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ABSTRACT

Observations of gravitational waves have inaugurated the field of multi-messenger

astrophysics that promises to have a significant impact in cosmology. Identifying the

electromagnetic counterparts to gravitational wave events is vital to efficiently using

them as cosmological probes. The Dark Energy Survey Gravitational Wave Search

and Discovery team has established a program that listens for new event alerts from

the gravitational wave observatories LIGO and Virgo, creates observational plans,

and quickly produces a list of candidate counterparts from optical images taken with

the Dark Energy Camera. In this thesis, I describe the details of the program,

present the results of two events that were followed up during the LIGO/Virgo third

observing campaign which took place from April 2019 to March 2020, and describe

the improved observing strategy developed for the fourth observing campaign.
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CHAPTER I

Introduction

Over the last 10-15 years, growing tension between measurements of the Hubble

constant, the parameter that tells us how quickly the universe is expanding, has

driven many scientists to push their understanding of the cosmos beyond the ΛCDM

paradigm. In ΛCDM, the accelerated expansion of the universe is assumed to be

driven by the simplest form of dark energy, the cosmological constant (Λ), without

any strong physical basis, and dark matter (DM) is assumed to be “cold” (CDM),

interacting with regular matter only via gravity. The Hubble constant tension poses

a challenge to ΛCDM and may represent the first new observable window into the

physics of dark energy. For that reason, novel precision measurements of this pa-

rameter have been sought to further advance in this area (Abdalla et al., 2022).

On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory

(LIGO, Aasi et al. 2015) Scientific Collaboration and the Virgo (Caron et al., 1999)

Collaboration, jointly referred to as the LIGO/Virgo Collaboration (LVC),1 made the

1In 2021, the Japanese collaboration KAGRA (Akutsu et al., 2021) joined the global network of
gravitational wave antennas, changing the acronym to LVK (LIGO-Virgo-KAGRA Collaboration).
We will use LVC throughout this thesis as the data we use here was taken prior to 2021.
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first detection of a gravitational wave source (Abbott et al., 2016), the binary black

hole merger GW1509142. This detection opened the door to a new measurement of

the Hubble constant through multi-messenger cosmology.

Multi-messenger cosmology uses observations from gravitational wave (GW) sources,

the latest ‘messenger’ to become available to the community, and their associated

electromagnetic (EM) counterparts in order to make new measurements of cosmolog-

ical parameters such as the Hubble constant. GW-EM multi-messenger sources offer

measurements that are completely independent of the cosmic distance ladder used

for example in Type Ia Supernova measurements and, with about 50 such sources,

it has the potential to reach competitive (i.e. percent level) precision within the

next decade (Chen et al., 2018). During the first two LVC observing runs, 11 high-

significance GW events were detected (Abbott et al., 2019). However, only one event,

the binary neutron star merger GW170817 (Abbott et al., 2017a), resulted in the

detection of an EM counterpart (Soares-Santos et al., 2017; Abbott et al., 2017b;

Coulter et al., 2017; Cowperthwaite et al., 2017; Evans et al., 2017; Andreoni et al.,

2017; Hu et al., 2017; Utsumi et al., 2017; Valenti et al., 2017; Shappee et al., 2017;

McCully et al., 2017; Kasliwal et al., 2017). From this single event, a new measure-

ment of the Hubble constant was made, resulting in H0 = 70.06+12.0
−8.0 km s−1 Mpc−1

(maximum a posteriori and 68% credible interval) (Abbott et al., 2017), proving how

powerful this kind of multi-messenger cosmology can be and driving new excitement

for the future of multi-messenger cosmology.

2The convention in this field is to name the events using the GW prefix followed by the date
of its observation and an alphabetic suffix if there are multiple events on the same day. The LVC
initially labels its candidates with the prefix ‘S’ (for ‘super candidate event’). They update the
prefix to GW afterwards, if the candidate meets their candidate selection criteria.
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In the Fall of 2017, I joined the Dark Energy Survey (DES, Dark Energy Survey

Collaboration et al. 2016) and its GW search and discovery team (DESGW) as they

were gearing up for the LVC’s third observing run (O3) which took place from April

2019 to March 2020. While the first detection of an electromagnetic counterpart had

already been made, there was no guarantee the next observation would be as ‘easy’.

In fact, despite impressive improvements to the LVC instruments, sky localizations

of these events were still expected to be on the order of hundreds to thousands of

square degrees, making coverage of the entire predicted sky area to sufficient depth in

a single night challenging. Additionally, remaining unknowns regarding the merger

rate of binary systems containing neutron stars and characteristics of the resulting

light curves add an extra layer of difficulty when trying to distinguish them from

other transients. Overcoming those challenges and maximizing the probability of a

new discovery akin to GW170817 became the focus of my doctoral research.

In this thesis, after introducing background information relevant to this work

(Sections 1.1–1.3), I detail the search and discovery program methods (Chapter II)

followed by results of two searches performed in O3. Those searches include a first-of-

its-kind analysis that established the framework for observational limits on kilonova

light curve physical parameters (Chapter III) and an analysis that applies that frame-

work to GW190814, the coalescence of a 23 solar mass black hole with a 2.6 solar

mass compact object (Chapter IV). I then describe the improved search strategy that

we developed for the fourth observing run (O4, which started in May 2023) in light

of all of the lessons learned during O3 (Chapter V). Finally, I briefly summarize and

discuss prospects for new multi-messenger discoveries (Chapter VI).
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1.1 The Hubble Constant and Gravitational Waves

The Hubble constant, H0, is a fundamental parameter in cosmology that quanti-

fies the rate at which the universe is currently expanding. An H0 measurement can

be determined from a cosmological model using measurements from the early uni-

verse, or from more direct local universe probes. Determining the Hubble constant

accurately is crucial for understanding the nature of dark energy and the expansion

history of the universe as the value of H0 could inform models of dark energy in

such a way that could explain the universe’s early expansion and potentially hint at

beyond–ΛCDM physics. To study this, we begin by investigating the Hubble law,

which can be simplified to H0 = v/d (ignoring peculiar velocities for the moment),

where v is the recessional velocity, and d is the distance. While v can be obtained

given an object’s redshift, the luminosity distance often presents more of a challenge.

While thousands of estimates of H0 have been made since 1980, one-third of those

measurements have been made in the last five years (Riess et al., 2022). In particular,

there are two estimates of H0 that, in recent years, have been made with precision

on the order of a single percent. The first such estimate uses the Cosmic Microwave

Background (CMB). In this case, we can think of an H0 measurement being derived

from calculating the sound horizon size (rs) using the baryon and matter density.

Then, to determine the angular diameter distance, DA = rs/θs, one infers θs from

the spacing between the acoustic peaks. Finally, using DA and assuming the ΛCDM

model, the H0 measurement can be made (Hu and Wang , 2023). In practice, this is

typically done by use of the spatial spectrum of the CMB where H0 is then derived

from a global analysis.

4



In 2014, the Planck Collaboration made an H0 measurement using this method,

yielding H0 = 67.2 ± 1.2 (Planck Collaboration et al., 2014). Just four years later,

the Planck Collaboration has improved on their precision dramatically, resulting in

H0 = 67.4±0.5 kms−1Mpc−1 (Planck Collaboration et al., 2020). Other experiments

that utilize the CMB include the Atacama Cosmology Telescope (H0 = 67.6 ± 1.1

kms−1Mpc−1) (ACT, Aiola et al. (2020)) and the South Pole Telescope (H0 = 68.8

± 1.5 kms−1Mpc−1) (SPTPol, Dutcher et al. (2021)); all with results consistent with

Planck.

When examining the late universe, anH0 measurement involves building a distance-

redshift relation and using a local ‘distance ladder’ to calibrate the different types

of distance indicators. In particular, stars such as Type Ia supernovae (SN) and

Cepheid variables are used for this since they are considered to be ‘standard candles’

(Ia SNe due to their consistent peak luminosity (Leavitt and Pickering , 1912) and

Cepheids due to their tight period-luminosity relation (Riess et al., 2019; Eddington,

1917)). Cepheids within SN Ia hosts are the basis of the ‘cosmic distance ladder’, or

the successive set of calibrations from various objects with known properties. The

Supernova and H0 for the Equation of State of Dark Energy Collaboration (SH0ES)

used these probes to achieve their first measurement of H0 = 74.2±3.6 km s−1 Mpc−1

in 2009 (Riess et al., 2009). Over ten years later, SH0ES has updated this measure-

ment to H0 = 73.04± 1.04 km s−1 Mpc−1 (Riess et al., 2022). Throughout the years

it took to achieve this milestone, other methods of measuring a local universe H0

were made with varying results. However, it is now clear that there is an inconsis-

tency between CMB-based measurements and all other measurements that rely on

5



stars and galaxies. This discrepancy between early-universe and late-universe mea-

surements may be due to a significant issue with systematics (such as uncertainties

or errors in calibrations, selection effects, or host galaxy relations to name a few

(Scolnic et al., 2014)). It may also be the first indication that ΛCDM (which is

the basis of assumption for the CMB-based measurements) is failing to provide an

adequate description of our universe.

Gravitational waves provide a new local universe measurement that bypasses the

systematic errors that come with the cosmic distance ladder. Gravitational waves

are ripples in space-time caused by the coalescence of some of the densest objects in

our universe: binary black hole (BBH), binary neutron star (BNS), and black hole

neutron star (BHNS) mergers. The idea of gravitational waves was first introduced

by Oliver Heaviside in 1893 (Heaviside, 1893), then further established by Albert

Einstein in 1916 as a consequence of general relativity (Einstein, 1916). Einstein

derived the linearized field equations for weak gravitational fields and demonstrated

that they possess wave-like solutions, which we now refer to as gravitational waves.

Importantly, these ripples embed vital information about the luminosity distance to

its source, its orientations, its position on the sky, and information about the source’s

masses and spins.

To understand how distance information is embedded in gravitational wave sig-

nals, we can examine the strongest harmonic of the waveform’s two polarizations:

h+ =
2M

5/3
z [πf(t)]2/3

DL

[1 + (L̂ · n̂)2] cos(Φ(t)) (1.1)
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h× =
2M

5/3
z [πf(t)]2/3(L̂ · n̂)

DL

sin(Φ(t)) (1.2)

Here, Mz is the chirp mass defined as Mz = (1 + z)(m1m2)
3/5/(m1 + m2)

1/5, f(t)

is the frequency given by f(t) = (1/2π)dΦ/dt, Φ(t) is the phase, the unit vector n̂

points from the center of the reference frame (in this case the center of the solar

system’s barycenter) to the location of the system on the sky while L̂ points in the

direction of the systems angular momentum (and thus provides the orientation of

the system), and, finally, DL is the luminosity distance (Holz and Hughes (2005)).

The ability to derive the luminosity distance from these waveforms has led them

to be deemed ‘standard sirens’. With the GW standard siren information in hand,

the missing piece for achieving a measurement of H0 is the redshift to the source.

If EM emission can be observed associated with the siren, we can readily measure

its redshift. The GW interferometers are sensitive to stellar mass binary black hole

mergers, binary neutron star mergers, and black hole neutron star mergers. Of these,

BNS mergers provide the most likely sources for EM emission due to the presence of

matter.

1.2 The Electromagnetic Signatures of Gravitational Wave

Events

The first theory proposing EM emission from a BNS merger was proposed by

Eichler et al. in 1989 (Eichler et al., 1989). In their paper, they explored the idea

that the merger of two neutron stars could produce a significant amount of energy

in the form of electromagnetic radiation. This paper suggested that during the

7



merger process, neutron-rich material would be ejected and undergo rapid neutron

capture (r-process) nucleosynthesis, leading to the creation of heavy elements. The

radioactive decay of the newly synthesized elements was then thought to produce a

burst of high-energy gamma rays that could be observable from Earth. This was

Eichler et al.’s theory provided an initial framework for understanding the po-

tential electromagnetic emission associated with binary neutron star mergers. In

particular Schutz (1986) was the first to propose using these sources with gravi-

tational waves in order to measure the Hubble constant. Building on this, many

have put forward various models for emissions including in the form of gamma-ray

bursts (GRBs) and radio/optical afterglow (Metzger and Berger , 2012), and more

prominently, an isotropic emission powered by the radioactive decay of rapid neutron

capture (r-process) elements in the merger ejecta known as a kilonova (KN) (Tanaka

and Hotokezaka, 2013; Barnes and Kasen, 2013). Additionally, many teams have

studied neutron star mergers that result in electromagnetic counterparts over the

decades, e.g. Li and Paczyński (1998); Piran (2004); Metzger et al. (2010). While

initially proposed as EM models for BNS mergers, KN from NSBH mergers are also

possible, as long as some of the neutron star material gets ejected from the merging

system, which was first predicted by Lattimer and Schramm (1974). As no counter-

part has been detected from such a system, the likelihood of these events is largely

unknown.

DESGW assumes a KN source model for mergers involving at least one neutron

star (BNS and NSBH). As neutron stars approach the merging point, tidal tails

grow into the equipotential surface and then mostly flow back into the main remnant.
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Some few percent of matter in the tails are dynamically ejected at speeds ≈ 0.1c. The

ejected material undergoes r-process nucleosynthesis as the few nuclei in the sea of

neutrons grow by neutron absorption. In previous LVC runs, the details of our model

followed the simulation-based analysis of Grossman et al. (2014). Observationally,

we modeled the merger event luminosity, L, and temperature, T , and assumed the

event is an optically thick blackbody of which we observe a photosphere. All the

thermal energy comes from the r-process beta-decay episode and we define an energy

deposition rate per unit mass, ϵ, so that L ≈ mϵ. At early times (t < tpeak) L scales

as L ∝ t2 and at late times (t > tpeak) as L ∝ t−1/3. The time to peak brightness tp is

∼ m−1/2. We assume that the photosphere is a blackbody with T =

(
L

σ(2
√
πvt)

2

)0.25

,

where vt comes from the radius of the photosphere. The flux through any filter is

then:

f = 4.4× 1022
∫

Bλdλ L40T
−4
1000d

−2
100

where Bλ is the Plank distribution, L40 is the luminosity in units of 1040 ergs/sec,

T1000 is the temperature in units of 1000 K, and d100 is the distance in units of 100

Mpc.

We can break up the model into sub-components, each of which has a different

opacity: iron (blue), with (κ ≈ 0.1), and lanthanide3 (red), with (κ ≈ 10), motivated

by the two types of emission. We use the same energetics as described above; one

swaps out the Bλ for a computed SED as one computes the flux through a filter.

There is a range of uncertainties in the peak absolute magnitudes. For a given time

3Lanthanides describe the group of elements with atomic numbers 58-71 and are metals who’s
4f sublevels are filled.

9



Figure 1.1 Illustration of EM emission from BNS mergers (Metzger and Berger , 2012).

we calculate the model’s absolute magnitude, M which has a model uncertainty

dispersion of σM .

We can infer that the dual blue and red components of the light curve combined

with the timescales at which the red and blue components rose/fell, indicate the

presence of two separate emitting regions, with two distinct sources of ejecta, as

suggested by Kasen et al. (2015), among others. Figure 1.1 shows a cartoon of a

potential model for emission.

DESGW has used the Kasen et al. (2017) model for our searches. In this model,

the key parameters of the models are the ejected mass, ejecta velocity, and com-

position of the ejected matter or lanthanide fraction. This model uses two distinct
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Figure 1.2 GW170817 UV, optical and NIR light curves (Cowperthwaite et al., 2017).

mechanisms for mass ejection. The first being the mass ejected at the time of merger,

during which tidal forces disrupt the matter from the surface of the stars and are

propelled into the polar regions by shock heating. The second mechanism involves

the matter remaining just after merger in an accretion disk to be blown away in

winds. The results of this method produce a KN light curve that can be broken

down into ‘blue’ and ‘red’ components. These components of the ejecta represent

the light and heavy r-process, respectively. Figure 1.2 shows that, for the first ever

confirmed EM counterpart to a GW event, GW170817, the observed light curve was

initially dominated by the blue component (for the first ∼ 5 days) and then switched

to red component dominant. Note that we do not assume that the new KN will have

the same light curves as GW170817. We allow the three key parameters, namely

ejected mass, velocity, and lanthanide fraction to vary and use the corresponding
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light curve predictions of the Kasen et al. model.

1.3 The Dark Energy Survey and Gravitational Waves

The Dark Energy Survey (DES) (The Dark Energy Survey Collaboration, 2005)

is a cosmological survey aimed at understanding the nature of dark energy, the

unknown force that is thought to be responsible for the accelerated expansion of the

universe. The instrumental and observational strategy for achieving this is by using

complementary methods such as probing the growth of large-scale structures in the

universe and exploring various astrophysical phenomena such as supernovae, galaxy

clusters, and weak gravitational lensing (Abbott et al., 2018). DES uses data from

a 570-megapixel camera, the Dark Energy Camera (DECam, Flaugher et al., 2015),

which has a 3 deg2 field-of-view, where each image is called a ‘hex’ (due to DECam’s

roughly hexagonal focal plane), and is mounted on the Blanco 4-meter telescope

located at the Cerro Telolo Inter-American Observatory in Chile. It observed a wide-

field survey covering ∼ 5000 deg2 of the southern sky in grizY bands, known as the

DES footprint, as well as 27deg2 deep supernova survey in griz bands. Observations

for the DES nominal survey began in 2013 and finished in 2019. However, the

DESGW project continues to use DECam to this day. DESGW has been granted

DECam time via telescope proposals to the National Optical-Infrared Astronomy

Research Laboratory (NoirLab).

The results from the DES survey highlight new constraints on cosmological pa-

rameters that DES is particularly sensitive to, like the matter density of the universe,

Ωm, and amplitude of density fluctuations, S8. These results show a preference for
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lower S8 as compared to early-Universe CMB measurements of the same parame-

ters (Abbott et al., 2018, 2021). This discrepancy may be another hint, separate but

complementary to the H0 tension, of new physics beyond the ΛCDM model (Abbott

et al., 2022).

While the survey has since completed, DECam remains one of the most power-

ful instruments in the southern hemisphere for wide area optical imaging. To this

day DECam is used by scientists both from DES and otherwise, to make ground-

breaking observations. In addition to DESGW, DES members still take advantage

of DECam’s capabilities to image supernovae and characterize their light curves.

Supernova cosmology is a cornerstone of DES cosmology results and as such, the

team has a robust image processing pipeline. This pipeline was reworked in 2014

when DES launched the DESGW project. During the LVC’s third observing run,

this team was primarily comprised of roughly 10 members of DES.

DESGW uses DECam to perform the most comprehensive searches for electro-

magnetic counterparts to gravitational wave events aiming to use them as standard

sirens for cosmology. In the emerging field of multi-messenger cosmology, current H0

measurements lack the precision to be considered relevant for the early/late-universe

tension. However, this early work is seminal to enabling those precision measure-

ments in the near future.

The mode of operations for following up a GW event differs from that of a typ-

ical survey. Currently, there is no way to know when a gravitational wave event

will occur, and as such telescope time for these events are achieved using Target of

Opportunity (ToO) telescope time. These are open calls for proposals and thus a
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very competitive process. DESGW, as well as other teams, such as the Global Relay

of Observatories Watching Transients Happen (GROWTH; Goldstein et al. 2019;

Andreoni et al. 2019b) collaboration have been granted time on DECam to follow

up GW events. Data from all competing groups are shared with zero proprietary

time with the community. This ensures the timeliness of results and maximizes the

impact of the program overall.

With limited telescope time that interrupts other scientists’ projects, choosing

which events to observe and determining the most efficient image sequence are crucial

and challenging tasks. That challenge is compounded by the fact that, just as the

astronomical community was learning how to best observe these events, the LVC has

also been improving their short-latency event alerts. For example, candidate events

often have their classification and sky localization dramatically changed within hours

of their first notification. The DESGW program must be nimble and flexible to

adequately handle this changing landscape on an event by event basis.
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CHAPTER II

DESGW Pipeline1

2.1 Overview

Figure 2.1 provides an overview of the DESGW program. The reception of a

GCN2 notice from LVC is the starting point of a multi-step DESGW process. First,

we calculate the possible coverage of the event with DECam for the night and discuss

whether to proceed with observations. If the decision is to observe, we then move

to the observation and data preparation phase. The observing team is briefed and

provided with the observing plan. Based on our observing plan, we also make an

initial determination of possible templates (images that will serve as reference later

in the difference imaging processing step) and pre-process them before the beginning

of the night, if there is time. The next phase is data reduction. DESGW aims to

process and analyze a given night’s observations within 24 hours or less so that we

1This chapter is adapted from Herner et al. (2020a) which details the pipeline from runs O1 and
O2, and Herner et al. (2020b) which details updates made for O3.

2The Gamma-ray Coordinates Network (GCN) notices are the channel used by the community
to send and receive notices of transients.
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Figure 2.1 Overview of the DESGW search and discovery program.

can report electromagnetic counterpart candidates to other telescopes for follow-up

(spectroscopic classification and multi-band photometry for light curve construc-

tion). We rapidly provision the required computing resources using a mixture of

resources at Fermilab and other campus and laboratory sites via the Open Science

Grid (OSG; Pordes et al. 2007), relying on its high throughput. As new search im-

ages arrive at Fermilab from CTIO, image processing jobs are sent to all available

resources. The results are copied to a local disk at Fermilab and summary data

recorded in a database for post-processing and candidate selection. Once candidates

are selected, a GCN notice with time of observation, coordinates, filters, magnitude

limit, and potential host galaxy information (if available), is sent out. Community

input is vital for efficient observations. Considering where other teams have searched
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and ruled out often plays a pivotal role in determining the observing strategy for any

following nights.

2.2 Observing Strategy Optimization

Our system listens to the LIGO/Virgo alert stream through a Python code that

uses the GCN VOEvent client to receive and parse the VOEvent, a specific XML

format for describing astronomical transients. The alerts then come through via

text, email, or Slack message displaying basic information about the sky location,

localization area, false alarm rate (FAR), and event type. Using this information,

preparations for initial observation maps are started. The observing scripts are

generated by calculating event counterpart visibility probability maps summed inside

an all-sky DECam hex layout and choosing the highest-probability hexes for the

highest priority observations.

We wish to calculate maps of

p(α, δ) =

∫
p(x|α, δ)p(y|α, δ)p(d|m, t, α, δ)dm . (2.1)

where

– p(x|α, δ) is the LVC spatial localization map probability per pixel (x). LVC

triggers include localization maps (Singer et al., 2016c) in HEALPix format

(Górski et al., 2005). The first of these maps provides the spatial localization

probability per pixel, the second provides distance, the third provides a Gaus-

sian variance estimate on the distance, and the fourth contains a normalization
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plane. We take the first map to be p(x|α, δ). Maps derived from this one have

the same resolution as we choose to read this map.

– p(y|α, δ) is our ability to recognize the detection given source crowding and is

related to a false positive rate. Our model is that the recognition probability

is taken to be p(y|α, δ) = 0.0 at or above 610 stars/deg2 (roughly that of the

Galactic anticenter) and p(y|α, δ) = 1.0 at or below 10 stars/deg2 (roughly that

of the south Galactic pole), linear in density between.

– p(d|m, t, α, δ) is the DECam detection probability of a source of magnitude m

at time t per pixel. This uses the limiting magnitude map, the source model

and the LVC event distance map.

– the time dependence of m enters via the source model.

As described in Section 1.2, our model uses three physical parameters, the ejecta

mass, ejecta velocity, and lanthanide fraction, in combination with the two compo-

nents for distinct emissions. While the kilonova produced by GW170817 was informa-

tive, a single light curve alone is not enough to definitively describe what a typical

emission would look like. To this end, during O3, we included information from

a machine-learning based photometric classification algorithm called KN-Classify.

KN-Classify uses an “individualized training set approach”, in which the training

set is simulated immediately following observations and incorporates the exact see-

ing, sky-brightness, exposure times, optical filters, and time-spacing of exposures

into the simulated photometric data used for training. Using models from the Pho-

tometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC) The
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PLAsTiCC team et al. (2018), KN-Classify simulates time-series photometric ob-

servations of a variety of astrophysical sources as they would appear in DECam

data using the Supernova Analysis software package, SNANA (Kessler et al., 2009,

2019a). The addition of a robust classifier informs the DESGW team about how

various observing conditions may affect observational plans. This classifier provided

the building blocks for the updated observing strategy software tool to calculate

the likelihood of being able to see a KN in DECam images given a particular LVC

candidate, as detailed in Chapter V.

2.3 Target of Opportunity Observations

Once we have calculated maps of p(α, δ) we can construct the observing plan.

Each observation during O3 is of a hex (so named because the DECam focal plane is

roughly hexagonal). An observation may be a single 90s i-band exposure, as in BBH

sources, or a triplet of 90s each in an i, z, z band sequence, as in events containing NS.

The aim is different in each case. We expand on this idea moving forward into O4,

allowing for variable exposure times depending on the sky localization probability.

This is described in more detail in Chapter V.

To construct the plan we create slots of time that contain integer numbers of

hexes with a total duration of around a half hour; each slot has the full map-making

performed. For NS events there are six hexes per slot (three roughly 90s observations

per hex), while for BH and bursts, there are 18 hexes per slot (one 90s observation

per hex). The detection probability maps are then “hexelated”: the probabilities are

summed inside a fixed pattern of camera pointings. For the night, the hex with the
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Figure 2.2 Final observing plan for three time slots. The red hexagons are all sched-
uled observations across all slots, while the yellow hexagons are those performed
within the given time slot. The solid white lines are the 50% and 90% LVC probabil-
ity contours, and the yellow line represents the nominal DES footprint. The example
shown here is for GW170814, a binary black hole merger.

greatest probability is found and assigned to be observed in a time slot. The time

slot is chosen to maximize the observability of the hex in question (and probability of

actual detection of the transient if it happens to be located in those exposures). That

hex is then removed from consideration (removing all probabilities for that hex at

different time slots in the night), and we repeat the procedure with the next-highest

probability hex until all slots are full. We use a mean overhead time of 30s between

hexes to account for the time it takes to move the telescope from one position to

another. Now we have a time series that makes full use of observing probabilities,

aiming to ensure we observe as many high-probability hexes as possible on a given

night, and following an optimal sequence, as shown in Figure 2.2. We convert this

list to a JSON file with the appropriate content to drive DECam and the Blanco

telescope. The same JSON files, modified for a later time, are used during the

subsequent observing nights.

This method for creating an observing plan was successfully used for the first three

LVC observing runs, resulting in one confirmed counterpart. With the improvements
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to the LIGO and Virgo instruments, as well as the expected addition of the Japanese

instrument, KAGRA (Akutsu et al., 2021) later in the season, the expected sky

localization areas during O4 to be much smaller, e.g. on the order of 100 square

degrees or less. This improvement allows for updating the observational planning

method, such that, instead of prioritizing when an area of the sky will be visible, e.g.

breaking the sky map into time slots, we can first prioritize the area of the sky that

is most likely to contain the source. Then using a nearest neighbor approach, we can

observe the remainder of the area. While this method is readily available, due to

problems during the improvements, Virgo has been unable to join at the beginning

of O4. The lack of a third detector resulted in O4 sky localization areas similar to

what was observed during O1 and O2 so far.

2.4 Image Processing

We build on the existing DES image processing pipelines. For image preparation,

we use the DES single-epoch (SE) processing pipeline (Morganson et al., 2018).

We use a modified version of the DES supernova processing pipeline (DiffImg),

described in Kessler et al. (2015), to perform image differencing. This pipeline has a

strong track record of discovering rare classes of transient and rapidly fading objects

such as in Pan et al. (2017) and Pursiainen et al. (2018). We give a description of

both pipelines here, focusing on the modifications made specifically for DESGW and

updates done for the third and fourth observing runs.
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2.4.1 Single-epoch processing

The first stage of image processing each night is the SE pipeline, which consists

of an image correction stage and an object cataloging stage known as FirstCut which

includes astrometric calibrations.

SE begins with a stage to make the raw images science-ready. This stage includes

crosstalk corrections, pixel corrections, and bad pixel masking (Bernstein et al.,

2018). The pixel corrections include bias subtraction, pixel non-linearity correction,

a conversion from DN (digital number) to electrons, a “brighter-fatter” correction,

and finally flat fielding. This stage creates a catalog of the brighter objects in each

image with SExtractor (Bertin, 2011), to be used in the astrometric calibration.

The astrometry stage uses SCAMP (Bertin, 2006) with the aforementioned catalog

of bright objects, generated by SExtractor during image correction, to calculate an

astrometric solution using an initial guess of third-order polynomial World Coordi-

nate System (WCS; Greisen and Calabretta 2002) distortion terms for each of the 62

CCDs in the DECam array to produce a solution to place CCD pixel positions into

a TPV (tangent plan projection) WCS. For the O3 run, the point source catalog was

updated from 2MASS (Skrutskie et al., 2006) to the GAIA-DR2 catalog (Gaia Col-

laboration et al. (2018), Lindegren et al. (2018)) to solve for the focal plan solution.

This allows for both reduction of DES astrometric uncertainties to below 0.03′′ per

coordinate (dominated by DES uncertainties) and for us to calculate an astrometric

solution CCD by CCD rather than over the whole image. Demonstrated in Figure

2.3, a major improvement to the speed of this step involved running the formerly

sequential steps, i.e. waiting for the entire image to finish one step before moving on
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Figure 2.3 Schematic view of the updated single-epoch pipeline. The green arrows
indicate steps that were previously performed on the full image before moving to
the next step and have since been updated to be run in parallel per CCD. Figure
published in Herner et al. (2020b)

to the next, is now a per-CCD calculation that can run in parallel.

The FirstCut processing calculates an astrometric solution with SCAMP, performs

bleed trail masking, fits and subtracts the sky background, divides out the star flat,

masks cosmic rays and satellite trails, measures and models the point spread function

(PSF), performs object detection and measurement using SExtractor, and performs

image quality measurements.

To catalog all objects from single-epoch images we run SExtractor using PSF

modeling and model-fitting photometry. A PSF model is derived for each CCD image

using the PSFEx package (Bertin, 2011). We model PSF variations within each CCD

as a N th degree polynomial expansion in CCD coordinates. For our application, we

adopt a 26× 26 pixel kernel and follow variations to 3rd order.
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In SExtractor (version 2.14.2) we use this PSF model to carry out PSF corrected

model fitting photometry over each image. The code proceeds by fitting a PSF model

and a galaxy model to every source in the image. The two-dimensional modeling uses

a weighted χ2 that captures the goodness of fit between the observed flux distribution

and the model and iterates to minimize the χ2. The resulting model parameters are

stored and “asymptotic” magnitude estimates are extracted by integrating the model

flux.

The advantages of model fitting photometry on single-epoch images that have not

been remapped are manifold. First, pixel to pixel noise correlations are not present in

the data and do not have to be corrected for estimating measurement uncertainties.

Second, unbiased PSF and galaxy model fitting photometry is available across the

image, allowing one to make a more precise correction to aperture magnitudes than

those often used to extract galaxy and stellar photometry.

2.4.2 Image subtraction

To identify GW EM counterpart candidates within search images we use the

aforementioned DiffImg software, originally developed for supernova searches in

DES. Using a feature of SCAMP, we calculate a joint astrometric solution on both

the search and template image(s) using the GAIA-DR2 catalog. We perform the

image subtraction via the HOTPANTS package (Becker , 2015). In our case, we per-

form a separate subtraction between the search image and each template, and then

combine the difference images, rather than do a single subtraction on one combined

template. While this approach is clearly slower than doing a single subtraction, it
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avoids potentially large PSF variations that could arise when combining templates

taken in potentially very different observing conditions.

The DiffImg software, also sometimes known as the DiffImg “pipeline”, can

accept as templates images that only partially overlap with search images, images

that may have a relative rotation with respect to the search images and images from

DECam that were not taken on DES time (we only use such images if they have been

publicly released). These are our main modifications of the pipeline relative to the

DES supernova use case, where the search and template images are always exactly

aligned (within telescope pointing errors) with one of a small set of fixed pointings

that comprise the supernova survey area. After obtaining template images we apply

the SE process to them as described in 2.4.1, so they are ready in the case of an LVC

event trigger. If the counterpart lies outside the DES footprint and no overlapping

template image exists, template images of the appropriate area of the sky must be

taken at a later time, after we expect any counterpart to have faded.

DiffImg identifies candidate objects by running SExtractor on the difference im-

ages. Objects detected are filtered through a set of selection criteria listed in Table

1 of Herner et al. (2020a). Since the combined difference image includes correlated

search image pixels summed over each template, the standard SExtractor flux un-

certainties are not valid. We developed a special algorithm to properly account for

correlations when determining the flux uncertainties. Surviving objects are referred

to as “detections”. These detections then filter through a machine learning code,

autoScan (Goldstein et al., 2015), which takes as input the template, search, and

difference images and considers such items as the ratio of PSF flux to aperture flux
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on the template image and the magnitude difference between the detection and the

nearest catalog source. autoScan returns a number between 0, an obvious artifact,

and 1, a high-quality detection.

2.5 Post-processing

The outputs of DiffImg are the inputs to our post-processing pipeline, which

matches detections of the same objects across different exposures and applies quality

assurance requirements. It also analyzes fakes injected into the images to assess the

performance of DiffImg. This is in preparation for the final sample selection step.

Post-processing takes as input the collection of “raw” candidates from DiffImg,

defined as when two or more detections have measured positions matching to within

1 arcsec. The two detections can be in the same band or different bands, or on

the same night or different nights. All raw candidates are saved, which includes

moving objects such as asteroids. Requiring detections on separate nights, or with a

minimum time separation on the same night, helps to reject moving objects.

At this point, we also apply a minimum machine learning score requirement,

typically 0.7, based on the autoScan score obtained during DiffImg. The threshold

of 0.7 was chosen based on by eye examination of images to ensure we initially focus

on images that are of good quality. It is a choice to apply the autoScan requirement

in post-processing rather than earlier in the process as it facilitates other detection

completeness studies with looser requirements.

“Science candidates” are those raw candidates that pass the machine learning

score requirement. For each science candidate, we perform forced PSF photometry at
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the positions of the science candidates in all difference images that cover the location.

Forced photometry provides flux measurements in all observations, regardless of the

S/N.

At this stage, the science candidates still contain backgrounds, the leading ex-

amples of which are supernovae, asteroids, and M dwarf flare stars. To mitigate

spurious detections we take advantage of third party resources such as the Transient

Name Server (TNS), which is used to identify any known transients such as super-

novae and variable stars. To eliminate objects such as asteroids, we require that any

candidate must have two detections that are separated by at least 30 minutes. We

additionally record any new objects found in our images to these public catalogs as

well as publish findings via GCN.

Additionally, all science candidates undergo a host matching process that iden-

tifies nearby galaxies and ranks them by probability of being the candidate’s host

galaxy. This matching uses a galaxy catalog consisting of data from the SDSS DR13

(Albareti et al., 2017), DES Y3Q2 (Abbott et al., 2018), and 2MASS photoz (Bilicki

et al., 2014) catalogs.

As one of the updates for the O3 run, we created a web page to not only monitor

the status of the image processing but displays the relevant candidate information.

During each epoch of observation, as the candidate information is completed, it

is then compiled into a table such as the one in Figure 2.4. Here, the location,

timestamp, magnitude, machine learning score, host galaxy information, as well as

some processing-specific flags are displayed. Additionally, we begin the creation of

a light curve and compile the stamps (the images of the source on the night of the
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observation, the template image from before the event, and the difference between

the two images) associated with each observation. An example of the web page is

shown in Fig 2.4.

Figure 2.4 Example of the web page that is generated for a single EM candidate
produced by the post processing pipeline. The page provides information on the
potential host galaxy information if available, the time, sky location, magnitude,
and observing condition information for each observation of the candidate.

Every piece of information displayed on the candidate web page was necessary for

the final step of the search and discovery pipeline. This step of this process involves

hands on expertise from DES scientists. Due to the new and evolving nature of the
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field, we felt that having a final look over each candidate that pass preliminary cuts

was a crucial step to both understanding what these objects may look like and to

mitigate publishing candidates that would be wasteful for other teams to follow up.

During O3, this page was crucial for both creating the final candidate list, as well

as bettering our understanding of what cuts can be standardized and automated in

the future.

2.6 Personnel Training and Night to Night Operation Pro-

cedures

As the number of triggers increased from O2 to O3, increasing the workforce of the

search and discover team became vital. The creation of the on-call detail became an

important aspect of the search and discovery program. To act as an on-call member

included signing up for an 8 hour time slot, in which the member is responsible for

having some means of receiving an LVC alert and determining if the event is worth

triggering. As an international collaboration, DES members from around the world

volunteered during times that were most convenient in their timezone. Each on-call

member additionally needed training on the basic functions of each step of the image

processing pipeline. To this end, we created both written and video training sessions

that are currently available within DES’s internal documentation.

Determining which events were worth following up was and remains unique to

each event. The information available from the LVC is limited to a sky localiza-

tion, distance distribution, classification likelihood, and false alarm rate. Due to the

novelty of these events, and evolving nature of the LVC information output (on the
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scale of hours to days), creating hard limits on which events to move forward with is

not an option. For example, the candidate event S190510g was initially classified by

the DESGW team as potentially viable. The 98% probability of originating from a

BNS system and 2% probability of being non-astrophysical (e.g. signal created from

ground noise) in nature as well as the small sky area (31deg2 for the 50% confidence

region) was compelling. The DESGW team took pause with the false alarm rate of

1 per 37 years and ultimately let the GROWTH collaboration take the call for trig-

gering follow up. Roughly a day after the initial trigger, the LVC updated the event

parameters to downgrade the event to 58% probability of being non-astrophysical in

nature.

The nature of this follow up program involves interrupting another scientist’s work

to proceed with imaging. As such, teams are awarded a limited number of hours to

interrupt per season. Proving the responsibility of the team to not interrupt for

events with a low likelihood of detection plays a vital role in determining how much

risk to take. In particular, as the LVC season proceeds, the amount of observing

time allotted becomes increasingly precious. For this reason, the on-call schedule of

DESGW scientists who are trusted to make the call to follow up will remain in place

for O4.

2.7 Summary

The results from O1, O2, and O3 demonstrate that our infrastructure can quickly

get on sky following a ToO trigger, rapidly process new images, and carry out im-

age differencing analysis in a timely manner. The infrastructure is not limited to
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GW event follow-up, however. It is straightforward to apply the same techniques

to a wide variety of astrophysical transient searches, including searches for Trans-

Neptunian Objects, the hypothetical Planet Nine and has been successfully used

for searches of optical signatures from high-energy neutrino events detected by the

IceCube experiment (Morgan et al., 2019).

The DESGW program has completed a series of improvements to the computing

infrastructure for follow up observation preparation and to the imaging pipeline itself

between each of the LVC observing seasons. O3 ran from April 2019 to March 2020

and saw follow up of an additional 4 GW candidate events. Of those 4 events, two

originated from BBH mergers, and the other two are described in this thesis. The

infrastructure also performs well in a variety of time-domain astronomy programs.

DESGW has excellent potential for discovering additional EM counterparts to future

GW events and is eagerly awaiting additional LIGO-Virgo-KAGRA triggers during

the fourth observing season.
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CHAPTER III

S190510g1

In this Chapter, we present our search for the electromagnetic counterpart of

the LIGO/Virgo event S190510g, a binary neutron star merger candidate of mod-

erate significance. While this event was later classified as likely non-astrophysical

in nature, our short latency search and discovery pipeline identified 11 counterpart

candidates, all of which appear consistent with supernovae following offline analysis

and spectroscopy by other instruments. Later reprocessing of the images enabled

the recovery of six more candidates. Additionally, we implement our candidate se-

lection procedure on simulated kilonovae and supernovae under DECam observing

conditions (e.g., seeing and exposure time) with the intent of quantifying our search

efficiency and making informed decisions on observing strategy for future similar

events. This search was the first to employ a comprehensive simulation-based effi-

ciency study. We find that using our follow-up strategy, there would need to be 19

events similar to S190510g for us to have a 99% chance of detecting an optical coun-

terpart, assuming a GW170817-like kilonova. We further conclude that optimization

1This chapter is published as Garcia et al. (2020)
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of observing plans, which should include preference for deeper images over multiple

color information, could result in up to a factor of 1.5 reduction in the total number

of follow-ups needed for a discovery.

3.1 LIGO/Virgo Observations

All three LVC detectors (LIGO Livingston, LIGO Hanford, and Virgo) recorded

the event, S190510g, with a 98% initial probability of being a binary neutron star

(BNS) event, a 2% probability of having a non-astrophysical origin, and a false alarm

rate of 1 per 37 years. The 50% (90%) confidence regions spanned 575 deg2 (3462

deg2) in the initial LVC bayestar localization map. At 10:08:19 UTC on May 10, the

LVC released an updated map from the LaLInference pipeline (Veitch et al., 2015),

decreasing the 50% and 90% confidence regions to 31 deg2 and 1166 deg2 respectively,

and refined the distance estimate to 227±92 Mpc, or z = 0.05±0.02 (using flat ΛCDM

cosmology with H0 = 70 km/s/Mpc and Ωm = 0.3) (LIGO Scientific Collaboration

and VIRGO Collaboration, 2019b). On May 10, 20:43:51 UTC the classification

of the nature of the event was updated to 85% BNS and 15% non-astrophysical.

Finally at 20:18:44 UTC on May 11, the LVC updated this probability to being non-

astrophysical origin at 58% and of a BNS to 42% as well as updating the false alarm

rate to 1 in 3.6 years.
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3.2 DECam Observations

DECam was used for two nights to conduct target-of-opportunity imaging of

the LIGO/Virgo GW compact binary merger candidate S190510g (LIGO Scientific

Collaboration and VIRGO Collaboration, 2019a). Since the initial classification of

S190510g was a BNS merger with high probability, the GROWTH (Global Relay

of Observatories Watching Transients Happen Goldstein et al. 2019; Andreoni et al.

2019b) collaboration chose to trigger DECam (NOAO proposal 2019A-0205). All

exposures from this proposal were immediately made public (Andreoni et al., 2019a).

GROWTH initiated EM follow up on May 10th at 06:00:25.488 UTC. The observing

plan on this evening was based on the original LVC bayestar probability map. The

updated LVC LALInference map disfavored most of the region observed on the first

night. As a result GROWTH prepared a new observing plan for the second night

(Andreoni et al., 2019a). This plan consisted of observing for ∼1.5 hrs beginning at

22:51:57 UTC on May 10. 80 exposures total were taken in the g, r, and z bands for

40 seconds each. Each filter visited roughly same area of the sky, approximately 30

minutes apart, in order to eliminate moving objects. The 10σ depths for each band

aremz = 20.58 mag, mr = 21.72 mag, andmg = 21.67 mag, where the average seeing

was 1.33 arcsec, the average airmass was 1.71, and the average attenuation due to

cloud was 4%. These observations covered ∼ 65% of the probability region, as shown

in Figure 3.1. Plans to follow up this event for a third night were retracted due to the

updated classification probability of this event. Our analysis uses only the exposures

from the second night of observations as to include only the high probability region

from the LALInference LVC map.
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Figure 3.1 Candidates identified by the DESGW short latency pipeline (green) and
exposures used for this analysis (red). Blue contours show 90% and 50% localization
probability in one of the three regions identified by the LVC. The DES footprint is
shown in yellow. Our exposures (red) cover ∼84 deg2 total and contain ∼65% of the
total probability.

3.3 Pipeline Performance

Using the search and discovery pipeline described in Chapter II, roughly 26% of

the image processing jobs took between 0 – 30min to complete, 23% took 0.5 − 1hr,

22% took 1− 1.5hr, 14% took 1.5− 2hr, while the rest took > 2hr to complete. The

image processing section of our pipeline runs on a parallelized CCD per CCD basis.

This means that for the 80 exposures used for this analysis, there were ∼5000 jobs

total. Post processing also runs on a CCD per CCD basis after image processing

has finished. This step takes ∼20 min to finish when running with all exposures.

We note that this turnaround time is significantly longer than the GROWTH team

reported in (Andreoni et al., 2019a). This is likely due to a combination of having, on
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average, more template images and applying a more complete correction set in the

single epoch stage, such as correcting for the brighter-fatter effect (Bernstein et al.,

2017).

3.4 Candidate identification

In total, there were 1165 candidates identified after post-processing. The final

candidate list was published in GCN 24480 at 12:24 pm May 11 UTC (Soares-

Santos , 2019). The primary cuts for our candidates require no SExtractor errors in

image processing, such as masking of objects overlapping the transient or inability to

measure the flux, and an autoscan score of at least 0.9 out of 1.0. This cut found 96

candidates (20 with autoscan score> 0.95), while the final 11 were selected via visual

inspection. The key properties we looked for when performing visual inspection are

a host galaxy in the template image, a non-noisy template image, and no regions of

over or under-subtraction. We also took into consideration the possibility that the

candidate could be an AGN since we are unable to resolve objects that are close to

the center of the host galaxy and therefore disfavored stamps where the candidate is

not distinguishable from the host galaxy. Further, we note that no candidate from

our pipeline is fully dismissed until there is secondary follow-up or enough evidence

to definitively categorize the object. For a single night of observations, our goal is to

rapidly identify objects that are the most obvious candidates, then refine our search

criteria as we observe more epochs.

Additionally, we matched candidates to hosts and used DES data to measure

the properties of the host, such as photometric redshift, absolute magnitude, stellar
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mass, and star formation rate, as well as the separation of the candidate and the host

at the redshift of the nearest potential host galaxy. Photometric redshifts have been

computed using Directional Neighborhood Fitting (DNF; De Vicente et al. 2016),

while the galaxy properties have been computed using the Bayesian Model Averaging

method as described in Palmese et al. (2020). The coordinates and other information

about each of our candidates can be found in Table 3.1, and information about their

host galaxies are listed in Table 3.2.

3.5 Results

3.5.1 Candidate Classification

The first stage of analysis, performed as exposures became available, presented 11

candidates (of which 6 were also detected by GROWTH) that were produced via the

DESGW Search and Discovery Pipeline discussed in Chapter II. Follow up from other

observatories is crucial for determining if a candidate is the GW counterpart through

rejection of false positives. The Korea Microlensing Telescope Network (KMTNet)

followed up five of our candidates, desgw-190510a, desgw-190510c, desgw-190510i,

desgw-190510j, and desgw-190510k (GCN 24493 and 24529; Im et al. 2019a,b), at the

KMTNet South Africa (SAAO), Chile (CTIO), and Australia (SSO) stations showing

that each of these candidates did not have significant fading over ∼1 day, but did

show very slow or no fading, therefore deeming these candidates likely supernovae.

Additionally, desgw-190510c was observed by Swift-XRT (GCN 24541; Evans et al.
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2019), showing no XRT source found, as well as with Magellan (GCN 24511; Gomez

et al. 2019), which found a broad feature consistent with H-α at a redshift of 0.06

and suggests a good match to a Type II SN approximately one week after peak

brightness. Finally, desgw-190510h was initially detected by ATLAS on March 13,

2019 and later classified as a Type Ia SN at redshift 0.07 roughly a few days after

maximum light by the Spectral Classification of Astronomical Transients (SCAT)

survey and desgw190510-b was recorded by Gaia on Jan 30, 2019 and reported as a

“blue hostless transient”. This transient can also be seen in previous DES images

dating about 2.5 years ago, though with not enough information to classify it with

certainty, thus we provide no host information in Table 3.2. This leaves only 4

candidates, desgw-190510d, e, f, and g, that were not classified by secondary follow-

up, and thus still potential counterpart candidates.

The remaining information about each candidate that can be used to determine

if a candidate is viable can be found in Table 3.2. The table reports photometric

redshift, star formation rate, stellar mass, and absolute magnitude of the hosts, com-

puted using DES Year 3 data (Abbott et al., 2018). Furthermore, galaxies are ranked

based on their probability of association, which can be computed using the skymap

information, the galaxies’ position and redshift (Singer et al., 2016b), assuming a

flat ΛCDM cosmology with H0 = 70 km s−1 Mpc−1 and Ωm = 0.3.

3.5.2 Recovered Candidates

Using the same exposures, the GROWTH collaboration reported a list of 13 can-

didates (GCN 24467; Andreoni et al. 2019). Seven of the GROWTH candidates were
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Figure 3.2 Stamps (search, template, and difference images) for all S190510g can-
didates found by DESGW, including 11 candidates detected in our short latency
search (as reported in GCN 24480) and 7 candidates which were first reported by
the GROWTH collaboration. Six of the GROWTH candidates were later found by
our pipeline, while DG19ootl was not.

not listed in the initial DESGW candidate list reported in GCN 24480. Candidates

DG19bexl and DG19nouo were found in the final stages by our automated pipeline;

DG19bexl did not pass the autoScan score cut (≥ 0.9) and DG19nouo was rejected

due to visual inspection. Candidates DS19qcso and DG19llhk both had a detection

in a single exposure, where two were required to be picked up as a candidate. The

overlapping search exposures for these candidates failed in the HOTPANTS step of our

pipeline. Reprocessing of these exposures with an updated (current) version of the
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DESGW pipeline did identify these candidates. Similarly, candidates DG19ukvo and

DG19oahn were not found in our initial processing of the event due to HOTPANTS er-

rors in all exposures. DG19oahn was later found in reprocessing, while DG19ukvo

continued to have processing failures in 2 out of the 3 exposures. The fraction of

missing candidates is consistent with the overall failure rate of 28% for all jobs that

were submitted on that night, where ∼ 15% of total jobs failed due to issues in

HOTPANTS. These failures are largely due to the observing conditions described in

Section 4.2. Finally, candidate DG19ootl was never found in our pipeline. The tem-

plates used for this exposure were taken from not yet publicly available DES images

and thus did not show any source in the difference image. Candidates, including

those initially detected only by GROWTH, are shown in Figure 3.2.

3.6 Discussion

3.6.1 Understanding Search Efficiency

To better understand our search efficiency, we performed an offline analysis using

SuperNova ANAlysis software suite (SNANA) (Kessler et al., 2009). These simula-

tions produce SN & KN light curves as they would be observed during our obser-

vations. Each KN simulation randomly assigns an ejecta mass, ejecta velocity, and

lanthanide fraction based on the Kasen KN model (Kasen et al., 2017), as well as

host galaxy extinction between 0 and 3 mag (Cardelli et al., 1989). The SN simula-

tions use the SALT2 model for SN Ia (Guy et al., 2010) and templates for the core

collapse SN (SN CC) are taken from Kessler et al. (2010) and Jones et al. (2018).
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Additionally, we note that these light curves are modeled assuming face-on emission

of the observed component or spherically symmetric emission. While studies have

shown the importance of viewing angle dependence on KN brightness (Kawaguchi

et al., 2020a; Dhawan et al., 2020; Korobkin et al., 2020), this approach was selected

for simplicity.

Using these simulations, we computed the detection efficiency for each KN model

given our observing conditions, the results of which are shown in Figure 3.3. The

KN simulations used for this analysis produce events that use a distance distribution

consistent with that reported by the LVC as well as being located within the 65%

probability area that was surveyed. The efficiency of each model represents the

fraction of light curves that are detected to be brighter than our five-sigma limiting

magnitude at the time of DECam observations.

Next, we used these simulations to examine the color magnitude space for both

KN and SN (Figure 3.4). For this analysis, we use both KN and SN simulations.

Here we require the detected object to be brighter than our five-sigma limiting mag-

nitude. Additionally, we require the object’s host-galaxy photometric redshift to be

consistent with the LVC luminosity distance posterior at the 3σ confidence level. Ad-

ditionally, the simulated SNe were distributed in redshift according to the measured

volumetric rates of SNe-Ia and SNe-CC.

3.6.2 Implications for Search Efficiency

Figure 3.3 shows the likelihood that we would have been able to detect a KN

produced by this event given the observing conditions and depth of observations.
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Here we show all possible sets of KN parameters and note that a GW170817-like KN

follows a two component model, red and blue, where the blue component is dominant

at early times (i.e. up to ∼ 2.5 days after merger (Kasen et al., 2017)) in the light

curve evolution. Assuming S190510g is a GW170817-like KN viewed from the same

orientation located within our exposures, our simulations show that we would have

a 99% chance of detecting the counterpart KN. However, a wide range of KN models

would have been outside of our sensitivity range and thus unobservable.

While we have the ability to detect such a source, it is challenging to determine

a candidate to be KN or SN with a single night of observations in the absence of

spectroscopic information. To demonstrate the difficulty of this task we examined the

color magnitude space of the simulated KN and SN events. All KN simulations are

shown as the blue contours (indicating 50% and 90% density of simulations) in the left

panel of Figure 3.4, with the parameters for the blue component of GW170817 (ejecta

velocity = 0.3c, lanthanide fraction = 10−4, ejecta mass =0.025M⊙, and assuming

spherically symmetric emission) highlighted as orange contours. Meanwhile, the color

magnitude distribution of SN simulations is shown by the green contour on the right

panel of Figure 3.4. All DESGW S190510g candidates from this event (depicted as

red crosses in Figure 3.4) fall within the possible 90% color-magnitude regions of SN

events. For a KN roughly one day after burst, and given only this color-magnitude

information, each of these candidates could be either an SN or KN.
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Figure 3.4 DESGW candidates (red) as compared to where kilonovae and supernovae
would be expected to live in color magnitude space given the observing conditions
of our observations (i.e., 36 hours after merger, sky brightness, etc.). All simulations
run using SNANA (Kessler et al., 2009). Kilonovae simulations were generated with
a burst date consistent with that reported by LVC, and at a distance consistent with
the LVC distance distribution (blue contours). The KN parameters, ejecta velocity,
mass, and lanthanide fraction are randomly selected from the parameters described
by Kasen 2017. Simulations with the same Kasen parameters as the blue component
of GW170817 (ejecta velocity = 0.3c, lanthanide fraction = 10−4 and ejecta mass
=0.025M⊙) are shown as orange contours. Supernovae simulations consist of Type
Ia and CC SN, and are generated using a peak date ranging 4 months centered around
May 10th, with redshift also consistent with S190510g’s distance distribution. The
contours show 50% and 90% density of simulations.

46



3.6.3 Implications for Follow Up Strategy

In the first half of the O3 observing run, most of the events that included a

neutron star did not have a good localization (i.e. hundreds of deg2) as well as being

far away (>200 Mpc) when compared to GW170817. While it would be ideal to

cover 100% of the localization area with multiple filters, limited telescope time and

poor localization maps make this very challenging. In the following, we show that

prioritizing sufficiently deep images as opposed to covering large areas and/or using

multiple filters, will result in a higher chance of detecting counterparts.

To show how many events it would take to have a 50% (99%) chance of detecting

one counterpart, we have to consider the cumulative probability inside the LVC

localization map that was observed (Σspatial), the fraction of DECam that was live

during observations (ϵcamera), the probability that the event is astrophysical in nature

(ϵreal), and our likelihood of being able to detect a KN at that distance given the

observing conditions (i.e. the fraction of simulated light curves that are brighter

than our five-sigma depth) (ϵefficiency)

Pi = Σspatial × ϵcamera × ϵefficiency × ϵreal (3.1)

Pone = 1−
N∏
i

(1− Pi) (3.2)

Here, Pi is the probability of being able to detect at least one KN from a single GW

event. Pone is the cumulative probability of being able to detect a single counterpart

given N GW events (Annis and Soares-Santos , 2016). For this calculation, we find

that if we assume there is a kilonova associated with S190510g that is GW170817-
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like, i.e. (ϵefficiency = 0.993), we would need to observe 3 (19) identical events with

Σspatial = 0.65, ϵcamera = 0.8, ϵreal = 0.42, and ϵefficiency = 0.993 in order to have 50%

(99%) probability of identifying the event using the current strategy. Since there is no

way of knowing that the event will have a light curve similar to GW170817, we also

calculate this using the average efficiency value of all KN parameters, ϵefficiency = 0.553

with all other parameters the same. Here we find that we would need 6 (36) events

to reach 50% (99%) likelihood of detecting the counterpart.

We then repeat this calculation assuming the observing strategy uses one filter

instead of three. If we conserve the telescope time used and area surveyed per event,

we can then increase the exposure time from 40 seconds to 170 seconds. In this

scenario, the efficiency for a GW170817-like KN is 0.995, meaning we would again

need 3 (19) events to have 50% (99%) likelihood of detection. Using the average

efficiency in this scenario though, 0.742, we would only need 4 (27) events to have

50% (99%) likelihood of detecting a counterpart. By increasing the depth of our

observations, we become sensitive to more KN models and will thus need to observe

fewer total GW events to have a high probability of making a detection.

3.7 Conclusion

We performed a follow up analysis of the GW trigger S190510g, using DECam

target of opportunity time data from May 11th, 2019. We demonstrated the DESGW

team’s ability to quickly process new images in real time, averaging ∼ 1hr for im-

age processing to complete. The final DESGW candidate list is summarized in

Table 1, with five candidates, desgw-190510a, c, i, j, and k being ruled out due to
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secondary follow up efforts by KMTNet, Swift-XRT, and Magellan. Similarly, can-

didates desgw-190510b and h have been identified based on previous observations as

recorded in the Transient Name Server. This leaves 4 candidates from the DESGW

candidate list that were not classified by secondary follow-up. Each of these candi-

dates has color information that is consistent with SN as well as KN.

Additionally, we used simulated KN to show the efficiency of detecting a KN

counterpart given the observing conditions of the observations to find that we have

a 99% chance of being able to detect a KN counterpart assuming the light curve

has the same physical parameters as GW170817 using the Kasen et al. (2017) model

(Fig. 3.3) within our observations. However, this efficiency is not uniform across all

KN models. We also used KN and SN simulations to study where in color magnitude

space they land. We find that all of our candidates are consistent with both KN and

SN using this metric.

To make ourselves more sensitive to all KN models, we suggest prioritizing longer

exposure times over multiple filters and covering large portions of the localization

area for future observations. Using exposures that are 4 times longer than those used

for this follow up, we would only need to observe 4 events (identical to S190510g) to

have a 50% chance of detecting a KN counterpart within the 65% probability region

observed and with these observing conditions, compared to the 6 events needed using

the current strategy.
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CHAPTER IV

GW1908141

In this Chapter, we present the results of our search for the electromagnetic

counterpart of GW190814, a merger of a black hole and a 2.6 solar mass compact

object, possibly the first neutron star-black hole event detected by LIGO/Virgo. To

quantify the sensitivity of our search, we applied our selection criteria to full light-

curve simulations of supernovae and kilonovae as they would appear in the DECam

observations. We find that, if a kilonova occurred during this merger, configurations

where the ejected matter is greater than 0.07 solar masses with lanthanide abundance

less than 10−8.56 and velocity between 0.18c and 0.21c are disfavored at the 2-sigma

level. Furthermore, we estimate that our background reduction methods are capable

of associating gravitational wave signals with a detected electromagnetic counterpart

at the 4-sigma level in 95% of future follow-up observations.

1This chapter is published as Morgan et al. (2020)
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4.1 LIGO/Virgo Observations

On 2019 August 14, The LIGO/Virgo Collaboration (LVC) reported the obser-

vation of gravitational radiation at high statistical significance (Abbott et al., 2020b).

The event, named GW190814, occurred when all three detectors (LIGO Hanford

Observatory, LIGO Livingston Observatory, and Virgo Observatory) were operating

normally, which enabled both high precision localization of the source and more pre-

cise waveform parameter estimation. The false alarm probability was calculated at

2.0 × 10−33 Hz, once per 1015 Hubble times, suggesting a very high signal-to-noise

ratio event (LVC , 2019). The source of the GW signal was localized to a 38 (7) sq. de-

gree area at the 90% (50%) confidence level in the southern hemisphere on the night

of the merger. The localization area was split into two distinct regions, shown in

Figure 4.1, as a result of polarization and timing information from the three-detector

detection. Preliminary parameter estimation using the bayestar pipeline classified

the event as falling into the “Mass-Gap”, meaning the detected GW was consis-

tent with at least one of the objects having mass between 3 M⊙ and 5 M⊙. The

small localization area and the presence of a low-mass compact object, potentially a

massive neutron star, made this event interesting from the perspective of electromag-

netic follow-up (Littenberg et al., 2015). The following day, the LVC LALInference

pipeline localized the source to 23(5) sq. degrees at the 90% (50%) confidence level,

refined the classification to an NSBH merger, and estimated the luminosity distance

of the event to be 267±52 Mpc. DECam follow-up observations proceeded based on

this information, but in June 2020, the LVC released its final parameter estimation

values for GW190814: the luminosity distance was revised to 239 ± 43 Mpc; the
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90% localization area was reduced to an 18.5 sq. degree section of the original 90%

localization area; and the masses of the objects involved in the merger were refined

to 23.2 M⊙ and 2.6 M⊙ (Abbott et al., 2020b).
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00
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DES
FOOTPRINT

Figure 4.1 Summary of exposures taken and candidates identified by the DESGW
pipeline. DECam pointings are shown as orange hexes and represent the area covered
on nights 2 - 5. Additional images were taken using a different tiling in order to
eliminate chip gaps, those hexes are not shown for simplicity. The white contours
are the LVC 90% (bold) and 50% probability region. Finally, the gold line represents
the boundary of the DES footprint. Stars represent candidates that pass all selection
criteria prior to final ML classification and have not been targeted with spectroscopic
instruments. Circles show candidates reported via GCN circulars that were ruled out
in this analysis. Squares denote candidates that were spectroscopically confirmed as
SNe. Violet coloring indicates a candidate was first reported by a group other than
DESGW, while green coloring is used for DESGW candidates.
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4.2 DECam Observations

In search of an EM counterpart to GW190814, we triggered Target of Opportunity

(ToO) observations with the 4m Victor M. Blanco Telescope located at Cerro Tololo

Inter-American Observatory in Chile. The Blanco was equipped with DECam, a 570-

mega pixel optical imager (Flaugher et al., 2015). Together, the Blanco and DECam

reach a 5σ limiting r-band magnitude of ∼ 23.5 mag in a 90 second exposure in a 3

sq. deg field of view (FoV) (Abbott et al., 2018). The combination of deep imaging

and a wide FoV makes Blanco/DECam the ideal southern hemisphere instrument for

efficiently detecting explosive optical transients localized to tens of square degrees.

4.2.1 Observing strategy

We performed ToO follow-up observations of GW190814 0, 1, 2, 3, 6, and 16

nights following the LVC alert. The early nights were chosen to look for rapidly

evolving transients immediately following the merger, and the observations 16 nights

after the merger were used to exclude persisting supernovae. The observing condi-

tions for each night are displayed in Table 1 of Morgan et al. (2020).

The moon was full on the first night of the observations, so we opted to use

the redder i and z bands to minimize the effect of moon brightness on our imaging

depth. On the night of the merger, we tiled 99% percent of the 38 sq deg localization

region using 60 second exposures in i and 90 second exposures in z. The z exposures

were offset by half the width of a DECam CCD to fill in chip gaps. We tiled the

area a second time in i to identify moving objects. On the following observing

nights, since the LVC had published a smaller localization region, we lengthened
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our exposures to 100 seconds in i and 200 seconds in z. Throughout the real-time

observations, we coadded images that shared the same night and filter to increase

the search depth. The i-band DECam pointings are shown atop the LVC localization

probability contours in Figure 4.1. All DECam images were immediately made public

and available for download from the National Science Foundation’s NOIRLab.

4.2.2 Image Processing

The DECam images were processed by the DES Difference Imaging Pipeline,

an updated version of the DES Supernova Program’s Pipeline described in Kessler

et al. (2015), using coadded DES wide-field survey images as templates. The updated

pipeline is described in Chapter II.

4.2.3 Host Galaxy Matching

We match each candidate to a host galaxy from the DES Y3 galaxy catalog. After

removing contaminants (subtraction artifacts, variable stars, moving objects, etc.)

from our sample using criteria 1-5 described in Section 4.3, every candidate is able

to be matched to a host in the DES Y3 galaxy catalog. Properties and redshifts of

the hosts are reported in Table 4.1. Photometric redshifts have been computed using

Directional Neighborhood Fitting (DNF; De Vicente et al. 2016), while the galaxy

properties have been computed using the method described in Palmese et al. (2020).

The DNF method is known to be inaccurate at the redshifts relevant in this analysis

due to the characteristics of the galaxy sample upon which the algorithm was trained.

The inaccuracy manifests in our analysis as underestimated host galaxy photometric
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Table 4.1 Host galaxy properties of the two objects passing all selection criteria prior
to final classification.

Candidate ID 666914 661188
Host Galaxy DES J013624.60-344557.72 DES J005431.17-241713.08
Angular Sep. [arcsec] 3.345 4.700
Physical Sep. [kpc] 6.24 9.53
Redshift 0.10 ± 0.02 0.11 ± 0.02
log Mass [M⊙] 9.90 10.07
log SFR -0.0386 0.0438
Absolute Mag (Mi) -20.70 -20.94

redshift uncertainty. We therefore add a minimum uncertainty of 0.02 for galaxies

with host galaxy photometric redshift less than 0.1 following the prescription of

Soares-Santos et al. (2019e). The galaxies have been ranked from highest to lowest

probability per unit volume based on their angular position and redshift as prescribed

in Singer et al. (2016b), assuming a flat ΛCDM cosmology with H0 = 70 km s−1

Mpc−1 and Ωm = 0.3.

4.3 Candidate Selection

After the completion of our image processing pipeline, we found 33571 candidates.

The data sample includes astrophysical objects with varying brightness such as SNe,

Active Galactic Nuclei (AGN), and other less-common explosive optical transients

(Cowperthwaite and Berger , 2015), moving objects such as minor planets and as-

teroids, foreground variable stars in the Milky Way, and image artifacts from poor

image subtractions and insufficient masking of bright objects. In the real-time anal-

ysis, we developed several selection criteria to look for the likely EM counterpart of
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the GW detection. These selection criteria narrowed our sample to a size reasonable

for spectroscopic, X-ray, and radio observing teams to follow up. We detail those se-

lection criteria here and evaluate their effectiveness at recovering KNe and rejecting

background objects in the following section.

There are 9 selection requirements (criteria) in four levels: (1) subtraction quality

requirements to reject image artifacts and moving objects, (2) catalog matching to

rule out existing objects such as AGN and variable stars, (3) KN-specific require-

ments to rule out SNe, and (4) final candidate assessment using machine-learning

(ML) based photometric classification. Each level progressively targets more specific

properties of an expected EM counterpart. The numbers of candidates remaining

in our sample after each criterion are displayed in Table 4.2. The remainder of this

section elaborates on the implementation and motivation for each selection criterion

applied to the data.

4.3.1 Level 1 Selection Criteria

The following selection criteria assure satisfactory detection and image-subtraction

quality in all remaining candidates. We introduce two definitions to expedite discus-

sion. A Type-2 detection is a SExtractor detection in a single filter that does not

contain any image processing errors. These errors include an inability to measure a

fitted flux, the R.A. or Decl. of an object not being on a CCD, masking of bright

objects overlapping the transient object, the inability to fit the PSF of the object,

the inability to make a stamp in the difference image, a large number of pixels with

negative flux values, and a 5σ difference between psf flux fitting and aperture flux fit-
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ting. A Type-1 detection is a Type-2 detection that has also been given an autoscan

score of 0.7 or larger.

Criterion 1. We require candidates to have at least one Type-1 detection. This

criterion ensures a high-purity sample of real objects with little contamination from

image processing artifacts.

Criterion 2. We require a second detection in the light curve of Type-2 or Type-1,

and we require this secondary detection to be on a different night from the detection

in Criterion 1. By ensuring a second detection that is separated in time from the first

detection, we remove all moving objects from our sample. This temporal separation

could in principle be shortened to ∼ 1 hour, but because we co-added our images

from the same night and band, this time separation requirement is effectively a multi-

night requirement. In these observations, we find that fast-fading transients such as

KNe have a high efficiency of 93% for this multi-night requirement based on the

simulations discussed in Section 4.4. We also relax the required autoscan score of

the second detection since the first Type-1 detection from Criterion 1 has already

yielded a high-purity sample.

After the level-1 quality criteria, we are left with 2192 candidates in our sam-

ple. This sample is mostly composed of astrophysical objects with observed variable

brightness as a result of the quality criteria. There is a large population of artifacts

still present at this stage that passed the selection criteria, but these are removed by

Criterion 5.
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4.3.2 Level 2 Selection Criteria

With the exception of artifacts, we expect the remaining sample to be dominated

by three main contaminants at this stage: variable foreground stars, AGN, and bright

galactic centers. The latter is a known problem in difference imaging, see Kessler

et al. (2015) or Doctor et al. (2017) for context.

Criterion 3. We require that each object is separated from known foreground

objects. This requirement has two components: each object must be separated from

objects in a high purity sample of well-measured stars in the DES Y3 Gold catalog

by at least 0.5′′, and each object must be separated at least 8′ from NGC288 and 3′

from HD4398. The globular cluster NGC288 has a high density of bright stars and

HD4398 itself is a very bright star, both of which led to large numbers of subtraction

artifacts and variable star detections by our Search and Discovery Pipeline.

Criterion 4. We require that each object is at least 0.2′′ from objects in the DES

Y3 Gold catalog that are not flagged as well-measured stars, which were addressed in

Criterion 3. This criterion aims to remove AGN and bright galactic centers. Section

4.4.2 gives physical and empirical motivations for expecting KNe to be highly likely

to satisfy this requirement.

Criterion 5. We visually inspect images of the 1872 remaining candidates. We

remove candidates that have an imaging artifact from a misaligned subtraction or

from inadequate masking and we also remove all candidates that contained a point-

like light source in the template image at the location of the detected transient. In

the application of this criterion in general, the seeing of the observations can limit

the efficiency of real transients, since extremely poor seeing could potentially make
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a bright host galaxy center appear as a point source. Our average seeing in these

observations, shown by the PSF FWHM column in Table 1 of Morgan et al. (2020),

is less than 1.3′′ on more than half of the nights. We therefore expect this behavior

to be rare in our data.

After the level-2 catalog criteria, we are left with 116 candidates in our sam-

ple. We expect that at this stage our data are almost entirely constituted by real

astrophysical transients.

4.3.3 Level 3 Selection Criteria

The following selection criteria are designed to remove supernovae by assuring the

distance of the candidates is consistent with the LVC distance posterior distribution,

requiring the light curves of the candidates are fading, and triggering spectroscopic

follow-up observations.

Criterion 6. We require each object to have a host galaxy photometric redshift

consistent with the mean and standard deviation of the LVC distance posterior at

the 3σ confidence level. All objects were able to be matched with a host-galaxy at

this stage, so the criterion can be straightforwardly applied. The criterion is satisfied

when

|zLVC − zDES|√
σ2
z,LVC + σ2

z,DES

< 3, (4.1)

where zLVC = 0.06 is the redshift of GW190814, zDES is the redshift of a candidate’s

host galaxy, σz,LVC = 0.005 is the uncertainty on the redshift of GW190814, and
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σz,DES is the uncertainty on the redshift of a candidate’s host galaxy. To imple-

ment this criterion, we use the assumed cosmology in this analysis. In the case of

an available spectroscopic redshift of the host galaxy, we utilize the spectroscopic

information instead. Since supernovae could be detectable out to large redshifts in

these observations, we seek to remove contaminants in galaxies too distant to be

associated with the GW signal.

Criterion 7. If an object is detected on the final night of observations (16 nights

post-merger) we require that it be fainter than 22.5 mag in at least one band. If

an object is not detected on the 16th night, it passes this criterion. This criterion

removes rising and flat light curves from our candidate list.

Criterion 8. We trigger spectroscopic follow-up observations from the Southern

Astrophysical Research (SOAR; Sebring et al., 2003) telescope on as many of the

8 remaining candidates as possible. We also incorporate real-time spectroscopic

classifications from other instruments during the follow-up based on circulars posted

to the GCN. The spectroscopic instruments were triggered in real-time, as opposed

to after the selection criteria had been refined in the offline analysis, so there is no

perfect overlap between the targeted objects and the remaining candidates presented

in this work. All targeted candidates were spectroscopically confirmed as SNe.

4.3.4 Final Candidate Assessment

After the previous eight criteria have been enforced, we have two remaining can-

didates as shown in Figure 4.2. As described in the Appendix ofMorgan et al. (2020),

we apply light-curve-based ML classification to determine the probability that any of
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these objects are potentially a KN. Briefly, we fit a large set of simulated SNe (both

SNe-Ia and SNe-CC) and KNe (from the Kasen et al. (2017) models) light curves

that pass Criteria 1 through 7 with a Bayesian SN template fitting tool PSNID (Sako

et al., 2011), select the template features and goodness of fit metrics with the largest

difference in mean value for SN and KN samples, and build a random forest clas-

sifier (Breiman, 2001) using those best-fit parameters as features. This PSNID+RFC

approach shows a significant improvement in classification power when using the KN

false positive rate and KN true positive rate as diagnostics. A similar version of

this method is described in Morgan et al. (2019). Figure 4.3 shows the performance

of this machine learning approach and the resulting probabilities of each remaining

candidate being a KN. DESGW-666914 has a 0.92 probability of being an SN and

DESGW-661188 has a 0.86 probability of being a SN from our PSNID+RFC approach,

both of which are classified as SNe based on our choice of operating threshold. Six

additional candidates that made it to this stage and were later spectroscopically

typed as SNe were correctly classified as SNe by our PSNID + RFC approach.

Table 4.2 shows the number of candidates remaining after each criterion, namely:

0 DES Difference Imaging Pipeline

1 Single Type-1 Detection

2 Two Type-2 Detections on Different Nights

3 Separated from Foreground Objects

4 Separation > 0.2′′ from DES Y3 GOLD Catalog Galaxy Centers
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Figure 4.2 Images of objects passing all selection criteria before machine-learning
classification. For each object, the set of images for the night with the least noisy
difference image is displayed. All images are centered on the detected transient. The
DESGW ID of the object is listed on the left axis label, while the “MMDD” date
and filter used are shown on the right axis label. Each image has dimensions 13.4′′

× 13.4′′.

Table 4.2 The selection criteria developed in this analysis and remaining objects after
each criterion. The candidates column refers to objects found by the DES Difference
Imaging Pipeline and the latter two columns show the expected number of SNe
present in the candidate sample at each level computed as described in Section 4.4.1.
The SNe simulations were realized 500 times so statistical uncertainty is negligible.
The horizontal dividers reflect the “levels“ of selection criteria described in the text.

No. Candidates Sim. SNe-Ia Sim. SNe-CC
0 33571 768.3 1191.1
1 2563 200.6 86.33
2 2192 118.8 48.29
3 2021 117.8 47.9
4 1872 96.7 42.0
5 116 85.2 38.1
6 9 4.7 6.5
7 8 2.6 4.8
8 2 0.8 1.4
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5 Visual Inspection of Stamps

6 Redshift Consistent with LVC within 3 Standard Deviations

7 Fainter than 22.5 mag on Night 16

8 Not Eliminated by Spectroscopic Observations

9 Machine Learning Photometric Classification

After all selection criteria have been applied and the remaining candidates have

been photometrically classified, zero candidates remain. We therefore use our data

to set upper limits on KN properties given a non-detection and to inform future

follow-up observations.

4.4 Sensitivity Analysis

To evaluate the selection criteria applied during the real-time observations, we

model our search and selection methodology on simulated SNe and KNe using the

SuperNova ANAlysis software suite (SNANA; Kessler et al., 2009). The SNe and KNe

models employed here are the same models used in the Photometric LSST Astro-

nomical Time-series Classification Challenge (PLAsTiCC; Kessler et al., 2019). The

SNe templates are derived from observations while the KNe templates are generated

from theoretical models. SNANA incorporates the cadence, the measured zeropoints,

and noise level in the search and template images from our observations into the

simulated fluxes and uncertainties to produce realistic light curves. This simulation

process enables the application of our real-time selection criteria to simulations and
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Figure 4.3 Photometric classification of candidates using the PSNID + RFC approach.
Left: Receiver Operating Characteristic Curves showing classification power of the
PSNID + RFC approach. The threshold at which we chose to operate the classifier
is denoted by a black star, the location of which shows the false positive rate and
true positive rate of our ML approach. Right: Calibrated probabilities of candidates
passing Criterion 7.

DECam candidates for a better understanding of what objects and how many of

them would be expected to pass our selection criteria. In the remainder of this sec-

tion, we describe the SNANA simulations for the GW190814 observations, detail the

modeling of the selection criteria in the context of the simulations, and present the

results of our sensitivity analysis: detection efficiencies for 329 different KN mod-

els, expected numbers of SNe to pass our selection criteria, the mean light curves

of objects passing our selection criteria, upper limits on physical properties of po-

tential EM counterparts to the GW190814 merger, and statistical forecasting of our

discovery potential in follow-up observations of future events.
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4.4.1 Simulating the DECam Search

SNANA enables the simulation of light curves of SNe, KNe, and other transients

as they would be measured by DECam during observations. This process uses a

measured or theoretical time-evolving spectrum for the transient object and then

accounts for cosmological redshift, Milky Way dust extinction, and the measured

observing conditions of the DECam observations such as sky brightness, zeropoints,

the point-spread-function of the imager, and CCD noise in the camera. The corrected

time-evolving spectra are then multiplied by the transmission of the DECam filters

and light curves are sampled at epochs matching the cadence of the observations.

The KN models used in the simulations are from spectral energy distributions

derived in Kasen et al. (2017) and parameterize the optical light from a KN by the

mass ejected in the explosion, the abundance of lanthanide elements in the ejecta,

and the velocity of the ejecta (hereafter Mej, Xlan, and vej). These models were

chosen because they characterize the optical behavior based on physical properties

of the NS ejecta, rather than having a dependence on the geometry or dynamics

of the merger itself. While other models for KNe and models specific to NSBH

mergers exist (Barbieri et al., 2019; Bulla, 2019; Hotokezaka and Nakar , 2020, among

multiple others), we find this simple, agnostic, three-component model based on

observable properties of NS ejecta to apply well to GW190814. In the simplicity

of this approach, we make the assumption of either spherically symmetric emission

or that the particular component being considered is directed toward Earth. We

use 329 total models, which discretize the parameter space in the ranges 0.001 M⊙

≤ Mej ≤ 0.1 M⊙, 0.03c ≤ vej ≤ 0.3c, and 1 × 10−9 ≤ Xlan ≤ 1 × 10−2. The
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simulated KNe are uniformly drawn from this population of models, though the grid

which discretizes the parameter space is non-uniform as shown in Figure 4.4. This

non-uniform grid is not believed to have an effect on the physical constraints insofar

as the interpolation of model efficiencies between points in the grid is smooth and

monotonic. As a proxy for the observer-frame explosion time of the simulated KNe,

we fix the time the KNe fluxes reach 1 percent of their peak flux to the time of

the LVC GW alert and note that this approximation is justified by the rapid rise

times of the KNe. The simulated KNe are also distributed in redshift according to a

polynomial fit of the LVC distance posterior and the cosmology used in this analysis.

The redshift distribution is constructed independent of spatial information on the sky.

This approximation is based on the small localization area of GW190814, however for

future events with larger localization areas, the volume-rendered luminosity distance

distribution should be utilized.

Because our selection criteria effectively remove all moving objects, known fore-

ground variable stars, and AGN, the most likely remaining contaminants in our data

are SNe. We therefore use SN simulations to understand the types of SNe passing

our selection criteria, as well as the number expected to be present in our final can-

didate sample. We simulate type-Ia SNe (SNe-Ia) using templates from (Guy et al.,

2010) and measured volumetric rates from (Dilday et al., 2008). We also simulate

core-collapse SNe (SNe-CC) using templates from Kessler et al. (2010) and volumet-

ric rates from Li et al. (2011). The SNe-CC population includes type-Ib, type-Ic,

type-Ibc, type-IIP, type-IIN, and type-IIL SNe, and we weight the different sub-types

according to their measured volumetric rates. Unlike the KN sample, we allow the
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SNe to have a random observer-frame explosion time that would make them bright

enough to observe with DECam during our observing window. This explosion time

range is implemented by requiring the date of peak flux to be greater than 60 days

prior to the LVC GW alert and less than 30 days after it since the explosion time

itself is not well-measured.

4.4.2 Modeling Selection Criteria

SNANA produces catalog-level photometric fluxes for transient objects by correct-

ing model spectral energy distributions and multiplying them with the DECam fil-

ters, and this approach bypasses several image processing and catalog matching steps

that we apply to the real DECam data. We therefore take additional steps to im-

pute information necessary for modeling the selection criteria in this analysis on the

simulated light curves.

In our real-time analysis, we applied selection requirements on the autoscan

score and SExtractor detection flag. Both of these programs run at the image

level, so their information is not present in SNANA-simulated light curves. We adopt

the empirical approach from Doctor et al. (2017) to determine realistic values for

autoscan and SExtractor quantities in the simulations. This process involves in-

serting simulated point source objects of known brightness (hereafter “fakes”) into

the real DECam images, and applying our image processing pipeline to the images

to record the autoscan score and SExtractor detection flag. From the processed

fake objects, we extract the probability mass functions (pmfs) for the autoscan score

and SExtractor detection flag at discrete levels of signal-to-noise ratio ranging from
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0.5 to 50.0. Each filter is treated independently when extracting the pmfs. In the

process of generating simulations, based on the signal-to-noise ratio of each observa-

tion, values for the autoscan score and SExtractor detection flag are drawn from

the corresponding empirically-derived pmf. We also introduce a reduced correlation

coefficient of 0.1 to the drawn autoscan scores for observations of the same object,

determined so that the simulations accurately reflect the fake data.

Level 2 of our selection criteria rules out known objects by matching to the DES

Y3 Gold Catalog. When matching to DES stars, globular clusters NGC288, and the

star HD4398, we estimate the sky area masked by our criteria using a Monte-Carlo

sampling of position space. We find that a 0.5′′ radius around DES stars masks

0.11 percent of the sky area covered in our follow-up observations, and an 8′ radius

around NGC288 and a 3′ radius around HD4398 each mask 0.01 percent. In the

simulations, we use these percentages of the sky masked by these selection criteria

as the probability for a simulated object to be removed by the criterion.

We take a slightly different approach to modeling the criterion of removing known

galactic centers from our sample since these objects are not in the foreground of our

observations. Here we model the transient-galaxy separation empirically and impute

that separation into the simulations. We extract a probability distribution function

of SN-host galaxy center separation in units of physical distance from the DES 3-year

spectroscopic SNe sample (DES Collaboration, 2018). This sample is dominated by

SN-Ia for cosmological analyses, which makes it more applicable to KN-host galaxy

separation than a balanced SNe sample: the progenitors of SN-Ia are thought to be

white dwarf stars in binary systems (Woosley and Weaver , 1986; Hillebrandt and
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Niemeyer , 2000; Maoz et al., 2014), meaning to first order they would be similar in

age and hence host separation to other binary systems of stellar remnants (Bloom

et al., 2006; Prochaska et al., 2006). We believe this assumption to be conservative,

given that supernova (or sometimes called “prenatal”) kicks during the evolution

of binary massive star systems into BNS or NSBH systems are expected to cause

an increase in the separation from the host-galaxy center (Stairs et al., 2006). We

therefore apply the same transient-galaxy separation pdf to both the KNe and SNe

simulations. In the application of the selection criterion, we draw a separation from

the pdf and remove the object if the separation is less than 0.2′′. When testing

this criterion on the DES 3-year SNe sample, we estimate 97% of transients will be

recovered while effectively removing all time-varying galactic centers.

Our real-time candidate reduction also relied on visual inspection of the images to

remove artifacts and point-like light sources without a host galaxy. We assume near

perfect efficiency in the simulations with one exception stemming from the fact that

this criterion has a dependence on the seeing of the observations. A bright galaxy

center in poor seeing conditions can hide real transients in the image or appear

like a point source itself, resulting in it being removed from the sample. For the

simulations, if the imputed host separation is less than half of the seeing, we reject

the simulated object.

The final pieces of additional information that were necessary to add to the SNANA

simulations were photometric redshifts and photometric redshift errors. Here we take

the i-band galaxy magnitudes of all galaxies in the DES Y3 Gold catalog also in the

LVC 90% containment region to empirically determine the i-band magnitude pdf in
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several redshift bins. Using the true simulated redshift of our SNe and KNe, we se-

lect the corresponding host galaxy i-band magnitude pdf and draw a random value.

With a chosen i-band host magnitude, we determine the expected value of the pho-

tometric redshift error from the validation of the Gold catalog. We define a Gaussian

distribution centered on the true simulated redshift with a standard deviation of the

photometric redshift error. We account for known underestimations of low redshift

galaxies’ photometric redshift uncertainty using the same treatment discussed in Sec-

tion 4.2.3. Thus, after drawing a photometric redshift from this distribution, each

simulated transient will have a photometric redshift and photometric redshift error

to match the candidates in our observations.

We model spectroscopic targeting and classification by implementing the ratio

of the number of objects targeted by spectroscopic instruments to the number of

candidates remaining at that stage in the follow-up as the probability of an SN

being rejected.

4.4.3 Sensitivity Results

Here we present the results of applying our real-time selection criteria to SNANA-

simulated SNe and KNe light curves. We stress that this approach of representing the

expected signal and background samples by applying selection criteria to the light

curves provides our best understanding of the characteristics of the objects present

in the final candidate sample. We use our simulated light curves to quantify the

expected number of remaining SNe in the final candidate sample, to determine the

detection efficiencies of all available KN models, to understand the light curves of
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objects passing our selection criteria, to place upper limits on the physical properties

of the merger, and to forecast our discovery potential in future follow-up observations.

In Section 4.5, we use all these pieces of information to inform a discussion of efficient

follow-up strategy and on the dynamics of the merger.

Table 4.2 lists the number of candidates surviving each criterion enforced dur-

ing our real-time analysis. We also show that the number of candidates remaining

after all selection criteria is consistent with the expected background SNe in these

follow-up observations. The ML classification of our candidates found no potential

KNe remaining in our final sample. Furthermore, because the PSNID+FRC classifier

performed with a false-positive-rate of 0.01, a remaining candidate would be identi-

fied as a KN at the 3σ confidence level. This low false-positive rate of the classifier

effectively reduces the SNe background to zero objects, which will prove to be essen-

tial for claiming an association between a GW signal and a candidate counterpart in

subsequent optical follow-up observations.

A second result of this analysis is the detection efficiency of 329 independent KN

models as they would appear in our DECam observations. Figure 4.4 shows the

efficiency of each model after Criterion 1 was placed. Criterion 1, which requires a

single Type-1 detection, can be thought of as assuring the maximum brightness of

the objects is greater than the 5σ limiting magnitude of the observations. Efficiencies

after all criteria up to the ML classification and efficiencies after the ML classification

occurs can be found in Figure 4 of Morgan et al. (2020). The blue and red boxes in

the panels identify the best-fit model components of the emission from AT2017gfo

(Drout et al., 2017; Kilpatrick et al., 2017), the optical counterpart for GW170817, at
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distances consistent with GW190814 and accounting for the environmental conditions

of our follow-up observations. We find that low Mej and high Xlan yield an optical

signature that would be difficult to detect in our DECam observations. At the same

time, we note that our selection criteria limit our ability to detect KNe models with

low vej and high Mej. Physically, the light curves of these models fade more slowly

than other KN models and are more similar to some SN models, which leads to class

confusion at the ML stage.

A third product of this analysis is a prediction of the average light curves of the

objects that pass our selection criteria. In Figure 4.5, we overlay the measured i-band

magnitudes of our candidates on the average light curves of simulated objects passing

the same selection criteria. In the top row, we consider our candidates in the context

of SNe. The high redshift SNe pass our selection criteria because their photometric

host-galaxy redshift and uncertainty are consistent with the LVC distance posterior

at the 3σ level. As shown in Figure 4.5, these high-redshift SNe very closely resemble

our candidates in terms of light curve properties: the fading rates of the light curves

over the 16 nights and the apparent magnitudes are quite similar. The bottom panel

compares our candidates to KN models. Each KN light curve is the average across the

full range of Xlan, since this parameter was found to have the smallest effect on light

curve shape–it does however affect the color, but we only show monochromatic light

curves in the figure. This averaging is subject to the non-uniform grid of models and

the parameterization of Xlan in log space, however, we reiterate that this parameter

has the smallest effect on the light curve shapes shown in the figure.

The KN models as a class fade much more quickly than our candidates, which
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Figure 4.5 Light curves (i-band) of objects passing the selection criteria. All light
curves are simulated and averaged to determine the mean light curve and 1σ confi-
dence level contours. For the simulated SNe, z = 0.1 is used as the cutoff between
low and high redshift. Other classes of SNe did not pass the selection criteria with
high enough frequency to be accurately represented in the figure. Simulated KNe
light curves averaged over Xlan are shown in the bottom panel. Our candidates pass-
ing criteria 1-9 are overlaid for qualitative assessment.

results in many of them becoming too faint to detect in our observations 16 nights

after the merger. An understanding of the light curves for a potential KN and the

expected background is essential for choosing an efficient observing strategy, which

we will discuss in Section 4.5. We note again that KN light curves from models with

low vej and high Mej fade the slowest out of all KN models, and at a rate comparable

to the faster-fading SN models in the top panel of Figure 4.5. This observation only

applies to optical emission in the i and z filters, and we are unable to speculate on

the generalization of this behavior to other wavelength ranges. This behavior of this

subset of KN models poses the greatest confusion to our ML classifier as a result of
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the light curve similarities.

Using the fact that a KN was not detected in these observations, we can translate

our KN detection efficiencies and expected background rates into upper limits on

merger properties. We estimate the properties of a KN that would go undetected

from a Bayesian standpoint:

P (KNi|ncand) =
P (ncand|KNi)× P (KNi)

P (ncand)
. (4.2)

In Equation 4.2, KNi refers to an individual KN model and ncand is the number

of candidates detected in the observations. In this analysis, ncand = 0, though we

present the generalized formalism. The likelihood in Equation 4.2 can be explicitly

written as

P (ncand|KNi) = εi × Poisson(ncand − 1|B) +

(1− εi)× Poisson(ncand|B),

(4.3)

where εi represents the detection efficiency of KNi and B represents the expected

SN background, both of which are determined after all selection criteria have been

applied. The Poisson distribution used in Equation 4.3 has an expectation value of

B objects and yields the probability of detecting ncand − 1 or ncand objects. This

formulation is motivated by summing the probability that a KN is detected and the

remainder of the candidates are a realization of the predicted SN background with the

probability that a KN is not detected and all detected candidates are a realization of

the predicted SN background. In Equation 4.2, P (KNi) is the prior distribution of KN

models, which we make uninformative by assigning equal probability to each model
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in the non-uniform grid. The denominator can be evaluated directly by computing

P (ncand) =
∑

i∈KNmodels

P (ncand|KNi)× P(KNi), (4.4)

which can be interpreted as a probability normalization constant. Thus, the posterior

distribution of KN models given the non-detection in this analysis can be estimated

by setting ncand = 0 and sampling the likelihood space. The results of this sampling

are displayed in Figure 4.6.

From these observations and sensitivity analysis, we report our constraints on

candidate counterpart ejecta properties in Table 4.3. To determine the likelihood of

a physical KN parameter rather than an individual model in our non-uniform model

grid, we perform a three-dimensional linear interpolation between the model efficien-

cies in the space of log(Xlan), Mej, and vej. We note that this linear interpolation

is justified by the smoothness of adjacent points in the grid of efficiencies in Figure

4.4. These results are less constraining than what would be obtained using the KN

efficiencies and expected backgrounds after Criterion 1, but this is only the case when

ncand = 0. In this specific case the first term in Equation 4.3 is zero, which leads to a

cancellation of the background in Equation 4.2, so the effect of the selection criteria

only manifests through reducing KN detection efficiencies. In general, reducing the

SN background will produce better constraints.

It is worth noting here that previous analyses have demonstrated that derived

constraints can depend on the models employed in the analysis (Coughlin et al.,

2019), and furthermore that the discretized grid of model parameters can affect the
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Table 4.3 Constraints on counterpart ejecta properties of the candidate NSBH merger
GW190814. These constraints are derived by interpolating the grid of efficiencies in
Figure 4.4 for each of the Kasen et al. (2017) KN models and applying the Bayesian
formalism presented in Section 4.4.3. This calculation utilized an uninformative prior
by assigning equal probability to each point in the KN ejecta parameter space.

Ejecta Property 1σ Constraint 2σ Constraint
Mej < 0.016 M⊙ < 0.07 M⊙
vej ̸∈ [0.16c, 0.26c] ̸∈ [0.18c, 0.21c]
Xlan > 10−5.92 > 10−8.56

constraints as well (Dietrich et al., 2020). For this specific event, optical light would

be emitted by tidally-stripped NS material, which motivated our choice of models

focused on the ejecta properties. By not using a model tied to the dynamics of the

system, we marginalize over the dependencies on these features of the merger and

focus our analysis on directly observable characteristics. To account for the non-

uniform spacing of our grid of model parameters, we performed a three-dimensional

linear interpolation of the efficiencies in Figure 4.4 when performing the Bayesian

analysis. In the Bayesian analysis, we assigned an equal probability to each point

in the parameter space of our models. While not all ejecta parameter combinations

may be equally likely given the NSBH-nature of GW190814, we believe our uniformed

prior is well-motivated given the mass of the lighter object involved in the merger. In

the event that the object truly was a 2.6 M⊙ NS, we believe all values in the ranges

of Mej, vej, and Xlan are physically accessible under the right dynamical conditions.

To show the benefit of selection criteria that reduce the SN background in GW

follow-up observations, we perform simulations of follow-up observations at several

points in this analysis. After each criterion, we take the expected SN background
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and KN detection efficiency for the blue component of a GW170817-like KN, and

calculate the significance level at which that KN would be identified as the counter-

part. Assuming a nearly complete coverage of the GW alert localization area, we

report the fraction of follow-up observations where an association at the 1σ, 2σ, 3σ,

and 4σ confidence level would be possible in Figure 4.7 as functions of the remaining

SN background. Without placing any selection criteria, less than 3% of DECam

follow-up observations can be expected to identify the counterpart at the 3σ confi-

dence level. Conversely, with the selection criteria and ML classification developed

in this analysis, approximately 95% of follow-up observations are expected to be able

to identify a counterpart in the DECam observations at the 4σ confidence level.

4.5 Discussion

Our optical follow-up observations of the first candidate NSBHmerger GW190814,

simulations of transients in the localization area, and accompanying sensitivity anal-

ysis serve as powerful tools moving the field of multimessenger astronomy forward.

In this analysis, we presented several key results: the quantification of the expected

background, the development of tailored selection criteria, an understanding of KNe

efficiency in the observations, an understanding of the light curves of objects in our

final candidate sample, upper limits on KN counterpart properties, and the forecast-

ing of our discovery potential using the methods developed here. In this section, we

first compare our results to previous analyses of this merger, and then we utilize our

results to inform a discussion of merger dynamics and efficient follow-up strategy.
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4.5.1 Comparisons to Previous Analyses

In this subsection, we highlight the differences between our approach and those

presented in other analyses and follow-up observations of GW190814. While GROWTH

(Andreoni et al., 2020, henceforth G20) analyzed the public DECam observations

discussed in this work, multiple teams performed independent observations. Vieira

et al. (2020) (henceforth V20) observed GW190814 using MegaCam / CHFT. The

V20 observations utilized the g, i, and z bands reaching 5σ limiting magnitudes of

∼ 23 mag on nights 1, 2, 3, 4, 6, 7, 8, and 20 following the merger. The imaging

covered 69% of the total integrated probability area, as the 1 sq. degree FoV of

the imager limited the feasible area to cover each night. the Very Large Telescope

(Ackley et al., 2020, henceforth E20) utilized several observatories and filters to im-

age the 90% localization area including the Gravitational wave Optical Transient

Observer, the Visible and Infrared Survey Telescope for Astronomy, the Very Large

Telescope, the Asteroid Terrestrial-impact Last Alert System, and Pan-STARRS1.

They reach limiting magnitudes comparable to DECam on a significant fraction of

the localization area and distribute a cadence similar to the DECam and MegaCam

cadences across their network of observatories. Gomez et al. (2019) (henceforth M20)

performed a galaxy-targeted search within the 50% localization area on nights 1 and

2 following the merger with the Magellan Baade telescope. They reach a 3σ i-band

limiting magnitude of 22.2 mag. Lastly, Watson et al. (2020) (henceforth W20)

utilized the DDOTI wide-field robotic imager on the first two nights covering the

merger. They cover the full localization area to ∼ 18 mag in the w = r+0.23(g− r)

band.
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The characteristics of the different datasets collected, such as imaging depth, ob-

serving cadence, sky area covered, and image quality shaped the analyses performed

by the counterpart search teams. W20 was able to detect transients to ∼ 18 mag,

meaning KN-like optical signatures at the distance of GW190814 would be too faint

to detect. For this reason, they are unable to place constraints on counterpart prop-

erties that are competitive with the groups employing deeper optical imaging. M20

obtained deep imaging, but only targeted galaxies with the 50% localization area

(70% of the galaxy-weighted probability). While they calculate that KN-like coun-

terparts with more than 0.03 M⊙ would be too faint to detect in their observations,

without covering the full 90% localization area, they cannot place constraints above

the 90% confidence level. We, G20, V20, and E20 covered high fractions of the

90% localization area and utilized telescopes and images powerful enough to detect

potential counterparts at the distance of GW190814.

No group reports an EM counterpart, and G20, V20, and E20 use their obser-

vations to place constraints on the properties of the merger. G20 fixes the distance

of the merger to the mean value of 267 Mpc and finds Mej > 0.05 M⊙. They

also consider the viewing angle of the merger in their constraints, which enters into

our analysis through the line-of-sight component of the ejecta velocity. V20 finds

slightly tighter constraints on the ejecta mass of a potential EM counterpart (0.015

M⊙), though their analysis fixes vej to 0.2c, which we show in this work is disfavored

at the 2σ confidence level. We suggest this choice of disfavored ejecta velocity is the

cause of the comparatively tighter constraints reported by V20. E20 reports that

KN-like counterparts with Mej > 0.1 M⊙ are excluded at the 90% confidence level.
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They arrive at this result by using the limiting magnitudes of their observations and

the expected magnitudes of KN models (similar to the work of G20 and V20) at the

distances distributed according to the luminosity distance posterior of GW190814

from the LVC (similar to this work).

The characteristic distinguishing the work presented here from the analyses of all

other groups is the extent of the sensitivity analysis used to understand KN detec-

tion efficiencies in the observations. G20 and V20 choose a handful of representative

fixed distances for the KN and assess whether the apparent magnitude of a particular

model would be brighter than the 5σ magnitude limit in the band of the observa-

tions. This approach does not consider the effect of the selection criteria applied

to the candidates to rule out all objects on the KN model efficiencies, nor does it

accurately marginalize over the LVC distance posterior for the merger. The simula-

tions developed for our work fully incorporate the effects of our real-time selection

criteria, the full posterior of luminosity distances, and enable us to place meaningful

constraints without fixing any KN parameters. Understanding the effects of the se-

lection criteria placed during a real-time search on the set of detectable counterpart

configurations is essential for accurately constraining the physical properties of the

potential optical counterpart. The approach demonstrated in this work has been

used in Doctor et al. (2017), Morgan et al. (2019), De et al. (2020), Kasliwal et al.

(2020), and Garcia et al. (2020), and has been facilitated by the development of

code bases such as simsurvey (Feindt et al., 2019). We advise that future analyses

employ this approach in GW counterpart searches and population studies.
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4.5.2 Merger Dynamics

The optical signature from an NSBH merger is highly dependent on the dynamics

of the system and the characteristics of the compact objects involved (Rosswog , 2013;

Bauswein et al., 2013; Radice et al., 2017, 2018). For a KN-like signature to be

emitted, the NS would need to be tidally disrupted to produce light-emitting ejecta.

Therefore, the spins and masses of the coalescing bodies, which determine the degree

of tidal disruption of the NS, are intimately linked to the optical signature (Capano

et al., 2020).

At the 2σ confidence level, we were able to exclude counterparts with Mej >

0.07 M⊙. Thus, only a small fraction of the NS material was ejected. We also

exclude counterparts with Xlan < 10−8.56 at the 2σ level. The constraint on this

quantity is 10−5.92 at the 1σ level, indicating that higher Xlan are favored overall,

and that in the most probable case, any ejecta produced would have been rich in

heavy elements. This richness could result from the small (if any) amount of NS

material ejected in the merger, as the majority of the material would be synthesized

into heavy elements by the gravitational potential in close proximity to the BH.

A final result from this sensitivity analysis that can be used to infer properties of

the merger is the non-detection of a KN-like counterpart. Since our KN detection

efficiency decreases with Mej, the lack of an observation of a KN in this merger event

suggests a small or nonexistent amount of ejected material. The DECam observations

are therefore consistent with the NS retaining structural integrity until it passed the

radius of the last stable circular orbit.

The physical parameters of the merger most closely tied to the potential tidal
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Figure 4.6 Exclusion contours in the ejecta mass (Mej), velocity (vej), and lanthanide
fraction (Xlan) parameter space at the 1σ and 2σ levels. The posterior distributions
of the three parameters are shown as histograms in the rightmost plot of each row.
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disruption of the NS, and hence the optical constraints derived in this analysis, are

the mass ratio q ≡ MBH/MNS, the magnitude of the final BH spin χ, the radius

of the neutron star rns, and the chirp mass M. The ejected mass increases with

decreasing MBH , increasing χ, and rns (harder EOS). From numerical simulations,

the upper limit to disk formation is a mass ratio of ∼ 3 − 5 (Lattimer , 2019; Pan-

narale and Ohme, 2014; Foucart et al., 2019, 2018). For a fixed BH mass, as the NS

mass increases, a larger BH spin is required to produce a massive disk. The reason

is that higher black hole spin decreases the last stable circular orbit radius, allowing

a higher mass NS, generally more compact, to reach its disruption radius and thus

leave the disrupted NS matter remaining in orbit. Holding the NS mass fixed, in-

creasing the BH mass increases the gravitational radii, and higher spins are needed

to bring the last circular orbit radius in below the disruption radius. Binaries with

low mass ratios and high BH spins maximize the chance of massive disk formation.

Based on our observations, the spins, masses, and alignments of the merging bodies

disfavor tidal disruption of the NS. In their recently released parameter estimation

of the merger, the LVC determined q = 0.11, χ = 0.28 of 0.28, and M = 6.1 M⊙

(Abbott et al., 2020b). This spin and mass ratio would lead to small amounts of

tidal disruption of the NS, and would be consistent with the lack of an accretion

disk, the lack of an accompanying gamma-ray burst, and the lack of a detection of

a KN-like counterpart. Therefore, the constraints on NS ejecta properties derived

from the DECam observations in this analysis are consistent with the LVC parameter

estimation of the merger dynamics.
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Figure 4.7 The effect of applying selection criteria on follow-up observation sensitivity
and KN efficiency. Top: The fraction of follow-up observations expected to result
in a KN detection of given significance as a function of the remaining background.
Bottom: Efficiency for the blue component of a GW170817-like KN at the distance
of GW190814 as a function of the remaining background.

4.5.3 Implications for Follow-up Observation Strategy

We find two aspects of our observing strategy for this event to be highly efficient

and recommend their use in follow-up observations going forward. Namely, our

observing cadence and exposure time, and specifically how we tailored them to the

conditions of the event, were essential in detecting the large number of candidates

published by teams using the public DECam data.

The cadence of our observations was well-suited for the detection of a KN-like op-

tical signal. By triggering DECam immediately after the LVC alert, and by repeating
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observations on the next three nights following the merger, we increased our chances

of detecting a rapidly changing object. Furthermore, our choice to include epochs

on nights 6 and 16 after the merger enabled the characterization of light curves for

longer-lived transient objects in that part of the sky. This choice proved to be essen-

tial in systematically eliminating fading objects unassociated with the GW signal.

While a KN is not expected to be bright at these later epochs, the detection of any

potential candidate on these nights can be used as evidence to exclude the object.

In this sensitivity analysis, the availability of light curves spanning a 16 day in-

terval with 6 observing epochs enabled the development of a powerful ML-based

photometric classifier. Our PSNID + RFC approach was able to effectively eradi-

cate the SN background in these observations, and we expect a similar performance

in subsequent follow-up observations with similar cadences. The benefit of devoting

resources to background reduction is a key point we seek to make. Figure 4.7 demon-

strates how reducing the SN background dramatically increases the probability that

optical follow-up observations will associate a candidate with the LVC alert at a

statistically significant confidence level. In this figure, we select a single KN model

for simplicity and consider its detection efficiency as a function of the remaining SNe

background as we apply the selection criteria in this analysis. The “Before ML”

section references the real-time selection criteria of this analysis while the “With

ML” section varies the PSNID + RFC operating threshold to move along the ROC

curve of Figure 4.3 towards regions of higher purity. Again, the performance of this

classifier and the possibility to reduce the SN background are primarily determined

by the cadence chosen by the observing team. Reducing the SNe background using
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the techniques of this work leads to the possibility of associating a detected transient

with the merger at the 4σ confidence level 95% of the time in identical follow-up

observations.

The exposure time of the DECam images was dynamically varied in response to

changing observing conditions. On the first two nights, when a potential KN-like

counterpart would be expected to be near peak brightness, we opted for a shorter

exposure time to tile the area twice quickly. This choice enabled us to rule out moving

objects while maintaining enough depth to detect a KN-like object positioned at the

estimated distance of GW190814. In subsequent nights, we increased the exposure

time such that we would be sensitive to fainter objects since a KN-like object would

be expected to fade by ∼ 0.5 mag per day (Kasen et al., 2017). While the choice

to vary the exposure time introduces non-uniformity in the image quality of the

DECam data, it is useful for maximizing the probability of detecting a rapidly-fading

transient on each night of observation. Furthermore, we note that this variance of

image quality over the course of the observations necessitates the use of detailed

simulations of the follow-up observations for quantifying constraints. Our choice

of exposure times resulted in the deepest optical observations of the entire 90%

localization region on each night DECam was operated compared to all follow-up

teams. Thus, the observing strategy described in this work is a useful baseline for

future DECam follow-up observations.

The chances of detecting a potential counterpart were greatly improved by SOAR

spectra being obtained for the most interesting candidates. While we were able to

achieve high accuracy machine-learning-based photometric classification of the ob-
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jects in our sample in this work, the success of that approach requires the availability

of several nights of photometric observations. In the real-time portion of the obser-

vations, the spectroscopic component of the search is essential. The use of SOAR

enabled us to confidently exclude ∼ 20% of our most promising candidates on the

first few nights of the observations.

We see this spectroscopic efficiency as an aspect of gravitational wave counterpart

identification that can be dramatically improved given the resources of the astronom-

ical community, for example with the use of wide–field multi–object spectroscopy

(Palmese et al., 2019). In cases where the 90% localization is larger than what one

telescope can cover in a single night, the fraction of sky area covered by the astro-

nomical community is another improvable trait of the follow-up strategy. As we look

forward to the increased sensitivity in Observing Run 4 and consequent increased

alert frequency, synergy among follow-up teams will be integral to the association of

gravitational waves with their electromagnetic counterparts. Distributed and coor-

dinated observations among follow-up teams will be essential, and furthermore the

sharing of observation metadata to improve sensitivity and forecasting studies will

benefit the field as a whole. For further discussion of these topics, see Coughlin

(2020)

4.6 Conclusion

In response to the first high confidence alert of gravitational radiation from a

neutron star–black hole merger GW190814, we triggered the 4m Blanco Telescope /

Dark Energy Camera and obtained the deepest coverage of the entire 90% localiza-
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tion area. Our observations took place on 6 nights over the first 16 nights following

the merger, and each night the Dark Energy Survey Gravitational Wave Search

and Discovery Team published candidate counterpart objects to the astronomical

community (Soares-Santos et al., 2019a; Palmese et al., 2019; Herner et al., 2019b;

Tucker et al., 2019b; Herner et al., 2019c; Rodriguez et al., 2019; Soares-Santos et al.,

2019c,d; Annis et al., 2019; Palmese et al., 2019; Tucker et al., 2019a; Soares-Santos

et al., 2019b; Herner et al., 2019a; Wiesner et al., 2019a,b; Cartier et al., 2019). The

entire localization area was within the Dark Energy Survey footprint, enabling the

use of six years of previous images and complete host galaxy catalogs in our search

for a counterpart. In an offline analysis following the conclusion of observations, all

candidates were excluded based on light curve properties, photometric redshifts of

the host galaxies, or a machine-learning classification approach developed specifically

for this work. We present the results of the real-time follow-up observations and ac-

companying sensitivity analysis here. Using detailed simulations of supernovae and

kilonovae matched to our observing cadence and conditions, we quantify the expected

supernova background, develop selection criteria that effectively remove that back-

ground, and calculate kilonova efficiency resulting from the selection criteria. The

non-detection of an electromagnetic counterpart in our data implies that a potential

counterpart had Mej < 0.07 M⊙, vej < 0.18c or vej > 0.21c, and Xlan > 10−8.56 at

the 2σ confidence level. These analysis components enabled us to also characterize

the typical light curves of supernovae and kilonovae that would appear in our obser-

vations, set constraints on the properties of an undetected kilonova, and forecast the

sensitivity of follow-up observations like this one going forward. We utilize these re-
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sults to inform a discussion of the dynamics of the merger and efficient gravitational

wave follow-up strategy.
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CHAPTER V

The Observing Strategy Revisited1

The third LIGO/Virgo Collaboration (LVC) observing run (O3) resulted in over

60 new events (see the third Gravitational-wave Transient Catalog, The LIGO Scien-

tific Collaboration et al. (2021), hereafter GWTC-3). One GW event originated from

a BNS merger and two high-confidence events originated from NSBH coalescences

(Abbott et al., 2021), but no electromagnetic counterparts were confirmed from any

event despite extensive follow-up campaigns (e.g., Morgan et al., 2020; Garcia et al.,

2020; Tucker et al., 2022; Kilpatrick et al., 2021; Oates et al., 2021; Andreoni et al.,

2019; Andreoni et al., 2019b; Goldstein et al., 2019). One study (Graham et al., 2020)

proposed an AGN counterpart to the binary black hole merger GW190521, but the

association to the GW event cannot be made with confidence (Palmese et al., 2021).

The fourth GW observing campaign (O4) started in May 2023 and is ongoing

at the time of this writing. In O4, the Japanese GW antenna, KAGRA, is joining

the LVC to form the LIGO/Virgo/KAGRA (LVK) Collaboration. In O4, the LVK

1This Chapter is published as Bom et al. (2023), arXiv:2302.04878 (submitted to the Astrophys-
ical Journal)
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is expected to achieve a median Luminosity Distance that is two times larger and

a factor of ∼ 7 detections of BNS events than the previous O3 campaign (see table

2 in Petrov et al., 2022). The expected rates of BNS are uncertain but in the

range of 9-88/year (Abbott et al., 2020a; Petrov et al., 2022). It is unlikely that each

subsequent KN event will obtain the same amount of follow-up resources as in O3. As

GW detectors become more sensitive and able to detect events at larger distances,

the optical follow-up of BNS events will become more challenging, including for

campaigns using the Dark Energy Camera (DECam, Flaugher et al., 2015) such as

those coordinated by the DES Gravitational Wave follow-up group (DESGW). With

this challenge in mind, we performed a detailed study to optimize the search strategy

for O4.

5.1 Simulation data

5.1.1 Simulated O4 BNS events

We start by producing a set of simulated BNS mergers that are expected to be

detectable in the upcoming LVK O4 observing run. The procedure is similar to that

in Petrov et al. (2022).

GW events are simulated using the BAYESTAR software (Singer and Price, 2016;

Singer et al., 2016a,b), which uses LALSuite (LIGO Scientific Collaboration, 2018)

tools. We assume sensitivity curves for Advanced LIGO, Virgo, and KAGRA as O4

sensitivities discussed in Abbott et al. (2020a)2, though we assume a sensitivity for

2The curves are available in https://dcc.ligo.org/LIGO-T2000012/public and, https://
dcc.ligo.org/LIGO-T2000012-v1/public
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Figure 5.1 The distance distribution and 90% credible interval sky localization area
of the O4 simulations of BNS mergers used in this study. The simulated primary
masses follow a x̄ = 1.5M⊙, σ = 1.1M⊙, xmin = 1.1M⊙, xmax = 3M⊙ Gaussian
distribution, and the spins of the events are distributed uniformly between ±0.05.
Simulated detections are limited to events with a network SNR greater than 12. In
this work, we use only events with area < 300 degrees2, which is 611 of the 860
events.

KAGRA of a BNS range of ∼ 80 Mpc.3 All detectors have a duty cycle of 70%,

which is consistent with LVK predictions Abbott et al. (2018). Assuming a Planck

Collaboration et al. (2020) cosmology, we create 10, 000 BNS events of the type O4

could theoretically observe, following a uniform in comoving volume distribution.

TaylorF2 waveforms (Buonanno et al., 2009) are assumed both for injections and

reconstructions. The primary mass distribution of our injections follow the neutron

star mass function found in Abbott et al. (2021), normally distributed with mean 1.5

M⊙ and standard deviation 1.1 M⊙, truncated to be within 1.1M⊙ ≤ MNS ≤ 3M⊙

in order to stay consistent with the Kasen models’ parameter space. The NS spin

distribution was uniformly distributed between -0.05 and 0.05. After injecting the

3LVK has updated the assumed sensitivity for KAGRA, as seen in v2 of the above table; this
makes little difference to our analysis, concerned mostly with distant events
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BNS mergers, a matched-filter search retrieves the detected events. We consider as

detections those events for which a single–detector signal–to–noise ratio SNR> 4 is

reached by at least 2 detectors and the overall network SNR is > 12, resulting in

860 detected events. The measured SNR is added with Gaussian noise. Finally, we

produce BAYESTAR skymaps for the detected events. In Figure 5.1 we present the

area (90% credible interval) and luminosity distance (integrated over the whole sky)

for all of the simulations used in this analysis.

Petrov et al. (2022) argues that the alerts produced by the LVC during O3 are

better modeled by dropping the two detector coincident detection requirement and

using a minimum SNR for BNS events of > 8. These criteria would have the effect

of increasing the number of low SN, and therefore large sky area, events in our

simulations. Figure 5.1 shows median luminosity distance of ∼ 150 Mpc and sky

area of ∼ 20 sq-degrees, whereas Petrov et al. (2022) find 352±10 Mpc and 1820+190
−170

sq-degrees, a difference from previous work that they attribute to the changing of

the SNR requirements. There are 249 from the total of 860 events that have 90%

sky area > 300 sq-degrees. To change our sample to have a median sky area of

∼ 350 sq-degrees we would need an additional ≈ 360 events, all of which would need

90% sky area > 350 sq-degrees. Later we will be placing a sky area limit of < 300

sq-degrees, so we chose not to consider these additional high-sky-area events here.

5.1.2 Kilonova physical models

We model KN using the time-evolving theoretical Spectra Energy Distributions

(SEDs) of KN atmospheres from Kasen et al. (2017), hereafter referred to as the
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Kasen models. The Kasen models are parameterized by the mass ejected in the

explosion, Mej, the abundance of lanthanide elements in the ejecta, Xlan, and the

velocity of the ejecta, vej. The models are a set of 329 time-dependent SEDs on a

grid of discretized parameters: 0.001 M⊙ ⩽ Mej ⩽ 0.1 M⊙, 0.03c ⩽ vej ⩽ 0.3c, and

1× 10−9 ⩽ Xlan ⩽ 1× 10−1.

There are other KN models available in the literature (e.g. Bulla, 2019; Darbha

and Kasen, 2020; Hotokezaka and Nakar , 2020; Wollaeger et al., 2021; Gillanders

et al., 2022). In comparison to these, the Kasen models do not build in the depen-

dence on the geometry of the mergers and the viewing angle (see, e.g., Stewart et al.

2022 for a visualization of an asymmetric KN supported by accretion disk simula-

tions), but instead provide atmosphere models to be used in building a geometric

model. While the viewing angle is an important parameter for the expected light

curve, we argue that the range of light curves built within our framework covers the

full parameter space of expected light curves. This is discussed further in 5.3.2.

5.2 Kilonova lightcurve simulations

The lightcurve simulation pipeline is similar to that used in Morgan et al. (2020),

which constrains the physical KN properties of GW190814. The SuperNova ANAl-

ysis software (SNANA: Kessler et al. 2009, 2019b) enables the simulation of light

curves of KN as they would be measured by DECam. SNANA produces light curves

by simulating fluxes and uncertainties in observations by incorporating information

about cadence, image zero points, and noise levels in search and template images.

The light curves are in absolute magnitudes and are converted to observed magni-
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tudes using a given cosmology. In particular, SNANA chooses a grid of 15 redshifts

at 0.003 ⩽ z ⩽ 0.2, which is used to transform the Kasen model SEDs without evo-

lution. The Kasen model SED is redshifted to a z on our grid. SNANA also takes

into consideration the reddening by the dust in the Milky Way (Kessler et al., 2019b;

O’Donnell , 1994). Later, the SEDs are convolved with DECam transmission curves

accounting for atmosphere, telescope, filters, and CCDs. Given a cadence, the light

curves are calculated by sampling the magnitude grid.

The 329 Kasen models, αj, each with a range of time after burst, τ (0.00 ⩽ τ ⩽

16.7 days), at the SNANA grid of redshifts, zi (0.003 ⩽ z ⩽ 0.2), describe 829, 080

simulated magnitudes, mλ(λ, τ, αj, zi), for each of the 4 filters that we use (g, r, i, z).

5.2.1 DECam limiting magnitudes

We define the limiting magnitude as the magnitude at which we can measure a

point source, e.g. a star, with 0.1 mag error, which corresponds to signal-to-noise

ratio, SNR ∼ 10. We then define the limiting magnitude m0 for a total effective

exposure time of 90 sec, i.e. texp × teff = 90s, where teff is a unitless quantity that

scales the exposure time to the ‘effective’ exposure time when taking into account sky

conditions (higher teff being better sky conditions). Then, to scale up for different

exposures, we construct:

mlim = m0 + 1.25 log

(
teff × texp

90s

)
, (5.1)

which reflects S/N going as the square root of time in a sky noise limited observation.

We use the m0 measured in the DES data by Neilsen et al. (2016), thus the 90s
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Table 5.1 Observational conditions (photometric filter, limiting magnitude, and ef-
fective exposure time) averaged from DECam follow-ups of previous observations.
Note that the higher the teff value (which ranges from 0 to 1), the better the obser-
vational conditions.

Filter m0 teff (bright time) teff (dark time)
g 23.4 0.05 0.7
r 23.1 0.15 0.8
i 22.5 0.45 0.7
z 21.8 0.6 0.6

Table 5.2 DECam mlim(10σ), dark time.

Exposure time (sec)
Filter 10 100 1200 3600
g 22.0 23.3 24.6 25.2
r 21.8 23.0 24.4 25.0
i 21.1 22.4 23.7 24.3
z 20.3 21.6 22.9 23.5

Note. — ∆mlim(10σ − 5σ) = 0.75 mags.

normalization factor, and present those values in Table 5.1, and the derived limiting

magnitudes in Table 5.2. The teff is closely related to observational conditions during

the night. Therefore, we break observing into nights of bright time and dark time

and use teff from previous target of opportunity programs in DECam, in particular

the observations from past GW follow-up events (Morgan et al., 2020, Garcia et al.,

2020). Throughout this chapter, we focus on detectability on dark nights unless

otherwise stated.
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Table 5.3 Observational parameter space Θ explored.

Time after burst (Days) 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0

Scenario 1
Filter g, r, i, z
2d credible sky area covered 0.9, 0.85, 0.8, 0.75, 0.7
Exposure time (sec) 60, 90, 120, 200, 300, 600, 1200, 3600

Scenario 2 (with inner & outer region)
Filter g, r, i, z
2d credible sky area covered
Outer: 0.9 Inner: 0.8, 0.7, 0.5, 0.3
Outer: 0.8 Inner: 0.7, 0.5, 0.3
Outer: 0.7 Inner: 0.5, 0.4, 0.3

Outer/inner exposure time pairs (sec) 60/90; 90/120; 120/200; 200/300;
300/600; 300/1200; 600/1200; 600/2400;
1200/2400; 2400/3600; 3600/5400

5.2.2 Cadences & observational parameters

We use of SNANA to find effective search strategies that maximize candidate

detection, considering realistic conditions, including the maximum duration of the

night, intervals between observations, and sky brightness, while also minimizing tele-

scope time and enabling earlier discovery. This is at base a trade-off of exposure times

versus sky area coverage, but with additional complications of filter choice and the

time since the event occurred. We limit our telescope time expenditures to 8 hours

per night and assume Blanco/DECam has telescope/readout slew time of 30s be-

tween the exposures, which is true for slews less than 10 degrees. We test four filters,

g, r, i, and z, starting 12 hours after the trigger, and going to 4 days post-merger in

half-day increments with several exposure times. These are summarized in Table 5.3.

We define two exposure time scenarios. In Scenario 1 we cover the area of a given

GW event with a single set of exposure times and in Scenario 2, we explore the use

98



of two different exposure times for a single search. The latter is motivated by the

need to cover the high probability area sky with deep exposures, while covering the

larger low probability localization area outskirts with shorter exposure images. We

designate central high probability areas as the “inner region” and the rest of the

area inside the localization region as the “outer region”. The last section of Table

5.3 presents the combinations considered for the inner region, ranging from 30%

to 80% sky probability coverage, for 3 different values of the total (deep+shallow)

sky map probability coverage, from 70% to 90%. For instance, a combination of

40% probability for the inner region and 70% total coverage means that the 40%

highest probability region is covered with higher exposure time and the 70 − 40 =

30% left over is covered with the shorter exposures. Each of these combinations is

considered for all possible deep and shallow exposures presented in Table 5.3. For

scenarios where we cover the sky area twice in a single night, we additionally take

into consideration the KN variability a few hours after the first search.

5.2.3 Simulation data summary

We simulate a set of GW detections S = S1, . . . , Sn, where n = 860 and Si is

the ith simulation with distance di. For each Si we evaluate each of the parameter

sets Θ in the two scenarios. In Scenario 1 there are 8 passes since burst, 4 filters,

8 exposure times, and 5 sky area probability coverages: 8 · 4 · 8 · 5 = 1280 possible

parameter sets. In Scenario 2 there are 8 · 4 · 11 · 10 = 3520 possible parameter sets

to be evaluated. Over both, 4800 observation models are evaluated. Each model is

evaluated with the machinery described in Section 5.1, resulting in SNANA kilonova
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measured magnitudes. We have done this for each of the 329 Kasen models.

5.2.4 Discovery probability

We define the probability of detection, pαj
, of the KN model αj for the jth com-

bination of (Mej, log(Xlan), vej), with observed magnitude mλ = m(λ, τ, αj, zi) in a

given filter λ, for a given exposure time texp weighted by observing condition teff for

an event at mean redshift, z̄, over the SNANA grid of redshifts, zi:

pαj
∝

∑
i


pr(αj) · pr(zi), if mλ < mlim

0, if mλ ≥ mlim

(5.2)

where

pαj
≡ pαj

(Detection|τ, teff ,Θ, z̄),

mλ ≡ magλ(λ, τ, αj, zi),

mlim ≡ maglim(λ, teff ,Θ), and

pr(zi) = exp

(
−(zi − z̄)2

2σ2
z̄

)
,

where τ is time after the GW detection, Θ contains the specific observation strategy

characteristics including texp, mlim is the limiting magnitude of the observation, and

pr(αj) are the model priors. The summation is over all redshifts for a given model,

j at a given τ . Eq. 5.2 represents a Gaussian prior for choosing light curve models

from the grid of SNANA defined redshifts given the GW distance. Explaining it

differently, Eq. 5.2 is, for a given Kasen model, examining whether the resulting
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apparent magnitude is less than the limiting model with a Gaussian prior on the

redshift, using the GW event mean redshift, z̄, and the grid of SNANA redshifts the

KN could be at, weighted by the GW event variance in redshift, σ2
z̄ .

In order to obtain the total probability of detecting the transient once, we also

need to take into account the explored volume. The GW localization maps present

the probability that the event is located at a given sky position, the luminosity

distance at that position and its uncertainty. Therefore we define the total probability

of detecting an event as

Pd =

∫
Ω̂
dΩ dL(Ω) p(Ω)∫
Ω̂
dΩ dL(Ω)

×
329∑
j=1

pαj
, (5.3)

where

Pd ≡ P (discovery|Ω̂, τ, teff ,Θ, z̄)

and Ω̂ is the entire sky area observed in the follow-up, the dΩ is the voxel, p(Ω) is

the probability in the voxel, and dL(dΩ) is the luminosity distance to the voxel. The

sum over pαj
includes the priors and thus indicates the model used. The sky coverage

and exposure times determine the total telescope time for a given KN detection. We

note that we use 3-d spatial localization, rather than 2-d on-sky probabilities, thus

the dL weighting in eq 5.3 and the attendant implication that we can have a higher

detection probability than on-sky credible area covered. We can now evaluate Pd for

a given set of Θ.
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5.2.5 Confirmation probability

In order for an object to be confirmed as a kilonova candidate, we require it be

detected twice (in two observing ‘epochs’). This requirement can be lifted if, for

example, there are sufficient spectroscopic resources available to follow up all of the

candidates found after a single epoch. Generally, this is not the case, however. The

second detection eliminates spurious detections, including image artifacts, asteroids,

and other possible contaminants (Morgan et al., 2020; Shandonay et al., 2022). An-

other reason to consider the detections independent is that we typically observe while

working on post-processing and making target selection for spectroscopy in the data

from the previous epoch.

Given that we want to make two detections to positively identify kilonova can-

didates, we define the probability of confirming the transient with two independent

detections as:

Pc ≡ P (confirmed) = Pd,1 · Pd,2 (5.4)

In this form P (confirmed) has an extra spatial/volume probability term multi-

plied in. This is irrelevant from an optimization viewpoint and we defined it this

way for ease of computation.

5.3 Optimizations and Kilonova Types

After calculating Pc for each O4 event in two observing scenarios each with a grid

of observational parameters we can evaluate what works best to optically find the
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kilonova. The answer to this depends on the science goal. Our primary science aim is

standard siren cosmology, so we set a goal to identify counterparts to every kilonova

that the LVK detects as a GW event. In this section we discuss optimizing the

strategy given the science goal and then discuss the detailed metric, which involves

exploring the meaning of covering the space of Kasen models.

5.3.1 Optimizations

We derive Pc for each of the 1280 parameter combinations of Scenario 1 and for

each of the 3520 combinations of Scenario 2, resulting in 4800 total for each simulated

merger detection event, Si. Not all of these combinations have an appreciable Pc

much above zero, as most of the predicted magnitudes are below sky noise.

We use Pc as the variable to optimize on. We choose the highest Pc for each

sim Si, look up the set of observational parameters Θi for it, and define this the Top

strategy. Choosing the highest Pc is the simplest optimization, but for our evaluation

we need at least two more, Reference and Low Telescope Time.

1. Top Strategy is the Θi producing the highest Pc for each Si, the observational

parameters producing the highest probability of confirmation for every O4 sim-

ulation.

2. Low Telescope Time (low-TT) is the Θi combination that uses the lowest tele-

scope time given while retaining a Pc within 10% of the highest confirmation

probability strategy, by definition Top. For example, if the Top strategy finds

Pc = 0.85, then a low-TT strategy will have Pc ≥ 0.75, usually with a much
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reduced telescope time. We will find it interesting to vary the threshold away

from 10%.

3. Reference Strategy has the 90% probability sky area observed in i and z bands

with 90 second exposures on the first two nights after the merger. This strategy

models previous DECam searches, in particular the extensive search of Morgan

et al. (2020), and has been used as the DECam strategy for the predictions of

Chase et al. (2022).

The Top strategy uses as much telescope time as needed to cover the full proba-

bility volume. All strategies work within the constraint of requiring two passes over

two 8 hour nights.

5.3.2 Bayesian Average Models

Not every Kasen model atmosphere is equally likely to be a good model for a

real KN light curve. Most models for GW170817 are 2+ component models, as in

Kilpatrick et al. (2017); Villar et al. (2017); Coughlin et al. (2018); Gillanders et al.

(2022). If the Kasen models define a linear space of KN models, then the Kilpatrick

models are in that space; if the Kasen models are eigenmodels of KN, then the models

in Kilpatrick et al are defined by the eigenvalues multiplying the eigenmodels. Both

the values of the non-zero eigenvalues and the number of non-zero eigenvalues are

highly model dependent. Dropping the eigenvector language, it is clear that in the

current situation of very few well studied KN, the number of components in models

describing KN candidates is uncertain.
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One of the most common ways to define detection efficiency in the literature is to

set up a grid of KN models, for example over viewing angle, as done for a χ2 analysis

and then to calculate the fraction of models detected given an observation. This

makes the detection probability explicitly dependent on non-physical choices of the

grid breadth and grid spacing. In our case, the grid would be the 329 Kasen models,

even though these models were meant to extend past the range of models likely to

describe real KN. In a Bayesian framework, each of these models would come with

a prior describing our belief in their applicability.

We will employ the useful idea of a Bayesian model average. We evaluate the

entire grid of Kasen models, but instead of a uniform weighting, we place a Bayesian

prior, pr(α), on each model. The Bayesian average model detection probability is

implicit in eq 5.2, but can be thought of as:

⟨Pd⟩ =
329∑
j=1

Pd · pr(αj) (5.5)

where
∑

pr(αj) = 1. Here we will use Gaussian priors to produce three Bayesian av-

erage models, bright & blue, reddish & slow, & red & faint, as given in Table 5.4. It is

useful to guide the intuition to form the Bayesian average model absolute magnitude,

Mλ(λ, τ) =
329∑
j=1

Mαj
(λ, τ, αj) · pr(αj) , (5.6)

of which peak Mi is also given in Table 5.4 and light curves shown in Fig 5.2.

This mean quantity, while illuminating, is incomplete as the Bayesian formalism

is designed to make the uncertainties explicit- the curves are to thought of as the
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median value of a band of light curves weighted by the prior.

Table 5.4 Kilonova Gaussian model priors.

Blue & Bright Reddish & Slow Red & Faint
µ σ µ σ µ σ

Mej(M⊙) 0.025 0.001 0.025 0.01 0.035 0.15
log(Xlan) -5.0 1.0 -5.0 10.0 -2.0 5.0
vej (c) 0.25 0.01 0.25 0.10 0.15 0.30

Peak ⟨Mi⟩ −16.3 −15.7 −14.6

Note. — Table of means, µ, and standard deviations, σ, of the Gaussian priors on the Kasen
models parameter ranges. The Kasen models have parameter ranges of:

0.001 M⊙ ⩽ Mej ⩽ 0.1 M⊙
−9 ⩽ log(Xlan) ⩽ −1
0.03c ⩽ vej ⩽ 0.3c

Figure 5.2 The absolute magnitudes vs days after the trigger for the weighted average
of three sets of priors in the KN parameter space models considered.

The bright & blue model is defined as the means and uncertainties of the blue

component model in Kilpatrick et al. (2017) interpreted as Gaussian priors. As

there are no uncertainties given for the blue model, we assume for Mej a relatively

narrow 0.001, and for vej of 0.01. Where Kilpatrick et al. (2017) has the blue model

lanthanide fraction evolving from logXlan = −4 to -6 as the opacity falls due to KN

atmosphere expansion, we take logXlan = −5 with an uncertainty of 1.0. This model
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is, in average, blue and reaches a peak luminosity a half day after trigger in g-band.

It is also, in average, the brightest of the three models and 0.8 magnitudes brighter

than GW170817’s peak Mg,r,i,z ≈ −15.5.

The reddish & slow model is defined as in bright & blue, except that we take

the σ to be ten times the uncertainties there, to reflect our ignorance of the KN

population. This results in a prior allowing the entire logXlan range of the Kasen

models to contribute. Such wide priors make our model, in average, to be redder and

slower to peak than GW170817, though with the same ⟨Mi⟩. Most of our results use

this model.

The red & faint model is defined as the means and ten times the uncertainties of

the red component model in Kilpatrick et al. (2017) interpreted as Gaussian priors.

The predominantly lanthanide-rich Kasen models contribute. This results in a model

that is, on average, redder and fainter than GW170817, with a peak ⟨Mi⟩ fainter by

1 magnitude, and a ⟨Mr⟩ fainter by 1.4 magnitudes. This model aligns with what is

expected by most models for viewing KN in the orbital plane, where the lanthanide-

poor material is hidden from view.

We will use our three models in various ways to evaluate the optimized strategies.

The bright & blue model will be the easiest to detect, as the light curves peak brighter

than −16 in g, r, i, z. The red & faint model will be the hardest, as the absolute

magnitude peaks only brighter than −13 in g, barely −14 for r, approaching −15

for the observationally more difficult i, z. The reddish & slow model is intermediate.

In this chapter, we often use bright & blue to inform the reader’s intuition to a low

inclination angle KN. We use red & faint to show the effect of a faint KN on the
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Figure 5.3 Discovery probability vs luminosity distance using the low-TT observing
strategy compared to the Ref strategy. Each plot describes a different KN model
where (Upper Left:) bright & blue, (Upper Right:) reddish & slow, (Bottom Left:)
red & faint. The shaded region about the median line represents the 68% confidence
interval of the scatter among the simulations. We also mark the distance to the
upper limit of the LVK O4 projected range as well as noted GW events for reference.
Bottom Right: distribution of simulations for the low-TT strategy, binned by detec-
tion probability in our wide prior model, reddish & slow. The marginal histograms
are detection probability weighted.
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strategies. It can be argued that the red & faint represents the most likely KN from

a NSBH merger. We often use reddish & slow as an intermediate case that shows

the behavior of choices in strategy optimization well.

There remains considerable uncertainty in the KN population statistics. While

our three models are comparable to those in, e.g., Zhu et al. (2023); Sagués Carracedo

et al. (2021); Coughlin et al. (2020); Petrov et al. (2022), the population study of

Setzer et al. (2022) has a two peaked absolute magnitude distribution, at i-band

absolute magnitudes of −15 and −12. In that study, GW170817 is a 95th percentile

event in luminosity, and the 50th percentile luminosity corresponds to our ⟨Mi⟩ for

red & faint. The Setzer et al. (2022) study is for a random distribution of inclination

angles and thus corresponds to the intrinsic KN population, whereas it is known that

GW observatories predominately select merging compact objects with inclination

angles near ≈ 30◦ (see Finn and Chernoff (1993); Nissanke et al. (2010); Schutz

(2011)). The observed KN population from GW event follow up will mostly be from

the first peak of Setzer et al. While a KN sample withM ≈ −12 would be challenging

even for a 4m telescope, the first peak M ≈ −15 is inside our model ranges.

We take our priors from Kilpatrick et al. (2017) because we wish to emphasize the

uncertainties in the models in this study. The uncertainties in the models reported

by Villar et al. (2017), for example, are much smaller. For observations in O4, the

models and uncertainties in Coughlin et al. (2018) are likely better. We suggest

using the 2-component lightcurve red and blue models as the counterparts to our

bright & blue and red & faint models, interpreted as the low and large inclination

angle models and to use the 1-component model with 10σ as the counterpart to our
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reddish & slow, interpreted as a maximally uncertain KN population model.

5.3.3 Strategies and KN models

We begin our study of the strategies. As the community routinely uses the

probability of detecting a KN once, calling this discovery, we will be showing Pd ≡

Pd,1 in most of the succeeding plots. Note that the strategies are all optimized on

Pc.

Reducing our GW population statistics to only distance, we can describe the

NS-NS merger population as having a median dL of 150 Mpc, a 75%-tile of 225 Mpc,

and having only 1% at dL > 300 Mpc. We take 200 Mpc as a characteristic distance.

We show in Figure 5.3 the low-TT strategy discovery probability as a function of

distance and compare it to the reference strategy. Starting with the easy case model,

bright & blue, we see that the low-TT detection probability has a ceiling at ≈ 90%.

The reference strategy Pd falls after 200 Mpc, whereas the low-TT Pd remains high

out to 330 Mpc. The red & faint model is difficult for the reference strategy after

about 100 Mpc, whereas the low-TT has Pd > 50% out to 330 Mpc. The reddish &

slow model is intermediate and the low-TT performs well. The luminosity distance

vs area distribution shows the probability weighted histograms on the margins. Not

surprisingly, small spatial localizations are both are easiest to make identifications

for, but less obvious is that the most likely distribution of distances for detection is

flat between 125 Mpc and 175 Mpc.

The exposure time must be balanced by the sky area to be covered: in our

maximum 8 hours per night, DECam using 1 hour exposures can survey 24 square
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degrees per night.

Turning to the distribution of telescope time required per event in Figure 5.3,

we will explore the motivation and design of the low-TT strategy. For the by con-

struction best in Pc strategy Top the mode of the time required is ≈ 13− 15 hours

for reddish & slow & red & faint, but saturates at 3 − 5 hours for bright & blue.

The Top strategy likes to use all the time available over two nights to maximize

detection. The low-TT strategy is the lowest telescope time within 10% of Top’s

Pc, but clearly one can tune how much loss in Pc one is willing to accept. We have

compared choosing 5%, 10% and 15% (see Table 5.5) and not surprisingly the best

choice depends on the KN model chosen. For the bright & blue model, a threshold

of 5% gives a strategy that outperforms the Reference strategy in Pd while using less

telescope time. For the reddish & slow and red & faint models, we prefer to set the

threshold at 10%. This produces in the reddish & slow case a strategy that uses a

factor of 3 less telescope time than Top, and the red & faint case a factor of 2 less,

for a loss in Pc < 10%. The gain in Pd over the reference strategy is particularly

dramatic for red & faint at higher distances.

The plots in Figure 5.4 show how the low-TT strategy selects its optimized choice

as compared to Top. All 4800 Pd,1 for the parameter combinations in Table 5.3 for a

single event simulation are shown, color coded by the required telescope time. The

highest Pd,1 tends to use the highest telescope times, but there are many high Pd,1

parameter combinations Θi that use much less telescope time. The lower plot has

the Top and low-TT strategies marked. Generically, our strategies prefer balanced

Pd,1 and Pd,2 to maximize Pc.
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Table 5.5 Average telescope time per event in hours required for two detections,
discovery and confirmation. The events used were all that had 90% probability area
< 300 sq-deg. From 860 events, 611 are retained after this cut. The 50%, 90% or
100% columns give average times for events ordered by the statistics of the size of
the 90% localization area, low to high.

Strategy Telescope time (hours)

bright & blue 50% 90% 100%
Reference 0.4 1.1 1.6
Top 2.3 3.0 3.2
low-TT (5%) 0.4 0.9 1.3
low-TT (10%) 0.4 0.9 1.2
low-TT (15%) 0.2 0.7 0.9
wide prior, reddish & slow
Reference 0.4 1.1 1.5
Top 10.5 12.1 12.2
low-TT (5%) 5.2 6.8 7.0
low-TT (10%) 3.2 4.3 4.5
low-TT (15%) 2.2 3.0 3.2
red & faint
Reference 0.4 1.1 1.6
Top 10.4 12.3 12.6
low-TT (5%) 7.4 9.1 9.2
low-TT (10%) 5.4 6.3 6.4
low-TT (15%) 4.1 4.8 4.8
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Figure 5.4 Left: Discovery probability vs time to completion of first pass for a single
event at 160 Mpc with sky area of 168 sq-degrees. Total telescope time in hours is
denoted for each Θi. Right: The best 10% of Θi from the upper plot, displayed in a
Pd,1 vs Pd,2 plot with total telescope time color coded. The Θi corresponding to Top
and low-TT strategies are marked. The histogram gives the distribution of telescope
times for the Θi in the lower plot.

There is the question of “when is it good enough?”, of diminishing returns. We

can adopt the reddish & slow model compared to the reference strategy, for example,

and work with the best 90% of events. Then the low-TT at a cost of ×4 more

telescope time detects 20% more KN and Top t the cost of ∼ 12× more telescope

time detects only ∼ 30% more KN. Whether one is willing to accept the cost depends

on the science case. For the standard siren cosmology case which wants to maximize

the number of KN detected, one would prefer the maximum return of Top, but

might be willing to accept the rate of low-TT. For the science case of studying the

astrophysics of KN, where one wants to select good objects for detailed astrophysical

study, gathering the next 10 expected in O4 might well be worth expending what

Top requires for the right events.

Returning to the performance of the strategies, we delve deeper in Figure 5.5 for
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Figure 5.5 Using the low-TT model, Left column: Detection probability for a given
luminosity distance and sky area for reddish & slow, red & faint, bright & blue in (top),
(middle), and (bottom), respectively. Right column: Average required telescope time
per event area as a function of luminosity distance, ordered the same as in the left
column.
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the low-TT strategy. In this plot, we present detection probability as a function of

sky area. Here the distance weight in equation 5.3 becomes important. In each event,

the detection probability calculated for each voxel in the skymap is weighted by the

distance to that voxel to form a distance weighted detection probability for the whole

event. This accurately weights the probability for the often smaller distances in the

lower probability areas of the sky map (see, e.g., Singer et al. (2016b)). Thus the

detection probability for bright & blue at dL = 50 Mpc can be 99% when we only

cover the 90% sky probability region.

The easiest way to understand Figure 5.5 is to start with the right column and

especially the bright & blue model. We have seen from Figure 5.3 that low-TT is

very effective at discovery for this model and the two dimensional projection shown

in Figure 5.5 shows little variation about that high efficiency. What variation is

present is the expected loss of efficiency with increasing distance and area. In the

right column for the bright & blue case, it is clear that the telescope time required

increases with increasing distance and area. The increase with area is very nearly

the ratio of the sky areas.

The red & faint model efficiency plot shows that the dominant variation is a

decrease in efficiency with increasing distance as the faint objects fall below the

limiting magnitude for the maximum exposure time. Table 5.3 shows a maximum

exposure of 1 hour so in our 8 hour maximum night, DECam can cover 24 sq-degrees.

The variation in sky area is not as dramatic as with distance and shows the success

of the inner/outer split in Scenario 2 when deep exposures over the high probability

area are combined with shallower exposures over the lower probability area. (Note
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that eq 5.2 was evaluated separately in each area.) The corresponding telescope time

plot behaves as expected with increasing telescope time with increasing distance and

area.

The intermediate reddish & slow model behaves as expected in efficiency. It is

more mlim dominated than bright & blue and doesn’t require mlim as deep as red

& faint. The smallest area bin is likely using 1 hour to maximize area coverage.

The corresponding telescope time plot cell shows 5.7 hours for the average event,

likely less than 8 hours because of the events with less than 24 sq-degree sky area.

The telescope time plot as a whole shows a surprise. There is a peak in the time

at intermediate distances and areas, and then the time falls with further distance.

One can see that some of the same behavior in the top row of the red & faint model

telescope time plot. The explanation is that there are strategies (here meaning Θi)

that use high telescope time to maximize Pd,1 but these take so long to cover the area

that Pd,2 is compromised by the fading of the KN, and thus Pc is lowered. A higher

Pc is obtained by using a shorter time to cover the area to cover the area before the

object fades, thus maximizing the product of Pd,1 · Pd,2.

5.4 Exploring the Parameter Space

We have constructed 4800 parameter-set evaluations of DECam kilonova magni-

tudes produced by SNANA for 860 Bayestar simulation-detected O4 binary neutron

star merger events. We have developed a methodology that uses discovery and con-

firmation probabilities and a set of optimization rules to produce strategies optimized

for the discovery of KN under certain constraints. We have discussed maximized dis-
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covery (Top) and minimal telescope time (low-TT) already, and will discuss several

more strategies in 5.4.2. Here we will show detailed behavior of the strategies.

We use the reddish & slow (GW1701817-blue, 10 × σ) KN model for the results

in this section unless otherwise stated. Likewise, we will use the low-TT strategy

for the results in this section unless otherwise noted. To recap this strategy, we go

through all combinations of inner & outer region sizes and exposure times as listed

in Table 5.3 and present the combinations that give the lowest telescope time within

10% of the highest confirmation probability strategy.

5.4.1 Exposure times

One of the dominant features of the observing parameters described in Table 5.3

is the splitting of Scenario 1 and Scenario 2. In Scenario 1, the sky is covered with

uniform exposure times. In Scenario 2, we allow the splitting of the sky localization

area into an outer region and a longer exposure inner region. Scenario 2 is best

thought of as a homogeneous pass with a deeper exposure in the high probability

region. Putting aside the distance weighting, covering a sky localization area sets

a ceiling on the discovery probability to the probability contained in that area, and

thereafter it is maximizing the limiting magnitude in the sky area. Our optimal

selections almost always prefer Scenario 2 over Scenario 1 as implicitly or explicitly

the total telescope time is constrained.

Figure 5.6 shows the percentage of simulations that preferred each exposure time

broken into inner and outer areas. The mode of the 2-d distribution for the inner

region is 20 minute exposures, with 31% of events using that exposure time and 84%
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of events using 20 minutes or less. For the outer region, the mode is 5 minutes, with

33% of events using that exposure time and 74% of events using 5 minutes or less.

This is model dependent. The bright & blue model uses 90 seconds 99% of the time

in the inner region and 60 seconds 99% of the time in the outer region. Most often,

87% of the time, this is a very small inner region of 0.3, and in 93% of the simulations

chose the 0.9 outer probability area. This is the lowest exposure time combination for

Scenario 2 in Table 5.3, and it is likely that the strategies would have used a shorter

exposure time if available, although it is notable that the strategy did not prefer the

available 60 sec homogeneous pass in Scenario 1. The red & faint model has a more

complicated exposure time pattern for the inner area. In order of use, 2400, 600,

3600, 1200 second exposures are used in 26%, 18%, 16%, & 15% of the simulations,

respectively. The outer area exposure time has a mode at 1200 seconds of 25%, with

13% and 14% for 2400 and 600 seconds respectively, and 17% of simulations use 300

seconds.

For distances out to 125 Mpc, the difference between Scenario 1 and Scenario 2

is minimal, but at around 300 Mpc using scenario 2 gains ∼ 5%-10% in discovery

probability. In other words, the slope in probability vs distance is shallower for the

two-zone scenario than it is for the one-zone scenario. Therefore, we believe that

using the deeper in the center approach will in general be more successful the more

distant the event.
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Figure 5.6 Upper left: discovery probability vs distance for low-TT comparing Sce-
nario 1 and Scenario 2, as well as Reference, which only uses Scenario 1. The upper
right and bottom plots show the exposure times that were most common when using
Scenario 2, which breaks up the area into a shallower outer region and a deeper inner
region of the spatial sky area.
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Figure 5.7 Discovery probability for the different strategies adopted in bright and
dark time.

5.4.2 Filter Choice and bright/dark nights

In following up an LVK event, there is an equal chance of observing in dark

conditions as in bright conditions. In Figure 5.7 we show the effect of dark versus

bright time. The bright/dark distinction is handled in our methodology via a change

in teff as seen in Table 5.1. Bright time lowers discovery probability by 5 − 10%,

with the loss being mitigated by filter choice and exposure times. The filters used in

the two passes are, in dark time, rr(33%), zz(50%), ii+ iz(17%). In bright time the

filters are zz(71%), ii+ iz(25%). The filter choices are strategy dependent, and, for

comparison, the Top strategy used in dark time rr(12%), ri(7%), rz(27%), iz(29%),

and zz(17%) and in bright time iz(45%) and zz(41%). The filter choices are also

model dependent, driven by the color evolution of the reddish & slow model as seen

in Figure 5.2. The g filter is never going to be favored in this model, i will be picked

the first night, z on the second, except that it is easier to go deeper in r than in i.
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We can predict that the filter selection for red & faint model will be nearly the same

but that the bright & blue model would predominately use g, r. Notably, it is not

straightforward for us to say which filters we use in our best strategy.

Figure 5.8 Discovery probability vs distance to event for the low-TT observing
strategy in the first and second passes compared to the reference strategy for KN
described by model with wide priors bright & blue (upper left), reddish & slow (upper
right), and red & faint(lower).
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5.4.3 Impact of the two-detection requirement

Detecting a counterpart twice in DECam images is an important step in our

experience, as it allows one to distinguish extragalactic transients from asteroids or

other objects within a short period of time. This requirement is common, for example

Zhu et al. (2021), Sagués Carracedo et al. (2021), and Petrov et al. (2022) all demand

two detections for a confirmation of a kilonova transient. Also important is covering

the sky area with multiple filters to distinguish the KN from other transients.

The DECam search does not happen in isolation, and we do emphasize the im-

portance of the broader GW community during these times. While our programs’

main line is to proceed to confirmation via a second image, smaller telescopes may

choose to follow up preliminary candidates in order to efficiently reduce the candi-

date list that will be sent to expensive spectroscopic efforts. There are reasons to be

interested in both Pd and Pc.

In Figure 5.8, we show P (discovery) in the first detection, Pd,1, compared to the

second detection, Pd,2. In the low-TT strategy the detection probability remains

nearly constant between pass 1 and pass 2. This is not the case for the reference

strategy. For the reddish & slow model there is a nearly constant offset between Pd,1

and Pd,2, where as for the red & faint model the Pd,1 is higher at d < 100 Mpc, and

Pd,2 is higher at d > 100 Mpc. For the bright & blue model, we see the reference

strategy become less efficient than the low-TT strategy at d > 220 Mpc, as both Pd,1

and Pd,2 drop with increasing distance. We infer that the low-TT strategy strongly

prefers to balance Pd,1 and Pd,2.
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5.4.4 Other Strategy options

Our choice of optimization has flexibility. We might place a high priority on

the earliest possible discovery, or we may have lost several nights due to weather

conditions and need to find an optimal approach for the first clear night several days

after trigger. Let us, therefore, explore three other optimizations:

1. Early Discovery (ED) is the Θi that produces the earliest confirmation limited

by the Pc from low-TT(5%) for each Si.

2. Late Discovery (LD) is the Θi that produces the latest confirmation limited

by the Pc from low-TT(5%) for each Si. This family is intended to find a

competitive strategy when one cannot observe during some early/intermediate

nights or in case the event was not confirmed in the first days.

3. Half Nights (HN). This family is intended to find a competitive strategy when

one cannot observe half the night- if the object rises or sets for example, or the

telescope is only allocated for half nights. Thus, from the subset limited by the

Pc from low-TT(5%) for each Si configurations we constrained the strategy to

have both passes in less than 4 hours if they are in the same night or each of

the passes takes 4 hours individually if they are in different nights.

All those configurations are restricted in telescope time. In Figure 5.9 we show

the distributions of the time of second pass completion relative to the merger. It is

in the second pass that we achieve a confirmation. The ED scenario not surprisingly

has earlier times than Top, and, by design, earlier times than LD. The late discovery

strategy has a different optimization and thus a different use. If the first night
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or two are not useful for observations, then the LD strategy is useful for pursuing

the discovery at late times. It peaks around 2.5 days after the merger. Note that

this strategy is optimized on Pc, so does not describe the case where the event is

unobservable due to clouds for a night or two, but rather is working the scenario

where the object is detected but cannot be confirmed for several days. Figure 5.9

suggests that since Pd is on the first night, the most likely night to capture the

confirmation pass is the third night. LD is representative of the kinds of strategies

that would be necessary to deal with weather. The Half Night strategy enforces a

limitation to the amount of time spent in pass 1, and the resulting performance is

similar to low-TT in terms of both Pc and telescope time expenditures, although

without the guarantee of being within 10% of the best strategy, Top.

Figure 5.9 Distribution of confirmation day using the reddish & slow model. The
left panel depicts the time of confirmation probability (i.e. how many days it took
to observe the area twice) for our ED strategy and the right panel depicts the LD
strategy. Most simulated events are confirmed by the first day. For reference, we
also show the distribution using the Top strategy, which has no restrictions on when
to perform the follow up.

Figure 5.10 shows the discovery probability versus distance for the strategies
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Figure 5.10 To illustrate the flexibility of the strategy families; we present the curves
constrained with 5% of Top strategy, e.g. low-TT (5%) and derived strategies. Left:
reddish & slow. Right: red & faint. Half Nights are not always available. For reddish
& slow 395 half nights strategies produced detections, while for red & faint 137 half
nights strategies produced detections. As the exposure times skew deep, the success
rate is likely anti-correlated with sky area.

discussed here. For the reddish & slow model, all of our strategies have roughly equal

performance (but see the Top outperforming low-TT by the amount it is allowed to)

although with different telescope time cost. This is true to d = 180 Mpc, but after

that, the LD strategy becomes less efficient. For the red & faint model, we see,

interestingly, that the low-TT and Top strategies have equal performance. Finally,

the Half Night strategy performs very well until d = 180 Mpc then becomes infeasible.

For the reddish & slow model, the ED strategy for exposure time distribution

is more or less equally split among the possible outer/inner exposure time pairs in

Table 5.3 up to the outer region exposure time of 600 secs, with the most likely

outer exposure time of 300 seconds. There are no outer exposure time greater than

600 seconds nor inner exposure times greater than 2400 seconds. The LD strategy’s

most likely exposure time is 1200 seconds, and the strategy tries to cover the largest
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inner region possible. The outer region has the most likely exposure time of 300

seconds and is never longer than 600 seconds. The strategy is to cover the largest

inner region possible with relatively shallow outer region exposures. The second pass

exposure time is weighted deeper than the first pass but the most likely exposure

time remains 1200 seconds. The Half Night strategy for exposure time distribution

is 31% of simulations using 1200 seconds, and 17% using 2400, most often in an 0.7

inner core region. The outer region uses 300 and 600 second exposures over half the

time.

For the red & faint model, the ED strategy for exposure time distribution is

deeper than for the same in reddish & slow, preferring 600, 1200, 2400 seconds

instead of 600 and 1200, never using 90 second exposure times for the inner core like

15% of the reddish & slow simulations do. The LD strategy simulations 57% of the

time use 600, 1200, or 2400 second exposures but uses a wide range of inner areas.

The outer region uses all exposure times from 60 to 2400 seconds but is most heavily

weighted towards 300, 600, and especially 1200 seconds. The Half Night strategy

exposure time distribution is complicated, using a wide variety of inner areas and

exposure times skewing deep at 1200 and 2400 second exposures. The outer region

is similar, although here, as most often throughout the strategies, the outer region

coverage of 0.9 is preferred.

5.5 Real observations

We have presented a variety of strategies optimized for a variety of purposes.

Here we describe how to use them when an observing team receives an LVK alert.
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We can compute P (confirmed) for the grid of Θ in Table 5.3 (both scenarios)

using estimations of teff for the upcoming night. Given the Θi, we can choose a

strategy to follow, placing the Top, low-TT, ED, or Half Night optimizations on as

appropriate for the event. The optimization gives us the single Θi for each of the

strategy families.

The strategy computation takes about 30 minutes on a single core. This includes

the four strategy families (Top, low-TT, ED, Half Night), as well as considerations

about bright/dark time. The time to complete the computation can be brought

down to < 1 second by using the simulations as an approximation for the real event.

Here our approach would be to choose a Θi by nearest neighbor search or to build a

simple neural net on the simulation parameters and P (confirmed) to choose Θi.

The choice of the KN model is important. For example, if we are very early on-

sky, with great observational conditions for just a couple of hours, or some limitation

in telescope access is imposed upon us, we might also consider a fast detection of a

blue flash (bright & blue model). This strategy could be interesting in particular for

low-TT due to the cost of deep exposures over a wide area.

There is also a flow of decision making external to what we have described.

Whether or not there is a short GRB, we choose distinct approaches. In the case

that there is, we are likely looking for a GW170817-like event (bright & blue). If

not, then a conservative model is indicated (reddish & slow), as we might not be

looking for an event with a high inclination angle. If the alert indicates it is a NSBH

merger, then the KN is likely more consistent with the red & faint model. After this,

if there is a possible half night strategy, they are low budget and high performing
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by definition. It also gives time for us to use spectroscopy to confirm quickly. In

an observing run where we expect 1 BNS merger every month, we could plan on

allocating telescope time through the run considering the amount of telescope time

remaining versus where the particular event lies in an SNR distribution Chen and

Holz (2014) or among a population of simulated events. This would lead to spending

more toward the end of the run if considerable time was left, or spending more if it

was a particularly good event compared to the simulations.

5.6 Discussion

In this chapter our science goal is to maximize the number of KN with GW

measured dL and securely identified redshifts. We put high weight on completeness

of detection of the KN, given the considerable uncertainty in the KN population.

Our strategies go deep. We reach mlim(10σ) of r ≥ 24.4 and z ≥ 22.9 for the ≥ 1200

second exposures (see Table 5.2) for the inner regions of 47% simulations, regardless

of distance (see Figure 5.6).

We can gain insight into our results by comparing how the literature handles a

set of 3 questions:

1. the modeling of GW merger event distance and sky area distribution,

2. the range of KN model physical parameters, including inclination angle

3. the telescope, search and cadence, detectability versus distance and mlim.

The GW event properties: We simulate a merging NS-NS population expected in

O4 given the expected LIGO sensitivities, drawing from the NS population, simulat-
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ing the GWwaveform and projecting onto a GW observatory network, and converting

the GW observations to skymaps. Our draw, simulate, project, and form skymaps

approach has been performed before (Petrov et al. (2022); Chen et al. (2021)), though

it sometimes is done without skymaps (Zhu et al., 2021). There are simplified ap-

proaches. One can just assume a KN population to observe (Sagués Carracedo et al.,

2021; Setzer et al., 2022; Chase et al., 2022). Or one can use toy GW models, such

as a low-significance event skymap at 200 Mpc (Coughlin et al., 2020). All of these

approaches assume the KN properties are independent of the GW event properties,

other than distance. Colombo et al. (2022) performs the more sophisticated analy-

sis of connecting the KN properties to the GW event properties by going through

the chirp mass and mass ratio, which informs Mej and vej. Of the analyses that go

through the draw, simulate, and project methodology, all assume the SN > 8 or

network SN> 12 in selection except for Petrov et al. (2022) which derive the effective

SN threshold from the published GWTC events. They find that there will likely be

more events with 90% credible sky areas > 300 sq-degrees than we simulate, but do

not include in our follow up identification analysis. For the analyses that extend to

jet production (e.g., Zhu et al. (2021); Colombo et al. (2022)) about 10% of events

are sufficiently pole on to for jets to be observed.

Kilonova physical properties and inclination angles: We have only one well stud-

ied KN in the literature, so there is considerable uncertainty in the KN population.

The literature has three ways of modeling KN- using model atmospheres as building

blocks (e.g. Kasen et al. (2017)), full physical models of KN atmospheres (e.g. Bulla

(2019); Wollaeger et al. (2021)), and using scaling relations and fitting functions
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from relativistic numerical simulations (e.g., Dietrich and Ujevic (2017); Coughlin

et al. (2019)). The first two approaches are parameterized by at least three variables

(for us, Mej, vej, logXlan). The Bulla models, which include inclination angle explic-

itly, are widely used in the relevant literature (e.g., Coughlin et al. (2020); Sagués

Carracedo et al. (2021); Zhu et al. (2021); Petrov et al. (2022)). Often, analyses in

the literature will set up a grid of KN parameters and inclination angles and proceed

to simulate detection of each entry in the grid, either for a fixed distance or for NS

merger population. Typically the fraction of models detected is termed the detec-

tion efficiency. This makes the detection efficiency depend on the model space in

unfortunate ways. Consider the case of inclination angle dependent KN properties.

One can set up a grid of inclination angles. Better would be to use the probability

distribution function of inclination angles for a random isotropic inclination sam-

ple, PDF (i) ∝ sin(i). This weights edge on, i.e. red and faint, KN more than a

grid is likely to. The inclination angle sample selected by a GW detector network

search isn’t isotropic. The amplitude of the strain detected is generically described

by PDF (i) = 0.076076(1 + 6 cos2(i) + cos4(i))3/2 sin(i), that is, GW observatories

prefer inclination angles near 30◦ (Schutz , 2011). For the Bulla models, this could be

accounted for by using Bayesian priors on the models. It would be interesting to have

a version of the Setzer et al. (2022) KN population absolute magnitude distribution

weighted by the expected GW network inclination angle distribution. In our work,

we use Bayesian model averaging on our calculated detection probabilities. We do

not model polar vs equatorial directly, but one could map the appropriate blue and

red Bayesian model average into those. Our red & faint average absolute magnitude
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is about 0.4 mags fainter than the brighter peak of Setzer et al. (2022).

Detection efficiency: Our study is for DECam on the Blanco 4m with its 3

sq-degree field of view, covering the 90% credible sky area using real cadences in

2 passes to ensure a confirmation. The simulated search and discovery over LVK

skymaps is relatively rare in the literature, but has been done by Coughlin et al.

(2020) and Petrov et al. (2022). As the 1m class telescopes have very large fields

of view, up to the ZTF 47 sq-degrees, much more common in the literature is to

assume a KN model, usually a GW170817 analog, and ask what exposure time or

limiting magnitude is necessary to detect it. If instead of Bayesian model averaging of

the detection probability we had used Bayesian model average absolute magnitudes,

our study would be very different. The average absolute magnitudes for our bright

& blue, reddish & slow, and red & faint models for r-band are −16.3,−15.2,−14.2

respectively. In 100 seconds, DECam reaches r = 23.0, sufficient to detect Mr =

−15.2 to 500 Mpc. In 1200 seconds, DECam reaches r = 24.4, sufficient to detect

Mr = −14.2 to 500 Mpc, and GW170817’s Mr = −15.5 to 1 Gpc. Why then do

events at dL = 200 Mpc, have in our study detection probabilities Pd of 90%, 73%,

& 60% for the bright & blue, reddish & slow, and red & faint models, respectively,

using the low-TT strategy, and routinely require 60-90 second exposures for bright &

blueand 300-1200 second exposures for the last two models? The effect of using eq 5.2

is to extend the search to lower M ej and logXlan and thus lower luminosities. Our

method of accounting for uncertainty in the KN population is driving our results. If

we adopt the Coughlin et al. (2018) model parameters and uncertainties, as we are

likely to do for O4 observations, our detection efficiencies will increase and exposure
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times decrease. Using the GW170817 absolute magnitude for detection is likely

over-optimistic, as suggested by Colombo et al. (2022) placing GW170817 at the

75th percentile bright, and Setzer et al. (2022) placing it at 95th percentile bright.

The studies using 1m class telescopes are most likely to assume GW170817 analogs,

though Petrov et al. (2022) uses both that and a lower luminosity, red model, and

Sagués Carracedo et al. (2021) does a careful analysis of viewing angle dependent

models. The studies assuming the Rubin Observatory (Cowperthwaite et al., 2019;

Chen et al., 2021), or a variety/network of telescopes (Coughlin et al., 2020; Chase

et al., 2022) tend to analyze detection probabilities for lower luminosity events. In

summary, one will have to be careful comparing our detection probabilities with

others in the literature, which often use a single luminous model or evaluate and

average detection efficiencies over a grid of models using a uniform prior. In our

language, “chance of finding it” in Fig 5.3 is to be interpreted as “fraction of models

detected given our priors on the space of models”.

5.6.1 Applicability to NSBH and mass gap events

For standard siren studies, NSBH mergers are just as valuable as BNS mergers,

as long as they produce electromagnetic counterparts. NSBH merger events have

higher distances for similar SNR than BNS mergers, as can be seen in Table 5.6,

The dominant factor for their use in standard siren cosmology is the probability

of a KN given a NS-BH merger. No counterpart to a NSBH merger has been detected

(e.g. Morgan et al. (2020); Anand et al. (2020); Kawaguchi et al. (2020b)). Zhu et al.

(2021) argue that no detectable KN counterpart was expected for NSBH mergers in
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Table 5.6. LVC GWTC events (O1-O3) containing neutron stars and with
M2 < 5M⊙ and SNR> 8.

id M1 M2 distance SNR class
(M⊙) (M⊙) (Mpc)

GW170817 1.5 1.3 40 33 BNS
GW190425 2.0 1.4 160 13 BNS

–
GW190814 23.2 2.6 240 22 BH-NS

GW200105 162426∗ 9.0 1.9 270 14 BH-NS
GW200115 042309 5.9 1.4 290 11 BH-NS
GW190426 152155 5.7 1.5 370 10 BH-NS
GW191219 163120 31.1 1.2 550 9 BH-NS
GW190917 114630 9.3 2.1 720 10 BH-NS
GW200210 092254 24.1 2.8 940 8 BH-NS

Note. — SNR is the matched filter SNR. GW200105 162426∗

has pastro = 0.3 is thus considered a marginal candidate. Only
2 events have a 90% confidence sky area of < 30 sq-deg, 2 at
< 300 sq-deg, and 3 at < 400 sq-deg. The median sky area is 1700
sq-deg. Data from https://www.gw-openscience.org/eventapi/

html/allevents/
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O3. Kawaguchi et al. (2020a) and Darbha et al. (2021) study the brightness of KN

from NSBH mergers, and Drozda et al. (2020) does the same for mass-gap objects.

The summary is that only a fraction of NSBH events will produce KN, primarily

those mergers with low mass ratios and high spin.

The Kawaguchi et al. (2020a) models have absolute magnitudes that peak for r, i

at −14.5, −15.0 respectively. There is a spread of about 1 magnitude fainter in the

i-band absolute magnitude, going fainter as the binary mass ratio increases and the

effective spin gets smaller. Our red & faint model has an i-band absolute magnitude

of −14.5, midway through the range of Kawaguchi et al. (2020a). Petrov et al. (2022)

adopt the Bulla (2019) models, broken into BNS and NSBH models both optimistic

(Mej = 0.05, 0.08) and conservative (Mej = 0.01, 0.01). The optimistic BNS model

has an absolute magnitude in the r-band of -16.0, the conservative NSBH model of

-14.8; these correspond well to our bright & blue and red & faint models, respectively.

Taking our red & faint model as appropriate for dynamical ejecta dominated NSBH

mergers, our low-TT strategy has 50% detection probability out to 330 Mpc (see

Figure 5.3). Our strategies are sufficient to obtain the majority of NSBH events that

have EM counterparts if they are at distances ≤ 330 Mpc.

5.6.2 Blanco/DECam and Rubin LSST

It is of interest to compare the strategies defined here with the program outlined

in Chen et al. (2021). They assume inclination independence and a GW170817-like

KN and argue for two filter observations. The program conservatively assumes 30%

of A+ events by dedicating 7 hours of Rubin Observatory time in 30s exposures,
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capturing 12/year. Our expectation is that the Rubin ToO program will use 3%

of the available LSST time, so on the order of 100 hours which can pursue all BNS

events in LVK O4 assuming 1/month and 8 hours per event, so pursuing light curves.

Alternatively and more likely, Rubin will choose to observe the 50% best events by

sky area in both the BNS and the NSBH categories. In this scenario, a good use

of DECam/Blanco would be to follow-up the others that have sky area < 300 sq-

degrees. Table 5.5 suggests this would be viable.

In fact, if the results of Petrov et al. (2022) hold, then there will be many merger

events containing NS that have sky areas greater than 300 sq-degrees; our simulations

would have to be extended by another∼ 360 events all with sky area > 300 sq-degrees

to match their statistics. For the bright siren cosmology, every NS event is important.

We demonstrate here that the Blanco/DECam especially in combination with the

Zwicky observatory and its counterparts PS1, OAJ, LS4, are capable of following up

the sources with sky area < 300 sq-degrees. The optimal use of the Vera C. Rubin

Observatory, with its immense etendue, is to follow up the LVK sources with > 300

sq-degrees. The combination of sky coverage and depth is unmatched. Petrov et al.

(2022) predicts the median sky coverage for BNS events in O4 is 1820+190
−170 sq-degrees

and the median luminosity distance is 352 ± 10 sq-degrees, and the NSBH median

distance further away. For the Rubin FoV of 9.6 sq-degrees, the number of exposures

to cover the sky area once is ≈ 200, which at 100 second exposures can be done in less

than 6 hours, assuming a reddish & slow model and 1.2 mags deeper m0 for Eq. 5.1.

Likely one could build a two-visit strategy that would take 10 hours per event,

allowing Rubin to follow up 10 additional events per year without light curves. The
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Rubin time-domain ecosystem of data, brokers, and routine spectroscopic follow-up

is likely to minimize positives, though perhaps not until after O4.

As discussed in Morgan et al. (2020); Garcia et al. (2020); Tucker et al. (2022),

the need for coordination with spectroscopic telescopes is vital in identifying the true

counterpart. Given there has only been one confirmed optical counterpart, there is

uncertainty in the expected light curve from photometric data.

5.7 Conclusion

In this chapter, we create families of observing strategies that optimize the prob-

ability of detecting a KN within DECam’s images. We examine various filter choices,

depths, area coverage, and cadence of observations in order to ensure optimal chance

of detection. Given the expanded range of sensitivity in future LVK observing runs,

deeper exposures will be necessary in order to be sensitive to the quickly fading

counterpart. As we do not have unlimited time for such follow ups, we examine

how we can optimize our chance of detection while taking into account real world

constraints.

We chose to optimize our strategies based on the probability of detecting the

KN within two images that are at least 30 min apart. This constraint is put in

place in order to help eliminate asteroids and other sources of noise. We explore

two different types of observing scenarios. The first is a homogeneous covering of

the sky area with a single exposure time, and the second uses deeper exposures in

the higher probability sky areas and shallower exposures on the rest of the area.

We then categorize our strategies by observational constraint, where each family of
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strategies is taken from the top 10% or 5% of Top strategies. The Top strategies use

all available resources and are useful as a benchmark for the full detection capability

of the DECam.

Examining each of the realistic observing scenarios, we find we can achieve ∼ 75%

to 80% probability of detection out to 190 Mpc (the nominal limit of LVK BNS

range) for a wide range of KN parameters (reddish & slow), ∼ 65% for a fainter

and redder KN (red & faint) and over 90% for a bright & blue model along the full

range of distances limited to 330Mpc. Additionally, we provide the mean detection

probability and total telescope time required for detection and confirmation in each

KNmodel for a given range of GW event area and distance in figure 5.5. In particular,

this plot might be used as a guide on how likely it is to succeed in KN detection

of specific future events considering a trade-off between time budget and optimal

chances.

While DECam will continue to be the optimal camera in the southern hemisphere

during the next observing run, the efforts to detect the next KN optical counterpart

will be greatly aided by other telescopes that are planned to be online during this

time. For example, the expected addition of the Simonyi Telescope at the Vera Rubin

Observatory.
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CHAPTER VI

Conclusion

DES is one of the first collaborations to contribute to the new field of gravitational

wave multi-messenger astrophysics. After the success of being one of the first teams

to discover the kilonova associated with BNS gravitational wave event, GW170817,

the DESGW search and discovery team worked to improve the program used for the

LVC’s third observing run. This thesis describes those improvements and some of

the results enabled by them. This conclusion chapter summarizes the core results of

the thesis and its implications. Because this work is part of a collaborative project,

I also include a description of my specific contributions to each of the main chapters.

To prepare for O3, I primarily lead the efforts to update the observing strategy

and the image processing pipeline, and trained a team of observers to help perform

follow up campaigns, as discussed in Chapter II. More specifically, I implemented

updates to the pipeline that enabled it to run image processing on a CCD by CCD

basis in parallel, as opposed to completing each step per image before moving on to

the next. This was crucial to reduce the time required to produce our lists of EM
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candidates. After image processing has been completed, the images go through post-

processing, in which the sources found in each CCD are evaluated based on a machine

learning score and matched with the nearest potential host galaxy. This process is

the beginning of candidate reduction. I additionally integrated the use of web pages

displaying the observational information about each candidate. These changes were

critical for the by eye examinations of the final candidates before publishing them to

the GCN.

Throughout O3, the DESGW team used this pipeline to follow up 4 candidate

GW events. Of those events, two were of particular significance. The first such

candidate was S190510g. This event was initially classified as likely to originate

from a BNS merger with a 50% confidence sky area of only 31 deg2. For this reason,

a follow up campaign was initiated. After a full night of imaging, LVC published an

update indicating the event was likely to be terrestrial in nature. Despite this, we

continued with our analysis of the data, as discussed in Chapter III. I led a first-of-

its-kind study of the efficiency of detecting a KN within DECam images. Within this

analysis, we simulated KN lightcurves taking into account the actual sky conditions

on the night of observations. Using the physical parameters of GW170817 for the

KN model, we found that if a KN were present in our observations, we would have

had a 99% chance of being able to detect the counterpart in our images. We also

showed that this efficiency is not uniform across all KN models.

The same principles were applied to the analysis of event GW190814 (Chapter

IV). This event was the first high confidence event likely to be a black hole neutron

star merger. In this follow-up campaign, we took images for 6 nights over the first
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16 nights following the merger. All candidates produced by the DESGW search and

discovery pipeline were eventually excluded based on light curve properties, photo-

metric redshifts of the host galaxies, or machine learning classification. Similar to

the search efficiency analysis performed for S190510g, here we took the analysis one

step further to put the first observational limits on a BHNS optical counterpart. The

non-detection of an optical transient implies that a potential counterpart will have

ejecta mass < 0.07 M⊙, ejecta velocity <0.18c or >0.21c, and lanthanide fraction

> 10−8.56 at the 2σ confidence level. In this analysis, I ran the follow up cam-

paign for the event (16 nights, including day-time planning, night-time observations,

image processing and post-processing) and applied the analysis techniques used in

Chapter III. Additionally, I collaborated closely with R. Morgan in the design and

implementation of our refined candidate selection process.

Each of these analyses enabled us to characterize the typical light curves of kilo-

novae that would appear in our observations and forecast the sensitivity of follow-ups

going forward. Using this information, we once again updated our methodology for

determining the observing plans for future searches. With the new method, described

in Chapter V, we created families of observing strategies that optimize the proba-

bility of detecting a KN within DECam observations. We also explored the benefits

of taking deeper observations versus ensuring we cover the full sky localization area,

the impact of using various filters, and the impact of using varying exposure times

when covering the sky area. Using realistic observing scenarios, we found that we

have up to 80% probability of detecting a wide range of potential KN light curves

out to the nominal limit of the LVK BNS range of 190Mpc. This is an improve-
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ment of about a factor of 2 over the O3 strategy performance and bodes well for

new multi-messenger discoveries that will enable competitive measurements of the

Hubble constant in the future. For this analysis, my contribution was primarily in

the design and specification of the various observing strategies, based on my detailed

experience in O3. I additionally took this project as an opportunity to train new

members of the DESGW team, including C. De Bom, on the details of the search

strategy decision workflow. This training is crucial for the success of the team in O4

and beyond.

The results of this thesis have multiple implications for future work in astrophysics

and cosmology. For example, examining how the combination of GW data with

existing DES cosmological probes affects various cosmological parameters will be

an interesting future study. Outside of cosmology, detected EM counterparts of

neutron stars can shed light on the question of the neutron star equation of state

by measuring the amount of ejected matter and combining that information with

the mass ratio and total mass of the merger (Pérez-Garćıa et al., 2022; Bauswein

et al., 2013). The supernova community is also likely to benefit from this work.

As mentioned throughout this thesis, the primary background for our searches are

supernovae. There is, thus, a serendipitous relationship between kilonova searches

and supernova discovery programs as mining of our background data could lead to

the discovery of many supernovae.

In sum, this thesis is a novel contribution to the emerging field of multi-messenger

cosmology. It propels the field forward by tackling the observational challenges of

making new discoveries of faint and short-lived EM counterparts to GW events within
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large localization areas. We took the previously established program and made it

more sensitive and rigorous. We optimized the search strategy and image processing

pipeline. We also improved the analysis framework, publishing the first limits on the

physical properties of a merging compact binary system based on a comprehensive

analysis of candidates in our search data. As a result, future searches will likely

yield many more discoveries to fully realize the potential of gravitational waves for

cosmology.
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