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ABSTRACT

τ -Restricted Mean Survival Time (τ -RMST) models are popular for modeling censored time-to-
event data. One data feature that has not received adequate attention in τ -RMST literature is
the point mass of events at τ for the τ -restricted event time, min(τ ,T). Individuals who remain
event-free during the restricted follow-up time are certainly of interest when evaluating impacts of
factors. This dissertation introduces a novel model framework that takes advantage of the point
mass to improve the precision of the estimation of RMST and understanding of the association
of the predictors and τ -restricted times-to-event. We explore three different settings within this
dissertation and demonstrate that our proposed model provides statistical advantages in each of
these settings after effectively handling censoring as part of model fitting process.

In Chapter 2, we leverage mixture distribution ideas from cure rate model literature, viewing
the study cohort as a mixture of patients who experience the event versus do not experience the
event during the restricted follow-up time. We propose a τ -inflated beta regression (τ -IBR) model
using joint logistic and beta regression to explore associations between predictors and a poten-
tially censored time-to-event in these two sub-populations and improve the precision of RMST
estimation. To deal with censored nature of the data and fit our proposed models we develop both
expectation-maximization (EM) and multiple imputation (MI) approaches. Simulations indicate
excellent performance of the τ -IBR model(s), and higher precision of corresponding τ -RMST
estimates compared to the traditional τ -RMST model, in independent and dependent censoring
setting.

In Chapter 3, we generalize the τ -IBR model framework proposed in Chapter 2 to the set-
ting with potentially censored recurrent event times. We first restructure recurrent-event data into
a censored longitudinal data structure of τ -restricted-times-to-first-event observed in τ -duration
follow-up windows initiated at regularly-spaced intervals. Models used to analyze single restricted
event times in Chapter 2 are then applied to the censored longitudinal dataset of times-to-first-
event; a generalized estimating equation (GEE) approach is used to address the correlated nature
of the τ -restricted times-to-first-event across the follow-up windows. Multiple imputation (MI)
and expectation-solution (ES) approaches appropriate for censored data are developed as part of
the model fitting process. Simulations indicate good statistical performance of the proposed τ -IBR
approach to modeling censored recurrent event data.

x



In Chapter 4 we extend the τ -inflated beta model to the setting with dependently censored data.
This chapter is motivated by lung allocation waitlist survival data, where waitlist deaths are de-
pendently censored as more urgent patients are selected for transplantation. An inverse probability
of censoring algorithm is incorporated into the multiple imputation of the censored waitlist death
times. Ideas from Chapters 2 and 3 are used to develop an appropriate τ -restricted inflated beta re-
gression model that allow for improved 1-year RMST estimation, which is an essential component
of the current lung allocation score that measures waitlist urgency.
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CHAPTER 1

Introduction

Restricted mean survival time methodology for single and recurrent censored event data are pop-
ular data analysis techniques. In this dissertation work, we introduce τ -inflated beta regression
(τ -IBR) model techniques for these settings. These models consider the study cohort as a mixture
of patients who either experience the event or do not experience the event during the restricted
follow-up time, and it models these two components separately. We leverage mixture distribu-
tion ideas from zero/one inflated beta model literature [37, 73] and cure rate model literature
[8, 7, 11, 17, 74, 56, 63]. However, these methods have never been applied to estimate and perform
inference on restricted mean survival times (RMST).

For a single time-to-event, the outcome min(τ , T) is a restricted event time, where T and τ are
the time-to-event and follow-up duration of interest, respectively. The follow-up period may be
restricted to an interesting time period, for example 1 or 5 years of follow-up, or follow-up may
be restricted due to funding. When evaluating τ -restricted times-to-event, it is common to observe
many individuals that remain event-free throughout the restricted follow-up period, resulting in
frequent occurrences of min(τ , T) = τ . Risk profiles (covariates) associated with observing min(τ ,
T) = τ may be quite different from risk profiles associated with min(τ , T) given min(τ, T ) < τ ,
which is often overlooked in models of these restricted event times. The cure rate model literature
handles such point masses effectively by utilizing a logistic regression approach to model the pro-
portion of cured patients in the data, along with a proportional hazards or accelerated failure time
model for event times. However, we were motivated to pursue this particular model for use with
pulmonary research data, in which the concept of cure is not possible. Our τ -inflated nomenclature
makes the goals of our analysis more transparent and very explicitly tied to a follow-up window
duration that may be varied, if desired. Moreover, our modeling framework is more closely tied to
restricted mean regression models, which have not been used for cure rate modeling to date. This
nomenclature also aligns with one-inflated beta regression models proposed in settings without
censoring [37, 73], another inspiration for our approach. The beta distribution, rescaled to cover
the range from zero to τ , is particularly flexible and suitable for modeling events constrained to a
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follow-up window of fixed length. By incorporating beta regression to model event times for ”un-
susceptible” patients instead of relying on proportional hazards or accelerated failure time models,
we can easily estimate and perform inference on restricted mean survival times, which served as
our initial starting point when developing our proposed model.

In order to develop methodologies for censored single or recurrent event data, it is necessary to
address the censored nature of the data. In this dissertation, we employ three different approaches
where appropriate: the expectation-maximization (EM) algorithm, the expectation-solution (ES)
algorithm, and the multiple imputation (MI) approach. The EM and ES algorithms are iterative
methods that rely on likelihood and estimating equations, respectively, to estimate the parameters
in statistical models that depend on unobserved latent variables. The ES algorithm is a variation of
the EM algorithm for censored longitudinal data. Different from the EM and ES algorithms, the
MI approach replaces censored outcomes with imputes to obtain multiple complete datasets that
can be analyzed using standard methods. One advantage of the MI approach over the EM and ES
algorithms is that it allows for additional analyses using uncensored data methods based on the
multiply imputed datasets. In Chapters 2 and 3, where censoring is assumed to be independent to
the restricted event times, the only parametric element of the MI procedure is defining a risk set
of similar individuals to the censored individual being imputed, where risk set selection differs in
each of the chapters in this dissertation. Once the risk set is defined, we use an inverse transform
(IT) method of imputing from the risk set that is entirely nonparametric, a technique that has been
developed and modified by many authors [30, 57, 20, 21, 70, 60]. The general idea of the IT method
is to obtain imputes by sampling from the non-parametric Kaplan-Meier survival estimate based
on patients in the risk set. The IT method slightly differs in Chapter 4 compared to Chapters 2 and
3, where we use the inverse probability of censoring (IPCW) adjusted Kaplan-Meier to obtain a
consistent estimator of the survival function in the presence of dependent censoring.

In Chapters 3 and 4, we repurpose the data into a censored longitudinal data structure for the
analysis of censored recurrent event and single time-to-event data. Through conducting this pre-
processing step, we extend our proposed τ -IBR model framework to recurrent events setting in
Chapter 3, while in Chapter 4, we enhance the estimation of τ -RMST by incorporating informa-
tion beyond the initial τ -length follow-up window. This alternative censored longitudinal data
structure was first proposed by Tayob and Murray [58], and further developed in other literature
[59, 60, 67, 69, 68]. For each individual, the recurrent event data structure is transformed to a
series of τ -length follow-up windows initiated at regularly spaced follow-up times t ∈ t1, ..., tb.
The newly formatted longitudinal outcomes of interest for each individual are the τ -restricted time
to the first event following each pre-specified time t. By converting traditional recurrent event data
into a censored longitudinal data structure, we are able to take advantage of standard longitudi-
nal data analysis methods such as GEE to analyze the data and account for correlations within
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individuals. In addition, pre-specified follow-up windows also avoid dependent censoring issues
commonly observed in the analysis of recurrent events data, particularly in correlated gap-time
derived data structures[3, 29, 54]. By converting single times-to-event into a censored longitudi-
nal data structure, we attempt to combine information across the multiple follow-up windows to
improve modeling efficiency. In settings where a considerable proportion of patients experience
events beyond the initial τ -restricted period with updated risk factors, focusing only on informa-
tion from that period results in an unfortunate waste of statistical information. Using follow-up
windows that span a longer duration improves the efficiency of estimating τ -RMST. The choice of
the length of follow-up windows τ depends on clinical interest and the spacing between adjacent
windows is determined by study design and modeling efficacy, which are further explored in the
literature [67, 58], as well as in Chapters 3 and 4 of this dissertation.

In Chapter 2, we establish the fundamental model of our proposed τ -inflated beta regression
(τ -IBR) approach. Our proposed τ -IBR model explicitly models the point mass and continuous
components of min(τ , T) by decomposing min(τ , T) into τ [I(T ≥ τ)+(T/τ)I(T < τ)] and mod-
eling the mean of this latter expression using joint logistic and beta regression models. In addition
to parameter estimation of τ -IBR model, we also provide the formula for estimating the τ -RMST
and its variance estimate. In simulation studies, we evaluate finite sample properties of our pro-
posed model’s parameter estimates and compare the τ -RMST estimated by our proposed model to
the τ -RMST estimated by the standard τ -RMST model. Attractive τ -IBR model results are found
regardless of estimation approach (EM, MI) or censoring mechanism (none, independent, depen-
dent). We also demonstrate how to apply the proposed τ -IBR model to data from a randomized
clinical trial assessing the efficacy of azithromycin treatment in reducing exacerbations in patients
with chronic obstructive pulmonary disease (COPD).

In Chapter 3, we take a fresh look at the τ -IBR modeling framework applied to recurrent events
data. We are motivated by the idea that many individuals in the Azithromycin in COPD study are at
an earlier disease stage that makes them less susceptible to recurrent exacerbations during follow-
up, so that τ -RMST = τ is often observed. These are the same types of individuals with a tendency
to have zero recurrent event counts, which inspired the use of zero-inflated count models. Our
modeling framework for the analysis of censored recurrent event data that is particularly useful
when there is a mixture of (a) individuals who are generally less susceptible to recurrent events
and (b) heterogeneity in duration of event-free periods amongst those who experience events. The
τ -IBR model is applied to a restructured version of the recurrent event data that consists of τ -
restricted times-to-first event for each individual in follow-up windows initiated at regularly spaced
follow-up times. Censoring of recurrent event times is handled through expectation-solution (ES)
or multiple imputation (MI) approaches, with generalized estimating equation (GEE) methods
then used to analyze the resulting longitudinal data structure. In simulation studies, we assess the
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performance of our proposed τ -IBR model with ES and MI methods in the case of no censoring
and 20% censoring and compare them to the results of the model proposed by Xia, Murray and
Tayob (2020) [70]. An example is given based on the Azithromycin for Prevention of COPD
Exacerbations Trial.

In Chapter 4 we extend our multivariate τ -IBR modeling approach to the analysis of complex
dependently censored time-to-event data. Our approach is motivated by United States lung wait-
list candidate urgency estimation, which is based on estimates of τ -restricted mean survival time
(τ -RMST) for τ =1 year. One statistical challenge of analyzing this data is that lung waitlist candi-
dates with high LAS values are typically offered lung transplants. Hence their one-year-restricted
waitlist survival times are dependently censored at the time of transplant. We use an inverse-
transform multiple imputation (MI) approach that incorporates inverse-probability-of-censoring
weights (IPCW) to multiply impute time-to-event outcomes. To make best use of our τ -IBR mod-
eling framework, event-time data is restructured into a longitudinal dataset that includes multiple
τ -length follow-up windows per individual with updated risk factors at the start of each window.
This chapter makes the case that the τ -RMST estimation is improved with additional attention
given to modeling the point mass of individuals who achieve a τ -RMST of τ via simulation stud-
ies and highlights advantages of our approach with an analysis of lung candidate data.
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CHAPTER 2

τ -Inflated Beta Regression Model for Analysis of
Restricted Mean Survival Subject to Censoring

2.1 Introduction

τ -Restricted Mean Survival Time (RMST) models [22, 77, 4, 6, 30, 71, 72, 62, 60] are popular for
modeling censored time-to-event data. This modeling framework assesses the impact of predictors
on a time-to-event during a τ -length follow-up period. Finite follow-up periods are ubiquitous in
clinical trial and observational study settings. For example in the Azithromycin for Prevention
of Chronic Obstructive Pulmonary Disease (COPD) Exacerbations Trial [2], patients were ran-
domized to azithromycin or placebo and followed for the primary endpoint of time-to-first acute
exacerbation during the subsequent year. In this setting, a 1-year-RMST model estimates acute
exacerbation-free days over the follow-up year by treatment group and other patient characteris-
tics.

More formally, for time-to-event, T , the τ -restricted event-time is min(τ, T ). In this paper,
and in most τ -restricted event-time literature, τ is treated as a non-random, pre-specified quantity
within the range of support for the data. For the azithromycin study, the τ = 1 year follow-
up period will be our focus. Alternatively, Tian et al [61] frame τ as a tuning parameter to be
estimated from the observed data.

For a particular covariate profile, Z, the τ -RMST, E[min(τ, T )|Z], can be estimated using the
model described by Andersen et al. [4] and implemented in the R pseudo package [23]; we will
hereafter call this model the standard or traditional τ -RMST model. This method first converts each
τ -restricted, (potentially censored) time-to-event to a pseudo-observation (PO). Linear regression
can then be applied to the PO outcomes to estimate τ -RMST values.

One data feature that has not received adequate attention in τ -RMST literature is the point mass
of events at τ for the τ -restricted event time, min(τ, T ). Individuals who remain event-free during
follow-up are certainly of interest when evaluating treatment benefit. In the azithromycin study,
treatment benefit may manifest as (1) a decrease in the chance that an exacerbation occurs during
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the year and/or (2) a longer exacerbation-free period amongst those who have an event during that
year. Different patient risk profiles may lend themselves to treatment benefit of the form (1) or (2),
but standard τ -RMST models do not differentiate between these two types of treatment effects,
which is a limitation of these models.

Cure rate model literature considers such point masses [8, 7, 11, 17, 74, 56, 63, 27], viewing
the study cohort as a mixture of cured or uncured patients depending on whether they experience
the event during follow-up or not. Typically the cure probability, Pr(T > τ |Z), is modeled via
logistic regression and the censored times-to-event are simultaneously modeled via a Cox propor-
tional hazards model or accelerated failure time (AFT) model. In the 1-year azithromycin trial,
exacerbation-free patients are not truly cured. However, we may borrow mixture distribution ideas
for those experiencing treatment benefit of the form (1) and/or (2) when estimating E[min(τ, T )|Z]
via the relationship,

E[min(τ, T )|Z] = E(T |T < τ, Z)Pr(T < τ |Z) + τPr(T ≥ τ |Z).

τ -RMST estimation based on the right-hand side of this expression is hypothesized to gain pre-
cision over standard estimates due to better modeling of its individual elements. This intuition
has been borne out time and again when estimating survival quantities using appropriate weighted
expressions in the presence of censored data [13, 34, 35, 32]. We have not seen mixture dis-
tributions that address the point mass of events at τ applied to τ -RMST estimation in censored
time-to-event literature. In addition to improving efficiency of τ -RMST estimation, we will later
demonstrate how separate models for those who experience versus do not experience events during
the τ -duration follow-up period enhance our understanding of treatment effect in the azithromycin
trial.

In this manuscript, we develop τ -inflated beta regression (τ -IBR) models for censored times-
to-event that (1) provide a more enriched understanding of the association between predictors
and τ -restricted times-to-event and (2) allows for more efficient estimation of τ -RMST values. In
developing these models, we assume a one-inflated beta distribution for τ−1min(τ, T ) and, without
loss of generality, rescale to the desired sample space of zero to one; parameter estimates maintain
interpretability on either scale (zero to one or zero to τ ). Although we have seen one-inflated beta
regression models developed for uncensored outcomes [37, 38, 73], we have not seen these ideas
adapted and rescaled for use with censored τ -restricted event times.

To fit our proposed models we develop both expectation-maximization (EM) and multiple impu-
tation (MI) algorithms. Multiple imputation of censored survival outcomes has grown in popularity
[30, 12, 57, 20, 70], since it enables a variety of complete case analysis methods to be applied to
the multiply imputed datasets once the imputations are done. We develop an MI algorithm that

6



falls within the class of inverse transform (IT) methods where, using the inverse transform the-
orem, imputes are sampled from Kaplan-Meier survival function estimates within an appropriate
risk set of individuals comparable to the censored individual. Our risk set definition is based on the
τ -IBR model, but otherwise MI procedure is entirely nonparametric, conveying some robustness
over fully parametric MI methods.

The remainder of the manuscript is organized as follows. In section 2.2, we introduce notation
and the τ -IBR modeling approach with corresponding τ -RMST estimates in the special case with
no censored data. Section 2.3 describes EM and MI model fitting procedures for censored data
along with details for τ -RMST inference based on the τ -IBR model. Finite sample properties of
our methods are given via simulation in Section 2.4. We highlight attractive properties of our mod-
eling approach compared to traditional τ -RMST models through an analysis of the azithromycin
study in Section 2.5, followed by a discussion in Section 2.6.

2.2 Notation and Model Specification

For patient i, let Ti and Ci be the latent time-to-event and censoring time, respectively, where Ci

is independent of Ti, i = 1, 2, . . . , n. The observable data becomes {Xi,∆i, Zi}, where Xi =

min(Ti, Ci) with censoring indicator ∆i = I(Ti ≤ Ci), and Zi is a vector of covariates, i =

1, . . . , n. For the remainder of this section, we assume the special case with no censoring, so that
patient i’s τ -restricted event time, min(τ, Ti), is uncensored, i = 1, 2, . . . , n. We will return to the
censored setting in section 2.3.

Define Bi = I(Ti ≥ τ), Yi = τ−1Ti | Ti < τ, πi = E(Bi|Zi) and µi = E(Yi|Zi), where
0 < πi < 1, 0 < µi < 1, i = 1, . . . , n. Since min(τ, Ti) = Ti(1 − Bi) + τBi, E [min (τ, Ti) |Zi],
becomes

E (Ti | Ti < τ, Zi)Pr(Ti < τ |Zi) + τPr(Ti ≥ τ |Zi) = τ [µi(1− πi) + πi] . (2.1)

Hence, we may estimate τ -RMST values for individuals with different covariate profiles via joint
models of πi and µi. One advantage of this approach over the standard τ -RMST model is the
flexibility to model different relationships between covariates and µi as opposed to πi. Let Zπi

and Zµi be potentially reduced subsets of Zi such that πi = E(Bi|Zi) = E(Bi|Zπi) and µi =

E (Yi |Zi) = E (Yi |Zµi).
We assume a logistic regression model for πi that is applied to outcomes, Bi, i = 1, . . . , n,

log
(

πi
1− πi

)
= β0 + βT

1 Zπi, (2.2)
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where β1 is a vector of parameters associated with Zπi. Hence, for a one unit increase in the kth

element of Zπi, Zπik, the corresponding odds ratio of being event-free through time τ is exp(β1k)
when adjusted for other factors in the model, where β1k is the kth element of β1. Later it will
be convenient to express πi in terms of β = (β0, β

T
1 )

T , that is, πi = 1/
(
1 + e−β0−βT

1 Zπi
)
. When

emphasizing the dependence of πi on β, we will use the notation πi(β).
To model µi, we assume that Yi |Zµi, follows a beta[µiν, (1− µi)ν] distribution with probability

density function, fYi
(yi;µi, ν) = Γ(ν)

Γ(µiν)Γ[(1−µi)ν]
yi

µiν−1(1 − yi)
(1−µi)ν−1, i = 1, . . . , n. We then

assume a beta regression model for µi that is applied to outcomes, Yi, i = 1, . . . , n,

log
(

µi

1− µi

)
= α0 + αT

1 Zµi, (2.3)

where α1 is a vector of the parameters associated with Zµi. When emphasizing the dependence of
µi = 1/

(
1+e−α0−αT

1 Zµi
)

on α = (α0, α
T
1 )

T ,we will use the notation µi(α). To interpret this model,
consider the kth element of Zµi, Zµik, with corresponding parameter α1k. For a one unit increase
of Zµik from z to z + 1, the fold change for µi becomes eα1k(1 + eα0+zα1k)/(1 + eα0+α1k+zα1k)

when all other predictors in the model are zero. In subject area manuscripts, we center continuous
predictors and use zero values for reference groups of categorical predictors to aid in fold-change
interpretations.

Together, models (2.2) and (2.3) will hereafter be called the τ -inflated beta regression model, or
the τ -IBR model. To estimate parameters in models (2.2) and (2.3) based on completely observed
data {(Yi, Bi) = (yi, bi), i = 1, . . . , n}, we use the log-likelihood function:

l(θ) =
n∑

i=1

{
bilog[πi(β)] + (1− bi)log[1− πi(β)] + (1− bi)log[fYi

(yi;µi(α), ν)]
}
. (2.4)

where θ = (αT , βT , ν)T denotes the entire set of parameters. Differentiating (2.4) with respect to
each component of θ yields the score vector:

Uθ = (UT
β , U

T
α , Uν)

T ,

where

Uβ =
∂l(θ)

∂β
=

n∑
i=1

[bi − πi(β)]Z
π
i ,

Uα =
∂l(θ)

∂α
=

n∑
i=1

(1− bi)ν(y
∗
i − ψ∗

i )µi(α)[1− µi(α)]Z
µ
i ,
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Uν =
∂l(θ)

∂ν
=

n∑
i=1

(1− bi)
[
µi(α)(y

∗
i − ψ∗

i ) + ϕ∗
i + log

(
1− yi

)]
.

Here, Zπ
i = (1, Zπi

T )T , Zµ
i = (1, Zµi

T )T , y∗i = log[yi/(1−yi)], ψ∗
i = ψ[µi(α)ν]−ψ{[1−µi(α)]ν}

and ϕ∗
i = ψ(ν) − ψ{[1 − µi(α)]ν}, where ψ(x) = dlogΓ(x)/dx. Later it will also be convenient

to define ψ′(x) = [1/Γ(x)][dΓ(x)/dx].
The observed Fisher information matrix becomes:

Jθ =


Jβ 0 0

0 Jα Jαν

0 Jνα Jν

 =


− ∂2l(θ)

∂β∂βT 0 0

0 − ∂2l(θ)
∂α∂αT −∂2l(θ)

∂α∂ν

0 −∂2l(θ)
∂α∂ν

− ∂2l(θ)
∂ν∂νT


where

Jβ =
n∑

i=1

Zπ
i Z

πT

i πi(β)[1− πi(β)],

Jα = −
n∑

i=1

(1− bi)[ν(y
∗
i − ϕ∗

i )µ(α)[1− µ(α)][1− 2µ(α)]− ν2µi(α)
2[1− µ(α)]2ψ†

i ]Z
µ
i Z

µT

i ,

Jν = −
n∑

i=1

(1− bi){−µ2
i (α)ψ

†
i + 2µi(α)ψ

′
i{[1− µi(α)]ν}+ ϕ†},

Jαν = −
n∑

i=1

(1− bi){y∗i − ψ∗
i − νµi(α)ψ

†
i + νψ′

i[ν − µi(α)ν]}µi(α)[1− µi(α)]Z
µ
i

with ψ†
i = ψ′[µi(α)ν] + ψ′{[1− µi(α)]ν} and ϕ†

i = ψ′(ν)− ψ′[(1− µi)ν].
The maximum likelihood estimator, θ̂ = (α̂T , β̂T , ν̂)T , is the solution to Uθ = 0. Various

software programs can solve for θ̂, which includes quantities of interest, β̂ and α̂. We used the
nlminb function from the stats package in RStudio version 1.0.153 to obtain the maximum like-
lihood estimator θ̂, which is a quasi-Newton method optimizer [14]. We then estimated V̂ar(θ̂),
which includes corresponding covariance matrices, V̂β and V̂α, related to models (2.2) and (2.3),
respectively, using the inverse of the information matrix Jθ at θ̂.

In addition to parameter estimation, we may estimate the τ -RMST for each individual i =

1, . . . , n. Returning to equation (2.1), and defining µ̂i(α̂) = 1/(1 + e−α̂0−α̂T
1 Zµi) and π̂i(β̂) =

1/(1 + e−β̂0−β̂T
1 Zπi), i = 1, . . . , n, the estimated τ -RMST for subject i becomes

Ê[min(τ, Ti)|Zi] = τ µ̂i(α̂)[1− π̂i(β̂)] + τ π̂i(β̂). (2.5)
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After some algebraic manipulation relegated to Appendix A.1 ,

V̂ar
{

Ê [min (τ, Ti) |Zi]
}
= τ 2

(
1− 1

1 + e−α̂TZµ
i

)2

Zπ
i
T V̂βZ

π
i

(e−β̂TZπ
i
T
)2

(1 + e−β̂TZπ
i )4

+ τ 2
(
1− 1

1 + e−β̂TZπ
i

)2

ZµT
i V̂αZ

µ
i

(
e−α̂TZµ

i

)2(
1 + e−α̂TZµ

i

)4 ,
(2.6)

where V̂β and V̂α are estimated coefficient covariance matrices from models (2.2) and (2.3).

2.3 Extension to Censored Time-to-event Outcomes

In this section, we extend methods from section 2.2 to the setting with censored time-to-event data.
In sections 2.3.1 and 2.3.2, we describe EM and MI algorithms, respectively, for fitting the τ -IBR
model and performing inference.

2.3.1 EM Algorithm

We first describe contributions to the complete data log-likelihood from individuals i = 1, . . . , n,

where, without loss of generality, we assume that individuals i = 1, . . . , n1 have observed Bi =

bi as well as observed Yi = yi for those with Bi = 0. For the remaining i = n1 + 1, . . . , n

individuals with censored τ -restricted times-to-event, we observe Yi ≥ yi, but do not observe Bi.
Contributions to the complete data log-likelihood from individuals i = 1, . . . , n1, follow equation
(2.4), that is,

l1(θ) =

n1∑
i=1

{
bilog[πi(β)] + (1− bi)log[1− πi(β)] + (1− bi)log[fYi

(yi;µi(α), ν)]
}
. (2.7)

For individuals i = n1 + 1, . . . , n, the contribution to the complete data log-likelihood depends on
the unobserved Bi values, that is,

l2(θ) =
n∑

i=n1+1

{
Bilog[πi(β)] + (1−Bi)log[1− πi(β)] + (1−Bi)log[1− FYi

(yi;µi(α), ν)]
}
,(2.8)

where FYi
(yi;µi(α), ν) is the cumulative distribution for Yi evaluated at yi. Hence, the complete

data log-likelihood function across individuals, i = 1, . . . , n, is lc(θ) = l1(θ) + l2(θ).
The EM algorithm is an iterative procedure with an expectation step (E-step) and a maximation

step (M-step) that are repeated until convergence of model parameters according to predefined
criteria. Let θ̂(r) = {α̂(r), β̂(r), ν̂(r)}, r = 1, . . . be the vector of τ -IBR model parameter estimates
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obtained at the rth iteration of the M-step of the EM algorithm. Initial parameter estimates, θ̂(0), are
based on fitting the τ -IBR model given in section 2.2 to a dataset completed using the completely
nonparametric IT imputation method for censored values given by Hsu, Taylor and Murray [20].

The rth iteration of the E-step in the EM algorithm is to compute the expectation of the log-
likelihood function with respect to Bi, conditional on the observed data and current parameter
estimates, θ̂(r−1). In equation (2.7), Bi = bi is already known, so we only need to calculate the
conditional expectation for equation (2.8), which becomes

E
[
l2(θ)|θ̂(r−1), Yi ≥ yi, i = n1 + 1, . . . , n

]
=

n∑
i=n1+1

{
w

(r−1)
i log[πi(β)] +

[
1− w

(r−1)
i

]
(2.9)

log[1− πi(β)] +
[
1− w

(r−1)
i

]
[1− FYi

(yi;µi(α), ν)]
}
,

where w(r−1)
i = E(Bi|Yi ≥ yi, i = n1 + 1, . . . , n, θ̂(r−1))

=
πi(β̂

(r−1))

πi(β̂(r−1)) + [1− πi(β̂(r−1))][1− FYi
(yi;µi(α̂(r−1)), ν̂(r−1))]

.

The M-step in the EM algorithm maximizes Q(θ; θ̂(r−1)) = E
[
lc(θ)|θ̂(r−1), Yi ≥ yi, i = n1 +

1, . . . , n
]
= l1(θ) + E

[
l2(θ)|θ̂(r−1), Yi ≥ yi, i = n1 + 1, . . . , n

]
with respect to the τ -IBR model

parameters, resulting in updated estimates, θ̂(r). For implementing the M-step we use a quasi-
Newton method optimizer available through the nlminb function from the R stats package [14].
The EM algorithm iterates between the E- and M-steps until |θ̂(r) − θ̂(r−1)| < ϵ for some ϵ > 0;
for results given in this manuscript, we used ϵ = 10−4. Hereafter, θ̂EM denotes τ -IBR parameter
estimates obtained via this EM algorithm approach.

The estimated asymptotic variance-covariance matrix of θ̂EM is determined using the method
of Louis [31, 55], which in this case becomes

V̂ar(θ̂EM) =

[
− ∂2Q(θ; θ̂EM)

∂θ∂θT
− Var

(
∂lc(θ)

∂θ

)]−1∣∣∣∣
θ=θ̂EM

,

where

∂2Q(θ; θ̂EM)

∂θ∂θT
=


∂2Q(θ; θ̂EM)

∂β∂βT
0 0

0
∂2Q(θ; θ̂EM)

∂α∂αT

∂2Q(θ; θ̂EM)

∂α∂ν

0
∂2Q(θ; θ̂EM)

∂α∂ν

∂2Q(θ; θ̂EM)

∂ν2


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and

Var
(
∂lc(θ)

∂θ

)
=

Var(Uβ) 0 0

0 Var(Uα) Cov(Uα, Uν)

0 Cov(Uα, Uν) Var(Uν)

 .
For details on the determination of V̂ar(θ̂EM) via the Louis approach, see Appendix A.2. EM-

based τ -RMST and corresponding variance estimates are constructed using equations (2.5) and
(2.6), substituting elements of θ̂EM and V̂ar(θ̂EM) for θ̂ and V̂ar(θ̂), as appropriate.

2.3.2 MI Algorithm

The overall goal of MI methods is to produce M uncensored datasets, each of which can be an-
alyzed using appropriate uncensored data analysis methods. Quantities may be combined across
the M analyses using an approach laid out by Rubin [45, 46]; M = 10 MI datasets are often rec-
ommended and were used in this manuscript. Our proposed MI approach is a variation of inverse
transform (IT) imputation. For each censored individual, IT imputation methods form a risk set
of individuals similar to the censored individual (parametric component) and then use the inverse-
transform theorem applied to the estimated Kaplan-Meier curve in this risk set to obtain imputes
(non-parametric component). Details of our MI algorithm for estimating θ = (αT , βT , ν)T and
Var(θ) are given below, with MI estimates denoted θ̂MI and V̂ar(θ̂MI), respectively. When event
times are subject to censoring, θ̂MI and V̂ar(θ̂MI) estimates obtained using the algorithm below
replace corresponding estimates given in section 2.2 for the uncensored case.

In our setting a censored patient, j, with Cj < min (τ, Tj) has incomplete data for the model
(2.2) outcome, Bj , as well as the model (2.3) outcome, Yj , which is relevant if Bj = 0. Completed
outcomes are obtained by IT imputation of min(τ, Tj) for j = n1+1, ..., n. Step 1, below, describes
risk set construction based on parameter estimates from models (2.2) and (2.3), fit using the EM
algorithm given in section 2.3.1. Step 2 describes the imputation procedure based on these risk
sets. Step 3 gives the final M imputed data sets and formulas for combining the M analyses.
Step 1: (Risk set definition step) For individual j with Cj < min (τ, Tj), we define a risk

set, Rj , of similar individuals. The l = 1, 2, ..., Nj individuals included in Rj must satisfy: (a)
max(|µ̂l − µ̂j|, |π̂l − π̂j|) < ϵ, where µ̂ ∈ (0, 1) and π̂ ∈ (0, 1) are taken from θ̂EM , and (b)
Xl > Xj , . Condition (b) requires individuals in Rj to be at risk at individual j’s censoring time.
Condition (a) ensures that individuals in Rj have similar predicted outcomes to individual j. We
typically set ϵ in condition (a) to 0.01.

For any particular dataset, we have found it useful to be flexible in defining variations of condi-
tion (a). For instance, one may stipulate that if Nj is small, ϵ is increased by 0.001 until Nj reaches
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a predetermined size. In our simulations and example, we incrementally increased ϵ by 0.001 until
either Nj ≥ 15 or ϵ > 0.5. If the largest value in the risk set is a censored value < τ , we incremen-
tally increased ϵ by 0.001 until the largest value in the risk set was uncensored. Condition (a) may
also stipulate that individuals in Rj have an exact match to censored individual j on a particularly
important predictor, such as treatment group.
Step 2: (IT imputation step) For each censored individual, j = n1 + 1, ..., n, we impute a

value of Tj from which imputed values for Bj and Yj , as appropriate, can be calculated. Define
ŜTj

(v|Rj), 0 ≤ v ≤ τ , as the nonparametric Kaplan-Meier survival estimate for individuals in Rj

based on the data {(Xl,∆l), l = 1, . . . , Nj}. For each of the j = n1+1, ..., n censored individuals,
the IT imputation algorithm first generates a uniform(0,1) random variable, uj , and then finds the
smallest observed event time v∗ where ŜTj

(v∗|Rj) ≤ uj . If v∗ ≥ τ , then impute 1 for Bj and no
further imputation for Yj is needed, otherwise we impute 0 for Bj and v∗ for Yj . Completing this
step results in a fully imputed dataset.
Step 3: (Multiple imputation step) Repeat step 2 M times. For each imputed data set

m = 1, ...,M , fit models (2.2) and (2.3) and obtain parameter estimates θ̂MI
m with correspond-

ing estimated covariance matrix V̂ar(θ̂MI
m ). The final MI estimate of θ becomes θ̂MI =

∑M
m=1 θ̂

MI
m

with corresponding estimated covariance matrix:

V̂ar(θ̂MI) =
1

M

M∑
m=1

V̂ar(θ̂MI
m ) + (1 +M−1)

1

M − 1

M∑
m=1

(θ̂MI
m − θ̂MI)(θ̂MI

m − θ̂MI)T .

The terms, V̂ MI
α and V̂ MI

β , can be extracted from V̂ar(θ̂MI), as appropriate. MI-based τ -RMST
and corresponding variance estimates are constructed using equations (2.5) and (2.6), substituting
elements of θ̂MI and V̂ar(θ̂MI) for θ̂ and V̂ar(θ̂), as appropriate.

The final M imputed data sets are not restricted for use with the τ -IBR model. In our example
section we produce a heat map based on multiply imputed τ−restricted event times, an application
that we have not previously seen with censored survival data. Multiple imputation of τ -restricted
outcomes makes such graphics simple to produce.

2.4 Simulation Study

In this section we show the finite sample behavior of our proposed τ -IBR model, summarizing
the quality of (i) EM and MI parameter estimates for models (2.2) and (2.3) and (ii) EM and MI
τ -RMST estimates for individuals, i = 1, . . . , n. Section 2.4.1 summarizes data generation details
for each of the 1000 iterations of the simulation studies and section 2.4.2 gives results.

Metrics used to assess the quality of parameter estimates across simulations based on 500 sub-
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jects include the average bias (Bias), the empirical standard deviation (ESD), the average model-
based standard error (ASE), and the average coverage probability of model-based 95% confidence
intervals (CP). The quality of τ -RMST estimates across simulations based on n=100, 500, 1000
and 1500 subjects was evaluated by comparing the bias (Bias), the empirical mean squared er-
ror (EMSE), the ASE, and the 95% CP to those obtained from the standard τ -RMST Model.
Since true τ -RMST values are specific to each of the n individuals in each of the 1000 sim-
ulations, summary statistics for the performance of τ -RMST estimates are defined as Bias =
1000∑
j=1

n∑
i=1

Ê[min(Tij, τ)]− E[min(Tij, τ)]
n× 1000

, EMSE =
1000∑
j=1

n∑
i=1

{Ê[min(Tij, τ)]− E[min(Tij, τ)]}2

n× 1000
,

ASE =
1000∑
j=1

n∑
i=1

V̂ar{Ê[min(τ, Tij)]}
n× 1000

and CP =
1000∑
j=1

n∑
i=1

I(Lowerij < Ê[min(τ, Tij)] < Upperij)
n× 1000

,

where Lowerij = Ê[min(τ, Tij)] − 1.96 ×
√

V̂ar{Ê[min(τ, Tij)]} and Upperij = Ê[min(τ, Tij)] +

1.96×
√

V̂ar{Ê[min(τ, Tij)]}.

2.4.1 Data Generation

Two independent uniform(0,1) covariates, Z1i, Z3i and one independent Bernoulli(0.7) covariate,
Z2i, were generated for each individual, i = 1, . . . , n. Models (2.2) and (2.3) were taken to be
log[πi/(1−πi)] = −1.0+1.0Z1i+2.0Z2i−1.5Z3i, and log[µi/(1−µi)] = −2.0+1.2Z1i+2.0Z2i,

respectively. From these models, each individual’s calculated πi and µi was used to independently
generate a Bernoulli(πi) random variable, Bi, and a Beta[µiν, (1− µi)ν] random variable, Yi. The
corresponding τ -restricted survival time for the ith individual was min(τ, Ti) = τBi + τYi(1 −
Bi), i = 1, . . . , n, where τ = 30.

We considered three different censoring mechanisms: (1) no censoring, (2) independent censor-
ing and (3) dependent censoring, where in these latter two cases, approximately 30% of censored
events occurred prior to τ . For the independent censoring case, we independently generated a
Bernoulli(0.56) random variable, B∗

i , and a Uniform(0, τ) random variable, Ui and defined the
censoring random variable to be Ci = Ui(1−B∗

i ) + τB∗, i = 1, . . . , n. For the dependent censor-
ing case, subjects with Z2i = 1 had a of 36% chance of being censored according to a Uniform(0,τ )
distribution; otherwise outcomes were uncensored.

2.4.2 Simulation Results

Table 2.1 displays finite sample properties of parameter estimates from models (2.2) and (2.3) as-
suming no censoring, 30% independent censoring and 30% dependent censoring. In each of these
settings, τ -IBR parameter estimates are approximately unbiased with estimated 95% confidence
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Table 2.1: Finite sample properties of model (2.2) and (2.3) parameter estimates based on 1000
iterations with n=500 subjects assuming no censoring, independent censoring* and dependent
censoring† mechanisms.

Coef. %Cens. Method Bias ASE ESD CP
α0 = -2.0 0 τ -IBR -0.008 0.160 0.162 0.949

30* EM -0.011 0.173 0.178 0.949
30* MI -0.006 0.17 0.18 0.935
30† EM -0.009 0.170 0.172 0.948
30† MI -0.005 0.167 0.176 0.941

α1 = 1.2 0 τ -IBR 0.006 0.235 0.236 0.944
30* EM 0.006 0.258 0.261 0.939
30* MI -0.010 0.253 0.265 0.941
30† EM 0.004 0.257 0.260 0.952
30† MI -0.007 0.252 0.271 0.930

α2 = 2.0 0 τ -IBR 0.005 0.146 0.147 0.947
30* EM 0.005 0.158 0.163 0.942
30* MI 0.007 0.156 0.165 0.943
30† EM 0.007 0.155 0.159 0.942
30† MI 0.008 0.152 0.161 0.935

β0 = -1.0 0 τ -IBR -0.014 0.314 0.306 0.955
30* EM -0.014 0.357 0.350 0.954
30* MI -0.038 0.348 0.36 0.936
30† EM -0.019 0.347 0.335 0.968
30† MI -0.034 0.338 0.353 0.949

β1 = 1.0 0 τ -IBR 0.012 0.356 0.355 0.956
30* EM 0.015 0.418 0.419 0.952
30* MI 0.030 0.401 0.425 0.936
30† EM 0.020 0.417 0.409 0.960
30† MI 0.026 0.399 0.432 0.932

β2 = 2.0 0 τ -IBR 0.026 0.237 0.233 0.956
30* EM 0.036 0.268 0.266 0.956
30* MI 0.039 0.261 0.274 0.948
30† EM 0.030 0.255 0.252 0.949
30† MI 0.032 0.249 0.253 0.943

β3 = -1.5 0 τ -IBR -0.015 0.361 0.356 0.956
30* EM -0.035 0.425 0.425 0.954
30* MI -0.005 0.408 0.435 0.935
30† EM -0.016 0.422 0.416 0.960
30† MI 0.006 0.406 0.443 0.931

*Independent censoring, † Dependent censoring; ASE: Average Standard Error Estimates; ESD:
Empirical Standard Deviation; CP: Coverage of 95% Confidence Interval.
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Table 2.2: Comparison of estimated τ -RMST using (1) τ -IBR model and (2) τ -RMST model based
on 1000 iterates.

No censoring 30% Independent censoring 30% Dependent censoring
τ -IBR τ -RMST τ -IBR (MI) τ -IBR (EM) τ -RMST (PO) τ -IBR (MI) τ -IBR (EM) τ -RMST (PO)

1500 Subjects
Bias 0.000 -0.001 -0.003 -0.002 -0.001 -0.002 -0.002 -0.248

EMSE 0.189 0.641 0.226 0.220 0.671 0.227 0.215 0.792
ASE 0.384 0.417 0.425 0.439 0.453 0.416 0.431 0.447
CP 0.945 0.746 0.943 0.957 0.770 0.938 0.954 0.754

1000 Subjects
Bias -0.008 -0.01 -0.004 -0.006 -0.008 -0.008 -0.008 -0.256

EMSE 0.277 0.737 0.343 0.330 0.787 0.342 0.325 0.920
ASE 0.470 0.510 0.520 0.536 0.555 0.510 0.527 0.547
CP 0.946 0.804 0.941 0.955 0.823 0.933 0.951 0.803

500 Subjects
Bias 0.004 -0.001 -0.012 -0.007 -0.01 0.002 0.004 -0.244

EMSE 0.540 1.020 0.680 0.659 1.128 0.653 0.619 1.233
ASE 0.663 0.722 0.733 0.757 0.784 0.718 0.743 0.774
CP 0.943 0.873 0.935 0.947 0.883 0.934 0.950 0.871

100 Subjects
Bias 0.036 0.046 0.013 0.033 0.05 0.017 0.033 -0.196

EMSE 2.860 3.454 3.596 3.531 3.980 3.374 3.306 3.954
ASE 1.451 1.601 1.604 1.655 1.744 1.578 1.627 1.719
CP 0.908 0.928 0.898 0.910 0.932 0.897 0.912 0.929

Bias: Average difference between the true and predicted τ -RMST values across all subjects and
simulations; EMSE: Empirical mean squared error of τ -RMST values across all subjects and sim-
ulations; ASE: Average of the model-based standard error estimates corresponding to the τ -RMST
estimates across all subjects and simulations; CP: Empirical coverage probability of the true τ -
RMST value by the model-based 95% confidence interval across all subjects and simulations.

intervals showing appropriate coverage of the true parameter values. As one might expect, the
variability of parameter estimates from the model with dichotomous outcomes, i.e., model (2.2),
is somewhat larger than the variability of parameter estimates from the model with continuous
outcomes, i.e., model (2.3).

Table 2.2 shows finite sample properties of τ -RMST estimates using both our proposed τ -IBR
methodology and the standard τ -RMST model. We initially generated results for the case with
n=500 subjects as in Table 2.1, noting that τ -IBR-based τ -RMST estimates were approximately
unbiased regardless of estimation approach (EM, MI) or censoring mechanism (none, independent,
dependent) and 95% confidence intervals showed appropriate coverage. However, when viewing
results from the standard τ -RMST model, two interesting findings emerged. First, as has been
reported by others [30, 71, 72, 60], we noted biased τ -RMST estimates when using the standard
τ -RMST model in the dependent censoring case. Even more interesting was that in all scenarios,
τ -RMST estimates based on the standard τ -RMST model had both larger ASE values and poorer
coverage probabilities than estimates based on the τ -IBR model.
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Figure 2.1: Difference between EM-fitted τ -RMST and actual τ -RMST based on (a) 100 subjects
(b) 500 subjects (c) 1000 subjects and (d) 1500 subjects.

To further investigate the poor coverage probabilities of the standard τ -RMST model seen in our
simulations, we first looked at a range of sample sizes to see if coverage using the standard method
improved with increased sample size. Rather than correcting the problem, increased sample sizes
resulted in increasingly worse coverage probabilities using the standard τ -RMST model. Our next
strategy to gain intuition about the poor coverage probabilities using the standard τ -RMST model
in our simulations was to plot differences between estimated and true τ -RMST values for repre-
sentative datasets with n=100, 500, 1000 and 1500 subjects. Figure 2.1 displays these differences
for the independent censoring setting, highlighting subjects whose true τ -RMST values were not
covered by each method’s estimated 95% confidence interval. τ -IBR estimates in Figure 2.1 are
based on the EM algorithm described in section 2.3.1. Additional figures of this nature for the
dependent censoring setting and using τ -IBR estimates based on the MI algorithm given in section
2.3.2 are located in Supplemental Figure A.1 in Appendix A.3.

Although the average bias is near zero for the standard τ -RMST model estimates in Figure 2.1,
high absolute bias is seen in many cases due to not taking into account the behavior of the point
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mass of min(τ, Ti) at τ . This also is reflected in the higher EMSE results seen for the standard
τ -RMST model in Table 2.2. Hence, in very plausible settings where the point mass at τ contains
important statistical information about the τ -restricted mean, we see significant gains in precision
using the more suitable τ -IBR modeling approach.

2.5 Azithromycin for Prevention of COPD Exacerbations Trial

In this section, we use the proposed τ -IBR model to analyze data from the Azithromycin for
Prevention of COPD Exacerbations Trial. In this trial, COPD patients were randomized to daily
azithromycin or placebo for 1 year in addition to their usual care. Our analysis focuses on 1112 par-
ticipants who were available for multivariable modeling with adjustments for age [in decades and
centered at 65 years], sex [male=1, female=0], forced expiratory volume in one second (FEV1) [in
percentage of predicted units by tens and centered at 40% of predicted], smoking status [current=1,
former=0] and study site.

Multiply imputed datasets based on our proposed τ -IBR model were used to create the heatmap
in Figure 2.2. Heatmap entries are individual 1-year RMST values averaged across 10 imputed
datasets, with higher values in the yellow color range and lower values in the purple color range.
Additional individual characteristics (treatment, age, gender, FEV1% of predicted and smoking
status) are color coded on the top of the heatmap. Descriptively, the cluster with the highest 1-year
RMST values is more likely to be taking azithromycin, is predominantly male, and tends to have
FEV1% >50% of predicted. The cluster with the lowest 1-year RMST values is more likely to be
taking placebo, is predominantly female and tends to have FEV1% <30% of predicted.

Table 2.3 presents parameter estimates from the proposed multivariable 1-year-IBR models and
the traditional 1-year-RMST model; parameter estimates for study site are submerged in this table.
For those who experienced an exacerbation during the 1 year of follow-up, the beta regression
component of the 1-year-IBR model [Model (2.3)] estimates the ratio of estimated exacerbation-
free time during the year when comparing those with versus without a one unit increase in each
predictor (Fold Change), assuming other predictors in the model are zero; zero values for the
continuous variables, age and FEV1% of predicted are assumed to be at their centered values of
65 and 40, respectively, when interpreting fold changes. The logistic regression component of
the 1-year-IBR model [Model (2.2)] gives estimated odds ratios for remaining exacerbation-free
at one year comparing those with versus without a one unit increase in the predictor, adjusted for
other covariates in the model. The 1-year RMST model was fit with an identity link, so that each
regression coefficient divided by τ , Coef/τ , is the percentage increase in 1-year-RMST for each
unit increase of the predictor, adjusted for other covariates in the model. Results in Table 2.3
include corresponding 95% confidence intervals (CIs) and p-values.
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Figure 2.2: One-year RMST values for participants in the COPD Exacerbations Trial. Heatmap
entries are individual 1-year RMST values averaged across 10 multiply imputed datasets using the
τ -IBR method of imputation.

In evaluating the effect of azithromycin, the 1-year-IBR model estimates an odds ratio of 1.766
based on the MI method (95% CI: 1.358-2.296, p<0.001) and an odds ratio of 1.748 based on
the EM method (95% CI: 1.345-2.271, p<0.001) for remaining exacerbation-free at one year
when taking azithromycin versus placebo, adjusted for other factors in the model. The effect
of azithromycin on exacerbation-free time during the year, amongst those who experienced an ex-
acerbation during the year and adjusted for other factors in the model, is not statistically significant
(MI: fold change of 1.025 comparing azithromycin to placebo, 95% CI: 0.926-1.123, p = 0.617;
EM: fold change of 1.026 comparing azithromycin to placebo, 95% CI: 0.927-1.125, p = 0.606).
Hence, taking azithromycin seems to decrease the overall odds of experiencing an exacerbation
during the year, as opposed to increasing exacerbation-free time for those subject to experiencing
an exacerbation during the year. The traditional 1-year-RMST model estimates a 9.1% increase
in 1-year-RMST for those taking azithromycin versus placebo (95% CI: 4.7%-13.6%, p<0.001),
which correctly interprets the impact of treatment on the estimated 1-year-RMST, but does not
characterize impact in terms of patients being more or less susceptible to exacerbations during the
year as the 1-year-IBR model does. Supplemental Table A.1 in Appendix A.4 displays the esti-
mated effect of azithromycin for varying τ = 3, 6, 9 and 12 months in τ -IBR and τ -RMST models,
adjusted for same predictors. A similar pattern is seen in each case when interpreting results from
the τ -IBR models, that is, that azithromycin is associated with being less susceptible to exacer-
bations during the various follow-up periods of interest. This pattern is discernible even for the
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Figure 2.3: (a) Estimated RMST by treatment group for varying τ in τ -IBR and τ -RMST multi-
variable models.
(b) Individual level differences between 1-year-RMST estimates using the 1-year-IBR EM-fitted
model versus estimates using the traditional 1-year-RMST model by treatment group.

τ = 3 month follow-up window when using the 3-month-IBR models (p=0.003). The traditional
3-month-RMST model does not achieve statistical significance for the azithromycin effect in this
case (p=0.084).

One-year-RMST estimates of interest are shown in Figures 2.3(a) and 2.3(b). Figure 2.3(a)
shows estimated τ -RMST values and corresponding 95% CIs by treatment group for τ = 3, 6,
9 and 12 month follow-up periods based on the τ -IBR and τ -RMST models given in Table 2.3,
assuming average values for the overall study cohort for predictors other than treatment group.
When adjusted for other predictors in the model(s), all τ -RMST estimates are close to one another,
with τ -RMST estimates being slightly higher using the τ -IBR models versus the standard τ -RMST
model. Figure 2.3(b) shows individual level differences between 1-year-RMST estimates using the
1-year-IBR EM-fitted model versus estimates using the traditional 1-year-RMST model by treat-
ment group. At the individual level, RMST estimates are typically close regardless of estimation
method used. Differences ranged from 20 days (5%) higher to 11 days (3%) lower when using the
1-year-IBR versus the standard model. Recall that the standard τ -RMST model was seen to have
much higher MSE when compared to the τ -IBR method in simulation (see Figure 1) due to higher
bias on the absolute value scale. In this context, the τ -IBR model RMST estimates seen in Figure
2.3 are preferred.

Interestingly, the only predictor that showed statistical significance in the beta component of the
1-year-IBR model given in Table 2.3 was age. That is, among those experiencing an exacerbation
during the 1 year of follow-up, the estimated exacerbation free time increased by 7% for every
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Table 2.3: Azithromycin for Prevention of COPD Exacerbations Trial: Estimated 1-year-IBR and
1-year-RMST multivariable model parameters with 95% confidence intervals and p-values. All
models are additionally adjusted for study site (data not shown).

Azithromycin
(vs. Placebo)

Age
(per 10 Years)

Male
(vs. Female)

FEV1

(per 10% Predicted)
Current Smoker

(vs. Ex)
τ -IBR model (EM) (Beta Regression)

Fold Change* 1.026 1.070 1.018 1.021 1.004
95% CI (0.927, 1.125) (1.007, 1.132) (0.919, 1.118) (0.987, 1.054) (0.876, 1.132)
P-value 0.606 0.027 0.714 0.224 0.952

τ -IBR model (EM) (Logistic Regression)
Odds Ratio† 1.748 1.138 1.686 1.123 1.076

95% CI (1.345, 2.271) (0.965, 1.341) (1.282, 2.218) (1.030, 1.224) (0.766, 1.512)
P-value <0.001 0.124 <0.001 0.008 0.672

τ -IBR model (MI) (Beta Regression)
Fold Change* 1.025 1.070 1.021 1.019 1.100

95% CI (0.926, 1.123) (1.009, 1.132) (0.919, 1.123) (0.986, 1.052) (0.869, 1.131)
P-value 0.617 0.024 0.689 0.247 0.998

τ -IBR model (MI) (Logistic Regression)
Odds Ratio† 1.766 1.134 1.670 1.124 1.108

95% CI (1.358, 2.296) (0.964, 1.333) (1.267, 2.201) (1.030, 1.227) (0.790, 1.554)
P-value <0.001 0.128 <0.001 0.009 0.552

τ -RMST Model
Coef/τ ⋆ 0.091 0.035 0.080 0.023 0.014
95% CI (0.047, 0.136) (0.007, 0.063) (0.034, 0.126) (0.008, 0.038) (-0.045, 0.072)
P-value <0.001 0.014 <0.001 0.002 0.641

*Among those experiencing an exacerbation during the 1 year of follow-up, fold change is the ratio
of estimated exacerbation-free time during the year when comparing those with versus without a
one unit increase in the predictor, assuming all other predictors are zero. Age is centered at 65
years and percent of predicted FEV1 is centered at 40% to aid in interpreting fold changes.
†Odds ratio for remaining exacerbation-free at one year comparing those with versus without a one
unit increase in the predictor shown, adjusted for other covariates in the model including treatment
group, age, gender, percent of predicted FEV1, smoking status and study site.
⋆Percentage increase in 1-year-RMST for each unit increase of the predictor, adjusted for other
covariates in the model.

additional 10-year increase in age (MI: fold change of 1.070, 95% CI 1.009-1.132, p=0.024; EM:
fold change of 1.070, 95% CI 1.007-1.132, p=0.027), adjusted for other predictors in Table 2.3.
Upon further investigation, a significant interaction between treatment group and age was seen in
the logistic component (MI: p=0.013; EM: p=0.014), but not the beta component (MI: p=0.754;
EM: p=0.644), of the τ -IBR model, indicating an increasing odds of remaining exacerbation-
free for older patients taking azithromycin versus placebo during the 1 year of follow-up. This
interaction was also detected by the τ -RMST model (p=0.041) and was noted by the investigators
based on a Cox model.

Supplemental Table A.2 in Appendix A.4 summarizes results of interaction tests between treat-
ment group and age, gender, percent of predicted FEV1 and current smoking status. Current smok-
ers were observed to benefit less from azithromycin that former smokers with marginal significance
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in the logistic component of the τ -IBR model (MI: p=0.089; EM: p=0.083) and significance in the
τ -RMST model (p=0.030). The τ -RMST model also showed a marginally significant interac-
tion between treatment and percent of predicted FEV1 (p=0.073), suggesting a stronger benefit of
azithromycin for those with higher FEV1. When tested, the τ -IBR model did not give any indica-
tion of an interaction between treatment and FEV1 (beta component MI: p=0.125, EM: p=0.161;
logistic component MI: p=0.400, EM: p=0.379). Instead, based on results from Table 2.3, the sta-
tistical signal was relegated to the logistic regression component of the τ -IBR model, with the odds
of remaining exacerbation-free during the year increasing by 12% for every 10 unit increase in per-
cent of predicted FEV1. Otherwise, based on the beta regression component of the τ -IBR model,
no significant effect of percent of predicted FEV1 was seen to impact exacerbation-free time for
those experiencing exacerbations during the year of follow-up (MI: p=0.247, EM: p=0.224).

2.6 Discussion

To our knowledge, a τ -inflated beta regression model has never been proposed as a way to model
time-to-event data, censored or otherwise. The key advantages of this method are (1) a better
understanding of predictors associated with no events in the τ -restricted period of interest, as op-
posed to predictors associated with shorter expected event-free time amongst those who experi-
enced the event and (2) more efficient estimation of restricted means due to properly modeling
the point mass of min(τ, T ) events at τ . Weighted estimation expressions, such as that given by
equation (2.5), have often been seen to improve efficiency of estimation in censored data settings
[13, 34, 35, 32]. In the case of the weighted Kaplan-Meier survival estimate proposed by [34],
closed-form asymptotic variance calculations confirmed gains in efficiency over the traditional
Kaplan-Meier estimator when survival differences in subpopulations were taken into account and
recombined using appropriate weighting methods. Efficiency gains of the τ -IBR method RMST
estimates over traditionally estimated RMST estimates from τ -RMST models seem to bear out this
intuition as well.

We developed both an EM algorithm and a semi-parametric MI algorithm for fitting and re-
porting results for the τ -IBR model. In this paper, we form risk sets for the IT imputation method
based on the EM algorithm fitted parameter estimates. In simulation, both EM and MI estima-
tion methods performed well in terms of efficiency and bias in settings with both independent and
dependent censoring mechanisms. One could certainly argue for use of EM algorithm approach
since the MI approach requires more computational time to fit. An advantage of the MI algorithm
approach over the EM algorithm approach is the ability to easily perform additional analyses using
uncensored data methods based on the multiply imputed datasets, for instance, in creating data
views like Figure 2.2. The only parametric element to our MI algorithm is defining a risk set of
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similar individuals to the censored individual being imputed; the IT method of imputing from the
risk set is thereafter entirely nonparametric.

A common issue in multiple imputation algorithms is whether or not to include a bootstrap step
that accounts for population variability more appropriately; a bootstrap step is often recommended
for producing a ’proper’ imputation algorithm in Bayesian literature parlance. We took a very
pragmatic approach of looking at our simulated coverage rates without a bootstrap step first and,
after some experimentation with including a bootstrap step, elected to skip this step after noting
little improvement in coverage rates. Again, this is a matter of taste, with those of a more pure
Bayesian mindset likely to include a bootstrap step as a matter of principle, but we found the
gain in obtaining results more quickly quite satisfying and continue to recommend skipping the
bootstrap step. This is, of course, an easily incorporated change for those who wish to do so. We
also looked to see if bootstrapped variance estimates of EM algorithm parameters would improve
coverage rates in simulation and again found that coverage rates were similar to those reported
without bootstrapping.

When viewed within the context of restricted mean regression models, which was our initial
starting point when developing our proposed model, some clear advantages emerge from our sim-
ulation results and from our analysis of the COPD data. Our simulation results confirm better
precision of τ -RMST estimates and better corresponding confidence interval coverage rates when
the point mass at τ is more appropriately modeled. As seen in the COPD example, the relative
importance of risk factors in models (2.2) and (2.3) shifted between the two models, with most sta-
tistical signal appearing in model (2.2). In particular, the treatment effect manifested significantly
in model (2.2) and not model (2.3). The traditional τ -RMST model identifies a significant treat-
ment effect as well, but is not able to distinguish the nature of the treatment effect as clearly. That
is, the τ -RMST model identifies those on azithromycin as having longer estimated τ -RMST val-
ues but does not capture the intuition that fewer patients are susceptible to exacerbations during the
follow-up period when taking this treatment. The restricted mean modeling approach is becoming
more popular as an alternative to the proportional hazards model, and our proposed method fills a
gap in restricted mean model literature.

In this work, the τ value used in modeling corresponded to the follow-up period of the
Azithromycin study that was approximately 1 year long. Any analysis method applied to this
data is restricted to this follow-up period, whether the methodology explicitly indicates this re-
stricted period of time or not. Note that any method can consider different follow-up times of
interest, for example what event times restricted to 6-months might look like. The restricted sur-
vival time framework makes this choice more explicit than other methods that, for instance, could
censor event times at 6-months to evaluate short term outcomes in this study. We view the nature
of specifying the follow-up period of interest using the τ -IBR and τ -RMST methods as a strength,
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rather than a weakness, of using the τ notation when reporting results.
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CHAPTER 3

τ -Inflated Beta Regression Model for Censored
Recurrent Events

3.1 Introduction

In clinical and observational studies of chronic disease, patients often experience recurrent events
that are central to how the disease manifests. For example, in Chronic Obstructive Pulmonary
Disease (COPD) patients, acute respiratory exacerbations are a frequent concern and much atten-
tion has been given to how to prevent or delay them. Regression models that identify risk factors,
biomarkers and effective treatments for preventing exacerbations are key to understanding how to
clinically manage COPD patients.

Modern regression methods for recurrent events address possible dependence between recurrent
event times in an individual to obtain valid inference. Models for (a) the number of recurrent events
per unit time and models for (b) the times between recurrent events are both commonly used.

Models of type (a) include Poisson and negative binomial count models that employ a dispersion
parameter to better reflect count distributions that deviate from model assumptions [25, 16, 66].
Generalized estimating equations (GEE) have also been proposed to estimate parameters and cor-
responding variance terms in models of dependent counts over time, which allow covariates to be
updated at more frequent intervals than their predecessor models [48, 1]. Zero-inflated versions of
these count models are also available [24, 49], which address subpopulations of patients who may
not be subject to experiencing recurrent events at their stage of chronic disease, i.e., patients who
inflate the number of zero recurrent event counts in the data.

For type (b) models that focus on recurrent event time random variables, several methods have
emerged since Andersen and Gill’s [3] extension of the Cox model to analyze times between events,
or gap times, as independent random variables subject to censoring. This independence assumption
for gap time random variables taken from the same individual was relaxed by Pepe and Cai (1993)
[40], Lawless and Nadeau (1995) [26] and Lin et al (2000) [28]. Model parameters are typically
related to recurrent event intensity rate ratios, although if only time-independent covariates are
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used in these models, an estimate for the multiplicative effect on the mean number of events per
unit time is available so that model (a) type interpretations of the data can be made.

A third modeling paradigm for recurrent events has recently been introduced by Xia, Murray
and Tayob (2020) [70] that incorporates ideas from restricted event time [77, 4, 30, 71] and land-
mark analyses [5, 64, 36, 39, 53] for single times-to-event. The recurrent events data structure
is first transformed to a censored longitudinal data structure of τ -restricted times-to-first event for
each individual i in follow-up windows initiated at regularly spaced follow-up times t ∈ {t1, ..., tb}.
More formally, the newly formatted longitudinal outcomes for individual i are written as Ti(t),
which is the τ -restricted time to the first event following each pre-specified time, t. Censoring
of recurrent event times is handled through pseudo observation (PO) or multiple imputation (MI)
approaches, with generalized estimating equation (GEE) methods then used to analyze the result-
ing data structure. The overall approach naturally accommodates dependence between correlated
event times measured from the same individual, while avoiding dependent censoring issues that
appear, for instance, in correlated gap-time derived data structures [29, 54]. Parameter estimates
from the resulting models for E[Ti(t)] can be used to estimate and interpret longitudinal trajecto-
ries of mean τ -restricted event times across the follow-up windows according to different patient
covariate profiles.

The current manuscript fits within this third modeling paradigm that restructures recurrent event
data into a censored longitudinal data structure of τ -restricted times-to-first-event, Ti(t), in prede-
termined, regularly spaced follow-up windows starting at t ∈ {t1, ..., tb}. In particular, we are
motivated by the idea that many individuals in the Azithromycin in COPD study are at an earlier
disease stage that makes them less susceptible to recurrent exacerbations during follow-up, so that
Ti(t) = τ is often observed. These are the same types of individuals with a tendency to have zero
recurrent event counts, which inspired the use of zero-inflated count models that were mentioned
earlier. As in the case with zero-inflated count models, risk profiles (covariates) associated with
observing Ti(t) = τ may be quite different from risk profiles associated with Ti(t) given Ti(t) < τ ,
perhaps requiring different sets of predictors to model the data appropriately. To understand trends
in longitudinal restricted event times, then, it seems sensible to take into account the mixture of
individuals that achieve an active recurrent event endpoint, Ti(t) < τ , during a follow-up window
starting at t as opposed to individuals who are event-free during a follow-up window.

In this manuscript we develop a modeling framework for recurrent event data that more explic-
itly characterizes the point mass of event-free individuals with Ti(t) = τ in the follow-up window
starting at t versus those with active events in this follow-up window with Ti(t), Ti(t) < τ . As
in Xia, Murray and Tayob (2020), our model will allow for estimation of E[Ti(t)]. However, we
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approach this estimation problem through the useful decomposition:

E[Ti(t)] = E[Ti(t)|Ti(t) < τ ]Pr[Ti(t) < τ ] + τPr[Ti(t) ≥ τ ].

By decomposing E[Ti(t)] in this manner and modeling its separate components, we will also be
able to evaluate patient profiles that lend themselves to (1) a lower overall chance of experiencing
an exacerbation during a restricted period and (2) a longer event-free time amongst patients who
experience exacerbation during a restricted period. In the context of evaluating treatment effects
during a clinical trial, this modeling framework will naturally allow for more nuanced evaluation
of treatment effects, not only allowing for treatment effects of the type (1) versus (2), but also
supporting a description of these effects over time through modeling the imposed censored lon-
gitudinal data structure. In terms of modeling efficiency, taking into account potentially different
associations between predictors and outcomes in components of the decomposition above may
increase precision of statistical inferences regarding times to the next recurrent event. This intu-
ition has been verified many times when estimating survival quantities using appropriate weighted
methods in the presence of censored data [13, 34, 35, 32].

The remainder of this manuscript is organized as follows. In Section 3.2, we define notation
and describe how to transform the censored recurrent event data into the more regularly spaced
censored longitudinal data structure for these events. In section 3.3, we develop our model in
the special case with no censoring, with censoring later addressed using expectation-solution (ES)
and multiple imputation (MI) approaches given in Section 3.4. Section 3.5 describes finite sample
properties of our methodology via simulation. An analysis of the Azithromycin in COPD clinial
trial highlighting advantages of our approach is given in Section 3.6, followed by a discussion in
Section 3.7.

3.2 Notation and Construction of Censored Longitudinal Data

In this section, we define notation, review how to convert traditional recurrent event data into a
censored longitudinal data structure as described in refs [58][67][69][70] and develop additional
longitudinal data notation to suit the purposes of this research.

For each patient i, i = 1, . . . , n, let Tij be the time from the beginning of follow-up to the jth

recurrent event, j = 1, . . . , Ji. Let Ci be the censoring time for patient i, with Ci assumed to be
independent of Tij for j = 1, . . . , Ji. Data from different individuals indexed by i = 1, . . . , n are
assumed to be independent of one another. However, correlation between recurrent event times,
Ti1, . . . , TiJi , contributed by the same individual i is allowed. The censored nature of the data
only allows us to observe Xij = min[Tij, Ci] with its corresponding censoring indicator ∆ij =
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Xi1	=	59	days
𝚫i1	=	1

Xi2	=	246	days
𝚫i2	=	1

Xi3	=	350	days
𝚫i3	=	1

Baseline AE AE AE

𝜂#𝑖(60)	=	2
Ti(60) =	180	days
Xi(60) =	180	days

𝚫i(60) =	1

𝜂#𝑖(0)	=	1
Ti(0) =	59	days
Xi(0) =	59	days
𝚫i(0) =	1

𝜂#𝑖(120)	=	2
Ti(120) =	126	days
Xi(120) =	126	days

𝚫i(120) =	1

𝜂#𝑖(180)	=	2
Ti(180) =	66	days
Xi(180) =	66	days
𝚫i(180) =	1
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Bi(0) =	0
Yi(0) =	59/180	=	0.33

Bi(60) =	1

Bi(120) =	0
Yi(120) =	126/180	=	0.70

Bi(180) =	0
Yi(180) =	66/180	=	0.37

0 180

60 240

120 300

180 360

Figure 3.1: An individual from the Azithromycin in COPD Trial with 360 follow-up days shown
using both the traditional and proposed longitudinal notation. (AE: Acute Exacerbation)

I[Tij < Ci], i = 1, . . . , n, j = 1, . . . , J̃i with J̃i ≤ J . Our definition of a recurrent event time
random variable is broad, allowing for composite endpoints that might include both recurring and
terminal events. In the azithromycin study, the recurrent event times were based on composite
endpoints, Tij = min(time to jth acute exacerbation (AE) for patient i, time to death for patient i),
i = 1, . . . , n, j = 1, . . . , Ji.

An alternative censored longitudinal data structure for the analysis of recurrent event data was
first proposed by Tayob and Murray [58]. For each individual, the recurrent event data structure is
transformed to a series of regularly-spaced follow-up windows with censored times-to-first-event
recorded for each window. Figure 3.1 shows data for 360 follow-up days from an example par-
ticipant in the Azithromycin Study using both traditional and the proposed longitudinal notation
that will be helpful as we review notation from Tayob and Murray and introduce additional lon-
gitudinal outcome notation used in this manuscript. This individual experienced three AEs at 59,
246 and 350 days before being censored at 360 days of follow-up. Hence, using traditional recur-
rent event notation, the data becomes {(Xi1 = 59 days,∆i1 = 1), (Xi2 = 246 days,∆i2 = 1),
(Xi3 = 350 days,∆i3 = 1), (Xi4 = 360 days,∆i4 = 0)}, with J̃ = 4. We will continue to refer
back to this example patient when defining notation throughout this section.

The proposed longitudinal data structure is based on (potentially censored) times-to-first-event
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in follow-up windows of length τ measured from follow-up times t ∈ {t1, ..., tb}, with t1 = 0 and
tk = tk−1 + a, k = 2, . . . , b. For a study with s follow-up days, tb is at most s− τ . The follow-up
window length, τ , corresponds to a clinically meaningful duration in the context of the current
study and patient population. For the example patient shown in Figure 3.1, s = 360 days, τ = 180
days and a, b and τ are 60 days and 4, respectively, giving {t1, ..., t4} = {0, 60, 120, 180} days.
Recommendations for the choice of a, b and τ are discussed in Tayob and Murray (2015)[58], Xia
and Murray (2019)[67], and Xia, Murray and Tayob (2020)[70] in terms of computational burden,
the probability of capturing each recurrent event in at least one follow-up window once the data
conversion to the longitudinal structure is complete and statistical efficiency. For exponentially
distributed recurrent event times, using a equal to one-third of the expected recurrent event time
tends to capture 90% of the recurrent events in at least one follow-up window. It is theoretically
possible to set a = 1 day, i.e., new follow-up windows of length τ starting every day until tb =

s− τ , although this increases the computational burden of an analysis.
With the structure of the follow-up windows defined in terms of a, b and τ , we now define

notation for τ -restricted times-to-first-event in each of the follow-up windows mapped from the
original recurrent event time random variables. For each t ∈ {t1, . . . , tb}, we define:

ηi(t) = min{j = 1, . . . , Ji : Tij > t} and

Ti(t) = min[Tiηi(t) − t, τ ],

where ηi(t) indexes the first of the original recurrent events to appear after follow-up-time t and
Ti(t) is the corresponding τ -restricted time-to-first-event measured from t. In the presence of
censoring, individual i’s observed data for the follow-up window starting at t becomes:

η̃i(t) = min{j = 1, . . . , J̃i : Xij > t},

Xi(t) = min[Xiη̃i(t) − t, τ ] and

∆i(t) = I
{

min[Xiη̃i(t) − t, τ ] < Ci − t
}
,

where η̃i(t) indexes the first of the original observed recurrent event times to occur after t, with
Xi(t) and ∆i(t) being the corresponding τ -restricted time-to-first-observed-event and censoring
indicator, respectively, measured from the start of that follow-up window. Any individual i who is
not at risk at the beginning of a follow-up window starting at t is assumed to haveXi(t) = ∆i(t) =

0.
Returning to Figure 3.1, where follow-up for patient i through day s = 360 is complete,

the longitudinal data for patient i contributed from follow-up windows starting at {t1, ..., t4} =
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{0, 60, 120, 180} days becomes:

{Ti(0) = Xi(0) = 59 days,∆i(0) = 1, ηi(0) = η̃i(0) = 1},

{Ti(60) = Xi(60) = 180 days,∆i(60) = 1, ηi(60) = η̃i(60) = 2},

{Ti(120) = Xi(120) = 126 days,∆i(120) = 1, ηi(120) = η̃i(120) = 2} and

{Ti(180) = Xi(180) = 66 days,∆i(180) = 1, ηi(180) = η̃i(180) = 2}.

Note that Ti(60) = 180 days reflects a τ = 180 day follow-up window with no recurrent events. In
the azithromycin study, approximately 48% of the 180-day length follow-up windows constructed
in this way had no recurrent events, resulting in a point mass for Ti(t) at 180 days. To emphasize
that Ti(t) is a mixture distribution with both continuous and point mass components, we may
rewrite it as

Ti(t) = τBi(t) + Ti(t)[1−Bi(t)] = τ
{
Bi(t) + Yi(t)[1−Bi(t)]

}
, (3.1)

where Bi(t) = I[Ti(t) = τ ] is a Bernoulli random variable with mean πi(t) = Pr[Ti(t) = τ ] and
Yi(t) = τ−1Ti(t) defined conditionally for Ti(t) < τ (i.e., Bi(t) = 0), is a continuous random
variable on the sample space between zero and one. Since Yi(t) is a conditional random variable
that is only defined when Bi(t) = 0, Yi(t) is independent of Bi(t) in equation (3.1). Hence,
we may model these quantities separately in obtaining inferences on Ti(t). Returning to Figure
3.1, individual i contributes {[Bi(0) = 0, Yi(0) = 0.33], [Bi(60) = 1], [Bi(120) = 0, Yi(120) =

0.70], [Bi(180) = 0, Yi(180) = 0.37]}. Values for Yi(t) and Bi(t) are only partially observed in
follow-up windows starting at t, where the patient is at risk at t and censored prior to t+ τ . In the
presence of censoring, it will be convenient to define the observed value, Ỹi(t) = τ−1Xi(t), defined
conditionally for Xi(t) < τ . For instance, imputation of Yi(t) for individuals with Ỹi(t) = ỹi(t)

will be discussed in section 3.4.
The following two sections of the manuscript develop methodology first in the uncensored data

setting (section 3.3) and then in the censored data setting (section 3.4), where both a multiple
imputation and an ES algorithm are introduced for fitting the model.

3.3 Model Specification for the Uncensored Data Setting

Using the (potentially censored) longitudinal data structure for recurrent events data described in
section 3.2, we would like to understand the association between predictors and Ti(t). In this
section, we describe estimation and inference for our proposed model(s) in the special case with
no censoring. We will address the potentially censored nature of the data in section 3.4, where
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a multiple imputation approach for generating uncensored datasets for analysis is developed and
analyses combining inferences across these uncensored datasets are described.

To date, the only regression model applied to this proposed recurrent event data structure is
the multivariate τ -Restricted Mean Survival Time (τ -RMST) model described by Xia, Murray and
Tayob [70]:

E[Ti(t)|Zi(t)] = β̃TZi(t), (3.2)

i = 1, . . . , n, t ∈ {t1, ..., tb}, where β̃ is a vector of parameters corresponding to a vector of pre-
dictors, Zi(t). In the special case with no censoring, a generalized estimating equation (GEE)
approach may be used to obtain parameter estimates and corresponding variance terms. Xia, Mur-
ray and Tayob introduced the overall modeling strategy for fitting and performing inference with
this model using both a multiple imputation and a pseudo-observation approach to handle the
censored nature of the data and advice for structuring GEE correlation matrices that allow cor-
relation between Ti(tk1) and Ti(tk2) for tk1 ̸= tk2 . The assumed model-based variance function,
Var[Ti(t)|Zi(t)] = σ(t), is based on the Normal distribution. Although they develop their model
for Ti(t) on the log scale, we slightly modify their approach to maintain Ti(t) on the original scale
in model (3.2) to allow for more direct comparison with our method when estimating restricted
mean times-to-first-event in each follow-up window. Otherwise we follow their approach when
reporting results for the τ -RMST method for modeling recurrent events in this manuscript.

The key feature not addressed in model (3.2) is the point-mass of Ti(t) at τ seen in the
azithromycin study data. Instead of modeling E{Ti(t)} as in model (3.2), we propose modeling
the mean of the expression for Ti(t) seen on the right hand side of equation (3.1), namely,

E[Ti(t)] = E
(
τ
{
Bi(t) + Yi(t)[1−Bi(t)]

})
= τ
{
πi(t) + µi(t)[(1− πi(t)]

}
, (3.3)

i = 1, . . . , n, t ∈ {t1, ..., tb} and µi(t) = E[Yi(t)]. In the special case with no censored outcomes,
both πi(t) and µi(t) in equation (3.3) can be estimated using generalized estimating equations
(GEE) applied to Bi(t), i = 1, . . . , n, t ∈ {t1, ..., tb} and Yi(t), i = 1, . . . , n, t ∈ {t1, ..., tb},
respectively. This framework allows exploration of different associations between covariates and
πi(t) versus associations between covariates and µi(t). Not only does this added flexibility over
model (3.2) potentially enhance our understanding of relationships between predictors and Ti(t),
but improved modeling of the point mass of Ti(t) at τ has potential to increase efficiency when
estimating E[Ti(t)].

Each patient i = 1, . . . , n contributes data {Yi(t), Bi(t), Zi(t)} for t ∈ {t1, ..., tb}, where Zi(t)

is a vector of covariates. Some of the predictors included in Zi(t) maybe more relevant in modeling
the mean of Bi(t) as opposed to the mean of Yi(t) and, accordingly, we define Zπi(t) and Zµi(t)
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to reflect the potentially different subsets of covariates from Zi(t) relevant to modeling these two
different outcomes, respectively.

Inspired by equation (3.3), the underlying assumption of the τ -IBR approach is that patient i’s
τ -RMST for the follow-up window starting at time t satisfies

E[Ti(t)|Zi(t)] = τ
{

E[Bi(t)|Zπi(t)] + E[Yi(t)|Zµi(t)]{(1− E[Bi(t)|Zπi(t)]}
}
. (3.4)

For simplicity, we will continue to use the notation πi(t) for E[Bi(t)|Zπi(t)] and the notation µi(t)

for E[Yi(t)|Zµi(t)]. As in standard longitudinal analysis, Zπi(t) and Zµi(t) can include window
start times t, time-dependent covariates that change at the window start times, and interactions
between t and other covariates.

Models for πi(t) and µi(t) require specification of the mean and variance functions as well as
the correlation structure for outcomes taken from the same individual. For the model applied to
{Bi(t), Zπi(t)}, i = 1, . . . , n, t ∈ {t1, ..., tb}, we specify the mean structure, πi(t), via

g[πi(t)] = log
[

πi(t)

1− πi(t)

]
= β0 + βT

1 Zπi(t), (3.5)

where β1 is a vector of the parameters corresponding to Zπi(t). A Bernoulli variance function,
Var[Bi(t)|Zπi(t)] = πi(t)[1 − πi(t)], is assumed. Later it will be convenient to express πi(t) in
terms of β = (β0, β

T
1 )

T and Zπ
i (t) = [1, ZT

πi(t)]
T , that is, πi(t) = 1/

[
1 + e−βTZπ

i (t)
]
.

For the model applied to {Yi(t), Zµi(t)}, i = 1, . . . , n, t ∈ {t1, ..., tb}, we specify the mean
structure, µi(t), via

g[µi(t)] = log
[

µi(t)

1− µi(t)

]
= α0 + αT

1 Zµi(t), (3.6)

where α1 is the vector of the parameters associated with Zµi(t). The assumed variance function,
Var[Yi(t)|Zµi(t)] = (ν+1)−1µi(t)[1−µi(t)], is based on Yi(t) following a beta

(
µi(t)ν, [1−µi(t)]ν

)
distribution with probability density function,

f [yi(t);µi(t), ν] =
Γ(ν)

Γ[µi(t)ν]Γ{[1− µi(t)]ν}
yi

µi(t)ν−1(1− yi)
[1−µi(t)]ν−1

with corresponding cumulative density function F [yi(t);µi(t), ν]. Later we will express µi(t) in
terms of α = (α0, α

T
1 )

T and Zµ
i (t) = [1, ZT

µi(t)]
T , that is, µi(t) = 1/

[
1 + e−αTZµ

i (t)
]
. Although

we’ve selected very robust distributions when specifying model-based variance functions corre-
sponding to (3.5) and (3.6), GEE methodology allows for an additional layer of robustness based
on sandwich variance estimation methods. Since models (3.5) and (3.6) are structured to model
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means πi(t) and µi(t), respectively, there is no proportionality assumption imposed on incidence
rates for the recurrent event times as is assumed in proportional incidence and proportional means
models for recurrent events.

Using Liang and Zeger’s GEE methodology [76], the estimate of parameters β in model (3.5)
may be obtained by solving the following estimating equation:

n∑
i=1

∂πi
∂β

T

V −1
πi

(Bi − πi) = 0. (3.7)

Here Bi = [Bi(t1), . . . , Bi(tb)]
T , πi = [πi(t1), . . . , πi(tb)]

T and πi(t) = 1/
[
1 + e−βTZπ

i (t)
]
, with

(∂πi(t)/∂β)
T = Zπ

i (t)e
βTZπ

i (t)/
[
1 + eβ

TZπ
i (t)
]2; Vπi

= A
1
2
πiRπiA

1
2
πi is the variance matrix of Bi,

whereAπi = Diag{πi(t1)[1−πi(t1)], . . . , πi(tb)[1−πi(tb)]} with the bth element being the variance
of Bi(tb), and Rπi is the working correlation matrix for Bi. Similarly, the estimating equation for
α in model (3.6) can be written as:

n∑
i=1

∂µi

∂α

T

V −1
µi
Uµi

(Yi − µi) = 0. (3.8)

Here Yi = [Yi(t1), . . . , Yi(tb)]
T , µi = [µi(t1), . . . , µi(tb)]

T and µi(t) = 1/
[
1 + e−αTZµ

i (t)
]

with (∂µi(t)/∂α)
T = Zµ

i (t)e
αTZµ

i (t)/
[
1 + eα

TZµ
i (t)
]2; Vµi

= A
1
2
µiRµiA

1
2
µi is the variance matrix of

Yi, where Aµi is a diagonal matrix with Var[Yi(t)] = (ν + 1)−1µi(t)[1 − µi(t)],t = t1, . . . , tb,
along the diagonal, Uµi

= diag{(1 − Bi(t1), ..., (1 − Bi(tb))} and Rµi is the working correlation
matrix for Yi. A variety of user specified working correlation structures for fitting these models
are available. In addition to an unstructured working correlation matrix, users may consider a
Toeplitz correlation structure similar to that described by Xia and Murray [70] or, if follow-up
windows used to construct the censored longitudinal data do not overlap, an exchangeable working
correlation matrix may be appropriate. The score equations (3.7) and (3.8) have no closed form
solution; therefore, a two-stage iterative algorithm is required to estimate parameters β̂ and α̂ and
corresponding sandwich-based parameter covariance matrices, V̂β and V̂α for models (3.5) and
(3.6), respectively. Once convergence is achieved, α̂ and β̂ are consistent estimators of α and β
with an asymptotic multivariate normal distribution [75, 76].

In addition to parameter estimation, we may estimate the E[Ti(t)] for each individual i =

1, . . . , n and each window t = t0, . . . , tb based on equation (3.3). Defining µ̂i(t) = 1/
[
1 +

e−α̂TZµ
i (t)
]

and π̂i(t) = 1/
[
1 + e−β̂TZπ

i (t)
]
, the estimated E[Ti(t)] for subject i and window t be-

33



comes

Ê[Ti(t)] = τ µ̂i(t)[1− π̂i(t)] + τ π̂i(t). (3.9)

After some algebraic manipulation relegated to Appendix B.1,

V̂ar{Ê[Ti(t)]} = τ 2
[
1− 1

1 + e−α̂TZµ
i (t)

]2
Zπ

i (t)
T V̂βZ

π
i (t)

[
e−β̂TZπ

i (t)
]2[

1 + e−β̂TZπ
i (t)
]4

+ τ 2
[
1− 1

1 + e−β̂TZπ
i (t)

]2
Zµ

i (t)
T V̂αZ

µ
i (t)

[
e−α̂TZµ

i (t)
]2[

1 + e−α̂TZµ
i (t)
]4 .

(3.10)

3.4 Algorithms for Censored Recurrent Event Times

In section 3.3, we introduced methodology for the the special case with uncensored data. In this
section, we extend methods to the censored case using two approaches for fitting the recurrent
event τ -inflated beta regression model: an ES algorithm-based approach described in section 3.4.1
and a multiple imputation approach described in section 3.4.2.

3.4.1 ES Algorithm

Due to the censoring process,Bi(t) and Yi(t), i = 1, ..., n, t = {t1, . . . , tb} are potentially only par-
tially observed for each individual, i. Hence, a likelihood-based approach to obtaining parameter
estimates for the τ -IBR model will need to address the incomplete nature of the data.

The ES algorithm is a popular variant of the expectation-maximization (EM) algorithm
[44, 18, 24] that may be used with censored longitudinal data such as ours, and correctly handles
dependence between outcomes taken from the same individual over time. As with the EM algo-
rithm, the ES algorithm is an iterative procedure with an expectation step (E-step) and a solution
step (S-step) for obtaining updated parameter estimates. These steps are iterated until convergence
of estimated model parameters according to predefined criteria.

We adopt an ES algorithm approach similar to that laid out by Rosen et al. [44], which lever-
ages generalized estimating equation (GEE) methodology and can be briefly described as follows.
Estimating equations, or solving equations, for the S-step are developed in three stages: (1) First
a complete data log-likelihood that assumes working independence between outcomes taken from
the same individual over time is derived. Then, (2) estimating equations based on this complete
data log-likelihood are developed. Next, (3) the independence working correlation matrices that
appear in the estimating equations in (2) are replaced with more general working correlation ma-
trices, as desired. The E-step allows updates to the partially observed components of the solving
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equations prior to the next iteration of the S-step. The ES algorithm then iterates between the so-
lution equations found in stage (3) and the E-step until convergence of model parameter estimates.

For the recurrent-event τ -IBR model, the ES algorithm approach takes the following form.
Stage 1 of developing the S-step: Let θ = (αT , βT , ν)T . Assuming an independent working

correlation structure for outcomes taken from the same individual, the complete data log-likelihood
becomes:

l(θ) =
n∑

i=1

tb∑
t=t1

{
Bi(t)log[πi(t)(β)] + [1−Bi(t)]log[1− πi(t)(β)]

+ [1−Bi(t)]log[fYi(t)[Yi(t);µi(t)(α), ν)]
}
,

(3.11)

where for individuals, i, with completely observed data, Bi(t) = bi(t) and Yi(t) = yi(t), we
substitute these observed values into the above expression.

Stage 2 of developing the S-step: Let I be a b × b identity matrix. Maximizing (3.11) in terms
of β results in the solving equations:

n∑
i=1

∂πi
∂β

T

(A
1
2
πiIA

1
2
πi)

−1(Bi − πi) = 0, (3.12)

and maximizing (3.11) in terms of α results in the solving equations:

n∑
i=1

∂µi

∂α

T

(A
1
2
µiIA

1
2
µi)

−1Uµi(Yi − µi) = 0, (3.13)

where Uµi
= diag{(1−Bi(t1), ..., (1−Bi(tb))}.

Stage 3 of developing the S-step: Note that both equations (3.12) and (3.13) take the form of
GEE (or weighted GEE) with an independence working correlation matrix, I . As in Rosen et
al.[44], more general working correlation matrices can be substituted for I in equations (3.12) and
(3.13), so that the final S-step solution equations become:

n∑
i=1

∂πi
∂β

T

(A
1
2
πiRπiA

1
2
πi)

−1(Bi − πi) = 0 (3.14)

and

n∑
i=1

∂µi

∂α

T

(A
1
2
µiRµiA

1
2
µi)

−1Uµi(Yi − µi) = 0, (3.15)

whereRπi andRµi are the working correlation matrices forBi and Yi respectively. Initial parameter
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estimates, θ̂(0), are based on solving equations (3.14) and (3.15) using the complete-case subset of
the dataset.

The rth iteration of the E-step updates Bi(t) and Yi(t), i = 1, ..., n, t = {t1, . . . , tb} with their
expectations given the observed data, {Xi(t) = xi(t),∆i(t) = δi(t)}, i = 1, ..., n, t = t1, ...tb) and
the most recently updated parameter estimates, θ̂(r−1). For Bi(t) this expectation takes the form:

wi(t)
(r−1) = E[Bi(t)|θ̂(r−1), {Xi(t) = xi(t),∆i(t) = δi(t)}, i = 1, ..., n, t = t1, ...tb)]

= bi(t)δi(t) + [1− δi(t)]E[Bi(t)|θ̂(r−1), Yi(t) ≥ ỹi(t)]

= bi(t)δi(t) + [1− δi(t)]
πi(t)β̂

(r−1)

πi(t)β̂(r−1) + [1− πi(t)β̂(r−1)][1− FYi(t)(ỹi(t);µi(α̂(r−1)), ν̂(r−1))]
,

and for Yi(t) this expectation takes the form:

ζi(t)
(r−1) = E[Yi(t)|θ̂(r−1), {Xi(t) = xi(t),∆i(t) = δi(t)}, i = 1, ..., n, t = t1, ...tb)]

= yi(t)δi(t) + [1− δi(t)]E[Yi(t)|θ̂(r−1), Yi(t) ≥ ỹi(t)]

= yi(t)δi(t) + [1− δi(t)]

∫∞
ỹi(t)

yi(t)dFYi(t)[yi(t);µi(t)(α̂
(r−1)), ν̂(r−1)]∫∞

ỹi(t)
dFYi(t)[yi(t);µi(t)(α̂(r−1)), ν̂(r−1)]

.

The following (rth) iteration of the S-step replacesBi with w(r−1)
i = [wi(t1)

(r−1), . . . , wi(tb)
(r−1)]T

in solving equation (3.12) and replaces Yi and Uµi with ζ(r−1)
i = [ζi(t1)

(r−1), . . . , ζi(tb)
(r−1)]T and

U
(r−1)
µi = diag[1− wi(t1)

(r−1), . . . , 1− wi(tb)
(r−1)], respectively, in solving equation (3.13).

We use the geem2 function from the R mmmgee package [33] to conduct this S-step, with out-
comes w(r−1)

i for estimating β̂(r) and correlation parameters in R̂(r)
πi and with outcomes ζ(r−1)

i and
weights U (r−1)

µi for estimating α̂(r), ν̂(r) and correlation parameters in R̂(r)
µi . The E step and S step it-

erate until |θ̂(r)− θ̂(r−1)| < ϵ for some ϵ > 0; we used ϵ = 10−4 for results given in this manuscript.
Hereafter, η̂ES = (α̂ES, β̂ES, ν̂ES, R̂ES

µi , R̂
ES
πi ) denotes a set of vectors including all final model

parameter estimates and correlation parameters obtained via this ES algorithm approach.
We follow the Kong et al. [24] approach for obtaining the estimated variance-covariance matrix

of the parameters α̂ES and β̂ES , which appropriately takes into account the variability related to the
partially missing (censored) outcomes. In particular, let ψ = (αT , βT )T be the combined param-
eter vector of interest with corresponding ES estimates ψ̂ES . Then V̂ar(ψ̂ES) can be consistently
estimated by Ĥ−1Q̂Ĥ−1, where

Q̂ =
n∑

i=1

Si(η̂
ES)Si(η̂

ES)T , Ĥ =
n∑

i=1

∂Si(η)

∂ψ

∣∣
η̂ES and Si(η) =

(
∂πi

∂β

T
V −1
πi

(wi − πi)
∂µi

∂α

T
V −1
µi

Diag(1− wi)(ζi − µi)

)
.
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Based on the formula provided by Satten and Datta (2000)[50], ∂Si(η)/∂ψ can be written as:

∂Si(η)

∂ψ
=

(
−∂πi

∂β

T
V −1
πi

∂πi

∂β
0

0 −∂µi

∂α

T
V −1
µi

Diag(1− wi)
∂µi

∂α

)

+

(
∂πi

∂β

T
V −1
πi

−∂µi

∂α

T
V −1
µi

Diag(ζi − µi)

)
Var(Bi|ζi)

(
∂πi

∂β

T
V −1
πi

−∂µi

∂α

T
V −1
µi

Diag(ζi − µi)

)T

where Var(Bi|ζi) = Diag{wi(t)[1 − wi(t)]}1/2RπiDiag{wi(t)[1 − wi(t)]}1/2. ES-based E[Ti(t)]
and corresponding variance estimates are constructed using equations (3.9) and (3.10), substituting
elements of ψ̂ES and V̂ar(ψ̂ES) for α̂, β̂, V̂α and V̂β , as appropriate.

3.4.2 Multiple Imputation Algorithm For Censored Recurrent Event Times

In section 3.3, we introduced a new modeling framework for analyzing recurrent event data in the
special case of no censoring. In this section, we describe a multiple imputation (MI) algorithm for
generating uncensored data for each individual i that can be used in fitting models 3.5 and 3.6. The
overall goal of MI is to generate M different imputed datasets, where imputed values for missing
data are sampled from appropriate conditional distributions based on the observed data and are
subject to the same variability as the fully observed data. Each of the M imputed datasets can
be analyzed using methods for uncensored data described in section 3.3. In this manuscript, we
set M = 10, which is usually sufficient for MI algorithms to produce results with good operating
characteristics. Results from these M analyses are then combined using Rubin’s method [45, 46],
with further details to follow later in this section. Steps for implementing our MI algorithm to
estimate θ = (αT , βT , ν)T and Var(θ) are given below, with MI-based estimates denoted θ̂MI and
V̂ar(θ̂MI), respectively. Once we obtain θ̂MI and V̂ar(θ̂MI), they can replace corresponding terms
given in section 3.3 for estimating Ê[Ti(t)] and V̂ar{Ê[Ti(t)]}, respectively.

In our setting a censored patient, i, requires imputation of times-to-first-event in the set, Si, of
τ -length follow-up windows starting at {t ∈ {t1, . . . , tb} : 0 < Xi(t) < τ,∆i(t) = 0}. If the
imputation set Si consists of more than one follow-up window, we need only impute the time-to-
first-event for the last window in Si, which is denoted as the b∗thi follow-up window in the data
set. For better understanding, we set tsupi as the start time of the b∗thi window and T̃i(t

sup
i ) as the

imputed τ -restricted event time for the window starting at tsupi . Then for other windows in Si with
start time t < tsupi , the imputed τ -restricted event times become T̃i(t) = min[T̃i(t

sup
i )+ tsupi − t, τ ].

According to the imputed T̃i(t) for each window in Si, the outcomes of model (3.5) and model
(3.6) can be imputed as B̃i(t) = I[T̃i(t) = τ ] and Ỹi(t) = T̃i(t) if B̃i(t) = 0.

The general idea of the imputation procedure is to generate T̃i(t∗) by inverse probability trans-
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form imputation (IPTI) from a risk set of individuals with similar covariates to patient i at the
window starting at tsupi . The only parametric component of this MI algorithm is the construction of
risk set, which depends on the model being fitted. Step 1 describes how we define the risk sets and
step 2 describes the imputation procedure based on these risk sets. Step 3 produces M imputed
data sets for analysis. Details of these steps are given below.
Step 1: (Risk set definition step) For each individual i, i = 1, . . . , Nc, requiring imputation for

censored τ -restricted event time T̃i(t
sup
i ) in the b∗thi window, the sup window, we define a risk set

Ri of individuals that are similar to individual i. We consider two cases, b∗i = 1 and b∗i > 1. For
the case b∗i = 1, the j = 1, 2, . . . , Ni individuals included in the risk set Ri need to satisfy two
constraints: (a) max[|µ̂i(t

sup
i ) − µ̂j(t

sup
i )|, |π̂i(tsupi ) − π̂j(t

sup
i )|] < ϵ, where µ̂i(t

sup
i ) and π̂i(t

sup
i )

are taken from θ̂ES and (b) Xj(t
sup
i ) > Xi(t

sup
i ). Condition (b) in this step ensures that all subjects

in Ri are at risk when individual i is censored. Condition (a) requires that individuals in Ri have
similar predicted outcomes to the individual i in the current iteration of fitting model (3.5) and
model (3.6). We set ϵ = 0.05 in condition (a) and increase ϵ by 0.005 until either Ni ≥ 15

or ϵ > 0.5. If the last observed event time in Ri is a censored value < τ , then we continue
increasing ϵ by 0.001 until this is no longer the case. For the case b∗i > 1, it is possible to include
additional constraints related to a potentially quite sophisticated history for that individual, subject
to available sample size. For instance in the azithromycin study, it may be attractive to incorporate
information on previous exacerbations in creating the risk set. Suppose the random variable pairs
{Yi(t);Bi(t)} for t = 0, . . . , tb′i are known. One may, for instance, create a binary history variable
B̄i(t), i = 1, . . . , n, that indicates whether the individual has ever met Bi(t) = 1 for t = 0, . . . , tb′i ,
and required individuals included in the risk set to have B̄j(t) = B̄i(t).
Step 2: (IPTI step) In this step, for each censored individual i that requires imputation, we

impute a value of Ti(t
sup
i ) for the last window in Si. This determines imputed Ti(t) values for

remaining windows in Si as well as corresponding {Bi(t), Yi(t)} for each window in Si. First,
from individuals in Ri with data {Xj(t

sup
i ),∆j(t

sup
i )}, we use the nonparametric Kaplan-Meier

approach to obtain the estimated survival function ŜTi(t
sup
i )(v|Ri). Second, generate a uniform(0,1)

random variable, ui, and find the smallest observed event time v∗ where ŜTi(t
sup
i )(v

∗|Ri) ≤ ui. If
v∗ = τ , then impute 1 for Bi(t

sup
i ); no further imputation for Yi(t

sup
i ) is required. Otherwise,

impute 0 for Bi(t
sup
i ) and v∗ for Yi(t

sup
i ). Completing this step results in a fully imputed dataset.

Step 3: (Multiple imputation step) Repeat step 2 M times, resulting in M imputed data sets to
be analyzed. By fitting model (3.5) and model (3.6) using each imputed data set, we obtain M pa-
rameter estimates θ̂MI

m with corresponding estimated covariance matrix V̂ar( ˆθMI
m ), m = 1, . . . ,M .

We combine the results from M = 10 imputed data sets using the approach proposed bu Rubin
[45, 46]. The final estimate of θ based on M parameter estimates becomes θ̂MI =

∑M
m=1 θ̂

MI
m with

corresponding estimated covariance matrix
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V̂ar(θ̂MI) = Ū + (1 +M−1)B̄,

where

Ū = 1
M

∑M
m=1 V̂ar(θ̂MI

m )

is the estimated within imputation variance and

B̄ = 1
M−1

∑M
m=1(θ̂

MI
m − θ̂MI)(θ̂MI

m − θ̂MI)T

is the estimated between imputation variance. The terms, V̂ MI
α and V̂ MI

β , can be extracted from
V̂ar(θ̂MI), as appropriate.

3.5 Simulation Study

In this section we evaluate the finite sample performance of our proposed τ -IBR Model in terms
of (i) the quality of parameter estimates from models (3.5) and (3.6) and (ii) the quality of lon-
gitudinal τ -RMST estimates for individuals i, i = 1, . . . , n and follow-up windows starting at
t = {t1 . . . , tb}. Section 3.5.1 describes our simulation framework and gives data generation de-
tails for each of the 1000 iterations simulated per scenario. Section 3.5.2 summarizes simulation
results.

The quality of parameter estimates for models (3.5) and (3.6) are evaluated in terms of bias,
the average model-based standard error (ASE), the empirical standard deviation of the parameter
estimates (ESD) and the average coverage probability of model-based 95% confidence intervals
(CP). The quality of longitudinal τ -RMST estimates across simulations based on n=100, 500, 1000
and 1500 subjects was evaluated by comparing bias, the empirical mean squared error (EMSE),
ASE, and CP using the proposed τ -IBR model to those based on the Xia, Murray and Tayob
model (XMT Model) for recurrent event data. Since true τ -RMST values are specific to each
individual i, i = 1, . . . , n for each window t, t = t1, ..., tb, summary statistics for the performance
of longitudinal τ -RMST estimates are defined as

Bias =
1000∑
j=1

n∑
i=1

tb∑
t=t1

Ê[Tij(t)]− E[Tij(t)]
n× b× 1000

,

EMSE =
1000∑
j=1

n∑
i=1

tb∑
t=t1

{Ê[Tij(t)]− E[Tij(t)]}2

n× b× 1000
,

ASE =
1000∑
j=1

n∑
i=1

tb∑
t=t1

V̂ar{Ê[Tij(t)]}
n× b× 1000

and
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CP =
1000∑
j=1

n∑
i=1

tb∑
t=t1

I(Lowerij < Ê[Tij(t)] < Upperij)
n× b× 1000

,

where Lowerij = Ê[Tij(t)] − 1.96 ×
√

V̂ar{Ê[Tij(t)]} and Upperij = Ê[Tij(t)] + 1.96 ×√
V̂ar{Ê[Tij(t)]}.

3.5.1 Data Generation

In the following, we assume that the censored longitudinal data structure is based on τ = 30

and b = 4 follow-up windows with t ∈ {t1, t2, t3, t4} = {0, 30, 60, 90}. For each individual,
i = 1, ..., n, we generate three uniform (0,1) covariates, Z1i, Z2i and Z3i. We consider two settings
for the true τ -IBR model:

Setting 1: log
[

πi(t)

1− πi(t)

]
= −1.832 + 0.839Z1i + 1.980Z2i + 1.012Z3i,

log
[

µi(t)

1− µi(t)

]
= −1.023 + 0.654Z1i + 1.678Z2i;

Setting 2: log
[

πi(t)

1− πi(t)

]
= 0.5, log

[
µi(t)

1− µi(t)

]
= −1.023 + 0.654Z1i + 1.678Z2i.

The model for µi(t) is the same in each of these two settings, with Zµi
= {Z1i, Z2i} being the

key covariates. The model for πi(t) varies in the two settings, with Zπi
= {Z1i, Z2i, Z3i} being

important covariates for Setting 1 and no important covariates in Setting 2. We would not expect
advantages of our method compared to the Xia, Murray and Tayob model in Setting 2, since there
are no interesting covariate features related to the point mass of τ -restricted event times at τ .
However, advantages of our approach are expected to emerge from Setting 1.

Simulated outcomes for subject i are based on a beta distribution for Yi(t) with
mean µi(t) and a Bernoulli distribution for Bi(t) with mean πi(t). Correlated outcomes
{Bi(0), Bi(30), Bi(60), Bi(90)} and {Yi(0), Yi(30), Yi(60), Yi(90)} for each individual i proceed
by first generating correlated multivariate normal random variables and then coercing them into
the desired distributions. For correlated {Yi(0), Yi(30), Yi(60), Yi(90)}, we use a Gaussian copula
approach. First, multivariate standard normal random variables {Gi(0), Gi(30), Gi(60), Gi(90)}
with exchangeable correlation structure (correlation coefficient=0.3) were generated for each in-
dividual i. We then transform the multivariate normal random variables Gi(t) to multivariate uni-
form(0,1) variables Ui(t) via Ui(t) = Φ(Gi(t)), where t = 0, 30, 60, 90 and Φ() is the cumulative
density function of the standard normal distribution. The last step is to use the inverse transform
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theorem to obtain multivariate beta random variables Yi(t) = F−1(Ui(t)), where F−1() is the in-
verse of cumulative density function of Beta[µi(t)ν, (1 − µi(t))ν] distribution, where ν = 3 in all
simulations.

To generate correlated binary random variables, {Bi(0), Bi(30), Bi(60), Bi(90)}, we adopt an
algorithm proposed by Emrich and Piedmonte [10] that is implemented using the function rmvbin
from the R package bindata. The general idea of this approach is to first generate multivariate
standard normal random variables {Ni(0), Ni(30), Ni(60), Ni(90)} that are transformed into mul-
tivariate binary random variables by setting Bi(t) = I[Ni(t) > a(t)], where t = 0, 30, 60, 90,
a(t) = Φ−1[1− πi(t)] and Φ−1() is the inverse cumulative density function of the standard normal
distribution. The resulting binary random variables, {Bi(0), Bi(30), Bi(60), Bi(90)}, will have the
desired marginal Bernoulli distributions with means {πi(0), πi(30), πi(60), πi(90)}, respectively.
In our simulations, we assumed exchangeable correlation structure Rπi with a correlation of 0.3
between dependent Bi(t1), Bi(t2), t1 ̸= t2, in our simulations. Details of how the user-specified
correlation is calibrated to the correlation of the multivariate normal random variables used in this
algorithm is provided in Appendix B.2.

For the models assumed in Settings 1 and 2, we evaluated model performance with 0% and 20%
of subjects censored prior to tb + τ . For the 20% censoring case, we independently generated a
Bernoulli(0.7) random variable,B∗

i , and a Uniform(0, bτ) random variable, U∗
i . Then the censoring

random variable was defined as Ci = U∗
i (1−B∗

i ) + bτB∗, i = 1, . . . , n.

3.5.2 Simulation Results

Table 3.1 displays finite sample properties of τ -IBR model parameter estimates for both the uncen-
sored case and the case with 20% censoring with n = 500 simulated individuals. Both MI and ES
parameter estimation procedures perform well in simulation. Coverage probabilities are close to
the desired 95% level using either the MI or the ES method, and ASE and ESD estimates are very
close to one another. The bias of parameter estimates is generally small, although the ES intercept
estimate for model (3.6) shows slightly higher bias than the MI estimate for the same term. As one
would expect, the variability of parameter estimates from the model with binary outcomes (model
3.5) is somewhat larger than the variability of parameter estimates from the model with continuous
outcomes (model 3.6).

Table 3.2 shows finite sample properties of τ -RMST estimates using both our proposed τ -IBR
methodology and the XMT model for sample sizes of n = 100, 500, 1000 and 1500. We will
first briefly summarize results related to bias and then analyze coverage probabilities for the true
τ -RMST, which varied by method and simulation setting. In terms of bias, both τ -IBR MI and
XMT modeling approaches yield approximately unbiased τ -RMST estimates. The ES-based τ -
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Table 3.1: Finite sample performance of τ -IBR parameter estimates from models (3.5) and (3.6)
for n=500 subjects with correlated longitudinal outcomes (ρ = 0.3) based on 1000 iterations.

No Censoring (GEE) 20% Censoring (MI) 20% Censoring (ES)
Bias ASE ESD CP Bias ASE ESD CP Bias ASE ESD CP

Setting 1
α0 = -1.023 -0.005 0.106 0.105 0.947 -0.004 0.112 0.114 0.939 0.041 0.119 0.116 0.929
α1 = 0.654 0.001 0.144 0.143 0.949 0.009 0.152 0.155 0.949 0.011 0.162 0.158 0.954
α2 = 1.678 0.012 0.150 0.151 0.957 0.002 0.159 0.165 0.940 0.007 0.169 0.167 0.945
β0 = -1.832 -0.011 0.218 0.216 0.949 0.007 0.231 0.233 0.950 -0.009 0.230 0.235 0.950
β1 = 0.839 0.008 0.228 0.232 0.948 0.000 0.241 0.235 0.957 0.004 0.239 0.239 0.953
β2 = 1.980 0.011 0.234 0.236 0.951 0.019 0.248 0.249 0.944 0.023 0.246 0.250 0.940
β3 = 1.012 0.006 0.229 0.227 0.954 -0.026 0.242 0.245 0.955 -0.010 0.239 0.248 0.948
Setting 2
α0 = -1.023 -0.008 0.121 0.126 0.941 -0.004 0.129 0.134 0.933 0.034 0.141 0.134 0.951
α1 = 0.654 0.011 0.156 0.162 0.938 0.010 0.167 0.171 0.942 0.015 0.179 0.173 0.952
α2 = 1.678 0.005 0.159 0.167 0.935 0.002 0.170 0.183 0.933 0.012 0.182 0.184 0.950
β0 = 0.500 0.005 0.202 0.201 0.953 0.003 0.214 0.207 0.961 0.002 0.212 0.210 0.959
β1 = 0.000 -0.005 0.221 0.218 0.953 -0.002 0.234 0.225 0.957 -0.004 0.232 0.232 0.940
β2 = 0.000 0.010 0.222 0.220 0.947 0.014 0.234 0.236 0.937 0.011 0.232 0.238 0.937
β3 = 0.000 -0.010 0.221 0.220 0.956 -0.010 0.235 0.229 0.952 -0.010 0.232 0.237 0.943

Bias is the average difference between the true and estimated parameters across the simulations;
ASE is the average of the model-based standard error estimates across the simulations; ESD is
empirical standard deviation of the parameter estimates seen in simulation; CP is the empirical
coverage probability of the true parameter by the model-based 95% confidence interval seen in
simulation.

IBR τ -RMST estimates show slightly more bias than the other estimation methods, likely due to
the intercept term estimates from model (3.6) being slightly off using the ES estimation approach.

Coverage probabilities for true τ -RMST values were consistently good for the τ -IBR MI esti-
mation method in all settings. In setting 2, where there are no interesting covariate associations
related to the point mass of restricted event times at τ = 30, coverage was very good for both
the τ -IBR MI and XMT approaches. Coverage for the τ -IBR ES approach lagged slightly behind
when compared to these other two methods, but was adequate.

In setting 1, where covariate associations related to the point mass of restricted event times
at τ = 30 are in play, coverage for the τ -IBR ES approach was adequate, but not as good as
coverage for the τ -IBR MI estimation method. In contrast, the XMT approach had remarkably
poor coverage for the true τ -RMST values that deteriorated further with increasing sample sizes
(despite both ASE and EMSE getting smaller with increasing sample sizes). The EMSE was
particularly high for the XMT method relative to other methods in Setting 1.

Figure 3.2 displays differences between estimated and true τ -RMST values using τ -IBR MI and
XMT methods for representative Setting 1 datasets with n=100, 500, 1000 and 1500, highlighting
subjects whose true τ -RMST were not covered by their estimated 95% confidence interval. Al-
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Table 3.2: Finite sample performance of τ -RMST estimates using (1) the τ -IBR model and (2) the
XMT model based on 1000 iterates

No censoring (Setting1) 20% censoring (Setting1) No censoring (Setting2) 20% censoring (Setting2)
τ -IBR (GEE) XMT τ -IBR (MI) τ -IBR (ES) XMT τ -IBR (GEE) XMT τ -IBR (MI) τ -IBR (ES) XMT

1500 Subjects
Bias 0.004 0.004 0.012 0.158 0.009 0.009 0.009 0.013 0.123 0.010

EMSE 0.082 0.491 0.093 0.118 0.503 0.080 0.087 0.087 0.102 0.095
ASE 0.270 0.289 0.286 0.284 0.302 0.265 0.280 0.281 0.278 0.293
CP 0.950 0.568 0.947 0.907 0.582 0.947 0.944 0.950 0.914 0.943

1000 Subjects
Bias -0.002 -0.001 0.004 0.149 0.001 -0.002 -0.002 0.000 0.109 -0.003

EMSE 0.129 0.541 0.135 0.156 0.547 0.118 0.129 0.126 0.138 0.139
ASE 0.331 0.353 0.350 0.348 0.370 0.324 0.343 0.344 0.340 0.359
CP 0.945 0.652 0.950 0.924 0.671 0.948 0.946 0.952 0.930 0.947

500 Subjects
Bias 0.005 0.004 0.014 0.161 0.010 0.003 0.003 0.006 0.118 0.005

EMSE 0.244 0.661 0.275 0.298 0.690 0.230 0.245 0.252 0.265 0.272
ASE 0.466 0.498 0.493 0.490 0.521 0.458 0.484 0.485 0.480 0.506
CP 0.947 0.780 0.947 0.928 0.792 0.948 0.950 0.952 0.935 0.949

100 Subjects
Bias 0.002 0.006 -0.002 0.148 -0.001 0.017 0.020 0.019 0.133 0.020

EMSE 1.263 1.720 1.336 1.334 1.790 1.150 1.226 1.259 1.262 1.341
ASE 1.019 1.079 1.089 1.082 1.141 1.004 1.054 1.063 1.056 1.105
CP 0.926 0.898 0.939 0.931 0.910 0.931 0.937 0.933 0.924 0.936

Bias: average difference between the true and predicted τ -RMST values across all subjects, win-
dows and simulations; EMSE: empirical mean squared error of τ -RMST values across all subjects,
windows and simulations; ASE: average of the model-based standard error estimates correspond-
ing to the τ -RMST estimates across all subjects, windows and simulations; CP: empirical coverage
probability of the true τ -RMST value by the model-based 95% confidence interval across all sub-
jects, windows and simulations.

though both methods give unbiased τ -RMST estimates on average in Setting 1, XMT τ -RMST
estimates had large differences from their true τ -RMST values observed that did not improve with
larger sample sizes and were not correctly accounted for in corresponding model-based variance
estimates given by the XMT method. Hence in Setting 1, where there is important statistical in-
formation related to the point mass of restricted event times at τ = 30, ignoring this statistical
information had a strong impact on the performance of the XMT method.

3.6 Azithromycin for Prevention of COPD Exacerbations Trial

In this section, we apply the proposed τ -IBR model to analyze the effect of azithromycin on the
longitudinal time to the first acute exacerbation in participants with chronic obstructive pulmonary
disease (COPD). This study enrolled COPD patients with a history of recurrent acute exacerbations
and randomized them to take a daily dose of either 250 mg azithromycin or placebo over a one
year follow-up period. Primary and secondary analyses were based on logrank test and multivari-
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Figure 3.2: Difference between fitted τ -RMST and actual τ -RMST via τ -IBR MI-fitted model and
XMT model in Setting 1 based on (a) 100 subjects (b) 500 subjects (c) 1000 subjects and (d) 1500
subjects.

able Cox model analysis of treatment effect, respectively. Azithromycin was found to be beneficial
using these standard methods and is in common use today. Our τ -IBR model analysis focuses
on the 1112 participants who were available for multivariable modeling with adjustments for age
at randomization [in decades and centered at 65 years], sex [male=1, female=0], baseline forced
expiratory volume in one second (FEV1) [in percentage of predicted units by tens and centered at
40% of predicted], baseline smoking status [current=1, former=0] and study site. Individual i’s
baseline covariates as described above are denoted Zi in what follows. When referring to the aver-
age patient profile in results below, this participant was 65 years old, with baseline FEV1%=40%,
a 59% probability of being male, and a 22% probability of being a current smoker at baseline.

Recurrent event data was reconfigured into a censored longitudinal dataset with τ = 6 months
and follow-up window start times at 0, 60, 120 and 180 days based on advice given in Xia and
Murray[67]. Closed-form calculations in the setting with exponential recurrent event times showed
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that on average 90% of recurrent events are captured in at least one follow-up window when τ is
set at the historical mean exacerbation-free time with window spacing every τ/3 units.

Multiply imputed datasets using the approach given in section 3.4.2 with Zπi(t) = Zµi(t) =

Zi were used to create the heatmaps displayed in Figures 3.3 (a) and 3.3 (b). Heatmap entries
in Figures 3.3 (a) and 3.3 (b) are individual 6-month restricted times to first acute exacerbation
averaged across 10 multiply imputed datasets, where in Figure 3.3 (a) these entries are additionally
averaged over the 4 follow-up windows and in Figure 3.3 (b) the values are shown separately for
the 4 follow-up windows. In each heatmap, longer and shorter 6-month restricted exacerbation-free
times are in the yellow and purple color ranges, respectively. Additional individual characteristics,
Zi, are color coded along the left side of the heatmap. Descriptively from Figure 3.3 (a), the
cluster with the highest average 6-month restricted exacerbation-free time is more likely to be
taking azithromycin, has more male participants, and tends to have FEV1%>50% of predicted.
We will return to Figure 3.3 (b) later in this section. These heatmaps, which we believe are the
first of their kind for censored recurrent event time data, gives us a fairly robust view of the raw
τ -restricted outcome data plotted alongside predictors of interest. Parametric assumptions used
in imputing values for the censored follow-up windows only appear in the selection of risk set
participants used in the otherwise nonparametric inverse transform imputation step.

Table 3.3 displays 6-month-IBR parameter estimates for models (3.5) and (3.6) that allow inter-
pretation of the azithromycin effect adjusted for baseline covariates; parameter estimates for study
site have been submerged in this table. Results were similar using either the MI or ES estimation
approach, hence, for brevity, we focus on MI estimation results in what follows. The odds ratio of
remaining exacerbation-free for any 6-month period when taking azithromycin versus placebo was
1.448 (95% CI: 1.194-1.756, p<0.001), adjusted for other factors in the model. Amongst those
who experienced an exacerbation during a 6-month follow-up period, those taking azithromycin
had a 1.053 longer exacerbation-free period (95% CI: 0.993-1.123) that was marginally significant
(p = 0.073), adjusted for other factors in the model. That is, the 6-month-IBR model suggests
that those taking azithromycin were generally less susceptible to having exacerbations in any 6-
month period (model 3.5), but that amongst those who had exacerbations the 6-month-restricted
exacerbation-free period was marginally longer by approximately 5% (model 3.6). Using equa-
tions (3.9) and (3.10) as described in section 3.3, estimated 6-month exacerbation-free times for
the average patient profile were 136 days (95% CI 128-144 days) and 125 days (95% CI 117-132
days) for the azithromycin and placebo groups, respectively, with a treatment difference of 11 days
(95% CI 6-17 days; p<0.001) favoring azithromycin.

From Figure 3.3 (b), we observe a large number of individuals remaining exacerbation-free
during the entire study duration (solid yellow area in blue box) but many different patterns exist,
including individuals with progressively shorter and longer exacerbation-free periods as well as
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Figure 3.3: Six-month time-to-first-exacerbation for participants in the Azithromycin for Preven-
tion of COPD Exacerbations Trial. Heatmap (a) entries are individual 6-month restricted times-
to-first-exacerbation averaged across follow-up windows from 10 multiply imputed datasets using
the τ -IBR method of imputation. Heatmap (b) entries show individual 6-month restricted times-
to-first-exacerbation by follow-up window averaged across 10 multiply imputed datasets using the
τ -IBR method of imputation.

some individuals with consistently short exacerbation-free periods that show little improvement
over time. Stability of the treatment effect over the follow-up time windows may be evaluated by
introducing window start times as predictors in the models with interaction terms, as appropriate.
Figure 3.4, panels (a)-(d), show estimated 6-month restricted times-to-first-exacerbation by follow-
up window start time, treatment group and selected subgroups of interest based on FEV1 percent of
predicted [panel (a)], age [panel (b)], sex [panel (c) and baseline smoking status [panel (d)]. At the
far right of these panels, overall 6-month restricted times-to-first-exacerbation estimates for these
subgroups are given from models not including window start times as covariates. Corresponding
differences in estimated 6-month restricted times-to-first-exacerbation between azithromycin and
placebo groups are shown in panels (e)-(h) of Figure 3.4, along with 95% confidence intervals.
Although this study was not powered to detect subgroup differences, some interesting patterns are
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Table 3.3: Estimated 6-month-IBR and 6-month-XMT multivariate model parameters with 95%
confidence intervals and p-values. All models are additionally adjusted for study site (data not
shown).

Azithromycin
(vs. Placebo)

Age
(per 10 Years)

Male
(vs. Female)

FEV1

(per 10% Predicted)
Current Smoker

(vs. Ex)
τ -IBR model (ES) (Beta Regression)

Fold Change* 1.053 1.041 1.039 1.009 1.025
95% CI (0.984, 1.122) (1.000, 1.082) (0.970, 1.109) (0.985, 1.032) (0.937, 1.113)
P-value 0.122 0.053 0.254 0.469 0.577

τ -IBR model (ES) (Logistic Regression)
Odds Ratio† 1.457 1.104 1.410 1.134 1.107

95% CI (1.206, 1.760) (0.978, 1.246) (1.163, 1.708) (1.067, 1.207) (0.862, 1.422)
P-value <0.001 0.109 <0.001 <0.001 0.426

τ -IBR model (MI) (Beta Regression)
Fold Change* 1.058 1.041 1.037 1.008 1.020

95% CI (0.993, 1.123) (1.001, 1.081) (0.972, 1.102) (0.987, 1.030) (0.939, 1.101)
P-value 0.073 0.045 0.252 0.449 0.628

τ -IBR model (MI) (Logistic Regression)
Odds Ratio† 1.448 1.112 1.408 1.129 1.117

95% CI (1.194, 1.756) (0.986, 1.255) (1.159, 1.710) (1.060, 1.202) (0.867, 1.438)
P-value <0.001 0.084 <0.001 <0.001 0.392

XMT Model
Coef/τ ⋆ 0.060 0.025 0.062 0.018 0.022
95% CI (0.029, 0.092) (0.004, 0.045) (0.029, 0.094) (0.008, 0.028) (-0.019, 0.062)
P-value <0.001 0.016 <0.001 0.001 0.300

*Among those experiencing an exacerbation during the 6 months of follow-up, fold change is
the ratio of estimated exacerbation-free time during the year when comparing those with versus
without a one unit increase in the predictor, assuming all other predictors are zero. Age is centered
at 65 years and percent of predicted FEV1 is centered at 40% to aid in interpreting fold changes.
†Odds ratio for remaining exacerbation-free at 6 months comparing those with versus without a one
unit increase in the predictor shown, adjusted for other covariates in the model including treatment
group, age, gender, percent of predicted FEV1, smoking status and study site.
⋆Percentage increase in 6-month-RMST for each unit increase of the predictor, adjusted for other
covariates in the model.

revealed by these analyses. The azithromycin effect is most consistent over time in patients with
FEV1 percent of predicted>50%, those aged 70 years or older and females. Investigators seeing
these analyses would proceed by looking for potential explanations for waning treatment effects
in some of the other subgroups and seeking additional data and/or analyses to support or further
explain these results.

3.7 Discussion

This manuscript offers a suite of new methods for a modern analysis of recurrent events data
subject to censoring. Data visualization via heatmaps of τ -restricted times-to-first-event are intro-
duced that handle censored event times through a multiple imputation procedure that has very few

47



parametric assumptions made during its implementation. By converting traditional recurrent event
data into a censored longitudinal data structure, we are able to leverage longitudinal data analysis
experience in the analysis of this data. The τ -IBR model is a one-stop shop for assessing overall
susceptibility to recurrent events (model 3.5 without window start times as covariates), changes
to susceptibility to recurrent events over time (Model 3.5 with window start times as covariates
and interactions, as appropriate), the influence of predictors on time-to-first-exacerbation amongst
those who experience it (model 3.6 with and without window start times as covariates and interac-
tions, as appropriate) and patterns of mean time-to-first-recurrent event in follow-up windows over
time via equations (3.9) and (3.10) that combine results from models 3.5 and 3.6. Data visualiza-
tions of model results shown in Figure 3.4 are an additional tool for making results interpretable to
a medical research readership.

To our knowledge, a τ -inflated beta regression model framework has never been proposed as
a way to model recurrent time-to-event data, censored or otherwise. The conversion process from
a recurrent event time data structure to a series of τ -restricted times-to-first-event in (potentially
overlapping) follow-up windows over time tends to produce a point mass at τ in each follow-up
window. This data feature is often associated with patient predictor profiles that are less susceptible
to the recurrent events and, as such, they must be addressed in the analysis. Simulations indicate
that the τ -IBR model addresses this issue well compared to its nearest competitor model, the XMT
model that ignores these point masses in its analyses. Both the XMT model and the τ -IBR model
have the ability to model patterns of mean time-to-first-recurrent event in follow-up windows over
time. While the XMT model has good coverage rates for true τ -RMST values when there are
no predictors associated with the point mass of restricted event times at τ (simulation setting 2),
these coverage rates fall apart when predictors related to susceptibility of recurrent events at τ
exist (simulation setting 1), even when there are no censored event times. Figure 3.2 explains this
phenomena by showing the high average absolute value of bias in this setting.

The added interpretations afforded by the τ -IBR model that correctly models Ti(t) by breaking
it down into its mixture components via equation (1) is an additional bonus to correcting this
important coverage rate issue. As seen in the COPD example, the relative importance of risk
factors in models (3.5) and (3.6) shifted between the two models, with most statistical signal for the
treatment effect appearing in model (3.5). The 6-month-IBR model highlighted the interpretation
that the azithromycin participants were significantly less susceptible to having exacerbations in
any 6-month period, and that there was a marginally significant 5% increase in exacerbation-free
time amongst those who had exacerbations during a 6-month follow-up period.

We developed both ES and MI algorithms for fitting and reporting results for the τ -IBR model.
In simulation, both estimation methods performed reasonably well in terms of efficiency and bias
of parameter estimates, although the MI slightly outperforms the ES approach in estimating the
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intercept term of model 3.5. Since the intercept term of this model affects estimation of τ -RMST
values as well, the MI approach performed a bit better than the ES approach in terms of bias and
coverage of the true τ -RMST values. Our MI algorithm does not incorporate a bootstrap step as
some MI algorithms recommend [47, 19, 57], a step we elected to skip after noting good coverage
of our approach. Those of a more pure Bayesian mindset will likely wish to include a bootstrap
step as a matter of principle, but we found the gain in obtaining results more quickly with good
coverage rates quite satisfying and continue to recommend skipping the bootstrap step. This is, of
course, an easily incorporated change for those who wish to do so.
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Figure 3.4: (a)-(d) Estimated 6-month-RMST by different combinations of treatment and other
predictors via 6-month-IBR MI-fitted model. (e)-(h) Difference in estimated 6-month-RMST be-
tween Azithromycin and placebo groups for different levels of predictors.
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CHAPTER 4

τ -Inflated Beta Regression Model for Lung
Transplant Candidate Urgency Estimation Subject

to Dependent Censoring

4.1 Introduction

Lung transplantation has the potential to enhance the lifespan and well-being of patients suffering
from end-stage lung disease. However, due to the limited availability of organs, access to this
therapy is severely restricted. In 2005, the Organ Procurement and Transplant Network (OPTN)
altered the United States lung allocation policy for individuals aged 12 and above to take into
account expected mortality projections for each lung transplant candidate in the two scenarios of
receiving a transplant or remaining on the waitlist [9]. Each lung transplant candidate is assigned a
Lung Allocation Score (LAS) based on these projections, with higher LAS scores leading to offers
of deceased donor lung transplants. One important component of the LAS is a measure of trans-
plant urgency that is based on a candidate’s one-year restricted mean survival time (RMST) if they
remain on the waitlist without transplant. This focus of this manuscript is (1) to describe potential
waitlist mortality data biases and heretofore overlooked opportunities relevant to RMST transplant
urgency estimation, (2) to provide an improved method for estimating these RMST values, and (3)
to improve the ability to understand the relationship between factors used in the LAS and waitlist
mortality. The remainder of the introduction will discuss potential waitlist mortality data biases
that we plan to address and data structure opportunities that we plan to capitalize upon with our
proposed modeling framework.

Because lung waitlist candidates with high LAS values are typically offered lung transplants,
their one-year-restricted waitlist survival times are dependently censored at the time of transplant.
Hence any method for estimating transplant urgency must address this dependent censoring issue.
Inverse-probability-of-censoring weighting (IPCW) methods for time-to-event data are a popular
approach, with many varieties of these algorithms appearing in the literature since first proposed
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by Robins, Rotnitzky and co-authors [43, 41, 42, 52, 51, 15]. In the context of RMST estimation
with dependently censored times-to-event, IPCW approaches have been incorporated into model-
ing censored restricted event times using pseudo-observations (PO) [71, 60], multiple imputation
(MI)[60, 72] and generalized estimating equations (GEE)[65]. In this manuscript, we will pursue
an MI approach to address dependent censoring of event times.

By definition, although not widely acknowledged, τ -restricted times-to-event, min(Ti, τ), for
individuals, i = 1, . . . , n, are mixtures of a time-to-event of interest, Ti and a Bernoulli[πi =

P (Ti ≥ τ)] random variable, Bi, via the relationship, min(Ti, τ) = τBi + Ti(1 − Bi). To date,
no existing IPCW RMST estimation approaches acknowledge the random variable, Bi, as hav-
ing a role in RMST estimation and inference. Yet based on this representation of min(Ti, τ), an
individual’s τ -RMST becomes:

E[min(Ti, τ)] = τπi + E(Ti|Ti < τ)(1− πi), (4.1)

where the mean of Bi is prominently featured. In many practical applications, predictors associ-
ated with πi and E(Ti|Ti < τ) will differ in either composition or relative importance. Hence an
RMST estimation algorithm that incorporates results from separate models for πi and E(Ti|Ti < τ)

should offer opportunities for improvement in both inference and statistical efficiency. We vigor-
ously pursue this line of thinking in our manuscript. For instance in our motivating lung waitlist
setting, Chronic Obstructive Pulmonary Disease (COPD) lung candidates often desire a transplant
to improve quality of life as opposed to length of life, and so these candidates are more likely to
remain at risk on the waitlist beyond τ = 1 year compared to other lung diagnoses. Alternatively,
Interstitial Pulmonary Fibrosis (IPF) candidates typically enter the waitlist with a very low life
expectancy. Hence IPF diagnosed participants are more likely to contribute information towards
models of E(Ti|Ti < 1 year) than COPD participants. We therefore anticipate that 1-year RMST
estimates for COPD participants will be more strongly influenced by the model for πi versus the
model for E(Ti|Ti < 1 year) with the reverse likely the case for IPF candidates.

In general, modeling the statistical quantities on the right hand side of equation (4.1) should
better allow analysts to evaluate patient profiles that lend themselves to (a) a lower overall chance
of dying during a restricted period and (b) a longer survival time amongst patients who died during
a restricted period. And resulting RMST estimates based on the right hand side of equation (4.1)
are likely to be more precise than estimates based on models that don’t take into account the role of
the point-mass at min(Ti, τ) = τ via the relationship min(Ti, τ) = τBi+Ti(1−Bi). This intuition
regarding efficiency has been confirmed in other settings where survival quantities were averaged
across mutually exclusive and exhaustive groups of inherent interest in the censored time-to-event
setting. [13, 34, 35, 32].
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Another data opportunity that is often overlooked in τ -RMST estimation, and that we plan to
address in our methods development, is the vast availability of statistical information beyond the
initial τ years of follow-up in many practical settings. Tayob and Murray [58, 60] demonstrated
considerable efficiency gains in τ -RMST estimation merely by incorporating information from
several regularly spaced τ -length follow-up windows per individual and appropriately taking into
account correlation between information contributed from the same individual in the analysis of
the resulting censored longitudinal data structure. Our methods will build upon their suggested
representation of censored times-to-event as a longitudinal data structure of censored τ -restricted
outcomes observed throughout the follow-up period.

The remainder of the manuscript is structured as follows. Section 4.2 introduces notation and
describes how to convert traditional censored time-to-event data into a regularly spaced censored
longitudinal data structure suitable for τ -RMST analysis based on the decomposition of its ele-
ments given in equation (4.1). In Section 4.3, we introduce our proposed τ -IBR model for the
censored longitudinal data described in section 4.2 in the special case with no censoring. An MI
approach for addressing dependent censoring is developed in Section 4.4. Section 4.5 reports the
results of simulation studies that assess the finite sample properties of our methodology. An anal-
ysis of the lung candidate data highlighting advantages of our approach is given in Section 4.6,
followed by a discussion in Section 4.7.

4.2 Description of Random Variables and Construction of Cen-
sored Longitudinal Data

In this section, we define notation, provide an overview of how to transform traditional time-to-
event data into a censored longitudinal data structure, and introduce additional longitudinal data
notation that is relevant to the goals of this manuscript.

Let Ti and Ci represent the time-to-event and censoring time, respectively, for patient i, where
i = 1, 2, . . . , n. As the data is censored, we can only observe Xi = min(Ti, Ci), along with the
corresponding censoring indicator ∆i = I(Ti ≤ Ci) for i = 1, . . . , n. The vectors of covariates
related to the event time Ti and censoring time Ci at a specific time point t are represented by Zi(t)

and Vi(t), respectively. The covariate histories up to time t are indicated by Z̄i(t) = {Zi(u); 0 ≤
u ≤ t} and V̄i(t) = {Vi(u); 0 ≤ u ≤ t}. We define the counting process for the event of interest
as Ni(t) = I(Xi ≤ t,∆i = 1), where dNi(t) = I(Xi = t,∆i = 1), and the counting process for
censoring time as Nci(t) = I(Xi ≤ t,∆i = 0), where dNci(t) = I(Xi = t,∆i = 0). In addition,
we define Yi(t) = I(Xi ≥ t) as the indicator of individual i being at risk for the event at time t.

In this manuscript, we construct a censored longitudinal data structure for the time-to-event data

53



similar to that described in Tayob and Murray [58, 59, 60]. This structure transforms traditional
time-to-event data into potentially censored time-to-event in follow-up windows of length τ mea-
sured from follow-up times t ∈ t1, ..., tb, where t1 = 0 and tk = tk−1 + a for k = 2, . . . , b. The
length of the follow-up window, τ , is chosen to be clinically meaningful for the patient population
and research question of interest. For instance, the lung transplant candidate urgency estimate de-
scribed in the introduction is based on an estimate of 1-year restricted lifetime without opportunity
for transplant, so that τ = 1 year is appropriate in this case. With the structure of follow-up win-
dows defined in terms of a, b, and τ , we now define notation for τ -restricted time-to-event in each
of the follow-up windows mapped from traditional event time random variables.

For each t ∈ t1, . . . , tb, we define:

Ti(t) = min[Ti − t, τ ]

with observed data in the presence of censoring:

Xi(t) = min[Xi − t, τ ]

∆i(t) = I[Xi(t) < Ci − t]

where Ti(t) is the corresponding τ -restricted time-to-event measured from window start time t,
with Xi(t) and ∆i(t) being the corresponding τ -restricted time-to-observed-event and censoring
indicator, respectively, measured from t. Any individual i who is not at risk at the beginning of a
follow-up window starting at t is assumed to have Xi(t) = ∆i(t) = 0.

To illustrate the data structure transformation and introduce the longitudinal outcome notation
used in our modeling framework, we present two examples. Suppose patient 1 died 16 months
after listing, and patient 2 was censored 10 months after listing due to receiving a transplant.
Using traditional time-to-event notation, the observed data for patient 1 becomes {X1 = T2 = 16
months, ∆1 = 1}, and the observed data for patient 2 becomes {X2 = C2 = 10 months, ∆2 =

0}. To define the new longitudinal data structure shown in Figure 1, we set {τ , a, b} = {12,
6, 3} months, giving 3 12-month follow-up windows starting at {t1, t2, t3}={0, 6, 12} months.
Hence, patient 1 contributes the following longitudinal outcome data related to the time-to-event
of interest:

{T1(0) = X1(0) = 12 months,∆1(0) = 1, Z1(0)}

{T1(6) = X1(6) = 10 months,∆1(6) = 1, Z1(6)},

{T1(12) = X1(12) = 4 months,∆1(12) = 1, Z1(12)},
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and patient 2 contributes:

{X2(0) = 10 months,∆1(0) = 0, Z2(0)}

{X2(6) = 4 months,∆2(6) = 0, Z2(6)}.

Note that X1(0) = 12 months means that the time-to-event within the first window attains τ for
patient 1. In the lung transplant candidate data described in the introduction, approximately 1679
individuals at time t = 0 have Xi(0) = 12 months, leading to a point mass of follow-up windows
achieving this same value of Xi(0).

Time of listing

Patient 1

Death

0 12

6 18

12 24

0 12

6 18

X1(0) = T1(0) = 12
∆!(0) = 1
B1(0) = 1

Z1(6)

X1 = T1 = 16
∆!= 1

Z1(0)
X1(6) = T1(6) = 10
∆!(6) = 1
B1(6) = 0
Q1(6) = 10/12 = 0.83

X1(12) = T1(12) = 4
∆!(12) = 1
B1(12) = 0
Q1(12) = 4/12 = 0.33Z1(12)

Time of listing

Patient 2 X1 = C1 = 10
∆!= 0

Censored

Z2(6)

X2(6) = 4
∆"(6) = 0
B2(6) = Q2(6) = ?

Z2(0)

X2(0) = 10
∆"(0) = 0
B2(0) = Q2(0) = ?

Figure 4.1: Two examples of how to construct censored longitudinal data from an individual’s
traditional event-time data.

This manuscript leverages information inherent in the data about this point mass for the ultimate
goal of better understanding properties of Ti(t) via the following relationship:

Ti(t) = τBi(t) + Ti(t)[1−Bi(t)] = τ
{
Bi(t) +Qi(t)[1−Bi(t)]

}
, (4.2)
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where Bi(t) = I[Ti(t) = τ ] is a Bernoulli random variable with mean πi(t) = Pr[Ti(t) = τ ] and
Qi(t) = τ−1Ti(t) defined conditionally for Ti(t) < τ (i.e., Bi(t) = 0), is a continuous random
variable on the sample space between zero and one that is statistically independent of Bi(t). We
may model Bi(t), t ∈ t1, . . . , tb and Qi(t), t ∈ t1, . . . , tb to obtain inferences on Ti(t).

Adding these additional random variables to our example patients in Figure 4.1, patient 1
(who died at 16 months post listing) contributes longitudinal outcomes {[B1(0) = 1], [B1(6) =

0, Q1(6) = 0.83], [B1(12) = 0, Q1(12) = 0.33]. Patient 2 (who was censored due to receiving a
transplant at 10 months post listing) has missing data for B2(0), B2(6), Q2(0) and Q2(6) due to
the patient being at risk at both t = 0 and 6 months post listing and censored within each of these
follow-up windows. In Section 4, we describe a inverse probability weighted multiple imputation
approach that takes into account the partially observed at-risk data in each of these follow-up win-
dows, as well as covariate risk profiles of individuals in the dataset, to impute missing Bi(t) and
Qi(t) outcomes that will be used in our models in the presence of potentially dependent censoring.

The following two sections of the manuscript develop methodology first in the uncensored
data setting (section 4.3) and then in the censored data setting (section 4.4), where our multiple
imputation approach is introduced for fitting the model.

4.3 τ -Inflated Beta Regression Model Specification in the Spe-
cial Case with No Censoring

One of the primary goals of this manuscript is to improve estimation of τ -restricted mean event
times in the presence of dependent censoring, since that is an essential element of U.S. Lung
Allocation Score urgency estimate. In this section, we establish some important preliminary model
definitions and methods for estimation and inference in the no censoring case that will be useful
when describing multiple imputation methods for the case with dependent censoring in section 4.4.

Prior τ -restricted mean models that address potential dependent censoring have either focused
solely in the follow-up window starting at t = 0 [71], or in the case of Tayob and Murray [60], mod-
eled the restricted mean event-time of interest over follow-up windows starting at t ∈ {t1, ..., tb}
assuming a mean structure for log[Ti(t)] or Ti(t) such as:

E[Ti(t)|Zi(t)] = β̃TZi(t), (4.3)

i = 1, . . . , n, t ∈ {t1, ..., tb}, where β̃ is a vector of parameters corresponding to a vector of
predictors, Zi(t). Although Tayob and Murray developed their approach with log[Ti(t)] as the
focus of their model and estimation methods, for the purposes of this manuscript we apply their
approach (with minor modifications) to the original scale of Ti(t) as in model (4.3) so that results
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from our proposed method will be more directly comparable to theirs. Hereafter, we will refer to
model (4.3) as the Tayob and Murray τ -Restricted Mean Survival (TM τ -RMST) model.

As mentioned in section 4.2, we view Ti(t) through the lens of the random variables Bi(t)

and Qi(t) via the algebraic relationship expressed in equation (4.2). Based on equation (1), the
following algebraic relationship for the mean of Ti(t) must also hold:

E[Ti(t)] = E
{
τ
{
Bi(t) +Qi(t)[1−Bi(t)]

}}
= τ
{
πi(t) + µi(t)[(1− πi(t)]

}
, (4.4)

where i = 1, . . . , n, t ∈ {t1, ..., tb}, πi(t) = E[Bi(t)] and µi(t) = E[Qi(t)]. It makes sense to esti-
mate transplant urgency based on the right hand side of equation (4.4) if we suspect that there are
different associations between covariates and Bi(t) versus Qi(t). Multivariable models for πi(t)
will more clearly identify characteristics associated with surviving for the full τ -duration follow-up
period. In evaluating lung transplant candidates the πi(t) model will identify predictors associated
with low risk of mortality during the next τ duration follow-up period if a donor lung is not made
available for transplant. Multivariable models for µi(t) will more clearly identify predictors asso-
ciated with higher and lower transplant urgency amongst those who are not anticipated to survive
the subsequent τ -duration follow-up period. To reflect different potential covariate associations at
work for outcomes Bi(t) and Qi(t), we introduce notation for the relevant subsets of Zi(t) that
pertain to these models, Zπi(t) and Zµi(t), respectively.

Our proposed τ -inflated beta regression model applied to the censored longitudinal dataset laid
out in section 4.2 uses generalized estimation equation (GEE) methods to fit models for πi(t)
and µi(t) based on data {Bi(t), Zπi(t), i = 1, . . . , n, t ∈ (t1, ..., tb)} and {Qi(t), Zµi(t), i =

1, . . . , n, t ∈ (t1, ..., tb)}, respectively. Inspired by equation (4.4), the underlying assumption of
the τ -IBR approach is that patient i’s τ -RMST for the follow-up window starting at time t satisfies

E[Ti(t)|Zi(t)] = τ
{

E[Bi(t)|Zπi(t)] + E[Qi(t)|Zµi(t)]{(1− E[Bi(t)|Zπi(t)]}
}
. (4.5)

For simplicity, we will continue to use the notation πi(t) for E[Bi(t)|Zπi(t)] and the nota-
tion µi(t) for E[Qi(t)|Zµi(t)], i = 1, . . . , n, t ∈ {t1, ..., tb}. In vector form these become
πi = [πi(t1), . . . , πi(tb)]

T and µi = [µi(t1), . . . , µi(tb)]
T , i = 1, . . . , n. As in standard longitu-

dinal analysis, Zπi(t) and Zµi(t) can include window start times t, time-dependent covariates that
change at the window start times, and interactions between t and other covariates.

For each model, GEE methodology requires specification of: (1) the mean structure being mod-
eled, (2) the assumed variance function, and (3) the assumed working correlation matrix for out-
comes taken from the same individual.

We assume that the mean structure for Bi(t) given Zπi(t), i = 1, . . . , n, t ∈ (t1, ..., tb), follows
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the model:

g[πi(t)] = log
[

πi(t)

1− πi(t)

]
= β0 + βT

1 Zπi(t). (4.6)

Later we express πi(t) in terms of β = (β0, β
T
1 )

T and Zπ
i (t) = [1, ZT

πi(t)]
T , so that πi(t) =

1/
[
1 + e−βTZπ

i (t)
]
. The corresponding variance function for Bi(t) given Zπi(t) is taken from the

Bernoulli[πi(t)] distribution, i.e., Var[Bi(t)|Zπi(t)] = πi(t)[1−πi(t)], i = 1, . . . , n, t ∈ {t1, ..., tb}.
Suppose that Rπi is the working correlation matrix for Bi = [Bi(t1), . . . , Bi(tb)]

T , and that Aπi is
a diagonal matrix with Var[Bi(t)] = πi(t)[1− πi(t)], t = t1, . . . , tb, along the diagonal so that the
covariance matrix for Bi becomes Vπi

= A
1
2
πiRπiA

1
2
πi, i = 1, . . . , n.

According to Liang and Zeger’s GEE methodology [76], we may estimate parameters, β, in
model (4.6) by solving the estimating equation,

n∑
i=1

∂πi
∂β

T

V −1
πi

(Bi − πi) = 0, (4.7)

where (∂πi/∂β)
T = {[∂πi(t1)/∂β]T , . . . , [∂πi(tb)/∂β]T}, i = 1, . . . , n, with components

[∂πi(t)/∂β]
T = Zπ

i (t)e
βTZπ

i (t)/
[
1 + eβ

TZπ
i (t)
]2, i = 1, . . . , n, t ∈ {t1, ..., tb}.

We assume that the mean structure for Qi(t) given Zµi(t), i = 1, . . . , n, t ∈ (t1, ..., tb), follows
the model:

g[µi(t)] = log
[

µi(t)

1− µi(t)

]
= α0 + αT

1 Zµi(t). (4.8)

Later we express µi(t) in terms of α = (α0, α
T
1 )

T and Zµ
i (t) = [1, ZT

µi(t)]
T , so that µi(t) =

1/
[
1 + e−αTZµ

i (t)
]
. The corresponding variance function for Qi(t) given Zµi(t) is taken from

the beta{µi(t)ν, [1 − µi(t)]ν} distribution, i.e., Var[Qi(t)|Zµi(t)] = (ν + 1)−1µi(t)[1 − µi(t)],
i = 1, . . . , n, t ∈ {t1, ..., tb}. Suppose that Rµi is the working correlation matrix for Qi =

[Qi(t1), . . . , Qi(tb)]
T , and thatAµi is a diagonal matrix with Var[Qi(t)] = (ν+1)−1µi(t)[1−µi(t)],

t = t1, . . . , tb, along the diagonal so that the covariance matrix for Qi becomes Vµi
= A

1
2
πiRπiA

1
2
πi,

i = 1, . . . , n. Let Uµi
= diag{[1−Bi(t1)], ..., [1−Bi(tb)]}, i = 1, . . . , n. The estimating equation

for α in model (4.8) can be written as:

n∑
i=1

∂µi

∂α

T

V −1
µi
Uµi

(Qi − µi) = 0, (4.9)

where (∂µi/∂α)
T = {[∂µi(t1)/∂α]

T , . . . , [∂µi(tb)/∂α]
T} with components [∂µi(t)/∂α]

T =

Zµ
i (t)e

αTZµ
i (t)/

[
1 + eα

TZµ
i (t)
]2, i = 1, . . . , n, t ∈ {t1, ..., tb}. To interpret this model, consider
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the kth element of Zµi(t), Zµik(t), with corresponding parameter α1k. For a one unit increase of
Zµik(t) from z to z+1, the fold change for µi(t) becomes eα1k(1 + eα0+zα1k)/(1 + eα0+α1k+zα1k)

assuming that all other predictors in the model are zero. When interpreting the model in subject
area manuscripts, we center continuous predictors and use zero values for reference groups of
categorical predictors.

We consider unstructured working correlation matrix to easily handle the correlation between
overlapping and non-overlapping follow-up windows. Solutions to equations (4.7) and (4.9) are
obtained using the geem2 function from the mmmgee package. This yields estimated values for
α̂ and β̂, as well as robust sandwich estimates for the corresponding parameter covariance matri-
ces, V̂α and V̂β , respectively. As long as the mean functions are correctly specified, α̂ and β̂ are
consistent and asymptotically normal[75, 76].

Based on estimated parameters and equation (4.4), we may estimate τ -RMST for each in-
dividual and follow-up window, E[Ti(t)|Zi], i = 1, . . . , n, t = t0, . . . , tb. Defining µ̂i(t) =

1/
[
1 + e−α̂TZµ

i (t)
]

and π̂i(t) = 1/
[
1 + e−β̂TZπ

i (t)
]
, the estimated E[Ti(t)] for subject i and win-

dow t becomes

Ê[Ti(t)] = τ µ̂i(t)[1− π̂i(t)] + τ π̂i(t). (4.10)

After some algebraic manipulation,

V̂ar{Ê[Ti(t)]} = τ 2
[
1− 1

1 + e−α̂TZµ
i (t)

]2
Zπ

i (t)
T V̂βZ

π
i (t)

[
e−β̂TZπ

i (t)
]2[

1 + e−β̂TZπ
i (t)
]4

+ τ 2
[
1− 1

1 + e−β̂TZπ
i (t)

]2
Zµ

i (t)
T V̂αZ

µ
i (t)

[
e−α̂TZµ

i (t)
]2[

1 + e−α̂TZµ
i (t)
]4 .

(4.11)

4.4 Multiple Imputation Algorithm For Dependently censored
data

In this section, we describe how to multiply impute dependently censored outcomes in the context
of fitting our proposed τ -inflated beta regression model. For each censored individual, the general
idea of our imputation procedure is to (1) construct a risk set of individuals with similar covariate
histories to the censored individual, where this risk set takes into account similarity in predicted
µi(t) and πi(t) values over time, and then (2) use an inverse transform (IT) imputation algorithm
to multiply impute outcomes for the censored individual, a technique that has been developed and
modified by many authors[30, 57, 20, 21, 70, 60].

In our setting a censored patient i requires imputation of Ti(t) in the set, Si, of τ -length follow-
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up windows starting at {t ∈ {t1, . . . , tb} : 0 < Xi(t) < τ,∆i(t) = 0}. If Si contains more than
one window, we only need to impute the time-to-event for the last window in the set, denoted
as bthi window starting at tsupi . Once we have imputed the τ -restricted time-to-event, denoted as
T̃i(t

sup
i ) for the last window starting at tsupi , we can impute the time-to-event for other windows

in Si starting at t < tsupi as T̃i(t) = min[T̃i(t
sup
i ) + tsupi − t, τ ]. Using the imputed T̃i(t) for each

window in Si, we can impute the outcomes of models (4.6) and (4.8). Specifically, we impute
B̃i(t) as I[T̃i(t) = τ ], and Q̃i(t) as T̃i(t) if B̃i(t) = 0.

An outline of the steps needed to generate our imputed datasets follows:

1. Fit models (4.6) and (4.8) using data from follow-up windows that don’t require imputation
to obtain initial model parameter estimates, θ̂(0) = (α̂(0), β̂(0)).

2. Form risk set Ri for each subject i requiring imputation by including candidates with similar
histories of covariates to patient i based on initial estimates of model parameters θ̂(0). If
there are particularly important covariates related to either the outcome of interest and/or the
censoring mechanism over time, these may be used as additional criteria for entering the risk
set for patient i. In the lung waitlist setting, time-dependent LAS would be appropriate to
single out as such a covariate.

3. Impute Bi(t) and Qi(t) for each window in Si.

(a) Compute the IPCW (Inverse Probability of Censoring Weighted) survival estimate
within the risk set Ri, denoted as ŜW

Ri
.

(b) Sample a valid impute using the IPTI approach.

4. Repeat step 3 (b)M times, resulting inM imputed data sets to be analyzed, and then combine
the results from M imputed datasets using method proposed by Rubin[46, 45] to get final
estimates of θ and its corresponding covariance matrix.

We now provide details of steps 2-4 of the algorithm.
Step 2: (Risk set definition step) To impute T̃i(t

sup
i ) in the sup window for each individual

i = 1, . . . , Nc requiring imputation, we define a risk set Ri consisting of individuals who are
similar to i. To be included in Ri, a candidate j = 1, . . . , Ni must satisfy two constraints: (a)
max[|µ̂i(t) − µ̂j(t)|, |π̂i(t) − π̂j(t)|] < ϵ for t = 0, . . . , tsupi , where µ̂i(t) and π̂i(t) are estimated
from θ̂(0) and (b) Xj(t

sup
i ) > Xi(t

sup
i ). Condition (b) in this step ensures that all subjects in Ri

are at risk when individual i is censored. Condition (a) requires that individuals in Ri have similar
predicted model outcomes to the individual i at each window start time up to tsupi . Suppose that
Z∗

i (t) is a particularly important covariate related to the outcome of interest and/or the dependent
censoring mechanism. Then criteria (a) may be modified to require that max[|µ̂i(t)−µ̂j(t)|, |π̂i(t)−
π̂j(t)|, |Z∗

i (t)− Z∗
j (t)|] < ϵ for t = 0, . . . , tsupi . We set ϵ = 0.05 in condition (a) and increase ϵ by

0.005 until either Ni ≥ 10 or ϵ > 0.5.
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Step 3 (a): (IPCW survival estimation) The IPTI imputation approach requires a consistent
marginal survival curve estimate to be calculated for each risk set, Ri, which in the dependent
censoring setting can be obtained via the IPCW survival estimate[41]. IPCW related survival,
hazard and cumulative hazard estimates in this step are defined from the start of the first follow-
up window, so that the time argument, u, should be interpreted on that time scale in this step.
Inverse weights to adjust for dependent censoring are estimated via a Cox model for the dependent
censoring time of the form:

λC [u|V̄i(u)] = λ0C(u)exp[γTVi(u)],

where λC [u|V̄i(u)] is the hazard function for the censoring distribution conditional on the history
of covariates V̄i(u) , λ0C(u) is an baseline hazard function for the censoring distribution, and γ is
a vector of parameters corresponding to a vector of predictors, Vi(u) available at time u. For each
individual i = 1, . . . , n, we calculate

Ŵi(u) = P̂−1[Ci > u|V̄i(u)] = exp
[ n∑

k=1

∫ u

0

eγ̂
TVi(v)dNCk

(v)∑n
k′=1 Yk′(v)e

γ̂TVk′ (v)

]
.

We then define the estimated IPCW for each individual j within the risk set Ri as:

ŴRi
j (u) = P̂−1[Cj > u|Cj > Ci, V̄j(u)] =

P̂ [Cj > Ci|V̄j(u)]
P̂ [Cj > u|V̄j(u)]

=
Ŵj(u)

Ŵj(Ci)
.

Based on ŴRi
j (u), the inverse weighted cumulative hazard within the risk set Λ̂W

Ri
(u) can be cal-

culated using:

Λ̂W
Ri
(u) =

∑
j∈Ri

∫ u

Ci

dNj(v)Ŵ
Ri
j (v)∑

j′∈Ri
Yj′(v)Ŵ

Ri

j′ (v)
,

so that the corresponding inverse weighted survival function becomes ŜW
Ri
(u) = exp[−Λ̂W

Ri
(u)].

For the IPTI approach described in step 3 (b), it is convenient to define ŜW
Ri
(u) = 0 for u ≥ τ+tsupi .

Step 3 (b): (IPTI approach) In this step, we define the IPTI approach for imputing Bi(t
sup
i ) and

Qi(t
sup
i ) for each censored individual i that requires imputation. First, we generate a uniform(0,1)

random variable, Ui = ui, and find the smallest observed event time t∗ where ŜW
Ri
(t∗) ≤ ui. If

t∗ ≥ tsupi +τ , then impute 1 forBi(t
sup
i ); no further imputation forQi(t

sup
i ) is required. Otherwise,

impute 0 for Bi(t
sup
i ) and t∗ − tsupi for Qi(t

sup
i ). Imputes for the remaining censored outcomes in

Si are then determined from the imputes for Bi(t
sup
i ) and Qi(t

sup
i ), as appropriate. Completing this

step results in a fully imputed dataset.
Step 4: Repeat step 3 (b) M times, resulting in M imputed data sets to be analyzed. By

fitting model (4.6) and model (4.8) using each imputed data set, we obtain M parameter estimates
θ̂MI
m with corresponding estimated covariance matrix V̂ar( ˆθMI

m ), m = 1, . . . ,M . We combine the
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results from M = 10 imputed data sets using the approach proposed bu Rubin [45, 46]. The final
estimate of θ based on M parameter estimates becomes θ̂MI =

∑M
m=1 θ̂

MI
m /M with corresponding

estimated covariance matrix V̂ar(θ̂MI) = Ū + (1 +M−1)B̄, where Ū = 1
M

∑M
m=1 V̂ar(θ̂MI

m ) and
B̄ = 1

M−1

∑M
m=1(θ̂

MI
m − θ̂MI)(θ̂MI

m − θ̂MI)T . The terms, V̂ MI
α and V̂ MI

β , can be extracted from
V̂ar(θ̂MI), as appropriate.

4.5 Simulation Study

In this section we evaluate the performance of our proposed τ -IBR model for dependently censored
data in terms of : (i) the quality of parameter estimates obtained from models (4.6) and (4.8) and
(ii) the quality of longitudinal τ -RMST estimates in follow-up windows starting at t = t1 . . . , tb for
individuals i = 1, . . . , n using our modeling framework versus the TM model approach. The data
generation details for each of the 500 iterations simulated per scenario are described in Section
4.5.1 and the results of our simulations are summarized in Section 4.5.2.

The quality of parameter estimates for models (4.6) and (4.8) is assessed using several metrics,
including bias, the average estimated standard error (ASE), the empirical standard deviation of the
parameter estimates (ESD), and the average coverage probability of model-based 95% confidence
intervals (CP). To evaluate the quality of longitudinal τ -RMST estimates, we consider bias, abso-
lute value of bias (Abs-bias), ASE, and CP for n = 200, 500, and 700 subjects. Since estimated τ -
RMST values are unique to each follow-up window contributed by individuals i = 1, . . . , n, sum-
mary statistics for the performance of longitudinal τ -RMST estimates across the j = 1, . . . , 500

simulations are defined as

Bias =
500∑
j=1

n∑
i=1

tb∑
t=t1

Ê[Tij(t)]− E[Tij(t)]
n× b× 500

,

Abs-bias =
500∑
j=1

n∑
i=1

tb∑
t=t1

|Ê[Tij(t)]− E[Tij(t)]|
n× b× 500

,

ASE =
500∑
j=1

n∑
i=1

tb∑
t=t1

V̂ar{Ê[Tij(t)]}
n× b× 500

and

CP =
500∑
j=1

n∑
i=1

tb∑
t=t1

I(Lowerij < Ê[Tij(t)] < Upperij)
n× b× 500

,

where Lowerij = Ê[Tij(t)] − 1.96 ×
√

V̂ar{Ê[Tij(t)]} and Upperij = Ê[Tij(t)] + 1.96 ×√
V̂ar{Ê[Tij(t)]}.
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4.5.1 Data Generation

The simulated censored longitudinal data structure assumes b = 3 follow-up windows initiated at
{t1, t2, t3} = {0, 6, 12} months with τ = 6 months. For each individual, i = 1, ..., n, and time,
t ∈ {0, 6, 12}, a time-dependent covariate Z1i(t) is independently generated from a uniform(0,1)
distribution. An additional time-independent covariate, Z2i, is generated from a Bernoulli(0.5)
distribution. We consider two settings for the true τ -IBR model:

Setting 1: log
[

πi(t)

1− πi(t)

]
= −1.5 + 1.0Z1i(t) + 2Z2i,

log
[

µi(t)

1− µi(t)

]
= −1.0 + 1.0Z1i(t) + 1.5Z2i;

Setting 2: log
[

πi(t)

1− πi(t)

]
= 0.5, log

[
µi(t)

1− µi(t)

]
= −1.0 + 1.0Z1i(t) + 1.5Z2i.

The model for πi(t) varies between the two settings. In Setting 1, the covariates Zπi
=

{Z1i(t), Z2i} are considered important, whereas in Setting 2, there are no important covariates
included in the model for πi(t). In terms of RMST (transplant urgency) estimation, our approach
is not expected to outperform the TM model in Setting 2 since there are no interesting covariate
features related to the point mass of τ -restricted event times at τ . However, in Scenario 1, our
approach is expected to demonstrate advantages.

Outcomes for each subject i, i = 1, . . . , n are simulated to follow the assumed relation-
ships for πi(t) and µi(t), t ∈ {0, 6, 12} laid out in Settings 1 and 2. First, correlated
Bernoulli{πi(t)} random variables for t ∈ {0, 6, 12} are generated for each individual, giving
us {Bi(0), Bi(6), Bi(12)}, i = 1, . . . , n. These correlated Bernoulli outcomes are generated us-
ing an algorithm proposed by Emrich and Piedmonte [10] that is implemented using the function
rmvbin from the R package bindata. If for individual, i, any follow-up windows are observed
to have Bi(t) = 0 for t ∈ {0, 6, 12}, then we index the first of these follow-up windows with
tsupi = min{t : Bi(t) = 0}. Outcomes Bi(t) : t > tsupi are removed from individual i’s
censored longitudinal data. For the follow-up window starting at tsupi , an outcome, Qi(t

sup
i ), is

added to the censored longitudinal dataset for individual i that is independently generated from a
Beta[µi(t

sup
i )ν, (1− µi(t

sup
i ))ν] distribution with ν = 3.

We assess model performance for Settings 1 and 2 in the case of 25% dependent censoring
before tb + τ , and compare it to a benchmark without censoring. For the 25% censoring case, we
assume that the censoring time, Ci, has a piecewise exponential distribution that depends on covari-
ates, Vi(t) = {Z1i(t), Z2i}. In particular, censoring hazards follow λCi

= λ0C(u)exp{[0.4Z1i(0) +

0.35Z2i]×I(0 ≤ u < 6)+[0.4Z1i(6)+0.35Z2i]×I(6 ≤ u < 12)+[0.4Z1i(12)+0.35Z2i]×I(u ≥
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Table 4.1: Finite sample performance of τ -IBR parameter estimates from models (4.6) and (4.8)
for n=500 subjects with correlated longitudinal outcomes (ρ = 0.2) based on 500 iterations.

No Censoring 25% Censoring
Bias ASE ESD CP Bias ASE ESD CP

Setting 1
α0 = -1.0 0.002 0.119 0.124 0.944 0.004 0.126 0.132 0.946
α1 = 1.0 0.001 0.197 0.203 0.944 -0.004 0.212 0.219 0.938
α2 = 1.5 0.003 0.119 0.119 0.954 0.000 0.132 0.134 0.938
β0 = -1.5 -0.045 0.190 0.200 0.944 -0.036 0.212 0.213 0.944
β1 = 1.0 -0.010 0.252 0.278 0.924 -0.017 0.290 0.301 0.936
β2 = 2.0 0.002 0.170 0.181 0.944 0.008 0.188 0.201 0.930
Setting 2
α0 = -1.0 0.003 0.134 0.143 0.938 0.006 0.143 0.152 0.932
α1 = 1.0 -0.004 0.206 0.207 0.958 -0.012 0.222 0.225 0.950
α2 = 1.5 0.004 0.119 0.126 0.944 0.006 0.128 0.134 0.930
β0 = 0.5 -0.059 0.147 0.159 0.920 -0.052 0.159 0.169 0.928
β1 = 0.0 -0.013 0.215 0.208 0.952 -0.003 0.236 0.233 0.958
β2 = 0.0 -0.004 0.142 0.144 0.942 -0.001 0.153 0.158 0.946

Bias is the average difference between the true and estimated parameters across the simulations;
ASE is the average of the model-based standard error estimates across the simulations; ESD is
empirical standard deviation of the parameter estimates seen in simulation; CP is the empirical
coverage probability of the true parameter by the model-based 95% confidence interval seen in
simulation.

12)}, where λ0C(u) = 0.021 I(0 ≤ u < 6) +0.022 I(6 ≤ u < 12) +0.021 I(u ≥ 12) in Setting
1, and λ0C(u) = 0.016 I(0 ≤ u < 6) +0.015 I(6 ≤ u < 12) +0.015 I(u ≥ 12) in Setting 2,
producing approximately 25% censoring in each setting.

4.5.2 Simulation Results

Table 4.1 displays finite sample properties of τ -IBR model parameter estimates based on n = 500

simulated individuals for both the uncensored case and the case with 25% censoring. The bias
of parameter estimates is generally small, although the intercept estimate for model (4.6) shows
slightly higher bias than estimates for other model parameters. As one would expect, the variability
of each parameter estimate from the model with binary outcomes (model 4.6) is somewhat larger
than the variability of each parameter estimate from the model with continuous outcomes (model
4.8). In general, simulation results show good performance of the proposed estimation and infer-
ential procedures as outlined in this manuscript with ASE and ESD estimates close to one another
and coverage probabilities close to the desired 95% level.
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Table 4.2: Finite sample performance of τ -RMST estimates using (1) the τ -IBR model and (2) the
TM model based on 500 iterates.

No censoring (Setting1) 25% censoring (Setting1) No censoring (Setting2) 25% censoring (Setting2)
τ -IBR TM τ -IBR TM τ -IBR TM τ -IBR TM

700 Subjects
Bias -0.021 0.003 -0.019 0.006 0.031 0.069 0.029 0.060

Abs Bias 0.075 0.150 0.078 0.152 0.073 0.090 0.075 0.088
ASE 0.081 0.081 0.089 0.087 0.074 0.074 0.080 0.079
CP 0.909 0.600 0.927 0.632 0.877 0.796 0.895 0.840

500 Subjects
Bias -0.022 0.006 -0.019 0.010 0.032 0.069 0.031 0.062

Abs Bias 0.087 0.154 0.091 0.155 0.084 0.098 0.087 0.097
ASE 0.096 0.096 0.106 0.103 0.087 0.087 0.095 0.093
CP 0.909 0.678 0.929 0.713 0.892 0.832 0.914 0.864

200 Subjects
Bias -0.025 0.001 -0.014 0.007 0.021 0.057 0.021 0.050

Abs Bias 0.134 0.182 0.140 0.187 0.131 0.136 0.137 0.140
ASE 0.151 0.150 0.166 0.162 0.139 0.138 0.151 0.147
CP 0.918 0.821 0.932 0.837 0.894 0.877 0.904 0.889

Bias: average difference between the true and predicted τ -RMST values across all subjects, win-
dows and simulations; Abs Bias: average of absolute bias across all subjects, windows and simu-
lations; ASE: average of the model-based standard error estimates corresponding to the τ -RMST
estimates across all subjects, windows and simulations; CP: empirical coverage probability of the
true τ -RMST value by the model-based 95% confidence interval across all subjects, windows and
simulations.

Table 4.2 shows finite sample properties of τ -RMST estimates using both our proposed τ -IBR
methodology and the TM model for sample sizes of n = 200, 500 and 700. In Setting 2, where
there are no interesting covariate associations related to the point mass of restricted event times
at τ = 6, both the τ -IBR and the TM perform well in terms of bias and absolute bias, although
coverage probabilities are slightly lower for the TM versus the τ -IBR method. ASE values are also
comparable between methods.

Setting 1 reflects the case where covariate associations related to the point mass of restricted
event times at τ = 6 are in play. Coverage probabilities for the true τ -RMST values using the
τ -IBR method are very reasonable, while the TM approach had remarkably poor coverage that
deteriorated further with increasing sample sizes (despite ASE getting smaller with increasing
sample sizes). And although average bias is low for both methods in this case, the absolute bias
was higher for the TM method relative to τ -IBR method.

Figure 4.2 displays differences between estimated and true τ -RMST values using τ -IBR MI
and TM methods for representative Setting 1 datasets with n=200, 500, 700 and 900 highlighting
subjects whose true τ -RMST were not covered by their estimated 95% confidence interval. Al-
though both methods give unbiased τ -RMST estimates on average, TM τ -RMST estimates had
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Figure 4.2: Differences between estimated and true τ -RMST values from τ -IBR and TM models
based on (a) 200 subjects (b) 500 subjects (c) 700 subjects and (d) 900 subjects in Setting 1.

larger observed differences from their true τ -RMST values that did not improve with larger sample
sizes. This larger number of outliers for the TM method in Setting 1 helps explain the higher ab-
solute bias seen for that model in Table 4.2. Hence in Setting 1, where there is important statistical
information related to the point mass of restricted event times at τ = 6, ignoring this statistical
information had a strong impact on the performance of the TM method.

4.6 Lung transplant candidate 1-year urgency analyses

In this section, we apply the proposed τ -IBR model to estimate 1-year transplant urgency (1-year
RMST) in 10,396 lung transplant candidates aged 12 years and above who were newly listed
after September 1, 2006, and followed through March 2, 2012. Our data was obtained via a
formal data request in December 2022 to the Scientific Registry of Transplant Recipients (SRTR)
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that maintains data collected by the Organ Procurement and Transplantation Network (OPTN).
Mortality information for our requested cohort was augmented by the United States Social Security
Death Master file. Candidates are required by the OPTN to update LAS predictors at least once
every 6 months. In addition to mortality and transplantation information, our dataset included
daily updates on candidate Lung Allocation Scores (LAS) and risk factors used to calculate the
LAS urgency score. For participants with multiple listings from the same or different centers, we
combined information across these listings. Of the 10,396 candidates included in our data, 7421
received a transplant, 918 died without a transplant, and 2057 were still alive as of March 2, 2012.
The interpretation and reporting of these data are the responsibility of the author(s) and in no way
should be seen as an official policy of or interpretation by the SRTR or the U.S. Government.

The longitudinal data structure for our analysis has 1-year follow-up windows with starting
times of {t1, . . . , t6} = {0, 6, 12, 18, 24, 30} months. Dependent censoring of waitlist survival
during follow-up (due to transplant) was modeled via a Cox model with time-dependent LAS val-
ues as well as other factors previously identified by the SRTR as associated with time-to-transplant:
gender, race, height, blood type and time-dependent active versus inactive waitlist status. Results
from this dependent censoring model are displayed in Supplemental Table C.1 in Appendix C.1.
Corresponding IPCW values were calculated from this model as described in Section 4.4. The
impact of adjusting for dependent censoring via these IPCW values in transplant urgency calcula-
tions is substantial, as can be seen in Supplemental Figure C.1 in Appendix C.2, which displays
unadjusted (Kaplan-Meier) versus IPCW-adjusted waitlist survival curve estimates. The IPCW-
adjusted waitlist survival curve in this figure is used to implement the MI algorithm described in
Section 4.4, resulting in M = 10 imputed longitudinal data structures for analysis.

Our analysis evaluates the same predictors and interaction terms used in LAS urgency esti-
mation, with no additional model selection performed. Some of the most important terms in the
urgency models have been the major diagnosis grouping variables, where Group A candidates were
predominantly diagnosed with chronic obstructive pulmonary disease (COPD), group B candidates
with pulmonary hypertension, group C candidates with cystic fibrosis, and group D candidates with
idiopathic pulmonary fibrosis. Several terms related to smaller diagnosis groups were originally
included in the LAS algorithm because these groups felt strongly about having their diagnoses in-
dividually represented, Other clinical features have been maintained as part of the LAS algorithm
due to showing statistical significance in earlier analysis cohorts. Table 4.3 summarizes parameter
estimates, 95% confidence intervals and p-values from the τ -IBR model and its nearest competitor,
the TM model, where both of these models used data imputed using our proposed MI algorithm.
The majority of LAS features retained statistical significance in this cohort. For the purpose of
this example, we’ll focus on some of the strongest predictors that have been historically important
in urgency estimation: O2 requirement at rest (O2), 6-minute walk distance (6MWD), continuous
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mechanical ventilation (CMV), diagnosis group (A, B, C or D) and age. The majority of these
are statistically significant in the TM model as well as the τ -IBR models for µi and πi. Diagno-
sis group has more complexity because of its many interaction terms. The clinical expectation is
that diagnosis group A will have less urgency than the other diagnosis groups since many COPD
candidates pursue a transplant to enhance their quality of life rather than to increase their lifespan.
Consequently, they are more likely to survive beyond a year on the waitlist, but with increasingly
poor quality of life. This clinical expection is statistically supported by results of the τ -IBR model
for πi, model (4.6). But this intuition is not seen as clearly when viewing the TM model diagnosis
group results, with main effects for diagnosis groups B and D missing statistical significance.

To assist in assessing model fit, the τ -IBR MI approach for dependently censored outcomes
allows us to visualize individual-level 1-year restricted lifetimes using popular data views for un-
censored data. The heatmap in Figure 4.3 focuses on lung candidates with either observed or
multiply imputed lifetimes less than 1 year and gives an observed versus expected view of these
individuals’ first follow-up year. The three heatmap columns represent (1) 1-year restricted life-
times with censored values replaced with multiply imputed outcomes averaged across 10 imputed
datasets (those with observed data augmented via imputation are designated as Imputed=Yes in the
bar immediately to the left of the heatmap columns), (2) 1-year τ -IBR RMST estimates and (3)
1-year TM RMST estimates, respectively. Longer and shorter survival times on the heatmap scale
are shown in yellow and purple color ranges, respectively. Additional individual characteristics,
including O2 requirement at rest, 6-min walk distance, diagnosis group, and age, are color-coded
along the left side of the heatmap. Descriptively, the cluster with the lowest 1-year RMST values is
more likely to have 6-min walk distance less than 1000 feet and continuous mechanical ventilation,
and is predominantly composed of patients in diagnosis groups B, C, and D. In contrast, patients in
group A, with 6-min walk distance larger than 1000 feet and no continuous mechanical ventilation,
tend to have the highest 1-year RMST values. For the most urgent lung candidates in the purple
range of column one of the heatmap, where good model fit is particularly important for ranking
candidates for transplant, there are clusters where urgency is captured well by both the τ -IBR and
TM methods, with the τ -IBR estimates slightly closer to the augmented raw data than the TM es-
timates. However, many individuals in the dark purple range of column one do not have adequate
urgency estimates using either method, suggesting room for improvement in the lung allocation
urgency model as newer predictors become available. This particular data view has not previously
been available to analysts of dependently censored lung candidate data.
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4.7 Discussion

This manuscript offers a new modeling framework for a modern analysis of dependently cen-
sored time-to-event data within the context of restricted mean regression models. By converting
traditional time-to-event data into a censored longitudinal data structure, we are able to leverage
longitudinal data analysis experience in the analysis of restricted mean survival time (RMST) and
utilize information across multiple follow-up windows to enhance the efficiency of RMST esti-
mation. Breaking down τ -RMST into its mixture components through equation (1) enables us to
examine the nuanced effects of factors. In paying close attention to modeling individuals with
a τ -RMST = τ , we have found that much of the statistical signal for τ -RMST estimation lies in
those individuals who have not experienced the event by time τ . Simulation results demonstrate
that our proposed τ -IBR model, which separately models components of the mixture distribution
laid out in equation (1), achieves higher coverage probabilities for τ -RMST estimation compared
to the TM model, which models RMST directly. Our lung urgency data example confirms that
predictors for models of µi and πi can have varying degrees of clinical and statistical signficance
that are not captured by the TM model. The τ -IBR model was particularly helpful when validating
the contribution of diagnosis group to urgency estimation in this cohort.

This manuscript further contributes to multiple imputation approaches for dependently censored
data. In addition to enhancing risk set definitions and using IPCW adjustment throughout the oth-
erwise non-parametric inverse-transform imputation procedure, we develop a graphical procedure
for assessing model fit via looking at observed versus expected τ -RMST (as in Figure 4.3). This
diagnostic has not previously been seen in dependently censored τ -RMST estimation literature.
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Table 4.3: Lung transplant candidate 1-year urgency model parameters with 95% confidence inter-
vals and p-values.

τ -IBR Model for µi τ -IBR Model for πi TM Model
Fold Change* 95% CI P-value Odds Ratio† 95% CI P-value Coef/τ 95% CI P-value

Age (per 20 years increase) 1.00 (0.96,1.04) 0.919 0.74 (0.65,0.84) <0.001 -0.02 (-0.03,-0.01) <0.001
BMI (per 1 kg/m decrease if BMI<20kg/m) 0.99 (0.98,1.01) 0.585 0.88 (0.81,0.93) <0.001 -0.01 (-0.02,-0.01) <0.001
Cardic Index<2.0 (ref=CI>2) 0.92 (0.85,1.00) 0.044 0.69 (0.53,0.91) 0.009 -0.04 (-0.07,-0.02) 0.003
CVP in Group B (per 10 mm Hg) 0.92 (0.79,1.05) 0.212 0.78 (0.51,1.19) 0.254 -0.04 (-0.09,0.01) 0.116
Continuous Mechanical Ventilation
(ref=other/no Ventilation) 0.52 (0.42,0.62) <0.001 0.05 (0.03,0.07) <0.001 -0.52 (-0.58,-0.47) <0.001

Creatinine (Age>18 years) 0.97 (0.90,1.03) 0.310 1.01 (0.83,1.21) 0.956 -0.01 (-0.02,0.01) 0.351
Diabetes (ref=no diabetes) 0.99 (0.94,1.03) 0.552 0.86 (0.74,1.00) 0.045 -0.02 (-0.03,0.00) 0.027
Diagnosis group (ref=group A)
Group B 1.00 (0.86,1.15) 0.968 0.29 (0.16,0.52) <0.001 -0.01 (-0.06,0.05) 0.808
Group C 1.07 (0.97,1.17) 0.176 0.19 (0.14,0.26) <0.001 -0.05 (-0.08,-0.03) <0.001
Group D 1.07 (0.97,1.16) 0.168 0.40 (0.29,0.56) <0.001 0.00 (-0.03,0.03) 0.844
Bronchiectasis 1.07 (0.94,1.21) 0.291 0.59 (0.38,0.91) 0.017 -0.01 (-0.04,0.02) 0.516
Eisenmenger Syndrome 0.89 (0.62,1.15) 0.387 2.62 (0.82,8.40) 0.105 0.06 (-0.02,0.14) 0.137
Lymphangioleiomyomatosis 1.17 (0.97,1.36) 0.110 0.41 (0.18,0.93) 0.032 -0.02 (-0.06,0.02) 0.299
Obliterative Bronchiolitis 1.21 (0.99,1.43) 0.094 2.58 (1.21,5.48) 0.014 0.09 (0.05,0.14) <0.001
Pulmonary Fibrosis Other 0.99 (0.92,1.06) 0.802 1.32 (1.07,1.62) 0.009 0.02 (0.00,0.05) 0.043
Sarcoidosis with PA mean>30mm Hg
in group D 1.05 (0.94,1.15) 0.409 2.34 (1.61,3.41) <0.001 0.09 (0.05,0.13) <0.001

Sarcoidosis with PA mean≤ 30mm Hg
in group A 1.01 (0.86,1.17) 0.893 0.34 (0.22,0.55) <0.001 -0.04 (-0.07,-0.01) 0.003

FVC (per 10% decrease if
FVC % predicted<80%) in group D 0.99 (0.97,1.00) 0.089 0.82 (0.78,0.87) <0.001 -0.02 (-0.03,-0.02) <0.001

No assistance with ADL
(ref=some/total assisstance) 1.00 (0.92,1.07) 0.904 1.50 (1.24,1.81) <0.001 0.01 (0.00,0.02) 0.013

O2 requirement at rest in group B 0.98 (0.97,1.00) 0.013 0.93 (0.89,0.97) <0.001 -0.02 (-0.02,-0.01) <0.001
O2 requirement at rest in Groups A, C, or D 0.98 (0.98,0.99) <0.001 0.83 (0.81,0.85) <0.001 -0.02 (-0.02,-0.02) <0.001
PCO2 (per 10 mm Hg) 0.99 (0.97,1.01) 0.287 0.82 (0.77,0.88) <0.001 -0.01 (-0.02,-0.01) <0.001
PCO2 increase of ≥ 15%
(ref = PCO2 increase of<15%) 1.00 (0.92,1.09) 0.930 1.11 (0.82,1.50) 0.517 0.00 (-0.02,0.03) 0.943

PA systolic in group A (per 10 mm Hg
increase if PA systolic>40 mm Hg) 1.01 (0.98,1.05) 0.456 0.68 (0.61,0.76) <0.001 -0.01 (-0.02,0.00) 0.010

PA systolic in group B, C or D
(per 10 mm Hg increase) 0.99 (0.98,1.00) 0.252 0.89 (0.85,0.93) <0.001 -0.01 (-0.02,-0.01) <0.001

6-min walk distance (per 1000 feet) 1.10 (1.06,1.14) <0.001 1.67 (1.48,1.88) <0.001 0.05 (0.04,0.06) <0.001

*Amongst those who die during a follow-up year, fold change for predictors is the ratio of esti-
mated survival times comparing those with predictor equal to 1 versus predictor equal to 0, as-
suming all other predictors are zero; †Odds ratio for predictors compares the odds of remaining
alive at 1 year for those with versus without a one unit increase in the predictor (unless otherwise
stated), adjusted for other covariates in the model; ⋆Percentage increase in 1-year-RMST for each
unit increase of the predictor, adjusted for other covariates in the model.
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Figure 4.3: Observed versus expected one-year restricted lifetimes for lung candidates with either
observed or multiply imputed lifetimes less than one year.
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CHAPTER 5

Conclusion

The aim of this dissertation is to develop statistical methodologies that enhance the estimation
of τ -restricted event-free time and deepen the understanding of its relationship with predictors.
To this end, we emphasize the point mass at τ caused by the mixture of individuals that achieve
an active event endpoint during a τ -restricted follow-up period as opposed to individuals who are
event-free during that follow-up period. By modeling these two groups separately, we can examine
the nuanced effects of various factors and attain greater precision in statistical inferences regarding
τ -restricted event-free time compared to approach modeling τ -restricted event-free time directly.
Applying this novel modeling framework to single time-to-event data, recurrent events data, and
single time-to-event data subject to dependent censoring, along with the corresponding estimation
methods proposed, can confirm the benefits of our proposed model in various settings.

The first setting is clinical trial analysis where the outcome of interest is a single time-to-event.
Chapter 2 develops a τ -IBR model framework with an EM algorithm and a semi-parametric MI
algorithm for fitting and reporting results for the τ -IBR model. Our simulation results confirm
better precision of τ -RMST estimates and better corresponding confidence interval coverage rates
when the point mass at τ is more appropriately modeled regardless of estimation approach (EM,
MI) or censoring mechanism. The benefits of our proposed τ -IBR model also manifest in the
COPD example. We noticed that the relative importance of risk factors in beta model and logistic
model shifted between the two models, with most statistical signal appearing in the logistic model.
In particular, the treatment effect manifested significantly in the logistic model and not the beta
model. The standard τ -RMST model identifies a significant treatment effect as well, but is not
able to distinguish the nature of the treatment effect as clearly. To our knowledge, a τ -inflated
beta regression model has never been proposed as a way to model time-to-event data, censored
or otherwise. The key advantages of this method are (1) a better understanding of predictors
associated with no events in the τ -restricted period of interest, as opposed to predictors associated
with shorter expected event-free time amongst those who experienced the event, (2) more efficient
estimation of restricted means due to properly modeling the point mass of min(τ , T) events at τ
and (3) parametric assumptions that are flexible for modeling the respective means of min(τ , T)
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given min(τ , T) < τ and binary variable indicating if min(τ , T) = τ without making unnecessarily
restrictive assumptions about proportional hazards.

In the second setting, the primary endpoints are recurrent instead of a single time-to-event
endpoint. Chapter 3 offers a suite of new methods for a modern analysis of recurrent events data
subject to censoring. By converting traditional recurrent event data into a censored longitudinal
data structure, we are able to apply our τ -IBR model framework to recurrent events data and
leverage longitudinal data analysis experience in the analysis of this data. The τ -IBR model is a
one-stop shop for assessing overall susceptibility to recurrent events via model (3.5), changes to
susceptibility to recurrent events over time via model (3.5) with window start times as covariates
and interactions, the influence of predictors on time-to-first-event amongst those who experience it
via model (3.6) with and without window start times as covariates and interactions, as appropriate,
and patterns of mean time-to-first-recurrent event in follow-up windows over time by combining
results from models (3.5) and (3.6). Simulations indicate excellent performance of the τ -IBR
model in various settings and show that the XMT model, the nearest competitor model that ignores
point masses, also has good coverage rates for true τ -RMST values when there are no predictors
associated with the point mass of restricted event times at τ . These coverage rates fall apart when
predictors related to susceptibility of recurrent events at τ exist (simulation setting 1), even when
there are no censored event times. Data visualizations of model results shown in section 3.6 are an
additional tool for making results interpretable to a medical research readership.

In our third setting, we develop a τ -IBR model of dependently censored time-to-event data
based on the censored longitudinal data framework in Chapter 4. Transforming traditional single
time-to-event data into a censored longitudinal data structure enables (a) easily incorporating infor-
mation from time-dependent risk factors past baseline by including covariates updated at each start
time of follow-up window in the model and (b) utilizing information across multiple follow-up
windows to enhance the efficiency of RMST estimation. We also aim to address dependent cen-
soring, a feature of the data that requires consideration. To accomplish this, we follow the multiple
imputation approach proposed by Tayob and Murray [60]. This approach imputes censored values
from a risk set of patients with similar characteristics and censoring probability. In the case of de-
pendent censoring, MI approaches that select candidates from an appropriate risk set are attractive.
The idea behind this is that survival within the risk set is homogeneous, providing an unbiased im-
putation. We incorporate the inverse probability of censoring weighting (IPCW) method to further
correct dependent censoring within the risk set when estimating survival. This double correction
makes our approach sufficiently address dependent censoring in our application. Compared to the
model used in Tayob and Murray (2017)[60], which models RMST directly, our proposed τ -IBR
model, which separately models components of the mixture distribution, achieves higher coverage
probabilities for τ -RMST estimation in simulations. Our lung urgency data example confirms that
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predictors for models of µi and πi can have varying degrees of clinical and statistical significance
that are not captured by the TM model. The τ -IBR model was particularly helpful when validating
the contribution of diagnosis group to urgency estimation in this cohort.

In Chapters 3 and 4, our τ -IBR models are developed based on a censored longitudinal data
structure. The objective is to estimate patient i’s πi(t) and µi(t) for a τ -duration follow-up window
starting at time t, given the corresponding covariates Zπi(t) and Zµi(t), respectively. The underly-
ing assumptions of how these terms relate to τ -RMST for the follow-up window starting at time
t are given in equations (3.3) and (4.4) in Chapter 3 and Chapter 4, respectively. Similar to stan-
dard longitudinal analysis, we can incorporate window start times t, time-dependent covariates
that change at the window start times, and interactions between t and other covariates in Zπi(t)

and Zµi(t). For instance, in the example section of Chapter 3, Figure 3.3 displays variation in
time-to-first-recurrent event patterns across different follow-up windows. Therefore, we assessed
the stability of the treatment effect over the follow-up time windows by including window start
times as predictors in the models, along with appropriate interaction terms. Just like in standard
longitudinal analysis, our modeling approach also allows for statistical tests to evaluate whether
patient i’s τ -RMST over the period starting at follow-up time t depends on t or is stable across all
follow-up windows.

The decision to include time-dependent covariates in longitudinal models must always be made
in the context of the research question. For instance, in the assessing the effect of azithromycin,
covariates that change after baseline and that can be affected by treatment would be inappropriate
to adjust for. In Chapter 4, the designers of the LAS had a specific objective to create a score
unaffected by the duration of time spent on the waitlist. Consequently, window start times were
excluded from consideration in these models. As such, resulting urgency estimates reflect a mixture
of urgency across the various follow-up windows included in the τ -IBR analyses.

Computational times can become significant when dealing with large sample sizes or a substan-
tial number of follow-up windows in the analyses. Regarding the selection of follow-up window
parameters, several suggestions are provided in the literature [58, 67, 70]. In the example section
of Chapter 4, a spacing of 6 months between follow-up windows is reasonable, considering that
patients are required to update their medical information at least once every 6 months. However,
in settings where covariate data is updated more frequently, the cost of including more frequent
follow-up windows is computational time. Similar considerations apply to the setting of recurrent
events. While it is theoretically possible to initiate follow-up windows every day to capture every
recurrent event and increase efficiency, this would result in a significant computational burden. The
paper by Xia and Murray [67] demonstrates that the computational burden significantly increases
as the number of follow-up windows incorporated into the analyses increases. Hence, it is crucial
to strike a balance between the number of follow-up windows and computational feasibility when
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designing the analysis strategy.
For instance, when analyzing restructured azithromycin trial data with 1112 participants and 4

6-month follow-up windows starting every 2 months, our method’s computation took 4 seconds
using the ES algorithm and 30 seconds using the MI approach. However, when analyzing restruc-
tured lung transplant waitlist data with 10,396 candidates and 6 1-year follow-up windows starting
every 6 months, the computation of MI-fitted τ -IBR models took 110 minutes due to the large
sample sizes and the setting of follow-up windows. The most time-consuming part of the MI ap-
proach is the construction of the risk set for each individual requiring imputation. The requirement
of matching histories of predicted outcomes in Chapter 4 significantly increases the computational
time involved in selecting suitable candidates within the risk set. It’s also worth noting that we
did not encounter any convergence issues throughout the fitting procedure of τ -IBR models using
either the ES algorithm or the MI approach.

When applying τ -IBR models to complex real-world data using data restructuring techniques,
aligning the start times of windows with the dates of updated covariates can sometimes pose chal-
lenges. Various imputation approaches can be employed to define covariates at the start times
of windows. For instance, missing covariates can be replaced with the closest available value or
imputed based on their association with outcomes through fitting a predictive model. Exploring
these imputation methods and their application in different data settings could lead to further en-
hancements of our method. Moreover, in scenarios where the data dimension is large and complex
relationships exist between predictors and outcomes, our methods may encounter computational
and fitting difficulties. To address this, one promising avenue for future research is to incorporate
machine learning methodologies with our approaches to analyze τ -RMST, with a particular focus
on capturing the point mass at τ . This combination of techniques has the potential to advance the
analysis of complex data and improve the performance of our models.

Overall, this dissertation gives a useful set of tools for the analysis of single and recurrent time-
to-event data. These methods fill a nice gap in the literature for τ -restricted event time estimation
and inference.
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APPENDIX A

Supplementary Materials for Chapter 2

A.1 Computation of the estimate of the variance of τ -RMST

We calculate the estimate of the variance of restricted mean survival time of each subject i as
follows:

Var{Ê[min(Ti, τ)]} = τ 2Var
[
µ̂i(1− π̂i) + π̂i

]
= τ 2

{
E
{

Var
[(
µ̂i(1− π̂i) + π̂i

)
|µ̂i

]}
+ τ 2Var

{
E
[(
µ̂i(1− π̂i) + π̂i

)
|µ̂i

]}
= τ 2E

[
(1− µ̂i)

2Var(π̂i)
]
+ τ 2Var

[
µ̂i + (1− µ̂i)E(π̂i)

]
,

which is asymptotically equivalent to

= τ 2(1− µi)
2Var(π̂i) + τ 2Var

[
µ̂i + (1− µ̂i)πi

]
= τ 2(1− µi)

2Var(π̂i) + τ 2Var
[
(1− πi)µ̂i + πi)

]
= τ 2(1− µi)

2Var(π̂i) + τ 2(1− πi)
2Var(µ̂i),

then the asymptotic estimate of the variance of restricted mean survival time for subject i becomes:

V̂ar{Ê[min(Ti, τ)]} = τ 2(1− µ̂i)
2V̂ar(π̂i) + τ 2(1− π̂i)

2V̂ar(µ̂i). (A.1)

Based on model (2.2) and model (2.3), by using delta method the first term of equation (A.1) is
seen to be:

τ 2(1− µ̂i)
2V̂ar(π̂i) = τ 2

(
1− 1

1 + e−α̂TZµ
i

)2

V̂ar
(

1

1 + e−β̂TZπ
i

)
= τ 2

(
1− 1

1 + e−α̂TZµ
i

)2

Zπ
i
T V̂βZ

π
i

(e−β̂TZπ
i
T
)2

(1 + e−β̂TZπ
i )4

,
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the second term of equation (A.1) is given by:

τ 2(1− π̂i)
2V̂ar(µ̂i) = τ 2

(
1− 1

1 + e−β̂TZπ
i

)2

V̂ar
(

1

1 + e−α̂TZµ
i

)
= τ 2

(
1− 1

1 + e−β̂TZπ
i

)2

ZµT
i V̂αZ

µ
i

(e−α̂TZµ
i )

2

(1 + e−α̂TZµ
i )4

.

where ZµT
i = (1, Zµi

T ), Zπ
i
T = (1, Zπi

T ), V̂β and V̂α are the estimates of covariance matrix of
coefficients in model model (2.2) and model (2.3) respectively.

A.2 Calculation of the variance-covariance matrix of estimated
parameters using Louis method

Recall the section 2.3.1,

V̂ar(θ̂EM) =

[
− ∂2Q(θ; θ̂EM)

∂θ∂θT
− Var

(
∂lc(θ)

∂θ

)]−1∣∣∣∣
θ=θ̂EM

,

where

∂2Q(θ; θ̂EM)

∂θ∂θT
=



∂2Q(θ; θ̂EM)

∂β∂βT
0 0

0
∂2Q(θ; θ̂EM)

∂α∂αT

∂2Q(θ; θ̂EM)

∂α∂ν

0
∂2Q(θ; θ̂EM)

∂α∂ν

∂2Q(θ; θ̂EM)

∂ν2


,

and

Var
(
∂lc(θ)

∂θ

)
=

Var(Uβ) 0 0

0 Var(Uα) Cov(Uα, Uν)

0 Cov(Uα, Uν) Var(Uν)

 .
We first calculate each components of Var

(
∂lc(θ)

∂θ

)
as follows: The first step is to obtain the

derivatives of the complete log-likelihood lc(θ):

Uβ =
∂lc(θ)

∂β
=

n1∑
i=1

[bi − πi(β)]Z
π
i +

n∑
i=n1+1

[Bi − πi(β)]Z
π
i
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Uα =
∂lc(θ)

∂α
=

n1∑
i=1

(1− bi)νi(y
∗
i − ψ∗

i )µi(α)[1− µi(α)]Z
µ
i

+
n∑

i=n1+1

Bi − 1

1− FYi
(yi;µi(α), ν)

∂FYi
(yi;µi(α), ν)

∂α

Uν =
∂lc(θ)

∂ν
=

n1∑
i=1

(1− bi)
[
µi(α)(y

∗
i − ψ∗

i ) + ϕ∗
i + log

(
1− yi

)]
+

n∑
i=n1+1

Bi − 1

1− FYi
(yi;µi(α), ν)

∂FYi
(yi;µi(α), ν)

∂ν
;

here y∗i = log[yi/(1− yi)], ψ∗
i = ψ[µi(α)νi]− ψ{[1− µi(α)]νi}, ϕ∗

i = ψ(νi)− ψ{[1− µi(α)]νi},
where ψ(x) = dlogΓ(x)/dx, later it’s also convenient to define ψ′(x) = [1/Γ(x)][dΓ(x)/dx], and
FYi

(yi;µi(α), ν) is the cumulative distribution for Yi evaluated at yi.

Elements of Var
(
∂lc(θ)

∂θ

)
are listed next, where all variance and covariance terms correspond-

ing to Bi are conditioned on the observed data and θ̂EM :

Var(Uβ) =
n∑

i=n1+1

wi(1− wi)Z
π
i Z

π
i
T

Var(Uα) =
n∑

i=n1+1

wi(1− wi)

[1− FYi
(yi;µi(α), ν)]2

∂FYi
(yi;µi(α), ν)

∂α

∂FYi
(yi;µi(α), ν)

∂αT

Cov(Uα, Uν) =
n∑

i=n1+1

wi(1− wi)

[1− FYi
(yi;µi(α), ν)]2

∂FYi
(yi;µi(α), ν)

∂α

∂FYi
(yi;µi(α), ν)

∂ν
.

Here,

wi = E(Bi|Yi ≥ yi, i = n1 + 1, . . . , n, θ̂EM)

=
πi(β̂

EM)

πi(β̂EM) + [1− πi(β̂EM)][1− FYi
(yi;µi(α̂EM), ν̂EM)]

.

Components of
∂2Q(θ; θ̂EM)

∂θ∂θT
become:

∂2Q(θ; θ̂EM)

∂β∂βT
= −

n∑
i=1

Zπ
i Z

π
i
Tπi(β)[1− πi(β)],
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∂2Q(θ; θ̂EM)

∂α∂αT
=

n1+1∑
i=1

(1− bi)[ν(y
∗
i − ϕ∗

i )µ(α)[1− µ(α)][1− 2µ(α)]

− ν2µi(α)
2[1− µ(α)]2ψ†

i ]Z
µ
i Z

µ
i
T

+
n∑

i=n1+1

{
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1− FYi
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+
wi − 1

[1− FYi
(yi;µi(α), ν)]2

∂FYi
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∂αT

}
,
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†
i + 2µi(α)ψ

′
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∂2FYi
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+
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(
∂FYi
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∂2Q(θ; θ̂EM)

∂α∂ν
=

n1∑
i=1

(1− bi){y∗i − ψ∗
i − νiµi(α)ψ

†
i + νiψ

′
i[νi − µi(α)νi]}µi(α)[1− µi(α)]Z

µ
i

+
n∑

i=n1+1

{
wi − 1

1− FYi
(yi;µi(α), ν)

∂2FYi
(yi;µi(α), ν)

∂ν∂α

+
wi − 1

[1− FYi
(yi;µi(α), ν)]2

∂FYi
(yi;µi(α), ν)

∂ν

∂FYi
(yi;µi(α), ν)

∂α

}
.

with ψ†
i = ψ′[µi(α)ν] + ψ′{[1− µi(α)]ν} and ϕ†

i = ψ′(ν)− ψ′[(1− µi)ν]. We used the grad and
hessian functions from the numDeriv R package to approximate the first derivative and the second
derivative of the cumulative distribution function of beta distribution FYi

(yi;µi(α), ν) with respect
to α and ν using Richardson’s extrapolation in the calculation the variance-covariance matrix of θ̂.

A.3 Supplementary Figure of Simulation Section 2.4.2

In this section we show supplemental simulation results comparing our proposed τ -IBR model and
traditional τ -RMST model. This figure displays differences between estimated and true τ -RMST
values for representative datasets with n=100, 500, 1000 and 1500 subjects for the dependent
censoring setting, highlighting subjects whose true τ -RMST values were not covered by each
method’s estimated 95% confidence interval. τ -IBR estimates are based on the MI algorithm
described in section 2.3.2.
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Figure A.1: Difference between MI-fitted τ -RMST and actual τ -RMST based on (a) 100 subjects
(b) 500 subjects (c) 1000 subjects and (d) 1500 subjects.
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A.4 Supplementary Tables of Example Section 2.5

Table A.1: Estimated effect of azithromycin for varying τ in τ -IBR and τ -RMST multivariable
models.

τ= 3 months τ= 6 months τ= 9 months τ= 12 months
τ -IBR model (MI) (Beta Regression)

Fold Change* 0.904 1.020 0.996 1.025
95% CI (0.790, 1.018) (0.903, 1.137) (0.899, 1.092) (0.926, 1.123)
P-value 0.112 0.734 0.987 0.617

τ -IBR model (MI) (Logistic Regression)
Odds Ratio† 1.489 1.559 1.692 1.766

95% CI (1.143, 1.938) (1.218, 1.997) (1.320, 2.168) (1.358, 2.296)
P-value 0.003 <0.001 <0.001 <0.001

τ -IBR model (EM) (Beta Regression)
Fold Change* 0.905 1.021 0.998 1.026

95% CI (0.791, 1.020) (0.905, 1.137) (0.902, 1.094) (0.927, 1.125)
P-value 0.116 0.724 0.972 0.606

τ -IBR model (EM) (Logistic Regression)
Odds Ratio† 1.488 1.552 1.676 1.748

95% CI (1.143, 1.937) (1.213, 1.986) (1.307, 2.149) (1.345, 2.271)
P-value 0.003 <0.001 <0.001 <0.001

τ -RMST Model
Coef/τ ⋆ 0.032 0.070 0.081 0.091
95% CI (-0.004, 0.069) (0.028, 0.112) (0.037, 0.126) (0.047, 0.136)
P-value 0.084 0.001 <0.001 <0.001

* Among those experiencing an exacerbation during the τ follow-up duration, fold change is
the ratio of estimated exacerbation-free time when comparing those taking versus not taking
azithromycin, assuming all other predictors in the model are zero. Age is centered at 65 years
and percent of predicted FEV1 is centered at 40% to aid in interpreting fold changes.
† Odds ratio for remaining exacerbation-free at time τ comparing those taking versus not taking
azithromycin, adjusted for age, gender, percent of predicted FEV1, smoking status and study site.
⋆ Percentage increase in τ -RMST for those taking versus not taking azithromycin, adjusted for
other covariates in the model.
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Table A.2: Summary of interaction tests between treatment group and age, gender, percent of
predicted FEV1 and current smoking status.

P-value Description
Azithromycin * Age
τ -IBR model (MI) (Beta Regression) 0.754
τ -IBR model (MI) (Logistic Regression) 0.013 Older ->more effect
τ -IBR model (EM) (Beta Regression) 0.644
τ -IBR model (EM) (Logistic Regression) 0.014 Older ->more effect
τ -RMST Model 0.041 Older ->more effect
Azithromycin * Gender
τ -IBR model (MI) (Beta Regression) 0.983
τ -IBR model (MI) (Logistic Regression) 0.266
τ -IBR model (EM) (Beta Regression) 0.925
τ -IBR model (EM) (Logistic Regression) 0.245
τ -RMST Model 0.500
Azithromycin * FEV1

τ -IBR model (MI) (Beta Regression) 0.125
τ -IBR model (MI) (Logistic Regression) 0.400
τ -IBR model (EM) (Beta Regression) 0.161
τ -IBR model (EM) (Logistic Regression) 0.379
τ -RMST Model 0.073 Higher FEV1 ->more effect
Azithromycin * Current smoking status
τ -IBR model (MI) (Beta Regression) 0.205
τ -IBR model (MI) (Logistic Regression) 0.089 Current smokers ->less effect
τ -IBR model (EM) (Beta Regression) 0.197
τ -IBR model (EM) (Logistic Regression) 0.083 Current smokers ->less effect
τ -RMST Model 0.030 Current smokers ->less effect

82



APPENDIX B

Supplementary Materials for Chapter 3

B.1 Computation of the estimate of the variance of τ -RMST

We calculate the estimate of the variance of restricted mean survival time of each subject i as
follows:

Var{Ê[Ti(t)]} = τ 2Var
[
µ̂i(t)[1− π̂i(t)] + π̂i(t)

]
= τ 2

{
E
{

Var
[(
µ̂i(t)[1− π̂i(t)] + π̂i(t)

)
|µ̂i(t)

]}
+ τ 2Var

{
E
[(
µ̂i(t)[1− π̂i(t)] + π̂i(t)

)
|µ̂i(t)

]}
= τ 2E

{
[1− µ̂i(t)]

2Var[π̂i(t)]
}
+ τ 2Var

[
µ̂i(t) + [1− µ̂i(t)]E[π̂i(t)]

]
,

which is asymptotically equivalent to

= τ 2[1− µi(t)]
2Var[π̂i(t)] + τ 2Var

{
µ̂i(t) + [1− µ̂i(t)]πi(t)

}
= τ 2[1− µi(t)]

2Var[π̂i(t)] + τ 2Var
{
[1− πi(t)]µ̂i(t) + πi(t)]

}
= τ 2[1− µi(t)]

2Var[π̂i(t)] + τ 2[1− πi(t)]
2Var[µ̂i(t)],

so that the asymptotic estimate of the variance of restricted mean survival time for subject i be-
comes:

V̂ar{Ê[(Ti(t)]} = τ 2[1− µ̂i(t)]
2V̂ar[π̂i(t)] + τ 2[1− π̂i(t)]

2V̂ar[µ̂i(t)]. (B.1)

Based on model (3.5) and model (3.6) and an application of the delta method, the first term of
equation (B.1) becomes:

τ 2[1− µ̂i(t)]
2V̂ar[π̂i(t)] = τ 2

[
1− 1

1 + e−α̂TZµ
i (t)

]2
V̂ar
[

1

1 + e−β̂TZπ
i (t)

]
= τ 2

[
1− 1

1 + e−α̂TZµ
i (t)

]2
Zπ

i (t)
T V̂βZ

π
i (t)

[e−β̂TZπ
i (t)

T

]2

[1 + e−β̂TZπ
i (t)]4

,
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and the second term of equation (B.1) becomes:

τ 2[1− π̂i(t)]
2V̂ar[µ̂i(t)] = τ 2

[
1− 1

1 + e−β̂TZπ
i (t)

]2
V̂ar
[

1

1 + e−α̂TZµ
i (t)

]
= τ 2

[
1− 1

1 + e−β̂TZπ
i (t)

]2
ZµT

i (t)V̂αZ
µ
i (t)

[e−α̂TZµ
i (t)]2

[1 + e−α̂TZµ
i (t)]4

.

where ZµT
i = [1, Zµi(t)

T ], Zπ
i
T = [1, Zπi(t)

T ], and V̂β and V̂α are the estimates of covariance
matrix of coefficients in model (3.5) and model (3.6) respectively.

B.2 Calibrate user-specified correlation to the correlation of
the multivariate normal random variables used in the al-
gorithm

To perform this algorithm proposed by Emrich and Piedmonte[10], we should obtain the cor-
relation matrix RNi of the multivariate standard normal distribution. By definition, the cor-
relation coefficient ρtatb for any pair of correlated binary variables, Bi(ta) and Bi(tb), where
ta, tb ∈ {0, 30, 60, 90}, can be calculated as:

ρtatb = E{[Bi(ta)− πi(ta)][Bi(tb)− πi(tb)]}/
√

Var[Bi(ta)]Var[Bi(tb)]

= [Ptatb − πi(ta)πi(tb)]/
√
πi(ta)[1− πi(ta)]πi(tb)[1− πi(tb)].

(B.2)

The equation (B.2) can be rewritten as:

Ptatb = ρtatb
√
πi(ta)[1− πi(ta)]πi(tb)[1− πi(tb)] + πi(ta)πi(tb) (B.3)

where Ptatb = Pr[Bi(ta) = 1, Bi(tb) = 1]. Because Bi(ta) and Bi(tb) are transformed from two
standard normal variables Ni(ta) and Ni(tb), Ptatb can also be written as:

Ptatb = Pr[Ni(ta) > a(ta), Ni(tb) > a(tb)] =

∫ ∞

a(ta)

∫ ∞

a(tb)

ϕ[ni(ta), ni(tb), ρ̃tatb ]dni(ta)dni(tb),

(B.4)

where ϕ[ni(ta), ni(tb), ρ̃tatb ] is the probability density function of the bivariate standard normal
distribution with correlation coefficient ρ̃tatb . Thus, with πi(ta), πi(tb) and the desired correlation
coefficient ρtatb , we can now solve for Ptatb by equation (B.3) and then solve for the correlation
coefficient ρ̃tatb in RNi

for any pair of correlated standard normal variables by equation (B.4).
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APPENDIX C

Supplementary Materials for Chapter 4

C.1 Supplementary Table of Example Section 4.6

In this section, we show the results of the Cox model for dependent censoring time with time-
dependent LAS values as well as other factors previously identified by the SRTR as associated
with time-to-transplant: gender, race, height, blood type and time-dependent active versus inac-
tive waitlist status. Corresponding IPCW values were calculated from this model as described in
Section 4.4.

Table C.1: Cox dependent censoring model: estimated hazard ratios, 95% confidence intervals and
p-values for n=10396 lung waitlist candidates.

Hazard ratio 95% CI P-value
Time-independent characteristics
Female (vs Male) 0.76 (0.71, 0.80) <0.001
Black (vs White) 0.78 (0.73, 0.84) <0.001
Other (vs White) 0.85 (0.74, 0.97) 0.020
Height: <5’3” (versus >5’9’) 0.62 (0.57, 0.67) <0.001
Height: 5’3”-5’6” (versus >5’9”) 0.76 (0.71, 0.82) <0.001
Height: 5’6”-5’9” (versus >5’9”) 0.87 (0.82, 0.92) <0.001
Blood type: B (versus A) 1.00 (0.93, 1.07) 0.997
Blood type: O (versus A) 0.94 (0.90, 0.98) 0.003
Blood type: AB (versus A) 1.16 (1.04, 1.30) 0.008
Time-dependent characteristics
LAS>0 (versus LAS= 0) 138 (1.24, 15415) 0.041
Unit increase in LAS: 0<LAS≤30 0.84 (0.71, 0.98) 0.027
Unit increase in LAS: 30<LAS≤35 1.12 (1.09, 1.15) <0.001
Unit increase in LAS: 35<LAS≤40 1.10 (1.09, 1.12) <0.001
Unit increase in LAS: 40<LAS≤60 1.04 (1.04, 1.05) <0.001
Unit increase in LAS: LAS>60 1.03 (1.03, 1.03) <0.001
Active vs inactive status 3.72 (3.28, 4.21) <0.001
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C.2 Supplementary Figure of Example Section 4.6

The impact of adjusting for dependent censoring via IPCW values in transplant urgency calcula-
tions is substantial, as can be seen in this figure, which displays unadjusted (Kaplan-Meier) versus
IPCW-adjusted waitlist survival curve estimates. The IPCW-adjusted waitlist survival curve in this
figure is used to implement the MI algorithm described in Section 4.4.
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Figure C.1: The unadjusted (Kaplan-Meier) versus IPCW-adjusted waitlist survival curve esti-
mates.
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