-

mance of the system, particularly in cases where the system performance is dependent upon time or



time-varying signals. Moreover, neither RC nor ILC were originally developed with considerations
of system constraints, which hinders their applicability to practical systems.

Due to recent advancements in the literature, many of the traditional limitations of RC and ILC
schemes noted above have begun to be addressed. For instance, the consideration of a limited class
of system constraints is enabled through a variant of ILC termed point-to-point ILC [19, 20]. Here,
reference tracking is only enforced at select timesteps along a system trajectory, rather than requir-
ing that a reference signal is tracked over the entirety of the trial duration. By relaxing the tracking
requirements in this manner, additional flexibility is afforded to the controller to address hard and
soft constraints imposed on the system that are linear with respect to the system input. This flexi-
bility is further exploited in other point-to-point ILC control schemes wherein economic objectives
dictate system performance. Here, reference tracking is only enforced sparsely, while the consid-
eration of economic performance objectives is embedded directly into the controller design. For
instance, sparse reference tracking requirements are defined as hard constraints in [21, 22], while
economic performance objectives define the cost function to be minimized. Alternatively, sparse
tracking error is used as only a single term in the system cost function in the Pareto optimal point-
to-point ILC scheme proposed in [23], while additional economic objectives define the remainder
of the system cost. However, while each of these strategies have enabled economic performance
objectives to be addressed through iterative learning, they are only directly applicable to a limited
set of system classes (e.g. systems with linear dynamics or constraints), and still require that a

sparse reference trajectory is known by the user.

1.3 Contributions

The primary contributions of this dissertation are now summarized.

Contribution 1: A mapping between numerical optimization methods and constrained eco-

nomic learning control of repetitive systems - Given that the class of systems considered in this
work is: 1) constrained, and ii) seeks to optimize an economic performance metric, the choice to
leverage mathematical tools available from the field of optimization is a natural one. As noted ear-
lier, the primary difficulty with directly applying optimization tools in practice is the existence of
uncertainty, which degrades the predicted performance of the system. In spite of this, the following
observation is made: the repetitive behavior of the systems of interest, in some sense, mimics the
iterative behavior of many popular numerical optimization methods. Specifically, similar to how
numerical optimization methods seek optima by updating decision variables based on functional
behavior at previous iterates, data from a repetition of a system task may also provide valuable
insight into how system control can be improved in future task executions. However, due to the ex-

istence of uncertainty, knowledge that is typically utilized within numerical optimization methods,



such as gradient or Hessian information, may be unavailable or only partially known. Therefore, to
overcome this limitation, the first primary contribution of this dissertation is the development of an
economic iterative learning controller for repetitive systems based on the modification of an exist-
ing numerical optimization algorithm. Here, systems that operate discontinuously are investigated,
and conditions for closed-loop stability and assessments of robust performance of the proposed
controller are outlined. The proposed control scheme, termed Sequential Quadratic Programming-
Based Iterative Learning Control (SQP-ILC), extends the types of economic performance metrics
that may be addressed by ILC schemes in the literature, allowing for new control objectives such
as the time-optimal control problem. Additionally, the proposed controller extends the class of
constraints that are addressed in the ILC literature, enabling control for repetitive systems whose
constraints may be described using smooth functions of the control sequence and time. This con-
tribution is presented in Chapter 2.

Contribution 2: Robust adaptive economic control for repetitive systems with periodic un-

certainties - Although RC has been developed to enable high-performing control of systems by
counteracting the effects of unmodeled behavior, this, as with any control technique, has its limi-
tations. Commonly, the ability of repetitive controllers to sufficiently compensate for uncertainties
can be hindered if the sources of uncertainty become unwieldy. For instance, as noted in [3], for
model-based RC and ILC methods, the robust closed-loop performance of a system can suffer
degradation due to modeling errors. In fact, if uncertainty becomes sufficiently large, closed-loop
stability may even be lost. Alternatively, if user-available system models are instead more accurate
than anticipated, the learning-based controllers can become unnecessarily conservative, resulting
in needless performance losses.

Given this correlation between system performance and model confidence, a natural inclina-
tion is to augment RC controllers with adaptive control strategies that are designed to reduce the
amount of model uncertainty. While adaptive control is in many ways similar to RC, an important
distinction must first be made. Namely, whereas RC directly modifies the control input, adap-
tive control methods implement modifications to parameters of the user’s model of the plant or
controller [24]. In other words, whereas RC incorporates learning by updating a signal, adaptive
control incorporates learning by updating a system.

Hence, the second primary contribution of this work can then be split into three subcomponents:

1. The development of an adaptive scheme for addressing a class of uncertainties commonly
addressed within the repetitive control literature. Namely, enabling the robust identification
of unknown model parameters for nonlinear systems with uncertainties that appear periodi-

cally in time.

2. The integration of this adaptive scheme with a control methodology, termed Robust Adap-



tive Economic Model Predictive Control (RAEMPC), suitable for constrained, continuously

operated systems with economic performance objectives.

3. The identification of sufficient conditions for which robust constraint satisfaction and robust

convergence of closed-loop economic performance can be guaranteed.

In this way, the second contribution of this dissertation extends the capabilities of repetitive control
schemes to a broader range of constrained systems. This contribution is presented in Chapter 3

Contribution 3: Robust adaptive economic control for state-dependent uncertainties - In Con-

tribution 2, a class of systems with unknown model parameters or disturbances that influence that
system dynamics in a manner that is periodic in time is addressed. For instance, this methodology
may be appropriate if the system is required to operate in an environment where rotating machinery
causes unmodeled cyclic vibrations to occur [25], or if alternating current disturbances in powered
electronics applications lead to periodic uncertainties in downstream current signals [26]. How-
ever, perhaps more commonly, uncertainties are better described as varying as a function of the
state of the system, rather than varying periodically as a function of time. For instance, systems
operating in spatially varying flow fields [27] or vehicles driving over non-uniform terrain [28]
encounter state-dependent disturbances that do not necessarily appear periodically.

Additionally, while the methodology outlined in Chapter 3 is developed for a class of con-
tinuously operated systems that are commonly addressed within the RC literature, discontinuous
processes offer additional opportunities to exploit the repetitive behavior of the system to improve
system performance. In other words, if the system states can be reset between iterations to a known,
iteration-invariant value, then this point of similarity in the system behavior between trials enables
data from previous task executions to provide useful insight into how the system control can be im-
proved in future iterations. Consequently, the third primary contribution of this dissertation builds
directly off of the results of the second contribution by extending these results to systems with: 1)
state-dependent parametric uncertainty, and 2) discontinuous process behavior. More specifically,

the third primary contribution of this work can be split into the following subcomponents:

1. The development of a control scheme, termed Robust Adaptive Economic Iterative Learning
Control (RAEILC), for nonlinear, discontinuously operated systems wherein economic ob-
jectives are considered and input/state constraints are robustly enforced when state-varying
unknown model parameters and noise exist. Moreover, methods for integrating an outlined
class of adaptive methods that are able to robustly identify the state-varying model parame-

ters are developed.

2. Through the direct use of input and state data available from previous task executions, an

additional methodology for learning is developed and integrated into the aforementioned



control algorithm that does not rely on the explicit use of a potentially inaccurate system
model. Consequently, conservativism commonly exhibited by similar robust strategies is

further mitigated.

3. The development of conditions for which recursive feasibility and robust monotonic reduc-

tions in the system cost can be guaranteed.

4. The creation of a specific adaptive scheme to robustly identify unknown state-varying model
parameters. This adaptive scheme updates user-known uncertainty sets wherein the nominal
model parameter estimates, as well as an upper bound on the parameter estimate error are
updated. A strategy for integrating this adaptive scheme with the RAEILC algorithm is also
developed.

To summarize, the third contribution of this dissertation enables two forms of learning to be
applied to the discontinuously operated systems traditionally addressed within the ILC literature.
Specifically, through the improved estimation of state-varying model parameters and the direct
manipulation of the control signal based on historical data, the economic performance of the system
can by improved without violating state and input constraints. This contribution is presented in
Chapter 4.

1.3.1 Organization

The remainder of the dissertation is organized as follows. Chapter 2 outlines the numerical
optimization-inspired controller described in Contribution 1. For Contribution 2, the adaption al-
gorithm and corresponding controller applicable to systems with periodic parametric uncertainties
are presented in Chapter 3 with additional theory presented in Appendix A. As per Contribution
3, the extension of this work to discontinuously operated systems with state-varying model pa-
rameters is presented in Chapter 4 with supplementary theoretical results given in Appendix B.
A numerical case study application of each of the developed controls schemes is presented in the
corresponding chapters. Conclusions drawn from this work are presented in Chapter 5, including
an assessment of potential application spaces for the contributions outlined in Chapters 2-4, and
future avenues of research to address limitations of this work. A preliminary approach for over-
coming some of these limitations is presented in Appendix C, wherein a control strategy based on
concepts originating within the field of game theory is outlined.

To prevent against verbose notation and to remain consistent with existing literature, several
variables are represented using identical notation across Chapters 2-4 to represent different values
or signals. For instance, the use of x in Chapter 2 is used to denote the decision variable of an

optimization problem to remain consistent with standard notation in the numerical optimization

9



literature, whereas it is used to denote a system’s states in Chapters 3 and 4 to match the standard
convention found in the control theory literature. Therefore, the variable notation in each of these
chapters should be considered distinct from the notation used in other chapters. To serve as a

reference for the reader, a variable notation guide for each chapter is provided in Appendix D.
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CHAPTER 2

Economic Iterative Learning Control: Numerical

Optimization-Inspired Controller Design

2.1 Background and Motivation

For systems that perform tasks repetitively, learning-based controllers have proven to be a par-
ticularly valuable tool for improving system performance. In particular, the field of iterative learn-
ing control (ILC) has developed powerful strategies for achieving high performance when accurate
system model information is limited. While traditionally, ILC has aimed to counteract uncertain-
ties for the purpose of improved reference tracking [4], more recent developments have examined
the case of economic performance objectives. In [21-23] for example, ILC strategies are developed
for systems where accurate reference tracking is only enforced at a few locations. By leveraging
the control freedom afforded through this relaxation of the tracking requirements, system perfor-
mance with respect to economic performance objectives is more readily addressed. However, these
techniques are limited to linear systems and only consider cost functions that are described as func-
tions of the control inputs and outputs. In [29], this idea is expanded upon to address economic
objectives that are given as functions of time, as in the time-optimal control problem. However, the
strategy outlined in [29] remains limited to linear system applications, and while closed-loop con-
vergence results allow for a monotonic improvement in cost, convergence of the control trajectory
relative to an optimizing solution is not demonstrated.

Similar ideas are explored in [30] wherein a path variable parametrization is leveraged to con-
vert a traditional trajectory tracking problem to a path tracking problem. By relaxing the system
time requirements in this manner, the control algorithm is able to address a broad class of per-
formance metrics given as functions of the system inputs and outputs. However, this formulation
requires the reference path to be defined as a piecewise linear function, and, similar to [21-23],
does not allow for the system performance metric to be given as a function of time. Alternative

methods, such as those proposed in [31-33], use a learning-based Model Predictive Control (MPC)
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strategy to address economic performance metrics for uncertain iterative systems. Here, by lever-
aging measured experimental data, these strategies rely on the construction of control-invariant
safe-sets to ensure robust constraint satisfaction. An alternative ILC strategy inspired by economic
MPC is developed in [34] wherein data from previous iterations is explicitly incorporated into the
constraints of the optimal control problem that is solved to identify the control sequence. However,
while non-strict monotonic improvement in performance is demonstrated in [31-34], optimality of
the converged control solution is not guaranteed, even in the case where uncertainty does not exist.

Due to the fact that the systems of interest considered here are repetitive, an intriguing strategy
for controller design is to mimic mathematical optimization methods that minimize a cost func-
tion through the use of iterative updates to a selection of design or decision variables. This idea
has been explored, for instance, in [35] where a learning-based control scheme is proposed based
on the successive projection algorithm. Alternatively, [36] develops a controller based on the
forward-backward splitting algorithm, while a strategy inspired by barrier methods is employed
in [37]. However, in [35-37], only tracking objectives and linear systems are considered. An
optimization-based ILC strategy is proposed in [38] for nonlinear systems with potentially eco-
nomic performance objectives. However, robust convergence of the control signal relies on the
ability to compute a sufficiently accurate Jacobian of the system dynamics with respect to the
input sequence. Consequently, if the user model of the plant is poor, the domain of attraction cor-
responding to an equilibrium control sequence may be prohibitively small, resulting in a loss of
stability.

To address these issues, an ILC strategy is proposed for uncertain, potentially nonlinear, itera-
tive systems with economic performance objectives. This work extends the scheme outlined in [29]
by addressing performance metrics given as functions of the input sequence and time, while also
providing applicability to systems with soft output constraints. The proposed algorithm, which is
inspired by a numerical optimization strategy described in [39], utilizes a filter-based Sequential
Quadratic Programming (SQP) scheme wherein the optimal control problem is successively ap-
proximated at each iteration as a quadratic program. Here, additional trust-region constraints are
imposed as a measure to ensure robustness against uncertainty caused by modelling approxima-
tions and errors. The ‘success’ of a given trial is then measured using a filter that evaluates the
trade-off between low economic cost and large constraint violations based on information avail-
able from experimental data in comparison to previously completed iterations. By learning in this
manner, convergence to a low-cost control trajectory that satisfies system constraints is facilitated.

The contributions of this work are:

1. The development of a learning-based control scheme for iterative systems with input con-
straints and soft output constraints that is capable of addressing economic performance met-

rics given as functions of a system’s input sequence, as well as time.
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2. Analysis of the closed-loop convergence of the input and output trajectory demonstrating
convergence to a first-order critical point of the optimal control problem in the case of perfect

model knowledge.

3. Guarantees for convergence to feasible input and output trajectories in the presence of model
uncertainty, regardless of the initial selection of the control signal. Additionally, the eco-
nomic performance of the system at convergence is shown to depend upon the accuracy of

the user-estimated gradient of the constraint functions.

4. A simulation demonstration of the proposed algorithm where the time-optimal waypoint
tracking problem is considered for an actuation constrained two-mass, spring, damper sys-

tem.

To serve as a reference for the reader, a notation guide for the variables used in this chapter is
provided in Appendix D.2. The contents of this chapter have been submitted for publication to

IEEE Transactions on Automatic Control as [40].

2.2 System Description

In this work, systems given by the continuous-time dynamics of the form
2= fi(zu),

2.1
y= fy(z>

are considered where z € R™, u € R™, y € R"™ denote the system states, inputs, and outputs

respectively. Using a zero-order hold on the inputs, system (2.1) is discretized as

i1 = fo(2h, wp, ),

2.2)
Yk = fy (zk)

where £ denotes a timestep index, and 73 denotes the sample period length between timesteps &
and k£ + 1. Consequently, in this work the sample period is allowed to vary over time.
Suppose that the economic performance of the system over a given iteration of operation is

captured by the cost function

nr—1

J = Z J(uk,Tk)
k=0

where a given iteration of a task is defined by the system behavior over n.. timesteps. Additionally,

denote the set of feasible inputs and outputs as U and Y. The set of feasible sample periods is
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similarly denoted as 7" which is given as
T={7:0<7<That (2.3)

where the zero lower bound ensures that the dynamics given in (2.2) evolve over positive time, and
Tmaz 18 @ Uuser-defined constant used to restrict the total trial duration to be no larger than 7,4,
We assume resettability of the system such that the initial condition of the system is the same at
each iteration and is given by the constant z°.

The optimal control problem we seek to solve is then expressed as

nr—1
minimize Z J(ug, Tk)
Yk+1,Uk, Tk,
k:0’17'“7n7‘_1 k=0
subjectto  zpi1 = f.(2k, uk, ), (2.4)
Yk = fy(zk)v
20 — ZO,

U GU,ykEKTk eT.

To simplify notation, we can equivalently express system (2.2) in the ‘lifted’ iteration domain
through concatenation of the inputs, outputs, and sample periods over an iteration. We define the

lifted input, output, and sample period vectors as

- T
w=[uf ol .l

- T
y=\|y Y5 - yﬂ 7

- T
T=|To0 T1 ... tn7—71:| .

Here, bold notation is used to distinguish the lifted-domain vectors from their time-domain coun-

terparts. The dynamic system given by (2.2) can then be equivalently expressed as
Yk = p(k)(uv T, Zo) = fy (fz(k)(% T, Zo))
where the parenthetical superscript notation (¥) is used to denote k recursive calls of f.asin

fz('k)(ua T, ZO) = fz(fz(7 Uk—2, Tk’—Z)a Uk—1, Tk—1)~
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The lifted output vector y is then given as a function of uw and 7 according to

Y= p(U,T,Zo),

T

T T

= p(l)(u7T7ZO) p(nT)<u77-7Z0)

Using the lifted notation, problem (2.4) can be more compactly written as
minimize J(u,T),
Yy, u,T
subjectto  y = p(u, T, 2p), (2.5)

20 = ZO,

ucld,yey,teT.

Let x = [uT TT} ! € R". x then contains all the information required to construct a given
control trajectory, as it contains information about the input sequence as well as the time over
which the inputs will be applied. Since ¥ is given by u, T, and the constant 2°, we can then further
simplify the optimal control problem given by (2.5) as

minimize J(x),
T

subjectto ch(x) =0, (2.6)

ci(x) <0

where c&(x) and cf(x) are vector-valued functions that describe the feasible set of (2.5). How-

ever, due to model uncertainty, the constraint functions c%(x) and ¢ () of the real system may
not be entirely known. Rather, estimates, c¢¥ (x) and ¢}/ (x), of these functions based on a model

of the system dynamics are instead available to the user. The following assumptions are then made.
Assumption 1. The functions J(x), c&, cE, e, and ¢} are all twice continuously differentiable.

Assumption 2. Given a bounded domain X, there exist constants M™, M®2 M and M2
such that the derivatives of the real and user-model based constraint functions c® and c¥ are

bounded according to
IVee (@)l < M, |[Vee) ()| < MY, [[Viei()| < M™, [[Vie) ()] < M™

foralle € X and alli € {I, E}.

Assumption 2 states that if the control signal is restricted to lie within some bounded domain

X, then the size of the first and second derivatives of the constraint functions with respect to the
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control signals are correspondingly bounded. This assumption may be satisfied if, for instance,
the input and output constraint sets U and Y are described by functions whose first and second
derivatives are locally Lipschitz continuous over &', and if the first and second derivatives of the
dynamics p are also locally Lipschitz continuous over X'.

The primary difficulties in solving (2.6) come from the fact that the problem is, in general,
non-convex, as well as the lack of absolute knowledge about the true system dynamics that dictate
the behavior of the system with regards to economic performance and constraint satisfaction. We
therefore seek to derive a control scheme that addresses these issues by leveraging the fact that
the system operates iteratively. Namely, by utilizing information about the system behavior from
previous iterations of a task, an improved understanding of how to optimally control the system

may be achieved.

2.3 Methodology

To address optimal control problem (2.6), a control scheme based on SQP optimization methods
is employed. Specifically, a strategy similar to the trust-region SQP-filter algorithm described in
[39] is used. The use of this strategy is facilitated by the assumption on the resettability of the initial
condition at the beginning of each iteration of the system task, which allows for direct comparison
of the system performance and constraint behavior across multiple system trials. However, whereas
in [39] it is assumed that c&(x) and c¥ () are known over the entirety of R™=, that is no longer the
case here due to the existence of model uncertainty. Rather, we assume that the values of ci(x;)
and c¥(z,) are only known based on measurable data observed after conducting experiments using
a particular selection of the input and sample period sequences as denoted by x;. In other words,
evaluations of the constraint functions cannot be determined over the entirety of R™* as c&(x) and
c(x) are not known in closed form, but are instead limited to the locations within R™= for which
an experiment has been conducted such that corresponding data is available.

Principally, the algorithm described in [39] solves the non-convex optimization problem of (2.6)

by iteratively solving a sequence of simpler convex problems of the form

minimize m;(x; + s), (2.7a)
subjectto ¢k (x;) + Ak(x;)s =0, (2.7b)
ci(z;) + A¥(x;)s < 0. (2.7¢c)

Here, at each iteration, j, we aim to identify a candidate step, s;, corresponding to an incre-

mental update to the control signal, as the solution to problem (2.7) from which to move from the
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current iterate ;. m; denotes a quadratic approximation of the cost function J () at «; given as
1
TTLj(JJj + S) = Jj + (gj, 8> + 5(8, Hj8>

where J; = J(z;), g; = V.J (x;),and H; = V2J (x;). AR (x;) and A¥(x;) in (2.7b) and (2.7¢c)
are the Jacobians of ¢ and c¥ evaluated at ;. However, due to the existence of uncertainty, A%
and A? are unknown, and thus (2.7) is not able to be solved by the user. Hence, problem (2.7) as

given in [39] is modified to an alternative subproblem, denoted as QP(x;), which is given as

(QP (z;)) : minismize mj(x; + s), (2.8a)
subjectto  ci(x;) + A (z;)s =0, (2.8b)
ci(x;) + A (z;)s < 0. (2.8¢)

QP(x;) and (2.7) are similar, however the local constraint approximation of (2.6) is now dependent
upon A¥(zx;) and A} (x;), which denote the Jacobians of ¢} and ¢}’ evaluated at x;. Since
A¥ (x;) and AY (x;) are obtained from the user-accessible constraint function model, and because
cl(x;) and cf(x;) are known after conducting an experiment at x;, QP(x;) is therefore able to be
solved by the user.

However, since (2.8a)-(2.8c) can only be expected to accurately approximate the cost function
and constraints of (2.6) in a neighborhood around x;, we wish to restrict the size of the step found

by solving (2.8). Hence, (2.8) is reformulated to an alternative problem, TRQP(x;, A;), which is

given as
(TRQP(wj, Aj)) :  minimize m;(x; + s), (2.92)
subjectto ci(z;) + AY (z;)s =0, (2.9b)
ci(z;) + AY(z;)s <0, (2.9¢)
sl < A;. (2.9d)

Here, (2.9d) is included as an additional constraint that enforces x; + s; to lie within a trust-region

centered at ; with radius A ;. Intuitively, this trust-region constraint ensures that the control signal
update will be sufficiently conservative such that overaggressive control actions made as a result
of inaccurate cost and constraint approximations are prevented.

Importantly, simply iteratively solving TRQP(x;, A ;) and setting x,; = x, + s; before incre-
menting iteration index j does not ensure convergence of the algorithm. This loss of convergence
may occur if AA; is chosen to be too large and (2.9a)-(2.9¢) do not sufficiently approximate the cost
and constraints of (2.6). Instead, careful selection of A; and selective updates to x; are required.
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2.3.1 Decomposition of s;

The solution, s;, to TRQP(x;, A;) may be decomposed as
Sj = nj + tj. (210)

Here n; corresponds to a ‘normal step” wherein n; satisfies the constraints of TRQP(x;, A ;) such
that

ci(z;) + AY (z;)n; =0, (2.11a)
ci(z;) + AY(z)n; <0, (2.11b)
|l < A;. (2.11¢)

The existence of 1, relies on an assumption that TRQP(x;, A ;) has a non-empty feasible set. The
case for which this assumption does not hold will be addressed in Section 2.3.2. If the assumption

does hold, then n; can be found according to
n; = Pj(x;) — x;

where P;(x;) is an operator that identifies the orthogonal projection of «; onto the feasible set of
QP(x;), and subsequently define
i T+ n;.

J

We then make the assumption that when the maximum violation of the constraints at x;, denoted
by §; = 6(x;) where

0) = masx |0, max el ()|, max () |

is small, that 72; exists and that the size of n; is also proportionally small. This is formalized in

the following assumption.

Assumption 3. If 0; < 6,, then n; exists and
7251 < Kusel;

for some positive constants 0,, and K.

In other words, if the distance between the current iterate and the feasible region of (2.6) is
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small, as determined by the proxy measurement 6;, we assume that the linearized feasible set of
TRQP(x;, A;) exists and the distance between this set and x; approximately scales with ;. This
assumption has previously been leveraged in [41] and [42].

Meanwhile, in (2.10), t; corresponds to a ‘tangent step’ that seeks to reduce the value of
mj(:cév + t;) while also maintaining the constraint satisfaction of TRQP(x;, A;) achieved by n;.
In order to achieve a significant reduction of the cost function, £; should not be limited to be too
small. In other words, acjv should be sufficiently far away from the trust-region boundary such that
we have enough design freedom to meaningfully reduce m;(x; + s;) — m; (azjv ). To accomplish

this, we modify (2.11c) to the more restrictive condition
Iny]| < kadjmin [1,5,A57" (2.12)

where ka € (0, 1], K, > 0,and p € (0, 1) are user-defined parameters. If (2.11c) is true, but (2.12)
does not hold, the size of £; would be restricted to be very small in order to ensure that s; remains
feasible for TRQP(x;, A;). Consequently, it is unlikely that a significant decrease of m; would
be able to be achieved. In this case, we do not compute ¢; and instead treat TRQP(x;, A;) as if it
were an infeasible problem. However, if condition (2.12) is met, then we say that TRQP(x;, A,)

is compatible and proceed by computing ¢;, which solves (or approximately solves)

1
minimize (g; + Hin;, t) + §<Hjt;t>7

subjectto  A¥ (x;)t =0,

(2.13)
cf (x;) + Ay (z;)(n; +t) <0,
In; + ] <A
Additionally, the metric
mtin (g; + Hn;, t),
st. AM(x)t=0,
X; = B ( J) (2.14)

cf(z;) + A} (z;)(n; +t) <0,
;]| < 1.

is defined as a measure of determining first-order criticality. Importantly, note that if £ = 0 is a

first-order critical point of problem (2.13), then x; = 0.
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Specifically, we seek to identify a ¢; such that the sufficient decrease condition

mj(:r;j-v) - mj(:zzjv +1;) > Kynax;min [%, A]} (2.15)
J

is met for some ky,q > 0 with 5; = 1 + ||H,||. Numerical strategies for computing a ¢; that
satisfies (2.15) are discussed in [43].

The case when TRQP(x;, A)) is compatible is shown graphically for the simplified case when
n, = 2 with decision variables ' and z? in Fig. 2.1. Here we note that the feasible region of
(2.6) is, in general, both non-convex and unknown. However, by linearizing the constraints using
the available user-model of the system according to (2.8b) and (2.8c), the resulting feasible region
is known and convex, which greatly simplifies the calculation of a unique normal step 7, and the

subsequent tangent step ¢;.

2.3.2 The Restoration Procedure

In Section 2.3.1, we assumed that TRQP(x,, A;) was compatible. However, this is not always
the case, as the feasible set of TRQP(x;, A;) may be empty, or condition (2.12) may not hold. To
remedy this situation, we then seek to reduce the value of ¢; such that the condition of Assumption
3 and (2.12) hold.

Specifically, we aim to identify a step r; such that TRQP(x; + r;, A, 1) is compatible. This

process, termed the ‘restoration procedure’, is performed by approximately solving the problem

min 0(x) (2.16)
by identifying a sequence of iterates that converge to f(x) = 0.

Following an attempted implementation of the restoration procedure, we consider two out-
comes. Either: 1) a sequence of iterates is identified such that 6(x; + r;) can be made to be
arbitrarily small, or 2) the sequence of iterates does not converge to a point of feasibility for prob-
lem (2.6). Both cases will be considered in Section 2.4.

Note: Problem (2.16) can effectively be treated as an ILC reference tracking problem, where
the goal is to identify an input uw € U such that a reference sequence that lies within the set ) with
corresponding sample period sequence T € 7 is tracked. A variety of existing strategies, such as
the one described in [37], exist to solve such a problem.

Alternatively, if a point Z is known such that & lies in the interior of i x T and y = p(&, 2°) €
Y, then performing a line search along the segment connecting x; and @ will enable the user to
identify a step r; that results in arbitrarily small values of (x4 ;) due to the assumed continuity

of cf(x) and cf(x).
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X1

Figure 2.1: A graphical representation of the normal step, m;, and tangent step, t;, when
TRQP(z;, A,) is compatible. The green curves denote level sets of J(x) for different selections
of the decision variables (2!, z%), while the orange region represents the infeasible region of the
true optimal control problem, (2.6). This true infeasible region is approximated by the blue region,
which depicts the infeasible region of QP(x;). If x; is infeasible for QP(x;), n; is found by pro-
jection of x; onto the feasible set of QP(x;). t; then aims to reduce estimated cost function m;(x)
while remaining within the trust-region boundary depicted by the purple circle.

2.3.3 The SQP Filter

Once a step s; or 7; has been identified as described in Sections 2.3.1 and 2.3.2, we seek to
identify whether the point x; + s; or x; + 7; is successful. Namely, we wish to evaluate the

behavior of this prospective iterate with respect to two potentially competing objectives: 1) low-
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cost performance and 2) small constraint violation. To accomplish this, we first say that if for two

points x; and xy,
J; < Jjand 6; < 0y,

x; dominates xy. In this case, input trajectory xy, is of little use from a control perspective, as it is
outperformed by x; in terms of both cost and constraint violation. Hence, we are only interested
in iterates in the sequence {x;} that are not dominated by other iterates.

We then introduce the idea of a ‘filter’, F, which is a list of observed (6;, J;) corresponding to

points x; such that x; is not dominated by any other observed iterate. In other words, either
J; < J or 0@ < ‘9k 2.17)

for each k # i.

In the event that the pair (6(x;), J(x;)) is being added to the filter, we will frequently refer
to this action as adding x; to the filter. This choice is made for the sake of brevity. The process
of populating the filter is equivalent to the identification of the Pareto frontier, wherein we seek
to identify points that provide some optimal trade-off between minimizing cost and reducing in-
feasibility. This concept is shown graphically in Figure 2.2 wherein the elements of the filter, as
depicted by black circles, generate a corresponding filter ‘boundary’ shown by the solid black line.
As new elements are added to the filter that satisfy condition (2.17), the boundary develops and
approaches the unknown Pareto frontier shown as the blue line.

To ensure that points added to the filter sufficiently reduce the distance between the filter bound-
ary and the Pareto frontier, we refine requirement (2.17) to a stricter condition. Namely, we state

that for a point, x; to be acceptable for the filter, it must satisfy
0(x;) < (1 — )0k or J(z;) < Ty — Y0, (2.18)

for each (0, Ji) € F where 79 € (0,1) is a user-selected parameter. Further, we say that x; is
acceptable for the filter and x; if (2.18) holds for all (0, J;) € F U (6;,J;). Then, the step s;
is only taken if x; + s, is observed to be acceptable for the filter and x;. Otherwise, (f(x; +
s;),J(x; + s;)) would not sufficiently develop the filter boundary towards the Pareto frontier.
Hence, (2.18) prevents new points from being added to the filter that are arbitrarily close to the
existing filter boundary. Condition (2.18) is depicted in Figure 2.2 wherein any new iterates added

to the filter are required to lie below and to the left of the dotted brown line.
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=
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Figure 2.2: The SQP filter with five entries indicated as black circles. The dashed black lines
emanating from a given filter entry denote the boundary of the region of the (#, J) space that is
dominated by that iterate. In other words, the iterate dominates all input trajectories corresponding
to (0, J) values above and to the right of the dashed black lines. The solid black line is the filter
boundary that is cumulatively established by all of the current entries in the filter. Candidate entries
must lie below and to the left of the filter boundary margin indicated by the dotted brown line in
order to be acceptable for the filter.
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2.3.4 The SQP-ILC Algorithm

The proposed framework, termed the SQP-ILC algorithm is now summarized below as Algo-
rithm 1.

Algorithm 1 The SQP-ILC algorithm

Step 0: Initialization. Define an initial point &, = [ug Ty } , initial trust-region radius

Ag > 0,and constants 0 < 79 < 71 < 1 < 79,0 <m <1m < 1,y € (0,1), kg € (0,1),
ka € (0,1], K, > 0, € (0,1), ¢ > 1/(1 + p), and Kyna € (0,1]. Compute J, and 6. Set
F=0andj = 0.

Step 1: Test for optimality. If 0; = x; = 0, stop.

Step 2: Ensure compatibility. Attempt to compute normal step 1. If TRQP(x;, A;) is com-
patible, go to Step 3. Otherwise, include x; in the filter and compute a restoration step r; for
which TRQP(x; 4 7;, A1) is compatible for some A;,; > 0, and ; + r; is acceptable for the
filter. If this is impossible, stop. Otherwise, define x;; = x; + r; and go to Step 7.

Step 3: Determine a trial step. Compute the tangent step ¢; and set s; = n; + t;.

Step 4: Test to accept the trial step.

* Run an experiment and evaluate §(x; + s;) and J(x; + s;).

* If x; + s; is not acceptable for the filter and x;, set ¢ = x;, set ;1 = n;, and choose

= =
Aji € [, A A4 < (é) ysetAjyq = (%) . Increment j by 1, and
go to Step 2.
o If
mj(@;) — my(@; + 8;) > Kol (2.19)
and

J(x;) — J(x; + s;)
mj(x;) —mj(x; + s;)

p; = < (2.20)

set ;11 =, Ajr1 € [104A,, 114], nj11 = n,, increment j and go to Step 2.
Step 5: Test to include the current iterate in the filter. If
J(x;) — J(x; + 85) < Kol (2.21)

include x; in the filter F.
Step 6: Move to the new iterate. Set z;,1 = x; + s; and set A;; such that

Aj+1 S [Aj, ")/QAj] if (221) is false

Step 7: Increment j by one and go to Step 1.

We note the following properties of Algorithm 1:
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1. Every iterate x; is acceptable for the filter at the beginning of each iteration, regardless of
whether or not it eventually gets added to the filter. This is because we either: 1) enforce
Tj+1 = x; + 7T, to be ‘acceptable for the filter and x;” when identifying r; during the
restoration procedure, or 2) only move to x ;11 = x; + s; if x; + s; is acceptable for the
filter.

2. The restoration step is never equal to zero. In other words, we cannot simply increase the size
of the trust region from iteration j and iteration j + 1 in order to make TRQP(x; 4+ 7;, A1)
compatible. This is because we add x; to the filter before computing 7, and therefore x,;+7;

is not acceptable for the filter if r; = 0.

3. The restoration step is never run in consecutive iterations. This is because we require
TRQP(x; + 7;, Aj1;) to be compatible.

4. No feasible iterate is ever added to the filter. Note that iterates are only added to the filter
in Step 2 or Step 5. In Step 2, x; is added to the filter when a restoration step is required.
Restoration is only required when x; lies too far in the infeasible region, so x; is not a
feasible point in this case. Meanwhile, to proceed to Step 5 from Step 4, we observe that
at least one of (2.19) or (2.20) must not hold. Note that if x; is feasible, that n; = 0, and
therefore x; + s; = x; + t;. Consequently, given the sufficient decrease condition in (2.15),
we have that m;(x;) — m;(x; + s;) > 0, and it follows that (2.19) holds since 6; = 0 for
a feasible x;. Therefore, to continue to Step 5, (2.20) must not hold, which implies that
J(x;) — J(x; + s;) > 0. Proceeding to Step 5, we see again, that if x; is feasible, then
¢; = 0. Hence, (2.21) does not hold and any feasible x; is not added to the filter.

2.4 Convergence Analysis

The convergence behavior of Algorithm 1 is now studied. Although the SQP-ILC algorithm
has been modified from the strategy in [39] to allow for model uncertainty, we demonstrate that
the algorithm remains globally convergent. By this, we do not mean that there exists a unique limit
point, *, such that all iterate sequences converge to x*. Rather, for global convergence, we require
that for any selection of the starting point x, within the ‘global’ design space of R"=, Algorithm 1
will yield a sequence of iterates that converge to some, potentially non-unique, point x*.

We first define the following sets:

S={j: @1 =+ s;}
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which represents the indices corresponding to successful iterations wherein x; is updated based on

the calculated step s;, and
R ={j : n; does not satisfy Assumption 3 or ||n;|| > kaA;min][1, /{NA?_I]}

denotes the set of indices corresponding to iterations when the restoration procedure is run. We

then make the following assumptions.
Assumption 4. There exists some constant Kymp > 1 such that | H;|| < Kypmp, — 1 for all j.
Assumption 5. The set of iterates {x;} remain in a closed, bounded domain X C R".

Note that if ¢/ is restricted to be a bounded polytope, 7' is defined as in (2.3), with uy € U and
ty € T, selection of a restoration scheme that enforces x; + r; to lie within &/ x 7T will allow
Assumption 5 to be given by Assumption 1. This is because U/ and 7 are known, bounded affine
sets that are captured entirely by constraints (2.9b) and (2.9c). Hence, both x; + s; and x; + 7;
will lie within &/ x T for any j, and therefore the sequence {x;} will always remain within I/ x 7.

Since a continuous function over a closed, bounded set is bounded, it is immediately observed

from Assumptions 1 and 5 that there exist values J™" and 6™ > ( such that
J"" < J(x;)and 0 < 0; < 9™

for all j. Therefore, the portion of the (0, .J) space that contains elements of the filter can be

restricted to the rectangle
Ao = [0,0™%) x [J™", o0].

We will now present a series of 12 lemmas used to show convergence of the SQP-ILC algorithm.
These lemmas and supporting proofs are largely derived from the results of [39]. However, several

modifications must be made in order to allow for uncertainty in the constraint functions.

Lemma 1. Suppose Assumptions 3 and 5 hold and that 0; < 6,,.. Then there exists k5. > 0 such
that

/ﬂchj S ”'TI,]H (222)
Proof. Define

Vi ={i€E:0;=|cf(x;)|} | J{i € I:0; =c'(x))}
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as the set of constraint subfunction indices corresponding to the most violated constraints of the
true system at iteration j. Using this definition of V;, the proof then follows from [39, Lemma 3.1].
]

Hence, if the amount of constraint violation corresponding to a given iterate is sufficiently small,

the length of the normal step can be correspondingly lower bounded based on the value of ¢;.

Lemma 2. Suppose that finite termination does not occur, i.e., that the restoration procedure is
always successful and the condition of Step 1 does not hold. Further, given that Assumptions 1, 3,
and 5 hold, and that there exists a subsequence {j;} : j; ¢ R and

lim x;, = 0 and lim 0;, = 0.
1—00 1—00

Then any arbitrary limit point, x*, of the subsequence {x, } satisfies

mtm (g",t),
M * _
s.t. Ap (")t =0, _o (2.23)
cl(x*) + AV (z")t <0,
2] < 1.
Proof. The proof is given by [39, Lemma 3.2] [

Lemma 2 states that if we can take an infinite subsequence of the iterates such that, at every
limit point of this subsequence, the metric x;, is equal to zero because either the gradient of the
objective function is equal to zero or the tangent step is equal to 0, and that the maximum constraint
violation of the limit points is equal to zero, then each of the limit points satisfies (2.23). In other
words, if the limit points are stationary points, or a useful tangent step cannot be taken without
violating constraints and the maximum observed constraint violation at these limit points is zero,
then the limit points satisfy (2.23).

For the following lemma, we first define the set
Z = {j : x; is added to the filter}

as the set of iterations for which x; is added to the filter.
Lemma 3. Suppose that finite termination does not occur. Given Assumptions 1 and 5, and that

|Z| = oo, then

j—00,jEZ
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Proof. The proof is given by [39, Lemma 3.3]. [l

Lemma 3 states that as long as the restoration procedure is always successful, the maximum
constraint violation of the iterates that are added to the filter converges to zero. This is based on
the idea that, since 6; is bounded from Assumptions 1 and 5, and because the condition (2.18)
requires that new filter iterates cannot be arbitrarily close to the filter boundary, iterates added to
the filter must progress towards the condition 6; = 0.

While Lemmas 1-3 are effectively equivalent to the statements developed in [39], the remaining
lemmas, with the exception of Lemmas 6, 10, and 11, present a departure from the analysis in [39].
These differences are a consequence of the use of A} and A} in place of A% and AT within the
optimization problems, the use of the modified compatibility condition (2.12) within Algorithm 1,

and the existence of model uncertainty.

Lemma 4. Suppose finite termination does not occur. Additionally, suppose Assumptions 1 and 2
hold, that j ¢ R, and that n; satisfies (2.22) such that

Fisety < [Imll.

Then
0; < /iubtA;-L (2.24)
and
0(x; + s;) < kund; + MTA,; (2.25)
for some constants Ky > 0 and Mt > 0.
Proof. The proof is given in Appendix A.1. 0

Hence, if the restoration procedure always succeeds, and the length of n; is lower bounded
by 0, by satisfying Lemma 1, then for iterates where the restoration step is not calculated, 6; and
6(z; + s;) can be upper bounded based on the size of the trust region radius A;.

We now consider conditions for which a lower bound on the estimated cost reduction caused

by taking the step s; can be placed.

Lemma S. Suppose that finite termination does not occur. Given Assumptions 1, 4, and 5, (2.12),
(2.15), that j ¢ R, that

Xj =€ (2.26)
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for some € > 0, that

1 1
2Ky, E m uet
Ajsémzmin[ ‘ < uby )(%) ] (2.27)
Rumh RumhRARy, 4/’€ubg/{A'%u

where Ky, = maxex [|[VJI(2)||. Then

1
m () = m(xj + 85) 2 himacly.

Proof. Combining (2.15) and Assumption 4 we have that

J
umh

X_A}
y =g -

my(@5) = my(@; + 8j) > Kemax;min {
From (2.26) and (2.27) this gives

my(@;) = m;(@; + 85) = Kima€l;.

Recall that since m(x) is quadratic, m(z}’) can be expressed as

1
mj(x}) = mj(x;) + (g5, n;) + 5{ny, Hyjn).

The Cauchy-Schwarz inequality and definitions of kg and Ky, give
N 1 2
Imj(x;) —my(2; )] < Kupgllmy | + §ﬁumh||nj|| : (2.28)

Compatibility condition (2.12), Assumption 4, and (2.27) then give

1
Imj(x;) —mj(x})] < 5 fitmd€A;.

]

Lemma 6. Suppose that finite termination does not occur. Given Assumptions 1, 4, and 5, (2.15),
(2.26), that j ¢ R, and that

(1 — m2)Kmac

A; <, =min |6
T " 2Kubh
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where Kk, > 1 is a constant such that for all j,
| T (xj + 85) — mj(a; + 85)| < Kunl,
which is known to exist as demonstrated in [43]. Then

pj = N2
Proof. The proof is given in [39, Lemma 3.6]. U

We now establish conditions for which a lower bound on the estimated improvement in perfor-

mance can be made based on the value of 0.

Lemma 7. Suppose finite termination does not occur. Given Assumptions 1, 4, and 5, (2.12),
(2.15), (2.22), (2.26), j ¢ R, and that

_1

Yp—1
A < 65 = min |, | 4 , (2.29)
260Ky

then
m;(a;) — my(x; + 85) > Kot
Proof. From Lemma 4 and (2.29) we have

1
ng;b < /iglﬂfbtA}pu < §l€tmd€Aj.

Using Lemma 5 gives us the desired conclusion
roby < my(m;) — my(x; + s;).
O

Lemma 8. Suppose that finite termination does not occur. Suppose also that Assumptions 1, 2, 4,
and 5, (2.15), (2.26), and (2.27) hold, that j ¢ R, that n; satisfies (2.22), and that

i

—L (MaKpmae | F T
0 <dg=r """ ) 2.30
i > 00 = Kypt ( 20 ) ( )
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Then
J(x;+ ;) < J(x;) — 700
Proof. From Lemmas 4-6 and (2.30), we have that

J(x;) — J(x; + 8;) > 12 [mj(x;) — my(z; + s5)]
1

2 EUQHtdeAja

> 2 Ktmd€ (i)” 7

o 2 Kbt

> 0;.

]

Lemma 8 demonstrates under what conditions it can be assured that ; + s; is not dominated
by the point ;. Note that this does not necessarily mean that x; + s; is acceptable for the filter,
as there may be another point within F for which (2.18) does not hold.

We now establish under what conditions we can ensure that TRQP(x;, A ) is compatible such
that a restoration step will not need to be applied at iterate j. Before proceeding, we introduce the

following assumption.

Assumption 6. x,, 11, and Kk are selected such that

N
(—) < (57{
Ky

where O is the smallest number greater than zero in the set

usc 52 5
Or = {0r : O = YoOm oF P (Féubt—g + Mh _R) _ HAK#(S% — 0}
L= Y0 Yo

Lemma 9. Suppose that finite termination does not occur. Additionally, suppose that Assumptions
1-6, and (2.26) hold, that (2.15) holds for j ¢ R, and that

A; = (%) o 2.31)
“w

Suppose further that 7 > 0 and that
6; < min|[dg, 0y) .
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Then j ¢ R.
Proof. The proof is given in Appendix A.2 [

Lemma 10. Suppose finite termination does not occur. Suppose also that Assumptions 1-6 hold,
and (2.15) holds for j ¢ R. Additionally, suppose that | Z| = co. Then there exists a subsequence
{ji} C Z such that

zliglo b5 =0
and
lim x;, = 0.
1—00
Proof. The proof is given by [39, Lemma 3.10]. ]

Hence, if an infinite sequence of iterates are added to the filter, then a subsequence of these
iterates converges to a point where the maximum constraint violation is zero and the metric Y, is
equal to zero because either the gradient of the objective function or the tangent step is equal to 0
at the point of convergence.

Now that we have considered the case when |Z| = oo, we will now examine the alternative
when a finite number of elements are added to the filter such that | Z| < oco. If this is the case, let

Jo denote the iteration such that x;,_ is the last iterate added to the filter.

Lemma 11. Suppose finite termination does not occur and that | Z| < oco. Suppose that Assump-
tions 1-6 and (2.15) hold for j ¢ R. Then

Jj—o0
Additionally, n; satisfies (2.22) for all j > jo sufficiently large.

Proof. The proof is given by [39, Lemma 3.11] and reproduced here for reference.

Consider an successful iterate with j > 7, such that
33j+1 = wj + Sj.
Since j > jo, this means that x; is not in the filter. Hence j ¢ R and therefore p; > 1, such that

J(x;) — J(x; + 55) > m[m;(x;) — mj(x; + s5)],

(2.32)
> 771f109;-b > 0.
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Thus, the objective function is decreasing for all successful iterations with 5 > j,. But since

Assumptions 1 and 5 imply that J(x;) > J™" for all j, this means that

lim [J(z;) — J(x;4+1)] = 0. (2.33)
JES
J—00

Combining (2.32) with (2.33) gives the first claim of the proof and Assumption 3 and Lemma 1

give the second claim of the proof. U

Lemma 12. Suppose that finite termination does not occur, and that |Z| < oo. Additionally,
suppose that Assumptions 1-6 hold, and that (2.15) holds for j ¢ R. Then

lim x; = 0.

j—o00
Proof. Lemma 11 along with Assumption 3 gives for j sufficiently large that
75| < Fousel;

must hold. Additionally, from Lemma 11, we have that (2.32) holds and therefore that (2.33) holds
forallj € S,7 > jo.

For the purpose of obtaining a contradiction, suppose that (2.26) holds.

Combining (2.28), Lemma 11, and Assumption 3 together give that

lim [m;(x;) — m;(z))] = 0. (2.34)

J—00 J

Recall that we can decompose the estimated change in cost between iterations as
mj(x;) — m(x; + s5) = mj(x;) —my(e]) +my(x]) —mj(z; + ).
Along with (2.32), (2.33), and (2.34), we then have

limy [m(25) — my(x; + s5)] = 0.
j—o0
Eq. (2.15) gives
m](wN) — m](wjv + tj) > /ﬁ}tdejmin |:&, Aj:| .

J 5]

1

Combining with the fact that, by nature of the algorithm, A; > <$> 1S 0 forall 7, Assumption
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4, and the assumption that (2.26) holds such that x; > € for all j gives

N N . € Ly
mj(x; ) —mj(x; + ;) > Kyngemin | — :

Rumh Ry,

However, this contradicts (2.34). Hence, the assumption that (2.26) holds must not be true. There-
fore

lim x; = 0.
j—o0

]

Hence, for the case when the algorithm adds only a finite number of iterates to the filter, the

metric x; converges to zero. We now show the primary claim of this chapter.

Theorem 1. Suppose that finite termination does not occur. Suppose that Assumptions 1-6 and
that (2.15) holds for j ¢ R. Let {x;,} be the sequence of iterates produced by the algorithm.

Then either the restoration procedure terminates unsuccessfully, or there is a subsequence {j;} for

which

lim x; ="
1—00

and x* satisfies

min (g".).
s.t. AM(z*)t =0,
cl(x*) + AV (z")t <0,
lt] < 1.

6(x*) = 0 and = 0. (2.35)

Proof. The claim of this theorem comes from combining Assumption 5 with Lemmas 10, 11, and

12 to show that as long as the restoration procedure is always successful

lim 6; = 0and lim yx; = 0.

Jj—00 Jj—o0
The proof’s claim is then given by applying Lemma 2. [

Theorem 1 accepts the possibility that the restoration procedure terminates unsuccessfully. The
selection of a universal algorithm to implement the restoration procedure that eliminates this possi-

bility remains an open question. As discussed in Section 2.3.2, constrained ILC reference-tracking
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strategies are good candidates for the restoration procedure due to their ability to compensate for
uncertainties, particularly if a reference signal within )’ with a corresponding input within I/ is
known. However, the exact ILC controller type will likely vary on a case-by-case basis.

If the restoration procedure always terminates successfully, Theorem 1 states that any of the
limit points of the sequence {x;} will satisfy (2.23). This claim says that at the converged points,
the system performance may not be improved without, according to the system model, violat-
ing constraints. If the model is accurate, this would imply that the algorithm is able to locate a
Karush—Kuhn—Tucker point of problem (2.6). Further, if the model is inaccurate, convergence to
the feasible region of (2.6) is still achieved. This is contrary to the result that would be obtained
by using a non-learning optimal control strategy, where the theorem would only be able to claim
(2.35) if c®(x*) was replaced with ¢ (x*). Then, if the model is inaccurate and therefore c?(x*)
and c¢M (x*) do not agree, convergence to a feasible point of (2.6) cannot be guaranteed. Addition-
ally, in the event that ¢ () is more restrictive than (), as is the case for non-learning robust
control strategies, a degradation in performance is likely to be observed. Hence, the SQP-ILC al-
gorithm is able to provide the benefit of robust constraint handling, while also providing improved

performance guarantees.

2.5 Simulation Example

The SQP-ILC framework is simulated on the multiple mass-spring-damper system shown in
Fig. 2.3. The input is a force applied to one of the masses, and the output is the position of that
mass.

The continuous time dynamics are given by

Figure 2.3: Mass-spring-damper system used for simulation.
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where

0 1 0 0 0
—-1.25 -—1. .
A 5 1.25 025 1 . B= 0 |
0 0 0 1 0 (2.36)
1 4 -2 -8 2
C=10 0 1 0].

However, suppose that the user only has access to an inaccurate model of the system with A

and B given by

0 1 0 O 0

-2 =2 1 1 0
A= , B= (2.37)

0O 0 O 1 0

1 1 -2 -2 1

Consequently, the discrete time dynamics are given by
Tk
f oy un, i) = €z + / e do Buy,

0 (2.38)

fy(zr) = Cz.

Here, while the system is linear with respect to the system states and input, it is nonlinear with
respect to the sample period selection.

For this case study, the time-optimal waypoint tracking problem is investigated wherein the
objective is to move one of the masses from an initial position to two subsequent locations within
a predefined tolerance in as little time as possible.

More formally, the performance objective is given as J(u,T) = 7' 7 where an iteration con-
sists of n, = 80 timesteps. As the system dynamics and performance objective are twice contin-
uously differentiable with respect to (uy, 7%), Assumption 1 holds. Moreover, from this definition
of the performace objective, Assumption 4 holds for a value of k,,, = 3.

The waypoint tracking constraints are defined as
yar — 1] 0.2, |yss — 0] < 0.2 (2.39)

which is to say that the output should be equal to 1 and 0 at the 41! and 815! samples respectively

within a tracking tolerance of 0.2.
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Table 2.1: Parameters for the SQP-ILC simulation

Parameter | Value
Yo 0.1
71 0.5
Y2 2
72 0.9
Vo 10-*
RA 0.7
Ku 5

L 0.01

Ko 10~

Ktmd 0.01
P 2
AQ 6

The sets U and 1" are additionally given as
U="{up:—-40 <wuy <40,Vk €0,...,80}, T={r:0<7,<1,VkeO,...,80}. (2.40)

Since the sets U and 7' are compact polytopes, then, as noted in Section 2.4, the iterates x;
remain within a compact set X such that Assumption 5 holds. Moreover, the first and second
derivatives of the discrete time dynamics given by (2.38) are Lipschitz continuous over X', which
gives Assumption 2.

Constraints (2.39) and (2.40) are used to construct the functions c®(x) and ¢} (x) from the
relation vy, 1 — f,(f2(2, ug, 7x)) using the state space representations given by (2.36) and (2.37)
respectively. Recall that c#(x) is unknown to the user, but is measurable during experiments for a
specific selection of x.

The algorithm was run for 100 iterations. For the restoration procedure, a line search strategy
was used by conducting a series of experiments along the segment connecting x; and £ where
& is a point in the design space that lies in the interior of the feasible set &/ x 7T such that y =
p(z,2°) € Y. r is then found by identifying a point along this segment for which 6(xz; + 7;)
is satisfactorily small. Optimization problems were solved using CVX, a MATLAB package for

convex optimization [44, 45]. The algorithm parameters for the simulation are given in Table 2.1.
T
. . . . . _ . ., . . . _ 1 1
The initial input sequence is uy = 0 and the initial sample period vector is 7 = [% o @] .
Each trial has an initial condition of z° = 0.

The evolution of the trial duration from iteration to iteration is shown in Fig. 2.4. Here, the
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color of the circles denote whether the corresponding iterate x; satisfied the constraints within
&-precision such that 6(x;) < £ with £ = 0.01. From an initial value of 1s, we see that the
trial duration is quickly reduced to a value of 0.15s by the 20" iteration. However, at this iterate,
the waypoint tracking constraints are not satisfied. Consequently, a restoration procedure was
conducted to identify a point with reduced infeasibility. By allowing the algorithm to continue to
run, the trial duration converges to a value of 0.36s while also satisfying the constraints within
&-precision. Hence, the economic cost of trial duration is able to be significantly reduced from the
nominal value of 1s while also ensuring that constraints are satisfied.

The converged output trajectory is shown in Fig. 2.5. Here the output is still able to track the
waypoints within the specified tolerances in spite of the reduction in trial duration. By allowing
the sample periods to vary by treating 7 as a design variable, the time at which the waypoints are
required to be tracked as enforced by constraint (2.39) is flexible. Hence, the algorithm is able to
identify an updated sample period sequence that reduces the economic cost of trial duration.

Similarly, the converged input trajectory is shown in Fig. 2.6 by the dashed yellow line. Here,
the converged input remains within the saturation limits at all times. We further observe that the
converged control trajectory is very similar to the unknown optimal control signal, u°, shown by
the solid blue line. Not only does w1 nearly mimic the bang-bang signal of u°”, but the durations
of the two signals are different by only 1.6%. In other words, the SQP-ILC algorithm is able to
very nearly identify the time-optimal control signal, in spite of the fact that an inaccurate system
model is used for the control signal identification. Hence, by incorporating learning, the algorithm
is largely able to overcome the existence of uncertainty and uncover a nearly globally minimizing
control solution.

As observed in Fig. 2.4, large constraint violations occurred at several iterations prior to con-
vergence. While this behavior is permissible for the simulation example described in this section,
it may be inadmissible for practical systems with safety-critical constraints. A potential strategy
to mitigate this phenomenon is to dynamically adjust the trust region radius A; to shrink as 6;
increases. In this manner, large updates to the control signal (and therefore potentially large in-
creases to the constraint violation) can be prevented when the system constraints are already being
violated. This idea is successfully leveraged in [46] to enforce robust obstacle avoidance of a
robotic manipulator, but the implications of using this strategy on the converged performance of

the system remains a point of further investigation.

2.6 Conclusions

This work presents an ILC strategy for constrained systems with time and input-based economic

performance metrics. Namely, by treating the system timing as a decision variable, greater flexi-
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Figure 2.4: Trial duration corresponding to each iterate, ;. Black circles denote iterations where
the constraints are satisfied within £-precision, while red circles correspond to iterations wherein
constraints were violated beyond &-precision with £ = 0.01.

bility is afforded in how the control signal is designed, to allow for performance metrics beyond
reference tracking to be addressed. This framework extends the capabilities of prior work given in
[29] by allowing for a much broader class of constraints. It is shown, in the case that the model
is accurate, that the algorithm identifies, at convergence, a first-order critical point of the optimal
control problem. Additionally, in the presence of model uncertainty, conditions are established for
which the closed-loop control trajectory converges to a solution such that the constraints are satis-
fied, while also outlining properties of the converged control trajectory with regards to economic
performance. These properties are demonstrated in simulation where the time-optimal point-to-
point control problem is solved for a constrained multiple mass-sping-damper system, reducing
the trial duration by 64% while maintaining accurate waypoint tracking.

Future work includes extensions to iteration-varying systems, as well as an exploration of sys-
tems with uncertain economic performance objectives and strict output constraints. Moreover, the
identification of the classes of system objectives and constraints that satisfy Assumption 3, and the
creation of methods for selecting the controller parameters given in Table 2.1 such that Assumption

6 holds remain points of further investigation.
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Figure 2.5: Output trajectory at iteration 100. The blue markers indicate the waypoint positions
with their corresponding tracking tolerance at timesteps 41 and 81 as designated in tracking con-
straint (2.39).
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Figure 2.6: Input trajectory at iteration 100. The input remains within the designated saturation
limits enforced by (2.40).
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CHAPTER 3

Robust Adaptive Economic Model Predictive Control

3.1 Preliminaries: Tube-Based Model Predictive Control

In Chapter 2 a method was described for solving control problems for uncertain repetitive sys-
tems that operate discontinuously. Namely, the control problem was framed as a mathematical op-
timization problem wherein the control signal served as the decision variable. Here, the SQP-ILC
algorithm presented in Chapter 2 relied on the resettability of the system state between iterations.
While this control strategy borrowed much of its structure from numerical optimization methods,
forming practical analogous methods for continuously operated systems is not straightforward.
Rather, methods for control of economically driven, continuously operated systems has frequently
been considered within the field of optimal control wherein the control problem is similarly ex-
pressed as an optimization problem to identify an optimal input signal or control policy [2]. While
optimal control is a mature field of research that has enjoyed success for unconstrained linear
systems with quadratic costs, the development of practical extensions to nonlinear systems, con-
strained systems, and systems with more general performance objectives has remained a persistent
challenge. Namely, when considering these classes of systems, analytical solutions for the optimal
control signal rarely exist. Consequently identification of the control signal instead relies on the use
of numerical methods. However, the lack of an offline phase for continuously operated systems
necessitates that these optimization problems are solved in real time, which is often impossible
despite recent advancements in computing and processing speed.

To mitigate this issue, significant research effort has been directed towards the use of approx-
imate solutions to optimal control problems. In particular, interest has been centered within the
field of model predictive control (MPC) [47], which simplifies the optimal control problem to re-
duce the computational demand. Specifically, whereas optimal control problems require a control
trajectory to be derived over a long (potentially infinite) time interval, MPC lessens the numerical
burden by limiting the length of time over which input and state predictions are performed. The

standard method of operation within MPC algorithms is to leverage a measurement of the system
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state and a user-available model of the system dynamics to optimize the predicted inputs and sys-
tem states over a short time interval termed the prediction horizon. This procedure is repeated at
each timestep, wherein the end of the prediction horizon is incremented in real time. This so-called

‘receding horizon’ strategy is depicted in Fig.3.1.
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Figure 3.1: Rather than deriving the optimal input signal at all future times, MPC reduces the
computational load of optimal control methods by limiting the state and input predictions to a
truncated prediction horizon.

Classical MPC theory assumes that the underlying model used to propagate the plant dynamics
over the prediction horizon is an accurate reflection of the true system. Extensions of these meth-
ods to address the existence of uncertainty is the focus of robust MPC [48]. A variety of robust
MPC techniques, such as min-max MPC [49] and stochastic MPC [50], have been developed. Of
particular interest is tube-based MPC [51]. By leveraging known bounds on the error in the pre-
dicted state trajectory, tube-based approaches constrict the feasible space of the nominal system
in order to guarantee robust constraint satisfaction. Due to the computational tractability of this
approach, tube-based MPC has garnered significant popularity.

Commonly, as in [52, 53], tube-based MPC leverages known bounds on the uncertainty in the
system to define an invariant set [54] for the true system states, or an invariant set containing the
state estimation error given by the difference between the true system states and a prediction of the
states based on a nominal, undisturbed system model. Such an approach then enables guarantees

to be made regarding the robust performance and constraint satisfaction of the system by ensuring
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that the true states of the system remain in this invariant set or fube around the nominal state
trajectory. The computation of these invariant sets can be performed offline, which enables these
methods to be implemented in a way that is amenable for real-time operation.

Alternatively, the construction of the tube can be based on a forward propagation in time of
bounds placed on the state estimation error. Here, whereas invariant set methods rely on the calcu-
lation of a static set that the state estimate error is known to lie in, the tube geometry evolves over
the state prediction horizon based on knowledge of the underlying plant model. Consequently, by
using such a dynamic approach, the tube geometry is dependent upon the nominal system trajec-
tory. These homothetic tube methods wherein the tube size is dependent upon the system behavior
can enable reduced conservatism in comparison to their invariant set counterparts at the expense of
additional computational complexity [55, 56]. A graphical comparison of tube-based MPC based

on rigid invariant sets versus homothetic tubes is shown in Fig. 3.2.
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(a) The size of the tube is fixed over the prediction (b) The size of the tube varies over the prediction
horizon in invariant set tube-based MPC horizon in homothetic tube-based MPC.

Figure 3.2: Comparison between invariant set tubes and homothetic tubes (light blue area) for iden-
tical nominal state trajectories (dashed orange line). Homothetic tubes can enable more aggressive
control in comparison to invariant set tubes, but incur greater online computational demand as the
size of the tube over the prediction horizon serves as an additional decision variable in the control
input design. In both cases, starting at the current state (black circle), the true state trajectory (grey
line) stays within the tube centered around the nominal state trajectory. The blue ellipses denote
the tube geometry at each sample in the state prediction horizon.

However, while sufficient conditions for robust recursive feasibility and closed-loop stability
can be shown for tube-based MPC, the robust performance of these algorithms is still largely de-
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pendent upon the accuracy of the underlying system model used, and the user’s estimate of the
amount of uncertainty in the system. In the event that the user’s model of the system is highly
inaccurate, performance suffers due to inaccurate forecasts of future system behavior. Meanwhile,
if the available model of the system accurately reflects the true behavior of the system, but the
user’s estimate of the amount of uncertainty in the system is larger than what truly exists, then ro-
bust methods are frequently overconservative, where unrealized performance losses or unnecessary

costs are incurred to ensure robust constraint satisfaction.

3.2 Background and Motivation

In Section 3.1, the concept of tube-based MPC was introduced. Traditionally, this type of
control strategy has been developed for the case where the control objective is to drive the system
to a predefined equilibrium setpoint. However, in many applications, system performance is not
predicated solely upon setpoint tracking, but is instead dependent upon the optimization of an
economic performance metric. As a consequence of this, the performance stage cost may not be
positive definite with respect to a given equilibrium point of the system, which prevents traditional
regulation or tracking based robust MPC stability criteria from being directly applied to these
systems.

To address this issue, the field of Economic Model Predictive Control (EMPC) has enabled
the closed-loop stability and performance of systems with nontraditional performance objectives
to be studied [57]. As a consequence of the economic stage cost or the natural dynamics of the
system, the optimal behavior for a system controlled using EMPC is often repetitive [58]. Ensuring
stability in such cases is generally predicated upon satisfying a periodic dissipativity condition,
wherein the system trajectories do not necessarily converge to an equilibrium setpoint, but rather
a periodic orbit or limit cycle. The propensity of systems with economic objectives to have an