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Abstract 

 

Loss of HLA function is known to be a common immune escape mechanism across many 

cancers. Despite this, studies investigating the molecular mechanisms underpinning this loss 

have been hindered by the extreme genetic polymorphism of the HLA genes. Modern 

computational methods for high-throughput sequence-based analyses often rely on a standard 

reference, which is a problem for the HLA genes where most individuals will be highly divergent 

from the HLA sequences found in the standard reference. In this dissertation I present three 

methods that solve this problem by departing from the standard reference paradigm in favor of 

dynamic reference selection, where each individual will be analyzed relative to a personalized set 

of HLA reference sequences. 

I first present Hapster, a genomics tool that uses DNA sequencing data to construct 

personalized genomic references for the HLA genes. I show that Hapster produces high quality 

reference sequences, and that somatic mutation calling relative to these references has higher 

sensitivity and specificity than existing methods. To demonstrate the utility of Hapster, I next 

applied it to 12,000 primary and metastatic cancers from the TCGA and MI-ONCOSEQ projects. 

I show that using Hapster, we were able to identify patterns of positive selection within 

squamous cell carcinomas, lymphomas, and cancers with microsatellite instability, and identify 

the likely mutational processes responsible for these mutations. I next present HLAProphet, a 

proteomics tool that uses known HLA types to provide personalized quantification of the HLA 

proteins. I show that HLAProphet’s protein quantification has higher correlation to paired RNA 

expression data than existing methods, and that allele specific expression values reflect known 



 xiii 

loss of function genomic events. Finally, I present MHConstruct, a graph-based genomics 

algorithm that produces personalized reconstructions of the entire 5 Mb MHC locus. I show that 

MHConstruct’s personalized reference sequences have rates of germline variation below the 

genome-wide average of 1 snp/kb, enabling analyses of the polymorphic intergenic regions 

containing the promoters, enhancers, and other regions that regulate the HLA genes. In total, the 

tools presented here allow for a complete personalized proteogenomic characterization of the 

HLAs, enabling more thorough investigations of loss of HLA function as an immune escape 

mechanism for cancers. 

 



 1 

Chapter 1 Introduction 

1.1 Motivation 

The human leukocyte antigens (HLAs) are a group of cell surface membrane bound 

proteins that are required for the proper function of T-cell immunity in humans. While T-cell 

surveillance is classically thought of as a defense against infection, in recent decades it has 

become clear that T-cells also play a major role in protecting against cancers. As a result, cancers 

are under enormous selective pressures to evolve to escape T-cell surveillance. It has become 

clear through immunohistochemistry (IHC) studies that loss of HLA expression is a common 

immune escape mechanism across many cancers. However, further studies into the molecular 

underpinnings of this loss are lacking due to the computational difficulties involved in studying 

the HLA genes. In this thesis, I will lay out three personalized computational approaches that 

allow us to overcome these challenges and investigate the molecular mechanisms underpinning 

loss of HLA function at the DNA, RNA, and protein levels. 

1.2 HLA Biology 

The HLAs are a family of cell surface transmembrane proteins that can be divided into 

four groups: classical class I HLAs, non-classical class I HLAs, class I HLA pseudogenes, and 

class II HLAs (Table 1-1). Discussions of the HLAs often revolve around the classical class I 

HLAs (HLA-A, -B, -C), which are responsible for presenting peptide antigens to CD8+ T-cells, 

and the class II HLA proteins (HLA-DP, -DQ, -DR), which are responsible for presenting 

peptide antigens to CD4+ T-cells. The non-classical HLA proteins (HLA-E, -F, -G) each have  
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Table 1-1: Number of known HLA alleles 

Number of known HLA alleles recorded in the IMGT/HLA1 database version 3.52 

 

 HLA Gene Alleles Proteins 

Class I - Classical A 7793 4548 

 B 9274 5580 

 C 7761 4311 

Class I - Non-classical E 347 140 

 F 59 11 

 G 117 38 

Class I - Pseudogenes H 67 0 

 J 33 0 

 K 6 0 

 L 5 0 

 N 5 0 

 P 5 0 

 S 7 0 

 T 8 0 

 U 5 0 

 V 3 0 

 W 11 0 

 Y 3 0 

Class II DPA1 558 261 

 DPB1 2332 1361 

 DQA1 585 281 

 DQB1 2439 1501 

 DRA 46 5 

 DRB 4419 2903 

 DMA 58 9 

 DMB 71 9 

 DOA 92 14 

 DOB 60 15 
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similar structure to the classical class I HLA proteins, but play alternative roles promoting 

immune tolerance, such as suppression of NK cells2 and prevention of fetus rejection during 

pregnancy3. Similarly, the class II HLA proteins HLA-DM and HLA-DO have similar structure 

to the T-cell associated class II HLAs, but only play a role in MHC peptide loading4,5. The class I 

HLA pseudogenes have genetic similarity to the class I HLA genes but are not expressed. In this 

thesis, I will focus on the classical Class I HLAs (HLA-A, -B, -C) and the T-cell associated class 

II HLAs (HLA-DP, -DQ, -DR). 

The class I and class II HLAs contribute to the formation of the major histocompatibility 

complex (MHC) in humans. The MHC is a critical component of T-cell immunity and is 

responsible for presenting intracellular peptide antigens to cytotoxic and helper T-cells. In this 

system, T-cells are tasked with identifying and eliminating any cells that express foreign 

proteins. However, T-cells are not able to directly detect their protein targets, as the majority of 

the protein content of any given cell is intracellular where T-cells do not have access. The 

solution to this problem is the MHC, which binds intracellular peptide fragments and presents 

them on the cell surface, where they can be detected by their cognate T-cells. 

The class I and class II HLAs form mature MHCs with slightly different structures. MHC 

class I molecules consist of one membrane bound class I HLA protein in complex with the 

accessory protein beta-2-microglobulin (B2M). In this MHC, the binding pocket where the 

peptide antigen is loaded is entirely coded for by the class I HLA protein. In contrast, MHC class 

II molecules are composed of a dimer of class II HLA proteins. For each MHC class II there is 

an alpha and a beta protein that combine to make the mature MHC. In this MHC, both proteins 

are membrane bound, and each makes up half of the peptide binding pocket. 
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Loading of peptides onto the mature MHC is facilitated by a set of proteins known as the 

antigen processing machinery. This process begins with the normal turnover of proteins in the 

cell through either the ubiquitin-proteasome pathway for cytosolic proteins6, or the lysosomal 

pathway for extracellular proteins7. MHC class I molecules are responsible for presenting 

intracellular peptides to CD8+ T-cells and primarily present peptides originating from the 

ubiquitin-proteasome pathway8. In contrast, MHC class II molecules are responsible for 

presenting extracellular peptides to CD4+ T-cells and primarily present peptides originating from 

the lysosomal pathway9. However, some crossover between pathways has been observed10. 

For MHC class I loading, cytosolic peptides originating from the ubiquitin-proteasome 

pathway are first translocated to the endoplasmic reticulum (ER) via the transporter associated 

with antigen processing (TAP), an ATP dependent transmembrane dimer composed of the two 

proteins TAP1 and TAP211. TAP most efficiently transports peptide fragments of 8-12 amino 

acids in length12, which is consistent with the canonical length of MHC class I peptide 

antigens13. Peptides that translocate to the ER but are larger than the canonical MHC class I 

length may be further trimmed by the ER peptidase ERAP114. Appropriately sized peptide 

antigens can then be loaded onto an MHC class I molecule, which in its unloaded state is 

stabilized by the peptide-loading complex (PLC). The PLC consists of the general chaperone 

calreticulin15, the TAP-associated protein tapasin which brings the MHC/PLC complex into 

proximity with TAP15, and the thiol reductase ERp57 which plays a role in exchanging low 

affinity peptides for high affinity peptides within the MHC class I binding groove16. Once an 

MHC class I molecule has been loaded with a high affinity peptide, it dissociates from the PLC 

and is transported to the cell surface. 
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Loading of peptides onto MHC class II peptides follows an entirely separate pathway. 

Initially, MHC class II molecules are assembled in the ER and associate with the invariant chain 

Ii, which is cleaved by proteases into the shorter peptide fragment CLIP. CLIP fills the peptide 

binding groove and stabilizes the class II MHC before it is loaded17. Once in the endosomal 

compartment, displacement of the low affinity CLIP peptide is facilitated by HLA-DM and 

HLA-DO4,5. After the opening of the peptide binding groove by HLA-DM/DO, peptides with 

higher affinity than CLIP can be loaded into the mature MHC class II. Like the class I MHC 

molecules, after loading, the MHC class II is exported to the cell surface where it can present its 

bound antigen to the outside environment. 

After export to the cell surface, MHC molecules and their bound peptide antigens can 

stimulate T-cells through the αβ T-cell receptor (αβTCR). αβTCRs of mature T-cells are 

generally specific to a single MHC:antigen complex. This high specificity is the result of 

stringent selection that begins with the creation of a diverse collection of αβTCRs via somatic re-

arrangement of the variable (V), diversity (D), and joining (J) regions of the TRA and TRB genes 

in a process known as VDJ recombination18. This population of T-cells then undergoes both 

positive and negative selection in the thymus to promote clonal expansion of T-cells with high 

affinity to MHC-antigen complexes, while culling those T-cells that exhibit auto-reactivity19. 

Clonally expanded T-cells then translocate to the tumor microenvironment where they can come 

into contact with tumor cells and antigen presenting cells expressing their cognate MHC:antigen 

complex.  

1.3 Immunogenicity of tumors 

The first discovered link between the HLAs and cancers was found alongside the initial 

discovery of histocompatibility itself. In a series of papers published in the early 1900s 
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(reviewed in20), multiple groups simultaneously discovered that spontaneous tumors grown in 

mice could be transplanted successfully between inbred mice of the same stock, but when sent to 

partner labs could not be successfully grown in genetically distinct mouse stocks. This led to the 

proposal of a genetic factor responsible for mediating susceptibility or resistance to tumor 

transplantation20. In the 30s and 40s, the mouse factor responsible for this was isolated21,22 and 

was named the histocompatibility factor H-2. In the 50s, the human factors were isolated and 

named the human leukocyte antigens, or HLAs23. Ultimately, it was determined that these 

proteins make up the MHC, and these discoveries led to the 1980 Nobel prize in medicine and 

physiology being awarded to Baruj Benacerraf, Jean Dausset, and George Snell. 

While there was initially great interest in the immune response against transplanted 

tumors, this was ultimately considered a matter of tissue histocompatibility, similar to the 

observed rejections of other transplanted tissues. Hypotheses involving actual immune 

surveillance specific to malignant cells were proposed as early as 195724, however they failed to 

gain traction due to a lack of empirical evidence and clear mechanisms of action. This changed 

in the early 90s with direct evidence of a tumor antigen presented to T-cells via the MHC25, as 

well as evidence that mice lacking an effective cytotoxic T-cell response were more likely to 

develop malignant lesions26–28. Further, meta-analyses of medical records collected over the 

previous decades revealed that immunocompromised individuals were more likely to develop 

some form of cancer over their lifetime29. 

Excitement surrounding potential anti-tumor T-cell responses was further invigorated by 

the discovery of the immune checkpoint inhibitors CTLA-430 and PD-131. It was observed not 

only that these proteins prevent effective T-cell responses, but that tumors often overexpress 

them, and their blockade can directly enhance anti-tumor immunity31,32. These discoveries led to 
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the hypothesis that cancers must evolve to escape the immune system, and that there may be 

effective therapies that directly re-establish immune surveillance. In the United States, there are 

now at least eight FDA approved immune checkpoint inhibitors targeting CTLA-433, PD-134–

36/PD-L137–39, and LAG-340, with dozens more potential targets under investigation41. However, 

overexpression of immune checkpoints is only one potential immune escape mechanism, and 

there exist a number of other points in the cancer immunity cycle that tumors can evolve to 

disrupt42. 

1.4 Evasion of T-cell immunity via loss of HLA expression 

In this thesis, I will focus on evasion of the T-cell response via loss of class I and class II 

HLA expression. Loss of the class I HLAs is the most studied phenotype and allows malignant 

cells to cease presentation of tumor antigens to CD8+ T-cells. It has been repeatedly observed in 

most cancer types via immunohistochemistry (IHC) studies43 and can occur via multiple 

mechanisms. Complete loss of class I HLA expression can occur via homozygous deletion of the 

MHC locus itself or hypermethylation of the MHC locus44, and complete loss of cell-surface 

MHC class I molecules can occur through the loss of B2M or key proteins in the APM45,46. 

Haplotype loss, leading to loss of about half of the peptide presentation repertoire, has been 

observed to frequently occur due to loss of heterozygosity (LOH) of the MHC locus47. Allelic 

loss, resulting in the loss of one of the six overall class I HLA alleles, is the most difficult to 

detect via IHC, but has been observed via monomorphic monoclonal antibodies48. This 

phenotype is of particular interest, as it potentially allows for the loss of the singular HLA allele 

responsible for presenting an immunodominant antigen49, while maintaining expression of the 

remaining HLA alleles to prevent targeting by NK cells, which act to eliminate cells that fail to 

express MHC molecules50. 
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Class II HLA loss is not well studied as it has only recently been recognized that tumor 

specific MHC class II expression may also play an anti-tumor role. Traditionally, the MHC class 

IIs were only thought to be expressed on professional antigen presenting cells (APCs), which 

includes dendritic cells51, macrophages52, and B-cells53. These cells take up proteins from the 

extracellular environment, process them into antigenic peptides, and present them to CD4+ T-

cells via the MHC class II. Importantly, even though this pathway promotes an anti-tumor T-cell 

response and therefore could be considered a tumor suppressor, the class II HLA genes would 

not be expected to be under evolutionary pressure for loss of function due to the fact that their 

canonical function is a result of expression in healthy non-tumor cells. However, it has since 

been observed that during an active immune response, any cell type can be stimulated to express 

the MHC class II and become an APC54. This includes the observation that cancer cells 

themselves can gain MHC class II expression55–57, and the development of MHC class II 

restricted neoantigen vaccines that exploit this phenomenon58. Given this, I hypothesize that in 

tumors that gain class II HLA expression, there may be selective pressures to then lose it. 

However, detection of this loss will be more difficult as a distinction will have to be made 

between tumors that lost class II HLA expression versus those that never had it. 

Consistent with predictions, loss of HLA expression is associated with worse clinical 

outcomes across a range of cancers59–63. Loss of class I HLA expression is often associated with 

lower levels of tumor infiltrating lymphocytes (TILs)64, which are generally considered a 

positive prognostic indicator65–67. HLA expression has also been shown to be associated with 

improved outcomes for T-cell based immunotherapies, including one striking melanoma case 

study where HLA-high metastases regressed while HLA-negative metastases progressed 

following combination interferon/M-Vax immunotherapy treatments68. However, despite the 
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clear evidence from IHC, PCR, and immunoblot assays linking HLA function to patient 

outcomes, the progression to larger high throughput sequencing based studies has been slow due 

to the unique genetic complexity of the HLA genes. 

1.5 HLA polymorphism 

The class I and class II HLA genes stand out as being among the most polymorphic genes 

in the human genome, with some genes having hundreds to thousands of known alleles (Table 1-

1). This diversity has been shown to be the result of strong balancing selection, a process that 

maintains a larger amount of low frequency alleles than expected due to random drift. Balancing 

selection of the HLA genes is thought to be caused by a number of factors, including general 

heterozygote advantage for a more diverse antigen presentation repertoire69, and distinct 

pathogen resistance in an environment where the specific pathogens shift over time70. In either 

case, it represents a form of co-evolution between hosts and pathogens, and produces 

extraordinary diversity at the MHC locus. 

HLA diversity is a particularly large problem for current high-throughput molecular 

methods. These methods frequently begin with the sequencing of small DNA, RNA, or protein 

molecules. These molecules are then mapped back to the genome/transcriptome/proteome by 

comparing their sequence to a database of known sequences known as a standard reference. 

Individual genes or intergenic regions can then be interrogated for mutations, differential 

expression, post-translational modifications, etc., based on the information obtained from the 

sequenced molecules. The issue that arises for the HLA genes is that current standard references 

often contain only one or a few HLA sequences, resulting in the failure to correctly identify the 

origins of sequenced HLA molecules. 
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In DNA or RNA sequencing studies, this can cause either misalignment or failure of 

alignment for many sequencing reads. One common occurrence we observe in our own data is 

for HLA-A alleles that have higher sequence similarity to the GRCh38 sequence for the 

pseudogene HLA-J than for HLA-A, causing the reads to align to the incorrect region of the 

genome. This can result in both failure to identify mutations in HLA-A, and in incorrect 

measures of gene expression. In proteomics studies, this can result in either the failure to identify 

tryptic peptides or the assignment of peptides to the wrong HLA protein, resulting in incorrect 

calculations of protein expression. Finally, given that some individuals will have HLA sequences 

that match standard reference sequences by random chance, these individuals will have fewer 

errors, causing a bias in analyses towards standard-reference matching individuals. 

To address this issue, it may seem logical to simply include all known HLA alleles in the 

standard reference used for a given analysis. While this may help in identifying more molecules, 

most computational tools are not designed to handle many alternative sequences for an 

individual gene at once. For example, a version of GRCh38 is available that contains alternative 

contigs of the MHC locus to allow for better alignment of HLA sequencing reads71. However, 

while this does allow more reads to align, downstream analysis is prevented as the reads 

originating from one gene may be spread over more than a dozen separate alternate contigs. In 

this way, providing more HLA reference sequences acts as a decoy to prevent misalignment, but 

does not enable interrogation of the genes themselves. 

A proposed solution to this issue is to discard the standard reference in favor of dynamic 

reference selection72. In this paradigm, each individual that is sequenced will be given a 

personalized set of reference sequences that matches their HLA type. These custom references 

can then be used with existing validated computational tools for DNA/RNA/proteomics analysis 
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to provide mutation calls or expression quantification, and integration of data resulting from 

different reference sequences can be handled separately. In this thesis, I will present three tools 

that enable the personalized analysis of the HLA genes using dynamic reference selection. In 

chapter 2 I will introduce Hapster which identifies HLA types and constructs personalized 

genomics reference sequences for use in germline and somatic mutation calling. In chapter 4 I 

will introduce HLAProphet, a proteomics tool which uses known HLA types to construct a 

personalized protein sequence database for use with FragPipe for allele-level HLA protein 

quantification. Finally, in chapter 5 I will introduce MHConstruct, a tool that allows for a 

personalized reconstruction of the entire MHC locus to allow for the study of intergenic 

regulatory regions near the HLA genes. In total, I show that the concept of dynamic reference 

selection extends to many data types, and can enable the efficient analysis of the HLA genes. 
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Chapter 2 Personalized Somatic Mutation Calling With Hapster 

Portions of this chapter are available as a preprint73, and are under review at Cell Reports. 

2.1 Introduction 

The current paradigm for mutation calling involves the alignment of DNA sequencing 

reads to a standard reference genome, followed by identification of variants relative to that 

reference. This approach fails for the MHC genes where high sequence divergence from the 

standard reference, as well as the presence of homologous pseudogenes, frequently causes reads 

to fail to align appropriately. 

To address this problem, we have developed Hapster. Hapster models alignment of DNA 

sequencing reads to alternative haplotypes as a linear system that can be solved to identify the 

closest underlying haplotypes (Figure 2-1), a method which generalizes to other polymorphic 

genes. We also use a curated blacklist of homologous genes and pseudogenes to remove reads 

that erroneously cross-map to our genes of interest. Given appropriate haplotype references and 

filtered reads, Hapster builds upon state-of-the-art aligners and mutation callers (BWA-MEM74 

and Mutect275) to provide accurate mutation calls. As a final step, we use an alignment-free kmer 

search to flag variants that may have been called due to remaining erroneous alignments or 

sample contamination. 

The Hapster reference selection algorithm, in brief, is as follows. First, reads are 

simulated from each sequence within a database of known MHC alleles. Reads are then aligned 

simultaneously to all other known sequences. An all vs all matrix A is constructed where each  
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Figure 2-1: Schematic overview of Hapster's mutation calling pipeline 

  



 14 

entry describes the percentage of reads simulated from one allele that align well to another allele. 

Following sequencing, MHC reads are extracted and simultaneously aligned to all alleles within  

the MHC sequence database. Observed counts of reads that align to each allele are put into a 

vector b. The system Ax = b is solved for x, where A describes alternate-sequence aware 

alignment, x describes the number of reads originating from each known allele, and b describes 

the number of reads that are aligned to each known allele. After solving, vector x should contain 

all values of ~0 except for the one or two (depending on whether the individual is homozygous 

or heterozygous at the locus) non-zero entries representing alleles that were actually present in 

the germline and therefore generated sequencing reads. These two non-zero entries are taken as 

the most likely diploid haplotype for the individual, and their reference sequences are used for 

downstream alignment and mutation calling. Personalized references provide improved 

alignments, and allow for recovery of missed mutation calls relative to the standard reference 

approach (Figure 2-2). 

 

Figure 2-2: Recovery of somatic mutations missed by Grch38 reference based pipelines  

IGV view of sequencing reads from paired normal and tumor whole exome sequencing data aligning to the first 3 

exons of HLA-A using the standard reference GRCh38 (top) or Hapster (bottom). Arrow shows a somatic variant 

missed by the standard reference approach due to a failure to align reads from exon 3 to the correct location. N: 

Normal, T: Tumor. 
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2.2 Detailed overview of the Hapster algorithm 

2.2.1 Alt-aware reference construction 

Hapster leverages BWA mem’s alt-aware alignment mode for its haplotyping, and as 

such needs a genomic reference that contains alternate sequences for the genes of interest. To 

construct an alt-aware reference for the HLA class I and class II genes we first retrieved 

sequences from the IMGT/HLA1 database [IMGT/HLA release 3.51.0, 

https://github.com/ANHIG/IMGTHLA/tree/3510] to create a set of alternate alleles for each gene. 

The sequences for each alternate allele were appended to the primary assembly of Grch38 as 

independent contigs, and an alt index file was created by performing long read alignment of each 

sequence to Grch38 using minimap276. 

2.2.2 HLA read kmer extraction 

To efficiently extract true HLA reads, we created a 4 step procedure: (1) Random access 

retrieval of reads from all HLA regions in Grch38, all unaligned reads, and additional locations 

throughout Grch38 where we have found HLA reads mapping erroneously. (2) Passing reads 

retrieved by random access through a kmer filter, keeping any read that contains any 30-mer 

found in our set of alternate HLA allele sequences (3) Alt-aware alignment of kmer extracted 

reads to the previously created reference containing our set of alternate HLA alleles, keeping 

only reads that have at least one alignment to an HLA contig (4) Alignment of remaining reads 

to a reference containing both the sequences for our genes of interest (whitelist), as well as the 

sequences for any homologous genes/pseudogenes that are not of interest (blacklist), and keeping 

only reads that preferentially align to the whitelist. 

2.2.3 HLA haplotype inference 

https://github.com/ANHIG/IMGTHLA/tree/3510
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For each HLA gene, extracted reads are aligned using BWA-MEM’s alt-aware alignment 

mode to the constructed reference containing our set of alternate HLA sequences. The number of 

read pairs aligning to each allele with a total NM score of less than or equal to 1 is counted and 

put into vector b. Using vector b and the precomputed probability matrix A (construction of A 

matrix described below), the denoised read vector x is calculated by solving the equation Ax=b. 

To reduce problems caused by highly correlated alleles, a dynamic stepwise variable selection 

process is used to eliminate variables from A as follows: (1) identify alleles with pairwise 

correlations above a specific threshold (parameter tuning for this threshold described below) (2) 

For each highly correlated pair of alleles, find the magnitude difference between the alleles 

within vector x (3) Remove the most negative allele within the pair with the highest magnitude 

difference from both matrix A and vector b (4) Solve for x using the pared A and b (5) Repeat 

until there are no more pairs of alleles with correlations above the predetermined correlation 

cutoff. Once all highly correlated alleles are removed, the two highest value alleles in vector x 

are assigned to the individual’s haplotype. The top two alleles are always chosen due to our 

observation that during alignment of reads to our inferred haplotype, a homozygous individual’s 

reads will preferentially align to the single allele that is from their true haplotype. The presence 

of an extra allele's sequence in the reference file in the homozygous case therefore does not 

affect alignment or mutation calling of reads aligning to the true allele. 

2.2.4 Construction of probability matrix A 

Insert size metrics for a given sequencing protocol are calculated using the Picard tools 

command CollectInsertSizeMetrics. Using the read length, mean insert size, and standard 

deviation for the protocol, a random set of read pairs is simulated from the genomic sequence of 

each allele within a given HLA gene as follows: (1) Inserts of mean insert size ± 2 standard 
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deviations are simulated using BBMap's randomreads.sh (2) To simulate exome capture, read 

pairs derived from each insert are only kept if they have significant overlap with a provided set 

of capture probe sequences. The simulated captured reads are aligned in an alt-aware manner to 

our reference containing all alternate HLA alleles and are then processed and counted to create a 

vector b as described in the methods for haplotype inference. The vector b is then divided by the 

total number of read pairs that were simulated to obtain a vector that reflects the probability that 

any randomly selected read derived from the simulated allele would align to each other allele 

when using alt-aware alignment. This probability vector is calculated for each allele, and the 

probability matrix A is constructed using each of these probability vectors as its columns. The 

simulation process leads to a slightly non-symmetrical matrix, so the matrix was made to be 

symmetric by taking the mean of each paired off-diagonal term. The final matrix A is an all-vs-

all matrix where each element represents the probability of reads generated from one allele 

aligning to another allele. 

2.2.5 Parameter tuning 

Parameter tuning must be performed to find the optimal correlation cutoff values for 

stepwise variable selection for every new sequencing experiment. Parameter tuning with 

HapMap samples was performed to find the optimal correlation cutoffs to minimize Levenshtein 

distances across all genes. For many experiments this will not be possible as ground truth 

haplotypes will be unavailable, making parameter tuning with Levenshtein distance impossible. 

However, we reasoned that every mismatch that contributes to the true Levenshtein distance 

could be recognizable as a germline mutation relative to the inferred reference sequences. To test 

this, we realigned sequences from our validation set to Hapster’s inferred haplotype sequences 

and called germline mutations using HaplotypeCaller. We found strong correlations between the 
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true Levenshtein distance and the number of germline mutations called (Figure 2-3) suggesting 

that parameter tuning can be performed using the number of germline mutations called as a 

proxy for Levenshtein distance. For parameter tuning for TCGA and MI-ONCOSEQ samples, all 

correlation cutoff values between 0.70-0.99 were tested to find the optimal threshold per gene 

that minimizes observed germline variants. 

2.3 Validation and benchmarking of the Hapster algorithm 

2.3.1 Comparison of Hapster to existing HLA haplotypers 

For the reference selection portion of the Hapster algorithm, in principle any of the many 

existing HLA haplotypers72,77–82 could be used to identify HLA haplotype sequences. However, 

in practice, existing haplotypers often report HLA types for which only the sequence for exons 2 

and 3 are known1 (Figure 2-4A). Given that we aim to identify mutations in all exons of each 

gene, the inability to guarantee a full-length genomic sequence for every reported HLA type 

Figure 2-3: Private germline variants as a proxy for Levenshtein distance 

Correlation plots showing high concordance between private germline variants and 

Levenshtein distance as a quantitative measure for similarity of a reference sequence to 

the true underlying genomic sequence. 
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makes existing haplotypers ineffective for this purpose. Further, some leading haplotypers such 

as OptiType77 cannot type the MHC class II genes. However, we would still like to have a 

measure of the quality of Hapster’s reference selection in comparison to existing haplotypers in 

those cases where they do return full length genomic sequences. To benchmark the haplotype 

inference portion of the Hapster pipeline we used a set of 69 whole exome sequencing (WES) 

samples from the 1000 genomes project that have previously reported MHC-I and MHC-II 

haplotype calls both via sanger sequencing83 and seven in silico prediction methods82. MHC 

haplotyping algorithms are generally 'digit-optimizing', in that they attempt to maximize the 

number of correct digits in the names of the inferred alleles, which due to HLA nomenclature 

has the effect of emphasizing protein similarity over DNA similarity. However, for the purposes 

of mutation calling, it is most critical that the reference haplotype minimizes mismatches 

between an individual's germline DNA sequence and the chosen haplotypes. We therefore 

compared Hapster to other haplotyping methods by calling germline variants in WES 

Figure 2-4: Comparison of Hapster to existing HLA haplotypers 

(A) Fraction of HLA types from 69 1000 Genomes samples reported by 8 different HLA haplotypers that 

correspond to a full length genomic sequence found in the IMGT/HLA database. HLA haplotypers often report 

types that only have known sequence for the polymorphic binding pocket (exons 2 and 3), and full length genomic 

sequences are unavailable.(B) Germline variants identified from 69 WES samples from the 1000 Genomes project 

relative to either the standard reference GRCh38, or to dynamically selected references using 8 different 

haplotypers. A perfect reference sequence should produce 0 apparent germline variants. 
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sequencing data relative to each haplotyper's inferred haplotype sequence for that individual. 

We consider the sequencing reads to be the ground truth, and a perfectly identified reference 

sequence would lead to no germline variants being identified in these reads. We see that 

relative to the fixed sequences of the standard reference Grch38, there are a median of 17-38 

germline variants observed per gene. All tested haplotypers improve upon this, with each having 

a median of 0 and a mean of <0.5 observed germline mutation per gene (Figure 2-4B), which is 

on par with the ~1 variant per kilobase rate observed relative to the standard reference in other 

non-polymorphic regions84. 

2.3.2 Sensitivity and specificity of Hapster mutation calls 

To assess somatic mutation calling sensitivity, we first simulated 200 synthetic MHC 

haplotypes with a random mutation, followed by simulated WES at depths ranging from 5x-100x 

and variant allele fractions (VAFs) of 0.025-0.45. Of the 200 simulated mutations, 94% (187/200) 

were successfully identified (Figure 2-5A) at 100x coverage and a VAF of 0.45. Following filtering, 

18 of these calls were removed by either Hapster's or Mutect2's filters, giving a final sensitivity of 

85% (169/200) for high coverage clonal variants. Inspection of the 13 variants that failed to be 

called showed that 12 were in regions of low coverage following probe capture. As such, they 

reflect a true loss in sensitivity when calling MHC mutations in WES data, but due to the 

sequencing platform and capture kit design rather than Hapster's algorithm. When looking at 

results over the entire range of simulated coverages and VAFs, we see that as coverage and VAF 

decrease, sensitivity decreases as expected due to lower read support for identified variants 

(Figure 2-5A). A comparison of simulated vs observed VAFs for each mutation call shows that at 

most simulated VAFs Hapster produces calls with slightly lower observed VAFs, likely due to a 

slight loss of reads following read filtering (Figure 2-5B). We also note an over-representation of 

mutation calls at half of the simulated VAF. This occurs when a mutation is called in a homologous 
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region between two alleles of the same gene causing the variant supporting reads to segregate 

between the two reference sequences, dropping the VAF by half. 

To assess specificity, we called somatic mutations in 450 samples from the TCGA 

HNSC cohort with tumor and normal labels swapped, such that no somatic variants should be 

identified. In 9 cases, an apparent somatic variant was identified that passed all filters. 

Assuming all 9 calls are false positives gives a specificity of 98% (441/450). 
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To further assess mutation calling accuracy using an orthogonal sequencing technology, 

we used Hapster to call somatic mutations from WES data for 450 TCGA HNSC samples, and 

then determined if these same mutations were supported by paired RNA-seq data. While 

established RNA-seq validation methods would be ideal, they rely on alignment of reads to a 

reference in order to identify mutations, which would be inappropriate in validating Hapster. We 

therefore developed a fully orthogonal alignment-free kmer based approach to determine if the 

read support for each variant in the RNA exceeds expectations based on a beta-binomial model 

Figure 2-5: Hapster simulation benchmarking 

(A) Fraction of simulated mutations either called and passing all filters, called and filtered by Hapster or Mutect2, or 

never called. Shown are results from whole exome simulations with coverages ranging from 5x to 100x, and 

mutations with VAFs ranging from 0.025 to 0.45. (B) Comparison of observed VAFs from successfully called 

mutations, compared to the VAF at which the mutation was simulated. Vertical lines show the exact VAF at which 

the mutation was simulated. Simulations were done probabilistically (see methods), and not with exact fractions of 

variant to reference supporting reads, so some variance is expected. 
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of sequencer error, avoiding potential reference selection or alignment biases. Of the 80 variants 

that were called in the WES data, 72 had high enough coverage in the RNA-seq data to undergo 

validation. Of these, 63 variants (88%) had read support significantly exceeding the null model of 

sequencing error (p < 0.05 (BH corrected), Figure 2-6), and 4 (5%) were truncating variants which 

may have caused the mutant RNA to undergo nonsense mediated decay. This leaves only 5 

variants (7%) without RNA evidence, some of which may have failed to validate due to the 

limitations of our statistical model, variable tumor cellularity, loss-of-heterozygosity (LOH), and 

ubiquitous transcriptional silencing of the MHC locus in tumors43. 

For a second orthogonal validation, we performed Sanger sequencing on tumors from 

MI-ONCOSEQ85 with sufficient DNA or tissue samples. All 14 candidate variants called by 

Hapster were clearly detected in the Sanger chromatograms from tumor specimens, while being 

absent in traces from patient-matched normal tissues (Figure 2-7).  

Figure 2-6: Orthogonal validation of variant calls using RNA-seq 

QQ plot for observed RNA-seq read support for HLA variants, assuming read support is only due to 

sequencing error according to a Beta-binomial model. Variants were originally identified by Hapster alone 

(red), or by both Hapster and Polysolver (blue) from WES data. A comparison is shown to randomly 

generated alternate bases (grey) which are only supported by noisy reads and follow the null model 

(diagonal black line). 
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Figure 2-7: Orthogonal validation of variant calls using Sanger sequencing 
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2.3.3 Comparison of Hapster to the Polysolver and GDAC mutation calling pipelines 

Finally, we applied Hapster to a larger set of 7,746 samples from TCGA that have 

previously reported mutations called by both the Broad Genomic Data Analysis Center (GDAC) 

standard reference based pipeline and the Polysolver personalized pipeline72,86. We found that 

when calling mutations in the MHC class I genes, Hapster detected over twice as many non-

synonymous mutations as the GDAC pipeline, and 36% more than Polysolver (Figure 2-8A). To 

assess the differences in the mutation calls between Hapster and Polysolver we first looked at 

the variant allele frequency (VAF) distributions. Hapster tended to identify slightly higher VAF 

mutations (Figure 2-8B), however this is in part due to Hapster preserving more variant 

supporting reads than Polysolver (Figure 2-8C) resulting in higher VAFs for the same mutations, 

rather than a failure by Hapster to call low VAF mutations. Indeed, when looking at variants 

exclusive to Hapster, these tended to be low VAF mutations (Figure 2-8D) missed by Polysolver, 

possibly due to Hapster alone retaining enough reads to identify them.  

We next performed an exhaustive search for potential alternative explanations for each 

variant called by each pipeline. We reasoned that given an accurate haplotype inference, the 

most likely cause of false positives should be misalignment of sequencing reads originating from 

other homologous MHC genes or pseudogenes. We found that only 6% of Hapster's non-

synonymous calls matched known sequences in any other MHC gene, a rate significantly lower 

than that of Polysolver (15%, Fisher's exact test p < 1e-10, BH adjusted), but similar to the GDAC 

pipeline (4%, Fisher's exact test p = 1, BH adjusted) (Figure 2-8A). 

Many methods to identify positive selection of mutations within a gene rely on the 

detection of deviations from a neutral nonsynonymous to synonymous (dN/dS) ratio, and any 

pipeline biases in functional consequences can confound these analyses. We therefore 

additionally compared the distribution of functional consequences of HLA mutations called by 

each of the approaches. For both Hapster and the GDAC pipeline, synonymous mutation calls 
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were underrepresented when compared to neutral genes, consistent with what would be 

expected for a potential driver gene (Figure 2-9A). In contrast, we found that Polysolver had a 

surprising over-representation of synonymous calls. Interestingly, an analysis of Polysolver’s 

synonymous mutation calls shows the apparently recurrent synonymous variants p.T214T and 

Figure 2-8: Comparison of Hapster to Polysolver and GDAC somatic variant calling pipelines 

(A) Comparison of non-synonymous mutation calls for the MHC class I genes between the GDAC pipeline, 

Polysolver, and Hapster across various cancer types from TCGA. Lightly shaded bars represent possible false 

positives. (B) Comparison of VAF distributions for mutation calls made by either the Hapster of Polysolver 

pipelines. (C) Comparison of read support for variants that were identified by both the Hapster and Polysolver 

pipelines. (D) VAF of mutation calls unique to the Hapster pipeline, showing a relatively high proportion of low 

VAF variants that were not called by Polysolver. 
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p.A269A that are identified as somatic variants (Figure 2-9B). These mutations are unlikely to 

be under the extreme positive selection that would be required for such a recurrent hotspot, but 

have sequences exactly matching non-classical MHC class I genes i.e. are likely due to 

alignment errors from HLA-E, HLA-F, or HLA pseudogenes. 

2.4 Discussion 

In total, I show that by aligning DNA sequencing reads to personalized HLA reference 

sequences, the Hapster algorithm allows for more sensitive and specific somatic mutation calling 

than existing standard reference based pipelines. I also show that Hapster’s novel read filters 

allow for the retention of more HLA reads, and that its novel mutation filters reduce false 

positives relative to the existing HLA mutation caller Polysolver. Importantly, Hapster also 

avoids the biases in mutational consequence distributions observed in Polysolver’s calls, 

allowing for a more accurate estimation of dN/dS ratios. This improves our ability to detect 

Figure 2-9: dN/dS ratio of mutation calls across Hapster, Polysolver, and GDAC mutation calling pipelines 

(A) Comparison of mutational consequences for variants called by the standard GDAC pipeline, Polysolver, or 

Hapster in the MHC genes vs oncogenes, tumor suppressors, and neutral gene mutations from TCGA. Oncogenes 

(OG): KRAS, PIK3CA, IDH1, CTNNB1, FOXA1, BRAF, AKT1, EGFR. Tumor suppressors (TS): TP53, RB1, 

PTEN, APC, BRCA2, VHL. Neutral genes: All others. (B) Positions of mutations called by the Polysolver pipeline, 

separated by whether or not the variant matches a known sequence in another non-classical MHC class I gene. 

Annotated recurrent synonymous variants are suspected false positives. 
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signals of positive selection within the HLA genes, and lays the groundwork for the pan-cancer 

analysis presented in chapter 3 

2.5 Methods 

2.5.1 Reference selection validation 

Quantitative reference selection validation was performed using a ground truth set of 69 

WES samples from the 1000 Genomes project with previously reported HLA haplotype calls83. 

For each sample and each method, an HLA reference was constructed by taking the genomic 

sequence in the IMGT/HLA database1 corresponding to the called HLA type. For a comparison 

to GRCh38, the standard reference haplotype (A*03:01:01:01, B*07:02:01:01, C*07:02:01:01, 

DQB1*06:02:01:01, DRB1*15:03:01:01) was used for all samples. For samples where the 

reported haplotype call did not refer to a single unique sequence within the IMGT/HLA 

database, the alphanumerically first sequence was used. Reads from each sample were aligned 

to each reference using BWA-mem74, and germline variants were called using GATK's 

HaplotypeCaller87. 

2.5.2 Alignment and mutation calling 

HLA extracted reads were aligned to Hapster inferred reference sequences using BWA-

mem74. During read extraction, reads from other homologous HLA genes and pseudogenes 

may be collected due to their high sequence similarity. For this reason, any reads aligning to 

blacklisted genes (HLA-E, -F, -G, -H, -J, -K, -L, -N, -P, -S, -T, -U, -V, -W, -Y, -DMA, -DMB, -

DOA, -DOB, -DPB2, -DRB3, -DRB4, -DRB5) were discarded. Mutation calling was performed 

using GATK's Mutect275. Mutations were filtered based on the following criteria: 1) Must pass 

the GATK filters FilterMutectCalls and FilterByOrientationBias, 2) The alternate base must not 

have been observed in the same position in other alleles of the same gene, 3) Read support in 

the tumor must be at least 3 reads, or at least 20% VAF, 4) Variant must have no more than 1 
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read support in the normal after a kmer search. For the kmer filter, all 25-mers covering the 

variant position are used to search for any matching reads in the normal in an alignment-free 

manner. 

2.5.3 Simulation validation 

200 synthetic haplotypes were constructed by taking two random allelic sequences from 

the IMGT/HLA database1 for each MHC class 1 and class 2 gene (HLA-A, -B, -C, -DPA1, -DPB1, 

-DQA1, -DQB1, -DRA, -DRB1). For each synthetic haplotype, a mutation was inserted randomly 

using the following logic: 1) One allele from the haplotype was selected uniformly randomly 2) 

One position within the coding region of the allele was selected uniformly randomly 3) A mutational 

consequence was chosen with a 75% chance of creating an SNV, a 12.5% chance of creating a 

deletion, and a 12.5% chance of creating an insertion 4) For SNVs a random alternate base was 

chosen uniformly evenly, for deletions a deletion of length 1-5 nucleotides was chosen uniformly 

randomly, and for insertions an insertion of length 1-5 nucleotides was chosen uniformly 

randomly, with the insertion being uniformly random nucleotides. From each haplotype, inserts of 

length 125-300 were simulated from the normal reference sequences for each sample using the 

BBmap88 function randomreads.sh to create a pool of inserts for the simulated normal. For the 

simulated tumor, a separate set of inserts was simulated from the normal reference sequences, 

as well as a set of inserts from the mutated reference sequences, to create both a germline and 

mutant pool of reads for the simulated tumor. To simulate various VAFs, inserts were mixed from 

the tumor germline and tumor mutant pools to create a final simulated tumor set with VAFs of 

0.025, 0.05, 0.125, 0.25, and 0.45. Inserts were considered captured if they had significant 

overlap with MI-ONCOSEQ WES capture probes. Paired reads of length 125 were taken from the 

ends of each captured insert. To simulate various levels of WES coverage, a random subset of 

captured reads was selected to create BAM files representing 5x, 10x, 25x, 50x, and 100x 
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average coverage across gene exons. Mutations were then called using the Hapster pipeline and 

were filtered using Mutect2 and Hapster filters. 

2.5.4 Label-flipping validation 

To assess specificity, we performed a label-flipping experiment with the TCGA HNSC 

cohort. The HNSC cohort was selected as it contained a large number of samples (N = 450), and 

we knew it to have a high number of somatic mutation calls from previous analyses. We swapped 

all tumor and normal labels for each case, and called somatic mutations using the Hapster pipeline 

as described. Any somatic variant called after label-flipping was considered to be a false positive. 

2.5.5 RNA validation of somatic mutations 

All variants from the TCGA HNSC cohort with sufficiently high coverage in the RNA to 

detect low allelic fraction variants (>1000 reads at the variant position) were selected. MHC class 

II variants were not selected for RNA validation as the expression of MHC class II genes is 

expected to be dominated by immune cells and not cancer cells. For each somatic mutation, a 

set of all 25-mers containing either the called variant or the germline sequence were created. In 

the case that other variants were called within 25 bases of the primary variant, kmers were 

produced with both the primary variant alone and with other variants in combination to account 

for possible phasing. Kmers that contained the variant within 8 bases of the edge of the kmer 

were discarded to avoid confounding results when deletions or insertions in small repetitive 

regions lead to variant kmers that are identical to the germline sequence. All reads within the RNA 

seq data for a sample were searched for germline or variant supporting kmers. Due to the high 

depth of the RNA-seq data, we often observe reads supporting every alternate base at every 

position due to some reads containing sequencing errors. We therefore only consider somatic 

mutations to be validated if the number of variant supporting reads could not be explained by 

sequencing errors alone. We modeled sequencing errors as a Beta-Binomial distribution with the 
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probability of error as a Beta distribution determined experimentally from RNA-seq data. An 

experimental null sample was created by selecting random bases at random positions within 

sequenced samples and evaluating the support for the random variant based on the null 

distribution. Variants were considered validated if the probability of observing equal or more 

variant supporting reads was less than 5% (BH corrected) given our distribution. 

2.5.6 Sanger sequencing validation of somatic mutations 

14 somatic mutations called within samples from the MI-ONCOSEQ project that had 

tissue samples available were chosen to be validated via Sanger sequencing. For each 

mutation, Primer389 was used to create custom PCR probes for the specific HLA allele that the 

mutation was called within. Genomic DNA from the tumor was amplified using PCR and 

amplicons isolated using gel electrophoresis. Following Sanger sequencing, point mutations 

were considered validated if a clear peak containing the called variant was observed, and indels 

were considered validated if a clear peak-offset corresponding to the number of inserted or 

deleted bases was observed. 
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Chapter 3 Distinct Mutational Processes Shape Selection of MHC Class I and Class II 

Mutations Across Primary and Metastatic Tumors  

Portions of this chapter are available as a preprint73, and are under review at Cell Reports. 

3.1 Introduction 

There is now overwhelming evidence from IHC studies that class I HLA loss is a 

common phenotype observed across many cancers43. However, due to the heterogeneous nature 

of cancers, it is likely that different cancers evolve this loss through different mechanisms. 

Identification of the specific mechanisms leading to loss of HLA expression will be key to 

understanding primary and acquired resistance to immunotherapies. In particular, it is necessary 

to determine when HLA loss has occurred through a reversible mechanism such as 

hypermethylation, or an irreversible mechanism such as somatic loss of one or more HLA genes. 

In cases with somatic loss of the HLA genes, especially an HLA responsible for presentation of 

an immunodominant antigen, it may indicate that T-cell based immunotherapies are no longer a 

viable treatment option. 

Early investigations into somatic mutation of the class I HLA genes revealed significant 

evidence for positive selection of loss of function variants in select cancers72. However, reports 

on somatic mutation of the class I HLA genes in metastases are lacking. It is therefore unclear if 

class I HLA mutations are an early event in primary tumors that will already be present when 

metastasis takes place, or a late event that either enables metastasis or evolves at the metastatic 

site. The class II HLA proteins are also relatively understudied across cancers, but evidence 

suggests that they also play an important role in tumor suppression90–92. The MHC class II is 
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responsible for presenting neoantigens to CD4+ T cells which have both regulatory and effector 

functions and have been shown to play a role in tumor immunity93. Classically, MHC class II 

expression was thought to be restricted to professional APCs. However, their expression can be 

induced in most cell types54, including cancer cells55–57, and MHC class II-restricted neoantigen 

vaccines have been shown to transform cancer cells into APCs58. In this context, the MHC class 

II expressing cancer cells promote an anti-tumor response suggesting that loss of MHC class II 

function may also promote tumor survival. However, this process is not well understood, and 

may only be relevant to a subset of cancers. To address these gaps, we applied Hapster to 12,000 

cancers from the Cancer Genome Atlas (TCGA) and Michigan Oncology Sequencing Center 

(MI-ONCOSEQ) cohorts to reveal the landscape of somatic mutation of the class I and class II 

HLA proteins in primary and metastatic cancers (Box 3-1). 

 

Box 3-1 – Highlights from chapter 3 pan-cancer study 

3.2 Results 

3.2.1 Pan-cancer compendium of MHC class I and MHC class II mutations 

To comprehensively characterize MHC class I and MHC class II mutation rates in human 

cancer we analyzed 10,001 tumors across 35 cancer types from TCGA (Table 3-1) and 2,199 

tumors across 24 cancer-types within MI-ONCOSEQ85 (Table 3-2), for a total compendium of 

2069 MHC class 1 and class 2 mutations (Figure 3-1A). Samples from TCGA are mainly primary 

tumors, with the exception of the melanoma cohort (SKCM) which consists only of metastatic   

- MHC genes are among the most recurrently mutated genes pan-cancer 

- Cancer type specific mutational processes shape the spectrum of MHC mutations 

- Off-target AID/APOBEC activity likely causes stop-gain mutations in lymphomas 

and squamous cell carcinomas 

- Microsatellite instability causes truncating frameshifts in HLA-A and HLA-B 

- MHC missense mutations disrupt B2M and antigen binding 
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Table 3-1: Number of paired tumor/normal whole exomes used per TCGA cohort 

Cohort Short code N 

Adrenocortical carcinoma ACC 91 

Bladder Urothelial Carcinoma BLCA 410 

Breast invasive carcinoma BRCA 1040 

Cervical squamous cell carcinoma and endocervical 
adenocarcinoma CESC 305 

Cholangiocarcinoma CHOL 50 

Colon adenocarcinoma - Microsatellite instability COAD-MSI 69 

Colon adenocarcinoma - Microsatellite stable COAD-MSS 353 

Lymphoid Neoplasm Diffuse Large B-cell Lymphoma DLBC 37 

Esophageal carcinoma ESCA 180 

Glioblastoma multiforme GBM 390 

Head and Neck squamous cell carcinoma HNSC 450 

Kidney Chromophobe KICH 64 

Kidney renal clear cell carcinoma KIRC 332 

Kidney renal papillary cell carcinoma KIRP 285 

Brain Lower Grade Glioma LGG 505 

Liver hepatocellular carcinoma LIHC 362 

Lung adenocarcinoma LUAD 558 

Lung squamous cell carcinoma LUSC 494 

Mesothelioma MESO 82 

Ovarian serous cystadenocarcinoma OV 422 

Pancreatic adenocarcinoma PAAD 169 

Pheochromocytoma and Paraganglioma PCPG 179 

Prostate adenocarcinoma PRAD 438 

Rectum adenocarcinoma READ 156 

Sarcoma SARC 255 

Skin Cutaneous Melanoma SKCM 467 

Stomach adenocarcinoma - Microsatellite instability STAD-MSI 83 

Stomach adenocarcinoma - Microsatellite stable STAD-MSS 354 

Testicular Germ Cell Tumors TGCT 150 

Thyroid carcinoma THCA 491 

Thymoma THYM 118 

Uterine Corpus Endometrial Carcinoma - Microsatellite instability UCEC-MSI 162 

Uterine Corpus Endometrial Carcinoma - Microsatellite stable UCEC-MSS 364 

Uterine Carcinosarcoma UCS 57 

Uveal Melanoma UVM 79 
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Table 3-2: Number of paired tumor/normal samples used per MI-ONCOSEQ cohort 

Cohort Short code WES 
Capture 

panel 
Total 

Adenoid Cystic/Oral Carcinoma M-ACO 12 39 51 

Adrenocortical Carcinoma M-ACC 8 19 27 

Bladder Carcinoma M-BLCA 15 33 48 

Breast Carcinoma M-BRCA 148 145 293 

Cholangiocarcinoma M-CHOL 19 55 74 

Colorectal/Anal Carcinoma M-COAD 12 12 24 

Diffuse large B-cell lymphoma M-DLBC 11 34 45 

Gastroesophoageal Carcinoma M-ESCA 14 16 30 

Head and Neck Carcinoma M-HNSC 6 30 36 

Kidney/Renal Cell Carcinoma M-KIRC 10 12 22 

Leukemia M-LEU 20 30 50 

Liver/Gallbladder Carcinoma M-LIHC 7 15 22 

Lymphoma M-LYM 17 92 109 

Melanoma M-SKCM 15 19 34 

Myeloproliferative Neoplasms M-MYE 19 159 178 

Nervous System/Brain Carcinoma M-NBC 18 57 75 

Non-Small Cell Lung Cancer M-NSCL 22 10 32 

Ovarian/Vaginal Carcinoma M-OV 17 10 27 

Pancreatic Carcinoma M-PAAD 12 31 43 

Prostate Carcinoma M-PRAD 493 38 531 

Sarcoma M-SARC 69 157 226 

Squamous cell carcinoma M-SQCC 36 90 126 

Thyroid Carcinoma M-THCA 3 16 19 

Unknown primary M-UNKP 26 51 77 
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samples. Microsatellite unstable (MSI) tumors are immunologically distinct due to their 

significantly higher neoantigen burden94 and we have therefore separated them from their 

microsatellite stable (MSS) counterparts within the colon (COAD), stomach (STAD), and 

endometrial (UCEC) TCGA cohorts. While some other cancers also have distinct subtypes, such 

as BRCA ER+/- and HNSC HPV+/-, no significant difference in MHC mutation rates was observed 

Mutations were in general distributed uniformly across the gene body, but occasionally 

concentrated within prominent hotspots (Figure 3-1A). We found that for the MHC class I HLA-A 

and HLA-B contained significantly more mutations than HLA-C, and for the MHC class II HLA-

DRA contained significantly more mutations than all other MHC class II genes except for HLA-

DQB1 (Figure 3-1B). Within each HLA gene, no particular allele was found to bear an excess of 

mutations. In primary tumors, we noted substantial variation in both mutational frequency and 

their predicted consequences across tumor types and the MHC gene classes (Figure 3-2). We 

found nonsynonymous MHC class I and MHC class II mutations in 10.5% of primary tumors 

(ranging from 2.7% to 72.5% across cancer types) (Figure 3-3A), with 5.6% (range 0.2% to 

62.3%) of patients harboring an MHC class I and 5.7% (range 1.1% to 21.7%) an MHC class II 

somatic variant. Consistent with previous reports that MSI tumors should be under strong 

pressure to acquire loss of MHC function95,96, the COAD-MSI, STAD-MSI, and UCEC-MSI cohorts 

Figure 3-1: Pan-cancer of class I and class II mutations 

(A) Distribution of all observed mutations in both primary and metastatic cancers across the coding region of the 

MHC genes. Denoted above are regions of secondary structure corresponding to either the binding pocket floor (ꞵ-

sheets) or walls (⍺-helices). (B) Significant differences in the prevalence of nonsynonymous mutations and indels of 

individual MHC class I and MHC class II genes. *: p < .05; **: p < .01; ***: p < .001; ****: p < 0.0001, BH 

corrected Fisher's exact test 
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make up 3 of the top 4 cohorts for MHC class I mutations with the majority being loss of function 

(LOF) frameshifts or stop gains (Figure 3-3B). MHC class II mutations were also most prevalent 

in cancers with high mutation burden including MSI tumors and melanoma (Figure 3-3B). 

However, LOF mutations in the top-mutated cohorts were less frequent and the variation in 

mutation-rates across cancer types was lower compared to MHC class I. 

 
Figure 3-2: Pan-cancer overview of MHC class I and class II mutations per-gene 

Cohort specific mutation rates for MHC class I and MHC class II genes across all primary and metastatic cancers. 

Values are scaled to the number of individuals within each cohort. Colors represent the fraction of cancers with 

nonsynonymous/indel mutations. At neutrality, the expected nonsynonymous rate should be approximately 0.75. 
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Figure 3-3: Overview of MHC class I and class II mutations within all TCGA cohorts 

(A) Fraction of primary cancers from TCGA harboring mutations in any MHC class I and any MHC class II gene. 

(B) Functional consequences of coding region mutations in MHC class I and MHC class II genes in primary cancers 

from TCGA. 

 

 

 
Figure 3-4: Overview of MHC class I and class II mutations within all MI-ONCOSEQ cohorts 

(A) Fraction of metastatic/refractory cancers from MI-ONCOSEQ harboring mutations in any MHC class I and any 

MHC class II gene. (B) Functional consequences of coding region mutations in MHC class I and MHC class II 

genes in metastatic/refractory cancers from MI-ONCOSEQ. 
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3.2.2 Prevalence of MHC class I and MHC class II mutations in primary vs metastatic tumors 

The prevalence of MHC mutations in metastatic tumors is unknown, a critical gap in 

knowledge considering the predominant use of immunotherapies in this setting and 

immunological differences between the primary and metastatic tumor micro-environment 

(TME)85,97–100. Overall, we observed nonsynonymous MHC class I and MHC class II mutations in 

7.6% (range 3.3%-20.0%) of metastatic/refractory patients, with substantial variation in mutational 

frequency and functional consequences between cancer types (Figures 3-3, 3-4). To directly 

compare mutation rates between primary and metastatic cancers we created a set of pairings to 

match TCGA cohorts to MI-ONCOSEQ cohorts (Table 3-3). For 15/17 pairings (88%) there were 

no significant changes in primary vs metastatic MHC class I or MHC class II mutation rates. 

However, for prostate and breast cancers we observed a significant increase in MHC class I 

mutations in metastatic cancers compared to primary (Figure 3-5, prostate: F(1, 909) = 9.35, p = 

0.03; breast: F(1, 1140) = 12.8, p = 0.01, BH adjusted). No significant differences were seen in 

MHC class II mutations. 

Overall these data provide, to our knowledge, the first comprehensive look at MHC class 

I and MHC class II mutations pan-cancer, across both primary and metastatic tumors. We find 

that somatic mutations of HLA-A and HLA-B are most common while HLA-C and MHC class II 

genes are less frequently mutated and are likely only relevant in specific cancer types. While 

some significant differences in MHC mutation rate between primary and metastatic tumors are 

noted, the majority of MHC mutations in metastatic tumors are expected to be already present in 

the primary tumor. 
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Table 3-3: Cohorts paired by cancer/tissue type 

Pairing 
group 

Primary cohorts 
(TCGA) 

Metastatic/Refractory 
cohorts (MI-ONCOSEQ) 

Adenoid ACC M-ACC 

Bladder BLCA M-BLCA 

Breast BRCA M-BRCA 

Cholangio CHOL M-CHOL 

Colorectal COAD, READ M-COAD 

Esophogus ESCA M-ESCA 

Kidney_rcc KIRC M-KIRC 

Liver LIHC M-LIHC 

Lung LUAD M-NSCL 

DLBC DLBC M-DLBC 

Melanoma SKCM M-SKCM 

Ovary OV M-OV 

Pancreas PAAD M-PAAD 

Prostate PRAD M-PRAD 

Sarcoma SARC M-SARC 

Squamous CESC, HNSC, LUSC M-SQCC 

Thyroid THCA M-THCA 

 

 

Figure 3-5: Comparison of MHC mutations between primary and metastatic/refractory cancers 
Change in percent of tumors harboring MHC class I or MHC class II mutations between primary and metastatic cancers. Values 

are marginal means after adjusting for tumor mutation burden. Colored lines represent cohorts with significantly different 

numbers of mutations between primary and metastatic cases (p < 0.05, BH adjusted). Sample sizes are slightly reduced from full 

cohort sizes due to missing WES mutation calls with which to calculate the global tumor mutation burden covariate. Breast: 

primary n = 854, metastatic n = 289; Prostate: primary n = 434, metastatic n = 478. 
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3.2.3 Positive selection of non-synonymous MHC somatic mutations 

Given the high proportion of deleterious mutations in cancer types with the highest 

frequency of MHC mutations, we asked whether there was significant evidence for positive 

selection of functional mutations within the MHC genes. We applied CBaSE101, a tool that 

estimates the gene-specific strength of positive or negative selection for functional mutations, to 

each primary and metastatic cohort from TCGA and MI-ONCOSEQ, respectively. HLA genes and 

haplotypes are codominant and each allele presents a largely unique set of neoantigens102. In 

addition, specific T cell responses are often immunodominant and mounted against only a few of 

the presented neoantigens. Mutation of a single HLA allele may therefore result in the complete 

inability to present an immunodominant neoantigen. Accordingly, in the following analyses we 

treat all MHC class I genes (and separately, all MHC class II genes) as one functional unit, 

analogous to multiple genes of a protein complex103, taking into account the increased genomic 

length of this combined set of genes. In primary cancers, CBaSE identified 6 cohorts (COAD-MSI, 

STAD-MSI, DLBC, CESC, HNSC, LUSC) with statistically significant evidence for positive 

selection of non-synonymous variants in the MHC class I genes, and 3 cohorts (CHOL, KICH, 

UVM) for the MHC class II genes (Figure 3-6A). By this measure, the MHC class I are tied for 

7th and the MHC class II are tied for the 17th most recurrent driver genes pan-cancer as 

determined by applying CBaSE to all protein-coding genes across primary cancers. A similar 

trend was identified in metastatic and refractory cancers with the MHC class I genes being 

mutated in two cohorts (M-DLBC, M-LYM) making them tied for 6th most recurrent pan-cancer 

driver gene by number of cohorts significantly mutated (Figure 3-6B). As an alternative measure 

of positive selection, we used Fisher's method to create a combined score Φpos for the strength of 

selection across all cohorts (Figures 3-6C/D). We found that in both primary and metastatic 

cancers the MHC class I genes scored in the top 0.1% of all protein-coding genes according to 

this metric of positive selection (Figures 3-6C/D), and in primary cancers the MHC class II genes 
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scored in the top 0.5% (Figure 3-6C). Due to the exclusion of MHC class II genes from the 

sequencing panel in a subset of MI-ONCOSEQ samples, we were not statistically powered to 

investigate selection of MHC class II genes in metastatic cohorts. 

To provide further evidence for positive selection, we looked at the clonality of mutations 

within the 6 TCGA cohorts (COAD-MSI, STAD-MSI, DLBC, CESC, HNSC, LUSC) reported to be 

significantly mutated by CBaSE. We show that the majority of mutations in HLA-A (111/164, 68%) 

and HLA-B (132/179, 74%) within these cohorts have a cancer cell fraction (CCF) >0.7, consistent 

with the variants providing a survival advantage followed by a clonal sweep (Figure 3-7). In 

contrast, in cohorts showing no evidence of positive selection the proportion of clonal mutations 

were significantly lower in both HLA-A and HLA-B, consistent with these being mostly subclonal 

Figure 3-6: Pan-cancer strength of positive selection for all genes using CBaSE 

(A, B) Top 30 genes showing evidence of positive selection in primary (A) or metastatic (B) cancers by CBaSE by 

number of cohorts with significant evidence. (C, D) Comparison of the number of cohorts significantly mutated vs 

pan-cancer metastatic Φpos
 for protein-coding genes in primary (C) or metastatic (D) cancers as measured by CBaSE. 

Vertical dashed lines show the cutoff for the top 0.5% of genes by Φpos. 
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passenger mutations. In both groups HLA-C is primarily subclonal, indicating that mutations in 

this gene may not provide as much survival benefit, consistent with our earlier finding that HLA-

C is less frequently mutated than HLA-A and HLA-B (Figure 3-1B). 

 

3.2.4 Impact of tumor mutation burden on MHC class I and MHC class II mutation frequency 

To investigate the association between tumor mutational burden (TMB) and MHC 

mutations we compared the local TMB within the MHC genes to the genome-wide TMB for each 

cancer cohort. As TMB increases, we expect the number of passenger mutations in a gene to 

increase stochastically. However, as TMB increases, neoantigen burden also increases, and we 

would expect increased selective pressures for LOF MHC mutations. We therefore expect all 

cancer types to show a positive association between TMB and MHC mutations, but in cohorts 

Figure 3-7: Clonality of MHC mutations within cohorts showing evidence of positive selection 

Cancer cell fraction (CCF) of MHC class I variants in TCGA cohorts showing significant evidence of 

positive selection compared to all other cohorts. Vertical line shows 70% CCF, above which mutations are 

considered clonal. ***: p < 0.001, Wilcoxon rank-sum test after BH correction. 
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with significant evidence of positive selection this increase should be elevated due to the added 

effect of both TMB and neoantigen induced selective pressures. We show this to be the case, 

with significantly mutated cohorts having a higher local TMB within the MHC genes than other 

cohorts of similar global TMB (Figure 3-8). 

 

We originally hypothesized that somatic loss of MHC class II should mirror that of MHC 

class I given that both have been shown to promote anti-tumor immune responses. However, 

there was no association at the cohort level between MHC class I mutations and MHC class II 

mutations after controlling for TMB (Figure 3-9). Strikingly, while MHC class I mutations appeared 

to be most prevalent in cancer types with high TMB, MHC class II mutations were frequently 

increased in low TMB cancers with few MHC class I mutations. 

Figure 3-8: Association between global tumor mutational burden and MHC mutations 
Comparison between global TMB and local TMB within MHC class I and MHC class II genes in all TCGA and MI-
ONCOSEQ cohorts. Average global TMB is calculated based on non-synonymous mutations in all protein-coding 

genes, average MHC local TMB is the number of mutations in MHC class I or class II genes divided by their length. 
Significant differences between regression lines was measured using the Chow test, ***: p < 0.001. 
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3.2.5 Functional consequences of MHC class I and MHC class II mutations 

To better understand the impact of positive selection of non-synonymous mutations in 

MHC genes, we characterized their functional consequences and compared their distributions in 

cohorts with and without evidence of positive selection. We constructed an approximately neutral 

model by looking at the distribution of functional consequences across 2.6 million mutations called 

from the entirety of the TCGA, the overwhelming majority of which are known to be passengers104 

(Figure 3-10A, "TCGA"). MHC class I mutations within cohorts showing no evidence of positive 

selection showed a consequence distribution nearly identical to that of the neutral model (Figure 

3-10A, "Unselected"), supporting the notion that mutations observed in these cohorts are primarily 

passengers. However, in each of the 8 cancer types that did show positive selection, there was a 

significant difference in consequence distributions when compared to the TCGA derived neutral 

model (Chi-squared tests, p < 1e-3 to 1e-16, BH adjusted). Consistent with the MHC's role as a 

tumor suppressor, this deviation was caused by an increase in truncating mutations which 

accounted for more than 40% of mutations in most cohorts, as compared to the expected neutral  

Figure 3-9: Association between MHC class I and class II mutations pan-cancer 
(A, B) Proportion of tumors with mutations in MHC class I or MHC class II in (A) primary and (B) metastatic tumors. (C) Residual 

correlation between the numbers of MHC class I and class II mutations in primary tumors after adjusting for tumor mutational 
burden. Points correspond to each of the 35 cancer types from TCGA. 
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Figure 3-10: Distribution of functional consequences for non-synonymous mutations within cohorts showing 

evidence of positive selection 

(A) Proportion of functional consequences observed in various groups: "TCGA" 2,600,654 pan-cancer mutations 

from TCGA an approx. neutral model; "Unselected" - MHC class I mutations from all primary and metastatic 

cohorts showing no evidence of positive selection; others - MHC class I mutations from cohorts showing evidence 

of positive selection (n = 21-96 mutations within positively selected cohorts). "TCGA" and "Unselected" are average 

frequencies across cohorts, with error bars showing SEM. (B) Cohort specific MHC class I stop gain frequency 

compared to overall proportion of MHC class I stop gains contributed by each TCGA cohort. Enriched cohorts are 

labeled. (C) Functional consequences of MHC class II mutations in select primary cohorts. For comparison, 

mutational consequence distribution of known oncogenes (OG: KRAS, PIK3CA, IDH1, CTNNB1, FOXA1, BRAF, 

AKT1, EGFR) and tumor suppressors (TS: TP53, RB1, PTEN, APC, BRCA2, VHL) are shown. (D) Cohort specific 

MHC class I stop gain frequency compared to overall proportion of MHC class I stop gains contributed by each MI-

ONCOSEQ cohort. Enriched cohorts are labeled. (E) Proportion of functional consequences observed in various 

groups: "TCGA" 2,600,654 pan-cancer mutations from TCGA, an approx. neutral model; "Unselected" - MHC class 

I mutations from all primary and metastatic cohorts showing no evidence of positive selection; "M-SQCC" - MHC 

class I mutations from the M-SQCC cohort. "TCGA" and "Unselected" are average frequencies across cohorts, with 

error bars showing SEM. 
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rate of ~12%. The B-cell lymphoma (DLBC), cervical (CESC), and head and neck (HNSC) cohorts 

all have a high proportion of stop gains (46%, 32%, and 28%, respectively) within the MHC class 

I genes, accounting for 56% (60/108) of all observed stop gains despite only comprising 8% 

(792/10,001) of TCGA patients (Figure 3-10B). Notably, frameshift mutations in MHC class II 

were rare even in MSI tumors, but unexpectedly common in some MSS tumors including GBM, 

OV, and LIHC. These cohorts were also depleted of synonymous mutations (Figure 3-10C). 

Similar to the DLBC cohort from TCGA, the refractory M-DLBC cohort showed both a high 

mutation rate and a strong bias towards truncating mutations in the MHC class I genes (35%). 

Other non-DLBC refractory lymphomas (M-LYM) had a lower overall MHC class I mutation rate, 

but still had a large bias towards truncating mutations (65%) (Figure 3-10A). The lymphomas 

alone account for 52% of stop gains observed across all MI-ONCOSEQ cohorts (11/21) despite 

containing only 7% of patients (Figure 3-10D). The HNSC, CESC, and LUSC cohorts in TCGA 

are all types of squamous cell carcinomas which correspond to a single cohort M-SQCC within 

MI-ONCOSEQ. Similar to what was observed across the primary squamous cancers, the pan-

squamous M-SQCC cohort showed an overall elevated mutation rate and a high rate of LOF 

mutations when considering frameshifts, stop gains, and splice region variants (35%, Figure 3-

10E). Metastatic MSI tumors are underrepresented in MI-ONCOSEQ preventing any comparison 

to primary MSI. Altogether, these data reveal striking differences in mutation frequency and 

deleteriousness not only across cancer types but also between MHC class I and class II genes. 

3.2.6 Patterns of mutual exclusivity and independence of MHC mutations 

We next sought to determine whether mutations in the MHC are independent of other mutational 

drivers. Since the ability to present antigens can be restricted by mutations of other genes that 

make up the antigen processing machinery (APM), we next looked at the relationships between 

deleterious mutations in the MHC class I genes and the APM105 (Figure 3-11). Other genes linked 

to the MHC class 1 have been identified as cancer driver genes (e.g. B2M106), and it has been 
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shown that driver genes that fall within the same pathway frequently show mutual exclusivity. This 

effect is most clear in the lymphomas where there is significant mutual exclusivity between MHC 

mutations and the APM (p = 0.02, BH adjusted) with no observed tumors having hits in both gene 

sets. However, there is no mutual exclusivity in the squamous cell carcinomas (p = 0.99, BH 

adjusted) with the LUSC, HNSC, and CESC cohorts having 4%, 8%, and 13%, respectively, of 

mutated tumors with simultaneous hits in the MHC genes and the APM. MSI tumors had even 

higher overlap with 38% of COAD-MSI and 43% of STAD-MSI tumors containing simultaneous 

hits, which does not support mutual exclusivity (p = 0.99, BH adjusted). These data suggest that 

allelic loss of HLA does not significantly reduce (or increase) the pressure to select for additional 

mutations limiting antigen presentation in solid tumors, but appears dominant in lymphomas. 

However, it is also possible that low mutual exclusivity is the result of high tumor heterogeneity, 

with multiple subclones having independent loss of APM function that only appear to co-occur 

due to bulk sequencing. 

 

Figure 3-11: Mutual exclusivity of MHC and APM mutations 

Association of HLA mutations and LOH, numbers indicate portion of mutated tumors (mutated | total) (I) Sample 

level co-occurrence of mutations in either the MHC class I or APM genes within positively selected cohorts. 

Percentage values show percent of mutated samples containing a hit in both the MHC class I and APM, with lower 

percentages suggesting mutual exclusivity. 
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Finally, we also looked at potential co-mutation of the MHC class I genes with known driver 

genes (Figure 3-12A). The strongest observed co-occurrence was found in the HNSC cohort with 

deleterious mutations of CASP8, a gene that plays a key role in an alternative pathway for 

destruction of malignant cells by the immune system107. This observation has been confirmed in 

an independent cohort of primary HNSCC (Figure 3-12B). Also observed in the HNSC cohort 

was co-mutation with HRAS, a member of the RAS family of oncogenes that has been shown to 

be associated with increased immune activity within head and neck cancers108 (Figure 3-12A). 

3.2.7 Mutational processes shape cancer type specific MHC mutational patterns 

We next sought to determine which mutational processes may contribute to the generation 

of the non-synonymous mutations within cohorts showing evidence of positive selection. For MSI 

cancers, mismatch repair deficiency (MMRd) is the primary mutational process leading to a large 

number of indels within microsatellites109. We have already observed a high rate of frameshift 

indels within MSI tumors (Figure 3-3B) and notable hotspots (Figure 3-1A), and upon further 

Figure 3-12: Co-occurrence of MHC mutations with CASP8 and HRAS in HNSC cancers 

(A) Co-mutation analysis for functional mutations in all cancer gene census tier 1 genes vs MHC class I 

mutations in the HNSC cohort. Horizontal lines show significance cutoff after Bonferroni correction. 

Significantly co-mutated genes are labeled. (B) Pearson residual plot showing the enrichment of tumors 

with both CASP8 and MHC class I mutations in an independent cohort of 109 HNSCC tumors. 
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investigation the majority of these frameshifts (57/63, 90%) are due to single base pair insertions 

or deletions at homopolymer microsatellites (Figure 3-13A) which occur at a rate much higher 

than observed in MSS cancers (p < 1e-16) (Figure 3-13B). We also observed that MSI-associated 

indels were preferentially in longer homopolymers, while MSS-associated indels showed no 

relationship with homopolymer length (p < 0.001) (Figure 3-13C), which is consistent with the 

mutational signature for MMRd110. 

 

For the lymphoma and squamous cell carcinoma cohorts, we observe a striking number 

of stop gain mutations, including multiple recurrent (n > 2) hotspot positions (Figure 3-14A). 

Interestingly, 100% of the stop gains that we observed in these cohorts are caused by C>T or 

C>A mutations. This is consistent with the well characterized process of cytosine deamination 

which is frequently observed in lymphomas due to activation-induced cytosine deaminase (AID)111 

and in squamous cell carcinomas due to the closely related APOBEC family of enzymes112. Both 

AID and APOBEC have distinct sequence preferences for their deaminase activity that should be 

visible in the sequence motifs surrounding each mutation. In the lymphomas we find that 13/22 

(59%) of the observed stop gains match the canonical AID motif WRC (W = A/T, R = A/G) (Figure 

Figure 3-13: Frameshift hotspots in MSI cancers fall within coding region microsatellites 

(A) Position of observed frameshift mutations within the MHC class I genes of COAD-MSI and STAD-MSI tumors. 

Colors show length of homopolymer microsatellites at each observed frameshift. (B) Total number of 1-BP 

frameshifts observed per tumor at homopolymers of varying length in MSI and MSS tumors. (C) Frequency of 1-BP 

frameshifts observed at homopolymers of varying length in MSI and MSS tumors. 
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-14A, B, C). Similarly, across the squamous cell carcinoma cohorts we find that 49/62 (79%) of 

observed stop gains match either the APOBEC3A/B/H/F motif TC or the APOBEC3G motif CCC 

(Figure 3-14A,D, E). Further analysis showed that mutational signatures SBS2 and SBS13, which 

have been reported to be associated with APOBEC activity113, are significantly more active in 

squamous cell carcinomas with observed stop gain mutations (Figure 3-14F). A pan-cancer 

mutational signature analysis found no further significant associations between specific 

signatures and MHC mutations, with the exception of a small reduction in signature SBS5 in 

melanomas with MHC class II mutations (Wilcoxon rank sum test, BH-adjusted p = 0.03). 

 

Altogether, these observations strongly suggest that truncating mutations within the MHC 

genes originate due to specific mutational processes active within select cancer types. The active 

mutational processes are responsible not only for producing highly immunogenic tumors that are 

under pressure to select truncating mutations within the MHC class I genes, but are also directly 

responsible for creating the majority of the LOF mutations in the first place. Haplotypes harboring 

Figure 3-14: Stop gain hotspots match AID/APOBEC motifs 

(A) Position of observed stop gain mutations within the MHC class I genes of lymphomas and squamous cell 

carcinomas. Colors show motif of mutated position. (B) Canonical motif for AID (C) DNA motifs for stop gain 

mutations observed in lymphoma cohorts. Mutated base marked with red box. (D) Canonical motifs for APOBEC 

proteins. (E) DNA motifs for stop gain mutations observed in squamous cell carcinoma cohorts. Mutated base 

marked with red box. (F) % of mutations within Squamous cell carcinomas with (SG) or without (No SG) observed 

stop gains that can be attributed to signatures SBS2 and SBS13, which have been associated with APOBEC activity. 

**: p < 0.01, BH corrected t-tests 
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homopolymer repeats and AID/APOBEC templates are therefore potentially more susceptible to 

this immune-escape mechanism. 

3.2.8 Missense mutations are enriched in specific MHC functional domains 

While frameshift and stop gain mutations are easy to classify as LOF, missense mutations 

are more difficult to interpret as they can be LOF, neutral, gain of function, or even 

neomorphic114,115. We hypothesized that deleterious missense mutations within positively 

selected cohorts should accumulate predominantly within the functional domains that provide the 

most immune escape potential for a tumor. To detect this enrichment we constructed two null 

models which were compared to the observed mutations across MHC functional domains which 

we established through systematic expert-knowledge and crystal structure guided annotation of 

individual amino acids within the MHC class I proteins (Figure 3-15). The first ‘simulated’ null 

model was based on a large number of HLA mutations generated randomly taking into account 

HLA sequence trinucleotide contexts and observed mutational signature activities within each 

positively selected cohort (Figure 3-16A). The second ‘observed’ null was based on 251 actual 

mutations called in cohorts that showed no evidence of positive selection. We first compared the 

observed null dN/dS ratios to the simulated null ratios across all functional domains (Figure 3-

16B). The log fold change of the observed vs simulated local dN/dS ratios were normally 

distributed (Shapiro-Wilk p = 0.99) with a mean not significantly different than 0 (p = 0.38, BH 

corrected), showing appropriately that there are no significant differences between the two null 

models. In contrast, in cohorts showing evidence of positive selection, the local dN/dS fold change 

was also normally distributed (Shapiro-Wilk p = 0.98, p = .433) but with a mean significantly above 

0 when compared to both the simulated null (mean = 0.85, Cohen's d = 0.63, p = 0.03, BH 

corrected) and the observed null (mean = 1.13, Cohen's d = 0.81, p = 0.02, BH corrected) (Figure 

3-16B). This shows a strong general trend towards excess nonsynonymous mutations across all 

annotation regions. 
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Analysis of missense mutations in the context of functional domains acts not only as a 

signal for positive selection, but also helps in the interpretation of the mutations' likely functional 

consequences. Therefore, using our amino acid annotations, we examined which functional 

domains had the highest enrichment of non-synonymous mutations in both primary and 

metastatic tumors (Figure 5D-E). Compared to both the null models, 5 of the 7 annotated 

Figure 3-15: Annotation of class 1 HLA amino acids and their interacting protein partners 

Schematic overview of HLA proteins showing secondary structure, exon boundaries, and amino acid interactions 

with various binding partners. 

Figure 3-16: dN/dS ratio analysis within specific annotation regions 

(A) Schematic representation of the constructed null models and their comparisons (arrows, colors match 

comparisons in panel C). (B) Distribution of observed vs simulated dN/dS ratio fold-change for amino acids that are 

predicted to interact with various MHC interacting partners. Observed dN/dS ratios are compared to dN/dS ratios 

from simulations taking into account the mutational signature activities within each of the cohorts showing evidence 

of positive selection. Rug plots show individual data points. Filled regions show tails of empirical null distribution. 

(light-red: top and bottom 5%; dark-red: top and bottom 1%) 
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functional domains showed a two-fold or higher enrichment of non-synonymous mutations. Some 

differences were noted between primary and metastatic tumors. Specifically, based on the 

‘simulated’ null model, multi-functional residues are under a stronger positive selection in 

metastatic compared to primary tumors (Figure 5D-E), while on the other hand residues involved 

specifically in the B2M, TCR and CD8 binding interfaces show strong enrichment only in the 

primary tumors (Figure 5D-E). 

 

3.2.9 Mutations at the B2M interface are predicted to disrupt MHC-B2M complex formation 

In primary tumors, particularly striking are the B2M interacting and binding pocket residues 

displaying dN/dS ratios of 5 to 10 fold with respect to both null models (Figure 3-17A,B). This 

suggests that within cohorts showing evidence of positive selection, missense mutations may be 

LOF by disrupting the ability of the mature HLA proteins to interact with either B2M or their cognate 

Figure 3-17: Significant increase in dN/dS ratios within specific amino acid annotation regions 

(A,B) dN/dS ratio fold-changes vs simulated / theoretical (A) and observed / empirical (B) null models for 

individual annotation regions within cohorts showing evidence of positive selection (P: primary cancers; M: 

Metastatic/refractory cancers). Stars denote observations above the 95th percentile based on the observed null 

distribution. 
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neoantigen peptides. To examine this, we overlaid all missense mutations from the positively 

selected cohorts on the crystal-structure of the MHC class 1 - B2M complex116 (Figure 3-18A), 

which revealed a clustering of recurrently mutated positions in 3D space at both the interface 

between the MHC and B2M proteins and at the anchor points of the peptide binding pocket 

(Figure 3-18A), strongly suggesting that mutations disrupt this interface leading to loss of MHC 

function. This is consistent with previous studies identifying B2M itself as a driver gene in all 

cancer types implicated here101,117,118. To determine whether missense mutations at the MHC 

class 1 - B2M interface are potentially deleterious we used SSIPe119 to predict the change in 

binding energy resulting from each observed mutation in comparison to that of our previously 

‘simulated’ null mutations (Figure 3-18B). Observed mutations had a significantly higher 

predicted ΔΔG than appropriately simulated mutations (median ΔΔG 1.37 vs 0.15, p < 1e-4, 

Figure 3-19D). Additionally, 42% of observed mutations had a ΔΔG > 1.5 kcal, the threshold 

suggested by SSIPe as evidence for significant disruption of a protein-protein interface. Overall, 

this suggests that the observed somatic mutations in residues at the MHC-B2M interface are more 

disruptive than expected by chance. Interestingly, even though B2M itself was enriched for loss 

of function mutations (Figure 3-20A,B), there were no observed missense mutations in B2M in 

residues at the MHC class 1 interface within positively selected cohorts (Figure 3-20C). This is 

consistent with previous reports that disruption of B2M protein interfaces are predominantly due 

to mutations within its interacting partners rather than B2M itself120. Altogether, these findings 

demonstrate that observed missense MHC class I mutations are strongly enriched at residues 

enabling MHC antigen binding complex formation, and have a likely deleterious function. 
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Figure 3-18 :Missense mutations disrupt the HLA:B2M binding interface 

(A) Structure of the MHC/B2M complex showing 3D clustering of recurrently mutated amino acids. 

Positions within the MHC protein are colored based on the number of observed mutations (0: green, 1: 

yellow, 2: orange, 3: pink, 4: magenta, 5: red). Positions mutated 3 or more times are shown with side 

chains visible. B2M and bound peptide in grey. (B) Change in binding energy due to mutations in amino 

acids at the HLA:B2M interface as predicted by the software SSIPe. 
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Figure 3-19: Mutations at the MHC1:B2M interface 

(A-C) Multiple views of the MHC class I crystal structure. Residues are colored based on interactions with MHC 

associated proteins. (D) P-values (t-test) comparing observed mutations at the β2m interface to a set of random 

samples of the same size from a pool of simulated mutations. 10,000 random samples were taken and tested, all of 

which showed a significant difference (red line, p < 0.05) i.e. all random sets of mutations had significantly smaller 

ΔΔG compared to the observed ones. 
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Figure 3-20: Mutations within B2M 

(A, B) B2M shows a high rate of loss of function mutations in both (E) primary and (F) metastatic/refractory 

cancers that do or do not show evidence of positive selection for MHC class I mutations. Mutational consequence 

distributions of mutations within the MHC class I proteins are provided for comparison. (C) Crystal structure 

showing missense mutations (red) within the B2M protein in significantly mutated cohorts. Unlike mutations within 

the class 1 HLA proteins, which are enriched at the HLA:B2M interface, missense mutations within B2M were 

absent from this interface and only found in external residues. Green: B2M protein; White: Class 1 HLA protein. 
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3.3 Discussion 

Despite overwhelming evidence from IHC studies demonstrating frequent loss of MHC 

expression pan-cancer43, there is still much that is unknown about the molecular mechanisms that 

drive it. Using Hapster we identified the cancer types most affected by somatic mutation of the 

MHC and the mutational processes that promote and generate these mutations. We quantified 

positive selection and patterns of mutual exclusivity and independence of MHC mutations. We 

also characterized the deleterious consequences of truncating and missense mutations at the 

level of functional residues and protein domains. 

We have identified six cancer types (colon and stomach adenocarcinomas with 

microsatellite instability; head and neck, cervical, and lung squamous cell carcinomas; 

lymphomas) that are significantly enriched for somatic non-synonymous mutations of the MHC 

class I. Notably, all of these cancers display above-average levels of tumor-immune infiltration121, 

and at the pan-cancer level MHC mutant tumors are significantly more likely to have approved 

immunotherapies (p < 2.2e-16, OR: 2.29). A logical interpretation of these results is that at the 

cohort-level immunologically ‘hot’ tumors tend to both respond to immune checkpoint inhibitors 

(ICI) and mutate the MHC as an immune-escape mechanism. However, individual patients with 

impaired MHC function may be partially or completely invisible to T cells43, making them less likely 

to respond to ICI. Since somatic loss of one or more MHC genes is essentially irreversible122 it 

may preclude T cell based immunotherapies as viable treatments of MHC-mutated tumors. Within 

the above 6 cancer types, nearly 10% of patients harbor a functional mutation within the MHC 

class I genes, highlighting the necessity of further studies of MHC function in the context of both 

primary and acquired resistance to ICI. 

We also provide a first look at MHC mutations in metastatic and refractory cancers 

obtained using personalized genomics. Metastatic cancers typically have a higher TMB, and 

therefore neoantigen load, and may be expected to be more immunogenic than primary tumors. 
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However, metastases may also originate from less immunogenic sub-clones in the first place, and 

seed locations that are immunosuppressive such as bone marrow123 or liver124, making them less 

visible targets for the immune system. IHC studies have also observed both MHC+ primary 

cancers that produce MHC- metastases, and MHC- primary tumors that produce metastases that 

regain MHC function125. It is therefore unclear how pan-cancer mutational patterns in the MHC 

locus should compare to primary tumors. We show here that, broadly, MHC mutations in 

metastatic cancers mirror that of primary tumors. In refractory lymphomas there is a downward 

trend in MHC class I mutations when compared to primary, however this trend did not reach 

significance and evidence for positive selection still remains very high. Similarly, in the metastatic 

squamous cell carcinomas we see that there is no longer evidence for positive selection of MHC 

class I mutations as was observed in the primary cases. In contrast, we note a significant increase 

in MHC class I mutations in metastatic breast and prostate cancers. However, due to the limited 

metastatic sample size uncertainty remains If this reflects selection of biologically distinct 

molecular subtypes with higher MHC class I mutation burden, or MHC class I mutations 

themselves. 

We also provide novel insights into MHC class II mutations pan-cancer. While MHC class 

II function is not strictly required for identification of neoantigens by CD8+ T cells, it has been 

shown to regulate anti-tumor T cell responses93 and can act as a therapeutic target for CD4+ T 

cell based cancer vaccines58,126. While select cohorts (CHOL, KICH, UVM) did show evidence for 

positive selection of functional MHC class II mutations, there were overall fewer mutations in the 

MHC class II genes than in the MHC class I. This is expected as MHC class II expression is not 

constitutive and must first be induced before a tumor can be under pressure to select for a LOF 

mutation, which is in contrast to the MHC class I where selective pressures are present from the 

onset of tumor formation. What was not expected, however, was the lack of a relationship between 

cancer types that lose MHC class I and those that lose MHC class II function given that both sets 

of proteins act to present neo-antigens to T cells to promote an anti-tumor response. We observed 
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no overlap in cohorts showing evidence of positive selection for LOF mutations in the MHC class 

I and MHC class II genes, with MHC class I loss being more prevalent in high TMB cancer types 

and MHC class II loss being more prevalent in low TMB cancer types. It will take future studies to 

determine if this is driven by differences in MHC class II induction in different tissue types, 

differences in APC or CD4+ T cell infiltration in the TME of different cancers, or if this is an actual 

relationship between low TMB tumors and MHC class II loss. 

We have investigated the role of TMB overall as well as specific mutational processes in 

MHC mutagenesis. We identified three mutational signatures associated with mismatch repair 

deficiency, APOBEC activity, and AID activity as major drivers of MHC mutations in specific 

cancer types. We posit that for any given cancer under pressure to lose MHC function, it will be 

lost via "the path of least resistance" given the processes active in each different cancer type. In 

MSI cancers, squamous cell carcinomas, and lymphomas, the path of least resistance may be 

specific to the mutational processes active in these cancers. In contrast, there is melanoma which 

is known to have high TMB and to respond to immunotherapy, but is not observed to have many 

MHC mutations. However, transcriptional downregulation of MHC class I, as well as B2M 

mutations, are known acquired resistance mechanisms in this cancer type. Other cancers, such 

as prostate adenocarcinoma, are shown in IHC studies to have extremely high rates of loss of 

MHC expression 39, yet show no apparent somatic mutations in the MHC genes. 

Altogether, our study demonstrates the high prevalence, positive selection, and 

deleterious nature of MHC mutations, and suggests that immune-escape through MHC 

mutagenesis is a common and early step in the progression of several common cancer types. 

While this study primarily focused on immunotherapy naive tumors, future studies looking at 

tumors post-immunotherapy may reveal MHC mutations to be drivers of acquired immunotherapy 

resistance. In this work we have focused on MHC mutations, however, in other cancer types, 

MHC function may be more easily lost via structural loss of the MHC locus, LOH47, transcriptional 

https://paperpile.com/c/r5AZfD/xse6K
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repression, or even post-translational inactivation. Given Hapster's ability to create personalized 

haplotype references, we aim in future studies to apply Hapster to other sequence based 

analytical methods to identify patterns of loss at the RNA and protein level. This will provide a 

deeper understanding of the diversity of mechanisms that can lead to loss of MHC expression, 

and as a result immune evasion and immunotherapy resistance. 

3.4 Methods 

3.4.1 Tumor mutational burden calculations 

Global mutation burden was calculated using mutations obtained from MAF files 

provided by the Broad Institute's GDAC Firehose (https://gdac.broadinstitute.org/). Mutations 

observed within the capture kit region for each WES sample was divided by the total area 

covered by the capture kit. Capture kit information for each sample was obtained from official 

TCGA sample level metadata. Local mutation burden for each MHC gene was reported as the 

number of coding region mutations divided by the total exon length of each gene. 

3.4.2 Positive selection of somatic mutations 

Positive selection was evaluated by CBaSE101, a tool that provides gene-specific 

measures of the strength of positive or negative selection for functional mutations based on the 

distribution of synonymous and non-synonymous variants after accounting for sequence contexts 

and cohort-specific mutational signature activities. CBaSE was run on each TCGA and MI-

ONCOSEQ cohort separately. For MHC genes, CBaSE was run on mutations called by Hapster. 

For all other genes, CBaSE was run on mutations reported via MAF files obtained from the Broad 

Institute's GDAC Firehose (https://gdac.broadinstitute.org/). To calculate the pan-cancer 

metastatistic ϕpos, the cohort-level ϕpos reported by CBaSE was summed across all cohorts. 

3.4.3 Cancer cell fraction calculations 

https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
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The cancer cell fraction (CCF) of a variant was calculated using the following formula, where f is 

the VAF of the variant, p is the purity of the tumor sample, m is the multiplicity, and nT is the total 

estimated copy number for the tumor: 

 

Mutations were considered clonal if CCF > 0.7. 

3.4.4 Mutual exclusivity and co-mutation analyses 

Both mutual exclusivity and co-mutation analyses were performed at the cohort level. 

Mutual exclusivity of MHC class I and APM mutations were evaluated using CoMEt127. Exact tests 

for mutual exclusivity were calculated by comparing any mutation with the MHC class I genes to 

any mutation within an APM gene. Co-mutation analyses were performed using a SNP-seq kernel 

association test as implemented in the R package SKAT128. Only driver genes listed in the 

COSMIC Tier 1 Cancer Gene Census129 were considered. Within each cohort, only genes 

mutated in more than 2% of patients were analyzed. 

3.4.5 AID/APOBEC mutational signature activity 

Mutational signature activity within specific TCGA samples was obtained from the ICGC 

Pan Cancer Analysis Mutational Signatures Working Group 

(https://doi.org/10.7303/syn11726601). For each tumor within the CESC, HNSC, LUSC, and 

DLBC cohorts, the relative activity of AID/APOBEC associated mutational signatures SBS2 and 

SBS13 were identified. Cases were split into those either containing or not containing stop gain 

mutations within the MHC genes, and differences in SBS2/SBS13 activity were tested using t-

tests. 

3.4.6 dN/dS null model simulations 

https://doi.org/10.7303/syn11726601
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A simulated null model for the dN/dS ratio was created by simulating mutations using 

cancer-type specific background mutation rates. Mutations were simulated for each significantly 

mutated cohort by taking into account trinucleotide mutational signatures that are active in each 

cancer type. Mutational signature activity was obtained from the ICGC Pan Cancer Analysis 

Mutational Signatures Working Group (https://doi.org/10.7303/syn11726601). 10,000 mutations 

for each cohort were simulated as follows: 1) Each base along the length of HLA-A*01:01:01:01 

was weighted based on its trinucleotide context, and the probability of that trinucleotide being 

mutated given known mutational signature activity. 2) A random position was picked based on 

the weighted probabilities of each base being mutated. 3) A random alternate base was picked 

for the selected position, with each potential alternate base weighted based on trinucleotide 

context and mutational signature activity. 

3.4.7 MHC amino acid annotations 

Protein interaction analysis was performed using annotations derived from structures of 

the relevant MHC class I complexes (PDB IDs provided below). The distance cutoff of the contacts 

was ≤4 Å. Structures used for MHC class I : peptide interaction and the interaction between MHC 

class I heavy chain and B2M were 4NQV, 6IEX, 3MGO, 3KPL, 3RL2, 3DX7, 4F7M, 1E28, 4HX1, 

2RFX, 5EO0, 5IM7, 1XR8, 5W6A, 1JGE, 5VGE, 3LKR and 6JTP. Structure used for MHC class 

I : CD8 interaction was 3DMM. Structures used for MHC class I : TCR interaction were 5WKF, 

4G8G, 5WKH, 4G9F, 5NQK, 5XOT, 6EQA, 4PRP, 3VXM, 6BJ2, 3W0W, 3MV7, 6AVF, 4JRX, 

6AVG, 4JRY, 4QRP, 4PRI, 1MI5, 3DXA, 3FFC, 3KPR, 3SJV, 3KPS and 4QRP. Structures used 

for MHC class I : TAPBPR interaction were 5OPI and 5WER. Structure used for MHC class I : 

TAPBP interaction was 6ENY. 

3.4.8 PPI binding energy predictions 

https://doi.org/10.7303/syn11726601
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Predicted changes to the MHC-B2M interface binding energy were generated using SSIPe119. 

All predictions were performed using the 3D crystal structure at 

https://www.rcsb.org/structure/4U6X. While the MHC class I proteins are highly polymorphic, the 

residues that make up the B2M interface are highly conserved, allowing us to predict binding 

energy changes using a single 3D structure regardless of which MHC protein the mutation was 

called in. 

3.4.9 Quantification and statistical analysis 

Total sample sizes for each cohort are provided in supplementary tables 5 and 6. Where 

sample sizes change due to data availability, N values are noted directly in figure legends. All 

statistics were performed in R. Tests used are specified directly in figure legends, alongside 

multiple-testing corrections used. Briefly, for contingency tables, Fisher’s exact test was used 

unless sample sizes were too large, in which case Chi-squared tests were performed. For 

comparisons of two group means, t-tests were used unless the normality distribution assumption 

was not met, in which case Wilcoxon rank-sum tests were performed. For comparison of 

regression line coefficients, the Chow test was performed. For multiple testing corrections the 

Benjamini-Hochberg procedure was performed with a FDR of 5%, unless otherwise noted. 

 

 

https://www.rcsb.org/structure/4U6X
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Chapter 4 Personalized Quantification of the HLA Proteins With HLAProphet  

Portions of this chapter are available as a preprint130, and are being compiled for submission for 

peer review. 

4.1 Introduction 

In chapter 2 I demonstrated a personalized method for alignment and mutation calling 

using DNA sequencing data, and in chapter 3 I showed the application of this method to two 

large pan-cancer cohorts to characterize the landscape of HLA somatic mutations. I also noted 

that due to the similarities between DNA sequencing and RNA sequencing, the Hapster 

algorithm naturally extends to RNA alignment and quantification. However, when attempting to 

quantify the HLA proteins, the nature of MS/MS data prevents the direct application of Hapster. 

Therefore, a personalized method for quantification of HLA protein expression is still needed. 

A number of methods have been developed to allow identification and/or quantification 

of proteins containing variant sequences131–136. The general approach involves identification of 

germline or somatic variants using paired DNA sequencing data, in silico translation of these 

variant proteins, and then concatenation of these variant sequences with a standard protein 

reference to create an augmented search database. Unfortunately, these methods often restrict 

their analyses to single amino acid variants (SAAVs), which is not useful for the HLA proteins 

where we frequently observe multiple variants per tryptic peptide. Haplosaurus137 improved 

upon SAAV approaches by allowing quantification of proteins with an arbitrary number of amino 

acid variants by imputing complete phased genotypes into all protein coding genes before in 

silico translation. However, this generalized approach requires high quality genotypes. This is a 

problem for the HLA genes where their polymorphism precludes traditional genotyping, and 
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where germline sequencing instead requires the use of specialized HLA typing software. This 

issue can be seen when looking at the 709 personalized HLA-A protein haplotypes inferred by 

Haplosaurus from 2504 samples from 1000 Genomes. Even though all 1000 Genomes samples 

have HLA types matching entries in the IMGT/HLA database138, none of the personalized HLA-

A proteins reported by Haplosaurus can be found in the database [IMGT/HLA release 3.51.0]. 

This is likely caused by the presence of at least one error in genotyping or phasing in each 

sample, leading to the in silico translation of non-existent proteins. This demonstrates that 

solutions for personalized HLA quantification require a specialized approach that works from full 

HLA types, not individual variant calls. To address this we have developed HLAProphet, an 

algorithm that leverages the FragPipe computational platform to provide personalized 

quantification of the HLA proteins from multiplexed tandem mass tag (TMT) based quantitative 

mass spectrometry data using known HLA types (Figure 4-1). 
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Figure 4-1: HLAProphet schematic overview 

(A) HLA types for all samples across all plexes of a multiplex TMT MS/MS experiment are retrieved from the 

IMGT/HLA database and combined with GENCODE34, after removing GENCODE HLA sequences. This 

combined database is then run through philosopher to generate a final search database with reverse decoys and 

common contaminant sequences. (B) Searches for peptide matches for each MS/MS spectrum are performed using 

the personalized HLAProphet database to produce a PSM table with rows equal to the number of identified peptides, 

and columns equal to the number of samples in a plex. Notably, this table contains entries for all combinations of 

peptide to sample, even though only a subset of peptides are expected to be coded for given each sample's HLA type 

(green check) while the rest are not (red x). (C) The raw PSM table is broken down into individual sample tables, 

only retaining peptides predicted to be coded for in that sample's genome based on known HLA types, and with 

peptide-to-protein assignments restricted to only the HLA proteins in the HLA type (column M). (D) Peptide MS2 

intensities (IP) are divided by common reference MS2 intensities (ICR) adjusted by a dilution factor (D, see 

methods) to generate a peptide intensity ratio. Protein abundances are calculated by multiplying the median peptide 

ratio across all assigned peptides to the reference intensity of that protein. 
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4.2 Results 

4.2.1 Issues faced with standard reference based HLA proteomics 

To demonstrate the issues faced by traditional proteomics methods when quantifying the 

HLAs, we used FragPipe and the GENCODE34139 protein database to quantify all proteins in 

108 tumors and 100 normal adjacent tissues from the CPTAC lung squamous cell carcinoma 

cohort140, for a total of 208 samples. First, due to the polymorphic nature of the HLA genes, 

most HLA proteins will have tryptic peptides not found in a standard reference database. This is 

evidenced by the HLA proteins having a significantly lower fraction of predicted tryptic peptides 

identified than other proteins of similar size and abundance (Figure 4-2).  

 

Second, when peptides are identified, abundance calculations are often done under the 

assumption that all uniquely mapping peptides are coded for twice due to the diploid nature of 

the human genome. To investigate the validity of this assumption for HLA tryptic peptides we 

use a measure called the allele count, which is the total number of alleles across all HLA genes 

Figure 4-2: Fraction of tryptic peptides identified with standard reference based searches 

Fraction of predicted tryptic peptides identified when performing standard reference (GENCODE v34) based 

searches to identify peptides in the CPTAC LSCC cohort (n = 208) using TMT mass spectrometry. Class 1, class 

2ɑ, and class 2β HLA proteins all have significantly reduced peptide identifications when compared to all other 

proteins of similar length and abundance. ***: Wilcoxon rank-sum test, p < 0.001 
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that code for the peptide (Figure 4-3A). When we take all HLA tryptic peptides that appear to be 

uniquely mapping and diploid (allele count 2) based on the GENCODE34 reference and use 

HLA type information to calculate the true number of alleles coding for each peptide, we see 

that their true allele count is often different (Figure 4-3B). We also show that incorrect 

identification of the allele count of a peptide within an HLA type is problematic given that the 

allele count directly relates to peptide abundance (Figure 4-3C). The most common issue (41% 

of identified peptides) is the identification of peptides that are not actually coded for in an 

individual’s genome based on their HLA type (true allele count 0). This occurs in multiplexed 

samples when some samples code for a peptide while others do not. The peptide will be 

captured in MS1, and then a non-zero TMT MS2 reporter ion intensity value will be assigned to 

all samples in a plex, even if the abundance is actually zero, due to peptide co-isolation within 

the mass spectrometer141. The assumption that all samples are able to express peptides 

captured in MS1 does not apply here, and using these peptides would lead to an 

underestimation of HLA abundance. The next most common issue (35% of identified peptides) 

is when an individual is heterozygous for two different alleles of an HLA gene, with many unique 

peptides being coded for by only a single chromosome (true allele count 1). This clashes with 

the standard assumption that an identified peptide is coded for twice in a diploid human 

genome. When calculating gene-level abundances, these peptides will lead to underestimates 

since they only provide information about expression for one of the two alleles for that gene. 
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Figure 4-3: Allele count errors when identifying peptides using GENCODE34 

Allele count errors when using standard reference (GENCODE v34) based proteomics to quantify HLA proteins in 

the CPTAC LSCC cohort (n = 208) using TMT mass spectrometry (A) Visualization of four peptides identified in a 

single CPTAC case, with peptide position within the class 1 HLA proteins colored. Positions are shown relative to 

either GENCODE34 (top) or HLAProphet personalized (bottom) reference sequences. All 4 peptides appear to be 

uniquely mapping to HLA-A using GENCODE34 and are assumed to be diploid (allele count of 2). The true number 

of alleles containing each peptide based on HLAProphet references are shown below.  (B) True allele counts of all 

class 1 HLA tryptic peptides that are expected to be uniquely mapping and diploid (allele count 2) based on the 

GENCODE v34 protein database. (C) Association between abundance and true allele counts for HLA tryptic 

peptides that are expected to be uniquely mapping and diploid (allele count 2) using the GENCODE v34 database. 
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Finally, for the class 1 HLA proteins, some peptides within the relatively conserved 

backbone can be shared across genes, but in a way that is not captured in the standard 

reference database sequences. This causes the peptide to appear to be unique to an HLA 

gene, when in fact the allele count is higher than expected (true allele count 3+). For these 

peptides (5% of identified peptides), HLA abundance will be overestimated. Only 19% of 

peptides that appear to be diploid and unique (true allele count 2) based on GENCODE34 are 

correctly identified as such. The final issue with standard reference based methods is that they 

report a single abundance for each gene. However, for each HLA gene, heterozygous 

haplotypes will generally code for two unique proteins, each with a unique peptide presentation 

repertoire. Therefore, it is important for a personalized HLA quantification algorithm to report 

allele level protein abundances. 

4.2.2 Improvements to HLA protein quantification with HLAProphet 

To demonstrate HLAProphet's improvements in peptide identification and protein 

quantification, we applied it to the same set of 208 samples from the CPTAC LSCC cohort. 

HLAProphet uses HLA types derived from paired DNA sequencing data to generate a 

personalized HLA protein reference sequence database via in silico translation. We use here 

HLA types called by Hapster, but any source of HLA types can be used. The personalized HLA 

database is then concatenated with an existing reference protein database, here 

GENCODE34139 with HLA sequences removed, and is run through the FragPipe quantification 

workflow. The use of HLAProphet’s personalized HLA reference increases peptide identification 

by ~3-fold over GENCODE34 (Figure 4-4A). These peptides cover the majority of each HLA 

protein (Figure 4-4B), with the exception of the leader peptide which is absent from mature HLA 

proteins, and the transmembrane domain which is devoid of tryptic sites and produces a single 

long hydrophobic peptide that may be difficult to detect using tandem mass spectrometry142. We 

also find that within heterozygous samples, even though allele-specific peptides are a smaller 



 73 

subset of all identified peptides, they still make up a large enough fraction of identified peptides 

to allow us to quantify individual allele abundances (Figure 4-4C). Following peptide 

identifications, peptide spectrum matches (PSMs) are then used to quantify protein abundance 

using a personalized, HLA-aware quantification approach, with three major modifications 

relative to conventional algorithms such as TMT-integrator143. 

First, conventional algorithms for peptide to gene/protein roll-up of quantitative 

proteomics data, including TMT-Integrator, assume that all reference peptides are coded for in 

the genomes of all samples. This is not true for the HLA proteins. We therefore calculate HLA 

protein abundance on an individual basis, only using intensity values from peptides predicted to 

be present in a sample based on its HLA haplotype (Figure 4-1B, C). At this step we also are 

able to filter out peptides with poor signal to noise ratios. Within a plex, we consider the MS2 

intensity of a peptide in samples that do not code for the peptide to be purely the result of noise 

in the measurement. We expect this noise intensity to be lower than the MS2 intensity in 

samples coding for the peptide. This is often the case (Figure 4-5A, C), but some peptides have 

poor signal to noise ratios (Figure 4-5B). To filter out peptides with poor signal, we apply the 

Kolmogorov-Smirnov test and reject all peptides where the signal distribution is not significantly 

different than the noise distribution (Figure 4-5D, E). 

Second, a conventional strategy for TMT-based multiplexed quantitative proteome 

profiling is to normalize peptides by taking the ratio of a sample’s MS2 intensity to a common 

reference (CR) created by pooling all samples from the experiment together. The CR acts as a 

physical average for tryptic peptide abundance, given that all samples have the peptide coded 

for in their genome. However, for the HLA proteins, some peptides will only be coded for in a 

handful of samples, and therefore their average abundance in a pool of the entire cohort will be 

diluted by the samples with HLA types that do not code for the peptide. These diluted CR MS2 

intensities shrink the denominator of the ratio calculation, causing inflated ratios and 

overestimation of abundance for rare peptides (Figure 4-6A). To address this issue, we multiply  
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Figure 4-4: HLA Peptide identifications with HLAProphet 

(A) Fraction of predicted tryptic peptides for HLA proteins identified using either the GENCODE34 protein 

reference or HLAProphet's personalized HLA reference. HLAProphet produces ~3x as many peptide identifications. 

(B) Peptide coverage for each position within the class 1, class 2ɑ, and class 2β HLA proteins across all 

heterozygous samples. Blue bars show counts of gene-specific peptides (present in both alleles of one gene), while 

red bars show counts of allele-specific peptides. Alternating grey and white boxes show exon boundaries. Negative 

positions denote leader peptides, which are absent from the mature protein. (C) Fraction of peptides identified 

within heterozygous samples that are allele specific for each HLA gene. For each heterozygous HLA protein, a 

variable number of total peptides will be identified (shown on the x-axis). However, many of these will be found in 

both alleles of the gene, and cannot be used to differentiate between the two allele's abundances. To calculate allele-

specific abundances, only those peptides specific to one allele can be used (shown on the y-axis). 
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Figure 4-5: Detection of peptides with poor signal to noise ratios 

(A, B) Example MS2 intensities for two different peptides measured in a 10-plex. Each aliquot is colored based on 

whether or not the peptide is predicted to be coded for in that individual's genome based on their HLA type. Shown 

are (A) an example peptide with good signal to noise ratios, and (B) an example peptide with poor signal to noise 

ratios. (C) Comparison of signal to noise ratios for 1,845 peptide identifications across the entire LSCC cohort. 

Noise is calculated as median MS2 intensity of aliquots that are not predicted to express a given peptide (red bars in 

E). (D) Results of applying the Kolmogorov-Smirnov (K-S) test to all HLA tryptic peptides to determine if the 

signal MS2 intensities come from a different distribution than the noise MS2 intensities, where noise is defined as 

the MS2 intensity within cases that do not code for the peptide. K-S test P-values are shown relative to the 

Signal/Noise ratios for the peptides, showing that only a small number of peptides fail this filter and are rejected 

(grey dots). (E) Signal to noise ratios for all peptides ordered by their K-S test P-values, from least to most 

significant. Only those cases with the most consistently low Signal/Noise ratio are rejected (grey boxplots). 
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Figure 4-6: Dilution adjustment for rare peptides 

(A) Ratio of peptide intensities to reference channel intensities for all identified HLA tryptic peptides compared to 

cohort-wide peptide allele counts for the CPTAC LSCC cohort (n = 208). A standard uniquely mapping diploid 

peptide would be found twice per sample for a total allele count of 416 across the cohort. HLA peptides have 

variable cohort representation, and rare peptides show a bias towards elevated ratios due to dilution in the reference 

channel which shrinks the denominator of the ratio calculation. (B) Ratio of peptide intensities to reference channel 

intensities, adjusted for reference dilution (see methods). The bias caused by cohort allele count is completely 

removed. 
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our CR ratios by a dilution factor (see methods), removing the association between cohort 

population frequency and peptide CR ratio (Figure 4-6B). 

Third, when calculating gene level abundances for heterozygous HLAs, we will generally 

have two sets of peptides: those peptides that are coded for in only a single allele, and those 

that are coded for in both alleles. This is an issue given that the allele count of a peptide directly 

correlates to that peptide's abundance (Figure 4-7A), with 1-allele peptides having lower 

abundance than 2-allele peptides. When calculating gene-level abundances, using 1-allele 

peptides directly is not appropriate, as it would cause an underestimation of gene abundance. 

However, expression differences due to variable allele counts are predictable and can be 

adjusted for. We see that 2-allele peptides do not quite reach double the intensity of 1-allele 

peptides, but consistently show an ~80% increase (Figure 4-7B). Rather than excluding 1-allele 

peptides when calculating gene-level abundances, we multiply their intensity by the 

corresponding scaling factor (1.8) to get an estimate of what their intensity would be if they were 

present in both alleles (Figure 4-7C-D). This allows us to include 1-allele peptides in our total 

gene-level abundance calculations, providing a larger total peptide set and reducing the 

variance of the final values. Peptides with an allele count higher than 2 (~6% of all peptides) are 

excluded. 

4.2.3 Benchmarking HLAProphet’s HLA protein quantifications 

To evaluate HLAProphet’s HLA protein quantification, we compared protein abundance 

to paired personalized RNA expression for all samples. We see that when using the 

GENCODE34 reference for peptide searches and the traditional TMT-integrator algorithm for 

quantification, the class 1 HLAs show very low R2 values of .017-.062 (Figure 4-8A). For the 

class 2 HLAs, the correlation is slightly higher with R2 values of .01-.59. HLAProphet's protein 

abundances show improved correlations to RNA in all cases, with the class 1 HLA R2 values 

rising to .27-.50 and the class 2 HLA R2 values improving to .58-.78 (Figure 4-8B). We also see 
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Figure 4-7: Ratio adjustment for allele specific peptides 

(A) Peptide to reference ratios compared to allele counts for all class 1 HLA tryptic peptides identified using the 

HLAProphet search database. (B) log2 abundance ratio of peptides coded for twice to those coded for once within 

the same gene of a given sample. Red dotted line shows the threshold for 2-fold increase in abundance. (C, D) Four 

aliquot examples demonstrating the effect of allele count adjustment for gene-level abundance calculations. (C) 

Ratios of individual peptides across the length of HLA-A within four aliquots. Blue peptides are coded for in both 

HLA-A alleles within a given aliquot, while red bars are only coded for in 1 allele. Box plots on the right show the 

median ratio across all peptides in each group, with 1-allele peptides showing lower expression. (D) Same as in (C), 

but with 1-allele peptide ratios (red bars) increased by 80% (the experimental offset identified in (B)). This provides 

an estimate of what that peptide's abundance would be if present in both alleles, allowing them to be combined with 

real 2-allele peptides for final gene-level abundance calculations. 
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Figure 4-9: Correlation between HLA RNA and protein expression 

Correlation of RNA expression to protein expression using GENCODE34 + TMT-integrator (A), or HLAProphet's 

personalized quantification of gene level (B) and allele level (D) abundances for the CPTAC LSCC cohort. HLA-

DRA is excluded from the allele level quantifications due to its low polymorphism, and low availability of allele-

specific peptides. 

Figure 4-8: Lack of correlation between RNA and protein by HLA-DRB1*12:17 

Correlation of allele specific RNA and protein expression for HLA-DRB1 (Data from Figure 2F) with allele HLA-

DRB1*12:17 separated out. Most DRB1 alleles show strong correlation between RNA and protein (left, red), with 

the exception of HLA-DRB1*12:17 (right, blue) showing no correlation. 
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that at the allele level, protein expression remains highly correlated with allele-specific 

personalized RNA expression for all genes, demonstrating HLAProphet’s ability to report allele 

level HLA protein abundances (Figure 4-8C). We do, however, see a drop in R2 for HLA-DPB1 

and HLA-DRB1. Interestingly, for HLA-DRB1, this loss of correlation is almost completely due to 

a single allele HLA-DRB*12:17 (Figure 4-9), which shows no correlation between RNA and 

protein expression. It will take further experiments to determine if this is an artifact or a real 

allele-specific effect. HLA-DRA has low polymorphism and does not contain sufficient allele-

specific peptides to reliably quantify at the allele level, and so it was excluded from subsequent 

analysis. 

To further demonstrate that HLAProphet can calculate allele-level abundances with 

minimal loss of information, we compare gene-level abundances calculated in two distinct ways. 

First, we calculate gene-level abundances as described. Then, for each heterozygous HLA type 

we calculate allele-level abundances and sum the abundance of the two alleles to get an 

alternate estimate of total gene abundance. We show that both methods produce a gene-level 

abundance with nearly perfect correlation (R2 = 0.97, slope = 1, intercept not significantly 

different from 0, Figure 4-10), suggesting minimal information is lost when calculating allele 

level abundances, despite there being less peptides available for this measurement. Where 

measurements do show large differences, this is often due to only a single peptide being 

available for one of the calculations, which increases variance (Figure 4-10, blue dots). 

To provide further evidence for HLAProphet's ability to produce reliable allele level 

expression values, we examined allelic HLA protein abundances in tumor samples with loss of 

heterozygosity (LOH) events indicated by paired DNA sequencing data (Figure 4-11). We see 

that for the class 1 HLA proteins, in tumors with LOH the lost allele has significantly lower 

expression than the retained allele, with an effect size that increases as tumor purity increases. 

In tumors with no observed LOH, there is no clear difference between the two alleles. For the 
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class 2 HLA proteins, which are not expected to be expressed in most tumor cells, we see no 

effect of LOH. 

 

 

Figure 4-10: Correlation between allele-level and gene-level HLA protein abundances 

Correlation between gene-level abundances calculated two ways. First, gene abundances are calculated directly as 

described in the methods. Second, gene abundances are calculated by summing allele-level abundances for all 

heterozygous HLA types. Blue dots show measurements based on a single tryptic peptide, which can cause high 

variance. 

Figure 4-11: Allele specific loss of protein expression in cases of LOH 

HLA protein abundance in tumors as a fraction of normal tissue abundance. The "B" allele is the allele 
that is lost following an LOH event, while the "A" allele is the retained allele. Allele labels are randomly 

assigned for cases with no observed LOH events. Significant differences between regression coefficients 
were tested using the Chow test. 
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 To provide an initial look at HLA protein expression across multiple cancer types, we 

additionally applied HLAProphet to the CCRCC, HNSCC, LUAD, PDAC, and UCEC CPTAC 

cohorts. We show that in almost all cases HLAProphet's HLA quantification shows higher 

correlation with known antigen processing machinery (APM) proteins that should be under co-

regulation (Figure 4-12), suggesting that HLAProphet is improving HLA quantification across 

all cancer types. To provide a picture of allelic imbalance across cancers we identified cases 

where the difference in the tumor vs normal log2 expression fold change (Δlog2FC) between two 

alleles of an HLA gene was more than 3 standard deviations away from the mean Δlog2FC 

across all samples (Figure 4-13). While overall HLA expression changes are confounded by 

changes in tumor purity and infiltrating immune cells, we expect allelic imbalance to be a tumor-

cell specific phenomenon. We show that this is most evident in the HNSC (Class I: 6%, Class II: 

8%) and PDAC (Class I: 6%, Class II: 18%) cohorts. However, we note that while tumor purity 

does not confound allelic imbalance, it does mute the signal as the observed Δlog2FC will be 

lower in a low purity sample, giving this thresholding approach relatively low sensitivity. 

Additionally, no distinction is made here between allelic imbalance as a result of allelic gains vs 

losses. More nuanced analyses will be required moving forward to provide a complete picture of 

HLA allelic imbalance at the protein level. 

4.3 Discussion 

In summary, we present here HLAProphet, a tool that enables personalized allele level 

quantification of the HLA proteins from TMT-MS/MS data. We show that HLAProphet improves 

upon the existing state-of-the-art standard reference based approaches by significantly 

increasing peptide identifications, and by providing protein expression values that show higher 

concordance with RNA expression and known genomic events. Moving forward, HLAProphet  
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Figure 4-12: Correlation of HLA expression to accessory proteins 

R2 values for correlation between class I and class II HLA proteins as quantified by either FragPipe or HLAProphet, 

compared to APM proteins which should be under co-regulation. Data are shown for 6 CPTAC cohorts (N = 100-

212 per cohort) Class I APM proteins: CANX, CALR, TAP1, TAP2, TAPBP, PDIA3. Class II APM protein: CD74 

 

 
Figure 4-13: Pan-cancer HLA allelic imbalance 

Allelic imbalance across 6 CPTAC cohorts. Samples are considered imbalanced if the Δlog2FC are more than 3 

standard deviations from the mean Δlog2FC across all genes and all samples. (N = 100-212 per cohort). (A) log2FC 

values for the A allele (Allele 1) and the B allele (Allele 2) for all proteins across all samples. (B) Fraction of cases 

from each cohort showing at least one allele with an imbalance. 
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will enable the study of HLA loss at the protein level in tumors, providing greater insights into 

how cancers evade T-cell surveillance. 

In addition to the use cases presented here, HLAProphet could also be used for studies 

of post-translational modifications (PTMs) of the HLAs. The HLA proteins are known 

glycoproteins, with sequential modification of the main PTM being thought to be required for the 

efficient folding, loading, and export of the mature MHC144. HLAProphet’s personalized protein 

database should naturally extend to PTM quantification methods, allowing for insight into 

potential disruptions of this glycosylation. Further, as a generalized algorithm HLAProphet is not 

restricted to cancer studies, and could empower investigations into germline associations 

between specific HLA alleles and infection or autoimmunity. 

4.4 Methods 

4.4.1 Code availability 

HLAProphet code is available at https://github.com/mctp/HLAProphet 

4.4.2 Data acquisition 

Molecular data for the CPTAC lung squamous cell carcinoma cohort were generated as 

described in Satpathy et al.140. DNA and RNA sequencing reads can be downloaded from the 

NIH GDC portal at https://portal.gdc.cancer.gov/repository. For proteomics searches, raw mzML 

files were downloaded from the CPTAC Data portal at 

https://proteomic.datacommons.cancer.gov/pdc/study/PDC000234. In total, paired DNA, 

RNA, and proteomics data were available for 108 tumors. From normal adjacent tissue, DNA 

sequencing data were available for all cases, RNA sequencing data were available for 95 

cases, and TMT proteomics data were available for 100 cases.  

4.4.3 Fixed reference proteomics searches 

https://github.com/mctp/HLAProphet
https://portal.gdc.cancer.gov/repository
https://proteomic.datacommons.cancer.gov/pdc/study/PDC000234
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Protein extraction and tryptic digestion, as well as common reference pool construction, 

TMT-11 labeling and LC-MS/MS workflow were described in Satpathy et al140. Briefly, a total of 

108 LSCC tumor samples, 100 paired normal adjacent tissue (NAT) samples, 22 aliquots from a 

common reference pool, and 8 other tumor samples were assigned to 22 TMT 11-plex sets. All 

of the tumors were in the C channels, all of the normals were in the N channels, and CRs were 

in the 11th channel of each plex. 

Raw mass spectrometry files were converted into open mzML format using the msconvert 

utility of the Proteowizard software suite, and analyzed using FragPipe computational platform 

(fragpipe.nesvilab.org) using the TMT11-bridge workflow. MS/MS spectra were searched using 

the database search tool MSFragger v3.7145 against a harmonized Homo sapiens GENCODE34 

protein sequence database appended with an equal number of reverse decoy sequences. Whole 

cell lysate MS/MS spectra were searched using a precursor-ion mass tolerance of 20 ppm, and 

allowing C12/C13 isotope errors −1/0/1/2/3. Mass calibration and parameter optimization were 

enabled. Cysteine carbamidomethylation (+57.0215) and lysine TMT labeling (+229.1629) were 

specified as fixed modifications, and methionine oxidation (+15.9949), N-terminal protein 

acetylation (+42.0106), and TMT labeling of peptide N terminus and serine residues were 

specified as variable modifications. The search was restricted to tryptic peptides, allowing up to 

two missed cleavage sites. Peptide to spectrum matches (PSMs) were further processed using 

Percolator146 to compute the posterior error probability, which was then converted to posterior 

probability of correct identification for each PSM. The resulting files from Percolator were 

converted to pep.xml format, and then processed together to assemble peptides into proteins 

(protein inference) using ProteinProphet147 run via the Philosopher toolkit v4.8.1148 to create a 

combined set of high confidence protein groups. The combined prot.xml file and the individual 

PSM lists for each TMT experiment were further processed using the Philosopher filter command 

as follows. 

http://fragpipe.nesvilab.org/
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Each peptide was assigned either as a unique peptide to a particular protein group or 

assigned as a razor peptide to a single protein group that had the most peptide evidence. The 

protein groups assembled by Percolator were filtered to 1% protein-level False Discovery Rate 

(FDR) using the target-decoy strategy and the best peptide approach (allowing both unique and 

razor peptides). The PSM lists were filtered using a sequential FDR strategy, keeping only those 

PSMs that passed 1% PSM-level FDR filter and mapped to proteins that also passed the global 

1% protein-level FDR filter. In addition, for all PSMs corresponding to a TMT-labeled peptide, 

reporter ion intensities were extracted from the MS/MS scans (using 0.002 Da window) using 

Philosopher and the precursor ion purity scores were calculated using the intensity of the 

sequenced precursor ion and that of other interfering ions observed in MS1 data (within a 0.7 Da 

isolation window). 

4.4.4 Fixed reference based abundance quantification 

The PSM output files were further processed using TMT-Integrator v2.1.5 to generate 

summary reports at the gene level and modification site level. TMT-Integrator143 

(https://github.com/Nesvilab/TMT-Integrator) used as input the PSM tables generated by the 

Philosopher pipeline as described above and created integrated reports with quantification across 

all samples. First, PSMs were filtered to remove all entries that did not pass at least one of the 

quality filters, such as PSMs with (a) no TMT label; (b) precursor-ion purity less than 50%; (c) 

summed reporter ion intensity (across all channels) in the lower 5% percentile of all PSMs in the 

corresponding PSM.tsv file. In the case of redundant PSMs (i.e., multiple PSMs in the same MS 

run sample corresponding to the same peptide ion), only the single PSM with the highest summed 

TMT intensity was retained for subsequent analysis. Both unique and razor peptides were used 

for quantification, while PSMs mapping to common external contaminant proteins (that were 

included in the searched protein sequence database) were excluded. Next, for each PSM the 

intensity in each TMT channel was converted into a log2-based ratio to the reference channel. 

https://github.com/Nesvilab/TMT-Integrator
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The PSMs were grouped to various summarizing levels (i.e., peptide, protein, gene), and 

summarizing group ratios were computed as the median of the corresponding PSM ratios after 

outlier removal. Ratios were then converted back to absolute intensity in each sample by using 

the reference intensity estimated by the median of weighted sum of the MS1 intensities of the top 

3 most intense peptide ions for each plex. 

4.4.5 HLA typing 

HLA haplotypes were inferred from paired WES DNA sequencing data using the Hapster 

software as described in Mumphrey et al73. 

4.4.6 HLAProphet personalized protein reference construction 

Protein sequences for HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRA, and -DRB1 

were downloaded from the IMGT/HLA database (Release 3.51.0, 

https://github.com/ANHIG/IMGTHLA). For each sample, protein sequences for each allele of 

each gene in the predicted HLA type were taken from the IMGT/HLA database and added to a 

common fasta file. For HLA types with different IDs but identical protein products, a single 

sequence is included in the final reference with a harmonized type ID to avoid duplicate protein 

sequences in the final database. A relationship database is provided with a list of all original 

HLA types and their harmonized IDs, so that abundances can be tied back to their original HLA 

type during post-processing. The HLAProphet reference fasta was then combined with 

GENCODE34 (HLA sequences removed) using Philosopher, which adds reverse decoy and 

common contaminant sequences. 

4.4.7 Proteomics searches using personalized HLAProphet databases 

https://github.com/ANHIG/IMGTHLA
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Proteomics searches and PSM filtering were performed as described above, using the 

HLAProphet personalized protein reference in place of the original GENCODE34 protein 

database. 

4.4.8 Personalized protein abundance calculations 

Personalized HLA abundances were calculated from PSM tables using the TMT-

integrator filters and workflow as described above, with the following changes: 1) Peptides were 

only used in the final abundance calculation if they were predicted to be coded for in the 

genome of a sample based on that sample's HLA type. 2) As an additional filter, peptides were 

discarded if they had a poor signal to noise ratio (Supplementary figure 4). This was done by 

calculating a noise level within each plex as the mean MS2 intensity of all samples not predicted 

to code for the peptide, as their true expression should be zero. For all samples, the log2-ratio 

was taken of sample intensity to noise intensity. Peptides were discarded if log2-ratios for 

samples predicted to code for the peptide did not appear to come from a different distribution 

than samples not predicted to code for the peptide based on the Kolmogorov-Smirnov test. 3) 

Razor peptides were not used. 4) Peptide to reference ratios were multiplied by a dilution factor 

(described below) to adjust for ratio inflation in rare peptides. 5) For gene-level abundance 

calculations, CR ratios for peptides with an allele count of 1 were multiplied by the 

experimentally determined allele count adjustment factor of 1.8 (Supplementary figure 6B) to 

produce an abundance value reflecting what their expression would be if they were present in 2 

copies. 

4.4.9 Sample specific peptide to haplotype assignments 

Tryptic peptide predictions for all HLA proteins within the HLAProphet database were 

performed using the cleave function from the python package Pyteomics. Predicted cleavages 

were performed for the trypsin protease, with minimum length 7 and maximum length 50, with 
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up to 1 missed cleavage. For each HLA tryptic peptide, true allele counts within a sample were 

determined by counting the number of times a tryptic peptide was predicted to be coded for in 

the HLA type of each individual sample 

4.4.10 Peptide ratio dilution factor calculation 

Physical differences between peptides often cause large changes in the efficiency with 

which the peptides are measured within a mass spectrometer, and therefore make it difficult to 

directly integrate multiple peptides into a final protein abundance using intensity values directly. 

For this reason, a ratio of peptide MS2 intensity in a sample relative to the MS2 intensity in a 

pooled common reference (CR) is often used to create a value that can be compared between 

peptides. In this case, the CR acts as a physical average of peptide expression across all 

samples in an experiment. For an experiment with N samples, the CR abundance Aref can be 

modeled as the mean abundance across all samples: 

 

For the HLA proteins, however, many tryptic peptides will be coded for in only a subset of the N 

sample genomes. The set of all sample abundances A can therefore be thought of as the union 

of two sets, A+ containing abundances from N+ samples coding for the peptide and A- containing 

abundances from N- samples that do not code for the peptide, with all A- values necessarily 

being zero: 
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However, the pooled CR still physically averages all samples in the experiment, diluting the 

expression of a given peptide by combining it with other samples that cannot express it and 

therefore contribute no information about its expression: 

 

We can adjust for this dilution by multiplying the CR abundance by a dilution factor D that 

corrects the denominator from N to N+. In practice, we do not have a direct measurement of CR 

abundance, but instead apply this dilution factor to the MS2 intensity value for the CR. Due to 

noise within MS/MS measurements, MS2 intensity values will not truly go to zero as N+ shrinks, 

so we add a noise term c to prevent over-correcting intensity values for rare peptides: 

 

 

The optimal value of c is determined by testing all integers from 0 to 10000 to find the value that 

creates a set of adjusted ratios that have the lowest association with cohort-wide peptide allele 

count as measured by linear regression. 

4.4.11 HLA RNA expression quantification 

Personalized genomic HLA reference sequences were produced for all samples using 

paired DNA sequencing data and the Hapster software as described previously149. Genomic 

reference sequences were then spliced in silico to produce personalized transcript reference 

sequences. HLA specific RNA reads were extracted from each sample's BAM file using the 

Hapster command extract_reads. Transcript counts were then generated from HLA specific 
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RNA reads and personalized transcript reference sequences using the Kallisto25 command 

quant. 

4.4.12 HLA loss of heterozygosity 

Loss of heterozygosity for HLA genes was identified using the tool MHCnvex150 . Briefly, 

MHCnvex incorporates personalized germline references for the MHC locus to find an accurate 

coverage, log2-ratio, and B-allele frequency for the region. It then integrates coverage values 

from the MHC region with coverage of MHC-flanking regions to perform genomic-segmentation. 

Finally, MHCnvex incorporates integrated segmentation results into its likelihood based model 

to find the most likely copy number of each HLA gene. 

4.4.13 Statistics 

For the comparison of the predicted fraction of tryptic peptides identified, pairwise t-tests 

with Bonferroni corrections were performed. For correlations between peptide ratios vs cohort-

wide allele counts, protein expression vs RNA expression, and tumor abundance vs tumor 

purity, linear regression was performed. To compare the regression line coefficients between A 

and B alleles for tumor abundance vs tumor purity, the Chow test was performed. 

 

https://paperpile.com/c/Vz44xJ/fVhS
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Chapter 5 Personalized Reconstruction of the MHC Locus With MHConstruct  

5.1 Introduction 

In our previous chapters we focused on analysis of the class I and class II HLA genes 

using Hapster and HLAProphet. However, given that these tools focus on only the HLA gene 

regions themselves, neither approach can identify disruption of intergenic regulatory regions that 

could potentially affect HLA expression. It has been shown that the class I HLA genes are under 

direct control of the NLRC5 complex which associates with an upstream SXY motif151. 

Similarly, the class II HLA genes are under strict control of the CIITA transcription factor, 

which again associates with an upstream SXY motif152. Further, each gene has also been shown 

to be controlled by more distant interferon signaling response elements (ISREs)153, enhancers 

under the control of NF-kb154, and potentially other as-yet undiscovered regulators. Given that 

disruption of these regulatory elements would likely impact HLA expression, it will be critical to 

investigate these intergenic regions when determining the molecular mechanisms underpinning 

HLA loss across various cancers. 

To investigate HLA regulatory elements we need to focus on a region of chromosome 6 

known as the MHC locus which contains all HLA genes, as well as many other genes related to 

antigen processing155. The general explanation for the extreme polymorphism of the HLA genes 

is that the proteins need to maintain a diverse peptide presentation repertoire and are under 

evolutionary pressure for balancing selection156. It is therefore reasonable to think that while the 

HLA genes themselves have extreme diversity, the intergenic regions in the MHC locus may not 

be as variable and would be amenable to traditional standard reference based methods. 
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Unfortunately, this is not the case, and it has been shown that while variation is still highest in 

the HLA coding regions, intergenic regions in the MHC locus are still highly polymorphic, with 

extreme levels of both SNPs and structural variants157. To address this issue of intergenic 

polymorphism we have developed MHConstruct, a genome-graph based algorithm that allows 

for the reconstruction of a personalized, linear, diploid pair of reference sequences covering the 

MHC locus that improves alignments and enables downstream analyses. 

5.2 Results 

5.2.1 The MHConstruct algorithm 

MHConstruct begins with the construction of a variation graph. To easily create and 

manipulate variation graphs, MHConstruct relies on the vg toolkit158. For this example we will 

construct the graph from a simple multiple sequence alignment (MSA) of 5 short sequences 

containing 9 variants using the command vg construct (Figure 5-1A). While MSAs are the most 

effective way to construct a variation graph, optimal MSAs are difficult to construct from very 

long sequences with large amounts of variation, and as such larger variation graphs are generally 

constructed using heuristics to allow for more complicated alignments159. 
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In this graph, we can see that both single nucleotide and indel variants are represented in 

a single data structure. Similar to how we would annotate variants in a linear reference, we can 

construct a panel of variants observed in the graph. Here we can arbitrarily choose sequence A to 

be the reference sequence, and other sequences will have genotype calls relative to that sequence 

(Figure 5-1B). 

 With a reference panel, we can now take in sequencing data from a new sample and 

genotype it relative to the panel. For this example we construct a synthetic diploid genome based 

on sequences from the original MSA (Figure 5-2A). This synthetic individual has one 

chromosome containing sequence from references B and C, and one chromosome containing 

sequences from references D and E. Short 20 bp reads were simulated from this synthetic 

genotype and were aligned to the variation graph using the command vg map (Figure 5-2B). 

Each variant position in the graph was then genotyped using the command vg call, producing a 

diploid set of genotype calls for every position in the genotype panel (Figure 5-2C). 

 Once every variant position has been genotyped, we can identify the original haplotypes 

by phasing the variants. Here, the original panel was used to phase our variants into two 

Figure 5-1: Graph representation of genomic variation 

(A) Graph representation of 5 genomic sequences containing 9 variant positions. Represented are single nucleotide 

polymorphisms, insertions, and deletions. (B) Genotype calls for each reference path through the graph. Genotypes 

are coded as 0 if they match the call for path ref_A, and 1 if they represent the alternate allele. 
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haplotypes with the Eagle160 phasing tool (Figure 5-2D). With phased variants, the original 

underlying reference sequences can then be reconstructed by representing the reference genotype 

panel as a hidden Markov model. In this model, the reference haplotypes represent the hidden 

states, and the variants in the panel represent a series of emissions, with each emission being 

either 0 or 1 depending on the genotype. The probability of changing states between each 

emission represents the probability of a chromosomal crossover event, and the emission 

probabilities reflect the probability of observing an alternate base at a position due to novel 

germline variation. Each of the two phased haplotype calls represents a set of observed emissions 

from the Markov model, and the Viterbi algorithm161,162 can be used to reconstruct the most 

likely set of states leading to those emissions (Figure 5-2E). The original haplotype sequences 

can then be constructed by extracting the path sequences from the reference graph that 

correspond to the haplotype states reported by the Viterbi algorithm. 
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5.2.2 MHConstruct produces reference sequences with low germline variation 

To reconstruct the full MHC locus for an individual, MHConstruct requires a high quality 

genome graph to operate on. I use here the first draft reference pangenome provided by the 

Human Pangenome Reference Consortium (HPRC)159. This draft pangenome consists of phased 

diploid genome assemblies from 47 individuals representing diverse ancestries, and therefore 

captures a large amount of variation at the MHC locus. The HPRC makes available three 

separate versions of the draft genome, each constructed using one of either the Minigraph163, 

Minigraph-Cactus164, or PanGenome Graph Builder165 construction algorithms. We use here the 

Figure 5-2: Reconstruction of a synthetic diploid haplotype 

(A) Synthetic diploid haplotype constructed from partial sequences from reference paths used to construct the 

variation graph. Haplotype 1 (H1) is constructed from sequences originating from ref_E (yellow) and ref_D (blue). 

Haplotype 2 (H2) is constructed from sequences originating from ref_C (light green) and ref_B (dark green). (B) 

Coverage map of reads simulated from H1 and H2 after alignment to the variation graph. Coverage for each node is 

shown below the graph in light blue. Nodes show full coverage in positions where the synthetic haplotype is 

homozygous, half coverage in positions where the synthetic haplotype is heterozygous, and no coverage for nodes 

containing variation not found in the synthetic haplotype. (C) Genotypes for each position called from the simulated 

read alignments. (D) Phased haplotypes H1 and H2 output by the Eagle phasing algorithm. (E) Genotype reference 

panel for the variation graph, with Viterbi paths shown as colored lines. Red lines show the path for haplotype H1, 

blue lines show the path for haplotype H2. Note that the two Viterbi paths correspond to the original states in the 

synthetic haplotypes in A. 
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HPRC reference graph constructed by Minigraph-Cactus as its publicly released representation 

in GFA format natively encodes haplotype paths through the graph. 

As a demonstration of the MHConstruct algorithm, it was next applied to a random 40x 

WGS sample from the CPTAC melanoma cohort, and results were compared to standard 

alignment pipelines. Reads from the MHC locus were first aligned to the standard reference 

GRCh38 region chr6:28510120-33532223, which covers the entire region of chromosome 6p21 

from GPX5 to ZBTB9157. To evaluate the quality of the GRCh38 MHC locus sequence as a 

reference for this random individual, germline variants were called using this alignment. If 

alignment was performed using a perfect reference sequence, we would expect no apparent 

germline variants to be called, as the reference sequence would exactly match the sequencing 

reads being aligned. A poor reference sequence would have a large number of differences 

relative to the sequencing reads, resulting in many germline variant calls. For this individual, 

when partitioning the MHC locus into 10kb buckets, 74% of buckets have a rate of variation 

higher than the genome wide average of 1 variant per kb84, 25% of buckets have a rate higher 

than 5 variants per kb, and many regions have a rate higher than 20 variants per kb relative to the 

GRCh38 reference sequence (Figure 5-3). Of note, in regions of extremely high variance this 

may even be an underestimate, as failures to align will result in missed germline variant calls. As 

expected, we see that the regions with many germline variants surround the HLA genes (Figure 

5-3, vertical grey lines), suggesting that both the HLA coding regions and their neighboring 

intergenic regions have a high amount of germline polymorphism. 

Next, MHConstruct was used to reconstruct a personalized diploid representation of the 

MHC locus for this same individual, using the same set of MHC locus reads. The reads were 

then aligned to the MHConstruct reference sequences, and germline variants were again called. 
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In this alignment, only 3.5% of 10kb buckets have a rate of germline variation higher than 1 

variant per kb, and less than 0.1% of buckets are above 5 variants per kb. 99.7% of reads 

successfully aligned, showing that the drop in germline variant calls was not due to reduced 

coverage or poor alignments, but rather due to a true increase in the concordance between the 

reference sequences and the sequencing reads. 

 

Figure 5-3: Comparison of linear vs MHConstruct references 

Histogram of germline SNPs across the MHC locus observed in a random normal tissue sample from the CPTAC 

melanoma cohort. Germline SNPs were called relative to the representative sequence for the MHC locus found in 

the standard reference GRCh38 region chr6:28510120-33532223 (top), or relative to the two reference sequences 

created by MHConstruct (middle, bottom). Horizontal red line represents the genome-wide average rate of variation 

of 1 variant per kilobase. Vertical light grey bars represent coding regions corresponding to the class I and class II 

HLA genes that were investigated in previous chapters. 

5.3 Discussion 

We show here that MHConstruct can be used to create large, personalized, diploid 

reconstructions of the MHC locus. In this case study, the reconstructed reference sequences 
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allow for improved alignments which enable downstream analyses of intergenic regulatory 

regions that may control HLA or other antigen processing related genes. In the future we will 

provide additional validation studies to demonstrate the efficacy of MHConstruct in reducing 

germline SNPs across diverse HLA types. Additionally, these validation studies will investigate 

the ability of MHConstruct to properly identify large structural variants, such as those at the 

C3/C4 locus and the DRB3/4/5 locus.  

We also aim to perform thorough benchmarking of MHConstruct’s ability to improve the 

identification of somatic variation in tumors relative to normal samples. While improved 

references for the most polymorphic sequences, such as the coding regions of the HLA genes, 

nearly doubles the number of somatic variants called in tumors (Chapter 2), it remains to be seen 

how much improvement MHConstruct will provide in the surrounding intergenic regions. The 

application of MHConstruct to tumors will be of particular clinical interest when studying 

cancers such as prostate adenocarcinomas which are frequently completely HLA negative166, but 

show no clear genomic alterations to the coding regions of the HLA genes (Chapter 3). Further 

studies using personalized MHConstruct reference sequences may be able to identify the specific 

regulatory mechanisms leading to suppression of HLA expression in these cases, providing a 

better understanding of primary and acquired resistance to T-cell based immunotherapies. 

We also note that MHConstruct is not restricted to the MHC locus. With the release of 

the HPRC reference pangenome, any region of interest could be reconstructed for personalized 

analysis. In addition to the MHC locus, other polymorphic regions such as those surrounding the 

KIR167 genes could also be constructed for use with downstream analyses. Further, even in 

relatively homogenous regions, it has been shown that graph based representations can improve 
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linear alignments159. This may ultimately allow for reduced bias towards standard reference 

sequence homology in any sequenced based analysis. 

5.4 Methods 

5.4.1 Code and availability 

Custom code is available at https://github.com/MBMumphrey/MHConstruct3  

5.4.2 MHConstruct example workflow 

Full code for the MSA example provided in figures 5-1 and 5-2 is available at 

https://github.com/MBMumphrey/MHConstruct3/tree/main/example  

5.4.3 MHConstruct example graph 

A multiple sequence alignment (MSA) of 5 short sequences with 9 variants was manually 

constructed as a text fasta file. A variation graph representation of the MSA was constructed 

using the command vg construct. The variant panel was constructed from the variation graph 

using the command vg deconstruct. Alignment indexes for the variation graph were constructed 

using the command vg autoindex. 

5.4.4 MHConstruct example synthetic haplotype 

A synthetic haplotype was manually constructed by stitching together sequences from the 

original MSA. For the first synthetic chromosome, sequence from ref_E was taken covering the 

first 3 variant positions, followed by sequence from ref_D covering the last 6 variant positions. 

For the second synthetic chromosome, sequence from ref_C was taken covering the first 5 

variant positions, followed by sequence from ref_B covering the last 4 variant positions. A 

variation graph was constructed from these two synthetic contigs using the command vg 

https://github.com/MBMumphrey/MHConstruct3
https://github.com/MBMumphrey/MHConstruct3/tree/main/example
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construct, and reads of length 20 were simulated from each haplotype using the command vg 

sim. 

5.4.5 MHConstruct example genotyping 

Simulated reads were aligned to the original variation graph using the command vg map. 

Node read coverages were calculated using the command vg pack. Genotypes were called using 

the command vg call. Genotypes were phased using Eagle160 v2.4.1.  

5.4.6 MHConstruct Viterbi algorithm 

Optimal state paths through the genotype reference panel were identified using the 

Viterbi algorithm161,162. Briefly, the genotype reference panel was modeled as a hidden Markov 

model with haplotypes as hidden states, genotypes as state emissions, and variant sets as a 

Markov chain. Transition probabilities were calculated as the probability of a crossover event 

occurring between two variants, with an estimated rate of 1% chance of crossover per 1Mb. The 

probability of emitting a genotype different from the observed state emission was estimated to be 

1/3000. This estimate was derived from the genome wide SNP rate of 1 variant per kilobase, or 1 

in 1000. Then, given that each SNP in our panel has an exact alternate base observed, the 

probability of hitting that exact alternate base is 1 in 3, which results in a combined probability 

of 1 in 3000. 

5.4.7 MHConstruct reference sequence construction 

Reference sequences were reconstructed using the optimal state paths through the 

genotype reference panel as determined by the Viterbi algorithm. Starting with the first state in 

the path, sequence is taken from all nodes in the variation graph along the path for the 

corresponding state. Whenever a state switch occurs, we continue through the variation graph 
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taking sequences from nodes corresponding to the new state. Sequences from each node are 

appended to each other to create a single linear reference string. 

5.4.8 Reference pangenome graph 

MHC locus reconstruction was performed based on the first draft human pangenome 

reference graph159. Reference graph and index files were downloaded from the HPRC repository 

at https://s3-us-west-2.amazonaws.com/human-

pangenomics/index.html?prefix=pangenomes/freeze/freeze1/minigraph-cactus/. 

5.4.9 Germline variant calling 

Reference sequence quality was determined by identifying the number of germline 

variants called relative to either GRCh38 or MHConstruct references for the MHC locus. First a 

random 40x WGS normal tissue sample was selected from the CPTAC melanoma cohort. This 

sample was originally aligned to a version of GRCh38 containing alt contigs for the entire MHC 

locus, as well as alt contigs for many different HLA alleles. MHC locus specific reads were 

extracted by taking all reads from GRCh38 region GRCh38 region chr6:28510120-33532223, 

chr6 alt contigs (GL000250v2, GL000251v2, GL000252v2, GL000253v2, GL000255v2, 

GL000256v2), and all alt HLA contigs. An MHC locus specific GRCh38 reference was created 

by taking only GRCh38 region chr6:28510120-33532223 and constructing a new set of reference 

indexes. MHConstruct references were constructed as outlined in the methods. The extracted 

read set was then aligned to both sets of references using BWA-mem74. Germline variants were 

called using GATK’s HaplotypeCaller87. 

 

https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=pangenomes/freeze/freeze1/minigraph-cactus/
https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=pangenomes/freeze/freeze1/minigraph-cactus/
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Chapter 6 Concluding Remarks 

 

Despite its widespread prevalence and potential impact on immunotherapy outcomes, 

loss of HLA expression remains an understudied phenomenon due to the extreme polymorphism 

of the HLA genes. In this thesis I presented three new computational techniques that solve this 

problem by departing from the standard-reference paradigm of molecular sequencing analysis in 

favor of dynamic reference selection, allowing for a personalized analysis of each individual’s 

HLA genes. 

In chapter 2 I first presented Hapster, a genomics tool that takes as input DNA 

sequencing data and produces as output personalized genomic reference sequences, alignments, 

and mutation calls. In chapter 3 I showed the utility of Hapster in uncovering new biology by 

applying it to 12,000 tumors sequenced by the TCGA and MI-ONCOSEQ projects. Broadly, I 

show that pan-cancer positive selection for functional mutations in the HLA genes is stronger 

than previously known, making the HLA genes among the most commonly mutated tumor 

suppressor genes. With a more fine-grained analysis, I showed that in squamous cell carcinomas 

and lymphomas there is significant evidence for positive selection of stop gain mutations in the 

class I HLA genes, potentially as a result of increased off target APOBEC and AID activity. I 

also showed that in colorectal and stomach adenocarcinomas with microsatellite instability there 

is significant evidence for positive selection of truncating frameshifts that occur specifically 

within coding region microsatellites in the class I HLA genes. Finally, I showed that missense 
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mutations are enriched at the HLA:B2M interface and within the peptide binding pocket, 

supporting the idea that these are also loss of function variants. 

 Hapster’s use also extends far beyond identification of somatic mutations in the HLA 

genes. As shown by the tool MHCnvex150, the personalized alignments produced by Hapster can 

be used to more accurately identify copy number variation in the MHC locus. The ability to 

identify both small somatic variants and complete copy loss of individual HLA alleles will be 

required when attempting to provide a complete picture of somatic loss of the HLAs. Hapster is 

also not restricted to DNA sequencing analyses, but can additionally provide personalized 

alignments of paired RNA-sequencing data. Due to the diploid nature of Hapster’s constructed 

reference sequences, this not only improves expression quantifications by personalizing the 

analysis, but also enables allele-specific expression quantification of each individual HLA allele. 

The ability to analyze HLA RNA expression data will be key in determining the molecular 

mechanisms leading to transcriptional loss in cancers such as prostate adenocarcinoma where 

tumors are often HLA negative but show no apparent mutation of the HLA genes themselves. 

Finally, the generalized Hapster algorithm is not restricted to the HLA genes, but could in 

principle be expanded to any set of polymorphic genes, enabling analysis of families such as the 

KIRs167. 

 In chapter 4 I presented HLAProphet, a tool that allows for the personalized 

quantification of HLA proteins from multiplexed TMT MS/MS data. I showed that 

HLAProphet’s personalized protein databases improve HLA tryptic peptide identifications by 

nearly 3-fold relative to searches performed using the standard GENCODE34 protein database. I 

also demonstrated how HLAProphet utilizes HLA haplotype information to adjust for variable 

peptide allele counts both within samples and within the pooled reference channel, preventing 
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both over- and under-estimation of protein abundance. Finally, I showed that HLAProphet is 

capable of reporting both total protein expression for each gene, as well as allele-specific protein 

expression. In all cases, HLAProphet’s expression values showed higher concordance to paired 

RNA-sequencing data than standard approaches, suggesting that overall quantification was 

improved. Additionally, allele-specific expression loss was confirmed in cases with known 

genomic LOH events, supporting HLAProphet’s ability to report allele-specific protein 

expression values. 

 Similar to Hapster, HLAProphet’s abilities extend beyond what is reported here. Of 

particular interest is its potential use in identifying alterations in post-translational modifications 

(PTMs) of the HLA proteins. The HLA proteins are glycoproteins, and the passage of an HLA 

protein through the folding, loading, and export process occurs alongside a complex series of 

modifications to a conserved PTM144. HLAProphet’s personalized databases should naturally 

extend to the quantification of HLA PTMs, and allow for identification of potential PTM 

disruptions that could help explain cases with reduced cell surface HLA expression in the 

absence of apparent alterations at the DNA or RNA level. 

 In chapter 5 I presented MHConstruct, a tool that allows for a personalized diploid 

reconstruction of the entire MHC locus. While Hapster and HLAProphet enable personalized 

analyses of the HLA genes themselves, MHConstruct enables personalized analysis of the 

surrounding intergenic regions. This will enable more accurate investigations into the disruption 

of HLA-specific promoters and enhancers, as well as improved identification of QTLs. The 

version of MHConstruct demonstrated here utilizes the first draft of the human pangenome 

reference release by the HPRC and early research versions of the VG toolkit. However, as graph 
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based methods improve over the coming years, the human pangenome reference will begin to 

capture more known human variation, enabling more accurate reconstructions of the MHC locus. 

 In the future, we plan to apply the methods presented here to provide a complete picture 

of HLA loss pan-cancer. For any given tumor that evolves to disrupt the HLAs, it should be 

possible via Hapster, HLAProphet, and MHConstruct to identify if this loss is the result of 

somatic loss of function, transcriptional repression, or post-translational loss of protein 

expression. With the public availability of large cohorts such as CPTAC that provide paired 

DNA, RNA, and proteomics data for their samples, we aim to identify the true rates of HLA loss 

across cancer types, as well as characterize the relative frequencies of complete vs allelic loss.  

 We also aim to apply the tools presented here to better characterize tumor responses to 

immunotherapy using sequencing data from large ICI cohorts. Within these samples we will 

identify those cases that were HLA negative before treatment to determine if this has significant 

negative impacts on patient outcomes, as has been previously proposed. Further, we aim to 

identify those tumors that were HLA positive before ICI, but lose HLA expression after 

treatment. These cases will help to determine if HLA loss is a common mechanism of acquired 

resistance to immunotherapy. Finally, the specific mechanisms identified for any observed HLA 

loss will provide insights into how often this acquired resistance is reversible, and can potentially 

be treated with combination therapies that recover lost expression. 

 Finally, we aim to more robustly validate the methods presented here so that they may 

make their way to the clinic. At the individual patient level, identification of HLA loss is vital 

when making decisions both for potential treatment and enrollment in clinical trials. In cases 

with irreversible loss of HLA function, it may save patients valuable time by recognizing that 

they may not be good candidates for T-cell based immunotherapies, indicating other potential 
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treatments instead. For companies enrolling patients in new immunotherapy clinical trials, it will 

also be vital to identify patients who are HLA negative and may therefore be poor responders. 

This improvement in patient selection could both save research money, and make sure that valid 

immunotherapies don’t fail at the trial stage.  
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