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ABSTRACT

III-nitride semiconductors have revolutionized modern electronics by enabling high-

power radio-frequency and lighting technologies. These materials hold immense po-

tential for new technologies such as miniaturized displays, ultraviolet sterilization,

and fast electric-vehicle charging. However, there are still performance bottlenecks

that need to be addressed. In this thesis, I investigate the microscopic mechanisms

that limit the performance of nitride semiconductors in power-conversion and light-

ing applications, and propose new solutions using quantum-mechanical methods that

connect the microscale physics to macroscale device phenomena.

First, I examine the limitations of III-nitride semiconductors in power-conversion

applications. To increase the breakdown voltage of GaN, which is critical for higher

power devices, it is promising to alloy it with Al. However, this approach decreases

the electron mobility due to alloy scattering. In this thesis, I develop a novel approach

to calculate the low-field mobility of semiconductor alloys from first principles. I

find that the mobility of AlGaN decreases by a factor of ∼7 compared to GaN.

Consequently, Al compositions above 75% are required to achieve even a two-fold

increase in the Baliga Figure of Merit (BFOM) compared to GaN, at which point

impurity doping becomes increasingly difficult. To address this issue, I propose

using atomically thin superlattices of AlN and GaN that are free of disorder. My

calculations indicate that these nanostructures exhibit a 4.8 eV band gap and a

mobility 3−4× higher than random AlGaN. By accounting for the dopant ionization

fraction in the BFOM, I show that the superlattices exhibit the highest modified

BFOM among prominent competing semiconductors.
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Second, I investigate the mechanism that causes InGaN light-emitting diodes (LEDs)

to suffer from an emission blueshift and linewidth broadening when operated at high

currents, leading to a degradation of their color properties. By systematically consid-

ering the effects of polarization-field screening, phase-space filling, and many-body

plasma renormalization, I comprehensively explain the current-dependent spectral

characteristics of polar III-nitride quantum wells. My analysis overturns the pre-

vailing hypothesis that the emission blueshift is primarily due to the screening of

internal polarization fields, as this explanation neglects the contribution of plasma

renormalization, which is nearly equal but opposite in magnitude. In contrast, the

blueshift is explained only by accounting for a complex interplay of polarization-field

screening, plasma renormalization, and phase-space filling. On the other hand, the

spectral broadening occurs mainly due to phase-space filling. My analysis suggests

that the key to improving the spectral characteristics of InGaN LEDs is to acceler-

ate carrier recombination and transport and reduce the carrier density required to

operate them at high power density.

Finally, I investigate the concept of defect tolerance in InGaN emitters. Recent ex-

periments have challenged the widely accepted hypothesis that carrier localization

suppresses diffusion and enhances the tolerance of InGaN emitters to defects. By

examining the competition between radiative and Shockley-Read-Hall recombination

in InGaN alloys using a formalism that I recently developed, I propose that carrier

localization and polarization fields enhance the quantum efficiency at low current

densities, without invoking the suppression of carrier diffusion. Decreasing the oscil-

lator strength or increasing the quantum-well thickness may improve the quantum

efficiency of LEDs for low-power applications but it exacerbates efficiency droop and

impair color purity control at high operating powers.

Overall, this thesis paves the way for the continued development of III-nitride technol-

ogy, and its approach can be generalized to other emerging semiconductors.
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CHAPTER I

Introduction

1.1 III-nitride semiconductors

The wide-ranging applications of III-nitrides — including general lighting, optical

communication, radio-frequency communication, and power-conversion technologies

— depend on the exceptional properties of these compound semiconductors. [1, 2, 3]

III-nitrides consist of nitrogen (N) as the anion and group-III metals, such as gallium

(Ga), indium (In), and aluminum (Al), and increasingly boron (B) and scandium

(Sc), as the cation. Among the III-nitrides, GaN stands out as the most widely used

and is ranked as the world’s second-most produced semiconductor after silicon (Si).

While III-nitrides have revolutionized various fields, there are still applications where

their performance falls short of expectations. [4, 5, 6, 7] To uncover the fundamental

loss mechanisms in III-nitride alloys and heterostructures, this thesis utilizes com-

putational modeling based on quantum mechanics, with the goal of enabling new

designs that significantly enhance their device performance.

The band gap, which is the most fundamental property of a semiconductor, is the

energy gap between the highest occupied electronic states (called the valence band)

and lowest unoccupied electronic states (called the conduction band). For electronic

applications, the band gap determines the maximum voltage that can be applied to

the material before it undergoes dielectric breakdown. For a transistor, the band gap

determines the best ratio of on to off current that can be achieved. For optoelectronic
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Figure 1.1: Band gap vs lattice constant of the conventional III-nitride semiconduc-
tors, as calculated within hybrid-functional density-functional theory. Solid lines are
guides to the eye, indicating the possible ternary alloys.

devices, the band gap determines the wavelength of light that can be emitted or

absorbed. The widespread use of III-nitride semiconductors is thanks to the fact

that they are the only commercial semiconductor system whose band gap can be

tuned from the infrared (IR) to the deep ultraviolet (UV) (Figure 1.1). [8, 9] In

particular, InN has a band gap of 0.6 eV, GaN has a band gap of 3.5 eV, and AlN

has a band gap of 6.3 eV. The ternary alloys InGaN and AlGaN have band gaps

that span the range from 0.6 eV to 3.5 eV and 3.5 eV to 6.3 eV, respectively.

1.1.1 Alloy disorder

Alloying is a useful way of engineering the band gap, however it has unintended

consequences for electronic and optical properties. [10] This is because alloying
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breaks a very important symmetry of semiconductors, translational symmetry. In

the simplest terms, translational symmetry means that a pattern repeats itself over

and over again. For example, to create a GaN crystal, one can arrange Ga and N

atoms in a repeating pattern to form a bulk solid. Conversely, alloying breaks this

symmetry; to create AlGaN alloys, we would randomly replace a fraction of the Ga

atoms in the periodic GaN crystal with Al atoms. As a result, there is no specific

pattern of Al, Ga, and N atoms that can be repeated to reconstruct the entire AlGaN

alloy.

1.1.1.1 Alloy scattering

The breaking of translational symmetry through alloy disorder has significant impli-

cations for the electronic properties of semiconductors. [11, 12] In periodic semi-

conductors, electrons experience a smooth background potential and can propa-

gate through the material without scattering (neglecting lattice vibrations, which

can also cause electron scattering). However, in disordered semiconductors, elec-

trons encounter a rough, random background potential that causes them to scat-

ter in all directions (Figure 1.2). This phenomenon is known as the relaxation of

crystal-momentum conservation, where electrons in semiconductor alloys experience

repeated momentum changes due to scattering, even in the absence of external per-

turbations. This is akin to driving on a newly paved road that is smooth and free

of imperfections, allowing the car to maintain a steady momentum, versus driving

on an older, pothole-ridden road that causes the car to veer in different directions.

The scattering lifetime τ , which is the time between different scattering events, de-

termines the electronic mobility of the material, given by µ = eτ/m∗, where m∗ is

the effective mass of the electron in the solid and e is the elementary charge. Mo-

bility reflects how effectively a material conducts electrical energy and is inversely

proportional to the resistivity ρ of the material, given by ρ = 1/enµ.

Alloy disorder not only affects the electronic properties but also the optical properties

of semiconductors. [13] To generate light, electrons in the conduction band and holes

in the valence band of a semiconductor must recombine. When an electron leaves the

3



Figure 1.2: In a periodic crystalline semiconductor, electrons propagate with a well
defined crystal momentum. In a random-alloy semiconductor, electrons experience
repeated crystal-momentum changes due to the disorder perturbation because Bloch
states, which have well-defined crystal momenta, are no longer eigenstates of the
Hamiltonian. This phenomena is called relaxation of crystal momentum and leads
to alloy scattering.

valence band, it leaves behind a “hole” in the valence band. Typically, light carries

very little momentum, and in most semiconductor applications, it is assumed that

the momentum of light is zero. Therefore, for an electron and hole to recombine,

they must possess the same momentum. However, in semiconductor alloys, crystal

momentum conservation is relaxed. As a result, an electron and hole that would

not have recombined in a normal crystalline semiconductor due to differing crystal

momenta may have a chance of recombining in an alloy. This is because one or both

of the particles may get scattered by the disordered background potential and end

up possessing the same momentum. The likelihood of this occurring depends on

the material’s specific details and the strength of the alloy disorder. Furthermore,

relaxation of crystal momentum can affect non-radiative processes such as Auger-

Meitner recombination, which is a three-particle scattering process and limits the

efficiency of light-emitting diodes at high current densities. [7]

1.1.1.2 Carrier localization

Thus far, our discussion of alloy disorder has neglected the possibility of carrier lo-

calization. If the disorder is strong enough, it can cause the charge carriers, electrons

4



or holes, to become localized in place, ultimately inhibiting carrier diffusion. [10]

This effect was first hypothesized by Phil Anderson, [14] who won the 1977 Nobel

prize for his work on the electronic structure of magnetic and disordered systems. An

intuitive analogy to understand localization is that the potholes on the road are so

large that the car gets stuck in place and cannot move. While this analogy is helpful

at a rudimentary level, it is not entirely correct because localization is ultimately a

wave phenomenon. A better analogy would be that of a wave front in the ocean;

in the absence of any obstruction, these wave fronts would propagate unperturbed.

However, imagine that we stick a very long wooden pole into the bottom of the ocean

floor that sticks out on the surface. As the wave front reaches the wooden pole, the

pole scatters the wave front and a spherical wave emanates outward from the pole

in addition to the original wave front. This is the wave phenomenon of diffraction.

Now, imagine adding another wooden pole next to our original pole. The wave front

would scatter from both poles and create an interference pattern, with some regions

showing constructive interference and other regions showing destructive interference.

If we kept adding wooden poles at random locations, what we would eventually find is

that the wave front no longer propagates past the wooden poles because destructive

interference wins everywhere except at the location where the wave front first came

into contact with the wooden poles, where there is massive constructive interference.

This phenomenon is called wave localization. In alloyed semiconductors, the same

phenomenon occurs except that electron and hole waves are being localized by the

alloy disorder.

What determines whether alloy disorder localizes a carrier? We can very roughly

estimate the qualitative dependence of the average decay length λ of wave functions

on material parameters in a ternary alloy with the WKB approximation,

λ ∼ 1/

√
2m∗(x)

√
x(1− x)∆E,

where m∗(x) is the composition-dependent effective mass, x is the composition, and

∆E is the conduction-band offset (for electrons) or valence-band offset (for holes)

between the binary compounds. For a given alloy system, there is no localization
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for the binary compounds x = 0 and x = 1 since λ → ∞; localization becomes

strongest for the intermediate compositions because x(1−x) reaches a maximum for

x = 0.5. The effective mass is very important; in the III-nitrides, electrons are ten

times lighter than holes, me ≈ 0.2,mh ≈ 2, so λ is about 3× larger for holes than

electrons. This is why holes in the III-nitrides are typically localized but electrons are

not, as seen directly in numerical simulations employing atomistic tight-binding as

well as modified k ·p Hamiltonians. The formula for λ also explains why localization

is more important in the III-nitride alloys than in alloys of III-phosphide and III-

arsenide semiconductors, despite them sharing similar chemistries. The heavy-hole

effective mass in the InGaP system ranges from 0.6m0 to 0.8m0, and the valence-

band offset is approximately 0.3 eV. In the InGaAs system, the heavy hole effective

mass ranges from 0.4m0 to 0.5m0, and the valence-band offset is approximately 0.3

eV. [10] In contrast, in the InGaN system, the heavy-hole mass is about 1.8m0 and

the valence-band offset is approximately 1 eV. λ is therefore about 3× larger in

the III-nitride system than in the III-phosphide system, and 4× larger than in the

III-arsenide system. The formula for λ does not account for additional localization

effects due to the mismatch in the size of the binary compounds. The mismatch be-

tween the binary compounds is around 7% for both the In-containing phosphide and

arsenides but about 11% for the In-containing nitrides. This additional component of

disorder, which in a tight-binding model appears as disorder in the off-diagonal hop-

ping parameters, is called off-diagonal disorder, while the component of disorder due

to fluctuations in the energy levels of the binary compounds is called site-diagonal

disorder.

Overall, carrier localization is an important phenomenon in III-nitrides. However,

the physics behind carrier localization remains unclear due to the difficulty in exper-

imentally accessing localized states. On the other hand, while simulations indicate

that carriers are localized in III-nitrides, it’s challenging to calculate their density of

states because of the finite size of simulations. Therefore, it’s hard to assess their

overall importance to thermally averaged quantities. Additionally, different methods

typically disagree on the exact details of localization length in these systems.[15, 16]

6



The impact of carrier localization on functional properties is also not known. There

is no first-principles method to calculate the mobility of localized states, which oc-

curs through variable-range hopping. Moreover, it’s not clear how localization affects

radiative and non-radiative recombination, with different studies reaching contradic-

tory conclusions.[17, 18, 19, 20] One school of thought suggests that localization is

the reason why III-nitride LEDs work at all, despite having relatively high defect

densities that would kill arsenide- and phosphide-based LEDs. [21] This hypothesis

states that localized carriers are unable to diffuse to defects where non-radiative re-

combination occurs. However, this idea has been challenged by recent experiments

that show long diffusion lengths in III-nitrides, likely because there is always some

finite occupation of extended states that do diffuse. [22] Another school of thought

suggests that localization reduces the wave-function overlap of electrons and holes,

lowering efficiency by preventing them from recombining. [23] However, this result

is not widely accepted, and other works suggest that localization actually makes

it more likely for carriers to recombine. [18] There is also some evidence that lo-

calization exacerbates Auger-Meitner recombination in quantum wells, although it’s

not clear whether this effect is due to alloy scattering or carrier localization. [24]

Surprisingly, no theoretical study to date has investigated the impact of localization

on the competition between radiative and Shockley-Read-Hall recombination. Much

more work is needed to understand the impact of carrier localization in III-nitride

alloys.

1.1.2 Polarization fields

In addition to their alloy disorder, the III-nitrides are characterized by their polar-

ization field. [25, 26] These materials crystallize in the wurtzite phase and belong

to the P63mc space group, which lacks inversion symmetry. When biaxial strain is

applied, dipoles form within the unit cell, resulting in strong piezoelectric fields. The

wurtzite structure also exhibits spontaneous polarization fields due to the fact that

the dipole of the Ga-N bond does not cancel out along the c-axis, which is typically

the direction of growth for commercial devices.
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The polarization field has a negligible impact on bulk properties due to the trans-

lational symmetry of bulk systems. While bulk properties are not significantly im-

pacted by polarization fields, the lack of translational symmetry in alloys means that

polarization fields can have an effect on bulk properties through local fluctuations.

However, if we coarse-grain our resolution to a large enough length scale, the average

composition of an alloy possesses translational symmetry, and the macroscopic polar-

ization field must vanish in bulk alloys. As a result, polarization fields are primarily

important only in the presence of compositional gradients, interfaces, and surfaces.

Real devices are typically composed of heterostructures of many different materi-

als stacked on top of each other, making polarization fields an important factor in

determining their functional properties.

One of the main effects of the polarization fields can be seen in quantum wells,

which are used as the active region of light-emitting diodes. A typical quantum

well in III-nitride devices consists of an InGaN well region, typically around 3 nm

thick, and a GaN barrier region. The well region has a smaller band gap than the

barrier region, which allows us to confine electrons and holes in the well region thus

promoting the probability of them recombining. The discontinuity of the polarization

field between the material of the well and barrier regions gives rise to polarization

charges at both interfaces. These polarization charges give rise to gigantic internal

electric fields in the quantum well, which are typically of order 1 MV/cm. These

electric fields shift the energy levels of the conduction and valence states, and cause

the band gap to red shift compared to polarization-free quantum wells. This effect

is known as the quantum-confined Stark effect (QCSE), in analogy with the Stark

effect of the hydrogen atom. It has long been thought that the QCSE is the primary

reason for the blue-shift exhibited by InGaN LEDs with increasing current density.

As carriers are injected into the quantum well, they screen the polarization field

which lessens the QCSE and thus lessens the red-shift, giving rising to an apparent

blue-shift. [27] Although this explanation is simple, it neglects many-body plasma

renormalization due to the free carriers which is of equal but opposite magnitude as

polarization-field screening. Any explanation that neglects this effect is incomplete
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and cannot provide a comprehensive and quantitative description of the blue-shift

of InGaN LEDs with increasing current density. Some authors have considered the

effects of plasma renormalization, but the contribution of the different effects are not

clear and the work was performed during a time when even the fundamental gap

of InN was not known thus it is not clear which parameters were tuned to match

experiment. [28] Moreover, the internal electric fields in quantum wells also separate

electrons and holes to opposite sides of the quantum well and severely impact the

recombination properties of light-emitting diodes. [29, 5] Indeed, polarization fields

are known to exacerbate the efficiency droop phenomenon because they slow the rate

of radiative and non-radiative recombination, which forces LEDs to operate at higher

carrier densities to maintain the same power density, but the efficiency is lower at

high carrier densities.

1.2 Light-emitting diodes

1.2.1 Physics of light emission

LEDs are devices that convert electricity to light. If there exists a non-equilibrium

population of electrons and holes in a semiconductor’s conduction and valence band,

these carriers will recombine to produce light through a process called spontaneous

emission, thus lowering the total electronic energy of the system. There is a very

intuitive but semi-classical (therefore, not entirely correct) picture to understand

the process of light emission. Classically, a radiating dipole emits electromagnetic

waves, with the frequency of the wave being equal to the frequency of the dipole

oscillation. In III-nitrides, the valence electrons are in orbitals that closely resemble

p-type atomic orbitals. By having even a fraction of the electrons in the s-type

orbitals of the conduction band rather than in the valence band, the charge density

acquires, at least locally, a net dipole moment. (Conversely, no dipole moment would

form and thus no light would be produced if both conduction and valence orbitals

were s-type.) This leaves the question: what causes the dipoles to oscillate and

radiate charge? In quantum mechanics, the vacuum state of the electromagnetic
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field is teeming with fluctuations of virtual particles. These vacuum fluctuations

occasionally resonate with the dipoles and cause them to oscillate and emit light.

The energy of light and the frequency of the dipole oscillation corresponds to the

energy difference between the conduction and valence states. It is for this reason that

the probability of light emission is proportional to the square of the dipole transition

matrix element between conduction and valence states, e|⟨ψc| r̂ |ψv⟩|2. However, since
the dipole operator is not uniquely defined under periodic boundary conditions, it is

more common to see the rate being written as proportional to the momentum matrix

element squared, |⟨ψc| p̂ |ψv⟩|2. The position and momentum matrix elements are

related as (in atomic units, ℏ = e = me = 4πϵ0 = 1),

d

dt
⟨ψc| r̂ |ψv⟩ = ⟨ψc| [Ĥ, r̂] |ψv⟩ = (εc − εv) ⟨ψc| r̂ |ψv⟩ (1.1)

d

dt
⟨ψc| r̂ |ψv⟩ = ⟨ψc| [Ĥ, r̂] |ψv⟩ = −⟨ψc| p̂ |ψv⟩ (1.2)

∴ ⟨ψc| r̂ |ψv⟩ =
⟨ψc| p̂ |ψv⟩
εv − εc

(1.3)

Light emission or radiative recombination is always competing with non-radiative

recombination, which depletes the population of electrons and holes, and dissipates

energy through heat. There are two primary mechanisms that lead to non-radiative

losses. At low carrier densities, Shockley-Read-Hall (SRH) recombination is the

primary loss mechanism. [30] Even in the highest quality LEDs, there are always

a finite number of imperfections or defects in the crystal. These can be missing or

misplaced atoms in the crystal structure or foreign impurities that were incorporated

during the growth process. These defects can trap electrons and holes, which lowers

the conductivity of the material. This type of carrier capture is typically termed

carrier capture by multi-phonon emission because each capture event is accompanied

by a large distortive relaxation of the defect configuration, which corresponds to the

emission of multiple lattice vibration (phonon) modes. Overall, the probability of

carrier capture is proportional to the number of free carriers in the vicinity of the

defect. A complete SRH cycle consists of a defect sequentially capturing an electron
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and a hole. At higher carrier densities, the primary loss mechanism is Auger-Meitner

recombination (AMR). [31, 32] This is a three-particle scattering mechanisms whose

rate scales with the carrier density to the third power. In the AMR process, the excess

energy from an electron-hole recombining transfers to a nearby carrier through the

Coulomb interaction. The AMR process is strictly limited by the conservation of

crystal momentum between the three scattering carriers, therefore the AMR rate

is particularly enhanced by crystal-momentum-conservation breaking by disorder

and lattice vibrations. The AMR process is responsible for the efficiency droop

phenomenon, which causes the efficiency to decrease with increasing carrier density,

limiting the energy efficiency

1.2.1.1 Structure of LEDs

Figure 1.3 depicts a schematic of the different layers that constitute a typical III-

nitride LED. The active region, which contains quantum wells, is the most significant

component of LEDs as it is where light is generated. The quantum well is composed

of a material with a smaller band gap (typically InxGa1−xN, 0 < x < 0.3) surrounded

by a material with a larger band gap (typically GaN), where electrons and holes are

confined and recombine to produce light. It is important to grow the quantum well

and surrounding barriers with minimal defects to decrease the occurrence of trap-

assisted non-radiative recombination. To prevent overcrowding of carrier density

that can lead to overheating and degradation of electrical and spectral properties,

designs often use multiple quantum wells (MQW).

The MQW active region is located within a p-n junction, which functions as an

on/off switch for the LED. When a forward bias is applied, the LED turns on,

and electrons and holes flow from the metal contacts towards the active region,

where they combine and produce light. To prevent the overflow of electrons from

the quantum well into the hole-injection contact, most LEDs include an AlGaN

electron-blocking layer (EBL). This is because electrons are light and have a high

kinetic energy, making them difficult to capture in the quantum well. As most

metal contacts form a Schottky barrier against the wide bandgap GaN material, the
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Figure 1.3: Schematic of a III-nitride light-emitting diode.
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contact regions of the LED are heavily doped to promote screening and reduce the

length of the depletion region of the Schottky barrier. If the depletion region is small

enough, carriers can tunnel through the Schottky barrier, leading to linear ohmic

characteristics. Additionally, many commercial InGaN LEDs use an In-containing

superlattice underlayer below the device (not shown in the figure), which improves

the material quality of the active region by trapping or gettering point defects that

occur during the growth on the surface of the epitaxial layer. [33, 34] The presence

of an In-containing underlayer has been shown to significantly enhance the efficiency

of LEDs. Finally, a thick structurally relaxed buffer region separates the device

from the substrate (typically sapphire). Large amounts of dislocations are generated

at the buffer/substrate interface due to the ∼ 14% lattice mismatch between GaN

and sapphire. Great care is taken to minimize the dislocation density at the buffer

surface; although III-nitride LEDs are more robust to dislocations than III-arsenide

and III-phosphide LEDs, [35] a large dislocation density can still negatively impact

device performance. [36]

Once the LED is fabricated, the LED is either directly coupled to an optical fibre

for optical communication or packaged in a hemispherical-shaped polymer host, such

as poly(methyl methacrylate) (PMMA) or polycarbonate, for general lighting. [37]

These polymers are chosen for their transparency in the visible spectrum and their

refractive index (nr ≈ 1.5), which is intermediate between that of air (nr ≈ 1) and

GaN (nr ≈ 2.3 at εG). The importance of the latter criterion can be understood by

considering the Fresnel coefficient for reflection at normal incidence, given by

R =
n1 − n2

n1 + n2

. (1.4)

The reflection coefficient Rair−GaN between GaN and air is 0.4, meaning 40% of the

light that GaN emits is reflected back at the interface. In contrast, the product of

reflection coefficients Rair−polymerRpolymer−GaN between air and polymer and between

polymer and GaN, respectively, is much smaller, at 0.04, greatly enhancing the ability

to extract light from the LED. This strategy can be thought as a way of minimizing

the wave-impedance mismatch at the air-matter interface.
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1.2.2 Applications

LEDs are incredibly versatile technologies with a wide range of applications. This

section briefly reviews several important applications of LEDs, the current state of

the field, and the role III-nitrides play in these applications.

1.2.2.1 General lighting

Owing to the fact that LEDs are 3-4× more efficient than incandescent light bulbs,

LEDs are widely used for general lighting, which accounts for approximately 20%

of the world’s electricity consumption. For general lighting applications, phosphors

that emit across a broad spectral range convert light from highly efficient blue LEDs

(whose maximum energy conversion efficiency can reach up to 80%) into a spec-

trum of different colours that is interpreted by the human eye as white light. These

LEDs are called blue-pump LEDs. The most commonly used phosphor for white

LEDs is Ce:YAG or Ce3+-doped Y3Al5O2 (yttrium aluminum garnet) because it

very efficiently converts blue light to white light. [38] The host garnet material is

an ultra-wide-band-gap insulator and the absorption of blue light and luminescence

of yellow light arises from transitions between electronic levels of the Ce ion, which

substitutes the Y site. Ce:YAG is synthesized using a solid-state reaction at high

temperature; it is then milled into a powder and dispersed into a polymer matrix,

which is used to coat the LED as a thick hemispherical layer. From an engineering

perspective, general lighting is considered to be a mature technology with little room

for improvement in terms of energy efficiency. The remaining effort in industry for

general lighting is dedicated to engineering the colour of white LEDs so as to emu-

late natural light. Part of this effort involves the development of efficient green and

amber LEDs so as to give more flexibility in tuning the colour spectrum, and an-

other part involves the development of efficient phosphors that produce more natural

colours.
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1.2.2.2 Consumer electronics and microLEDs

In addition to general lighting, LEDs are commonly used in consumer electronics,

including TVs and smartphones. Standard displays use LED-backlit liquid-crystal

display (LCD) technology, whose active region consists of long organic molecules

embedded in a host polymer matrix that can be polarized by an electric field. LCD

displays use two linear polarizers fixed perpendicularly to each other, with a liquid-

crystal layer sandwiched between them. The liquid-crystal layer’s orientation can be

controlled by applying an electric field to control the light that passes through the

color filter of each pixel, which is typically an organic dye or quantum-dot material.

Despite being widely used, LED-backlit LCD technology cannot be further miniatur-

ized and has limitations in providing ultra-high definition resolution and individual

control of pixels.

Micro-LEDs offer a solution to these issues as they are miniaturized LEDs based

on III-nitrides, containing InGaN quantum wells with varying indium content for

red, green, and blue pixels that can be directly electrically controlled. [39, 40] This

allows for much greater control over pixel density and the ability to completely turn

off pixels, resulting in deeper blacks. One of the main emerging applications for

microLEDs is augmented reality (AR), which is a technology that allows for the

overlay of digital information onto the real world, in real time. An early example of

AR technology is the heads-up display in cars, which project important information

such as speed and safety warnings in the drivers line of sight thus allowing the driver

to keep their eye on the road while processing relevant information. AR technology

requires miniaturization of LEDs and fast response times.

A significant challenge for microLEDs is achieving high efficiency for all three pri-

mary colors (red, green, and blue) at small sizes, particularly for the red wavelength.

In addition, microLEDs have a high surface-to-volume ratio, which can lead to in-

creased surface recombination and decreased efficiency. Fabrication of microLED

arrays also requires precise control of growth and placement, which can be difficult

and expensive. Moreover, microLEDs have to compete with organic light-emitting

diodes (OLEDs), which also offer control over individual pixels. Compared to mi-
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croLEDs, OLEDs can be made into flexible and transparent displays, allowing for a

wide range of form factors. However, OLEDs have a shorter lifespan than microLEDs

and are typically unstable at high operating powers. [41] Compared to organic LEDs,

microLEDs have a significant advantage for response times due to their higher carrier

mobility (∼ 10− 100 cm2/Vs vs < 1cm2/Vs) and faster recombination lifetimes (ns

vs µs-ms). In practice, applications that require flexible substrates will likely benefit

from OLEDs while high-performance applications will benefit from microLEDs.

1.2.2.3 Horticulture

As we have discussed for far, LEDs are a highly efficient lighting technology where the

cost of producing light is nearly commensurate with the cost of electricity. By inte-

grating high-efficiency LEDs with solar technology, it is possible to directly produce

food for human consumption using sunlight. [42] This is precisely what horticulture

is accomplishing by growing food from LEDs indoors, a method that is particularly

valuable in areas where conventional farming is impractical. Vertical indoor farming

could reduce the need for conventional farmland, as agriculture is responsible for

80% of deforestation worldwide. In horticulture, red and blue wavelengths of light

are especially important; red light is essential for the flowering and fruiting stages of

the plant, while blue light is necessary for vegetative growth and production of green

foliage. Although red and blue LEDs are highly efficient, the key lighting challenge is

to optimize the growing process by blending other colors of light to mimic the color

and brightness of natural sunlight. This can be achieved using InGaN LEDs with

varying indium concentrations. Other pressing technical challenges facing horticul-

ture include efficiently managing indoor temperature and humidity and developing

methods to cultivate plants effectively without natural nutrient-rich soil.

1.2.2.4 Disinfection

UV LEDs can be used for disinfection by emitting light in the germicidal wave-

length range of 200-280 nm, which damages the DNA and RNA of microorganisms,

preventing them from reproducing or infecting. [6] One promising material for UV
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LEDs is AlGaN, which offers tunability of wavelength due to its adjustable band

gap. However, increasing the Al content of the material to achieve higher band gaps

also leads to increasing TM polarized light emission (because of pz-like symmetry

of the valence orbital), which makes light extraction difficult. (TM polarized light

tends to propagate within the material, leading to reabsorption within the mate-

rial, instead of propagating perpendicularly, which is necessary for it to escape.)

AlGaN alloys with intermediate compositions also have lower mobility due to alloy

scattering, which places a fundamental limit on the conductivity for a given carrier

concentration. Moreover, doping AlGaN is generally difficult, so impurity scattering

further reduces the mobility. Contact resistances are also larger in UV AlGaN de-

vices compared to GaN devices because the band edge is much farther away from the

typical work function of contact metals such as Ti or V/Zr contacts. This creates

a higher barrier for Ohmic contacts based on field emission, requiring more doping,

which is unfortunately challenging in AlGaN. Other materials such as β-Ga2O3 and

hBN also show promise for UV LEDs, but they have limitations in either dopability

or tunability of the specific wavelength range.

1.3 Power electronics

1.3.1 Physics of power conversion

Nearly 20% of the global energy consumed is consumed as electricity. The importance

of electricity to modern society cannot be overstated. The vast global electrical

infrastructure requires specialized circuits that can convert electrical energy with

low losses. [43] Such circuits use power semiconductor devices, which are typically

discrete (as opposed to integrated) devices that are designed to efficiently handle the

conversion of electrical power. The fundamental power operations are:

• Rectification: the process of converting AC signals to DC.

• Inversion: the process of converting DC signals to AC.

• Conversion: the process of transforming the voltage or frequency of AC or DC
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signals.

In addition to these fundamental operations, it may be necessary to regulate the

power, filter the power signal, and protect against over-currents and over-voltages.

The building blocks required to design circuits that perform these operations are:

• Rectifiers : switches that allow current to flow in one direction.

• Amplifiers : circuit elements that amplify a small AC signal by transferring

power from another DC source.

• Capacitors : circuit elements that store and discharge electrostatic energy upon

the application and removal of an applied voltage.

• Inductors : circuit elements that store and discharge magnetostatic energy upon

the application and removal of an electric current.

• Resistors : circuit elements that limit the flow of electrical current by dissipating

electrical energy as heat.

Among the five fundamental building blocks, rectifiers and amplifiers are typically

active components, meaning they require external energy to operate, and as a result

can add electrical energy to the circuit. On the other hand, capacitors, inductors,

and resistors are passive components, meaning they can dissipate or store electrical

energy. Capacitors are fabricated by sandwiching a high-K dielectric between paral-

lel conducting plates, inductors are fabricated by wrapping a conducting wire about

a magnetic core, and resistors are fabricated by moulding resistive material such as

carbon powder into a desired shape. On the other hand, rectifiers and amplifiers

are fabricated by applying advanced processing and nanofabrication techniques to

semiconductors. Typically, rectifiers can be made from diodes or transistors, while

amplifiers are made exclusively from transistors. The voltage and frequency require-

ment for a given application determines the exact type of transistor or diode that is

used.

Figure 1.4 shows the characteristics of an ideal rectifier compared to an actual rec-

tifier. An ideal rectifier carries any amount of current with zero voltage drop in the
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on state, blocks any value of voltage with zero leakage in the off state, and switches

between the on state and off state with zero switching time. In practice, real rectifiers

exhibit a finite voltage drop, a finite on-resistance that leads to conduction losses,

a maximum voltage they can block due to dielectric breakdown, and a maximum

finite frequency at which they can be switched. Figure 1.5 shows the characteristics

of an ideal transistor, which may be used as a rectifier (in the saturation region) or

as an amplifier (in the action region). An ideal transistor conducts current in the

on-state with zero voltage drop, blocks voltage in the off-state with zero leakage, can

be operated with a high current and voltage in the active region, has uniform (lin-

ear) spacing between characteristics in the active region independent of the forward

voltage and current, and has zero time delay in the modulation response, defined as

the ratio of the forward (drain to source) AC current and the AC input gate voltage.

Of course, real transistors exhibit a finite on-resistance, a maximum voltage they can

block in the off state, non-linear characteristics in the active region, and a maximum

frequency at which they can be modulated or switched.

Conduction losses in power devices can be minimized by choosing semiconductors

with high mobility and high dopability. The device should also be as thin as possible

to minimize the overall resistance. Smaller resistances additionally lead to small RC

time constants, thus allowing for higher frequency operation. However, thin devices

are unable to withstand high voltages, because the voltage ∆V is related to electric

field E as, ∆V = E/L, where L is the device thickness. In order to maximize the

breakdown voltage, the device should be as thick as possible (or stacked in serial in a

module) so that carriers never experience a high electric field that accelerates them

to destructive energies. We are clearly at an impasse. It seems that we can either

have a device with low conduction losses and fast modulation/switching response or

a device that supports very high voltages before breaking down, but not both.

We can find a way out of this conundrum by elucidating the nature of breakdown

in semiconductors. Breakdown occurs when electrons or holes accelerate due to the

external electric field and gain sufficient kinetic energy, typically the band gap en-

ergy, that they can Coulombically interact with valence electrons and ionize carriers,
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Figure 1.4: Schematic of current-voltage characteristics of ideal rectifiers (red) vs
actual rectifiers (purple). Actual rectifiers may be p-n or Schottky power diodes or
power transistors that operate in the saturation region. Rectifiers must be able to
block high voltages in the off state, have minimum current leakage if off, have no
voltage (power) drop if on, and have minimum on-state conduction losses. In many
applications, they must be able to operate at high frequencies since voltage and
power conversion is typically performed by modulating the duty cycle of the power
signal.
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Figure 1.5: Schematic of current-voltage characteristics of ideal amplifying transis-
tors (red) vs actual amplifying transistors (purple). Actual amplifiers exhibit current
leakage in the off state, a finite on resistance that leads to conduction losses, a finite
forward voltage beyond which breakdown occurs, and non-linear characteristics with
respect to the gate voltage. Additionally, their RC time constant must be minimized
in order to maximize the range of frequencies in which they can amplify signals.
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a process known as impact ionization, or produce defects, a process known as hot-

carrier defect generation. The formation of defects manifests as a slow degradation

of the characteristics of the device. Impact ionization leads to avalanche breakdown,

which is a process mediated by carrier multiplication due to carrier ionization that

leads to the generation of large amounts of runaway current and heat in an uncon-

trolled feedback loop. Semiconductors with wider band gaps can generally sustain

stronger electric fields before undergoing breakdown. [44, 45, 46, 47, 48, 49, 50] Em-

pirically, the breakdown field of semiconductors scales quadratically with the band

gap (Figure 1.6). Therefore, by using semiconductors with ultra-wide band gaps

(loosely defined to be band gaps >3.5 eV), it is possible to aggressively scale the size

of semiconductor power devices thus minimizing the resistance while maximizing the

breakdown voltage.

The area of the device is another aspect of the design where trade off is required.

Larger device areas are necessary to support high currents, since smaller areas over-

crowd the current which leads to overheating due to poor thermal dissipation. How-

ever, larger device areas increase the junction capacitance, which increases the RC

time constant and therefore limits the maximum modulation and switching frequen-

cies. A possible solution is to reduce the current at which the device operates

while maintaining the same power output by increasing the voltage. In applications

where this is possible, ultra-wide-band-gap semiconductors are promising. Ultra-

wide-band-gap semiconductors can additionally operate at much higher temperatures

because the thermal population of carriers decreases exponentially with increasing

band gap, which reduces leakage current. Another solution is to use materials with

high thermal conductivity and custom device designs that enable the efficient ex-

traction of heat from the active region. For applications that necessarily require

high current ratings, such as battery charging for electric vehicles, it is often possible

to integrate power devices in parallel in a power module so that the overall mod-

ule can support higher current ratings, without increasing the area of the discrete

devices.

Clearly, the development of ultra-wide-band-gap semiconductors with high dopabil-
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ity, high mobility, and high thermal conductivity is crucial for the advancement of

next-generation power devices. While several ultra-wide-band-gap semiconductors

have been discovered, very few exhibit all three desirable properties simultaneously.

The search for such materials is ongoing, and the hope is that future research will

yield discoveries that will pave the way for efficient and high-performance electronic

and power systems.

1.3.2 Applications

1.3.2.1 Power conversion

Power conversion devices are used in applications requiring the conversion of electric

power, including consumer power electronics, renewable energy generation, electric

cars and rails, HVDC transmission systems, and more. Different types of transistors

are typically used for different applications depending on their power and frequency

needs. For instance, metal-oxide-semiconductor field-effect transistors (MOSFETs)

are used for low power and high-frequency applications such as switch-mode power

supplies. Insulated-gate bipolar transistors (IGBTs) are used for medium to high

power and high-frequency applications. Thyristors are used for ultra-high voltage

and ultra-high current applications but are restricted to low-frequency operation. In

all these devices, electrons transport vertically from the source to the drain, run-

ning from a metal contact at the bottom of the device to a metal contact at the

top of the device. This leads to better distribution of current than lateral designs

characteristic of integrated circuits, which means heat is generated uniformly and

can be more effectively dissipated. Additionally, vertical devices allow for thicker

drift regions, which allows for higher breakdown voltages. Conventionally, silicon

(Si) power devices have been used for power conversion applications. However, sili-

con carbide (commonly 4H-SiC and less commonly 6H-SiC) is increasingly replacing

Si technology due to its wider bandgap (3.2 eV vs. 1.1 eV), [43] which makes SiC

devices more efficient and capable of operating at higher temperatures.

By moving towards ultra-wide-band-gap semiconductors, the performance of power

electronic devices can be greatly improved. Currently, there is no device that per-
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forms very well at high voltage and high switching frequencies. This is mostly limited

by the performance of the underlying materials. Thus, finding more efficient mate-

rials is necessary for enabling even higher efficiencies in emerging technologies such

as electric rails, high-voltage DC transmission, and electric vehicles. The Baliga

Figure of Merit (BFOM) is a widely used metric for quantifying the performance of

semiconductors for power electronics, [43, 51]

BFOM =
V 2
BR

Ron

=
1

4
ϵsµE

3
c . (1.5)

VBR is the breakdown voltage in the device off state, and Ron is the specific resistance

of the device in the on state, which quantifies the conduction losses in the on-state.

ϵs is the dielectric constant, µ is the carrier mobility, and Ec is the critical electric

field at which the semiconductor undergoes breakdown. Recently, the importance of

including the ionization fraction in the expression for the BFOM has been identified,

leading to the modified Baliga figure of merit,

Modified BFOM =
V 2
BR

Ron

=
1

4
ϵsµE

3
c η, (1.6)

where η is the dopant ionization fraction. [52] Since Ec ∝ ε2G, we conclude,

BFOM ∝ ε6G,

which emphasizes the need for ultra-wide band gaps. Although the Baliga Figure

of Merit is derived for unipolar rectifiers (specifically, asymmetrically doped abrupt

non-punch-through p-n junction diodes), it is now widely used to quantify the per-

formance of potential materials for power electronics applications.

The search for next-generation semiconductors to replace Si and SiC, and drive future

power conversion technologies is ongoing. Although several materials have shown

promise, including AlGaN, [53] β-Ga2O3, [54] GeO2, [55] cBN, [56] and diamond, [56]

the question of which of these materials will ultimately prevail remains unanswered.

Each material has its own set of advantages and challenges, with nitrides standing out
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for their high thermal conductivity, good dopability, and high mobility, along with

an established infrastructure for growth and fabrication. However, challenges such as

substrate cost and the need for vertical designs and better contacts remain. A critical

comparison of these different semiconductors is presented in Chapter V. Ongoing

research is focused on addressing these challenges and improving the performance

of III-nitrides and other materials for power conversion applications at both the

material and device levels.

1.3.2.2 Radio-frequency amplification

Radio frequencies (RF), which include radio waves and microwaves (f ∼ 3KHz to

300GHz, λ ∼ 10−4 − 108 m), have a wide range of applications, including next-

generation 5G and 6G mobile networks, security and surveillance radar, automotive

radar for car-to-car communication, medical imaging such as MRI, RF frequency

sources for plasma, and more. For these applications, high-frequency performance of

the transistor is important, which is why HEMTs (high-electron-mobility transistors)

are used. HEMTs are unipolar majority carrier devices that use heterostructures to

create 2D electron gases at the interface, which creates a high mobility and high den-

sity channel. [2] HEMTs can be modulated at high frequencies because they lack a p-

n junction capacitance and because unlike bipolar devices they are not limited by the

recombination lifetime of minority carriers. The size of HEMTs can be aggressively

scaled down without affecting carrier density in the channel region. GaN/AlGaN

HEMTs can handle medium power and high frequency, but thermal management is

a key issue due to overheating, which will be further exacerbated by scaling down

the size. Despite their high performance and widespread use, GaN/AlGaN HEMTs

also exhibit breakdown at lower voltages than predicted by their band gap, with the

exact mode of breakdown currently unclear. Since GaN/AlGaN HEMTs rarely show

the rapid breakdown characteristics typical of avalanche breakdown, it is suspected

that their breakdown is due to hot-carrier defect generation.

The need for high-power RF amplifiers for RF communication can be understood by

considering how RF signals attenuate in the atmosphere. Attenuation of RF signals
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occurs due to the absorption of radiation by gases in the atmosphere. It also occurs

due to Rayleigh scattering, i.e., scattering by dielectric spheres whose length scale is

much smaller than the wavelength of light. The intensity of Rayleigh scattered light

scales with the wavelength as ∼ 1/λ4, which means higher frequency, shorter wave-

length signals are more strongly attenuated. In the presence of rain, Mie scattering,

i.e., scattering by dielectric spheres whose length scale corresponds to the wavelength

of light, may also contribute to attenuation. The strongest attenuation of RF signals

occurs by absorption in the ionosphere, which is a layer in the atmosphere ∼60-600
km above the surface that consists of gases ionized by solar radiation. Although

the ionosphere can be avoided for many terrestrial communication applications, it

cannot be avoided for space communication.

Overall, RF communication requires high-power amplifiers for communication and

sensing, but devices typically either handle very high power or very high frequency,

but rarely both. Lateral designs typical of HEMTs, where the channel is parallel

to the gate, are better for RF amplifier applications than vertical designs because

they minimize the transit length from the drain to the source. However, such designs

can lead to current overcrowding, which leads to overheating, and field enhancement

effects, which lowers the breakdown voltage. Going to higher band gaps can enable

the devices to be scaled further while going to higher breakdown voltages. HEMTs

are typically characterized by their cutoff frequency (fT ), which is frequency at which

the short-circuit current gain h21 is unity, where h21 is defined as the ratio of the

small-signal output current to the small-signal input current of a device whose ter-

minals are shorted. HEMTs are also characterized by their maximum linear power,

Pmax,lin which is the highest output that HEMTs can produce while maintaining

their linearity in amplification thus faithfully reproducing the input signal.

The Johnson Figure of Merit (JFOM) is widely used to quantify the performance of

semiconductors for high-power RF applications. It is defined as the product of the

cutoff frequency fT and the maximum drain-to-source voltage that can be applied

before breakdown, [57, 2]

JFOM = fTVDS,max (1.7)
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Using small signal circuit models for transconductance amplifiers, it can be shown

that the maximum linear power of an amplifier is proportional to the square of the

JFOM,

Pmax,lin ∝ JFOM2.

The JFOM can be related to material properties by estimating the cutoff frequency

fT as fT = LDS/vsat, where LDS is the drain-to-source channel length and vsat is the

saturation velocity of carriers. This assumes that carriers transit the channel at the

saturation velocity, the channel length is shorter than the mean-free path of carriers,

and the frequency response of the device is limited by the channel. Moreover, the

maximum drain-to-source voltage, which is really the voltage of the external DC

source that is transferred to the AC signal, is estimated as VDS,max = Ec/LDS,

where Ec is the critical field that the semiconductor can sustain before undergoing

breakdown. This assumes that electric field is uniform across the channel and the

breakdown voltage of the device is limited by the channel. Under these assumptions,

the JFOM is,

JFOM = vsatEc. (1.8)

From the relations Ec ∝ ε2G and Pmax,lin ∝ JFOM2, we obtain,

JFOM ∝ ε2G,

Pmax,lin ∝ ε4G,

thus underscoring the need for ultra-wide-band-gap semiconductors for high-power

RF devices.

1.4 Organization of this thesis

This thesis is organized into three parts. The first part introduces the theoretical

methods used in this thesis (chapters II and III), which include both first-principles

methods for modelling atomic scale phenomena and semi-empirical methods for mod-

elling larger length scales. The second part focuses on the ultra-wide-band-gap

28



(εG > 3.5 eV) III-nitride alloys and heterostructures with an emphasis on power-

electronics applications (chapters IV and V). Finally, the third part focuses on the

wide-band-gap III-nitride alloys and heterostructures (εG < 3.5 eV) with an emphasis

on light-emitting diode applications (chapters VI and VII).

Chapter II reviews first-principles methods based on density-functional theory for

predicting and describing materials phenomena, including the Kohn-Sham equations,

exchange and correlation, many-body perturbation theory, electron-phonon interac-

tions, and the method of special quasirandom structures. In chapter III, basic semi-

empirical methods for device simulation are discussed based on the envelope-function

and effective-mass approximations. Chapter IV presents a first-principles method

for calculating the electron mobility of semiconductors, focusing on composition-

dependent disorder in AlGaN alloys. Chapter V demonstrates that atomically thin

superlattices of AlN and GaN have high mobility due to the absence of alloy dis-

order, making them particularly promising for power electronics. This chapter also

contains a systematic comparison of various semiconductors based on the modified

Baliga figure of merit. Chapter VI investigates the injection-dependent emission

spectra of III-nitride light-emitting diodes using a Schrödinger-Poisson model that

systematically accounts for disorder and many-body effects. Finally, chapter VII

investigates the concept of defect tolerance in InGaN emitters, indicating that an

apparent defect tolerance emerges in InGaN alloys due to the interplay of carrier

localization and polarization fields.
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CHAPTER II

First-Principles Methods for Atomic-Scale

Modelling

2.1 Motivation

First principles modeling of materials at the atomic scale is a powerful theoretical

characterization method that seeks to describe materials solely using the fundamen-

tal constants of the universe. [1, 2] By avoiding tunable empirical parameters, this

approach can provide predictive insights into the maximum performance limits of

materials, which can help screen different materials for a given application. Theo-

retical insights can also uncover mechanisms that limit the performance of existing

materials, particularly those related to non-radiative recombination or phonon colli-

sions, which are difficult to study experimentally because they do not produce light.

First principles modeling is particularly advantageous in these cases, as it provides

direct insight into these mechanisms. Because these models are meant to be pre-

dictive, they are rigorously tested against experimental data whenever possible to

ensure their accuracy in describing a wide range of materials. While this field is still

developing, tremendous progress has been made in accurately calculating functional

properties for materials, as well as predicting new materials. These advances have

great potential in accelerating materials discovery, leading to the development of new

technologies.
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2.2 Many-body Schrödinger equation

In the modelling of solids, we solve the time-independent many-body Schrödinger

equation for electrons, assuming that the nuclei are classical and fixed at their equi-

librium positions,[
−
∑
i

1

2
∇2

i +
1

2

∑
i ̸=j

4π

|ri − rj|
−
∑
i,I

ZI
4π

|ri −RI |

]
Ψ{R} = E(R1,R2, ...,RN)Ψ{R}.

(2.1)

In this chapter, we will use Hartree atomic units (e = me = ℏ = 4πϵ0 = 1) un-

less specified otherwise. In the square brackets, the first term represents the ki-

netic energy of the interacting electrons, the second term represents the many-body

electron-electron repulsion, and the third term represents the electron-nuclear attrac-

tion. Ψ{R} is the many-body electronic wave function at fixed nuclear coordinates,

whose modulus squared corresponds to the ground-state charge density. The eigen-

value E on the right-hand side represents the total electronic energy for fixed nuclear

coordinates. Equation (2.1) is derived in Appendix A by applying a series of approx-

imations to the time-dependent many-body Schrödinger equation that treats both

electrons and nuclei on equal quantum-mechanical footing.

2.2.1 The exponential wall

Unfortunately, equation (2.1) is too complicated to solve directly. To get a sense

for why solving the many-body equation is intractable, consider the case of GaN,

which has 16 valence electrons in the primitive cell. The volume of the primitive

cell of GaN is approximately 19.72 Å3. Assuming a reasonable discretization length

of 0.1 Å, a grid of the primitive cell would have Np ∼ 20, 000 points. Since the

wave function indexes all 16 electronic coordinates, a total of N16
p ∼ 1069 complex

numbers would be required to represent just the ground state of the electronic many-

body wave function. Using double precision complex numbers (16 bytes), one would

require 1055 petabytes of storage. For comparison, the largest modern supercom-

puters support ∼ 10 petabytes of memory storage. Even if somehow we were able
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to represent the wave function in memory, performing calculations would still be

infeasible. The Hamiltonian corresponding to a wave function with 1069 elements

would have dimensions ∼ 1069 × 1069. Assuming matrix-matrix multiply scales as

O(N3), a single matrix-matrix multiply of the Hamiltonian would require ∼ 10207

floating point operations. The fastest exascale supercomputers today are able to

perform 1018 floating point operations per second. This means that performing a

single matrix-matrix multiply would take ∼ 10189 seconds. For context, the universe

is only ∼ 1012 seconds old. This problem is referred to as the exponential wall of

the many-body Schrödinger equation. Clearly, a radically different approach is re-

quired if we have any hope of solving the many-body Schrödinger equation for real

systems.

2.3 Density-functional theory

A major milestone in computational materials science came with the introduction

of the Kohn-Sham equation, and thus density-functional theory, by Walter Kohn

and Lu Jeu Sham in 1965 [3]. Kohn and Sham mapped the interacting many-body

Schrödinger equation to a Schrödinger-like equation for fictitious non-interacting

particles, with the constraint that the density of the fictitious particles yield ex-

actly the ground-state charge density. The advantage of working with a system of

non-interacting particles is that the wave functions depend parametrically on three

position coordinates corresponding to the x, y, and z directions, rather than on 3N

coordinates, corresponding to the x, y, and z directions for each of the N electrons

in the system. As such, density-functional theory is a ground-state theory of mate-

rials that has made solving the Schrödigner equation of real systems computational

tractable.
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2.3.1 Kohn-Sham equations

The Kohn-Sham equations are given by,[
−1

2
∇2 −

∑
I

ZI
4π

|r−RI |
+ VKS[n]

]
ψi(r) = εiψi(r), (2.2)

⟨ψi|ψj⟩ = δij (2.3)

where ψ(r) is the Kohn-Sham wave function (or orbital) and ε is the Kohn-Sham

energy. VKS[n] ≡ δEKS[n]/δn is defined as a functional derivative of the Kohn-

Sham energy functional and represents the effective potential that maps the fictitious

non-interacting system of Kohn-Sham particles onto the real interacting system of

electrons. The Kohn-Sham equations are non-linear in the charge density since the

charge density depends on the wave functions and the wave functions depend on the

charge density through the energy functional. As such, they must be solved self-

consistently until the charge density converges to within a desired tolerance.

The Kohn-Sham equations represent a formal exactification of the mean-field theory

of interacting electrons. Within mean-field theory, a drastic approximation is made

that electrons do not interact with each other through the Coulomb interaction.

Instead, each non-interacting electron experiences an effective or mean field that

approximates the many-body interaction. Of course, real electrons are interacting

so the non-interacting particles are simply mathematical tools that are invented to

make the problem tractable. Mean-field theories, such as Hartree-Fock theory, had

existed for a long time prior to the work of Kohn and Sham. What makes the work

of Kohn and Sham special is that the Kohn-Sham potential depends only on the

ground-state charge density rather than having a non-local dependence on each of

the wave functions in the system, as in Hartree-Fock theory. The former is tractable

even for large systems, while the latter quickly becomes intractable as the system

size increases.

The Kohn-Sham equations build on on previous work by Pierre Hohenberg and Kohn

that proved that the total electronic energy is a functional of the ground-state charge
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density. [4] The Hohenberg-Kohn theorems state:

1. The ground state electron density n(r) uniquely determines the nuclear coordi-

nates and thus the attractive nuclear potential that electrons experience. (This

is not intuitive and is typically proven using proof by contradiction; the proof

requires that the charge density correspond to a non-degenerate ground state.)

2. The nuclear potential Vn uniquely determines the ground-state many-body elec-

tronic wave function Ψ{R}(r1, r2, ..., rNe). (This is intuitive, given that Ψ{R} is

an eigenstate ofH = Te+Ve+He−n, whereHe−n contains the nuclear potential.)

3. The total electronic energy is a functional of the ground-state many-body elec-

tronic wave function. (This is obvious from the definition of energy, E ≡
⟨Ψ| Ĥ |Ψ⟩.)

It is important to note that the Hohenberg-Kohn theorems do not apply when the

ground-state wave function is degenerate, in which case one needs to invoke the

constrained-search formulation of Levy and Lieb. Notwithstanding this problem, the

Hohenberg-Kohn theorems provide the link needed to connect the total energy to

the ground-state charge density. This is best summarized visually as n(r) → Vn →
Ψ→ E.

Having established the connection between the total electronic energy and the ground-

state charge density, we can systematically search for the ground-state charge density

by variationally minimizing the total electronic energy functional E[n]. Of course,

we have no hope of doing this if we use the definition of the electronic energy in

terms of the many-body wave function. As such, Kohn and Sham made the Ansatz

that the exact ground-state charge density can be represented by the ground state

density of non-interacting particles. This Ansatz goes by the name “non-interacting

V-representability.” Using this Ansatz, the Kohn-Sham equations are derived in Ap-

pendix B.

At this point, we answer a simple question: if energy is a functional of the charge

density then why do we need to introduce intermediary Kohn-Sham wave functions?
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Why not perform all calculations with the charge density? The reason is simple:

we do not know how to reconstruct the total interacting kinetic energy from the

charge density alone, forcing us to resort to an orbital representation where the

kinetic energy operator is well defined. There are ongoing efforts to construct an

orbital-free density-functional theory, whose advantage is that there is no need to

diagonalize the Hamiltonian to obtain wave functions. However, these methods tend

to rely on approximations of the kinetic energy functional, e.g., the Thomas-Fermi

kinetic-energy functional for the homogeneous electron gas, and are less accurate

than orbital density-functional theory.

2.3.2 Exchange and correlation

There exists a universal energy functional that exactly maps the Kohn-Sham equa-

tions onto the many-body Schrödinger equation for the ground state. Unfortunately,

we do not know how to calculate it, thus forcing us to resort to approximations in

order to solve the Kohn-Sham equations. The practice of approximating the energy

functional is an entire field of study in its own right, and we will only cover the

fundamentals.

2.3.2.1 Hartree potential

For conceptual simplicity, the Kohn-Sham energy functional is split into a classical

electrostatic component, called the Hartree term, and a quantum-mechanical compo-

nent, called the exchange-correlation term, EKS[n] = EH [n] + EXC [n]. The Hartree

term represents the classical average Coulomb repulsion felt by electrons due to the

presence of all other electrons. Consider the charge density n(r) =
∑

i |ψi(r)|2 gener-
ated by the occupied Kohn-Sham states. The electrostatic potential generated by this

charge density can be obtained by solving Poisson’s equation, −∇2VH(r) = 4πn(r).

The Hartree energy is thus obtained by integrating this classical potential over the

charge density,

EH [n] =

∫
dr

∫
dr′n(r)n(r′)

4π

|r− r′|
. (2.4)
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2.3.2.2 Self-interaction error

Although the Hartree approximation is a good starting point, we can immediately

see a problem with this formulation, namely that of the self-interaction error. Con-

sider a single electron localized at position r = 0 that generates the charge density

n(r) = δ(r). Substituting the delta function into equation (2.4), we see that the

corresponding Hartree energy clearly tends to infinity for a localized charge. This

shows quite lucidly that the Hartree approximation causes the Kohn-Sham particles

to be unphysically repelled by themselves. Of course, no real charge density is a delta

function, so we can ask what happens in the opposite limit of a completely extended

wave function ψ = 1/
√
V . The corresponding charge density is n(r) = 1/V . In the

limit of an infinitely large volume, the charge density of a single electron vanishes

and the Hartree self-interaction energy also goes to zero. Therefore, the interaction

error becomes progressively worse as the charge becomes more inhomogeneous. One

can also see this mathematically by directly solving for the Hartree energy, in which

case the following identity is useful,

∫
dr′

4π

|r− r′|
= 8π2

L∫
0

dr′(r′)2
π∫

0

dθ
sin θ√

r2 − 2rr′ cos θ + (r′)2

= 8π2

L∫
0

dr′
r′

r
(r + r′ − |r − r′|)

= −2

3
r2 + 16π2r +

16π2

3r
L3.

In general, performing self-consistency with the self-interaction error tends to delo-

calize the charge density; in other words, the self-interaction error tends to favour

delocalization.

2.3.2.3 Neglect of exchange and correlation

Another problem with the Hartree approximation is that it neglects the fact that

electrons are fermions, meaning that more than one electron with the same spin can-
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not occupy the same state. This is often referred to as Pauli repulsion or exchange.

The effect of exchange is that if an electron is known to be found at position r, it is

very unlikely for another electron with the same spin to be found in its immediate

vicinity, i.e., exchange introduces correlations in the charge density. The resulting

cloud of net positive charge that surrounds each electron is termed the Fermi hole.

In addition to the exchange interaction, the Coulomb interaction itself can introduce

correlations in the charge density. These additional correlations exist between elec-

trons of like and unlike spins, unlike the correlations due to the exchange interaction

which only occurs between electrons of like spin. These additional correlations have

a non-trivial spatial dependence arising from the non-trivial spatial and temporal

dependence of screening. In principle, all many-body effects that are not encom-

passed by the electron exchange is grouped into the correlation term. The positive

cloud that surrounds electrons because of both exchange and correlation is called

the exchange-correlation hole. Overall, the exchange-correlation hole leads to fluctu-

ations in the pair-wise distribution function of the charge density, which ultimately

lowers the total energy of the system. There is a simple picture that gives an in-

tuitive understanding for this. The exchange-correlation hole, by virtue of being

positive, creates an effective attractive potential for electrons that lowers their en-

ergy. If the attractive potential is strong enough, then electrons can even localize in

place. Including these exchange-correlation effects is necessary in order to map the

Kohn-Sham system onto the real system of interacting electrons.

Within the Hartree-Fock formalism, the exchange interaction is exactly accounted

for by using an anti-symmetric Slater determinant Ansatz for the wave function,

and variationally minimizing the total energy under the constraint of orthonormal

wave functions. This procedure gives rise to two operators in the resulting eigen-

value problem: a local classical operator corresponding to the Hartree potential

and a non-local operator with no classical analogue called the exchange operator.

Within the Hartree-Fock method, the exchange operator exactly cancels out the

self-interaction of the Hartree potential. Therefore, it is reasonable to assume that

including exchange-correlations effects within density-functional theory would not
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only introduce necessary physics relating to anti-symmetry and screening but also

help cancel the spurious self-interaction of the Hartree potential; this is further dis-

cussed in the next section.

2.3.2.4 Local-density approximation

The simplest approximation to the EXC functional is the so-called “Local-Density

Approximation” (LDA) [5]. In this approximation, the exchange-correlation func-

tional at r0 is approximated by EXC of the homogeneous electron gas (HEG) having

density n(r0) equal to the local Kohn-Sham electron density nKS(r0). EXC for the

homogeneous electron gas can be separated into an exchange energy EX due to the

exchange interaction and a correlation energy EC due to the Coulomb repulsion

(minus the Hartree potential). The exchange energy can be solved exactly by sub-

stituting plane waves into the non-local exchange operator (the same opeartor from

Hartree-Fock theory),

ELDA
X [n] = −3

4

(
3

π

)1/3 ∫
d3rn(r)4/3. (2.5)

There is no exact form of the correlation functional, but approximate forms are

computed using quantum Monte-Carlo simulations. [6] The advantage of this for-

mulation of the exchange-correlation functional is that it only depends on the local

charge density. However, there is no formal justification for the LDA, since many-

body interactions in a single-particle picture are necessarily non-local and time- (or

energy-) dependent. Because of the local XC functional, the self-interaction is also

only partially cancelled out leading to systematic errors in the LDA. Nevertheless,

the LDA turns out to be a good starting point for the calculation of the electronic

structure of solids in most cases. The reason for this is a fortuitous cancellation

of errors. LDA overestimates exchange-correlation effects because the homogeneous

electron gas over-screens compared to electrons in real solids, which compensates

for the fact that the LDA has a self-interaction error, leading to overall reasonable

total energies. Nevertheless, rigorous interpretation of LDA eigenvalues and wave-
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functions is difficult, although a posteriori analyses show that there is qualitative

agreement with experimental data and many-body perturbation theory calculations

of weakly correlated solids. Systematically, LDA tends to underestimate band gaps

and overestimate binding energies, and it can be shown mathematically that these

are related to the incorrect derivatives of the LDA exchange-correlation at fractional

occupations.

2.3.2.5 Generalized-gradient approximation and beyond

A first-order improvement to the LDA would involve the inclusion of gradients in

the exchange-correlation functional. This gives the functional in the Generalized-

Gradient Approximation (GGA), [7]

EGGA
XC [n] =

∫
d3rf(n,∇n). (2.6)

There is no unique way of constructing a GGA functional, and standard construc-

tions invoke scaling arguments and exact constraints. The Perdew-Burke-Ernzerhof

(PBE) functional is the most common choice for the GGA functional.[? ] The

GGA improves many of the short-comings of the LDA, particularly with respect to

the overbinding of atoms and molecules. This results in the GGA being a good

starting point for first-principles chemistry calculations. However, the GGA still

severely underestimates the band gap in gapped systems and ambiguities remain in

the interpretation of the Kohn-Sham eigenvalues, resulting in a poor description of

the electronic structure of solids. A further improvement to the GGA functional

involves incorporating second-order gradient corrections to the exchange-correlation

functional. These functionals, known as meta-GGA functionals, also suffer from

ambiguities in interpreting the electron spectrum, warranting the need for a differ-

ent approach. Often, GGA functionals are improved by mixing a fraction (typi-

cally 25%) of the exact Fock exchange from Hartree-Fock theory to correct for the

self-interaction error. These functionals are called hybrid functionals, and typically

provide a good description of the band structure, including band gaps and effective

masses, in common semiconductors. Since the exact Fock exchange is non-local, the
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exchange-correlation functional is also non-local in this scheme, and for this rea-

son hybrid functional calculations are typically much more costly than calculations

with local or semi-local functionals. Nevertheless, hybrid functionals offer a way of

self-consistently calculating the band structure as well as total energy of semicon-

ductors with a high degree of accuracy, and for this reason they are routinely used

for thermodynamics calculations. [8, 9]

2.4 Many-body perturbation theory

In order to calculate functional properties of materials, we need accurate band struc-

tures, for which we need a very accurate description of excited states. [10] Standard

constructions of the exchange-correlation functional within DFT tend to describe

excited states poorly. Many-body perturbation theory based on the Green’s func-

tion method is a systematic way of improving the description of excited states, by

diagrammatically applying many-body corrections to the Kohn-Sham energies and

wave functions. [11] As suggested by its name, this correction scheme is perturbative,

and only works if the Kohn-Sham description of the system is qualitatively correct.

Appendix C provides a brief overview of the Green’s function method necessary for

understanding this section.

2.4.1 Quasiparticle formulation

In many-body theory, Green’s functions are defined as expectation values of field

operators. However, the Kohn-Sham equations give non-interacting wave functions.

In order to connect Green’s functions to Kohn-Sham wave functions, we use the

Lehmann representation which expresses Green’s functions in terms of Dyson orbitals

or quasi-particle wave functions fs(r). In a non-interacting theory, Dyson orbitals

reduce to non-interacting wave functions ψs(r) (see Appendix C for proof). The

Green’s function in the Lehmann representation is,

G(r, r′;ω) =
∑
s

fs(r)f
∗
s (r

′)

ω − εs + iη
, (2.7)
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where s is a generalized index that tracks both the band index n and the crystal

wave vector k. The Dyson equation is,(
i
∂

∂t1
− h(r1)

)
G(1, 1′)−

∫
d2Σ(1, 2)G(2, 1′) = δ(1, 1′), (2.8)

where h is the non-interacting part of the Hamiltonian (which includes kinetic,

electron-nuclear and Hartree terms) and Σ is the non-local and dynamical self energy.

One can substitute the Lehmann representation of the Green’s function into the left-

hand-side of the Dyson equation and the completeness relation into the Dirac delta

function on the right-hand-side to obtain the so-called quasiparticle equation,

ĥ0(r)fs(r) +

∫
d3r′Σ(r, r′; εs)fs(r

′) = εsfs(r), (2.9)

where fs(r) are the quasiparticle wavefunctions, which should be solved self-consistently.

2.4.2 GW approximation

The fundamental question for solving equation (2.9) is how to calculate Σ. It turns

out that Σ itself depends on fs(r) and the problem is highly non-linear. In the

linear-response regime (linear in the electron-electron interaction), a systematic way

of exactly calculating Σ and fs(r) is provided by Hedin’s equations, which are a set of

coupled non-linear integro-differential equations that must be solved self-consistently.

[12] In practice, Hedin’s equations are impossible to solve exactly, and tractable ap-

proximations are needed. The most common approximation, which involves neglect-

ing so-called vertex corrections, gives the GW approximation, which is the same ap-

proximation that we obtain by performing a diagrammatic expansion of the Green’s

function in terms of the screened Coulomb interaction W , and only retaining irre-

ducible diagrams that are linear in W . In practice, the self-energy is written most

efficiently is reciprocal space as,

Σ(k, εs) = i
∑
q

∫
dω

2π
G0(k+ q, εs + ω)W (q, ω), (2.10)
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whereG0 is the non-interacting Green’s function, which is practically chosen to be the

Kohn-Sham Green’s function. Conventionally, the GW approximation of Σ is used to

solve equation (2.9). Moreover, only a single iteration of the self-consistency is per-

formed if the Kohn-Sham eigenvalues and eigenfunctions are close to the final value;

diagrammatically, this corresponds to neglecting repeated diagrams of Σ = iGW .

Typically, self-consistency improves total energies but leads to worse agreement in

spectral properties compared to experiment; this has to do with the neglect of vertex

corrections, and there is ongoing development work to include vertex corrections in

self-consistent GW calculations as prescribed by Hedin’s equations.

2.5 Density-functional perturbation theory

Since most devices operate at room temperature, it is essential to include finite

temperature effects in calculations of the functional properties of materials. These

finite temperature effects arise from the coupling of electrons with lattice vibrations.

The quanta of lattice vibrations are phonons, which are bosonic particles whose

interactions with electrons renormalize their energies as well as lead to finite life-

times. The former gives rise to effects such as the Varshni effect where the band

gap shrinks with increasing temperature. The latter gives rise to electron-phonon

scattering, which limits the mobility and typically increases rates of radiative and

non-radiative recombination. Phonons also have a dispersion, which can be calcu-

lated using density-functional perturbation theory in the adiabatic approximation.

[13]

Before proceeding with this chapter, we briefly review the form of the Hamilto-

nian for nuclei in the adiabatic approximation. Let Ĥ be the Hamiltonian for nu-

clear wave functions in the adiabatic approximation (equation (A.15)). Ĥ = T̂n +

Û(R1,R2, ...,RN), where T̂ is the nuclear kinetic energy operator and U(R1,R2, ...,RN)

is the potential energy landscape. Û ≡ V̂n−n + Ê(R1,R2, ...,RN), where V̂n−n is

the operator for electrostatic repulsion between nuclei and Ê(R1,R2, ...,RN) is the

total electronic energy operator that depends parametrically on the nuclear coordi-

nates.
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2.5.1 Theory of harmonic crystals

This section briefly reviews the theory of harmonic crystals. Crystals can be thought

of as balls (atoms) connected to each other by springs (chemical bonds). This is a

valid representation as long as the total energy is close to the minimum, such that

we can perform a Taylor expansion of the total potential energy felt by each atom

(at equilibrium position r0) in terms of displacements and retain only the zeroth and

second order terms, i.e.,

U = U0 +
1

2

∑
lsα,l′s′β

∂2U

∂(Rlα + τsα)∂(Rl′β + τs′β)
ulsαul′s′β (2.11)

Here, uI(t) is the displacement of atom I from its equilibrium position RI+τI , where

R is the position of the unit cell and τ is the position of the atom within the unit

cell. Let us define the spring constant as,

Klsα,l′s′β ≡
∂2U

∂(Rlα + τsα)∂(Rl′β + τs′β)
, (2.12)

which we evaluate at the relaxed configuration. Recall that U is the potential energy

landscape of the atoms, which in the adiabatic approximation (equation (A.15)) is

giving by the sum of the nuclear-nuclear interaction and the total electronic energy

for a given set of atomic coordinates.

In Einsteins’ repeated summation notation, the equation of motion for atom s

is,

Ms
d2

dt2
ulsα = −Klsα,l′s′βul′s′β (2.13)

Since this is a wave equation, we can look for solutions of the form ,

ulsα = u0sαe
i(q·(Rl+τs)−ωt),

where u0sα is a constant that is periodic in the unit cell. Notice that we have used

tensor notation, so u is actually a vector. Substituting the Ansatz for u into the
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equation of motion gives an eigenvalue equation,

Dsα,s′β(q)v
0
s′β = ω2v0sα (2.14)

v0sα =M1/2
s u0sα (2.15)

Dsα,s′β(q) =
1

MsMs′

∑
Rl

eiq·(τs′−τs)K0sα,ls′βe
iq·Rl . (2.16)

Note that we have made use of the fact that Klsα,l′s′β is invariant to rigid translations

by a lattice vector, and written it as K0sα,l′s′β. D(q) is the dynamical matrix; it is the

Fourier transform of the spring constants with respect to the lattice. The dynamical

matrix plays the central role in the calculation of phonon dispersion. The eigenvalues

of the dynamical matrix correspond to ω2
νq, the squared phonon frequencies, and the

corresponding eigenvectors esα(q) (related to but not equal to v0sα) represent (mass-

reduced) non-interacting vibrational models that each obey the equation of motion of

a harmonic oscillator. These collective displacement modes are called phonon modes

or normal modes.

Therefore, the central challenge for density-functional theory is to construct the

3M × 3M dynamical matrix. Once the dynamical matrix is obtained, the phonon

frequencies and modes can be easily calculated by matrix diagonalization. Since the

dynamical matrix is the Fourier transform of the second-order partial derivative of

the total potential energy landscape of atoms with respect to atomic displacements,

the challenge is to efficiently calculate these partial derivatives.

2.5.2 Partial derivatives of the potential energy

The first partial derivative of the potential energy landscape with respect to atomic

displacements is the force. The force on atom s in the unit cell is given by the

Hellmann-Feynman theorem,

Fsα = − ∂

∂λα
⟨Ψ| Û |Ψ⟩ = −⟨Ψ| ∂Û

∂λα
|Ψ⟩ , (2.17)
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where λα ≡ Rlsα + τsα, and Ψ is the many-body wave function that includes both

nuclear and electronic degrees of freedom. Without using the Hellmann-Feynman

theorem, we would have needed to evaluate the potential energy by solving the

self-consistent Kohn-Sham equations at multiple atomic coordinates and used finite

differences to evaluate the force. Thanks to the Hellman-Feynman theorem, we

can simply evaluate the expectation value of the derivative of the potential energy

operator at a single atomic coordinate.

The force on atom s is evaluated as,

Fs,α = ⟨Ψ| ∂λαV̂n−n + ∂λαV̂e−n + ∂λαT̂e + ∂λαV̂e−e |Ψ⟩

= ⟨Ψ| ∂λαV̂n−n + ∂λαV̂e−n |Ψ⟩

= ⟨χ| ∂λαV̂n−n |χ⟩+ ⟨Ψe| ∂λαV̂e−n |Ψe⟩ (2.18)

As is clear from the equation above, the only contributions to the force on the atom

is the electrostatic repulsion between the nuclei (first term) and the electrostatic

attraction between electrons and the nuclei (second term). In other words, the

forces that hold solids together are classical electrostatic forces and the complicated

many-body quantum mechanical interactions simply drop out. In the clamped nuclei

approximation, the first term has a simple algebraic (inverse polynomial) form, and

the term is easy to evaluate. The second term involves an integral and takes the

form,

⟨Ψe| ∂λαV̂e−n |Ψe⟩ =
∫
d3rn(r)∂λαVλ(r),

where Vλ(r) corresponds to the Coulomb force between electrons and nuclei, which

has a simple algebraic form.

Similarly, the spring constant can be written as,

Klsα,l′s′β =
∂

∂λβ
⟨ψc|

∂Û

∂λα
|ψv⟩

= ⟨χ| ∂2λβ ,λα
V̂n−n |χ⟩+

∂

∂λβ
⟨Ψe| ∂λαV̂e−n |Ψe⟩ . (2.19)
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Once again, the first term is easy to evaluate and is a simple inverse polynomial. We

focus on the second term, which is more involved,

∂λβ
⟨Ψe| ∂λαV̂e−n |Ψe⟩ = ∂λβ

∫
d3n(r)∂λαVλ(r)

=

∫
d3r
(
∂λβ

n(r)∂λαVλ(r) + n(r)∂2λβ ,λα
Vλ(r)

)
. (2.20)

In contrast to atomic forces, which only depends on the charge density, the spring

constant depends on the partial derivative of the charge density to atomic displace-

ment, as seen by the appearance of ∂λβ
n(r) in the first term above. It is this term

that makes the construction of the dynamical matrix difficult. One option to eval-

uate it is with finite differences, where one constructs supercells and displaces the

atoms by a small amount. Not only is this method computationally expensive but

the vibrational modes that can be calculated with this method are restricted to those

which can be represented by finite supercells. An alternative approach that gives ac-

cess to eigenvectors throughout the Brillouin zone with primitive-cell calculations is

to use linear-response theory.

2.5.3 Linear-response theory

In the spirit of linear-response theory, we ask how how a small atomic displacement

changes the charge density. To answer this, we linearize the charge density in terms

of the atomic displacement of a single atom s, ∆λα ≡ Rl′s′α−Rlsα+ τs′α− τsα,

n(r) = n0(r) + χα∆λα +O(dλ2), (2.21)
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where χα is the linear response of the charge density to a small atomic displacement,

χα ≡ ∂n/∂λα. The first-order correction to the charge density is then,

∆n =
∂n

∂λα
∆λα

=
∑
i

( δn
δψi

∂ψi

∂λα
+

δn

δψ∗
i

∂ψ∗
i

∂λα

)
∆λα

= 2
∑
i

ψ∗
i∆ψi + ψi∆ψ

∗
i

= 4
∑
i

Re
(
ψ∗
i∆ψi

)
(2.22)

where we have defined ∆ψi ≡ (∂ψi/∂λα)∆λα, which turns out to be the central

quantity we need to evaluate. If the nuclear displacements are small, the idea is

that we can approximate the derivative of ψ as ∂ψi/∂λβ ≈ ∆ψi/∆λi, where ∆ψi(r)

is the first-order correction to the wave function from standard perturbation theory

due to the response of the background SCF potential VSCF (r) to a small atomic

displacement ∆λi, which we denote ∆VSCF (r). There are two challenges with this

approach. One challenge is the evaluation of ∆ψi, which requires a sum over many

empty states,

∆ψi(r) =
∑
i ̸=j

⟨ψj|∆VSCF |ψi⟩
εi − εj

ψj(r). (2.23)

The second challenge is the dependence of ∆VSCF (r) on the first order correction

to the charge density ∆n(r) and thus the first order correction to the wave function

∆ψi(r), which leads to a non-linear self-consistent equation. Although we simply

have to live with the self-consistency problem, we can avoid having to sum over

empty states by linearizing the Kohn-Sham equation.

To obtain ∆ψi, we linearize the Kohn-Sham equation in terms of the atomic dis-
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placement of a single atom (HSCF ≡ −1
2
∇2 + VSCF (r)),

∂

∂λα

(
HSCFψi − εiψi

)
= 0

∂HSCF

∂λα
ψi +HSCF

∂ψi

∂λα
− ∂εi
∂λα

ψi − εi
∂ψi

∂λα
= 0(

HSCF − εi
) ∂ψi

∂λα
∆λα = −

(∂HSCF

∂λα
− ∂εi
∂λα

)
ψi∆λα(

HSCF − εi
)
∆ψi = −

(
∆VSCF −∆εi

)
ψi. (2.24)

To obtain ∆ψi, we simply need to solve the linear equation (2.24), which is also known

as the Sternheimer equation. Clearly, in this approach, we circumvent the need to

sum over empty states to calcualte ∆ψi. ∆VSCF and ∆εi are defined as,

∆VSCF = ∆Ve−n(r) +

∫
d3r′

∆n(r′)

|r− r′|
+
δvxc
δn

∆n(r), (2.25)

∆εi = ⟨ψi|∆VSCF |ψi⟩ . (2.26)

Equations 2.22, 2.24, 2.25, and 2.26 constitute the main equations of density-functional

perturbation theory that must be solved self-consistently. Finally, once ∆ψi is known,

the dynamical matrix can be constructed by evaluating the inter-atomic spring con-

stants using the Hellman-Feynman theorem, which is then diagonalized to yield the

phonon eigenvectors and eigenfrequencies.

2.6 Modelling electronic transport

Modelling electron transport enables us to identify the mechanisms that limit the

ability of a material to transport electrical energy. From the classical Drude theory,

it is well known that energy losses happen from electron collisions. Newton’s equa-

tion for an electron in an electric field E, undergoing phenomenological dampening

characterized by the lifetime τ , is,

dp

dt
+

p

τ
= −eE(t) (2.27)
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By taking the Fourier transform of this equation, we obtain,

iωp(ω) +
p(ω)

τ
= −eE(ω)

p(ω) = − eE(ω)

(iω + 1
τ
)

(2.28)

Equation 2.28 gives us the net momentum ‘response’ of a system to which a harmonic

electric field is applied. For a static field, this reduces to:

p = −eEτ (2.29)

In the absence of collisions, an electric field would increase the momenta of electrons

forever according to F = ma. Equation 2.29 tells us that collisions will cause the

momenta of electrons to ‘randomize’ or ‘relax’ every τ seconds, leading to a finite

momentum. This naturally leads us to a definition of mobility. We define mobility

as the linear response of the net velocity of electrons to an applied electric field, and

substitute the result of equation 2.29,

µ ≡ −v

E
= − p

mE
=
eτ

m∗ (2.30)

Clearly, the mobility depends on the scattering lifetime τ , so the challenge of first-

principles calculations is to estimate τ in materials accurately. Among many things,

scattering can arise from interactions of electrons with the lattice, electron-electron

interactions, interactions of electrons with a disordered potential landscape, as well

interactions of electrons with impurities. The rates of scattering for all these inter-

actions can be calculated from first principles.

2.6.1 Electron-phonon interactions

The fundamental limit to the mobility in ordered materials is set by phonons. In order

to calculate phonon-limited mobility, we need to know the rate at which electrons

scatter with lattice vibrations. [14] The matrix element needed for calculating this
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rate is called the electron-phonon matrix element or electron-phonon vertex, and

defined as,

gnmν(k,q) ≡ ⟨ψmk+q|∆V νq
SCF |ψnk⟩ , (2.31)

where |νq⟩ indexes the phonon mode, the u.c. subscript denotes the integration takes

place over the unit cell, and ∆V νq
SCF is the first-order correction to the SCF potential

due to a collective displacement of atoms by phonon mode |νq⟩,

∆V νq
SCF =

eiq·r√
2M0ωqν

∑
s,α

√
M0

Ms

esαν(q)
∑
R

e−iq·R∂VKS

∂τsα

∣∣∣
r−R

(2.32)

≡ eiq·r∆vνqSCF (2.33)

where ∂VKS/∂τκα is obtained by calculating ∆VKS for a small atomic displacement

∆λα ≡ ∆τsα using the Sternheimer equation, M0 is a reference mass that ultimately

cancels out (included for numerical stability), Ms is the mass of atom s, esαν in cell-

periodic part of the phonon eigenvector. It is common to write the electron-phonon

matrix element to explicitly show that only integration over the unit cell (as opposed

to the entire crystal volume) is needed,

gmnν(k,q) ≡
1

Ωu.c.

⟨umk+q|∆vνqSCF |unk⟩u.c. , (2.34)

where Ωu.c. is the volume of the unit cell (u.c.).

2.6.1.1 Wannier interpolation

For practical calculations of electron mobility, the electron-phonon matrix elements

are needed in very fine k-space grids with O(106) grid points. However, density-

functional perturbation theory can only reasonably calculate matrix elements for

O(103) grids. This challenge is overcome by Fourier interpolating the coarse DFPT

electron-phonon matrix elements to very fine grids using the method of maximally

localized Wannier functions, which makes use of the fact that both electronic orbitals

and atomic displacements are localized in real space and therefore require smaller
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basis sets to converge, in order to perform efficient interpolations in k-space. [15, 14]

In practice, certain phonon modes near the Brillouin zone center (q → 0) have

divergences or discontinuities due to dipole or quadrupole moments. Because of this,

the real space representation of these modes do not have a localized basis; however,

their k-space behaviour is exactly described by analytical expressions. In such cases,

the long-range parts of the matrix element are treated analytically and the short-

range components are Fourier interpolated.

2.6.2 Fermi’s golden rule

The connection between carrier mobility and scattering relies on the fact that the

mobility is proportional to the scattering lifetime, µ ∝ ⟨τ⟩. In the interaction picture,

we are interested in the transition probability a state |i⟩ scattering to some state

|f⟩,
Pi→f (t) ≡ |⟨f |U(t, t0) |i⟩|2, (2.35)

where U(t, t0) is the time evolution operator in the interaction picture sandwiched

between states |i⟩ and |f⟩. In the interaction picture, the Schrödinger equation takes

the form,

i
∂

∂t
U(t, t0)ψ(t0) = VI(t)U(t, t0)ψ(t0), (2.36)

where VI(t) ≡ eiH0tV (t)e−iH0t is the perturbation in the interaction picture. Inte-

grating this equation leads to the following self-consistent equation,

U(t, t0) = U(t0, t0)− i
t∫

t0

dt1VI(t1)U(t1, t0). (2.37)
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We will use the normalization condition U(t0, t0) = 1. Similar to the Born series, we

can expand this equation into the so-called Dyson series,

U(t, t0) = U(t0, t0)

− i
t∫

t0

dt1VI(t1)U(t1, t0)

−
t∫

t0

dt1VI(t1)

t1∫
t0

dt2VI(t2)U(t2, t0)

+O(V 3
I ) (2.38)

To first order in the perturbation, the Dyson series is truncated as,

U(t, t0) ≈ 1− i
t∫

t0

dt1VI(t1)U(t1, t0). (2.39)

Now, consider a time-independent perturbation. To ensure this perturbation is

smoothly turned on, we can write it as V (t1) = V eηt. To ensure this perturba-

tion is time-independent for all finite times, we will take the limit η → 0+. However,

for t0 → −∞, V (t0) → 0 thus the perturbation is zero in the distant past. (In the

distant future, V (t) → ∞, however we will not integrate that far into the future.)

Taking t0 → −∞, the transition probability amplitude Tif is,

Tif = ⟨f |i⟩ − i
t∫

−∞

dt1 ⟨f | eiH0t1V eηt1e−iH0t1 |i⟩ , (2.40)

where we have explicitly written out the time evolution operator due to the unper-

turbed Hamiltonian. Acting on ⟨f | and |i⟩ with the time evolution operators, we can
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rewrite the transition amplitude as,

Tif = ⟨f |i⟩ − i ⟨f |V |i⟩
t∫

−∞

dt1e
i(εf−εi)t1eηt1

= ⟨f |i⟩ − i ⟨f |V |i⟩ ei(εf−εi)teηt

i(εf − εi) + η
(2.41)

If ⟨i| and |f⟩ are eigenstates of the unperturbed Hamiltonian, they are orthogonal so

⟨i|f⟩ = 0. Squaring the transition amplitude to get the transition probability Pif ≡
|Tif |2, and taking the limit η → 0 gives a delta function from the Lorentzian,

Pif = 2π|⟨f |V |i⟩|2δ(εf − εi). (2.42)

This expression states that the transition probability from an initial state to a final

state is proportional to the squared matrix element that couples them and a delta

function that enforces energy conservation between the initial and final state. For

the situation where the perturbation is a harmonic potential, e.g., V (t) = V e±iωt,

the derivation is more complicated but the result is simple,

Pif = 2π|⟨f |V |i⟩|2δ(εf − εi ± ω), (2.43)

meaning the perturbation can now couple states with energies differing by the fre-

quency of the harmonic potential. The overall transition rate from an initial state i

to any final state f is given by summing over all final states,

Ri→f = 2π
∑
f

|⟨f |V |i⟩|2δ(εf − εi ± ω). (2.44)

This is the standard Fermi’s golden rule of time-dependent perturbation theory (for

the case ℏ = 1). We use this expression as the starting point to calculate the rates of

scattering processes of not just electron-phonon scattering, but also electron-photon

scattering (optical absorption and emission) and electron-electron scattering (e.g.,

Auger-Meitner recombination). If the occupation of fermions (electrons) or bosons
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(phonon, photon) is important to the scattering problem, Fermi’s golden rule is

typically modified so as to prevent scattering to states already occupied by a fermion

as well as to account for the fact that scattering by boson absorption depends on

the occupation factor of the boson. While this is typically done phenomenologically,

such expressions can be systematically derived starting from a many-body Green’s

function description of the problem.

2.6.3 Quantum theory of scattering

This section is dedicated to the quantum theory of scattering, which we do not

explicitly use to model scattering processes but the insights of which will be useful in

understanding the approximations that we have implicitly made upon using Fermi’s

golden rule to calculate the scattering integral of the Boltzmann transport equation.

Consider a Hamiltonian H = H0 + V , where H0 is the unperturbed Hamiltonian

(typically, at the DFT or G0W0 level), and V is a perturbation. The Schrödinger

equation can be written as,

(H0 − ε)ϕ(r) = V (r)ϕ(r). (2.45)

If we view the term V (r)ϕ(r) as a source term and replace it with a Dirac δ function,

we obtain a partial differential equation for the Green’s function (impulse response)

of the system,

(H0 − ε)G(r, r′) = δ(3)(r− r′). (2.46)

We can invert this equation as,

G(r, r′) = (H0 − ε− iη)−1δ(3)(r− r′). (2.47)

Here, the inverse is the resolvent of the operator: the inverse is only taken for energies

for which the operator is not singular. The poles of the Green’s function correspond

to the natural frequencies or excitation energies of the system. We have also added

a small term iη, η > 0, keeping in mind that we will later take the limit η → 0.

(We have done this to ensure stability of the solutions; recall, the time-dependent

61



wave function has the term exp(−iEt), so adding an imaginary term has the effect

of dampening it as exp(iEt− ϵt). Once the Green’s function is known, the wave

function can be reconstructed for any arbitrary potential via a convolution,

ϕ(r) =

∫
d3r′G(r, r′)V (r′)ϕ(r′). (2.48)

This is simply a restatement of the Schrödinger equation as an integral equation,

and is known as the Lippmann-Schwinger equation. Since ϕ(r) is on both sides, this

equation must be solved self-consistently.

2.6.3.1 Born approximation

If the perturbation V (r) is weak compared to the unperturbed Hamiltonian, then it

is possible to write this equation as a convergent series that can be truncated up to a

desired order in the perturbation. This expansion is known as the Born series,

ϕ(r) = ϕ0(r)

+

∫
d3r′G(r, r′)V (r′)ϕ0(r

′)

+

∫
d3r′G(r, r′)V (r′)

∫
d3r′′G(r′, r′′)V (r′′)ϕ0(r

′′)

+O(V 3), (2.49)

where ϕ0 is the incoming wave, and we identify all higher order terms as the scattered

waves. We obtain the first-order Born approximation if we truncate all terms greater

than O(V ). The first Born approximation corresponds to considering only incoher-

ent single scattering events. For the purposes of this thesis, it is sufficient to know

that one implicitly makes the first Born approximation in calculating scattering rates

within Fermi’s golden rule. Although the first Born approximation works well for

calculating carrier mobility, capturing transport effects at low temperature, such as

weak localization, requires going beyond the first Born approximation, which typi-

cally requires many-body methods based on non-equilibrium Green’s functions.
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2.6.4 Boltzmann transport equation

The Boltzmann equation describes how a distribution of particles f(r,p) traverses

through phase space (r, p) under Newton’s Laws of Motion. Boltzmann equation

is often presented as a law, like Newton’s Law, but it can be formally derived for

electrons in solids from the many-body Kadanoff-Baym equations. We skip the

derivation and write phenomenologically,

df

dt
=
∂f

∂t

∣∣∣
scatt.

+
∂f

∂t

∣∣∣
drift

, (2.50)

where we have ignored the diffusion term, assuming the material is spatially homo-

geneous. This equation simply states that the change in the distribution function is

due to particles scattering in or out from collision events or because the electric field

accelerates carriers and thus changes its occupation in phase space. In equilibrium,

df/dt = 0, and the Boltzmann Transport Equation takes the form,

S[f ] + E · ∇kf = 0, (2.51)

where S[f ] is a scattering integral, which is generally a non-linear functional of the

distribution function. The steady-state Boltzmann transport, which is a non-linear

integral equation, is rarely solved directly. Instead, it is linearized,

∂

∂Eβ

S[f ] +
∂f

∂kβ

∂f

∂Eβ

= 0. (2.52)

The exact form of this equation obviously depends on the scattering integral. Within

the first Born approximation, the scattering integral is generally a variation of Fermi’s

golden rule. In the linearized Boltzmann tranport equation, one generally solves for

∂Eβ
f , from which the mobility can be calculated as,

µαβ ≡
1

nc

∂jα
∂Eβ

=
1

ncΩu.c.

∂

∂Eβ

∑
nk

vαnkfnk =
1

ncΩu.c.

∑
nk

vαnk
∂fnk
∂Eβ

, (2.53)
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where vnk is the band velocity, nc is the carrier concentration in the unit cell, and

Ωu.c. is the volume of the unit cell. [16]

2.7 Modelling alloy disorder

Modelling alloys from first principles is highly complicated because of their low sym-

metry. The brute force approach to modelling alloys is to model a very large simu-

lation cell with N atoms, such that N →∞. In an alloy with N sites, there are 2N

possible permutations. In order to calculate the partition function, in principle one

needs to calculate the energy of all 2N structures, which is quite obviously impracti-

cal. Therefore, approximations are needed to calculate observables for alloys.

For the case of random alloys, where the probability of a site hosting atom A or

atom B is independent of its position, the simplest approximation is the virtual-

crystal approximation, where the alloy is modelled as a homogeneous solid whose

constituent atoms are taken to be an average of the atoms of the parent compounds.

In such a scheme, any observable O of a random alloy composed of compounds A

and B can often be written as,

OAB(x) = xOA + (1− x)OB − bx(1− x), (2.54)

where x is the alloy composition, and b is the bowing parameter, which indicates

deviation from a linear interpolation. Typically, b is small for structural parameters

but can be significant for electronic and optical parameters, such as the band-gap

energy. However, the virtual-crystal approximation cannot capture disorder effects,

which are typically quite strong in many random alloy systems. It also cannot capture

non-random effects such as short or long-range order.

2.7.1 Cluster expansion

One approach to modelling alloys is to perform a cluster expansion. [8] Consider the

problem of estimating the total energy of an alloy with N atoms in configuration S,

composed of atoms A and B. In the most naive approximation, we could approximate
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the total energy of the alloy by simply adding the energy contribution from the

individual atoms,

EAB(x) ≈ NAEA +NBEB,

where EA is the energy of atom A and NA is the number of A atoms. This is similar

in spirit to the virtual-crystal approximation, but it is obviously not a good ap-

proximation because an alloy is not a linear superposition of non-interacting atoms.

What we are missing in the energy expression is the terms that represent interactions

between different atoms. Each of these interactions can be thought of as contribut-

ing a correction to the energy. Phrased in a different way, every time there exist

certain structural correlation between atoms, the energy corrections corresponding

to these correlations must be included in the energy expression. The most trivial

configuration of atoms possible is a single atom. The next simplest configuration is

a pair of like atoms; these are not limited to nearest neighbours, but we can easily

imagine (due to locality) that the energy correction due to pairs of atoms vanishes

with increasing separation distance. Higher order configurations include triplets,

quadruplets, and so on. Typically, the word configuration is reserved to describe

the configuration of atoms in the the entire crystal structure. The configuration of

atoms that represent structural correlations are called figures or clusters, and the

act of expanding any property, such as the total energy, in terms of these figures is

called a cluster expansion.

The full cluster expansion of the total energy of a given configuration σ can be

written as,

Eσ =
∑
f

mfXfσεf , (2.55)

where f is an index that sums over all clusters (figures) in the configuration, mf is the

number of times a cluster f appears in a configuration according to the symmetry of

the lattice, Xfσ is called the correlation function and represents the frequency with

which a cluster appears in the configuration, and εf is the energy contribution of

cluster f . This cluster expansion is exact, as long as the sum over f is not truncated

(the reason is that Xfσ forms a complete orthonormal basis, e.g., see Wei et al). Xfσ
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is defined as,

Xfσ ≡
1

mf

∑
β∈f

∏
i∈β

Si, (2.56)

where β sums over all figures f in the configuration, i sums over all lattice points in

the figure β, and Si = +1 if site i is occupied by atom A and 0 (or -1) if site i is

occupied by atom B. Of course, what we really want is the energy averaged over the

ensemble of all allowed configurations σ,

⟨Eσ⟩ =
∑
f

mf ⟨Xfσ⟩ εf , (2.57)

where we have used the fact that the expectation operator is linear, ⟨X + Y ⟩ =

⟨X⟩ + ⟨Y ⟩. Thus, we have rewritten the problem of calculating the total energy as

calculating the energy contribution of individual figures and calculating the expec-

tation value of the correlation functions over all configurations. By truncating the

sum over f , we can now systematically estimate the total energy of the alloy without

explicitly evaluating the total energy.

2.7.2 Special quasirandom structures

Looking at equation (2.57), we ask the question if we can estimate the ensemble

average of the total energy with the energy of a single representative configuration,

which we will term the special structure (SS). This should be possible if all the

correlation functions Xf,SS of our special configuration exactly match the ensemble

averages ⟨Xfσ⟩. If and only if this condition is met then the energy of the SS,

ESS ≡
∑
f

mfXf,SSεf , (2.58)

exactly equals ⟨Eσ⟩. Thus, the problem is transformed to one of designing the SS

such that its structural correlation functions match the desired target correlation

function.

In general, we do not know a priori the values for ⟨Xfσ⟩. However, for the special case
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of random alloys, ⟨Xfσ⟩R have a simple analytical form. What allows us to derive an

analytical expression for ⟨Xfσ⟩R is the fact that the probability of a lattice hosting

atom A or B is completely uncorrelated or statistically independent from another site

having atom A or B, which means,
〈∏

i∈f Si

〉
R
=
∏

i∈f ⟨Si⟩R =
∏

i∈f x = xkf , where

kf is the number of vertices (lattice points) in the figure f . We have assumed Si can

take values of 1 or 0; if Si takes values of 1 or −1 then
〈∏

i∈f Sf

〉
=
∏

i∈f (x× (+1)+

(1− x)× (−1)) = (2x− 1)kf . Choosing the convention where Si is 0 or 1,

⟨Xf,σ⟩R = xkf . (2.59)

Therefore, we can employ stochastic optimization methods, such as simulated an-

nealing, to design special quasirandom structure SQS whose correlations function

match the ensemble average of random alloys, Xf,SQS = xkf .

It turns out that even relatively small SQS supercells estimate the properties of

random alloys (total energy, band gap, structural properties, etc.) remarkably well.

This is because observable properties only depend on local structural information.

This idea is related to Walter Kohn’s concept of the nearsightedness of electrons.

In practice, when generating SQS’s, deviations in pairwise correlations up to the

second nearest neighbours and triplet correlations up to the next nearest neighbours

are minimized. Clearly, the main advantage of SQS’s is that they allow us to cap-

ture randomness remarkably well, using relatively small supercells with only several

hundred to thousands of atoms, without performing configurational averaging. How-

ever, care must be taken since small SQS’s will show effects of artificial periodicity

for small electron wavevectors.

2.7.3 Spectral function from band unfolding

In plane-wave implementations of density-functional theory, periodic boundary con-

ditions are automatically applied when modelling solids. This means that the real

space crystal structure, which has a periodicity corresponding to the unit cell, is

represented in reciprocal space using a reciprocal lattice that also has periodicity
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corresponding to the reciprocal lattice unit cell. However, not all unit cells of the

reciprocal lattice are equivalent. The Wigner-Seitz cell of the reciprocal lattice is the

smallest possible unit cell that exhibits all symmetries of the crystal structure, and

is called the first Brillouin zone. When representing the electronic structure in recip-

rocal space, we typically use the first Brillouin zone but this is not the only choice.

If we define the unit cell to be larger than the primitive cell by defining larger lattice

vectors R, then the Brillouin zone shrinks in volume because the reciprocal lattice

vectors G become smaller. This means that when modelling alloys using modestly

large periodic supercells, which have small Brillouin zones, it becomes difficult to

interpret the band structure since all the bands have folded in. To address this issue,

we can unfold the band structure from the supercell basis to the equivalent primitive

cell basis. For alloys, the primitive cell basis that is chosen corresponds to the prim-

itive cell of an equivalent virtual-crystal alloy. By doing this, we can obtain a more

accurate representation of the electronic structure and make it easier to interpret the

band structure. [17, 18, 19, 20, 21]

The spectral function ASC in the Brillouin zone of the supercell can be represented

as a density of states,

ASC(K, ε) =
∑
n

δ(ε− εnK), (2.60)

where capital K is a wave vector in the supercell Brillouin zone, and n indexes the

band energy. The spectral function can be defined for any q in the entire reciprocal

cell (not restricted to the Brillouin zone) as,

A(q, ε) ≡
∑
nK

|ψnK(q)|2δ(ε− εnK), (2.61)

where |ψnK(q)|2 is simply the probability of finding particle |nK⟩ with momentum

q. ψnK(q) can be straightforwardly calculated by Fourier transforming the Bloch

function, ψnK(r) =
1√
V
unK(r)e

iK·r = 1√
V

∑
G cnK+Ge

i(K+G)·r. The Fourier transform
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is,

ψnK(q) =

∫
V

d3re−iq·rψnk(r)

=
1√
V

∑
R

ei(K−q)·R
∫
Ω

d3runK(r)e
i(K−q)·r

=
N√
V

∑
G

δK−q,G

∫
Ω

d3runK(r)e
i(K−q)·r

=
N√
V

∑
G

δK−q,G

∫
Ω

d3r
∑
G′

cnG′+Ke
iG′·rei(K−q)·r

=
N√
V

∑
G

δK−q,G

∑
G′

cnG′+K

∫
Ω

d3rei(K+G′−q)·r

=
N
√
Ω√
V

∑
G

δK−q,G

∑
G′

cnG′+KδK+G′−q,0

=
√
N
∑
G

δK−q,Gcnq. (2.62)

Plugging this result into the expression for the spectral function gives,

A(q, ε) = N
∑
nK

∑
GG′

δK−q,Gc
∗
nqδK−q,G′cnqδ(ε− εnK)

= N
∑
n

|cnq|2
∑
GG′

δG,G′δ(ε− εnq+G′)

= N
∑
n

|cnq|2
∑
G

δ(ε− εnq+G). (2.63)

Recall that εnK is only defined in the first Brillouin zone of the supercell. Therefore,

the sum over G in the equation above is restricted to those vectors that fold q

back into the supercell Brillouin zone. For every wave vector q defined in the entire

reciprocal crystal volume, there exists only a single reciprocal lattice G vector that

folds it into the first Brillouin zone. (The converse relation does not hold.) Therefore,

we can remove the sum over G, and specifically denote G→ Gq as the vector that
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folds q into the first Brillouin zone,

A(q, ε) = N
∑
n

|cnq|2δ(ε− εnq+Gq). (2.64)

This expression shows that the unfolding procedure only requires knowledge of the

supercell Bloch wave functions. We could stop at this point, but it is often necessary

to go one step further and refold the spectral function onto a different basis.

Figure 2.1: Band structure of 128-atom AlGaN supercell from LDA-DFT (left) un-
folded onto the primitive cell basis (right).
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Alloy disorder can be thought of as a perturbation of a high-symmetry reference

structure. For III-nitride alloys, the reference is the virtual-crystal wurtzite structure.

Alloy scattering can thus be thought of as a perturbation that causes transitions

between eigenstates of the reference high-symmetry structure. To this end, it is

necessary for us to refold the fully unfolded spectral function onto the primitive

cell basis of the virtual-crystal wurtzite structure. We remark the following folding

procedure if considering a specific q,

k← q+ gq (2.65)

k+ gi → qi; i = 1, 2, ..., N (2.66)

Here, k is a wave vector in the first Brillouin zone of the reference structure and gq

is a reciprocal lattice vector of the reference structure that folds q onto the reference

Brillouin zone, and i is an index that runs over all N reciprocal lattice vectors gi.

When refolding the spectral function A(q, ε), we must consider that many q vectors

will fold onto the same k, and we must sum the contribution of all of these q vectors.

This gives us the folding procedure for constructing the spectral function in the

primitive cell basis, APC(k, ε),

APC(k, ε) =
∑
g

A(k+ g, ε)

= N
∑
ng

|cnk+g|2δ(ε− εnk+g+Gk+g
), (2.67)

where the sum over g is a sum over all the reciprocal lattice vectors of the primitive

cell. This is the main equation that is implemented in unfolding the band structure

from the supercell basis onto the primitive cell basis. Figure 2.1 shows an example of

supercell band structure of a random AlGaN alloy in a 128-atom supercell calculated

from LDA-DFT, and its equivalent unfolded band structure in the wurtzite primitive

cell basis.
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CHAPTER III

Semi-Empirical Methods for Modelling Larger

Length Scales

3.1 Motivation

Although first-principles atomistic calculations are successful in predicting complex

phenomena in materials, they are limited to systems with a few thousand atoms.

Semi-empirical theories are necessary to model the interactions between various com-

ponents of semiconductor devices made of different materials across length scales

ranging from nanometers to micrometers. These semi-empirical theories use Hamil-

tonians that are parameterized to match first-principles calculations of bulk systems.

Although less predictive than fully first-principles calculations, semi-empirical theo-

ries when parameterized on first-principles data can accurately handle larger systems,

which is crucial since qualitatively different phenomena may emerge at larger length

scales.

In this chapter, we develop a formalism based on k ·p perturbation theory to model

III-nitride quantum-well heterostructures and alloys used in light-emitting diodes.

These systems exhibit phenomena whose length scales greatly exceed the length

scale of the unit cell, and thus cannot be captured by standard plane-wave-based

first-principles codes. For example, quantum wells of III-nitrides have a polarization-

charge discontinuity, which results in strong polarization fields. This effect is known
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as the quantum-confined Stark effect and qualitatively changes the physics of recom-

bination compared to the bulk. In chapter V, we will use the techniques developed in

this chapter to model InGaN LEDs. We show that the QCSE dominates the optical

properties of LEDs and that accurately capturing the physics of large length scales

of InGaN LEDs is crucial to modeling them. We also use the techniques developed

in this chapter to explain the origin of the green gap in LEDs fabricated with state-

of-the-art epitaxy in collaboration with experimentalists. In chapter VII, we model

carrier localization within the k · p formalism, and investigate the impact of carrier

localization on the tolerance of InGaN LEDs to defects. Finally, we combine the

k ·p formalism with supervised machine learning to explore the large configurational

landscape of LED designs. This leads us to discover new LED designs that outper-

form the current state of the art in terms of exhibiting improve efficiency and better

spectral characteristics.

3.2 k · p perturbation theory

k ·p perturbation theory is a very powerful technique that allows us to expand wave

functions and energies to arbitrary k points from knowledge of wave functions and

energies at high symmetry points. [1] The single particle Schrödinger equation is

diagonalized at high symmetry point(s) in the Brillouin zone. Using a clever trick,

we perturbatively expand the wave functions and energies to k points close to the

high symmetry point (which for simplicity we take to be the Γ point) using standard

perturbation theory.

We start with the single-particle Schrödinger equation in a periodic solid,(
−1
2
∇2 + V (r)

)
ψnk(r) = εnkψnk(r), (3.1)

where n and k are band and k-point indices. Noting that the solutions are Bloch

functions, ψnk(r) = unk(r)e
ik·r, and applying the product rule of the Laplacian op-
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erator yields, (
−1

2
∇2 − i

m
k · ∇+

k2

2
+ V (r)

)
unk(r) = εnkunk(r) (3.2)

Recognizing −1
2
∇2 + V (r) as the unperturbed Hamiltonian H0, and performing the

canonical substitution p← −i∇, we can rewrite the equation above as,(
H0 +

k · p
m

+
k2

2

)
unk(r) = εnkunk(r) (3.3)

The k · p term, which is small for k close to the high-symmetry point, is cleverly

viewed as a perturbation term. The term k2/2 is simply a number and shifts the

energy by a constant albeit k-dependent value. We can use the set {unk(r)}, which
is complete and orthonormal, as the basis for perturbation theory. For this example,

we take k = 0 as the high symmetry point, which is appropriate for direct gap

semiconductors. To lowest order, for non-degenerate bands,

∣∣∣nk(1)
〉
=
∣∣n(0)

〉
+
∑
m̸=n

∣∣k · 〈m(0)
∣∣p ∣∣n(0)

〉∣∣2
εn0 − εm0

∣∣m(0)
〉
, (3.4)

where we have used bra-ket notation to represent the cell-periodic part of the Bloch

states, and the superscript denotes the order of perturbation theory. The first-order

order energy correction is zero for band extrema (the intraband momentum matrix

element is zero at band extrema), and the lowest-order energy correction is the second

order correction. For non-degenerate bands,

ε
(2)
nk = ε(0)n +

k2

2
+
∑
n̸=m

∣∣k · 〈m(0)
∣∣p ∣∣n(0)

〉∣∣2
εn0 − εm0

(3.5)

For non-degenerate bands, the perturbation needs to be diagonalized in the degener-

ate subspace after which non-degenerate perturbation theory can be applied to the
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diagonalized states.

3.2.1 Effective mass from perturbation theory

We can rewrite expression (3.5) in terms of a single effective mass,

εk,α,β =
kαkβ
2m∗

α,β

(3.6)

by recognizing,

1

m∗
α,β

≡ δα,β +
∑
n̸=m

〈
n(0)
∣∣ pα ∣∣m(0)

〉 〈
m(0)

∣∣ pβ ∣∣n(0)
〉

εn0 − εm0

(3.7)

where α and β index different directions. Expression (3.7) can be viewed as a def-

inition of the effective mass for non-degenerate bands. Similar expressions exist for

degenerate bands, which additionally require diagonalizing the second-order pertur-

bation in the degenerate subspace (e.g., see Ref. [2]). In practice, the summation

is rarely performed as it converges very slowly with the number of empty states,

and the expression for the mass is obtained by either fitting expression (3.6) to

the band structure near the band edge or by applying finite differences to calculate

the second derivative. We will use these effective-mass models to construct semi-

empirical Hamiltonians for systems where material variation occurs over large length

scales. Other models, such as the 6-band and 8-band Kohn-Luttinger models, exist

that parameterize multiple bands at a time. [3, 4] The semi-empirical Hamiltonians

constructed with these more advanced models are able to account for band non-

parabolicity and explicitly treat interactions (mixing) between the valence bands.

However, for the properties considered in this thesis, these effects are not important

and the effective-mass approximation is sufficient.
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3.3 Schrödinger equation in the effective-mass approxima-

tion

For situations where the dispersion is accurately described by the effective-mass

model, the single-particle Schrödinger equation takes the approximate form,(
− 1

2m∗∇
2 + ε

(0)
n,0(r) + V (r)

)
φn(r) = εnφn(r), (3.8)

where n is a generalized band index, ε
(0)
n0(r) is the band energy at the Γ point for the

material at position r, and V (r) is a potential different from the periodic potential of

the lattice. For example, the potential could represent the electrochemical potential

that electrons experience due to dopants or impurities. It could also represent the

effective many-body potential, or the mean-field potential, that electrons experience

due to the electrostatic repulsion from all other electrons in the system. Here, φ(r)

is the envelope wave function rather than the full wave function, in analogy with

the envelope of wave packets formed by electromagnetic waves. The envelope wave

function is related to the full wave function as ψ(r) ≈ 1√
V
φ(r)u(r), where u(r) is the

cell-periodic part of the Bloch function at the high symmetry point where the energy

dispersion is perturbatively expanded to second order, and V is the volume of the

crystal.

3.3.1 Derivation from the envelope-function approximation

To derive equation (3.8), we start by expressing a general solution to the single-

particle Schrodinger equation as a linear combination of Bloch states in the first

Brillouin zone,

ψ(r) =
1√
V

∑
nk

cnkunk(r)e
ik·r. (3.9)

If Bloch states from different bands do not mix, the solutions take the form,

ψn(r) =
1√
V

∑
k

cnkunk(r)e
ik·r. (3.10)
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This is a valid approximation if the perturbing potential V (r) that breaks the lattice

periodicity is slowly varying, and the band is separated energetically from other

bands. Plugging this expression into the full single-particle Schrödinger equation

and using the fact that H0ψnk(r) = ε
(0)
nk(r)ψnk(r), we obtain,

Hψn(r) = (H0 + V (r))ψn(r) =
1√
V

(H0 + V (r))
∑
k

cnkunk(r)e
ik·r (3.11)

=
1√
V

∑
nk

cnk(εnk(r) + V (r))unk(r)e
ik·r (3.12)

For III-nitrides (and most conventional semiconductors), the cell-periodic part of the

Bloch function varies slowly with the k vector close to the Γ point. Consequently,

we can approximate unk(r) with its value at the Γ point, which we denote as un(r),

allowing us to bring it out of the sum. At this point, we also perform a perturbative

expansion near the Γ point, εnk(r) ≈ εn0(r) + k2/2m∗(r),

Hψn(r) =
1√
V
un(r)

∑
nk

cnk(ε
(0)
n0(r) +

k2

2m∗(r)
+ V (r))eik·r (3.13)

Recognizing k2 as the Fourier transform of−∇2, we can rewrite the equation as,

Hψn(r) = un(r)

(
− 1

2m∗(r)
∇2 + ε

(0)
n0(r) + V (r)

)
1√
V

∑
k

cnke
ik·r (3.14)

We now identify
∑

k cnke
ik·r as the Fourier transform of an envelope function, φn(r).

It is by definition slowly varying with respect to the lattice constant because it only

contains k states in the first Brillouin zone. Letting εn be the energy eigenvalue

corresponding to the eigenstate, ψn(r) ≈ un(r)φn(r), we obtain,

εnun(r)φn(r) = un(r)

(
− 1

2m∗(r)
∇2 + ε

(0)
n0(r) + V (r)

)
φn(r) (3.15)
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Multiplying by u∗n(r) from the left and integrating over the unit cell gives,

εnφn(r) =

(
− 1

2m∗(r)
∇2 + ε

(0)
n0(r) + V (r)

)
φn(r). (3.16)

It is worth noting that corrections to ε
(0)
n0(r) are necessary to account for addi-

tional strain energy in heterostructures, which amounts to making the replacement

ε
(0)
n0(r) → ε

(0)
n0(r) + Dα,βϵα,β, where D is the deformation potential and ϵ is the

strain.

3.3.2 Potential from the Poisson equation

As mentioned in the previous section, the potential V (r) encompasses any potential

that carriers feel that is different from the periodic potential of the lattice. In practice,

one typically includes within V (r) the electrostatic term due to point charges as

well as the mean-field potential that carriers experience due to their many-body

interaction with other carriers. These effects are accounted for by solving the Poisson

equation,

∇2V (r) = −ρ(r)
ϵr

, (3.17)

ρ(r) = ρf (r) + n(r)− p(r) (3.18)

where ρ(r) is the net charge density, which includes contributions from both fixed

charges ρf (r), e.g., impurities, polarization charges, and dopants, as well as free

electrons n(r) and free holes p(r) due to, e.g., doping, electrical injection, or optical

injection. An important physical constraint on ρ(r) is that it must obey charge neu-

trality within the simulation region. The electron and hole densities are obtained by
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summing over the envelope functions calculated from the Schrödinger equation,

n(r) =
∑

m∈CB

|φm(r)|2fm (3.19)

p(r) =
∑

m∈VB

|φm(r)|2(1− fm), (3.20)

where CB and VB stand for conduction and valence band, respectively, and fm = (1+

exp [(εm − εf )/kBT )])−1 is the quasi-equilibrium Fermi function that uses the quasi

Fermi level for electrons or holes. These equations are only valid if the 3D simulation

(supercell) volume is sufficiently large that the Brillouin zole has folded over into a

very small reciprocal cell volume. For 1D calculations that assume translational

symmetry along two directions, we need to additionally sum over explicit k states or,

equivalently, integrate the density of states over the carrier’s energy. For example,

for 1D calculations of a quantum well that is translationally invariant within the

plane, the expression for electrons becomes,

n(x) =
∑

m∈CB

|φm(x)|2
∫
dεfm(ε)dm(ε) (3.21)

where dm(ε) is the analytical expression for the 2D density of states in a quantum

well.

3.3.3 Self-consistency of the Schrödinger & Poisson equations

The potential V (r) is dependent on the envelope functions through the Poisson equa-

tion, and the envelope functions, in turn, depend on V (r) through the Schrödinger

equation. As a result, these differential equations are non-linearly coupled and re-

quire self-consistent solutions. In practice, this involves assuming an initial form for

the free-carrier density, from which an initial guess for V (r) is derived. V (r) is then

used as input for the Schrödinger equation to obtain new wave functions. The new

wave functions are subsequently used as input to the Poisson equation, which pro-

vides a new guess for V (r). This iterative process continues until the charge density
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and potential converge to a desired tolerance. Techniques such as under-relaxation,

where the charge density is fractionally updated each iteration, can accelerate the

convergence. In cases where the free-carrier density is low, self-consistency may not

be necessary as the contribution from free carriers to V (r) is minimal. However, in

situations where the free-carrier density is high, self-consistency becomes crucial in

capturing relevant physical effects, such as electrostatic screening of internal fields

in polar heterostructures and p-n diodes.

3.4 Many-body effects in the free-carrier plasma

To capture the many-body electrostatic interaction of the carriers, we have made the

mean-field Hartree approximation. However, this approximation includes spurious

self-interaction of charge carriers with themselves, leading to systematically overesti-

mated energy renormalization and artificially delocalized wave functions. To address

this issue, we need to account for exchange-correlation effects that encompass all

many-body effects beyond the Hartree approximation, allowing us to more accu-

rately map the effective single-particle Schrödinger equation onto the many-body

Schrödinger equation. [5]

Since free carriers are relatively well extended, the local density approximation (LDA)

exchange-correlation functional can be used to account for many-body effects, which

involves using the exchange and correlation potential of a homogeneous electron gas

having equivalent charge density at every position r. The exchange term arises from

the anti-symmetry of the many-body wave function and enforces Pauli’s exclusion.

The exchange of a homogeneous electron gas is exactly solvable, and the potential

has an analytical form (see II). All many-body effects that are not captured by

the exchange potential are grouped into the correlation potential, which must be

solved numerically. For work presented in this thesis, we use the parameterization

of the electron correlation by Perdew and Zunger of the Monte-Carlo calculation of

Ceperley and Alder. [6, 7]

Including the LDA exchange-correlation potential in the self-consistent Schrödinger
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and Poisson equation has the benefit of providing the correct plasma renormaliza-

tion of the free-carrier energies, which can be useful in predicting properties such

as the plasma renormalization of the band gap due to free carriers. However, for

systems with very inhomogeneous charge densities, e.g., disordered alloys, the local-

density exchange-correlation becomes less reliable. Therefore, in such systems, more

advanced many-body corrections at the level of the GW approximation or explicit

calculation of the electron-plasmon self-energy are likely required to obtain accurate

energies and wave functions. [8, 9]

3.5 Computational implementation

We have implemented a 1D self-consistent Schrödinger-Poisson solver that takes into

account broken translational symmetry along the direction of growth. The code as-

sumes periodic boundary conditions, and we solve the time-independent Schrödinger

equation using finite differences and the Poisson equation using the fast Fourier trans-

form. To accelerate the convergence of self-consistency, we have employed under-

relaxation, where we set a mixing fraction value between 0 and 1 that determines

how much the charge density is updated in every iteration of self consistency. We

have also incorporated the renormalization of energies and envelope functions by the

free-carrier plasma in the local-density approximation. Additionally, we are able to

calculate the ground-state excitonic properties using the variational approach. For

calculations that require consideration of broken translational symmetry within the

plane of growth, we utilize the software nextnano++, which also uses finite differ-

ences. Once the energies and wave functions are obtained, we calculate functional

properties such as optical absorption or luminescence spectra, as well as corrections

to recombination rates, using a parallelized in-house post-processing code. Detailed

descriptions of these calculations are provided in the appropriate chapters of this

thesis. For 3D calculations, we use the commercial software nextnano++. [10]
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3.5.1 Calculation of material parameters from first principles

The Schrödinger-Poisson method is a semi-empirical approach that relies on accurate

knowledge of bulk material parameters. To obtain these parameters, we rely on

first-principles calculations. While it is common practice with device simulations to

empirically tune input parameters to match experimental results, we strictly advise

against this as it can result in a complete loss of predictive accuracy and compromise

the reliability of the simulation. In our work, we use material parameters that are

calculated using hybrid-functional density functional theory. Hybrid-functional DFT

mixes a fraction of the exact Fock exchange to local or semi-local functionals, which

helps overcome many of the systematic errors of DFT in conventional semiconductors.

We ensure that the excited state properties calculated with hybrid-functional DFT

are consistent with calculations from many-body perturbation theory. The material

parameters used as inputs to the Schrödinger-Poisson method include the lattice

constant, elastic constant, deformation potential, polarization constant, band gaps,

band offsets, and effective masses.

3.5.1.1 Lattice constants

The lattice constants are calculated by performing structural minimization using

conventional techniques, such as conjugate-gradient minimization. [11] For a given

configuration, forces can be calculated using the Hellman-Feynman theorem, pro-

vided the charge density is known. These forces, which are simply the gradients of

the potential energy, are used by the conjugate gradient algorithm to update the

ionic configurations and reach a local minimum in the potential-energy landscape.

This approach allows us to determine the optimal lattice constants for the material

under consideration.
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3.5.1.2 Elastic constants

To calculate the elastic constants, the following relation is used, [11]

∆U

V
=

1

2

∑
ij

Cijuiuj, (3.22)

where ∆U is the change to the total energy of a structure due to small deformations

ui and uj, and Cij is the elastic constant (related to the force constant). We use Voigt

notation, where i = 1, 2, 3 corresponds to the directions xx, yy, zz, and i = 4, 5, 6

corresponds to xy, xz, yz. Additionally, ui and uj are engineering strains, which are

related to the normal definition of strain by, ui = ϵi (for i = 1, 2, 3) and ui = 2ϵi

(for i = 4, 5, 6). This choice in notation is made due to the degeneracy of the

off-diagonal components, e.g., ϵxy = ϵyx. The derivation of the elastic constants

involves performing a set of small isotropic, tetragonal, and trigonal deformations to

the crystal structure. These deformations result in sets of expressions for the total

energy in terms of Cij, ui, and uj, which can then be algebraically manipulated to

solve for Cij.

3.5.1.3 Band gaps and effective masses

Band gaps and effective masses are sensitive to the choice of functional used in

electronic structure calculations. Hybrid functionals, which incorporate a fraction

of exact exchange mixed with a standard density functional, are used to calculate

band gaps. The theoretical exact exchange mixing fraction for our preferred HSE06

hybrid functional is 0.25, but it can also be adjusted to match the experimental band

gap. We have ensured that any band gap that we use from hybrid DFT is validated

against against calculations from many-body perturbation theory, specifically the

G0W0 approximation, which is known to provide accurate band gap values for a

wide range of materials. Moreover, finite difference methods or fitting techniques are

typically used to calculate the inverse of the second derivative of energy with respect

to wave vector, which provides information about the curvature of the energy bands

near the band extrema and thus the effective masses. [11, 5]
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3.5.1.4 Band offsets and deformation potential

Band offsets and deformation potentials are calculated using the model-solid ap-

proach, where the choice of the functional also affects the results. [12] We use values

computed with hybrid functionals; it is often not possible to compare these values

against many-body perturbation theory calculations since calculating the total en-

ergy in the GW approximation is computationally expensive, particularly for large

supercells.

The procedure for calculating band offsets at interfaces between material A and B

is as follows: First, the bulk band structures of both material A and material B

are calculated. However, since the absolute energy scale is not well-defined when

pseudopotentials are used, the energy bands need to be aligned to an absolute scale.

To achieve this, slab calculations are performed for both materials, where a vacuum

region is included in the simulation cell. The thickness of the material slab is chosen

such that the electrostatic potential can be accurately averaged within the slab. The

potential shift required to reference the band structure energy of the respective bulk

materials to an absolute scale is obtained from the difference between the average

potential in the slab and the vacuum potential. Once the energies are obtained on

an absolute scale, the conduction-band offset is calculated as the difference between

the conduction band minimum energies of material A and material B, while the

valence-band offset is calculated as the difference between the valence band maxi-

mum energies of material A and material B. A similar approach is used to calculate

deformation potentials, where material A is the unstrained semiconductor and ma-

terial B is the strained semiconductor. In the limit of small strain, the deformation

potential is calculated as Dij = ∆ε/∆ϵij, where ε is the energy eigenvalue and ϵ is

the strain.

3.5.1.5 Polarization constants

The most common approach to calculating polarization constants is using the modern

theory of polarization based on the Berry phase approach. [13] The spontaneous

polarization field of a desired structure can be calculated by computing the different
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in formal polarization between the desired structure and centro-symmetric reference

structure. It is important this reference structure be adiabatically connected to the

desired structure, which in this context means that the deformation preserves the

band gap. For wurtzite III-N crystals, the natural reference structure is the hexagonal

phase, the latter of which is accessed from the former by an adiabatic deformation of

the internal u parameter. The formal polarization for a given structure λ is defined

(in S.I. units) as,

Pf = Pion +Pel =
e

Ω
Zion

s Rλ
s +

ief

8π3

occ∑
j

∫
BZ

d3k
〈
uλj,k
∣∣∇k

∣∣uλj,k〉 ,
where Ω is the unit cell volume, Zs is the ion charge, and f is the spin degeneracy. The

piezoelectric constants can be also calculated using the modern theory of polarization

by calculating the change in the formal polarization upon the application of strain.

There are two choices for the piezoelectric constants: proper vs improper constants.

The improper constants should be chosen for device simulations as these account

for changes to the spontaneous polarization field due to the application of strain. If

strain is applied, the surface area of the unit cell changes which changes the surface

density of the polarization charge, and this must be accounted for when calculating

the polarization field. [14]

3.6 Limitations

The formalism that I have outlined in this chapter has several limitations. Firstly,

it is only applicable when the perturbing potential V (r) varies slowly compared

to the lattice constant. However, this limit is not well defined, and there is no

clear length scale at which the formalism breaks down. Notably, the assumption

of a slowly varying potential is not valid when modeling alloy disorder in a random

alloy. Despite this, when compared to atomistic tight-binding calculations, the results

exhibit reasonable qualitative agreement of energies and wave functions.

In practice, the presence of a non-periodic perturbation leads to the mixing of dif-
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ferent Bloch states, which in turn causes the single-band approximation, employed

in deriving the effective-mass Schrödinger equation, to break down. This is partic-

ularly true when the energy bands in a given manifold are not separated, as is the

case for the valence band of III-nitride materials. In certain cases, e.g., if one is

trying to predict the polarization of light that a particular alloy composition emits,

it may be necessary to explicitly account for the band degeneracy through multi-

band k · p models, such as the 6-band or 8-band models. These models, which are

generalization of the effective-mass approximation, capture non-parabolicities and

valence-band mixing, which is critical for determining optical polarization proper-

ties, given the distinct angular momentum symmetries of different valence states.

Nevertheless, if the focus is solely on average effects that depend on the density

of states rather than the orbital character, the effective mass model, as employed

in this formalism, may yield satisfactory agreement with experimental observations

and atomistic calculations.

Furthermore, this formalism encounters challenges when dealing with different mate-

rials that exhibit dissimilarity in their cell-periodic Bloch functions, e.g., at interfaces.

The derivation of the effective-mass Schrödinger equation assumes that the entire de-

vice can be described by a single cell-periodic Bloch function, which is generally not

valid in such cases. However, for materials with similar chemistries, such as the

members of the III-nitrides (e.g., AlN, GaN, and InN), the Bloch functions exhibit

sufficient similarity, justifying the approximate validity of the single cell-periodic

Bloch function assumption. Nonetheless, it should be noted that there are alterna-

tive, albeit more computationally expensive, approaches that account for variations

in Bloch functions, and in situations where such variations become significant, a

higher level of theory may be warranted. [15]

Finally, it is important to acknowledge that this formalism lacks information about

the underlying atomistic structure, which may be crucial in certain cases. In such

scenarios, higher levels of theory, such as atomistic tight binding or density functional

theory (DFT), should be employed. However, for large-scale devices, where the effects

of atomistic structure tend to average out, Schrödinger-Poisson simulations are often
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sufficient for capturing the essential physics.
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CHAPTER IV

Electron Mobility of Random AlGaN Alloys

Evaluated by Unfolding the DFT Band Structure

We calculate the alloy-disorder-limited electron mobility of AlxGa1−xN from first

principles. AlxGa1−xN is a technologically important ultra-wide-band-gap alloy with

promise in light emitting diodes and high-power transistors. Alloying introduces sta-

tistical disorder, which causes electrons to scatter between different crystal-momentum

states, leading to a reduction in mobility for intermediate alloy compositions. The

corresponding lifetime, which appears as an energy broadening in the band struc-

ture, can be evaluated by unfolding the band structure from the supercell basis to the

primitive-cell basis. We fit the first-principles band broadening with a model scat-

tering potential, and evaluate the low-field electron mobility using the semiclassical

Boltzmann transport equation in the relaxation-time approximation. Our calculated

mobility is in agreement with experimental values. We also find the lowest alloy-

scattering electron mobility (total electron mobility) across the entire composition

range to be 186 cm2/V ·s (136 cm2/V ·s), which is comparable to the highest electron

mobility predicted in the competitor system, β-(AlxGa1−x)2O3. Our results elucidate

the intrinsic limits imposed by alloy disorder on electron transport in AlxGa1−xN.

This chapter was reprinted (adapted) with permission from Appl. Phys. Lett. 117,

242105 (2020). Copyright (2020) American Institute of Physics.
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4.1 Introduction

Thanks to the success of nitride materials for visible light-emitting diodes (LEDs)

and high-electron-mobility transistors (HEMTs), there is enormous interest in under-

standing the properties of ultra-wide-band-gap nitride materials for power electronics

and optoelectronics.[1, 2, 3] The alloys of GaN and AlN span band-gap energies from

approximately 3.4 eV to 6 eV.[4] This makes AlxGa1−xN an attractive platform for

high-power HEMTs and field-effect transistors (FETs). Moreover, the ability to tune

the band gap of AlGaN in the UV range makes it a natural candidate for ultraviolet

LEDs (UV-LEDs).[5] The need for efficient, portable UV-LEDs for sterilization is

acutely highlighted by the COVID-19 pandemic.

4.1.1 Why AlGaN?

Despite their potential, AlGaN-based devices face several challenges relating to their

energy efficiency. Thus, there is a pressing need to understand the microscopic quan-

tum processes that affect the efficiency of energy transport and conversion in these

materials.[5] Breakthroughs in the growth of high-quality n-type films through polar-

ization doping, delta-doping, and high-temperature AlN interlayers have enabled di-

rect studies of the electronic transport properties of AlGaN.[6, 7, 8, 9, 10, 11, 5] These

experiments unequivocally identify alloy disorder as a primary scattering mechanism

that limits the electrical efficiency of AlGaN-based devices. However, it is unclear

how the electron mobility in AlGaN compares to the electron mobility in the closest

competitor, β-(AlxGa1−x)2O3.[12, 13, 14, 15, 16]

4.1.2 Previous work on alloy scattering from first principles

Theoretical investigations of the effects of alloy disorder on carrier transport remain

sparse. The virtual-crystal approximation (VCA) is a common starting point for un-

derstanding the electronic properties of alloys, such as their band gap and carrier ef-

fective masses. However, it cannot capture the effects of alloy scattering since it does

not take into account the statistical disorder associated with the breaking of transla-
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tional symmetry.[17] Recently, Coltrin and Kaplar conducted a comprehensive study

of electrical transport and breakdown in AlGaN, based on analytical models.[18]

Their work suggests that alloy scattering is the dominant scattering mechanism in

AlGaN, and that Al-rich AlGaN may outperform GaN on various figures of merit

for power-electronics applications at high operating temperatures. Bellotti et al.

performed a numerical study of alloy scattering in the ternary III-nitrides.[19] They

used a modified nonlocal Empirical Pseudopotential Method (EPM), which includes

corrections to the VCA via a disorder potential, and Monte-Carlo simulations to

calculate transport parameters. Murphy-Armando and Fahy have investigated alloy

scattering in Si1−xGex alloys by directly evaluating the scattering matrix elements

from first-principles calculations.[20] Sau and Cohen later used a similar method to

calculate the rates of alloy scattering in a Ge1−xSnx alloy,[21] and Vaughan et al.

extended the method to Si1−xCx.[22] However, there have been no first-principles

reports on the effects of alloy scattering on the electron mobility of AlGaN.

4.1.3 Overview of our new method

Alloying breaks the symmetries of the parent crystals. The breaking of translational

symmetry means that Bloch’s theorem, and correspondingly the concept of bands, is

not strictly valid. However, states in weakly perturbed alloys retain their Bloch-like

character if the effects of localization are weak, and an effective band structure can

be meaningfully constructed from the Bloch spectral function.[23] The appearance of

non-diagonal terms in the Bloch-basis Hamiltonian, introduced by alloying, results

in a broadening of wave vectors and energies in the effective band structure. The

broadening of wave vectors corresponds to the lack of periodicity and the associated

broadening of energies corresponds to the scattering lifetime or, equivalently, the

imaginary part of the quasiparticle self energy.

In this work, we present a first-principles approach to study the effects of alloy scatter-

ing on the electron mobility of AlxGa1−xN. Our method is based on a first-principles

effective band structure and a model alloy-scattering potential, with parameters in-
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formed from first-principles calculations on disordered structures.[24, 25, 26, 27, 19]

Our mobility results are in good agreement with experimental measurements and

explain the composition and temperature dependence of the electron mobility.

4.2 Methodology

In our work, we employ special quasirandom structures (SQS) that accurately cap-

ture the effects of statistical disorder with a small simulation cell size by mimicking

the correlation functions of a truly random alloy. [28, 29] In principle, the size of the

supercell should be large to accurately capture the effects of statistical randomness.

However, the computational cost of DFT calculations for large simulation cells is

prohibitive. We thus limit ourselves to small SQS supercells, which accurately de-

scribe carrier scattering for the higher-energy Bloch states with wavelengths smaller

than the supercell dimensions, and extrapolate the scattering rate to low-energy,

long-wavelength states using analytical models.

For Al contents of x = 0.25, 0.5 and 0.75, we sampled eight SQSs, 4×4×2 primitive-

cells wide with 128 atoms each, as generated by the Monte-Carlo algorithm imple-

mented in the Alloy Theoretic Automatic Toolkit.[30] We ran a special test case

with a 300-atom supercell to verify the convergence of our calculations (see ??). We

minimized deviations in pairwise correlations up to 0.6 nm, and triplet correlations

up to 0.5 nm. Figure 4.1 shows a sample SQS with 50% Al content. We performed

DFT calculations in the local-density approximation (LDA) as implemented in the

Quantum Espresso package.[31] We chose the LDA functional due to its low cost

and its ability to predict band offsets in the III-nitrides within ∼0.1 eV accuracy of

the HSE functional,[32] which is the important parameter for evaluating the scat-

tering potential. We could have performed this study with another functional, such

as the PBE functional, since it produces similar results as the LDA. To measure the

level of agreement between LDA and HSE, we ran a special test case with the HSE

functional (see section 4.5). We used norm-conserving pseudopotentials for the 3s2p

valence electrons of Al, 3d104s2p valence electrons of Ga, and 2s2p3 valence electrons
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Figure 4.1: A characteristic 4 × 4 × 2 special quasirandom supercell structure for
Al0.5Ga0.5N containing 128 atoms, used for DFT calculations of alloy disorder. Ga
atoms are in blue, Al atoms are in purple and N atoms are in gray.

of N. For the self-consistent calculation, we used a converged plane-wave kinetic-

energy cutoff of 100 Ry, and a converged 2 × 2 × 1 Monkhorst-Pack Brillouin-zone

sampling grid. We relaxed the structures until all forces were smaller than 0.001

Ry/aB. and the pressure was below 0.5 Kbar. The spectral functions A(k, ε), as

functions of wave vectors k and energy ε, were calculated by unfolding the super-

cell band structure onto the primitive wurtzite reciprocal cell using the BandUP

code.[26, 27] The unfolded band structure is shown in Figure 4.2. We averaged the

spectral functions for each composition after aligning the conduction-band edges to

minimize contributions from variations in Re(Σ).

4.2.1 Alloy-scattering rates by unfolding the band structure

To calculate the spectral broadenings, we consider the finite integrated spectral

moments,[29]

Mp(k) =

ε2∫
ε1

dεεpA(k, ε), (4.1)
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Figure 4.2: Unfolded band structure of a 4× 4× 2 Al0.5Ga0.5N special quasirandom
supercell structure, obtained from BandUP. Note that LDA-DFT underestimates the
band gap. Higher energy states exhibit moderate to significant energy-broadening
due to alloy disorder.
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where p is an integer, and the integration is performed over a finite range deter-

mined by the spectral peak positions. For a single-band Hamiltonian with site-

diagonal disorder, Ehrenreich and Schwartz showed that the standard deviation of

the spectral moment corresponds approximately to Im(Σ), calculated from pertur-

bation theory.[33] We extend the result by Ehrenreich and Schwartz, and approx-

imate the alloy-scattering rate 1/τ = 2 Im(Σ)/ℏ by 1/τ ≈ √µ2/ℏ, where µ2 ≡
M2(k) − (M1(k))

2 is the spectral variance, defined over a finite energy range. This

approximation is reasonable because of the small lattice mismatch between AlN and

GaN, which leads primarily to cation site-diagonal disorder.[29] As will be shown,

our results agree with previous theoretical results and experiments, and therefore

support the validity of our assumption. This method works only for those regions of

the band structure where the band of interest is isolated from other bands, which is

the case for the lowest conduction band of AlGaN. One advantage of our method,

compared to previous ab initio approaches,[20, 21, 22] is the ability to treat full dis-

order and partial atomic ordering on equal footing, by simply changing the atomic

coordinates. For the scope of this work, we only consider random alloys, which is

known to be a good approximation for AlGaN.[34]

We constructed an averaged effective band structure for the conduction band by

definingM1(k) as the band center and
√
µ2 as the width, as illustrated in Figure 4.3.

A more complete effective band structure is shown in Figure 4.4. For energies up to

approximately 1.5 eV from the minimum, the conduction band is well described by

the Kane model for non-parabolic spherical bands,[35]

ε(1 + αε) =
ℏ2k2

2m∗ , (4.2)

where α is the non-parabolicity parameter and m∗ is the effective mass. Electrons

with small wave vectors (long wavelengths), near the Γ-point, experience the peri-

odic potential of the repeating supercell, and therefore exhibit artificially decreased

energy broadening. Because of this, we extrapolate the scattering rate for long-

wavelength electron states by fitting a golden-rule expression[19] to the scattering
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Figure 4.3: Averaged effective band structure of Al0.5Ga0.5N partway along the high-
symmetry directions of wurtzite. The energy broadening reflects the finite lifetime
due to statistical disorder. The first spectral moment M1 and the spectral width µ2,
used to construct the effective band structure, are shown as points with uncertainty
bars. The supercell periodicity results in an artificial lack of broadening for the small
wave vector (i.e., long wavelength) states near Γ.

rates of accurately described short-wavelength states with energies less than 1.5 eV.

However, our method is general and can be extended to other plane-wave codes, such

as atomistic tight-binding, that can handle much larger supercells thereby avoiding

the need to extrapolate to long wavelengths.

4.2.2 Alloy-scattering potential from first principles

We treat alloy scattering perturbatively and assume that electrons collide with ran-

domly positioned hard spheres. [35, 36, 37] Adopting the convention of using a

statistically averaged disorder potential in the matrix element for Fermi’s golden
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Figure 4.4: Effective band structure of a 4× 4× 2 Al0.5Ga0.5N special quasirandom
supercell structure. The black points correspond to the discretely sampled band
centers and the red uncertainty bars indicate the energy width

√
µ2, calculated from

the spectral function. Our computational implementation, which uses peak detec-
tion and directed graphs to construct the effective band structure from the spectral
function, works best for the lowest conduction band of AlGaN, which is isolated
from other bands and for which the quasiparticle approximation is valid. Accurate
determination of the band center and band broadenings for the valence band and
very high (low) energy conduction (valence) band states is difficult due to significant
spectral function overlap or ill-defined quasiparticle states.
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rule, we can express the scattering lifetime τ(ε) as[19]

1

τ
=
2π

ℏ
U2
0x(1− x)Ω0

m∗3/2
√
2π2ℏ3

× (1 + 2αε)
√
ε(1 + αε)I(α, ε), (4.3)

where

I(α, ε) ≡ 1 + 2αε+ (4/3)α2ε2

(1 + 2αε)2
. (4.4)

For materials with available experimental data, the strength of the effective scatter-

ing potential U0, assumed to extend over the primitive-cell volume Ω0, is typically

estimated by fitting to experimental mobility measurements.[36, 7] In the absence of

experiments, U0 is taken to be the conduction-band offset ∆εc or band-gap difference

∆εG between GaN and AlN.[36, 19]

In contrast to empirical approaches, here we determine the scattering rate from the

first-principles band-structure broadening data. To extract the scattering rates from

the effective band structure of alloys, we sampled k-points along the Γ-A, Γ-M, and

Γ-K directions. The resulting scattering rates, averaged across all eight SQS’s for

x = 0.5, are shown in Figure 4.5. As expected, the scattering rate is proportional to

the density of states. As shown in Figure 4.5, we estimated the effective scattering

potential U0 by fitting equation (4.3) from approximately 0.5 eV to 1.5 eV. (See 4.4

for the error analysis.)

Table 4.1 lists the estimated scattering potentials as a function of Al content. We ver-

ified our estimates by comparing to the slope of the conduction band with respect to

the composition[38] (see section 4.5) and by directly evaluating the long-wavelength

scattering potential using a substitutional defect approach[21] (see section 4.5). The

effective potentials evaluated by unfolding the band structure are smaller than the

band-gap difference ∆εG = 2.6 eV between GaN and AlN. They are also smaller than
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Figure 4.5: Scattering rates for Al0.5Ga0.5N as a function of electron energy, refer-
enced to the conduction-band minimum. Each point is the averaged electron scat-
tering rate for a k-state sampled along one of Γ-A, Γ-M, and Γ-K directions. The
rates were calculated from energy broadenings of the conduction band using the un-
certainty principle. The solid line is the fit for the scattering rate expression derived
from Fermi’s golden rule for the hard sphere scattering potential.
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Table 4.1: Scattering potentials U0 of AlxGa1−xN calculated for different Al contents
using various methods.

Method Al content U0 (eV)

Band unfolding (this work)
0.25 1.5± 0.2
0.5 1.8± 0.2
0.75 1.9± 0.3

Substitutional defect (this work)1 0.5 2.1

∂εc/∂x from hybrid DFT2

0.25 1.5
0.5 1.8
0.75 2.1

Monte Carlo + EPM3

0.2 2.0
0.5 1.7
0.8 1.3

Experiment 14 0 to 0.3 1.5
Experiment 25 0 to 0.3 1.8

the conduction-band offset ∆εC = 2.2 eV, obtained by slab calculations,[32, 39] but

comparable to ∆εC = 1.8 eV, obtained by referencing the branch-point energies of

bulk structures.[38] The potentials are also similar to the values reported by Bellotti

et al., albeit with a different composition dependence.[19] Finally, they are similar to

values reported by experiment (1.5 eV and 1.8 eV for graded AlxGa1−xN alloys), with

differences likely arising due to minor differences in the fitting models.[9, 7]

4.3 Electron mobility of AlGaN

To estimate the low-field electron mobility µ, we work in the framework of the Boltz-

mann transport equation in the relaxation-time approximation,

⟨µ⟩ = − e

3n

∞∫
0

dεv2(ε)τ(ε)
∂f 0

∂ε
dc(ε). (4.5)

We calculated the band velocity v(ε) and conduction band density of states dc(ε) in

the effective-mass approximation, assuming α = 0 since most electrons occupy states
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near the band edge where the parabolic band approximation is valid. We calculated

the lifetime τ(ε) using equation (4.3), setting α = 0. Moreover, we interpolated the

primitive-cell volume and scattering potentials for different compositions from the

sampled compositions using a quadratic fit to account for statistical bowing. We

treated the carrier density n as an input parameter, from which we estimated the

Fermi energy and the Fermi-Dirac distribution of electrons f 0 using the bisection

method for root finding.

In general, the LDA does not predict accurate effective masses.[40] This problem is

exacerbated in our case, sincem∗ appears with a 5/2 power in equation (4.5), through

the velocity, lifetime, and density of states. This can be alleviated by using the hybrid

HSE functional[41] or by applying many-body GW corrections.[40] Unfortunately,

these methods are more computationally demanding, and accurate experimental and

theoretical reports of effective masses in AlxGa1−xN at different compositions are not

available. We have thus used a linear interpolation of the HSE effective masses of

GaN and AlN, which amounts to Vegard’s law.[41] This assumption is supported by

our LDA calculations, which show a near-linear dependence of effective mass on Al

content (see section 4.6). We approximate the conduction band as being isotropic,

and take the effective mass to be m∗
e = (m2

⊥m∥)
1/3. We use the HSE values reported

by Dreyer et al. to approximate m∗
e = 0.209me for GaN and m∗

e = 0.313me for AlN,

which is well within the range of experimentally reported values.[41]

4.3.1 Alloy-disorder-limited mobility

Figure 4.6 shows our calculated low-field, alloy-scattering electron mobility as a func-

tion of composition, at a carrier density of 1018 cm−3 and temperatures of 10 K, 300

K, and 500 K. We have fixed the carrier density by tuning the Fermi level rather

than introducing dopants. Experimentally measured electron mobilities are also

shown for comparison. All samples exhibit carrier concentrations of approximately

1018 cm−3,[9, 8, 7, 11, 10] except the sample by Armstrong et al. which exhibits a

carrier concentration of 5× 1017 cm−3.[42] The samples by Simon et al.[9], Jena et
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Figure 4.6: Alloy-scattering electron mobility of AlxGa1−xN as a function of composi-
tion and temperature at n = 1018 cm−3. Blue corresponds to 10 K, black corresponds
to 300 K and red corresponds to 500 K. The shaded regions correspond to the un-
certainty in the mobility arising from the uncertainty in the scattering potentials.
µtot denotes the directly measured total mobility, whereas µalloy denotes the alloy-
scattering component of the total mobility.
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al.[7], Rajan et al.[8], and Armstrong et al.[42] are polarization doped. The sample

by Wang et al. is grown on a high-temperature AlN interlayer,[11] and the sample

by Zhu et al. is delta-doped.[10] There is overall good agreement between theory

and experiment. The discrepancy with some experimental values at room temper-

ature could be due to electron-phonon scattering processes that are important at

room temperature in addition to alloy scattering. The temperature dependence of

the alloy-scattering mobility behaves as T−1/2. At low temperatures, alloy and de-

fect scattering become dominant due to freezing out of phonon scattering. Simon

et al. and Jena et al. measured the mobilities of polarization-doped 3-dimensional

electron slabs (3DES) with average compositions of ⟨x⟩ = 0.11 at 10 K and 20 K,

respectively.[9, 7] Their experimental values are plotted in Figure 4.6 and are in

excellent agreement with our theoretical predictions, without accounting for defect

scattering in our DFT calculations.

4.3.2 Total mobility

Besides alloy scattering, the mobility in AlGaN is reduced by dipole scattering,

phonon scattering, and ionized-impurity scattering when dopants are present. Zhao

et al. studied dipole scattering in AlGaN, in the relaxation-time approximation, and

predicted the dipole-scattering electron mobility to be greater than 1300 cm2/V · s
across the entire composition range, at n = 1017 cm−3.[43] In addition, Farahmand

et al. investigated phonon and ionized-impurity scattering (N+
D = 1017 cm−3) in the

III-nitrides using Monte-Carlo simulations on semi-empirical band structures.[44]

They found the room-temperature electron mobility for GaN and AlN to be 990 and

533 cm2/V · s, in agreement with experiments.[44, 45, 46] Using the virtual-crystal

approximation, they calculated the electron mobility of AlxGa1−xN at x = 0.2,

0.5, and 0.8 to be equal to 978, 856, and 658 cm2/V · s, respectively. [44] As

shown in Figure 4.7, we calculated the total room-temperature electron mobility

1/µtotal = 1/µVCA + 1/µdipole + 1/µalloy, by combining our µalloy with µdipole and

µVCA, interpolated from the data of Zhao et al. and Farahmand et al. At x ≈ 0.6,

both the room-temperature alloy-scattering electron mobility and the total electron
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Figure 4.7: Total electron mobility of AlxGa1−xN as a function of composition at
room temperature and n = 1017 cm−3. The dipole-scattering mobility µdip by Zhao et
al. and our alloy-scattering mobility µalloy assume n = 1017 cm−3. The VCA mobility
µvca, which accounts for phonon and ionized-impurity scattering, by Farahmand et
al. assumes N+

D = 1017 cm−3.
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mobility reach their minima of 186 and 136 cm2/V · s. For comparison, this is ap-

proximately equal to the highest electron mobility predicted in β-(AlxGa1−x)2O3 at

x = 0.[12, 13, 14, 15, 16] The comparable mobility in AlGaN for disordered compo-

sitions and superior mobility for Ga-rich and Al-rich compositions is due to stronger

polar electron-phonon scattering in the III-oxides than in the III-nitrides.[15, 16] The

difference in mobility is compounded at the high temperatures at which high-power

devices operate,[18] due to the stronger temperature dependence of electron-phonon

scattering compared to alloy scattering. Notably, Ma et al. showed that the phonon-

scattering electron mobility in β-Ga2O3 decreases to 70 cm2/V ·s at 500 K,[13] which

is two times smaller than the lowest predicted alloy-scattering electron mobility in

AlGaN at the same temperature. (See section 4.7 for a discussion of the advantages of

AlGaN over β-(AlxGa1−x)2O3 for high-power devices, considering other factors such

as the band gap, ambipolar dopability, and thermal conductivity of the available

substrates.)

4.4 Error analysis

In our work, we have averaged eight 4 × 4 × 2 supercells for each composition and

evaluated the scattering rate from first principles. Figure 4.5 shows the scattering

rate that we have calculated from the energy broadening of the averaged spectral

function for Al0.5Ga0.5N.

There is a spread in the scattering rate data compared to the line of best fit. To

identify the magnitude of the spread, we calculated the residuals of the first-principles

scattering rates with respect to the line of best fit. We have converted the residuals

back to units of energy to get the equivalent error in the spectral width, which is

the quantity that we directly compute, and plotted it against the conduction-band

energy on a linear scale (Figure 4.8). There is no correlation of the residuals with

respect to the conduction-band energy, suggesting that the fitting model accurately

describes the data. The average root mean squared error is 19 meV, calculated
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Figure 4.8: Residuals of the scattering rate compared to the line of best fit.. The
scattering rates have been converted to energies to reflect the equivalent error in the
spectral width. The conduction-band energy is referenced to the conduction-band
minimum.
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according to,

σwi
=

√√√√ 1

N − 2

∑
i

(
ℏwi −

ℏ
τ̂(εi)

)2

, (S6)

where wi is the scattering rate, 1/τ̂(ε) is the line of best fit, and N is the number of

scatter points. To get a better sense of the magnitude of this error, we convert it to

the equivalent error in the scattering potential,

σU0 =
∂U0

∂wi

σwi
. (S7)

For 50% Al content, the error in the scattering potential is 0.18 eV or 10%. We

also calculated the errors in mobilities. For Al contents x = 0.25, 0.5, and 0.75, the

mobility errors are 24%, 20% and 34% respectively. Therefore, the spread in the

scattering rate data does not affect our mobility estimates to leading order, which is

sufficient to support our comparisons with (AlxGa1−x)2O3.

4.4.1 Source of the spread in the scattering rate

There are two main reasons for the spread in the scattering rate data compared to

the line of best fit. First, the line of best fit assumes that the conduction band is

isotropic. This is only approximately true, as shown in Figure 4.9, and explains part

of the spread in the scattering rate, which is to be expected due to the directional

anisotropy. Indeed, the effective scattering potential evaluated along Γ-A is 1.9

eV, which is slightly larger than the scattering potential evaluated along Γ-M (1.6

eV) and Γ-K (1.7 eV). We note that the exact value of the scattering potential

can shift by ∼0.1 eV, depending on the parameters used for the peak-detection

algorithm. Nonetheless, all three scattering potentials are within the error of the

effective scattering potential of 1.8 eV ± 0.2 eV. Second, the periodicity of the finite-

sized supercell gives rise to avoided crossings within the primitive-cell Brillouin zone.

Haverkort et al. showed that these avoided crossings disappear after averaging the

spectral functions of many structures.[47] However, since we have averaged only

8 structures, these avoided crossings remain. Our computational algorithm that
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Figure 4.9: Energy dispersion of the conduction band of Al0.5Ga0.5N, plotted along
the same axis for different wave-vector directions. The slight anisotropy of the con-
duction band gives rise to a spread in the scattering rate.

determines the spectral peak and width can be sensitive to the noise due to these

avoided crossings, which accounts for part of the error in Figure 4.8.

4.5 Validation of the scattering potential

4.5.1 Comparison with a larger supercell

The finite size of the 4 × 4 × 2 (128-atom) supercell that we have chosen limits the

scattering rates at long wavelengths due to the periodicity of the supercell, and at

short wavelengths by limiting the number of states that a carrier can scatter to. We
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have overcome this problem by using special quasirandom structures (SQS’s) whose

site correlation functions closely match those of a perfectly random alloy.[28] We

obtained the scattering rates by directly evaluating the spectral widths of the SQS

spectral functions. The advantage of this approach is that the discrete SQS spectral

function reproduces the statistics of a perfectly random alloy,[29] therefore the Bloch

states of the supercell with wavelengths shorter than the SQS dimensions exhibit the

correct energy broadenings in the primitive-cell basis. We have taken this further by

averaging the spectral functions of eight SQS’s since the site correlation functions are

not perfect matches. We extrapolate the long-wavelength scattering rates by fitting

the Golden-rule expression to the accurately described short-wavelength states. We

do not expect that increasing the number of long-wavelength states (i.e., increasing

the size of the supercell) would significantly affect our mobility estimates since we

have already captured a majority of the (shorter-wavelength) states that contribute

to the effective scattering potential.

To verify our assumptions, we evaluated the spectral function of a 5×5×3 Al0.5Ga0.5N

supercell, consisting of 300 atoms. In the interest of computational efficiency, we ex-

cluded the d-orbitals of Ga in the valence shell since the atomic character of the lowest

conduction band is predominantly s and p type. To further save computational cost,

we evaluated three k-states as points of comparison between the 128-atom and 300-

atom SQS’s. In particular, we tested the ability of our fitting model to extrapolate

long-wavelength scattering rates by considering a long-wavelength state, along the

Γ-M direction, corresponding to an energy of 0.21 eV above the band minimum,

which is not broadened in the 128-atom supercell. We also tested the convergence

of the short-wavelength scattering rates by directly evaluating the spectral width

of two states corresponding to energies of 0.7 eV and 1.3 eV, also along the Γ-M

direction. Figure 4.10 shows that the scattering rates of the 300-atom supercell is

well described by the line of best fit from the 128-atom supercell.
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Figure 4.10: Agreement of the scattering rates (green points) evaluated directly from
the spectral function of a 300-atom Al0.5Ga0.5N supercell along the Γ-M direction to
the line of best fit (solid curve) of the 128-atom supercell.
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Table 4.2: Our scattering potentials U0, calculated from DFT by unfolding the band
structure for different Al contents, compared to dεc/dx by Kyrstos et al.

x U0 (eV) dεc/dx

0.25 1.5 ± 0.2 1.5
0.5 1.8 ± 0.2 1.8
0.75 1.9 ± 0.3 2.1

4.5.2 Energy shift due to an infinitesimal composition change

To check whether our estimate of the effective scattering potential is correct, we

can directly calculate the long-wavelength scattering potential at the Γ-point by

evaluating the eigenvalue shift of the conduction band minimum due to a small change

in the composition.[21, 35] More precisely, for a perfectly random alloy, [35]

U0 =
δV

(x′ − x)
, (S8)

where δV is the eigenvalue shift. In the limit x′ → x, this reduces to U0 = dεc/dx

for the conduction band. Kyrstos et al. recently calculated the HSE conduction-

band offsets for various compositions of AlxGa1−xN, and obtained the expression,

εc = 5.22x + 3.4(1 − x) − 0.55x(1 − x), which gives a slope of 1.8 eV at x = 0.5.

This is precisely the value of the scattering potential that we obtained by unfolding

the band structure. The slopes evaluated at x = 0.25 and 0.75 also agree with our

scattering potentials within the margin of error. These are summarized in Table 4.2.

[38] This strongly suggests the validity of the effective scattering potentials that we

have derived, even at long wavelengths.

4.5.3 Substitutional-defect calculation

As a sanity check, we evaluated equation (S4.8) directly by calculating the energy

shift of the Γ-point conduction-band minimum due to the substitution of a single Al-

atom onto a Ga-site.[21, 35] We performed calculations on two 128-atom disordered
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supercells: one with Al content x = 64/128, and the other with x′ = 65/128. We

relaxed the atomic coordinates after substituting the atoms. The potential of the

supercell is arbitrary, thus we aligned the branch-point energies of the two SQS’s,

since each SQS can be thought of as a separate local micro-configuration of a larger

alloy.[? ] To calculate the branch-point energy, we included two conduction bands

and four valence bands per primitive-cell in the supercell, for a total of 64 conduction

bands and 128 valence bands.

Using this method, we obtained a scattering potential of 2.08 eV, which is roughly

similar to the scattering potential of 1.8 eV that we derived by unfolding the band

structure. The discrepancy is likely due to the fact that a single substitutional defect

cannot fully account for structural disorder effects, such as internal relaxation and

alloy fluctuations. These are critical in the III-nitrides since they give rise to strong

piezoelectric and spontaneous polarization fields, which can significantly perturb the

band structure. Our comparison of the mobility of AlxGa1−xN and (AlxGa1−x)2O3

are unaffected by this small discrepancy.

4.5.4 Hybrid-functional calculation

In our work, we have used the Local-Density Approximation (LDA) over the hybrid

Heyd-Scuseria-Ernzerhof (HSE) functional to save computational cost. We justi-

fied this assumption by noting that both the LDA and the HSE functionals predict

similar band offsets in the III-nitrides, within order 0.1 eV accuracy.[32] To verify

this assumption, we evaluated the effective HSE band structure of a single 128-atom

Al0.5Ga0.5N supercell, and calculated the scattering rates, using a mixing parameter

of α = 0.3. We obtained an HSE band gap of 4.8 eV and effective mass of 0.25me.

The scattering rates, computed with the LDA and HSE functionals, are shown in

Figure 4.11. The effective scattering potential obtained with LDA is 1.81 eV which

is nearly identical to the HSE scattering potential of 1.83 eV, indicating that LDA

is sufficient for this work.
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Figure 4.11: Scattering rates for a single 128-atom Al0.5Ga0.5N SQS, computed with
the LDA and HSE (α = 0.3) functionals. The solid curves are lines of best fit,
corresponding to the hard-sphere model Golden-Rule expression, with the domain
of fit lying between the two vertical dotted lines. The effective scattering potentials,
obtained by fitting the Golden-Rule expression to the scattering rates, are indicated
in the legend.
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4.6 Justification of Vegard’s law for effective mass

The Local-Density Approximation (LDA) that we have used in this work does not ac-

curately predict dispersion parameters, such as effective masses, for excited states.[40]

To our knowledge, accurate experimental or theoretical reports of AlGaN effective

masses for varying compositions are not available. Therefore, we have used Vegard’s

law (linear interpolation) to estimate the effective mass of AlGaN from the effective

masses of GaN and AlN,

m∗
AlxGa1−xN

= xm∗
AlN + (1− x)m∗

GaN. (S9)

We obtain the effective masses of GaN and AlN from values reported by Dreyer et

al.,[41] who used Density Functional Theory (DFT) with the Heyd–Scuseria–Ernzerhof

(HSE) functional, which accurately predicts effective masses in the III-nitrides.[40,

41] The linear interpolation is justified because our LDA calculations show a near-

linear dependence of effective mass on Al content, as shown in Figure 4.12.

4.7 Advantages of AlxGa1−xN over (AlxGa1−x)2O3 for high-

power devices

We have shown that the low field electron mobility attainable with AlGaN is generally

larger than that possible with (AlxGa1−x)2O3. Beyond the low-field electron mobility,

other considerations for high-power devices include the magnitude of the band gap,

the possibility of ambipolar doping, and the thermal conductivity of the available

substrates.

Wider band gaps are desirable for high-power applications because the breakdown

electric field increases superlinearly with increasing band gap. The band gap of

AlGaN at x = 0.6 is approximately 4.8 eV,[48] which is comparable to the band

gap of β-Ga2O3.[49, 50, 51] In this regard, the advantage of AlGaN is clear, since

increasing the Al content beyond x = 0.6 increases its band gap, thus the breakdown
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Figure 4.12: Near-linear dependence of the LDA electron effective mass of AlxGa1−xN
on Al content.

field, as well as its mobility to values higher than that of β-Ga2O3.

Although we have not considered the effect of alloying on hole mobility in this

work, the ability to dope AlGaN p-type[52] further highlights AlGaN as an attrac-

tive platform for high-power complementary metal-oxide-semiconductor (CMOS) de-

vices. Recently, Pandey et al. showed that Mg-doped Al-rich AlGaN, grown with

metal-semiconductor junction assisted epitaxy, can exhibit hole concentrations as

high as 4.5 × 1017 cm−3, with resistivity < 5Ω · cm and mobility of approximately

4− 6 cm2/V · s.[52] This is in contrast to the absence of p-type doping in β-Ga2O3,

to date.

Furthermore, strong anharmonic phonon-phonon coupling limits the thermal con-

ductivity of β-Ga2O3 to values of approximately 20 W/m ·K,[15] in contrast to GaN

and AlN, which have thermal conductivities of 245 and 350 W/m·K, respectively.[53,
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54, 55, 56, 57, 58, 59, 60] The ability to grow AlGaN on thermally conductive sub-

strates such as GaN and AlN enables efficient heat dissipation, necessary for optimal

high-power performance.

These considerations elucidate the numerous advantages of AlGaN over β-(AlxGa1−x)2O3

for high-performance, high-power devices, although the cost of GaN and AlN sub-

strates remains an obstacle.

4.8 Conclusion

In summary, we have developed a first-principles approach to calculate the electron

alloy-scattering rates and mobility of AlxGa1−xN, as a function of composition and

temperature using the semiclassical Boltzmann transport equation. Our results are

in agreement with experiments. Our work brings to focus the fundamental limits im-

posed by alloy disorder on the electron transport properties of random AlxGa1−xN

alloys. We confirm that experimentally measured mobilities in polarization doped

samples are close to the intrinsic mobility limits. We have matched experimental

results without including the effects of electron localization, which suggests that the

weak electron localization in AlGaN may not be important for low-field electron

transport. Finally, our analysis of the electron mobility underscores the viability of

AlGaN for high-performance high-power applications. The simplicity of our compu-

tational technique makes it promising to screen the electronic properties of semicon-

ductor alloys in a high-throughput fashion. We anticipate that our method can be

further applied toward understanding the effects of alloy scattering on a broad range

of alloyed semiconductors. Future work on the effects of alloy clustering and atomic

ordering using the methods we have developed may lead to further insights on the

mobility of materials that exhibit clustering.
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CHAPTER V

Computational Design of Atomically Ordered

Superlattices of AlN and GaN for Power

Electronics

Alloy scattering in random AlGaN alloys drastically reduces the electron mobility and

therefore the power-electronics figure of merit. As a result, Al compositions greater

than 75% are required to obtain even a two-fold increase of the Baliga figure of merit

compared to GaN. However, beyond approximately 80% Al composition, donors in

AlGaN undergo the DX transition which makes impurity doping increasingly more

difficult. Moreover, the contact resistance increases exponentially with increasing Al

content, and integration with dielectrics becomes difficult due to the upward shift

of the conduction band. Atomically thin superlattices of AlN and GaN, also known

as digital alloys, are known to grow experimentally under appropriate growth con-

ditions. These chemically ordered nanostructures could offer significantly enhanced

figure of merit compared to their random-alloy counterparts due to the absence of

alloy scattering, as well as better integration with contact metals and dielectrics.

In this work, we investigate the electronic structure and phonon-limited electron

mobility of atomically thin AlN/GaN digital-alloy superlattices using first-principles

calculations based on density-functional and many-body perturbation theory. The

band gap of the atomically thin superlattices reaches 4.8 eV, and the in-plane (out-

of-plane) mobility is 369 (452) cm2 V-1 s-1. Using the modified Baliga figure of
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merit that accounts for the dopant ionization energy, we demonstrate that atomi-

cally thin AlN/GaN superlattices with a monolayer sublattice periodicity have the

highest modified Baliga figure of merit among several technologically relevant ultra-

wide band-gap materials, including random AlGaN, β-Ga2O3, cBN, and diamond.

This chapter was reprinted (adapted) with permission from (Appl. Phys. Lett. 121,

032105 (2022)). Copyright (2022) American Institute of Physics.

5.1 Introduction

Power electronics that [1] will drive the future electrical grid, and electric rail and

aviation infrastructure need semiconductors with ultra-wide band gaps, high carrier

mobilities, and shallow dopants [1, 2]. Semiconductors with ultra-wide band gaps can

tolerate high electric fields without electrical breakdown due to impact ionization.

High carrier mobility ensures that electrical transport is energy efficient and does

not generate unnecessary heat. Finally, shallow dopants with low ionization energies

are necessary to efficiently introduce free electrons that conduct electricity. Using

predictive first-principles calculations [3], we propose atomically thin superlattices

of AlN and GaN as candidate semiconductors that satisfy all three criteria for the

active region of next-generation power electronics. These semiconductors have been

experimentally demonstrated for use in light-emitting diodes and are compatible with

existing industrial manufacturing processes.

5.1.1 Figure of Merit for power electronics

The performance of semiconducting materials in power-electronics applications is

quantified by the Baliga figure of merit (BFOM) [4] and its modified version that

accounts for dopant ionization [5]. The BFOM quantifies conduction losses, and is

given by the expression:

BFOM =
ϵsµF

3
br

4

where ϵs is the dielectric constant, µ is the carrier mobility, and Fbr is the critical

breakdown electric field, which scales superlinearly with the band gap [4]. The cubic
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dependence of the BFOM on the breakdown field has led to intense research efforts in

developing ultra-wide-band-gap semiconductors for power electronics. In this work,

we use the BFOM and its modified version that accounts for dopant ionization to

quantify the performance of semiconductors. For lateral power devices, the lateral

figure of merit is an alternative metric to quantify conduction losses, and is given by

LFOM = ensµF
2
br, where ns is the sheet carrier density [6]. Since the LFOM and

BFOM depend very similarly on the mobility and breakdown field, we use the BFOM

in our analysis for simplicity; however, our conclusions would hold equally well using

the LFOM as well. Although many ultra-wide-band-gap semiconductors, e.g., AlN,

diamond, and cubic boron nitride, exhibit promising BFOM, their lack of shallow

dopants has hampered their adoption. Therefore, the modified BFOM [5], which

is the BFOM multiplied by the dopant ionization ratio, is a more useful quantity

for evaluating the performance of ultra-wide-band-gap semiconductors for power-

electronics applications.

5.1.2 III-nitrides for power electronics

GaN and AlGaN are some of the most promising materials for highly efficient power-

electronic devices. GaN technology is the state of the art for low to moderate power

applications [7, 8], e.g., phone chargers, electric cars, and photovoltaic inverters,

due to its wide band gap of 3.5 eV [9], high electron mobility of 800-1600 cm2

V−1 s−1 [10, 11], and availability of shallow dopants [12]. The (modified) BFOM

approximately scales with the band gap to the sixth power, therefore a promising

approach for improving the figure of merit of GaN is increasing its band gap by

alloying it with aluminum. The alloy AlxGa1−xN is a solid solution of GaN and

AlN, and has a band gap that can be tuned from 3.5 eV (x = 0) to 6.3 eV (x =

1) [13, 14].

However, AlGaN alloys face several challenges regarding their doping and conductiv-

ity. Despite two decades of intense research, the anticipated gain to the performance

of AlGaN has not been fully realized because the electrical conductivity drops dra-
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matically as the Al composition increases. Below ∼85% Al composition, the con-

ductivity is limited by alloy scattering, which occurs due to the random occupation

of Al and Ga in the lattice [15]. At the most disordered compositions of 50-60%

Al, the electron mobility reaches a minimum that is seven times smaller than the

electron mobility of GaN [16]. Consequently, Al compositions of ∼75% are required

to obtain even a two-fold increase of the (modified) BFOM compared to GaN. Un-

fortunately, at compositions greater than ∼80%, the conductivity decreases again

due to the donor DX transition [17, 18], which occurs when donors, e.g., Si or Ge,

preferentially occupy interstitial sites rather than substitutional sites. This causes

the donor transition level to lie deep within the band gap, which makes doping highly

inefficient. Consequently, the modified BFOM decreases exponentially beyond an Al

composition of ∼85%.

5.1.3 Atomically ordered superlattices of AlN and GaN

Electrons in atomically ordered compounds, such as superlattices, do not undergo

alloy scattering. Therefore, superlattices could offer a viable route toward increasing

the mobility and modified BFOM of AlGaN at an Al composition where impurity

doping is efficient. Fortunately, atomically thin superlattices of alternating AlN

and GaN layers have been demonstrated using common growth techniques, e.g.,

molecular-beam epitaxy [19, 20, 21, 22] and metalorganic-vapor-phase epitaxy [23,

24, 25]. In the limit of atomic sublattice thickness, such ordered digital alloys show

significant promise for performance improvements in light-emitting diodes compared

to conventional random AlGaN alloys [26, 27, 28]. In contrast to previous work, which

explored increasing the alloy-scattering mobility of the two-dimensional electron gas

at the GaN/AlGaN interface with the insertion of an ultra-thin AlN interlayer [29,

30, 31], we are interested in using atomically thin AlN/GaN digital-alloy superlattices

as the active region for power electronics.

In this work, we use atomistic calculations based on density-functional theory (DFT),

density-functional perturbation theory (DFPT), and many-body perturbation the-
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ory (MBPT) to uncover the electronic and electron-transport properties of atomically

thin AlN/GaN superlattices, periodically repeating along the c-axis. Such structures

retain the ultra-wide band gap of AlGaN, while exhibiting an enhanced phonon-

limited mobility that is 3-4x larger than the mobility of random AlGaN alloys due to

the absence of alloy disorder. Most importantly, these favorable properties occur at

an effective composition of 50%, where impurity doping is efficient and there is good

integration with contact metals and dielectrics. As a result, the atomically thin su-

perlattices have the highest modified BFOM of all known ultra-wide-band-gap semi-

conductors, and show great promise for high-performance power electronics.

5.2 Methodology

We investigated atomically thin AlN/GaN superlattices with two different stacking

periods along the c-axis: one monolayer of AlN by one monolayer of GaN (1ML)

stacking and two monolayers of AlN by two monolayers of GaN (2ML) stacking. We

also calculated the electron transport properties of GaN and AlN to interpolate the

phonon-limited mobility of random alloys. To simulate pseudomorphic strain on AlN

substrates, we lattice-matched each semiconductor to the basal plane of AlN using

the experimental lattice constant, while allowing the atomic positions and c-axis

length to relax. We separately investigated the relaxation of the ground-state crystal

structures by minimizing the total energy with respect to the atomic coordinates,

and requiring all forces to be less than 10−3 Ry/Bohr and the total energy to be

converged within 10−4 Ry. We performed band structure and phonon calculations

using Quantum Espresso[32] in the local-density approximation (LDA)[33]. We used

norm-conserving pseudopotentials for the 3s2p1 valence electrons of Al, 3d104s2p1

valence electrons of Ga, and 2s2p3 valence electrons of N. We used a plane-wave

kinetic energy cutoff of 130 Ry, and a converged 8×8×4 (8×8×2) Monkhorst-Pack

Brillouin-zone sampling grid for the self-consistent calculation of the 1ML (2ML)

superlattice, GaN, and AlN. For the non-self-consistent calculation and the phonon

calculation, we used a coarse 8× 8× 8 (8× 8× 4) Monkhorst-Pack grid. We applied

many-body quasiparticle corrections in the G0W0 approximation using BerkeleyGW
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to obtain accurate band gaps and effective masses[34, 35].

5.2.1 Phonon-limited mobility calculation

To obtain the phonon-limited mobility, we iteratively solved the linearized Boltz-

mann transport equation using EPW[36]. This requires calculating the ab initio

electron-phonon matrix elements from density-functional perturbation theory, which

calculates the linear response of the Kohn-Sham potential to a collective atomic

displacement through the linear response of the charge density. We included all

interband and intraband scattering processes between thermally occupied electron

|nk⟩ and phonon |νq⟩ states by integrating the electron-phonon matrix elements

across the Brillouin zone. Additionally, we solved the alloy-scattering-limited mo-

bility using an in-house code in the relaxation-time approximation, which is a valid

approximation since alloy scattering is elastic and has no angular dependence.

The EPW code uses the following definition of the low-field mobility:

µαβ = − 1

VPCnc

∑
n

∫
d3k

ΩBZ

vnk,α
∂fnk
∂Eβ

, (5.1)

where α, β are cartesian coordinates, VPC is the volume of the primitive cell, nc is the

carrier density, n is the band index, k is a crystal wave vector in the first Brillouin

zone, and ΩBZ is the volume of the first Brillouin zone. The band velocity vnk,α

corresponds to the momentum-space gradient of the bands, vnk,α = 1
ℏ∇k,αεnk. The

quantity ∂fnk

∂Eβ
is the linear response of the electronic occupation function to a small

electric field E applied along the β direction, which we obtained by self-consistently
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solving the linearized Boltzmann transport equation:

∂fnk
∂Eβ

= evnk,β

(
∂f 0

nk

∂εnk

)
τnk +

2πτnk
ℏ

∑
mν

∫
d3q

ΩBZ

|gnmν(k,q)|2

× [(nνq + 1− f 0
mk+q)δ(εnk − εmk+q − ℏωνq)

+ (nνq + f 0
mk+q)δ(εnk − εmk+q + ℏωνq)]

∂fmk+q

∂Eβ

, (5.2)

where:

1/τnk =
2π

ℏ
∑
mν

∫
d3q

ΩBZ

|gnmν(k,q)|2[(nνq + 1− f 0
mk+q)δ(εnk − εmk+q − ℏωνq)+

(nνq + f 0
mk+q)δ(εnk − εmk+q + ℏωνq)] (5.3)

In the equations above, the quantum numbers n and m are electronic band indices,

k is the electronic crystal wave vector, ν is the phonon branch index, and q is the

phonon wave vector in the first Brillouin zone. We calculated the electronic eigenval-

ues εnk in the G0W0 approximation, from which the Fermi-Dirac occupation factors

fnk are calculated at room temperature. For the mobility calculation, we included

electronic states within 300 meV of the conduction-band edge since higher states

do not contribute to low-field transport due to their small occupation. We calcu-

lated the phonon eigenvalues ωνq from density-functional perturbation theory in the

local-density approximation, from which the Bose-Einstein occupation factors nνq

are calculated. Density-functional perturbation theory also produces the electron-

phonon matrix elements gnmν(k,q), which give the probability amplitudes for the

interband and intraband scattering processes from electronic states |nk⟩ to |mk+q⟩
mediated by all 3 × Natom phonon modes |νq⟩ throughout the Brillouin zone. The

integrals over k and q in equations (1), (2), and (3) converge for very fine grids

with O(1003) grid points, however density-functional and density-functional pertur-

bation theory calculations are typically performed for coarser grids with O(103) grid

points due to their computational cost. This challenge is overcome by interpolat-
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ing the coarse-grid electronic and phononic eigenvalues, velocity matrix elements,

and electron-phonon scattering matrix elements to fine grids using the maximally

localized Wannier-function method as implemented in the EPW code [2, 3]. In po-

lar materials, the electron-phonon matrix elements of longitudinal-optical Fröhlich

modes exhibit an O(1/q) divergence as q → 0, due to the dipole charge contribution

to the electron-phonon interaction [4]. This presents a challenge for Wannier inter-

polation since divergent functions do not have well-behaved Fourier transforms. We

overcame this challenge using the EPW code by analytically treating the long-range

dipolar divergence while numerically treating the well-behaved short-range interac-

tion [4]. Overall, we interpolated the necessary quantities to 160 × 160 × 110 fine

k and q grids for primitive-cell structures, i.e., GaN, AlN, and the 1ML AlN/GaN

superlattice, and 160× 160× 55 fine k and q grids for the 2ML AlN/GaN supercell

structure to obtain converged phonon-limited mobilities.

5.2.2 Alloy-limited mobility calculation

Unlike electron-phonon scattering, electron-alloy scattering is elastic and has no an-

gular dependence, thus the relaxation-time approximation can be more reliably used

to calculate the alloy-scattering mobility. We calculated the alloy-scattering-limited

mobility using an in-house code in the relaxation-time approximation, where the

composition-dependent relaxation time is given by the formula,

1

τ(ε)
=

2π

ℏ
U2
0x(1− x)VPC

m∗
√
2π2ℏ3

√
ε (5.4)

where x is the aluminum composition. In this equation, we used the geometrically

averaged conduction-band effective mass m∗(x), which we calculated for random al-

loys as a linear interpolation of the G0W0 effective masses of GaN and AlN. In our

previous work [5], we found that the alloy-scattering potential U0(x) in AlGaN can be

calculated by unfolding the band structure of special-quasirandom-structure super-

cells and fitting the alloy-scattering-rate expression to the energy-broadened effective

band structure. In the same work, we showed that a one-to-one correspondence exists
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between the alloy-scattering potential U0(x) and the slope of the conduction band

versus composition curve ∂εc/∂x, obtained by referencing the branch-point energies

of the alloys. For materials where the conduction band is a quadratic function of

composition, e.g., AlGaN, it turns out that the slope ∂εc/∂x, and therefore the scat-

tering potential, at x = 0.5 is equal to the conduction band offset ∆εC between the

end binary compounds. By referencing the branch-point energies of GaN and AlN,

we calculated a conduction-band offset ∆εC ≈ 1.8 eV at the G0W0 level, which is

equal to the alloy-scattering potential U0(x = 0.5) = 1.8 eV that we calculated in

our previous work by unfolding the band structure at the LDA and hybrid-functional

level. We excluded neutral defect and ionized impurity scattering in our calculation

of the room-temperature mobility, therefore our mobility estimates serve as theoret-

ical upper bounds.

5.3 Structural, electronic, and transport properties

By performing structural-relaxation calculations, we found that the atomically thin

superlattices of AlN and GaN are well suited for epitaxial growth on bulk AlN

substrates. In contrast to traditional multi-quantum-well structures, whose criti-

cal thickness is independently limited by the bulk lattice constant of each sublattice

layer, the critical thickness of atomically thin superlattices is determined by a single

lattice constant that describes the entire superlattice structure. In Table 5.1, we list

the relaxed in-plane lattice constants a that we calculated for GaN, AlN, and the

1ML and 2ML AlN/GaN superlattices. Our calculated lattice constants for GaN and

AlN are in good agreement with experiment, [37] which we also list in Table ??. We

additionally show the epitaxial strain ϵ of each material if coherently strained to the

basal c-plane of AlN. The 1ML and 2ML superlattices exhibit a lattice mismatch of

only 1.6% compared to AlN, which should enable thick pseudomorphic superlattice

stacks on AlN substrates. To estimate the critical thickness tcrit, we can make use

of the fact that the critical thickness scales inversely with the lattice mismatch, i.e.,

tcrit ∼ 1/|ϵ|[38]. Recently, 30 nm thick pseudomorphic GaN layers in AlN/GaN/AlN

double heterostructures were demonstrated on AlN substrates[39, 40]. The lattice
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Material a [nm] (Theory) a [nm] (Expt.) ϵ (Theory) ϵ (Expt.)
GaN 0.318 0.319 -0.035 -0.026
1ML AlN/GaN
Superlattice

0.312 -0.016

2ML AlN/GaN
Superlattice

0.312 -0.016

AlN 0.307 0.311 0 0

Table 5.1: The relaxed in-plane lattice constants a and the corresponding epitaxial
strain ϵ if coherently grown on the basal c-plane of AlN. The experimental values
are from Vurgaftman and Meyer. The lattice constants of the superlattices are well
described by Vegard’s law.

mismatch between GaN and AlN is two times greater than the lattice mismatch

between the superlattices and AlN. Extrapolating from the experimentally demon-

strated thickness of GaN on AlN, we roughly estimate superlattice stacks with thick-

ness of ∼60 nm to be experimentally feasible. Overall, we expect that thick stacks of

atomically thin AlN/GaN superlattices can be grown on AlN substrates while being

nearly free of misfit dislocations that are harmful for device operation.

Our band-structure results demonstrate that the atomically thin superlattices retain

the ultra-wide band gap of random AlGaN alloys and exhibit dispersive conduc-

tion bands, indicating their promise for high-power devices. Figure 6.1 shows the

quasiparticle band structure of the 1ML and 2ML AlN/GaN superlattices. For both

structures, the band gap is direct at the Γ-point and energetically isolated from

other valleys. We calculated band gaps of 4.6 eV and 4.3 eV for the 1ML and 2ML

structures. We verified these values by comparing to previous calculations [28] that

explicitly included the computationally expensive semicore Ga 3s2p6 electrons in ad-

dition to the 3d10 4s2p1 valence electrons that we considered in the present work. The

band gaps of the 1ML and 2ML structures, calculated with the semicore pseudopo-

tentials, are 4.8 eV and 4.6 eV. These values are in good agreement with the band

gaps calculated in the present work with valence pseudopotentials, and justify the

choice of treating the 3s2p6 states as frozen core electrons. The band-gap results are
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Superlattice
Stacking
Period
(AlN/GaN)

Theory
(electronic,
this work)

Theory
(electronic,
previous
work)

Theory
(optical,
this work)

Experiment
(optical)

1ML / 1ML 4.6 4.8 4.7
2ML / 2ML 4.3 4.6 4.5
1ML / 2ML 5.0 4.9 4.9

Table 5.2: Theoretical quasiparticle band gaps (in eV) of atomically thin AlN/GaN
superlattices. The experimental optical gap, measured by Wu et al., agrees with the
theoretical predictions once excitonic effects are considered.

summarized in Table 5.2, and show excellent agreement with optical measurements

by Wu et al. [22]. In Table ??, we list the basic ab initio electronic and electron-

transport properties of GaN, AlN, and the atomically thin superlattices, namely the

effective masses (m∗), the room-temperature electron mobility (µ), the frequency of

the highest longitudinal-optical (LO) mode (ℏωLO), and the static dielectric constant

(εs). As input to our mobility calculation, we use the G0W0-corrected eigenvalues.

We also use the electron-phonon matrix elements calculated using density-functional

perturbation theory at the LDA level, which is a valid approximation since LDA

wave functions are nearly identical to G0W0 wave functions in common semiconduc-

tors [34], and therefore should give accurate electron-phonon matrix elements. Our

mobility results agree with Monte-Carlo simulations [41] and experimental measure-

ments [42] of the mobility of AlN to within 25%, which is typical for first-principles

calculations [43]. The effective mass, frequency of the highest LO mode, and dielec-

tric constants of the 1ML superlattice are close to linear interpolations of the end

binary compounds. Therefore, as the sublattice thickness decreases, the atomically

thin superlattices (approximately) approach the virtual-crystal limit.

Our electron transport calculations show that the mobility of atomically thin AlN/GaN

superlattices is significantly higher than the mobility of random AlGaN alloys. We

calculated the total mobility of random AlGaN alloys by combining the alloy-scattering-

limited mobility of disordered AlGaN with the phonon-limited mobility of a virtual
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Figure 5.1: Quasiparticle band structure of (a) one-monolayer AlN / one-monolayer
GaN superlattice and (b) two-monolayers AlN / two-monolayers GaN superlat-
tice, periodically repeating along the c-axis. Both structures are pseudomorphically
strained to AlN on the c-plane. The structural models for the superlattices are shown
in the insets, with the wurtzite c-axis pointing to the right. The ultra-wide band
gaps for both structures allow the materials to tolerate high electric fields without
undergoing dielectric breakdown due to impact ionization.
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Material m∗
⊥/m0 m∗

∥/m0
µ⊥
[cm2/V·s]

µ∥
[cm2/V·s]

ℏω
[meV]

ϵs,⊥/ϵ0 ϵs,∥/ϵ0

GaN 0.25 0.21 430 721 93.7 9.3 10.6
1ML/1ML
AlN/GaN
Superlattice

0.30 0.30 369 452 102.6 8.9 9.9

2ML/2ML
AlN/GaN
Superlattice

0.31 0.33 210 212 102.3 8.8 10.1

AlN 0.32 0.33 373 283 114.4 8.0 9.6

Table 5.3: Transport parameters (effective mass, room-temperature electron mobil-
ity, energy of the highest LO mode, and static dielectric constant) obtained from
first-principles calculations. All materials are pseudomorphically lattice-matched to
AlN on the c-plane, while the atoms and the c-axis length are allowed to relax.

crystal, using Matthiessen’s rule. In our previous work, we calculated the alloy-

limited mobility of disordered AlGaN alloys whose lattice constants were fully re-

laxed [16]. To facilitate comparisons with the superlattices, which are pseudomor-

phically strained to AlN, we recalculated the mobility of random AlGaN alloys that

are also pseudomorphically strained to AlN. We found that strain does not change

the alloy scattering potential to within 0.1 eV based on the conduction-band offset,

but reduces the total mobility due to the increase of the effective mass. We cal-

culated the virtual-crystal phonon-limited mobility by interpolating the mobility of

GaN and AlN using an analytical model for piezoelectric scattering [44] that describes

the functional dependence of the mobility on the effective mass, dielectric constant,

and electromechanical coupling constant K, µ ∝ ε/(K2m3/2). We found that the

total mobility of the alloy is, to first order, independent of the electron-phonon in-

terpolation model used because of the dominance of alloy scattering. Compared to

the alloy scattering potential of 1.8 eV, the scattering potential due to monolayer

fluctuations is only 0.1 eV, which is the energy difference between the conduction

band of the 1ML and 2ML structures, evaluated by referencing their branch-point

energies[45]. Therefore, we do not expect minor thickness fluctuations to signifi-

cantly affect the mobility. In Figure 5.2, we compare the in-plane and out-of-plane
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room-temperature mobility of AlN/GaN superlattices and random AlGaN alloys, at

a typical electron density of 1018 cm−3. The superlattices exhibit enhanced mobility

compared to random AlGaN due to the absence of alloy disorder. In particular, the

1ML superlattice exhibits an in-plane (out-of-plane) mobility that is 3.1× (3.8×)
larger than the mobility of random Al0.5Ga0.5N. As mentioned earlier, the mobility

of the 1ML superlattice is close to the virtual-crystal phonon-limited mobility. The

difference in the mobility between the 1ML and 2ML superlattices can be qualita-

tively understood in terms of the fact that there are more phonon modes that can

scatter electrons in the 2ML superlattice compared to the 1ML superlattice since

there are eight atoms in the primitive cell of the 2ML superlattice compared to four

atoms in the 1ML superlattice. Indeed, the thermally averaged relaxation time is

approximately 30% larger in the 1ML superlattice than in the 2ML superlattice.

The mobility calculated in the self-energy-relaxation-time approximation (SERTA)

is 35-40% larger in the 1ML superlattice (µ⊥ = 209 cm2/Vs, µ∥ = 207 cm2/Vs)

than in the 2ML superlattice (µ⊥ = 154 cm2/Vs, µ∥ = 146 cm2/Vs), which ad-

ditionally reflects the increased effective mass in the 2ML structure. Interestingly,

self-consistently solving the iterative Boltzmann transport equation increases the

mobility of the 1ML superlattice by a factor of ∼ 2, but the mobility of the 2ML

superlattice increases only by ∼ 40%, compared to the SERTA mobility. This sug-

gests that the additional electron-phonon scattering pathways in the 2ML structure

contribute more strongly to backward scattering, as opposed to forward scattering,

than in the 1ML structure[46]. Nevertheless, electrons in the 2ML superlattice still

exhibit a 1.6× greater mobility than in random Al0.5Ga0.5N. Therefore, replacing

disordered AlGaN alloys with atomically thin superlattices is a viable solution for

increasing the electron mobility.
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Figure 5.2: (a) In-plane (⊥c) and (b) out-of-plane (∥c) mobility of atomically thin
AlN/GaN superlattices compared to AlGaN alloys. The semiconductors are pseudo-
morphically strained to AlN on the c-plane. The mobility of the superlattice with
one-monolayer (1ML) sublattice periodicity is indicated by the filled star, and the
mobility of the two-monolayers (2ML) superlattice is indicated by the unfilled star.
The black curve is the total mobility of a random alloy, and the blue and purple
curves show the alloy-scattering and phonon-scattering components, respectively.
Both the in-plane and out-of-plane mobility of the superlattices exceed the mobility
of random Al0.5Ga0.5N.
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5.4 Prospects for power electronics

5.4.1 Power-electronics figure of merit

Our results show that the absence of alloy scattering in AlN/GaN superlattices

increases the BFOM compared to both GaN and Al0.5Ga0.5N alloys. To calcu-

late the BFOM, we used the following formula to estimate the breakdown field,

Fbr = 3.3,MV cm−1 × (εG/3.5)
2, where 3.3 MV cm−1 is the experimentally known

breakdown field of GaN[47, 48]. The model proposed by Higashiwaki et al.[48] slightly

overestimates the breakdown field of ultra-wide-band-gap semiconductors compared

to the model that we have used; however, we verified that both models support the

conclusions of our work. In Figure 5.3, we show that this simple phenomenological

model properly describes the experimentally known breakdown fields in a wide range

of semiconductors, including Si[48], GaAs[48], 4H-SiC[48, 49], AlGaN[50, 51, 52],

diamond[53], and β-Ga2O3[54], although these experiments are subject to large un-

certainties. This model also agrees with theoretical calculations of the breakdown

field using the Von Hippel criterion[55, 56]. Accurate experimental measurements

of the breakdown field do not yet exist for AlN and cBN. At a given (effective)

composition, the breakdown field and dielectric constant in the superlattices are ap-

proximately equal to the breakdown field and dielectric constant in random AlGaN.

However, the electron mobility is higher due to the absence of alloy scattering, thus

the BFOM is also larger. In Figure 5.4, we show that the AlN/GaN superlattices

exhibit greater BFOM than AlGaN alloys at an Al composition of 50% for both lat-

eral and vertical transport. For reference, we have also shown the BFOM of relaxed

GaN[10], i.e., GaN that has not been pseudomorphically strained to AlN, which is

the state-of-the-art for power electronics. The advantage of the superlattices is high-

lighted by the fact that Al compositions of ∼75% is needed for random AlGaN alloys

to obtain even a two-fold increase of its BFOM compared to GaN. For AlGaN alloys

to be competitive with the 1ML superlattice, Al compositions greater than ∼85%
is needed, at which point dopants undergo the DX transition. At a much lower ef-

fective composition of 50%, the 1ML superlattice has a lateral (vertical) BFOM of

15 (18) MW/cm2, and the 2ML superlattice has a lateral (vertical) BFOM of 6.5
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Figure 5.3: Breakdown field as a function of the band gap in a wide range of semi-
conductor. The scatter points are experimental, and the solid line is the phenomeno-
logical model, Fbr = 3.3MV/cm× (εG/3.5)

2.

(6.5) MW/cm2, which are ∼ 4× (∼ 3×) and ∼ 1.5× (∼ 1.5×) times larger than in

random Al0.5Ga0.5N.

We find that the modified BFOM, which accounts for dopant ionization, is higher

in the atomically thin superlattices than in random AlGaN alloys throughout the

entire composition range. We calculated the room-temperature dopant ionization

ratio η using the formula, η =
(
1 + g exp

(
εF−εD
kBT

))−1

where g is the degeneracy

factor, εF is the electron quasi-Fermi level, εD is the dopant ionization energy, and

kBT is the Boltzmann constant times the temperature. We assumed ultra-high

purity of the materials, i.e., no charge compensation by impurities. We obtained εD

by empirically fitting a sigmoid function to the experimental ionization energies of

Si in AlGaN, measured by Collazo et al.[18] (see 5.5). We numerically calculated
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Figure 5.4: Baliga Figure of Merit for (a) lateral and (b) vertical transport in atomi-
cally thin AlN/GaN superlattices compared to AlGaN alloys. We assumed the break-
down field is related to the band gap according to, Fbr ∝ ε2G. The filled and unfilled
stars show the BFOM of the one-monolayer (1ML) and two-monolayer (2ML) super-
lattices. The solid curve shows the BFOM of random AlGaN alloys. The dashed line
shows the reference BFOM of relaxed GaN. All materials except the GaN reference
are pseudomorphically lattice-matched to AlN.
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the quasi-Fermi level for a fixed electron density of 1018 cm−3 using the analytical

3D density-of-states expression. In Figure 5.6, we compare the modified BFOM of

AlN/GaN superlattices and random AlGaN alloys. The modified BFOM of random

AlGaN alloys reaches a maximum of 8.4 GW/cm2 at an Al composition of 84%, very

close to the DX transition. As we will show later in the text, this is higher than

the modified BFOM of all known non-nitride semiconductors with experimentally

demonstrated dopability. The modified BFOM of Al-rich AlGaN is exceeded only by

the 1ML AlN/GaN superlattice, which exhibits a superior modified BFOM of 11.4

GW/cm2 for vertical transport and 9.3 GW/cm2 for lateral transport. Compared to

random Al0.5Ga0.5N and GaN, the modified BFOM of the 1ML superlattice is 300-

400% greater. Although the modified BFOM of the 2ML superlattice is lower, it is

still 65% greater than the modified BFOM of random Al0.5Ga0.5N and 95% greater

than GaN. These results underscore the advantage of nitride semiconductors for

high-performance and high-power applications.

5.4.2 Contact resistance and ease of integration with dielectrics

In addition to their improved mobilities and figure of merit, the atomically thin

superlattices offer lower specific contact resistance to metals and better integration

with dielectrics compared to Al-rich AlGaN alloys. An additional consideration in

this comparison, which is not reflected in our work, is the experimental fact that

random alloys are easier to grow than atomically thin superlattices. We address this

by highlighting the technological advantages that the superlattices offer compared to

random alloys, beyond what is reflected in the modified BFOM. We believe that these

benefits warrant experimental effort on the growth and characterization of the su-

perlattices. Although our calculations show that Al-rich random AlGaN alloys with

Al composition below ∼85% are promising in terms of their modified BFOM, their

wider adoption has been hampered by the unfavorable position of their conduction

band2. In particular, the large band offset between the conduction band of Al-rich

AlGaN and the Fermi level of common ohmic-contact metals, e.g., Ti- or V/Zr-based

contacts, leads to a large barrier for electron tunneling between the metal and the
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Figure 5.5: The ionization energy of Si in AlGaN as a function of Al composition.
The experimental data points are obtained from Collazo et al.
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Figure 5.6: Modified Baliga Figure of Merit (BFOM) for (a) lateral transport and
(b) vertical transport. The modified BFOM is the BFOM multiplied by the dopant
ionization ratio, which we calculated using the dopant ionization energy measured
by Collazo et al. The vertical-transport modified BFOM of the 1ML superlattice
is superior to random AlGaN throughout its composition range. Compared to the
current state-of-the-art GaN technology (blue line), AlN/GaN superlattices offer
performance improvements of up to 400%.
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semiconductor. This is problematic since the tunneling probability depends expo-

nentially on the barrier height, i.e., P ∝ exp
(
−
√
ϕB L

)
, where ϕB is the energetic

barrier and L is the tunneling distance. Figure 5.7 shows the composition-dependent

conduction-band position of random AlGaN alloys[14] and AlN/GaN superlattices,

which we evaluated by referencing their branch point energies and used the bowing

calculated by Kyrstos et al.[14] The conduction band in the 1ML (2ML) superlattice

is lower by 0.43 (0.57) eV than in Al0.75Ga0.25N and lower by 0.65 (0.79) eV than in

Al0.85Ga0.15N, thus the barrier for electron tunneling is lower by the same amount.

Further progress in compositionally graded AlGaN contacts[57, 58] is necessary for

Al-rich random AlGaN alloys to be technologically viable. Related to the same prob-

lem, the small conduction band offset between Al-rich random AlGaN alloys and di-

electrics, e.g., AlN, can lead to large leakage currents. For example, the band offset

is only 0.58 eV in the Al0.75Ga0.25N/AlN system, and 0.44 eV in Al0.8Ga0.2N/AlN. In

contrast, the band offset is 1.0 eV between the 1ML superlattice and AlN, and 1.15

eV between the 2ML superlattice and AlN. The more favorable conduction band

position of the superlattices compared to random AlGaN alloys results in better

integration with dielectrics. Hence, lower specific contact resistance and better inte-

gration with dielectrics is made possible for the atomically thin superlattices thanks

to their lower effective composition and lower conduction-band position compared to

Al-rich random AlGaN alloys.

5.4.3 Practical growth considerations

Although we have considered infinitely repeating periodic superlattices in this work,

the structures that we have proposed can be experimentally realized by growing

superlattices that are sufficiently thick. The electron thermal wavelength λth =√
2πℏ2

m∗kBT
is approximately 10 nm in AlGaN, and the scattering mean-free path λmfp =√

3kBT
m∗ ⟨τ⟩, which we estimated from our mobility calculations, is between 10 nm and

15 nm. For vertical transport, the superlattice stack thickness should exceed these

length scales, with thicker stacks enabling higher breakdown voltages. For in-plane

transport, we expect 30-nm-thick stacks to be sufficient, which is the typical thick-
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Figure 5.7: Conduction-band offset of random AlGaN alloys (solid curve) and atom-
ically thin superlattices (stars) as a function of Al composition. The band offset is
given relative to the conduction-band position of GaN, which we evaluated by refer-
encing their branch-point energies. For random AlGaN alloys, we used the bowing
parameter for the conduction band calculated by Kyrtsos et al.
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ness used for GaN quantum-well high-electron mobility transistors[40]. In terms of

growth, thermodynamic mixing may occur at high growth temperatures between the

AlN and GaN sublattice layers, thereby producing ternary AlxGa1−xN/AlyGa1−yN

superlattices, with x ≈ 1 and y ≈ 0. Since the mobility of Al-rich and Ga-rich AlGaN

alloys is phonon-limited rather than disorder-limited, we expect the performance of

the atomically thin superlattices to be robust against minor ternary-cation mixing

in the sublattice layers. Therefore, the superlattices that we have proposed should

be experimentally feasible as long as good uniformity in the sublattice composition

and thickness is maintained.

5.4.4 Comparison with other semiconductors

Overall, the 1ML AlN/GaN superlattice has the largest modified BFOM among all

known semiconductors with experimentally demonstrated dopability. Its modified

BFOM is larger than the modified BFOM of β-Ga2O3 by a factor of ∼3, 4H-SiC by

a factor of ∼7, cBN by a factor of ∼12, Si by a factor of ∼1300, and diamond by

a factor of ∼10,000. Table ?? lists the band gap, breakdown field, dielectric con-

stant, dopant ionization energy, and carrier mobility that we used for the calculation

of the BFOM and the modified BFOM for all semiconductors that we considered

(References: a[18], b[5], c[10], d[59], e[43]). We assume a carrier density of 1018 cm−3

for all materials when calculating the dopant-ionization fraction. For consistency in

our comparison of the modified BFOM with other materials, we used first-principles

band gaps and phonon-limited mobilities calculated with many-body corrections and

the iterative Boltzmann transport equation with dipole-corrected ab-initio electron-

phonon matrix elements[10, 43, 59]; if not available, we used values that are widely

accepted in the literature[5, 56, 60, 61]. We calculated the breakdown fields us-

ing the model presented above, and obtained the dopant ionization energies from

literature[5, 18, 62]. In addition to the 1ML superlattice, Al-rich AlGaN with Al

composition below ∼85% shows great promise for high-power devices if the techno-

logical challenges associated with high specific contact resistance and integration with

non-native dielectrics, e.g., MgO[63], can be resolved. However, these challenges are
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fundamentally related to the unfavorable position of their conduction bands, and the

extent to which progress can be made is unclear. In this regard, the superlattices offer

a clear advantage since they have a lower effective composition and lower conduc-

tion band, which allows for better integration with metals and dielectrics. Random

AlGaN alloys require a minimum Al composition of 61% for their modified BFOM

to be competitive with their closest non-nitride competitor, β-Ga2O3, which exhibits

a modified BFOM of 3.7 GW/cm2. The 2ML AlN/GaN superlattice also exhibits a

high modified BFOM of 4.3 GW/cm2 that is comparable to the modified BFOM of

β-Ga2O3. Unlike β-Ga2O3, which suffers from severe self-heating due to low thermal

conductivity (∼20 W m−1 K−1)[55], III-nitride semiconductors have higher ther-

mal conductivity (∼200-300 W m−1 K−1 for ordered compounds[64, 65, 66]) thanks

to weaker anharmonic phonon-phonon coupling. This enables efficient cooling and,

therefore, high performance since the phonon-limited mobility decreases sharply with

temperature. Finally, an advantage of the III-nitrides is that they are among the

few ultra-wide-band-gap semiconductors for which both n-type and p-type doping

has been experimentally demonstrated, which is necessary for ambipolar high-power

devices[67].

5.5 Conclusion

In summary, we propose an experimentally feasible design, i.e., atomically thin su-

perlattices of AlN and GaN, that removes alloy scattering in AlGaN and, therefore,

enhances its power-electronics figure of merit. Our calculations show that AlN/GaN

superlattices are promising semiconductors for next-generation power electronics due

to their ultra-wide band gap, high electron mobility, and availability of shallow

dopants. They exhibit the largest modified BFOM among all the technologically

relevant semiconductors that we have considered. Moreover, such superlattices offer

lower specific contact resistance and better integration with dielectrics compared to

Al-rich random AlGaN alloys. Most importantly, similar superlattices have already

been demonstrated experimentally using industrial growth techniques. Similar theo-

retical characterization and materials prediction from first principles will enable the
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Material
εG
[eV]

Fbr

[MV/cm]
ϵs

εD
[meV]

µ
[cm2/V·s]

BFOM
[GW/cm2]

MBFOM
[GW/cm2]

1ML/1ML
AlN/GaN
Superlattice

4.8 6.2 9.2 15a
452 (∥)
369 (⊥)

22 (∥)
18 (⊥)

11.4 (∥)
9.3 (⊥)

2ML/2ML
AlN/GaN
Superlattice

4.6 5.7 9.2 15a 210 8.0

Random
Al0.75Ga0.25N
(this work)

5.5 8.1 8.8 18a 125 13 6.4

Random
Al0.5Ga0.5N
(this work)

4.8 6.2 9.1 15a 115 5.6 2.6

AlN
(this work)

6.3 11 8.5 255a 373 87 3.5×10−3

β-Ga2O3 4.8b 6.2 10b 30b 200b 11 3.7
GaN 3.5 3.8 9.7 15a 830c 6.4 2.2
4H-SiC 3.2a 3.1 9.7b 60b 900b 4.1 1.7
cBN 6.8d 12 7.1d 250d 1610d 490 0.95
Si 1.1b 0.3 11.7b 45b 1400e 1.2× 10−2 8.8× 10−3

Diamond 5.7d 8.8 5.7d 370d 1970d 170 1.1× 10−3

Table 5.4: Comparison of the Baliga Figure of Merit and Modified Baliga Figure of
Merit for various semiconductors. The monolayer-thin AlN/GaN digital-alloy super-
lattice surpasses all known ultra-wide-band-gap semiconductors for power-electronics
applications.
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discovery of efficient semiconductors for a wide range of device applications.
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[32] P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavaz-

zoni, S. De Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N. Marzari,

I. Timrov, A. Urru, and S. Baroni. Quantum espresso toward the exascale.

Journal of Chemical Physics, 152:154105, 2020.

[33] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic

method. Physical Review Letters, 45:566–569, 1980.

[34] M. S. Hybertsen and S. G. Louie. Electron correlation in semiconductors and

insulators: Band gaps and quasiparticle energies. Physical Review B, 34:5390–

5413, 1986.

[35] J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, and S. G.

Louie. Berkeleygw: A massively parallel computer package for the calculation of

the quasiparticle and optical properties of materials and nanostructures. Com-

puter Physics Communications, 183:1269–1289, 2012.

155



[36] S. Ponce, E. R. Margine, C. Verdi, and F. Giustino. Epw: Electron-phonon

coupling, transport and superconducting properties using maximally localized

wannier functions. Computer Physics Communications, 209:116–133, 2016.

[37] I. Vurgaftman and J. R. Meyer. Band parameters for nitrogen-containing semi-

conductors. Journal of Applied Physics, 94:3675–3696, 2003.

[38] J. Singh. Electronic and Optoelectronic Properties of Semiconductor Structures.

2003.

[39] M. Qi, G. Li, S. Ganguly, P. Zhao, X. Yan, J. Verma, B. Song, M. Zhu,

K. Nomoto, H. Xing, and D. Jena. Strained gan quantum-well fets on single

crystal bulk aln substrates. Applied Physics Letters, 110:063501, 2017.

[40] A. Hickman, R. Chaudhuri, S. J. Bader, K. Nomoto, K. Lee, H. G. Xing, and

D. Jena. High breakdown voltage in rf aln/gan/aln quantum well hemts. IEEE

Electron Device Letters, 40:1293–1296, 2019.

[41] J. Fang, M. V. Fischetti, R. D. Schrimpf, R. A. Reed, E. Bellotti, and S. T.

Pantelides. Electron transport properties of alxga1-xn/gan transistors based on

first-principles calculations and boltzmann-equation monte carlo simulations.

Physical Review Applied, 11:044045, 2019.

[42] Y. Taniyasu, M. Kasu, and T. Makimoto. Increased electron mobility in n-type

si-doped aln by reducing dislocation density. Applied Physics Letters, 89:182112,

2006.
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CHAPTER VI

Origin of the Injection Dependence of the Optical

Spectrum of III-nitride Light-Emitting Diodes

III-nitride light-emitting diodes (LEDs) exhibit an injection-dependent emission blueshift

and linewidth broadening that is severely detrimental to their color purity. Us-

ing first-principles multi-scale modelling that accurately captures the competition

between polarization-charge screening, phase-space filling, and many-body plasma

renormalization, we explain the current-dependent spectral characteristics of polar

III-nitride LEDs fabricated with state-of-the-art quantum wells. Our analysis uncov-

ers a fundamental connection between carrier dynamics and the injection-dependent

spectral characteristics of light-emitting materials. For example, polar III-nitride

LEDs offer poor control over their injection-dependent color purity due to their poor

hole transport and slow carrier recombination dynamics, which forces them to oper-

ate at or near degenerate carrier densities. Designs that accelerate carrier recombi-

nation and transport and reduce the carrier density required to operate LEDs at a

given current density lessen their injection-dependent wavelength shift and linewidth

broadening. This chapter was reprinted (adapted) with permission from AIP Ad-

vances 12, 125020 (2022). Copyright (2022) American Institute of Physics.
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6.1 Introduction

Although III-nitride light-emitting diodes (LEDs) have been highly successful for

producing blue light efficiently, they face several challenges for the longer green and

red wavelengths [1]. Their wall-plug efficiency decreases as the emission wavelength

increases and becomes worse for high-power operation, a phenomenon known as the

green gap [2, 3, 4, 5, 6]. Another challenge is the blueshift of the emission wave-

length and the broadening of the spectral linewidth with increasing carrier injection.

These effects change the perceived hue, which severely deteriorates the color purity of

LEDs at high operating powers [? ]. In many cases, the perceived hue is blueshifted,

and this worsens the efficiency gap by requiring even longer wavelength devices to

compensate for the perceived blueshift. Despite the overwhelming technological im-

portance of this problem, a quantitative understanding of the injection-dependent

spectral blueshift and linewidth broadening has been missing.

6.1.1 Physics of band-to-band emission

The band-edge emission of polar InGaN quantum wells is determined by the interplay

of competing mechanisms that contribute to the emission by shifting the band gap

or by filling the bands (Figure 6.1). To date, the most widely accepted explanation

of the injection-dependent blueshift is screening of polarization fields by free carriers,

with a smaller role attributed to phase-space filling [? ? ]. Meanwhile, there is no

widely accepted explanation for the origin of the linewidth broadening. III-nitride

quantum wells exhibit strong piezoelectric and spontaneous polarization fields, which

contribute to a quantum-confined Stark shift of the band gap [7, 8, 9]. As free carriers

are injected into the quantum well, they screen the polarization charges, which results

in a blueshift of the band gap as the bands flatten (Figure 6.1(a)). A competing, and

often overlooked, effect that redshifts the energy is the renormalization of the band

gap by many-body effects in the free-carrier plasma [10, 11, 12, 13], an effect that

has been directly measured in bulk samples [14, 15]. At carrier densities exceeding

1018 cm−3 relevant for LED operation, excited carriers exist predominantly in the

correlated plasma state rather than as bound excitons [16], due to Pauli blocking
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Figure 6.1: Schematic illustrations of the three primary effects that contribute to the
band-edge emission of polar III-nitride quantum wells at carrier densities relevant for
LED operation. Band-gap shift effects such as polarization-charge screening (panel
(a)) and plasma renormalization (panel (b)) contribute to the emission spectrum by
shifting the band gap EG. Band-filling effects such as phase-space filling (panel (c))
contribute to the emission spectrum by changing the finite occupation of carriers
(indicated in the figure by the electron and hole quasi-Fermi levels Ef,n and Ef,p,
and their difference ∆Ef ), which in turn determines the region of phase-space from
which carriers recombine to produce light.

and screening of the Coulomb interaction [? ]. An electron (hole) in a plasma repels

other electrons (holes), creating a surrounding region of positive (negative) charge,

called the exchange-correlation hole [? ]. The net result is an effective attractive

potential for the carriers, which lowers the conduction band and raises the valence

band as the carrier density increases (Figure 6.1(b)). In contrast to band-gap shift

effects, phase-space filling contributes to a blueshift of the peak-emission energy by

changing the occupancies of the bands [7, 8, 9]. As the carrier density increases and

the quasi-Fermi levels penetrate deeper into the bands (Figure 6.1(c)), the emission

occurs from states that are further away from the band edge. This effect becomes

pronounced only if both carriers are degenerate. Therefore, the emission of InGaN

quantum wells is influenced by the complex interplay of band-gap shift and band-

filling effects in the free-carrier plasma.
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6.1.2 Literature review

An experimental understanding of the band-edge emission of InGaN LEDs has been

impeded by the difficulty in distinguishing the competing effects. For example, Kuok-

stis et al. compared the luminescence of bulk films against quantum wells to isolate

the effects of phase-space filling from polarization-charge screening [17]. However,

this approach assumes that polarization fields do not affect phase-space filling, which

is not true as we will show later. On the other hand, several experimental works have

attempted to explain the injection-dependent broadening of the high-energy tail of

the luminescence spectrum in terms of carrier delocalization [18, 19, 20, 21, 22]. Al-

though these works reveal interesting correlations, it is difficult to establish causation

from their data. On the theoretical front, previous studies have not explained the

experimentally observed injection dependence of the blueshift and linewidth broad-

ening. Della Sala et al. used self-consistent tight-binding simulations in the virtual-

crystal approximation to conclude that polarization-charge screening is responsible

for the injection-dependent blueshift but they neglected phase-space filling, carrier

localization, and many-body renormalization [23]. On the other hand, Peng et al.

neglected alloy disorder, and it is unclear what simulation parameters they used to

match experimental data since the work dates from a time when various fundamental

parameters, e.g., the band gap of InN [24] and polarization constants [25], were not

accurately known. Therefore, a theory of the injection dependence of the emission

spectrum of III-nitride LEDs is entirely missing.

6.1.3 Overview of this work

In this work, we use first-principles multi-scale modelling to explain the carrier-

injection dependence of the emission blueshift and linewidth broadening of III-nitride

quantum wells. We benchmark our calculations against electroluminescence (EL)

measurements of a polar InGaN quantum-well device, and show that our calculation

explains the experimentally observed injection dependence of the EL spectrum. In

context of these results, we identify design strategies that minimize the wavelength

shift and linewidth broadening of III-nitride emitters.
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6.2 Methods

6.2.1 Computational methods

We self-consistently solved the Schrödinger and Poisson equations using nextnano++[26]

and an in-house code, with parameters determined from first-principles density-

functional theory (DFT) calculations [25, 27, 28, 29, 30]. As input to our Schrödinger-

Poisson calculations, we used elastic constants obtained in the local-density approx-

imation [27] and improper polarization constants [25], deformation potentials [28],

and band gaps and offsets calculated with hybrid-functional DFT [29]. To obtain

room temperature values for the band gaps, we used empirical Varshni parameters

[31], although the temperature-dependent band-gap narrowing is very weak in the III-

nitrides. We used the two-band effective-mass model for the conduction and valence

bands, which is justified since we are interested in the band-edge optical properties

[32, 33, 34]. We used m∗
e = 0.19 (∥), m∗

e = 0.21 (⊥) and m∗
h = 1.89 for GaN, and

m∗
e = 0.07 and m∗

h = 1.81 for InN, which are consistent with hybrid-functional [35]

and many-body-perturbation-theory calculations [30].

6.2.1.1 Details of 3D calculation

For our 3D calculations with nextnano++, we simulated thirty supercells of size

18 nm×18 nm×21 nm containing an InGaN quantum well with periodic boundaries,

which is a valid approximation to the quantum well in an LED since the junction

field is negligible if the device is fully turned on [12]. To account for alloy disorder,

we randomly assigned the composition in each grid site as either InN or GaN, and

did not perform any further compositional averaging. We used a grid-size spacing

of 0.3 nm in all directions, which corresponds to the interaction distance in (In)GaN

[36]. As input to our modeling, we used the out-of-plane composition profile of a

commercial device, which we measured experimentally using energy-dispersive X-ray

spectroscopy (EDS) and cross-validated with X-ray diffraction (XRD) measurements.

Using this approach, we find that holes near the valence-band edge are localized

within the plane due to alloy disorder, meanwhile electrons are extended within the
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plane [12].

6.2.1.2 Details of 1D calculation

For our 1D calculations with our in-house code, we self-consistently solved the one-

dimensional Schrödinger and Poisson equations with a grid spacing of 0.01 nm [37].

As mentioned in the main text, we accounted for many-body effects using the local-

density approximation for the exchange-correlation potential [38]. We screened the

local-density exchange-correlation potential with the low-frequency dielectric con-

stant ϵ0 [38]. We treated the electron and hole renormalization independently, in ac-

cordance with previous work on other semiconductors [12, 9]. This approach allows

us to self-consistently calculate the band-gap shift effects due to polarization-charge

screening and many-body band-gap renormalization [12, 9].

6.2.1.3 Calculation of spontaneous emission spectrum

We calculated the spontaneous-emission spectrum at first considering only band-

filling effects in the disordered landscape of the quantum well, later shifting the

spectrum energies to account for band-gap shift effects. We verified the validity of

such a shift by checking that polarization-charge screening and plasma renormaliza-

tion lead predominantly to a rigid shift of the bands (Figure 6.7). We calculated the

spontaneous-emission spectrum with the equation,

Rsp(ℏω) =
e2nrω

ℏm0ϵ0c3V
|pcv|2

1

3

∑
n,m

fnfm

∣∣∣∣∣∣
∫
V

d3rψn(r)ψm(r)

∣∣∣∣∣∣
2

δ(εn − εm − ℏω) (6.1)

where ω is the photon frequency, nr is the refractive index, V is the recombination

volume, pcv is the bulk interband momentum matrix element between the conduction

and valence bands, ψn and ψm are electron and hole envelope functions, fn and fm are

electron and hole occupation factors, and εn and εm are electron and hole energies.

We approximated the delta function with a Gaussian, and used a broadening param-

eter of 50 meV. We obtained the quasi-Fermi levels using the bisection method for
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root finding, assuming Fermi-Dirac statistics. To account for phase-space filling, we

calculated the spontaneous-emission spectrum in the rigid-band approximation. We

separately calculated the change to the band gap due to polarization-charge screening

and many-body renormalization at the level of the local-density approximation and

the virtual-crystal approximation. We then combined these two calculations to ob-

tain the net carrier-density dependence of the peak-emission energy, as described in

the main text, thus accounting for phase-space filling, polarization-charge screening,

and many-body renormalization.

6.2.1.4 Treatment of exchange and correlation

We treated many-body exchange-correlation effects of the free carriers in the local-

density approximation, using the Perdew-Wang parameterization [39] of the Monte-

Carlo calculation by Ceperley and Alder [40]. This treatment of exchange and corre-

lation accurately describes the experimentally measured band-gap renormalization of

bulk GaN (Figure 6.2).[14] Although the LDA works well for free-carrier plasmas in

the virtual-crystal approximation, it cannot be faithfully applied to three-dimensional

calculations with alloy disorder. As the plasma becomes more inhomogeneous, the

LDA exchange becomes less effective in cancelling the spurious self-interaction of oc-

cupied carriers caused by the Hartree approximation [? ]. Therefore, we have chosen

to perform our calculations of polarization-charge screening and many-body renor-

malization in the virtual-crystal approximation, where the use of the LDA exchange-

correlation is justified. Nevertheless, we do not expect the conclusions of our one-

dimensional virtual-crystal calculations to change in the presence of carrier localiza-

tion. Localized holes will screen the polarization charge less effectively compared to

extended virtual-crystal states, but they will also contribute to a smaller band-gap

renormalization due to reduced Coulomb matrix elements with other holes. Hence,

we expect a cancellation of errors between polarization-charge screening and many-

body renormalization in one-dimensional calculations, which justifies our virtual-

crystal treatment of free-carrier screening. We note that this is an improvement over

previous works that have neglected many-body exchange-correlation effects entirely
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Figure 6.2: Theoretical band-gap renormalization by free carriers due to many-body
exchange-correlation effects in bulk GaN (solid curve), compared to experimental
measurements (scatter points) by Nagai et al.

[32, 34, 41, 42, 43].

6.2.2 Experimental methods

To validate the accuracy of our calculations, our collaborators at the University of

New Mexico performed experimental measurements of the current-dependent elec-

troluminescence (EL) spectrum of an InGaN LED packaged at Lumileds. These

LEDs were designed so that practically all of the recombination occurs over a single

quantum well, thus allowing us to determine the carrier density, which is needed to

compare experiment with simulation. In state-of-the-art green LEDs, the growth

of the active layers is optimized around V-defects in order to enable efficient hole

injection into quantum wells farther away from the p-side of the device[38]. In such

LEDs, recombination occurs in multiple quantum wells, resulting in improved EQE
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droop; however, this also gives rise to large uncertainty in estimating the carrier den-

sity, which is needed for comparison to theory. To avoid the uncertainty in carrier

density, a quasi-single-quantum-well LED of simplified epitaxial design was the focus

of our experimental study. This simplified device is representative of the quantum-

well recombination dynamics in state-of-the-art LEDs, but not the inter-well carrier

transport. The active region is comprised of three 3 nm quantum wells but practi-

cally all of the recombination occurs in the well closest to the p-type AlGaN electron

blocking layer. This conclusion is supported by analysis of the measured angular

distribution of the far-field radiation of unencapsulated planar LEDs[44] and also by

comparing the device characteristics to those of an otherwise equivalent LED with

the two wells closer to the n-side of the junction modified to emit blue instead of

green by reducing their indium concentrations. The latter LED shows an obvious dif-

ference in photoluminescence spectra but its current-dependent electroluminescence

characteristics (spectra, EQE, and forward voltage) are practically identical to those

of the studied LED having three green wells. The epitaxial wafers were fabricated

into LEDs using established manufacturing processes at Lumileds, and packaged into

LUXEON C packages for testing.

The electroluminescence measurements of the quasi-single-quantum-well LED were

performed under pulsed operation to minimize Joule heating, while ensuring that

the time-averaged current density is only 1% of the peak current density. Our mea-

surements exhibit both a current-dependent blueshift of the peak emission energy

and broadening of the spectral linewidth (Figure 6.3(a)). The injection-dependent

broadening is stronger on the high-energy side of the luminescence spectrum, which

other groups have observed as well [18, 19, 20, 21, 45]. In order to compare our mea-

surements with theory, we measured the recombination lifetime and carrier density

using a previously developed small-signal RF technique [46, 47], in which we acquired

and simultaneously fit the input impedance and modulation response to an equiv-

alent circuit model of the LED to obtain the differential carrier lifetime. We then

integrated the differential carrier lifetime to obtain the full carrier lifetime [? 48].

Figure 6.3(b) shows the recombination lifetime as a function of the current density;
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Figure 6.3: (a) Experimentally measured electroluminescence spectra of the InGaN
quantum-well LED exhibiting a current-dependent blueshift and linewidth broaden-
ing. (b) Experimentally measured recombination lifetime (left axis) and the carrier
density (right axis) calculated from the recombination lifetime, as a function of the
injected current density.

we also show the equivalent carrier density calculated from the relation, J = en2D/τ ,

where J is the current density, n2D is the two-dimensional carrier density, and τ is the

recombination lifetime. By measuring the recombination lifetime at various current

densities, we converted the current dependence of the EL spectra to a carrier-density

dependence, which is directly accessible in our calculations.

6.3 Source of the blueshift and linewidth broadening

6.3.1 Peak-emission shift

Our modeling shows that we can accurately describe the carrier-density dependence

of the peak-emission blueshift if we include the contributions of phase-space filling,

polarization-charge screening, and many-body renormalization. In Figure 6.4, we

show that our calculated carrier-density dependence of the peak-emission energy is

in excellent agreement with experiment. We found that we needed to rigidly shift the
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band gap by -0.4 eV to quantitatively match the experimental gap, which suggests

the presence of a systematic band-gap error in the modified k · p model [49]. We

calculated the relative contribution of phase-space filling in the rigid-band approxi-

mation by assuming that polarization-charge screening and plasma renormalization

can be treated, to first order, as a rigid shift of the bands. We obtained the rela-

tive contribution of polarization-charge screening by calculating the band-gap shift

in a one-dimensional calculation at the level of the mean-field Hartree approxima-

tion. Finally, we obtained the relative contribution of plasma renormalization by

taking the difference of the band-gap shift between the Hartree and local-density

approximations. We also find that for quantum wells with thicknesses of ∼3 nm, the

band-gap blueshift due to polarization-charge screening is compensated by a redshift

due to plasma renormalization. Importantly, we show that polarization screening,

phase-space filling, and plasma renormalization do not independently describe the

shape of the carrier-density dependence curve. Therefore, our results show that it is

crucial to accurately capture the contribution of all three effects to correctly model

the emission spectra of InGaN emitters.

6.3.2 Cancellation between polarization screening and plasma renormal-

ization

The blueshift of the band gap due to polarization-charge screening is compensated

by a redshift of the band gap due to plasma renormalization. We demonstrate that

the quantum-well thickness influences how polarization-charge screening and many-

body effects compete in shifting the band gap. In the range of carrier densities

relevant for LED operation, the band gap remains approximately independent of

the carrier density due to a cancellation of the blueshift due to polarization-charge

screening by the redshift due to plasma renormalization, as shown in Figure 7.4(a).

The cancellation of these two effects depends on the quantum-well thickness. As a

point of comparison, we consider the carrier-density range between 31010 cm−2 and

31012 cm−2. In Figure 7.4(b), we show that there is an approximate cancellation

of the two effects for 3 nm quantum wells, which is the thickness typically used in
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Figure 6.4: Theoretical carrier-density dependence of the peak emission energy of an
InGaN quantum well (solid black curve) compared to experiment (scatter points).
We show the relative contributions from polarization-charge screening (blue curve),
phase-space filling (green curve) and plasma renormalization (red curve). There
is excellent agreement between theory and experiment only if all three effects are
included.
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Figure 6.5: (a) Relative band-gap shift of a 3 nm InGaN quantum well, compared to
the band gap at a carrier density of 1017 cm−3, with (solid curve) and without (dashed
curve) exchange-correlation (XC) effects, showing the importance of including many-
body effects in calculations to describe the band-gap shift. (b) The band-gap shift
of green-emitting quantum wells between carrier densities of nlow = 3 × 1010 cm−2

and nhigh = 3 × 1012 cm-2, as a function of the quantum-well thickness. There is
virtually no net band-gap shift from nlow to nhigh for 3 nm quantum wells due to a
fortuitous cancellation between polarization screening and plasma renormalization.

commercial LEDs, thus the blueshift in this range is predominantly due to band-

filling effects rather than band-gap shift effects. Overall, thicker wells experience a

net band-gap blueshift while thinner wells experience a net redshift, thus reflecting

the challenge in fabricating long-wavelength emitters based on thick polar quantum

wells.

6.3.3 Linewidth broadening

Furthermore, we find that phase-space filling of carriers in the disordered poten-

tial landscape of the InGaN quantum well accurately describes the experimentally

measured linewidth broadening. In Figure 6.6(a), we show that our calculations of

phase-space filling in the rigid-band approximation predict the relative increase of

172



the full-width at half-maximum (FWHM) of the EL spectrum as a function of the

carrier density. We report only the relative change to the FWHM rather than the ex-

act value since only the former is physically meaningful due to the use of a constant

energy-broadening parameter in calculating the joint density of states. As shown

in Figure 6.6(b), a signature of phase-space filling is broadening of the high-energy

luminescence tail, which is visible in the experimental EL spectrum of Figure 6.3(a)

as well. According to the van-Roosbroeck-Shockley relation [50], the low-energy tail

of the luminescence spectrum corresponds to the shoulder of the joint density of

states while the high-energy tail corresponds to the tail of the product of the elec-

tron and hole occupation functions. Since electrons are lighter than holes in the

III-nitrides, the onset of hole degeneracy determines the onset of the broadening of

the high-energy tail since both carriers need to be degenerate for phase-space filling to

contribute to the peak wavelength blueshift and linewidth broadening. Since strongly

localized carriers have smaller density of states than extended states, carrier localiza-

tion exacerbates phase-space filling. However, localization is not a requirement for

linewidth broadening, as previously conjectured [18, 20, 22], since broadening of the

Fermi tail is a general feature of degenerate-carrier statistics. Our observation that

polarization-charge screening and plasma renormalization lead predominantly to a

rigid shift of the bands (see Figure 6.7) further supports the argument that these

two effects are less important than phase-space filling in explaining the linewidth

broadening.

We argue that the injection-dependent linewidth broadening must be predominantly

determined by phase-space filling, rather than polarization-charge screening or many-

body renormalization. Indeed, polarization-charge screening leads to the removal of

the quantum-confined Stark effect, which lifts the level repulsion between states

that were mixed by the electric field. This increases the density of states near the

band edge, thus shrinking the region of phase-space that carriers occupy. Such an

effect would lead to linewidth narrowing, which is qualitatively inconsistent with the

experimentally observed broadening. Therefore, polarization-charge screening can be

ruled out as a source of the broadening [36]. Polarization fields have an additional
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Figure 6.6: (a) Carrier-density dependence of the luminescence full-width at half-
maximum due to phase-space filling of carriers in the disordered potential landscape
of the InGaN quantum well. (b) Theoretical luminescence curve of a representative
InGaN quantum well, with the peak-emission energy centered at zero. The signa-
ture of phase-space filling is broadening of the high-energy tail of the luminescence
spectrum.
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Figure 6.7: Evidence that polarization-charge screening and plasma renormalization
lead predominantly to a rigid shift of the bands in the carrier-density range of in-
terest for LED operation. Panel (a) compares the electron energy of the subbands
in an InGaN quantum well with carrier densities of 10 × 18 cm−3 and 1019 cm−3,
and panel (b) shows the relative error accrued by assuming the conduction band is
rigidly shifted due to screening effects. The error in the conduction band accrued by
assuming a rigid shift of the bands is negligible. Panel (c) compares the hole energy
of the subbands in an InGaN quantum well with carrier densities of 1018 cm−3 and
1019 cm−3, and panel (d) shows the relative error accrued by assuming the valence
band is rigidly shifted due to screening effects. The error in the valence band accrued
by assuming a rigid shift of the bands is small; the largest error is for the first excited
subband, however the error is small (less than 15%), which is further diminished by
the fact that the thermal occupation of this subband is small.
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second-order effect on the linewidth broadening since polarization fields modulate

the B coefficient, which controls the carrier density required to operate the LED at a

given current density (J = Bn2). Weaker polarization fields, e.g., due to screening,

increase the B coefficient, thus reducing the carrier density at a given current density,

thereby lessening phase-space filling. This effect is still relatively small compared to

first-order phase-space filling effects at the carrier densities that we have considered,

and indeed would reduce the relative linewidth broadening as the carrier density

increases. Moreover, in the carrier densities relevant for LED operation, many-body

renormalization of the band structure can be treated, to first order, as a rigid shift

of the band edges [36], thus it does not contribute strongly to linewidth broadening

either. This is supported by our observation that the net result of polarization-charge

screening and plasma renormalization is approximately a rigid shift of the bands (see

Figure 6.7).Therefore, while the injection-dependence of the peak-emission energy is

due to the interplay of various physical effects, the injection-dependent linewidth

broadening is predominantly due to phase-space filling.

6.4 Which designs improve spectral characteristics?

6.4.1 Role of polarization field

One important question that remains to be answered is why III-nitride LEDs grown

on polar planes suffer from more severe injection-dependent linewidth broadening

than III-phosphide and semipolar/non-polar III-nitride LEDs even though phase-

space filling is a universal phenomenon that is present in all materials. The answer

is simply that polar III-nitride LEDs operate at higher carrier densities due to their

weaker oscillator strengths and correspondingly smaller radiative recombination (B)

coefficients [51], and are thus more susceptible to phase-space filling. In Figure 6.8,

we show the carrier density required to operate 3 nm single-quantum-well LEDs at

radiative current densities of 1A/cm2, 50 A/cm2, and 1000 A/cm2 as a function of

the B coefficient. We also show experimentally measured B coefficients for various

(0001) polar [34] and (2021) semipolar [52] LEDs. Polar LEDs have low B coef-
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ficients due to their strong polarization field, which separates electrons and holes

to opposite sides of the quantum well and lowers the probability of recombination.

The B coefficient of polar LEDs decreases with increasing emission wavelength (or

indium content), therefore longer wavelength emitters undergo more severe injection-

dependent spectral broadening. In contrast, semipolar LEDs have higher B coeffi-

cients due to their smaller polarization fields; consequently, they can operate at much

lower carrier densities for a given current density. For this reason, semipolar LEDs

exhibit less injection-dependent linewidth broadening than polar LEDs, a conclusion

that is directly supported by optical measurements of semipolar LEDs in the litera-

ture [53, 54, 55, 56]. The B coefficient of III-phosphide LEDs tend to be even higher

than semipolar III-nitride LEDs, with typical B coefficients of the order of ∼ 10−10

cm3 s−1 [57]. In fact, such high radiative recombination coefficients mean that III-

phosphide LEDs are more likely to experience stimulated emission before undergoing

significant linewidth broadening, which may explain why luminescence broadening

is typically not observed in the III-phosphide system. Our results also explain why

some non-polar LEDs exhibit an (often small) injection-dependent blueshift and

linewidth broadening despite the absence of a polarization field [21, 58, 59]. Be-

cause there is no quantum-confined Stark effect in non-polar LEDs, higher indium

compositions are required to obtain a given wavelength. Carrier localization due

to stronger alloy disorder reduces the density of states and lowers the B coefficient

(if electrons and holes are not co-localized) [4, 60], which makes phase-space filling

important in non-polar LEDs. Although our analysis has been for InGaN LEDs, it

applies equally well to AlGaN quantum-well LEDs, which also have strong polariza-

tion fields [61] and carriers localized by alloy disorder [? ]. Hence, we have shown

that recombination coefficients, and in particular the B coefficient, are important

parameters that determine the likelihood of a device undergoing phase-space filling

and injection-dependent linewidth broadening.
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Figure 6.8: Effect of the B coefficient on the carrier density required to obtain a
given radiative current density. The circles correspond to experimental B coefficients
for polar ”(0001)” LEDs measured by David et al. for blue (450 nm), green (535
nm), orange (600 nm), and red (645 nm) emitters. The star is the experimental B
coefficient measured by Monavarian et al. for a semi-polar blue LED (430 nm). LEDs
with lower B coefficients are more susceptible to phase-space filling, and consequently
to stronger spectral broadening, because they operate at higher carrier densities for
a given current density.
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6.4.2 Importance of the steady-state carrier density

Our results demonstrate that device designs that reduce the carrier density required

to operate the device at a given current density reduce the injection-dependent

blueshift and linewidth broadening. Improving the inter-well hole transport and

spreading the number of carriers over more quantum wells enables the same light-

power output for a lower carrier density [38]. 3D engineering of the active region using

V-pits has recently been shown to be a practical way of improving hole transport,

as evidenced by state-of-the-art multi-quantum-well LEDs fabricated with 3D V-pit

engineering that show improved efficiency droop as well as smaller wavelength shift

and linewidth broadening compared to LEDs with poor inter-well hole transport [?

]. Designs that minimize the polarization field, e.g., semi-polar, non-polar, and thin-

ner polar LEDs, minimize the injection-dependent wavelength blueshift because they

allow the device to be operated at a lower carrier density for a given current density.

Such designs simultaneously reduce the injection-dependent linewidth broadening

and reduce efficiency droop, albeit at the expense of also requiring higher indium

concentrations, which may inadvertently lead to a broader linewidth at low carrier

density. In contrast, inefficient designs with more defects also operate at lower carrier

densities for a given current density due to their higher non-radiative recombination

rates, and thus exhibit less linewidth broadening. In general, it is important to

identify the origin of small injection-dependent linewidth broadening, particularly in

devices that are more susceptible to defects, e.g., micro-LEDs, as it can be a reflec-

tion of their high non-radiative recombination rate, which is highly undesirable. We

highlight that the designs that minimize efficiency droop by reducing the operating

carrier density of LEDs also lead to better color purity.

6.4.3 Analysis of other designs

Some authors have suggested that adding indium to the barriers may enable better

hole transport in multi-quantum-well LEDs [62]. Although such designs work well

for blue emitters, it is unclear whether they work for green and longer wavelength

emitters since adding indium to the barrier increases the emission energy. A similar
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argument applies for doping the barriers to minimize the polarization fields in polar

multi-quantum-well structures [63]. As discussed in the main text, thinner polar

quantum wells are more desirable than thicker polar quantum wells due to their

higher oscillator strengths and larger B coefficients, which allows them to operate at

lower carrier densities for a given current density. However, higher indium concen-

trations are needed in thinner quantum wells to obtain a given wavelength, which

may lead to a broader linewidth at low carrier density due to stronger alloy disorder.

Moreover, polar quantum wells with thickness greater than 3 nm experience an ad-

ditional net blueshift of the band gap for high carrier densities, due to an incomplete

cancellation of the polarization-charge blueshift by the many-body redshift, therefore

they are especially undesirable for applications that require good color purity. Con-

versely, thicker non-polar quantum wells are more desirable than thinner non-polar

quantum wells since the current density achievable for a given carrier density scales

linearly with the thickness if the B coefficient is held constant. Overall, any strategy

that reduces the B coefficient by reducing the polarization field will inadvertently

increase the indium concentration required to obtain a given wavelength. Therefore,

such strategies will require a careful tradeoff between an increase of the B coefficient

due to minimizing polarization fields versus stronger carrier localization and material

degradation due to increasing indium concentrations.

6.5 Conclusion

In summary, we have calculated the carrier-density dependence of the emission

spectrum of InGaN LEDs. In contrast to the widely accepted hypothesis that

the injection-dependent emission blueshift in III-nitride LEDs is primarily due to

polarization-charge screening, we have shown that the emission shift depends on

a complex interplay between polarization-charge screening, exchange-correlation ef-

fects, and phase-space filling of carriers in the disordered potential landscape of the

quantum well. We have also shown that the injection-dependent linewidth broad-

ening is caused primarily by phase-space filling, which is exceptionally prominent in

polar III-nitride quantum wells due to their weaker oscillator strengths and lower
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radiative recombination coefficients. This emphasizes the innate connection be-

tween carrier dynamics and the current-dependent spectral characteristics of LEDs.

Namely, emitters with poor transport and recombination dynamics offer poorer con-

trol over the injection-dependent color purity. Hence, designs that reduce the carrier

density required to operate the LED at a given current density simultaneously reduce

efficiency droop and improve the high-power color purity of III-nitride LEDs.
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CHAPTER VII

Mechanism for the Apparent Defect Tolerance of

InGaN Emitters

The tolerance of InGaN emitters to defects is widely attributed to the suppression

of diffusion by carrier localization. However, recent experiments have challenged

this hypothesis by showing long diffusion lengths of up to ten microns at room

temperature. Here, we examine the competition between radiative and Shockley-

Read-Hall recombination in InGaN alloys. Without assuming that carrier diffusion

is suppressed, we show that the interplay of carrier localization and polarization fields

with carrier recombination enhances the quantum efficiency at low current densities,

leading to an apparent defect tolerance. Our analysis demonstrates that decreasing

the oscillator strength by promoting carrier localization or increasing the quantum-

well thickness can enhance the quantum efficiency of light emitters for low-power

applications, although it will exacerbate efficiency droop and impair the control of

color purity at high operating powers.

7.1 Introduction

III-nitrides have greatly advanced solid-state lighting by enabling the invention of

white light-emitting diodes (LED) [1, 2]. Although InGaN alloys have achieved

remarkable success, a fundamental understanding of their performance remains in-

complete, which has hindered the development of long-wavelength and UV emitters
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[3]. For example, despite having dislocation densities greater than 1010 cm−2, six

orders of magnitude larger than those found in arsenide- or phosphide-based LEDs,

early InGaN LEDs demonstrated bright luminescence [4]. Experiments showed that

increasing the In mole fraction of InGaN emitters enhanced their luminescence in-

tensity, leading to the interpretation that InGaN is tolerant to defects due to the

localization of holes around In-N atomic condensates, which prevents carriers from

diffusing to non-radiative centers [5, 6, 7, 8, 9]. However, recent experiments have

cast doubt on the hypothesis that suppression of diffusion by localization is respon-

sible for the defect tolerance of InGaN. These experiments have shown that diffusion

lengths in InGaN alloys can reach tens of microns at room temperature [10]. At this

temperature, a substantial fraction of carriers are completely extended, and even lo-

calized states can diffuse by coupling to lattice vibrations [11]. These inconsistencies

demand a reexamination of the origin of defect tolerance in InGaN.

While the origin and even the existence of defect tolerance remains disputed [12, 13,

14, 15, 16, 17, 18], several mechanisms have been proposed that shed light on the

issue. For instance, Hangleiter et al. proposed that V-shaped pits around threading

dislocations in InGaN quantum wells produce an energetic barrier, which prevents

carriers from reaching the dislocation center [19]. Although this explanation success-

fully accounts for the tolerance of InGaN quantum wells to high threading dislocation

densities, it does not explain why increasing the In mole fraction increases the lu-

minescence intensity of bulk films as well. Massabuau et al. proposed that phase

segregation of cations in the vicinity of dislocations traps carriers away from dislo-

cation centers [20]. However, this mechanism does not apply to point defects that

occur away from dislocations, which account for a significant portion of non-radiative

recombination.

7.1.1 Overview of this work

In this work, we develop a framework to evaluate the impact of carrier localiza-

tion on non-radiative recombination by multi-phonon emission. Our analysis of the

competition between radiative and non-radiative recombination suggests that carrier
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localization limits the maximum achievable internal quantum efficient (IQE) and the

IQE at a given carrier density. However, at low current densities, an interplay of car-

rier localization and recombination in InGaN alloys causes the IQE to increase with

stronger carrier localization, leading to an apparent defect tolerance. Importantly,

the mechanism that we are proposing does not invoke suppressed diffusion and is

operational in both bulk alloys and in quantum wells. We propose that polarization

fields in quantum wells have a similar effect in promoting radiative recombination

over non-radiative recombination as well.

7.2 Methodology

7.2.1 Computational methods

To investigate the impact of carrier localization on the recombination rates, we used

nextnano++ to solve the Schrödinger and Poisson equations [21] and evaluated wave-

function overlaps using an in-house post-processing code. We used elastic constants

[22], deformation potentials [23], polarization constants [24], and band gaps and

offsets [25] determined from first-principles calculations based on density-functional

theory. We employed the effective-mass approximation and used m∗
e = 0.2 and m∗

h =

1.9 for GaN, m∗
e = 0.07 and m∗

h = 1.8 for InN [26, 27]. We modeled the alloy disorder

by randomly assigning the composition x in each grid site as either x = 0 or x = 1,

and did not perform any further compositional averaging. We simulated supercells

of size 18 nm × 18 nm × 18 nm with periodic boundary conditions, using a grid-size

spacing of 0.3 nm in all directions, which approximately corresponds to the cation-

cation distance in InGaN. Unless specified otherwise, we repeated every calculation

for ten different configurations of the random alloy. Our results show that electrons

are weakly localized while holes are strongly localized in the disordered potential

landscape of InGaN alloys, consistent with atomistic tight-binding calculations [28].

We show the ground-state hole and electron wave functions of an In0.15Ga0.85N alloy

in Figure 7.1. The asymmetry in localization between electrons and holes, arising

from the asymmetry of the effective masses in the III-nitrides (m∗
e ≈ 0.2m0 andm

∗
h ≈
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1.8m0), has important implications for radiative and non-radiative recombination

rates, which we discuss later.
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Figure 7.1: Squared modulus of the ground-state (a) hole and (b) electron envelope
wave functions of an In0.15Ga0.85N alloy, showing that holes are strongly localized
with a characteristic length scale of ∼1 nm while electrons are extended. The wave
functions are rescaled so that their peak value is one. We used a VB offset of 0.6 eV
between GaN and InN, and a CB offset of 2.3 eV.

7.2.2 Recombination within k · p formalism

Central to our analysis is the relationship between recombination rates and k · p
wave-function overlaps. The rate of radiative recombination is proportional to the

squared overlap of the electron and hole wave functions |Feh|2 [1]:

∣∣∣F̃eh

∣∣∣2 = ∑
c∈CB,v∈V B

fc(1− fv)
∣∣∣∣∫ drψc(r)ψv(r)

∣∣∣∣2/ ∑
c∈CB,v∈V B

fc(1− fv) (7.1)

|Feh|2 =
∣∣∣F̃eh

∣∣∣2/∣∣∣F̃ V CA
eh

∣∣∣2 (7.2)

where f is the non-degenerate occupation probability at room temperature, and

the indices c and v correspond to conduction band (CB) and valence band (VB)
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states, respectively. Equation 7.2 rescales the overlap to ensure the limit |Feh|2 = 1

for systems with translational symmetry. |Feh|2 is proportional to the radiative re-

combination coefficient B, which relates to the rate of radiative recombination Rrad

according to Rrad = Bn2, where n is the carrier density. (In this work, we will inter-

changeably refer to |Feh|2 as the oscillator strength since it directly proportional to

the oscillator strength up to some constant.) The rate of non-radiative recombina-

tion by multi-phonon emission (or Shockley-Read-Hall (SRH) recombination) is also

proportional to an overlap term,

|FSRH |2 = V (1 + κ)

∫
dr

δn(r)× δp(r)
δn(r) + κδp(r)

, (7.3)

where κ ≡ cp/cn is the ratio of a given defect’s hole and electron capture coefficients,

and δn(r) ≡ n(r)/N and δp(r) ≡ p(r)/N are the electron and hole densities divided

by the total number of carriers in the simulation volume (N). To derive equation

(7.3), we have assumed a random trap distribution, however we will later explicitly

verify this assumption. The term |FSRH |2 is proportional to the SRH recombination

coefficient A, which is related to the SRH rate according to RSRH = An. It is

straightforward to check that |FSRH |2 = 1 for systems with translational symmetry.

We note that |FSRH |2 is completely independent of the details of the multi-phonon-

emission physics, apart from the ratio of the defect capture coefficients κ. Very large

or very small values of κ indicate that non-radiative recombination is limited by either

electron or hole capture, meaning these two processes are not closely coupled in time.

In contrast, values of κ near unity indicate that a defect captures electrons and holes

successively and quickly, thus the probability of recombination depends strongly on

the probability of both carriers being found at the defect site. The fact that |FSRH|2

depends on the ratio κ rather than explicitly on cp and cn represents a convenient

separation of physics by length scales. This allows us to evaluate the impact of

localization on non-radiative recombination within k · p theory, without having to

explicitly evaluate the capture coefficients at the level of density-functional theory.

Thus, by studying how localization impacts |Feh|2 and |FSRH|2, we can evaluate its

influence on the radiative and SRH recombination rates.
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7.2.3 Derivation of SRH overlap term

The rate of non-radiative recombination by multi-phonon emission (or Shockley-

Read-Hall (SRH) recombination) is also proportional to an overlap term, which we

term |FSRH |2. To derive this term, we start from the generalized SRH recombination

rate that accounts for non-uniformities in the charge density,

RSRH = nT

∫
dr
cnn(r)× cpp(r)
cnn(r) + cpp(r)

, (S1) (7.4)

where cn and cp are any given defect’s electron and hole capture coefficients, n and

p are the macroscopic electron and hole carrier density, and nT is the trap density.

For now, we have assumed that traps are uniformly distributed, however we will

later explicitly verify our conclusions by relaxing this assumption. Under symmetric

injection of electrons and holes, i.e.,
∫
dr, n(r) =

∫
dr, p(r) = N , where N is the

total number of carriers, we can rewrite the electron and hole densities as n(r) =

Nδn(r) and p(r) = Nδp(r), where the spatially varying parts are given by δn(r) ≡∑
c∈CB |ψc(r)|2fc/

∑
c∈CB fc and δp(r) ≡

∑
v∈V B |ψv(r)|2(1 − fv)/

∑
v∈V B(1 − fv).

Factoring out cn, we can rewrite the SRH rate as,

RSRH = nTNcn

∫
dr

δn(r)× δp(r)
δn(r) + (cp/cn)δp(r)

, (S2) (7.5)

For a system with translational symmetry, the macroscopic charge density is spatially

uniform and δn(r) = δp(r) = 1/V , thus RV CA
SRH = nT (N/V )cn/(1 + cp/cn). Since we

have defined |FSRH |2 to be the correction factor to the SRH recombination rate due

to carrier localization effects, we obtain,

|FSRH |2 =
RSRH

RV CA
SRH

= V (1 + cp/cn)

∫
dr

δn(r)× δp(r)
δn(r) + (cp/cn)δp(r)

, (S3) (7.6)

This is the expression that we provide in equation (3) of the main text, where we

additionally defined κ ≡ cp/cn.
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7.3 Impact of localization on recombination

7.3.1 Radiative recombination

We investigated the influence of hole localization on recombination by controlling

the VB offset between InN and GaN. The VB offset has been previously determined

experimentally to be between 0.5 eV and 1.1 eV [29, 30, 31, 32, 33, 34, 35], which

agrees with the prediction of 0.6 eV from hybrid DFT [25]. We varied the VB offset

from 0.0 eV to 1.0 eV, while fixing the CB offset to the theoretical value of 2.3 eV.

To accurately quantify the degree of localization, we used the thermally averaged

participation ratio, which measures the number of sites that the wave function “par-

ticipates” in. We define the participation ratio as,
(∫

drψ2(r)
)2
/
∫
drψ4(r), where

ψ is the wave function. Generally, a smaller participation ratio indicates a more

strongly localized state. Our results show that electrons are extended within the

simulation cell but holes are strongly localized (Figure 7.2(a)). Moreover, larger VB

offsets between GaN and InN lead to more strongly localized hole wave functions

(Figure 7.2(b)).

Our findings demonstrate that strong hole localization decreases |Feh|2 in the III-

nitrides due to the asymmetry of the carrier effective masses. Figure 7.3 illustrates

how |Feh|2 changes with hole localization for In0.15Ga0.85N alloys. Breaking trans-

lational symmetry by alloying initially increases |Feh|2 because of the relaxation of

crystal-momentum conservation, explaining why |Feh|2 is larger than 1 for small

∆EV (even if ∆EV = 0, strain and polarization fluctuations are sufficient to weakly

localize holes). However, as holes become more localized, their spectral weight is

transferred away from the Γ point, reducing their coupling strength with extended

electrons whose spectral weight is highly concentrated near Γ. This result stands in

contrast to our previous work that showed that carrier localization increases the B

coefficient [36]. The previous work employed an averaging procedure to obtain local

In composition, which resulted in coarser spatial resolution compared to atomistic

models, and led to the incorrect prediction that electrons are also localized. In this

work, we did not perform averaging and our localization results are closer to tight-
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Figure 7.2: (a) Participation ratio of electron and hole wave functions in an
In0.15Ga0.85N alloy as a function of their energy with respect to the band edge. A
smaller participation ratio indicates a more strongly localized wave function. (b)
Larger VB offsets between InN and GaN lead to more strongly localized holes in
InGaN. Experimental VB offsets range from 0.5 eV to 1.0 eV.

193



binding calculations [37]. In Figure 7.4, we show that artificially localizing electrons

alongside holes increases the wave-function overlap. Therefore, the asymmetry of

effective masses in the III-nitrides means that carrier localization reduces the rate of

radiative recombination by reducing the spectral overlap of electron and hole wave

functions.
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Figure 7.3: Strong hole localization in the absence of strong electron co-localization
reduces the wave-function overlap in III-nitride alloys, thus reducing the rate of ra-
diative recombination. The colors indicate the thermally averaged participation ratio
of the hole wave functions; darker colors correspond to stronger localization. The
shaded region shows the range of experimentally measured values of the InN/GaN
VB offset. The CB offset is fixed at the natural value of 2.3 eV predicted by hybrid
DFT.

7.3.2 Non-radiative recombination

On the other hand, the effect of carrier localization on non-radiative recombination

depends on the κ of the defect over which recombination occurs. In Figure 7.5,
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Figure 7.4: Strong hole localization in the presence of strong electron localization
increases the wave-function overlap, thus increasing the rate of radiative recombi-
nation. The colors indicate the thermally averaged participation ratio of the hole
wave function; darker colors correspond to stronger localization. We varied the CB
offset alongside the VB offset according to the formula, ∆Ec = ∆Ev(m

∗
h/m

∗
e), thus

localizing electrons as well.
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we show the dependence of |FSRH |2 on the participation ratio for different values

of κ. For κ close to unity, hole localization reduces the SRH overlap by reducing

the probability of finding an electron and hole at a defect site. In contrast, hole

localization has no effect on the SRH overlap for extreme values of κ. This is because

the SRH cycle is limited by multi-phonon emission rather than hole localization since

the probability of finding a hole at a defect site is always finite due to the thermal

occupation of extended states. Since defects with symmetric capture coefficients

are typically the most efficient non-radiative centers, the overall effect of carrier

localization is to reduce the rate of SRH recombination.
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Figure 7.5: Increasing hole localization with increasing valence-band offset reduces
the SRH wave-function overlap for recombination over defects with symmetric elec-
tron and hole capture coefficients (κ ∼ 1). However, localization has little to no effect
on recombination over defects with asymmetric capture coefficients (κ≪ 1, κ≫ 1).
The colors indicate the thermally averaged participation ratio of the hole wave func-
tions; darker colors correspond to stronger localization. The shaded region shows the
range of experimentally measured values of the InN/GaN VB offset. The CB offset
is fixed at the natural value of 2.3 eV.

7.3.3 Power-law scaling of recombination

The efficiency ultimately depends on the ratio of the radiative and non-radiative

recombination rates. To capture the qualitative features of interest, we use a simple

ABC model that accounts for wave-function overlap. For the current regime where

SRH recombination dominates, we can neglect the C term corresponding to third-
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order Auger-Meitner recombination [38]. The resulting expression is given by:

IQE =

(∣∣∣∣FSRH

Feh

∣∣∣∣2 A0

B0n
+ 1

)−1

=

(
s(κ) |Feh|2p(κ)−2 A0

B0n
+ 1

)−1

. (7.7)

Here, A0 and B0 are the bulk virtual-crystal recombination coefficients, and |FSRH |2

and |Feh|2 introduce corrections due to localization (or polarization fields, if appli-

cable). We simplified the IQE expression by expressing the SRH overlap in terms

of the electron-hole overlap as a power law, |FSRH |2 = s(κ) |Feh|2p(κ), where s and p

are functions of κ. In Figure 7.6, we show this scaling relation explicitly for various

values of κ. In 7.7, we show how the scaling constant s and power p depend on κ.

By fitting s(κ) and p(κ) to Gaussian functions, we find the following approximate

expressions: s(κ) ≈ −0.67 exp
(
− log210(κ)

4.0

)
+ 1 and p(κ) ≈ 0.71 exp

(
− log210(κ)

4.6

)
. If κ

is close to unity, the non-radiative rate is proportional to the probability of finding

both an electron and hole at a defect site; therefore, |FSRH |2 is proportional to |Feh|2.
In contrast, |FSRH |2 is independent of |Feh|2 for extremely large or extremely small

values of κ because the non-radiative rate is limited by multi-phonon capture of one

carrier. The power-law scaling relation between radiative and non-radiative recombi-

nation, which we have shown for the case of varying hole localization, appears to be

a general feature of recombination in the III-nitrides. Other authors have observed

it for varying quantum-well thickness and composition, showing that polarization

fields have a similar effect [39, 40, 41].

7.3.3.1 Competition with radiative capture by defects

In the main text, we showed that |Feh|2 and |FSRH |2 are almost linearly correlated

for κ ∼ 1, and completely uncorrelated for κ ≫ 1 and κ ≪ 1. We also showed

that the near-linear correlation between |Feh|2 and |FSRH |2 leads to an apparent

defect tolerance at low current densities. In the extreme limits of κ, multi-phonon

emission becomes prohibitively slow, in which case the dominant monomolecular

recombination process that competes with band-to-band radiative recombination is

radiative capture by point defects, such as the CN impurity in GaN. This modifies
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Figure 7.6: The wave-function overlap for SRH recombination is related to the
electron-hole wave-function overlap probability as a power law of the form |FSRH |2 ∝
|Feh|2p. The scaling exponent p (slope in log-log plot) depends on the κ of the defect
over which recombination occurs. Each panel corresponds to a different value of κ.
The SRH overlap and radiative overlap are strongly correlated for κ close to one.
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Figure 7.7: Figure S3. The (a) scaling power p and (b) scaling exponent s as a func-

tion of the capture-coefficient ratio κ, in the power law relation |Feh|2 ∝ s(κ)|Feh|2p(κ).
The red dashed curves show Gaussian fits, with the fitting expressions provided in
the main text.

the ABC model as,

IQE =
Bn2

B′n+Bn2 + Cn3
, (7.8)
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where B′ is the radiative-capture recombination coefficient. Similar to the B coeffi-

cient, the B′ coefficient is also proportional to the electron-hole overlap |Feh|2 since it
depends on the momentum-matrix element, |pif |2. Therefore, we expect to observe

apparent defect tolerance (at low current densities), even if band-to-band recombi-

nation competes with radiative capture by point defects rather than multi-phonon

emission.

7.3.4 Quantum efficiency and defect tolerance

We propose that the defect tolerance of InGaN can be explained by the interplay of

recombination dynamics with the increase in carrier density due to a reduction in the

wave-function overlaps. To evaluate the IQE expression in equation (7.9), we varied

|Feh|2 from 0.1 to 1.5, and used B0 = 6 × 10−11 cm3 s−1 and A0 = 107 s−1. Since

defects with symmetric capture coefficients tend to be the most active recombination

centers, we assumed κ = 1, but later we explicitly verify our conclusions with exper-

imentally measured recombination coefficients, including the C coefficient. Figure

7.8a shows that carrier localization decreases the IQE at a given carrier density since

|Feh|2 decreases more rapidly than |FSRH |2 as holes become more localized. Despite

this decrease, carrier localization increases the IQE at a given current density, as seen

in Figure 7.8b. By reducing the wave-function overlaps, carrier localization increases

the carrier density required to operate an LED at a given current density, which in

turn increases the relative rate of radiative recombination compared to SRH recom-

bination. This is because SRH recombination scales linearly with the carrier density

while radiative recombination scales quadratically. Therefore, although carrier lo-

calization decreases the quantum efficiency at a given carrier density, it increases

the quantum efficiency at a given current density, which is the relevant quantity for

experimental measurements. As we discuss later in the text, this is the opposite of

what occurs at higher current densities in the efficiency-droop regime.

IQE =

(
|FSRH |2

|Feh|2
A0

B0n
+ 1

)−1

=

(
s(κ)|Feh|2p(κ)−2 A0

B0n
+ 1

)−1

(7.9)
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Figure 7.8: (The IQE as a function of the carrier density versus current density can
be expressed using the scaling relation between |FSRH |2 and |Feh|2 that we calculated
for κ = 1. Specifically, (a) stronger carrier localization due to larger valence-band
offsets decreases |Feh|2 more quickly than |FSRH |2, thus reducing the IQE at a given
carrier density; (b) however, at a fixed current density, carrier localization increases
the IQE by increasing the carrier density n required to obtain a given current density
J , which promotes radiative recombination over SRH recombination.

We now show that our proposed mechanism applies to commercial LEDs as well,

despite the presence of additional factors such as carrier separation by polarization

fields in quantum wells, Auger-Meitner recombination, and various types of defects

contributing to non-radiative recombination [40]. To account for these factors in

our analysis, we use the empirical scaling relation between the A, B, and C coef-

ficients observed by David et al. for commercial LEDs of various thicknesses and

compositions [40]. In Figure 7.9, we present the IQE calculated using a simple ABC

model as a function of both carrier and current density, for B coefficients ranging

from 10−13 cm3 s−1 to 10−11 cm3 s−1. We observe that the IQE at a given carrier

decreases as the B coefficient decreases, while the IQE at a given current density

has the opposite behavior. This behavior is qualitatively similar to that observed in
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Figure ??, indicating that our proposed mechanism contributes to defect tolerance

in commercial LEDs at low current densities.
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Figure 7.9: The IQE as a function of the carrier density versus current density, using
the empirical scaling relation between the A, B, and C recombination coefficients
measured by David et al. (a) Carrier localization and polarization fields decrease
B more quickly than A , thus reducing the IQE at a given carrier density. (b)
However, at a fixed current density, slower recombination dynamics increases the
IQE by increasing the carrier density n required to obtain a given current density J ,
which promotes radiative recombination over SRH recombination.

We should note that although mechanisms that reduce the oscillator strength can en-

hance the IQE at low current densities, they are ultimately detrimental to high-power

device performance. Slow recombination dynamics due to weak carrier overlaps in-

creases the carrier density, which promotes bimolecular radiative recombination over

monomolecular non-radiative recombination. However, it’s important to recognize

that this is only an apparent defect tolerance since reducing the carrier overlap overall

decreases the IQE at a given carrier density. Our conclusions that InGaN alloys do

not exhibit tolerance to point defects for fixed carrier density is consistent with the

observation that In-containing underlayers improve the IQE by reducing the point-
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defect density [16, 42]. At higher current densities, the same mechanism promotes

third-order Auger-Meitner recombination over bimolecular radiative recombination

[43], shifts the maximum efficiency to lower current densities, and impairs the ability

to control the color purity [44]. Nevertheless, there may be some niche applications

where reducing the oscillator strength, e.g., by promoting carrier localization or in-

creasing the (polar) quantum-well thickness, could be advantageous for improving

the low-current efficiency of LEDs, such as low-power micro-LEDs.

7.4 Conclusion

In summary, we have developed a method for calculating the impact of carrier local-

ization on Shockley-Read-Hall recombination within the envelope-function approxi-

mation. Our proposed mechanism for the defect tolerance observed in InGaN LEDs

does not invoke the suppression of carrier diffusion. Our analysis shows that reducing

the carrier wave-function overlap can enhance the IQE at low current densities by

increasing the carrier density, leading to an apparent defect tolerance. However, this

comes at the expense of exacerbated efficiency droop at higher current densities and

poor control of color purity. Nevertheless, reducing the oscillator strength by carrier

localization or polarization fields may be beneficial for improving the low-current

efficiency of LEDs for some niche low-power applications. Our proposed mechanism

provides a theoretical framework for understanding the defect tolerance observed in

InGaN LEDs and may guide the design of future high-performance devices.
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CHAPTER VIII

Summary and Future Work

8.1 Summary

In chapter I, I provide a comprehensive introduction to III-nitride semiconductors,

highlighting the importance of alloy disorder and polarization fields in understanding

their materials physics. I give a brief overview of the physics of light-emitting diodes,

and survey the applications, as well as the role nitride semiconductors play in these

applications. I also give a brief overview of the physics of power electronics, and

survey power conversion and high-power radio-frequency technologies.

In chapter II, I present a comprehensive review of first-principles methods based on

density-functional theory for predicting and describing materials phenomena. I intro-

duce the Kohn-Sham equations and density-functional theory, and discuss exchange

and correlation with an emphasis on physical intuition. I also cover many-body per-

turbation theory, the GW approximation, lattice vibrations, density-functional per-

turbation theory, electron-phonon interactions, Fermi’s golden rule, and the Boltz-

mann transport equation. Finally, I discuss how alloy disorder can be modeled from

first principles using the method of special quasirandom structures, which I con-

nect to the lattice theory of cluster expansions, and demonstrate how to calculate

the spectral function of alloys in any crystal basis by unfolding and refolding the

Brillouin zone.

In chapter III, I review basic semi-empirical methods used in device simulations based
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on the envelope-function and effective-mass approximations. I explain the relation-

ship between k ·p perturbation theory and the effective-mass approximation, derive

the effective-mass equation, and discuss Schrödinger-Poisson modeling. I emphasize

the importance of including many-body exchange-correlation effects in modeling and

explain how to calculate material parameters from first-principles. Finally, I discuss

the limitations of these methods and situations where more advanced approximations

may be necessary.

In chapter IV, I develop a first-principles method to calculate the alloy-scattering

potential and electron mobility of semiconductors with a focus on composition-

dependent disorder. The scattering rates of AlGaN alloys are evaluated by unfolding

the band structure and estimating the scattering potential and electron mobility us-

ing the hard-sphere model. Our results show that alloy disorder limits electron mobil-

ity for a wide range of compositions, and we compare the performance of AlxGa1−xN

and β-(AlxGa1−x)2O3 for power-electronics applications.

In chapter V, I use predictive atomistic calculations to show that atomically thin

superlattices of AlN and GaN have a phonon-limited mobility that is 3-4× larger

than random AlGaN alloys due to the absence of alloy disorder. These superlattices

also have better integration with dielectrics and contact metals and have the highest

modified Baliga figure of merit among all known semiconductors.

In chapter VI, I develop a Schrödinger-Poisson model to investigate the injection-

dependent emission spectra of III-nitride light-emitting diodes (LEDs). I show that

the commonly accepted hypothesis, which attributes the blueshift and linewidth

broadening solely to screening of internal electric fields, is incomplete. I find that

plasma renormalization and phase-space filling also play important roles, with the

latter being the predominant cause of spectral broadening. Our work provides new

insights into the connection between the color purity of LEDs and their carrier recom-

bination dynamics, and suggests that improving carrier transport and recombination

lifetimes can enable better color over their purity.

Finally, in chapter VII, I investigate the notion of defect tolerance in InGaN emitters.
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The widely accepted hypothesis of disorder-induced carrier localization hindering

carrier diffusion has been challenged by recent experiments showing long diffusion

lengths in InGaN. By developing a formalism for calculating non-radiative recombi-

nation rates, I find that an apparent defect tolerance emerges at low current densi-

ties due to an interplay of carrier localization, polarization fields, and recombination

dynamics. However, the maximum quantum efficiency is not defect tolerant, empha-

sizing the need for defect management strategies for long wavelength emitters.

8.2 Future Work

The field of first-principles calculations of materials and devices is ripe with opportu-

nities. There is a large community of researchers working on describing the physics

of materials from first-principles, and another large community of researchers work-

ing on describing devices with empirical or semi-empirical approaches. However, the

interface at which these two length scales meet is relatively unexplored.

8.2.1 Transport phenomena in materials and devices

Over the past decade, there have been significant advancements in the ability to

describe and predict the low-field transport properties of materials. These devel-

opments have been primarily driven by the raw increase in supercomputing power

and technical advancements in the field. One such advancement is the efficient in-

terpolation of eigenvalues and matrix elements using maximally localized Wannier

functions.

Moving forward, there are several low-hanging fruits in the field of low-field mobility

calculations. This thesis proposes a novel method for calculating the mobility of

semiconductor alloys that can be easily applied to other semiconductor alloys with

similar band structures, such as (AlxGa1−x)2O3 and GexSn1−xO2, which exhibit iso-

lated conduction or valence bands centered at the Γ point. These semiconductor

alloys are promising for next-generation power electronics due to their ultra-wide

band gaps and native bulk substrates, similar to III-nitrides.
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The methodology developed in this thesis for calculating alloy mobility is limited

to cases where the band of interest is not entangled with other bands in the mani-

fold of valence or conduction states. In cases where entanglement occurs, it may be

useful to combine this method with the disentanglement procedure implemented in

the Wannier90 code. Another promising route is to explore the use of the Zacharias-

Giustino special displacement configuration, which is a special supercell configuration

that yiels the exact electron-phonon renormalization, to estimate low-field mobility

by unfolding the band structure. This approach would require large-scale atomistic

tight-binding simulations to obtain the broadening of small k-states, which are essen-

tial for low-field transport. This approach may be a way to surpass the limitations

of the first Born approximation commonly used in modern calculations of electron-

phonon mobility without the need for a many-body non-equilibrium Green’s function

description of transport. By coupling mobility calculations with large-scale atom-

istic tight-binding simulations, it should also be possible to calculate the mobility of

graded alloys and of alloyed structures with partial atomic ordering.

In addition to the potential avenues for improving the methodology for calculating

the mobility of semiconductor alloys, there are several open questions that need to

be addressed. One such question is how to choose the primitive cell for the unfolding

procedure. Does the choice of primitive cell affect the outcome of the unfolding pro-

cedure? For instance, superlattices exhibit periodicity, and the crystal-momentum

eigenstates are eigenstates of the Hamiltonian. However, when the superlattice band

structure is unfolded onto the primitive cell basis, the resulting band structure ex-

hibits a broadening. It remains unclear how to interpret this broadening in terms of

the scattering lifetime.

In this thesis, we demonstrated that atomically thin superlattices of AlN and GaN

can exhibit many of the desirable properties of AlGaN without the alloy disorder that

limits transport in random alloys. This raises the question of whether this approach

could be a general strategy for enhancing the transport of other semiconductor alloys.

One promising avenue for constructing novel superlattices is the use of van der Waals

materials, which can be stacked without producing dislocations and defects. What
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new phenomena can emerge in these superlattice systems, and how will electrons

and holes transport in them? In addition, while calculations of low-field mobility

of layered semiconductors are becoming more commonplace, these calculations are

typically performed for isolated layered semiconductors without taking into account

the effects of the dielectric environment of the substrate. Similarly, can we predict the

mobility of 2D electron gases at semiconductor interfaces, such as the technologically

important AlN/GaN interface, which are greatly affected by defects and disorder in

the barrier environment? Interestingly, certain alloys, including some compositions

of AlGaN, are predicted to exhibit chemical ordering due to kinetic or electrostatic

driving forces. What is the fundamental limit of electron transport in these ordered

systems?

Semiconductor superlattices, although not atomically thin, are already used in the

drift regions of many important semiconductor devices in industry. However, the

Boltzmann transport equation predicts these structures to be non-conducting, as it

does not account for quantum-mechanical effects such as tunneling and field emission.

Therefore, to capture these effects, one would need to go beyond the Boltzmann

transport equation to a non-equilibrium Green’s function description of transport.

This approach may also be necessary for describing transport in LED structures,

since current approaches such as the drift-diffusion model or Boltzmann transport

formalism greatly overestimate the turn-on voltage. Thus, incorporating quantum-

mechanical effects in transport modeling will be crucial for developing more accurate

models and improving the design of semiconductor devices.

Furthermore, it is still a challenge to solve the Boltzmann transport equation for

devices entirely from first principles, without any semi-empirical approximation.

Phonon spectra calculations for common device geometries are not yet available

due to the high computational cost. This is important because devices have different

phonon modes than their bulk counterparts, which may lead to different electron-

phonon interactions. First-principles device modeling tools would also need to ac-

count for phonon transport by solving the phonon Boltzmann transport equation.

This is crucial for modeling modern technologies, such as GaN/AlGaN HEMTs,
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which are limited by heat transport rather than electronic transport. Addition-

ally, there is a lack of understanding of the effects of non-equilibrium phonons on

electronic transport and relaxation at low and high electric fields. A comprehensive

device modeling tool that describes electrons and phonons from first principles would

be beneficial for addressing these challenges.

Many devices, such as RF transistors and high-power electronics, operate under high

electric fields. Therefore, it is essential to have a better understanding of how ma-

terials behave under high fields, which can be addressed by solving the high-field

Boltzmann transport equation. By solving the high-field Boltzmann transport equa-

tion, one can account for spatial variations and describe devices because the device

geometry is often limiting rather than the material properties. The breakdown modes

of materials and devices, such as impact ionization, which leads to Avalanche break-

down, and defect generation from Auger-Meitner recombination, are also poorly un-

derstood. There is a need to develop new methodologies to comprehensively describe

these phenomena, not just for bulk compounds but also taking spatial variations into

account. Systematic comparisons with non-adiabatic simulations that can capture

these phenomena, albeit with severe restrictions on system sizes and time scales,

would benefit these developments.

Finally, there are several long-standing questions in the field of transport that will

likely take several years if not decades to answer in a satisfying manner. A central

challenge is to unify the description of transport in localized and extended states.

The transport of extended states is described by the Boltzmann transport equation,

while the transport of localized states can be described using non-adiabatic time-

dependent density-functional theory by calculating the auto-correlation function in

the Kubo formula, but these calculations are limited to small cells and short times.

An alternate approach is to use configuration coordinate diagrams to calculate hop-

ping rates, but this approach is not general to all forms of localization and does not

work well in the intermediate regime where the wave function has a large localiza-

tion radius. Moreover, how should we account for charge trapping and emission by

defects, which contribute to the resistivity but are currently not accounted for in cal-
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culations of the mobility? In addition, the impact of disorder on phonons rather than

electrons is still not well-understood. How does phonon disorder impact electron-

phonon coupling? Can we use mass disorder, such as through isotope engineering,

to enhance electron transport while suppressing phonon transport, which may be

relevant for thermoelectric applications?

8.2.2 Optical phenomena in materials and devices

In the past decade, significant progress has been made in understanding the opti-

cal properties of materials. Researchers can now calculate phonon-assisted optical

absorption rates, direct and indirect excitonic absorption spectra, and radiative and

non-radiative recombination coefficients. Moreover, semi-empirical approaches that

train or parameterize semi-empirical Hamiltonians using first-principles data have

emerged as a cost-effective means of calculating device properties, albeit with lower

accuracy. However, these calculations are currently only performed by a limited

number of research groups worldwide. Additionally, the methods used to link mi-

croscale physics to macroscale phenomena are still in their early stages, providing

ample opportunity for further advancement.

The main focus of this thesis has been on modeling InGaN devices for visible light

emitters. The techniques used in this study can also be applied to investigate the

performance limitations of AlGaN UV emitters and non-polar/semi-polar emitters,

without requiring further method development. Furthermore, these methods can be

employed to explore emerging III-nitride semiconductors, such as quaternary InAl-

GaN alloys and compounds containing B, Sc, or La. The knowledge of the fun-

damental material parameters of these compounds, even in their bulk form, is still

incomplete, and future research could focus on calculating these basic parameters,

such as polarization constants, bowing parameter, band offsets, etc. Once these pa-

rameters are determined, the semi-empirical methods developed in this thesis can be

utilized to examine mesoscale structures that employ these new compounds. The ap-

proaches developed in this study are not restricted to III-nitrides, and other material

systems can also be studied. In addition, the methods in this thesis could be utilized
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to investigate device geometry, which is crucial for designing efficient quantum wells.

Systematic studies of the impact of compositional profiles, well-width fluctuations,

and short- and long-range ordering are still incomplete for the InGaN system and

missing entirely for emerging nitrides and other semiconductor systems, representing

a promising avenue for future short-term research.

In addition, it is worth noting that there is plenty of room for methodological devel-

opments to the semi-empirical methods employed in this thesis. Specifically, current

methods for treating devices do not account for excitonic effects, which are only of

secondary importance in polar quantum wells, as they suppress the wave-function

overlap and binding energy. However, excitonic effects are crucial for non-polar semi-

conductors and ultra-thin emitters. It is essential to capture excitonic effects, either

by propagating the time-dependent Schrodinger equation or by solving the Wannier

exciton equation, to accurately describe these systems. Moreover, even for polar

semiconductors, the accurate description of excitonic effects for recombination rates

may be essential since it is still not possible to predict the IQE vs current curves

exhibited by actual devices with accuracy. Furthermore, it is becoming increasingly

clear that semi-empirical approaches may have systematic errors that are not nec-

essarily well-controlled. This makes it challenging to use them predictively to study

materials for which no experimental data exist. Therefore, there is considerable scope

for the development of ab initio tight-binding approaches that are as close to first

principles as possible to maximize their generalizability.

In addition to device-level excitonic effects, there is a need for methodological ad-

vancements to treat excitonic effects at the material level. Specifically, methods are

needed to accurately calculate Shockley-Read-Hall, radiative, and Auger-Meitner

recombination rates at the first-principles level, such as via the Bethe-Salpeter equa-

tion, that systematically treat higher-order correlations that give rise to excitons,

trions, and biexcitons.

Overall, even calculations of recombination rates and functional optical properties in

materials are in their infancy and have only been applied to a handful of semicon-

ductors. Certain trends are already emerging in some semiconductors, while other
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trends are well-known. For example, it is well-established that for conventional semi-

conductors, the Kane energy that describes the optical oscillator strength is a nearly

universal value of 20 eV. It is worth investigating whether similar universal trends

exist for non-radiative recombination rates in semiconductors.

The impact of polarization fields on non-radiative recombination rates is also not fully

understood. While it is known that polarization fields can reduce carrier overlap,

they can also introduce a spatial dependence to energy levels in the device, and this

effect is often not considered in calculations. Similarly, the effect of band bending

at interfaces in devices is also not fully accounted for. The ultimate goal of the

field should be to develop predictive calculations that comprehensively include these

effects at the device level without relying on empirical parameters.

Another challenge is connecting highly accurate transport calculations with device

simulations, without resorting to empirical parameters. Currently, most device sim-

ulations use empirical parameters to match experimental results, compromising their

reliability. A solution to this challenge could be the development of self-consistent

first-principles models for transport and recombination by coupling k · p or tight-

binding Hamiltonians, with the first-principles Boltzmann transport equation, and

later with the non-equilibrium Green’s function method. While some tools already

exist that fill this niche, they rely on certain empirical parameters and make several

simplifying approximations whose validity is not justified.

Although this thesis primarily focuses on Anderson-type localization, there are other

forms of localization that can impact optical and recombination properties, such as

polarons and Mott localization. There is a need for fundamental research to under-

stand how these effects impact optical properties at both the material and device

level. Such advancements would have broad applications across a range of materials,

including organic semiconductors, Mott insulators, transition-metal oxides, and semi-

conductor alloys used in lighting, photo-catalysis, and solar cells. One challenge is to

reliably calculate Urbach tails in materials using very large supercells, as their origin

is still debated. Urbach tails in the joint density of states and Lifshitz tails in the

density of states are known to emerge in the presence of disorder, whether it be static
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disorder due to defects and alloying, or dynamic disorder due to phonons. Method-

ological advancements are needed to study systems that are as large as possible,

while still retaining an accurate atomistic description that can capture the micro-

scopic physics of the system. Advancements in modeling the functional properties of

localized excitations would complement advancements in modeling their transport,

as discussed in the previous section. While there are emerging studies on the impact

of localization on emerging systems, these studies are often not systematic and often

focus on one functional property while ignoring the effects of localization on other

important properties such as transport, radiative and non-radiative recombination

rates. There is a need for more comprehensive studies that consider the impact of

localization on all relevant functional properties.

Finally, the methods presented in this thesis have mainly focused on studying light-

emitting diodes, but there are still many other types of semiconductor devices that

require investigation. These devices include laser diodes, photo-detectors, solar cells,

and modulation and switching devices. While there are empirical or semi-empirical

approaches available to describe these devices, they often require significant tuning of

empirical parameters to match experimental results. This severely compromises their

reliability, and sometimes leads to qualitatively incorrect conclusions. Therefore,

obtaining a predictive description of various types of devices from first principles

that comprehensively includes transport and optical phenomena, including excitonic

and higher order correlation effects, remains an important long-term goal for the

field.
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APPENDIX A

Adiabatic Approximation of the Many-Body

Schrödinger Equation

A.1 Full many-body Schrödinger equation

The fundamental equation of matter is the Schrödinger equation,

ĤΨ = −i ∂
∂t

Ψ, (A.1)

where Ψ is the wave function, and Ĥ is the Hamiltonian (energy) operator. If Ĥ is

not a function of time, then this equation can be separated as,

ĤΨ = EΨ, (A.2)

−i ∂
∂t

Ψ = EΨ. (A.3)

The former, which we name the time-independent Schrödinger equation, is simply

an eigenvalue problem, where Ψ is an eigenstate or stationary state of the system

that does not change with time, and E is the corresponding eigenenergy. If Ψ is

the ground-state wave function, then E is the ground state energy of the system,

which includes both the electronic and nuclear contributions. The latter equation is

219



an ordinary differential equation, from which it is clear that complete knowledge of a

system’s stationary states and energies fully characterizes its dynamics. This is only

true if Ĥ is independent of time, which turns out to be an excellent starting assump-

tion for the study of real materials. Time dependence in Ĥ can be incorporated a

posteriori using approximate methods such as perturbation theory.

The Hamiltonian H, which is an operator related to the total energy of the system,

has contributions from the energy of electrons (e), nuclei (n), and their interaction

(e− n),
H = He +Hn +He−n = Te + Ve + Tn + Vn +He−n. (A.4)

We have dropped the hats denoting that Ĥ is an operator for notational convenience.

We have also split the He and Hn terms into their kinetic (T ) and potential (V ) con-

tributions. Comparing this equation to HΨ = EΨ, it is clear that H couples the elec-

tronic and nuclear degrees of freedom, such that Ψ = Ψ(r1, r2, ..., rNe , R1, R2, ..., RNI
)

is a many-body wave function that simultaneously describes electrons and nuclei, and

depends on both the electronic coordinates ri and the nuclear coordinates RI .

A.2 Adiabatic approximation

To facilitate the problem of solving the Schrödinger equation, we decouple the elec-

tronic and nuclear degrees of freedom. This is done using a procedure known as

the Born-Oppenheimer approximation, which assumes that electrons move so much

more quickly than the nuclei that their degrees of freedom are uncoupled. The de-

coupling of the electronic and nuclear degrees of freedom prevents the exchange of

energy between them. This has very important consequences on how we deal with

electron-nuclear interactions when we later consider functional properties such as the

electron mobility.

We obtain more clarity on how to proceed by defining the operators of equation
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(A.4). The electronic operators are defined as,

Te := −
1

2

∑
i

∇2
i , (A.5)

Ve :=
1

2

∑
i ̸=j

4π

|ri − rj|
, (A.6)

where the sums run over the electron coordinates. Similarly, the nuclear operators

are defined as,

Tn := −1

2

∑
I

∇2
I , (A.7)

Vn :=
1

2

∑
I ̸=J

ZIZJ
4π

|RI −RJ |
, (A.8)

where Z is the nuclear charge, and the sums run over the nuclear coordinates. The

problematic term, which is the electron-nuclear interaction, is given by,

He−n = −
∑
i,I

ZI
4π

|ri −RI |
. (A.9)

To facilitate the problem of solving the Schrödinger equation, we decouple the elec-

tronic and nuclear degrees of freedom. This is done using a procedure known as

the Born-Oppenheimer approximation, which assumes that electrons move so much

more quickly than the nuclei that their degrees of freedom are uncoupled. The de-

coupling of the electronic and nuclear degrees of freedom prevents the exchange of

energy between them. This has very important consequences on how we deal with

electron-nuclear interactions when we later consider functional properties such as the

electron mobility.

A.2.1 Frozen-nuclei approximation

Armed with the knowledge that nuclei are approximately frozen in the electrons’

reference frame, we can try to substitute the nuclear coordinates with effective frozen
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coordinates. In a crystal’s ground state, the nuclei oscillate about their equilibrium

positions in a harmonic potential. Therefore, we may make the substitution RI →
⟨RI⟩, in which case the wave function is only a function of the electronic coordinates,

Ψ = Ψ(r1, r2, ..., rNe , ⟨R1⟩, ⟨R2⟩, ..., ⟨RN⟩) ≡ Ψ{R}(r1, r2, ..., rNe). The Schrödinger

equation for electrons with the nuclear coordinates frozen is,

[Te + Ve +He−n] Ψ{R}(r1, r2, ..., rNe) = (E − Tn − Vn)Ψ{R}(r1, r2, ..., rNe) (A.10)

≡ E(R1,R2, ...,RNI
)Ψ{R}(r1, r2, ..., rNe),

(A.11)

where E(R1,R2, ...,RN) is the total electronic energy that depends parametrically

on the ionic coordinates.

A.2.2 Born-Oppenheimer approximation

Having determined how to solve the many-electron wave function for a fixed set of

nuclear coordinates, the question remains how we can reconstruct the total wave

function. In the Born-Oppenheimer approximation, we make the Ansatz,

Ψ ≈ Ψ{R}(r1, r2, ..., rNe)χ(R1,R2, ...,RN), (A.12)

where χ is the nuclear wave function. Intuitively, this approximation is justified

if we assume that nuclei remain close to their equilibrium position as their wave

function evolves, such that the electronic wave function is unaffected. Since the

nuclear timescale is much longer than the electronic timescale, nuclear evolution is

adiabatic in the electron reference frame. According to the adiabatic theorem, if the

electrons are in an instantaneous eigenstate, they will remain in the instantaneous

eigenstate as the nuclei evolve.

The Schrödinger equation for the nuclear wave function is obtained by substituting
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Ansatz (A.12) into the full Schrödinger equation, and using equation (A.11).

(Te + Ve + Tn + Vn +He−n)Ψ{R}χ = EtotΨ{R}χ (A.13)

E(R1,R2, ...,RN)Ψ{R}χ+Ψ{R}(Tn + Vn)χ = EtotΨ{R}χ (A.14)

Multiplying by Ψ∗
{R} and integrating over the electronic coordinates, we obtain the

Schrödinger equation for nuclear wave functions,

[Tn + Vn + E(R1,R2, ...,RN)]χ = Etotχ. (A.15)

From this, it is clear that the effective potential felt by the nuclei is a sum of

their Coulomb repulsion and the total energy of electrons at fixed nuclear positions.

Thus, using the Born-Oppenheimer approximation, we have decoupled the many-

body Schrödinger equation into two equations: one for the electrons and one for the

nuclei. Within this thesis, we primarily focus on solving the many-body equation for

electrons.
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APPENDIX B

Derivation of the Kohn-Sham Equation

B.1 Derivation of the Kohn-Sham equations by variational

minimization

To derive the Kohn-Sham equations, we start with the definition of the charge density,

n(r) =
∑

i ϕ
∗
i (r)ϕi(r), for Kohn-Sham orbitals ϕ. We make the Ansatz that the

interacting system of electrons can be mapped onto a non-interacting system of

electrons, which we call the Kohn-Sham electrons. The energy functional of the non-

interacting system contains contributions from the non-interacting kinetic energy,

electron-nuclear interaction, ion-ion interaction EII , and an unknown contribution

due to many-body effects Eks[n],

E[n] = −1

2

∑
i

⟨ϕi| ∇2 |ϕi⟩+
∑
i,I

ZI ⟨ϕi|
4π

|r−RI |
|ϕi⟩+ EII + EKS[n]. (B.1)

We are able to write the unknown Kohn-Sham energy term that contains many-body

effects as a functional of the carrier density because of Hohenberg and Kohn’s theo-

rems. We know that EKS[n] maps the non-interacting system onto the interacting

system exactly for the ground-start charge density. At this point, we use the method

of Lagrange multipliers to minimize E[n] with the constraint that the wave functions
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are orthonormal. The orthonormality constraint can be written as, ⟨ϕi|ϕj⟩− δij = 0.

Thus, the system of equations that we have to solve is,

δE

δn
= 0 (B.2)

⟨ϕi|ϕj⟩ = δij (B.3)

The constrained optimization problem can be written as an unconstrained optimiza-

tion problem by constructing the Lagrange functional L ≡ E[n]−
∑

ij λij[⟨ϕi|ϕj⟩−δij],
and demanding that δL/δϕ∗

i = 0 and δL/δλij = 0. Note that the sum over i, j for the

constraint is crucial since we require that all wave functions be orthonormal. Before

we proceed, we make a few general observations using the properties of functional

derivatives:

δn

δϕ∗
i

= ϕi (B.4)

δ

δϕ∗
i

⟨ϕi|ϕj⟩ = ψj (B.5)

δ

δϕ∗
i

E[n] = −1

2
∇2ϕi +

∑
I

ZI
4π

|r−RI |
ϕi +

δEKS[n]

δn

δn

δϕ∗
i

(B.6)

The method of Lagrange multipliers gives the equations,

∂L

∂ϕ∗
i

= −1

2
∇2ϕi +

∑
I

ZI
4π

|r−RI |
ϕi +

δEKS[n]

δn
ϕi −

∑
ij

λijϕj = 0, (B.7)

∂L

∂λij
= ⟨ϕi|ϕj⟩ − δij = 0. (B.8)

At this point, we define the matrix S as the matrix that diagonalizes Λ
∣∣
ij

= λij,

such that S−1ΛS = E, where Eij = εiδij. It turns out that the matrix Λ is Hermitian

because H is Hermitian. Because it is a property of Hermitian matrices that they

are diagonalized by unitary matrices, we know that S is unitary, i.e., SS† = I.

Thus, defining new rotated wave function as ψi ≡
∑

ij Sijϕj, and keeping in mind

that unitary transformations preserve inner products, we obtain the Kohn-Sham
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equations,

−1

2
∇2ψi +

∑
I

ZI
4π

|r−RI |
ψi +

δEKS[n]

δn
ψi = εiψi (B.9)

⟨ψi|ψj⟩ = δij, (B.10)

where we see that the mean-field Kohn-Sham potential is obtained by taking the

functional derivative of the Kohn-Sham energy functional, VKS[n] ≡ δEKS/δn. Im-

portantly, it can be seen in the equation that the Kohn-Sham potential does not

depend on details of where the nuclei are, and thus the Kohn-Sham potential that

maps the Kohn-Sham equation onto the many-body Schrödinger equation is universal

and depends only on the ground-state charge density.
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APPENDIX C

Background for Green’s Functions

This section sets up the math for the Green’s function formulation of quantum me-

chanics. In particular, the focus is on zero-temperature Green’s functions.

C.1 Creation and annihilation operators

Consider a complete set of single distinguishable particle wave functions |ψ(r)⟩.
We denote the indistinguishable antisymmetric (“A”) many-body state of N single-

particle states as,
1√
N !
det(|ψ(x)⟩) ≡ |k1, k2, k3, ..., kN⟩A (C.1)

In this abbreviated tensor-product notation, the particle at position 1 is in state

k1, the particle at position 2 is in state k2, and so on. (As an aside, note that

|k1, k2, ..., kN⟩A lives in a Hilbert space ofN particle dimensions, whereas |k1, k2, ..., kN+1⟩A
lives in a Hilbert space of N + 1 particle dimensions. Recall that our normal rules

of operator algebra are only defined for kets within the same Hilbert space.) For the

simplest case of two particles,

|k1, k2⟩A = ψk1(r1)ψk2(r2)− ψk2(r1)ψk1(r2) (C.2)

|k2, k1⟩A = ψk2(r1)ψk1(r2)− ψk1(r1)ψk1(r2) (C.3)
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Immediately, we see that interchanging the order of the particles produces a negative

sign, i.e., |k1, k2⟩A = − |k2, k1⟩A. The creation operator c†k and the annihilation

operator ck are defined as,

c†k |k1, k2, ..., kN⟩A = |k, k1, k2, ..., kN⟩A , (C.4)

ck |k, k1, k2, ..., kN⟩A = |k1, k2, ..., kN⟩A (C.5)

ckck |k, k1, k2, ..., kN⟩A = 0 (C.6)

c†kc
†
k |k1, k2, ..., kN⟩A = 0 (C.7)

Both ck and c†k are defined such that they only operate on kets with index k corre-

sponding to particle 1. In other words, k has to be on the left-most position in order

for ck and c†k to operate on the ket. If k is not at the left-most position, one must

interchange the order of neighbouring particles, incurring a negative sign each time

a particle is exchanged. Use these rules for the creation and annihilation operators,

it is quite straightforward to show,

{ck, c†k′} = δk,k′ (C.8)

{ck, ck′} = 0 (C.9)

{c†k, c
†
k′} = 0 (C.10)

As an example of how to prove these relations, we consider the question: is ckc
†
k′ =

c†k′ck? Consider the case where k ̸= k′,

ck1c
†
k |k1, k2, ..., kN⟩A = ck1 |k, k1, k2, ..., kN⟩A = −ck1 |k1, k, k2, ..., kN⟩A = − |k, k2, ..., kN⟩A

c†kck1 |k1, k2, ..., kN⟩A = c†k |k2, ..., kN⟩A = |k, k2, ..., kN⟩A (C.11)

Clearly, ck1c
†
k = −c

†
kck1 . Now consider the case where k = k′,

ckc
†
k |k1, k2, ..., kN⟩A = ck |k, k1, k2, ..., kN⟩A = |k1, k2, ..., kN⟩A

c†kck |k1, k2, ..., kN⟩A = 0 (C.12)
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Clearly, ckc
†
k = 1− c†kck. Thus, {ck, c

†
k} = δk,k′ .

C.2 Field operators

Rather than working with creation and annihilation operators directly, we typically

work with field operators that act on all space,

ψ̂(r) ≡
∑
k

ψk(r)ck, (C.13)

ψ̂†(r) ≡
∑
k

ψ∗
k(r)c

†
k. (C.14)

These field operators act on Fock space, where rather than keeping tracking of all

the wave functions in the system, we simply keep track of the number of particles in

each state. We define the vacuum state |0⟩ as the state which satisfies ψ̂(r) |0⟩ = 0.

The effect of ψ(r) is to annihilate a particle at position r and the effect of ψ†(r) is

to create a particle at position r.

To see why this definition of the field operator is useful, consider the Hamiltonian in

second quantization,

H =
∑
k

⟨ψk|h(r) |ψl⟩ c†kcl +
1

2

∑
k1,k2,k3,k4

⟨ψk1 , ψk2| v(r, r′) |ψk3 , ψk4⟩ c
†
k1
c†k2ck3ck4 +Vnucl,

(C.15)

where h(r) is the non-interacting part of the Hamiltonian and v is the Coulomb

interaction. With field operators, the Hamiltonian becomes,

H =

∫
d3rψ̂†(r)h(r)ψ̂(r) +

∫
drdr′ψ̂†(r)ψ̂†(r′)v(r, r′)ψ̂(r′)ψ̂(r) + Vnucl. (C.16)

The field operators satisfy,

{ψ(r), ψ†(r′)} = δ(r− r′), (C.17)

{ψ(r), ψ(r′)} = {ψ†(r), ψ†(r′)} = 0. (C.18)
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C.3 Green’s functions

Using creation and annihilation operators, we can track the transition probability

between states. In additional to tracking the position variables, we will also track

time. To do this, we introduce the space-time coordinates 1 ≡ (r1, t1). Consider the

quantity below, which we will call the single-particle Green’s function,

G(1, 2) := −i
〈
N0
∣∣ T̂ ψ̂(1)ψ̂†(2)

∣∣N0
〉
, (C.19)

where the ground-state ket |N0⟩ has been explicitly written out in the expectation.

For the moment, ignore the imaginary factor, which is due to historical notation.

T̂ is the time-ordering operator, which ensures that particles travel forward in time

by time-ordering the operators from right (past) to left (future); the time ordering

operator introduces as many negative signs as needed to ensure causality is obeyed.

(Time-ordering is the mathematical trick that introduces Dirac delta functions in

the equation of motion for the Green’s function.) The physical interpretation of the

Green’s function is as follows: G is (the square root of) the transition probability of

a particle being created at a spacetime point 2 ≡ (r2, t2) and being annihilated at a

different spacetime point 1 ≡ (r1, t1). One way of seeing this is directly writing out

the ground state of a fictitious two-level system as |00⟩. The transition probability

of a particle propagating from 2 to 1 would then be given by the |⟨10|01⟩|2. Consider
the definitions, ψ̂†(2) |00⟩ = |01⟩ and ψ̂†(1) |00⟩ = |10⟩. Substituting these definitions
into ⟨10|01⟩ gives ⟨00| ψ̂(1)ψ̂†(2) |00⟩, which is identically the definition of the Green’s

function for the fictitious system (apart from the imaginary factor). For this reason,

the Green’s function is often called the “propagator” since it propagates a particle in

spacetime. It is also called the single-particle correlation function since it describes

how a single-particle’s occupation number is correlated in space and time.

The Green’s function is the central quantity of interest. Once we have obtained the

Green’s function, we have solved the many-body problem. Note that the definition

above does not give a prescription of how to solve for the Green’s function, only

what it is. Neither does it tell us why obtaining the Green’s function means that we
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have solved the many-body problem. To make progress in this regard, we need to

write out the equation of motion for the Green’s function. In the Heisenberg picture,

operators evolve according to,

d

dt
Ô(r, t) = [Ô(r), H]. (C.20)

By plugging the annihilation and creation operators for Ô, and using some clever

mathematical tricks, it is possible to show that the equation of motion for the Green’s

function is,[
i
∂

∂t
− h0(1)

]
G(1, 2) = i

∫
d3v(1, 3)G2(1, 2, 3, 3

+) + δ(1, 2). (C.21)

Here, δ(1, 2) = δ(r1 − r2)δ(t1 − t2). The quantity,

G2(1, 2, 3, 3
+) ≡ −

〈
T̂ ψ̂†(r3, t

+
3 )ψ̂(r3, t3)ψ̂(r1, t1)ψ̂

†(r2, t2)
〉
, (C.22)

is the “two-particle Green’s function” or “four-point correlation function” (since

four field operators - two creation and two annihilation operators - appear in the

expectation value). To evaluate G2, we can substitute it into the Heisenberg equation

of motion, and we will obtain another partial differential equation, which contains

a six-point correlation function G3 × O(v2). G3 in turn will depend on G4 × O(v3),
and so on. The recursive dependence on higher order terms is a feature of the many-

body Coulomb interaction. If the interaction energy v is smaller than the kinetic

energy of the electrons, then perturbation theory can be applied to truncate higher

order terms by treating the single-particle Hamiltonian as the starting-point of the

perturbative expansion. Often, it is sufficient to solve the expansion up to O(v).

Typically, the expansion is performed in terms of Feynman diagrams; the interested

reader should refer to the text by R. D. Mattuck, “A Guide to Feynman Diagrams

in the Many-Body Problem.”
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C.4 Self-Energy

If we perform the many-body diagrammatic perturbative expansion, it turns out that

the perturbative expansion repeats as a geometric series. Freeman Dyson remarked

that if we define a term Σ in the series, we can write out the entire perturbative

expansion as a recursive relation,

G = G0 +G0ΣG = G0 +G0ΣG0 +G0ΣG0ΣG0 + ... (C.23)

Then, the full Green’s function can be written in terms of the free-particle Green’s

function,

G =
G0

1−G0Σ
=

1

G−1
0 − Σ

=
1

ω − εn(k)− Σ
, (C.24)

where we note that Σ has units of energy. From this, we see that if the interaction

is small, i.e., perturbation theory applies, the full Green’s function looks exactly like

the free-particle Green’s function with the energy shifted by Σ. Therefore, Σ is the

correction to the free-particle energy due to the many-body interaction, and is called

the “self-energy.” In general, Σ is non-Hermitian (but symmetric); the real-part of

Σ gives the energy renormalization of the electronic state due to interactions, and

the imaginary-part of Σ is related to the finite lifetime of the electronic state in

consideration.

C.5 Green’s functions in terms of Dyson orbitals

Thus far, we have written the Green’s function in terms of an expectation value of

creation and annihilation operators. It would be convenient to rewrite the Green’s

function in terms of wave functions, because density-functional theory gives us the

Kohn-Sham wave functions. To this end, we introduce the concept of Dyson or-

bitals.
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C.5.1 Dyson orbitals

Consider two states in the Heisenberg representation: a ground state of N electrons,

|N⟩, and some eigenstate s of N − 1 electrons, |N − 1, s⟩. We define a Dyson orbital

as the expectation value,

fs(r, t) ≡ ⟨N − 1, s| ψ̂(r, t) |N⟩

= ⟨N − 1, s| eiHtψ̂(r)e−iHt |N⟩

= ⟨N − 1, s| eiEN−1,stψ̂(r)e−iEN t |N⟩

= ⟨N − 1, s| ψ̂(r) |N⟩ e−i(EN−EN−1,s)t

≡ fs(r)e
−iεst, (C.25)

where we see that this orbital oscillates with frequency εs = EN − EN−1,s. If |N⟩
and |N − 1, s⟩ are anti-symmetric Slater determinants composed of non-interacting

states, ψk, then we can identify the label s with a non-interacting state, and ĉs |N⟩ =
|N − 1, s⟩. Thus, we can write the Dyson orbital with the wave function correspond-

ing to the s independent-particle wave function,

⟨N − 1, s| ψ̂(r) |N⟩ =
∑
k

⟨N − 1, s| ĉkψk(r) |N⟩

=
∑
k

ψk(r) ⟨N − 1, s|N − 1, k⟩

=
∑
k

ψk(r)δk,s

= ψs(r). (C.26)

Here, s is evidently a filled state, e.g., in the valence manifold. (In general, |N⟩
and |N − 1, s⟩ are interacting kets and the interpretation of the Dyson orbitals with

single-particle wave functions is not always possible. In particular, ⟨N − 1, s| ĉk |N⟩ ≠
δk,s for a general interacting system.)

We can similarly define Dyson orbitals corresponding to empty states. Consider two

states, again in the Heisenberg representation: a ground state of N electrons, and an
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eigenstate s of N +1 electrons, |N + 1, s⟩. We again define a Dyson orbital as,

fs(r, t) = ⟨N | ψ̂(r, t) |N + 1, s⟩

= ⟨N | ψ̂(r) |N + 1, s⟩ e−i(EN+1−EN )t

= fs(r)e
iεst. (C.27)

Some simple math shows that for a non-interaction system, ⟨N | ψ̂(r) |N + 1, s⟩ =
ψs(r), where s corresponds to an empty state, e.g., in the conduction manifold.

C.5.2 Lesser and greater Green’s function

We recall the definition of the time-ordered Green’s function in the Heisenberg pic-

ture,

G(r, r′; t, t′) = −i ⟨N | T̂ ψ̂(r, t)ψ̂†(r′, t′) |N⟩ (C.28)

If t > t′ then T̂ leaves the ordering of the field operators unchanged. If t < t′ then

T̂ interchanges the order of the field operators, incurring a negative sign. Thus, the

Green’s function can be rewritten with the Heaviside step function Θ(x),

G(r, r′; t, t′) = −i ⟨N | ψ̂(r, t)ψ̂†(r′, t′) |N⟩Θ(t− t′)

+ i ⟨N | ψ̂†(r′, t′)ψ̂(r, t) |N⟩Θ(t′ − t)

= −i ⟨N | eiHtψ̂(r)e−iHteiHt′ψ̂†(r′)e−iHt′ |N⟩Θ(t− t′)

+ i ⟨N | eiHt′ψ̂†(r′)e−iHt′eiHtψ̂(r)e−iHt |N⟩Θ(t′ − t)

= −i ⟨N | eiEN tψ̂(r)e−iHteiHt′ψ̂†(r′)e−iEN t′ |N⟩Θ(t− t′)

+ i ⟨N | eiEN t′ψ̂†(r′)e−iHt′eiHtψ̂(r)e−iEN t |N⟩Θ(t′ − t)

= −i ⟨N | ψ̂(r)e−i(H−EN )(t−t′)ψ̂†(r′) |N⟩Θ(t− t′)

+ i ⟨N | ψ̂†(r′)ei(H−EN )(t−t′)ψ̂(r) |N⟩Θ(t′ − t)

(C.29)

We can simplify this notation by defining τ ≡ t − t′. τ is therefore the time at

which a particle is annihilated, relative to the time that it was created. We can also
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define the greater Green’s function GR as the Green’s function for the case t > t′ or

τ > 0.

G>(r, r′, τ) = −i ⟨N | ψ̂(r)e−i(H−EN )τ ψ̂†(r′) |N⟩ (C.30)

The greater Green’s function corresponds to the probability of creating an electron

at (r′, t′), and later finding it at (r, t).

We can similarly define the lesser Green’s function as the Green’s function for the

case t < t′ or τ < 0. The negative time is simplify an artefact of having defined

τ ≡ t− t′, where t is the time of annihilation and t′ is the time of creation.

G<(r, r′, τ) = +i ⟨N | ψ̂†(r′)ei(H−EN )τ ψ̂(r) |N⟩ (C.31)

The lesser Green’s function corresponds to the probability of creating creating a hole

at (r, t) and later finding it at (r′, t′).

Thus, the time-ordered Green’s function reduces to either the lesser or greater Green’s

function, depending on whether τ > 0 (electrons) or τ < 0 (holes), G(r, r′, τ) ≡
G>(r, r′, τ)Θ(τ) +G<r, r′, τ)Θ(−τ).

C.5.3 Lehmmann representation of the Green’s function

We can now represent the Green’s functions in terms of Dyson orbitals by making

use of the completeness relation,∑
s

|N + 1, s⟩ ⟨N + 1, s| = 1N+1 (C.32)∑
s

|N − 1, s⟩ ⟨N − 1, s| = 1N−1 (C.33)

where the label s denotes an eigenstate of the N − 1 or N +1 many-body state, and

1N is the identity operator in the N -dimensional Hilbert space. (The label s for the

eigenstates may make more sense if we recall that |N⟩ corresponds to the ground

state (lowest energy eigenstate) of the many-body state with N particles.)
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Consider the greater Green’s function G>. What would happen if we inserted 1N+1

into its definition? Making use of the fact that 1N+1 commutes with ψ̂ and using

the definition of Dyson orbitals,

G>(r, r′, τ) = −i ⟨N | ψ̂(r)1N+1e
i(H−EN )τ ψ̂†(r′) |N⟩

= −i
∑
s

⟨N | ψ̂(r) |N + 1, s⟩ ⟨N + 1, s| e−i(H−EN )τ ψ̂†(r′) |N⟩

= −i
∑
s

fs(r)f
∗
s (r

′)e−i(EN+1,s−EN )τ (C.34)

= −i
∑
s

fs(r)f
∗
s (r

′)e−iεsτ (C.35)

Clearly, taking the Fourier transform of G(r, r′, τ) gives the Lehmann representa-

tion,

G(r, r′, ε) =
∑
s

fs(r)f
∗
s (r

′)

ε− εs ± iη
, (C.36)

where η → 0 is a regularization parameter.
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