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Abstract 

The lipid membranes of cells are complex structural and functional landscapes. Beyond 

being a selective barrier separating the cell from its surroundings, the membrane serves also as a 

two-dimensional solvent dictating the thermodynamic environment in which membrane protein 

biochemistry takes place, and as a platform that facilitates and responds to the organization of 

membrane proteins into functional domains. Membranes including vesicles derived from 

eukaryotic plasma membranes also exhibit liquid-liquid phase coexistence. This dissertation aims 

to link the biochemical and organizational properties of membranes to their phase behavior. 

The membrane's role as a thermodynamic platform is addressed in a chapter on the 

availability of cholesterol, specifically its chemical potential (Chapter 3). This work consists of 

measurements of the chemical potential of cholesterol in a family of synthetic lipid membrane 

compositions. This chemical potential describes the availability of cholesterol, and is a primary 

determinant of the occupancy of protein binding sites for cholesterol. The synthetic membranes 

used in this study are similar to mammalian plasma membranes in phase behavior and cholesterol 

concentration. The measurements show a close connection between the role of cholesterol in phase 

separation of these membranes and its availability. This finding suggests that treatments that 

modify the phase behavior of the membrane, of which many are known, may act through their 

effect on the availability of cholesterol. In addition, this study provides a framework for how to 

approach other questions about the biochemistry of cholesterol. 

The remaining chapters describe methods that will enable more precise and robust 

measurement and analysis of the organization of membrane proteins using single molecule 

localization microscopy (SMLM). SMLM techniques produce location information of target 

molecules with precisions on the order of 10 nm, and so have been invaluable for characterizing 

protein organization in membranes. The methods contributions include direct improvements to the 

precision of these datasets through improved sample drift correction (Chapter 4), a novel method 

for characterizing SMLM measurement precision (Chapter 5), and a method for correcting 

spatially non-uniform labeling or detection artifacts in measurements of colocalization (Chapters 

6 and 7). These methods extend the usefulness of SMLM so that it can detect more detailed and 
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subtler structure in the organization of proteins on membranes. In particular, they will enable future 

experiments to measure the role of membrane phase behavior in biological systems where it has 

been too subtle to detect using past methods. 

Overall, the developments described in this dissertation strengthen the connections 

between membrane phase behavior and biological function, by linking phase behavior to a new 

biochemical property of the membrane, and by enabling future investigations into how it organizes 

membrane proteins. 

 



1 
 

Chapter 1 Introduction 

This dissertation consists of several developments that relate to the role of biomembrane 

phase behavior in biological function. This chapter gives background and context for the 

mechanisms and experimental methods that are discussed in later chapters. Section 1.1 describes 

membranes and their phase transitions, as well as some of the ways that membrane physical and 

chemical properties can serve biological function. Section 1.2 introduces single molecule 

localization microscopy, a high resolution microscopy technique that is useful for measuring 

nanometer scale organization of membrane proteins. Section 1.3 defines pair correlation functions, 

which give a rigorous way to statistically quantify colocalization, including in circumstances 

where organization is subtle. Finally, section 1.4 gives an overview of the work that is presented 

in the rest of the dissertation and its significance. 

1.1 Biomembrane structure, physical chemistry, and spatial organization 

The core structure of all biological membranes is the lipid bilayer (1). Lipids are 

amphiphillic molecules, meaning that they have one hydrophillic end, known as the “head group”, 

that interacts favorably with water, and a long hydrophobic region that has unfavorable interactions 

with water. This hydrophobic group is usually made up of a pair of acyl chain “tails”. These 

molecules form stable bilayer membranes: the hydrophobic tails of the lipids align next to each 

other, preventing unfavorable contacts with the aqueous phase, and two such leaflets assemble 

with their hydrophobic faces apposed to each other. The bilayer is thus composed of a hydrophobic 

core sandwiched between two hydrophillic head group regions that each face the aqueous phase. 

Lipid bilayers exhibit several kinds of phase transitions. Chapter 2 contains a more 

thorough review of what is known about the phase behavior of lipid membranes, with special 

emphasis on critical phenomena, their observation in cell-derived vesicles, and potential 

mechanisms by which the physical properties of the critical point could affect biological function. 

By way of introduction, a few details are highlighted below. 

First, at sufficiently high temperatures most bilayers form liquid phases, meaning that 

lipids can readily diffuse in the plane of the membrane. This is the case for most biological 
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membranes, and many biological processes depend on the fact that their membranes are fluid so 

that membrane proteins can move in the membrane to encounter signaling partners or substrates. 

Decreasing temperature induces most fluid membranes to transition to a solid phase, with lipids 

essentially fixed in place next to each other (2). The temperature at which this phase transition 

occurs is referred to as the membrane’s melting temperature 𝑇𝑇𝑚𝑚. 

Some mixtures of lipids can support two liquid phases that coexist (3–11). In model 

membrane systems this is often observed by mixing three lipids: a high-𝑇𝑇𝑚𝑚 lipid, a low-𝑇𝑇𝑚𝑚 lipid, 

and cholesterol. When these are mixed within a certain range of ratios, the membrane phase-

separates into a so-called liquid-ordered (𝑙𝑙𝑜𝑜) phase rich in high-𝑇𝑇𝑚𝑚 lipid and slightly enriched in 

cholesterol, and a liquid-disordered (𝑙𝑙𝑑𝑑) phase rich in low-𝑇𝑇𝑚𝑚 lipid and slightly depleted of 

cholesterol (12–14). The presence of coexisting phases can be directly visualized using fluorescent 

lipophilic dyes, many of which partition strongly into the 𝑙𝑙𝑑𝑑 phase (6). Coexisting phases have also 

been observed by atomic force microscopy on supported lipid bilayers (15), where the contrast 

between the phases is due to the different thicknesses and elastic properties of the two phases – in 

most cases the 𝑙𝑙𝑜𝑜 phase is thicker and more rigid. Both of these are liquid phases, although the 𝑙𝑙𝑜𝑜 

phase is more viscous than the 𝑙𝑙𝑑𝑑 phase (16). 

A common theme has been the importance of cholesterol, whose rigid ring chemical 

structure constrains the conformational flexibility of nearby acyl chains, promoting extended 

conformations in saturated, high-𝑇𝑇𝑚𝑚 lipids (17, 18). The resulting 𝑙𝑙𝑜𝑜 phase is more tightly packed, 

allowing for more favorable van der Waals interactions between the acyl chains. Low-𝑇𝑇𝑚𝑚 lipids 

containing double bonds in their acyl chains are excluded from this more packed environment 

because the kink of the double bonds makes extended conformations energetically unfavorable. 

Liquid-liquid phase separation has also been observed directly in vesicles derived from the 

plasma membranes of mammalian cells (16, 19, 20). These vesicles phase separate at temperatures 

somewhat below the growth temperature of cells (21), suggesting that plasma membranes are 

unlikely to ever experience phase separation per se. However, the phase behavior can still play a 

role at growth temperature due to the existence of a critical phase transition in this system (20). 

Near a critical point, many thermodynamic quantities diverge as power laws as a function of the 

distance from the critical point (22). As a result, these quantities can be anomalously large in the 

vicinity of the critical point, even if the system never crosses the phase transition. One such 

property is the susceptibility, meaning the magnitude of response that is induced by a given 
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external applied force. In the context of the membrane, this external force could be the clustering 

of proteins that prefer the 𝑙𝑙𝑜𝑜 (or 𝑙𝑙𝑑𝑑) phase, and the response would be a concommitant local change 

of membrane composition to more closely resemble the composition of the 𝑙𝑙𝑜𝑜 (or 𝑙𝑙𝑑𝑑) phase. This 

local compositional heterogeneity, in turn, can recruit other proteins that favor the same phase. 

Recent measurements have validated this concept by directly comparing the partitioning of 

membrane anchored peptides in phase-separated plasma membrane vesicles, to their sorting 

around clustered B-cell receptors, which prefer the 𝑙𝑙𝑜𝑜 phase (23). 

The chemical potentials of lipids in the membrane can also directly inform biological 

function. In many membrane proteins including diverse ion channels, lipids such as cholesterol 

and phosphatidylinositol phosphates are thought to bind to specific binding sites (24–32). The 

chemical potential 𝜇𝜇𝐿𝐿 of each lipid 𝐿𝐿 describes its availability to participate in such interactions. 

Formally, 𝜇𝜇𝐿𝐿 is the Gibbs free energy increment associated with adding one molecule of species 𝐿𝐿 

to the system. The chemical potential must be equal in all phases of an equilibrated system, since 

unequal 𝜇𝜇𝐿𝐿 would imply that the overall Gibbs free energy could be decreased by moving a 

molecule of 𝐿𝐿 from a phase with high 𝜇𝜇𝐿𝐿 to a phase with low 𝜇𝜇𝐿𝐿. A similar argument implies that 

a binding site for 𝐿𝐿 is occupied with increasing probability as 𝜇𝜇𝐿𝐿 increases. 

Because 𝜇𝜇𝐿𝐿 is a derivative of the Gibbs free energy, it is determined by both enthalpic and 

entropic contributions to the free energy. In the ideal case of a dilute mixture (low concentration 

of 𝐿𝐿), the enthalpic contribution of each molecule is identical – each molecule interacts exclusively 

with the other components of the mixture, to a good approximation. Therefore the concentration 

dependence of 𝜇𝜇𝐿𝐿 is entirely determined by the mixing entropy, giving simply 𝜇𝜇𝐿𝐿 = 𝜇𝜇0 +

𝑘𝑘𝐵𝐵𝑇𝑇 log 𝑥𝑥𝐿𝐿, where 𝑥𝑥𝐿𝐿 is the mole fraction of the lipid 𝐿𝐿. Several groups have published 

measurements of cholesterol partitioning between vesicles of different phospholipid compositions 

in this dilute regime (33–35). 

However, when 𝐿𝐿 is not dilute, the enthalpic contributions can vary substantially and lead 

to non-idealities of the chemical potential. Cholesterol, for example, is present in cell plasma 

membranes at concentrations of 30 – 40 mole%. At such high mole fractions, the dilute solution 

model is no longer a good approximation: contacts between pairs of cholesterol molecules become 

important. Furthermore, cholesterol is known to induce structural changes in the membrane, for 

example making it thicker (15). These concentration dependent effects are expected to lead to non-
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idealities in the concentration-dependence of the chemical potential, but past work has not 

explored this regime experimentally. 

1.2 Single molecule localization microscopy 

As discussed above, the organization of biological membranes by phase-like lipid 

interactions does not lead to macroscopic phase separation, and indeed the relevant length-scales 

are frequently less than 100 nm (36). Therefore, detecting and characterizing this organization 

requires measurements that can acheive precisions much better than 100 nm. Single molecule 

localization microscopy (SMLM) is well suited to this case. 

SMLM refers to a family of microscopy techniques that determine positional information 

about a molecule of interest with precision on the order of 10 nm using a standard far-field 

fluorescence microscope. Far-field microscopes are diffraction-limited, so that a point source in 

the sample gives rise to an extended spot of finite width in the image produced by such a 

microscope. The intensity profile of this spot is know as the point-spread function (PSF) of the 

microscope. When the microscope is properly focused and in the absence of aberrations, the width 

of the PSF is given by the Abbé diffraction limit: 𝜆𝜆 ∕ 2𝑁𝑁𝑁𝑁, where 𝜆𝜆 is the wavelength of light that 

is being detected and 𝑁𝑁𝑁𝑁 is the numerical aperture of the microscope, a dimensionless quantity 

that describes the angular extent of the cone of light that can be collected by the microscope. In 

state of the art microscopes 𝑁𝑁𝑁𝑁 can be as high as 1.5, so that the diffraction limit is about one third 

of the wavelength of the light that is being collected. Thus for a red-emitting fluorophore (𝜆𝜆 ≈

630 nm), the diffraction limit is still more than 200 nm. As a result, a sample with many point 

sources each spaced by much less than 200 nm results in an image where the PSFs all overlap, so 

that features smaller than about 200 nm are not readily distinguishable from a single point source 

– information about the nanometer-scale arrangement of the molecules is lost. 

The fundamental insight of SMLM techniques is that sparsely distributed point sources do 

not have this problem: the location of a single fluorescent molecule can be determined very 

precisely from its image by finding the center of the PSF. A useful simplified picture is that the 

image of a single fluorophore is a collection of the locations where 𝑁𝑁 photons originating from 

that fluorophore were detected. Each detection is distributed according to a probability density 

function with some standard deviation 𝜎𝜎 on the order of the diffraction limit. By collecting 𝑁𝑁 

photons we can improve the precision of the estimate of the center of the distribution to 𝜎𝜎 ∕ √𝑁𝑁. 
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So for 𝜎𝜎 ≈ 200 nm and 𝑁𝑁 ≈ 400 we can obtain a localization precision of approximately 10 nm. 

To apply this insight to samples that are dense, we must apply some trick so that we only see 

fluorescence from a sparse subset of the molecules at any given time. In addition, that subset must 

change over time, so that any given molecule is visible at some point during the observation time 

with high probability. 

Since the inception of SMLM nearly 20 years ago (37–39), several such tricks have been 

devised and implemented. Many of these involve choosing fluorophores that can be manipulated 

using buffer chemistry and/or illumination conditions so that only a small fraction of the molecules 

in the sample are fluorescent at any given time, while most molecules occupy a non-fluorescent 

“dark” state. These include organic dyes with long-lived triplet excited states (40, 41) or that 

reversibly isomerize between a fluorescent and non-fluorescent form (42). Other dyes and 

fluorescent proteins rely on light-induced irreversible transitions from a non-fluorescent to a 

fluorescent form, followed by photobleaching (43–46). 

Another class of SMLM strategies known as PAINT (Points Accumulation In Nanoscale 

Topography) depends on weak transient binding of a bright soluble fluorophore to the (non-

fluorescent) target molecule, so that only a few of the molecules of interest have a bound 

fluorophore at any given time (47). The off-rate of binding is engineered to be somewhat longer 

than the integration time of the camera, so that bound fluorophores can be readily distinguished 

from the diffuse background fluorescence produced by the fast-diffusing soluble population. In 

particular, DNA-PAINT (48) takes advantage of the well-understood energetics and cheap 

availability of DNA oligomers by conjugating complementary single-stranded DNA oligomers to 

the target molecule and the fluorophore (known as the docking strand and the imager strand, 

respectively). The off-rate of this DNA-DNA binding interaction can be straightforwardly tuned 

by varying the length of the base-pairing sequence in the DNA oligomers. 

Because SMLM observes a small fraction of the target molecules in each image, many 

images must be collected to fully sample the locations of all of the target molecules, over an 

observation time measured in minutes (49). In living cells, most structures are dynamic on these 

timescales, so molecules that are imaged at the end of the observation time represent different 

structures than existed at the beginning of the observation time. It is therefore common to use cells 

that are chemically fixed e.g. by paraformaldehyde to crosslink the cell’s structures and prevent 

them from moving during imaging. Then the SMLM dataset is effectively a snapshot of the cell’s 



6 
 

organization at the time of fixation. Most of the work in this thesis is primarily applicable to fixed-

cell SMLM data. Note that live cell SMLM data can still be informative by applying different 

analytical techniques than would be useful in fixed-cell data. These techniques include single-

particle tracking for diffusion analysis (50–52), as well as spatiotemporal correlation analysis, both 

of which take into account the time delays between observations in addition to their spatial 

properties (53).  

The various strategies discussed above for achieving sparse stochastic fluorescence from a 

target molecule of interest all lead to relatively similar datasets coming off the microscope: a large 

number of images (typically several thousands) that each consist of some bright PSFs in an 

otherwise dark image. As a result, the process of analyzing raw SMLM image data can typically 

be shared among the modalities. The standard analytical “pipeline” can be broken into several 

independent steps, which we refer to as segmentation, fitting, culling, and drift correction, 

described in the next few paragraphs. When two colors are used, there is an additional step after 

fitting to align the two color channels with subpixel accuracy.  

Segmentation refers to an initial coarse peak-finding step to determine which regions of 

the image contain candidate fluorophores (54). The raw image is convolved with a filter that is 

most sensitive to objects that are the size of the PSF. A noise floor is determined from the variance 

of the same image filtered at a higher frequency. The filtered image is then compared to a user-

defined threshold signal to noise ratio, and regions that exceed the threshold are considered to be 

candidate fluorophore PSFs. For the datasets analyzed for this thesis, a wavelet filter was applied 

following the method of (55), and a threshold signal to noise ratio of 2 was standard. 

The fitting step considers each candidate PSF separately, fitting it to a statistical model to 

obtain an estimate of the center location of the PSF, which is therefore also an estimate of the true 

location of the fluorophore in the sample (56). The fitting model can be thought of as specifying a 

PSF model 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑗𝑗|𝑥𝑥0,𝑦𝑦0) giving the expected number of photons absorbed by pixel (𝑖𝑖, 𝑗𝑗) given 

a fluorophore at location (𝑥𝑥0,𝑦𝑦0), and additionally a noise model 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑒𝑒(𝑛𝑛|𝑚𝑚), the probability that 

the camera will record 𝑛𝑛 digital counts for a pixel that absorbs 𝑚𝑚 photons. 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 essentially models 

the shape of the PSF, and is often taken to be a 2-dimensional Gaussian function, integrated over 

the area of each pixel. While this model is approximate, it has been found to be adequate in 

practice, with negligible loss of precision compared to more accurate models of the PSF, in realistic 

conditions (57). The noise model frequently considers the Poisson-distributed photon counting 
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noise, and often treats other sources of camera noise as negligible. Given this model of the single 

molecule fluorescence data, the best fit location (𝑥𝑥0,𝑦𝑦0) can be determined by maximizing the 

likelihood function implied by the model, with respect to the data given by the camera’s digital 

output for each pixel. In the present work fitting is typically performed on a square subregion 7 px 

in each dimension using GPU-based fitting code adapted from (58). 

The culling step considers the parameter estimates from the fit as well as the goodness-of-

fit criteria that can be determined from the fitting step, and rejects fits that are deemed unlikely to 

be a true single-molecule PSF, either because two molecules were present or some camera noise 

was mistaken for a fluorophore (54). 

Finally, although microscope stages are engineered to be quite stable, many of them still 

exhibit some stage drift that can amount to 10 – 100 nm over the course of a 10 – 30 minute SMLM 

image acquisition time (59, 60). In a single frame, localization precisions can easily be smaller 

than 10 nm, so uncorrected drift represents a substantial loss of precision when comparing 

localizations that are distant in time. Drift is modeled as a time-dependent rigid translation 𝐮𝐮𝑑𝑑(𝑡𝑡) 

of the sample with respect to the microscope reference frame, so that a fluorophore at location 𝐱𝐱 

in the sample reference frame is at location 𝐱𝐱 + 𝐮𝐮𝑑𝑑(𝑡𝑡) in the microscope reference frame at time 𝑡𝑡 

(61). Thus, given an estimate of the drift trajectory 𝐮𝐮𝑑𝑑(𝑡𝑡), the drift correction is as simple as 

subtracting 𝐮𝐮𝑑𝑑(𝑡𝑡) from the observed location of each localization from time 𝑡𝑡. Estimating the drift 

correction is less straightforward. Various successful methods have been proposed (61–65). A 

common scheme is to divide the localizations into disjoint temporal windows centered on 𝑡𝑡1 and 

𝑡𝑡2, find the spatial displacement that maximizes the similarity of the two subsets, and take that 

displacement as an estimate of 𝐮𝐮𝑑𝑑(𝑡𝑡2) − 𝐮𝐮𝑑𝑑(𝑡𝑡1). 

It is possible to apply SMLM to two molecules of interest at once by labeling them with 

different fluorophores whose emission spectra can be separated by a dichroic beam splitter in the 

emission path of the microscope, so that emission from the first fluorophore – the first “color 

channel” – is imaged onto half of the camera’s field of view, and the other color channel is imaged 

onto the other half of the camera’s field of view. The segmentation and fitting process can then be 

carried out independently for each color channel, with resulting localizations assigned to the type 

of molecule being imaged in that color channel. To obtain precise information about the 

arrangement of one type of molecule with respect to the other, a precise measurement of the spatial 

transformation from one color channel to the other is required. A sparse sample of nano-scale 
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beads that are decorated with multiple fluorophores whose emission spectra fall in both color 

channels can be used to do so. Each such bead produces a PSF-like image in both color channels, 

which can be precisely localized by the same methods as are applied to single molecules. The 

beads are distributed sparsely enough that it is easy to computationally identify which localizations 

in the two channels correspond to the same bead. By repeating this process over many images 

(hundreds of images, thousands of individual bead localizations), a map from one channel to the 

other is established. For the purposes of this thesis, a “local weighted mean” transform is used in 

a manner similar to that described in (66): for a localization in channel 2, the 12 nearest 

localizations from the bead sample are found. The corresponding point in channel 1 is determined 

by a weighted mean of the 12 corresponding bead localizations in channel 1. The weights for the 

weighted mean are a decreasing function of the distances in channel 2 from the localization of 

interest. In the context of this thesis, this step is applied between fitting and culling, when 

applicable.  

Despite nearly 20 years of history, SMLM methods continue to be an active research area, 

and recent developments have been reported throughout the process. These include contributions 

that improve the image data that the analysis is applied to, for example: labeling schemes that can 

achieve higher efficiencies and specificities of labeling (67–70); fluorescent probes with superior 

blinking characteristics (42, 71–73); and microscope design improvements that allow the user to 

obtain complementary information about the fluorophores such as their axial position (74, 75) or 

their spectra (76). The analysis algorithms themselves are also an active research area: new 

analysis algorithms produce more precise localizations by optimizing the statistical and/or 

computational performance of each analysis step (77–79). The statistical developments allow for 

improved image quality, so that the experimentalist can more confidently resolve the structure of 

interest at smaller length scales, and computational developments reduce the barriers to applying 

sophisticated methods routinely to more and larger datasets. Finally, determination of the quality 

of an SMLM dataset is an important research area, because it enables unbiased evaluation of the 

contributions of various new methods to dataset quality (80–82). 

1.3 Detecting spatial organization in SMLM datasets 

The spatial precision of SMLM enables the experimentalist to study spatial organization of 

a variety of nanoscale structures. The diversity of structures of interest, and the research questions 
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one might ask about them, calls for a diversity of approaches as well. In some cases, the labeled 

molecules are arranged into extended structures with clear geometric features, such as regular 

spacing of molecular subunits in a lattice-like structure, linear features that branch at specific 

angles, or tubes with a characteristic diameter. In such cases it may be appropriate to apply 

dedicated tools to obtain best estimates of the geometric characteristics of individual features. At 

the opposite extreme, molecules with weak interactions including those mediated by interactions 

with membrane phase-like domains (23, 83, 84) can give rise to minor but quantifiable enrichment 

of one type of molecule around another. In this case statistical tools are necessary to distinguish 

between chance encounters and meaningful colocalization. 

Pair correlation functions have proven to be a useful tool for this purpose. Pair correlation 

functions 𝑔𝑔(𝑟𝑟) can be thought of as a ratio of two densities: the average density of points at a 

distance 𝑟𝑟 from another point, and the average density of points overall (85–87). Thus for example 

if proteins are distributed uniformly and independently over a cell’s plasma membrane, their 

correlation function will be 𝑔𝑔(𝑟𝑟) = 1, meaning that the density of protein around a given location 

𝐱𝐱 does not depend on whether or not there is a protein at 𝐱𝐱. In contrast, a protein that is clustered 

is denser near other copies of the protein, so that 𝑔𝑔(𝑟𝑟) > 1 over a range of 𝑟𝑟 up to about the 

characteristic size of the clusters. Repulsive interactions would instead imply 𝑔𝑔(𝑟𝑟) < 1. 

Note that the pair correlation function is non-parametric: computing it does not rely on any 

assumptions about the mechanism or mechanisms mediating putative clustering or repulsion. 

Conversely, the presence of non-trivial correlations at a given distance 𝑟𝑟 is not necessarily an 

indication that the labeled objects interact directly with each other. For example, it could instead 

indicate that the molecules all interact with some other structure. 

When more than one type of point is present in a dataset, for example in a two-color SMLM 

dataset where the two colors label distinct types of protein, one can compute pair correlation 

functions as above for each type, often called pair auto-correlation functions for clarity. In addition, 

one can compute an analogous pair cross-correlation function 𝑐𝑐(𝑟𝑟) between type A and type B, so 

that 𝑐𝑐(𝑟𝑟) is the ratio of the density of points of type A around points of type B to the overall density 

of type A. The cross-correlation functions have similar interpretations to the auto-correlation 

functions: 𝑐𝑐(𝑟𝑟) = 1 is evidence that the two types of points are distributed independently of each 

other, 𝑐𝑐(𝑟𝑟) > 1 is evidence that they are co-clustered, and 𝑐𝑐(𝑟𝑟) < 1 is evidence that they are 

segregated from each other. 
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In the context of SMLM, pair correlation functions are computed from localizations, not 

protein locations themselves. This fact has three important consequences for correlation analysis. 

First, localizations are subject to finite spatial errors with respect to the fluorophores that produce 

them (87). As a result, the pair correlation functions of localizations are effectively blurred relative 

to the pair correlation functions of the fluorophores, and sharp features in the correlation functions 

of the proteins give rise to broader and lower-amplitude features in the correlation functions of the 

localizations. 

Second, SMLM datasets typically contain several or many repeat localizations from each 

detected protein, and it is difficult to attribute particular localizations to particular proteins. This 

phenomenon is known as overcounting, since counting the localizations overestimates the number 

of proteins. Therefore, the auto-correlation function is not simply a measurement of the 

organization of the labeled proteins, but also shows the clustering of the repeat localizations around 

true fluorophore locations (87). This overcounting feature takes the form of a peak in 𝑔𝑔(𝑟𝑟) as 𝑟𝑟 →

0, whose shape is related to the distribution of localization errors, and whose amplitude is related 

to the density of fluorophores and the distribution of numbers of localizations per fluorophore. In 

a typical SMLM experiment, the overcounting peak is the dominant feature of the autocorrelation 

function, and can make it difficult to detect clustering of the underlying molecules. However, the 

cross-correlation function of a two-color SMLM dataset does not have an overcounting peak, 

because the cross-correlation is derived from pairs of one localization from each color channel, 

whereas repeat localizations from the same fluorophore can only be found in the same color 

channel. As a result, a pair cross-correlation function can be more useful for detecting subtle 

clustering. 

Finally, experimental challenges can limit both the efficiency of labeling a target molecule 

with a fluorophore, and the probability that a given fluorophore gets localized during the imaging 

process. While high-affinity, high-specificity engineered labeling schemes such as nanobodies, 

fluorescent fusion proteins and genetically encoded self-labeling tags have done a lot to mitigate 

labeling efficiency issues in the best case, they tend to require genetic control that is not always 

feasible. In addition, labeling of plasma membrane proteins in a way that precludes labeling of 

intracellular populations can present challenges, where cells must be labeled before fixation to 

prevent labeling of the intracellular pool, live-labeling for a long incubation time leads to excessive 

internalization of the plasma membrane population, but short incubation times lead instead to 
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inadequate access of the label to the bottom surface of the cell, so that only a subset of the target 

molecules are labelled. On the imaging side, an experiment can be more or less effective in 

detecting the labels that are present. Fluorophores that depend on photoconversion between 

fluorescent and non-fluorescent states for blinking may produce more or fewer localizations 

depending sensitively on the illumination intensities, as well as buffer chemical conditions. 

Separately, poor signal to noise ratios due to background fluorescence or low power excitation will 

cause some emitting fluorophores to be missed by the segmentation step. 

Missed localizations for either kind of reason generally make the correlation functions 

more noisy, so it is always beneficial to improve the labeling and detection efficiencies when 

possible (86). If the missed localizations are equally likely to occur at any location, the expected 

values of the correlation functions are unaffected, so still reflect the correlation functions of the 

labeled molecules (apart from the contribution of localization precision described above). 

However, if labeling or detection are spatially non-uniform, the standard correlation functions are 

modified by a factor that depends on the details of where detection is more and less likely (88). 

The purely spatial pair correlation functions described so far are mainly applicable to 

SMLM datasets from chemically fixed cells, where the dynamics of when localizations are 

observed are not relevant to the static structures that are being imaged. In cases where dynamics 

are of interest, such as in live-cell SMLM, the spatiotemporal pair auto- and cross-correlation 

functions 𝑔𝑔(𝑟𝑟, 𝜏𝜏) and 𝑐𝑐(𝑟𝑟, 𝜏𝜏) can be calculated instead (53, 89, 90). These can also be interpreted 

as ratios of densities, with the added criteria that the density around a point is considered as a 

function of the time-delay 𝜏𝜏 since that point was observed, as well as distance from the point. In a 

live cell spatio-temporal pair correlation function, the limit 𝜏𝜏 → 0 describes the instantaneous 

organization of molecules, and so can be directly compared to fixed cell spatial pair correlation 

functions (23, 83, 91). When the labeled structure is transient, or when it diffuses through the 

sample, spatiotemporal pair correlation functions generally decay towards 1 with increasing 𝜏𝜏: in 

other words the presence of a molecule at given location and time is less and less informative about 

the density of other molecules at that location at a later time when the original molecule has 

diffused away. Live cells also have a kind of overcounting in their autocorrelation 𝑔𝑔(𝑟𝑟, 𝜏𝜏), due to 

repeat localizations from the same molecule. In this case the overcounting peak of 𝑔𝑔(𝑟𝑟, 𝜏𝜏) 

characterizes the diffusion of the labeled molecules: the width of the peak is determined by the 

distribution of displacements of single molecules over a time delay 𝜏𝜏. This fact can be used to 
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estimate diffusion coefficients even when localizations are too dense to precisely track single 

molecules (23, 53, 91). 

1.4 Overview of the dissertation 

This dissertation presents several projects that address the subjects discussed above in 

various aspects. The chapters can be roughly grouped into two parts. The first two chapters relate 

most directly to membrane phase behavior and physical properties, including new measurements 

of cholesterol chemical potential in membrane systems near liquid-liquid coexistence. While the 

availability of cholesterol and the phase behavior of the membrane are both considered to be 

important for biological function in different contexts, these measurements suggest that they are 

closely linked, so that treatments that perturb phase behavior could act on biological function 

through cholesterol availability, or vice versa. The remaining chapters describe methods for 

improving the processing and interpretation of single molecule localization microscopy data. 

Taken together, these improvements allow SMLM to produce trustworthy measurements at shorter 

length-scales, so that smaller structures with less contrast from their surroundings will be 

distinguishable. In particular, membrane organization by phase-like interactions between 

membrane components will be observable in systems with smaller clusters and weaker interactions 

than was previously possible. 

Chapter 2 contains a review of what is known about critical phenomena in membranes, 

including evidence for functional roles of critical phenomena in mammalian plasma membranes. 

Among other ideas, this review discusses features of membrane phase behavior that are relevant 

to the rest of the chapters. This includes the essential role of cholesterol in membrane phase 

behavior, with the suggestion that proximity to the 𝑙𝑙𝑜𝑜/𝑙𝑙𝑑𝑑 miscibility critical point could sensitively 

control the availability of cholesterol as a ligand in biological membranes, which is also the topic 

of chapter 3. In addition, this review discusses how near-critical membrane phase behavior can act 

as an organizing force, so that clustering membrane components that prefer one phase (𝑙𝑙𝑜𝑜 or 𝑙𝑙𝑑𝑑) 

will also induce recruitment of other components that prefer that phase, an effect that is amplified 

near the critical point due to the associated high susceptibility of the membrane. This picture has 

been tested in the Veatch lab by SMLM experiments that detect co-clustering of membrane 

components through correlation analysis (83, 84, 91). Chapters 4-7 of the thesis present methods 

that are motivated by improving these kinds of measurements in various ways. 
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Chapter 3 describes systematic measurements of the chemical potential of cholesterol in 

defined mixtures with several phosphatidylcholine lipids at room temperature. The mixtures cover 

a wide range of cholesterol concentrations, and therefore reveal clear non-idealities in the 

concentration dependence of the chemical potential. In addition, mixtures in and near the known 

𝑙𝑙𝑜𝑜/𝑙𝑙𝑑𝑑 liquid-liquid coexistence region were tested. The measurements within the two-phase region 

display tie line behavior consistent with known phase diagrams. Interestingly, measurements near 

the two-phase region have similar near-linear contours that fall parallel to tie lines. Finally, the 

measurements were compared to several regular-solution type thermodynamic models to gain 

further insight into the major interactions that give rise to the observed chemical potentials. The 

significance of this work  

Chapter 4 presents a new method for estimating microscope stage drift from SMLM data 

based on a mean shift based algorithm. The method is quite simple to describe and amenable to a 

computationally efficient implementation. It also proves to be more robust than previously 

reported methods to the kinds of noise that are present in SMLM data, so that it is capable of 

estimating drift from fewer localizations. Together, these features make it feasible to estimate drift 

with high time resolution, so that nonlinear drift can be accurately corrected for. As an added 

benefit, the low memory requirements of the mean shift algorithm extend to the case of 3D SMLM 

datasets with drift in all three dimensions, in contrast to previous methods which required much 

more memory to simultaneously estimate drift in a third dimension. 

Chapter 5 introduces the concept of the localization spread function (LSF) of an SMLM 

experiment as a way of characterizing the quality of an SMLM dataset. By analogy with the point 

spread function of a microscope, the LSF describes the distribution of localization errors around 

the true position of a fluorophore in the sample. To estimate the LSF from a static (e.g. fixed cell) 

SMLM dataset, we take advantage of the time correlated switching of SMLM probes to statistically 

separate pairs of localizations that come from the same probe, from pairs that come from different 

probes. This method notably is sensitive to all of the accumulated errors of the SMLM analysis 

pipeline, for example including imprecise drift correction. Therefore it can be used to compare the 

effects of different analysis methods, or of different choices of parameters in those methods. 

Chapters 6 and 7 both concern correlation analysis of point datasets that are subject to 

spatially non-uniform labeling or detection probabilities. They describe a novel approach to 

correcting for these non-uniform sampling effects when estimating pair auto- or cross-correlation 
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functions, so that the corrected correlation functions on average recover the correlations of the 

underlying molecules. In particular, chapter 6 gives a rigorous presentation of this correction 

method in the language of the statistics of point processes. This includes proofs that the method is 

unbiased in ideal circumstances and a convincing heuristic argument that it typically gives a 

smaller variance than a previously presented method (88). Furthermore, it gives detailed analysis 

of bias that can arise in both methods when the spatial profile of sampling probabilities is not 

known but instead estimated from the data. Finally, a thorough simulation study using standard 

point process models demonstrates that the bias and variance do hold for real data. 

In chapter 7, the same density correction method is applied more specifically to SMLM 

data. This includes demonstrations of the method on simulated data that is constructed to more 

closely resemble an SMLM dataset, as well as an application to a real SMLM dataset with 

noticeable non-uniform sampling. In addition, this chapter presents an extension of the method 

that improves on the bias characteristics of chapter 6 in a way that gives more accurate results 

when the density varies on shorter length scales. Finally, the determinants of that bias are described 

and demonstrated through simulation, with discussion of how best to choose parameters of the 

method to obtain the most accurate results. 
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Chapter 2 Critical Phenomena in Plasma Membrane Organization and Function 

This review was written with Subhadip Ghosh and Sarah L. Veatch. It presents a historical 

perspective on our current understanding of the phase behavior of mammalian plasma membranes, 

with an emphasis on the idea that the plasma membrane resides near the critical point of a liquid-

liquid coexistence region. In addition, several mechanisms are presented that could implicate 

membrane phase behavior in various biological processes, including some that are supported by 

recent evidence, and others that are under investigation. The writing of this review was 

collaborative, and my contributions are spread throughout the text and figures. A version of the 

review is now published as an Annual Review of Physical Chemistry (92). 

2.1 Overview 

Spatial organization of the plasma membrane on 10-100 nm length scales has been a topic 

of interest to biology for decades. Heterogeneity has been hypothesized to play important roles in 

many membrane-associated biological processes, from coordination of signal transduction 

machinery to endo- and exocytosis to polarization, as iconically described in the lipid raft 

hypothesis (93). Various biophysical notions have been marshaled to provide explanations of 

membrane heterogeneity, especially from equilibrium thermodynamics and phase transitions, as 

coexisting liquid phases are readily observed in both purified membranes and membranes isolated 

from plasma membranes (94, 95). One important thread of this ongoing conversation explains 

nanoscale membrane structure as critical phenomena. In contrast to a classical phase separation 

picture of plasma membrane domains, which implies stable and well-defined discrete regions of 

defined composition, critical phenomena are subtle, dynamic and malleable, and inhabit the 

relevant nanoscopic length-scales. 

In this review, we conduct a brief historical survey of membrane domains in both model 

and biological membranes and describe the consensus that has been reached regarding the 

macroscopic miscibility phase behavior of model membranes as well as remaining controversies 

regarding the microscopic heterogeneity reported in other regions of phase space. We introduce 

membrane criticality and the accumulated evidence that eukaryotic plasma membranes are near-



16 
 

critical. We discuss where the concept of criticality fits into conventional descriptions of raft 

phenomenology, and describe some unique areas where criticality could plays roles in biological 

function that go beyond simply organizing components.  

2.2 An early history of domains in model and cell membranes. 

There is a long history of detecting heterogeneity in bilayer membranes containing 

cholesterol. Some of the earliest studies that interrogated purified membranes in the late 1960s and 

early 1970s found evidence that liquid membranes containing a single phospholipid species and 

cholesterol contained structure on 1-100nm length-scales accessible to the spectroscopic methods 

available at the time (96–101). Over the decades, evidence for these microscopic domains in binary 

mixtures of phospholipids and cholesterol continued to accumulate, through additional 

spectroscopic studies, calorimetry, the application of fluorescence techniques such as fluorescence 

quenching, anisotropy, and Förster resonance energy transfer (FRET), and imaging methodologies 

such as freeze fracture electron microscopy (12–14, 102–110).  

Largely in parallel to this physical chemistry characterization of membranes, cell biologists 

also postulated that membranes within cells could contain lipid-mediated sub-structures that could 

be important for cell functions. Early evidence came from the observation that cells could polarize 

their membrane lipid composition via differential trafficking of lipid species (111). It has also long 

been appreciated that cholesterol or similar sterols are vital to the proper functioning of most 

eukaryotic plasma membranes, as manipulation of membrane cholesterol content was shown to 

interfere with functions including endocytosis, several receptor mediated signaling cascades, and 

cell cycle control (112–115). In the early 1990s it was discovered that some detergents only 

partially solubilize cellular membranes, especially the plasma membrane (116, 117), and it was 

postulated that the insoluble fractions represented distinct membrane domains (93, 109). 

Researchers found that artificially clustering some membrane components individually could drive 

macroscopic colocalization, termed co-patching, detectable by conventional fluorescence 

microscopy (118). Subsequent spectroscopic and fluorescence measurements supported the 

hypothesis that cell membranes were heterogeneous in their lipid and protein content (119–121), 

and many studies correlated biological function with presumed membrane heterogeneity probed 

and perturbed via these and related assays (122–125). Each of these methods had well documented 

flaws (126), but the remarkable consistency of the conclusions drawn from different 
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methodologies provided convincing evidence that lipid-driven heterogeneity is relevant to the 

plasma membrane. 

2.3 Liquid-liquid phase separation in model membranes.  

2.3.1 Purified membranes:  

In 2001, the first observations of macroscopically phase separated fluid domains were 

reported in bilayer membranes reconstituted from cellular extracts (3, 4). These initial observations 

emphasized similarities between the composition of the coexisting phases in model membranes 

and heterogeneity measured in cells by detergent solubilization methods. Soon after, it was 

appreciated that at least three lipid components were required to form macroscopically phase 

separated domains in bilayers: a high melting temperature lipid, a low melting temperature lipid, 

and a sterol such as cholesterol (5). Phase diagrams describing this macroscopic phase transition 

have now been mapped by numerous groups using a range of methods and are in good qualitative 

agreement (6–9, 15, 127–130). Since three components are required to observe liquid-

immiscibility, phase diagrams have been mapped by varying temperature and the molar fraction 

of all three components. An introduction to reading and interpreting these phase diagrams is given 

in Figure 2.1, and several experimental phase diagrams are presented in Figure 2.2.  

A range of experimental (10, 131–136) and simulation (17, 18) approaches using different 

lipid combinations have produced results consistent with phase diagrams topologically similar to 

those shown in Figure 2.1b, and their detailed characteristics have been described in several 

comprehensive review articles (95, 137, 138). Liquid immiscibility is most often observed at 

temperature below the melting temperature (𝑇𝑇𝑚𝑚) of the high 𝑇𝑇𝑚𝑚 lipid (6, 9, 127, 128), although 

there are exceptions (7). In the typical case, reported phase diagrams have a region of liquid-liquid 

coexistence, a region of three-phase coexistence (2 liquids and a solid), and two regions of liquid-

solid coexistence. One of the liquid phases is called the liquid-disordered (Ld) phase, and it 

resembles the liquid crystalline phase of pure phospholipids (139). The second liquid phase is 

called liquid-ordered (Lo) (12), which was first characterized in mixtures of saturated 

phospholipids and cholesterol (13, 100, 107). The solid phase is often called gel, and is most likely 

Lβ’ (2). 

The high cholesterol edge of the three-phase triangle is sloped such that the Lo phase 

contains a higher cholesterol mole fraction than the Ld phase. This edge of this triangle is also the 
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first tie-line in the liquid-liquid-coexistence region. As cholesterol is increased further, tie-lines 

run roughly parallel to one another, meaning that cholesterol concentration increases roughly 

linearly in both phases. The Lo-Ld coexistence region terminates in a miscibility critical point, 

where in principle tie-lines merge into a single point. In practice this region of the phase diagram 

is surprisingly flat, meaning that tie-lines remain long and shorten over a very small range of 

compositions. As temperature is lowered, the Lo-Ld immiscibility gap extends to higher 

concentrations of cholesterol and low Tm lipid, as does the concentration of components at the 

critical point (7, 127, 130). At constant temperature, the miscibility gap expands when the 𝑇𝑇𝑚𝑚 of 

the high 𝑇𝑇𝑚𝑚 component is increased or when the 𝑇𝑇𝑚𝑚 of the low 𝑇𝑇𝑚𝑚 lipid is decreased (6, 7, 9). No 

macroscopic miscibility gap is observed for some combinations of low and high 𝑇𝑇𝑚𝑚 lipids (6, 9, 

11). A closed loop miscibility gap is found when the extremely low 𝑇𝑇𝑚𝑚 lipid DiPhytanoyl PC is 

 
Figure 2.1 Phase diagram of lipid mixtures 

(A) Phase diagrams of three component mixtures are conventionally drawn on an equilateral triangle. The three vertices are 
pure mixtures of each lipid component, points along the edges are binary mixtures, and points within the triangle contain all 
three components. Compositions can be read by measuring the perpendicular distance to each edge, which have the property 
of always summing to 100%. Two examples are shown. (B) Qualitative phase diagram for ternary lipid mixtures of high 
melting temperature (Tm) lipids, low Tm lipids and cholesterol. Thick red lines indicate boundaries of liquid-solid (So) 
coexistence and the thick blue line represents the boundary of liquid-disordered (Ld) liquid-ordered (Lo) coexistence. Points 
along this boundary also indicate the composition of coexisting phases, and the specific compositions in coexistence are 
indicated by tie-lines (lighter weight lines within binary coexistence regions). The green triangle represents compositions that 
exhibit all three phases in coexistence, whose compositions are indicated by the three vertices of the triangle. The Ld-Lo 
coexistence region terminates at a miscibility critical point along the high cholesterol edge, indicated by a yellow star.  
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used (7), meaning that Lo-Ld coexistence occurs at temperatures above the Tm of the saturated 

component and there are two critical points. The phase behavior of the mixed system can depend 

on more than just the Tm of components. For example, sphingomyelin (SM) lipids are more 

effective at establishing coexisting phases as compared to glycerol-phospholipid lipids with PC 

headgroups (9, 18) even when the main chain transition occurs at similar temperatures for SM and 

PC lipids used. 

Although the equilibrium thermodynamics description of the macroscopic miscibility 

transition is now largely accepted, questions remain regarding the thermodynamic basis of the 

microscopic heterogeneity also routinely observed in membranes containing cholesterol. These 

structures are frequently reported at temperatures and compositions where membranes remain 

uniform on a macroscopic scale using methods sensitive to molecular-scale organization such as 

FRET, fluorescence quenching, or ESR. Membranes can be tuned from a state with macroscopic 

phase separation to one with microscopic heterogeneity by raising temperature (140, 141), titrating 

in an additional component that disrupts the macroscopic phase transition (e.g. (132, 142, 143)), 

or by probing different ratios of the same lipid species at fixed temperature (141). Submicron 

structure is also reported in binary mixtures of saturated lipids and cholesterol (99, 144) and in 

some ternary membranes that do not exhibit macroscopic Lo-Ld immiscibility at any temperature 

or lipid ratio (11, 110, 129, 145).Recent experimental developments in purified membranes has 

begun to probe how leaflet asymmetry impacts phase separation and the presence of submicron 

structure in purified membranes (146, 147). 

Experimental observations have motivated numerous theories to explain the presence of 

microstructure at thermodynamic equilibrium. Critical phenomena provide a possible mechanism 

to bridge macro- and micro-scales in the form of dynamic fluctuations (127, 148). Other theories 

enable static, finite-sized domains by including some repulsive mechanism to oppose formation of 

macroscopic domains (149–151). These theories too predict domains that span macro- to 

microscales. Recent experimental work has begun to directly test some of these theories explicitly 

(152).  

2.3.2 Isolated membranes: 

The first observations of macroscopic liquid immiscibility in vesicles blebbed directly from 

living cells came in 2007 (94), and these vesicles were named Giant Plasma Membrane Vesicles 
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(GPMVs) due to their close resemblance to the Giant Unilamellar Vesicles (GUVs) used widely 

in fluorescence microscopy investigations of purified lipid mixtures. Earlier work using a similar 

vesicle preparation had characterized their lipid and protein content by mass spectrometry (153), 

and had observed heterogeneity using ESR (119), a spectroscopic method that can detect 

heterogeneity on the molecular scale. Baumgart et al (94) detected the sorting of fluorescent lipid 

analogs and fluorescently tagged proteins with respect to phases in GPMVs at temperatures well 

below those where cells were grown, leading the authors to conclude that this phase transition was 

not relevant for cells under normal growth conditions. 

Soon after, other methods emerged to isolate plasma membranes from cells and all could 

yield coexisting liquid phases (154, 155), although the conditions needed to achieve phase 

separation differed between methods used. A subsequent study found correlations between 

biochemically defined detergent resistant membranes and the liquid-ordered phase detected in 

GPMVs (19), and that the surface fraction of ordered phase at low temperature was altered by 

acute treatments to manipulate cholesterol levels in vesicles (19, 156). In all cases, miscibility 

 
Figure 2.2 Phase diagrams of ternary lipid mixtures exhibit the same overall topology 

(A) DiPhytanolPC/DPPC/Chol by fluorescence microscopy at 16°C, redrawn from (41). (B) DOPC/DPPC/Chol by deuterium 
NMR, from (45). (C) DOPC/DSPC/Chol by fluorescence microscopy and FRET, from (46). (D) DPC/PSM/Chol by FRET, 
neutron scattering, and DSC, from (47). (E) POPC/PSM/Chol by EPR, from (43). (F) DOPC/eggSM/Chol by AFM, from (48). 
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transition temperatures (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) remained well below growth temperatures in isolated cells, 

emphasizing that such macroscopic domains were not likely to form under physiological 

conditions. A possible explanation came in 2008 when it was shown that freshly isolated GPMVs 

exhibited hallmarks of criticality, placing them close to a room temperature miscibility critical 

point (20). Over time, additional studies have documented how GPMV phase behavior is impacted 

by growth conditions in cells (21, 157, 158) and differentiation into other cell types (159, 160), 

and lipidomics analysis has begun to characterize the vast compositional complexity of these 

membranes (21, 158, 161). 

While there are many similarities between the phase behavior observed in GPMVs and 

purified model membranes, there are key differences (16). The coexisting phases detected in 

GPMVs differ in their physical properties from their purified membrane counterparts. The 

‘fluidity’ of phases are more similar in GPMVs compared to GUVs, as measured through diffusion 

of membrane components or using order sensing fluorophores that report on local hydration within 

the hydrophobic region of the membrane (162). These different physical properties can be sensed 

by incorporated proteins. Some transmembrane proteins, particularly those with palmitoylated 

cysteines, are observed to partition into the Lo phase in GPMVs whereas few are reported to 

partition into the Lo phase in purified membranes (163).  

It should be noted that GPMVs are model membranes that differ from intact plasma 

membranes in important ways. Plasma membranes exist in close association to the actin 

cytoskeletal cortex, while GPMVs are missing polymerized cytoskeletal components and tend to 

be depleted in proteins that associate with the actin (164). Notably, the cell plasma membrane does 

not macroscopically phase separate even under conditions that cause GPMVs to phase separate, or 

in any known conditions, even when phase separated GPMVs remain attached to an intact cell 

membrane (165). GPMVs are depleted of PI(4,5)P2 (166), which typically makes up several mol% 

of the inner plasma membrane leaflet in intact cells (167). A recent report demonstrates that 

isolated GPMVs are frequently permeable to large hydrophilic markers (168), indicating that their 

membranes contain long-lived defects. While cell membranes are asymmetric in their lipid and 

protein composition, at least some of this asymmetry is lost in the GPMV generation and isolation 

process (94, 166). The interpretation of GPMV experiments is also complicated by their sensitivity 

to methodological choices. For example, the most common method to prepare GPMVs involves 

incubating cells with a low concentration of formaldehyde and a reducing agent, and the choice of 
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the reducing agent can greatly impact the transition temperature and physical properties of phases 

of the resulting GPMVs (155, 169). This is due, at least in part, to the ability of some reducing 

agents to modify membrane proteins and lipids. 

2.4 Phase separated domains are related to but different from ‘raft’ heterogeneity in intact 

cells. 

Phases are robust, macroscopic entities with well-defined compositions, and with the 

exception of the yeast vacuole (170, 171), structures resembling liquid-liquid phase separation are 

not observed in intact cells. Instead, the vast majority of membrane domains in cells are 

microscopic and require significant perturbations in order to be visualized or isolated. In line with 

this, several recent studies have directly concluded that there is no evidence of a miscibility phase 

transition in intact cells when cells are examined through the lens of several different experimental 

observables (172, 173). Nonetheless, a large number of experimental studies provide strong 

evidence that the heterogeneity reported in intact cells is closely related to the macroscopic phase 

separation observed in GPMVs. Two excellent recent reviews discuss many of these findings, as 

well as some exceptions (174, 175). We highlight several lines of evidence below. 

1. In many cases, proteins that are associated with live-cell heterogeneity or with detergent-resistant 

membranes are also found to partition into the Lo-like phase of GPMVs. In particular, single-pass 

transmembrane and peripheral proteins containing palmitoylations are more likely to be found in 

detergent resistant membranes and partition into the Lo phase in GPMVs, while proteins containing 

branched and unsaturated geranylgeranyl or prenyl groups tend to be solubilized by detergents and 

partition into the Ld phase in GPMVs. Recent work begins to extend to multi-pass proteins which 

can accommodate more complex protein/lipid interactions (176–178). It is likely that protein 

partitioning will be dictated by the identity of lipids that solvate transmembrane proteins in complex 

membranes (179, 180) 

2. Cells actively tune their plasma membrane Tmix in response to changes in growth conditions and 

conditions that change Tmix lead to different phenotypes. For example, experiments indicate that 

cells in culture actively tune the miscibility phase transition temperature of their membrane to be a 

fixed temperature below their growth temperature (21), and that Tmix lowers in cells under 

conditions that inhibit cell growth (157). Other studies have documented that acute treatments with 

lipophilic small molecules or dietary lipids that alter Tmix correlate with changes in signaling 

outcomes, cellular differentiation, and even the general anesthetic response (159, 181, 182). While 

it is possible that these correlations with Tmix are a result of a mutual correlation with an unrelated 
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quantity, the accumulated evidence suggest that maintaining Tmix plays important roles in cellular 

processes.  

3. In model membranes, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 predicts structure observed in single phase membranes. While model 

membranes appear homogeneous at the macroscopic scale above Tmix, the value of Tmix can 

predict the presence of structure at smaller scales, or under conditions where membranes are 

perturbed by clustering one component. A very recent report that documents the temperature 

dependence of both macroscopic phase behavior and microscopic heterogeneity in GPMVs under 

a range of perturbation conditions (169). This work found that the microscopic heterogeneity in 

GPMVs at elevated temperature was highly correlated with their macroscopic transition 

temperature Tmix, suggesting that the same could be true in intact cells. An older study finds that 

phase marking probes enrich in membrane domains stabilized through adhesion even well above 

Tmix (156). These and other studies have led to the idea that the value of Tmix is a measure of 

‘raft’ stability under physiological conditions, even though cells do not appear to experience phase 

separation directly.  

4. Theoretical arguments support that coupling to an intact cytoskeletal network will disrupt the 

macroscopic phase transition. It is well established that ‘quenched disorder’ abolishes first order 

phase transitions in two dimensional systems like membranes (183). The cortical actin 

cytoskeleton, which is linked to the plasma membrane through a system of adapter proteins, is 

likely to play the role of quenched disorder in the intact plasma membrane (165, 184). Experimental 

studies in model membranes support the main conclusions of this theory, that a broadly distributed 

cytoskeletal network disrupts macroscopic domains while stabilizing small-scale structure (185). 

Direct tests in intact cells have yet to be reported, but there is broad evidence for important 

connections between cortical actin and raft heterogeneity (186–190).  

5. There is increasing evidence for phase-driven partitioning within intact cells. Recent work utilizing 

single molecule fluorescence methods are beginning to draw more direct connections between 

phases in vesicles and domains in cells (83, 191). These studies monitor the recruitment and 

exclusion of probes with respect to clustered proteins in intact cells and find that probe 

concentration in clusters mirrors partitioning with respect to phase separated domains in model 

membranes, although typically with a smaller magnitude.  

To explain these experimental developments, several theoretical avenues have been 

explored, with a goal of explaining the lack of a macroscopic phase separation in intact cells. Any 

complete biophysical model of membrane heterogeneity must first account for this fact, and 

therefore must be more complex than the simple phase separation picture. These explanations 
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include coupling to quenched disorder in the form of the cytoskeleton (165, 184), coupling to 

curvature in a way that produces a microemulsion (149, 151, 192), and nonequilibrium suppression 

of domain growth, for example by active lipid transport or remodeling of membrane-coupled actin 

structures (193, 194). Many of these models, including the critical phenomena that are discussed 

in the next section, are closely related to the canonical phase separation picture (195). 

2.5 Criticality and its connection to plasma membrane 

Equilibrium critical phenomena are special relationships between thermodynamic 

properties of a system that emerge due to a diverging correlation length of the system in the vicinity 

of a critical point. Key physical quantities such as the heat capacity, the susceptibility, and the 

interfacial energy between domains also exhibit specific behaviors as the critical point is 

approached. These properties of critical systems are universal, meaning that the dominant behavior 

is governed by a small number of effective parameters, regardless of the complicated details of 

microscopic interactions (Figure 2.3). The physics of criticality has been covered in detail in many 

textbooks (22, 196–198). A useful introduction for biophysicists is given in (199). 

The physics of criticality has developed over the last 200 years, beginning with the 

observation of a critical temperature for several liquids, above which there is no liquid-gas 

transition (200). The van der Waals equation of state (1873) was the first model that featured a 

“critical point” with this property (201). Ornstein and Zernicke, in 1918 (202) formalized the study 

of spatial fluctuations in liquid-gas systems, a key development. In the first half of the 20th century, 

precise measurements of near-critical liquid-gas systems (203) as well as magnetic systems (204) 

indicated that classical equations of state were inadequate to explain the near-critical region of 

phase space, for example that the shape of the phase liquid-gas coexistence curve is qualitatively 

different than predicted by van der Waals. In 1944, Lars Onsager exactly solved the 2d Ising 

model, which allowed for the study of critical exponents in that system (205). In 1952, Yang and 

Lee observed that phase transitions correspond to non-analyticities of the partition function in the 

thermodynamic limit (206), and Widom and others proposed power-law scaling for various 

quantities at critical points, and derived relationships between different critical exponents from 

that hypothesis (207). Real-space (Kadanoff) and momentum-space (Wilson) renormalization 

group methods explained the emergence of these power laws and provided avenues for computing 

approximate values for the critical exponents in general systems (208, 209). They also set a 
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uniform framework for other conceptual advances. A broader class of nonequilibrium critical 

points can also be defined, generalizing this equilibrium concept. Biological nonequilibrium 

critical points have received considerable attention in recent years, see, e.g. Mora and Bialek for a 

review (210). 

Coexistence regions generically terminate in a critical point except in special 

circumstances, and the Lo-Ld miscibility of purified and isolated membranes is no exception. On 

the phase triangle shown in Figure 2.1B, the critical point occurs on the high-cholesterol edge of 

the Lo-Ld miscibility gap. Initial evidence of critical behavior in membranes came from NMR 

studies of multilamellar vesicles, which detected enhanced line-broadening in the vicinity of 

known critical points (127). This was attributed to the diffusion mediated exchange of lipids 

between fluctuations with sub-micron dimensions. Later work directly visualized micron-sized 

critical fluctuations (above the critical temperature; 𝑇𝑇𝐶𝐶) and fluctuating phases (below 𝑇𝑇𝐶𝐶) in GUVs 

of purified lipids, providing evidence that membranes belong to the 2D Ising model universality 

class, meaning that fluctuations exhibited a temperature dependence that is universal to two 

 
Figure 2.3 Critical systems exhibit universal features that extend beyond the 2 phase region 

(A) Simulation snap-shots of two lattice models. (Top) an Ising model at various reduced temperatures t and compositions m 
and (middle) a three component model with interactions designed to reproduce ternary GUV phase diagrams, at fixed 
temperature and various compositions. (Bottom) Compositions of the three-component model are chosen so that the effective 
reduced temperature t and m of the model match t and m of the corresponding Ising model. Miscibility gaps, tie lines, and the 
directions of t and m are shown on each schematic phase diagram. (B) Measurements of the divergence of correlation length ξ 
vs t as the critical point is approached from the one-phase region. (Top) In the two models from panel A. For the three-
component model, t is the cholesterol (Chol) content normalized by the Chol content at the critical point. (Middle) In GUVs 
and GPMVs, varying temperature. In each case, the expected 2D-Ising power law 𝜉𝜉 ∝ 𝑡𝑡−1 is observed although the 
proportionality constant differs, resulting in each dataset being plotted with a different y axis scale. (Bottom) Representative 
GUV and GPMV images near the critical point, data points replotted from (128). 
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dimensional systems with a one-dimensional order parameter (148). Subsequent measurements 

confirmed this observation in supported membranes by atomic force microscopy (130), and probed 

the dynamics of critical membranes (211). At this same time, it was discovered that isolated 

GPMVs also exhibited critical behaviors in the vicinity of a room temperature critical point (20). 

Again, fluctuations were consistent with the 2D Ising model universality class. These observations 

and their implications have been reviewed in greater detail previously (199). 

One of the key features of a critical point is that its fingerprints extend well beyond the 

phase transition itself (Figure 2.3). An important parameter is 𝑡𝑡, the difference between the 

temperature of the system and the critical temperature (𝑇𝑇𝐶𝐶) normalized by 𝑇𝑇𝐶𝐶 in units of Kelvin. 

The correlation length 𝜉𝜉, or characteristic size of critical compositions fluctuations, is predicted to 

vary as 𝜉𝜉(𝑡𝑡) = 𝜉𝜉0/𝑡𝑡, where 𝜉𝜉0 is a parameter with dimensions close to the size of molecules in the 

system and in membranes was measured to be roughly 1 nm. Note that as 𝑇𝑇 → 𝑇𝑇𝑐𝑐, 𝑡𝑡 → 0, so that 

the correlation length becomes infinite. Extrapolating this relationship using a room temperature 

critical point (𝑇𝑇𝐶𝐶  =  22°C = 295K), then 20 nm sized fluctuations are expected at 37°C, which 

corresponds to 𝑡𝑡 = 0.05. This prediction is in good agreement with recent experimental work 

probing heterogeneity in GPMVs by FRET, which detects evidence for larger than 10 nm structure 

in GPMVs over this same temperature range (169). Similar observations have also been made in 

purified model membranes (212). Note that 𝑡𝑡 need not be a physical temperature. Instead it is any 

trajectory in the phase diagram that runs perpendicular to tie-lines close to the critical point. Thus, 

while some Ising model images of Figure 2.3A are obtained by varying temperature in the model, 

the corresponding three-component lattice model images are obtained by varying composition at 

fixed temperature, as indicated in the phase diagram.  

Another physical property that can extend well beyond the phase transition itself is the 

susceptibility (χ). The susceptibility measures how large a local composition difference arises from 

a local force applied to components of one of the phases, e.g. by clustering components that prefer 

Lo lipids. In other words, in a highly susceptible membrane, a domain of distinct local composition 

can be stabilized by only clustering a small subset of components, or by weakly biasing the 

concentration of many components that have the same order preference. In the Ising universality 

class, χ ∝ 𝑡𝑡−7/4. This too has experimental support in vesicles, where robust domains are 

stabilized well above Tmix by organizing a small subset of components by an actin network or 
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streptavidin crystal that partially decorates a vesicle surface (187, 213), or by adhesion to a 

supported membrane (156). 

Direct theoretical predictions of critical phenomena such as the scaling of the correlation 

length and the magnitude of the susceptibility are quite useful for predicting consequences of 

perturbations to membrane heterogeneity, but the theory quickly becomes intractable when 

coupled to more complex biological phenomena. Statistical mechanical lattice models based on 

the Ising model can be useful in this situation. These models typically only contain two 

components (up and down ‘spins’) positioned on a lattice, where the components at the lattice sites 

are either allowed to change identity (such that the composition or ‘magnetization’ can vary) or 

are allowed to exchange with other sites on the lattice (such that the composition remains fixed). 

Universality guarantees that, so long as the system is close to the critical point, the Ising model 

captures the relevant mesoscopic heterogeneity of the membrane, for appropriate choices of the 

Ising reduced temperature 𝑡𝑡 and magnetization 𝑚𝑚 (Figure 2.3). That is, the Ising model accurately 

recapitulates the thermodynamics of the effective Lo order parameter at length-scales beyond a 

few lipid diameters, despite the extreme simplicity of the microscopic interaction in the model – a 

simple nearest-neighbor interaction potential. As a result, when a biological system is coupled to 

the Lo order parameter, an Ising model modified to include this coupling is expected to reflect the 

relevant biophysical phenomena. Past work has used this approach to model the coupling of 

fluctuations to cortical actin (165), to explain changes in phosphorylation steady states upon 

clustering of a component, for various values of 𝑡𝑡 and 𝑚𝑚 (83, 84), and to predict how proximity to 

the critical point affects conformational state equilibria of proteins whose boundaries are sensitive 

to lipid order (214). 

2.5.1 Evidence for criticality playing a role in cells: 

 If intact plasma membranes exhibit similar heterogeneity to that observed in GPMVs, it 

could easily be relevant to the biological function of membrane proteins. An important line of 

evidence that criticality plays a role in biological function has come from the tuning of the GPMV 

critical point. For a system to be near a critical point in the first place, two parameters must be 

tuned, corresponding to 𝑡𝑡 (temperature) and 𝑚𝑚 (composition) of the (fixed-composition) Ising 

model. In the extremely large space of lipid mixtures of varying composition, there are many 

critical points – an 𝑛𝑛 − 2-dimensional manifold in the n-dimensional space. However, there is no 
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generic reason that tuning the concentration of any given lipid will correspond to tuning just 𝑡𝑡, or 

just 𝑚𝑚, or neither – general perturbations will affect both 𝑡𝑡 and 𝑚𝑚. Thus it is somewhat surprising 

that the cell arrives near a critical point if it constructs its membranes without explicitly or 

implicitly tuning to the critical point, given that lipid composition is modulated by a wide variety 

of perturbations. In other words, it would be surprising if plasma membrane composition is near-

critical simply by coincidence. Furthermore, at least in certain cases, eukaryotic cells adapt to 

perturbations in ways that preserve the distance to the critical point, and corresponding physical 

properties. Zebrafish cells cultured at a range of temperatures from 20-32°C produce GPMVs with 

correspondingly altered 𝑇𝑇𝐶𝐶 (21). 

The concept of a high susceptibility near a critical point is useful in interpreting recent 

single molecule and super-resolution studies documenting the partitioning of phase marking 

probes to protein clusters in intact cells (83, 84, 191). In these studies, antibodies are used to cross-

link a membrane component that prefers either the Lo or Ld phase, then the differential partitioning 

of probes is monitored with respect to these domains. When proteins are clustered that themselves 

prefer the Lo phase, then probes that also prefer Lo tend to be recruited and those that prefer Ld 

tend to be excluded. In contrast, when proteins that prefer the Ld phase are clustered, then probes 

that prefer Lo are excluded and probes that prefer Ld are recruited. Similar to experiments with 

vesicles adhered to supported membranes (156), the act of clustering a protein or peptide biases 

concentration of many components in ways that can be detected when membranes have high 

susceptibility. In some cases the extent of probe partitioning approaches that observed in phase 

separated vesicles (84), while in others the sorting of components is much weaker (83). These 

differences could arise from differences in the coupling of protein clusters to membranes, or 

differences in the susceptibility of the membrane in different experimental systems. 

2.6 Criticality as it relates to biological function 

Since the inception of the raft hypothesis, the functional relevance of membrane domains 

has focused on their ability to compartmentalize protein and lipid components so that they can 

optimally function within biochemical networks (93). Critical phenomena are in many ways 

consistent with this framework. A super-critical membrane contains domains resembling ordered 

and disordered phases, and components that partition with the same phase will colocalize within 

these domains. The fluctuations are small and dynamic, consistent with evolving descriptions of 
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rafts over the decades (36, 215–217), but fluctuations alone are not an effective means to strongly 

colocalize or confine membrane components. This new reality requires us to move beyond the 

simple mechanisms proposed in the early raft literature to propose and test mechanisms that exploit 

the unique material properties of critical systems. Several proposals are highlighted in Figure 2.4 

and described below. 

2.6.1 Interactions between proteins: 

Composition fluctuations can mediate forces between membrane proteins, via a process 

termed ‘critical Casimir forces’ first described between conducting plates in vacuum (218). In 

essence, proteins will feel an effective attractive potential if they partition into the same phase 

because their coming into close proximity allows them to share the same local lipids, as shown in 

Figure 2.4A (219, 220). In contrast, proteins that prefer different environments will feel an 

effective repulsion, since there is an energetic cost to mixing their local environments. These 

potentials are weak (on the order of the thermal energy 𝑘𝑘𝐵𝐵𝑇𝑇) but have a range given by the 

correlation length and the size of the protein or protein cluster. This is long-ranged compared to 

other interaction modes experienced by membrane proteins such as curvature, electrostatics, and 

van der Waals potentials. It is notable that repulsion of components that prefer different phases has 

a larger magnitude than attraction between components that prefer the same phase. The Casimir 

force may contribute to the stability of protein assemblies, including phase separated polymer 

droplets that assemble on membranes. The Casimir force is also expected to alter biochemistry 

occurring at the membrane, by increasing or reducing the rates at which the proteins encounter one 

another. It is tempting to speculate that one functional role of palmitoylation, the post-translational 

modification that places a saturated acyl chain on proteins, is to tune the magnitude of this Casimir 

force for specific protein species. 

2.6.2 Susceptibility to receptor clustering: 

The high susceptibility of a critical membrane provides a means for the cell to sense a 

redistribution of a subset of membrane constituents by an external force (Figure 2.4B). Clustering 

a membrane protein that prefers one phase would bias the local lipid composition in proportion to 

the heightened susceptibility of the system. This effect can impact biochemical reactions that take 

place within these clusters, drastically altering the chemical steady state of the system. We 
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have studied this effect in the context of B cell receptor (BCR) signaling (83, 84). Here, the act of 

clustering the BCR or another ordered membrane component by an extracellular ligand stabilizes 

an ordered domain that contains a higher local concentration of kinase and a lower concentration 

of phosphatase than the membrane as a whole. This establishes a local environment that favors 

receptor phosphorylation and activation. In principle, this class of activation mechanism could 

contribute to a wide range of signaling pathways that are initiated by receptor clustering at the cell 

 
Figure 2.4 Four Functional Mechanisms Primarily Driven by Lo/Ld Partitioning in a Near-Critical Membrane 

Membrane proteins and other components are characterized by how they partition into Lo/Ld domains, as schematically shown. 
The combination of the partitioning of various components confers to the systems particular properties that can be used to drive 
biological function. The four mechanisms described here correspond to those described in greater detail in section 5 of the text. 
(A) Critical Casimir forces yield an effective attraction between components with like order preference (blue-blue pair), and 
an effective repulsion between components that prefer opposite lipid order (blue-magenta pair). The strength of these 
interactions increases rapidly when t is reduced, as ξ becomes large. (B) Clustering a protein that prefers Lo lipids (green) 
induces a distinct Lo domain due to the high susceptibility of the membrane near the critical point. As a result, other Lo-
preferring proteins (blue) are recruited to the cluster, and Ld-preferring proteins (magenta) are excluded. Similarly, an Ld 
domain could be stabilized by clustering an Ld-preferring component. C) The white object is a large protein with two 
conformations (pentagon/star). One conformation (pentagon) has no order preference and the other (star) prefers an Lo 
environment. The star conformation becomes more likely as t is decreased because there are large patches of Lo membrane 
that satisfy its preferred boundary condition. (D) Changes in t also result in changes in the chemical potentials of some 
membrane components, including components (orange oval) that can bind to a membrane protein (square) as an allosteric 
modulator, therefore a change in t can induce differences in binding site occupancy and the resulting distribution of protein 
states. 
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surface. This type of mechanism could also play a role in establishing biochemical environments 

in membrane regions where components are organized by processes occurring at the inner plasma 

membrane leaflet, such as at junctions between the ER and plasma membrane (221), or at sites 

where scaffolding adaptor proteins are anchored to membranes such as in neuronal synapses (222).  

2.6.3 Allosteric regulation of single proteins: 

Beyond contributing to the organization of proteins, the functioning of single proteins can 

also be impacted by the size and stability of fluctuations in the membrane. One mechanism that 

has been proposed requires that two conformational states of the protein in question have different 

boundary lipid preferences for Lo or Ld lipids (214). If that is the case, then a change in 𝑇𝑇𝐶𝐶 will 

differentially affect the free energies of the two conformational states. Roughly, a spatially 

extended lipid preference carries a free energy cost that decreases near 𝑇𝑇𝐶𝐶, so that a conformational 

state with strong order preference becomes more probable when fluctuations are large compared 

to the protein diameter. This model was proposed to explain striking correlations between the Tc-

altering effects and anesthetic or anesthetic-reversing potencies of a wide range of treatments, 

including short and long-chain n-alcohols and hydrostatic pressure (181, 182). 

2.6.4 Tuning binding of allosteric regulators: 

The chemical potential µ of a component is the thermodynamic parameter that controls the 

proclivity of that component to enter or exit a system. For example, its availability to bind in a 

binding pocket. Formally, the chemical potential is the increment of free energy to move one 

particle into the system from a particle bath. Equivalently, the chemical activity 𝑎𝑎 ∝ 𝑒𝑒µ/𝑘𝑘𝑘𝑘 can be 

used. In an ideal gas or ideal dilute solution, the chemical potential has a simple logarithmic 

relationship to concentration and linear in temperature (so that activity is proportional to 

concentration), and insensitive to the concentrations of other components(223). However, a near-

critical mixture is far from ideal – the critical point is precisely where weak cooperative 

interactions between the many components lead to strong effects (196). Therefore, we expect 

strong relationships between the chemical potentials of different components, especially when 

those components modulate 𝑇𝑇𝐶𝐶. 

Many transmembrane proteins have been shown to be modulated by binding to membrane 

components, prominently including cholesterol (223, 224) and phosphatidylinositol lipids (225), 
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and many other signaling lipids (226). If the chemical potential of some of these components is 

strongly modulated by concentration changes of other components, binding site occupancy will 

also vary, and we expect to see changes in protein functions that depend on binding of those 

components. Recent work by Ayuyan and Cohen has developed sensitive methods for measuring 

and controlling the chemical potential of cholesterol in the plasma membrane, and found that 

cholesterol chemical potential varies by ~2 𝑘𝑘𝐵𝐵𝑇𝑇 in different physiologically relevant cellular 

conditions (223). That amount is certainly adequate to induce substantial changes in binding site 

occupancy. Work remains to be done to explore if these differences can be attributed in any way 

to the critical phase transition, but it is exciting to speculate that perturbations that change 

membrane criticality may act indirectly by impacting the activity of membrane components. 

2.6.5 Criticality coupled to other processes describes a broad array of raft phenomena: 

The Ising universal critical phenomena are a good start for understanding membrane 

heterogeneity, but they are also clearly insufficient to explain all phenomena. As stated above, 

critical phenomena alone are not expected to give rise to regions of tight clustering or confinement 

of proteins and lipids, as is sometimes attributed to membrane domains. This said, it is possible 

that the local membrane environment can impact the conformational states sampled by membrane 

proteins in ways that facilitate binding through stronger protein binding sites. This type of 

synergistic effect could underlie a range of cholesterol dependent processes observed at the plasma 

membrane, including for example the transient pinning observed in studies of membrane protein 

and lipid dynamics (227). 

Another example where there is potential for synergy between criticality and other 

organizing principles relates to the ‘Active Composite Model’ proposed by Mayor and coworkers 

(228). This model posits that the plasma membrane interacts with a heterogeneous cortical actin 

network, composed of both active and passive components. The passive components largely 

resemble quenched disorder, as described earlier in this review. The active component is composed 

of motor driven short actin filaments that can actively drive certain membrane proteins and lipids 

into close proximity, coupling across membrane leaflets. Considering this model in a critical 

membrane provides a simple means to correlate domain structure across leaflets without requiring 

strong interactions such as interdigitation, since the cooperativity inherent in a phase transition can 

amplify weak couplings that may be present. Moreover, the high susceptibility of a critical 
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membrane allows it to robustly remodel when external forces are applied, including those 

originating from the actin cortex.  

More broadly, we envision that plasma membrane criticality is only one of several 

organizing principles that contribute to plasma membrane functions. It could be that interactions 

mediated by curvature and electrostatics superimpose with those mediated via criticality to define 

the plasma membrane interactome. It is also possible that there is interesting cross-talk between 

these various interaction modes. For example, studies have shown that the sorting of lipids into 

curved membranes can be mediated by the binding of curvature-sensing proteins that have 

preferences for one membrane phase (229). Proteins and peptides can also organize lipids through 

electrostatics, which in turn can stabilize domains impacted by fluctuations of ordered and 

disordered phase lipids. The broader implications of this potential cross-talk is largely unexplored, 

and could give rise to qualitatively new phenomena accessible to cell membranes (230).  

2.7 Concluding remarks 

While it has long been appreciated that plasma membrane lipids are capable of intriguing, 

non-ideal behaviors, much of the past literature is clouded by imperfect methods and an incomplete 

conceptual framework to conceptualize experimental observations. This backdrop led to 

controversial and often unphysical descriptions of lipid rafts. The past decade or so has brought 

key advances, including membrane isolations that largely preserve plasma membrane protein and 

lipid content and super-resolution imaging methods that do not suffer from the same pitfalls that 

plagued early raft research. Together with this, the membrane community has begun to appreciate 

the rich phenomena that naturally occur near miscibility critical points, many of which exhibit 

strong parallels with long-standing observations in both the membrane-biophysics and membrane 

biology literatures. Moving forward, the challenge will be to isolate these effects to enable a 

definitive measurement of the role of criticality in cell membranes, and to explore how these 

immiscibility-mediated interactions work alongside other physical and biochemical organizing 

principles to contribute to the rich array of biological functions at the cell surface. 
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Chapter 3 Chemical Potential Measurements Constrain Models of Cholesterol-

Phosphatidylcholine Interactions 

This chapter presents measurements of the chemical potential of cholesterol in mixtures 

with one or two phospholipids, with particular attention to membrane compositions in and near 

the liquid-liquid coexistence region, as well as to the non-ideal cholesterol dependence of the 

chemical potential curves. The chemical potential of cholesterol is of great interest to membrane 

biology, where cholesterol is thought to act as an allosteric modulator of many plasma membrane 

proteins, in addition to its role in determining the physical characteristics of the membrane. My 

contributions to this work are spread throughout, including helping develop the methods and 

analysis that are used, interpreting the resulting measurements in terms of principles of physical 

chemistry, and modeling the measurements with thermodynamic models. Kathleen Wisser and 

Anna Gaffney performed the experiments, and Taylor Schaffner and Benjamin Machta contributed 

to the modeling efforts, especially the models that involve stoichiometric complexes. Sarah Veatch 

devised the central questions of the study and was involved in all aspects of the process. A version 

of this chapter has been published at Biophysical Journal (231). 

3.1 Abstract 

Bilayer membranes composed of cholesterol and phospholipids exhibit diverse forms of 

non-ideal mixing. In particular, many previous studies document macroscopic liquid-liquid phase 

separation as well as nanometer-scale heterogeneity in membranes of phosphatidylcholine (PC) 

lipids and cholesterol. Here, we present experimental measurements of cholesterol chemical 

potential (μc) in binary membranes containing dioleoyl PC (DOPC), 1-palmitoyl-2-oleoyl PC 

(POPC), or dipalmitoyl PC (DPPC), and in ternary membranes of DOPC and DPPC, referenced to 

crystalline cholesterol. μc is the thermodynamic quantity that dictates the availability of cholesterol 

to bind other factors, and notably must be equal between coexisting phases of a phase-separated 

mixture. It is simply related to concentration under conditions of ideal mixing, but is far from ideal 

for the majority of lipid mixtures investigated here. Measurements of μc can vary with 

phospholipid composition by 1.5 Bk T at constant cholesterol mole-fraction implying a more than 
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five-fold change in its availability for binding receptors and other reactions. Experimental 

measurements are fit to thermodynamic models including cholesterol-DPPC complexes or 

pairwise interactions between lipid species to provide intuition about the magnitude of interactions. 

These findings reinforce that μc depends on membrane composition overall, suggesting avenues 

for cells to alter the availability of cholesterol without varying cholesterol concentration. 

3.2 Introduction 

Phospholipid bilayer membranes containing cholesterol are complex fluids that exhibit 

non-ideal mixing of components that is detectable by a broad range of experimental methods. Non-

ideal mixing can take the form of phase separation or nanoscopic domains detected by methods 

such as Fourier resonance energy transfer, electron spin resonance, nuclear magnetic resonance, 

neutron scattering, or fluorescence microscopy (e.g. (3, 11, 13, 99, 145, 232–234) reviewed in 

(92)). This non-ideality is a ubiquitous feature of these membranes, and is therefore expected to 

contribute to their chemical and material properties.  

One fundamental biophysical property of components within membranes is their chemical 

potential (μ), which describes the thermodynamic availability of these components. The quantity 

𝐴𝐴 = exp𝜇𝜇 ∕ 𝑘𝑘𝐵𝐵𝑇𝑇 is called the chemical activity of the component, where 𝑘𝑘𝐵𝐵𝑇𝑇 is Boltzmann’s 

constant times temperature, the thermal energy of the system. The chemical activity of a 

component determines how available it is to bind and influence targets at equilibrium. In dilute 

solutions, concentration-dependence of the chemical potential 𝜇𝜇 of a component is determined by 

its mixing entropy alone because solutes interact nearly exclusively with identical solvent 

molecules, producing an activity 𝐴𝐴 that is simply proportional to its concentration. Enthalpic 

deviations from this linear trend can emerge when a component’s interactions depend on local 

composition, with variations comparable to the thermal energy. Nontrivial entropic contributions 

to the free energy also contribute to nonlinearities when multicomponent systems are 

heterogeneous. In an extreme example, a condition for multiphase coexistence is that 𝜇𝜇 for each 

component is identical across phases, even when phases consist of components at vastly different 

concentrations and/or physical states. 

In this study, we measure the chemical potential of cholesterol (𝜇𝜇𝐶𝐶) within membranes 

containing different phospholipids or mixtures of phospholipids at room temperature. 𝜇𝜇, like any 

potential, is only thermodynamically defined up to a numerical constant and therefore numerical 
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values need to be reported with respect to a reference state that defines 𝜇𝜇 = 0. Here, 𝜇𝜇𝐶𝐶 is measured 

against a reference state of cholesterol crystals, which means that 𝜇𝜇𝐶𝐶 = 0 (and 𝐴𝐴𝐶𝐶  =  1) indicates 

the situation of cholesterol being fully saturated, as it would be for a system equilibrated with 

cholesterol crystals. Measuring 𝜇𝜇𝐶𝐶 provides a window into the molecular interactions that underlie 

heterogeneity and phase separation in these well characterized systems. We measure 𝜇𝜇𝐶𝐶 in large 

unilamellar vesicles (LUVs) by suspending them in aqueous solutions of methyl β cyclodextrin 

(MβCD), a sugar that binds cholesterol making it water soluble, using an equilibration scheme 

similar to Niu and Litman (34). We extend this method to measure µc at substantial cholesterol 

fractions, and calibrate it against cholesterol crystals following the scheme of Ayuyan and Cohen 

(223), who carried out similar measurements in cells. These experimental methods make it 

possible to report µc for a wide range of membrane compositions, adding to numerous past 

measures of cholesterol-lipid interactions in model membranes (34, 33, 235, 35, 236–240). 

Calibrating experimental findings to a common reference state simplifies a rigorous comparison 

of trends across measurements and experimental systems. We compare experimental 

measurements against several models of cholesterol-lipid interactions, with the goal of better 

understanding how these interactions give rise to phase separation and heterogeneity in 

multicomponent membranes. 

3.3 Materials and Methods 

Materials: 

Methyl β-cyclodextrin (MβCD) (CAS: 128446-36-6) was purchased from TCI Chemicals 

(Portland, OR). Cholesterol (Chol), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC), and 1-palmitoyl-2-oleoyl-glycero-3-

phosphocholine (POPC) were purchased from Avanti Polar Lipids (Birmingham, AL). 

Phospholipids were ordered as stock solutions in chloroform and cholesterol was a lyophilized 

powder. N-(7-Nitrobenz-2-Oxa-1,3-Diazol-4-yl)-1,2-Dihexadecanoyl-sn-Glycero-3-

Phosphoethanolamine (NBD-PE) was purchased from ThermoFisher (Waltham, MA). Cholesterol 

Oxidase from Streptomyces was purchased from MP Biomedicals (Santa Ana, CA) and 10-Acetyl-

3,7-dihydroxyphenoxazine (Amplex Red) was purchased from Cayman Chemicals (Ann Arbor, 

MI). All other chemicals and supplies including Horseradish Peroxidase, Raffinose, Millex-VV 



37 
 

Syringe Filter Units, and Amicon Ultra-Centrifugal Filter Unit, 30KDa, were purchased from Sigma-

Aldrich (St. Louis, MO) unless otherwise indicated.  

3.3.1 Preparing MβCD solutions and saturated solutions of MβCD and MβCD/Chol. 

Solutions containing MβCD and MβCD/Chol were prepared as described previously (223) 

with only minor modifications. Briefly, MβCD (5 mg/ml; 3.8 mM) was dissolved in a buffered 

saline solution containing 20mM HEPES, 135 mM NaCl, 5 mM KCl, 1 mM MgCl2, 1.8 mM 

CaCl2, 5.6 mM Glucose at pH 7.4. All solutions containing MβCD were degassed for 30 minutes 

under vacuum and stored under Argon gas to prevent oxidation. 

Fully saturated MβCD/Chol solutions were prepared by incubating MβCD solutions with 

excess cholesterol crystals. These were prepared by first wetting powdered cholesterol 

(approximately 18 mg for a 20 mL solution) with 200 µL of methanol and drying under Argon 

followed by 30 min under vacuum to remove residual solvent. This dried cholesterol aggregate 

was submerged in the MβCD solution described above, then sonicated two times for 2 min each 

using a Branson bath Ultrasonifier (model S450A, Process Equipment & Supply Inc, North 

Olmsted OH) to produce a cloudy suspension of small cholesterol crystals. This suspension was 

stored at room temperature under Argon with continuous rotation and was typically used at least 

12 h after preparation. Immediately prior to an experiment, the equilibrated solution was filtered 

through stacked 0.2 and 0.1 µm Millex-VV Syringe Filter Units to remove cholesterol crystals. 

Within minutes of sonication, MβCD solutions in contact with cholesterol crystals equilibrate, 

becoming saturated with cholesterol (Supplemental Figure 3.6 – see Section 3.7 for Supplemental 

Figures and Tables). Aqueous MβCD solutions with a range of cholesterol % saturation levels 

were prepared by diluting the fully (100%) saturated solution described above with 5 mg/ml 

MβCD solutions without cholesterol.  

The cholesterol standard was prepared by suspending 100 µg of lyophilized cholesterol in 

10 ml of MβCD solution. Because this is such a small quantity, we first suspended dry cholesterol 

in solvent, measured the appropriate volume corresponding to 100 µg cholesterol, and then 

lyophilized away the solvent prior to hydration in MβCD solution. Similar results were obtained 

when cholesterol in solvent was dried to a thin film under nitrogen then placed under vacuum prior 

to hydration in MβCD solution. 

3.3.2 Vesicle preparation 



38 
 

Lipid mixtures containing 0.1 mol% NBD-PE were assembled in chloroform, dried under 

Nitrogen while vortexing to form a thin film, then placed under vacuum for 30 minutes to remove 

residual solvent. The lipid film was hydrated to between 1 and 5 mg/ml in an aqueous buffer 

containing 300 mM raffinose and 5 mg/ml MβCD, vortexed, then large unilamellar vesicles 

(LUVs) were formed by extruding 15 times through a 100 nm Polycarbonate Membrane (part 

610005) using mini extruder (part 610000) both from Avanti polar lipids (Birmingham, AL). When 

DPPC was incorporated, lipids were hydrated and extruded at elevated temperature (>60°C) to 

prevent phase separation. Final molarity of lipid in suspension ranged between 1 and 8 mM, 

depending on lipid content and stock concentration, but were typically close to 7 mM to give a 

final lipid:MβCD molar ratio close to 2:1. MβCD is included within the hydration buffer to ensure 

that MβCD concentration remains constant when vesicles are diluted into calibrated MβCD 

containing buffers. Including MβCD in the hydration buffer also allows for cholesterol exchange 

between any multilamellar structures still present after extrusion (241). NBD lipids are not 

detected in the MβCD containing aqueous phase when vesicle suspensions are filtered to remove 

vesicles (Supplemental Figure 3.7), in good agreement with past studies demonstrating that much 

higher MβCD concentrations are required to solubilize lipids (34, 35, 242, 243). 

3.3.3 Equilibration and isolation of cholesterol in vesicles and aqueous MβCD solutions. 

LUVs were diluted into aqueous MβCD solutions with different % cholesterol saturation 

levels. For most measurements, 25 µl of LUVs were added to 475 µl of MβCD solution with a 

specified % cholesterol saturation to produce a final lipid concentration of 250 µg/ml lipid, which 

is between 300 µM and 400 µM lipid for the lipid mixtures investigated. This results in a typical 

lipid: MβCD ratio of approximately 1:10. Vesicle suspensions were allowed to equilibrate for at 

least 1 h and up to 24 h under agitation at room temperature to allow for cholesterol to exchange 

between vesicles and MβCD in the aqueous phase. After equilibration, 100 µl of the vesicle 

suspension was extracted and the remaining 400 µl was pelleted through centrifugation (18,000×g 

for 90 min at 23°C). 350 µl of the supernatant was extracted representing a suspension depleted in 

vesicles. The remaining 50 µl was mixed with the pellet to produce a suspension enriched in 

vesicles. These three suspensions (Supplemental Figure 3.8A) were then assayed to determine their 

cholesterol and phospholipid concentrations. The data were plotted as three points on a graph of 

cholesterol concentration vs. phospholipid concentration (Supplemental Figure 3.8B). The three 
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points fall on a line because the three samples contain the same aqueous phase with varying LUV 

concentrations. The % saturation of cholesterol in the aqueous MβCD phase is reported by the y 

intercept (extrapolating to zero phospholipid) while the slope is the cholesterol to phospholipid 

ratio within LUVs (Supplemental Figure 3.8C). Measurements conducted on different days and 

with different initial conditions produce values that collapse onto a single curve for a given 

phospholipid composition, providing evidence that LUVs and MβCD solutions are equilibrated 

(Supplemental Figure 3.8D). Past work indicates that equilibration occurs within minutes (34), and 

this was the case for all but mixtures of DPPC and cholesterol, which did not change in 

composition after 1h at room temperature but did after 24 h (Supplemental Figure 3.9).  

3.3.4 Measurement of cholesterol and phospholipid concentration  

The cholesterol concentration of aqueous MβCD solutions and suspensions of vesicles 

within aqueous MβCD solutions were determined using the Amplex red (AR) cholesterol oxidase 

assay described previously (223) with minor modifications. Stock solutions of cholesterol oxidase 

(CO; 200 U/ml in PBS), horseradish peroxidase (HRP; 200 U/ml in Potassium Phosphate buffer, 

pH 5) were prepared according to manufacturer's recommendations. AR was stored at 5 mg/ml 

DMSO. The AR reaction buffer was prepared immediately prior to each measurement in the 

MβCD buffer by adding 1% v/v Triton-X-100, 2 U/mL HRP, and 75 µg/ml AR either in the 

presence or absence of 2 U/ml CO. Including a detergent (Triton X-100) in the reaction buffer 

ensures that cholesterol within vesicles remains accessible to CO. 

50 µl of each vesicle suspension was plated in triplicate in a 96 well plate. Plates included 

a standard curve prepared from aqueous MβCD solutions with a range of % saturation levels. 

Plates also included a standard curve of LUVs in MβCD buffer with a range of dilutions. In some 

cases, samples were diluted with MβCD buffer prior to mixing with reaction buffer to ensure that 

readings would fall in a sensitive region of the standard curve. The fluorescence intensity of NBD 

was then measured using an iD3 Microplate Reader (Molecular Devices, San Jose, CA) with 

458 nm excitation and emission measured between 510-550 nm. After recording NBD intensities, 

50 µl of AR reaction buffer was added to every well within the plate. In most cases, plates included 

2 technical replicates for each sample with reaction mixture containing CO and a single replicate 

in the reaction mixture lacking CO. Including a replicate lacking the CO enzyme enables 

background subtraction on a sample-by-sample basis, isolating the effect of the CO enzyme. Plates 
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were sealed and incubated for 1h at 37°C, followed by at least 30 min at room temperature prior 

to recording AR fluorescence intensity with 545 nm excitation and emission between 600-650 nm. 

To determine the % saturation of cholesterol in samples, fluorescence intensities from wells 

lacking CO were subtracted from values obtained from CO containing wells (𝛥𝛥𝛥𝛥𝛥𝛥). The standard 

curve is nonlinear for the enzyme and cholesterol levels used, and we fit to the following form 

with fit parameters A and B: 

 { }(1 exp % )AR A B sat∆ = − − ×
.  

A representative standard curve with fit is shown in Supplemental Figure 3.10A.  

The standard curve was converted to units of cholesterol concentration using a cholesterol 

standard of 10 µg/ml in 5mg/ml MβCD. We find that saturated solutions contain 158±30 µM 

cholesterol when equilibrated at room temperature, which corresponds to a 25±5 MβCD molecules 

per cholesterol at saturation (Supplemental Figure 3.10B), in agreement with past measurements 

(27±3 in 3 mg/ml MβCD at 37°C (223)). We speculate that this dilute incorporation of cholesterol 

in MβCD in part due to heterogeneity in methylation of the commercial MβCD reagent used, since 

past studies document the importance of methylation in controlling MβCD/cholesterol binding 

(244). Past work supports that, when bound, 1 cholesterol interacts with 2 MβCD molecules (35). 

Supplemental Figure 3.10C shows how the cholesterol concentration of fully saturated solutions 

varies with temperature.  

To determine the phospholipid concentration of samples, cholesterol concentration was 

first evaluated in wells corresponding to the LUV standard curve. In most cases, the values 

obtained matched the expected concentrations given the vesicle stock concentration and the 

mole % of cholesterol in the initial preparation (Supplemental Figure 3.11A), especially 

considering some loss is expected during extrusion. Occasionally, cholesterol levels were lower 

than expected, indicating that LUVs were present at lower concentration, possibly due to instability 

of the vesicle suspension, especially after storage (Supplemental Figure 3.11B). To account for 

these errors, the phospholipid concentration within standard vesicle wells was inferred from the 

measured cholesterol concentration using the known cholesterol mole % of LUVs. Plots of NBD 

fluorescence intensity vs. inferred phospholipid concentration follow a linear trend (Supplemental 

Figure 3.11C), and a linear fit is used to infer phospholipid concentration from NBD intensity in 

the remaining wells. We estimate that errors in the cholesterol mole % of prepared vesicles is 2%, 

and this value is propagated to measurements of phospholipid concentration in all calculations.  
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In all cases, functions were fit to experimental data points using the fit() function in 

MATLAB (MathWorks, Natick, MA). Errors arising from uncertainty in the standard curve are 

applied to predicted values using the predint() function within MATLAB, using the optional input 

‘functional’. When used this way, predint() calculates confidence intervals on predicted values 

taking into account errors in parameter values but not scatter of data points. When appropriate, 

errors are propagated through computations to obtain the reported errors.  

3.3.5 Calibrating cholesterol activity in MβCD/Chol mixtures. 

The relationship between cholesterol chemical activity and cholesterol concentration using 

cholesterol crystals as the reference state was measured for aqueous solutions containing 5 mg/ml 

MβCD following the protocol described previously (223). Briefly, saturated solutions of 

cholesterol in hydrated hexadecane were prepared by dissolving excess cholesterol in hexadecane 

and equilibrating overnight. Cholesterol crystals were filtered, then the solution was hydrated in 

excess water and equilibrated for an additional 24 h, followed by a second filtration to remove 

additional cholesterol crystals formed due to its lower solubility in hydrated solvent (245). 

Hydrated hexadecane solutions covering a range of % cholesterol saturations were assembled by 

mixing saturated and cholesterol free hexadecane solutions at different volume ratios. MβCD 

solutions over the same range of % cholesterol saturations were assembled by mixing fully 

saturated and cholesterol free MβCD solutions at the same volume ratios. 500 μL of the aqueous 

MβCD solution was then combined with 100 µL of the organic hexadecane solution at each 

saturation level, capped under argon, and incubated overnight with shaking to equilibrate. After 

equilibration, the aqueous phase was separated through centrifugation and retained. Samples were 

agitated for 30 min along with a single polystyrene bead (1/8 inch Polyballs, Cat. No. 17175; 

Polysciences, Warrington, PA) to remove residual solvent. Finally, 50 µL of each solution was 

then transferred to a multiwell plate in triplicate, along with a standard curve containing dilutions 

of the saturated cholesterol solution in MβCD buffer. Cholesterol content in each well was 

measured as described above.  

Some hexadecane is soluble in the MβCD aqueous phase and some MβCD is soluble in 

hexadecane, leading to a slightly lower effective concentration of MβCD in solutions equilibrated 

against hexadecane compared to freshly prepared MβCD. As a result, the cholesterol concentration 

measured for the MβCD/Chol sample incubated with the fully saturated hexadecane solution is 
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slightly lower than in MβCD/Chol solutions incubated with cholesterol crystals alone. To account 

for this, we normalize to the fully saturated value, as shown in Supplemental Figure 3.12A. This 

applies the assumption that the cholesterol to MβCD ratio at saturation is independent of MβCD 

concentration for the narrow range of MβCD concentrations considered. Past work interrogated 

this issue further, demonstrating that similar calibration curves are obtained with different solvents 

when this treatment is applied (223). Normalized measured % cholesterol saturation of aqueous 

MβCD solutions were plotted against the known activity of solutions of cholesterol in hexadecane 

and fit to a Langmuir isotherm which takes the following functional form (Supplemental Figure 

3.12B):  

 
% (1 )

FkAsat kA= + . 

The best fit values for 𝑘𝑘 and 𝐹𝐹 were 0.6±0.1 and 2.6±0.3 respectively. This function and 

associated errors were used to convert the measured % saturation of cholesterol in MβCD to 

cholesterol chemical activity.  

3.3.6 Evaluating best fit parameters of mean-field models:  

The following mean-field Gibbs free energies were used to generate expressions for 𝜇𝜇𝐶𝐶 

which were then fit to experimental observations. The free energies, implied chemical potentials, 

and other properties of the models are described at length in supplemental notes in Section 3.8. In 

all cases, 𝜇𝜇𝐶𝐶 was evaluated as an appropriate derivative to match the definition of the chemical 

potential: 𝜇𝜇𝐶𝐶 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑁𝑁𝐶𝐶

. More information can be found in Supplemental Note 1. Several of the 

following belong to the class of models known as regular solution models. General background 

for regular solution models is given in Supplemental Notes 2 and 3. In the following, the subscript 

𝑖𝑖 is either C, S, or U to denote cholesterol, saturated lipid or unsaturated lipid, respectively. 𝑁𝑁𝑖𝑖 and 

𝜇𝜇𝑖𝑖0 are the number and chemical potential offset of molecules of each species, and 𝑁𝑁 = 𝑁𝑁𝐶𝐶 + 𝑁𝑁𝑈𝑈 +

𝑁𝑁𝑆𝑆 is the total number of molecules. 

 
Complexes without additional interactions: 

𝐺𝐺 = �𝑁𝑁𝑖𝑖′�𝜇𝜇𝑖𝑖0 + 𝑘𝑘𝐵𝐵𝑇𝑇 ln𝑁𝑁𝑖𝑖′ 𝑁𝑁′⁄ � + 𝑁𝑁𝑐𝑐𝑐𝑐 ln
𝑁𝑁𝑐𝑐𝑐𝑐 ∕ 𝑁𝑁′

𝐾𝐾𝑒𝑒𝑒𝑒𝑖𝑖

, 
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where 𝑁𝑁𝑖𝑖′ is the number of molecules of components not found in complexes and the chemical 

reaction of complex association is: 𝑞𝑞C + 𝑝𝑝S ⇌ C𝑞𝑞S𝑝𝑝, with forward equilibrium constant 𝐾𝐾𝑒𝑒𝑒𝑒. The 

𝑁𝑁𝑖𝑖′ are related to the total numbers of each lipid component by 𝑁𝑁𝐶𝐶′ = 𝑁𝑁𝐶𝐶 − 𝑞𝑞𝑁𝑁𝑐𝑐𝑐𝑐, 𝑁𝑁𝑆𝑆′ = 𝑁𝑁𝑆𝑆 − 𝑝𝑝𝑁𝑁𝑐𝑐𝑐𝑐, 

𝑁𝑁𝑈𝑈′ = 𝑁𝑁𝑈𝑈, and 𝑁𝑁′ = 𝑁𝑁𝐶𝐶′ + 𝑁𝑁𝑆𝑆′ + 𝑁𝑁𝑈𝑈′ + 𝑁𝑁𝑐𝑐𝑐𝑐. 𝑁𝑁𝑐𝑐𝑐𝑐 is the number of complexes and is determined by 

minimizing 𝐺𝐺 as a special case of the procedure described in Supplemental Note 4. 

Complexes with additional interactions: 

𝐺𝐺 = �𝑁𝑁𝑖𝑖′(𝜇𝜇𝑖𝑖0 + 𝑘𝑘𝐵𝐵𝑇𝑇 ln𝑁𝑁𝑖𝑖′ 𝑁𝑁′⁄ ) + 𝑁𝑁𝑐𝑐𝑐𝑐 ln
𝑁𝑁𝑐𝑐𝑐𝑐 ∕ 𝑁𝑁′

𝐾𝐾𝑒𝑒𝑒𝑒
+ 2𝑘𝑘𝐵𝐵𝑁𝑁𝑐𝑐𝑐𝑐(𝑇𝑇𝑐𝑐𝑐𝑐−𝑠𝑠𝑁𝑁𝑆𝑆′ + 𝑇𝑇𝑐𝑐𝑐𝑐−𝑢𝑢𝑁𝑁𝑈𝑈′ ) 𝑁𝑁′⁄

𝑖𝑖

, 

where 𝑇𝑇𝑐𝑐𝑐𝑐−𝑠𝑠 and 𝑇𝑇𝑐𝑐𝑐𝑐−𝑢𝑢 are the critical temperatures associated with complex-saturated lipid and 

the complex-unsaturated lipid binary systems. All other interaction terms are set to 0. See 

Supplemental Note 4 for a detailed explanation and derivation of this model. 

Regular solution without complexes: 

𝐺𝐺 = �𝑁𝑁𝑖𝑖(𝜇𝜇𝑖𝑖0 + 𝑘𝑘𝐵𝐵𝑇𝑇 ln𝑁𝑁𝑖𝑖 𝑁𝑁⁄ ) + �𝑧𝑧𝐽𝐽𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑁𝑁𝑗𝑗 ∕ 𝑁𝑁
𝑖𝑖<𝑗𝑗𝑖𝑖

, 

where 𝐽𝐽𝑖𝑖𝑖𝑖 is the interaction energy between the ith and jth component, and 𝑧𝑧 is the lattice 

coordination number, which we take as 4 so that we can compare to lattice model simulations on 

a square lattice. Derivations for this model are laid out in Supplemental Note 3. 

Models are fit simultaneously to all observations except those that were deemed to be in 

liquid-liquid or liquid-solid coexistence regions, by weighted nonlinear least squares with weights 

given by inverse square experimental errors. All fitting is conducted using MATLAB’s fit() 

function. Weights are normalized to average to 1 overall. Phase separated points are excluded 

because mean field Gibbs free energies deviate from the true free energy in phase separated 

regions. All fits to 𝜇𝜇𝐶𝐶 are accomplished through a 2 step process. In the first fit, weights are 

determined from experimental errors in 𝜇𝜇𝐶𝐶 only. In the second fit, total errors are estimated by 

propagating experimental errors in the cholesterol mole % to 𝜇𝜇𝐶𝐶 using the initial fit. On plots, error 

bounds are estimated using predint(), which produces error estimates for predicted values. 

3.3.7 Evaluating approximate phase boundaries and tie lines in mean field models: 

We determine phase separated regions of mean field models by the approach of (246). 

Briefly, the phase separated region is the region of composition space for which the surface 

𝐺𝐺(𝑥𝑥𝐶𝐶 , 𝑥𝑥𝑆𝑆) is greater than the convex hull of this surface. A discretized convex hull of 𝐺𝐺 is 
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determined using MATLAB’s convexhull function, applied to 𝐺𝐺 evaluated at a fine grid of 

compositions (𝑥𝑥𝐶𝐶 , 𝑥𝑥𝑆𝑆), with uniform grid spacing of 2−10. The resulting triangulation yields 

triangles with a long length:width ratio in the phase coexistence region. These long triangles are 

selected by choosing the triangles where this ratio is more than 20, and the long axis of triangles 

that meet this criterion are taken as approximate tie lines. The phase boundary is approximated as 

the (2-dimensional) convex hull of the endpoints of the tie lines. Finally, the chemical potential 

within the phase separated region is approximated as a linear interpolation across this region of 

the chemical potential evaluated at the endpoints of the tie lines. 

3.3.8 Three-component lattice fluid simulations: 

The regular solution model discussed above corresponds to a mean field approximation to 

a three-component lattice fluid with nearest-neighbor interaction Hamiltonian given by 

𝐻𝐻 = �𝐽𝐽𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗
〈𝑖𝑖,𝑗𝑗〉

 

where 〈𝑖𝑖, 𝑗𝑗〉 indicates that the sum is to be taken over nearest neighbors, 𝑠𝑠𝑖𝑖 is the component at site 

𝑖𝑖, and 𝐽𝐽𝑘𝑘𝑘𝑘 is the interaction energy between species 𝑘𝑘 and species 𝑙𝑙. To compare to the full 

thermodynamics of this system, it is simulated using home-built C and MATLAB code 

implementing a fixed-composition Metropolis sampler for this Hamiltonian. The fixed 

composition criterion is enforced by only proposing updates that swap the components at two sites. 

The simulations are performed on a periodic LxL site square lattice with L=256, with 1000xLxL 

swaps proposed between samples, and the first 50 samples are discarded to allow for equilibration. 

For each simulated condition, 𝜇𝜇𝐶𝐶 is obtained from 7 simulation samples following a procedure 

derived in detail in Supplemental Note 5. In brief, we define 

𝑊𝑊𝑘𝑘→𝑙𝑙 = �𝛿𝛿(𝑠𝑠𝑖𝑖 = 𝑘𝑘) exp(−𝛽𝛽[𝐸𝐸𝑙𝑙 − 𝐸𝐸𝑘𝑘] 2⁄ )
𝑖𝑖

, 

where 𝑘𝑘, 𝑙𝑙 index chemical species, 𝑖𝑖 indexes sites of the lattice, 𝑠𝑠𝑖𝑖 is the species at site 𝑖𝑖, and 𝐸𝐸𝑘𝑘 is 

the value of the Hamiltonian with site 𝑖𝑖 replaced by species 𝑘𝑘. It may be shown that 
𝑊𝑊𝑗𝑗→𝑖𝑖

𝑊𝑊𝑖𝑖→𝑗𝑗
= exp𝛽𝛽�𝜇𝜇𝑗𝑗 − 𝜇𝜇𝑖𝑖� 

when the lattice is in equilibrium with a bath of particles at specified chemical potentials 𝜇𝜇𝑖𝑖. The 

calculated chemical potential differences are integrated over composition space to estimate the 
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overall free energy per molecule 𝑔𝑔 = 𝐺𝐺 𝑁𝑁⁄ . Finally, 𝜇𝜇𝐶𝐶 can be obtained from 𝑔𝑔 and the chemical 

potential differences using the identities derived in Supplemental Note 1. 

To determine the phase diagram implied by the simulations, tie lines are estimated from 

individual samples of each simulated composition. Local composition images are computed by 

convolving the binary matrix of site occupancies for each component with a disc with a diameter 

of 25 lattice sites. For a phase-separated composition, 2d histograms of these local compositions 

with respect to Cholesterol and DPPC mole fractions show two peaks, with compositions equal to 

those of the ends of the tie-line that the overall simulated composition falls on. Compositions that 

do not phase separate are characterized by a single peak in their local composition histograms. 

Experimental observations of 𝜇𝜇𝐶𝐶 were fit to this model following a simplified scheme. 

First, simulations of binary cholesterol-lipid mixtures with a wide range of interaction parameters 

were carried out. These were fit simultaneously to the binary cholesterol-DOPC and cholesterol-

DPPC mixture data points to produce initial estimates of 𝐽𝐽𝐶𝐶−𝑆𝑆, 𝐽𝐽𝐶𝐶−𝑈𝑈 and 𝜇𝜇0. Then, the remaining 

parameter 𝐽𝐽𝑆𝑆−𝑈𝑈 was estimated by conducting a series of simulations using these initial estimates, 

at fixed cholesterol fraction over a range of DOPC/DPPC ratios, considering a range of 𝐽𝐽𝑆𝑆−𝑈𝑈 

values, and choosing the value that most closely matched the data for those mixtures. Simulations 

of the full model over the entire composition space were conducted for a 3x3x3 grid of interaction 

parameter values centered on these initial estimates, with grid spacing of approximately 0.2 kBT. 

The optimal parameter set was chosen as that with the best simultaneous weighted least-squares 

fit to all the 𝜇𝜇𝐶𝐶 data, as described above for the mean field models. 

3.4 Results 

3.4.1 Measurements of µc in binary mixtures with DOPC, POPC, and DPPC. 

Cholesterol activity in membranes is measured following a procedure that takes advantage 

of the property that the chemical activity 𝐴𝐴 of a compound is constant across subsystems once 

those subsystems have come to thermodynamic equilibrium. In this context, if the cholesterol 

activity can be reliably measured in one state, it can be inferred in the second state when states are 

equilibrated. Chemical activity is defined relative to a reference state, and by convention we choose 

this reference state by setting 𝐴𝐴 =  1 in cholesterol crystals at room temperature. Fully saturated 

solution are prepared through equilibration with cholesterol crystals, so that 𝐴𝐴 =  1 in saturated 

solutions as well.  
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Briefly, we first equilibrated aqueous solutions of cholesterol and 5 mg/ml MβCD with 

cholesterol dispersed in an organic solvent. In the organic phase, cholesterol activity is 

proportional to its concentration, therefore measuring cholesterol concentration within the 

coexisting aqueous MβCD solution calibrates the relationship between cholesterol concentration 

and activity in this phase. In separate measurements, we equilibrated membranes with aqueous 

solutions containing MβCD and cholesterol at room temperature, then measured the cholesterol 

mole % in membranes and the % saturation of cholesterol within the MβCD solutions. Applying 

the calibration curve for aqueous MβCD solutions, we can then infer the cholesterol activity within 

the membrane. These steps are presented schematically in Figure 3.1, and detailed experimental 

procedures are described in Materials and Methods.  

Figure 3.2A shows how cholesterol chemical activity varies with cholesterol mole % in 

vesicles of different phospholipids, highlighting the significant impact of phospholipid chains. For 

reference, we also plot the expectation from ideal mixing as a dashed line. This dashed line 

contains a single arbitrary constant, corresponding to the slope of the activity vs concentration or, 

equivalently, to a constant offset in the chemical potential. We choose this slope to agree with past 

findings that the maximum solubility of cholesterol in several membrane systems is near 

67 mole % (247–250). This solubility limit implies that cholesterol membranes with 67 mole % 

cholesterol can be equilibrated with cholesterol crystals, and therefore have an activity of 𝐴𝐴 = 1. 

When the chemical activity is converted to chemical potential according to 𝜇𝜇𝐶𝐶 = 𝑘𝑘𝐵𝐵𝑇𝑇 ln𝐴𝐴 (Figure 

3.2B), the dashed line corresponding to ideal mixing becomes curved. Figure 3.2C presents the 

excess Gibbs free energy per molecule, 𝑔𝑔𝐸𝐸, which is calculated according to 𝑔𝑔𝐸𝐸 = 𝜇𝜇𝐶𝐶 −

𝑘𝑘𝐵𝐵𝑇𝑇 ln(𝑐𝑐ℎ𝑜𝑜𝑜𝑜 % 67⁄ %). 𝑔𝑔𝐸𝐸 isolates the non-ideal behavior of 𝜇𝜇𝐶𝐶 referencing to a maximum 

solubility of 67% cholesterol in all membranes. Note that while there is a single arbitrary offset to 

these curves, their variation both with cholesterol fraction, and with the phospholipid forming the 

rest of the membrane implies non-ideal mixing.  

The experimental trends for DOPC shown in Figure 3.2 closely resemble expectations of 

ideal mixing over a broad range of cholesterol mole %, indicating that the magnitude of 

interactions between cholesterol molecules is close to the magnitude of interactions between 

cholesterol and DOPC lipids within membranes. In fact, the trends suggest that DOPC-cholesterol 

interactions are slightly less favorable than cholesterol-cholesterol interactions since 

measurements systematically reside above the ideal mixing line in Figure 3.2A,B, and because of 
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the downward trend in 𝑔𝑔𝐸𝐸 with increasing cholesterol mole % in Figure 3.2C. This means that it 

becomes relatively easier to add additional cholesterol molecules to DOPC membranes as 

cholesterol concentration is increased. An alternate possibility is that the maximum solubility of 

cholesterol in DOPC membranes is somewhat less than 67%, and that the apparent curvature in 

Figure 3.2A and downward trend in Figure 3.2C arise from subtle systematic errors. A more careful 

investigation would be needed to distinguish these possibilities.  

 
Figure 3.1 Measurement of cholesterol activity in membranes referenced to cholesterol crystals. 

(A) Schematic overview of the experimental approach. (left) Cholesterol suspensions in the solvent hexadecane are 
equilibrated with aqueous suspensions of cholesterol in MβCD as in (11). (right) In separate measurements, vesicles of defined 
phospholipid content are equilibrated with aqueous suspensions of cholesterol in MβCD, as in (10). (B) (left) Cholesterol 
activity in hexadecane is assumed to be simply proportional to its concentration, referenced to its fully saturated state 
established by equilibration with cholesterol crystals (red square symbol). The fully saturated state is shown schematically in 
the top left inset and a less saturated state is shown schematically in the bottom right inset. (middle) Cholesterol activity in 
aqueous solutions of MβCD is calibrated through equilibration with cholesterol/hexadecane solutions. Cholesterol activity in 
MβCD solutions is also referenced to its fully saturated state established by equilibration with cholesterol crystals (red square 
symbol). The fully saturated state is shown schematically in the top left inset and a less saturated state is shown schematically 
in the bottom right inset. (right) Cholesterol activity in DOPC vesicles measured through equilibration with aqueous MβCD 
suspensions with calibrated cholesterol activity. Cholesterol activity in membranes is also referenced to its fully saturated 
state, but this state is not probed directly. The results of multiple individual trials are shown to collapse onto a single curve, 
as expected when systems are equilibrated. The black curve is a polynomial fit to points with error bounds (gray shaded 
region) to guide the eye. In all cases, an activity of 1 corresponds to the activity of cholesterol in its crystalline state at room 
temperature. 
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Experimental trends observed for cholesterol within DPPC membranes are far from 

expectations of ideal mixing, with values falling systematically below the ideal mixing lines. This 

indicates that the magnitude of attractive interactions between cholesterol and DPPC far exceed 

those between cholesterol molecules. The steep positive slope of 𝑔𝑔𝐸𝐸 vs cholesterol mole% in 

DPPC membranes indicates that the favorable cholesterol-membrane interactions are substantially 

attenuated at higher cholesterol mole %. This effect could be due to unfavorable cholesterol—

cholesterol interactions screening the more favorable DPPC—cholesterol interactions that 

dominate at lower chol mole %, to cholesterol molecules saturating a limited pool of DPPC 

molecules, to changes in membrane structure associated with higher cholesterol content, or 

 
Figure 3.2 Cholesterol activity (A), chemical potential (B), and excess Gibbs free energy per molecule (C) in 
binary PC/Chol membranes. 

The dashed lines indicate expectations of ideal mixing, assuming a maximum solubility of 67% cholesterol in PC membranes. 
The gray points are measurements in red blood cells (RBC) replotted from (11). (A) Experiments directly measure cholesterol 
chemical activity (𝐴𝐴). (B) Activity is converted to chemical potential (𝜇𝜇𝐶𝐶) according to 𝜇𝜇𝐶𝐶 = 𝑘𝑘𝐵𝐵𝑇𝑇 ln𝐴𝐴. (C) The excess Gibbs 
free energy per molecule (𝑔𝑔𝐸𝐸) describes deviations of 𝜇𝜇𝐶𝐶 from that expected from ideal mixing, up to a constant offset. It is 
evaluated according to 𝑔𝑔𝐸𝐸 = 𝜇𝜇𝐶𝐶 − 𝑘𝑘𝐵𝐵𝑇𝑇 ln(𝑐𝑐ℎ𝑜𝑜𝑜𝑜 % 67⁄ %). Due to the log transformation, small experimental errors in points 
with low activity translate to large errors in chemical potential and 𝑔𝑔𝐸𝐸. Some of the corresponding points with large error bars 
are cut of in plots B and C for presentation purposes. 
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combinations of these factors. DPPC/Cholesterol mixtures phase separate into liquid-ordered and 

solid phases below 30% cholesterol at room temperature (13), and our measurements in Figure 3.2 

are consistent with these past observations. Cholesterol activity remains low even at elevated 

cholesterol concentrations, consistent with cholesterol’s exchange between two equilibrated states, 

one of which is a gel phase with very low cholesterol concentration and therefore very low 

cholesterol activity.  

Figure 3.2 also shows measurements for POPC membranes at room temperature and past 

measurements for red blood cell (RBC) membranes conducted at 37°C, replotted from (223). 

These both exhibit intermediate and more complex behaviors than observed for cholesterol within 

DOPC or DPPC membranes. Both cases are not ideally mixed, exhibiting more attractive 

interactions between cholesterol and the average membrane component than between cholesterol 

molecules themselves. For POPC, cholesterol activity is only weakly dependent on cholesterol 

mole % in vesicles, meaning that the difference in interactions nearly cancels the difference in 

mixing entropy over a range of cholesterol concentrations. When these contributions exactly 

balance, phase separation occurs, suggesting that POPC/Cholesterol membranes exhibit properties 

close to that of a phase separated system, in good agreement with past studies (145, 251, 252). 

Cholesterol activity is independent of cholesterol concentration for RBC membranes with 15–

30 mole % cholesterol, consistent with phase coexistence in that region. We note that 

measurements in RBCs were conducted at 37°C, with a reference state of cholesterol crystals at 

this same temperature. Because of this, it is appropriate to compare trends present in RBC 

measurements to those conducted in purified vesicles at room temperature but not absolute values. 

Various past studies have measured cholesterol partitioning between membranes of 

different compositions or between membranes and MβCD, and their results imply chemical 

potentials with respect to various reference states (33–35, 235, 238–240). Much of this past work 

is not directly comparable, because it assumes simple Nernst partitioning with constant partition 

coefficient, equivalent to assuming 𝑔𝑔𝐸𝐸 is independent of cholesterol concentration. In addition, 

most of the existing literature reports on different lipids or lipid mixtures than those presented here. 

However, cholesterol-dependent measurements equivalent to chemical potentials have been 

determined in POPC-cholesterol mixtures at 25°C using calorimetric methods, which 

simultaneously measure partitioning and the enthalpy of transfer between MβCD and LUVs (35). 
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We find good quantitative agreement with these past studies, as demonstrated in Supplemental 

Figure 3.13. Supplemental figures and tables are included in Section 3.7. 

3.4.2 Measurements of µc in ternary mixtures of DOPC, DPPC, and cholesterol. 

We have also measured 𝜇𝜇𝐶𝐶 in vesicles containing both DOPC and DPPC, and results are 

summarized in Figure 3.3. LUVs were prepared with phospholipids at the specified molar ratio 

and incubation in aqueous MβCD/cholesterol mixtures produced vesicles that retained the same 

molar ratio of DOPC to DPPC but with varying cholesterol content. To smooth noise, results for 

specific DOPC/DPPC ratios were fit to polynomials to capture both the trend and the confidence 

interval of the measurement (solid lines and shaded regions in Figure 3.3A respectively). These 

fits are used to interpolate the chemical potential surface shown in Figure 3.3B.  

Mixtures of DOPC, DPPC, and cholesterol undergo liquid-liquid and solid-liquid phase 

separation, and Figure 3.3B also includes tie-lines measured for a closely related lipid mixture by 

deuterium NMR (127) and an estimated phase boundary. The measured 𝜇𝜇𝐶𝐶 surface includes 

regions both inside and outside of the estimated miscibility gap but does not extend to 

compositions where gel or solid phases are reported at lower cholesterol and higher DPPC 

concentrations.  

Figure 3.3C shows linear trajectories through the measured 𝜇𝜇𝐶𝐶 surface. These include 

trajectories that run in the direction of estimated tie-lines within the miscibility gap. We note that 

the estimated phase boundary and therefore tie-line direction drawn here is rotated slightly from 

those determined in past work using by 2H NMR. This was done to enforce that 𝜇𝜇𝐶𝐶 remains 

constant along the tie-line within the coexistence region, a requirement for chemical equilibrium 

in phase-separated systems (253). Minor differences in the phase boundary and tie-lines are 

expected here both because a protonated DPPC lipid is used and because a small mole % of NBD-

PE is included (0.1%) (254). Trajectories that run parallel to tie-lines but pass outside of the 

miscibility gap also retain a shallow slope over the range of compositions interrogated, similar to 

those observed for cholesterol within POPC membranes in Figure 3.2. Trajectories through the 𝜇𝜇𝐶𝐶 

surface that run perpendicular to tie-lines increase with increasing cholesterol concentration. 

Trajectories at constant cholesterol concentration vary by several 𝑘𝑘𝐵𝐵𝑇𝑇 as phospholipid ratios are 

changed, highlighting that differential interactions between cholesterol and different phospholipids 

play important thermodynamic roles in this system. In addition, some constant cholesterol
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trajectories appear nonlinear, potentially indicating nontrivial DOPC—DPPC interactions. In the 

absence of these interactions, a linear trend would be expected as the prevalence of cholesterol—

 
Figure 3.3 µc in ternary DOPC/DPPC/cholesterol membranes. 

(A) Measured 𝜇𝜇𝐶𝐶 for vesicles prepared with the specified DOPC/DPPC ratios at room temperature. As in Figure 3.2, the 
dashed line represents expectations of ideal mixing assuming a solubility limit of 67 mole % cholesterol. Solid colored lines 
are fits to polynomial functions and shaded regions indicate 68% confidence intervals of predicted values. (B) The 𝜇𝜇𝐶𝐶 surface 
observed at room temperature extrapolated from the fits shown in part A with measured points indicated as circle symbols. 
Black straight lines are tie-lines redrawn from (31) for DOPC/DPPCd62/Chol at a lower temperature (17.5°C) to account for 
differences in the melting temperature between protonated DPPC and deuterated DPPCd62. The curved line is an estimate of 
the miscibility phase transition boundary (binodal curve), rotated slightly from the one reported at 17.5°C in (31). (C) 
Trajectories through the extrapolated 𝜇𝜇𝐶𝐶 surface in the direction of tie-lines (left), perpendicular to tie-lines (middle) and at 
constant cholesterol (right). Circular points indicate positions on these interpolated curves that pass close to measured values. 
Shaded regions indicate 68% confidence intervals and compositions of the individual cuts are indicated on the triangles shown 
as insets. 
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DOPC interactions is linearly exchanged for cholesterol—DPPC interactions. Plots resembling 

Figure 3.3 but reporting results as activity or the excess Gibbs free energy per molecule are 

provided in Supplemental Figure 3.14.  

𝜇𝜇𝐶𝐶 is the derivative of the Gibbs free energy with respect to the number of cholesterol 

molecules and is therefore specified by thermodynamic models. The figures that follow use 

measurements of 𝜇𝜇𝐶𝐶 shown in Figure 3.3 to constrain thermodynamic models of DOPC, DPPC, 

cholesterol membranes. Our goal is to better understand the magnitude and type of interactions 

that give rise to the phase behavior of these systems, as well as their implications for other physical 

properties that are not measured here, rather than to select the most appropriate model. Models are 

fit to all measurements simultaneously, excluding points corresponding to compositions within the 

phase separation region, as described in Materials and Methods.  

3.4.3 Measurements of µc limit the binding affinity of cholesterol-phospholipid complexes in a 

condensed complex model.  

One way to explain non-ideal mixing is in a model where other lipids compete for 

cholesterol by forming stoichiometric complexes, thereby lowering the concentration of unbound 

cholesterol. Previous work proposed a condensed complex model to describe aspects of 

phospholipid-cholesterol phase diagrams in monolayer and bilayer membranes (255–258). In this 

model, cholesterol and saturated phospholipids interact by assembling into complexes of fixed 

stoichiometry with an affinity characterized by an equilibrium constant 𝐾𝐾𝑒𝑒𝑒𝑒, as described in 

Materials and Methods and derived in Supplemental Note 4. Figure 3.4A presents a model that 

allows for the formation of a condensed complex made up of cholesterol and DPPC with a fixed 

stoichiometry of 1:1, but does not contain additional interactions between components or between 

components and complexes, as done in past work (257, 258). The model used in Figure 3.4A 

contains 2 parameters: a constant offset 𝜇𝜇𝐶𝐶0 which defines the solubility limit (mole % cholesterol 

at 100% saturation), and the equilibrium constant of complex formation (𝐾𝐾𝑒𝑒𝑒𝑒). This model captures 

many aspects of experimental 𝜇𝜇𝐶𝐶 measurements. For example, the observed shifts towards larger 

cholesterol mole % for smaller DOPC/DPPC ratios. Also, the best fit 𝜇𝜇𝐶𝐶0 corresponds to a solubility 

limit of 69% chol in DOPC and 75% in DPPC, in reasonable agreement with past reports of 67% 

in both systems (247). The best fit value for 𝐾𝐾𝑒𝑒𝑒𝑒 is 5.7, corresponding to a binding affinity of 1.7 
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𝑘𝑘𝐵𝐵𝑇𝑇, which is much lower than assumed in some previous studies (255–258). This weak 

association energy means that the fraction of cholesterol not bound in complexes remains 

substantial across all lipid compositions, as shown in Supplemental Figure 3.15A. The model of 

Figure 3.4A does not support phase separation by construction, since the Gibbs free energy does 

not include interactions between components beyond those required for complex formation.  

 
Figure 3.4 Fits of µc to two models with condensed complexes. 

(A) A model where cholesterol interacts with DPPC by forming complexes. (B) A model with the complexes of (A), as well 
as an additional repulsive interaction between the complexes and DOPC. (left) All experimental measurements of 𝜇𝜇𝐶𝐶 replotted 
from Figure 3.3 (points) are simultaneously fit to the indicated model as described in Methods. The best fit solutions are 
plotted along each DOPC/DPPC series (lines) with predicted error bounds indicated as shaded regions. (right) Surface plots 
of the best fit solution extrapolated to all values in the Gibbs triangle. Gray regions indicate compositions beyond the solubility 
limit, i.e. 𝜇𝜇𝐶𝐶 > 0. Best fit parameter values are indicated, as is the Pearson’s R2 value at the best fit. R2 values are presented 
to give an impression of the agreement between measurements and best fit values but are not intended to inform model 
selection. Parameter values and their associated confidence intervals are provided in Table 3.1. 
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Figure 3.4B fits the measured 𝜇𝜇𝐶𝐶 to a model that includes both complex formation between 

DPPC and cholesterol and repulsive interactions between complexes and DOPC, and can in 

principle produce phase separation. The model used in Figure 3.4B contains 3 parameters, 𝜇𝜇𝐶𝐶0 and 

𝐾𝐾𝑒𝑒𝑒𝑒 as in Figure 3.4A, and an interaction energy represented as a critical temperature for phase 

separation between complexes and unsaturated lipid (𝑇𝑇𝐶𝐶𝐶𝐶−𝑈𝑈). As expected, including the additional 

fit parameter allows for a somewhat better fit to experimental measurements, as indicated by the 

slightly higher R2. More importantly, the fitted equilibrium constant 𝐾𝐾𝑒𝑒𝑒𝑒 remains small (𝐾𝐾𝑒𝑒𝑒𝑒  =

 7.7), again indicating weak binding of this complex and a meaningful fraction of uncomplexed 

cholesterol across all compositions (Supplemental Figure 3.15B). The best fit parameters for this 

model are not consistent with a phase separating mixture at room temperature. Instead, the best fit 

value for 𝑇𝑇𝐶𝐶𝐶𝐶−𝑈𝑈 indicates that temperature would need to be lowered below 1°C for phase 

separation to occur anywhere in this mixture.  

We also considered other elaborations of this class of model, including one where the 

interaction energy between the complex and DPPC was allowed to vary (𝑇𝑇𝐶𝐶𝐶𝐶−𝑆𝑆 ≠ 0), and a second 

with a complex stoichiometery of 1 cholesterol to 2 DPPC lipids, as shown in Supplemental Figure 

3.16. In both cases results were either not improved compared to the models of Figure 3.4 or were 

considered unphysical.  

3.4.4 Phase separation and measurements of µc are described by models capturing pairwise 

interactions between components.  

We next investigated whether experimental observations could be described by models that 

include pairwise interactions between all three components without the explicit formation of 

complexes (259). Two approaches are shown in Figure 3.5 and described in Materials and 

Methods, with detailed explanations in Supplemental Notes 2, 3 and 5. In the first, we employ a 

mean field regular solution theory model of the ternary system and the best fit solution is shown 

in Figure 3.5A. There are 4 parameters in this model: 𝜇𝜇𝐶𝐶0 and interaction energies between all three 

pairs of components, between saturated and unsaturated (𝐽𝐽𝑆𝑆−𝑈𝑈), saturated and cholesterol (𝐽𝐽𝐶𝐶−𝑆𝑆) 

and unsaturated and cholesterol (𝐽𝐽𝐶𝐶−𝑈𝑈). This model accurately captures trends in measured µ𝑐𝑐, 

with a higher R2 value than the model of Figure 3.4B, although part of this improvement may be 

due to the presence of an additional fit parameter. We find weak repulsive 𝐽𝐽𝐶𝐶−𝑈𝑈 and weak attractive 

𝐽𝐽𝐶𝐶−𝑆𝑆 (𝐽𝐽𝐶𝐶−𝑈𝑈  =  0.24 𝑘𝑘𝐵𝐵𝑇𝑇, 𝐽𝐽𝐶𝐶−𝑆𝑆  =  −0.24 𝑘𝑘𝐵𝐵𝑇𝑇), reflecting the preferred partitioning of cholesterol 
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with DPPC over DOPC. Notably, the best fit 𝐽𝐽𝑆𝑆−𝑈𝑈 is substantially repulsive (𝐽𝐽𝑆𝑆−𝑈𝑈  =  0.51 𝑘𝑘𝐵𝐵𝑇𝑇), 

consistent with interactions that favor phase separation of coexisting high-DPPC and low-DPPC 

 
Figure 3.5 Fits of µc to mean field (A) and lattice (B) models of pairwise interactions between components. 

(A) (left) Experimental measurements of µc replotted from Figure 3.3 (points) are simultaneously fit to the regular solution 
theory mean field model as described in Materials and Methods. The best fit solution is plotted along each DOPC/DPPC series 
(lines) with predicted error bounds indicated as shaded regions. Dashed lines indicate conditions within the 2-phase region. 
(right) Surface plot of the best fit solution extrapolated to all values in the Gibbs triangle. (B) (left) Experimental measurements 
of 𝜇𝜇𝐶𝐶 (points) and interpolated values extracted from lattice model simulations (lines). (right) Surface plot of interpolated 𝜇𝜇𝐶𝐶 
values evaluated over multiple simulations. Several simulation snapshots are shown (Bi-v), corresponding to the compositions 
marked on the Gibbs triangle. Representative “Lo-like” and “Ld-like” compositions are indicated in (i). Scale bar: 100 lattice 
spacings. (A, B) Gray regions indicate compositions beyond the solubility limit, i.e. 𝜇𝜇𝐶𝐶>0. Regions of phase separation are 
evaluated from snapshots as indicated by the coexistence region (thick white line) and tie-lines (thinner white lines) that merge 
at a critical point (star). Best fit parameter values are indicated, as is the Pearson’s R2 value at the best fit. Confidence intervals 
for fitted parameters are provided in Table 3.1. 



56 
 

phases. Indeed, the best fit regular solution theory model predicts phase separation, albeit only at 

low cholesterol mole % and with a narrower two phase coexistence region. The phase separated 

region of the model and several tie lines are shown. The tie-lines are roughly parallel to those 

observed experimentally. This model does not incorporate interactions that would give rise to a 

solid phase, therefore the phase diagram does not capture regions of solid-liquid coexistence or the 

3 phase region detected experimentally (127). In supplemental note 6, we compare to a past report 

that has fit an equivalent model to POPC/sphingomyelin/cholesterol interactions at 37°C using a 

complementary method (237).  

The analytical models described in Figure 3.4 and Figure 3.5A are mean-field models that 

consider average effective concentrations. Membranes are expected to exhibit deviations from this 

mean-field approach, since the mean field approach ignores fluctuations, which are particularly 

important in two-dimensional (2D) systems, especially near critical points (196). To address this, 

we additionally conducted simulations of pairwise interactions between components on a 2D 

square lattice and extracted 𝜇𝜇𝐶𝐶 as described in Materials and Methods and Supplemental Note 5. 

Because these 𝜇𝜇𝐶𝐶  estimates are computationally expensive, we carried out an approximate fit as 

detailed in Materials and Methods and the resulting 𝜇𝜇𝐶𝐶  estimates are shown in Figure 3.5B. 

Although these parameters are likely not the global best fit parameters, they give a decent fit to the 

data. The R2 value is somewhat lower than the mean field model of Figure 3.5A, but in the same 

range as those of the complex models of Figure 3.4. Several representative simulation snapshots 

are also shown.  

The optimal interaction parameters were qualitatively similar to those observed in the mean 

field model, and 𝐽𝐽𝑆𝑆−𝑈𝑈 was again the dominant repulsive interaction. We found that the repulsive 

DOPC—cholesterol interaction of the mean field model is absent here, which leads to a slightly 

improved fit at the DOPC—cholesterol edge (purple points), where mixing is nearly ideal as seen 

in Figure 3.2. In addition, the other two interactions 𝐽𝐽𝐶𝐶−𝑆𝑆 and 𝐽𝐽𝑆𝑆−𝑈𝑈 are more than twice as strong 

as they are in the mean field model, which is required in this model to achieve phase separation at 

similar temperatures (196). Similar to the corresponding mean field model from Figure 3.5A, this 

model supports a two-phase coexistence region at low cholesterol mole % that exhibits tie-lines 

roughly parallel to those observed experimentally. However, in this case, the coexistence region is 

much broader. This is expected because the shape of the phase boundary is flatter near the critical 

point in 2D compared to mean-field predictions (196). 
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3.5 Discussion 

Cholesterol is vital for a broad range of cellular functions, and extensive past work 

demonstrates its multifaceted roles in tuning the physical properties of membranes. In this study, 

we have measured the chemical potential of cholesterol 𝜇𝜇𝐶𝐶 in purified binary and ternary 

membranes by equilibrating them with an aqueous MβCD phase. These measurements of 𝜇𝜇𝐶𝐶 

provide a window into the thermodynamics of these systems, as interactions with the other lipids 

in the bilayer are reflected in 𝜇𝜇𝐶𝐶.  

Several influential past studies have studied the partitioning of cholesterol between 

membranes of different compositions or between membranes and cyclodextrin (33–35, 235, 240, 

260). These studies have observed important trends, one of which is that cholesterol partitions 

more strongly into membranes with greater lipid saturation, indicating stronger interactions 

between cholesterol and saturated compared to unsaturated acyl chains. With a few exceptions (35, 

236, 237, 251), these past studies focused on the dilute limit where cholesterol partitioning can be 

modeled using a constant partition coefficient. The present study extends this type of measurement 

to new lipid mixtures, focusing on ternary mixtures of DOPC, DPPC, and cholesterol, a system 

with well characterized and complex phase behavior and where the partition coefficient varies 

substantially with membrane composition. A second distinguishing feature of the current work is 

that measurements are reported in terms of a chemical potential referenced to the well-defined and 

reproducible standard state of crystalline cholesterol. Reporting results in this way simplifies the 

comparison of measurements made in different experimental contexts.  

Chemical potential differences report on the direction that cholesterol currents flow 

between membranes when they are allowed to come to thermodynamic equilibrium. Chemical 

potential differences also directly inform the relative availability of cholesterol to bind to proteins 

embedded within different membranes. For example, a 1.6 𝑘𝑘𝐵𝐵𝑇𝑇 increase in 𝜇𝜇𝐶𝐶 corresponds to 

cholesterol being 5 times more available to bind to a cholesterol binding site. In our measurements, 

even different membranes with the same cholesterol mole % can have 𝜇𝜇𝐶𝐶 shifts of this magnitude. 

In ideal mixtures, the chemical activity of a component is simply proportional to its 

concentration, or equivalently the excess Gibbs free energy 𝑔𝑔𝐸𝐸 of a component is constant. The 

measurements presented in Figure 3.2 and Figure 3.3 provide many instances that violate this 

simple picture. Non-ideality is apparent when taking constant cholesterol slices through the 

DOPC/DPPC/cholesterol 𝜇𝜇𝐶𝐶 surface, where it is observed that 𝜇𝜇𝐶𝐶 can vary by several 𝑘𝑘𝐵𝐵𝑇𝑇, and in 
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some regions depends nonlinearly on the DOPC/DPPC ratio. This is also apparent when examining 

that 𝜇𝜇𝐶𝐶 remains constant over a range of cholesterol concentrations when traversing a tie-line in 

the miscibility gap, as required for two-phase coexistence. These nearly constant contours persists 

well beyond the limits of the phase separated region, emphasizing that the same interactions that 

give rise to phase separation also impact the physical properties of membranes outside of phase 

separation.  

3.5.1 Experimental trends in μc can constrain simple models 

To guide intuition about the important interactions in DOPC/DPPC/Chol membranes, we 

applied simple phenomenological models. We note that none of these models are constructed to 

replicate interactions that give rise to regions of solid-liquid coexistence, as is experimentally 

observed in this system at high DPPC and low cholesterol compositions, therefore we anticipate 

disagreement between models and experiment in this regime. However, we find that fitting the 

data to various models provides useful constraints on model parameters. 

We first modified a model introduced by Radhakrishnan and McConnell (255–258), in 

which interactions between cholesterol and saturated lipids are described by a reversible but 

energetically favored binding reaction to form a stoichiometric condensed cholesterol-

phospholipid complex. Measurements of 𝜇𝜇𝐶𝐶 are reasonably well explained by the model when the 

association constant for complexes is weak compared to past estimates (257, 258), implying a 

substantial fraction of the cholesterol remains unbound in this model (Supplemental Figure 3.15). 

In addition, we find that the fitted interaction strengths are not consistent with room-temperature 

phase separation of these mixtures as is observed experimentally (6, 127).  

We have also presented both mean field and lattice models where deviations from ideal 

mixing come from local interactions between lipid molecules and their nearest neighbors. Here, 

the model parameters that best explain the 𝜇𝜇𝐶𝐶 measurements reproduce the favorable interactions 

between cholesterol and DPPC that are expected, and also predict substantial repulsive interactions 

between DPPC and DOPC. In addition, the model reproduces the qualitative shape of the 

experimental phase coexistence region for this lipid mixture, although some features of the 

coexistence region are poorly matched to experiment, such as the width of the mean-field 

coexistence region and the cholesterol content at the critical point in both models. While these 

models lack an explicit complexation reaction, fitted parameters imply that cholesterol and DPPC 



59 
 

will often be found adjacent to each other. In this sense, while complex formation brings a different 

microscopic picture to mind, it leads to similar thermodynamic predictions in the limit where 

complexes are relatively weak. 

3.5.2 Comparison to past results in model membranes and cells 

A comparison of past results in red blood cell membranes (223) and current results in model 

membranes is shown in Figure 3.2. The nearly common reference state between this study and 

ours enables direct comparisons across measurements. Comparing results, it is apparent that RBC 

membranes more closely resemble POPC and DPPC membranes than they do DOPC membranes. 

The non-ideality of RBC membranes is notable, with nearly constant cholesterol activity over a 

wide range of cholesterol concentration (15 – 30 mole %). Past work also measures relatively low 

𝜇𝜇𝐶𝐶 in two mammalian cell culture lines to be between −1.4 and −2.2 𝑘𝑘𝐵𝐵𝑇𝑇 (223). These values 

correspond to <15 mole % cholesterol in DOPC membranes or less than 40 mole % cholesterol in 

DPPC membranes. Cells in culture typically contain 30-40 mole % cholesterol and a large fraction 

of unsaturated and polyunsaturated lipids (161), therefore it is striking that the availability of 

cholesterol in these membranes is much lower than is measured in a model membrane with similar 

cholesterol concentration. This comparison stresses the importance of matching chemical potential 

rather than concentration in reconstituted systems. One structural difference between the model 

membranes studied here and cell membranes measured previously is the presence of phospholipid 

and cholesterol asymmetry across leaflets. Recent reports suggest that cholesterol plays a role in 

supporting this asymmetry (261, 262), and it is possible that the surprisingly low 𝜇𝜇𝐶𝐶 detected for 

cells is related to this phenomenon.  

There is a body of past work that reports cholesterol chemical activity inferred in model 

membranes and cells from kinetic measurements of cholesterol extraction or oxidation with MβCD 

or cholesterol oxidase respectively (239, 248, 263–266). These past studies argue that initial rates 

of extraction or oxidation are proportional to the chemical activity in the equilibrium state. While 

this measurement almost certainly correlates with the activity of cholesterol, it could also be 

impacted by kinetic properties leading it to differ from the true equilibrium activity, especially 

where membrane structure is changing (266). For example, tighter head-group packing, thicker 

hydrophobic regions, or a reduction in the number or lifetime of defects could impede access of 

MβCD or enzymes to cholesterol and slow entry of cholesterol into binding sites. Another, related 
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body of work uses the binding of soluble molecules to membranes to infer cholesterol activity 

(238, 263, 267–270). Here too we agree that the localization of these peptides or proteins to 

membranes via cholesterol binding will depend strongly on the activity of cholesterol, but it will 

also depend on any other interactions that proteins or peptides make in the membrane bound state, 

and on the energetics of any membrane deformations that are induced by binding. Again, it is 

reasonable to expect that these other interactions might depend on cholesterol composition in 

complicated ways. These caveats do not diminish the value of past conclusions but emphasize that 

these studies do not directly report on chemical activity in the thermodynamic sense even though 

this same language is used. 

3.6 Conclusions 

Here we demonstrate that 𝜇𝜇𝐶𝐶 within mixtures of cholesterol with one or two phospholipids 

is far from ideal, meaning that it depends on the full composition of the system rather than just the 

concentration of cholesterol. The composition dependence of 𝜇𝜇𝐶𝐶 is directly connected to the 

physical properties of cholesterol’s interactions in each membrane. Since our measurement of 𝜇𝜇𝐶𝐶 

is calibrated, we are able to compare our findings to past studies in model and cell membranes and 

explore whether our results are consistent with complementary models of interactions between 

cholesterol and saturated lipids. 

While biological membranes are considerably more complex than these model systems, 

these measurements motivate new questions relevant to the functional roles of cholesterol in cells. 

𝜇𝜇𝐶𝐶 is a direct determinant of cholesterol-protein binding interactions and the equilibrium 

partitioning of cholesterol between different cellular membranes. Several groups have begun to 

explore the functional consequences of cholesterol availability in cells (223, 263, 270). Our current 

work emphasizes that 𝜇𝜇𝐶𝐶 is strongly composition dependent and closely related to phase behavior, 

suggesting that even minor components could have an outsized impact on 𝜇𝜇𝐶𝐶 especially if they 

induce large changes in the phase behavior. Isolated cell plasma membranes phase separate at 

biologically tuned transition temperatures that are sensitive to acute treatments with small 

molecules (21, 158, 182). Connecting this to the present work suggests that these treatments might 

functionally act through their impact on 𝜇𝜇𝐶𝐶. This is especially exciting in the context of recent 

reports of cholesterol binding sites within membrane protein structures. We are intrigued by the 
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possibility that future measurement of 𝜇𝜇𝐶𝐶 could connect phase behavior to functional roles of 

cholesterol in cells. 

3.7 Supplemental Figures and Tables 

 

 
Supplemental Figure 3.6 Saturated solutions of cholesterol in 5 mg/ml MβCD equilibrate within 5 min and remain 
stable over extended times. 

Cholesterol crystals were prepared as described in the main text and filtered at the specified time-points after sonication. Raw 
background corrected Amplex red (AR) signals were for filtered samples following the same protocol on different days. 
Immediately after sonication (1 min), AR intensities are systemically lower, but reach their maximal value by 5 min incubation. 
On day 1, samples reported for 24 h and 1 week were prepared using different MβCD solutions.   
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Supplemental Figure 3.7 NBD-PE is not detected in the MβCD containing aqueous phase.  

(A) Background subtracted NBD intensities detected in initial vesicle suspensions and in filtrates passed through an Amicon Ultra-
Centrifugal Filter Unit with a 30 kDa cutoff. Vesicles were diluted in aqueous MβCD solutions with the specified % saturation of 
cholesterol prior to filtration. The average and SE value for filtrate over all conditions is shown as blue text and is zero within error. 
(B) Background subtracted AR intensities for the same samples as in A. Cholesterol from vesicles partition into the MBCD 
containing aqueous phase, as indicated by the finite AR intensity found even when vesicles are diluted in MBCD without added 
cholesterol (0% sat). This example used vesicles that initially contained 1:2 DOPC/DPPC + 30% cholesterol. 
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Supplemental Figure 3.8 Experimental determination cholesterol content of vesicles equilibrated with MβCD 
solutions. 

A) Schematic representation of the measurement scheme. Vesicles were suspended in aqueous MβCD solutions with varying % 
saturation of cholesterol. After an equilibration period at room temperature, suspensions were spun to produce samples enriched or 
depleted in vesicles as described in Methods. B) Cholesterol and phospholipid concentrations were measured for supernatant, pellet, 
and initial suspensions as described in Methods. This example shows values for vesicles that initially contained 70% DOPC and 
30% cholesterol suspended in MβCD solutions with the % saturation levels shown in the legend of part C. Points are fit to lines to 
determine the y intercept and the slope. The y intercept reports on the [chol] or % sat of the MβCD solution without lipid. The 
slope reports on the cholesterol to phospholipid ratio in vesicles. C) Slopes and intercepts from B plotted as % saturation of 
cholesterol in MβCD vs. cholesterol mole % in vesicles. D) The results of multiple trials with different DOPC/Chol vesicle 
preparations collapse into a single curve, as expected when samples are fully equilibrated. Measurements from parts B and C are 
redrawn in the series labeled trial 1.  
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Supplemental Figure 3.9 Equilibration of systems of DPPC and cholesterol. 

LUVs initially prepared with 70% DPPC and 30% cholesterol (blue shaded area) did not change composition after incubation with 
MβCD solutions for 1h (open blue circles). The same vesicle preparation did vary in composition after incubation with MβCD 
solutions for 24h (filled blue squares). Large error bars in this specific example arise from errors in the reading of NBD levels and 
not related the sample or preparation. LUVs initially prepared with 60% DPPC and 40% cholesterol changed in composition after 
24h incubation with MβCD solutions. Data points from vesicles with different starting cholesterol compositions appear to follow 
the same master curve, providing evidence that samples have equilibrated.  
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Supplemental Figure 3.10 Characterization of saturated cholesterol solutions in 5 mg/ml MβCD. 

(A) Representative standard curve relating Amplex Red (AR) intensity to % saturation of cholesterol in 5 mg/ml MβCD solution 
at room temperature. (left) Samples are prepared by diluting fully (100%) saturated cholesterol with MβCD solutions prepared 
without cholesterol and incubated with a reaction buffer that either contains cholesterol oxidase (CO+) or not (CO-) then 
fluorescence intensity of the AR is measured. (right) The curves are subtracted and fit to the nonlinear form 𝐴𝐴𝐴𝐴 =
𝐴𝐴(1 − exp−𝐵𝐵 ⋅ %𝑠𝑠𝑠𝑠𝑠𝑠). In this example, the best fit parameter values are 𝐴𝐴 = 1.09 ± 0. 01 and 𝐵𝐵 = 0.0176 ± 0.0003. (B, left) 
Histogram indicating measurements of the saturation of a 10 µg/ml cholesterol standard solution over 122 individual measurements 
at room temperature. (right) Histogram showing the same measurements presented as cholesterol concentration of the 100% 
saturated solution. Both histograms are fit to a Gaussian distribution to extract the mean and standard deviation shown. (C) The 
cholesterol concentration of saturated solutions in 5mg/ml MβCD varies with temperature. In these measurements, saturated 
solutions were prepared by equilibrating with cholesterol crystals overnight, then crystals were removed through filtration 
accomplished at the specified temperature. 
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Supplemental Figure 3.11 Calibration of phospholipid concentration using NBD-PE. 

Vesicles from the same stock solution initially prepared with 1:1 DOPC/DPPC + 40% cholesterol and interrogated over 2 days. On 
each day, the vesicle stock solution was diluted in cholesterol free MβCD buffer to yield the expected phospholipid concentration, 
and cholesterol concentration was measured using the methods described in the main text. (A) (left) Fitting the standard curve using 
expected phospholipid concentrations yields vesicles containing 38±2 mole % cholesterol, in good agreement with expectations of 
40 mole %. (right) The lipid concentration can also be inferred directly from the measured cholesterol concentration, enforcing that 
the vesicle sample contains 40% cholesterol. (B) The same analysis from A but with the same vesicle stock interrogated on a 
different day. On this day, the cholesterol mole % in vesicles appeared to be 29±1% when the phospholipid concentration was 
calculated from the stock solution, suggesting the vesicle stock solution had a lower concentration than expected. (C) (top) on the 
first day, the standard curve connecting NBD intensity to phospholipid concentration is largely unchanged when using expected or 
inferred phospholipid concentration. (bottom) On the second day, the expected and inferred phospholipid concentrations yield 
different standard curves. Across days, NBD signals were read with the same parameters. Lower absolute values in day 2 vs. day 
1 supports the conclusion that the stock concentration was lower than expected. In all cases, the inferred curve is used to convert 
NBD intensity to phospholipid concentration for subsequent analysis.   

  



67 
 

 
Supplemental Figure 3.12 Calibration relating % saturation of cholesterol in 5 mg/ml MβCD solutions to cholesterol 
activity. 

(A) Measured % sat cholesterol values from aqueous solutions equilibrated with cholesterol in hexadecane as described in the main 
text. These values are obtained using a standard curve prepared from a 100% saturated solution equilibrated with cholesterol crystals 
in the absence of hexadecane. Values come close to but do not reach 100% saturation, likely because some MβCD can dissolve in 
hexadecane and some hexadecane could bind to MβCD in aqueous solution. To account for this, values are normalized to the levels 
measured for MβCD solutions equilibrated against fully saturated hexadecane solutions (magenta line at 93±2 % sat chol). (B) 
Normalized values from A represent the chemical activity of cholesterol in 5 mg/ml MβCD solutions. Points are fit to a Langmuir 
isotherm of functional form %𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹𝐹𝐹𝐹𝐹 (1 − 𝑘𝑘𝑘𝑘)⁄  to obtain the best fit values of 𝐹𝐹 = 2.6 ± 0.3 and 𝑘𝑘 = 0.6 ± 0.1. 
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Supplemental Figure 3.13 Comparison of µC measurements from the present manuscript to past work from 
Tsamaloukas et al (35). 

µC measurements as a function of cholesterol mole % in POPC/cholesterol mixtures, referenced to 𝜇𝜇𝐶𝐶  at 40 mole % cholesterol. 
Measurements from (35) were obtained by transforming plotted partition coefficients 𝐾𝐾𝑥𝑥, with 𝜇𝜇𝐶𝐶 = 𝑘𝑘𝐵𝐵𝑇𝑇(ln 𝑥𝑥𝐶𝐶 − ln𝐾𝐾𝑥𝑥), and error 
bars were obtained by propagating plotted error bars for 𝐾𝐾𝑥𝑥 through that transformation. 
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Supplemental Figure 3.14 Measurements of cholesterol chemical potential from Figure 3.3 replotted as chemical 
activity (A-C) and excess Gibbs free energy per molecule (D-F). 

Measurements are processed exactly as in Figure 3.3 of the main text. 
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Supplemental Figure 3.15 Fraction of cholesterol that remains free. 

Free cholesterol fraction for the models of Figure 3.4, where cholesterol reversibly forms a 1:1 complex with a DPPC molecule. 
Free (uncomplexed) cholesterol fraction is calculated directly from best-fit model parameters. (A) corresponds to the model of 
Figure 3.4A, where the only modelled interaction is the complex formation. (B) corresponds to the model of Figure 3.4B, where 
an additional repulsive interaction between complexes and DOPC is included. In the limit of low cholesterol and high DPPC, the 
model of (A) implies 16% of cholesterol remains free, and the model of (B) implies 12% of cholesterol remains free. 
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Supplemental Figure 3.16 Fitting 𝝁𝝁𝑪𝑪 to two regular solutions models with complexes and two repulsive interactions. 

In addition to the repulsive interaction between complexes and unsaturated lipids that is considered in Figure 3.4B, these models 
include a repulsive interaction between complexes and saturated lipids as well. The strength of this interaction is given in terms of 
the critical temperature of a binary mixture of these components: 𝑇𝑇𝐶𝐶𝐶𝐶−𝑆𝑆0 . The cholesterol:saturated lipid stoichiometries are 1:1 (top) 
or 1:2 (bottom). (left) Experimental data, fitted curves, and shaded confidence intervals as determined by MATLAB’s predint. 
Fitted model parameters, confidence intervals, and Pearson’s 𝑅𝑅2 for this fit are also indicated. (right) Predicted 𝜇𝜇𝐶𝐶 surface for all 
ternary mixtures of cholesterol, DOPC and DPPC, using the fitted model. We rejected the bottom fit with 1:2 stoichiometry because 
a large part of the data is in a phase-separated region of the model, so that the mean-field chemical potentials calculated for those 
compositions are inaccurate – the true chemical potentials within the phase separated region would be those of the endpoints of the 
tie lines. 
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Table 3.1 Fitted parameter values and confidence intervals. 

Parameter values and confidence intervals for the four fitted models from Figure 3.4 and Figure 3.5. Confidence intervals on 
parameters are for nonlinear least squares fits to the models as described in Methods. MF indicates a mean-field approximation. 
The interaction parameters for the lattice simulation were obtained by semi-manual optimization, so we did not obtain confidence 
intervals for those parameters. In addition, each model implies a region for which 𝜇𝜇𝐶𝐶 > 0, implying spontaneous formation of 
cholesterol crystals at that such a condition. We consider this to imply a solubility limit for cholesterol, also shown in the table for 
each model. Separate values are shown for the Cholesterol-DOPC edge and the Cholesterol-DPPC edge. Finally, we indicate 
whether the fitted model has a phase-separated region. 

Model: Shown 

in Fig: 

Fitted parameters (95% 

confidence interval) 

Pearson’s 

R2 

Implied solubility 

limits of cholesterol 

(mole %) 

Supports room 

temperature phase 

separation? 

Ideal solution 
with complexes 

3.4A 𝐾𝐾𝑒𝑒𝑒𝑒: 5.7 (4.3, 7.1) 

𝜇𝜇𝐶𝐶0: 0.40 (0.34, 0.46) 𝑘𝑘𝐵𝐵𝑇𝑇 

0.48 DOPC edge: 67% 

DPPC edge: 74% 

N/A (model does not 

support phase 

separation) 

MF Interacting 
solution with 
complexes 

3.4B 𝐾𝐾𝑒𝑒𝑒𝑒: 7.8 (5.8, 9.5) 

𝜇𝜇𝐶𝐶0: 0.41 (0.35, 0.47) 𝑘𝑘𝐵𝐵𝑇𝑇 

𝑇𝑇𝐶𝐶𝐶𝐶−𝑈𝑈: 274 (115, 433)K 

0.55 DOPC edge: 67% 

DPPC edge: 74% 

No 

MF Interacting 
solution without 
complexes 

3.5A 𝐽𝐽𝐶𝐶𝐶𝐶 : − 0.24 (−0.36,−0.13) 𝑘𝑘𝐵𝐵𝑇𝑇 

𝐽𝐽𝐶𝐶𝐶𝐶: 0.24 (0.18, 0.30) 𝑘𝑘𝐵𝐵𝑇𝑇 

𝐽𝐽𝑆𝑆𝑆𝑆: 0.51 (0.34, 0.68) 𝑘𝑘𝐵𝐵𝑇𝑇 

𝜇𝜇𝐶𝐶0: 0.07 (−0.05, 0.19) 𝑘𝑘𝐵𝐵𝑇𝑇 

0.78 DOPC edge: 93% 

DPPC edge: 94% 

Yes 

Lattice 
simulation of 
Interacting 
solution without 
complexes 

3.5B 𝐽𝐽𝐶𝐶𝐶𝐶 : − 0.62 𝑘𝑘𝐵𝐵𝑇𝑇 

𝐽𝐽𝐶𝐶𝐶𝐶: 0 𝑘𝑘𝐵𝐵𝑇𝑇 

𝐽𝐽𝑆𝑆𝑆𝑆: 1.06 𝑘𝑘𝐵𝐵𝑇𝑇 

𝜇𝜇𝐶𝐶0: 0.54 𝑘𝑘𝐵𝐵𝑇𝑇 

0.50 DOPC edge: 53% 

DPPC edge: 66% 

Yes 
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3.8 Supplemental Notes 

3.8.1 Supplemental Note 1: computation of chemical potentials in a mole fraction basis 

While chemical potentials are typically defined in terms of partial derivatives with respect 

to number of each component, it is convenient here to compute derivatives with respect to mole 

fractions instead. This supplemental note derives expressions for the chemical potentials in terms 

of those derivatives. 

For a system containing 𝑟𝑟 molecular species, standard definitions of Gibbs free energy 𝐺𝐺 

and the chemical potentials give (assuming const. pressure and temperature for simplicity): 

𝑑𝑑𝑑𝑑(𝑁𝑁1,𝑁𝑁2, … ,𝑁𝑁𝑟𝑟) = �𝜇𝜇𝑖𝑖𝑑𝑑𝑁𝑁𝑖𝑖

𝑟𝑟

𝑖𝑖=1

. 

It is convenient to rewrite this in terms of 𝑁𝑁 = ∑ 𝑁𝑁𝑖𝑖𝑖𝑖 , and 𝑥𝑥𝑖𝑖 = 𝑁𝑁𝑖𝑖/𝑁𝑁, for 𝑖𝑖 = 2, … , 𝑟𝑟. For 

consistency, 𝑥𝑥1 = 1 −∑ 𝑥𝑥𝑖𝑖𝑖𝑖>1  is taken to be dependent on the other 𝑥𝑥𝑖𝑖, and is no longer a formal 

variable of 𝐺𝐺. Note that the choice of the first component as the dependent variable is arbitrary, 

and the following forms apply whichever component is chosen. However, it is important to keep 

track of which one is dependent, because the partial derivatives obtained below are dependent on 

this choice. Then we have  

𝑑𝑑𝑁𝑁𝑖𝑖 = 𝑁𝑁𝑁𝑁𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑖𝑖𝑑𝑑𝑑𝑑, 𝑖𝑖 > 1 

𝑑𝑑𝑁𝑁1 = 𝑑𝑑𝑑𝑑 −�𝑑𝑑𝑁𝑁𝑖𝑖
𝑖𝑖>1

 

= 𝑑𝑑𝑑𝑑 �1 −�𝑥𝑥𝑖𝑖
𝑖𝑖>1

� − 𝑁𝑁 ��𝑑𝑑𝑥𝑥𝑖𝑖
𝑖𝑖>1

�. 

Rewriting the exact differential in terms of the new variables, we obtain: 

𝑑𝑑𝑑𝑑(𝑁𝑁, 𝑥𝑥2, … , 𝑥𝑥𝑟𝑟) = �𝜇𝜇𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖

𝑑𝑑𝑑𝑑 + 𝑁𝑁�(𝜇𝜇𝑖𝑖 − 𝜇𝜇1)
𝑖𝑖>1

𝑑𝑑𝑥𝑥𝑖𝑖 

We can then read off the partial derivatives with respect to the new variables. The derivatives with 

respect to 𝑥𝑥𝑖𝑖 , 𝑖𝑖 > 1 now give differences of chemical potentials: 

𝜕𝜕(𝐺𝐺 𝑁𝑁⁄ )
𝜕𝜕𝑥𝑥𝑖𝑖

= 𝜇𝜇𝑖𝑖 − 𝜇𝜇1,   𝑖𝑖 > 1 

The final chemical potential can be obtained from the fact that 𝐺𝐺 is an extensive function, so is 

proportional to 𝑁𝑁 (at fixed mole fractions of the components): 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �𝜇𝜇𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖

=
𝐺𝐺
𝑁𝑁

. 

Putting this together with the above and defining 𝑔𝑔 = 𝐺𝐺/𝑁𝑁, we may conclude: 

𝑔𝑔 −�𝑥𝑥𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖>1

= 𝜇𝜇𝑈𝑈 �1 −�𝑥𝑥𝑖𝑖
𝑖𝑖>1

� + 𝜇𝜇𝑈𝑈�𝑥𝑥𝑖𝑖
𝑖𝑖>1

= 𝜇𝜇1. 

This expression for 𝜇𝜇1 can then be substituted into the above difference to obtain expressions for 

the 𝜇𝜇𝑖𝑖, 𝑖𝑖 > 1: 

𝜇𝜇𝑖𝑖(𝑥𝑥2, … , 𝑥𝑥𝑟𝑟) = 𝑔𝑔(𝑥𝑥2, … , 𝑥𝑥𝑟𝑟) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

−�𝑥𝑥𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖>1

, 𝑖𝑖 > 1. 

These expressions will be used in the following to derive the function forms of the relevant 

chemical potentials of specific models. 

3.8.2 Supplemental Note 2: Regular solution models 

The theoretical models discussed in the main text take the form of regular solution models. 

A regular solution model for a mixture considers nearest-neighbor interactions and internal degrees 

of freedom of each of a set of components, while neglecting oriented interactions. Define the 

Hamiltonian for such a model by 

ℋ = �𝜇𝜇𝑖𝑖0
𝑟𝑟

𝑖𝑖=1

+ �𝑁𝑁𝑖𝑖𝑖𝑖𝐽𝐽𝑖𝑖𝑖𝑖
𝑖𝑖<𝑗𝑗

, 

where 𝑁𝑁𝑖𝑖 indicates the number of species 𝑖𝑖, 𝜇𝜇𝑖𝑖0 is the free energy per molecule of the internal 

degrees of freedom for species 𝑖𝑖, 𝑁𝑁𝑖𝑖𝑖𝑖 is the number of 𝑖𝑖 − 𝑗𝑗 nearest-neighbor pairs, and 𝐽𝐽𝑖𝑖𝑖𝑖 specifies 

the interaction energy of such a pair. Note that we need not include 𝑖𝑖 − 𝑖𝑖 interactions explicitly, 

because by an appropriate transformation of the 𝐽𝐽𝑖𝑖𝑖𝑖 and 𝜇𝜇𝑖𝑖0, the 𝐽𝐽𝑖𝑖𝑖𝑖 can be set to 0 without altering 

the Hamiltonian overall(259). 

In a mean field, sometimes known as zeroth order, approximation, we take the entropy of 

mixing to be that of an ideal mixture, and the average energy to be the energy of a well-mixed 

configuration, so that the free energy per molecule becomes 

𝑔𝑔𝑁𝑁 =
𝐺𝐺
𝑁𝑁

= �{𝑘𝑘𝐵𝐵𝑇𝑇 𝑥𝑥𝑖𝑖 log 𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑖𝑖𝜇𝜇𝑖𝑖0}
𝑖𝑖

+ 𝑧𝑧�𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝐽𝐽𝑖𝑖𝑖𝑖
𝑖𝑖<𝑗𝑗

, 
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where, as above, 𝑥𝑥𝑖𝑖 = 𝑁𝑁𝑖𝑖/𝑁𝑁 is the mole fraction of each component, and 𝑧𝑧 is the coordination 

number of the lattice in question, which we take to be 4 in all of our models. In some cases, such 

as the models that include cholesterol-phospholipid complexes that are described in Supplemental 

Note 4, where all non-zero interactions are repulsive, we find it convenient to rewrite the 

interaction parameters as (mean-field) critical temperatures for phase separation, by the 

transformation 𝑧𝑧𝐽𝐽𝑖𝑖𝑗𝑗 = 2𝑘𝑘𝐵𝐵𝑇𝑇𝑖𝑖−𝑗𝑗, where 𝑇𝑇𝑖𝑖−𝑗𝑗 is then the critical temperature for phase separation of 

binary 𝑖𝑖 − 𝑗𝑗 mixtures. 

3.8.3 Supplemental Note 3: Mean field regular solution without complexes 

The model that is fitted in Figure 3.5A corresponds to a regular solution, defined as above, 

with three components only, C, S, and U, corresponding to cholesterol, DPPC (saturated 

phospholipid), and DOPC (unsaturated phospholipid). All of the interaction parameters are 

allowed to vary freely: 𝐽𝐽𝐶𝐶𝐶𝐶, 𝐽𝐽𝐶𝐶𝐶𝐶 and 𝐽𝐽𝑆𝑆𝑆𝑆. We consider the regular solution free energy as a function 

of 𝑥𝑥𝑆𝑆 and 𝑥𝑥𝑈𝑈 and use the chemical potential identities derived above to obtain: 
𝜇𝜇𝐶𝐶
𝑘𝑘𝐵𝐵𝑇𝑇

=
1
𝑘𝑘𝐵𝐵𝑇𝑇

� 𝑔𝑔 − 𝑥𝑥𝑆𝑆
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑆𝑆

− 𝑥𝑥𝑈𝑈
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑈𝑈

� 

= log 𝑥𝑥𝐶𝐶 +
𝜇𝜇𝐶𝐶0

𝑘𝑘𝐵𝐵𝑇𝑇
+ 𝑧𝑧

𝐽𝐽𝐶𝐶𝐶𝐶
𝑘𝑘𝐵𝐵𝑇𝑇

(𝑥𝑥𝑆𝑆2 + 𝑥𝑥𝑢𝑢𝑥𝑥𝑆𝑆) + 𝑧𝑧
𝐽𝐽𝐶𝐶𝐶𝐶
𝑘𝑘𝐵𝐵𝑇𝑇

(𝑥𝑥𝑈𝑈2 + 𝑥𝑥𝑈𝑈𝑥𝑥𝑆𝑆) − 𝑧𝑧
𝐽𝐽𝑆𝑆𝑆𝑆
𝑘𝑘𝐵𝐵𝑇𝑇

(𝑥𝑥𝑆𝑆𝑥𝑥𝑈𝑈) 

 

3.8.4 Supplemental Note 4: mean field regular solution models with complexes 

Following McConnell and Radhakrishnan(255, 257, 258), we model a lipid bilayer 

composed of cholesterol, a saturated lipid (DPPC), and an unsaturated lipid (DOPC). As above, 

C, S, and U are used as shorthand for cholesterol, DPPC (saturated lipid) and DOPC (unsaturated 

lipid), respectively. A condensed complex written CS is allowed to form between cholesterol and 

DPPC in a reversible reaction assumed to have 𝑞𝑞:𝑝𝑝 stoichiometry with equilibrium constant 𝐾𝐾𝑒𝑒𝑒𝑒. 

𝑞𝑞𝑞𝑞 + 𝑝𝑝𝑝𝑝 
𝐾𝐾𝑒𝑒𝑒𝑒
��  𝐶𝐶𝑞𝑞𝑆𝑆𝑝𝑝 

For later convenience we distinguish 𝑁𝑁𝑖𝑖, the total number of lipid species 𝑖𝑖 ∈ {𝐶𝐶, 𝑆𝑆,𝑈𝑈} in 

the system before the reaction, from 𝑁𝑁𝑖𝑖′, the number of species 𝑖𝑖 after the reaction comes to 

equilibrium. Furthermore, 𝑁𝑁 = 𝑁𝑁𝐶𝐶 + 𝑁𝑁𝑆𝑆 + 𝑁𝑁𝑈𝑈, and 𝑥𝑥𝑖𝑖 = 𝑁𝑁𝑖𝑖/𝑁𝑁, and 𝑁𝑁′ = 𝑁𝑁𝐶𝐶′ + 𝑁𝑁𝑆𝑆′ + 𝑁𝑁𝑈𝑈′ + 𝑁𝑁𝐶𝐶𝐶𝐶, 
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and 𝑥𝑥𝑖𝑖′ = 𝑁𝑁𝑖𝑖′/𝑁𝑁′. As above, we begin with the regular solution free energy per molecule (𝑁𝑁′) of an 

equilibrium mixture of C, S, U, and CS: 

𝑔𝑔𝑁𝑁′
𝑅𝑅𝑅𝑅 =

𝐺𝐺
𝑁𝑁′ = �𝑥𝑥𝑖𝑖′(𝑘𝑘𝐵𝐵𝑇𝑇 ln 𝑥𝑥𝑖𝑖′)

𝑖𝑖

+ 2𝑘𝑘𝐵𝐵�𝑥𝑥𝑖𝑖′𝑥𝑥𝑗𝑗′𝑇𝑇𝑖𝑖−𝑗𝑗0

𝑖𝑖<𝑗𝑗

, 

where 𝜇𝜇𝑖𝑖0 is standard chemical potential of pure component 𝑖𝑖, 𝑥𝑥𝑖𝑖′ is equilibrium mole fraction of 𝑖𝑖 , 

and 𝑇𝑇𝑖𝑖𝑖𝑖0 is the critical temperature of the 𝑖𝑖 − 𝑗𝑗 binary pair. 

To account for the complexation reaction we add to this a term: 

𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝐶𝐶𝐶𝐶Δ𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  −𝑘𝑘𝐵𝐵𝑇𝑇𝑁𝑁𝐶𝐶𝐶𝐶 ln𝐾𝐾𝑒𝑒𝑒𝑒, 

and finally allow for a non-zero 𝜇𝜇𝐶𝐶0 in order to compare to refer the chemical potential to the energy 

scale set by taking the cholesterol crystal as standard state: 

𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑁𝑁𝐶𝐶′𝜇𝜇𝐶𝐶0 

Finally, following (258), we assume all critical temperatures are zero except 𝑇𝑇𝑐𝑐𝑐𝑐−𝑠𝑠0  (immiscibility 

between CS and S) and 𝑇𝑇𝑐𝑐𝑐𝑐−𝑢𝑢0  (immiscibility between CS and U). 

Following these claims, the free energy per molecule (of which there are 𝑁𝑁′ in number) 

denoted as 𝑔𝑔′ takes the form 

𝑔𝑔′

𝑘𝑘𝐵𝐵𝑇𝑇
= �𝑥𝑥𝑐𝑐′ (μ𝐶𝐶0 kBT⁄ + ln 𝑥𝑥𝑐𝑐′) + 𝑥𝑥𝑠𝑠′ ln 𝑥𝑥𝑠𝑠′ + 𝑥𝑥𝑢𝑢′ ln 𝑥𝑥𝑢𝑢′ + 𝑥𝑥𝑐𝑐𝑐𝑐 ln

𝑥𝑥𝑐𝑐𝑐𝑐
𝐾𝐾𝑒𝑒𝑒𝑒

� +
2𝑥𝑥𝑐𝑐𝑐𝑐
𝑇𝑇

(𝑇𝑇𝑐𝑐𝑐𝑐−𝑠𝑠𝑥𝑥𝑠𝑠′ + 𝑇𝑇𝑐𝑐𝑐𝑐−𝑢𝑢𝑥𝑥𝑢𝑢′ ) 

(1) 

It is useful to be able to write the free energy in terms of the mole fractions that are inserted 

at the beginning of the experiment 𝑥𝑥𝑖𝑖, rather than the ones after the reaction reaches equilibrium 

𝑥𝑥𝑖𝑖′. Begin by defining the system in terms of a reaction progress parameter 𝛾𝛾 which is minimized 

in all calculations of the total free energy 𝐺𝐺∗ 

𝛾𝛾 =
𝑁𝑁𝑐𝑐𝑐𝑐

𝑁𝑁𝑐𝑐′ + 𝑁𝑁𝑠𝑠′ + 𝑁𝑁𝑢𝑢′ + (𝑞𝑞 + 𝑝𝑝)𝑁𝑁𝑐𝑐𝑐𝑐
 

We can write the transform in terms of this parameter and a parameter 𝜆𝜆 as follows 

𝑥𝑥𝑐𝑐𝑐𝑐 = 𝛾𝛾𝛾𝛾 

𝑥𝑥𝑐𝑐′ = (𝑥𝑥𝑐𝑐 − 𝑞𝑞𝑞𝑞)𝜆𝜆 

𝑥𝑥𝑠𝑠′ = (𝑥𝑥𝑠𝑠 − 𝑝𝑝𝑝𝑝)𝜆𝜆 

𝑥𝑥𝑢𝑢′ = 𝑥𝑥𝑢𝑢𝜆𝜆. 

𝜆𝜆 can then be determined by noting our constraints: 𝑥𝑥𝑐𝑐 + 𝑥𝑥𝑠𝑠 + 𝑥𝑥𝑢𝑢 = 𝑥𝑥𝑐𝑐′ + 𝑥𝑥𝑠𝑠′ + 𝑥𝑥𝑢𝑢′ + 𝑥𝑥𝑐𝑐𝑐𝑐 = 1. 

Solving with these constraints yields. 
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𝜆𝜆 = [1 + (1 − 𝑞𝑞 − 𝑝𝑝)𝛾𝛾]−1 

 Using the same constraints, we can solve for gamma in terms of 𝑥𝑥𝑐𝑐𝑐𝑐 

𝛾𝛾 =
𝑥𝑥𝑐𝑐𝑐𝑐

1 + (𝑝𝑝 + 𝑞𝑞 − 1)𝑥𝑥𝑐𝑐𝑐𝑐
 

and then use these two relations to eliminate 𝛾𝛾 and 𝜆𝜆 from our transformations entirely 

𝑥𝑥𝑐𝑐′ = 𝑥𝑥𝑐𝑐[1 + (𝑝𝑝 + 𝑞𝑞 − 1)𝑥𝑥𝑐𝑐𝑐𝑐] − 𝑞𝑞𝑥𝑥𝑐𝑐𝑐𝑐 

𝑥𝑥𝑠𝑠′ = 𝑥𝑥𝑠𝑠[1 + (𝑝𝑝 + 𝑞𝑞 − 1)𝑥𝑥𝑐𝑐𝑐𝑐] − 𝑝𝑝𝑥𝑥𝑐𝑐𝑐𝑐 

𝑥𝑥𝑢𝑢′ = (1 − 𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑠𝑠)[1 + (𝑝𝑝 + 𝑞𝑞 − 1)𝑥𝑥𝑐𝑐𝑐𝑐]. 

Because the number of particles in the system is not conserved through the reaction it is 

useful to know how the initial number of molecules inserted into the system 𝑁𝑁 relates to the final 

number 𝑁𝑁′. We can use our relation for 𝑥𝑥𝑢𝑢′  combined with the fact that 𝑁𝑁𝑢𝑢′ = 𝑁𝑁𝑢𝑢 to find this 

relation. 

𝑥𝑥𝑢𝑢′ = 𝑥𝑥𝑢𝑢𝜆𝜆 

𝑥𝑥𝑈𝑈′ = 𝑥𝑥𝑈𝑈𝜆𝜆 

𝜆𝜆 =
𝑁𝑁
𝑁𝑁′. 

It is worth underlining that with this relation, 𝑔𝑔 = 𝐺𝐺/𝑁𝑁 may be obtained from 𝑔𝑔′ = 𝐺𝐺/𝑁𝑁′ by 

𝑔𝑔 = 𝑔𝑔′𝜆𝜆−1 

Letting the reaction equilibrate: 

To extract information from 𝑔𝑔 or 𝑔𝑔′ we need to minimize 𝐺𝐺 with respect to the fraction of 

complex 𝑥𝑥𝑐𝑐𝑐𝑐. This is equivalent to minimizing 𝑔𝑔 = 𝐺𝐺/𝑁𝑁, because 𝑁𝑁 does not vary as the reaction 

progresses. So we define 𝑔𝑔∗ = 𝑔𝑔(𝑥𝑥𝑐𝑐, 𝑥𝑥𝑠𝑠, 𝑥𝑥𝑐𝑐𝑐𝑐∗ ) such that 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑐𝑐𝑐𝑐

�
𝑥𝑥𝑐𝑐𝑐𝑐=𝑥𝑥𝑐𝑐𝑐𝑐∗

= 𝜆𝜆−1
𝜕𝜕𝑔𝑔′

𝜕𝜕𝑥𝑥𝑐𝑐𝑠𝑠
�
𝑥𝑥𝑐𝑐𝑐𝑐=𝑥𝑥𝑐𝑐𝑐𝑐∗

= 0 

Unfortunately computing such an 𝑥𝑥𝑐𝑐𝑐𝑐∗  leads to a transcendental equation which does not 

have an analytical solution. Thus, we compute 𝑥𝑥𝑐𝑐𝑐𝑐∗  numerically using MATLAB’s numerical 

minimization routine fminbnd. 

Calculating 𝝁𝝁𝒄𝒄′ : 

With numerical 𝑥𝑥𝑐𝑐𝑐𝑐∗ , we may return to general stoichiometry 𝑞𝑞:𝑝𝑝 and the primed basis for 

simplicity to calculate the chemical potential of free cholesterol (now ignoring the denominator 

𝑘𝑘𝐵𝐵𝑇𝑇) using the relations of Supplemental Note 1: 
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𝜇𝜇𝑐𝑐′ − 𝜇𝜇𝑢𝑢′ = �
𝜕𝜕𝑔𝑔∗

𝜕𝜕𝑥𝑥𝑐𝑐′
�
𝑇𝑇,𝑃𝑃,𝑥𝑥𝑖𝑖≠𝑐𝑐

′
 

𝜇𝜇𝑢𝑢′ = 𝑔𝑔∗ −�𝑥𝑥𝑖𝑖′
𝜕𝜕𝑔𝑔∗

𝜕𝜕𝑥𝑥𝑖𝑖′𝑖𝑖≠𝑢𝑢

 

We can rewrite our expression for 𝜇𝜇𝑐𝑐′ as 

𝜇𝜇𝑐𝑐′ = �
𝜕𝜕𝑔𝑔∗

𝜕𝜕𝑥𝑥𝑐𝑐′
�
𝑇𝑇,𝑃𝑃,𝑥𝑥𝑖𝑖≠𝑐𝑐

′
+ 𝜇𝜇𝑢𝑢′ 

𝜇𝜇𝑐𝑐′ = �
𝜕𝜕𝑔𝑔∗

𝜕𝜕𝑥𝑥𝑐𝑐′
�
𝑇𝑇,𝑃𝑃,𝑥𝑥𝑖𝑖≠𝑐𝑐

′
+ 𝑔𝑔∗ − 𝑥𝑥𝑠𝑠′

𝜕𝜕𝑔𝑔∗

𝜕𝜕𝑥𝑥𝑠𝑠′
− 𝑥𝑥𝑐𝑐′

𝜕𝜕𝑔𝑔∗

𝜕𝜕𝑥𝑥𝑐𝑐′
− 𝑥𝑥𝑐𝑐𝑐𝑐∗

𝜕𝜕𝑔𝑔∗

𝜕𝜕𝑥𝑥𝑐𝑐𝑐𝑐∗
 

𝜇𝜇𝑐𝑐′ = 𝑔𝑔∗ + (1 − 𝑥𝑥𝑐𝑐′)
𝜕𝜕𝑔𝑔∗

𝜕𝜕𝑥𝑥𝑐𝑐′
− 𝑥𝑥𝑠𝑠′

𝜕𝜕𝑔𝑔∗

𝜕𝜕𝑥𝑥𝑠𝑠′
− 𝑥𝑥𝑐𝑐𝑐𝑐∗

𝜕𝜕𝑔𝑔∗

𝜕𝜕𝑥𝑥𝑐𝑐𝑐𝑐∗
 

where 𝑔𝑔∗(𝑥𝑥𝑐𝑐′ , 𝑥𝑥𝑠𝑠′ , 𝑥𝑥𝑐𝑐𝑐𝑐∗ ) in units of 𝑘𝑘𝐵𝐵𝑇𝑇 is 

𝑔𝑔∗ = �𝑥𝑥𝑐𝑐′(𝜇𝜇𝐶𝐶0 + ln 𝑥𝑥𝑐𝑐′) + 𝑥𝑥𝑠𝑠′ ln 𝑥𝑥𝑠𝑠′ + (1 − xc′ − 𝑥𝑥𝑠𝑠′ − 𝑥𝑥𝑐𝑐𝑐𝑐∗ ) ln(1 − xc′ − 𝑥𝑥𝑠𝑠′ − 𝑥𝑥𝑐𝑐𝑐𝑐∗ ) + 𝑥𝑥𝑐𝑐𝑐𝑐∗ ln
𝑥𝑥𝑐𝑐𝑐𝑐∗

𝐾𝐾𝑒𝑒𝑒𝑒
�

+
2𝑥𝑥𝑐𝑐𝑐𝑐∗

𝑇𝑇
�𝑇𝑇𝑐𝑐𝑐𝑐−𝑠𝑠𝑥𝑥𝑠𝑠′ + 𝑇𝑇𝑐𝑐𝑐𝑐−𝑢𝑢(1 − xc′ − 𝑥𝑥𝑠𝑠′ − 𝑥𝑥𝑐𝑐𝑐𝑐∗ )�. 

Proceeding by first looking at each partial derivative in 𝜇𝜇𝑐𝑐′ 

𝜕𝜕𝑔𝑔∗

𝜕𝜕𝑥𝑥𝑐𝑐′
= 𝜇𝜇𝐶𝐶0 + log �

𝑥𝑥𝑐𝑐′

1 − 𝑥𝑥𝑐𝑐′ − 𝑥𝑥𝑠𝑠′ − 𝑥𝑥𝑐𝑐𝑐𝑐∗
� −

2𝑥𝑥𝑐𝑐𝑐𝑐∗

𝑇𝑇
𝑇𝑇𝑐𝑐𝑐𝑐−𝑢𝑢 

𝜕𝜕𝑔𝑔∗

𝜕𝜕𝑥𝑥𝑠𝑠′
= log �

𝑥𝑥𝑠𝑠′

1 − 𝑥𝑥𝑐𝑐′ − 𝑥𝑥𝑠𝑠′ − 𝑥𝑥𝑐𝑐𝑐𝑐∗
� +

2𝑥𝑥𝑐𝑐𝑐𝑐∗

𝑇𝑇
(𝑇𝑇𝑐𝑐𝑐𝑐−𝑠𝑠 − 𝑇𝑇𝑐𝑐𝑐𝑐−𝑢𝑢) 

𝜕𝜕𝑔𝑔∗

𝜕𝜕𝑥𝑥𝑐𝑐𝑐𝑐∗
= log �

𝑥𝑥𝑐𝑐𝑐𝑐∗

𝐾𝐾𝑒𝑒𝑒𝑒(1 − 𝑥𝑥𝑐𝑐′ − 𝑥𝑥𝑠𝑠′ − 𝑥𝑥𝑐𝑐𝑐𝑐)
� +

2𝑥𝑥𝑠𝑠′

𝑇𝑇
𝑇𝑇𝑐𝑐𝑐𝑐−𝑠𝑠 −

2(𝑥𝑥𝑐𝑐′ + 𝑥𝑥𝑠𝑠′ + 2𝑥𝑥𝑐𝑐𝑐𝑐∗ − 1)
𝑇𝑇

𝑇𝑇𝑐𝑐𝑐𝑐−𝑢𝑢. 

Then combining these results, we arrive at 

𝜇𝜇𝑐𝑐′ = μC0 + log(𝑥𝑥𝑐𝑐′) −
2𝑥𝑥𝑐𝑐𝑐𝑐∗

𝑇𝑇
[(1 − 𝑥𝑥𝑐𝑐′ − 𝑥𝑥𝑠𝑠′ − 𝑥𝑥𝑐𝑐𝑐𝑐∗ )𝑇𝑇𝑐𝑐𝑐𝑐−𝑢𝑢 + 𝑥𝑥𝑠𝑠′𝑇𝑇𝑐𝑐𝑐𝑐−𝑠𝑠] 

Note that for boundary data (where 𝑥𝑥𝑠𝑠 or 𝑥𝑥𝑢𝑢 = 0 ) we need to define separate free energies 𝑔𝑔DPPC∗  

and 𝑔𝑔DOPC∗  in the limit as the relevant mole fraction goes to 0, yielding ultimately: 

𝜇𝜇𝑐𝑐′
DPPC = 𝜇𝜇𝐶𝐶0 + log(𝑥𝑥𝑐𝑐′) −

2𝑥𝑥𝑐𝑐𝑐𝑐∗ 𝑥𝑥𝑠𝑠′

𝑇𝑇
𝑇𝑇𝑐𝑐𝑐𝑐−𝑠𝑠 

𝜇𝜇𝑐𝑐′
DOPC = 𝜇𝜇𝐶𝐶0 + log(𝑥𝑥𝑐𝑐′). 
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In equilibrium 𝜇𝜇𝑐𝑐′ will be equivalent to 𝜇𝜇𝑐𝑐 giving us a final piece-wise expression for 𝜇𝜇𝑐𝑐 

as a function of the 𝑥𝑥𝑠𝑠, 𝑥𝑥𝑐𝑐, 𝑥𝑥𝑐𝑐𝑐𝑐 basis (but written here in the 𝑥𝑥𝑖𝑖′ basis for brevity): 

𝜇𝜇𝑐𝑐 =

⎩
⎪
⎨

⎪
⎧ μC0 + log (𝑥𝑥𝑐𝑐′)

μC0 + log(𝑥𝑥𝑐𝑐′) −
2𝑥𝑥𝑐𝑐𝑐𝑐∗

𝑇𝑇
[(1 − 𝑥𝑥𝑐𝑐′ − 𝑥𝑥𝑠𝑠′ − 𝑥𝑥𝑐𝑐𝑐𝑐∗ )𝑇𝑇𝑐𝑐𝑐𝑐−𝑢𝑢 + 𝑥𝑥𝑠𝑠′𝑇𝑇𝑐𝑐𝑐𝑐−𝑠𝑠]

μC0 + log(𝑥𝑥𝑐𝑐′) −
2𝑥𝑥𝑐𝑐𝑐𝑐∗ 𝑥𝑥𝑠𝑠′

𝑇𝑇
𝑇𝑇𝑐𝑐𝑐𝑐−𝑠𝑠

            

𝑥𝑥𝑠𝑠 = 0

𝑥𝑥𝑖𝑖 ≠ 0

𝑥𝑥𝑢𝑢 = 0

 

 

3.8.5 Supplemental Note 5: Estimating chemical potentials from lattice model simulations of 

the regular solution model without complexes 

The model that is shown in Figure 3.5B corresponds to the same model as Figure 3.5A, but 

without making the mean field approximation. Therefore, we cannot write an explicit expression 

for the free energy or its derivatives, and have to estimate these from the simulations themselves. 

Simulations are carried out as described in Methods, and then analyzed as follows. 

Estimation of derivatives 𝝏𝝏𝝏𝝏 ∕ 𝝏𝝏𝒙𝒙𝒊𝒊 in a lattice model using a Monte Carlo scheme: 

Consider a Monte Carlo update scheme that allows components from the lattice simulation 

to be exchanged with a bath of particles. It must satisfy detailed balance in order for it to 

equilibrate. This means 

𝑃𝑃𝐴𝐴→𝐵𝐵𝑃𝑃𝐴𝐴 = 𝑃𝑃𝐵𝐵→𝐴𝐴𝑃𝑃𝐵𝐵 , 

where A, B indicate states of the system, PA is the probability of state A in equilibrium, and PA→B 

is the probability under the Monte Carlo scheme of a state transition from A to B. The equilibrium 

distribution is given by the grand canonical ensemble 

𝑃𝑃𝐴𝐴 ∝ exp�−𝛽𝛽 �𝐸𝐸𝐴𝐴 −�𝜇𝜇𝑘𝑘𝑁𝑁𝑘𝑘
(𝐴𝐴)

𝑘𝑘

��, 

where 𝐸𝐸𝐴𝐴 indicates the (total) energy of state 𝐴𝐴, 𝑘𝑘 indexes the chemical species of the mixture, 𝜇𝜇𝑘𝑘 

is the chemical potential of species 𝑘𝑘, and 𝑁𝑁𝑘𝑘
(𝐴𝐴) is the number of molecules of species 𝑘𝑘 that are 

present in state A. The proportionality constant is the grand partition function, which need not be 

estimated here because we will only need ratios of probabilities. 

We will only consider schemes with moves that swap the species that is present at a random 

single site 𝑖𝑖. Write (𝑠𝑠𝑖𝑖,𝑘𝑘 → 𝑙𝑙) to denote such a swap. For such a swap, the ratio 𝑃𝑃𝐵𝐵/𝑃𝑃𝐴𝐴 only depends 

on the interaction energies between site 𝑖𝑖 and its four neighbors. In particular, 
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𝑃𝑃𝑠𝑠𝑖𝑖,𝑙𝑙→𝑘𝑘
𝑃𝑃𝑠𝑠𝑖𝑖,𝑘𝑘→𝑙𝑙

=
𝑃𝑃𝑠𝑠𝑖𝑖=𝑘𝑘
𝑃𝑃𝑠𝑠𝑖𝑖=𝑙𝑙

= exp(−𝛽𝛽[(𝐸𝐸𝑘𝑘 − 𝐸𝐸𝑙𝑙) − (𝜇𝜇𝑘𝑘 − 𝜇𝜇𝑙𝑙)]), 

where the first equality comes from rearranging the detailed balance condition, and the second 

comes from the grand canonical ensemble. 𝐸𝐸𝑘𝑘 now indicates the sum of the interactions of site 𝑖𝑖 

with its neighbors if the species at that site is 𝑘𝑘. The energy of the rest of the lattice need not be 

considered, because it does not depend on the species at site 𝑖𝑖, and thus cancels in the ratio. 

One proposal for transition probabilities (conditioned on site 𝑖𝑖 being chosen as the random 

site to swap) that satisfies the above condition is 

𝑃𝑃𝑠𝑠𝑖𝑖,𝑘𝑘→𝑙𝑙 = 𝐶𝐶 ⋅ exp(−𝛽𝛽[(𝐸𝐸𝑙𝑙 − 𝐸𝐸𝑘𝑘) −  (𝜇𝜇𝑙𝑙 − 𝜇𝜇𝑘𝑘)]/2) 

with the constant 𝐶𝐶 chosen so that no transition probability exceeds 1. Then 
𝑃𝑃𝑠𝑠𝑖𝑖,𝑙𝑙→𝑘𝑘
𝑃𝑃𝑠𝑠𝑖𝑖,𝑘𝑘→𝑙𝑙

=
exp(−𝛽𝛽[(𝐸𝐸𝑘𝑘 − 𝐸𝐸𝑙𝑙) − (𝜇𝜇𝑘𝑘 − 𝜇𝜇𝑙𝑙)]/2)
exp(−𝛽𝛽[(𝐸𝐸𝑙𝑙 − 𝐸𝐸𝑘𝑘) − (𝜇𝜇𝑙𝑙 − 𝜇𝜇𝑘𝑘)]/2) = exp(−𝛽𝛽[(𝐸𝐸𝑘𝑘 − 𝐸𝐸𝑙𝑙) − (𝜇𝜇𝑘𝑘 − 𝜇𝜇𝑙𝑙)]) 

as required. Consider the simulations as a sample from the equilibrium distribution, i.e. under the 

assumption that the 𝜇𝜇𝑘𝑘have been chosen such that the average number of molecules of species 𝑘𝑘, 

〈𝑁𝑁𝑘𝑘〉 under the grand canonical ensemble is equal to the (fixed) number that are actually present 

in the given simulation. Consider the sum 

𝑊𝑊𝑘𝑘→𝑙𝑙 = �𝛿𝛿(𝑠𝑠𝑖𝑖 = 𝑘𝑘)exp(−𝛽𝛽[𝐸𝐸𝑙𝑙 − 𝐸𝐸𝑘𝑘]/2)
𝑖𝑖

 

= exp(−𝛽𝛽(𝜇𝜇𝑙𝑙 − 𝜇𝜇𝑘𝑘)/2)�𝛿𝛿(𝑠𝑠𝑖𝑖 = 𝑘𝑘)exp[−𝛽𝛽[(𝐸𝐸𝑙𝑙 − 𝐸𝐸𝑘𝑘) − (𝜇𝜇𝑙𝑙 − 𝜇𝜇𝑘𝑘)]/2]
𝑖𝑖

 

∝ exp(−𝛽𝛽(𝜇𝜇𝑙𝑙 − 𝜇𝜇𝑘𝑘) ∕ 2)𝑃𝑃𝑠𝑠𝑖𝑖,𝑘𝑘→𝑙𝑙𝑃𝑃𝑠𝑠𝑖𝑖=𝑘𝑘. 

Therefore, by taking advantage of detailed balance, we can conclude that 

𝑊𝑊𝑘𝑘→𝑙𝑙

𝑊𝑊𝑙𝑙→𝑘𝑘
= exp�𝛽𝛽(𝜇𝜇𝑘𝑘 − 𝜇𝜇𝑙𝑙)�

𝑃𝑃𝑠𝑠𝑖𝑖,𝑘𝑘→𝑙𝑙𝑃𝑃𝑠𝑠𝑖𝑖=𝑘𝑘
𝑃𝑃𝑠𝑠𝑖𝑖,𝑙𝑙→𝑘𝑘𝑃𝑃𝑠𝑠𝑖𝑖=𝑙𝑙

= exp�𝛽𝛽(𝜇𝜇𝑘𝑘 − 𝜇𝜇𝑙𝑙)�. 

so that 

𝜇𝜇𝑘𝑘 − 𝜇𝜇𝑙𝑙 = 𝑘𝑘𝐵𝐵𝑇𝑇 log �
𝑊𝑊𝑘𝑘→𝑙𝑙

𝑊𝑊𝑙𝑙→𝑘𝑘
�. 

To obtain the chemical potentials themselves from these differences, Supplemental Note 1 

gives us a way to write these differences as partial derivatives of the free energy per molecule 𝑔𝑔. 

For the three species C,S and U, taking as dependent mole fraction 𝑥𝑥𝑈𝑈 = 1 − 𝑥𝑥𝐶𝐶 − 𝑥𝑥𝑆𝑆, we have 

𝜕𝜕𝜕𝜕(𝑥𝑥𝐶𝐶 , 𝑥𝑥𝑆𝑆)
𝜕𝜕𝑥𝑥𝐶𝐶

= 𝜇𝜇𝐶𝐶 − 𝜇𝜇𝑆𝑆. 
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Then we can estimate the overall free energy by numerically integrating these partial 

derivatives: 

𝑔𝑔(𝑥𝑥𝐶𝐶 , 𝑥𝑥𝑆𝑆) = 𝜇𝜇0 + �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝐶𝐶

(𝑥𝑥, 𝑥𝑥𝑆𝑆∗)𝑑𝑑𝑑𝑑

𝑥𝑥𝐶𝐶

𝑥𝑥𝐶𝐶
∗

+ �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑆𝑆

(𝑥𝑥𝐶𝐶 , 𝑥𝑥)𝑑𝑑𝑑𝑑

𝑥𝑥𝑠𝑠

𝑥𝑥𝑆𝑆
∗

. 

where 𝑥𝑥𝐶𝐶∗  and 𝑥𝑥𝑆𝑆∗ are chosen as the origin of the integration and 𝜇𝜇0 is an integration constant. We 

evaluate the derivatives using simulations that are closely spaced in composition space, with 

spacing of at most .05 in both 𝑥𝑥𝐶𝐶 and 𝑥𝑥𝑆𝑆. At the edges of composition space where one component 

vanishes, finer spacing is chosen. These samples are then interpolated using cubic spline 

interpolation to obtain the derivatives at arbitrary interior points of composition space. Integration 

is carried out as a Riemann sum with spacing of at most .002 in 𝑥𝑥𝐶𝐶 and 𝑥𝑥𝑆𝑆. 

Finally, with 𝑔𝑔 and the various 𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑗𝑗 in hand, we can compute for any composition: 

𝜇𝜇𝐶𝐶 = 𝑔𝑔 − 𝑥𝑥𝑈𝑈(𝜇𝜇𝑈𝑈 − 𝜇𝜇𝐶𝐶) − 𝑥𝑥𝑆𝑆(𝜇𝜇𝑆𝑆 − 𝜇𝜇𝐶𝐶) 

as derived in Supplemental Note 1. 

3.8.6 Supplemental Note 6: Comparison of fitted mean field regular solution model interaction 

energies to past estimates for a similar mixture. 

Tsamaloukas et al have reported regular solution interaction parameters for mixtures of 

POPC/sphingomyelin/cholesterol at 37C, as inferred from differential partitioning of the detergent 

Triton X-100 into these membranes (237). Their model is equivalent to the mean field regular 

solution model we have fit, although the definitions of their interaction parameters differ from ours 

by a factor of 4, the lattice coordination number of our model. Converting their fitted interaction 

parameters to our definitions thus yields JSM-Chol = -1.5 ± .75 kBT, JPOPC-Chol = 0.5 ± .25 kBT and 

JSM-POPC = 0 ± .25 kBT. While that system has important differences to our room temperature 

DOPC/DPPC/cholesterol vesicles, we observed cholesterol-lipid interaction energies JC-S and JC-U 

similar to JSM-Chol and JPOPC-Chol, respectively. A notable difference is in the third parameter JS-U, 

which we found to be substantially repulsive. These discrepancies may be related to the choice of 

lipids or to the higher temperatures at which those experiments were conducted.
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Chapter 4 A Mean Shift Algorithm for Drift Correction in Localization Microscopy 

This work proposes, validates, and applies a method for correcting sample drift in SMLM 

data. It is now published in Biophysical Reports (271). Drift correction is an important step in the 

analysis of SMLM data because data collection is slow, and the microscope stage can drift tens to 

hundreds of nm over relevant acquisition times – much more than the localization precision of the 

technique. Our method has several advantages over the existing alternatives, including lower 

computational resource requirements and improved robustness allowing for improved time 

resolution. These advantages mainly derive from the simplicity of the method. This chapter was 

written collaboratively with Frank Fazekas, Sumin Kim, Ryan Bogucki, and Sarah Veatch. I 

provided the idea for the method and much of the theoretical foundation. Frank Fazekas wrote 

much of the code and performed many of the analyses, with supervision from Sarah Veatch and 

myself. The three of us then wrote the manuscript together. The datasets of figures 3 and 4 were 

contributed by Sumin Kim and Ryan Bogucki, respectively. 

4.1 Abstract 

Single molecule localization microscopy (SMLM) techniques transcend the diffraction 

limit of visible light by localizing isolated emitters sampled stochastically. This time-lapse imaging 

necessitates long acquisition times, over which sample drift can become large relative to the 

localization precision. Here we present a novel, efficient, and robust method for estimating drift 

using a simple peak-finding algorithm based on mean shifts that is effective for SMLM in 2 or 3 

dimensions. 

4.2 Introduction 

Stochastic super-resolution microscopy techniques such as STORM (38, 40) and PALM 

(37, 39) exploit photoswitching of fluorescent probes to enable imaging of densely labeled samples 

with resolutions an order of magnitude smaller than the diffraction limit of visible light. Sparsely 

distributed point spread functions (PSFs) of single emitters are identified in individual image 

frames, and their centroids are determined according to an appropriate fitting algorithm. The axial 
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position of molecules can be encoded in their PSFs through engineering measures utilizing 

astigmatism (272, 273), multifocal plane imaging (274), or a double helix PSF (74). The final 

reconstruction is typically a 2D or 3D histogram of these single-molecule positions. 

Drift due to thermal expansion or mechanical instabilities can degrade image quality over 

the course of image acquisition, which typically occurs on the timescale of minutes. Drift 

compensation requires either active stabilization of the microscope (275–279) or a posteriori 

computation of the drift curves either using fiducial markers (62, 63, 280–282) or the acquired 

single molecule localizations (59–61, 64, 65, 283–285). In this report, we present a mathematically 

simple approach to drift correction using a mean shift (MS) algorithm (286–288) for static SMLM 

datasets without fiducial markers, with some advantages over past approaches that use nonlinear 

least squares (NLLS) fitting of image-based cross-correlations (59–61).  

4.3 Results 

A graphical illustration of the mean shift (MS) algorithm as applied to sample 2D 

localizations is presented in Figure 4.1. The localizations all lie in one of two datasets which 

sample the same uniformly distributed emitters, but with a constant relative shift shiftr  in space. 

The first step of the algorithm is to extract pairwise displacements between all localizations across 

the two datasets. When individual displacements are plotted as points (Figure 4.1b), displacements 

arising from the same labeled objects (magenta points) cluster around shiftr , while displacements 

arising from different objects (green points) distribute randomly over space. The mean shift 

algorithm determines the center of the peak of the distribution through iteration (286–288). At 

each iteration, all pairs within the radius of consideration are extracted, and the updated shift 

estimate is the centroid of these pairs. The uniformly distributed background will tend to bias the 

centroid towards the center of the observation window, while the peak moves the mean toward 

shiftr . The observation window is then redrawn around the new mean and the process is repeated 

until the peak is centered in the observation window. Three iterations of the algorithm are 

visualized in Figure 4.1c. 

While the emitters of Figure 4.1 are distributed uniformly in space, leading to the uniform 

distribution of the pairs from different emitters, the MS method does not depend on this 

assumption. In samples where emitters are organized into structures or randomly clustered, the 

pairs arising from different emitters are also more likely to be at shorter distances, so that the 
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distribution of green points in Figure 4.1b will also be peaked at shiftr . However, in our experience, 

pairs of localizations from the same emitter are more important for the MS and other drift 

estimates. We also note that our analysis assumes that emitters that are localized in one dataset 

remain within the field of view in the second dataset, and vice versa. This may not always be the 

case, and could in principle lead to bias in shift estimates, but in practice this is typically a 

negligible effect. Roughly, the contribution of fluorophores near the edge of the field of view may 

be biased by up to about the localization precision, and the fraction of fluorophores that are affected 

is restricted to those that lie within about a localization precision from the edge of the field of view, 

in the direction of the drift. So, for example, in a 100 µm field of view with localization precision 

of 15 nm, we would expect this bias to be on the order of a picometer. 

 
Figure 4.1 Demonstration of the mean shift algorithm. 

a) A sample 2D image containing two molecules (filled red symbols) that are each localized one time (filled blue symbols). 
At a later time the molecules are translated 25nm in both dimensions (open red symbols) and two additional localizations are 
acquired (open blue symbols). Red contours indicate 1 and 2 times the localization precision around molecule centers. Straight 
lines show displacements between localizations acquired at distinct times. Some connect localizations from the same displaced 
molecule (magenta) while others connect different molecules (green). b) Displacements like those shown in (a) displayed as 
points. Points connecting the same molecules cluster around the displacement while points connecting different molecules 
produce a uniform background. c) Three iterations of the mean shift algorithm showing the displacements as histograms in 
one dimension and as points in 2D in the inset. (left) Initially, a region of interest (circle in inset) is centered at zero shift. The 
mean displacement of this subset of points is found (arrow in main and cross in inset). (middle) A new region of interest is 
drawn around the mean from the initial iteration. The mean displacement from this subset of points (arrow) is shifted to slightly 
more positive values than the previous mean. (right) At the final iteration, the tabulated mean (arrow) is equivalent to the 
starting point (dashed line) because the peak is centered within the region of interest. 
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In order to benchmark this mean shift (MS) approach, we evaluated the ability of the 

algorithm to detect known shifts of simulated datasets of a circular test cell, as summarized in 

Figure 4.2. Shifts were estimated by both the MS algorithm and by nonlinear least squares (NLLS) 

fitting of a Gaussian to the spatial cross-correlation function of the two datasets, as implemented 

in the supplementary software provided with (61). The performance of each algorithm was similar 

for easy cases that produce a well-defined peak at shiftr . An extremely easy case is depicted at the 

top of Figure 4.2a, where single molecules are well spaced (surface density = 5/μm2) and where 

their positions are well sampled in both frames (twice per molecule on average). In this case, the 

shift can be clearly identified by eye, and both algorithms reliably and accurately identify the 

displacement between frames. The simulation depicted at the bottom of Figure 4.2a represents a 

 
Figure 4.2 Evaluating the mean shift (MS) algorithm on simulated data translated in 2 dimensions, compared to 
nonlinear least squares (NLLS) fitting approach. 

Simulations and displacement determination approaches are described in Methods. a) Two example simulated datasets. Scatter 
plots on the left show a representative configuration for an extremely easy case (5mol/μm2 with an average of 2 localizations 
per molecule; top) and a relatively hard case (20mol/μm2 with an average of 0.05 localizations per molecule; bottom). Scale 
bars are 2 µm (large image) and 150 nm (inset) and the simulated localization precision is σ=15nm. Histograms on the right 
show errors evaluated for the MS and NLLS approaches for the two cases considered evaluated from 500 simulations with 
random displacements between and 150nm (10σ). The precision of each method (Prec.) is evaluated as the standard deviation 
of a Gaussian fit to the central peak of the histogram (solid line). The “failure rate” is the fraction of simulations whose error 
exceeds twice the localization precision σ, indicated as a dashed line for the hard case. b) Performance comparison of the MS 
and NLLS approaches over a broad range of simulated conditions. Each point summarizes 500 simulations of the indicated 
average density and localizations per molecule, with precision and failure rate evaluated as described in part a), along with the 
average computation time per calculation. c) The measured precision plotted as a function of an error in the displacement 
estimated from data, as derived in Materials and Methods. MS failure rate vs error estimate shows that the MS algorithm loses 
robustness when the estimated error exceeds σ/4 (dashed line). 
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much harder case, where molecules are present at higher surface density (20/μm2) and only 1 in 

20 molecules are imaged on average in a given dataset. In this case, MS modestly outperforms 

NLLS fitting, both by locating the peak with improved precision and by more reliably finding the 

peak overall. These trends hold over simulations conducted over a broad range of molecular 

densities and localizations per molecule (Figure 4.2b). We also estimated shifts from the overall 

center of mass of each dataset, which yielded precisions more than an order of magnitude worse 

than both the MS and NLLS methods. Moreover, MS is more computationally efficient than 

NLLS, largely because Fast Fourier transforms (FFTs) are not computed in the mean shift 

approach. This improvement in speed is enabled through the use of a particularly efficient 

algorithm from the R package spatstat (289) to extract pairwise displacements between nearby 

points (see Methods). 

For large displacements, both the MS and NLLS algorithms applied in Figure 4.2 require 

an initial step to identify an approximate starting point for the higher accuracy calculation. 

Supplemental Figure 4.5 (see Section 4.5 for supplemental figure) shows the failure rate of each 

algorithm as a function of the distance of the start point from the true shift. MS robustly identifies 

the main peak over a broad range of simulation conditions as long as it resides within the initial 

observation window, so large shifts can be identified simply using a large window in the first 

iteration. This window is typically 100nm for experimental localizations and 150nm for the 

simulations of Figure 4.2. NLLS robustly identifies the main peak when the starting point for the 

computation falls within the localization precision of the peak of the cross-correlation function. In 

many practical cases the peak is much farther from the origin than the localization precision, so a 

separate method is needed to identify a suitable starting point. This is accomplished here using a 

particularly effective algorithm that identifies the global maximum in a smoothed cross-correlation 

function, as described in the supplemental material of (61). The robustness of the NLLS fitting 

approach is dependent on the ability of this algorithm to identify a suitable starting point over a 

broad range of simulation conditions. Note that datasets where the emitter distribution is highly 

structured or clustered typically lead to improved performance of the start point identification 

routine, by introducing a broad peak in the cross-correlation function in addition to the sharp peak 

that represents repeat localizations of the same fluorophore. 

This mean shift approach is applied to SMLM localizations that experience continuous 

drift by distributing localizations into non-overlapping temporal bins with equal numbers of 
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frames, and displacement estimates are tabulated between all possible pairs of bins. The number 

of frames in each temporal bin is an important parameter: short temporal bins have few 

localizations per molecule, so individual displacements may be estimated imprecisely. Long 

temporal bins have more localizations per molecule and more precise drift estimates, but reduce 

the time resolution of the drift estimate. A linear least squares fitting algorithm is then used to 

generate a trajectory that passes through control points positioned at times centered on each 

temporal bin, as described previously (61), taking advantage of the high redundancy to improve 

precision of the control points. We have slightly modified this past approach by including weights 

in the linear least squares fitting, where weights are determined directly from data using a relation 

that approximates error in the mean-displacement (described in Methods) as demonstrated in 

simulated datasets (Figure 4.2c). Briefly, errors are reduced when there are more pairs originating 

from the same molecules (magenta points in Figure 4.1) and errors increase when more pairs 

originate from different molecules within the observation window (green points in Figure 4.1). 

Estimated errors can also act as a proxy for overall reliability of the algorithm. Figure 4.2c also 

shows that MS reliably finds the desired peak when the estimated error remains smaller than one 

quarter of the localization precision. This observation can act as a guide when selecting the number 

of frames included in temporal bins. 

It is tempting to distribute frames into overlapping temporal bins, which in principle could 

improve time resolution while retaining a sufficient number of localizations to accurately 

determine displacements. However, we find that drift estimates from overlapping time bins are 

subject to substantial bias, underestimating the actual displacements accrued over time 

(Supplemental Figure 4.6a). This occurs because the same localizations are present in adjacent 

bins, biasing the result towards shiftr = 0. Similar bias can arise even in the absence of overlapping 

time bins because SMLM data frequently contains time-correlated localizations arising from the 

finite off rates of fluorescent blinking (PALM/dSTORM) or binding (PAINT). These factors mean 

that pairs of localizations from the same fluorophore are mostly from time separations that are 

shorter than the time difference between the bin centers, and therefore underestimate the average 

drift between the bins. 

The MS approach is applied to a 2D experimental dataset of nuclear pore complexes 

(NPCs) in Figure 4.3. NPC assemblies are labeled with primary and secondary antibodies against 

Nup210 within the nuclear envelope of intact primary mouse neurons and Figure 4.3a-d show 
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reconstructed images at various magnifications. Figure 4.3b is a reconstruction produced without 

drift correction in which localizations from single NPCs are smeared over a large area, highlighting 

the importance of drift correction. 

The performance of the mean shift algorithm was tested on this dataset by generating multiple drift 

trajectories through binning with different temporal resolutions. These trajectories were each 

applied to the full SMLM dataset, and Fourier Ring Correlation (FRC) (80, 81) was used to 

quantify image resolution (Figure 4.3e). For comparison, we conducted drift corrections using the 

redundant cross-correlation (RCC) NLLS approach as described previously (61). In this case, MS 

modestly outperforms NLLS fitting, allowing for accurate drift correction with smaller temporal 

bins and modestly improving the resolution of the reconstructed image. We used this dataset to 

explore possible bias introduced due to temporal correlations of single fluorophore blinking by 

 
Figure 4.3 Demonstration of mean shift (MS) drift correction of a 2D SMLM dataset of antibody-labelled 

Nup210 in nuclear pore complexes, within the nuclear envelope of primary mouse neurons. 

This dataset contained 15500 image frames acquired over 14 minutes, with an average localization precision of 8nm. a) 
Reconstructed image of a single nucleus which is a subset of this dataset. b) Reconstruction without drift correction of the 
region shown within the white box in A. c) Same region as in B but with drift correction. d) An image of a single complex 
demonstrates the modest shifts in localizations due to drift corrections estimated with MS and 6s (green), or NLLS and 17s 
(magenta) temporal bins. Scale bars are 2µm (a) 200nm (b,c) and 30nm (d). e) Fourier Ring Correlation (FRC) resolution after 
applying drift corrections estimated using the specified temporal bin widths for the MS and NLLS methods. Error bars represent 
the standard deviation over 20 replicates of the FRC calculation. f) Estimated drift trajectories evaluated from using the method 
and temporal spacing specified. Error bars represent 68% confidence intervals from the weighted least squares drift estimation 
of each control point. Scale bars are 20nm for the overall drift curve and 2nm in the inset. 
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running the linear least squares algorithm including or excluding adjacent pairs of bins on the data 

of Figure 4.2. We found no significant difference between the two cases (Supplemental Figure 

4.6b), indicating that the impact of this bias is negligible within experimental errors. Additional 

diagnostics for the MS and NLLS approaches are shown in Supplemental Figure 4.7. 

Drift trajectories are shown in Figure 4.3f for temporal bin-widths that produce accurate 

FRC metrics for the MS and NLLS approaches. For MS, a temporal bin slightly larger than the 

minimum from the FRC curve is used, since this produces smaller errors on individual control 

points. As expected, the drift trajectories follow the same general shape but the trajectory generated 

from MS has improved time resolution. In parts of the trajectory, the errors of the control points 

are smaller than the distance between the trajectories. In these regions, higher time-resolution 

yields improved spatial resolution in the final reconstructed image. While the differences in the 

trajectories are significant, their impact is not apparent when viewing reconstructed images of 

entire nuclei or collections of NPCs, as in Figure 4.3a,c. Differences become more apparent in 

images of individual pores, where displacements of several nm shift the relative positions of 

labeled subunits (Figure 4.3d). 

The MS algorithm is easily extended to localizations acquired in 3D, where performance 

improvements are more evident compared to the established NLLS approach. Since the MS 

algorithm uses points instead of reconstructed images and FFTs, it can be extended into 3D without 

needing expanded memory resources, which limits the practical application of NLLS in 3D. 

Instead, the 3D application of NLLS drift correction is typically accomplished by generating 2D 

projections that contain less information than the 3D localizations they are produced from (61). To 

see why, consider a pair of emitters that are close together in x-y but far apart in z. Pairs of 

localizations from this pair of fluorophores will be included in 2D MS drift estimation when using 

data projected into the x-y plane, but excluded from the full 3D drift estimation method, by virtue 

of their large separation in z. We compare the precision and robustness of 3D MS and NLLS on 

simulated localizations spread over a cylindrical volume in Supplemental Figure 4.8, where the 

NLLS correction is performed on projections into the x-y, x-z, and y-z planes as described in (61). 

We also directly compare the x-y performance of the full 3D MS method to the 2D MS method 

performed on data projected into the x-y plane (Supplemental Figure 4.9). 
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Figure 4.4 applies the MS approach to an experimental SMLM dataset of labeled B cell 

receptors on the ventral membrane of B cells imaged using a phase mask in the emission path to 

localize fluorophores in 3D (74). As was the case for simulated datasets, the differences in the 

performance of the mean shift and NLLS fitting methods are more pronounced than in the 2D 

dataset of Figure 4.3. Additional diagnostics for the 3D case are shown in Supplemental Figure 

4.10. 

In summary, a mathematically simple mean shift algorithm modestly outperforms cross-

correlation based estimates of drift correction in 2D and more significantly improves the time-

resolution of drift-corrections in 3D. The approach is computationally efficient, is robust without 

sophisticated methods to estimate start-points, and does not require image reconstruction with 

 
Figure 4.4 Demonstration of mean shift (MS) drift correction of a 3D SMLM dataset of B cell receptors at the 
ventral plasma membrane of CH27 B cells. 

This dataset contained more than 400,000 localizations acquired over 15 minutes, with an average localization precision of 17 
nm in the lateral (x-y) dimension and 31 nm in the axial (z) dimension. a) Reconstructed image of a subset of this dataset 
showing the average z position within each x-y pixel as indicated in the color bar. x-z slice at the position drawn as a white 
line shown below. Scale bars are 5µm for x-y and 200nm for z. b) Fourier Ring Correlation (FRC) estimates of image resolution 
after applying drift corrections estimated using the specified temporal bin widths for the MS and NLLS methods. Error bars 
represent the standard deviation over 5 replicates of the FRC calculation. (C) Estimated drift trajectories evaluated with the 
specified temporal spacing. Error bars represent 68% confidence intervals from the weighted least squares drift estimation of 
each control point. Scale bars are 50nm and 10nm in the inset. 
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memory and pixelation limitations. The metric provided to estimate error and predict robustness 

directly from data provides users with a means to evaluate the quality of a drift correction within 

an SMLM analysis pipeline. For the example datasets explored, modest improvements in 

resolution lead to adjustments of localized molecule positions relevant for evaluating the structure 

of protein complexes in cells.  

4.4 Methods and Materials 

4.4.1 Simulated Datasets 

An idealized 2D SMLM dataset was simulated as a spatially random set of fluorophores 

on a 20µm diameter circular cell, with each fluorophore giving rise to a Poisson-distributed number 

of localizations with isotropic Gaussian localization error 15 / 2x yσ σ= =  nm. We define 

2 2 15x yσ σ σ= + =  to denote the total root-mean-square localization error. A second dataset was 

generated from the same fluorophore locations, localization precision, and average number of 

localizations per fluorophore, and shifted between 0 and 150 nm in a random direction. Simulated 

datasets were generated over a range of densities (5 to 100 per µm2) and a range of localizations 

per molecule (.05 to .2). 

An idealized 3D SMLM dataset was simulated in a similar fashion. Fluorophores were 

distributed uniformly on a cylinder 20 µm in diameter and 2 µm deep. Each fluorophore produces 

a Poisson-distributed number of localizations with 15 / 2x yσ σ= = nm as before, and with 

30 / 2zσ = nm. One dataset is translated by a random distance between 0 and 150 nm in a random 

direction in x, y, and z. 

4.4.2 Extracting Close Pairs of Coordinates Between Datasets 

Consider two point sets ( , )i ix iyu u=u  and ( , )jx jyj v v=v , for 11,...,i n=  and 21,...,j n= . We 

wish to quickly determine which pairs ( , )i j  are closer than some maximum distance maxr ; i.e. 

which pairs satisfy maxi j r<− vu . The algorithm is adapted from the code for the closepairs() and 

crosspairs() functions of the R package spatstat (289), and implemented in C with a MATLAB 



92 
 

interface. We first sort each dataset with respect to its x-coordinate, so that kx lxu u≤  whenever

k l≤ . Then the algorithm proceeds as follows: 

1. Let 1i = and left 1j = .  

2. Let xleft maixx ru −= . All close pairs of iu  must satisfy leftjx xv > . 

3. Increment leftj  until 
left leftj x xv ≥  . 

4. For each 2,...,leftj j n= , if maxjx ixv u r− > , increment i  and return to step 2. Otherwise, compute
2 2 2( ) ( )ij ix ix iy iyr uu v v= − + −  . If 2 2

maxijr r≤ , add ( , )i j  to the list of results.  

This algorithm avoids computing pairwise distances between most pairs in the dataset, and 

so is much faster and more memory efficient than a brute force approach. It can be readily adapted 

to higher dimensions by applying the appropriate n-dimensional distance metric in step 4. For 

convenience, our implementation returns the displacements j iij∆ = −r v u , and total distance 

ij ijr = ∆r‖ ‖ for each pair ( , )i j , instead of the indices themselves. 

4.4.3 Determining Shifts between Translated Datasets Using a Mean Shift Algorithm 

Given the set of displacements ij i j= −Δr u v  between two point sets iu  and jv , a mean 

shift clustering algorithm (286–288) can be applied to search for the peak of the displacement 

density function. Briefly, let shift ,0r  be an initial guess to initialize the shift estimate, and δ  a radius 

of consideration to use in the optimization procedure. The algorithm proceeds by iteration, by 

setting 

 shift ,
shift , 1 ,

ij t
t ij δ+ − ≤
=

r r
r r

  

where the average is restricted to the subset of displacements ijr  that satisfy the subscript, 

i.e. that are within a radius δ  from the previous shift estimate shift ,tr . The algorithm terminates 

when the distance shif , 1 shift ,t t t+ − rr  between subsequent shift estimates becomes smaller than 

machine precision, or when the number of iterations exceeds a user-defined maximum number. 𝛿𝛿 

must be sufficiently large so that the true shift resides within the explored area when centered at 

the starting-point. In practice, we apply the algorithm twice: first with a large 𝛿𝛿 to determine the 

rough shift, and then with a smaller 𝛿𝛿, using the first estimate as a starting point, to refine the 

estimate. 
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While the above can be applied directly to 3-dimensional data by taking the average over 

a 3-dimensional ball of radius δ  instead of the 2-dimensional disc, we find it is advisable to 

consider an ellipsoid that is stretched in the z-direction, to account for the larger axial localization 

errors present in our 3-dimensional simulated and experimental datasets. In the present work, we 

let the semimajor axis of the ellipsoid be 2δ , in the z direction, and the semiminor axes both δ

, so that x-y cross-sections of the regions of consideration are discs. 

4.4.4 Estimates of mean shift error 

We model the distribution of pairs around the true shift as a Gaussian-distributed peak with 

standard deviation ς , centered on the true shift shiftr  on a uniformly distributed background. 

Assuming shift ,tr is sufficiently close to shiftr that most of the Gaussian peak falls within the region 

of consideration, the variance 2ξ  of the two components of shift ,tr is given by  

 

2 2
2 true false

shift , , shift , , 2
true false )

/ 4Var Var
(t x t y

n nr r
n n
ς δξ +   = =  =

+
, 

where δ  is the radius of consideration for the MS algorithm, and truen  and falsen are 

respectively the number of “true pairs” that are drawn from the Gaussian part of the distribution 

(displacements between different localizations of the same molecules) and the number of “false 

pairs” that are drawn from the uniform part (displacements between different molecules), that fall 

within the region of consideration. Furthermore, the expected value after one more step can be 

derived: 
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Suppose t  is the final step of the algorithm, i.e. shift , 1 shift , 0t t+ − =rr . Then by hypothesis,

shift ,tr deviates from its expected value by  

 

true
shift , shift

true false
t

n
n n

−
+

r r
. 
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This deviation will typically take on values comparable to the standard deviation ξ  shown 

above. Thus, we estimate the error of the MS algorithm by: 

 

2 2
true false

true

Predicted Error 
4

= 
/n n

n
ς δ+

. 

This predicted error is to be interpreted as an estimate of the standard deviation of the shift 

estimate in each direction. 

In practice, the parameters truen , falsen , andς  are not known, so we estimate them from 

data. Specifically, we construct the isotropic cross-correlation function ( )c r from the pair 

separations ijr , determine the baseline of ( )c r from its long-range median value, and use the 

baseline to infer truen and falsen . Finally, we fit ( )c r to a Gaussian plus a constant to estimate ς

.This error estimate is derived from a heuristic argument and is not exact. However, its 

performance is adequate in practice. See Figure 4.2c for a comparison to observed standard 

deviations of MS shift estimates. 

For 3D data, we compute lateral and axial predicted errors separately, by projecting the 

data from the ellipsoidal region of consideration into the x-y plane or onto the z axis, respectively. 

truen , falsen , andς are estimated separately for the lateral and axial directions from the two 

projections. 

4.4.5 Evaluating displacements using nonlinear least squares (NLLS) fitting  

Displacements shiftr between pairs of localization datasets were also estimated by NLLS 

fitting of a Gaussian to the spatial cross-correlation function of the two datasets. NLLS fitting was 

accomplished using software published as Supplemental material of (61). Images were first 

reconstructed from simulated localizations with a pixel size of 15nm for simulated localizations, 

or from acquired data with a pixel size of 8nm for Nup210 or 15nm for B cell receptor experimental 

localizations. Cross-correlations are tabulated using 2D Fast Fourier Transforms (FFTs) and then 

fit a 2D Gaussian function to a subset of the cross-correlation centered at the start-point of the 

NLLS algorithm. The software from (61) finds the start-point using an elegant smoothing step to 

reduce noise then uses the largest local maximum of the smoothed cross-correlation as the start-

point for fitting. 
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For localizations acquired in 3D, multiple 2D projections were constructed from 3D 

localizations, then the procedures described for 2D images were applied to determine 

displacements. First, images projecting on the lateral dimension (x-y plane) were generated and 

the lateral displacement was determined. To compute the z displacement, both the xz and yz 

projections were used, and the final z displacement was the average determined from the two 

projections. 

4.4.6 Correcting continuous drift 

Continuous drift was corrected by temporally dividing the data into N bins, each having 

the same number of frames. For each of the ( 1) / 2N N −  pairs ( , )m n  of temporal bins, the mean 

shift or NLLS algorithm is applied to estimate the shift shift ,m n→r  from temporal bin m  to n , 

corresponding to the drift between the bins. Drift at each of the 𝑁𝑁 time points is calculated from 

the 𝑁𝑁 (𝑁𝑁 − 1) 2⁄  pairwise shifts using a least-squares minimization algorithm (61); this takes 

advantage of the overdetermined nature of the drift calculation to improve the precision of the 

measurement. Outlier shifts, whose residual with respect to the least-squares estimate exceeds a 

user-defined threshold, can also be discarded as described in (61). These shifts typically 

correspond to “failures” of the shift estimation method. The final drift curve at each frame is 

determined by linear interpolation and extrapolation from the N basis points. 

4.4.7 Evaluating performance of displacement algorithms 

For simulated localizations, errors away from known displacements were tabulated for 

each simulated configuration. The 2D precision of each method is defined as the standard deviation 

of a centered, isotropic 2D Gaussian fit to the central peak of the histogram of these values, 

considering only values that fall within twice the localization precision (2σ) used in the simulation. 

The fit is applied directly to the absolute errors shift,est. shift−r r  with the distribution function 

2 2/2
2( ) rr ef r σ

σ
−= . Similarly, in the 3D case, x- and z-precision are evaluated separately by fitting 

1D Gaussian functions to the x- and z-errors, respectively. Values that fall outside of the 2σ 

window are reported as failures of the algorithm, and contribute to the failure rates reported in 

figures. Since failures can return values with large errors, they can have an outsized impact on 

simpler precision metrics, such as the root mean square error (RMSE). Computation time was 
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assessed in MATLAB using the built-in tic and toc functions. For simulated data, computation 

time was averaged over 500 simulations for each condition. For experimental data, computation 

time includes the ( 1) / 2N N −  shift estimates and the error estimates for each shift estimate in the 

MS case. Normalized residual degrees of freedom (Normalized DOF) of the linear least squares 

algorithm are calculated by the ratio of shifts that are used for the final least squares minimization 

step (after removal of outliers) to the number of time points at which drift is estimated (i.e. 1N −

). This serves as a diagnostic for how much redundancy is included in the linear least squares 

minimization step. 

4.4.8 Evaluating the resolution of drift-corrected datasets 

Resolutions of the final reconstructed images were compared using Fourier Ring 

Correlation (80, 81). Specifically, we used code adapted from the supplementary software of (81). 

To compute the x-y resolution, nearby localizations belonging to adjacent camera frames were 

grouped together, with the position taken to be the average of the relevant coordinates. The FRC 

curves were produced by dividing the dataset into blocks of 500 frames and allocating an equal 

number of blocks randomly to each of the two sets. The pixel size was taken to be 5nm. For the B 

cell dataset, the Fourier Ring approach was applied to the xy and xz projections in turn, also using 

a pixel size of 5nm in each case. 

4.4.9 Preparation of cellular samples for imaging 

Mouse primary neurons were isolated from P0 mouse pups that were decapitated and brains 

were isolated into ice cold, filtered dissection buffer (6.85 mM sodium chloride, 0.27mM 

potassium chloride, 0.0085 mM sodium phosphate dibasic anhydrous, 0.011mM potassium 

phosphate monobasic anhydrous, 33.3 mM D-glucose, 43.8 mM sucrose, 0.277 mM HEPES, pH 

7.4) as described in (290). After removing the cerebellum and the meninges, cortices were 

dissected out, placed into a microcentrifuge tube, and cut into small pieces with dissection forceps. 

Cortices were incubated in 50µL papain (2mg/mL; BrainBits) and 10µL DNase I (1mg/mL; 

Worthington Biochemical) for 30min at 37 °C. 500µL BrainPhys Neuronal Medium (Stemcell 

Technologies) and 10µL additional DNase I were added, and cortices were triturated using P1000 

and P200 pipet tips. Triturated cortices were centrifuged at 1000rpm for 5min. After discarding 

the supernatants, the pellets were triturated and centrifuged three more times until the supernatant 
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remained clear and neuronal pellets were visible. Pelleted neurons were resuspended in BrainPhys 

Neuronal medium with SM1 supplement as previously described (291), then plated onto 35mm 

#1.5 glass-bottom dishes (MatTek Life Sciences) coated with polyethlenimine (100 µg/ml; 

Polysciences). Neurons were incubated in 5% CO2 at 37 °C, and 1mL of media was replaced every 

four days. 

On day 10 of culture (days in vitro 10), neurons were rinsed with sterile Hank’s Balanced 

Salt Solution, then incubated for 1min with pre-warmed 2% PFA (Electron Microscopy Sciences) 

in Phosphate Buffered Saline (PBS). The neurons were then incubated in 0.4% Triton X-100 

(Millipore Sigma) in PBS for 3min, and fixed for 30min with 2% PFA in PBS. Neurons were then 

washed with PBS five times, incubated in blocking buffer containing 5% Normal Donkey Serum 

and 5% Normal Goat Serum (Jackson Laboratories) for 30min, then labeled with Nup210 

polyclonal antibody diluted in blocking buffer (1:200; Bethyl laboratories A301-795A) overnight 

in 4 °C. The following day, neurons were washed three times in PBS then stained with Goat-anti-

rabbit Alexafluor 647 secondary antibody (1:1000; ThermoFisher) for an hour, washed three times 

with PBS, then imaged. 

CH27 B cells (292) were cultured, allowed to adhere to 35mm #1.5 glass-bottom dishes 

(MatTek Life Sciences) overnight, then incubated in Alexa647 conjugated fAb prior to fixation in 

4% PFA and 0.1% glutaraldehyde (Electron Microscopy Sciences), as described previously (83). 

The labeled fAb antibody was prepared by conjugating an Alexa647 NHS ester (ThermoFisher) to 

an unconjugated fAb (Goat Anti-Mouse IgM, µ chain specific; Jackson Immunoresearch) using 

established protocols (83). 

4.4.10 Single molecule imaging and localization 

Imaging was performed using an Olympus IX83-XDC inverted microscope. TIRF laser 

angles where achieved using a 60X UAPO TIRF objective (NA = 1.49), and active Z-drift 

correction (ZDC) (Olympus America) as described previously. The ZDC was not used for 

collection of 3D datasets. Alexa 647 was excited using a 647 nm solid state laser (OBIS, 150 mW, 

Coherent) coupled in free-space through the back aperture of the microscope. Fluorescence 

emission was detected on an EMCCD camera (Ultra 897, Andor) after passing through a 2x 

expander. Imaging in 3D was accomplished using a SPINDLE module equipped with a DH-1 

phase mask (DoubleHelix LLC). 
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Single molecule positions were localized in individual image frames using custom software 

written in Matlab. Peaks were segmented using a standard wavelet algorithm (55) and segmented 

peaks were then fit on GPUs using previously described algorithms for 2D (58) or 3D localizations 

(293). After localization, points were culled to remove outliers prior to drift correction. Images 

were rendered by generating 2D histograms from localizations followed by convolution with a 

Gaussian for display purposes. 

4.5 Supplemental Figures 

 
Figure 4.5 Evaluating the mean shift (MS) and NLLS algorithms with the start-point at the origin. 

Simulations and shift determination approaches are described in Methods. a) Shifts between 0 and 10 times the localization 
precision (σ) are applied in a random direction, and the MS and NLLS algorithms are applied to determine these displacements. 
The observation window (δ) for the MS algorithm has an extent of 3σ as indicated by the dashed blue line. The “failure rate” is the 
fraction of simulations whose error exceeds 2σ. Each point represents a given combination of fluorophore density and number of 
localizations per molecule, averaged over 50 independent trials. Densities range from 5 to 100 molecules per µm2, and localizations 
per molecule range from .05 to .2. 
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Figure 4.6 Drift estimates between overlapping temporal bins are prone to bias. 

a) Mean shift (MS) shift estimates for pairs of bins that are overlapping or separated by short times. Simulations are similar to those 
for Figure 4.2 with a cell of radius 10 µm and randomly distributed fluorophores at a density of 20 per µm2, but with explicit 
blinking kinetics, modeled as a simple two state (fluorescent/dark) system, with activation and deactivation time constants τon and 
τoff for the dark  fluorescent and fluorescent  dark transitions, respectively. A constant drift rate of .1 nm per frame is applied. 
The drift estimates shown here are for 50 frame temporal bins, with bin starts separated by the bin separation times as shown. For 
each τoff, τon is adjusted so that the average number of localizations per fluorophore is approximately 0.15. Open circles represent 
drift estimates using all pairs of simulated points, including the trivial 0 displacements between points that appear in the overlap of 
the two temporal bins. Filled circles represent drift estimates using all pairs of distinct point, i.e. excluding the trivial 0 
displacements between points that appear in the overlap of the two temporal bins. Note that overlapping bins are subject to 
substantial bias even for quite short τoff (magenta points), and that even non-overlapping bins may be subject to bias when τoff is 
long (blue points). b) FRC resolutions for the nuclear pore complex data of Figure 4.3, with MS drift corrections including or 
excluding drift estimates for adjacent pairs of temporal bins in the linear least squares fit. 
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Figure 4.7 Drift correction diagnostics for the nuclear pore complex dataset of Figure 4.3. 

a) FRC resolutions. Error bars are given by the standard deviation over 20 trials. b) The number of degrees of freedom (DOF) after 
removing outliers (normalized by the number of parameters) for the redundant least square minimization calculation. c) RMSE of 
the expected errors for the mean shift method. Error bars are given by the standard error of the mean. d) Total computation time. 
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Figure 4.8 Evaluating the mean shift (MS) algorithm on 3D simulated data, compared to the NLLS approach. 

Simulations and shift determination approaches are described in methods. a,b) Histograms of x-errors (a) and z-errors (b) for the 
MS and NLLS approaches for the 0.01 molecules/µm3 and 0.05 localizations per molecule condition. The precision of each method 
is evaluated for each condition as the standard deviation of a Gaussian fit to the central peak of the histogram. The “failure rate” is 
the fraction of simulations whose error exceeds twice the localization precision σ, indicated as a dashed line. Three densities are 
shown in the plots: 5. 20, and 100 molecules/µm2. c,d) Comparison of the lateral (c) and axial (d) precision of each approach, 
plotted versus the number of localizations per molecule. e) Computation times of the two approaches over the same conditions 
shown in c,d). f,g) Comparison of the failure rate of each approach in lateral (f) and axial (g) directions under the same range of 
conditions. 

 

 
Figure 4.9 2D projections of 3D data degrade mean shift (MS) shift estimation performance. 

Lateral (x-y) precision (a) and failure rate (b) when MS shift is determined in 3D or in 2D after projecting the localizations into the 
x-y plane. The points shown each summarize 500 replicates of one simulation condition, with fluorophore density as shown in the 
legend, and localizations per molecule ranging from .05 to .2. The simulated 3D data used here is constructed such that its 2D 
projection is identical to the 2D data used for Figure 4.2. 
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Figure 4.10 Drift correction diagnostics for the 3D B cell dataset of Figure 4.4. 

a) FRC resolutions. Error bars are given by the standard deviation over five trials. b) The number of degrees of freedom (DOF) 
after removing outliers (normalized by the number of parameters) for the least square minimization calculation. c) RMSE of the 
lateral (x-y) and axial (z) expected errors for the mean shift calculation of pairwise shifts. Error bars are given by the standard error 
of the mean. d) Total computation time.
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Chapter 5 Estimating the Localization Spread Function of Static Single 

Molecule Localization Microscopy Images 

Single molecule localization microscopy drastically reduces the position uncertainty of 

observed molecules in biological samples. To be confident in the interpretation of detailed features 

of these images, one must answer the question: how much uncertainty remains? In this chapter, I 

propose a method that takes advantage of the temporal correlations present in most SMLM 

techniques to statistically separate the distribution of molecules in the sample from the distribution 

of localizations around each molecule. This chapter is a collaborative work. The ideas, derivations 

of the validity and limitations, analysis code and text were mostly developed by myself and Sarah 

L Veatch, with contributions from Frank J Fazekas. Sumin Kim, Jennifer C Flanagan-Natoli and 

Emily Sumrall provided the biological samples and in some cases the SMLM datasets that are used 

for demonstration of the method. A version of this chapter has been published in Biophysical 

Journal (294). 

5.1 Abstract 

Single molecule localization microscopy (SMLM) permits the visualization of cellular 

structures an order of magnitude smaller than the diffraction limit of visible light, and an accurate, 

objective evaluation of the resolution of an SMLM dataset is an essential aspect of the image 

processing and analysis pipeline. Here we present a simple method to estimate the localization 

spread function (LSF) of a static SMLM dataset directly from acquired localizations, exploiting 

the correlated dynamics of individual emitters and properties of the pair autocorrelation function 

evaluated in both time and space. The method is demonstrated on simulated localizations, DNA 

origami rulers, and cellular structures labelled by dye-conjugated antibodies, DNA-PAINT, or 

fluorescent fusion proteins. We show that experimentally obtained images have LSFs that are 

broader than expected from the localization precision alone, due to additional uncertainty accrued 

when localizing molecules imaged over time. 
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5.2 Introduction 

Single molecule localization microscopy (SMLM) is a powerful tool to image structures in 

cells with dimensions ranging between tens of nanometers to tens of microns. Methods such as 

(d)STORM (38, 40), (F)PALM (37, 39), and PAINT (47) exploit the stochastic blinking of single 

fluorophores to localize emitting molecules with a localization precision much smaller than the 

diffraction limit of visible light, by imaging only a small subset of probes in any given image 

frame. These samples are then imaged over time, and acquired localizations are typically 

assembled into a single reconstructed super-resolved image.  

Assessing the quality of reconstructed images can be challenging as numerous factors can 

contribute. These factors can include the labeling density, the types of structures being imaged, the 

brightness and blinking dynamics of the fluorophore, the finite size of labeling antibodies, motions 

of the stage or labeled molecules during acquisition, and the analytical methods used in post-

processing. One important measure of the quality of a measurement is the localization precision 

of single fluorophores, which is influenced by many of the factors listed above. Many localization 

algorithms directly return estimates of the localization precision of single fits, and similar 

information can be extracted directly from the localizations themselves through the use of pair-

correlation functions or nearest neighbor analyses that extract the distribution of positions of 

molecules detected in adjacent frames (82, 87). However these methods are not sensitive to errors 

introduced on time-scales longer than a few image frames. Other metrics of image quality have 

been developed that integrate both precision and spatial sampling. One widely used method, called 

Fourier Ring Correlation (FRC) (80, 81), effectively captures the impact of factors that degrade 

quality over the entire span of image acquisition. The FRC curve depends on the types of structures 

imaged, how well they are sampled, and the specific regions of interest used. The resolution value 

it reports indicates the length-scale below which the signal to noise ratio falls below a specified 

limit. This value is useful for comparing imaging conditions for a particular sample, but hard to 

compare across sample types, making its use highly context dependent.  

Here we present a simple method to estimate the average localization spread function (LSF) 

of a SMLM dataset as a way to evaluate its resolution. The LSF is analogous to the point spread 

function (PSF) of a conventional microscopy measurement and can aid the interpretation of 

acquired images. The LSF reports on how accurately distances can be measured between labeled 

objects within images, and can be used when constraining the structure of a multi-protein complex 
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or when estimating the statistical co-distribution of labeled components. The LSF can also be used 

to evaluate optimizations all along the image acquisition and processing pipelines. The method 

presented exploits temporal correlations in the blinking dynamics of single fluorophores 

commonly used for localization microscopy (295–297). This enables the method to report on errors 

accumulated over time that do not typically impact the accuracy of single molecule fitting but 

impact how accurately a molecule’s position is determined relative to others (298, 299). Here, we 

derive a method to isolate the LSF directly from acquired localizations, validate it through 

simulation and images of DNA origami rulers, and apply it to several images of labeled structures 

in cells. In all of the experimental examples interrogated, the LSF width increases over time-scales 

at and below that of drift correction. 

5.3 Materials and Methods 

5.3.1 Simulations 

Simulations mimicking DNA origami rods were accomplished by randomly placing pairs 

of fluorophores positioned 50 nm apart within a 40 µm by 40 µm region of interest at an average 

density of 1 pair per µm2. 20,000 individual image frames with an effective frame time of 0.1 sec 

were simulated by sampling a subset of molecular positions with a localization precision of 10 nm 

in each lateral dimension. The dynamics of individual fluorophores were governed by a continuous 

time Markov process involving five states: one on state (1), three dark states (0, 01, 02), and an 

irreversible bleached state (B), following the procedure described previously (297, 300). The on 

state was accessible from any of the dark states, while dark state 0 was accessible only from the 

on state, and dark states 01 and 02 were accessible only from the previous dark states, 0 and 01, 

respectively. We used the following parameters (using the notation described in (297, 300)) to 

capture essential elements of our experimental observations: 𝜆𝜆(0 → 1) = 1.2 Hz; 𝜆𝜆(0 →

01) =0.05 Hz; 𝜆𝜆(01 → 02) =0.0033 Hz; 𝜆𝜆(01 → 1) =0.02 Hz; 𝜆𝜆(02 → 1) =0.0005 Hz; 

𝜆𝜆(1 → 0) = 5 Hz; 𝜇𝜇(1 → 𝐵𝐵) =0.05 Hz. The continuous time Markov process was simulated in 

MATLAB (The MathWorks) using File Exchange code “simCTMC.m” (301). When present, drift 

was applied to all molecular positions with a constant rate of 0.3 nm/sec in the x direction along 

with diffusive drift characterized by a diffusion coefficient of D=2.5 nm2/sec. Drift was corrected 

using the mean shift algorithm described previously (271) using 1000 frames per alignment (10 s). 
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5.3.2 Experimental sample preparation: 

DNA origami “gatta-STORM” nanorulers were purchased from Gattaquant GMBH 

(Grafelfing, Germany) and a sample was prepared following manufacturer’s instructions. Briefly, 

biotinylated Bovine Serum Albumin (biotin-BSA; ThermoFisher; 1 mg/ml) was absorbed to a 

clean 35 mm #1.5 glass-bottom dish (MatTek well; MatTek Life Sciences) for 5min then washed. 

Streptavidin was then applied (1 mg/ml) for 5min, then washed with a solution of phosphate 

buffered saline (PBS) plus 10 mM MgCl2. A solution containing the biotinylated DNA origami 

was then applied. Samples were then washed and imaged in an imaging buffer supplemented with 

10 mM MgCl2. “gatta-PAINT” 80RG nanorulers in a sealed sample chamber were purchased from 

Gattaquant GMBH and imaged in the Atto655 color channel following manufacturer 

recommendations. 

Mouse primary neurons were isolated from P0 mouse pups as described previously and 

cultured on MatTek wells (271). On day 10 of culture (days in vitro 10), neurons were rinsed with 

sterile Hank’s Balanced Salt Solution and fixed for 10min with pre-warmed 4% PFA (Electron 

Microscopy Sciences) in Phosphate Buffered Saline (PBS). The fixed neurons were rinsed three 

times with PBS and permeabilized in 0.2% Triton X-100 (Millipore Sigma) in PBS for 5min. 

Neurons were then incubated in blocking buffer containing 5% BSA for 30 min, and labeled with 

Nup210 polyclonal antibody diluted in PBS (1:200; Bethyl laboratories A301-795A) overnight in 

4 °C. The following day, neurons were washed three times in PBS and stained with goat-anti-rabbit 

AlexaFluor 647 Fab Fragment (1:800; Jackson ImmunoResearch 111-607-003) for an hour, 

washed three times with PBS, then imaged. 

CH27 B-cells (mouse, Millipore Cat# SCC115, RRID:CVCL_7178), a lymphoma-derived 

cell line (292) were acquired from Neetu Gupta (Cleveland Clinic). CH27 Cells were maintained 

in culture as previously described (53). Cells were adhered to MatTek wells coated with VCAM 

following procedures described previously (302). Briefly 0.1 mg/ml IgG, Fcγ-specific was 

adsorbed to a plasma cleaned well for 30 min at room temperature. Wells were rinsed with PBS, 

then nonspecific binding was blocked with 2% BSA at room temperature for 10 minutes, followed 

by incubation with 0.01 mg/mL recombinant human VCAM-1/CD106 Fc chimera protein (R&D 

Systems) and 0.01 mg/mL ChromPure Human IgG, Fc fragment (Jackson Immunoresearch) for 1 

hour at room temperature or overnight at 4°C. VCAM-1 coated dishes were stored up to 1 week 

in VCAM-1 and Fc at 4°C. Immediately prior to plating, dishes were blocked at room temperature 
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in 2% goat serum (Gibco) for 10 min, then cells were allowed to adhere for 15 min in media prior 

to chemical fixation in 2% PFA and 0.2% glutaraldehyde (Electron Microscopy Sciences). F-Actin 

was stained by permeabilizing cells with 0.1% Triton-X-100 prior to incubation with 3.3 μM 

phalloidin-AlexaFluor647 (Invitrogen) for at least 15 min. Phalloidin stained cells were imaged 

immediately after removing label. Cells transiently expressing Clathrin-GFP were permeabilized 

after fixation with 0.1% Triton-X-100 followed by labeling with a single domain anti GFP 

antibody (MASSIVE-TAG-Q ANTI-GFP) from Massive Photonics GMBH (Grafelfing, 

Germany) for 1 h at room temperature, then imaged in 0.5 nM of imaging strand in the imaging 

buffer supplied by the manufacturer.  

Cells expressing the membrane label Src15-mEos3.2 were prepared by transiently 

transfecting 106 cells with a 1 µg of plasmid encoding Src15-mEos3.2 (N’-

MGSSKSKPKDPSQRRNNNNGPVAT-[mEos3.2]-C’) which was derived from a GFP tagged 

version by replacing GFP with mEos3.2 (303, 304). Transfection was accomplished by Lonza 

Nucleofector electroporation (Lonza, Basel, Switzerland) with program CA-137 and cells were 

grown in flasks overnight prior to plating and fixation as described above. 

5.3.3 Single molecule imaging and localization 

Imaging was performed using an Olympus IX83-XDC inverted microscope. TIRF laser 

angles were achieved using a 100X UAPO TIRF objective (NA = 1.50), and active Z-drift 

correction (ZDC) (Olympus America). AlexaFluor647 was excited using a 647 nm solid state laser 

(OBIS, 150 mW, Coherent) and mEos3.2 was excited using a 561 nm solid state laser (Sapphire 

561 LP, Coherent), both coupled in free-space through the back aperture of the microscope. 

Fluorescence emission was detected on an EMCCD camera (Ultra 897, Andor). Samples 

containing AlexaFluor647 were imaged in a buffer containing 100 mM Tris, 10 mM NaCl, 

550 mM glucose, 1% (v/v) beta-mercaptoethanol, 500 μg/ml glucose oxidase (Sigma) and 

40 μg/ml catalase (Sigma), with 10 mM MgCl2 for the DNA origami sample. Samples with 

mEos3.2 or DNA PAINT Atto655 probes were imaged in imaging buffer from Massive Photonics 

GMBH. Single molecule positions were localized in individual image frames using custom 

software written in MATLAB. In most cases, peaks were segmented and fit from background 

corrected images, where the background was estimated as the median signal over 500 acquisition 

frames. Peaks were segmented using a standard wavelet algorithm (55) and segmented peaks were 
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then fit as single emitters on GPUs using previously described algorithms for 2D (58), or as multi-

emitters on a CPU using the ThunderSTORM ImageJ plugin (305). After localization, points were 

culled to remove outliers prior to drift correction (271). Images were rendered by generating 2D 

histograms from localizations followed by convolution with a Gaussian for display purposes. 

Rendering parameters are included in captions and typically images showing larger regions are 

reconstructed with large pixels and Gaussian filters (10-50 nm) while small regions are rendered 

with small pixels and Gaussian filters (1 nm and 4-10 nm respectively). For the nano-ruler samples, 

localizations were assigned to single fluorophores using a home-built implementation of DBSCAN 

(306), with 𝜀𝜀 =12 nm and minPts = 15. 

5.3.4 Evaluation of space-time autocorrelations. 

Space-time autocorrelations were tabulated by first tabulating space- and time-

displacements between all pairs of localizations within a specified region of interest (ROI) detected 

in a given dataset. This was accomplished using a crosspairs function based on the one from the R 

package spatstat (289), but used here as a C routine with a MATLAB interface, as described 

previously (271). Lists of displacements were converted into space-time autocorrelation functions 

by binning in both time and space within the C routine for improved performance, followed by a 

normalization implemented in MATLAB that produces a value 𝑔𝑔(𝑟𝑟, 𝜏𝜏) = 1 when localizations are 

randomly distributed in both space and time within the specified ROI. A derivation of the form of 

this normalization and an explanation of how it is computed are presented in Supplementary Note 

1 (Section 5.7). 

5.3.5 Estimation of 𝒈𝒈𝑳𝑳𝑳𝑳𝑳𝑳(𝒓𝒓, 𝝉𝝉) and ( )xyσ τ  

The core computations of the effective PSF estimation are gathered in a single MATLAB 

function. First, 𝑔𝑔(𝑟𝑟𝑖𝑖, 𝜏𝜏𝑗𝑗) is computed as described above, for a range of distance and time separation 

values. By default, 𝑟𝑟𝑖𝑖, 𝑖𝑖 = 1, … ,𝑁𝑁𝑟𝑟 represent bins with bin edges from 0 to 250 nm with equal 

spacing of 5 nm, resulting in bin centers ranging between 2.5 to 247.5 nm, and 𝜏𝜏𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑁𝑁𝜏𝜏 

represent bins with edges that are log-spaced. The lower edge of the final time-separation bin is 

determined by identifying the lowest τ that satisfies 𝑔𝑔(𝑟𝑟 < 25 nm, 𝜏𝜏)/𝑔𝑔(𝑟𝑟 < 25 nm, 3
4
𝑇𝑇 < 𝜏𝜏 ≤

𝑇𝑇) ≤ 1.5, where T is the total duration of image acquisition. The 𝜏𝜏𝑚𝑚𝑎𝑎𝑎𝑎 reported in figures is the 

bin center of this final time-separation bin. 
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Then, 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏𝑗𝑗) = 𝑔𝑔(𝑟𝑟, 𝜏𝜏𝑗𝑗) − 𝑔𝑔(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) are computed for each 𝜏𝜏, normalized by their first 

spatial points (𝑟𝑟 < 5 nm), and fitted to a Gaussian of the form 𝐴𝐴 exp(−𝑟𝑟2/4𝜎𝜎𝑥𝑥𝑥𝑥,𝑗𝑗
2), using 

MATLAB’s nonlinear least squares fitting routing fit. 𝜎𝜎𝑥𝑥𝑥𝑥,𝑗𝑗  is reported as the estimate of 𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏𝑗𝑗). 

Bootstrapped standard errors are determined by choosing eight subsamples of the points, each 

containing one quarter as many points as the full dataset, and estimating 𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏𝑗𝑗)𝑘𝑘 for each 

subsample 𝑘𝑘, in the same way as for the full dataset. The standard error is reported as 
1
2

std. dev. (𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏𝑗𝑗)𝑘𝑘), where the 1
2
 accounts for the overestimate of errors due to using fewer points 

by a factor of four. 

5.3.6 Estimating 𝒈𝒈𝑳𝑳𝑳𝑳𝑳𝑳(𝒓𝒓, 𝝉𝝉) by grouping localizations with molecules 

In simulations and DNA origami samples, localizations imaged at 𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 , 𝜏𝜏𝑖𝑖 are associated 

with the molecules that produced them. For the nano-ruler samples, localizations were assigned to 

single fluorophores using a home-built implementation of DBSCAN (306), with 𝜀𝜀 =12 nm and 

minPts = 15. 

We tabulate displacements between all pairs associated with the same molecule 𝛥𝛥𝑟𝑟𝑖𝑖𝑖𝑖 =

�𝛥𝛥𝑥𝑥𝑖𝑖𝑖𝑖2 + 𝛥𝛥𝑦𝑦𝑖𝑖𝑖𝑖2  and 𝛥𝛥𝑡𝑡𝑖𝑖𝑖𝑖. The list of all pairs is binned into two dimensional histograms following 

the same r and τ bin-edges as described for computing 𝑔𝑔(𝑟𝑟, 𝜏𝜏) above and are normalized by the 

number of pairs contributing to each bin. Distributions at each τ bin are fit to the same Gaussian 

form as applied to the 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) estimated from 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏). 

5.3.7 Measuring distances between distinct molecules on the same ruler. 

In simulations, all localizations were associated with the molecules and rulers that 

produced them. In DNA origami samples, DBSCAN segmented molecules on the same ruler were 

identified as segments whose average localization position was within 10 nm of the expected 

displacement between probes on rulers specified by the manufacturer (40 – 60 nm for Figure 5.3 

and 70 - 90 nm in Figure 5.4). We then tabulate displacements between all pairs of localizations 

associated with different molecules on the same ruler 𝛥𝛥𝑟𝑟𝑖𝑖𝑖𝑖 = �𝛥𝛥𝑥𝑥𝑖𝑖𝑖𝑖2 + 𝛥𝛥𝑦𝑦𝑖𝑖𝑖𝑖2 .  

5.3.8 Determining the resolution with Fourier Ring Correlation 
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The resolution of each dataset was assessed with Fourier Ring Correlation (FRC) (81). To 

produce the FRC curves, localizations were divided into consecutive blocks of 500 frames, and 

these blocks were randomly placed into one of two statistically independent subsets. For the 

simulated and experimental DNA origami datasets, as well as the nuclear pore complex dataset, 

the pixel size for the FRC calculation was taken to be 5 nm, and square regions 10 µm on a side 

were used as a mask. For the actin and Src15 datasets, the pixel size was 10 nm, with the mask 20 

µm on each side. 20 randomly determined repetitions of the calculation were performed for each 

dataset. 

5.3.9 Determining localization precision using Nearest Neighbor distributions 

Nearest Neighbors were identified in adjacent image frames using the crosspairs algorithm 

using a time-interval of 1 frame and a distance cutoff of 100 nm. The closest nearest neighbor was 

identified for each molecule and included in the distribution 𝑃𝑃(𝑟𝑟𝑁𝑁𝑁𝑁). This distribution was then fit 

using the MATLAB function fit to extract the localization precision (𝜎𝜎𝑁𝑁𝑁𝑁) using the functional 

form (82): 

𝑃𝑃(𝑟𝑟𝑁𝑁𝑁𝑁) =
𝐴𝐴𝑟𝑟𝑁𝑁𝑁𝑁
2𝜎𝜎𝑁𝑁𝑁𝑁2

exp �−
𝑟𝑟𝑁𝑁𝑁𝑁2

4𝜎𝜎𝑁𝑁𝑁𝑁2
� +

𝐵𝐵
√2𝜋𝜋𝑤𝑤2

exp �−
(𝑟𝑟𝑁𝑁𝑁𝑁 − 𝑟𝑟𝑜𝑜)2

2𝑤𝑤2 � + 𝐶𝐶. 

The second and third term correct for pairs of localizations not originating from the same molecule. 

5.4 Results 

5.4.1 Derivation of the estimated LSF 

The spatial autocorrelation function describing a distribution of static molecules is given 

by 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟) and is tabulated as described in Methods. This function can be divided into two 

components:  

 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟) = 1
𝜌𝜌
𝛿𝛿(𝑟𝑟) + 𝑔𝑔𝑝𝑝(𝑟𝑟). (1) 

The first term in Eqn. 1 comes from counting single emitters and is a Dirac delta function 

(𝛿𝛿(𝑟𝑟)) with magnitude equal to the inverse average density of molecules (𝜌𝜌) over the region of 

interest (ROI). The second term in Eqn. 1 comes from correlations between distinct pairs of 

molecules and reports on the sample-dependent detailed structure present in the image. In the 

special case of complete spatial randomness, 𝑔𝑔𝑝𝑝(𝑟𝑟) = 1. In SMLM, single emitters labeling 

molecules have dynamics governed by the probe photophysics, which can be described with the 
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temporal autocorrelation function 𝑔𝑔𝑒𝑒(𝜏𝜏). Probes can remain on for multiple sequential image 

frames and can blink on again at a later time before eventually bleaching irreversibly (295–297). 

As a result, 𝑔𝑔𝑒𝑒(𝜏𝜏) is highly correlated (>1) at short time-intervals and decays sharply on time-

scales describing the average on-time of fluorophores. This function continues to decay slowly at 

long τ, both because some probes tend to flicker over medium to long time-scales and because 

some fluorophores eventually bleach. Including 𝑔𝑔𝑒𝑒(𝜏𝜏) produces the following spatio-temporal 

autocorrelation function for the emitting molecules: 

 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟, 𝜏𝜏) = 1
𝜌𝜌
𝛿𝛿(𝑟𝑟)𝑔𝑔𝑒𝑒(𝜏𝜏) + 𝑔𝑔𝑝𝑝(𝑟𝑟). (2) 

In other words, the central peak due to the same fluorophore being “on” at different times inherits 

the dynamics of the probe, while the contributions from pairs of different molecules remains time-

independent. Eqn. 2 assumes the blinking statistics of fluorophores labeling different molecules 

are uncorrelated, which is why 𝑔𝑔𝑒𝑒(𝜏𝜏) multiplies only the first term. 

When fluorophores are localized with finite spatial resolution, the distribution of 

localization errors can be described as a probability density function that characterizes the 

resolution of the image. This distribution induces a characteristic blurring of the true locations of 

the molecules, just as a conventional microscope can be thought of as convolving a true image 

with a point spread function (PSF). By analogy, we instead call this distribution the localization 

spread function or LSF. The autocorrelation function of localizations, 𝑔𝑔(𝑟𝑟, 𝜏𝜏), is the 

autocorrelation of the emitters, 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟, 𝜏𝜏), blurred (convolved) by the autocorrelation of the 

LSF, or 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏). Including this factor, 𝑔𝑔(𝑟𝑟, 𝜏𝜏) becomes: 

 𝑔𝑔(𝑟𝑟, 𝜏𝜏) = 1
𝜌𝜌
𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏)𝑔𝑔𝑒𝑒(𝜏𝜏) + 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) ∗ 𝑔𝑔𝑝𝑝(𝑟𝑟), (3) 

where * indicates a convolution. The first term in Eqn. 3 describes multiple observations of the 

same molecule and is exactly proportional to the LSF at time-interval τ.  

The goal of subsequent steps of this derivation is to isolate 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) from the first term 

of Eqn. 3 by comparing 𝑔𝑔(𝑟𝑟, 𝜏𝜏) tabulated from pairs of localizations acquired at different time-

intervals τ. In particular, we choose a long time-interval 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 and consider differences: 

 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) = 𝑔𝑔(𝑟𝑟, 𝜏𝜏) − 𝑔𝑔(𝑟𝑟, 𝜏𝜏max). (4) 

First consider the simple case where the LSF is independent of τ, 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) = 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟). In 

this limit, the second term of Eqn. 3 is independent of τ, so 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) is exactly proportional to 

𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟): 
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 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) = 1
𝜌𝜌
�𝑔𝑔𝑒𝑒(𝜏𝜏) − 𝑔𝑔𝑒𝑒(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚)�𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟) ∝ 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏). (5) 

Thus, the difference 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) can be taken as a direct measurement of 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏). 

In practice, the above assumption does not hold exactly, so we must consider the effects of 

time-varying 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏). In this more general case, the above equality becomes an approximation. 

However, under reasonable experimental conditions, the approximation often remains quite 

accurate. In the following, we discuss the potential sources of error, and relevant limits under 

which the errors become negligible. 

The first source of error in Eqn. 5 under time-varying 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) arises because the second 

term of Eqn. 3 is no longer independent of τ. The resulting error is given by 

 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) ∗ 𝑔𝑔𝑝𝑝(𝑟𝑟)− 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏max) ∗ 𝑔𝑔𝑝𝑝(𝑟𝑟) 

Note that 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) is a PDF, so the magnitude of this error can be at most 𝑔𝑔𝑝𝑝(𝑟𝑟). As a result, the 

approximation is likely to be valid when 1
𝜌𝜌

(𝑔𝑔𝑒𝑒(𝜏𝜏) − 𝑔𝑔𝑒𝑒(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚)) ≫ 𝑔𝑔𝑝𝑝(𝑟𝑟). In practice, we find that 

even samples with relatively strong structure satisfy this assumption for short 𝜏𝜏, where 𝑔𝑔𝑒𝑒(𝜏𝜏) 

decays rapidly. In addition, this source of error can be negligible if 𝑔𝑔𝑝𝑝(𝑟𝑟) is nearly constant, as is 

the case in a sample with weak interactions between labeled molecules. Similarly, if the LSF only 

broadens slightly, so 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) ≈ 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) the error will also be negligible. This condition 

often holds for accurately drift-corrected images, where we find the width of the LSF to be within 

a few nm of the localization precision even at maxτ . 

A second source of error in Eqn. 5 under time-varying 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) comes from the first term 

of Eqn. 3. In particular, assuming that the first source of error is negligible, Eqn. 4 yields: 

 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) ≈ 1
𝜌𝜌

(𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏)𝑔𝑔𝑒𝑒(𝜏𝜏) − 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑥𝑥)𝑔𝑔𝑒𝑒(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚)) (6) 

In principle, Eqn. 6 could be used to extract 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) and𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) through simultaneous 

fitting. In practice, we make the further approximation that 

�𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏)𝑔𝑔𝑒𝑒(𝜏𝜏) − 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚)𝑔𝑔𝑒𝑒(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚)) ≈ 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏)(𝑔𝑔𝑒𝑒(𝜏𝜏) − 𝑔𝑔𝑒𝑒(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚)� 

yielding the simple relation: 

 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) ∝ 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) (7) 

This applies in the limit of 𝑔𝑔𝑒𝑒(𝜏𝜏) ≫ 𝑔𝑔𝑒𝑒(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) or 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) ≈ 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚), but introduces some 

practical limitations that are discussed in detail in the next section.  
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Eqn. 7 can be used to estimate the full 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) from acquired localizations. To 

summarize the LSF using a single number, we further assume that 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) takes on a Gaussian 

form: 

𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) ∝ exp�−
𝑥𝑥2

4𝜎𝜎𝑥𝑥2(𝜏𝜏) −
𝑦𝑦2

4𝜎𝜎𝑦𝑦2(𝜏𝜏)�, 

where 𝜎𝜎𝑥𝑥(𝜏𝜏) is the standard deviation in the 𝑥𝑥 direction of the distance between the true position 

of the molecule at time 𝑡𝑡 and a localization at time 𝑡𝑡 + 𝜏𝜏. The extra factor of 2 in the denominator 

accounts for the fact that 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿 reports on the distribution of distances between pairs of 

localizations, resulting in twice the variance compared to the error in a single localization relative 

to the true location of the corresponding emitter. Typically, the LSF is isotropic in the lateral 

dimensions, so we take 𝜎𝜎𝑥𝑥𝑥𝑥: = 𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑦𝑦 and compute angularly averaged correlation functions 

resulting in: 

 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) ∝ exp �− 𝑟𝑟2

4𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏)2
� (8) 

It is convenient to also define the mean squared displacement 𝜎𝜎𝑟𝑟2(𝜏𝜏) = 𝜎𝜎𝑥𝑥2(𝜏𝜏) + 𝜎𝜎𝑦𝑦2(𝜏𝜏) =

2𝜎𝜎𝑥𝑥𝑥𝑥2 (𝜏𝜏), which accounts for errors in both dimensions. When localizations are acquired in three 

dimensions, the axial resolution often differs from the lateral resolution, and this component can 

be considered independently: 

𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑧𝑧, 𝜏𝜏) ∝ exp �−
𝑧𝑧2

4𝜎𝜎𝑧𝑧(𝜏𝜏)2
� 

 

We have implemented this method as MATLAB code, which is available online (307). 

5.4.2 Practical limitations of the LSF estimate. 

The derivation above mathematically demonstrates why it is possible to simply isolate the 

autocorrelation of the LSF from the full autocorrelation of the image by tabulating the differences 

between measured autocorrelations obtained at different time-intervals (Eqn. 7). This simple 

method works because repeated observations of the same molecule are typically correlated in time 

while repeated observations of pairs of distinct molecules are uncorrelated in time. Because of this, 

simply subtracting observations at different time-intervals results in isolating the average 

contribution from multiple observations of the same molecule. As mentioned above, this simple 

view requires a few assumptions that limit the applicability of this approach. 
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The main assumption used to arrive at Eqn. 7 is that individual molecules on average 

produce localizations that are correlated in time. These correlations are expected to extend out to 

some finite time-interval beyond which the method no longer applies because repeated 

observations become uncorrelated. Past studies document surprisingly long correlation times for 

many (d)STORM and (f)PALM probes (295–297) under a range of imaging conditions, suggesting 

that Eqn. 7 should apply even at extended time-intervals for images generated using these methods 

and probes. PAINT probes, which produce localizations through binding and unbinding of a probe 

fluorophore to a target molecule, only produce temporal correlations up until the off-rate of the 

specific binding interaction, since the binding of new probes from solution does not depend on the 

history of probe binding to a specific site (47, 308). These reduced correlations contribute to the 

more uniform appearance of SMLM images acquired using PAINT, and will also limit the 

applicability of this method. Conveniently, plots of 𝑔𝑔(𝑟𝑟 < 𝜎𝜎𝑟𝑟 , 𝜏𝜏) capture the time-interval 

dependence of correlated observations from single molecules (𝑔𝑔𝑒𝑒(𝜏𝜏)) up to a numerical offset, and 

examples showing this decay for several experiments with different fluorophores are shown in 

Supplemental Figure 5.9 (see Section 5.6 for Supplemental Figures). These curves can be used to 

guide the range of 𝜏𝜏 over which Eqn. 7 is expected to apply. 

For the case where 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) = 𝑔𝑔𝐿𝐿𝑆𝑆𝑆𝑆(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚), Eqn. 7 will correctly estimate 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) 

as long as 𝑔𝑔𝑒𝑒(𝜏𝜏) > 𝑔𝑔𝑒𝑒(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚), since the two LSFs will have the same shape in space and 

subtraction will not lead to distortion even when both components have similar amplitudes 

(𝛥𝛥𝑔𝑔𝑒𝑒(𝜏𝜏) ≪ 𝑔𝑔𝑒𝑒(𝜏𝜏)). When 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) does not have exactly the same shape as 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚), 

distortions can arise for small 𝛥𝛥𝑔𝑔𝑒𝑒(𝜏𝜏)/𝑔𝑔𝑒𝑒(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚)that can lead to systematic errors in estimates of 

𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏). These systematic distortions are demonstrated in Supplemental Figure 5.10 for the 

example of a Gaussian LSF with a standard deviation that varies with𝜏𝜏. For cases where 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) 

broadens slightly with increasing time-interval, our approach will produce a systematically narrow 

estimate of𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) for small 𝛥𝛥𝑔𝑔𝑒𝑒(𝜏𝜏)/𝑔𝑔𝑒𝑒(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚). This occurs, for example, when labeled 

molecules diffuse over length-scales comparable to the localization precision during the 

acquisition time, and is demonstrated on the simulated example of Supplemental Figure 5.11. For 

the purposes of this report, we do not include estimates 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) that may be subject to this 

systematic bias, using a cutoff of 𝛥𝛥𝛥𝛥(𝑟𝑟<5 nm,𝜏𝜏)
𝑔𝑔(𝑟𝑟<5 nm,𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚)

> 1
2
. In principle, a user could extend the 

applicability of this method to larger τ by instead fitting to Eqn. 6 which independently models 
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𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) and 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) or could instead tabulate 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) for closely spaced τ where changes 

in 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) are expected to be more subtle. 

The decay of 𝑔𝑔𝑒𝑒(𝜏𝜏) means that the signal to noise ratio of 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) will degrade at longer 

time-intervals, over which fewer correlated pairs are observed. To increase statistical stability, we 

group time-intervals into increasingly large disjoint τ bins and estimate 𝑔𝑔(𝑟𝑟, 𝜏𝜏) as a weighted 

average. In this report, τ bin edges are log-spaced to account for the exponential decay inherent in 

𝑔𝑔𝑒𝑒(𝜏𝜏) and we report the average τ value of the bin, but occasionally show the full range of τ values 

included in the bin. We typically use the back quarter of the dataset to initially tabulate𝑔𝑔(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚), 

meaning that 3
4

< 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚⁄ < 1, where 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 is the total acquisition time. We then identify the 

cutoff by finding the 𝜏𝜏 where 𝛥𝛥𝛥𝛥(𝑟𝑟 < 5 nm, 𝜏𝜏) ∕ 𝑔𝑔(𝑟𝑟 < 5 nm, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) first falls below 0.5. We then 

recalculate 𝑔𝑔(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) using this cutoff as the low 𝜏𝜏 edge of the 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 bin. Statistical confidence is 

estimated through bootstrapping and we estimate the statistical power of 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) directly from 

𝑔𝑔(𝑟𝑟, 𝜏𝜏), as described in Materials and Methods. 

5.4.3 Validation through Simulation 

To validate this approach, we generated simulated datasets of DNA origami nanorulers in 

which fluorophores are separated by a fixed distance of 50 nm. Fluorophore blinking was subject 

to a photophysical model based on (297, 300). Briefly, fluorophores could exist in an “on” state, 

one of three dark states, or a bleached state. Transitions between states were governed by a 

continuous time Markov process, with transition rates roughly based on those measured in (297) 

but modified to reflect the experimental conditions used to obtain experimental images in this 

work. Nanorulers were placed randomly and uniformly with an average density of 1/µm2 across a 

40 µm by 40 µm field of view with the molecules having a localization precision of 10 nm in each 

lateral dimension. 20,000 image frames were simulated with a frame time of 0.1 s. Figure 5.1a 

illustrates a small field of view containing 3 nanorulers, both as a reconstructed image and with 

localizations colored by time. An image showing a larger subset of the field of view is shown as 

Supplemental Figure 5.12. 

Simulated localizations were subjected to a spatiotemporal auto-correlation analysis as 

described in Methods and representative plots of the spatial component of 𝑔𝑔(𝑟𝑟, 𝜏𝜏) are shown in 

Figure 5.1b. This family of curves contains two major features: an initial peak at short 

displacements (𝑟𝑟 <  40 nm) arising from multiple localizations from the same molecule, and a 
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second feature at wider radii (40 nm < 𝑟𝑟 < 100 nm) arising from displacements between 

localizations from different molecules on the same ruler. The amplitude of the initial peak 

decreases with increasing τ, while the second feature is largely independent of τ. The τ dependent 

component is isolated by subtracting 𝑔𝑔(𝑟𝑟, 𝜏𝜏) at long τ from those arising from shorter τ to obtain 

𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) as shown in Figure 5.1c. In this simulation, there are no τ dependent effects that would 

impact resolution, resulting in 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) having the same width for all τ. This is summarized by 

fitting 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) to the Gaussian function of Eqn. 8 to extract the LSF width, 𝜎𝜎𝑥𝑥𝑥𝑥, reported in Figure 

5.1d. Representative 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) with Gaussian fits are shown in Supplemental Figure 5.13. In this 

simulated example, we can associate all localizations with the molecules that produced them and 

can directly compute 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) from the relative positions of localizations originating from the 

same molecule as described in Methods. This is followed by fitting to Eqn. 8 to obtain 𝜎𝜎𝑥𝑥𝑥𝑥 which 

is also reported in Figure 5.1d. Lastly, we tabulate displacements between all localizations 

originating from distinct molecules on the same ruler. The distribution of these displacements is 

shown in Figure 5.1e, and its properties are described by simulation parameters. The line in Figure 

5.1e has a Gaussian shape with the form: 𝑃𝑃(𝑟𝑟) ∝ exp �− (𝑟𝑟−⟨𝑟𝑟⟩)2

4𝜎𝜎𝑥𝑥𝑥𝑥2
� where 𝜎𝜎𝑥𝑥𝑥𝑥 is the localization 

precision (10 nm) and ⟨𝑟𝑟⟩ is the average displacement between localizations originating at the ruler 

endpoints (52 nm). The slight bias in ⟨𝑟𝑟⟩ towards a value larger than the actual separation between 

molecules (50 nm) arises from the components of localizations that fall perpendicular to the ruler 

axis and always contribute positive values to the measured displacements (�502 + 2𝜎𝜎𝑥𝑥𝑥𝑥2 = 52 

nm).  

The simulation of Figure 5.1 does not contain any factors that degrade image resolution 

over time. In Figure 5.2, the same simulation is subjected to a directed drift in the x-direction as 

well as diffusive drift in both x and y. Drift is corrected using a mean shift algorithm (271) that 

works by evenly dividing localizations into time-bins, then finding the displacement that 

minimizes the mean distance between localizations across all time-bins. The applied drift and the 

calculated drift correction are shown in Figure 5.2a along with the resulting image reconstruction. 

𝑔𝑔(𝑟𝑟, 𝜏𝜏) curves over different windows in time-interval (Figure 5.2b.) closely resemble those shown 

in the static simulation, but 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) now broadens with increasing τ (Figure 5.2c.). This 

broadening reflects a degradation of the LSF beyond the localization precision at all but the 

shortest time-intervals and plateaus near the timescale of drift correction (Figure 5.2d.). 
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Here, the measured LSF width reaches a local maximum at a time separation somewhat smaller 

than the drift correction timescale, which we attribute to the drift correction algorithm itself as it 

is also apparent in the LSF width obtained by associating localizations with their originating 

molecules. Deviations from the expected distribution of pairwise distances between localizations 

of molecules from opposite ends of the same nanoruler also exceed those of the static case (Figure 

5.2e) and are better described by a model that incorporates the measured image resolution, 

 
Figure 5.1 Validation of approach through simulation. 

(a.) Simulations consist of randomly positioned pairs of molecules positioned 50 nm apart in random orientations. 
Reconstructed image (left; 1 nm pixels, 3 nm Gaussian blur) and scatterplot of localizations with color representing the 
observation time (right) for a small subset of the simulated plane. Scale bar is 100 nm. A reconstructed image showing a larger 
field of view is shown in Supplemental Figure 5.12. (b.) Auto-correlations as a function of displacement,𝑔𝑔(𝑟𝑟, 𝜏𝜏), tabulated 
from simulations for time-interval windows centered at the values shown. (c.) 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) = 𝑔𝑔(𝑟𝑟, 𝜏𝜏) − 𝑔𝑔(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) for the 
examples shown in b. (d.) 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) are fit to 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) ∝ exp�− 𝑟𝑟2 �4𝜎𝜎𝑥𝑥𝑥𝑥2 �� � to extract the width of the LSF in each lateral 
dimension, which in this case is the same as the LSF width deduced by grouping localizations with their associated molecules 
(from loc.) and the simulated localization precision (loc. prec.) at all time-intervals. (e.) The distribution of displacements 
between different molecules on the same ruler are well described by a model incorporating the localization precision (10 nm) 
and the separation distance (50 nm). 
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�𝜎𝜎𝑥𝑥𝑥𝑥� = 11.8 nm, which is determined by averaging over estimated 𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏) weighted by the 

number of pairs associated with each time-interval window.  

Observing a plateau in plots of 𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏) is a good indicator that the LSF estimator is 

generating reliable estimates, since drift correction is designed to stabilize localization error on 

long time-scales. Supplemental Figure 5.11 shows an example of the same simulation with drift 

 
Figure 5.2 Validation of approach through simulation with drift and drift correction. 

(a.) The simulation from Figure 5.1 with applied drift (black) and drift correction (red) as shown in the trajectory above. 
Reconstructed image (left; 1 nm pixels, 3 nm Gaussian blur) and scatterplot of localizations with color representing the 
observation time (right) for a small subset of the simulated plane. Scale bar is 100 nm. (b.) Auto-correlations as a function of 
displacement, 𝑔𝑔(𝑟𝑟, 𝜏𝜏), tabulated from simulations for time-interval windows centered at the values shown. (c.) 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) =
𝑔𝑔(𝑟𝑟, 𝜏𝜏) − 𝑔𝑔(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) for the examples shown in b. (d.) 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) are fit to 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) ∝ exp�−𝑟𝑟2 4𝜎𝜎𝑥𝑥𝑥𝑥2� � to extract the width of 
the effective LSF in each lateral dimension. In this case, the LSF width varies with time-interval, closely following the LSF 
width measured by grouping localizations with molecules (from loc.). (e.) The distribution of displacements between different 
molecules on the same ruler are well described by a model incorporating the average LSF width (�𝜎𝜎𝑥𝑥𝑥𝑥� = 11.8 nm) and the 
known separation distance (50 nm). 
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and drift correction, but where individual molecules are also allowed to diffuse slowly such that 

𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟) broadens substantially with τ in a way that is not accounted for through drift correction. 

In that case, 𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏) increases with τ and is underestimated by 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏). This is a case where the 

approximations needed to estimate 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟) as 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) are not appropriate. 

The simulated blinking dynamics of fluorophores includes a chance of photo-bleaching, or 

an irreversible transition into a dark state. In this example and in our experience in general, we 

find that this analysis is largely independent of photo-bleaching rates. This is because the 

normalization used to tabulate 𝑔𝑔(𝑟𝑟, 𝜏𝜏) accounts for any systematic reduction in the number of 

localizations over time. Photo-bleaching does reduce the number of pairs observed at large 

separation times, and therefore the statistical performance of the measurement. 

5.4.4 Estimating the LSF of DNA origami datasets 

Figure 5.3 demonstrates this approach on an experimental dataset of DNA origami 

nanorulers that resemble the simulated rulers with AlexaFluor647 labeling sites separated by 

50 nm. Figure 5.3a shows a small subset of the field of view of the acquired image, that was 

reconstructed from 29,000 image frames acquired over 53 min at a frame rate of 0.1 s, with a total 

of over 126,000 individual localizations. In post-processing, a drift correction was applied with a 

time-window width of 25 s or 250 image frames. As in the simulated case, 𝑔𝑔(𝑟𝑟, 𝜏𝜏) decays at short 

r with increasing 𝜏𝜏 (Figure 5.3c), and 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) is roughly Gaussian (Figure 5.3d). Fitting 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) 

yields the resolution 𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏). As in the simulated example, the estimated LSF width is lowest at 

short time-intervals (6.5±0.1 nm) and plateaus at time-scales somewhat shorter than the frequency 

of the applied drift correction. 

Since the localization clouds from individual Alexa647 molecules were visually distinct, 

we applied a DBSCAN segmentation algorithm (306) to associate localizations with individual 

molecules. From this segmentation, we tabulated the LSF width within segmented molecules 

(Figure 5.3d) and find good general agreement with estimates of the LSF width obtained from 

𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) at short 𝜏𝜏, further validating this approach. At longer𝜏𝜏, the LSF width differs somewhat 

by these two methods. We attribute this to inaccurate segmenting of localizations to molecules by 

the DBSCAN algorithm, which is expected to become more prominent at longer𝜏𝜏 due to reduced 

temporal correlations of emitters. The segmented localizations are also used to tabulate the 

distribution of pairwise distances between different molecules on the same origami (Figure 5.3e). 
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This distribution is well described by a model applying the measured �𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏)� = 7.5 nm with 

⟨𝑟𝑟⟩ = 52.2 ± 0.2 nm, where the error is dominated by uncertainty in the sample magnification at 

the camera. This yields a separation distance of 51.1 ± 0.2 nm between labels on individual rulers, 

which is within the manufacturer’s specifications. 

We have conducted this same analysis on a similar DNA origami sample that was imaged 

using DNA PAINT, this time using rulers containing 3 collinear docking sites separated by 80 nm 

and summarized in Figure 5.4. In contrast to the dSTORM fluorophores of Figure 5.3, molecules 

 
Figure 5.3 Experimental observations of DNA origami rulers labeled with AlexaFluor647. 

(a.) Reconstructed image (left; 1 nm pixels, 3 nm Gaussian blur) and scatterplot of localizations with color representing the 
observation time (right) for a small subset of the observed plane. Scale bar is 100 nm and 50 nm in the inset. A larger field of 
view from this image is shown in Supplemental Figure 5.14. (b.) Auto-correlations as a function of displacement, 𝑔𝑔(𝑟𝑟, 𝜏𝜏), 
tabulated from localizations for time-interval windows centered at the values shown. (c.) 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) = 𝑔𝑔(𝑟𝑟, 𝜏𝜏) − 𝑔𝑔(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) for 
the examples shown in b. (d.) 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) are fit to 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) ∝ exp�−𝑟𝑟2 4𝜎𝜎𝑥𝑥𝑥𝑥2� � to extract the width of the LSF in each lateral 
dimension which varies with time-interval, closely following the LSF width measured by grouping localizations with DBSCAN 
segmented molecules (from loc.). The resulting average LSF width for this image is �𝜎𝜎𝑥𝑥𝑥𝑥� = 7.48 ± 0.07 nm. (e.) The 
distribution of displacements between pairs of fluorophores on the same ruler. Fitting to a Gaussian shape with width given by 
the measured �𝜎𝜎𝑥𝑥𝑥𝑥� produces⟨𝑟𝑟⟩ = 52.2 ± 0.2 nm. 
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imaged by DNA PAINT do not exhibit long time-scale correlations, limiting the applicability of 

this method. The DNA PAINT probes used for this image do remain correlated over time-scales 

relevant for drift-correction (~15 s), which is long enough to provide a useful estimate of image 

resolution. In this example, drift correction was applied with a time-window width of 11 s or 110 

image frames. Pairwise distances between labels on the center and ends of the origami were 

measured after applying DBSCAN to segment localizations from distinct docking sites and are 

 
Figure 5.4 Experimental observations of DNA origami rulers imaged with DNA PAINT, using an Atto655 imaging 
strand. 

(a.) Reconstructed image (left; 1 nm pixels, 3 nm Gaussian blur) and scatterplot of localizations with color representing the 
observation time (right) for a small subset of the observed plane. Scale bar is 100 nm. A larger field of view from this image 
is shown in Supplemental Figure 5.15. (b.) Auto-correlations as a function of displacement, 𝑔𝑔(𝑟𝑟, 𝜏𝜏), tabulated from 
localizations for time-interval windows centered at the values shown. (c.) 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) = 𝑔𝑔(𝑟𝑟, 𝜏𝜏) − 𝑔𝑔(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚)for the examples 
shown in b. (d.) 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) are fit to 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) ∝ exp�−𝑟𝑟2 4𝜎𝜎𝑥𝑥𝑥𝑥2� � to extract the width of the LSF in each lateral dimension 
which varies with time-interval, closely following the LSF width measured by grouping localizations with DBSCAN 
segmented molecules (from loc.).  The resulting average LSF width for this image is �𝜎𝜎𝑥𝑥𝑥𝑥� =8.8 ± 0.2 nm. (e.) The distribution 
of displacements between different molecules on the same ruler. Fitting to a Gaussian shape with width given by the measured 
�𝜎𝜎𝑥𝑥𝑥𝑥� produces ⟨𝑟𝑟⟩ =82.5 ± 0.3 nm. 
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well described by a model applying the measured �𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏)� = 8.7 nm, with ⟨𝑟𝑟⟩ = 82.5 ± 0.3 nm. 

This yields a separation distance of 81.6 ± 0.3 nm between the center and endpoint labels on 

individual rulers. Since temporal correlations of the PAINT probes used in this example only 

extend for a small fraction of the acquisition time (20 min), the average 𝜎𝜎𝑥𝑥𝑥𝑥 is given primarily by 

the value determined in the largest time-interval bin (𝜏𝜏 = 15 s). This is because the vast majority 

of pairs are detected at time-intervals that are grouped into 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚, where we do not estimate 𝜎𝜎𝑥𝑥𝑥𝑥 

but instead apply the value estimated at the previous time-window bin. The good agreement 

between the model and measured distributions in Figure 5.3e validates this approach, at least for 

this specific example where drift correction was accomplished on a shorter time-scale. 

5.4.5 Estimating the LSF from datasets of labeled structures in chemically fixed cells 

We next apply this method to image labeled structures in cells. Figure 5.5 shows the 

method applied to nuclear pore complexes (NPCs) within the nuclear envelope of chemically fixed 

primary mouse neurons. In these images, a protein component of NPCs, Nup210, was labeled with 

a conventional primary antibody and a Fab secondary directly conjugated to AlexaFluor647. 12500 

images were acquired over 23 min with an integration time of 0.1 s and a total of 178873 

localizations detected within the masked ROI at the nuclear envelope. Drift correction was 

accomplished with a time-window of 8.3 s or 83 image frames. Reconstructed images of the entire 

nucleus and single pores are shown in Figure 5.5a. along with a scatter plot demonstrating that 

individual NPC subunits are sampled at times throughout the observation. 𝑔𝑔(𝑟𝑟, 𝜏𝜏) (Figure 5.5b.) 

curves extend to beyond 100 nm reflecting the extended structure of individual labeled NPCs, but 

extended structure is effectivly removed by examining 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) (Figure 5.5c.). Fitting 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) to 

a Gaussian shape quantifies image LSF width over time, which is smallest at short 𝜏𝜏 (8.3±0.3 nm) 

and increases at larger time-intervals. We estimate �𝜎𝜎𝑥𝑥𝑥𝑥� to be 10.9 ± 0.8 nm. 

Figure 5.6 shows a similar class of cellular structure imaged using DNA PAINT. In this 

example, clathrin-GFP is transiently expressed in CH27 cells then labeled post fixation with an 

anti GFP nanobody conjugated to an ssDNA docking strand. Cells are then imaged in the presence 

of a complementary imaging strand labeled with Atto 655. Similar to the origami DNA PAINT 

sample of Figure 5.4, temporal correlations from single molecules remain for short to medium 

time-scales (~8 s), allowing for accurate estimation of LSF broadening due to drift and drift 

correction. Here we estimate the average LSF width �𝜎𝜎𝑥𝑥𝑥𝑥� to be 11.6 ± 0.3 nm. 
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Figure 5.7 shows the method applied to an image of F-actin staining by phalloidin-

AlexaFluor647 in chemically fixed CH27 B cells adhered to a glass surface decorated with VCAM. 

For this sample, 5000 images were acquired over 4.9 min with an integration time of 0.05 s and a 

total of 302681 localizations within the masked ROI. Drift correction was accomplished with a 

time-window of 2.5 s or 50 image frames. Unlike Figure 5.5 and Figure 5.6 where labels decorate 

isolated structures scattered over a surface, this reconstructed image of F-actin is more space 

filling, making up a web of fibers that extend across the entire ventral cell surface (Figure 5.7a.). 

This extended structure can be detected in 𝑔𝑔(𝑟𝑟, 𝜏𝜏) (Figure 5.7b.) as increased intensity in the tail 

that extends to large separation distances for curves generated at all τ. This large-scale structure is 

effectively removed in 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) (Figure 5.7c) allowing for a determination of the LSF width over 

a range of time-scales as shown in Figure 5.7d. In this example, the ROI was drawn within the cell 

boundary to minimize the intensity of 𝑔𝑔𝑝𝑝(𝑟𝑟) which allows for accurate estimation of 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) 

out to longer time-intervals. This is because the amplitude of 𝑔𝑔(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) includes 

 
Figure 5.5 Experimental observations of Nuclear Pore Complexes (NPCs) within primary mouse neurons, 
antibody-labeled with AlexaFluor647. 

(a.) (left) Reconstructed image (10 nm pixels, 10nm Gaussian blur) with yellow dashed line indicating the region of interest 
interrogated. (right) A magnified subset from the white square region of larger image (1 nm pixels, 4 nm Gaussian blur) along 
with a scatterplot of localizations with color representing the observation time. Scale-bars are 2 µm (left) and 200 nm (right 
top and bottom). (b.) Auto-correlations as a function of displacement, 𝑔𝑔(𝑟𝑟, 𝜏𝜏), tabulated from localizations for time-interval 
windows centered at the values shown. (c.) 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) = 𝑔𝑔(𝑟𝑟, 𝜏𝜏) − 𝑔𝑔(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) for the examples shown in b. (d.) 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) are fit 
to 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) ∝ exp�−𝑟𝑟2 4𝜎𝜎𝑥𝑥𝑥𝑥2� � to extract the LSF width in each lateral dimension. The average LSF width for this image is 
�𝜎𝜎𝑥𝑥𝑥𝑥� =10.9 ± 0.8 nm. 
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contributions from 𝑔𝑔𝑝𝑝(𝑟𝑟), while the amplitude of 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) only depends on 𝑔𝑔𝑒𝑒(𝜏𝜏), therefore 
𝛥𝛥𝛥𝛥(𝑟𝑟<25 nm,𝜏𝜏)

𝑔𝑔(𝑟𝑟<25 nm,𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚)
 will remain larger than the cutoff over a wider range of 𝜏𝜏. The estimate for �𝜎𝜎𝑥𝑥𝑥𝑥� 

is 11.8 ± 1.5 nm. 

As a final demonstration, Figure 5.8 shows the method applied to an image of Src15-

mEos3.2, a myristoylated peptide bound to the inner leaflet of the plasma membrane and directly 

conjugated to the photo-switchable fluorescent protein mEos3.2. This peptide uniformly decorates 

the ventral surface of a chemically fixed CH27 B cell adhered to a glass surface decorated with 

VCAM, as seen in the reconstructed image of Figure 5.8a. For this sample, 7000 images were 

acquired over 12.7 min with an integration time of 0.1 s and a total of 240,503 localizations. Drift 

correction was accomplished with a time-window of 12.5 s or 125 image frames. mEos3.2 exhibits 

different blinking dynamics than AlexaFluor647, with some probes exhibiting correlated blinking 

on long time-scales. This can be seen in plots of 𝑔𝑔(𝑟𝑟, 𝜏𝜏) that take long timescales to decay 

 
Figure 5.6 Experimental observations of clathrin coated pits within CH27 B cells, imaged using a nanobody-
coupled Atto655 DNA-PAINT scheme. 

(a.) (left) Reconstructed image (16 nm pixels, 20 nm Gaussian blur) with yellow dashed line indicating the region of interest 
interrogated. (right) A magnified subset from the white square region of larger image (1 nm pixels, 4 nm Gaussian blur) along 
with a scatterplot of localizations with color representing the observation time. Scale-bars are 2 µm (left) and 200 nm (right 
top and bottom). (b.) Auto-correlations as a function of displacement, 𝑔𝑔(𝑟𝑟, 𝜏𝜏), tabulated from localizations for time-interval 
windows centered at the values shown. (c.) 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) = 𝑔𝑔(𝑟𝑟, 𝜏𝜏) − 𝑔𝑔(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) for the examples shown in b. (d.) 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) are fit 
to 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) ∝ exp�−𝑟𝑟2 4𝜎𝜎𝑥𝑥𝑥𝑥2� � to extract the LSF width in each lateral dimension. The average resolution for this image is 
�𝜎𝜎𝑥𝑥𝑥𝑥� =11.6 ± 0.3 nm. 
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(Figure 5.8b). Again, 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) curves isolate the initial peak, allowing for the quantification of the 

LSF width. In this example, the slow decay of 𝑔𝑔(𝑟𝑟 < 25 nm, 𝜏𝜏) with τ allows for estimation of 

𝜎𝜎𝑥𝑥𝑥𝑥 out to large time-intervals. The estimate for �𝜎𝜎𝑥𝑥𝑥𝑥� is 13.7±0.2 nm. 

5.4.6 Comparison to other measures of image resolution 

The datasets interrogated in Figures 1-8 were also subjected to other methods that report 

on image resolution and results are summarized in Table 1. These include the Fourier Ring 

Correlation (FRC (80, 81)), errors returned directly from fitting localizations (Cramer-Rao lower 

bound or CRLB of the variance of a maximum likelihood estimator (58, 56)), and using the nearest 

neighbor distribution in adjacent frames (Nearest neighbor based analysis, or NeNA (82)). 

The FRC method involves reconstructing images and quantifying them in Fourier space, 

identifying the highest frequency signals that exceed some predetermined noise threshold, as 

illustrated in Supplemental Figure 5.16. As a result, the resolution values returned by the FRC 

 
Figure 5.7 Experimental observations of F-actin on the ventral surface of a CH27 B cell using phalloidin-
AlexaFluor647. 

(a.) (left) Reconstructed image (50 nm pixels, 50 nm Gaussian blur) with yellow dashed line indicating the region of interest 
interrogated. (right) A magnified subset from the white square region of larger image (1 nm pixels, 10 nm Gaussian blur) 
along with a scatterplot of localizations with color representing the observation time. Scale-bars are 5 µm (left) and 500 nm 
(right top and bottom). (b.) Auto-correlations as a function of displacement, 𝑔𝑔(𝑟𝑟, 𝜏𝜏), tabulated from localizations for time-
interval windows centered at the values shown. (c.) 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) = 𝑔𝑔(𝑟𝑟, 𝜏𝜏) − 𝑔𝑔(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) for the examples shown in b. (d.) 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) 
are fit to 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) ∝ exp�− 𝑟𝑟2 4𝜎𝜎𝑥𝑥𝑥𝑥2� � to extract the LSF width in each lateral dimension. The time-scale of the drift correction 
is shown in red. The average resolution for this image is �𝜎𝜎𝑥𝑥𝑥𝑥� =11.8 ± 1.5 nm. 
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algorithm depend on the localization accuracy of single emitters but also the structure present in 

images and the spatial sampling of that structure. Because of this, the FRC resolutions reported in 

Table 1 do not trend systematically with LSF widths extracted through 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏), as these report 

on the localization accuracy alone. The FRC method is sensitive to factors that erode the LSF over 

time, as indicated by the larger value generated from the simulated dataset with drift and imperfect 

drift correction (Figure 5.2; 35 nm) as compared to the simulation without drift (Figure 5.1; 30 

nm). The FRC is also highly dependent on the types of structures imaged, returning a very large 

value for the dataset containing f-actin localizations (Figure 5.7; 285 nm) even though the LSF 

width estimate from 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) is similar to the other samples imaged (11.8 nm). This is because 

this dataset contains the most space-filling structure so there is less signal at high spatial 

frequencies, and because this structure is less spatially sampled than the other datasets shown. We 

also note that long blinking time correlations can lead to artificially low FRC resolution values 

 
Figure 5.8 Experimental observations of membrane anchor peptide Src15-mEos3.2 on the ventral surface of a 
CH27 B cell. 

(a.) (left) Reconstructed image (50 nm pixels, 50 nm Gaussian blur) with yellow dashed line indicating the region of interest 
interrogated. (right) A magnified subset from the white square region of larger image (1 nm pixels, 6 nm Gaussian blur) along 
with a scatterplot of localizations with color representing the observation time. Scale-bars are 5 µm (left) and 200 nm (right 
top and bottom). (b.) Auto-correlations as a function of displacement, 𝑔𝑔(𝑟𝑟, 𝜏𝜏), tabulated from localizations for time-interval 
windows centered at the values shown. (c.) 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) = 𝑔𝑔(𝑟𝑟, 𝜏𝜏) − 𝑔𝑔(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) for the examples shown in b. (d.) 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) are fit 
to 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) ∝ exp�−𝑟𝑟2 4𝜎𝜎𝑥𝑥𝑥𝑥2� � to extract the LSF width in each lateral dimension. The time-scale of the drift correction is 
shown in red. The average resolution for this image is �𝜎𝜎𝑥𝑥𝑥𝑥� =13.7 ± 0.2 nm. 
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(81), whereas the LSF width estimate is dependent on these time correlations to achieve accurate 

results. 

The fitting algorithms used return estimated localization precisions for each fit, known as 

the Cramer-Rao lower bound, or CRLB. These error estimates are obtained by applying a model 

that incorporates photon counting statistics, the Gaussian shape of the point spread function, and 

specifics of the camera such as its gain and offset. The accuracy of the error estimates depends in 

turn on the accuracy of the assumptions used to build the fitting model. While it is possible to 

achieve accurate error estimates with CRLBs (58), we find that factors such as imperfect gain 

calibration, read noise, and non-uniform background fluorescence frequently lead to imperfect 

error estimates in realistic experimental conditions. Our typical imaging processing pipeline 

involves a pre-processing step in which the image background is estimated then subtracted from 

raw image frames. The mean of the background on each fitting region is added back to that region, 

to approximately reproduce the appropriate counting statistics. Since this background subtraction 

is not incorporated into the model used to estimate errors, the values returned by the fitting 

algorithm are inaccurate. The values reported in Table 1 are obtained by re-fitting the dataset 

without background subtraction, leading to somewhat different values of 𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏) as shown in 

Supplemental Figure 5.17. For each dataset, there is a broad distribution of errors peaked at a value 

close to the LSF width estimated from𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) at the shortest time-interval interrogated 

(𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚)). This distribution extends asymmetrically to larger errors, biasing the average error 

to larger values. We speculate that the average error from fits differs from that estimated by 

𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) at short 𝜏𝜏due to simplifying or inaccurate assumptions in the model employed by the 

fitting algorithm. It is also possible that larger errors originate from localizations that are not 

correlated in time and therefore do not contribute to the estimate from 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓). 

A third method uses the distribution of nearest neighbor distances between probes imaged 

in adjacent frames to estimate the average localization precision through fitting (Supplemental 

Figure 5.18) (82). This method makes the often valid assumption that the vast majority of neighbor 

localizations in adjacent frames arise from the same labeled molecule, therefore this distribution 

reports on the accuracy of localization at short time intervals. As expected the localization 

precision reported by the nearest neighbor distribution method is in good general agreement for 

the LSF width estimated from 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) at the shortest time-intervals interrogated (𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)), 

especially for datasets of well-separated molecules (Figs 1-4). For images of cellular structures, 
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we find a slight bias of the NeNA estimate towards smaller values than those estimated from 

𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏). In these samples, a larger fraction of nearest neighbors originate from different 

molecules, and we speculate that the correction terms used to fit these additional neighbors 

contribute to this bias. Lastly, we note that the NeNA estimates do not capture broadening of the 

LSF by factors that erode localization precision over time. This is expected since only nearest 

neighbors from adjacent frames are incorporated in the analyzed distributions. 

5.5 Conclusions  

Here we present a method to estimate the localization spread function of a SMLM 

measurement directly from acquired localizations, relying on a few reasonable assumptions. The 

basic method is validated through simulations and demonstrated using experimental data of three 

commonly used localization microscopy probes. The described method performs best when used 

alongside flourophores that exhibit blinking dynamics that remain correlated in time out to time-

scales relevant to sources of error present in the imaging experiment. The width of the LSF, here 

reported by fitting to a Gaussian shape, directly reports on how accurately the positions of 

molecules are recorded at the end of an experimental and analytical pipeline, and can be used to 

optimize imaging protocols or assist in the interpretation or further processing of imaged 

structures. 

Directly measuring the LSF allows experimenters to validate and optimize imaging and 

processing methods which can be difficult to accomplish using existing metrics of image 

resolution. For example, while commonly used fitting algorithms return localization precisions, 

these estimates are only valid when raw image frames are fit, prohibiting the use of pre-processing 

steps such as filtering or background subtraction. In contrast, the FRC resolution metric can be 

used to compare processing steps accomplished on the same set of observations, but variation 

across samples can be hard to interpret since this measure depends on the LSF, the sampling of the 

image, and the types of structures being imaged. A distinct advantage of the LSF estimate 

described here is that it directly reports on how accurately one can measure distances between 

localized molecules in an image. We expect this method to be useful when interpreting 

experiments that involve the measurement of distances between localizations in images, for 

example in nanometer-precision distance measurement methods (309), where an accurate estimate 

of the localization error is essential. We also expect it to be useful in the interpretation of spatial 
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auto- or cross-correlation analysis which report on the statistical distribution or co-distribution of 

labeled components (83, 87, 310).  

The values obtained using the described method depend on long time-scale correlations of 

fluorescent probes used for imaging. For the examples shown, we find that it is most important to 

characterize resolution lost on time-scales shorter than the time-scale of drift correction, which 

appears to be the most important source of time-dependent degradation of the LSF in these cases. 

Fortunately, numerous methods exist to correct for rigid drift on time-scales relevant to the 

temporal correlations of many SMLM probes (61–65, 282, 284, 285), suggesting that the method 

presented in this report is broadly applicable for a range of experimental conditions. Apart from 

drift, the estimated LSF is also sensitive to other time-dependent sources of error (or their absence). 

For example, a recent report observes residual motions of fluorecent labels in fixed samples, which 

would appear in the LSF as a degradation of LSF width over the timescale of the relevant motions 

(299).  

The reported method estimates resolution by fitting the estimated LSF at each time-interval 

probed to a Gaussian shape, followed by a weighted average to extract the estimated error of the 

average localization in an image. This approach is convenient because the resolution is 

summarized as a single number. However, it is possible to extract more detailed information about 

the LSF by not averaging over angles, or by loosening the assumption of a Gaussian shape. 

Supplemental Figure 5.19 shows the autocorrelation of the LSF, 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏), for the NPC dataset 

of Figure 5.5, expanded in x, y, and 𝜏𝜏. Supplemental Figure 5.20 shows the weighted time-average 

⟨𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿⟩: = ⟨𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏)⟩𝜏𝜏 for the six datasets of Figs 3-8, with weights given by the observed number 

of localization pairs separated by each time delay τ . Beyond quantifying resolution, we anticipate 

that the full average effective PSF could prove useful for other purposes, such as deconvolution of 

reconstructed images or tabulated spatial correlation functions, or as an input to clustering 

algorithms or other analysis tools. 
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Table 5.1 Summary of values obtained for several resolution measures for the datasets shown in figures 

 All units are nm and errors, when evaluated, are included in parenthesis. LSF widths are estimated from 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) and by associating 
localizations with molecules (from segments, not possible for cellular images). 𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) is the LSF width for 𝜏𝜏close to the 
frame time (𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) and �𝜎𝜎𝑥𝑥𝑥𝑥� is the LSF widths averaged over all 𝜏𝜏.  FRC are values obtained using the Fourier Ring Correlation. 
Full FRC curves are included in Supplemental Figure 5.16. CRLB values describe features of the distribution of Cramer-Rao lower 
bounds returned by the fitting procedure for datasets processed without background subtraction. Full distributions and 𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏) 
estimated from these differently processed images are included in Supplemental Figure 5.17. NeNA are obtained by fitting nearest 
neighbor distributions from localizations in adjacent frames. Distributions and fits are included in Supplemental Figure 5.18. 

5.6 Supplementary Figures 

 

Dataset 
LSF (from 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏)) LSF (from segments) FRC CRLB NeNA 

𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) �𝜎𝜎𝑥𝑥𝑥𝑥� 𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) �𝜎𝜎𝑥𝑥𝑥𝑥�  peak avg  

Figure 1 10.1 (0.2) 10.02 (0.08) 10.1 10.0 30 (1) N/A 10.0 

Figure 2 10.1 (0.1) 11.79 (0.07) 10.1 11.5 35 (1) N/A 10.0 

Figure 3 6.5 (0.1) 7.48 (0.07) 6.4 8.1 20 (1) 6.3 9.0 6.7 

Figure 4 6.78 (0.02) 8.8 (0.2) 6.8 9.7 27 (1) 6.8 7.8 6.8 

Figure 5 8.3 (0.3) 10.9 (0.8) N/A 

N/A 

N/A 

N/A 

35 (1) 5.6 9.5 7.8 

Figure 6 10.1 (0.1) 11.6 (0.3) 48 (2) 10.9 14.1 9.3 

Figure 7 8.1 (0.1) 11.8 (1.5) 285 (6) N/A 7.5 

Figure 8 11.0 (0.1) 13.7 (0.2) 59 (6) 9.9 14.2 9.9 
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Supplemental Figure 5.9 Plots of 𝑔𝑔(𝑟𝑟 < 25 nm, 𝜏𝜏) for the experimental samples shown the main text. 

These curves capture ( )eg τ  up to a numerical offset that is dependent on the structure present in the image. Black lines are fit to a 
sum of exponentials and are present to highlight the monotonically decreasing trend. Dashed lines indicate the average value over 
the last ¼ of the dataset. The red vertical line indicates where 𝑔𝑔(𝑟𝑟 < 25 nm, 𝜏𝜏) falls below 1.5 times the dashed line, indicating the 
maximumτ expected to yield an unbiased estimate of the LSF from ( , )g r τ∆ .  

 
Supplemental Figure 5.10 Subtracting Gaussian shapes with different width leads to distortion in 𝛥𝛥𝛥𝛥(𝑟𝑟) = 𝑔𝑔(𝑟𝑟, 𝜏𝜏) −
𝑔𝑔(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) when 𝑔𝑔(𝑟𝑟, 𝜏𝜏) and 𝑔𝑔(𝑟𝑟, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚) have similar amplitudes but different widths. 

(top) plots of 𝛥𝛥𝛥𝛥(𝑟𝑟) = (𝐴𝐴 + 𝛥𝛥𝛥𝛥) exp(−𝑟𝑟2 4𝜎𝜎2⁄ ) − 𝐴𝐴 exp�−𝑟𝑟2 4𝜎𝜎𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚
2� � for 𝜎𝜎𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 1.1𝜎𝜎 (left) and 𝜎𝜎𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 0.9𝜎𝜎 (right) and 

𝛥𝛥𝛥𝛥 = 0.25,0.5,1,2 from purple to red. Curves are normalized so they pass through 1 at 𝑟𝑟 = 0. The legend shows the width extracted 
when fitting ( )g r∆ to a single Gaussian shape 𝛥𝛥𝛥𝛥(𝑟𝑟) = 𝐴𝐴 exp�− 𝑟𝑟2 4𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓2� �. A broader 𝜎𝜎𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 leads to systematic narrowing of 
𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓, while a narrow 𝜎𝜎𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 leads to systematic broadening of 𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓 when the difference in amplitudes is order 1. (bottom) a summary 
of results over a broad range of 𝛥𝛥𝛥𝛥 and 𝜎𝜎𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 indicates that distortion is not a major concern over broad range of values interrogated.   
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Supplemental Figure 5.11 Simulation with drift, drift correction and incoherent single molecule motions. 

(a.) The simulation from Figure 5.1 with applied drift (black) and drift correction (red) as shown in the trajectory above as well as 
single molecule diffusion with 𝐷𝐷 = 1 nm2/s. Reconstructed image (left; 1 nm pixels, 3 nm Gaussian blur) and scatterplot of 
localizations with color representing the observation time (right) for a small subset of the simulated plane. Scale-bar is 100 nm. (b.) 
Auto-correlations as a function of displacement, ( , )g r τ , tabulated from simulations for time-interval windows centered at the 
values shown. (c.) 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) = 𝑔𝑔(𝑟𝑟, 𝜏𝜏) − 𝑔𝑔(𝑟𝑟, 𝜏𝜏 = 1500 s) for the examples shown in b. (d.) ( , )g r τ∆ are fit to 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) ∝
exp�−𝑟𝑟2 4𝜎𝜎𝑥𝑥𝑥𝑥2� � to extract the LSF width in each lateral dimension (from ( )g r∆ ). The LSF width from ( , )g r τ∆ varies with 
time-interval and is systematically narrower than the LSF measured by grouping localizations with molecules (from loc.). Error 
bars represent estimates of the standard error obtained through bootstrapping. This is due to the distortion effect demonstrated in 
Supplemental Figure 5.9 and is characterized by a 𝜎𝜎𝑥𝑥𝑥𝑥that increases with 𝜏𝜏. 
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Supplemental Figure 5.12 10 μm by 10 μm region showing simulated localizations from Figs 1-2. The full simulated 
area was 40 μm by 40 μm. Scale bar is 1 μm. 
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Supplemental Figure 5.13 Localization spread functions (LSFs) estimated as 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏) (points) are well described by 
Gaussian functions (Eqn. 8 of main text; solid lines). Fits are used to extract 𝜎𝜎𝑥𝑥𝑥𝑥(𝜏𝜏) reported in the main text. 
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Supplemental Figure 5.14 10 μm by 10 μm region showing DNA origami rulers analyzed in Figure 5.3. The full imaged 
area was 40 μm by 40 μm. Scale bar is 1 μm. 
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Supplemental Figure 5.15 10 μm by 10 μm region showing DNA origami rulers analyzed in Figure 5.4. The full imaged 
area was 40 μm by 40 μm. Scale bar is 1 μm. 
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Supplemental Figure 5.16 Resolution calculation with Fourier Ring Correlation (FRC). 

FRC curves (81) are presented for all the datasets in the main text. The FRC is computed as a 
function of spatial frequency and smoothed with the LOESS method. The red line indicates the 
fixed 1

7
 threshold. The first intersection of the FRC curve with this line yields the resolution 𝑅𝑅 =

 1
𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟

.  
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Supplemental Figure 5.17 Comparison of LSF widths (left) and distributions of CRLB localization errors returned 
from fits (right) for datasets fit without background subtraction. 

For the origami samples, the LSF width was also estimated from the segmented images (from loc.) Error bars represent estimates 
of the standard error obtained through bootstrapping. The LSF widths (𝜎𝜎𝑥𝑥𝑥𝑥) at the shortest time-interval interrogated are plotted on 
the right as lines for comparison purposes. 
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Supplemental Figure 5.18 Localization precision determined by the Nearest Neighbor analysis (NeNA).  

Distributions were generated and fit as described in Methods. The “same molecule” fit excludes the correction term that accounts 
for localizations originating from different molecules.  
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Supplemental Figure 5.19 Estimates of the autocorrelation of the 2-dimensional LSF, 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟, 𝜏𝜏) , for the Nuclear Pore 
Complex data of Figure 5.5. 

The first panel shows the weighted average 〈𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿〉over all time-delays 𝜏𝜏, with weights determined by the number pairs of 
localizations observed at each time-delay. Subsequent panels show estimates of ( , )LSFg r τ  at the indicated time-delayτ . The 
scale bars are 40 nm. 

 

 
Supplemental Figure 5.20 Estimates of the weighted average of the autocorrelation of the 2-dimensional LSF ⟨𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿⟩, 
for the indicated datasets. 
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Weights are determined by the number of pairs of localizations observed at each time-delayτ . The scale bars are 40 nm. 

5.7 Supplementary Note: Derivation of spacetime pair correlation function estimator, and 

related computations. 

N  localizations 𝒖𝒖𝑖𝑖 = (𝑟𝑟𝑖𝑖, 𝑡𝑡𝑖𝑖) = (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖, 𝑡𝑡𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁 are observed on a spatial window 

(region of interest/ROI) 𝑊𝑊 during a temporal window 𝑇𝑇. This set of points is considered as a 

realization of a space-time point process 𝑋𝑋, so that we may define a (first-order) density 𝜌𝜌(𝒖𝒖) =

𝜌𝜌(𝑟𝑟, 𝑡𝑡) notionally as 

 Expected # of points in area 𝑑𝑑𝑟𝑟 and time-interval 𝑑𝑑𝑑𝑑 around (𝑟𝑟,𝑡𝑡)
𝑑𝑑𝑟𝑟⋅𝑑𝑑𝑑𝑑

 

Or more formally by the following: 

 𝐸𝐸 ∑ 1[𝒖𝒖 ∈ 𝐴𝐴]𝒖𝒖∈𝑋𝑋∩𝑊𝑊×𝑇𝑇 = ∫ 𝜌𝜌𝐴𝐴 (𝒖𝒖)𝑑𝑑𝒖𝒖 (0.9) 

For any set 𝐴𝐴 ⊂ 𝑊𝑊 × 𝑇𝑇, where 1[⋅] is an indicator function, taking the value 1 when its 

argument is true, and 0 otherwise. For the purposes of this paper, we assume that 𝜌𝜌 = 𝜌𝜌(𝑡𝑡) is 

constant in space but may vary in time, e.g. due to bleaching of the fluorophores of the sample.  

Further, define the second-order density 𝜌𝜌(2)(𝒖𝒖1,𝒖𝒖2) notionally by 

 Expected # of pairs of points in the 𝑑𝑑𝑟𝑟⋅𝑑𝑑𝑑𝑑 neighborhoods of 𝐮𝐮1 and 𝐮𝐮2 respectively
(𝑑𝑑𝑟𝑟⋅𝑑𝑑𝑑𝑑)2

 

Or more formally 

 𝐸𝐸 ∑ 1[𝒖𝒖1 ∈ 𝐴𝐴 and 𝐮𝐮2 ∈ 𝐵𝐵]≠
𝒖𝒖1,𝒖𝒖2∈𝑋𝑋∩𝑊𝑊×𝑇𝑇 = ∫ ∫ 𝜌𝜌(2)

𝐵𝐵𝐴𝐴 (𝒖𝒖1,𝒖𝒖2)𝑑𝑑𝒖𝒖2𝑑𝑑𝒖𝒖1 (0.10) 

Now 𝜌𝜌(2) describes the second-order properties of 𝑋𝑋, for example attraction or repulsion 

between points. It is convenient to normalize 𝜌𝜌(2) so that it is dimensionless and easier to interpret. 

To that end, define the pair autocorrelation function 𝑔𝑔(𝒖𝒖1,𝒖𝒖2): 

 𝑔𝑔(𝒖𝒖1,𝒖𝒖2) = 𝜌𝜌(2)(𝒖𝒖1,𝒖𝒖2)
𝜌𝜌(𝒖𝒖1,𝒖𝒖2)

 (0.11) 

Loosely, the pair autocorrelation function is the ratio of the actual probability of finding 

points at both 𝒖𝒖1 and 𝒖𝒖2to the hypothetical probability under the assumption that 𝒖𝒖1and 𝒖𝒖2 are 

independent. We typically assume that 𝑔𝑔 is translation invariant in both space and time, and often 

further assume that it is rotationally invariant in space, so that it only depends on the separation of 

u1 and u2 in space and time, and we may write 𝑔𝑔(𝒖𝒖1,𝒖𝒖2) = 𝑔𝑔(‖𝑟𝑟2 − 𝑟𝑟1‖, 𝑡𝑡2 − 𝑡𝑡1). 

We estimate 𝑔𝑔 using the standard kernel-based framework as laid out in e.g. (86, 311). 

Specifically, we use a box kernel with bandwidth 𝛿𝛿𝑟𝑟 in space and 𝛿𝛿𝑡𝑡 in time, and an isotropic edge-



142 
 

correction in space, and a density correction for the temporal edge correction, following the 

approach of (312). Briefly, consider the family of estimators for 𝑔𝑔(𝑟𝑟, 𝜏𝜏) given by: 

 𝑔𝑔�(𝑟𝑟, 𝜏𝜏): = 1
𝛾𝛾sp.(𝑟𝑟)𝛾𝛾𝑡𝑡(𝜏𝜏)

∑ 1[��𝑟𝑟𝑗𝑗 − 𝑟𝑟𝑖𝑖� − 𝑟𝑟� < 𝛿𝛿𝑟𝑟/2, �𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑖𝑖 − 𝜏𝜏� < 𝛿𝛿𝑡𝑡/2]≠
𝒖𝒖𝑖𝑖,𝒖𝒖𝑗𝑗∈𝑋𝑋∩𝑊𝑊×𝑇𝑇  (0.12) 

 

We wish to derive functions 𝛾𝛾sp. and 𝛾𝛾𝑡𝑡 such that the resulting estimator is unbiased. The 

expectation value of the sum in the above expression can be determined from an appropriate 

Campbell’s theorem: 
 

2 1 2 1

2 1 2 1 2 1

(2)
1 2 1 2

sp. t

1 2 1 2
sp. t

1 2 2 12 1
sp.

2 1

1

E 1ˆ ( , ) ( , )1 / 2, / 2]

1 ( ) ( ) ( )1 / 2][ 1[ / 2]

( ) 1 / 2]

[

( )

,

, [ ) (

W

T

r t
T W T

r t
T W

r
t

W

r r

r t r

g r r t t d d

g r t t t r t t d d

g r r dr

r

tdr tr r

τ ρ δ τ δ
γ γ

ρ ρ δ τ δ
γ γ

τ δ ρ ρ
γ γ

× ×

× ×

≈

=

−

− < −−

= −

− <

− − − <

−

< −

− <

∫

∫

∫

∫

u u u u

u u



 





 

 
1 12 2[ / 2]

W T T
t

W

t t dt dtτ δ−− <∫ ∫ ∫ ∫
 

Where the approximation in line 3 is due to the assumption that 𝑔𝑔(𝑟𝑟, 𝜏𝜏) is almost constant 

within 𝛿𝛿𝑟𝑟 ∕ 2 in space and 𝛿𝛿𝑡𝑡 ∕ 2 in time.  
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where |𝐴𝐴| indicates the area of the set 𝐴𝐴, and 𝐴𝐴ℎ��⃗  indicates the translation of the set 𝐴𝐴 by 

the vector ℎ�⃗ . The first line is a change of variables to ℎ�⃗ = 𝑟𝑟2 − 𝑟𝑟1, with the extra indicator functions 

reflecting the integration bounds on 𝑟𝑟2, followed by a change to polar coordinates for ℎ�⃗ . The 

approximation in the fourth line is justified by the fact that angular integral varies slowly with ℎ, 

so the radial part of the integral can be approximately separated. 

For the purposes of our MATLAB code, we represent the spatial window/ROI 𝑊𝑊 as a 

polygon with vertices [mask.x(i),mask.y(i)]. We translate the ROI by a vector [hx,hy] by simply 

adding hx and hy to mask.x and mask.y, respectively. Matlab provides functions polybool to 

compute the intersection 𝑊𝑊 ∩𝑊𝑊−ℎ��⃗ , and polyarea to compute the area of the resulting polygon. It 

remains to complete the angular integral, which we compute by discretizing theta into 32 equally 

spaced points 
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Chapter 6 Globally Intensity-reweighted Estimators for 𝑲𝑲- and Pair Correlation Functions 

This chapter presents a method for estimating spatial interactions between points of a point 

pattern such as is produced by a single molecule localization microscopy experiment, under 

conditions where the probability of detecting a point vary over space, focusing on formal proofs 

of the validity of the method, and formal analysis of the kinds of bias and variance that might occur 

in practical experiments. It was written in collaboration with Jesper Møller and Rasmus 

Waagepetersen, both professors of statistics at Aalborg University in Denmark. I proposed the 

basic form of the proofs, to which Jesper Møller and Rasmus Waagepetersen added important 

formal details and improved the presentation. I also wrote the analysis software and performed the 

simulation study, with guidance from Rasmus Waagepetersen. It has been published in the 

Australia and New Zealand Journal of Statistics (312). 

6.1 Abstract 

We introduce new estimators of the inhomogeneous 𝐾𝐾-function and the pair correlation 

function of a spatial point process as well as the cross 𝐾𝐾-function and the cross pair correlation 

function of a bivariate spatial point process under the assumption of second-order intensity-

reweighted stationarity. These estimators rely on a “global” normalization factor which depends 

on an aggregation of the intensity function, whilst the existing estimators depend “locally” on the 

intensity function at the individual observed points. The advantages of our new global estimators 

over the existing local estimators are demonstrated by theoretical considerations and a simulation 

study. 

6.2 Introduction 

Functional summary statistics like the nearest-neighbor-, the empty space-, and Ripley's 

𝐾𝐾-function have a long history in statistics for spatial point processes (85, 86, 313). For many years 

the theory of these functional summary statistics was confined to the case of stationary point 

processes with consequently constant intensity functions. The paper Baddeley et al. 2000 (88) was 



145 
 

therefore a big step forward since it relaxed substantially the assumption of stationarity in case of 

the 𝐾𝐾-function and the closely related pair correlation function. 

Baddeley et al (88) introduced the notion of second-order intensity-reweighted stationarity 

(soirs) for a spatial point process. When the pair correlation function 𝑔𝑔 exists for the 

point process, soirs is equivalent to that 𝑔𝑔 is translation invariant. However, the intensity 

function does not need to be constant which is a great improvement compared to assuming 

stationarity, see e.g. (314). When the point process is soirs, Baddeley et al further introduced a 

generalization of Ripley's 𝐾𝐾-function, the so-called inhomogeneous 𝐾𝐾-function which is based on 

the idea of intensity-reweighting the points of the spatial point process, and they discussed its 

estimation (88). The inhomogeneous 𝐾𝐾-function has found applications in a very large number of 

applied papers and has also been generalized e.g. to the case of space-time point processes (89, 

90) and to point processes on spheres (315, 316). Moreover, van Lieshout used the idea of 

intensity-reweighting to generalize the so-called 𝐽𝐽-function to the case of inhomogeneous point 

processes (317). 

A generic problem in spatial statistics, when just one realization of a spatial process is 

available, is to separate variation due to random interactions from variation due to a non-constant 

intensity or mean function. In general, if an informed choice of a parsimonious intensity function 

model is available for a point process, the intensity function can be estimated consistently. 

Consistent estimation of the inhomogeneous 𝐾𝐾-function is then also possible when the consistent 

intensity function estimate is used to reweight the point process, see e.g. the case of regression 

models for the intensity function(318). When a parsimonious model is not available, one may 

resort to non-parametric kernel estimation of the intensity function as considered initially in (88). 

However, kernel estimators are not consistent for the intensity function and they are strongly 

upwards biased when evaluated at the observed points. This implies strong bias of the resulting 

inhomogeneous 𝐾𝐾-function estimators when the kernel estimators are plugged in for the true 

intensity. 

In this paper, we introduce a new approach to non-parametric estimation of the 

(inhomogeneous) 𝐾𝐾- and 𝑔𝑔-functions for a spatial point process, or of the cross 𝐾𝐾-function and the 

cross pair correlation function for a bivariate spatial point process, assuming soirs in both cases. 

This formalizes an approach that has been used to estimate space-time cross pair correlation 

functions in live-cell single molecule localization microscopy experiments with spatially varying 
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localization probabilities (53, 83). In the univariate case, our new as well as the existing estimators 

are given by a sum over all distinct points 𝑥𝑥 and 𝑦𝑦 from an observed point pattern. For the new 

estimators, each term in the sum depends on an aggregation of the intensity function through a 

“global” normalization factor 𝛾𝛾(𝑦𝑦 − 𝑥𝑥) instead of depending “locally” on the intensity function at 

𝑥𝑥 and at 𝑦𝑦 as for the existing estimators (a similar remark applies in the bivariate case). Intuitively 

one may expect this to mitigate the problem of using biased kernel estimators of the intensity 

function in connection to non-parametric estimation of the 𝐾𝐾-function or pair correlation function. 

Moreover, to reduce bias when using a non-parametric kernel estimator of 𝛾𝛾, we propose a “leave-

out” modification of our 𝛾𝛾 estimator. Our simulation study shows that our new globally intensity 

reweighted estimators are superior to the existing local estimators in terms of bias and estimation 

variance regardless of whether the intensity function is estimated parametrically or non-

parametrically. 

The remainder of the paper is organized as follows. Some background on spatial point 

processes and notational details are provided in Section 6.3. Section 6.4 introduces our global 

estimator for the 𝐾𝐾-function or the cross 𝐾𝐾-function, discusses modifications to account for 

isotropy, and compares with the existing local estimators. Section 6.5 is similar but for our new 

global estimator of the 𝑔𝑔-function or cross pair correlation function. Section 6.6 describes sources 

of bias in the local and global estimators when kernel estimators are used, and modifications to 

reduce bias. In Section 6.8, the global and local estimators of 𝐾𝐾 and 𝑔𝑔 are compared in a simulation 

study. Possible extensions are discussed in Section 0. Finally, Section 6.10 contains some 

concluding remarks. 

6.3 Preliminaries 

We consider the usual setting for a spatial point process 𝑋𝑋 defined on the 𝑑𝑑-dimensional 

Euclidean space ℝ𝑑𝑑, that is, 𝑋𝑋 is a random locally finite subset of ℝ𝑑𝑑. This means that the number 

of points from 𝑋𝑋 falling in 𝐴𝐴, denoted 𝑁𝑁(𝐴𝐴), is almost surely finite for any bounded subset 𝐴𝐴 of 

ℝ𝑑𝑑. For further details we refer to (85). In our examples, 𝑑𝑑 = 2. 

For any integer 𝑛𝑛 ≥ 1, we say that 𝑋𝑋 has 𝑛𝑛-th order intensity function 𝜌𝜌𝑛𝑛: �ℝd�
n
↦ [0,∞) 

if for any disjoint bounded Borel sets 𝐴𝐴1, … ,𝐴𝐴𝑛𝑛 ⊂ ℝ𝑑𝑑 , 

E{𝑁𝑁(𝐴𝐴1)⋯𝑁𝑁(𝐴𝐴𝑛𝑛)} = � ⋯
𝐴𝐴1

� 𝜌𝜌(𝑛𝑛)(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) d𝑥𝑥1⋯ d𝑥𝑥𝑛𝑛
𝐴𝐴𝑛𝑛

< ∞. 
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By the so-called standard proof we obtain the 𝑛𝑛-th order Campbell's formula(85): for any Borel 

function 𝑘𝑘: (ℝ𝑑𝑑)𝑛𝑛 ↦ [0,∞), 

𝐸𝐸 � 𝑘𝑘(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)
≠

𝑥𝑥1,…,𝑥𝑥𝑛𝑛∈𝑋𝑋

= �⋯�𝑘𝑘(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝜌𝜌(𝑛𝑛)(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) 𝑑𝑑𝑥𝑥1⋯𝑑𝑑𝑥𝑥𝑛𝑛, 6. 1 

which is finite if the left or right hand side is so. Here, ≠ over the summation sign means that 

𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 are pairwise distinct. 

Throughout this paper, we assume that 𝑋𝑋 has an intensity function 𝜌𝜌 and a translation 

invariant pair correlation function 𝑔𝑔. This means that for all 𝑥𝑥,𝑦𝑦 ∈  ℝ𝑑𝑑, 𝜌𝜌(1)(𝑥𝑥) = 𝜌𝜌(𝑥𝑥) and 

𝜌𝜌(2)(𝑥𝑥, 𝑦𝑦) = 𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦)𝑔𝑔(𝑥𝑥,𝑦𝑦), where 𝑔𝑔(𝑥𝑥,𝑦𝑦) = 𝑔𝑔0(𝑥𝑥 − 𝑦𝑦) with 𝑔𝑔0:ℝ𝑑𝑑 ↦ [0,∞) a symmetric 

Borel function. If 𝜌𝜌 is constant we say that 𝑋𝑋 is (first-order) homogeneous. In particular, if 𝑋𝑋 is 

stationary, that is, the distribution of 𝑋𝑋 is invariant under translations in ℝ𝑑𝑑, then 𝜌𝜌 is constant and 

𝑔𝑔 is translation invariant. 

Following (88), the translation invariance of 𝑔𝑔 implies that 𝑋𝑋 is second-order intensity 

reweighted stationary (soirs) and the inhomogeneous 𝐾𝐾-function (or just 𝐾𝐾-function) is then given 

by  

𝐾𝐾(𝑡𝑡) ≔ � 𝑔𝑔0(ℎ) dℎ,     𝑡𝑡 ≥ 0.
|ℎ|≤𝑡𝑡

 

This is Ripley's 𝐾𝐾-function when 𝑋𝑋 is stationary. 

Suppose 𝑋𝑋1 and 𝑋𝑋2 are locally finite point processes on ℝ𝑑𝑑 such that 𝑋𝑋𝑖𝑖 has intensity 

function 𝜌𝜌𝑖𝑖, 𝑖𝑖 = 1,2, and (𝑋𝑋1,𝑋𝑋2) has a translation invariant cross pair correlation function 

𝑔𝑔12(𝑥𝑥1,𝑥𝑥2) = 𝑐𝑐(𝑥𝑥1 − 𝑥𝑥2) for all 𝑥𝑥1, 𝑥𝑥2 ∈ ℝ𝑑𝑑. That is, for bounded Borel sets 𝐴𝐴1,𝐴𝐴2 ⊂ ℝ𝑑𝑑 and 

𝑁𝑁𝑖𝑖(𝐴𝐴𝑖𝑖) denoting the cardinality of 𝑋𝑋𝑖𝑖 ∩  𝐴𝐴𝑖𝑖, 𝑖𝑖 = 1,2, we have 

𝐸𝐸{𝑁𝑁1(𝐴𝐴1)𝑁𝑁2(𝐴𝐴2)} = � � 𝜌𝜌1(𝑥𝑥1)𝜌𝜌2(𝑥𝑥2)𝑐𝑐(𝑥𝑥1 − 𝑥𝑥2) d𝑥𝑥1d𝑥𝑥2.
𝐴𝐴2𝐴𝐴1

 

Then the cross 𝐾𝐾-function is defined by 

𝐾𝐾12(𝑡𝑡) ≔ �𝑐𝑐(ℎ) 𝑑𝑑ℎ,      𝑡𝑡 ≥ 0.
ℎ

 

In practice 𝑋𝑋,𝑋𝑋1,𝑋𝑋2 are observed within a bounded window 𝑊𝑊 ⊂  ℝ𝑑𝑑, and we use the 

following notation. The translate of 𝑊𝑊 by 𝑥𝑥 ∈ ℝ𝑑𝑑 is denoted 𝑊𝑊𝑥𝑥: = {𝑤𝑤 + 𝑥𝑥 | 𝑤𝑤 ∈  𝑊𝑊}. For a Borel 

set 𝐴𝐴 ⊆ ℝ𝑑𝑑, 1[𝑥𝑥 ∈  𝐴𝐴] denotes the indicator function which is 1 if 𝑥𝑥 ∈  𝐴𝐴 and 0 otherwise. The 
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Lebesgue measure of 𝐴𝐴 (or area of 𝐴𝐴 when 𝑑𝑑 = 2) is denoted |𝐴𝐴|, and |𝑥𝑥| is the usual Euclidean 

length of 𝑥𝑥 ∈ ℝ𝑑𝑑. 

6.4 Global and local intensity-reweighted estimators for 𝑲𝑲-functions 

6.4.1 The case of one spatial point process 

Considering the setting in Section 6.3 for the spatial point process 𝑋𝑋, we define 

𝛾𝛾(ℎ) ≔  � 𝜌𝜌(𝑢𝑢)𝜌𝜌(𝑢𝑢 + ℎ) 𝑑𝑑𝑑𝑑,   ℎ ∈ ℝ𝑑𝑑

𝑊𝑊∩𝑊𝑊−ℎ

. (1) 

Clearly, 𝛾𝛾 is symmetric, that is, 𝛾𝛾(ℎ) = 𝛾𝛾(−ℎ) for all ℎ ∈ ℝ𝑑𝑑. We assume that with probability 1, 

𝛾𝛾(𝑦𝑦 − 𝑥𝑥) > 0 for all distinct 𝑥𝑥, 𝑦𝑦 ∈  𝑋𝑋 ∩𝑊𝑊. Then, for 𝑡𝑡 ≥  0, we can define 

𝐾𝐾�global(𝑡𝑡) ≔  �
1[|𝑦𝑦 − 𝑥𝑥| ≤ 𝑡𝑡]
𝛾𝛾(𝑦𝑦 − 𝑥𝑥)

≠

𝑥𝑥,𝑦𝑦∈𝑋𝑋∩𝑊𝑊

. (2) 

If 𝛾𝛾(ℎ) > 0 whenever |ℎ| ≤  𝑡𝑡, then 𝐾𝐾�global(𝑡𝑡) is an unbiased estimator of 𝐾𝐾(𝑡𝑡). This follows from 

the second-order Campbell's formula: 

E𝐾𝐾�global(𝑡𝑡) =  ��
1[𝑥𝑥 ∈ 𝑊𝑊,𝑦𝑦 ∈ 𝑊𝑊, |𝑦𝑦 − 𝑥𝑥| ≤ 𝑡𝑡]

𝛾𝛾(𝑦𝑦 − 𝑥𝑥) 𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦)𝑔𝑔0(𝑦𝑦 − 𝑥𝑥) d𝑥𝑥 d𝑦𝑦 

= ��
1[𝑥𝑥 ∈ 𝑊𝑊 ∩𝑊𝑊−ℎ, |ℎ| < 𝑡𝑡]

𝛾𝛾(ℎ) 𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑥𝑥 + ℎ)𝑔𝑔0(ℎ) d𝑥𝑥 dℎ 

= �
𝛾𝛾(ℎ)
𝛾𝛾(ℎ)|ℎ|≤𝑡𝑡

𝑔𝑔0(ℎ) dℎ. 

We call 𝐾𝐾�global the global estimator since it contrasts with one of the estimators suggested in (88): 

assuming that almost surely �𝑊𝑊 ∩  𝑊𝑊𝑦𝑦−𝑥𝑥� > 0 for distinct 𝑥𝑥,𝑦𝑦 ∈  𝑋𝑋 ∩  𝑊𝑊, 

𝐾𝐾�local ≔  �
1[|𝑦𝑦 − 𝑥𝑥| ≤ 𝑡𝑡]

𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦)�𝑊𝑊 ∩𝑊𝑊𝑦𝑦−𝑥𝑥�

≠

𝑥𝑥,𝑦𝑦∈𝑋𝑋∩𝑊𝑊

, (3) 

which we refer to as the local estimator. Note that 𝐾𝐾�local(𝑡𝑡) is also an unbiased estimator of 𝐾𝐾(𝑡𝑡) 

provided |𝑊𝑊 ∩  𝑊𝑊ℎ| > 0 for |ℎ| ≤  𝑡𝑡. 

In the homogeneous case, 

𝛾𝛾(ℎ) = 𝜌𝜌2|𝑊𝑊 ∩𝑊𝑊−ℎ|, 

whereby 𝐾𝐾�local = 𝐾𝐾�global, and in the stationary case, these estimators coincide with the translation 

estimator of Ohser and Stoyan (319). 
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In practice 𝜌𝜌 and hence 𝛾𝛾 must be replaced by estimates. Estimators of 𝜌𝜌 and 𝛾𝛾 and the bias 

of these estimators are discussed in Section 6.6.  

6.4.2 Modifications to account for isotropy 

In addition to soirs, it is frequently assumed that the pair correlation function is isotropic 

meaning that 𝑔𝑔0(ℎ) = 𝑔𝑔1(|ℎ|) for some Borel function 𝑔𝑔1: [0,∞) ↦ [0,∞). We benefit from this 

by integrating over the sphere: for 𝑟𝑟 >  0, define 

𝛾𝛾iso(𝑟𝑟) ≔ � 𝛾𝛾(𝑟𝑟𝑟𝑟) d𝜈𝜈𝑑𝑑−1(𝑠𝑠)
𝕊𝕊𝑑𝑑−1

𝜍𝜍𝑑𝑑� , (4) 

where 𝕊𝕊𝑑𝑑−1 = {𝑠𝑠 ∈ ℝ𝑑𝑑| |𝑠𝑠| = 1} denotes the (𝑑𝑑 − 1)-dimensional unit-sphere, 𝜈𝜈𝑑𝑑−1 is the (𝑑𝑑 −

1)-dimensional surface measure on 𝕊𝕊𝑑𝑑−1, and 𝜍𝜍𝑑𝑑  =  2𝜋𝜋𝑑𝑑/2/Γ(𝑑𝑑/2) is the surface area of the 

𝕊𝕊𝑑𝑑−1. Thus 𝛾𝛾iso(𝑟𝑟) is the mean value of 𝛾𝛾(𝐻𝐻) when 𝐻𝐻 is a uniformly distributed point on the (𝑑𝑑 −

1)-dimensional sphere of radius 𝑟𝑟 and center at the origin. 

Assuming that almost surely 𝛾𝛾iso(|𝑦𝑦 − 𝑥𝑥|) > 0 for distinct 𝑥𝑥,𝑦𝑦 ∈  𝑋𝑋 ∩  𝑊𝑊, this naturally 

leads to another global estimator for 𝐾𝐾 when the pair correlation function is isotropic, namely 

𝐾𝐾�globaliso (𝑡𝑡) ≔  �
1[|𝑦𝑦 − 𝑥𝑥| ≤ 𝑡𝑡]
𝛾𝛾iso(|𝑦𝑦 − 𝑥𝑥|) .

≠

𝑥𝑥,𝑦𝑦∈𝑋𝑋∩𝑊𝑊

(5) 

That 𝐾𝐾�globaliso  is unbiased follows from a similar derivation as for  𝐾𝐾�global: for any 𝑡𝑡 ≥ 0 such that 

𝛾𝛾iso(𝑟𝑟) > 0 whenever 𝑟𝑟 ≤  𝑡𝑡, 

E𝐾𝐾�globaliso (𝑡𝑡) = �
𝛾𝛾(ℎ)

𝛾𝛾iso(|ℎ|)𝑔𝑔0
(ℎ) dℎ

|ℎ|≤𝑡𝑡
 

= � 𝑔𝑔1(𝑟𝑟)𝑟𝑟𝑑𝑑−1 �
𝛾𝛾(𝑟𝑟𝑟𝑟)
𝛾𝛾iso(𝑟𝑟)  d𝜈𝜈𝑑𝑑−1(𝑠𝑠) d𝑟𝑟

𝕊𝕊𝑑𝑑−1

𝑡𝑡

0
(6) 

= � 𝑔𝑔1(𝑟𝑟)𝜍𝜍𝑑𝑑𝑟𝑟𝑑𝑑−1 d𝑟𝑟
𝑡𝑡

0
 

= � 𝑔𝑔1(|ℎ|) dℎ
|ℎ|≤𝑡𝑡

= 𝐾𝐾(𝑡𝑡) (7) 

where equations 6 and 7 employ changes of variables to and from polar coordinates, respectively. 

When 𝑋𝑋 is homogeneous, equation 5 coincides with the isotropic estimator of Ohser and 

Stoyan (319). A local estimator of this form can also be defined: 
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𝐾𝐾�localiso (𝑡𝑡) ≔ �
1[|𝑦𝑦 − 𝑥𝑥| ≤ 𝑡𝑡]

𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦)𝑎𝑎𝑊𝑊(|𝑦𝑦 − 𝑥𝑥|) ,
𝑥𝑥,𝑦𝑦∈𝑋𝑋∩𝑊𝑊

(8) 

where 

𝑎𝑎𝑊𝑊(𝑟𝑟) = � |𝑊𝑊 ∩𝑊𝑊−𝑟𝑟𝑠𝑠|𝑑𝑑𝜈𝜈𝑑𝑑−1(𝑠𝑠) 𝜍𝜍𝑑𝑑⁄
𝕊𝕊𝑑𝑑−1

(9) 

is an isotropized edge correction factor, and where it is assumed that almost surely 𝑎𝑎𝑊𝑊(|𝑦𝑦 − 𝑥𝑥|) >

0 for distinct 𝑥𝑥,𝑦𝑦 ∈  𝑋𝑋 ∩  𝑊𝑊. The local estimator is unbiased when 𝑎𝑎𝑊𝑊(𝑟𝑟) > 0 for 𝑟𝑟 ≤ 𝑡𝑡.  

6.4.3 Comparison of local and global estimators 

The global and local estimators of equations 2 and 3 differ in the relative weighting of 

distinct points 𝑥𝑥,𝑦𝑦 ∈  𝑋𝑋 ∩  𝑊𝑊. Namely, 𝐾𝐾�local weights pairs 𝑥𝑥, 𝑦𝑦 from low-density areas more 

strongly than those from high-density areas, whilst for 𝐾𝐾�global, the weight only depends on the 

difference 𝑦𝑦 − 𝑥𝑥. Theoretical expressions for the variances of the global and local 𝐾𝐾-function 

estimators are very complicated, not least when the intensity function is replaced by an estimate. 

This makes it difficult to make a general theoretical comparison of the estimators in terms of their 

variances. However, under some simplifying assumptions insight can be gained as explained in 

the following. 

Consider a quadratic observation window 𝑊𝑊 of sidelength 𝑛𝑛𝑛𝑛. Then 𝑊𝑊 is a disjoint union 

of 𝑛𝑛2 quadrats 𝑊𝑊1, … ,𝑊𝑊𝑛𝑛2 each of sidelength 𝑚𝑚. Assume that the intensity function is constant 

and equal to 𝜌𝜌𝑖𝑖 within each 𝑊𝑊𝑖𝑖, with 𝜌𝜌 naturally estimated by 𝜌𝜌(𝑢𝑢) = 𝜌𝜌�𝑖𝑖  = 𝑁𝑁(𝑊𝑊𝑖𝑖) ∕ 𝑚𝑚2 for 𝑢𝑢 ∈

 𝑊𝑊𝑖𝑖. For fixed 𝑡𝑡 and large 𝑚𝑚, when 𝜌𝜌 is replaced by its estimator 𝜌𝜌�, we can now approximate the 

local estimator: 

𝐾𝐾�local(𝑡𝑡) = �
1[|𝑢𝑢 − 𝑣𝑣| ≤ 𝑡𝑡]

𝜌𝜌�(𝑢𝑢)𝜌𝜌�(𝑣𝑣)|𝑊𝑊 ∩𝑊𝑊𝑢𝑢−𝑣𝑣|

≠

𝑢𝑢,𝑣𝑣∈𝑋𝑋∩𝑊𝑊

≃� �
1[|𝑢𝑢 − 𝑣𝑣| ≤ 𝑡𝑡]
𝜌𝜌�𝑖𝑖2|𝑊𝑊 ∩𝑊𝑊𝑢𝑢−𝑣𝑣|

≠

𝑢𝑢,𝑣𝑣∈𝑋𝑋∩𝑊𝑊𝑖𝑖

𝑛𝑛2

𝑖𝑖=1

 

≃� �
1[|𝑢𝑢 − 𝑣𝑣| ≤ 𝑡𝑡]

𝜌𝜌�𝑖𝑖2|𝑊𝑊𝑖𝑖 ∩ (𝑊𝑊𝑖𝑖)𝑢𝑢−𝑣𝑣|𝑛𝑛2
=

1
𝑛𝑛2

 �𝐾𝐾�𝑖𝑖,local(𝑡𝑡),
𝑛𝑛2

𝑖𝑖=1

≠

𝑢𝑢,𝑣𝑣∈𝑋𝑋∩𝑊𝑊𝑖𝑖

𝑛𝑛2

𝑖𝑖=1

 

where 𝐾𝐾�𝑖𝑖,local is the local estimator based on 𝑋𝑋 ∩  𝑊𝑊𝑖𝑖. We use here ≃ in a rather loose sense, 

meaning that asymptotically, as 𝑚𝑚 tends to infinity, the difference between the two quantities on 

each side of ≃ tends to zero in a suitable sense (e.g. in mean square) under appropriate regularity 

conditions. The first approximation above follows because contributions from 𝑢𝑢 ∈  𝑋𝑋𝑖𝑖 and 𝑣𝑣 ∈  𝑋𝑋𝑗𝑗, 
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𝑖𝑖 ≠ 𝑗𝑗, are negligible for fixed 𝑡𝑡 and 𝑚𝑚 large, and the second approximation is justified since for 

|ℎ| ≤  𝑡𝑡, |𝑊𝑊| ∕ |𝑊𝑊 ∩  𝑊𝑊ℎ| and |𝑊𝑊𝑖𝑖| ∕ |𝑊𝑊𝑖𝑖 ∩  (𝑊𝑊𝑖𝑖)ℎ| will tend to 1 as 𝑚𝑚 increases. Following 

similar steps, we obtain for the global estimator, 

𝐾𝐾�global(𝑡𝑡) ≃�𝐾𝐾�𝑖𝑖,local(𝑡𝑡)
𝜌𝜌�𝑖𝑖2

∑ 𝜌𝜌�𝑙𝑙2𝑛𝑛2
𝑙𝑙=1

.
𝑛𝑛2

𝑖𝑖=1

 

Suppose 𝑋𝑋 is a Poisson process. Note that 𝐾𝐾�local(𝑡𝑡) is an equally weighted average of the 

𝐾𝐾�𝑖𝑖,local(𝑡𝑡), but since the 𝐾𝐾�𝑖𝑖,local(𝑡𝑡) are independent, the optimal weighted average is obtained with 

weights inversely proportional to the variances of the 𝐾𝐾�𝑖𝑖,local(𝑡𝑡). For large m, the variance of 

𝐾𝐾�𝑖𝑖,local(𝑡𝑡) is well approximated by 2𝜋𝜋 𝑡𝑡2 ∕ (𝜌𝜌𝑖𝑖2 𝑚𝑚2) (320, 321) and the optimal weights 𝑤𝑤𝑖𝑖 are thus 

proportional to 𝜌𝜌𝑖𝑖2. Our global estimator is obtained from the optimal weighted average by 

replacing the optimal weights by natural consistent estimates. Hence one may anticipate that the 

global estimator has smaller variance than the local estimator. In a small-scale simulation study 

this was indeed the case, and the global estimator with (random) weights proportional to 𝜌𝜌�𝑖𝑖2 even 

had slightly smaller variance than when the optimal fixed weights 𝑤𝑤𝑖𝑖 ∝  𝜌𝜌𝑖𝑖2 were used. 

6.4.4 The case of two spatial point processes 

For two spatial point processes 𝑋𝑋1 and 𝑋𝑋2 observed on the same observation window 𝑊𝑊 

(cf. Section 6.3), we define the following global estimator for the cross 𝐾𝐾-function: for 𝑡𝑡 ≥ 0, 

𝐾𝐾�12,global(𝑡𝑡) ≔ �
1[|𝑦𝑦 − 𝑥𝑥| ≤ 𝑡𝑡]
𝛾𝛾12(𝑦𝑦 − 𝑥𝑥) ,

𝑥𝑥∈𝑋𝑋1∩𝑊𝑊,𝑦𝑦∈𝑋𝑋2∩𝑊𝑊

(10) 

where 

𝛾𝛾12(ℎ) ≔ � 𝜌𝜌1(𝑢𝑢)𝜌𝜌2(𝑢𝑢 + ℎ) d𝑢𝑢
𝑊𝑊∩𝑊𝑊−ℎ

 

and it is assumed that almost surely 𝛾𝛾12(𝑦𝑦 − 𝑥𝑥) > 0 for 𝑥𝑥 ∈  𝑋𝑋1 ∩  𝑊𝑊 and 𝑦𝑦 ∈  𝑋𝑋2 ∩𝑊𝑊. It is 

straightforwardly verified that 𝐾𝐾�12,global(𝑡𝑡) is unbiased for any 𝑡𝑡 ≥ 0 such that 𝛾𝛾12(ℎ) > 0 

whenever |ℎ| ≤ 𝑡𝑡. 

The corresponding local estimator is 

𝐾𝐾�12,local(𝑡𝑡) ≔ �
1[|𝑦𝑦 − 𝑥𝑥| ≤ 𝑡𝑡]

𝜌𝜌1(𝑥𝑥)𝜌𝜌2(𝑦𝑦)�𝑊𝑊 ∩𝑊𝑊𝑦𝑦−𝑥𝑥�
,

𝑥𝑥∈𝑋𝑋1∩𝑊𝑊,𝑦𝑦∈𝑋𝑋2∩𝑊𝑊

(11) 
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assuming that almost surely |𝑊𝑊 ∩  𝑊𝑊𝑦𝑦−𝑥𝑥| > 0 for 𝑥𝑥 ∈  𝑋𝑋1 ∩  𝑊𝑊 and 𝑦𝑦 ∈ 𝑋𝑋2 ∩  𝑊𝑊. The local 

estimator is unbiased when |𝑊𝑊 ∩𝑊𝑊ℎ| > 0 for |ℎ| ≤ 𝑡𝑡. 

Interchanging 𝑋𝑋1 and 𝑋𝑋2 does not affect equation 10: 𝐾𝐾�12,global(𝑡𝑡) = 𝐾𝐾�21,global(𝑡𝑡) when 

𝐾𝐾�21,global(𝑡𝑡) is defined as in equation 10 with 𝛾𝛾12 replaced by 

𝛾𝛾21(ℎ) ≔ � 𝜌𝜌1(𝑢𝑢 + ℎ)𝜌𝜌2(𝑢𝑢) d𝑢𝑢
𝑊𝑊∩𝑊𝑊−ℎ

. 

This follows since by a change of variable, 𝛾𝛾12 is symmetric, 𝛾𝛾21(ℎ)  = 𝛾𝛾12(−ℎ) = 𝛾𝛾12(ℎ). 

When the cross pair correlation function 𝑐𝑐(ℎ) is also isotropic, additional unbiased 

estimators of 𝐾𝐾12 are readily obtained in the same way as for the one point process case. Thus, 

defining 

𝛾𝛾12iso(𝑟𝑟) ≔ � 𝛾𝛾12(𝑟𝑟𝑟𝑟) d𝜈𝜈𝑑𝑑−1(𝑠𝑠)
𝕊𝕊𝑑𝑑−1

𝜍𝜍𝑑𝑑,     𝑟𝑟 ≥ 0,� (12) 

 

and assuming that almost surely 𝛾𝛾12iso(|𝑦𝑦 − 𝑥𝑥|) > 0 for 𝑥𝑥 ∈ 𝑋𝑋1 ∩𝑊𝑊 and 𝑦𝑦 ∈ 𝑋𝑋2, we define an 

isotropic global estimator by 

𝐾𝐾�12,global
iso (𝑡𝑡) ≔ �

1[|𝑦𝑦 − 𝑥𝑥| ≤ 𝑡𝑡]
𝛾𝛾12iso(|𝑦𝑦 − 𝑥𝑥|)

.
𝑥𝑥∈𝑋𝑋1∩𝑊𝑊,𝑦𝑦∈𝑋𝑋2∩𝑊𝑊

(13) 

This is easily seen to be unbiased when 𝛾𝛾12iso(𝑟𝑟) > 0 for 𝑟𝑟 ≤ 𝑡𝑡. Finally, the isotropic local estimator 

is 

𝐾𝐾�12,local
iso (𝑡𝑡) ≔ �

1[|𝑦𝑦 − 𝑥𝑥| ≤ 𝑡𝑡]
𝜌𝜌1(𝑥𝑥)𝜌𝜌2(𝑦𝑦)𝑎𝑎𝑊𝑊(|𝑦𝑦 − 𝑥𝑥|) ,

𝑥𝑥∈𝑋𝑋1∩𝑊𝑊,𝑦𝑦∈𝑋𝑋2∩𝑊𝑊

(14) 

with 𝑎𝑎𝑊𝑊(𝑟𝑟) as defined in Section , and it becomes unbiased if 𝑎𝑎𝑊𝑊(𝑟𝑟) > 0 for 𝑟𝑟 ≤ 𝑡𝑡. 

6.5 Global and local intensity-reweighted estimators for pair correlation functions 

6.5.1 The case of one spatial point process 

Considering again the setting in Section 6.3 for the spatial point process 𝑋𝑋, this section 

introduces global and local estimators for the translation invariant pair correlation function given 

by 𝑔𝑔0. Note that it may be easier to interpret 𝑔𝑔0 than 𝐾𝐾, but non-parametric kernel estimation of 

𝑔𝑔0 involves the choice of a bandwidth. 
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Let 𝜅𝜅𝑏𝑏:ℝ𝑑𝑑 ↦ [0,∞) be a (normalized) kernel with bandwidth 𝑏𝑏 > 0, that is, 𝜅𝜅𝑏𝑏(ℎ) =

𝜅𝜅1(ℎ ∕ 𝑏𝑏) ∕ 𝑏𝑏𝑑𝑑 for ℎ ∈ ℝ𝑑𝑑, where 𝜅𝜅1 is a probability density function. We assume that 𝜅𝜅1 has 

support centered in the origin and contained in [−𝑘𝑘,𝑘𝑘]𝑑𝑑 for some 𝑘𝑘 > 0; e.g. 𝜅𝜅1 could be a standard 

𝑑𝑑-dimensional normal density truncated to [−𝑘𝑘,𝑘𝑘]𝑑𝑑 (this choice is convenient when 𝑊𝑊 is 

rectangular with sides parallel to the usual axes in ℝ𝑑𝑑). Note that the bounded support of 𝜅𝜅𝑏𝑏 shrinks 

to {0} when 𝑏𝑏 tends to zero}. Then, for ℎ ∈ ℝ𝑑𝑑, 

E � 𝜅𝜅𝑏𝑏�ℎ − (𝑦𝑦 − 𝑥𝑥)�
≠

𝑥𝑥,𝑦𝑦∈𝑋𝑋∩𝑊𝑊

 

=  � � 𝜅𝜅𝑏𝑏�ℎ − (𝑦𝑦 − 𝑥𝑥)�𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦)𝑔𝑔0(𝑦𝑦 − 𝑥𝑥) d𝑥𝑥 d𝑦𝑦
𝑊𝑊𝑊𝑊

(15) 

= � �� 𝜅𝜅𝑏𝑏(−𝑧𝑧)𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑥𝑥 + ℎ + 𝑧𝑧)𝑔𝑔0(ℎ + 𝑧𝑧) d𝑧𝑧
𝑊𝑊−ℎ−𝑥𝑥

�  d𝑥𝑥
𝑊𝑊

 

≃ 𝑔𝑔0(ℎ)� 𝜌𝜌(𝑥𝑥) �� 𝜅𝜅𝑏𝑏(−𝑧𝑧)𝜌𝜌(𝑥𝑥 + ℎ + 𝑧𝑧) d𝑧𝑧
𝑊𝑊−ℎ−𝑥𝑥

�  d𝑥𝑥
𝑊𝑊

(16) 

≃ 𝑔𝑔0(ℎ)𝛾𝛾(ℎ) (17) 

where 𝛾𝛾(ℎ) is defined in equation 1. Here, equation 15 follows from the second-order Campbell's 

formula and ≃ in equations 16 and 17 means that the difference between the quantities on each 

side of ≃ converges to zero as the bandwidth 𝑏𝑏 tends to zero, under appropriate continuity 

conditions on 𝜌𝜌 and 𝑔𝑔0. The expression in equation 16 is expected to be more accurate but 17 is 

simpler to compute. 

From equation 17 we conclude that 𝑔𝑔0(ℎ) can be estimated by the following global 

estimator, 

𝑔𝑔�global(ℎ) ≔ � 𝜅𝜅𝑏𝑏�ℎ − (𝑦𝑦 − 𝑥𝑥)�
≠

𝑥𝑥,𝑦𝑦∈𝑋𝑋∩𝑊𝑊

𝛾𝛾(ℎ)� ,  

provided 𝛾𝛾(ℎ) > 0. This contrasts with the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

𝑔𝑔�local(ℎ) ≔ �
𝜅𝜅𝑏𝑏�ℎ − (𝑦𝑦 − 𝑥𝑥)�

𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦)�𝑊𝑊 ∩𝑊𝑊𝑥𝑥−𝑦𝑦�

≠

𝑥𝑥,𝑦𝑦∈𝑋𝑋∩𝑊𝑊

,  

which is analogous to the estimator suggested in (88) for an isotropic pair correlation function, see 

also Section 6.5.2. 

6.5.2 Modifications to account for isotropy 
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For isotropic point processes as defined in Section 6.4.2, the global pair correlation 

function estimator may be modified to estimate the isotropic pair correlation function given by 𝑔𝑔1: 

for 𝑟𝑟 >  0 such that 𝛾𝛾iso(𝑟𝑟) > 0, define 

𝑔𝑔�globaliso (𝑟𝑟) ≔
1

𝜍𝜍𝑑𝑑𝑟𝑟𝑑𝑑−1
�

𝜅̃𝜅𝑏𝑏(𝑟𝑟 − |𝑥𝑥 − 𝑦𝑦|)
𝛾𝛾iso(𝑟𝑟)

≠

𝑥𝑥,𝑦𝑦∈𝑋𝑋∩𝑊𝑊

, (18) 

where for 𝑏𝑏 > 0, 𝜅̃𝜅𝑏𝑏(𝑡𝑡) = 𝜅̃𝜅1(𝑡𝑡 ∕ 𝑏𝑏) ∕ 𝑏𝑏, 𝑡𝑡 ∈  ℝ, for a probability density 𝜅̃𝜅1:ℝ ↦ [0,∞) with 

support centered at 0 and contained in the interval [−𝑘𝑘,𝑘𝑘] for some constant 𝑘𝑘 > 0, and where 

𝛾𝛾iso(𝑟𝑟) is defined in equation 4. This definition is motivated by the following derivation: 

E � 𝜅̃𝜅𝑏𝑏(𝑟𝑟 − |𝑦𝑦 − 𝑥𝑥|)
≠

𝑥𝑥,𝑦𝑦∈𝑋𝑋∩𝑊𝑊

 

= � � 𝜅̃𝜅𝑏𝑏(𝑟𝑟 − |𝑦𝑦 − 𝑥𝑥|)𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦)𝑔𝑔1(|𝑦𝑦 − 𝑥𝑥|) d𝑦𝑦
𝑊𝑊

 d𝑥𝑥
𝑊𝑊

(19) 

= � �� 𝜅̃𝜅𝑏𝑏(𝑟𝑟 − 𝜉𝜉)𝑔𝑔1(𝜉𝜉)𝜉𝜉𝑑𝑑−1 � 𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑥𝑥 + 𝜉𝜉𝜉𝜉)1[𝑥𝑥 + 𝜉𝜉𝜉𝜉 ∈ 𝑊𝑊] d𝜈𝜈𝑑𝑑−1(𝑠𝑠)
𝕊𝕊𝑑𝑑−1

 d𝜉𝜉
∞

0
�

𝑊𝑊
 d𝑥𝑥 (20) 

≃ 𝑔𝑔1(𝑟𝑟)𝜍𝜍𝑑𝑑𝛾𝛾iso(𝑟𝑟)𝑟𝑟𝑑𝑑−1 � 𝜅̃𝜅𝑏𝑏(𝑟𝑟 − 𝜉𝜉) d𝜉𝜉
∞

0
(21) 

≃ 𝑔𝑔1(𝑟𝑟)𝜍𝜍𝑑𝑑𝛾𝛾iso(𝑟𝑟)𝑟𝑟𝑑𝑑−1, (22) 

using the second-order Campbell formula in equation 19, a “shift to polar coordinates” in equation 

20, the assumption that 𝑏𝑏 is small in equation 21, and that the kernel is a probability density 

function in equation 22. Note regarding equation 22 that 

� 𝜅̃𝜅𝑏𝑏(𝑟𝑟 − 𝜉𝜉) d𝜉𝜉
∞

0
= � 𝜅̃𝜅𝑏𝑏(𝜉𝜉) d𝜉𝜉

𝜉𝜉

−∞
, 

which is not 1 in general. Since 𝜅̃𝜅𝑏𝑏(𝜉𝜉) = 0 for 𝜉𝜉 ∉ [−𝑏𝑏𝑏𝑏, 𝑏𝑏𝑏𝑏], the integral is 1 if 𝑏𝑏𝑏𝑏 < 𝑟𝑟. From 

equation 22 we obtain the estimator in equation 18. 

In the isotropic case the most commonly used local estimators (88) are 

𝑔𝑔�localiso (𝑟𝑟) ≔
1

𝜍𝜍𝑑𝑑𝑟𝑟𝑑𝑑−1
�

𝜅̃𝜅𝑏𝑏(𝑟𝑟 − |𝑦𝑦 − 𝑥𝑥|)
𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦)�𝑊𝑊 ∩𝑊𝑊𝑥𝑥−𝑦𝑦�

≠

𝑥𝑥,𝑦𝑦∈𝑋𝑋∩𝑊𝑊

 

and 

𝑔𝑔�localiso (𝑟𝑟) ≔
1
𝜍𝜍𝑑𝑑

�
𝜅̃𝜅𝑏𝑏(𝑟𝑟 − |𝑦𝑦 − 𝑥𝑥|)

𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦)�𝑊𝑊 ∩𝑊𝑊𝑥𝑥−𝑦𝑦�(|𝑦𝑦 − 𝑥𝑥|)𝑑𝑑−1

≠

𝑥𝑥,𝑦𝑦∈𝑋𝑋∩𝑊𝑊
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assuming that almost surely �𝑊𝑊 ∩𝑊𝑊𝑥𝑥−𝑦𝑦� > 0 for distinct 𝑥𝑥,𝑦𝑦 ∈  𝑋𝑋 ∩𝑊𝑊. These estimators suffer 

from strong positive respectively negative bias for values of 𝑟𝑟 close to 0.  

6.5.3 Two point processes 

A similar derivation is possible for the cross pair correlation function of a bivariate point 

process (𝑋𝑋1,𝑋𝑋2), yielding similar global and local estimators of 𝑐𝑐(ℎ): for 𝛾𝛾12(ℎ) > 0, 

𝑐̂𝑐global(ℎ) ≔ � 𝜅𝜅𝑏𝑏�ℎ − (𝑦𝑦 − 𝑥𝑥)�
𝑥𝑥∈𝑋𝑋1∩𝑊𝑊,𝑦𝑦∈𝑋𝑋2∩𝑊𝑊

𝛾𝛾12(ℎ)� ; 

for 𝛾𝛾12iso(𝑟𝑟) > 0, 

𝑐̂𝑐globaliso (𝑟𝑟) ≔
1

𝜍𝜍𝑑𝑑𝑟𝑟𝑑𝑑−1
� 𝜅̃𝜅𝑏𝑏(𝑟𝑟 − |𝑦𝑦 − 𝑥𝑥|)

𝑥𝑥∈𝑋𝑋1∩𝑊𝑊,𝑦𝑦∈𝑋𝑋2∩𝑊𝑊

𝛾𝛾12iso(𝑟𝑟)� ; 

and for �𝑊𝑊 ∩𝑊𝑊𝑥𝑥−𝑦𝑦� > 0 almost surely when 𝑥𝑥 ∈ 𝑋𝑋1 ∩𝑊𝑊 and 𝑦𝑦 ∈ 𝑋𝑋2 ∩𝑊𝑊, 

𝑐̂𝑐local(ℎ) = �
𝜅𝜅𝑏𝑏�ℎ − (𝑦𝑦 − 𝑥𝑥)�

𝜌𝜌1(𝑥𝑥)𝜌𝜌2(𝑦𝑦)�𝑊𝑊 ∩𝑊𝑊𝑥𝑥−𝑦𝑦�𝑥𝑥∈𝑋𝑋1∩𝑊𝑊,𝑦𝑦∈𝑋𝑋2∩𝑊𝑊

  

and 

𝑐̂𝑐localiso (𝑟𝑟) =
1

𝜍𝜍𝑑𝑑𝑟𝑟𝑑𝑑−1
�

𝜅̃𝜅𝑏𝑏(𝑟𝑟 − |𝑦𝑦 − 𝑥𝑥|)
𝜌𝜌1(𝑥𝑥)𝜌𝜌2(𝑦𝑦)�𝑊𝑊 ∩𝑊𝑊𝑥𝑥−𝑦𝑦�𝑥𝑥∈𝑋𝑋1∩𝑊𝑊,𝑦𝑦∈𝑋𝑋2∩𝑊𝑊

. 

Also an intermediate estimator is possible, with the intensity weighting for one of the 

processes applied locally, and the other applied globally: with 𝑋𝑋1, 𝑋𝑋2, and 𝜅𝜅𝑏𝑏 as above, we have 

E �
𝜅𝜅𝑏𝑏�ℎ − (𝑦𝑦 − 𝑥𝑥)�

𝜌𝜌2(𝑦𝑦)
𝑥𝑥∈𝑋𝑋1∩𝑊𝑊,𝑦𝑦∈𝑋𝑋2∩𝑊𝑊

 

= � � 𝜅𝜅𝑏𝑏�ℎ − (𝑦𝑦 − 𝑥𝑥)�𝑐𝑐(𝑦𝑦 − 𝑥𝑥)𝜌𝜌1(𝑥𝑥) d𝑦𝑦
𝑊𝑊

d𝑥𝑥
𝑊𝑊

 

� � 𝜅𝜅𝑏𝑏(−𝑧𝑧)𝑐𝑐(ℎ + 𝑧𝑧) d𝑧𝑧
𝑊𝑊−𝑥𝑥−ℎ

 d𝑥𝑥
𝑊𝑊

 

≃ 𝑐𝑐(ℎ)� 𝜌𝜌1(𝑥𝑥) d𝑥𝑥
𝑊𝑊∩𝑊𝑊−ℎ

 

for a small bandwidth 𝑏𝑏 > 0, which suggests the partially-reweighted estimator 

𝑐̂𝑐partial(ℎ) ≔ �
𝜅𝜅𝑏𝑏�ℎ − (𝑦𝑦 − 𝑥𝑥)�

𝜌𝜌2(𝑦𝑦)∫ 𝜌𝜌1(𝑥𝑥) d𝑥𝑥𝑊𝑊∩𝑊𝑊−ℎ𝑥𝑥∈𝑋𝑋1∩𝑊𝑊,𝑦𝑦∈𝑋𝑋2∩𝑊𝑊

, 
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provided ∫ 𝜌𝜌1(𝑥𝑥)  d𝑥𝑥𝑊𝑊∩𝑊𝑊−ℎ
> 0. This estimator may be useful when 𝜌𝜌2 is much easier to estimate 

than 𝜌𝜌1, e.g. when 𝑋𝑋2 is homogeneous. 

6.6 Sources of bias when 𝝆𝝆 is estimated 

All of the estimators of 𝐾𝐾(𝑡𝑡), 𝐾𝐾12(𝑡𝑡), 𝑔𝑔0(ℎ), and 𝑔𝑔1(𝑟𝑟) discussed above are unbiased (at 

least when 𝑡𝑡, |ℎ|, 𝑟𝑟 are sufficiently small) when the true intensity function 𝜌𝜌 is used to compute the 

weight functions 𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦) in the local estimators or 𝛾𝛾, 𝛾𝛾iso, 𝛾𝛾12, or 𝛾𝛾12iso in the global estimators. 

However, in most applications 𝜌𝜌 is not known, and must be replaced by an estimate. When the 

source of inhomogeneity is well understood, it is recommended to fit a model with an appropriate 

parametric intensity function and use it as the estimate (88, 318). 

In the absence of such a model, the most common alternative is a kernel estimator 

𝜌𝜌�(𝑥𝑥) ≔ �
𝜅𝜅𝜎𝜎(𝑦𝑦 − 𝑥𝑥)
𝑤𝑤𝑊𝑊(𝑥𝑥;𝑦𝑦)

𝑦𝑦∈𝑋𝑋∩𝑊𝑊

, (23) 

where 𝜅𝜅𝜎𝜎 is a symmetric kernel on ℝ𝑑𝑑 with bandwidth 𝜎𝜎 > 0, and where 𝑤𝑤𝑊𝑊(𝑥𝑥;𝑦𝑦) is an 

appropriate edge correction weight. We take the standard choice from (322), 

𝑤𝑤𝑊𝑊(𝑥𝑥;𝑦𝑦)  = � 𝜅𝜅𝜎𝜎(𝑢𝑢 −  𝑥𝑥) d𝑢𝑢
𝑊𝑊

, 

 see also (323) (other types of edge corrections may depend on both 𝑥𝑥 and 𝑦𝑦 which is why we write 

𝑤𝑤𝑊𝑊(𝑥𝑥;𝑦𝑦) although the weight here only depends on 𝑥𝑥.) 

In the following we discuss estimators for 𝜌𝜌 and 𝛾𝛾 with particular focus on the implications 

of estimation bias when kernel estimators are used to replace the true 𝛾𝛾 or 𝜌𝜌 in the global and local 

estimators. 

6.6.1 Bias of local estimators with estimated 𝝆𝝆 

We start by considering a single spatial point process 𝑋𝑋. For each point pair 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 (𝑥𝑥 ≠

𝑦𝑦), the corresponding term in the local 𝐾𝐾- and pair correlation function estimators is normalized 

by the product 𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦). While an exact expression for the bias of the estimators with estimated 

𝜌𝜌 is not analytically tractable, we can understand major sources of bias by considering the 

expression 1 ∕ (𝜌𝜌�(𝑥𝑥)𝜌𝜌�(𝑦𝑦)) , which appears in each of the local estimators. 

First, following (88), we note that 𝜌𝜌� as defined in equation 23 is subject to bias when 

evaluated at the points of 𝑋𝑋, and that a “leave-one-out” kernel estimator given by 
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𝜌̅𝜌(𝑥𝑥) ≔ �
𝜅𝜅𝜎𝜎(𝑦𝑦 −  𝑥𝑥)
𝑤𝑤𝑊𝑊(𝑥𝑥;𝑦𝑦)

𝑦𝑦∈(𝑋𝑋∩𝑊𝑊)∖{𝑥𝑥}

,     𝑥𝑥 ∈ 𝑊𝑊, (24) 

is a better choice, with reduced bias in most cases. 

Second, we note that 

E(1 𝜌̅𝜌(𝑥𝑥)⁄ ) > 1 ∕ E(𝜌̅𝜌(𝑥𝑥)) 

(if E(1 𝜌̅𝜌(𝑥𝑥)⁄ ) exists; in some cases it may be infinite). This follows from Jensen's inequality, since 

𝑥𝑥 ↦ 1 𝑥𝑥⁄  is strictly convex for 𝑥𝑥 > 0. In addition, note that the leading contribution to 

E(1 𝜌̅𝜌(𝑥𝑥)⁄ ) − 1 ∕ E�𝜌̅𝜌(𝑥𝑥)� is proportional to Var𝜌̅𝜌(𝑥𝑥) (324). This discrepancy leads to a strong 

positive bias of the local 𝐾𝐾- and pair correlation function estimators, especially at large |𝑦𝑦 − 𝑥𝑥|, 

where 1 ∕ 𝜌̅𝜌(𝑥𝑥) and 1 ∕ 𝜌̅𝜌(𝑦𝑦) are almost independent. This effect becomes more pronounced for 

smaller 𝜎𝜎, since Var𝜌̅𝜌(𝑥𝑥) typically increases as 𝜎𝜎 decreases. 

 

Third, we note that for distinct points 𝑥𝑥,𝑦𝑦 ∈ 𝑊𝑊 that are close compared to the bandwidth 

𝜎𝜎, the covariance of 𝜌̅𝜌(𝑥𝑥) and 𝜌̅𝜌(𝑦𝑦) leads to bias. For the local (and global) estimators, we consider 

sums over distinct 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 ∩𝑊𝑊, which leads us to condition on 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 as follows (325). By 𝑋𝑋 

conditioned on distinct points 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 with 𝜌𝜌(2)(𝑥𝑥,𝑦𝑦) > 0, we mean that 𝑋𝑋 is equal to 𝑋𝑋𝑥𝑥𝑥𝑥 ∪

{𝑥𝑥,𝑦𝑦} in distribution, where 𝑋𝑋𝑥𝑥𝑥𝑥 follows the second-order reduced Palm distribution of 𝑋𝑋 at 𝑥𝑥, 𝑦𝑦: 

P(𝑋𝑋 ∈ 𝐹𝐹 ∣∣ 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 ) = P�𝑋𝑋𝑥𝑥𝑥𝑥 ∪ {𝑥𝑥,𝑦𝑦} ∈ 𝐹𝐹�. 

Assuming X has n-th order joint intensity functions 𝜌𝜌(𝑛𝑛) for 𝑛𝑛 ≤ 4, 𝑋𝑋𝑥𝑥𝑥𝑥 has intensity function 

𝜌𝜌𝑥𝑥𝑥𝑥(𝑢𝑢) = 𝜌𝜌(3)(𝑥𝑥,𝑦𝑦, 𝑢𝑢) 𝜌𝜌(2)(𝑥𝑥,𝑦𝑦)⁄  and second order joint intensity function 𝜌𝜌𝑥𝑥𝑥𝑥
(2)(𝑢𝑢, 𝑣𝑣) =

𝜌𝜌(4)(𝑥𝑥, 𝑦𝑦,𝑢𝑢, 𝑣𝑣) ∕ 𝜌𝜌(2)(𝑥𝑥, 𝑦𝑦). Now, for distinct 𝑥𝑥,𝑦𝑦 ∈ 𝑊𝑊 with 𝜌𝜌(2)(𝑥𝑥,𝑦𝑦) > 0, neglecting the edge 

correction in equation 24 for simplicity, we obtain the following by the first and second-order 

Campbell's formulas for 𝑋𝑋𝑥𝑥𝑥𝑥 and using that 𝜅𝜅𝜎𝜎 is symmetric: 

E[𝜌̅𝜌(𝑥𝑥)𝜌̅𝜌(𝑦𝑦) ∣ 𝑥𝑥, 𝑦𝑦 ∈ 𝑋𝑋 ∩𝑊𝑊] = E� � 𝜅𝜅𝜎𝜎(𝑥𝑥 − 𝑢𝑢) � 𝜅𝜅𝜎𝜎(𝑦𝑦 − 𝑣𝑣)
𝑣𝑣∈�𝑋𝑋𝑥𝑥𝑥𝑥∩𝑊𝑊�∪{𝑥𝑥}𝑢𝑢∈(𝑋𝑋𝑥𝑥𝑥𝑥∩𝑊𝑊)∪{𝑦𝑦}

� 

= E � 𝜅𝜅𝜎𝜎(𝑥𝑥 − 𝑢𝑢)𝜅𝜅𝜎𝜎(𝑦𝑦 − 𝑣𝑣)
≠

𝑢𝑢,𝑣𝑣∈𝑋𝑋𝑥𝑥𝑥𝑥∩𝑊𝑊

+ E � 𝜅𝜅𝜎𝜎(𝑥𝑥 − 𝑢𝑢)𝜅𝜅𝜎𝜎(𝑦𝑦 − 𝑢𝑢)
𝑢𝑢∈𝑋𝑋𝑥𝑥𝑥𝑥∩𝑊𝑊

  

+𝜅𝜅𝜎𝜎(𝑥𝑥 − 𝑦𝑦)𝜅𝜅𝜎𝜎(𝑦𝑦 − 𝑥𝑥) 
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+𝜅𝜅𝜎𝜎(𝑥𝑥 − 𝑦𝑦)E � 𝜅𝜅𝜎𝜎(𝑦𝑦 − 𝑣𝑣)
𝑣𝑣∈𝑋𝑋𝑥𝑥𝑥𝑥∩𝑊𝑊

+ 𝜅𝜅𝜎𝜎(𝑦𝑦 − 𝑥𝑥)E � 𝜅𝜅𝜎𝜎(𝑥𝑥 − 𝑢𝑢)
𝑢𝑢∈𝑋𝑋𝑥𝑥𝑥𝑥∩𝑊𝑊

(25) 

= � � 𝜅𝜅𝜎𝜎(𝑥𝑥 − 𝑢𝑢)𝜅𝜅𝜎𝜎(𝑦𝑦 − 𝑣𝑣)
𝜌𝜌(4)(𝑥𝑥, 𝑦𝑦,𝑢𝑢, 𝑣𝑣)
𝜌𝜌(2)(𝑥𝑥,𝑦𝑦)

 d𝑢𝑢
𝑊𝑊

 d𝑣𝑣
𝑊𝑊

(26) 

+� 𝜅𝜅𝜎𝜎(𝑥𝑥 − 𝑢𝑢)𝜅𝜅𝜎𝜎(𝑦𝑦 − 𝑢𝑢)
𝜌𝜌(3)(𝑥𝑥, 𝑦𝑦,𝑢𝑢)
𝜌𝜌(2)(𝑥𝑥,𝑦𝑦)

 d𝑢𝑢
𝑊𝑊

(27) 

+𝜅𝜅𝜎𝜎(𝑥𝑥 − 𝑦𝑦)2 + 𝜅𝜅𝜎𝜎(𝑥𝑥 − 𝑦𝑦)� {𝜅𝜅𝜎𝜎(𝑥𝑥 − 𝑢𝑢) + 𝜅𝜅𝜎𝜎(𝑦𝑦 − 𝑢𝑢)}𝜌𝜌
(3)(𝑥𝑥,𝑦𝑦,𝑢𝑢)
𝜌𝜌(2)(𝑥𝑥,𝑦𝑦)

 d𝑢𝑢.
𝑊𝑊

(28) 

If 𝑋𝑋 is a Poisson process, then 𝑋𝑋 and 𝑋𝑋𝑥𝑥𝑥𝑥 are identically distributed, and so the term in 

equation 26 simplifies to E𝜌̅𝜌(𝑥𝑥)E𝜌̅𝜌(𝑦𝑦), which differs from 𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦) only by the inherent bias of 

the kernel estimators. In general, the joint intensity 𝜌𝜌(4)(𝑥𝑥,𝑦𝑦,𝑢𝑢, 𝑣𝑣) in the integrand of that term 

represents the additional covariance of 𝜌̅𝜌(𝑥𝑥) and 𝜌̅𝜌(𝑦𝑦) due to interactions between the points of 

the process, and induces further bias. For example, this bias will tend to overestimate 𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦) 

for clustered processes, and lead to an underestimate of 𝐾𝐾, 𝑔𝑔0, and 𝑔𝑔1. The terms in equations 27 

and 28 are non-negative, and in particular the term in equation 27 can be large when 𝑥𝑥 and 𝑦𝑦 are 

close together compared to 𝜎𝜎. This positive bias leads to substantial negative bias at short distances 

of the local estimators of 𝐾𝐾, 𝑔𝑔0, and 𝑔𝑔1. 

In comparison, the conditional expectation E{𝜌𝜌�(𝑥𝑥)𝜌𝜌�(𝑦𝑦) ∣∣ 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 } would have additional 

positive terms depending on 𝜅𝜅(0). In the two point process case, the relevant conditional 

expectation E{𝜌̅𝜌1(𝑥𝑥)𝜌̅𝜌2(𝑦𝑦) ∣ 𝑥𝑥 ∈ 𝑋𝑋1,𝑦𝑦 ∈ 𝑋𝑋2} has an expression (of which we omit the details) 

analogous to equation 27. However, since 𝑋𝑋1 and 𝑋𝑋2 are assumed to have a cross pair correlation 

function, almost surely 𝑢𝑢 = 𝑣𝑣 does not occur for 𝑢𝑢 ∈ 𝑋𝑋1 and 𝑣𝑣 ∈ 𝑋𝑋2, so no term analogous to the 

second term in equation 27 occurs in E{ 𝜌̅𝜌1(𝑥𝑥)𝜌̅𝜌2(𝑦𝑦) ∣∣  𝑥𝑥 ∈ 𝑋𝑋1,𝑦𝑦 ∈ 𝑋𝑋2 }. This reduces the bias 

problem in the two point process case compared to the single point process case. 

For distinct 𝑥𝑥,𝑦𝑦 ∈ 𝑊𝑊 with 𝜌𝜌(2)(𝑥𝑥,𝑦𝑦) > 0, a superior estimator for 𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦) might be 

given by 

𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦) ≔ �
𝜅𝜅𝜎𝜎(𝑥𝑥 − 𝑢𝑢)𝜅𝜅𝜎𝜎(𝑦𝑦 − 𝑣𝑣)
𝑤𝑤𝑊𝑊(𝑥𝑥;𝑢𝑢)𝑤𝑤𝑊𝑊(𝑦𝑦; 𝑣𝑣)

≠

𝑢𝑢,𝑣𝑣∈𝑋𝑋∩𝑊𝑊∖{𝑥𝑥,𝑦𝑦}

. (29) 

Then the terms in equations 27 and 28 are avoided, since 
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E �𝜌𝜌(𝑥𝑥)𝜌𝜌(𝑦𝑦)�𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 ∩𝑊𝑊� = � �
𝜅𝜅𝜎𝜎(𝑥𝑥 − 𝑢𝑢)𝜅𝜅𝜎𝜎(𝑦𝑦 − 𝑣𝑣)
𝑤𝑤𝑊𝑊(𝑥𝑥;𝑢𝑢)𝑤𝑤𝑊𝑊(𝑦𝑦; 𝑣𝑣)

𝜌𝜌(4)(𝑥𝑥,𝑦𝑦,𝑢𝑢, 𝑣𝑣)
𝜌𝜌(2)(𝑥𝑥,𝑦𝑦)

 d𝑢𝑢
𝑊𝑊

 d𝑣𝑣
𝑊𝑊

. 

We do not investigate this idea further in the current work. 

6.6.2 Bias of global estimators with estimated 𝜸𝜸 

Given the kernel estimate in equation 23 an immediate estimator of 𝛾𝛾(ℎ), ℎ ∈ ℝ𝑑𝑑, is 

𝛾𝛾�(ℎ) ≔ � 𝜌𝜌�(𝑧𝑧)𝜌𝜌�(𝑧𝑧 + ℎ) d𝑧𝑧
𝑊𝑊∩𝑊𝑊−ℎ

. (30) 

To understand properties of this estimator we evaluate its expected value. We start with the 

simplest case where ℎ is a fixed vector in ℝ𝑑𝑑. This case is relevant for the global estimator of the 

pair correlation function. We return in the end of this section to the case where ℎ is an observed 

difference ℎ = 𝑦𝑦 − 𝑥𝑥 for distinct 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋, which occurs for the global estimator of the 𝐾𝐾-function. 

Neglecting edge corrections for simplicity, we get 

E𝛾𝛾�(ℎ) = � � 𝜅𝜅𝜎𝜎(𝑧𝑧 − 𝑢𝑢)𝜌𝜌(𝑢𝑢)� 𝜅𝜅𝜎𝜎(𝑧𝑧 + ℎ − 𝑣𝑣)𝜌𝜌(𝑣𝑣)𝑔𝑔0(𝑢𝑢 − 𝑣𝑣) d𝑣𝑣
𝑊𝑊

 d𝑢𝑢
𝑊𝑊

 d𝑧𝑧
𝑊𝑊∩𝑊𝑊−ℎ

(31) 

+� � 𝜅𝜅𝜎𝜎(𝑧𝑧 − 𝑢𝑢)𝜅𝜅𝜎𝜎(𝑧𝑧 + ℎ − 𝑢𝑢)𝜌𝜌(𝑢𝑢) d𝑢𝑢
𝑊𝑊

 d𝑧𝑧
𝑊𝑊∩𝑊𝑊−ℎ

. (32) 

The two resulting terms are analogous to the terms in equations 26 and 27. 

When 𝑔𝑔0 = 1 as for a Poisson process, the term in the right hand side of equation 31 

simplifies to 

� E𝜌𝜌�(𝑥𝑥) E𝜌𝜌�(𝑥𝑥 + ℎ) d𝑥𝑥
𝑊𝑊∩𝑊𝑊−ℎ

. 

This differs from 𝛾𝛾(ℎ) due to the inherent bias of the kernel estimators which depends on the 

spatial structure of the intensity function: E𝜌𝜌�(𝑥𝑥)  − 𝜌𝜌(𝑥𝑥) becomes large when 𝜎𝜎 is large compared 

to the length scale of spatial variation of 𝜌𝜌(𝑥𝑥). On the other hand, when 𝑔𝑔0 ≠ 1, the term in the 

right hand side of equation 31 includes an additional bias due to the interaction between points. 

For example, this bias will tend to overestimate 𝛾𝛾 for clustered processes, and therefore lead to an 

underestimate of 𝐾𝐾 or the pair correlation function. This interaction bias is most pronounced when 

𝜎𝜎 is small. In particular, as 𝜎𝜎 → 0, this term approaches 𝑔𝑔0(𝑦𝑦 − 𝑥𝑥)𝛾𝛾(𝑦𝑦 − 𝑥𝑥), so that e.g. 

E𝑔𝑔�global(ℎ) → 1 for all ℎ ∈ ℝ𝑑𝑑. However, in the typical case where the strength of pairwise 

interactions decreases with distance, increasing 𝜎𝜎 reduces bias due to interactions. Therefore, it is 

important to choose 𝜎𝜎 to be larger than the length-scale of interesting correlations. 
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The term in equation 32, though, is always positive when ℎ ∕ 2 is in the support of 𝜅𝜅𝜎𝜎. We 

can avoid this term by using the following “leave-out” estimator 

𝛾̅𝛾(ℎ) = � �
𝜅𝜅𝜎𝜎(𝑧𝑧 − 𝑢𝑢)𝜅𝜅𝜎𝜎(𝑧𝑧 +  ℎ −  𝑣𝑣)
𝑤𝑤𝑊𝑊(𝑧𝑧;𝑢𝑢)𝑤𝑤𝑊𝑊(𝑧𝑧 + ℎ; 𝑣𝑣)

≠

𝑢𝑢,𝑣𝑣∈𝑋𝑋∩𝑊𝑊

 d𝑧𝑧,
𝑊𝑊∩𝑊𝑊−ℎ

(33) 

where leave-out refers to omitting “diagonal terms” 𝑢𝑢 = 𝑣𝑣 in 𝜌𝜌�(𝑧𝑧)𝜌𝜌�(𝑧𝑧 + ℎ) (with 𝑢𝑢, 𝑣𝑣 ∈ 𝑋𝑋 ∩𝑊𝑊). 

Similarly, when 𝑋𝑋 is isotropic, an estimator of 𝛾𝛾iso can be defined in terms of 𝛾̅𝛾, as 

𝛾̅𝛾iso(𝑟𝑟) ≔ 𝑟𝑟𝑑𝑑−1 � 𝛾̅𝛾(𝑟𝑟𝑟𝑟) d𝜈𝜈𝑑𝑑−1(𝑠𝑠)
𝕊𝕊𝑑𝑑−1

. (34) 

For the global 𝐾𝐾-function estimators, 𝛾𝛾 is evaluated at 𝑦𝑦 − 𝑥𝑥 for distinct 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 ∩𝑊𝑊. In this case 

the relevant expectation is E{ 𝛾̅𝛾(𝑦𝑦 − 𝑥𝑥) ∣∣ 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 }. As in Section 6.6.1 we obtain this by 

considering the second-order reduced Palm distribution at distinct 𝑥𝑥,𝑦𝑦 ∈ 𝑊𝑊 with 𝜌𝜌(2)(𝑥𝑥, 𝑦𝑦) > 0, 

by assuming that 𝑋𝑋 has 𝑛𝑛-th order intensity functions 𝜌𝜌(𝑛𝑛) for 𝑛𝑛 ≤ 4, and by neglecting the edge 

corrections for simplicity: 

E{ 𝛾̅𝛾(𝑦𝑦 − 𝑥𝑥) ∣∣ 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 } = 

� �� �
𝜌𝜌(4)(𝑥𝑥,𝑦𝑦,𝑢𝑢, 𝑣𝑣)
𝜌𝜌(2)(𝑥𝑥,𝑦𝑦)

𝜅𝜅𝜎𝜎(𝑧𝑧 − 𝑢𝑢)𝜅𝜅𝜎𝜎(𝑧𝑧 + (𝑦𝑦 − 𝑥𝑥) − 𝑣𝑣) d𝑢𝑢
𝑊𝑊

 d𝑣𝑣
𝑊𝑊

+ 𝜅𝜅𝜎𝜎(𝑧𝑧 − 𝑥𝑥)2
𝑊𝑊∩𝑊𝑊−(𝑦𝑦−𝑥𝑥)

+ 𝜅𝜅𝜎𝜎(𝑧𝑧 − 𝑦𝑦)𝜅𝜅𝜎𝜎(𝑧𝑧 + 𝑦𝑦 − 2𝑥𝑥)

+ �
𝜌𝜌(3)(𝑥𝑥,𝑦𝑦, 𝑢𝑢)
𝜌𝜌(2)(𝑥𝑥,𝑦𝑦)

[{𝜅𝜅𝜎𝜎(𝑧𝑧 − 𝑥𝑥) + 𝜅𝜅𝜎𝜎(𝑧𝑧 − 𝑦𝑦)}𝜅𝜅𝜎𝜎(𝑧𝑧 + (𝑦𝑦 − 𝑥𝑥) − 𝑢𝑢)
𝑊𝑊

+ 𝜅𝜅𝜎𝜎(𝑧𝑧 − 𝑢𝑢){𝜅𝜅𝜎𝜎(𝑧𝑧 − 𝑥𝑥) + 𝜅𝜅𝜎𝜎(𝑧𝑧 + 𝑦𝑦 − 2𝑥𝑥)}] d𝑢𝑢�  d𝑧𝑧. 

Again, in case of a Poisson process, 𝜌𝜌(4)(𝑥𝑥, 𝑦𝑦,𝑢𝑢, 𝑣𝑣) ∕ 𝜌𝜌(2)(𝑥𝑥,𝑦𝑦) = 𝜌𝜌(𝑢𝑢)𝜌𝜌(𝑣𝑣) and the first term is 

approximately 𝛾𝛾(𝑦𝑦 − 𝑥𝑥), subject to the subtleties discussed above. The other three terms are 

related to the terms with 𝑢𝑢, 𝑣𝑣 ∈ {𝑥𝑥,𝑦𝑦} of the double sum of equation 33, and yield a positive bias. 

We expect this bias to be small when 𝜎𝜎 is reasonably small, since the excess terms become 

negligible far from 𝑥𝑥 and 𝑦𝑦, and the integral is over all of 𝑊𝑊 ∩𝑊𝑊−ℎ. The three terms could be 

avoided by considering the further modified “leave-one pair-out” estimator 

𝛾𝛾�(ℎ; 𝑥𝑥,𝑦𝑦) = � �
𝜅𝜅𝜎𝜎(𝑧𝑧 − 𝑢𝑢)𝜅𝜅𝜎𝜎(𝑧𝑧 + ℎ − 𝑣𝑣)
𝑤𝑤𝑊𝑊(𝑧𝑧;𝑢𝑢)𝑤𝑤𝑊𝑊(𝑧𝑧 + ℎ; 𝑣𝑣)

≠

𝑢𝑢,𝑣𝑣∈(𝑋𝑋∩𝑊𝑊)∖{𝑥𝑥,𝑦𝑦}

 d𝑧𝑧,       with ℎ = 𝑦𝑦 − 𝑥𝑥,
𝑊𝑊∩𝑊𝑊−ℎ
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but this depends on (𝑥𝑥,𝑦𝑦) not only through ℎ = 𝑦𝑦 − 𝑥𝑥 which precludes the use of interpolation 

schemes as discussed in Section 6.7. 

In case of two point processes we just use 

𝛾𝛾�12(ℎ) = � 𝜌𝜌�1(𝑧𝑧)𝜌𝜌�2(𝑧𝑧 + ℎ) d𝑧𝑧
𝑊𝑊∩𝑊𝑊−ℎ

, 

for kernel estimators 𝜌𝜌�1 and 𝜌𝜌�2, since in this case almost surely there are no diagonal terms 𝑢𝑢 = 𝑣𝑣 

in 𝜌𝜌�1(𝑧𝑧)𝜌𝜌�2(𝑧𝑧 +  ℎ) (with 𝑢𝑢 ∈ 𝑋𝑋1 and 𝑣𝑣 ∈ 𝑋𝑋2).  

6.7 Computation of 𝜸𝜸 and 𝜸𝜸𝐢𝐢𝐢𝐢𝐢𝐢 

We compute 𝛾𝛾(ℎ) for a given intensity function 𝜌𝜌 using a simple Monte Carlo integration 

algorithm: we generate uniform random samples 𝑈𝑈𝑖𝑖, 𝑖𝑖 = 1, … , 𝑛𝑛, on 𝑊𝑊 ∩𝑊𝑊−ℎ and approximate 

𝛾𝛾(ℎ) by the unbiased Monte Carlo estimate 

𝛾𝛾MC(ℎ) =
|𝑊𝑊 ∩𝑊𝑊−ℎ|

𝑛𝑛
�𝜌𝜌(𝑈𝑈𝑖𝑖)𝜌𝜌(𝑈𝑈𝑖𝑖  +  ℎ)
𝑛𝑛

𝑖𝑖=1

 . (35) 

To achieve a desired precision, we consider the standard error 𝜎𝜎MC ∕ √𝑛𝑛 of 𝛾𝛾MC(ℎ) and choose 𝑛𝑛 

so that the coefficient of variation becomes less than a selected threshold 𝛼𝛼: 𝜎𝜎MC ∕ (√𝑛𝑛 𝜇𝜇MC) < 𝛼𝛼. 

For the simulation studies in Section 6.8, we used 𝛼𝛼 = .001 or 𝛼𝛼 = .005. In practice, we wish to 

evaluate 𝛾𝛾 at many values of ℎ. Thus it is convenient to generate a single sequence of random 

samples 𝑉𝑉𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑛𝑛′ on 𝑊𝑊, and for each ℎ use a subsequence {𝑈𝑈𝑖𝑖
(ℎ)}  =  � 𝑉𝑉𝑗𝑗 ∣∣  𝑉𝑉𝑗𝑗 ∈ 𝑊𝑊 ∩𝑊𝑊−ℎ �. 

We choose 𝑛𝑛′ sufficiently large to produce the requisite length of sub-sequence for each ℎ. 

For 𝛾𝛾iso(𝑟𝑟), we follow a similar approach, generating also random independent 𝑠𝑠𝑖𝑖 

uniformly on {𝑠𝑠 ∣  𝑠𝑠 ∈ 𝕊𝕊𝑑𝑑−1,𝑈𝑈𝑖𝑖  +  𝑟𝑟𝑟𝑟 ∈ 𝑊𝑊}, and computing 

𝛾𝛾MCiso =
∫ |𝑊𝑊 ∩𝑊𝑊−𝑟𝑟𝑟𝑟| d𝜈𝜈𝑑𝑑−1(𝑠𝑠)𝕊𝕊𝑑𝑑−1

𝜍𝜍𝑑𝑑𝑛𝑛
�𝜌𝜌(𝑈𝑈𝑖𝑖)𝜌𝜌(𝑈𝑈𝑖𝑖 + 𝑟𝑟𝑆𝑆𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

. (36) 

The integral ∫ |𝑊𝑊 ∩𝑊𝑊−𝑟𝑟𝑟𝑟| d𝜈𝜈𝑑𝑑−1(𝑠𝑠)𝕊𝕊𝑑𝑑−1  is easy to compute when 𝑊𝑊 is a rectangular window. As 

above, 𝑈𝑈𝑖𝑖 and 𝑠𝑠𝑖𝑖 are typically generated for each 𝑟𝑟 as appropriate subsequences of shared larger 

sequences 𝑉𝑉𝑗𝑗 and 𝑡𝑡𝑗𝑗, respectively, sampled uniformly on 𝑊𝑊 and 𝕊𝕊𝑑𝑑−1, respectively. 

In practice 𝜌𝜌 is replaced by an estimate. Then for the kernel-based leave-out estimator 

given by equation 33, 𝜌𝜌(𝑈𝑈𝑖𝑖)𝜌𝜌(𝑈𝑈𝑖𝑖  +  ℎ) in equation 35 is replaced by 
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�
𝜅𝜅𝜎𝜎(𝑈𝑈𝑖𝑖 − 𝑢𝑢)𝜅𝜅𝜎𝜎(𝑈𝑈𝑖𝑖 + ℎ − 𝑣𝑣)
𝑤𝑤𝑊𝑊(𝑧𝑧;𝑢𝑢)𝑤𝑤𝑊𝑊(𝑧𝑧 + ℎ; 𝑣𝑣)

≠

𝑢𝑢,𝑣𝑣∈𝑋𝑋∩𝑊𝑊

,  

which is evaluated using a fast routine written in C. In a similar way, when 𝑋𝑋 is isotropic and 

equation 34 is used, 𝜌𝜌(𝑈𝑈𝑖𝑖)𝜌𝜌(𝑈𝑈𝑖𝑖  +  𝑟𝑟𝑠𝑠𝑖𝑖) in equation 36 is replaced by a double sum. 

Since 𝛾𝛾 and 𝛾𝛾iso are quite smooth, it is possible to interpolate them very accurately based 

on a moderate number of points ℎ𝑗𝑗  or 𝑟𝑟𝑗𝑗. This is especially helpful for 𝛾𝛾iso because it is one-

dimensional. For the kernel-estimated 𝛾̅𝛾iso or 𝛾𝛾�iso, we find that linear interpolation based on 

sample spacing of �𝑟𝑟𝑗𝑗+1 −  𝑟𝑟𝑗𝑗�  < 𝜎𝜎 ∕ 10 gives estimates within . 01% of the true values. The 

interpolation scheme is especially helpful for the 𝐾𝐾-functions as the number of points grows large, 

in which case we must evaluate 𝛾𝛾 (or 𝛾𝛾iso in the isotropic case) at a very large number of pairs of 

points. 

The proposed Monte Carlo computation becomes very slow when especially precise 

coefficient of variation 𝛼𝛼 is desired, or when using kernel-based estimates with very small kernel 

bandwidth 𝜎𝜎 or large number of points 𝑁𝑁. For these cases, it may be beneficial to apply a variance 

reduction technique such as antithetic variables, or to consider an approximate convolution based 

on discrete Fourier transforms, with a kernel-based estimate of 𝜌𝜌, when desired, based on quadrat 

counts. When the side length of the quadrats is much less than 𝜎𝜎, we expect this method to produce 

accurate estimates of 𝛾𝛾 (or 𝛾𝛾iso in the isotropic case). 

6.8 Simulation study 

To compare global and local estimators for 𝐾𝐾 and 𝑔𝑔, we simulated 100 point patterns on 

the unit square 𝑊𝑊 = [0,1]2 for each of nine point process models obtained by combining three 

different types of point process interactions with four types of intensity functions. For plots of 

estimated 𝐾𝐾 or 𝑔𝑔 we simulated a further 1000 point patterns of the considered point process model.  

More specifically we simulated stationary point processes of the types Poisson (no 

interaction), log-Gaussian Cox (LGCP – these are clustered/aggregated, see (326)), and 

determinantal (DPP – these are regular/repulsive, see (327)), and subsequently subjected them to 

independent thinning to obtain various types of intensity functions. Note that independent 

thinnings of stationary point processes are soirs (88). The intensities of the stationary point 
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processes were adjusted to obtain on average 200 or 400 points in the simulated point patterns (that 

is, after independent thinning).  

For the Gaussian random field underlying the LGCP we used an exponential covariance 

function with unit variance and correlation scale 0.05 resulting in the isotropic pair correlation 

function 

𝑔𝑔LGCP(𝑟𝑟) = exp{exp(−𝑟𝑟 ∕ .05)}. 

For the DPP we used a Gaussian kernel with scaling parameter 𝛼𝛼 = 0.02 leading to 

𝑔𝑔DPP(𝑟𝑟) =  1 − exp{−2(𝑟𝑟 . 02⁄ )2}. 

The intensity functions were of type constant (no thinning), “hole”, “waves”, or log-

Gaussian random field (“LGF”). Intensity functions of the “hole” and “waves” types were obtained 

by independent thinning using spatially varying retention probabilities  

𝑝𝑝hole(𝑥𝑥,𝑦𝑦) = 1 − .5 exp[− {(𝑥𝑥 − .5)2 + (𝑦𝑦 − .5)2} . 18⁄ ] , 

𝑝𝑝waves(𝑥𝑥,𝑦𝑦) = 1 − .5 cos2(5𝑥𝑥) , 

𝑝𝑝LGF(𝑥𝑥,𝑦𝑦) = 𝜆𝜆(𝑥𝑥,𝑦𝑦) sup
(𝑢𝑢,𝑣𝑣)∈𝑊𝑊

𝜆𝜆(𝑢𝑢, 𝑣𝑣)� , 

for (𝑥𝑥, 𝑦𝑦) ∈  [0,1]2. In case of “LGF”, log 𝜆𝜆 was generated as a realization of a Gaussian random 

field with exponential covariance function, with variance .1 and correlation scale .3. The resulting 

“LGF” retention probability surface is much less smooth than for “hole” and “waves” but similar 

to “hole” and “waves” in terms of intensity contrast and spatial separation of high-intensity and 

low-intensity regions. The surfaces of retention probabilities are shown in Figure 6.1. 
 

Simulations were carried out and analyzed using the R package spatstat, and a new package 

globalKinhom that implements the global 𝐾𝐾- and pair correlation function estimators using Monte-

Carlo estimates of 𝛾𝛾 as described in Section 6.7 (328–330). In most cases we set the precision of 

the Monte-Carlo estimates to 𝛼𝛼 =  .005. When probability intervals and root integrated mean 

square error (RIMSE) values are shown, we use 𝛼𝛼 =  .001 instead, where the more precise 

calculation produced slightly smaller RIMSE values. We also tested smaller values of 𝛼𝛼 in a few 

particular cases, and did not observe any reduction in RIMSE values below 𝛼𝛼 =  .001. We do not 

show simulation results for all scenarios since in many cases the different scenarios led to 

qualitatively similar conclusions. 
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To investigate our cross 𝐾𝐾 and cross pair correlation function estimators we generated 

simulations from a bivariate LGCP detailed in Section 6.8.2. 

6.8.1 Estimation of 𝑲𝑲- and pair correlation functions 

We initially compare the bias of global and local estimators of the 𝐾𝐾-function using in both 

cases kernel estimators of the intensity function obtained with a Gaussian kernel with bandwidth 

𝜎𝜎 chosen by the method of Cronie & van Lieshout(331), as implemented in the spatstat procedure 

bw.CvL (CVL for convenience in the following). The selected bandwidths vary around .05 (see 

third column in Table 6.1), with slightly larger bandwidths for LGCP than for Poisson and DPP. 

For the global estimator we consider the isotropic estimator from equation 5, since the pair 

correlation functions of the point processes tested here are all isotropic, as in the setting of Section 

6.4.2, and the estimation of 𝛾𝛾iso is less computationally intensive than that of 𝛾𝛾. We consider both 

the estimator of equation 30 and the leave-out estimator of equation 33 of the function 𝛾𝛾. Similarly 

we also consider the local estimator using either the original kernel estimator of equation 23 or the 

leave-out estimator of equation 24 as suggested in (88).  

For better visualization of the simulation results we transform the 𝐾𝐾-function estimators 

into estimators of the so-called {𝐿𝐿(𝑟𝑟) − 𝑟𝑟}-function via the one-to-one transformation 

𝐿𝐿(𝑟𝑟) − 𝑟𝑟 = �𝐾𝐾(𝑟𝑟) ∕ 𝜋𝜋 − 𝑟𝑟. 

We only show results in case of the waves intensity function with on average 400 simulated points, 

since the results for the other intensity functions and with on average 200 simulated points give 

the same qualitative picture. 

 

Figure 6.1 Plots of the “hole”, “waves” and “LGF” thinning profiles. 
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Figure 6.2 shows averages of the simulated estimates and it is obvious that the global 

estimators are much less biased than the local estimators. It is clearly advantageous to use the 

leave-out versions for the global estimator. The leave-out approach is also advantageous for the 

local estimator, at least for small distances 𝑟𝑟. The biases of the leave-out local estimator are as 

discussed in Section 6.6.1: strong negative bias at short distances due to the covariance of 𝜌̅𝜌(𝑥𝑥) 

and 𝜌̅𝜌(𝑦𝑦), and strong positive bias at large distances due to Jensen's inequality E(1 𝜌̅𝜌⁄ ) > 1 ∕

E(𝜌̅𝜌(𝑥𝑥)). The leave-out global estimator appears to be close to unbiased in case of DPP and 

Poisson but is too small on average in case of LGCP. 

There exist a number of alternatives to the CVL approach to choosing the bandwidth for 

the kernel estimation. We therefore also investigate bias in the case where the bandwidth is selected 

using the likelihood cross validation (LCV) method implemented in the spatstat procedure bw.ppl. 

Results regarding the LCV selected bandwidths are summarized in the fourth column of Table 6.1. 

Comparison of the CVL and LCV results in Table 6.1 shows that the LCV approach tends to select 

considerably larger bandwidths 𝜎𝜎 than the CVL method for the DPP and Poisson process, and 

somewhat smaller 𝜎𝜎 for the LGCP. 

Figure 6.3 compares averages of the global and local estimators using either of the two 

approaches to bandwidth selection and with leave-out in all cases. Again we show only results for 

the waves intensity function and expected number of points equal to 400. 

 
Figure 6.2 Averages of estimates of 𝐿𝐿(𝑟𝑟) − 𝑟𝑟 obtained from simulations in case of the “waves” intensity 

function with 400 simulated points on average. 

Left to right: DPP, Poisson, LGCP. The estimates are obtained using  𝐾𝐾�globaliso  with or without the leave-out approach (
, , respectively) or 𝐾𝐾�local with or without the leave-out approach ( , , respectively) for kernel 
estimation of 𝛾𝛾 or the intensity function. True values of 𝐿𝐿(𝑟𝑟)  −  𝑟𝑟 are shown for comparison ( ). 
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The bias of the estimators is quite sensitive to the choice of bandwidth selection method. 

In case of DPP and Poisson, the global estimator using CVL and the local estimator using LCV 

perform similarly with the global estimator a bit more biased than the local for DPP and vice versa 

for Poisson. The global estimator performs slightly worse when combined with LCV than with 

CVL, likely due to the inherent biases of the kernel estimator 𝜌̅𝜌, which become more pronounced 

as 𝜎𝜎 increases. The local estimator with CVL is strongly biased for almost all 𝑟𝑟 considered. The 

improved performance with LCV is likely due to the reduced variances and covariances for 𝜌̅𝜌 when 

a larger bandwidth is used. This also explains the strong bias of the local estimator with LCV for 

the LGCP, since 𝜎𝜎LCV is typically smaller than 𝜎𝜎CVL in that case. The global estimator for the LGCP 

has the smallest bias with the CVL method and has much less bias than the local estimator 

regardless of whether CVL or LCV is used. It is not surprising that the LGCP is the most 

challenging case for both the global and local estimators, since the random aggregation of the 

LGCP tends to be entangled with the variation in the intensity function. 

We finally compare the sampling variability of the leave-out global estimator using CVL 

and the leave-out local estimator using LCV. Figure 6.4 shows 95% pointwise probability intervals 

and averages for the two estimators, again with 400 simulated points on average and the “waves” 

intensity function, and Table 6.2 gives root integrated mean square error (RIMSE) values for the 

𝐾𝐾-function estimators applied to each process, for each combination of CVL or LCV with the local

 

Table 6.1. Mean (± st. dev.) of CVL and LCV bandwidths, for each type of spatial point process we 
considered. The expected number of points for each listed process is 400. 

Interaction type Intensity function 𝜎𝜎CVL 𝜎𝜎LCV 

DPP constant 0.046 (0.005) 0.63 (0.15) 

 hole 0.045 (0.004) 0.33 (0.22) 

 waves 0.048 (0.004) 0.28 (0.25) 

 LGF 0.047 (0.005) 0.22 (0.16) 

Poisson constant 0.047 (0.006) 0.59 (0.21) 

 hole 0.048 (0.007) 0.29 (0.23) 

 waves 0.050 (0.006) 0.14 (0.11) 

 LGF 0.050 (0.006) 0.17 (0.13) 

LGCP constant 0.066 (0.009) 0.040 (0.007) 

 hole 0.064 (0.012) 0.044 (0.008) 

 waves 0.071 (0.011) 0.042 (0.008) 

 LGF 0.066 (0.011) 0.042 (0.007) 
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or global leave-out estimator. Figure 6.4 indicates that the global estimator has smaller variance 

than the local estimator. This should also result in smaller mean square error for Poisson and LGCP 

where the bias is also smallest for the global estimator. For DPP the picture is not completely clear 

regarding mean square error since in this case the global estimator has larger bias than the local 

estimator. Table 6.2 gives more insight where a first observation is that the leave-out local 

estimator is very sensitive to the choice of bandwidth selection method with LCV performing 

much better than CVL for DPP and Poisson and vice versa for LGCP. The leave-out global 

estimator is much less sensitive to choice of bandwidth selection method. Best results in terms of 

RIMSE are obtained with the leave-out global estimator combined with CVL. 

Figure 6.5 shows averages of leave-out global and local estimators of the isotropic pair 

correlation function using either CVL or LCV in case of the wave intensity with 400 points on 

average. Once again, local estimators are most strongly biased with the bandwidth selection 

method that produces the smaller bandwidth: CVL for the DPP and Poisson processes, and LCV 

for the LGCP. The bias is small to moderate for the global estimators with largest bias in case of 

LGCP. For the DPP and Poisson case positive bias of the local and global estimator occurs for 

very small distances. 

6.8.2 Estimation of cross 𝑲𝑲- and cross pair correlation functions 

To investigate the cross 𝐾𝐾 and cross pair correlation function estimators, we simulated 100 

bivariate point patterns for each model of a bivariate point process (𝑋𝑋1,𝑋𝑋2), where either 𝑋𝑋1 and

 
Figure 6.3 Averages of estimates of 𝐿𝐿(𝑟𝑟) − 𝑟𝑟 obtained from simulations in case of the waves intensity function 
with 400 simulated points on average. 

Left to right: DPP, Poisson, LGCP. The estimates are obtained using the global (  LCV,  CVL) or local (
 CVL,  LCV) estimators of the 𝐾𝐾-function with either CVL or LCV for selecting the bandwidth (in all 

cases the leave-out approach is used). True values of 𝐿𝐿(𝑟𝑟)  −  𝑟𝑟 are shown for comparison ( ). 
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𝑋𝑋2 are independent or display segregation or co-clustering. Processes that were chosen for plotting 

were simulated an additional 1000 times. Inhomogeneous intensity functions were subsequently 

obtained using independent thinning of stationary bivariate point processes, where the two point 

processes have the same intensity, and the constant, “hole”, and “waves” retention probabilities 𝑝𝑝 

 
Figure 6.4 Averages and 95 % pointwise probability intervals for estimates of 𝐿𝐿(𝑟𝑟) − 𝑟𝑟 in case of the waves 
intensity function with 400 simulated points on average. 

Left to right: DPP, Poisson, LGCP. The estimators used are the leave-out global estimator using CVL ( ) and the 
leave-out local estimator using LCV ( ) with pointwise probability intervals shown in like shade. True values of 
𝐿𝐿(𝑟𝑟)  −  𝑟𝑟 are also shown ( ). 

Table 6.2 RIMSE × 102 of local and global 𝐾𝐾-function estimators with CVL and LCV bandwidths. 

Interaction Intensity 
  

CVL LCV CVL LCV 

DPP 

flat 0.59 0.069 0.029 0.060 

hole 0.64 0.107 0.031 0.128 

waves 0.60 0.052 0.049 0.121 

LGF 0.59 0.060 0.050 0.110 

Poisson 

flat 0.45 0.083 0.028 0.069 

hole 0.45 0.120 0.034 0.103 

waves 0.40 0.061 0.037 0.093 

LGF 0.37 0.087 0.050 0.089 

LGCP 

flat 0.89 0.999 0.573 0.628 

hole 0.87 1.554 0.576 0.636 

waves 0.89 1.146 0.528 0.613 

LGF 0.90 1.506 0.542 0.625 
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as described in connection to Figure 6.6 were used. This implies 𝜌𝜌1(𝑥𝑥)  = 𝜌𝜌2(𝑥𝑥) for 𝑥𝑥 ∈ [0,1]2  

(we did not investigate any scenarios where 𝜌𝜌1 ≠ 𝜌𝜌2). 

In the case of independence, 𝑋𝑋1 and 𝑋𝑋2 are independent Poisson processes. For the 

dependent cases, we considered a bivariate LGCP. Specifically, for 𝑖𝑖 = 1,2, 𝑋𝑋𝑖𝑖 has random 

intensity function  

Λ𝑖𝑖(𝑢𝑢) = 𝑝𝑝(𝑢𝑢) exp{𝜇𝜇𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑌𝑌(𝑢𝑢) + 𝛽𝛽𝑈𝑈𝑖𝑖(𝑢𝑢)} ,         𝑖𝑖 = 1,2, 

where 𝑌𝑌, 𝑈𝑈1, and 𝑈𝑈2 are independent zero-mean unit-variance Gaussian random fields with 

isotropic exponential correlation functions given by exp(−𝑟𝑟 𝜙𝜙⁄ ) and exp(−𝑟𝑟 𝜓𝜓𝑖𝑖⁄ ) (𝑟𝑟 ≥ 0), 𝑖𝑖 =

1,2, respectively, and where 𝜇𝜇𝑖𝑖 ∈ ℝ, 𝛼𝛼𝑖𝑖 ∈ ℝ, and 𝛽𝛽 > 0 are parameters. This means that 𝑋𝑋1 and 

𝑋𝑋2 conditioned on (Λ1,Λ2) are independent Poisson processes with intensity functions Λ1 and Λ2, 

respectively. The (cross) pair correlation functions for this class of bivariate LGCP are isotropic, 

where the pair correlation function of 𝑋𝑋𝑖𝑖 is given by 

𝑔𝑔𝑖𝑖iso(𝑟𝑟) = exp{𝛼𝛼𝑖𝑖2 exp(−𝑟𝑟 𝜙𝜙⁄ ) + 𝛽𝛽 exp(−𝑟𝑟 𝜓𝜓𝑖𝑖⁄ )} ,    𝑖𝑖 = 1,2, 

and the cross pair correlation function of (𝑋𝑋1,𝑋𝑋2) is given by 

𝑐𝑐iso(𝑟𝑟) = exp{𝛼𝛼1𝛼𝛼2 exp(−𝑟𝑟 𝜙𝜙⁄ )}. 

Note that 𝑐𝑐iso < 1 if 𝛼𝛼1𝛼𝛼2 < 0 (the case of segregation between 𝑋𝑋1 and 𝑋𝑋2), and 𝑐𝑐iso > 1 if 

𝛼𝛼1𝛼𝛼2 > 0 (the case of co-clustering between 𝑋𝑋1 and 𝑋𝑋2). For the segregated processes, we chose 

𝛼𝛼1 = −𝛼𝛼2 = 1, 𝜙𝜙 = .03, 𝛽𝛽 = .25, 𝜓𝜓1 = .02, and 𝜓𝜓2 = .01. For the co-clustered case, we used 

 
Figure 6.5 Averages of estimates of 𝑔𝑔1(𝑟𝑟) obtained from simulations in case of the “waves” intensity function 
with 400 simulated points on average. 

Left to right: DPP, Poisson, LGCP. The estimates are obtained using the global (  CVL, LCV) or local (
 CVL,  LCV) estimators of the pair correlation function with either CVL or LCV bandwidth selection. (In 

each case, the leave-out approach is used.) True values of 𝑔𝑔(𝑟𝑟) are shown for comparison ( ). 



170 
 

𝛼𝛼1 = 𝛼𝛼2 = 1 and the other parameters as for the segregated case. With these choices, the cross 

pair correlation functions become 

𝑐𝑐segriso (𝑟𝑟) = exp{−𝑒𝑒𝑒𝑒𝑒𝑒(−𝑟𝑟 . 03⁄ )} 

for the segregation case and 

𝑐𝑐clusteriso (𝑟𝑟) = exp{𝑒𝑒𝑒𝑒𝑒𝑒(−𝑟𝑟 . 03⁄ )} 

for the co-clustered case. Finally, we adjusted 𝜇𝜇1 and 𝜇𝜇2 so that the expected number of points 

after independent thinning is 200 or 400. 

For the global estimator of 𝐾𝐾12, we consider again the isotropic estimator (equation 13), 

since in each case the cross pair correlation function is isotropic, and estimation of 𝛾𝛾12iso(𝑟𝑟) is less 

computationally intensive than that of 𝛾𝛾12(ℎ). For the local estimator we consider the estimator 

from equation 11, with 𝜌𝜌𝑖𝑖 estimated by the leave-out kernel estimator 𝜌̅𝜌 from equation 24. Similar 

to the {𝐿𝐿(𝑟𝑟) −  𝑟𝑟}-function used above, we transform the 𝐾𝐾12-function estimators into estimators 

of the {𝐿𝐿12(𝑟𝑟) −  𝑟𝑟}-function, by the one-to-one transformation 

𝐿𝐿12(𝑟𝑟)  −  𝑟𝑟 = �𝐾𝐾12(𝑟𝑟) ∕ 𝜋𝜋  −  𝑟𝑟. 

Figure 6.6 shows averages of estimators of 𝐿𝐿12(𝑟𝑟) − 𝑟𝑟 in case of the waves intensity and 

expected number of points equal to 400. The bandwidth is selected using the CVL or LCV 

procedure applied to 𝑋𝑋1. Table 6.3 gives selected bandwidth values for the pairs of spatial point 

processes we considered. The results are similar to the one point process case. Both the segregated 

and co-clustered LGCP typically yield 𝜎𝜎LCV < 𝜎𝜎CVL while the opposite is true for the Poisson case. 

Further, the local estimators are strongly biased, and the bias increases as the bandwidth 𝜎𝜎 

decreases: in the case of segregation and co-clustering, the local estimators are better with CVL, 

while LCV is better in the case of independence. Note also that the negative bias that is observed 

at small distances 𝑟𝑟 for 𝐾𝐾�local is absent here as predicted in the discussion in Section 6.6.1. The 

bias for the global estimator with CVL is smaller than for the best local estimators in each case. 

To compare sampling variability for the estimators of the cross 𝐾𝐾-function, we show 

pointwise 95% probability intervals for estimated 𝐿𝐿12(𝑟𝑟) − 𝑟𝑟 in Figure 6.7. The bandwidth 

selection method that produces the least bias in each case is shown. Table 6.4 shows root integrated 

mean square error of the estimators of 𝐾𝐾12. In every case, the best global estimator has smaller 

integrated mean square error than the best local estimator, as expected from the considerations of 

Section 6.4.3. 
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For the estimation of the cross pair correlation functions, the conclusions are similar to 

those for the cross 𝐾𝐾-functions, see Figure 6.8. The average of the global estimator is quite close 

to the true cross pair correlation function, while the local estimator is strongly biased. Note that 

𝑐̂𝑐localLCV  is missing for the segregated and co-clustered processes, because the average values of that 

estimator were extremely large.  

6.8.3 Estimation of 𝑲𝑲-function using a parametric estimate for 𝝆𝝆 

Returning to the setting of a single point process 𝑋𝑋 as in Section 6.8.1, we also consider

 

 
Figure 6.6 Averages of estimates of cross-𝐿𝐿(𝑟𝑟) − 𝑟𝑟 in case of the “waves” intensity function with 400 simulated 
points on average. 

Left to right: segregation, independence, co-clustering. The estimators used are the standard global (  CVL, 
LCV) and local (  CVL,  LCV) leave-out estimators of 𝐾𝐾12 combined with the CVL and LCV methods for 
the bandwidth selection. True values of 𝐿𝐿12(𝑟𝑟) − 𝑟𝑟 are shown for comparison ( ). 

Table 6.3 Mean (± st. dev.) of CVL and LCV selected bandwidths for the simulated two point process cases. 
Expected number of points is 400 for each listed process. 

Interaction type Intensity function σ CVL  σ LCV  

Segregated 

constant 0.063 (0.008) 0.038 (0.006) 

hole 0.062 (0.009) 0.039 (0.008) 

waves 0.064 (0.010) 0.040 (0.008) 

Poisson 

constant 0.048 (0.006) 0.60 (0.19) 

hole 0.048 (0.006) 0.28 (0.22) 

waves 0.051 (0.006) 0.19 (0.20) 

Co-clustered 

constant 0.062 (0.008) 0.040 (0.008) 

hole 0.060 (0.009) 0.040 (0.007) 

waves 0.064 (0.011) 0.040 (0.009) 
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the case of a parametric model where the intensity 𝛼𝛼 > 0 of the underlying stationary point process 

(that is, before thinning) is unknown but the retention probability function 𝑝𝑝 that was used to thin 

the point process is known. Then a simple parametric estimator for 𝜌𝜌 is given by 

𝜌𝜌�𝑝𝑝(𝑥𝑥)  =  𝑁𝑁𝑁𝑁(𝑥𝑥) � 𝑝𝑝(𝑥𝑥) d𝑥𝑥
𝑊𝑊

�  

where 𝑁𝑁 is the number of points in 𝑋𝑋 ∩𝑊𝑊. We apply this intensity estimator to 𝐾𝐾�local and 𝐾𝐾�global 

for 1000 realizations of each interaction type, with the “waves” intensity function and expected

 

 
Figure 6.7 Averages and 95 % pointwise probability intervals for estimates of 𝐿𝐿12(𝑟𝑟) − 𝑟𝑟 in case of the “waves” 
intensity function with 400 simulated points on average. 

Left to right: segregation, independence, co-clustering. The estimators used are the leave-out global estimator ( ) and 
the leave-out local estimator ( ), with pointwise probability intervals shown in like shade. In each case, the bandwidth 
selection method was chosen to produce the least bias: LCV for the local estimator on the independent process, and CVL for 
all the other cases. True values of 𝐿𝐿12(𝑟𝑟)  −  𝑟𝑟 are also shown ( ). 

Table 6.4 Root integrated mean squared errors × 102 of local and global 𝐾𝐾12-function estimators with CVL and 
LCV bandwidths. 

Interaction Intensity 
  

CVL LCV CVL LCV 

Segregated 

flat 0.65 390.125 0.161 0.181 

hole 0.69 4.574 0.171 0.185 

waves 0.64 270.633 0.208 0.201 

Independent 

flat 1.03 0.066 0.024 0.049 

hole 1.09 0.112 0.026 0.109 

waves 0.95 0.191 0.037 0.104 

Co-clustered 

flat 0.92 18.783 0.234 0.262 

hole 0.97 3.510 0.239 0.265 

waves 0.92 5.238 0.195 0.244 
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number of points equal to 400. In addition, we generate 1000 simulations for each interaction type 

with a new thinning profile, “deep waves”, given by 

𝑝𝑝deep(𝑥𝑥,𝑦𝑦) =  1 −  .9 cos2(5𝑥𝑥) , (𝑥𝑥,𝑦𝑦) ∈ [0,1]2. 

The deep waves profile is similar to the waves profile, but with much more extreme intensity 

variations. 

Pointwise probability intervals for estimates of 𝐿𝐿(𝑟𝑟) − 𝑟𝑟 are shown in Figure 6.9, and root 

integrated mean square error for estimates of 𝐾𝐾 are given in Table 6.5. We observe that in all cases 

the error of the global estimator is comparable to or better than the corresponding local estimator. 

For the “waves” intensity function, the difference is small. Both estimators have larger error when 

applied to the patterns with the “deep waves” intensity function. However, the performance of the 

local estimator degrades much more strongly, reflecting the fact that regions of low intensity are 

weighted more heavily in 𝐾𝐾�local than in 𝐾𝐾�global, as discussed in Section 6.4.3. The LGCP yielded 

the largest errors with the parametric intensity estimates, similar to our observations with the 

kernel-based intensity estimates. We also note that for the DPP and the Poisson process, using the 

parametric estimates for the “waves” intensity function results in higher integrated mean square 

error than for the kernel-based estimates (Table 6.2). We believe this is because the kernel-based 

estimates of 𝜌𝜌 are adapted to the random local fluctuations of the point processes, similar to how 

homogeneous 𝐾𝐾-function estimates have lower variance when using estimated intensity than true 

intensity. However, for the LGCP, best results are obtained with the parametric estimates, which 

 
Figure 6.8 Averages of estimates of 𝑐𝑐(𝑟𝑟) in case of the waves intensity function with 400 simulated points on 
average. 

Left to right: segregation, independence, co-clustering. The estimators used are the leave-out global (  CVL, 
LCV) and local (  CVL,  LCV) estimators combined with the CVL and LCV methods for bandwidth 
selection. True values of 𝑐𝑐(𝑟𝑟) are shown for comparison ( ). 
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presumably are less prone to confounding of random clustering with variations in the intensity 

function.  

 

 

 

 
Figure 6.9 Averages and 95 % pointwise probability intervals for estimates of 𝐿𝐿(𝑟𝑟) − 𝑟𝑟 in case of the “waves” 
(top row) or “deep waves” (bottom row) intensity function with 400 simulated points on average. 

Left to right: DPP, Poisson, LGCP. The estimators used are the global ( ) and local ( ) estimators using the 
parametric intensity estimator (equation 37). Pointwise probability intervals are shown in like shade. True values of 𝐿𝐿(𝑟𝑟)  −  𝑟𝑟 
are also shown ( ). 

Table 6.5 Root integrated mean squared errors × 102 of local and global 𝐾𝐾-function estimators with parametric 
intensity estimator, applied to point processes with intensity function “waves” or “deep waves”. 

Interaction type Intensity function 
 

 

DPP 
waves 0.111 0.102 

deep waves 0.227 0.103 

Poisson 
waves 0.132 0.122 

deep waves 0.239 0.133 

LGCP 
waves 0.416 0.417 

deep waves 0.601 0.516 
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6.9 Extensions 

The same sort of analysis as in Sections 6.4 and 6.5 could be applied to point processes 

defined on a non-empty manifold on which a group acts transitively (a so-called homogeneous 

space), where the space is equipped with a reference measure which is invariant under the group 

action. In this paper, the space was ℝ𝑑𝑑, the group action was given by translations, and the 

reference measure was Lebesgue measure. For example, instead we could consider the space to be 

a 𝑑𝑑-dimensional sphere, with the group action given by rotations and where the reference measure 

is the corresponding 𝑑𝑑-dimensional surface measure. Then the global and local estimators 

considered in this paper are simply modified to the case of the sphere by replacing Lebesgue with 

surface measure and using appropriate edge correction factors as defined in (315). Similarly, our 

global estimators could also be extended to the case of spatio-temporal point processes, as in (89, 

90).  

6.10 Conclusion 

According to our simulation studies, our new global estimators outperform the existing 

local estimators in terms of bias and mean integrated squared error when kernel or parametric 

estimators are used for the intensity function. The kernel intensity function estimators depend 

strongly on the choice of bandwidth and we considered two different data-driven approaches, CVL 

and LCV, to bandwidth selection. In our simulation studies the two approaches gave similar 

selected bandwidths in the LGCP case but very different results in case of Poisson and DPP. This 

has a considerable impact on the 𝐾𝐾- and pair correlation function estimators but the global 

estimators appear to be much less sensitive to the choice of bandwidth selection method than the 

local estimators. The simulation studies with parametric estimates of the intensity function, along 

with the theory of Section 6.4.3, indicate that the global estimators are also much less sensitive to 

regions of especially low intensity. The improved statistical efficiency comes at a considerable 

extra computational cost. Therefore, we especially recommend the global estimators for situations 

where intensity variations are large and where computational speed is not a primary concern. 
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Chapter 7 Spatial Pair Correlation Analysis of Localization Microscopy Data under 

Spatially Nonuniform Sampling 

Non-uniform sampling can arise in localization microscopy in the process of labeling the 

molecules of interest with fluorophores, or in the detection process, for instance due to non-

uniform illumination over a large field of view. This chapter extends the methods proposed in 

Chapter 6 for estimating pair correlation functions in conditions where sampling of points is not 

uniform and applies them to the particularities of localization microscopy. In addition, I propose 

and validate a novel edge-correction method for the kernel-based estimator of 𝛾𝛾, concluding that 

it is superior to the previously studied estimators. Finally, I present an example application of this 

method to cross-correlations in a B cell SMLM dataset. All of the work included in this chapter is 

my own, except the dataset that is used for demonstration of the method, which was collected by 

Sarah Veatch. This chapter has not been published at this time. 

7.1 Abstract 

Pair correlation functions, especially pair cross correlation functions have proved to be 

valuable tools in quantifying subtle statistical interactions in single molecule localization 

microscopy. Traditional methods for estimating pair correlation functions rely on the assumption 

that the localization density is uniform on the region of interest. However, even if the molecules 

of interest are distributed with uniform density, experimental challenges can cause local variations 

in the probability of observing the molecule of interest. This can either be due to non-uniform 

labeling, where some molecules are not observed at all, or due to non-uniform detection, where 

molecules in some regions are localized more times than others, on average. In turn, correlation 

functions computed using the standard methods include artifactual correlations. In this paper, we 

present methods for correcting these artifacts, and show their applicability to single molecule 

localization microscopy, using both simulated and experimental data. We also discuss a diagnostic 

that can be useful for determining whether the correction is necessary, and what parameters should 

be used in applying the correction. 
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7.2 Introduction 

In single molecule localization microscopies (SMLM) such as PALM (37, 39), (d)STORM 

(38, 40) and PAINT (47), single probe molecules are made to fluoresce stochastically, so that the 

emission patterns of the emitters that are “on” are separated in space, and can be fitted to determine 

the location of the probe to high precision, often around 20 nm. The resulting dataset is a list of 

coordinates, accumulated from many thousands to millions of localizations. The localizations can 

then be assembled into an image that resembles the structure that was labeled. Alternatively, 

statistical analysis can be applied to the pattern of localizations to extract subtle structure that is 

not apparent when examining the images by eye. The pair (cross) correlation function is a useful 

way of characterizing statistical attraction or repulsion between points, which has been broadly 

applied, including to gain insight into localization microscopy data (53, 83, 87, 310, 332). 

Correlation functions quantify interactions by comparing the observed distribution of 

separations of pairs of points to a benchmark distribution in which points are independent, i.e. have 

no interactions. For a given random process that produces a set of points 𝑋𝑋, the pair correlation 

function 𝑔𝑔(𝐱𝐱,𝐱𝐱′) at locations 𝐱𝐱 and 𝐱𝐱’ can be thought of as a ratio of probabilities: 

  𝑔𝑔(𝐱𝐱, 𝐱𝐱′) = 𝑃𝑃(𝐱𝐱∈𝑋𝑋 and 𝐱𝐱′∈𝑋𝑋)
𝑃𝑃(𝐱𝐱∈𝑋𝑋)𝑃𝑃(𝐱𝐱′∈𝑋𝑋)

. 

Note that when the points of 𝑋𝑋 are independent, 𝑔𝑔(𝐱𝐱,𝐱𝐱′) = 1. Values greater than one indicate that 

finding a point at 𝐱𝐱′ is more likely when there is also a point at 𝐱𝐱, for example when the points 

tend to cluster. By contrast, values less than one indicate that a point at 𝐱𝐱 makes a point at 𝐱𝐱′ less 

likely. Similarly, when two types of points are observed, as sets 𝑋𝑋1 and 𝑋𝑋2, an analogous cross-

correlation function may be defined: 

 𝑐𝑐(𝐱𝐱, 𝐱𝐱′) = 𝑃𝑃(𝐱𝐱∈𝑋𝑋1 and 𝐱𝐱′∈𝑋𝑋2)
𝑃𝑃(𝐱𝐱∈𝑋𝑋1)𝑃𝑃(𝐱𝐱′∈𝑋𝑋2)

  

with a similar interpretation. In SMLM experiments, 𝑋𝑋1 and 𝑋𝑋2 may represent localizations of two 

different proteins, labeled with fluorophores of distinct colors. The cross correlation function is 

often more useful than the autocorrelation function, since the autocorrelation function is typically 

dominated by multiple localizations of the same fluorophore at short distances, which often 

obscures more interesting interactions (87). 
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Although 𝑔𝑔(𝐱𝐱,𝐱𝐱′) or 𝑐𝑐(𝐱𝐱,𝐱𝐱′) may depend on both locations 𝐱𝐱 and 𝐱𝐱′ in principle, the pair 

correlation function is most useful when it is translation invariant, in which case it only depends 

on the displacement ( )′= −Δx x x .𝑔𝑔(𝚫𝚫𝚫𝚫) = 𝑔𝑔(𝐱𝐱, 𝐱𝐱 + 𝚫𝚫𝚫𝚫). 

𝑔𝑔(𝚫𝚫𝚫𝚫) = 𝑔𝑔(𝐱𝐱, 𝐱𝐱 + 𝚫𝚫𝚫𝚫). 

Translation invariance holds in general for fluids. Translation invariance is typically required in 

order to estimate the pair correlation function, since we assemble the estimate by counting pairs 

near (𝐱𝐱,𝐱𝐱 + ∆𝐱𝐱) for all observed points. In many cases the pair correlation function is also 

isotropic, meaning that it depends only on the distance 𝑟𝑟 = ‖𝐱𝐱′ − 𝐱𝐱‖. Again, this is frequently true 

in fluids. However, note that the considerations presented here can be applied to data where the 

assumption of isotropy does not hold by omitting azimuthal averages. 

A standard further simplifying assumption in correlation analysis is that the density of 

points is uniform everywhere in the region of interest. This is often a reasonable assumption about 

the distribution of the molecules of interest, for example in a fluid plasma membrane, where we 

expect membrane proteins to be equally likely to occupy any location on the membrane. However, 

the experimental realities of localization microscopy experiments can lead to non-uniform 

detection of localizations. In some cases, the fluorescent labeling of the molecule of interest is 

non-uniform in space, for example in situations with poor antibody access. In others, detection of 

the fluorescent label is non-uniform, e.g. when photoswitching or excitation illumination varies 

across the field of view, or when detection is impeded by non-uniform background fluorescence. 

Since we observe localizations, rather than the molecules of interest themselves, our correlation 

function estimate must account for these non-uniform detection scenarios. Thus, we will focus 

here on estimating the pair cross-correlation function 𝑐𝑐(𝑟𝑟) when the density of localizations is not 

uniform. Importantly, even in these non-uniform sampling conditions, the auto- and cross-

correlation functions of the localizations are the same as those of the underlying proteins, as long 

as localizations are sampled independently from the locations of the proteins (88) (up to a 

convolution with the localization precision (87)). 

To our knowledge, two approaches have been developed to correct correlation function 

estimators for point datasets with non-uniform density. The first weights each pair of points by the 

inverse of the local density at those points, which we call a local density correction (88). The 

second counts each pair with equal weight, and instead normalizes the entire count with a global 

density correction factor gamma that represents the total number of pairs that would be expected 
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if the points were independently distributed according to the density profile (312). This second 

approach was originally proposed in our lab for live-cell space-time cross correlations, which 

suffer from bleaching probabilities that depend on the distance from the edge of the cell, due to 

diffusion (83). Recent work formalizing the global correction has demonstrated that it performs 

better than the local correction in cases with a few hundred points, and argued that it is generally 

expected to yield lower bias and variance (312). In this paper, we describe how these density 

corrected correlation functions may be computed for SMLM data with large numbers of points, 

demonstrate their usefulness in simulated and real SMLM data, emphasizing the superiority of the 

global correction. While the method is straightforward, best results are sensitive to a choice of 

parameter for local density estimation. We provide a diagnostic to help choose good values for 

this parameter. Finally, we discuss some practicalities that should be considered when applying 

the global correction, especially in SMLM data. 

7.3 Results and Discussion 

7.3.1 Naive correlation function estimate yields artifactual correlations 

In the following, we consider an SMLM dataset with two types of localizations, as one 

would obtain from two-color fluorescence localization microscopy. As above, 𝑋𝑋𝑖𝑖 denotes the set 

of localizations of type 𝑖𝑖, and 𝜌𝜌𝑖𝑖(𝐱𝐱) the density of localizations of type 𝑖𝑖 at location 𝐱𝐱. 𝑋𝑋𝑖𝑖 is called 

a spatial point process, and the localizations take values in ℝ2 for purposes of this paper. The 

density 𝜌𝜌𝑖𝑖(𝒙𝒙) should be thought of as an expected number of points per unit area in the vicinity of 

𝐱𝐱, rather than a particular realized number of points per unit area that are found near 𝐱𝐱. 

In practice, we observe localizations on a finite region of interest or observation window 

𝑊𝑊 ⊂ ℝ2, for example the ventral membrane of a cell. We write |𝐴𝐴| for the area of 𝐴𝐴, and define 

the translation of 𝐴𝐴 by a displacement 𝐡𝐡 with the notation 𝐴𝐴𝐡𝐡, so that 𝐴𝐴𝐡𝐡 = {𝐱𝐱 + 𝐡𝐡|𝐱𝐱 ∈ 𝐴𝐴}. 

With these definitions in place, we may write the standard, uniform density cross-

correlation function estimator: 
 

𝑐̂𝑐unif(𝑟𝑟) = 1
𝜌𝜌1𝜌𝜌2𝑎𝑎(𝑟𝑟)

∑
𝟏𝟏�|‖𝐲𝐲−𝐱𝐱‖−𝑟𝑟|<𝑏𝑏2�

2𝜋𝜋𝜋𝜋𝜋𝜋𝐱𝐱∈𝑋𝑋1,𝐲𝐲∈𝑋𝑋2 , (1)

  

where 𝑏𝑏 > 0 is a finite bandwidth as described below, 𝜌𝜌𝑖𝑖(𝐱𝐱) = 𝜌𝜌𝑖𝑖 is assumed to be uniform and 

𝑎𝑎(𝑟𝑟) is an azimuthally averaged edge correction factor 
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 𝑎𝑎(𝑟𝑟) = ⟨|𝑊𝑊 ∩𝑊𝑊−𝒉𝒉|⟩‖𝐡𝐡‖=𝑟𝑟. 

As a whole, equation 1 can be thought of as a ratio where the numerator is the sum, which 

counts an observed density of pairs at the distance 𝑟𝑟, and the demominator is the normalization 

factor 1 2 ( )a rρ ρ , which represents the expected number of pairs in an uncorrelated point process. 

The sum effectively counts pairs of points with separation near 𝑟𝑟. The finite bandwidth 𝑏𝑏 sets the 

range of distances that are considered. Adjusting 𝑏𝑏 leads to a tradeoff between variance and spatial 

resolution: large values produce low-variance estimates because they average over more data, but 

blur the underlying correlations. The factor of 2𝜋𝜋𝜋𝜋𝜋𝜋 is a geometrical factor to account for the size 

of the set of separations that are considered. 

In the normalization factor 1 2 ( )a rρ ρ , the edge correction 𝑎𝑎(𝑟𝑟) accounts for the finite 

observation window: it effectively counts how much space there is in 𝑊𝑊 that has a pair in 𝑊𝑊 at 

separation 𝑟𝑟. The factor of 𝜌𝜌1𝜌𝜌2 accounts for the effect of density: the simple count of pairs at 

separation 𝑟𝑟 is proportional to the density of each type of point. 

When the assumption of uniform density does not hold, one may replace the densities iρ  

with the average density 𝑁𝑁𝑖𝑖/|𝑊𝑊|, where 𝑁𝑁𝑖𝑖 is the number of points of 𝑋𝑋𝑖𝑖. However, this practice 

generally induces bias in the correlation function estimates. To make this concrete, consider the 

simulated dataset of Figure 7.1, representing an idealized two-color SMLM experiment. Points of 

two types are distributed uniformly and independently across a circular observation window 

(Figure 7.1a). Since they are distributed independently, 𝑐𝑐(𝑟𝑟) = 1. The points are poorly labeled, 

with points near the edge of the observation window more likely to be labeled than those in the 

interior (Figure 7.1b). This scenario could represent an experiment using antibodies to label a 

membrane protein of interest with a fluorophore, in a dense sample where antibody access is poor. 

Figure 7.1c shows the two parts of equation 1: the sum that counts pairs of points with separation 

near 𝑟𝑟, and the normalization factor 1 2 ( )a rρ ρ , where densities 𝜌𝜌𝑖𝑖 correspond to average density 

over the entire region of interest. The cross correlation function estimate unifˆ ( )c r  is simply the ratio 

of these lines, and is shown in Figure 7.1d. Clearly, unifˆ ( )c r  overestimates 𝑐𝑐(𝑟𝑟) = 1 in this case. 

7.3.2 Local and global density corrections for cross correlation functions 

Baddeley et al (88) introduced a density-corrected cross-correlation function that we call 

local because it weights each counted pair in the numerator with the local density: 
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 𝑐̂𝑐local(𝑟𝑟) = 1
𝑎𝑎(𝑟𝑟)

∑ 𝟏𝟏[|‖𝐲𝐲−𝐱𝐱‖−𝑟𝑟|<𝑏𝑏/2]
2𝜋𝜋𝜋𝜋𝜋𝜋𝜌𝜌1(𝐱𝐱)𝜌𝜌2(𝐲𝐲)𝐱𝐱∈𝑋𝑋1,𝐲𝐲∈𝑋𝑋2 .   

As a result, points from high density regions are effectively down-weighted, to compensate for the 

excess pairs in that region that are simply due to the high density. The sum can be directly 

compared to the sum in unifĉ  by multiplying by the average densities: 

 ⟨𝜌𝜌1⟩⟨𝜌𝜌2⟩∑
𝟏𝟏[|‖𝐲𝐲−𝐱𝐱‖−𝑟𝑟|<𝑏𝑏/2]
2𝜋𝜋𝜋𝜋𝜋𝜋𝜌𝜌1(𝐱𝐱)𝜌𝜌2(𝐲𝐲)

,𝐱𝐱∈𝑋𝑋1,𝐲𝐲∈𝑋𝑋2   

which is the quantity shown as “weighted pairs” in Figure 7.2a. The resulting estimate localˆ ( )c r  is 

the ratio of these weighted counts (dashed black line) and the edge-corrected density normalization 

from before (red line), and is shown in yellow in Figure 7.2b. localˆ ( )c r is an unbiased estimator for 

𝑐𝑐(𝑟𝑟), as demonstrated here by the fact that it closely straddles 𝑐𝑐(𝑟𝑟) = 1. 

By contrast, the global estimator accounts for density variations by moving the density 

functions into the edge correction convolution: 

 𝑐̂𝑐global(𝑟𝑟) = 1
𝛾𝛾(𝑟𝑟)

∑ 𝟏𝟏[|‖𝐲𝐲−𝐱𝐱‖−𝑟𝑟|<𝑏𝑏/2]
2𝜋𝜋𝜋𝜋𝜋𝜋𝐱𝐱∈𝑋𝑋1,𝐲𝐲∈𝑋𝑋2 ,   

where ( )rγ  is an angularly averaged global normalization factor 

 𝛾𝛾(𝑟𝑟) = ⟨𝛾𝛾(𝐡𝐡)⟩‖𝐡𝐡‖=𝑟𝑟  

and 

 𝛾𝛾(𝐡𝐡) = ∫ 𝜌𝜌1(𝐱𝐱)𝜌𝜌2(𝐱𝐱 + 𝐡𝐡) d𝐱𝐱𝑊𝑊∩𝑊𝑊−𝐡𝐡
.   

In this case, the numerator is the same as that of unifĉ : an unweighted count of the observed 

number of pairs separated by a distance 𝑟𝑟, as shown by the black line in Figure 7.2a. However, the 

denominator ( )rγ  gives the average number of such pairs that would be present if the points were 

distributed independently according to the densities 𝜌𝜌𝑖𝑖(𝐱𝐱). The quantity 𝛾𝛾(𝑟𝑟) is also shown in 

Figure 7.2a. The resulting 𝑐̂𝑐global(𝑟𝑟) estimate is the ratio of these lines, and is shown in Figure 

7.2b. 𝑐̂𝑐global(𝑟𝑟) is also an unbiased estimator of 𝑐𝑐(𝑟𝑟). 

Note that when the densities are constant, 𝛾𝛾(𝑟𝑟) = 𝜌𝜌1𝜌𝜌2𝑎𝑎(𝑟𝑟), and all three definitions are 

exactly equivalent. 

7.3.3 Variance of global estimator is lower than that of local estimator 
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As we note above, both 𝑐̂𝑐local(𝑟𝑟) and 𝑐̂𝑐global(𝑟𝑟) are unbiased: they accurately reproduce 

the true value 𝑐𝑐(𝑟𝑟) on average. However, the variances of the estimates are different in general. In 

practice, we find that 𝑐̂𝑐global(𝑟𝑟) has a smaller variance than 𝑐̂𝑐local(𝑟𝑟), and is therefore preferred. 

Figure 7.3 demonstrates the improved variance of 𝑐̂𝑐global(𝑟𝑟)compared to 𝑐̂𝑐local(𝑟𝑟) for 

simulated SMLM data that is somewhat more realistic than that of Figure 7.1. Figure 7.3a shows 

an example dataset. As in Figure 7.1, proteins are distributed uniformly on the cell surface with 

density 20 µm-2, and proteins near the edge are more likely to be labeled by a fluorescent antibody. 

However, in this case each fluorescent label produces a Poisson-distributed number of 

localizations, with Gaussian localization error. The localization precision is 25 nm, and mean 

number of localizations per fluorophore is 10. Figure 7.3b shows mean and 95% pointwise 

probability intervals for the three cross-correlation estimates, calculated from simulated point 

processes. The probability intervals for 𝑐̂𝑐global(𝑟𝑟) are substantially tighter than those for 𝑐̂𝑐local(𝑟𝑟), 

as expected. 

We can develop an intuitive explanation for this trend by recalling that the inverse density 

weights in the local estimator weight rare events (from low-density regions) strongly, and common 

events (from high-density regions) weakly. If the range of densities is extreme, the sum in (1.3) is 

dominated by the few pairs that are observed in low-density regions, effectively reducing the 

sample size. By contrast, the pairs in the sum in (1.4) are all weighted equally, making the effective 

sample size as large as possible. 

We note that the same reasoning does not apply when the variation of localization density 

is entirely induced by non-uniform overcounting. In that case the weighting in the local estimator 

effectively weights each molecule equally, by down-weighting localizations from molecules with 

more overcounting. By contrast, the global estimator effectively weights molecules with more 

localizations more strongly. In simulations with uniform labeling but non-uniform overcounting, 

we find that the error of the global and local estimators is roughly equal. For an example, see 

Figure 7.4. 

7.3.4 Estimating density corrections when density is unknown 

Both of the density corrections described above depend on accurate knowledge of the local 

density as a function of space. Except in a simulation setting as in Figure 7.1 and Figure 7.2, the 

local density is usually unknown, and must be estimated from the data. In this paper, we will use 
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a kernel density estimate, which is a common non-parametric density estimate. Kernel density 

estimates are a useful baseline, since they do not depend on any assumptions about the density 

variations. Often, they are the only option available. However, if more is known about the source 

of density variations, such that it can be accurately modeled with a parametric density function, a 

parametric estimate of the density will generally lead to somewhat more precise and accurate cross-

correlation function estimates, using either the local or global density correction. 

A kernel density estimator ˆ ( )ρ x  is based on a kernel ( )σκ h , which determines the 

contribution of a point at 𝐱𝐱 + 𝐡𝐡 to the density estimated at 𝐱𝐱. The parameter σ  is a scale parameter 

for σκ , so 

 𝜅𝜅𝜎𝜎(𝐡𝐡) = (1/𝜎𝜎2)𝜅𝜅1(𝐡𝐡/𝜎𝜎).   

In other words, σ  sets the length scale over which observed points contribute to the density 

estimate. 

Intuitively, the density estimate is obtained by blurring the data itself, with the extent of 

blurring determined by σκ . For 𝐱𝐱 near the edge of the observation window, σκ  places significant 

weight on the area outside 𝑊𝑊 where points are not observed. Therefore an “edge correction” is 

required. Overall, ˆ ( )ρ x  can be written 

 𝜌𝜌�(𝐱𝐱) = ∑ 𝜅𝜅𝜎𝜎(𝐱𝐱′−𝐱𝐱)
𝑤𝑤(𝐱𝐱) 𝐱𝐱′∈𝑋𝑋    

with the edge correction 

 𝑤𝑤(𝐱𝐱) = ∫ 𝜅𝜅𝜎𝜎(𝐱𝐱 − 𝐱𝐱′) d𝐱𝐱𝑊𝑊    

due to Diggle (322). To make a kernel estimator concrete, we must choose the shape of the kernel 

𝜅𝜅𝜎𝜎 and the bandwidth σ . It has been noted that the shape of the kernel is less important than the 

choice of bandwidth (86). In the following, we use a Gaussian kernel for convenience, since it can 

be separated into a product of functions that each depend on only one coordinate: 

 𝜅𝜅𝜎𝜎(𝐡𝐡) = 1
2𝜋𝜋𝜎𝜎2

𝑒𝑒−𝐡𝐡2/(2𝜎𝜎2).   

Shaw et al (312) note that the density corrections for auto-correlations depend on products 

of these estimates 𝜌𝜌�(𝐱𝐱)𝜌𝜌�(𝐲𝐲), and that these products are prone to bias due to correlations between 

nearby density estimates. They propose instead a direct estimate of the product 

 𝜌𝜌(𝐱𝐱)𝜌𝜌(𝐲𝐲) = ∑ 𝜅𝜅𝜎𝜎(𝐱𝐱−𝐱𝐱′)𝜅𝜅𝜎𝜎(𝐲𝐲−𝐲𝐲′)
𝑤𝑤(𝐱𝐱′)𝑤𝑤(𝐲𝐲′)

≠
𝐱𝐱′,𝐲𝐲′∈𝑋𝑋    
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i.e. excluding the “diagonal” term 𝐱𝐱′ = 𝐲𝐲′. From this, an estimator for γ  can be obtained by 

applying the definition directly: 

 𝛾̄𝛾𝜎𝜎(𝐡𝐡) = ∫ 𝜌𝜌1(𝐱𝐱)𝜌𝜌2(𝐱𝐱 + 𝐡𝐡) d𝐱𝐱𝑊𝑊∩𝑊𝑊−ℎ
  

In addition, we define one more γ  estimator inspired by 𝛾̅𝛾(𝐡𝐡): 

 𝛾𝛾�𝜎𝜎(𝐡𝐡) = |𝑊𝑊 ∩𝑊𝑊−𝐡𝐡|∑
𝜅𝜅𝜎𝜎√2(𝐲𝐲−𝐱𝐱−𝐡𝐡)

�𝑊𝑊∩𝑊𝑊−(𝐲𝐲−𝐱𝐱)�𝐱𝐱∈𝑋𝑋1,𝐲𝐲∈𝑋𝑋2    

Intuitively, this estimator improves on 𝛾̅𝛾(𝐡𝐡) by weighting each pair 𝐱𝐱, 𝐲𝐲 separated by 𝐮𝐮 equally to 

the estimate of 𝛾𝛾(𝐡𝐡), rather than weighting points near the edge more strongly. Here, the edge 

correction factors are important when σ  is large, in which case 𝐲𝐲 − 𝐱𝐱 may be significantly 

different from 𝐡𝐡. 

Both kernel estimators are constructed to be unbiased estimators for γ  under the rather 

strict condition that 𝜌𝜌(𝐱𝐱) = 𝜌𝜌 is constant and no pairwise correlations are present. In the general 

case, where density variation and correlations are present, bias may arise due to several roughly 

separable considerations, which we attempt to disentangle here.  

7.3.5 Pairwise edge-correction for the normalization factor gamma reduces systematic errors 

The choice of edge-correction is most important when the localization density at the edges 

is substantially different from the localization density in the interior of the region of interest. We 

find that the pairwise edge correction yields a more accurate estimate of γ  than the pointwise one. 

This effect is demonstrated by the example of Figure 7.5. The density shown in Figure 7.5a is half 

again as dense at the edge as in the interior of the square observation window, with the transition 

between sparse and dense occurring over about 2 µm. The systematic errors of the two kernel-

based γ  estimates are shown in Figure 7.5b, for three choices of σ . Clearly, the pairwise edge 

corrected estimator σγ  yields smaller systematic errors than the pointwise one σγ  . Furthermore, 

the errors in σγ  decay over a shorter range of 𝑟𝑟. The pairwise edge correction is clearly superior 

with this density pattern. Moreover, we have not found any circumstance where the pointwise edge 

correction is superior to the pairwise one. 

In light of this comparison, we recommend using the pairwise edge correction, especially 

for situations where the localization density at the edge is very different from the localization 

density in the interior. This is an important scenario, especially in live-cell experiments using TIRF 
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microscopy to illuminate the ventral membrane of a cell. Molecules that reach the center of the 

cell are more likely to have bleached, since they have been exposed to the TIRF illumination for a 

longer time than those at the edge, on average. Edge-heavy labeling could also occur due to poor 

antibody access in cell lines that adhere strongly to the cover slip. 

7.3.6 Short range density variation induces bias in kernel based gamma estimates, especially for 

large sigma 

Density variations on short length scales compared to the kernel bandwidth σ  tend to be 

smoothed away, and can therefore lead to bias in σγ . For example, the simulated local density 

shown in Figure 7.6a is a sum of perpendicular sine waves, of wavelength 1 µm. Smoothing by 

length-scales of more than 1 μm are thus expected to substantially erode the peaks of the density 

profile. Figure 7.6b shows the systematic error of the estimate 𝛾𝛾�𝜎𝜎 that corresponds to smoothed 

densities using 𝜎𝜎 = .3, 1, and 3 µm. The error grows with σ , with negligible error for .3σ =  µm, 

which is much less than the wavelength of the density profile, but a noticeable error of about 2.5% 

when 𝜎𝜎 = 3 µm is used. This error is due to smoothing away of details on the 1 µm length scale.  

7.3.7 Density corrected estimators underestimate the strength of correlations, especially for 

small sigma 

Finally, when the points of the sample are co-clustered or mutually segregated, the 

estimates of 𝛾𝛾 are biased by the resulting excess or paucity of point pairs at short distances. In 

particular, in the 0σ →  limit, both 𝛾𝛾 estimators are biased by a factor of the correlation function 

(up to edge corrections): 

 𝐸𝐸[𝛾𝛾�(𝑟𝑟)] = 𝛾𝛾(𝑟𝑟)𝑔𝑔(𝑟𝑟),  (0.13) 

so that the globally-corrected correlation estimate that uses γ̂  will always produce an estimate of 

𝑔𝑔(𝑟𝑟) = 1. For finite 𝜎𝜎, the bias is reduced by blurring the peak of 𝑔𝑔(𝑟𝑟), yielding a bias of 

 𝐸𝐸[𝛾𝛾�𝜎𝜎(𝑟𝑟)] = 𝛾𝛾(𝑟𝑟)�∫ 𝑔𝑔(|𝐱𝐱|)𝜅𝜅𝜎𝜎(𝐲𝐲 − 𝐱𝐱) d𝐱𝐱ℝ2 �
|𝐲𝐲|=𝑟𝑟

  (0.14) 

In some cases 𝑔𝑔(0) can be quite large. This is especially true for auto-correlations of fixed-

cell SMLM data, where molecules tend to produce several or many localizations; in the absence 

of correlations between the position of the molecules, 𝑔𝑔(𝑟𝑟) exhibits a strong peak at 𝑟𝑟 = 0, with 

amplitude inversely proportional to the density of molecules. In such a case, it is important to 

choose 𝜎𝜎 >>  𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐. Figure 7.7 shows how large correlations induce bias in estimates of gamma 
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and the resulting auto-correlation estimates for an overcounted, uncorrelated simulation of SMLM 

data. Figure 7.7a shows 𝛾𝛾, as well as estimates of gamma using a range of 𝜎𝜎. Corresponding 

autocorrelation functions 𝑔𝑔(𝑟𝑟) are shown in Figure 7.7b. With 𝜎𝜎 =  100 nm, the 𝛾𝛾 estimate 

overestimates 𝛾𝛾 by more than a factor of two at short 𝑟𝑟, so that 𝑔𝑔(𝑟𝑟) is underestimated by more 

than a factor of two. As 𝜎𝜎 is increased, this bias quickly decreases. Figure 7.7c shows how the 

overestimation of 𝛾𝛾 decreases as a function of 𝜎𝜎, for three different correlation strengths. 

This combination of observations leads to the conclusion that a good choice of 𝜎𝜎 is 

constrained both on the low end, by bias due to correlations, and on the high end, by bias due to 

smoothing of density variations. The length-scales where these features become important is 

experiment-dependent, and there may be experiments where the length-scales overlap, so that there 

is no choice of 𝜎𝜎 that results in an accurate estimate of the (cross-)correlation function. If the 

length-scale of the correlations of interest is approximately known, for example from the size of 

the structure that is being labeled, 10-20 times this value can be used as a starting point for 𝜎𝜎. 

One useful fact about the correlation-induced errors is that these errors are bounded 

between 1 and the (true) correlation function. As a result, choosing a too-small 𝜎𝜎 will lead to an 

understimate of the strength of the correlations, but will not cause clustering (𝑐𝑐(𝑟𝑟) > 1) to be mis-

identified as segregation (𝑐𝑐(𝑟𝑟) < 1), or vice versa. Thus, when correlations and density variation 

are poorly understood, a useful strategy can be to estimate the correlation function using a range 

of sigma starting very small, and observing how the estimated short-range correlations develop 

with increasing σ . 

Note that the same considerations can be applied in aid of choosing an observation window 

that excludes some portion of the observed localizations. In some cases, more accurate correlation 

functions may be obtained by excluding regions with density variation that is abrupt compared to 

the length scale of σ  that will be used. Even though this reduces the effective number of 

observations, it also reduces a systematic error that is difficult to evaluate in a specific case.  

7.3.8 Application to an SMLM dataset 

Figure 7.7 demonstrates the application of density-corrected cross-correlation analysis to 

an SMLM dataset from a CH27 B cell with F-actin labeled by phalloidin-AlexaFluor647 shown 

in magenta and the ganglioside GM1 labeled by choleratoxin B subunit (CTxB) conjugated to 

AlexaFluor532, shown in green. We begin by estimating density profiles by the kernel estimator 
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𝜌𝜌�(𝐱𝐱), with 𝜎𝜎 = 1 μm, shown in Figure 7.7b and c for CTxB and phalloidin, respectively. Both 

density profiles show substantial variation, with high-density regions up to twice as dense as low-

density regions. These density variations are a strong indication that a density correction will be 

required for proper cross-correlation analysis. In addition to the density profiles, it is helpful to 

inspect the uncorrected radial and 2d correlation functions out to long distances, as shown in Figure 

7.7d and e (radial and 2d, respectively). The 2d correlation function shows apparently anisotropic 

correlations at distances of several μm, with amplitudes of up to 25% more or less than would be 

expected from a random distribution. The radial correlation function is effectively a circular 

average over the 2d correlation function, so it also exhibits apparent correlations out to long 

distances, although the amplitudes are smaller, because the positive and negative correlations in 

different directions largely average out. Note that there is no kernel smoothing in Figure 7.7d and 

e, so the slowly-varying nature of these correlation functions at long distances indicates that the 

relevant features of the density profile are in fact slowly-varying. As a result, we expect that 𝜎𝜎 ≈

1 μm will be small enough to adequately capture the spatial variation. Finally, Figure 7.7f shows 

𝑐̂𝑐global(𝑟𝑟), calculating using a range of values for 𝜎𝜎 as indicated. When 𝜎𝜎 is in the range of 0.5-1.5 

μm, 𝑐̂𝑐global(𝑟𝑟) shows a positive correlation of about 1.05, which represents 5% enrichment of 

CTxB around actin compared to the average density. Note that smaller 𝜎𝜎 leads to less pronounced 

positive correlations, as expected from the considerations of the previous section. 

7.4 Conclusions 

In this chapter I have adapted the density-correction of correlation functions, as introduced 

in chapter 3, to the context of SMLM. In addition, I have developed a superior kernel-based 

estimator of the normalization function 𝛾𝛾 that is less susceptible to bias, especially when the 

density is increasing or decreasing towards the edge of the dataset. 

This method is most appropriate when there is a strong separation of scales between the 

length scales of biologically-relevant spatial correlations and those of experimentally-induced 

sampling variation. In that case one can choose 𝜎𝜎 to be simultaneously much smaller than the 

length scale of density variation and much larger than the length scale of correlations. Although 

that condition cannot always be guaranteed in practice, it is often feasible to distinguish between 

segregation and co-clustering by examining how 𝑐̂𝑐global varies as 𝜎𝜎 is increased. However, details 
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of correlation functions obtained by this method, such as their amplitude and spatial scale, should 

be interpreted cautiously and corroborated by alternative experimental strategies. 

Some of the limitations of this method could be overcome by incorporating orthogonal 

estimates of the density profile. For example, if the nonuniform sampling is due to spatial variation 

in the intensity of the excitation or photoactivation light source, an experimentalist could directly 

measure that intensity profile and use it to model a detection probability for fluorophores at 

different locations in the sample. 

7.5 Materials and Methods 

7.5.1 Simulated SMLM datasets 

For simulation figures, simulated localizations were generated using custom MATLAB 

(The MathWorks, inc., Natick, MA) software by first simulating an independent uniform 

distribution of true locations of two types of molecules on a region of interest, either circular or 

square as specified in the text. To simulate non-uniform labeling, the molecule locations were 

independently thinned by a spatially-varying thinning probability 𝑝𝑝(𝐱𝐱), so that a molecule at 

location 𝐱𝐱 is labeled with probability 𝑝𝑝(𝐱𝐱). Then each labeled molecule generates a Poisson-

distributed number of localizations, each displaced from the labeled molecule by an independent 

Gaussian-distributed localization error with standard deviation as specified in the text. 

To simulate uniform labeling with non-uniform optical detection (Figure 7.4), each 

molecule is labeled, but non-uniform independent thinning is applied to the localizations produced 

by the labeled molecules, so that the average number of localizations produced by a molecule at 

location 𝐱𝐱 is reduced by a factor of 𝑝𝑝(𝐱𝐱). 

7.5.2 Computations for correlation functions 

The correlation function estimators described above can be described in terms of various 

convolutions of various functions of space: 

(𝑓𝑓 ∗ 𝑔𝑔)(𝐡𝐡) =  � 𝑓𝑓(𝐱𝐱)𝑔𝑔(𝐱𝐱 + 𝐡𝐡) d𝐱𝐱
𝑊𝑊∩𝑊𝑊−𝐡𝐡

, 

so that for example 𝛾𝛾 =  𝜌𝜌1 ∗ 𝜌𝜌2.  

Practical computational considerations lead us to discretize these functions on a lattice with 

spacing smaller than the correlations of interest, so that the function 𝑓𝑓(𝐱𝐱) is approximated by a 
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matrix 𝑓𝑓(𝑖𝑖, 𝑗𝑗) giving the average value of 𝑓𝑓 over the (𝑖𝑖, 𝑗𝑗) square pixel: 𝑖𝑖 < 𝑥𝑥 𝑙𝑙⁄ < (𝑖𝑖 + 1), 𝑗𝑗 <

𝑦𝑦 𝑙𝑙⁄ < 𝑗𝑗 + 1, where 𝑙𝑙 is the lattice spacing of the discretization and (𝑥𝑥, 𝑦𝑦) are the x and y 

coordinates of 𝐱𝐱. Unless otherwise specified, we use a lattice spacing of 𝑙𝑙 = 16 nm. The sums that 

appear in the numerators of 𝑐̂𝑐unif and 𝑐̂𝑐global can also be treated as approximate convolutions: 

�
1[‖|𝐲𝐲 − 𝐱𝐱| − 𝑟𝑟‖ < (𝑏𝑏 2⁄ )]

2𝜋𝜋𝜋𝜋𝜋𝜋
𝐱𝐱∈𝑋𝑋1,𝐲𝐲∈𝑋𝑋2

≈ 〈 �
1[|Δ𝑥𝑥 − ℎ𝑥𝑥| < 𝑙𝑙 2⁄ ]1�Δ𝑦𝑦 − ℎ𝑦𝑦 < 𝑙𝑙 2⁄ �

𝑙𝑙2
 

𝐱𝐱∈𝑋𝑋1,𝐲𝐲∈𝑋𝑋2

〉‖𝐡𝐡‖=𝑟𝑟 

= 〈𝐼𝐼1 ∗ 𝐼𝐼2〉‖𝐡𝐡‖=𝑟𝑟 , 

where 𝑢𝑢𝑥𝑥 and 𝑢𝑢𝑦𝑦 denote the x and y coordinates, respectively, of a vector 𝐮𝐮, Δ𝑥𝑥 = 𝑦𝑦𝑥𝑥 − 𝑥𝑥𝑥𝑥, and 

Δ𝑦𝑦 = 𝑦𝑦𝑦𝑦 − 𝑥𝑥𝑦𝑦, and 𝐼𝐼𝑘𝑘 is a discretization of the point set 𝑋𝑋𝑘𝑘, so that 𝐼𝐼𝑘𝑘(𝑖𝑖, 𝑗𝑗) is the number of points 

of 𝑋𝑋𝑖𝑖 that fall in the (𝑖𝑖, 𝑗𝑗) square pixel.  

Then the convolution of two functions is computed using discrete Fourier transforms by 

𝑓𝑓 ∗ 𝑔𝑔 = ℱ−1(ℱ(𝑔𝑔)∗ ⋅ ℱ(𝑓𝑓)) ∕ 𝑙𝑙2 

where ℱ is a 2D discrete fourier transform, all transforms are padded with zeros to twice their 

original size, and 𝑥𝑥∗ is the complex conjugate of 𝑥𝑥. 

Several of the estimators of 𝛾𝛾 also involve 2d kernel smoothing by a Gaussian kernel. These 

are computed by real-space discrete convolutions using MATLAB’s built-in conv2 function to 

apply two 1d convolutions, each with a 1d Gaussian kernel that is extended to at least 3𝜎𝜎. 

Finally, circular averages 〈𝑓𝑓(𝐡𝐡)〉‖𝐡𝐡‖=𝑟𝑟 are preformed on the discretized functions by 

calculating the distance from the center of the (0,0) pixel to each other pixel, finding the pixel with 

distances within 𝑙𝑙 ∕ 2 of 𝑟𝑟, and averaging the values of 𝑓𝑓 at those pixels. 

7.5.3 Sample preparation 

CH27 B-cells (mouse, Millipore Cat# SCC115, RRID:CVCL_7178), a lymphoma-derived 

cell line (292) were acquired from Neetu Gupta (Cleveland Clinic). CH27 Cells were maintained 

in culture as previously described (53). Cells were plated in MatTek glass-bottomed dishes and 

allowed to adhere overnight, followed by chemical fixation in 2% PFA and 0.2% glutaraldehyde 

(Electron Microscopy Sciences) for 10 min. F-Actin was stained by permeabilizing cells with 0.1% 

Triton-X-100 prior to incubation with 3.3 μM phalloidin-AlexaFluor647 (Invitrogen) for at least 

15 min and imaged immediately after removing label. 

7.5.4 Imaging and localization 
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Imaging was performed using an Olympus IX83-XDC inverted microscope. TIRF laser 

angles were achieved using a 100X UAPO TIRF objective (NA = 1.50), and active Z-drift 

correction (ZDC) (Olympus America). AlexaFluor647 was excited using a 647 nm solid state laser 

(OBIS, 150 mW, Coherent) and AlexaFluor532 was excited using a 532nm solid state laser (OBIS, 

120 mW , Coherent), both coupled in free-space through the back aperture of the microscope. 

Fluorescence emission was detected on an EMCCD camera (Ultra 897, Andor). Samples were 

imaged in a buffer containing 100mM Tris, 10mM NaCl, 550mM glucose, 1% (v/v) β-

mercaptoethanol, 500 μg/ml glucose oxidase (Sigma) and 40 μg/ml catalase (Sigma). 

Localization of single molecules was performed using custom MATLAB software as 

described previously (271). Briefly, peaks were segmented using a standard wavelet algorithm 

(55) and segmented peaks were then fit on GPUs using previously described algorithms based 

maximum likelihood estimation (58). After localization, points were culled to remove outliers. 

Finally, stage drift was corrected by applying the method of (271). Images were rendered by 

generating 2D histograms from localizations followed by convolution with a Gaussian for display 

purposes. 
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Figure 7.1 Schematic of a cross-correlation measurement without density correction, for a simulated SMLM 
dataset. 

 (a,b) Scatter plots of proteins (a) and corresponding fluorescent labels (b) for a hypothetical pair of uniformly and 
independently distributed proteins, where labels are more likely to label proteins near the edge of the cell. (c) The expected 
number of pairs 1 2 ( )a rρ ρ  for uncorrelated points, and the observed number, assuming that density is uniform. (d) The 
cross correlation estimate is obtained by normalizing the observed number of pairs at a given separation by the expected 
number shown in (c). Note that the simulated points are uncorrelated, so 𝑐𝑐(𝑟𝑟) = 1, and unifˆ ( )c r  shows an artifactual positive 
correlation. 
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Figure 7.2 Two density correction approaches for the cross-correlation measurements of Figure 7.1. 

(a) For the local density correction, the counts of pairs are reweighted so that they match the uniform normalization factor 

1 2 ( )a rρ ρ  in expectation when the points are uncorrelated. By contrast, the local correction uses unweighted counts, and 

instead corrects the expected counts to the normalization factor ( )rγ , constructed from the local densities. (b) Correlation 
function estimates are produced as in Figure 7.1d, as ratios of counts (weighted for local, unweighted for global) to a 
normalization factor ( 1 2 ( )a rρ ρ  for local, ( )rγ  for global). Note that the globally and locally density corrected cross 
correlations are quite close to the ground truth that the two proteins are independently distributed (c(r) = 1). 
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Figure 7.3 Global density correction achieves lower variance than local correction in nonuniform labeling 
conditions. 

(a) Reconstructed image from a simulated dataset. Proteins of two types are distributed uniformly and independently across 
a circular cell. The cell is 20 µm in diameter and there are on average 20 proteins of each type per µm2. Proteins are labeled 
by fluorescent antibodies with location-dependent probability, such that proteins near the edge of the cell are more likely to 
be labeled, as in Figure 7.1a. Each fluorescent label is detected on average 10 times, with a localization precision of 25 nm. 
(b) Average cross-correlation estimates, with either global or local density correction, or without density correction. The 95% 
probability interval of the estimates over 100 replicates of the simulated dataset are shown in like color. 
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Figure 7.4 Density corrections applied to simulated SMLM dataset with uniform labeling but non-uniform 
detection of localizations. 

a) Sample reconstructed image for a non-uniformly overcounted SMLM simulation. Molecules are distributed uniformly and 
independently on a 20 µm diameter cell, with a density of 10 µm-2. Each molecule gives rise to a Poisson-distributed number 
of localizations, with location-dependent mean proportional to the same density profile as in Figure 7.3, and at most 20 
localization per molecule. The same Gaussian-distributed localization precision of 25 nm is used. b) Mean and 95% confidence 
intervals for the 3 correlation function estimators. Note that the global and local correlation functions have similar confidence 
envelopes. 
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Figure 7.5 Comparing pairwise and pointwise edge corrections for the kernel-based 𝛾𝛾 estimators. 

a) Simulated density with edges roughly twice as dense as interior. The transition occurs over around 2 µm. b) Pointwise (𝛾̄𝛾𝜎𝜎 , 
solid) and pairwise (𝛾𝛾�𝜎𝜎 , dashed) edge corrected gamma estimators, normalized to the true value of γ . Three choices of 

.3,σ =  1, or 3 µm are shown. At each value of 𝜎𝜎, the pairwise edge corrected estimator 𝛾𝛾�𝜎𝜎 is closer to the true value. 
Furthermore, 𝛾𝛾�𝜎𝜎deviates from γ  over a shorter range than the 𝛾̄𝛾𝜎𝜎that has similar magnitude of error. 
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Figure 7.6 High-amplitude, short-range density variations lead to bias in estimated normalization factor 𝛾𝛾�𝜎𝜎. 

(a) Simulated density function is the product of perpendicular sine wave patterns over a constant background density. The 
wavelength of the sine waves is 1 µm, and the amplitude is such that the highest density regions are 1.5 times the average 
density. (b) Resulting expected values of 𝛾𝛾�𝜎𝜎 , normalized by the true values γ . Three values of 𝜎𝜎 are shown, with the smallest 
(.3 µm) much smaller than the wavelength of the density, and the largest (3 µm) much larger. The bias of 𝛾𝛾�𝜎𝜎 increases with 𝜎𝜎, 
as detailed features are blurred away. The bias of the small 𝜎𝜎 version is negligible. 
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Figure 7.7 Strong correlations lead to bias in gamma estimates. 

(a) 𝛾𝛾�𝜎𝜎 estimates and (b) autocorrelation estimates using three choices for 𝜎𝜎, for a simulated SMLM dataset consisting of 
uniformly distrubuted, overcounted molecules. Localization errors are simulated with a Gaussian point spread function with 
standard deviation 20 nm. For (a) and (b), the true correlation function peaks at 𝑔𝑔(0) = 40.6. (c) σγ  overestimates as a 
function of σ , for three correlation strengths, indicated by the corresponding g(0) value. Correlation strength is varied in the 
simulations by varying the density of observed molecules. 
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Figure 7.8 Density corrected cross-correlations of phalloidin-AlexaFluor647 and cholera toxin B subunit-
AlexaFluor532 labeling a CH27 B cell. 

(a) Two color reconstructed TIRF dSTORM image of cholera toxin B subunit (CTxB), which binds to the ganglioside GM1 
at the cell surface (green) and phalloidin, which labels actin (magenta). Scale bar is 5 \mu m. (b,c) Kernel-based density 
estimates for the densities in the (b) CTxB and (c) phalloidin channel, respectively, using a smoothing length-scale of 𝜎𝜎 =
1 μm. In both cases, regions of high and low density are apparent. (d) Uncorrected cross-correlation 𝑐̂𝑐unif(𝑟𝑟) shows strong 
deviations from 1 at long distances. (e) The uncorrected 2d cross-correlation 𝑐̂𝑐unif(𝐡𝐡) shows strong and anisotropic deviations 
from 1 and long distances. (f) Globally density-corrected cross-correlations 𝑐̂𝑐global(𝑟𝑟), using the pairwise estimator 𝛾𝛾�, with 𝜎𝜎 
values as indicated. 
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Chapter 8 Conclusions 

In the foregoing chapters I have presented a collection of projects that lead toward a clearer 

picture of the chemical and organizational properties of biological membranes. I will conclude 

with a few remarks on the main results of each project, the direct implications for membrane 

biophysics, and the future work that is enabled by the methods developed here. 

In chapter 3, I present measurements of the chemical potential of cholesterol in synthetic 

membranes with a range of compositions. These compositions span a wide range of cholesterol 

concentrations so that we may draw direct conclusions about non-idealities of the concentration 

dependence in these membranes. Indeed, we observe that mixtures of cholesterol with different 

phospholipids reveal qualitatively different concentration dependence of the chemical potential. 

Mixtures with a fully unsaturated phospholipid, for example, are close to the ideal mixing 

behavior, but mixtures with a fully saturated phospholipid reveal very favorable interactions at low 

cholesterol concentrations, rapidly transitioning to unfavorable interactions at higher cholesterol 

concentrations. A third phospholipid with one saturated and one unsaturated acyl tail shows the 

opposite behavior, with interactions becoming more favorable as cholesterol concentration is 

increased. Notably, we find that the different phospholipid interactions lead to meaningful 

differences in cholesterol chemical potential, which can be as large as 1.5 𝑘𝑘𝐵𝐵𝑇𝑇 at a fixed cholesterol 

concentration. To contextualize the size of this difference, it could correspond to a factor of 5 

difference in cholesterol binding to a low-affinity binding site. Our measurements can be compared 

directly to measurements of cholesterol chemical potential in red blood cells (223). We also present 

measurements in three-component mixtures of cholesterol with two phospholipids. These 

measurements include compositions that phase separate, and we observe constant chemical 

potential along tie lines in the two-phase coexistence region, as required for equilibrium. 

Furthermore, contours of the chemical potential outside of the coexistence region are roughly 

parallel to the tie lines, suggesting that the interactions that determine the chemical potential in 

that regime are similar to those that cause phase separation in these mixtures. Future experiments 

could directly characterize this connection by measuring the cholesterol chemical potential in 

conditions such as alkanol treatments that perturb the boundary of the two phase region (333), with 
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the expectation that cholesterol chemical potential is well predicted by the distance in composition 

from the two-phase region. Because cell plasma membranes reside near a similar region of two 

phase coexistence, we also hypothesize that the chemical potential of cholesterol in cells will 

follow the qualitative trends observed in these simpler systems. The close connection between the 

chemical potential of one component and the abundance of other species in the membrane suggests 

that many common membrane-active treatments could be acting by modulating the chemical 

potentials of other species and thus affecting the allosteric modulation of some protein by that 

species. It will be important to develop experiments to distinguish these indirect effects from direct 

modulation by the treatment in question. 

We explored a family of simple thermodynamic models based on regular solutions theory, 

and found them to be largely consistent with the measured chemical potentials. Fitting these 

models to the data led to useful conclusions about the energy scales of interactions implied by the 

best fit parameters. In particular, we can conclude that, for a popular model that involves 

stoichiometric binding of cholesterol to saturated phospholipids, the binding affinity of cholesterol 

to the lipid is constrained by this data to be fairly weak, in contrast to the expectations from other 

kinds of data (255, 257, 258). 

One further avenue for extending these measurements could address the determinants of 

the distribution of cholesterol between the two leaflets of asymmetric membranes. Asymmetric 

membranes have received renewed attention in recent years with increased appreciation for the 

fact that lipid compositions and protein biophysical properties are quite different in the two leaflets 

of mammalian plasma membranes (261). It is difficult to directly measure the asymmetric 

distribution of cholesterol because it can flip between the two leaflets much faster than 

experimental timescales, but it has been noted that the phospholipids of the outer leaflet provide a 

more favorable environment for cholesterol than the inner leaflet, suggesting that cholesterol 

mostly resides in the outer leaflet. The methods described here can be readily extended to give 

insight into this question, by performing separate measurements of cholesterol chemical potential 

in membrane compositions that mimic the inner and outer leaflet, respectively. An estimate for the 

distribution of cholesterol between the leaflets can then be obtained by finding the chemical 

potential such that the average of the corresponding inner and outer leaflet cholesterol 

concentrations coincides with the cholesterol concentration overall in the asymmetric membrane. 
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(Note that this is not the whole story, since it neglects the contribution of differential stress induced 

by having more lipids in one leaflet than the other (262)). 

The remaining chapters present method developments for single molecule localization 

microscopy. Although these methods are broadly applicable to improving the quality and analysis 

of SMLM datasets, they are undertaken with the primary goal of increasing the accessibility of 

spatially detailed and subtle, low-contrast organization of proteins on the plasma membrane. 

In chapter 4, I describe a new method for correcting microscope stage drift in SMLM 

datasets. This method relies on a simple and robust mean shift algorithm for estimating the stage 

drift from subsets of the SMLM data. It is shown to be in some cases more robust than existing 

methods (61), so that drift can be estimated from smaller subsets of the data, with higher time 

resolution. Good time resolution is essential for correcting nonlinear drift, which we do observe in 

our microscopes. In addition, the reduced computational requirements of this method enable 3d 

drift correction, for which previously reported methods either required vast computational 

resources or degraded precision. Together, these developments improve the precision of drift 

correction, and therefore the ultimate precision of the SMLM dataset. This improved precision 

implies that finer details of biological samples can be distinguished, including weak colocalization 

of membrane components. 

Chapter 5 defines an objective metric called the localization spread function for evaluating 

the quality of SMLM datasets. By analogy with the PSF of a microscope, the LSF describes the 

distribution of localization errors with respect to the true location of the fluorophore that produces 

them, including the contributions from all of the steps of the SMLM analysis process. The LSF is 

also the primary determinant of the spatial scales that can be accessed by pair correlation analysis 

of SMLM data. We demonstrate how the LSF can be estimated directly from an SMLM dataset 

by exploiting the temporal characteristics of switching that characterize SMLM probes. Notably, 

our method for estimating the LSF can specifically distinguish the instantaneous localization 

precision from processes that induce additional spatial errors over a time delay, including 

imprecise correction of microscope stage drift. While it is standard practice to evaluate new 

methods on simulated datasets where the ground truth is known, the ability to determine the LSF 

directly and objectively from biological samples will be essential to evaluating the ways new 

methods interact with the idiosyncrasies of the sample of interest, as well as other aspects of the 

existing analysis pipeline. Notably the LSF is sensitive to the entire SMLM process: sample 
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preparation, microscope properties, imaging parameters and all of the steps of analysis, so can be 

used as an objective when improving any of those steps. Additionally, an objective metric is useful 

in training microscopists, by giving concrete feedback on how to choose imaging parameters for 

best image quality. 

Finally, chapters 6 and 7 develop a method for estimating the pair correlation functions of 

target molecules that are observed through a sampling process that is not uniform in space. This 

situation can arise in SMLM, especially in biological samples that present excessive constraints 

on the optimization of the labeling procedure. We show that the new estimator has improved bias 

and variance compared to an existing estimator that applies to this situation (88), and demonstrate 

its application to simple point processes in chapter 6, and to SMLM datasets with overcounting in 

chapter 7. We anticipate that these methods will be invaluable for analyzing the organization of 

some fixed-cell SMLM datasets that are difficult to label uniformly. In addition, these methods 

have already been extended to spatiotemporal pair correlation functions in live cell SMLM 

datasets, where non-uniform sampling is frequently due to the photobleaching of diffusing probes. 

Probes that have diffused to the center of the illuminated region of the cell have on average been 

exposed to illumination for a longer time, and therefore are more likely to have photobleached. 

These methods are actively being applied to live cell SMLM in the Veatch lab (23, 91). 

Together, the improvements to SMLM imaging represented by Chapters 4-7 will make 

way for more precise measurements of more subtle organization on biomembranes. This type of 

measurement has already been essential for establishing a link between the phase behavior of 

membranes and the organization of membrane proteins. In the future, more precise measurements 

will enable this link to be extended to new systems, especially systems where the interactions 

between the proteins of interest and the membrane are weak. In particular, I hope that SMLM will 

soon be able to detect correlations between single, unclustered proteins and markers of membrane 

phases. 

More generally, this dissertation strengthens the connections between membrane phase 

behavior and biological function. This includes introducing a new link between the chemical 

potentials of membrane components and membrane phase behavior, with a focus on cholesterol, 

and also paving the way for future measurements of the organization of proteins on biomembranes. 
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