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ABSTRACT

Single-cell RNA sequencing (scRNA-seq) and Spatial Transcriptomics (ST) have

become instrumental tools to understand cellular dynamics and heterogeneity in

disease-related tissues. As these technologies rapidly advance, many statistical and

computational challenges arise in analyzing them, and relatively few methods address

the challenges in the upstream processing of data from rapidly evolving technologies.

This dissertation investigates computational challenges of upstream data analysis for

scRNA-seq and ST, including quality control to identify and filter out droplets com-

prised of ambient RNAs, enabling high-resolution inference of ST data from a new

submicrometer resolution technology, and developing robust computational tools and

pipelines capable of handling ST platforms at various resolutions.

Following a brief overview of scRNA-seq, ST technologies and related challenges

in Chapter I, in Chapter II, we focus on the problem of distinguishing cell-containing

droplets from cell-free droplets that mostly contain ambient RNAs in scRNA-seq data

from multiple angles. By leveraging efficient randomization, manifold visualization,

statistical test tailored for sparse scRNA-seq data, and machine learning methods,

we develop SiftCell, a suite of software tools to identify and visualize cell-containing

and cell-free droplets in manifold space via randomization, to classify between the

two types of droplets, and to quantify the contribution of ambient RNAs for each

droplet. We also develop Sparse Quantile Aggregation Test (SQuAT), a statisti-

cal test designed to aggregate quantile-based summary statistics from many sparse

xiv



discrete datasets for meta-analysis. SQuAT robustly identifies likely cell-containing

droplets and highly variable genes across cell types in sparse scRNA-seq data and is

integrated as a core statistical method in SiftCell. Through a comprehensive evalua-

tion of three scRNA-seq or snRNA-seq datasets we demonstrate that SiftCell enables

new visualization of locating cell-free droplets in the manifold space and outperforms

existing methods in filtering cell-containing droplets and in quantifying ambient RNA

contribution.

In Chapter III, we introduce Seq-Scope, a new submicrometer resolution ST tech-

nology that repurposes the Illumina sequencing platform to achieve high resolution

and scalability. Unlike other ST technologies, Seq-Scope does not require cumber-

some image processing steps and leverages the existing sequencing platform to obtain

spatial barcodes that are 0.5 − 0.8µm apart from each other, achieving a resolution

comparable to that of an optical microscope. We performed the complete Seq-Scope

experimental and analytical procedure on two representative gastrointestinal tissues

(liver and colon). This chapter focuses on the computational aspects that enable the

analysis of data produced from the new Seq-Scope technology.

In Chapter IV, we build a comprehensive software pipeline STtools that provides

a versatile framework to handle ST datasets with various resolutions. STtools is

designed to efficiently align, cluster and visualize ST data scaling with millions of

spatially resolved barcodes. STtools improves the resolution of spatial inference com-

pared to typical segmentation-based approaches by leveraging the Multi-scale Sliding

Window (MSSW) algorithm. We applied STtools to several ST platforms, including

Seq-Scope, Slide-seq and VISIUM and showed that STtools enables both analysis and

visualization at various resolutions.

xv



CHAPTER I

Introduction

1.1 Background

RNA sequencing (RNA-seq) is an important tool in molecular biology and biomed-

ical research that allows researchers to quantify gene expression levels in a sample of

cells or tissue(Wang et al. (2009);Li and Wang (2021)). By analyzing RNA-seq data,

researchers can identify which genes are being actively transcribed and at what lev-

els, providing insight into the molecular mechanisms behind disease development or

progression and aids in the development of targeted therapeutics(Ozsolak and Milos

(2011)).

RNA-seq technology has advanced significantly in recent years, evolving from

classic bulk RNA-seq, popular single-cell RNA-seq(scRNA-seq) to newly emerging

Spatial Transcriptomics(ST).

Bulk RNA-seq involves sequencing the RNA extracted from a population of cells,

providing average global gene expression levels across all cells in a sample(Wang et al.

(2009),Stark et al. (2019)). It is useful for identifying differentially expressed genes

(DEG) between different tissues, conditions, or time points. However, bulk RNA-

seq cannot capture cell-to-cell variability, or distinguish gene expression differences

between individual cells within the population and can mask rare cell populations.

The development of scRNA-seq is motivated by the imperative need to unravel
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the heterogeneity of gene expression patterns across individual cells within a popula-

tion(Jovic et al. (2022)). scRNA-seq technologies allow us to simultaneously profile

the transcriptomes of thousands of individual cells, enabling us to understand the

regulatory impact of genetic, developmental, environmental, and clinical determi-

nants in a single cell resolution (Klein et al. (2015); Macosko et al. (2015)). Single

nucleus RNA-sequencing (snRNA-seq), Single cell ATAC sequencing (scATAC-seq),

Single nuclei ATAC sequencing (snATAC-seq) and other high throughput single cell

genomic profiling technologies (Buenrostro et al. (2015); Habib et al. (2017); Preissl

et al. (2018)) can also scale to thousands of cells or nuclei, providing us with the com-

prehensive epigenomic landscape of individual cells or cell types. The rapid advances

of single-cell genomic technologies have revolutionized our ability to understand the

dynamics of individual cells and have given us unprecedented opportunities to charac-

terize cellular heterogeneity, which is essential for understanding and treating human

disease.

scRNA-seq is an effective technique for revealing gene expression profiles of indi-

vidual cells in liquid tissues such as blood. However, it is not adequate for revealing

the cellular heterogeneity in solid tissues. scRNA-seq for solid tissues requires exten-

sive tissue dissociation and single-cell sorting procedures. The rigorous techniques em-

ployed during these procedures can create harsh conditions that may eliminate labile

cell populations and induce stress responses(Volovitz et al. (2016); O’Flanagan et al.

(2019)). The practical obstacle drives the rapid developments in spatially resolved,

high dimensional assessment of gene transcriptome, known as ‘spatial transcriptomics’

(ST) that combines the power of scRNA-seq and the ability to spatially map gene

expression patterns within a tissue without inducing stress, cell death, and/or cell

aggregation (Williams et al. (2022)). By capturing the transcriptome directly from

a frozen tissue slice, ST can be used to characterize transcriptional patterning and

regulation in tissues, reveal tissue neighborhoods and local features contributing to
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disease and be used to study individual cells and cell types in detail (Garcia-Alonso

et al. (2021)).

1.2 Importance of Upstream Quality Control in Single-cell

RNA Sequencing

As scRNA-seq has become essential for biomedical research over the past decade,

many software tools have been developed for downstream analysis such as to iden-

tify cell types(Grün and van Oudenaarden (2015);Jiang et al. (2016); Kiselev et al.

(2017); Tsoucas and Yuan (2018)) or developmental trajectories (Qiu et al. (2017);

Schiebinger et al. (2019); Setty et al. (2016); Welch et al. (2016)), to account for sys-

tematic differences across experimental batches or technologies, to identify differen-

tially regulated genes by clinical variables or genotypes (Ntranos et al. (2019); Soneson

and Robinson (2018)), or to enable efficient single cell experiment via multiplexing

(Stoeckius et al. (2018)). Whereas only few methods were developed for upstream

quality control(Lun et al. (2019),Alvarez et al. (2020),Fleming et al. (2019)). In fact,

such quality control is crucial to ensure that the downstream analysis is not misled

by potential technical artifacts, such as sequence alignment or Digital Gene Expres-

sion (DGE) matrix generation. Incorrectly filtered scRNA-seq/snRNA-seq may lead

to identifying spurious clustering or false positive cell types.

A key computational challenge for upstream quality control is to identify libraries

for droplets containing real cells. Ideally, scRNA-seq reads from individual cells or

nuclei are distinctly barcoded, however, in reality, each observed barcode may not cor-

respond to a single cell or nucleus. One of the the reason lies in that a droplet may fail

to encapsulate the entirety of single cell, and instead captures “cell debris” or “am-

bient mRNAs” produced from the damaged and lysed cells. Barcodes derived from

such droplets containing defective or ambient mRNAs may be mistaken to represent
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single cell transcriptome while they are not. We will denote such a barcoded droplet

enriched for ambient RNAs as “cell-free droplets”. Because these cell-free droplets

enriched for ambient mRNAs do not represent single cells, failure in filtering out such

droplets produces misleading interpretations in the downstream analysis. Hence, it

is an essential quality control procedure to filter out cell-free droplets to ensure that

scRNA-seq and snRNA-seq analysis produce biologically relevant information. How-

ever, distinguishing cell-free and cell-containing droplets is often challenging, and

incorrect discrimination may mislead the downstream analysis substantially.

In Chapter II, we focus on the challenges of contamination from ambient RNAs

in single-cell and single-nucleus RNA-seq experiments and propose SiftCell, a suite

of software tools to visualize cell-free and cell-containing droplets in a more intuitive

way, to robustly classify between the two types of droplets and to quantify the fraction

of ambient RNAs contamination in each droplet.

1.3 Limited Resolution of Existing Spatial Transcriptomics

Technology

Spatial Transcriptomics (ST) is a newly developed technology for analyzing gene

expression patterns in tissues while preserving their spatial organization (Asp et al.

(2020)). There are three main experimental methods for ST: (1) the sequential

in situ hybridization method which can increase the number of RNA species that

can be detected from a single histological section. (2) in situ sequencing which can

identify RNA sequences from the tissue by fluorescence-based direct sequencing. (3)

spatial barcoding methods that associate RNA sequences and their spatial locations

by capturing tissue RNA using a spatially barcoded oligonucleotide array. The ST

field continues to grow rapidly and in 2021 and was named ‘Method of the Year 2020’

by Nature Methods (Marx (2021)).
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Despite the fast pace of ST technology development, there is still an intrinsic

limitation due to the low-resolution specifications of current ST technologies. For ex-

ample, VISIUM from 10X Genomics has a center-to-center resolution of 100µm (Asp

et al. (2020)), which is worse than that of the naked eye (40µm). More recent tech-

nologies, such as Slide-Seq, HDST, and DBiT-Seq, improved the resolution (Rodriques

et al. (2019); Vickovic et al. (2019); Liu et al. (2020)); however, their resolutions are

still far coarser than optical microscope that has submicrometer resolution. In ad-

dition to the technical challenge, there is also the needf for computational tools to

efficiently map between millions of spatial barcodes and RNA sequences and to deal

with the sparsity of sequence reads when focusing on small regions corresponding to

single cell or subcellular regions.

In chapter III, we introduced a ST technology “Seq-Scope” that achieves submi-

crometer resolution, comparable to an optical microscope. We conducted a series of

computational analysis to show that Seq-Scope visualizes ST heterogeneity at multi-

ple histological scales.

1.4 Need for Software Pipelines to Handle Ultra-high-resolution

Spatial Transcriptomics Data

With the rapid development of ST technologies, many analytical software pipelines/tools

(10x Genomics, 2022; Palla et al. (2022); Petukhov et al. (2022), etc.) have been de-

veloped for researchers to analyze, interpret and gain insights from the large and com-

plex ST datasets. Current software tools analyzing spatially resolved transcriptomes

are primarily designed for relatively coarse resolution technologies such as VISIUM

or Slide-Seq, where each spatial barcode typically represents more than a single cell.

However, when analyzing transcriptome spatially resolved at a micrometer or a sub-

micrometer resolution, current tools perform poorly due to several challenges. Low-
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vs high-resolution ST datasets are very different with orders of magnitude differences

in the number of spatial barcodes per mm2. As the resolution increases, the reads per

spatial barcode become sparser, which necessitates the development of robust meth-

ods to make inferences from sparse data at high resolution. Furthermore, scalable

methods are needed to process hundreds of millions of barcodes and RNA sequences

together and new software tools/pipelines are needed to support emerging new ST

technology with high resolution.

In Chapter IV, we present STtools, a comprehensive ST pipeline that provides

a versatile framework to handle ST platforms with various resolutions including but

not limited to VISIUM, Slide-Seq and Seq-Scope. STtools is designed to efficiently

align, cluster and visualize ST scaling with millions of spatially resolved barcodes.

1.5 Future Directions

RNA sequencing has revolutionized human genetics research by enabling researchers

to study the expression and regulation of genes at the transcriptome level. Over the

past decade, RNA-seq has evolved from bulk RNA-seq, which provides an average

measure of gene expression across all cells in a sample, to scRNA-seq, which en-

ables the measurement of gene expression in individual cells. More recently, ST has

emerged as a powerful technology that enables the analysis of gene expression in a

tissue context. And it is still rapidly evolving with emergence of new technologies

and studies accompanied by new statistical and computational challenges. In Chap-

ter V, we review our work that focus on the problem of distinguishing cell-containing

droplets from cell-free droplets that mostly contain ambient RNAs in scRNA-seq and

snRNA-seq data from multiple angles, computational/pipeline challenges for analyz-

ing submicrometer-resolution data produced from the new Seq-Scope spatial tran-

scriptomics technology. In addition, we examine the limitations of current studies,

discuss remaining challenges and explore future opportunities.
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CHAPTER II

SiftCell : A Robust Framework to Identify and

Filter Cell-free and Cell-containing Droplets from

Single-cell RNA Sequence Reads

2.1 Background

2.1.1 Droplet Barcoding and Ambient RNAs

In single-cell RNA sequencing(scRNA-seq), droplet barcoding is a technique to

uniquely label individual cells or nuclei so that thousands or millions of cells or nu-

clei can be simultaneously sequenced in a single library. The sequenced reads can

be grouped into the originating cells or nuclei according to the barcodes, and the

grouped information is used for the downstream single cell analysis. However, each

observed barcode may not correspond to a single cell or nucleus due to several rea-

sons. First, sequencing errors may lead to incorrect assignment of each read into its

originating cells or nuclei. Second, two or more cells or nuclei can be encapsulated

within the same barcoded droplet, forming “multiplets”, either stochastically or due

to imperfect dissociation of tissues (Cao et al. (2017); Klein et al. (2015); Macosko

et al. (2015)). Third, a droplet may fail to encapsulate the entirety of a single cell,

and instead captures “cell debris” or “ambient mRNAs” produced from the damaged
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and lysed cells (Figure 2.1). Barcodes derived from such droplets containing defective

or ambient mRNAs may be mistaken to represent single cell transcriptome while they

are not. We will denote such a barcoded droplet enriched for ambient RNAs as “cell-

free droplets”. It is reported that scRNA-seq from solid tissues are more enriched for

ambient mRNAs, particularly when incubated at high temperature (O’Flanagan et al.

(2019)), which renders cells to be more vulnerable and therefore producing more cell

death and lysis. Different technologies have different susceptibilities of contaminating

their datasets with cell-free droplets. For example, snRNA-seq technologies inherently

produce more ambient mRNAs, therefore are more likely to generate cell-free droplets

compared to conventional scRNA-seq (Alvarez et al. (2020)). Because these cell-free

droplets enriched for ambient mRNAs do not represent single cells, failure in filter-

ing out such droplets produces misleading interpretation in the downstream analysis.

Therefore, filtering out cell-free droplets are an essential quality control procedure to

make sure scRNA-seq and snRNA-seq analysis produces biologically relevant infor-

mation.

Collect
In an ideal world

In a real world

Without ambient RNAs
contamination

With ambient RNAs
contamination

Cells
Enzyme

Oil

Single Cell
GEMs

Ambient RNAs

Cell
Barcoded beads

Figure 2.1: Droplet barcoding and ambinet RNA contamination. In droplet barcoded
microfluidoc devices, both cells and ambient RNAs that were released from damaged
or lysed cells can be encapsulated in a droplet representing a cell-containing droplet.
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2.1.2 Literature Review on Droplet Filtering Methods

In real-world scRNA-seq data, many barcoded droplets do not contain cells, but

instead, they capture a fraction of ambient RNAs that were released from damaged or

lysed cells. A typical first step to analyze droplet-based scRNA-seq data is to filter out

cell-free droplets and isolate cell-containing droplets. The simplest and most widely

used strategy to filter out cell-free droplets is to remove droplets with very low num-

ber of unique reads or Universal Molecular Identifier (UMI) counts. This strategy is

based on the simple fact that, compared to cell-containing droplets, cell-free droplets

contain less mRNAs because ambient mRNAs will be excessively diluted in the me-

dia surrounding the cells, leading to low UMI counts. Earlier versions of cellRanger

and DropseqTools software tools filter out droplets below a certain UMI cutoff deter-

mined from the distribution of UMI counts across the barcoded droplets and from a

user-specified parameter of expected number of cells using knee plots(Macosko et al.

(2015); Zheng et al. (2017)). While this strategy works quite effectively in practice, it

relies on a simplistic assumption that all droplets containing individual cells will have

higher UMI counts than other barcoded droplets. Because UMI counts result from a

stochastic procedure involving multiple factors, this simplistic assumption does not

always hold.

Recently, alternative approaches have been developed to identify and filter out cell-

free droplets using more sophisticated statistical models. For example, EmptyDrops

method (Lun et al. (2019)), which is adopted to the newer version of cellRanger (v3),

first determines a UMI cutoff from the knee plot to identify cell-containing droplets,

and then attempts to rescue droplets below the UMI cutoff using a statistical test. The

assumption is that the expression profile of cell-free droplets is homogeneous, which

can be estimated as a Dirichlet-Multinomial distribution. If the likelihood of observed

read count from a barcoded droplet is significantly lower than those from simulated

reads, EmptyDrops identifies them as cell-containing droplets. EmptyDrops is useful
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only for rescuing cell-containing droplets with lower UMI counts and cannot filter out

cell-free droplets with high UMI counts. DecontX and SoupX (Yang et al. (2020);

Young and Behjati (2020)), on the other hand, assumes that every droplet contains a

certain fraction of ambient RNAs, and attempts to estimate the proportion of ambient

RNA contamination, and determines cell-free droplets if the estimated proportion

is above a specific threshold. A recently developed method DIEM (Alvarez et al.

(2020)), uses an Expectation-maximization (E-M) algorithm (Dempster et al. (1977))

to cluster barcoded droplets into cell types while modeling cell-free droplets as a

separate cluster using Dirichlet-Multinomial distribution. CellBender uses a deep

generative model implemented by neural auto-encoders to model scRNA-seq data

and applies a variational mix to evaluate the posterior probability of cell-free droplet.

Finally, DropletQC (Muskovic and Powell (2021)), estimates proportion of intronic

reads from sequence reads and use the information to separate droplets containing

damaged cells or ambient RNAs.

2.1.3 SiftCell Framework

While these droplet filtering methods demonstrated their utility in some of the real

datasets, it is often not clear what are objective criteria to evaluate their performances

in distinguishing cell-containing droplets from cell-free droplets.

Here, we propose SiftCell, a suite of three software tools ( SiftCell-Shuffle, SiftCell-

Boost and SiftCell-Mix ) to address challenges due to cell-free droplets in conceptually

unique ways (Figure 2.2).

The first tool SiftCell-Shuffle, allows us to visually distinguish cell-free and cell-

containing droplets in sc/snRNA-seq experiments to help filter out cell-free droplets.

SiftCell-Shuffle takes an arbitrary DGE matrix to visualize the distribution of poten-

tially cell-free barcoded droplets in a manifold space using randomization. The second

tool, SiftCell-Boost distinguishes cell-containing droplets from cell-free droplets using
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DGE 𝑋

Gene
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Cell Type 1
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I &
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Positive Labels

+

…
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MLE

Weighted Average

User-provided
Cell-type labels

Manifold

Figure 2.2: Overview of SiftCell Framework. The SiftCell software package includes
three tools for visualizing and filtering barcoded droplets from scRNA- or snRNA-seq
experiments: SiftCell-Shuffle visualizes original barcoded droplets with randomized
droplets on a manifold space to distinguish cell-containing and cell-free droplets vi-
sually in the manifold space; SiftCell-Boost classifies cell-containing droplets and
cell-free droplets by leveraging the results from SiftCell-Shuffle results with gradient
boosting algorithm; SiftCell-Mix estimate the proportion of ambient RNAs in each
barcoded droplet.

a semi-supervised learning algorithm guided by the labels generated with SiftCell-

Shuffle. The third tool, SiftCell-Mix is a model-based method that allows estimation

the proportion of “ambient RNAs” in each barcoded droplet. We also provide a com-

prehensive evaluation of existing methods to identify cell-free droplets. Therefore, in

addition to providing an intuitive way of eliminating cell-free droplets and selecting

cell-containing droplets, our method can evaluate and visualize the strength of each

different previously available method to inform users to guide the best practice for

handling cell-free droplets.
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2.2 Results

2.2.1 SiftCell-Shuffle Visually Distinguishes Cell-free Droplets from Cell-

containing Ones

Even though there are multiple methods to determine cell-containing droplets

from sc/snRNA-seq data, currently there is no systematic way to evaluate whether

one method more robustly distinguish cell-containing and cell-free droplets than the

other method with real data. Previous studies utilized indirect measurement, such as

fraction of mitochondrial RNA (mtRNAs) (Alvarez et al. (2020)) or UMI counts (Lun

et al. (2019)), but they can be confounded by cell types (e.g. some cell types may

contain more mtRNAs and less UMIs) or technical factors (e.g. some scRNA-seq preps

contain high amount of ambient mRNAs). Other studies compared manifold plots

(such as Uniform Manifold Approximation and Projection (UMAP) or t-Distributed

Stochastic Neighbor Embedding (t-SNE)) after applying different filtering method

and argue for one over the other based on their visual patterns of clustered cell types

(Fleming et al. (2019)), but such interpretations can easily become subjective.

We developed SiftCell-Shuffle, a randomization-based scRNA-seq visualization

tools focusing on distinction between cell-containing and cell-free droplets. SiftCell-

Shuffle assumes that the ambient RNAs are distributed as a pseudo-bulk (i.e. in a

single distribution across all dataset) while cell-containing RNAs are distributed in a

cell-type-specific manner. Based on this assumption, SiftCell-Shuffle creates a digi-

tal expression matrix that mimics the “bulk” distribution by randomizing the droplet

barcode assignments across the UMIs. After randomization, the original and random-

ized DGE matrices are jointly analyzed using a standard scRNA-seq workflow (e.g.

Seurat) and individual droplets are visualized in a t-SNE and/or UMAP manifold

space (Figure 2.2, See Materials and Methods for further details). For cell-containing

droplets, the original and randomized data should have very different transcriptomic
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profiles and will be located at very distant points to each other in the manifold space.

For cell-free droplets containing mostly ambient RNAs, the original and randomized

data are more likely to be located in close proximity, so the cluster of cell-free droplets

can be clearly visualized.

We first assessed the performance of SiftCell-Shuffle in the three experimental

scRNA-seq or snRNA-seq datasets. First is scRNA-seq of 10, 000 peripheral blood

mononuclear cells (PBMC) using 10X Chromium v3 chemistry. Second is snRNA-seq

of 1, 000 E18 mouse brain nuclei using 10X Chromium, available at https://www.

10xgenomics.com/resources/datasets. Third is scRNA-seq of 1, 000 cultured

colon mixture data pooled across 3 cell lines (RKO, HCT116, SW480), profiled using

Drop-Seq technique(Park et al. (2020)). We expect that the PBMC dataset is more

straightforward to distinguish cell-containing droplets from cell-free droplets than the

other two datasets because snRNA-seq or Drop-Seq are known to be more enriched

for ambient RNAs.

When we applied SiftCell-Shuffle on the unfiltered PBMC dataset together with

unsupervised clustering produced by Seurat (Butler and Satija, 2017 ), we observed

a clear separation between the “original” (clusters 2, 3, 5, 6, 7, 8) and “shuffled”

(clusters 1, 4) droplets in both t-SNE and UMAP manifolds (Figure 2.3 A), except

for the cluster 0, which had much lower UMI counts than other clusters (Figure 2.3B,

2.3 C). The original droplets that belongs to cluster 0 showed larger dispersion of

UMIs across genes (Figure 2.3 C), and is also enriched with mtRNAs (18.5% of UMIs

compared to 10.1% in other clusters; Figure 2.3 D). Altogether, these observations

strongly suggest that the Cluster 0 represents cell-free droplets enriched for ambient

mRNAs. On the other hand, the rest of clusters containing original droplets (cluster

2, 3, 5, 6, 7, and 8) contained very few randomized droplets (0 - 0.5%), suggesting

that they likely represent cell-containing droplets with different cell types. Using

known marker genes specific to immune cell types, we demonstrated that each of these
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I J K L

PBMC

Brain Nuclei

Colon Cell Line
Mixture

Figure 2.3: Visualization of SiftCell-Shuffle results in t-SNE manifold space. These
four panels visualize original and randomized droplets from the result of SiftCell-
Shuffle for PBMC dataset(A-D), brain nuclei dataset(E-H) and colon cell line mix-
ture dataset(I-L) in t-SNE manifold space generated using Seurat v3(Butler et al.
(2018)). The t-SNE manifolds were colored by (A ,E, I) original (blue) vs. random-
ized (grey) droplets, (B, F, J) clusters produced by Seurat with with FindNeighbors
and FindClusters functions, (C, G, K) the total number of UMIs in logarithmic scale
corresponding to the droplet across all genes, and (D, H, L) the fraction of mitochon-
drial RNAs in logarithmic scale. For PBMC dataset, In (A), we see clear separation
between the original (blue) and randomized (gray) droplets except for the cluster
(cluster 0 in (B)) in the lower-right quadrant, which we believe to be enriched for
cell-free droplets. This cluster tends to have lower UMI counts in (C) and con-
tains droplets with higher proportion of mitochondrial RNAs in (D). However, it is
important to know that not all randomized droplets are clustered together in (A).
Randomized droplets with higher UMI counts tend to form their own clusters (clus-
ter 1 and 4 in (B)). This is because randomized droplets with higher UMI counts do
not necessarily share similarities with cell-free droplets, because UMI count plays a
role as a confounding variable. Similarly, for brain nuclei data, In panel (E), original
(blue) and randomized (gray) droplets are separated clearly except for the droplets
in cluster 0 in (F). This cluster is believed to be enriched for cell-free droplets with
lower UMI count which can be shown in (G). However, not all randomized (gray)
droplets are clustered together. Droplets with higher UMI count tend to form a sep-
arate cluster (cluster 1,3 in (F)). Similar observation can be found for colon mixture
cell line dataset.
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PBMC

Figure 2.4: Feature plot of cell type-specific marker genes in PBMC dataset. The
eight panels (A-H) visualize the feature plot using known marker genes specific to
eight immune cell types, LYZ for Monocyte, NKG7 for NK cells, MS4A1 for B cells,
PPBP for Platelet cells, CD8A for CD8+ and T cells, S100A4 for memory CD4+

cells, CST3 for Dendritic Cell (DC) and Monocyte, HLA-DRA for B cell, DC and
Monocyte.

clusters indeed show specific enrichment for specific immune cell types, while cluster 0

shows non-specific expression across most of these genes (Figure 2.4). By visualizing

both original and randomized droplets together in a single manifold space, our results

suggest that SiftCell-Shuffle distinguishes clusters of cell-containing droplets from

cell-free droplets in a straightforward and visually interpretable/inspectable way.

We made similar observations when applying SiftCell-Shuffle on the other two

datasets. For example, among the 5 clusters of brain nuclei, original droplets (clus-

ters 0, 2, 4) and randomized droplets (clusters 0, 1, 3) were well-separated except for

cluster 0, suggesting that it represents cell-free droplets (Figure 2.3 E,F). Cluster 0

also tend to have the lower UMI counts and high mtRNAs overall. Interestingly, In

cluster 2, we also observed that a substantial fraction of the droplets with high mtR-

NAs (Figure 2.3 H). These droplets may represent nuclei undergoing necrosis (Young
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DB CA

HF GE

Colon Cell Line Mixture 

Figure 2.5: Feature plot of cell type-specific marker genes in colon cell line mixture
dataset. The eight panels visualize the feature plot using known marker genes specific
to three colon cell line mixture - HCT116, SW480 and RKO. The eight selected genes
are specifically enriched for RKO (A, B, C, G), SW480 (D, H), or HCT116 (E, F).

and Behjati (2020)) or “nucleus-containing” droplets that also contain a substantial

amount of ambient RNAs. When applying SiftCell-Shuffle on the Drop-Seq dataset

of colon cell line mixture, we observed four distinct clusters, three representing each of

three cell lines, and the largest cluster representing cell-free droplets with much lower

UMI counts (Figure 2.3 I-L). Clusters representing each cell line were enriched for

genes specific to the cell line (Park et al. (2020)), while the cell-free cluster tends to

express most of these genes at a lower expression levels, suggesting that they contain

ambient mRNAs as a mixture of multiple cell lines (Figure 2.5).

Across the three datasets, visualizing the original and randomized droplets in a

low-dimensional manifold space provided us with a straightforward way to distin-

guish cell-free and cell-containing droplets. Applying unsupervised clustering based

on shared nearest neighbor (SNN) (Waltman and Van Eck (2013)) was effective in

distinguishing clusters of cell-free droplets from cell-containing droplets in PBMC
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(Figure 2.3 A-D) and brain nuclei (Figure 2.3 E-H). However, in colon cell line mix-

ture, one of the clusters (cluster 1) largely contained both cell-containing (mostly

HCT116) and randomized droplets together (Figure 2.3 I,J), suggesting that unsu-

pervised clustering does not always distinguish clusters of cell-free droplets automat-

ically. Moreover, distinguishing cell-containing droplets from cell-free droplets by

visual inspection from SiftCell-Shuffle without additional “gold-standard” labels in-

volves subjective decision by users and may be hard to be automated in a software

tool. Therefore, while SiftCell-Shuffle is an intuitive and human-interpretable ap-

proach to identify clusters of cell-free droplets, it does not completely replace existing

methods to filter cell-containing droplets in a more systematic fashion.

2.2.2 Evaluating the Performance of Droplet Filtering Using SiftCell-

Shuffle

Our SiftCell-Shuffle framework can also be used to evaluate different approaches

to filter DGE matrix that allow us to focus on cell-containing droplets in the down-

stream analysis. While this approach would not be as accurate as evaluation based

on “gold-standard” labels, in the absence of knowledge of true cell-free and cell-

containing droplets, SiftCell-Shuffle can provide quasi-groud truth as a silver stan-

dard. We applied four existing filtering methods and visualized the filtering results

in the manifold space produced by SiftCell-Shuffle. By contrasting the distribution

of original and randomized droplets in the manifold space, it clearly demonstrates

that cellRanger2-filtered (by UMI-cutoff) cell-containing droplets more specifically

than the other methods in PBMC dataset (Figure 2.6 A-D). In the brain nuclei

dataset, CellRanger/UMI-cutoff and EmptyDrops much more stringently filtered cell-

containing droplets than DIEM and CellBender (Figure 2.6 F-I). In the mixture of

three colon cancer cell lines, all of the four methods filtered the cell-containing droplets

too stringently (CellRanger/UMI-cutoff) or too leniently (EmptyDrops, DIEM, Cell-
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Figure 2.6: Evaluation of droplet filtering methods with SiftCell-Shuffle. Each panel
visualizes the results of droplet filtering methods in the same manifold spaces de-
scribed in Figure 2.3. Each colored points represents predicted cell-containing droplets
(red), predicted cell-free droplets (cyan), or randomized droplets (grey). Each row
corresponds to PBMC (A-E), brain nuclei (F-J), and colon cell line mixture (K-
O) datasets, respectively. Each column visualizes the results from different droplet
filtering methods, including CellRanger/UMI-cutoff (A,F,K), EmptyDrops (B,G,L),
DIEM (C,H,M), CellBender (D,I,N), and SiftCell-Boost (E,J,O).
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Figure 2.7: %NN-concordance evaluation plot. The three panels visualize the %NN-
concordance among filtered droplets across (A) PBMC, (B) Brain nuclei, and (C)
Colon cell line mixtures. In each plot, %NN-concordance was evaluated in two ways.
The colored lines represent %NN-concordance in logarithmic scale when selecting
top x droplets with highest UMIs as cell-containing droplets. Each point represents
the number of filtered droplets (x-axis) and the corresponding %NN-concordance (y-
axis) across five filtering methods - CellBender, UMI cutoff, DIEM, EmptyDrops and
SiftCell-Boost. With this definition, the CellRanger/UMI-cutoff method will always
be located on the colored line.

Bender) (Figure 2.6 K-N).

Besides visual inspections, we can also quantitatively evaluate droplet filtering

methods using SiftCell-Shuffle. For a filtered droplet, we can quantify how often its

nearest neighbor is an original droplet as opposed to a randomized droplet (named as

% NN-concordance) as a metric. A high %NN-concordance suggest that the filtered

droplets are well-separated from randomized droplets (Figure 2.7 ). A typical method

to determine the number of cell-containing droplet is knee plot (Figure 2.8). However,

our %NN-concordance plot is more informative to pinpoint where ambient RNAs start

to increase. Each filtering method can be placed on this operating characteristic curve

for evaluation, too. For example, in PBMC dataset, it is clear that EmptyDrops is

worse than other methods in terms of % NN-concordance (Figure 2.7 A). Among the

other three methods, DIEM appears to filter too few droplets (n = 9, 112 droplets)

even though %NN-concordant droplets remained high even after 10, 000 droplets. In

brain nuclei and colon cell line mixture, we observed that CellRanger/UMI-cutoff
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A B CPBMC Brain Nuclei Colon Cell Line Mixture

Figure 2.8: Knee plots across PBMC, brain nuclei and colon cell line mixture datasets.
The three panels show the knee plots showing the number of UMIs for each barcode,
ordered by the decreasing order of UMI counts. Both x- and y-axis are in log-scale,
and the color of the plot represents whether the barcoded droplet passed (green) or
failed (red) based on the CellRanger/UMI-cutoff method. Each panel represents (A)
PBMC, (B) brain nuclei and (C) colon cell line mixture datasets.

appears to filter stringently while others filter leniently (Figure 2.6 F,K).

Table 2.1: Number of droplets that are classified as cell-containing or cell-free ex-
clusively to a specific method. Each row represents a method classify cell-containing
droplets, and each column represents “outliers”, meaning the number of droplets clas-
sified differently from the other four methods. All methods, except for SiftCell-Boost,
have at 2 of 3 datasets that have > 200 droplets classified exclusively (i.e. discordant
to all other methods) to them. SiftCell-Boost showed very small number (< 10) of
droplets classified differently from all the other methods.

Method PBMC Brain Nuclei Colon Cell Line Mixture

Exclusive

Cell-containing

Exclusive

Cell-free

Exclusive

Cell-containing

Exclusive

Cell-free

Exclusive

Cell-containing

Exclusive

Cell-free

CellRanger/UMI-cutoff 0 0 0 268 0 455

CellBender 646 0 836 0 2059 0

DIEM 0 1427 0 17 381 3

EmptyDrops 188 647 28 22 249 0

SiftCell-Boost 0 5 0 3 0 12

2.2.3 SiftCell-Boost Robustly Filters Cell-containing and Healthy Droplets

Because none of the existing droplet filtering methods always provided satisfactory

performance across all datasets in our evaluation, we next attempted to develop a
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method to filter cell-containing droplets by leveraging results from SiftCell-Shuffle.

Our approach applies a gradient boosting classification algorithm XGBoost (Chen and

Guestrin (2016)) by assigning randomized droplets as negative labels (representing

ambient RNAs) and droplets confidently predicted to contain cells as positive labels

using an overdispersion test (see Materials and Methods for details). SiftCell-Boost

assumes that the positively or negatively labeled droplets are confident cell-containing

or cell-free droplets, respectively, and focuses on classifying the unlabeled droplets

(10% in PBMC, 71% in brain nuclei, and 66% in colon cell line mixture) into either

cell-containing or cell-free droplets.

This is because our method assumes that the distribution of ambient RNAs are

random samples from existing reads, but in fact they tend to be enriched for higher

proportion of mtRNAs due to necrosis. To address this challenge, we marked droplets

with excessive proportion of mtRNAs as additional negative labels (see Materials and

Methods). In addition, for PBMC dataset, to avoid including unintended cell types

(i.e., platelets), we also marked droplets with excessive proportion of PPBP as nega-

tive labels. With these additional negative labels, SiftCell-Boost clearly outperformed

existing methods on PBMC and colon cell line mixture and was comparable with other

methods for brain nuclei (Figure 2.10). We also evaluated the concordance of droplet

classification between the five evaluated methods. We counted how often a spe-

cific method exclusively classified each droplet into either cell-containing or cell-free

droplets discordantly from all the other methods (Figure 2.9, Table 2.1). For ex-

ample, we found that cell-containing droplets identified from CellRanger/UMI-cutoff

were always consistent with at least one of the other methods. However, 288 and 455

cell-free droplets determined by CellRanger/UMI-cutoff were discordant with all the

other methods for brain nuclei and colon cell line mixture data, suggesting that the

method has high specificity but poor sensitivity. With this criteria, all four methods

except for SiftCell-Boost had two or more datasets where > 200 droplets were discor-
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dantly classified with all the other methods. However, SiftCell-Boost had 12 or less

droplets discordantly classified with all other methods, suggesting that classification

is more consistent to the consensus among all methods. We also evaluate the accuracy

of SiftCell-Boost using 5-fold cross validation and obtained an average accuracy of

99.92% for PBMC data, 99.83% for brain nuclei data and 98.96% for colon cell line

mixture(Table 2.2).
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Figure 2.9: Venn Diagram of number of droplets that are classified as cell-containing
or cell-free across all the methods. These panels contain full 5-way comparisons
of the number of droplets classified each of the 5 methods, accounting all possible
combinations. The Venn Diagram represents classifications of (A) cell-containing
and (B) cell-free droplets for the PBMC dataset, (C) cell-containing and (D) cell-free
droplets for the brain nuclei dataset, (E) cell-containing and (F) cell-free droplets for
the colon cell line mixture dataset.
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Figure 2.10: Annotation of comparison of cell filtering methods by SiftCell-Shuffle.
This figure is identical with Figure 2.6, except that it is annotated (with arrows and
labels) in multiple places to explain the difference between different methods. (A1)
CellRanger/UMI-cutoff method classifies only a fraction of platelets as cell-containing
droplets in PBMC dataset. (B1) EmptyDrops also classifies only a fraction of platelets
as cell-containing droplets in PBMC dataset (B2, C1) EmptyDrops and DIEM clas-
sify some of likely true cell-containing droplets are cell-free droplets. (D1) CellBender
classifies a fraction of platelets and a fraction of droplets with higher proportion of
mt-RNAs as cell-free droplets. (E1) SiftCell-Boost classifies a small fraction of cell
containing-droplets into cell-free ones. In brain nuclei dataset, (F1) CellRanger/UMI-
cutoff method classifies a portion of potentially cell-containing droplets as cell free
ones. EmptyDrops performs good in this case except a tiny proportion of cell-free
droplets (G1) classified as cell-containing ones. (H1, I1, J1) DIEM, CellBender, and
SiftCell-Boost classifies a fraction of cell-free droplets as cell-containing droplets.
Also, (J2) SiftCell-Boost misclassifies cell-containing droplets as cell free ones. In
colon cell line mixture, (K1) UMI-cutoff filters a large portion of cell-containing
droplets. (L1, M1, N1) EmptyDrops, DIEM, and CellBender classifies a large pro-
portion of cell-free droplets as cell-containing droplets.
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2.2.4 SiftCell-Mix Estimates the Contribution from Ambient RNAs in

Each Droplet

Even though classifying each droplet into two categories is practically useful to

determine droplets for downstream analysis, it is reasonable to assume that each cell-

containing droplet may also contain a certain amount of reads from ambient RNAs

considering the overall procedure of droplet-based scRNA-seq experiment (Heaton

et al. (2020); Yang et al. (2020); Young and Behjati (2020)). While SiftCell-Boost

accurately classify cell-containing and cell-free droplets, it is important to estimate

the proportion of ambient RNAs to inform downstream analysis. Once cell-containing

droplets are clustered into cell types by users, SiftCell-Mix models the distribution of

UMIs as a multinomial mixture of a single cell type and ambient RNAs to quantify

contribution of ambient RNAs using maximum likelihood estimates (MLE). Across

the three datasets – PBMC, brain nuclei, and colon cell line mixture – SiftCell-Mix

corroborates the results from SiftCell-Boost, in the sense that the cell-containing

droplets identified from SiftCell-Boost are estimated to have very small contribution

from ambient RNAs, except for brain nuclei snRNA-seq that are expected to have

contamination from ambient RNAs event for cell-containing droplets(Figure 2.11,

Figure 2.12). Compared to DecontX with the default option, SiftCell-Mix provides

more consistent estimates of % contribution from ambient RNAs across 3 datasets.

While DecontX performed robustly for PBMC, it provided almost uniform estimates

of % ambient RNAs across all droplets and failed to distinguish cell-containing and

cell-free droplets. When SiftCell-Mix was compared to DecontX specifying the cell

types as external variables, we observed that the results became much more similar

than DecontX with default option. In SiftCell-Mix, it should be noted that not all

cell-free droplets had high estimates of % ambient RNAs. We suspect that this is a

result of multiple factors, such as non-random contribution from individual cell types

to constitute ambient RNAs in specific droplets, systematic difference of mt-RNAs
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Figure 2.11: Visualization of contribution of ambient RNAs from scRNA-seq and
snRNA-seq datasets. The six panels visualize the estimates of ambient RNA con-
tamination in a linear scale among droplets in PBMC (A,D,G), brain nuclei (B,E,H),
and colon cell line mixture (C,F,I) by DecontX with default option (A-C), DecontX
with external cell types (D-F) and SiftCell-Mix (G-I) in the t-SNE manifold space
excluding randomized droplets. Figure A and G show that the performance between
DecontX with default option and SiftCell-Mix is comparable in PBMC dataset. In
(B), DecontX with default option suggests that there is very little contamination of
ambient RNAs in brain nuclei data, which is inconsistent to the expectation for typi-
cal snRNA-seq. DecontX with defualt option estimated that 0.2% of cell-free droplets
(inferred by SiftCell-Boost) have >10% of ambient RNAs present. On the other hand,
in (H), SiftCell-Mix suggests a large amount of ambient RNA contamination in the
same data. SiftCell-Mix estimates that 81.8% of cell-free droplets have >10% ambi-
ent RNAs present. In colon cell line mixture, we do not expect a large contamination
from ambient RNAs, However, in (C), DecontX with default option estimated that
56.8% of cell-containing droplets (inferred by SiftCell-Boost) have >10% of ambi-
ent RNAs present while, in (I), the estimation from SiftCell-Mix is only 9.9%. When
SiftCell-Mix was compared to DecontX specifying the cell types as external variables,
the results became much more similar than DecontX with default option.
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Figure 2.12: Annotated visualization of contribution of ambient RNAs from scRNA-
seq and snRNA-seq datasets. This figure is identical with Figure 2.11, except that
it is annotated (with arrows and labels) in multiple places to explain the difference
between DecontX with default option, DecontX with external cell types and SiftCell-
Mix. (A1, B1, C1) All the three methods estimated that a fraction of likely cell-free
droplets have low proportion of ambient RNAs in PBMC data, although this is not
necessarily unexpected. (A2,B2) In DecontX(default) and DecontX(with external
cell type), there were a large fraction of likely cell-containing droplets that have
elevated contribution from ambient RNAs. (D1)In brain nuclei, DecontX estimates
that the proportion of ambient RNAs are very low for almost all droplets, which is
unlikely. (E1) In DecontX (with external cell type), there were a large fraction of
likely cell-free droplets that have low contribution from ambient RNAs. (F1) On
the other hand, SiftCell-Mix show clear separation of the eastimated proportion of
ambient RNAs between cell-containing and cell-free droplets. (G1) In colon cell line
mixture, DecontX(default) estimated the contamination of ambient RNAs in cell-
containing droplets to very similarly (10-30%) across all droplets. (H1, I1) On the
other hand, DecontX with external cell type and SiftCell-Mix estimated ambient
RNA contribution very differently between cell-containing and cell-free droplets.
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by droplets (particular for snRNA-seq of brain nuclei), estimation errors due to low

UMI counts in certain droplets.

2.2.5 Evaluation of Computational Cost

We evaluated the computational cost, in terms of wall time (i.e. elapsed time) and

peak memory usage for SiftCell and other methods we evaluated above (Table 2.3).

Both computational time and memory usage increased as the number of droplets in-

creased across all methods evaluated. Each of the SiftCell methods typically finished

the analysis within minutes. For the largest dataset (PBMC), SiftCell could take up

to 15 minutes and consume up to 4.5GB of memory. Among the other methods, Emp-

tyDrops and DecontX consumed a smaller memory footprint and computational time

compared to SiftCell. DIEM was slower than SiftCell by a factor of 2-5. CellBender

was evaluated in a GPU-enabled environment; nevertheless, its computational cost

was the largest among all methods evaluated.

2.3 Materials and Methods

2.3.1 SiftCell-Shuffle: Visualizing Cell-free and Cell-containing Droplets

in a Manifold Space

Our methods assume that we have a raw DGE matrix X ∈ {0, 1, 2, ...}B×G, where

B is the total number of unique barcodes representing individual droplets, and G is

the total number of genes or features. We assume that DGE matrix counts unique

RNA molecules without redundancy using UMIs. Then Xb. =
∑G

g=1 Xbg is the total

UMI counts per each barcoded droplet, and X.g =
∑B

b=1Xbg is the total number

of reads covering each gene. The SiftCell-Shuffle algorithm takes an original DGE

matrix X and outputs a permuted DGE matrix X(S) while preserving Xb· and X·g to

simulate cell-free droplets containing pseudo-bulk RNAs only to approximate ambient
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Table 2.3: Table for computational and memory usage across all methods. Each
row represents an evaluated method and each column represents either the memory
usage or the wall time across the PBMC, brain nuclei and colon cell line mixture
datasets. The computational experiments for EmptyDrops, DIEM, DecontX and
SiftCell were conducted on a macOS Ventura system (version 13.2.1) with 1.4 GHz
Quad-Core Intel Core i5 and 8 cores with 8GB of RAM. CellBender’s computational
cost was intractable in CPU-only machine. Therefore, we evaluated CellBender in a
GPU-accelerated system in Google Colab Notebooks with 12GB of RAM. Due to the
technical difficulty in tracking the memory footprint in the environment, only wall
time was reported for CellBender.

Method PBMC Brain Nuclei Colon Cell Line Mixture

Peak RAM

(MB)

Wall Time

(Seconds)

Peak RAM

(MB)

Wall Time

(Seconds)

Peak RAM

(MB)

Wall Time

(Seconds)

EmptyDrops 3437 155 1389 63 1943 76

DIEM 3578 2141 1197 223 2251 519

CellBender N/A 4938 N/A 2978 N/A 3494

DecontX 3291 625 1620 78 2250 101

SiftCell-Shuffle 4459 118 1363 14 1897 25

SiftCell-Boost 4238 651 3162 112 2020 164

SiftCell-Mix 4231 994 1422 213 2407 416
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RNAs. Specifically, let U =
∑G

g=1

∑B
b=1Xbg be the total number of UMIs, and Ju ∈

{1, ..., B} × {1, ..., G} represents the (barcode, gene) pair each UMI belongs to, so

that Xbg =
∑

I(Ju = (b, g))is always true.

The SiftCell-Shuffle algorithm simply permutes the barcodes and genes in Ju

independently (i.e. randomizes the relationship between barcodes and genes) across

all Unique Molecular Identifiers (UMIs) to produce J
(S)
u ; then the DGE matrix after

SiftCell-Shuffle becomes X
(S)
bg =

∑
I(J

(S)
u = (b, g)). As a result, the total number of

UMIs for each barcode and each gene remains unchanged, because X
(S)
b = Xb and

X
(S)
·g = X·g hold as long as J

(S)
u is a permutation of Ju. The main idea of this procedure

is that the distribution of UMI counts for each barcode in X
(S)
bg is uniform, as if the

droplet barcodes are randomly assigned from a bulk RNA-seq (i.e. aggregate of all

reads ignoring barcode assignment), which we assume to represent the distribution of

ambient RNAs.

To visualize whether each barcoded droplet likely contains ambient RNAs or not,

we construct a low-dimensional manifold plots, such as UMAP or t-SNE, after com-

bining Xbg and X
(S)
bg into one DGE. SiftCell-Shuffle uses Seurat software with default

parameters, except for no minimum UMI counts and 10 PCs, on the merged DGE

matrix to generate t-SNE and UMAP manifolds and visualize it. The visualized

manifold distinguishes the barcodes from Xbg and X
(S)
bg in different colors (Figure 2.3

A,E,I). If a barcode contains ambient RNAs only, we expect it to appear proximal

to X
(S)
bg in the manifold space. For barcodes representing cell-containing droplets, we

expect it to be located in a separate cluster from X
(S)
bg (Figure 2.3 B,F,J). These plots

allow us to quickly visualize how many cell-containing and cell-free droplets exist in

a scRNA-seq or snRNA-seq dataset. When the randomized and original droplets are

clustered together with Seurat(Butler et al. (2018)), the putative cell-free droplets

tend to be assigned the same cluster label with shuffled droplets (Figure 2.3B). Visu-

alizing the total UMI counts (Figure 2.3 C,G,K) or the proportion of mitochondrial
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reads (Figure 2.3 D,H,L) also illustrate the cluster of shuffled droplets are enriched

for lower total UMIs and high proportion of mitochondrial reads. This visualization

was used to visually evaluate how well a specific quality control method classifies

cell-containing and cell-free droplets across all datasets.

2.3.2 Evaluation of Existing Methods for Filtering Cell-containing Droplets

with SiftCell-Shuffle

We evaluated existing methods for classifying cell-free droplets from cell-containing

droplets by visualizing the results from each method in the t-SNE manifold plots gen-

erated by SiftCell-Shuffle. We used t-SNE instead of UMAP because it distributes

the cell-free droplets more widely in the manifold space, which fits for the purpose

of our evaluation. Four methods are used for evaluation: (1) CellRanger/UMI-cutoff

method that determines cell-containing droplets based on a UMI count threshold,

which is determined from knee plot (and a few other criteria), as implement in Cell-

Ranger 2 (https://github.com/10XGenomics/cellranger), (2) EmptyDrops (Lun

et al. (2019)), implemented in DropletUtils R package(Griffiths et al. (2018)), which

uses a likelihood-based permutation test to determine cell-containing droplets, (3)

DIEM (Alvarez et al. (2020)), which uses E-M with Dirichlet distribution to iden-

tify droplets contaminated by ambient RNAs or extranuclear RNAs. (4) CellBender

(Fleming et al. (2019)), which uses a generative model based on deep neural network,

to identify cell-free and cell-containing droplets.

For UMI cutoff method, we used the default output from CellRanger 2 for PBMC

and brain nuclei as they were generated from 10X Chromium. For colon cell line

mixture, which is produced with DropSeq platform, we determined the UMI cutoff

determined by the knee plot (UMI ≥ 5440, Figure 2.8). For EmptyDrops, which is

expected to be similar to CellRanger 3, we used the default parameters for PBMC

and brain nuclei, which is UMI≤ 100 to represent ambient RNAs. For colon cell line
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mixture, because UMI cutoff was high, we used UMI ≤ 200 to determine ambient

RNAs. For DIEM and CellBender, we used the default parameters across all three

datasets.

To illustrate the performance of each method with SiftCell-Shuffle, we visual-

ized original and shuffled droplets in t-SNE spaces with three categories (1) shuffled

droplets (2) original droplets classified as cell-containing droplets (3) original droplets

classified as cell-free based on each algorithm (Figure 2.3, 2.6). This illustration is

used to visually evaluate the performance of each algorithm to filter droplets.

We also developed a new metric, “% NN-concordance”, as an alternative to the

knee plot to estimate the number of cell-containing droplets by leveraging shuffled

droplets. For each original droplet that is classified cell-containing, the nearest droplet

(in terms of Euclidean distance of top 100 PCs of highly variable genes) among original

+ shuffled dataset is selected. The % NN concordance metric quantifies, across all

filtered droplets, how often their nearest droplet is an original droplet as opposed to

a shuffled droplets. This can be done for an arbitrary subset of droplets. This metric

is intended to quantify how well the filtered droplets are separated from the shuffled

droplets in a high-dimensional space.

2.3.3 SiftCell-Boost : Automated Machine Learning Method to Identify

Cell-containing Droplets

SiftCell-Boost employs automated machine learning classification method(XGBoost)

to classify each barcoded droplet into cell-containing (positive label) or cell-free (neg-

ative label) droplets using a training set consisting of permuted droplets from SiftCell-

Shuffle and a subset of original droplets that are likely cell-containing droplets.

Given the absence of a definitive ground truth for droplet labels, we leveraged

SiftCell-Shuffle result and proposed Sparse Quantile Aggregation Test(SQuAT) to

generate labeled training data.
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Assigning Negative Labels

To take advantage of SiftCell-Shuffle results, we used all permuted droplets from

SiftCell-Shuffle as negative labels. Except for a few specified examples, we also include

additional negative labels from original droplets based on the proportion of reads

from unwanted genes (3 standard deviation above the median). The unwanted genes

include all mitochondrial genes across 3 datasets. For PBMC, we also included PPBP,

a marker gene for platelet cell type. This is to avoid classifying platelets, which is

not supposed be a part of PBMC cell types, as cell-containing droplets.

Assigning Positive Labels

It is expected that cell-containing droplets in scRNA-seq experiments would ex-

hibit higher levels of overdispersion compared to cell-free droplets due to the inher-

ent variability in gene expression levels among cells. Existing statistical test C(α)

(Kim and Margolin (1992)) test can be applied for identification of cell-containing

dropelts with overdispersion, however, it generated inflated p-values among droplets

with lower UMI counts, resulting in identifying false positive labels. When testing

overdispersion in shuffled PBMC data, we expect to see no significant overdispersion

in these droplets. As shown in the the QQ-plot (Figure 2.13 A), C-alpha test (Kim

and Margolin (1992)) deviate greatly from the expected line. Such huge inflation can

be attributed to the presence of extremely small gene profiles in the test parameters.

Therefore, we developed SQuAT (see Appendix for details) aimed at identifying

potentially positive labels in sparse scRNA-seq datasets. SQuAT conducts bidirec-

tional binomial overdispersion test using the interval of quantiles inputs instead of

point estimators with variance adjustment of the test statistics. We compared the

performance of SQuAT test with/without variance adjustment and C(α) test on shuf-

fled (Figure 2.13) and original (Figure 2.14) PBMC data. SQuAT test with or without

variance adjustment closely follow the expected line in the QQ-plot (Figure 2.13 A)
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Figure 2.13: QQ plots of overdispersion tests on shuffled scRNA-seq data (i.e. under
the null distribution). These two panels show the QQ-plot on shuffled PBMC data
generated from SiftCell-Shuffle. Panel A compares C-alpha test (blue), SQuAT with
(yellow) and without (green) variance adjustment to identify droplets with overdis-
persion. Panel B compares Tarone’s test(blue), SQuAT with (yellow) and without
(green) variance adjustment to identify highly variable genes.

and produce satisfactory results on shuffled PBMC whereas C(α) test deviate greatly

from the expected line. We plotted the fraction of significant observations after Bon-

ferroni correction against binned UMIs and compared the result of each method on

shuffled and original datasets. For C(α) test, the statistical power increases with

the number of UMI count, but at the cost of higher false positive rate for droplets

with low UMI counts. On the other hand, the SQuAT test with variance adjustment

is robust and efficient in detecting droplets overdispersion. Overall, the overdisper-

sion in sparse scRNA-seq datasets can be addressed through bidirectional binomial

overdispersion test, and the SQuAT test provided calibrated p-values with excellent

performance, while C-alpha were found to be anti-conservative with low UMI count.

To generate highly confident positive labels for cell-containing droplets, we con-

ducted non-parametric ranking among UMIs and z-scores derived from SQuAT with

selected top N expected number of cells, provided by the user. In our experiment, we

used N = 10, 000 for PBMC, N = 1, 000 for brain nuclei, and N = 800 for colon cell
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Figure 2.14: Evaluation of overdispersion tests on the original and shuffled PBMC
scRNA-seq dataset, stratified by the UMI counts. These four panels show the scatter
plot between the percentage of significant observations after Bonferonni correction
against UMI groups (size 100 each) in ascending order. Panels A and B show the
result of these methods in identifying droplets with overdispersion, respectively for
the original and shuffled PBMC data. Similarly, Panels C and D present the results
of these methods for identifying highly variable genes, separately for the original and
shuffled PBMC data.
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line mixture as suggested by CellRanger 2 or the published data.

Summary of Training Data

To summarize, the training dataset comes from three sources: (1) negative labels

are obtained from randomized droplets (2) positive labels are obtained from confident

cell-containing droplets estimated from SQuAT, and (3) additional negative labels are

obtained from the original droplets based on excessive contribution from mtRNAs

and/or enrichment of marker genes representing unwanted cells (e.g. Platelet in

PBMC datasets). The test data is the rest of the unlabeled droplets which is not

part of the training data.

Classification Model via Extreme Gradient Boosting (XGBoost)

SiftCell-Boost uses XGBoost to train the classification model with the positively

and negatively labeled droplets. To generate the features for XGBoost training, We

used 1, 000 most variable ones identified by SQuAT to generate top 100 principal

components from the log-normalized digital expression matrix. Note that similarly,

detection of highly variable genes can also be achieved by applying SQuAT on to the

scRNA-seq data(Figure 2.13 B and 2.14 C and D).

Using SiftCell-Boost, we classified original droplets into cell-containing and cell-

free droplets and evaluated its performance with other methods (Figure 2.6), using t-

SNE visualization from SiftCell-Shuffle, as well as %-NN concordance metrics(Figure

2.7). %-NN-concordance metrics were evaluated for arbitrary UMI cutoff, as well as

for the 5 methods to filter cell-containing droplets.
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2.3.4 SiftCell-Mix : Model-based Approach for Inferring the Fraction of

Ambient RNAs in Each Droplet

It is possible that some of the reads in a droplet are “contaminated” by ambient

RNAs floating outside individual cells(Heaton et al. (2020); Yang et al. (2020)). For

cell-free droplets, most reads are contributed by ambient RNAs, but even for cell-

containing droplets, ambient RNAs may present within barcoded reads assigned for

the droplets. We assume that the read counts for a droplet follow a mixture of

multinomial distributions, one for each cell type and an additional one representing

ambient RNAs. Prior to SiftCell-Mix analysis, we assume that a large fraction of

cell-containing droplets are assigned to specific cell types using other software tools

(e.g. Seurat or scanpy) or by an domain expert so that the distribution of each cell

type can be modeled reliably.

Let n1, n2, . . . , nK be the number of droplets assigned to each of the K cell types

and n0 = N be the total number of droplets in the single cell RNA-seq dataset,

including cell-containing and cell-free droplets. Let D0, D1, . . . , Dk denote the set

of droplets corresponding to n0, n1, . . . , nk, respectively. For a given droplet i ∈

{1, 2, . . . , N}, the reads count across the G genes (with nonzero read count) is a

vector: xi = (x1
i , x

2
i , . . . , x

G
i ). Let πk = (π1

k, π
2
k, . . . , π

G
k ) for k ∈ {0, 1, . . . , K} be the

multinomial probabilities representing the distribution of each cell type (or ambient

RNAs for k = 0). We model xi as a multinomial mixture between ambient RNAs (π0)

and one of the cell types (πk, k > 0) as we will describe later. For k > 0, we define

πk as an arithmetic mean of the proportion of reads of the gene across the droplets

of the cell type k:

πj
k =

1

nk

∑
i∈Dk

[
xj
i∑G

g=1 x
g
i

]
, j ∈ {1, 2, . . . , G}

.
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We define π0 in a similar way, but across all droplets regardless of their cell types,

slightly up-weighting droplets with high total UMI count, but ensuring minimum

weight λ (λ = 100 in our experiments) for droplets with low UMI counts according

to wi = min(λ,
∑G

g=1 x
g
i ). We weight π0 based on logwi to better represent the

distribution of ambient RNAs enriched for low-UMI count droplets:

πj
0 =

∑
i∈Dk

[
xj
i∑G

g=1 x
g
i

logwi

]
∑

i∈Dk
logwi

, j ∈ {1, 2, ..., G}

To avoid the corner case that πj
k = 0 for some (j, k), we adjust πj

k to contain

a small fraction (α) of ambient RNAs as (1 − α)πj
k + απj

0, and used α = 0.01 in

our experiments. In summary, π1, π2, . . . , πKare defined as arithmetic mean of reads

within each cell type, and π0 is defined logarithmic mean of reads across all droplets

with a threshold.

We model the log likelihood of the read count in a droplet as a mixture of multino-

mial distributions of ambient RNAs and one of the cell types. Let γik be the fraction

of contributions from the kth category to the ith droplet where k = 1, 2, . . . , K. Thus,

the objective function is the log likelihood of the reads coming from the different cell

types and ambient RNAs, which can be formulated as:

fi = − log

[
K∑
k=0

γik exp(
G∑

j=1

xj
i logπ

j
k)

]

Subject to :
k∑

k=0

γik = 1

0 ≤ γik ≤ 1,∀k ∈ {0, 1, . . . , K}, and ∀i ∈ {1, 2, . . . , N}

The nonlinear optimization problem is solved using augmented Lagrange multi-

plier method with an sequential quadratic programming interior algorithm as imple-
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mented in Rsolnp package (v1.16) available in CRAN.

2.4 Summary

In this chapter, we describe SiftCell framework, a suite of software tools imple-

menting methods including SiftCell-Shuffle, SiftCell-Boost and SiftCell-Mix, focusing

on the challenges of contaminations from ambient RNAs in single-cell and single-

nucelus RNA-seq experiments. SiftCell-Shuffle works with DGE matrix and aids the

investigators to visually distinguish cell-free and cell-containing droplets by contrast-

ing with a randomized digital expression matrix. SiftCell-Boost takes the output

of SiftCell-Shuffle as input and applies a machine learning method to classify cell-

containing droplets and cell-free droplets. SiftCell-Mix is a model-based tool that

allows quantitative estimation the contribution of “ambient RNAs” in each droplet.

We believe that SiftCell will facilitate more holistic understanding of scRNA-seq

from upstream and reduce the chance that upstream technical issues such as ambient

RNA contamination obscure novel scientific discovery.

2.5 Appendix: Sparse Quantile Aggregation Test (SQuAT)

Aggregating summary statistics from multiple datasets into a single meta-analyzed

statistic has been widely useful in multiple areas of scientific research for more than

a century (Shannon, 2016; Borenstein et al., 2021). Most widely-used meta-analysis

methods such as Fisher’s method of combining p-values(Fisher , 1925), Liptak and

Stouffer’s method(Lipták , 1958; RMJ , 1949) of weighted sum of z-scores, and inverse-

variance-weighted meta-analysis(Fleiss , 1993) rely on asymptotic distributions that

assumes a large sample sizes. When asymptotic distribution approximates the un-

derlying data well, it is shown that meta-analysis is as powerful as jointly analyzing

individual-level data together(Lin and Zeng , 2010).
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Recently, the volume of sparse data available for scientific research is rapidly

increasing with technological advances. For example, in single-cell or spatial genomics

data, a small fraction of genes have informative reads per barcode, which represents an

individual cell or a spatial location, so the data is typically highly sparse(Zheng et al.,

2017; Cho et al., 2021). When meta-analyzing sparse scRNA-seq datasets, asymptotic

approximation may no longer hold. In such cases, it has been demonstrated that the

estimated effect may be biased and the estimated variance may be misleading(Martin

and Austin, 2000; Richardson et al., 2021). Meta-analysis methods based on exact p-

value or continuity correction may improve its accuracy but benefits of such heuristics

are still limited(Rubin-Delanchy et al., 2019; Liu et al., 2014; J. Sweeting et al., 2004).

In this Appendix, we propose a new framework for meta-analysis that can capture

the uncertainty inherent in the sparse data, and introduce SQuAT (Sparse Quantile

Aggregation Test) as an efficient implementation of the proposed framework. The

framework uses an interval of quantiles as inputs for meta-analysis. The interval

of quantiles is then projected onto a continuous distribution to be meta-analyzed

accounting for its uncertainty represented by the interval. We apply SQuAT in the

meta-analysis of binomial overdispersion test in sparse single-cell RNA-sequencing

dataset to demonstrate the practical utility of our approach.

SQuAT Framework

More specifically, Let x ∈ X be the observed data generated from a, possibly

sparse, discrete distribution with probability mass function f(x) = Pr(X = x) and

cumulative density function F (x) = Pr(X ≤ x).

Let g(y), G(y), and G−1(y) be the probability density function, cumulative distri-

bution function, and inverse cumulative distribution function of a continuous distri-

bution G, respectively. Define
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g(y; a, b) =
1

G(b)−G(a)
g(y) (a < y ≤ b)

be the truncated distribution of G conditional on y ∈ (a, b].

When we observe a discrete value x, we consider a random variable Y (x) that fol-

lows the truncated distribution g (y;G−1(F (x− 1)), G−1(F (x))), which corresponds

to the same interval of quantiles associated with x in F (·).

Bidirectional SQuAT with Normal Distribution

Using quantile projection described above, consider a specific case where g(y) is

a normal distribution. Let g(·) = ϕ(·) be the standard normal probability density

function, G(·) = Φ(·) be the its cumulative distribution function. Then for a random

variable X ∈ X , the marginal distribution of Y (X) follows N (0, 1).

Therefore, given observations x1, . . . , xk, and known weights w1, . . . , wk, Liptak-

Stouffer meta-analyzed Z-score

Z(Y1(x1), . . . , Yk(xk)) =

∑k
i=1 wiYi(xi)√∑k

i=1w
2
i

will be marginally distributed N (0, 1). However, the problem with Z(Y ) is that

Z(Y ) is a random variable that does not have fixed value given x. Therefore the

meta-analyzed statistic does not provide a deterministic value.

To obtain a deterministic meta-analyzed statistic, we define S(x) as an expectation

of Y (x), we define a basic unit of SQuAT: S(x), an expectation of Y (x), then we have
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Sb(x) =



ϕ(Φ−1(2F (x)))− ϕ(Φ−1(2F (x− 1)))

2f(x)
F (x) ≤ 1

2

ϕ(Φ−1(2Fc(x− 1)))− ϕ(Φ−1(2Fc(x)))

2f(x)
F (x− 1) ≥ 1

2

−ϕ(Φ−1(2F (x− 1))) + ϕ(Φ−1(2Fc(x)))

2f(x)
F (x− 1) < 1

2
< F (x)

where Fc(x) = 1−F (x). We can show that E [Sb(X)] = 0. Var [Sb(X)] = E [S2
b (X)]

follows

Var [Sb(X)] = E
[
S2
b (X)

]
=

∑
x∈X

S2(x)f(x)

=
∑

∀x, F (x)≤ 1
2

[ϕ(Φ−1(2F (x)))− ϕ(Φ−1(2F (x− 1)))]
2

4f(x)

+
∑

∀x, F (x−1)≥ 1
2

[ϕ(Φ−1(2Fc(x− 1)))− ϕ(Φ−1(2Fc(x)))]
2

4f(x)

+
∑

∀x,F (x−1)< 1
2
<F (x)≥ 1

2

[ϕ(Φ−1(2Fc(x))) + ϕ(Φ−1(2F (x− 1)))]
2

4f(x)

=
∑
x∈X

Vb(x)

SQuAT in scRNA-seq

We incorporated SQuAT as a statistical tool within SiftCell to estimate how

likely each original droplet contains a cell and to identify highly variable genes. As

previously discussed, SiftCell-Boost is a machine learning based method to distinguish

cell-containing and cell-free droplets. During the training process, Positive labels of

cell-containing droplets and features of highly variable genes are determined through

the utilization of SQuAT by identifying genes or droplets that deviates from the

expectation from the null distribution.
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To assess the performance of the proposed framework on scRNA-seq data, we first

applied bidirectional SQuAT on the shuffled PBMC dataset generated by SiftCell-

Shuffle and assume that the shuffled data is under a Binomial distribution. We ran

SQuAT on two different types of test. First is to determine the over dispersion of

each droplet . In this case, each gene was the component for SQuAT. Second is to

determine the highly variable genes, and each droplet was the component for SQuAT.

In both tests, we used observed UMI count as the input, and the marginal sum of UMI

(per droplet or per gene) was used as the total count for the binomial distribution.

We compared the performance of three tests: SQuAT test with and without variance

adjustment, and Tarone’s test (Tarone (1979)) or the C-alpha (Kim and Margolin

(1992)) test, a generalization of Tarone’s test, to determine droplets with significant

overdispersion and genes with high variability (Figure 2.13). The QQ-plots revealed

that both C-alpha and Tarone’s test deviate greatly from the expected line. This huge

inflation can be attributed to the presence of extremely small gene profiles in the test

parameters. As shown in Figure 2.13 A, the variance adjustment did not impact the

test results much in identifying droplets with overdispersion. Both the tests closely

followed the expected line and produced satisfactory results on shuffled data. In

Figure 2.13 B when testing for highly variable genes, SQuAT test without variance

adjustment exhibited great deflation. However, after adjusting for the variance, the

SQuAT produced slightly inflated test statistics. Since SQuAT for highly variable

genes was used to select the top 1, 000 genes, we determined that the slight level of

inflation was acceptable, but there are rooms for improvement in SQuAT.

Similiarly, we then applied these methods to the original PBMC dataset, and

the results are depicted in Figure 2.14. We plotted the fraction of significant ob-

servations after Bonferroni correction against binned UMIs and compared the result

between shuffled and original datasets. For Tarone’s test, the statistical power in-

creases with the number of UMI count, but at the cost of higher false positive rate
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when UMI count is low. On the other hand, the SQuAT test with variance adjust-

ment was robust and efficient in detecting overdispersion. It was concluded that the

overdispersed droplets or highly variable genes in sparse scRNA-seq datasets can be

identified through meta-analysis of bidirectional binomial data, and the SQuAT test

provided excellent performance, while C-alpha and Tarone’s tests were found to be

anti-conservative with low UMI count.
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CHAPTER III

Microscopic Examination of Spatial Transcriptome

Using Seq-Scope

3.1 Background

Standard immunohistochemistry and RNA in situ hybridization can examine only

one or a handful of target molecular species at a time; therefore, the amount of

information obtained from a single experimental session is limited. To overcome

this, emerging spatial transcriptomics (ST) techniques aim to examine all genes ex-

pressed from the genome from a single histological slide (Asp et al. (2020)). There

are three major methodologies to experimentally implement ST. First, the sequential

in situ hybridization method, often combined with combinatorial multiplexing, can

increase the number of RNA species that can be detected from a single histologi-

cal section. Second, in situ sequencing can identify RNA sequences from the tissue

through fluorescence-based direct sequencing. Finally, spatial barcoding methods as-

sociate RNA sequences and their spatial locations by capturing tissue RNA using a

spatially barcoded oligonucleotide array. Among these three major methodologies,

the spatial barcoding method is the most straightforward, comprehensive, widely

used, and commercially available method easily accessible by many laboratories (Asp

et al. (2020)). Spatial barcoding technologies have the potential to reveal histological
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details of transcriptomic profiles; however, they are currently limited by their low

resolution. For example, VISIUM from 10X Genomics has a center-to-center resolu-

tion of 100 m (Bergenstr̊ahle et al. (2020)), which is worse than that of the naked

eye (40 µm). More recent technologies, such as Slide-Seq, HDST, and DBiT-Seq, im-

proved the resolution (Liu et al. (2020); Rodriques et al. (2019); Stickels et al. (2021);

Vickovic et al. (2019)); however, their resolutions are still far coarser than an optical

microscope that has submicrometer resolution.

Here, we describe a technology for achieving submicrometer resolution spatial

barcoding, designated as Seq-Scope that is based on the solid-phase amplification of

a random barcode molecule, conveniently achieved by the Illumina. We also conduct

computational analysis of Seq-Scope data to reveal transcriptomic heterogeneity at

the cellular and subcellular level in various tissues.

3.2 Results

Seq-Scope is initiated by generation of a single stranded oligonucleotide library

that has a randomly generated spatial barcode sequence. We name this barcode a

high-definition map coordinate identifier (HDMI). The HDMI oligos are amplified

on a solid surface, generating clusters with unique HDMI sequences. The HDMI-

array was produced with a sequenced cluster density of up to 1.5 million clusters

per µm2, which is sufficient to perform single-cell and subcellular analysis of the

spatial transcriptomics. Each cluster’s HDMI sequence and its spatial coordinates are

determined through Illumina sequencing. We name this process the 1st-Seq. Then

each cluster is processed to capture RNAs released from the overlying tissue sections.

Both HDMI and cDNA sequences are determined through the 2nd-Seq process.
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Figure 3.1: Schematic diagram depicting tile arrangement in MiSeq regular flow cell

3.2.1 Seq-Scope Has an Outstanding Transcriptome Capture Performance

Complete Seq-Scope procedure were performed on two representative gastroin-

testinal tissues, the liver and colon. In each 1st-Seq experiment, the HDMI-array

was produced in 1mm-wide circular areas of the MiSeq flow cell, also known as ’tiles’

(Figure 3.1). The tissue sections were overlaid onto the HDMI arrays, examined by

H&E staining, and subjected to 2nd-Seq. Analysis of the 1st-Seq and 2nd-Seq data

demonstrated that the RNA footprints were discovered mostly from tissue-overlaid

regions(Figure 3.2), confirming that Seq-Scope can indeed capture and analyze the

spatial transcriptome from the tissues.

3.2.2 Seq-Scope Captures Transcriptome Information with High Efficiency

Benchmark analysis demonstrated that Seq-Scope offers a dramatic improvement

in resolution and pixel density compared to previous ST solutions (Figure 3.3); center-

to-center distances between HDMI pixels were measured to be 0.633±0.140µm (liver)

and 0.630± 0.132µm (colon) (mean ± SD) . Although each HDMI-barcoded cluster

covers an extremely tiny area (< 1µm2), single HDMI pixel in tissue-covered region

was able to capture 6.70 ± 5.11 (liver) and 23.4 ± 17.4 (colon) UMIs (mean ± SD)

(Figure 3.3 C). The number of gene features identified per HDMI pixel was 5.88±4.22

(liver) and 19.7 ± 14.3 (colon) (mean ± SD) (Figure 3.3 D). Per-pixel counts of

UMIs and genes in Seq-Scope were larger than HDST but were smaller than other

technologies(Figure 3.3 C and D).
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Figure 3.2: Seq-Scope Capture Performance. H&E staining and its correspond-
ing HDMI discovery plot drawn from the analysis of 1st-Seq and 2nd-Seq outputs.
Brighter color in the HDMI discovery plot indicates that more HDMI was found from
2nd-Seq in the corresponding pixel area.
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However, after normalization using the pixel density, Seq-Scope showed the best

transcriptome capture performance per area among the datasets we examined (Fig-

ures 3.3 E and F; colon dataset). Considering that the current data are estimated to

cover only ∼ 60% (liver) and ∼ 36% (colon) of the total library size, the maximum

possible Seq-Scope capture efficiency should be even higher than the currently pre-

sented data. Therefore, Seq-Scope provides an outstanding mRNA capture output,

in addition to providing an unmatched spatial resolution output.

3.2.3 Seq-Scope Reveals Nuclear-cytoplasmic Transcriptome Architec-

ture from Tissue Sections

mRNA is transcribed and poly-A modified in the nucleus, and transported to the

cytoplasm after splicing (Figure 3.4 A). Several RNAs in the mouse liver, such as

Malat1, Neat1, and Mlxipl, exhibit strong nuclear localization (Halpern et al. (2015)).

On the other hand, the cytoplasmic mitochondria contain many mitochondria-encoded

RNAs (mtRNA) (Figure 3.4 A).

We spatially plotted all spliced and unspliced transcripts discovered from Seq-

Scope mouse liver data and it reveals nuclear-cytoplasmic transcriptome architecture

from tissue sections. Unspliced transcript expression was restricted in tiny circles

with a diameter of 10µm (Figure 3.4 B), which is about the size of hepatocellular

nuclei (Baratta et al. (2009)) in liver data. Spliced mRNAs were relatively scarce

in the unspliced area , whereas nuclear-targeted RNAs were more abundant in the

unspliced area (3.4 B). Mt-RNAs were mostly in the spliced area (Figure 3.4 C).

These observations were substantiated by correlation analysis of the single-cell images

(Figures 3.4 D ).

These results suggest that spliced and unspliced transcripts are useful to determine

the nuclear-cytoplasmic structure from the Seq-Scope dataset. Indeed, when overlaid

with H&E staining images, the unspliced RNA-enriched region generally agreed with
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the nuclear position (Figure 3.4 E; note that some hepatocytes are known to be

multinucleate) (Donne et al. (2020)). However, in some hepatocytes, the unspliced

RNA-enriched regions were not observed (Figure 3.4 E), which can be explained by

the absence of the cell’s nucleus in the tissue slice, the inadequate positioning of

the nucleus for RNA capture or the intrinsic variations in the rates of transcription,

splicing, and nuclear export.

To further test the robustness of these observations, we randomly divided all

genes into three independent subsets and examined the expressions of spliced and

unspliced mRNAs from each subset. All three datasets similarly visualized a nuclear-

cytoplasmic structure with a strong correlation (Figures 3.4 F).

Finally, we identified nuclear centers by using unspliced transcripts(Figure 3.4

G). Then, we searched for genes whose transcripts were enriched within 5µm from

the nuclear centers. Consistent with previous cell fractionation and RNA in situ

hybridization studies (Halpern et al. (2015)) and our observations described above,

Malat1, Neat1, and Mlxipl were identified as the top 3 genes enriched in the nuclear

area (Figure 3.4 H). These results demonstrate that Seq-Scope can perform subcellular

transcriptome studies.

3.2.4 Seq-Scope Performs Spatial Single-cell Analysis of Hepatocytes

Using an image segmentation method (Sage and Unser (2003)), single hepatocel-

lular areas were identified from the H&E image (Figures 3.4 E and 3.5 A). The single

hepatocellular transcriptome from the segmented Seq-Scope data showed a substan-

tial number of UMIs (4, 294, median; 4, 734± 2, 480, mean ± SD) and genes (1, 617,

median; 1, 673± 631.7, mean ± SD), which are comparable to the recent single hepa-

tocyte transcriptome datasets obtained from MARS-Seq (Halpern et al. (2015)) and

Drop-Seq (Park et al. (2021)) (Figure 3.5 B). The transcriptome content of Seq-Scope

was similar to the results from the MARS-Seq, Drop-Seq, and bulk RNA-seq analyses
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of the normal liver.

Cell type mapping analysis of the segmented single hepatocyte dataset revealed

the spatial structure of hepatocellular zonation, identifying both pericentral (PC)

and periportal (PP) profiles (Figure 3.5 C), which were found in their corresponding

spatial locations (Figure 3.5 D). PP- and PC-specific genes isolated from Seq-Scope

were also found in MARS-Seq and Drop-Seq data (see table link at https://dr

ive.google.com/file/d/19w55bBZwtpc7cJv7tcUtpCp3YnZT3HRi/view?usp=s

haring). The top 50 PC/PP genes from Drop-Seq and MARS-Seq were sufficient

to classify PC/PP cells in the Seq-Scope dataset. Therefore, Seq-Scope single-cell

analysis agreed with the former scRNA-seq results and revealed every single cell’s

actual spatial locations.

Cell type mapping analysis of the segmented single hepatocyte dataset revealed

the spatial structure of hepatocellular zonation, identifying both PC and PP) pro-

files and multiple transcriptome layers ordered across the portal-central zonation axis

(Figures 3.5 C and D). Many of the cluster marker genes showed a spectrum of diverse

zonation patterns between the PC and PP profiles (Figure 3.6C). These gene expres-

sion patterns are consistent with the previous RNA in situ hybridization (Aizarani

et al. (2019); Halpern et al. (2017)) and immunostaining results (Park et al. (2021)).

However, previous studies using original ST (Hildebrandt et al. (2021)) or Slide-Seq

(Rodriques et al. (2019)) were not able to uncover this level of detail (Figures 3.6A and

B), possibly due to the limitations in resolution and RNA capture efficiency (Figure

3.3).

3.2.5 Seq-Scope Detects Non-parenchymal Cell Transcriptome from Liver

Section

Although hepatocytes are the major cellular component in the liver, NPC such

as macrophages (Mϕ) (blue), hepatic stellate cells (HSC) (dark green), endothelial
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cells (ENDO) (orange), and red blood cells (RBC) (red) can be found in a small

portion of the histological area(Ben-Moshe and Itzkovitz (2019)). Due to their small

sizes, these cells were not easily isolated through H&E-based image segmentation

assays; H&E-based segmentation assay failed to reveal the NPC transcriptome except

around the portal vein area (gray clusters in Figures 3.5 C and D), where RBCs and

Mϕs often accumulate in large quantities (Dou et al. (2020)).

Therefore, alternatively, we segmented the Seq-Scope dataset with a uniform grid

consisting of 10µm-sided squares (Figures 3.7 A-D). Cell-type mapping analysis of

the gridded Seq-Scope dataset identified the grids that correspond to these NPC cell

types (Figure 3.7 E), based on the expression of cell-type-specific markers (Figures

3.7 E-G). Although most of the histological space was occupied by the hepatocellular

area (Hep PP and Hep PC), the small and fragmented spaces scattered throughout

the section represented the NPC area (Figure 3.8 C). The locations of the Mϕ and

ENDO grids (Figure 3.8 D, first and second panels) were consistent with the spatial

location of their corresponding cell-type-specific marker expression (Figure 3.8 D,

arrows in the third panel) and the histologically identified Mϕ and sinusoid areas

(Figure 3.8 D, arrows in the fourth panel) that are located around the segmentation

boundaries (Figure 3.8 D, arrows in the fifth panel). Therefore, histology-guided cell

segmentation analysis and histology-agnostic square gridding analysis complemented

each other in identifying different cell types.

3.2.6 Seq-Scope Visualizes Histological Layers of Colonic Wall

The colon is another gastrointestinal organ with complex tissue layers, histologi-

cal zonation structure, and diverse cellular components (Levine and Haggitt (1989)).

Using the colon, we examined whether Seq-Scope can examine the spatial transcrip-

tome in a non-hepatic tissue. The colonic wall is histologically divided into the colonic

mucosa and the external muscle layers (Farkas et al. (2015)). The colonic mucosa
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Figure 3.7: Normal liver Seq-Scope dataset analyzed by data binning with 10µm-
sided square grids. (A) Spatial density plot depicting the number of UMIs discovered
across 10µm square grids. (B)Violin plot depicting the number of gene features
(nFeature) across the 10µm square grids. Setting a 250 cutoff isolated grid units
covered by the tissue area (C), each of which contains around 700 UMIs (D). A
UMAP plot visualizing all clusters (E) and a dot plot (F) and UMAP plots (G)
visualizing expression of cluster-specific markers are presented.
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consists of the epithelium and lamina propria, and the epithelium is further divided

into the crypt-base, transitional, and surface layers (Figure 3.9 A). Clustering analysis

of the gridded Seq-Scope dataset revealed transcriptome phenotypes corresponding

to these layers (Figure 3.9 B) and visualized their spatial locations (Figures 3.9 C).

3.2.7 Seq-Scope Identifies Individual Cellular Components from Colon

Tissue

In addition to visualizing the layer structure, Seq-Scope also revealed the various

colonic epithelial and non-epithelial cell types (Figures 3.9 D–I ). In the crypt base,

stem/dividing, DCSC and Paneth-like cell phenotypes (Figures 3.9 E and F) were

identified. The stem/dividing cells expressed higher levels of ribosomal proteins while

expressing lower levels of other epithelial cell-type markers (Figure 3.9 J;). DCSCs

expressed secretory cell markers, such as Agr2, Spink4, and Oit1 (Figure 3.9 J),

whereas Paneth-like cells expressed Mptx1, a recently identified marker of the Paneth

cell in the small intestine (Haber et al. (2017)).

Seq-Scope also identified distinct cell types at the surface of the colonic mucosa

(Figures 3.9 D–F). The top layer of the epithelial cells expressed surface colonocyte

markers, such as Aqp8 (Fischer et al. (2001)), Car4 (Borenshtein et al. (2009)),

and Saa1 (Eckhardt et al. (2010)) (Figure 3.9 J). Some of the epithelial cells ex-

pressed goblet cell-specific markers, such as Zg16, Fcgbp, and Tff3 (Haber et al.

(2017); Pelaseyed et al. (2014)) (Figure 3.9). In addition, Seq-Scope also identified

EEC expressing hormones, such as glucagon, peptide YY, insulin-like peptide, and

Cholecystokinin (CCK) (Figure 3.9 J).

Below the epithelium, there are connective tissue layers, including the lamina

propria, submucosa, and external muscle layers. Seq-Scope identified many non-

epithelial cell types from these layers, including smooth muscle, fibroblasts, enteric

neurons, Mϕs, and B cells (Figures 3.9 G–I). These results indicate that Seq-Scope
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Figure 3.9: Seq-Scope identifies various cell types from colonic wall histology. (A–I)
Seq-Scope reveals major histological layers (A–C), epithelial cell diversity (D–F),
and non-epithelial cell diversity (G–I) through transcriptome clustering. (A, D, and
G) Schematic representation of colonic wall structure. Clusters corresponding to the
indicated cell types were visualized in UMAP manifold (B, E, and H) and histological
space (C, F, and I).(J) Cluster-specific markers were examined in dot plot analysis.
deep crypt secretory cell (DCSC), deep crypt secretory cells; enteroendocrine cells
(EEC), enteroendocrine cells; SOM Neuronal, somatostatin-expressing neuronal cells.
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can transcriptomically recognize most of the major cell types present in the normal

colonic wall.

3.2.8 Seq-Scope Performs Microscopic Analysis of Colonic Spatial Tran-

scriptome

To take advantage of Seq-Scope’s high-resolution data, we employed Multi-scale

Sliding Windows analysis(MSSW) (Figures 3.10 A–C) and spatial plotting of cluster

markers (Figures 3.10 D-F), focusing on the same region of the colonic wall. MSSW

analysis drew a clear line between different cellular compartments (Figures 3.10 A–C);

the original gridding analysis (10µm) or analysis with smaller grids (5µm) did not

reveal this level of high-resolution detail.The sliding windows cluster assignments

(Figures 3.10 A-C) were congruent with the spatial plotting of the relevant cluster

marker genes (Figures 3.10 D–F) and H&E histology data (Figure 3.10 G). For in-

stance, in all of these data, B cells and Mϕs were confined to the lamina propria,

whereas crypt base cell markers were confined to the epithelium (separated by dotted

lines in Figures 3.10 D–G). The B cells and Mϕs are often in very close proximity

(Figures 3.10 C and F), likely due to their functional interactions (Spencer and Sollid

(2016)). Genes specifically expressed in S and G2/M cell-cycle phases (Nestorowa

et al. (2016)) were highly expressed in the crypt base area where stem/dividing cells

are located (Levine and Haggitt (1989)), however, their expression was lower in the

surface area (Figure 3.10 H).

3.3 Materials and Methods

3.3.1 Seq-Scope Technology

The Seq-Scope experiments are divided into two rounds of sequencing steps: 1st-

Seq and 2nd-Seq (Figure 3.11) . 1st-Seq generates a physical array of spatially bar-
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marker genes. These spatial transcriptome features were consistent with underlying
H&E histology (G).

63



coded RNA-capture molecules and a spatial map of barcodes where each barcoded

sequence is associated with a spatial coordinate in the physical array. 2nd-Seq cap-

tures mRNAs released from the tissue placed on the physical array from the 1st-Seq

and sequences the captured molecules containing both cDNA and spatial barcode

information.

1st-Seq of Seq-Scope starts with the solid-phase amplification of a single-stranded

synthetic oligonucleotide library using an Illumina sequencing platform. The oligonu-

cleotide “seed” molecule contains the PCR/read adaptor sequences, the restriction

enzyme-cleavable RNA-capture domain (oligo-dT), and the high-definition map coor-

dinate identifier (HDMI), a spatial barcode composed of a 20–32 random nucleotide

sequence. The library is amplified on a lawn surface coated with PCR adapters, gen-

erating a number of clusters, each of which is derived from a single “seed” molecule.

Each cluster has thousands of oligonucleotides that are identical clones of the ini-

tial oligonucleotide “seed” (Bentley et al. (2008)). The HDMI sequence and spatial

coordinate of each cluster are determined through a sequencing-by-synthesis (SBS)

procedure using the realtime analysis (RTA) software, without requiring any in-house

custom image analysis. After SBS, the oligonucleotides in each cluster are processed to

expose the nucleotide-capture domain, producing an HDMI-encoded RNA-capturing

array (HDMI-array), the physical array produced by 1st-Seq of Seq-Scope.

2nd-Seq of Seq-Scope begins with overlaying the tissue slice onto the HDMI-array

(Figure 3.11 E). The mRNAs from the tissue are used as a template to generate cDNA

footprints on the HDMI-barcoded RNA capture molecule. Then, the secondary strand

is synthesized on the cDNA footprint. Because each cDNA footprint is paired with a

single random primer after washing, the random priming sequence is used as a UMI.

The secondary strand, which is a chimeric molecule of HDMI and cDNA sequences, is

then collected and prepared as a library through PCR. The paired-end sequencing of

this library reveals the cDNA footprint sequence, as well as its corresponding HDMI
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X Y BARCODE

52 83 GAATCGCCGAATGGGCGATG

138 6 ATGCGCGGGCGAGGAATACC

68 11 TGCGCATAAGCTTAGACAAT

25 118 CATCTCACAGTTAAAGTCGG

96 31 CTCGACCTTCTCGTGGGAGG

BARCODE UMI Gene

ATGCGCGGGCGAGGAATACC ACTAAGTAC Ass1

ATGCGCGGGCGAGGAATACC GCGATGCGC Mup20

TTAAAGCGGCTGCACTGCTG GCCCTCCCC Glul

ATGCGCGGGCGAGGAATACC TTCGAGGCA Alb

CCCCATCGACCTGTACAGGA TTCTGGTAA Hamp

Seq-Scope Output Files
1st-Seq

HDMI sequence, tile 
and spatial coordinate 

information 

2nd-Seq
HDMI sequence, 

coupled with cDNA 
sequence

Histological image 
H&E staining of the 

tissue slice

Figure 3.12: Seq-Scope data structure. There are three outputs from Seq-Scope: 1st-
Seq, 2nd-Seq and H&E image. 1st-Seq provides a data table that has a spot’s XY
coordinate and its HDMI sequence. 2nd-Seq generates another data table where each
HDMI is associated with a cDNA sequence. Using HDMI sequence as an index, each
gene’s spatial coordinates can be quickly identified.

sequence.

For each HDMI sequence, 1st-Seq provides spatial coordinate information whereas

2nd-Seq provides captured cDNA information. Correspondingly, the spatial gene

expression matrix is constructed by combining the 1st-Seq and 2nd-Seq data, which

is used for various analyses.

There are three experimental outputs from Seq-Scope(Figure 3.12), which will

serve as input data for downstream computational analysis. (1) HDMI sequence,

tile and spatial coordinate information from 1st-Seq, (2) HDMI sequence, coupled

with cDNA sequence from 2nd-Seq, and (3) Histological image obtained from H&E

staining of the tissue slice.
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Figure 3.13: HDMI discovery plot for Seq-Scope liver and colon Data. The schematic
diagram visualizes the tiles which were attached to the indicated liver (A, top) or
colon (B, top) tissues. On the bottom, H&E staining images and their corresponding
HDMI discovery plots were presented.

3.3.2 Tissue Boundary Estimation

To estimate the tissue boundary, the 2nd-Seq data were joined into 1st-Seq data

according to their HDMI sequence. As a result, for each of the 2nd-Seq data whose

HDMI was found from 1st-Seq, the tile number and XY coordinates were assigned.

Finally, an HDMI discovery plot was generated to visualize the density of HiSeq

HDMI in a given XY space of each tile. The density plots were manually assigned to

the corresponding H&E images for quality control examination (Figures 3.13).

3.3.3 Read Alignment and Generation of Digital Gene Expression Matrix

Read alignment was performed using STAR/STARsolo 2.7.5c (Dobin et al. (2013)),

from which the digital gene expression (DGE) matrix was generated. From MiSeq
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data, HDMI sequences of clusters located on the bottom tile were extracted and used

as a “whitelist” for the cell (HDMI) barcode after reverse complement conversion. The

first 20 (HDMI-DraI version) or 30 (HDMI32-DraI) basepairs of HiSeq data Read 1

were considered as the cell (HDMI) barcode. HDMI assignments were performed

using the default error correction method implemented in STARsolo (1MM multi).

Due to the extensive washing steps after secondary strand synthesis, it was ex-

pected that each single molecule of HDMI-cDNA hybrid would lead to one secondary

strand in the library. Therefore, the first 9-mer of Read 2 sequence, which is derived

from the Randomer sequence, could serve as a proxy of the unique molecular iden-

tifier (UMI). Accordingly, the first 9 basepairs of HiSeq Read 2 data were copied to

Read 1 and used as the unique molecular identifier (UMI). Read 2 was trimmed at

the 3’ end to remove polyA tails of length 10 or greater and was then aligned to the

mouse genome (mm10) using the GeneFull option with no length threshold and no

cell filtering. For the genes whose expression couldn’t be monitored by the GeneFull

option, the Gene option was used to generate the gene expression discovery plots.

UMIs were deduplicated using the default error correction method implemented in

STARsolo (1MM All), in which all UMIs with 1 mismatch distance to each other are

collapsed (i.e., counted once).

For saturation analysis, multiple read alignments were performed using 25%, 50%

and 75% random subsets of the 2nd-Seq results. The alignment output values were

plotted in a graph (Figure 3.14) to generate a saturation curve. Hyperbolic regression

was used to estimate the total unique transcript number in the liver (60,292,407

to 96,899,822; 95% confidence interval) and colon (308,586,493 to 510,224,639; 95%

confidence interval) Seq-Scope libraries.
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Liver Data
Current Unique Transcripts: 44M reads (180M uncollapsed reads)
Estimated Total Unique Transcripts: 74M reads (~170% of current data)

Colon Data
Current Unique Transcripts: 137M reads (272M uncollapsed reads)
Estimated Total Unique Transcripts: 383M reads (~280% of current data)
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Figure 3.14: Saturation analysis of liver (red) and colon (blue) Seq-Scope dataset.
Hyperbolic regression was used to estimate the total unique transcript number in the
liver and colon Seq-Scope libraries.

3.3.4 Error Correction Methods for Spatial Barcodes

Although the possibility of per-base error is very low, Seq-Scope involves a multi-

step processing of sequences and DNA samples, so we expect that a small but non-

negligible fraction of HDMI barcodes will contain errors. In current study, error

correction and demultiplexing of HDMI barcodes were performed in STARsolo using

the 2nd-Seq result as a FASTQ input, and the 1st-Seq result as a barcode whitelist.

We used the STARsolo’s default option (1MM multi), which implements a robust

statistical error correction method similar to 10X CellRanger 2.2.0. In this method,

HDMIs are allowed to have one mismatch, and the posterior probability calculation

is used to choose the barcode when multiple mismatched sequences are present.

3.3.5 Analysis of Spliced and Unspliced Gene Expression

To obtain separate read counts for spliced and unspliced transcripts, we used the

Velocyto (La Manno et al. (2018)) option in the STARsolo software. Unspliced and

spliced mRNA read counts were plotted onto the histological coordinate plane to

identify the nuclear-cytoplasmic structure. To test the reproducibility of the image
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analysis, all genes were randomly divided into three groups, and spliced and unspliced

read counts were obtained independently. Nuclear-specific (Malat1, Neat1 and Mlx-

ipl) and mitochondria-encoded (all genes whose name start with ‘mt-’) transcripts

were also plotted and analyzed.

3.3.6 H&E Based Image Segmentation for Spatial Single Cell Analysis

To perform cell segmentation using H&E histology images, the watershed algo-

rithm was implemented on H&E histology images(Kornilov and Safonov (2018)).

The cell segmentation results isolated the single hepatocyte areas, which are consis-

tent with the visual inspection of the H&E images (Figure 3.5 A). Cell boundary

images and cell center coordinates were exported to aggregate Seq-Scope data so that

the transcriptome information from all HDMI pixels within each segmented area were

collapsed into their corresponding cell center coordinate barcodes, generating a single

cell-indexed DGE matrix. The DGE matrix was then used for clustering analysis.

3.3.7 Simple Aggregation

Simple aggregation generated square bins by dividing the imaging space into

100µm2 (10µm-sided) square grids and collapsing all HDMI-UMI information into

one barcode per grid. Alternatively, data binning was also performed with 25µm2

(5µm-sided) square grids. After data binning, gene types were filtered to only con-

tain protein-coding genes, lncRNA genes, and immunoglobulin/T cell receptor genes.

When multiple genes share the same gene symbol, we retained only first-appearing

gene. We also exclude any hypothetical gene models (genes designated as Gm-

number).
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3.3.8 Clustering Analysis

The binned and processed DGE matrix was analyzed in the Seurat v4 package

(Butler et al. (2018)). Feature number threshold was applied to remove the grids that

corresponded to the area that was not overlaid by the tissue or was extensively dam-

aged through scratches. Data were normalized using regularized negative binomial

regression implemented in Seurat’s SCTransform function. Clustering was performed

using the shared nearest neighbor modularity optimization implemented in Seurat’s

FindClusters function. Clusters with mixed cell types were subjected to an additional

round of clustering to get separation between the different cell types, while similar

cell types were grouped together. UMAP (Becht et al. (2019)) manifold, also built in

the Seurat package, was used to assess the clustering performance. Top markers from

each cluster, identified through the FindAllMarkers function, were used to infer and

annotate cell types. Then the clusters were visualized in the UMAP manifold or the

histological space using DimPlot and SpatialDimPlot functions, respectively. Raw

and normalized transcript abundance in each tile, cluster and spatial grid was visu-

alized through the VlnPlot, DotPlot, FeaturePlot and SpatialFeaturePlot functions

built in the Seurat package.

3.3.9 Analysis of Transcripts Discovered Outside of Tissue-overlaid Re-

gion

Some RNAs were discovered in an area where the tissue was not overlaid. It is

possible that a trace of tissue fluid or debris, as well as ambient RNAs released from

the tissues, may have generated this pattern. Although the RNA discovery in these

regions was scarce, the compositions of RNA discovered in tissue-overlaid (nFeature

> 250 in liver dataset) and non-overlaid regions (nFeature ≤ 250 in liver dataset)

were very similar to each other (r = 0.98 in Spearman coefficients). The minor

differences between these two regions could be obviously explained by the different
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10 µm square grid 5 µm square grid

Sliding windows with 5 µm interval
(4X data output)

Sliding windows with 2 µm interval
(25X data output)

Figure 3.15: Schematic diagrams depicting the sliding windows analysis methodology.
Compared to the 10µm grid dataset, 5µm grid dataset produces higher resolution;
however, the transcriptome information revealed by 5µm grid area is only 25% of
what was recovered from 10µm grid area. Correspondingly, 5µm dataset produced
substantial noises in cell type assignment. To overcome this, sliding windows analysis
was performed to maintain transcriptome information per pixel while achieving higher
resolution of cell type mapping by oversampling the data 4 times (5µm-interval), 25
times (2µm-interval) or 100 times (1µm-interval; scheme not shown).

rates of ambient RNA release/capture and the different composition of cell types in

the tissue debris. Therefore, it is plausible that ambient and debris-derived RNAs

generated the pattern of RNA discovery in the tissue non-overlaid region.

3.3.10 Multi-scale Sliding Window Analysis

Multi-scale Sliding Window (MSSW)analysis (see Chapter IV for details) was

employed to fine tune the annotation using FindTransferAnchors and TransferData

functions implemented in Seurat. The anchors provided by the 10µm grid dataset

were used to guide other datasets produced from the same Seq-Scope result. Com-
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pared to the 10µm grid dataset, the 5µm grid dataset was much noisier in spatial

(Figure 3.16 A) analyses even after multi-scale fine tuning. To circumvent this prob-

lem, we employed the sliding windows analysis; after the initial 10µm grid sampling,

the grid was shifted both horizontally and vertically with 5µm, 2µm or 1µm inter-

vals, producing 4, 25 and 100 times more data, respectively (see Figure 3.15 for a

schematic illustration). Then, the original 10µm grid dataset was used to guide these

sliding windows datasets to perform high-resolution cell type annotation. Sliding

windows analysis with 5µm intervals (Figure 3.16 C, right) performed much better

when compared to the 5µm grid datasets (Figure 3.16 C, center), and showed the

UMAP pattern (Figure 3.16 B) whose shape is more similar to the original 10µm

grid dataset. Sliding windows analyses with 5µm intervals were used to produce left

panels in Figures 3.10 A–C. Sliding windows analyses with 2µm intervals were used

to produce middle panels in Figures 3.10 A–C. Sliding windows analyses with 1µm

intervals were used to produce the right panels in Figures 3.10 A–C.

3.3.11 Visualization of Spatial Gene Expression

Spatial gene expression was visualized using a custom python code. Raw digital ex-

pression data of the queried gene (or gene list) were plotted onto the coordinate plane

according to their HDMI spatial index. Considering the lateral RNA diffusion distance

of 1.7± 2µm(mean ± SD) measured from the original ST study (St̊ahl et al. (2016)),

gene expression densities were plotted as a ∼ 3µm-radius circle at a transparency al-

pha level between 0.005 and 0.5. In spatial gene expression images with a white back-

ground, the intensity of the colored spot indicates the abundance of transcripts around

the spot location. Spatial gene expression images with a black background were cre-

ated for genes or gene lists of high expression values, to make it easy to adjust the

linear range of gene expression density and to overlay gene expression densities of dif-

ferent queries with different pseudo-color encoding. The inverse image of the greyscale
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5 µm square grid 10 µm square grid – Sliding windows with 5 µm interval

10 µm square grid 5 µm square grid 10 µm square grid – Sliding windows with 5 µm interval

Seq-Scope: Colon tile2112 Seq-Scope: Colon tile2112

Seq-Scope: Colon tile2112 Seq-Scope: Colon tile2112 Seq-Scope: Colon tile2112

Figure 3.16: Cell type mapping by Multi-scale Sliding Window analysis. (A and B)
UMAP plots constructed from 5µm grid dataset (A) and sliding windows dataset of
10µm grids with 5µm intervals (B). (C) Multi-scale cell type mapping combined with
sliding window analysis identifies clear boundaries between different cell types with
high resolution. Colon Seq-Scope dataset was analyzed using simple gridding with
10µm-sided squares (left). Using the 10µm dataset as an anchor, multi-scale cell type
mapping was performed in 5µm gridding dataset (center). Even though 5µm gridding
improved the resolution, the image was very noisy due to scarce genetic information
in each grid. To overcome this, we performed the same analysis using a dataset
produced by sliding windows analysis of 10µm gridding dataset with 5µm intervals.
The output images (right) clearly visualize the boundaries between different cell types
with high resolution. Cell type annotations depict major histological layers (upper),
epithelial cell diversity (middle), and non-epithelial cell diversity (lower).
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plot was pseudo-colored with red, blue, green or gray, and the image contrast was lin-

early adjusted to highlight the biologically relevant spatial features. Finally, different

pseudo-colored images were overlaid together to compare the gene expression patterns

in the same histological coordinate plane. Cell cycle-specific genes, such as S phase-

and G2/M phase-specific gene lists (Nestorowa et al. (2016)), were retrieved from the

Seurat package, and their mouse homologs were identified using the biomaRt package

(Durinck et al. (2009)). The list of cell type markers used in spatial plots can be found

at https://docs.google.com/spreadsheets/d/1jb1QpDisTEGAy6EXJtSNXMQfv0

jsUrkA/edit?usp=sharing&ouid=104769725873530382604&rtpof=true&sd=true

3.3.12 Benchmark Analysis

The performance of Seq-Scope in liver and colon experiments were benchmarked

against publicly available datasets produced by 10X VISIUM (https://support.

10xgenomics.com/spatial-geneexpression/datasets/1.1.0/V1_Human_Brai

n_Section_1). DBiT-Seq (GEO: GSM4096261 in GSE137986) (Liu et al. (2020)),

SlideSeq (Single Cell Portal: 180819 11 in SCP354) (Rodriques et al. (2019)), Slide-

SeqV2 (Single Cell Portal: 190921 19 in SCP815) (Stickels et al. (2021)), and HDST

(GEO: GSM4067523 in GSE130682) (Vickovic et al. (2019)). Liver Seq-Scope dataset

was separately benchmarked against former liver datasets produced using original ST

(Zenodo: 10.5281/zenodo.4399655) (Hildebrandt et al. (2021)) and Slide-Seq (Single

Cell Portal: 1808038 8 in SCP354) (Rodriques et al. (2019)).

The center-to-center resolution was calculated per each pixel as the distance from

the closest tissue-overlaid pixel. For the technologies that have a defined pixel area

(VISIUM, DBiT-Seq and HDST), pixel density was calculated as the inverse of the

pixel area. For Slide-Seq, Slide-SeqV2 and Seq-Scope, pixel density was calculated

in 150µm grids (Slide-Seq and Slide-SeqV2) and 10µm grids (Seq-Scope) of the final

dataset. Grids that contained less than 10 pixels were excluded from the analysis.
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nUMI corresponds to the number of unique transcripts mapped to the transcrip-

tome, and nGene corresponds to the number of gene features discovered per each

pixel. nUMI/pixel and nGene/pixel values were multiplied by the average pixel den-

sity (pixel/µm2 ) to obtain the area-normalized nUMI and nGene (nUMI/µm2 and

nGene/µm2 , respectively) for each pixel.

3.4 Summary

In this chapter we described Seq-Scope, a novel ST technology achieving submi-

crometer resolution (∼ 0.6µm) and efficient transcriptome capture rate. Seq-Scope

repurposes the Illumina sequencing platform for ST. Seq-Scope reveals the variation

of spatial transcriptome at various resolutions, including tissue zonation according

to the portal-central (liver) and crypt-surface (colon) , cellular components including

single-cell types and subtypes, and subcellular architectures of nucleus and cytoplasm.

Seq-Scope is quick, straightforward, precise, and easy-to-implement and makes spatial

single-cell analysis accessible to a wide group of biomedical researchers.
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CHAPTER IV

STtools: Comprehensive Software Pipeline for

Ultra-high-resolution Spatial Transcriptomics Data

4.1 Background

Recent developments in single-cell and spatial RNA-sequencing (RNA-seq) tech-

nologies enabled fine-scale exploration of cell-type-specific expressions and tissue com-

positions. Technologies such as VISIUM (St̊ahl et al. (2016)), Slide-Seq (Rodriques

et al. (2019); Stickels et al. (2021)) and Seq-Scope (Cho et al. (2021)) associates spe-

cific barcode sequences with spatial coordinates and attaches these spatial barcodes to

individual cDNA fragments to resolve transcriptomic profiles with spatial resolution.

Current software tools analyzing spatially resolved transcriptomes (10X Genomics,

2022; Palla et al. (2022); Stickels et al. (2021)) are primarily designed for relatively

coarse resolution technologies such as VISIUM (100µm) or Slide-Seq (10µm), where

each spatial barcode typically represents more than a single cell. However, when

analyzing transcriptome spatially resolved at a micrometer or a submicrometer res-

olution, most current tools perform poorly due to various computational challenges.

First, the number of spatial barcodes permm2 rapidly increases as resolution increases

(∼ 120 for VISIUM, ∼ 3K for Slide-Seq and > 1M for Seq-Scope), and few tools

seamlessly scale to handle millions of spatial barcodes. Second, even though higher-
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resolution technologies may contain UMI counts per given area, the UMI count per

spatial barcode is typically much lower due to the limited number of mRNAs that

can be captured. As a result, existing tools may perform poorly if they assume that

individual spatial barcodes contain sufficient UMIs to be clustered into a cell type.

Third, submicrometer-resolution technologies inform us of subcellular transcriptomic

architecture within individual cells (Cho et al. (2021)), but existing tools do not ac-

count for subcellular components in their analysis and visualization to accommodate

the ultra-high resolution from recent technologies.

To address these challenges, we developed STtools, which is capable of handling

various ST platforms, including submicrometer-resolution ST technology such as Seq-

Scope. STtools provides a comprehensive framework for analyzing ST datasets, en-

abling both super-cellular, cellular and sub-cellular resolution analysis and visualiza-

tion.

4.2 Results

4.2.1 STtools Enables High Resolution Cell Type Mapping

We illustrated example results from Seq-Scope mouse liver dataset (Figure 4.1

A–D) and Slide-Seq mouse cerebellum dataset (Figure 4.1 E–H), which have ∼ 0.8µm

and ∼ 10µm distance between adjacent spatial barcodes, respectively. We first ap-

plied simple square barcodes aggregation (100µm2 for Seq-Scope, 2500µm2 for Slide-

Seq) and then estimated their cell types and UMAP manifolds (Figure 4.1 A and E).

STtools is featured at Multi-scale Sliding Window (MSSW, See Materials and Meth-

ods for details) analysis by accumulating reads counts in a smaller square grid, to

enhance resolution via sliding grid strategy. Using MSSW, we produced 25-fold finer

resolution spatial map (4µm2 for Seq-Scope and 100µm2 for Slide-Seq) and performed

high-resolution cell-type identification by high-dimensional projection implemented in
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Figure 4.1: Visualization of spatial transcriptomics data with STtools. (A–D) Visu-
alize Seq-Scope mouse liver dataset, and (E–H) visualize Slide-Seq mouse cerebellum
dataset. (A, E) Visualize UMAP coordinates and clustered cell types for each squared
grid from simple aggregation of 10 µm grids. (B, F) Visualize the clustered cell types
for each simple grid (10µm for Seq-Scope, 50µm for Slide-Seq). (C, G) Visualize the
cell types from MSSW with higher resolution (2µm for Seq-Scope and 10µm for Slide-
Seq). (D, H) Visualize selected marker genes in red, green, and blue (RGB) color at
ultra-high resolution (1µm/pixel for Seq-Scope and 10µm/pixel for Slide-Seq)

Seurat (Figure 4.1 C). As a result, the spatial cluster map from MSSW algorithm pro-

vides finer cell-type boundaries than simple barcode aggregation (Figure 4.1 B) for

Seq-Scope dataset. On the other hand, for Slide-Seq, the benefit of MSSW was not

visually pronounced primarily due to the low resolution of the technology. (Figure

4.1 F and G).

To further demonstrate that STtools enables micrometer-resolution cell-type map-

ping, we produced 25− and 100-fold finer resolution spatial map in Seq-Scope colon

datasets(Figure 4.2). 100-fold (1µm window size) finer resolution spatial map(Figure

4.2 C) clearly visualize the boundaries between different cell types compartments

compared with simple aggregation(Figure 4.2 A) and 25-fold spatial cell-type map-

ping(Figure 4.2 B).
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Square Grid
(side = 10 𝜇𝑚 )

Sliding Window Grid
(side = 10 𝜇𝑚,window= 5 𝜇𝑚 )

Sliding Window Grid
(side = 10 𝜇𝑚,window= 1 𝜇𝑚 )

10 μm
10 μm10 μm

A B C

Figure 4.2: Multi-scale Sliding Window (MSSW) analysis enables micrometer-
resolution cell-type mapping. (A)Zoomed-in image of spatial map of cell types with
simple aggregation of 10µm sided grids in Seq-Scope colon data. Spatial cell-type
mapping in is refined using MSSW analysis with 5µm (B) and 1µm (C) intervals.

4.2.2 STtools Visualizes Spatial Gene Expression at Various Scales

We also produced ultra-high-resolution spatial RGB geneset plots that visualize

the expressions of selected marker gene sets with STtools to visualize customized

spatial maps based on user-defined genes. This RGB plotting tool is capable of

separating spliced and unspliced reads, and we were able to visualize both cell-type

differences (periportal versus pericentral hepatocytes versus macrophages; Figure 4.1

D, Figure 4.3 A) as well as subcellular differences (e.g. nucleus versus mitochondria

versus macrophages; Figure 4.3 C) at a resolution of 1µm2/pixel. These plots can help

investigators interpret ST data at an ultra-high resolution to understand subcellular

architecture or infiltration of non-parenchymal cell types.

STtools also generates additional visualization of ST data such as the distribution

of UMIs across spatial coordinates (Figure 4.4 A) or violin plots of gene counts, UMI

counts or fraction of mitochondrial genes (Figure 4.4B–D) by seamless connection to

other single-cell or ST software such as STARsolo (Kaminow et al. (2021)), Seurat

(Hao et al. (2021)) and seqtk (Li, 2021). The digital gene expression matrix generated
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Figure 4.3: Spatial RGB visualization of marker gene sets by STtools. Zoomed-in
from Figure 4.1D and H. (A) magnifies the spatial map of Seq-Scope mouse liver
from Figure 4.1D, visualizing unspliced reads(blue), periportal hepatocyte(red), and
pericentral hepatocyte(green). (B) magnifies the spatial map of Slide-Seq mouse cere-
bellum from Figure 4.1H, visualizing white matter (red), molecular layer (green) and
other cell types (blue). (C) magnifies the spatial map of Seq-Scope mouse liver from
Figure 4.1D (same region to A), visualizing mitochondrial RNAs (red), macrophages
(green – same to blue in A), unspliced reads (blue).
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A B C D

Figure 4.4: Additional visualization of spatial transcriptomics data produced by ST-
tools.(A) –(D) are generated with Seq-Scope mouse liver data(ref). (A) visualizes the
spatial distribution of total UMIs per simple square grid (10µm). (B)-(D) visualizes
the the distribution of (B) gene counts (C) total UMIs, and (D) percentage of mito-
chondrial genes per each grid. (C) and (D) only visualizes grids with more than 250
genes expressed.

by STtools follows the widely used format from 10× Genomics can be directly read

from other software tools such as Seurat (Hao et al. (2021)) or squidpy (Palla et al.

(2022)). STtools also offers a functionality to run Bayespace (Zhao et al. (2021)) for

VISIUM data to enhance its resolution.

4.2.3 STtools Can Efficiently Process Spatial Transcriptomic Data Scal-

ing with Millions of Spatially Resolved Barcodes

STtools is designed to efficiently process ST data scaling with millions of spatially

resolved barcodes. The total computational cost to process the Seq-Scope data con-

sisting of 15M spatial barcodes and 1.9 billion raw sequence reads across all stages
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was modest, taking ∼ 16h in an high performance computing (HPC) cluster with six

3.0 GHz Intel Xeon Gold 6154 CPUs with 30 GB of RAMs for the mouse liver dataset.

The cost was orders of magnitude smaller for lower-resolution datasets such as Slide-

Seq or VISIUM. To compare the computational efficiency of STtools with spacemake,

we ran both tools with the same mouse liver Seq-Scope data (GSM5212844). Space-

make could not handle the full 2nd-seq data with 625.1G bases, so we ran experiments

for a subset (SRR14082757) with 104.7G bases. As shown in Table 4.1, spacemake

approximately corresponds to STtools steps A1 to A3, which produces the spatial

gene expression matrix after alignments. Spacemake does not have the functionality

to extract spatial coordinates from 1st-seq data of Seq-Scope, so we used the coordi-

nates generated by STtools step A1. It took 254 min to run STtools steps A1–A3,

while spacemake took 1100 min. Both pipelines were executed with —cores 8 option

and ran locally on an HP DL380 server with Dual Intel Xeon-G 5118 processor (24

physical cores). The usage of STARsolo instead of STAR and efficiencies in interme-

diate file generation resulted in significant runtime differences between two pipelines

for high-resolution Seq-Scope data.

83



T
ab

le
4.
1:

C
om

p
ar
is
on

b
et
w
ee
n
S
T
to
ol
s
an

d
ot
h
er

re
la
te
d
to
ol
s
(s
p
ac
em

ak
e
an

d
sq
u
id
p
y
).

F
u
n
ct
io
n
a
li
ty

S
p
a
ce

m
a
k
e

S
q
u
id
p
y

S
T
to

o
ls

P
re
p
ro
ce
ss

1s
t-
S
eq

F
A
S
T
Q

to
p
re
p
ar
e
al
ig
n
m
en
t
(S
te
p
A
1)

X
X

O

Q
u
al
it
y
co
n
tr
ol

of
sp
at
ia
l
co
or
d
in
at
es

an
d
ti
ss
u
e
b
ou

n
d
ar
y
d
et
ec
ti
on

(S
te
p
A
2)

X
X

O

A
li
gn

s
th
e
tr
an

sc
ri
p
to
m
ic

se
q
u
en
ce

re
ad

s
an

d
p
ro
d
u
ce
s
sp
at
ia
l
ex
p
re
ss
io
n
m
at
ri
x
(S
te
p
A
3)

O
X

O

G
ri
d
-b
as
ed

si
m
p
le

sp
at
ia
l
se
gm

en
ta
ti
on

(S
te
p
C
1)

O
X

O

M
S
S
W

se
gm

en
ta
ti
on

(S
te
p
C
2)

X
X

O

C
lu
st
er
in
g
of

ea
ch

se
gm

en
t
(S
te
p
C
3)

X
O

O

H
ig
h
-r
es
ol
u
ti
on

v
is
u
al
iz
at
io
n
of

se
le
ct
ed

ge
n
es

(S
te
p
V
1)

X
X

O

C
om

p
at
ib
le

w
it
h
S
li
d
eS
eq

O
O

O

C
om

p
at
ib
le

w
it
h
S
eq
-S
co
p
e

∆
∆

O

P
ro
v
id
es

an
en
d
-e
n
d
so
lu
ti
on

(i
n
cl
u
d
in
g
al
ig
n
m
en
t,
cl
u
st
er
in
g
an

d
v
is
u
al
iz
at
io
n
)

X
X

O

A
ll
ow

s
ru
n
n
in
g
in
d
iv
id
u
al

st
ep
s
se
p
ar
at
el
y

X
O

O

Q
u
an

ti
fi
es

b
ot
h
sp
li
ce
d
an

d
u
n
sp
li
ce
d
re
ad

s
fo
r
su
b
ce
ll
u
la
r
an

al
y
si
s

X
X

O

84



4.3 Materials and Methods

STtools is able to process ST data from various platforms including, but not lim-

ited to, Seq-Scope, Slide-Seq and VISIUM. STtools provides a complete solution from

raw FASTQ file preprocessing to automated downstream analysis with the flexibility

to run the pipeline end-to-end automatically. It also allows users to run a specified

set of consecutive steps, or to run individual steps separately. For example, users can

skip the FASTQ processing steps and instead start from a spatial gene expression

matrix for downstream analysis such as clustering and visualization using STtools.

STtools workflow currently performs three major tasks—alignment, clustering and

visualization—consisting of eight individual steps (Figure 4.5). The alignment step

performs quality control (QC), alignment and spatial digital gene expression matrix

generation from raw sequence data. The clustering steps perform cell-type clustering

in Multi-scale resolution. The visualization steps visualize the ST data from multiple

different perspectives as illustrated (Figure 4.1; Figure 4.5).

4.3.1 Alignment

The full STtools workflow starts with taking two sets of raw sequence reads in

FASTQ format. The first FASTQ file (1st-seq) contains spatial barcode sequences

associated with spatial coordinates that are encoded in their Illumina sequence iden-

tifiers (Line 1 of FASTQ reads). The second FASTQ file (2nd-seq) contains cDNA

sequences from transcripts, attached with the spatial barcodes. To estimate the tis-

sue boundary, the 2nd-Seq were joined into 1st-Seq data according to their HDMI

sequence. For each of HDMIs, the tile number and XY coordinates were extracted

and assigned. Finally, an HDMI discovery plot was generated to visualize the den-

sity of HDMIs in a given XY space of each tiles and were manually assigned to the

corresponding H&E images.

After performing initial QC to inspect the distribution of spatial coordinates of
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barcodes, using these two sets of FASTQ files, STtools aligns each cDNA sequence

to the reference genome using STARsolo. Each aligned 2nd-seq read in the BAM

file is annotated with error-corrected spatial barcodes based on 1st-seq. After the

alignment, multiple sets of digital gene expression matrices are generated focusing

on exonic reads only (Gene), exonic and intronic reads together (GeneFull), or by

distinguishing spliced and unspliced reads (Velocyto).

4.3.2 Two-track Approach for Clustering

STtools takes digital expression matrices annotated with spatial coordinates, ei-

ther from the steps above or from external sources, to aid interpretation of the

data through barcode aggregation, clustering and visualization. Aggregation across

nearby spatial barcodes is particularly important for submicrometer resolution ST

technologies and will help infer cell types accurately. However, it may compromise

the subcellular resolution attainable by the technology. To support clustering at cel-

lular/subcellular level while keeping the details of high spatial resolution, STtools

employs two different spatial aggregation (i.e. binning) algorithms: simple aggrega-

tion and Multi-scale Sliding Window (MSSW) aggregation.

Due to the extremely high number of HDMI and relatively low number of UMI

per HDMI, HDMI-UMI information needs to be aggregated. The simple aggrega-

tion method generates a set of non-overlapping, equal-sized bins to capture enough

transcripts to be used for cell-type clustering.

MSSW (Figure 4.6) generates a set of overlapping bins for finer resolution cell-type

identification and visualization . This two-track approach seamlessly and efficiently

integrates with Seurat (Hao et al. (2021)), so that simple aggregation is used for

clustering cell types and MSSW aggregated bins are used to assign cluster types at a

finer resolution.
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4.3.3 Visualization

STtools also generates high-resolution (< 1µm2/pixel) images where RGB colors

quantify specific arbitrary marker gene sets to help investigators understand the raw

spatial gene expression without sacrificing the resolution.

STtools also generates additional visualization of ST data such as the distribution

of UMIs across spatial coordinates or violin plots of gene counts, UMI counts or

fraction of mitochondrial genes by seamless connection to other single-cell or ST

software such as STARsolo (Kaminow et al. (2021)), Seurat (Hao et al. (2021)) and

seqtk (Li, 2021).

4.4 Summary

In Chapter IV, we developed STtools, a comprehensive pipeline capable of process-

ing ST data from various platforms including, but not limited to, Seq-Scope, Slide-Seq

and VISIUM. STtools provides a complete solution from raw FASTQ file preprocess-

ing to automated downstream analysis with the flexibility to run the pipeline end-to-

end automatically. It also allows users to run a specified set of consecutive steps, or

to run individual steps separately.
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CHAPTER V

Discussion

5.1 Summary

In this dissertation, we presented a robust framework SiftCell framework of up-

stream quality control focusing on the challenges of contaminations from ambient

RNAs in single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq)

experiments, introduced Seq-Scope spatial transcriptomics(ST) technologies with com-

prehensive computational analysis to reveal the histological organization of the tran-

scriptome architecture at multiple scales and proposed STtools pipeline to provide

a versatile framework to handle ST datasets with various resolution from different

platforms. Here, we review these works, discuss their limitations and suggest possible

directions for future research.

5.2 Upstream Quality Control in Single-cell RNA Sequenc-

ing with Ambient RNAs

In Chapter II, we described SiftCell framework, a suite of software tools imple-

menting methods including SiftCell-Shuffle, SiftCell-Boost and SiftCell-Mix, focusing

on the challenges of contaminations from ambient RNAs in single-cell and single-

nucelus RNA-seq experiments. SiftCell-Shuffle works with digital gene expression
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matrix and aids the investigators to visually distinguish cell-free from cell-containing

droplets by contrasting with a randomized digital gene expression matrix. SiftCell-

Boost takes the output of SiftCell-Shuffle as input and applies a semi-supervised

machine learning method to classify cell-containing droplets and cell-free droplets.

SiftCell-Mix is a model-based tool that allows quantitative estimation of the contri-

bution of “ambient RNAs” in each droplet.

Compared to existing methods (Lun et al. (2019),Alvarez et al. (2020),Fleming

et al. (2019),Yang et al. (2020)) SiftCell-Boost and SiftCell-Mix consistently per-

formed better than or comparably with the best-performing methods across the three

datasets, posed by different types of challenges. Most methods performed well for

the PBMC dataset, which is the most recognized single-cell dataset, but many meth-

ods struggled with snRNA-seq(brain nuclei), or scRNA-seq generated with Drop-Seq

(colon cell line mixture). We also noticed that existing tools do not provide effective

visualization to understand the quality of scRNA-seq data in terms of ambient RNA

contamination, and we believe that SiftCell-Shuffle is a unique tool that allows users

to visually interpret the spectrum of all barcoded droplets. It should be noted, how-

ever, that SiftCell-Shuffle offers only quasi-ground truth under the assumption that

randomized droplets are good representatives of cell-free droplets.

The SiftCell framework can be easily adopted for other quality control methods

for single-cell genomic data. Existing methods for identifying cell-containing droplets

may be improved by incorporating the results from SiftCell-Shuffle. The key idea

underlying SiftCell-Shuffle, SiftCell-Boost, SiftCell-Mix is not necessarily limited to

scRNA-seq or snRNA-seq, so it should be possible to apply the same principle to

scATAC-seq data or single cell multiome datasets, even though some tweaks may be

required to optimize its performance.

There are rooms for further improvements in SiftCell-Shuffle. For example, it

may be better to assume that ambient RNAs are not a totally random sample of the
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pseudo-bulk scRNA-seq reads. In fact, there are studies demonstrating that ambi-

ent RNAs are enriched for specific features, such as mitochondrial genes or necrosis

marker genes(Muskovic and Powell (2021)). Our current approach to randomly shuf-

fle barcodes droplets for SiftCell-Shuffle, but provides an option to remove specific

genes that are determined to be enriched or depleted in cell-free droplets. Our method

can be further extended to a non-random permutation or bootstrapping, and how to

define a better “null” distribution of ambient RNAs is a subject of further research.

Binary classification of droplets into cell-containing/cell-free droplets with SiftCell-

Boost may make the downstream analysis simpler, but a more sophisticated proce-

dure is needed to handle datasets with heavy contamination from ambient RNAs.

In such cases, estimated from SiftCell-Mix can inform the quality of the classifica-

tion results. For example, in brain nuclei dataset, SiftCell-Mix estimates that 27.0%

of cell-containing droplets (inferred by SiftCell-Boost) have > 10% of ambient RNAs

present. This is substantially larger than 4.7% for PBMC, and 9.9% for colon cell line

mixture, suggesting the importance of accounting for ambient RNAs when analyzing

snRNA-seq data. In the colon cell line mixture dataset, we observed that droplets

containing multiple cells (multiplets) tended to be classified as cell-free droplets more

often than true single cells because mixture of multiple cell types tend to be more

similar to ambient RNAs.

Although SiftCell-Mix provides quantitative estimation of the contribution from

ambient RNAs, when the number of reads per cell is limited, we noticed that the

estimates can be quite unstable under our maximum-likelihood framework. Imposing

a stronger prior under Bayesian framework may make the estimation of more stable

for sparse data.
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5.3 Spatial Transcriptomics Technique with High Resolution

In Chapter III, we introduced Seq-Scope ST technique that achieves submicrom-

eter resolution. Through comprehensive computational analysis, we have demon-

strated that Seq-Scope can reveal spatial single cell and subcellular analysis of liver

and colon tissues. Equipped with an ultra-high-resolution output and an outstanding

transcriptome capture output, Seq-Scope drew a clear boundary between different

tissue zones, cell types, and subcellular components. Previously existing technolo-

gies could not provide this level of clarity due to their low-resolution output and/or

inefficiency in transcriptome capture.

There are more improvement that can be made to Seq-Scope technology. In the

current study, we used the MiSeq platform to generate the HDMI arrays; however,

virtually any sequencing platforms that use spatially localized amplification, such as

Illumina GAIIx, HiSeq, NextSeq, and NovaSeq, could be used to generate the HDMI-

arrays. Although MiSeq has small imaging areas, HiSeq2500 and NovaSeq can provide

∼ 90mm2 and ∼ 800mm2 of the uninterrupted imaging area, respectively, providing

a larger field of view. Newer sequencing methods, such as NextSeq and NovaSeq, are

based on a patterned flow cell technology, which could provide more defined spatial

information for the HDMI-encoded clusters.

5.4 Tools for High Resolution Spatial Transcriptomics

In Chapter IV, we developed STtools, a software pipeline that allows users to

align, cluster and visualize ST sequence data generated at submicrometer resolution.

In particular, STtools improves the resolution of spatial inference compared to typical

segmentation-based approach by leveraging MSSW algorithm. The spatial expression

matrix, spatial segmentation and clustering results produced by STtools can be easily

fed into other software tools widely used for downstream analysis, such as Seurat (Hao
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et al. (2021)) and squidpy (Palla et al. (2022)).

While STtools offers all-in-one analysis to translate raw sequence reads into spa-

tial expression matrix and clustering, it also provides options to perform step-by-step

analysis so that the investigators can perform sanity checks at each step and adjust

the parameters as needed. Users can customize many parameters during the align-

ment and clustering, including adapter sequences to trim, reference genomes to align

and the thresholds to filter genes and spatial segments before clustering. Users can

always load the spatial expression matrix generated by STtools in a standard for-

mat to perform more tailored analysis on their own using Seurat, squidpy or other

downstream software tools.

Although higher-resolution spatial inference can be made by the MSSW algorithm,

compared to other standard spatial transcriptomic analysis tools, it still has room for

improvement. Due to the limited number of UMIs per region, each spatial segment

still needs to be larger than subcellular compartments (e.g. ∼ 10µm), so subcellular

analysis with MSSW is not feasible. Spatial smoothing algorithms that deliver robust

inference for extremely sparse expression profiles per spatial unit will be needed to

enable truly subcellular inference beyond visualization of subcellular compartments.

There are many more improvements that can be made to STtools in the future.

For example, methods to impute spatial expression profiles (Shengquan et al. (2021)),

methods to jointly cluster cellular and subcellular components together, or methods

to automatically overlay histological images and spatial expressions are useful features

that can be added in the next major updates of STtools.
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