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54-Fig. 3 | Nanoscale reaction optimization for the reductive amination of staurosporine 
(36) with eight aldehydes, eight ketones and 48 reaction conditions. See 
Supplementary Section 5.1 for full list of aldehydes and ketones. Relative 
percentage conversion was determined by UPLC–MS at λ = 254 nm. Conc., 
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55-Fig. 4 | Nanoscale staurosporine analogue library synthesis via reductive amination. 
a, Heatmap of conversion to product for the reductive amination of staurosporine 
36 with 48 aldehydes using eight reaction conditions. A representative example of 
aldehydes is shown (see Supplementary Section 5.2 for full list). Relative 
conversion was determined by UPLC–MS at λ = 254 nm. b,c, Selected reactions 
were repeated on 50 µmol scale giving 45–50 and S1 (b) or 0.30 mmol scale giving 
51–53 (c). Yields are of purified products. ............................................................ 151 

56-Fig. 5 | Two-step nanoscale synthesis of MK2-inhibitor analogues (56) and (57) via 
N-alkylation followed by Boc-deprotection. a, Electrophiles 58–69 were coupled to 
54 and 55. b, Heatmap of reaction performance determined by UPLC–MS at λ = 
254 nm relative to standard curves created from isolated products. c, Selected 
examples 70–73 repeated on 40 µmol scale (see Supplementary Section 6.5 for full 
scope). Yields are of purified products. LiHMDS, lithium bis(trimethylsilyl)amide. 152 

57-Fig. 1 | HTE enabled amine–acid esterification and its application in drug 
molecules. A The amine–acid esterification. B Esters are an important medicinal 
functionality as in drugs 1–3. C Reaction discovery, optimization, and scope 
profiling is achieved using HTE. ............................................................................ 156 

58-Fig. 2 | Physicochemical properties of amides and esters and complementary 
chemical space of anilines to phenols. A An amine and carboxylic acid can be 
coupled in a variety of transformations beyond the traditional amide coupling, 
including the esterification reaction developed here, which gives a unique property 
footprint. B Venn diagram showing the complementarity of phenol to aniline 
building blocks available in the MilliporeSigma catalog. C tSNE analysis showing 
the complementarity of ester products generated by coupling aspirin to phenol (blue 
dots) versus aniline (yellow dots) building blocks available in the MilliporeSigma 
catalog. D Ester products have a higher predicted blood–brain permeability (CNS-
pMPO score) than classic amide products produced from the same set of anilines 
when coupled to the drug metaclopramide. .......................................................... 156 

59-Fig. 3 | Reaction discovery and profiling with HTE. A General deaminative 
esterification reaction. B Heatmap showing the discovery of the esterification 
reaction in 24 glass microvials. Dtbpy = 4,4′-di-tert-butyl-2,2′-dipyridyl, xantphos = 
4,5-bis(diphenylphosphino)-9,9-dimethylxanthene. C Heatmap showing 
optimization of esterification in 96 glass microvials (see Supplementary Information 
for details). Pybox = 2,6-bis[(4 S)-(–)-isopropyl-2-oxazolin-2-yl]pyridine, box = 2,2-
Bis((4 S)-(–)-4-isopropyloxazoline)propane, terpy = 2,2′:6′,2′′-terpyridine, dmphen = 
4,7-dimethoxy-1,10-phenanthroline, CuTC = copper(I) thiophene-2-carboxylate, 
CuPC = copper(II) phthalocyanine. D Heatmap showing the reproducibility of 
quadruplicate data for a library of 96 acids coupled to 7–10 in plastic 1536-well 
plates. The overall average standard deviation across the quadruplicate data was 
5.5%. The wells with the gray color indicated that the dosage of the internal 
standard was missing. E UV-Vis absorbance data show an interaction between 
Cu(MeCN)4BF4, 4 and 2,4,6-collidine. F Reaction optimization. a 1H-NMR yield with 
1,3,5-trimethoxybenzene as internal standard, b Isolated yield. G Diazonium salts 
used in the 1536 screen shown in D. H Select reactions from those shown in D 
were repeated on a 0.300 mmol scale using Cu(MeCN)4BF4 (100 mol%) to produce 
11, 12, and 13 in isolated yield shown. ................................................................. 158 
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60-Fig. 4 | Substrate scope. Reactions were run with carboxylic acids (0.300 mmol), 
diazonium salts (1.5 equiv.), Cu(MeCN)4BF4 (30 mol%), and 2,4,6-collidine (1.5 
equiv.) in anhydrous acetonitrile (0.1 M) at room temperature, generally over 16 h. 
Reported yields are isolated yields of purified products. ....................................... 160 

61-Fig. 5 | The amine–acid esterification applied directly to over-the-counter pills. 
Ester products 42–45 are derived from both reagents and OTC pills 
(See Supplementary Information for details).The Formal Cross-Coupling of 
Amines and Carboxylic Acids to Form sp3–sp2 Carbon–Carbon Bonds ....... 163 

62-Fig. 1 | (A) Cross-coupling of amines and carboxylic acids to form C(sp3)–C(sp2) 
bonds as a complement to amide coupling. (B) Substructure search of 320 possible 
products from amine–acid coupling in the DrugBank database. (C) Analysis of 
building block availability from MilliporeSigma. Unions represent exact 
substructures differing only by the indicated functionality. .................................... 165 

63-Fig. 2 | (A) HTE optimization on 10 μmol scale in 24- and 96-reaction arrays. Assay 
yields were determined by UPLC-MS. Selected conditions were repeated on the 
0.25 mmol scale and analyzed by 1H NMR with an internal standard. Isolated yield 
in parentheses. (B) Key compounds. .................................................................... 166 

64-Fig. 3 | Substrate scope of C(sp3)–C(sp2) coupling of N-acyl-glutarimides with 
primary alkylpyridinium salts on 0.10–0.25 mmol scale. Isolated yields are shown.
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65-Fig. 4 | (A) Effect of RuCl3 on selectivity. Isolated yield on 0.25 mmol shown. Pie 
charts determined from 1H NMR analysis of crude reaction with reference to an 
internal standard. (B) Effect of RuCl3 in the absence of NiBr2·DME. TPP = 
triphenylpyridinium. (C) Coupling of 1 and 2 in the presence of ketone 37 and 
RuCl3. aNot detected by UPLC-MS. bYield from 1H NMR. .................................... 168 

66-Fig. 5 | Substrate scope of C(sp3)–C(sp2) coupling of N-acyl-glutarimides with 
secondary and benzyl alkylpyridinium salts on 0.25 mmol scale. Isolated yields are 
shown. ................................................................................................................... 169 

67-Fig. 6 | (A) Replacement of 1 with N-acyl phthalimide 45, 1H NMR yields shown. (B) 
DFT comparison of oxidative addition of 1 and 45. (C) Proposed catalytic cycle. 170 

68-Fig. 1 | Approaches to nanoscale synthesis and affinity ranking (NanoSAR); (a) 
Previously, crude nanoscale reactions were assayed by ASMS with affinity ranking 
achieved by decreasing the concentration of target protein to induce competition 
among compounds; (b) introduction of a Caliper bioassay into the workflow allows 
larger libraries of thousands of compounds to be evaluated and reduces the need 
for mass encoding. ................................................................................................ 172 

69-Fig. 2 | Chemical assay results of ultrahigh throughput experiment performed for the 
project. Heatmaps represent the UV, MS, and ELSD integrations of the product 
over internal standard respectively. ...................................................................... 172 

70-Fig. 3 | Library design and synthesis (left) tSNE comparing targeted compounds to 
virtual compounds generated from enumeration of the enamine acid catalog. The 
targeted compounds cover a large portion of chemical space. (right) Relative 
conversion to product for the ultraHTE amide coupling of pharmacophore amines 
with 128 different acids as determined by UPLC-MS. Three detection methods, UV-
absorbance, MSTIC(+) and ELSD were utilized. Each point represents one 
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reaction, colored by percent inhibition observed when subjected to Caliper 
biochemical assay. ................................................................................................ 173 

71-Fig. 4 | Affinity Selection Mass Spectroscopy chord diagrams for each pool of 
reactions. All reactions were initially split into four pools, based on reagents, 
resulting in 768 reactions per pool. Chords connect reactions to compound masses 
found in that reaction. Each reaction may be connected to multiple masses, and 
heatmaps representing chemical and biological assay results are shown on the 
periphery of the reaction arc. Chords are colored by the lowest ALIS protein 
concentration that a compound in that reaction bound to. In the second iteration, 16 
pools were made where reactions were split by conversion. ................................ 174 

72-Fig. 1 | Overview of the ChatGPT to phactor workflow. Verbal input is given by a 
human to have ChatGPT generate a reaction array design for a particular coupling 
and substrate pair. The output can be fed directly into phactor, creating an assay 
recipe to be executed robotically or manually. ...................................................... 192 

73-Fig. 2 | The amide coupling between 1 and 2 ChatGPT was asked to optimize. The 
reagent classes are specified in the prompt, but the specific species are generated 
by ChatGPT. ......................................................................................................... 193 

74-Fig. 3 | Executed reaction array and UPLC assay results of the screen designed by 
ChatGPT to perform the amide coupling between 1 and 2. The top performing 
reaction condition was repeated on 0.2 mmol scale to yield 3 in 94% isolated yield.
 .............................................................................................................................. 193 

75-Fig. 4 | The amide coupling between 4 and 1 ChatGPT was asked to optimize. The 
resultant design is different than with the original simpler substrates. .................. 193 

76-Fig. 5 | Results of the amide coupling to produce 5 designed by ChatGPT and 
phactor when executed experimentally. The top performing reaction condition was 
repeated on 0.4 mmol scale to yield 5 in 62% isolated yield. ............................... 194 

77-Fig. 6 | The Suzuki coupling between 6 and 7 ChatGPT was asked to optimize. .. 194 
78-Fig. 7 | Results of the Suzuki coupling reaction array designed by ChatGPT and 

executed with phactor. The top performing reaction condition was repeated on 0.2 
mmol scale to yield 8 in 66% isolated yield. .......................................................... 195 

79-Fig. 8 | Results of the repeated Suzuki coupling reaction array designed by 
ChatGPT when 20% water is added. .................................................................... 195 

80-Fig. 9 | The Buchwald-Hartwig coupling ChatGPT is asked to optimize. ............... 195 
81-Fig. 10 | (A) 0.2 mmol scale-up result of the best hit from the reaction array 

proposed by ChatGPT-phactor. The combination of palladium catalyst complex 
Pd(dppf)Cl2 and RuPhos gave the best result. (B) The reaction array design and 
results. (C) Crude UPLC trace for selected well B5. ............................................. 196 

82-Fig. 11 | Integrated GPT interface in phactor. Based on the substrates selected by 
the chemist and a description of the desired transformation, chemicals suggested 
by the AI can be automatically added into the reaction array design by phactor. . 197 

83-Fig. 1 | A) Anatomy of a reaction. Electrophiles and nucleophiles are arbitrarily 
defined as the reacting partners that form the product. B) The reaction fingerprint 
can be calculated by taking the product between a matrix of component fingerprints 
and a vector of weight arrays. Any fingerprint or feature vector can be utilized as 
long as the vector lengths for each reaction components are equal. Reaction 
component weights (wn) are initialized at 1 and can be set to any value by the user. 
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A component * weight product is added to the sum for each reaction component n.
 .............................................................................................................................. 208 

84-Fig. 2 | 2,786 Suzuki reactions performed in a high-throughput format plotted using a 
t-SNE trained on reaction fingerprints, each of which formed through the sum or 
concatenation of a reactant fingerprint for all components involved a particular 
reaction. (A) The template of the reaction performed across all experiments. (B) 
The 2,048-bit radius four Morgan Fingerprint of each reaction’s electrophile, 
nucleophile, base, catalyst, and solvent were summed, plotted, and colored by 
output group. (C) The same manifold colored by exact product/internal standard 
values and reagent components (electrophile, nucleophile, catalyst, base, solvent.) 
(D) A specific reaction cluster containing all reactions between substrates 1 and 2. 
(E) t-SNE of the reactions in the selected cluster when the catalyst fingerprint is 
multiplied by three (top) and when the base fingerprint is multiplied by three 
(bottom). The three manifolds for each result are colored by product/internal 
standard values, catalyst, and base. ..................................................................... 210 

85-Fig. 3 | 1,296 reactions performed in an HTE format towards the development of a 
novel sp3–sp3 deaminative-decarboxylative carbon–carbon cross coupling (ref. 13). 
The manifold splits into three regimes, each representing a different stage of the 
discovery campaign. (A) The manifold points are colored by the acid used in the 
experiment. (B) The manifold points are colored by the recorded PROD/IS value of 
the reaction. (C) All acids used in the experiment, with average PROD/IS values 
and the number of experiments they were used in. .............................................. 212 

86-Fig. 4 | Reactivity cliffs are identified when focusing on specific substrate pairs. (A) 
Compounds 27 and 28 cluster together with high and poor performing reactions. 
(B) Repeating the analysis on the cluster that form 29 from 27 and 28 reveals 
reagents that cause this reactivity to flip on. Reactivity cliffs are readily identified 
between solvent regimes. The 1:3 water:NMP regime sits between two reactivity 
cliffs, separating it from the two failing solvent systems 1:9 tAmOH:NMP and pure 
NMP. ..................................................................................................................... 213 

87-Fig. 5 | Reaction array manifolds can be procedurally generated from the output files 
produced by phactor. (A)-(F) reaction array results as reported in ref. 8 and their 
corresponding manifolds colored by output value. Perplexity and weights were 
modified as described in the Supporting Information to optimize the latent space for 
visualization. ......................................................................................................... 214 

88-Fig. 6 | (a) Standard conditions for catalyst-free light-enabled decarboxylative–
deaminative sp2–sp2 C–C coupling. (b) Sampling of substrates explored. (c) Screen 
design and execution. (d) Trellised reaction array fingerprint of experimental 
campaign. Each box contains all reactions performed for the given light and solvent 
regime. Reactions that perform well in one regime but not others are quickly 
identified. ............................................................................................................... 217 

89-Fig. 1 | A) A standardized template for chemical reactions. B) A reagent network 
containing 817 high throughput reactions performed in an optimization campaign of 
an alkyl-aryl deaminative decarboxylative carbon-carbon coupling method. Each 
vertex corresponds to a different class of reagents used in the reaction. These 
vertices are reduced manifolds of reagents corresponding to that class and can be 
formed from different featurizations depending on the class. Points are colored by 
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mean yields of the reagent, and links between two points are colored by mean yield 
of reactions containing both reagents, indicating the effectiveness of their co-use. 
Black points indicate reagents not utilized in the campaign and serve as potential 
design space. ........................................................................................................ 226 

90-Fig. 2 | A) Graphical and reagent network analysis of an alkyl-aryl deaminative 
decarboxylative carbon-carbon coupling methodology optimization campaign. B) 
The analysis repeated on an alkyl-alkyl deaminative decarboxylative carbon-carbon 
coupling methodology optimization campaign. ..................................................... 228 

91-Fig. 3. A) Best reaction from initial reaction array and reagent network analysis of 
ester to ether methodology campaign. The initial reaction array design was derived 
from a literature report. B) The second reaction array in the campaign. Boxplot 
trends reveal gallium iodide as the most robust Lewis acid for the transformation. 
C) Expected improvement manifolds calculated from the featurized silane and 
borane chemical spaces. New silanes and boranes were automatically selected to 
be tested in the follow up experiment. .................................................................. 228 

92-Fig. 1 | (A) Workflow for SAMPLES. Molecules are first assigned a musical key 
based on aggregate chemical properties, then converted into a sequence of notes 
based on SELFIES encoding. MusicVAE is trained on a collection of sonified 
molecules to formulate the chemical/musical latent space. The latent embedding of 
molecular music can then be sampled, for instance through the interpolation 
between two embedded molecules, decoded by the MusicVAE decoder, then 
converted back into a molecular structure by SAMPLES. (B) Detailed workflow 
schematic of SAMPLES. Molecules are binned into base keys based on their 
physicochemical properties. More druglike molecules correspond to melodies that 
are more popular as reflected in the distribution of songs listed in Spotify. Specific 
SELFIES tokens are mapped to MIDI shifts, that result in a final MIDI value when 
summed with the base key of the molecule, which is hashed from aggregate 
physicochemical properties. The MIDI shifts correspond to SELFIES tokens as 
ranked by their popularity in DrugBank. As such, lower MIDI shifts away from the 
encoded key of the molecule indicate the more popular the SELFIES token. 
Melodies can then be decoded back into molecules. ........................................... 245 

93-Fig. 2 | SAMPLES translates molecules into music. (A) The generation of 
increasingly complex molecules from 1 through 4 corresponds to increasing 
musical complexity. Each line shows the molecular structure, the corresponding 
musical score, and a waveform of the MIDI output. Audio recordings are available 
in the ESI and can be quickly retrieved by scanning the QR code with a mobile 
device. (B) In the reverse direction, the song “Twinkle, Twinkle Little Star” produces 
molecule 5. ............................................................................................................ 246 

94-Fig. 3 | SAMPLES is amenable to encoding complex molecules. (A) The pair of 
similar molecules 6 and 7 have SAMPLES compositions that are distinct from 
another similar pair of molecules 8 and 9. (B) QR codes linking to SAMPLES 
encodings of select large complex molecules. ...................................................... 247 

95-Fig. 4 | tSNE embedding of 11 159 drugs from DrugBank (2048 bit Morgan 
Fingerprints of radius 2), coloured by their SAMPLES musical key. Similar 
molecules 10 and 11 have SAMPLES outputs that are distinct from other similar 
molecules 12 and 13. The music encoded by the score adjacent to the molecules 
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can be listened to by following the QR code. It can be heard that these similar 
molecules have similar musical encodings when using our algorithm. ................. 249 

96-Fig. 5 | Molecular editing in SAMPLES generates distinct but related molecules. The 
manual editing of single notes in the SAMPLES of 11 leads to 14, 15, or 16. ...... 250 

97-Fig. 6 | CROSSFADE merges SAMPLES with the melody mixing function of 
MusicVAE to create interpolated molecules based on two input molecules. ........ 252 

98-Fig. 7 | A human created music composition leading to 29. ................................... 252 
99-Fig. 8 | (A) Survey results from 75 participants. Each participant was given the 

SAMPLES encoded melody of four survey molecules. For each survey molecule, 
without knowledge of the name or structure of any molecule, each participant was 
asked to choose the most similar melody from a selection of four other SAMPLES 
encoded drugs. Survey responses are cross examined against the Tanimoto 
similarity between each test molecule and survey molecule for each question. (B) 
Superimposed waveforms, for each question, of the survey molecule, the molecule 
most structurally similar to survey molecule, and the most popular answer if the 
majority response in incorrect. (C) Structures of survey and test molecules for each 
question. One structure for each set of test molecules was chosen to have high 
similarity to the respective question's survey molecule to serve as the ‘correct 
answer’. ................................................................................................................. 253 

100-Fig. 1 | The interface when caffeine is encoded. SMILES can be input in the bottom 
right to bootstrap a song. The number of notes corresponds to the size of the 
molecule, and additional notes and synths can be added at will. Notes can be 
changed using the interactive piano, and oscillators and filters can be modified on 
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101-Fig. 2 | The encoding of bromhexine produces a different musical output. .......... 257 
102-Fig. 3 | An abstractable data structure dictates the settings and notes for each 

synth. This data structure can be recreated in external scripts and dropped into the 
program to create the music. ................................................................................ 258 

103-Fig. 1 | (a) A self-contained code template generates several plots and is provided 
to students. Several lines are deactivated, as indicated by green text. Lines of code 
can be reactivated by removing the leading “#”, resulting the code to produce a 
different visual output when executed. (b) The plot generated by the code in (a) 
when run as is. The three plotted points are defined in the code template, 
connecting the code to its visual output. (c) The plot generated when line 8 of (a) is 
activated, resulting in larger points. (d) The plot generated when line 9 is also 
activated, resulting in different point colors. (e) The plot generated when line 11 is 
activated, creating the same scatter plot with a blue background. (f) A potential plot 
generated after students are instructed to include an additional parameter to the 
scatter function. In this case, the shape of the points are changed. ..................... 277 

104-Fig. 2 | Students are provided with the code to import any tabular JSON file. The 
utility of the package Pandas is used in reading tables programmatically. The 
“alldrugsprops.json” file is provided to students, and provided with a template to 
import the data into Python, as seen in the input block. Students then inspect the 
contents of the file with Python, revealing a datafile of over 9,000 drugs and their 
properties downloaded from DrugBank. ............................................................... 278 
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105-Fig. 3 | Four chemoinformatic experiments run by students during the first session. 
In each graph, over 9,000 drugs are graphed onto scatter plots as point, where 
their x and y locations correspond to calculated properties of the drug. Students 
learn how variables can be used to rapidly change the axes and colors of the plot, 
exposing them to a strategy to rapidly investigate chemical space and generate 
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106-Fig. 4 | (a) The template plotting code is incrementally improved until it can be used 
effectively to make manuscript-ready graphics. This code creates a scatter plot of 
the Moonshot compounds provided in the CSV, where the x axis represents a 
compound’s number of aromatic rings, and the y axis represents its LogP. (b) By 
coloring the points by the compound’s recorded solubility, a trend is revealed where 
compounds with fewer aromatic rings and lower LogP are more soluble. Validating 
GSK’s Solubility Forecast Index is a simple experiment to allow students to build 
confidence in their ability to manipulate and analyze datasets. ............................ 279 

107-Fig. 5 | By the end of the modules, students have implemented a data filter and a 
principal component analysis on a dataset of SARS-COV-2 Main Protease 
inhibitors. (a) the PCA before the data filter is applied. Points represent DrugBank 
compounds and are colored by their molecular weight. By changing the color of the 
points, the correlation of the reduced axes can be mapped to specific features of 
the dataset. In this instance, molecular weight tracks with the first principal 
component, increasing as the x value increases. (b) the PCA after the Lipinski filter 
is applied. Outliers are removed by the filter, and the distribution of molecular 
weights in the first principal component becomes wider. ...................................... 279 

108-Fig. 6 | Student feedback to the lesson plan collected after the lab. Questions were 
intended to gauge the student’s perspective on their learning experience. In the first 
year, students felt strongly that their understanding of Python, chemical space, and 
data science were improved. In the second year, students felt strongly that their 
understanding of data science improved but were neutral on other learning 
objectives. The difference between the two years may be accounted for by the level 
of involvement the graduate student teaching assistance had in developing the 
course. In the first year, the class was taught by the writer of the lesson plan; the 
second year was taught by assistants who were given the lesson plan to teach. 280 

109-Fig. 1 | Overview of LRphase. A. Long sequencing reads are first prepared from 
genomic DNA fragments isolated from cells with available phased variant data for 
all parental haplotypes. Reads are mapped to the reference genome, either within 
LRphase with minimap2, or externally using any desired mapping/filtering workflow, 
with mapped reads supplied in BAM format. B. Haplotagging begins by intersecting 
individual mapped reads with known phased, heterozygous single-nucleotide 
variants (SNVs) supplied as a VCF file. The number of matches and mismatches 
are counted for both maternal and paternal phases and resulting counts are 
subsequently used to choose the best match to phase using one of the two scoring 
modes. C. Reads may be haplotagged using either the scoring model (Mode 1, 
orange box), or by simply assigning to the phase with the greatest number of 
matching alleles across all heterozygous sites (Mode 2). In Mode 1, match and 
mismatch counts are used to calculate log-likelihoods for matching to maternal and 
paternal phases. Likelihoods are computed as multinomial probabilities (Pmaternal 



 

 xxi 

and Ppaternal respectively), representing the aggregate probability of obtaining the 
observed number of matches and mismatches to either phase given the observed 
sequencing error rate, 𝛜. Pmaternal and Ppaternal are adjusted by a Bayesian prior (ßm 
and ßp) and log-likelihood ratios (LLRs) Lmat/pat and Lmat/pat, are calculated to 
determine which phase has the most evidence for matching a given read. Reads 
are assigned to the phase corresponding to the greater of Lmat/pat and Lmat/pat, are 
labeled “unphased” if there is a tie, or “nonphasable” if there are no intersecting 
heterozygous variants. D. After all reads are haplotagged, the false-discovery rate 
(FDR) is controlled by calculating the expected number of incorrect haplotags, N𝜀, 
as the mean of the negative-binomial distribution with N = the number of phaseable 
reads and Psuccess = 1-(𝛜/3). Phaseable reads are sorted by LLR and the N𝜀 * (1-
FDR) lowest-scoring reads are relabeled as unphased. The remaining haplotagged 
reads are expected to include errors at a rate corresponding to the specified FDR. 
Finally, haplotagged results are written to output file(s) in BAM format, with the 
assigned haplotype stored in the “HP” tag, while custom tags are used to store all 
variables used in LLR calculations. ....................................................................... 282 

110-Fig. 2 | Haplotagging performance of LRphase and WhatsHap. Precision-Recall 
(PR) curves are used to assess the ability of LRphase (A) and WhatsHap (B) to 
identify the correct haplotag. Curves describe the fraction of correct and incorrect 
haplotag assignments across varying score thresholds. Individual points along each 
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ABSTRACT 
 
The navigation of chemical space through synthesis is a core principle behind drug 

discovery. Traditional medicinal chemistry programs rely on a few, well-developed 

reactivities to create pharmacophore derivatives and synthetic routes to target scaffolds. 

While reactions such as the amide coupling and Suzuki coupling are robust and tolerate 

many substrates, they introduce bias into chemical properties by limiting synthesis to a 

handful of bond formations, narrowing the scope and flexibility of chemical structures that 

can be formed from available building block compounds. Through computational 

enumeration, specific transformations can be targeted that direct access to specific and 

desirable chemical space. With high throughput experimentation and data science, these 

transformations can be invented and optimized experimentally to realize high value 

chemistries and accelerate drug discovery. This thesis describes an informatics-based 

systemic approach to synthetic chemistry, centered around reaction discovery to better 

access drug-like chemical space. 
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Chapter I. Introduction  
 

 
1-Overview | The systematic informatics approach to synthetic chemistry consists of four 

main concepts. High value reactions are identified and can be invented with high 

throughput experimentation. Algorithms and computational representations of molecules 

enable reagent discovery to optimize reactivities and expand substrate compatibility. 

  

This thesis is broken into four main chapters, each consisting of papers corresponding to 

a specific theme of the systematic informatics approach to synthetic chemistry. Another 

chapter is included consisting of additional projects I completed or contributed to, as well 

as a final chapter providing a brief overview of several software packages that were 

completed during my graduate studies. Each subsection of each chapter represents a 

self-contained project or paper, and compound numbers are reset at 1 at each 

subchapter. Each chapter begins with an introduction, and each subchapter begins with 

a prologue describing the work, which is then followed by text of the manuscript that 

corresponded with the project as well as its respective figures.  
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In the chapter following this introduction, reaction targeting is introduced. This chapter 

consists of five papers detailing enumerative combinatorics, the computational ideation 

of synthetic transformations, and corresponding analyses. It is detailed how enumeration 

can be used to explore reaction space and traverse physicochemical property profiles by 

changing the transformation between building blocks. It is also shown how reaction 

agnostic and/or building block aware retrosynthetic algorithms aware can be developed 

to invent creative and potentially superior routes to target molecules. The following 

publications are described in this chapter: 

 

1. Mahjour, B.; Shen, Y.; Liu, W.; Cernak, T. A map of the amine-carboxylic acid 

coupling system. Nature 2020, 580, 71–75. 

2. Zhang, R.; Mahjour, B.; Cernak, T. Exploring the Combinatorial Explosion of 

Amine–Acid Reaction Space via Graph Editing. ChemRxiv, 2023. 

3. Lin, Y.; Zhang, Z.; Mahjour, B.; Wang, D.; Zhang, R.; Shim, E.; McGrath, A.; Shen, 

Y.; Brugger, N.; Turnbull, R.; Jasty, S.; Trice, S.; Cernak, T. Reinforcing the Supply 

Chain of Umifenovir and Other COVID-19 Therapeutics with Retrosynthetic 

Software. Nature Communications 2021, 12 (1), 1-8. 

4. Mahjour, B.; Zhang, R.; Outlaw, A.; Zhang, Z.; Harmata, A.S.; Cernak, T. Analyzing 

Conceivable Reactions from Commercially Available Chemical Building Blocks. 

This is under review at Organic Letters. 

5. Mahjour, B.; Flynn, K. M.; Stahl, S.; Cernak, T. One Step Retrosynthesis of Drugs 

by Cross-Coupling from Building Block Catalogs. In collaboration with the Stahl 

Group at University of Wisconsin. Manuscript in Preparation. 
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The next chapter includes work detailing the development and use of high throughput 

experimentation. Central to this chapter is the development of the high throughput 

experimentation manager phactor, a full-stack software that manages the data workflow 

for all high throughput experiments in the lab. Several papers are included where high 

throughput experimentation is used to invent and optimize high value reactions, 

miniaturize popular reactions, and complete ultrahigh throughput medicinal chemistry 

campaigns. The use of phactor in the lab led to the generation of a wealth of standardized 

and machine-readable data. The following publications are described in this chapter: 

 

1. Mahjour, B.; Zhang, R.; Shen, Y.; McGrath, A; Zhao, R; Mohamed, O. G.; Lin, Y; 

Zhang, Z; Douthwaite, J. L.; Tripathi, A.; Cernak, T. Rapid Planning and Analysis 

of High-Throughput Experiment Arrays for Reaction Discovery. Nature 

Communications, 2023, 14, 3924. 

2. Mahjour, B.; Shen, Y.; Cernak, T. Ultrahigh-Throughput Experimentation for 

Information-Rich Chemical Synthesis. Accounts Of Chemical Research 2021, 54 

(10), 2337-2346. 

3. Shen, Y.; Mahjour, B.; Cernak, T. Development of Deaminative Esterification Using 

High-Throughput Experimentation. Communications Chemistry 2022, 5 (1), 1-8. 

4. Douthwaite, J. L.; Zhao, R.; Shim, E.; Mahjour, B.; Zimmerman, P.; Cernak, T. The 

Formal Cross-Coupling of Amines and Carboxylic Acids to Form sp3–sp2 Carbon–

Carbon Bonds. Journal of the American Chemical Society, 2023, 145, 20, 10930-

10937. 
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5. Douthwaite, J.; Mahjour, B. et al. Expansion of NanoSAR for the deconvolution of 

large compound libraries. In collaboration with Relay Therapeutics. Manuscript in 

Preparation. 

 

The following chapter consists of works using machine readable reaction data in exploring 

reaction space to analyze reaction campaigns. In reagent discovery, various 

visualizations and concepts are discussed to understand and predict reactivity trends. In 

early 2023, the advent of considerably effective artificial intelligence that understands 

human speech was unleashed. One work in this chapter details the use of such an 

intelligence to design high throughput experiments. The following publications are 

described in this chapter: 

 

1. Mahjour, B.; Hoffstadt, J.; Cernak, T. Designing Chemical Reaction Arrays using 

phactor and ChatGPT. ChemRxiv, 2023. OPRD, accepted. 

2. Mahjour, B.; Hoffstadt, J.; Schorin, D.; Cernak, T. Weighted Reaction Fingerprints 

for Visualizing Reactivity Cliffs and Generality. Manuscript in Preparation. 

3. Mahjour, B.; McGrath, A.; Douthwaite, J.; Zhang, Z.; Cernak, T. Reaction Array 

Analysis and Design via Reagent Networks. Manuscript in Preparation. 

 

The next chapter consists of creative projects where molecules are ‘embedded’ or 

‘compressed’ into musical scores. These scores, encoding structural and 

physicochemical properties of the molecules, can be represented as waveforms – in 

essence one dimensional arrays that can be used for data science studies. In the initial 
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study, the concept of molecule compression is introduced and explored. Encoded 

molecular music is used to train neural networks and the scores can be modified and 

decoded into new molecules. An ongoing project is further optimizing the encoding of the 

molecule into the highly dimensional domain of music. The following publication is 

described in this chapter: 

 

1. Mahjour, B.; Bench, J; Zhang, R.; Frazier, J.; Cernak, T. Molecular Sonification for 

Molecule to Music Information Transfer. Digital Discovery, 2023, 2, 520-530. 

2. Mahjour, B.; Cernak, T.; Molecular Compression via Musical Additive Synthesis. 

Manuscript In Preparation. 

 

In the subsequent chapter, a list of software and research workflow projects are included 

that I worked on or contributed to and are directly related to the core thesis of this 

manuscript but do not fall into other categories. This chapter contains efforts I made in 

developing a lesson plan for teaching undergraduates Python and cheminformatics in 

medicinal chemistry, as well as a software I wrote that phased long-read DNA samples 

by statistically matching them to the maternal or paternal allele based on the number of 

associated single nucleotide polymorphism. The following publications are described in 

this chapter: 

 

1. Mahjour, B.; McGrath, A.; Outlaw, A.; Zhao, R.; Zhang, C.; Cernak, T. Interactive 

Python Notebook Modules for Chemoinformatics in Medicinal Chemistry. This is 

under review at the Journal of Chemical Education. 
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2. Holmes, M. J.; Mahjour, B.; Castro, C. P.; Farnum, G. A.; Diehl, A. G.; Boyle, A. P. 

LRphase: an efficient method for assigning haplotype identity to long reads. 

BioRxiv, 2023. 

3. McGrath, A.; Montgomery, D.; Mahjour, B; Outlaw, A.; Zhao, Ruheng.; Cernak, T. 

An Automated and Colorful PAMPA Assay To Investigate Drug Permeability. 

Manuscript in Preparation. 

 

The final chapter before the conclusion lists several software packages that I have written 

that are used in the lab or are publicly available. Throughout my studies I wrote countless 

lines of code. The benefit of being a full-stack developer is that many of my projects are 

accessible through the internet and can be easily shared without any technical expertise 

required by the user. The details and infrastructure of these software packages are 

discussed within this chapter. 
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Chapter II. Reaction Targeting 

 

Chemical space is the potentially infinite set of molecules that can exist. Every drug, 

natural product, substance, or material that physically exists is composed of molecules 

contained within chemical space. As such, physical inventions of drugs and materials 

leading to advancements in science, technology, and humanity requires the ideation, 

synthesis, and evaluation of chemical matter within this space. While constraints such as 

size and atomic composition provide tenable boundaries to the space, brute-force 

exploration is currently impossible computationally because of both time- and space- 

complexity. Furthermore, while computational enumeration through graph theory allows 

exhaustive ideation of chemical matter, only a small fraction of these molecules are 

accessible synthetically. Reaction targeting is a paradigm that intelligently uses 

computational enumeration to generate and evaluate hypothetical transformations while 

avoiding combinatorial explosion and maximizing synthetic feasibility.1  

 

Molecular enumeration from the perspective of graph theory has been studied as early 

as 1875 to enumerate molecule classes, such as branched alkanes,2, 3 alkyl alcohols,4, 5 

and cyclic carbon skeletons.6 Work by Ugi, Dugundji, and others eventually led to matrix-

based computer-assisted discovery of pericyclic reactions.7-15 More systemic reaction 

cataloging methods based on redox state changes, size of reaction center,16 and identity 

of reactant atoms,17-21 as well as fingerprint methods22 have also been reported since 
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these initial studies. In contemporary studies, computing power has enabled exhaustive 

graphical enumeration of small molecules up to a handful of atoms and bond types and 

the development of generative algorithms can navigate embeddings of samples of 

chemical space.23, 24 These efforts have cumulated in large datasets that attempt to 

catalog conceivable molecules.25 Commercial catalogs and reaction databases are used 

in conjunction to design synthetic pathways to valuable chemical spaces.26-28  

 

In contrast to molecular enumeration, reaction enumeration uses similar means to ideate 

potential transformations between molecular motifs. These motifs may be single atoms 

such as carbon or nitrogen in the most basic form, simple functional groups such as 

amines or acids, commercial building blocks, or complex drugs or natural products in the 

most complicated form. As opposed to connecting these substrates using traditional or 

known reactivities to build virtual libraries, a single pair of substrates can generate a 

library of isosteres when enumerating the transformation between them. For instance, the 

formation of a C–N bond after the elimination of the –OH group of a carboxylic acid and 

a hydrogen on an amine is recognized as the amide transformation. Depending on the 

size of the substrates being analyzed, an exhaustive enumeration is generally 

computationally feasible, with the most extreme case resulting in the decomposition and 

reformation of every bond between every atom. 

 

Reaction targeting aims to use reaction enumeration to identify the most valuable 

transformations between classes of substrates. Transformation utility can be gauged by 

a hypothetical reaction’s ability to easily access novel or useful chemical space, optimize 
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retrosynthetic routes, and exploit abundant feedstock molecules. As such, the paradigm 

of reaction targeting can be viewed from two perspectives. 

 

In the first, transformations can be ideated to provide streamlined access to chemical 

space, accelerating the number of compounds that are able to be synthesized and 

subsequently evaluated. Drug compounds often require a careful balance of 

physicochemical properties. Modifying the transformation between substrates as 

opposed to entire substrates with the same transformation provides greater control over 

the property profile of the potential drug compound. For instance, a molecule containing 

an amide bond formed from an acid and amine substrate may be indicated to perform 

better with a C–C isostere. Indeed, this was the case for many HIV inhibitor design 

campaigns.29 Creating an identical molecule with the C–C isostere can be synthetically 

cumbersome unless a direct method from the original substrates existed: the 

deaminative-decarboxylative C–C coupling. Isosteric modifications lessen the reliance on 

alternative building blocks that share structural cores and allow for fine-tuned modification 

of the molecule as opposed to a coarse modification through substrate replacement. 

 

Alternatively, reaction targeting can be used to identify reactions that can achieve 

syntheses of specific molecules more optimally. There is some overlap with the chemical 

space perspective: a reaction with good substrate scope that creates enhanced access 

to a scaffold from common building blocks provides the ability to make many analogs. 

Whether it is a specific molecule or a scaffold being targeted, the disconnection of bonds 
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can be enumerated. The resulting synthons can then be matched to feedstock molecules 

that are commercially available to create retrosynthetic routes.  

 

In this chapter, initial reports of reaction targeting are shared, with a focus on exploration 

of chemical space and retrosynthesis. Many works are accompanied with synthetic 

realization of high value reactions. When analyzed in bulk format, generic transformations 

between generalized substrates are revealed, such as those that form C–C bonds 

between common substrate classes such as amines and carboxylic acids. Since the initial 

analyses of reaction targeting, many of these high value reactions have been realized 

synthetically through the use of high throughput experimentation and data science. 

Further analyses reveal valuable reactions that can form drug structures in few steps from 

specific or constrained starting materials. In conjunction with modern synthetic and data 

science techniques, reaction targeting will continue to prove to be a valuable philosophy 

in chemical synthesis and medicinal chemistry. 
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A map of the amine-carboxylic acid coupling system 

In this work, enumerative combinatorics is introduced. All possible reactions between a 

simple amine and simple carboxylic acid are enumerated, resulting in 320 potential 

transformations. When computationally performing these transformations between 

amines and carboxylic acids, a range of physicochemical, structural, and spatial 

properties can be achieved. Several of these transformations are experimentally realized 

with simple and complex substrates. This work was published in Nature in 2020.1  
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Abstract 
 
Chemical transformations determine the structure of a product, and therefore its 

properties, which in turn affect complex macroscopic functions such as the metabolic 

stability of pharmaceuticals or the volatility of perfumes. Therefore, reaction selection can 

influence the success or failure of a candidate molecule to meet a functional objective. 

The coupling of an amine with a carboxylic acid to form an amide bond is the most popular 

chemical reaction used for drug discovery.30 However, there are many other ways to 

connect these two common functional groups together. Here we show computationally 

that amines and acids can couple via hundreds of hypothetical yet plausible 

transformations, and we demonstrate experimentally the application of a dozen such 

reactions. To investigate the contribution of chemical transformations to properties, we 

developed a string-based notation and used an enumerative combinatorics approach to 

produce a map of conceivable amine–acid coupling transformations, which can be 

charted using chemoinformatic techniques. We find that critical physicochemical 

parameters of the products, such as partition coefficient and polar surface area, vary 

considerably depending on the transformation chosen. Data mining the amine–acid 

coupling system produced here should enable reaction discovery, which we demonstrate 

by developing an esterification reaction found within the mapped space. Complex 

molecules with distinct property profiles can also be discovered within the amine–acid 

coupling system, as we show here via the late-stage diversification of drugs and natural 

products. 

 

Main 
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The amide coupling is a robust and popular reaction used frequently in chemical 

synthesis. The transformation couples an amine (1) and a carboxylic acid (2) to form an 

amide (3) (1-Fig. 1a). Viewed in the context of physicochemical properties, the 

transformation unites a hydrophilic basic moiety (1) bearing two hydrogen bond donors, 

with a hydrophilic acidic moiety (2) bearing one hydrogen bond donor and two hydrogen 

bond acceptors, to generate a neutral product, 3. The amide product is more lipophilic 

than the starting reagents, and has one hydrogen bond donor and one hydrogen bond 

acceptor. Chemoinformatic studies have linked physicochemical properties to functions 

as complex as toxicity31 and even successful market launch32, and so the ability to 

modulate the numbers of hydrogen bond donors, hydrogen bond acceptors, the partition 

coefficient logP, the molecular weight, and other properties of a molecule via chemical 

synthesis is of high importance. Control over physicochemical properties using chemical 

synthesis is typically achieved by varying starting materials iteratively or in a combinatorial 

manner33, or by varying build–couple–pair reaction sequences to introduce skeletal 

diversity34. We hypothesized that physicochemical properties could be varied simply by 

switching the chemical transformation while holding the building blocks constant. In our 

view, transformations describes the mapping of atoms and bonds from starting materials 

to products11, and can be described as reactions only when accompanied by experimental 

reaction conditions. We reasoned that a map of conceivable transformations would 

provide opportunities in reaction discovery, especially given contemporary developments 

in robotic35-39 and algorithmic40-44 techniques for predicting reaction conditions, in addition 

to presenting a strategy for chemical-space exploration. 
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The amide coupling is used in one quarter of the reactions reported in small-molecule 

pharmaceutical patents30. As a result, there is an abundance of available amine and acid 

building blocks. We questioned how many other transformations exist for the amine–acid 

coupling pair. Considering amine–acid couplings at the transformation level reveals 

opportunities for reaction discovery. For example, instead of coupling 1 and 2 to form 3 

(2-Fig. 1a), a decarboxylation could occur to give 4, or a deamination could occur to give 

5; likewise, a tandem decarboxylation–deamination could occur to forge a carbon–carbon 

bond as in 6 (2-Fig. 1b). Compounds 7–9 are also possible, and the set of compounds 3–

9 collectively reveals that 1 and 2 could couple to form acidic products, basic products, 

neutral products and zwitterionic products. We used enumerative combinatorics (6-

Extended Data Fig. 1) to create simplified molecular-input line-entry system (SMILES) 

strings for all products arising from the coupling of two generic functional groups, A and 

B. 

 

A notation was developed (2-Fig. 1c) to describe how functional groups A or B can couple 

at the atoms of the functional group (A, B[C], or B[O], when B is CO2H), or at the α or β 

carbon atoms. The notation also describes how functional groups A, B or both may appear 

in or be absent from the product. The transformation notation is written in the form 

hAXY/hBXY, where h is the hybridization (2 = sp2, 3 = sp3), X is the reacting atom and Y is 

any additional modification including loss of A or B (−A, −B), dehydration (−OH), or 

reduction (+H, +H2). All combinations of sp2–sp2, sp2–sp3, sp3–sp2 and sp3–sp3 

transformations from 1, 2 and their sp2 variants ethenamine and acrylic acid (3-Fig. 2) 
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were included, leading to 320 product substructures. Four of the transformations 

produced the amides resulting from coupling sp2–sp2, sp2–sp3, sp3–sp2 or sp3–sp3 amines 

and acids, respectively, but the vast majority of the enumerated transformations are 

currently unknown as reactions. By charting the amine–acid cross-coupling space, we 

aim to understand how chemical transformations affect physicochemical properties. 

 

The enumerated SMILES strings were used as inputs to a series of chemoinformatic 

calculations. First, SMILES strings of the products were computationally ionized at pH 7.4 

(Supplementary Information), and then used to calculate a range of physicochemical 

properties (7-Extended Data Fig. 2). The full set of 320 products spans a range of 

molecular weights from 54.1 to 120.2 g mol−1, logP = −2.29 to 2.19 units, hydrogen bond 

acceptors from 0 to 3, hydrogen bond donors from 0 to 2, polar surface area = 0 to 67.8 

Å2, fraction sp3 = 0 to 1, number of rotatable bonds from 1 to 4, and a formal 

charge between –1 and 1. A composite function of drug-like properties, the quantitative 

estimate of drug-likeness45, ranged from 0.27 to 0.54. These findings demonstrate that 

the choice of transformation can have a sizeable effect on properties. In the context of 

drug discovery, it may be necessary to decrease the number of hydrogen bond donors 

when optimizing a molecule for the ability to cross the blood–brain barrier46, whereas it 

may be necessary to increase the number of hydrogen bond donors to improve aqueous 

solubility47. In this way, transformation mapping can enable studies in property 

optimization. 
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The 320 product molecules from the combinatorial enumeration were next used as 

substructures to search 9,279 pharmaceuticals and natural products from the DrugBank 

database48. As can be seen in 3-Fig. 2, there is a high degree of connectivity between 

the products of nearly every amine–acid coupling transformation with diverse 

pharmaceuticals and natural products. Each connecting line represents the successful 

identification of an enumerated product substructure within a drug, and the colour of the 

line depicts the frequency that a substructure occurs in that molecule. The density of 

connections in this system suggests that nearly every one of the 320 transformations 

depicted on the periphery of 3-Fig. 2 could find use in the synthesis of complex molecules. 

As expected, the simple alkyl chain 6, formed by coupling 1 to 2 (3NH2α–A/3CO2Hα–B), 

occurs frequently as a product substructure: 59,432 times among the DrugBank 

molecules (8-Extended Data Fig. 3). Likewise, decarboxylative transformations to 

produce an amine bound to an sp3- or sp2-carbon chain (such as 2NH2A/3CO2Hα–B to 

produce amines) appear in high frequency (9-Extended Data Fig. 4). Some 

transformations, such as 2NH2A/3CO2HΒ[Ο], do not appear as substructures in 

pharmaceuticals or natural products at all. This finding can be rationalized because, in 

this case, the transformation produces a hydroxyl amine ester, which is probably too 

reactive a functionality to persist in any of the complex molecules found in DrugBank. 

Analysing the system in the other direction, novel retrosynthetic strategies emerge by 

using amine–acid coupling transformations. For instance, (+)-noscapine connects to 112 

transformations, (−)-quinine connects to 96 transformations and (−)-sitagliptin connects 

to 55 transformations (10-Extended Data Fig. 5), providing strategies for total synthesis. 

Our analysis until this point focused solely on achiral bond connectivities. In three-
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dimensional space, there are many more possible transformations, because some 

transformations produce syn-diastereomers whereas others produce anti-diastereomers 

(11-Extended Data Fig. 6). These chiral coupling transformations sample a substantial 

assortment of three-dimensional shapes (12-Extended Data Fig. 7). 

 

To demonstrate our ability to control properties with atom-level precision, several 

transformations were selected and realized experimentally (4-Fig. 3a). We selected the 

amide coupling as well as four known reactions, which maximized the diversity of 

properties attainable from the coupling of p-toluidine (10) to o-toluic acid (11). Using the 

free amine and acid directly, we executed the amide coupling (2NH2A/2CO2HB[C]–OH) under 

Schotten–Baumann conditions to give 12 in 91% yield. A B(C6F5)3-catalysed reductive N-

alkylation49 was used to realize the 2NH2A/2CO2HB[C]+H2 transformation, giving amine 13 

in 60% yield. A cyclized benzoxazole (14) was also generated from 12 under oxidative 

conditions50. Through activation of the amine as the diazonium salt, an ortho-arylation 

2NH2α–A/2CO2Hβ and a corresponding decarboxylative variation 2NH2α–A/2CO2Hβ–B were 

achieved via Gooßen’s conditions51 giving 15 or 16 in 64% and 68% isolated yield, 

respectively. 

 

The mapping of amine–acid coupling space provides opportunities to devise reaction 

methods, and we discovered one reaction within this system. We reasoned that fruitful 

combinations of reagents, catalysts, ligands, activating groups and directing groups could 

be identified to realize hypothetical reactions. Towards this objective, we applied high-

throughput experimentation techniques to interrogate the coupling of amine–acid 
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derivatives using transition metal complexes, ligands and additives (13-Extended Data 

Fig. 8). We discovered a reaction based on the 2NH2α–A/2CO2HB[O] transformation, which 

generated ester 17 from acid 11 and the diazonium salt of 10 under influence of copper(i) 

iodide, silver nitrate and pyridine. This reaction transforms a C–N bond into the C–O bond 

of the ester. The product, 17, is a matched molecular pair to the corresponding amide 12, 

but bears one less hydrogen bond donor. Thus, starting from 10 and 11 and simply by 

varying reaction conditions, we could produce the traditional amide (12), as well as closely 

related analogues that are basic (13), acidic (15), neutral and lipophilic (14, 16 and 17), 

or neutral and hydrophilic (12). The products we obtained experimentally span a 

substantial portion of the full range of molecular weight, logP and polar surface area 

values achievable from all coupling transformations of 10 and 11 (4-Fig. 3b), showcasing 

the utility of our approach for fine-tuning molecular properties. 

 

Many complex molecules contain an amine or an acid functional group, so we anticipated 

that the application of diverse amine–acid coupling transformations to late-stage 

diversification would enable access to congeners with diverse property profiles. We used 

chemoinformatics to evaluate late-stage diversification in the amine–acid coupling system 

on a series of complex substrates (14-Extended Data Fig. 9). Examination of the 

properties of the products reveals that the choice of transformation can determine 

whether an analogue will pass or fail the Lipinski rule of five52, leading to a range in 

desirability score (quantitative estimate of drug-likeness)45 of 0.31 to 0.70 for the 

couplings of the acid-containing antibiotic levofloxacin with 3,5-dichloroaniline, and 0.29 

to 0.61 for the pairing of yohimbine and α-methylbenzylamine (14-Extended Data Fig. 9). 
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To experimentally demonstrate the value of the late-stage diversification concept (5-Fig. 

4), enones derived from yohimbine (18), sulfadoxin (22) and lithocholic acid benzyl ether 

(27) were used as substrates. In the first instance, 18 was esterified and then converted 

to amide 19 in 78% yield by heating with 10 in the presence of lithium 

hexamethyldisilazide. Concurrently, 18 was esterified and then β-arylated to produce 20 

upon palladium-catalysed Heck–Matsuda arylation using the diazonium salt of p-toluidine 

(10). We determined that 18 could be converted to 19, then treated with magnesium in a 

one-pot operation to introduce an additional stereocentre, as in 21. Likewise, 22 and 

cyclohexane carboxylic acid (23) coupled to form amide 24, ester 25 by our copper(i)-

promoted C–N to C–O 2NH2α–A/3CO2HB[O] reaction, or amine 26 under decarboxylative 

conditions53. Finally, 27 served as a framework to produce amide 29, amine 30 or 

aminoester 31 via a one-pot 3NH2A/3CO2Hα α-amination sequence using piperidine (28). 

In this work we focused on amines and acids, but transformations of any pair of functional 

groups can be enumerated to serve as inspiration for the development of novel reaction 

methods and as a strategy for chemical-space exploration. All of the transformations 

mapped in the amine–acid coupling system could exist, but most are not yet linked to 

viable reaction conditions, making this transformation space a fertile proving ground for 

manual or automated reaction discovery. 
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2-Fig. 1 | Transformation enumeration strategy and notation. a, Ethylamine (1) and 

propanoic acid (2) can couple to form amide 3, but can also couple to form 79 other 

products, including 4–9. b, Enumerating all combinations of sp2 or sp3 hybridization for 

the 80 coupling patterns yields 320 product substructures. c, A notation system for 

classifying transformations; see also 6-Extended Data Fig. 1. 
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3-Fig. 2 | Substructure search of 320 amine–acid coupling transformations within 

9,279 complex molecules from DrugBank. Each line represents the appearance of a 

product substructure of a transformation in a complex molecule, and the colour of the line 

represents the frequency of occurrence of that substructure in that molecule. The dots 

around the periphery denote which specific transformations appear in complex molecules 

(+)-noscapine (green dots), (−)-quinine (purple dots) and (−)-sitagliptin (blue dots), which 

connect to 112, 96 and 55 transformations, respectively. The numbers around the 

periphery can be matched to a full list of transformation notation labels found in Extended 

Data Table 1. 
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4-Fig. 3 | Experimental exploration of the sp2–sp2 amine–acid coupling 

transformation space. a, Products with different property profiles (for example, basic, 

acidic, neutral, lipophilic) can be produced from the same two starting materials, 10 and 

11 (top), by varying the transformation and reaction conditions. 

NfOH, nonafluorobutanesulfonic acid; HFIP, hexafluoroisopropanol; Cp*, 

pentamethylcyclopentadiene; 1,10-phen, 1,10-phenanthroline. b. Kernel density 

estimation plots show the range of accessible molecular weight, partition coefficient (logP) 

and polar surface area by coupling 10 to 11 via various amine–acid coupling 

transformations. Grey lines denote the molecular weight, logP and polar surface area of 

12–17. The calculations use 13 and 15 in their charged protonation state. 
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5-Fig. 4 | Late-stage diversification. Various transformations enable the diversification 

of the complex molecules 18, 22 and 27. We performed a virtual enumeration of other 

complex molecules—shown in 14-Extended Data Fig. 9—wherein the full transformation 

set was enumerated for four complex molecule pairings to demonstrate that a wide range 

of properties can be accessed, depending on which transformation is selected. LiHMDS, 

lithium bis(trimethylsilyl)amide; HATU, 1-[bis(dimethylamino)methylene]-1H-1,2,3-

triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate; DIPEA, N,N-

diisopropylethylamine; NHPI, N-hydroxyphthalimide; PMHS, polymethylhydrosiloxane; 

LDA, lithium diisopropylamide; TMSCl, trimethylsilyl chloride; NBS, N-bromosuccinimide. 
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6-Extended Data Fig. 1 | Workflow for enumeration of amine–acid transformations. 

For a pair of coupling partners, we consider a reaction at the functional group A (amine) 
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and B (carboxylic acid oxygen, B[O] or carbon, B[C]). Deamination reactions are noted 

as −A and decarboxylation reactions are noted as −B. Enumeration following steps 1–3 

produces 320 transformations. For the enumeration of all syn- and anti-diastereomers 

(step 4), consult also 11-Extended Data Fig. 6. 
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7-Extended Data Fig. 2 | Kernel density estimate plots for 320 conceivable amine–

acid coupling transformations. Distribution of common physical properties from the 



 

 28 

achiral amine–acid coupling of ethylamine, ethenamine, propanoic acid and acrylic acid. 

MW, molecular weight; HBA, hydrogen bond acceptor; HBD, hydrogen bond donor; PSA, 

polar surface area; FSP3, fraction sp3; ROTB, rotatable bonds; FC, formal charge; QED, 

quantitative estimate of drug-likeness. 

 

 

8-Extended Data Fig. 3 | Number of DrugBank hits per transformation. This bar chart 

shows how many times a transformation is found in the DrugBank database. Each 

number on the abscissa maps to a transformation listed in Extended Data Table 1. 
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9-Extended Data Fig. 4 | Decarboxylative transformations from the enumeration 

scheme. Decarboxylative reactions that produce an amine bound to an sp3 or sp2 carbon 

chain appear in high frequency. These reactions can be used to synthesize a large 
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number of drugs contained in DrugBank. Each transformation can be found by its 

corresponding number in Extended Data Table 1. The colour scale is the same as in 3-

Fig. 2. rxn, reaction. 
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10-Extended Data Fig. 5 | Transformations from the enumeration scheme found in 

specific drugs. The chord diagrams show connectivity of transformation substructures 

as retrosynthetic disconnections in target molecules, with red and blue dots highlighting 

the transformations shown at left in each panel. a, Noscapine connects to 112 of the 

transformations. b, Quinine connects to 96 transformations. c, Sitagliptin connects to 55 

transformations. The colour scale is the same as in 3-Fig. 2. 
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11-Extended Data Fig. 6 | Enumeration of regioisomers and diastereomers. a, The 

transformation substructures enumerated in 4-Fig. 3 are from the 320 achiral bond 

arrangements available from coupling 1, 2 and their sp2 variants ethenamine and acrylic 

acid. b, To sample three-dimensional and regiochemical space, a β′ substituent was 

added as a differentiating substituent. The β′ substituent may be any substituent, but is 

enumerated as being distinct from the β substituent. Considering this regiochemical 

enumeration increases the 320 achiral coupling transformations to 588. c, Subsequent 

enumeration of all possible diastereomers leads to 1,005 chiral coupling transformations. 

These 1,005 three-dimensional substructures were used as inputs in the principal 

moment of inertia plot in 12-Extended Data Fig. 7. 

 



 

 33 

 

12-Extended Data Fig. 7 | Principal moment of inertia plot of 1,005 amine–acid 

coupling transformations incorporating stereochemistry and regiochemistry. In 

this expanded three-dimensional space, regiochemistry and stereochemistry of the 

transformations were considered. A total of 1,005 ways to connect an amine to an acid 

were found. The products presented a diversity of properties and three-dimensional 

shapes. Each molecule is coloured by its quantitative estimate of drug-likeness. 
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13-Extended Data Fig. 8 | High-throughput experimentation for the discovery of a 

copper-promoted esterification reaction. a, An esterification reaction discovered 

through reaction screening of transition metals with ligands and additives. b, Recipe and 

well mapping. c, Calibration curve, for product 17 versus caffeine internal standard, used 

to convert the ultraperformance liquid chromatography with ultraviolet–visible 
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spectrometry peak area to concentration, and thus to assay yield. Error bars show 

deviation among triplicate injections. d, Heat map depicting assay yield screening results. 

CuI with AgNO3 and pyridine showed the most promising results, achieving 18.5% assay 

yield using 30 mol% CuI with AgNO3. 
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14-Extended Data Fig. 9 | Kernel density estimate plots of a series of complex 

molecules as substrates in the amine–acid coupling system. The amine–acid pair 

depicted was used as an input to combinatorial enumeration, and the number of valid 

products identified is noted for each pairing. Distributions of common physical properties 

are shown for each coupling set. Abbreviations are as in 7-Extended Data Fig. 2. 
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15-Extended Data Table 1 | Transformation labels. This table maps each 

transformation number from the periphery of the chord diagram in 3-Fig. 2 to a 

transformation label.  
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Exploring the Combinatorial Explosion of Amine–Acid Reaction Space via Graph 

Editing 

In this project, led by Sam Zhang, the enumerative combinatorics concept introduced in 

the previous paper was expanded. Instead of only looking at a certain subset of more 

obviously feasible reactions, all and any hypothetical transformation is considered. In this 

case, any and multiple bonds can be formed or broken between atoms. This expansion 

led to an explosion of potential transformations. While many may be currently 

synthetically infeasible, the extent of potential properties emergent from the 

transformations reveals the power having control how two substrates merge can have in 

designing a compound with specific profiles. 
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16-Fig. 1 | a. Given an amine 1 and carboxylic acid 2, the most popular transformation to 

unite this pair of building blocks produces the amide 3. b. Coupling products arising from 

a curated subset of chemical transformations charted by our prior work. c. Examples of 

transformations excluded from our prior work.  
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17-Fig. 2 | a. Demonstration of matrix-encoding of reaction from panel 1a. In the 

molecular diagrams, white circles represent carbon, blue circles nitrogen, and red circles 

oxygen. The numbers in the adjacency matrix correspond to the atom indices in the 

cartoon atoms, while the color represents bond order. b. Workflow for exhaustive 

generation of amine–acid coupling products. c. The difference between the product matrix 

and starting material matrix is the transformation matrix. 
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18-Fig. 3 | a. Schematic of enumeration from amine 1 and acid 2 to yield 56 million unique 

transformation matrices, which are filtered first to 222,740 unique products assuming 

carbon and oxygen atoms are degenerate, and further to 80,941 unique products after 

eliminating highly improbable structures. b. 2-dimensional histogram showing distribution 

of ring count and bond edit distance of the initial 222,740 products. c. Kernel density 

estimate (KDE) plots of various physiochemical properties of the expanded amine-acid 

coupling system, along with selected products. The respective property of the classic 

amide is shown by the vertical grey line. HBD = hydrogen bond donor, PSA = polar 

surface area, FSP3 = fraction sp3-atoms, MW = molecular weight, HBA = hydrogen bond 

acceptors, QED = quantitative estimate of drug-likedness, LogP = partition coefficient, 
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ROTB = number of rotatable bonds, Rings = number of rings. d. Principal Moment of 

Inertia (PMI) ratio distributions of all products from the expanded enumeration.  

 

  

19-Fig. 4 | PMI ratio plots showing shape space distribution of reaction enumerated late-

stage diversification of two drug-like molecules, a. showing an sp3–sp3 coupling, and b. 

showing an sp2–sp2 coupling. For each pair of plots, the left shows the distribution of full 

coupling products, while the right shows the distribution of only the atoms at the reaction 
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center (cf. 18-Fig. 3d). c. Joint distribution plots of physicochemical property modulation 

within the system depicted in a (20 + 21). See Fig. S2 in Supporting Information for 

corresponding plots for 22 + 23. The x-axes show modulation of the entire molecule 

relative to the amide, while the y-axes show modulation of only the atoms at the reaction 

center. HBD = hydrogen bond donor, PSA = polar surface area, FSP3 = fraction sp3-

atoms, MW = molecular weight, HBA = hydrogen bond acceptors, QED = quantitative 

estimate of drug-likedness, LogP = partition coefficient, ROTB = number of rotatable 

bonds, Rings = number of rings. 
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20-Fig. 5 | UMAP projection of reaction fingerprints from simple amine–acid starting 

materials onto 80,941 enumerated products onto DrugBank. Dots are colored by the 

number of product substructure matches in drugs with the majority of product 

substructures appearing as unexplored chemical space. 

 

 

21-Fig. 6 | Chord diagram showcasing connectivity of two drugs to enumerated amine–

acid coupling products. Drug targets lie on the black band, and the exhaustive matrix 
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enumeration products lie on the checkered yellow band. The color of the chord represents 

the substructure’s frequency of occurrence, ranging from one to greater than ten (see 

Figure S7 for further discussion). Two disconnections are shown for athamontanolide 

(29), both into acrylic acid (30) and an amine (31, 32) with new disconnections generated 

by the current enumeration workflow. Similarly, noscapine (33) can be disconnected to 

amine 34 and acid 35, or to alkyl acid 36 and secondary amine 37. The frequencies of 

the top 100 most abundant substructure matches in DrugBank are plotted as a histogram, 

categorized by their elemental makeup. The top three most abundant structures for each 

group are shown (38–49).  
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Reinforcing the Supply Chain of Umifenovir and Other Antiviral Drugs with 

Retrosynthetic Software 

This project was an ad hoc project performed in response to SARS-COV-2/COVID-19 

pandemic that emerged in 2020. As the world rushed to develop therapeutics to halt the 

spread of the pandemic, we posited that any winning drug would experience a strained 

supply line. In this project, I designed a data structure to encode synthetic routes to over 

ten potential therapeutics that were being studied for efficacy against the virus. With the 

help of other lab members, we collected every and all published synthetic route to each 

of these molecules. Simultaneously, we utilized the retrosynthetic software Synthia to 

devise routes to these drugs that excluded the same starting materials used in the 

published routes. In this fashion, new routes would avoid any supply chain constraints 

imposed by induced demand of the compound. Yingfu Lin and Rose Zhang 

experimentally validated several of these routes in lab, while I analyzed and developed a 

software to evaluate the proposed routes against the collected published ones. This 

report is featured in Nature Communications.54 
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Abstract 

 

The global disruption caused by the 2020 coronavirus pandemic stressed the supply 

chain of many products, including pharmaceuticals. Multiple drug repurposing studies for 

COVID-19 are now underway. If a winning therapeutic emerges, it is unlikely that the 

existing inventory of the medicine, or even the chemical raw materials needed to 

synthesize it, will be available in the quantities required. Here, we utilize retrosynthetic 

software to arrive at alternate chemical supply chains for the antiviral drug umifenovir, as 

well as eleven other antiviral and anti-inflammatory drugs. We have experimentally 

validated four routes to umifenovir and one route to bromhexine. In one route to 

umifenovir the software invokes conversion of six C–H bonds into C–C bonds or 

functional groups. The strategy we apply of excluding known starting materials from 

search results can be used to identify distinct starting materials, for instance to relieve 

stress on existing supply chains. 

 

Introduction 

 

In 2020, the scourge of coronavirus highlighted the fragility of diverse supply chains, 

affecting the world’s pipeline of hand sanitizer55, toilet paper56, and pharmaceutical 

starting materials57. A diverse array of antiviral and anti-inflammatory drugs was 

investigated in the hopes that an existing medicine could be repurposed for use against 

COVID-1958, 59. The scale of the pandemic60 would easily stress the pharmaceutical 

supply chain61. For instance, at the time of our study, the only drug with an emergency 
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use authorization for treating COVID-19 was remdesivir (1). While its producer, Gilead 

Sciences, Inc., ramped up production of 1 significantly, there were only 5000 doses of 1 

available when the outbreak began62. 

 

We realized that the availability of alternative starting materials to promising synthetic 

therapeutics could alleviate pressure on supply chains. We reasoned that modern 

retrosynthetic software could be used to analyze the diverse chemical agents that were 

being studied clinically and pre-clinically when we initiated our study58. For the sake of 

preparedness, we chose to consider multiple therapeutic synthetic targets 

simultaneously, even though many would eventually prove to be irrelevant in the war on 

COVID-19. We focused our experimental attention on umifenovir (2), which had been 

used against SARS-CoV1, and is effective against SARS-CoV2 in vitro63. Automated 

retrosynthesis has already been used to design contingency plans for the investigational 

COVID-19 therapeutics hydroxychloroquine and remdesivir (1)64. This reaction-centric 

study identified novel sequences computationally, but the routes initiate with known 

starting materials, or from starting materials that added significantly to route length or 

reagent cost. 

 

We present herein a starting material-centric retrosynthetic analysis of 12 investigational 

COVID-19 drugs. We identify distinct raw materials that are of comparable cost, and 

which feature in routes of comparable length to known routes to the 12 diverse targets. 

From our perspective, it was not detrimental to intercept established synthetic routes to 

the selected drugs, as long as the overall route had a competitive step-count and initiated 
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with distinct starting materials of a comparable or better price. The simultaneous design 

of multistep preparative routes to diverse targets, which circumvent the use of established 

raw materials, presents a considerable data handling challenge that would be a good test 

of modern computer-assisted synthesis planning software26-28, 39, 65-70. We enlisted the 

SYNTHIATM retrosynthesis platform26-28 to facilitate navigation of requisite parameters 

including availability, pricing, and novelty of starting materials, route brevity, issues of 

chemo-, regio-, and stereoselectivity, as well as route visualization, documentation, 

sharing, and storage. We present herein predicted retrosynthetic routes to twelve diverse 

COVID-19 therapeutic candidates that initiate, as frequently as possible, with starting 

materials that are distinct from those used in published or patented syntheses. Few 

studies of modern retrosynthetic software validate routes experimentally, so it was 

important for us to realize some of our calculated routes. 

 

Results and Discussion 

 

Crowd-sourced data collection and automated retrosynthesis 

 

Our study commenced with a crowd-sourcing approach wherein each member of our lab 

collected all published and patented synthetic routes for one of the drugs in 22-Fig. 1. The 

routes were then encoded via their simplified molecular-input line-entry system (SMILES) 

strings. From this dataset we built an interactive route visualizer, available for free at 

http://covidroutes.cernaklab.com,71 to facilitate review of existing routes. The 

concatenated list of starting material SMILES from each target was used as an exclusion 
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criterion in each retrosynthetic search. This approach allowed us to rapidly navigate to 

novel starting materials. Each search result contained 50 route proposals, and the user-

defined search heuristic was generally set to minimize starting material cost. A single 

search heuristic worked for most targets, but occasionally, the preference for minimized 

cost reagents would result in proposed routes with more reaction steps than desired. In 

these cases, the search heuristic was modified by relaxing the preference for reagent 

cost and increasing the software’s beam search width. Predicted routes were manually 

reviewed for step count, synthetic feasibility, and ease of execution of proposed reactions 

on the multikilogram scale, for instance by biasing towards routes that minimized the use 

of cryogenic cooling or pyrophoric reagents. The final heuristic used for each target is 

shown in the Supplementary Information. 

 

Among small molecules being considered (23-Fig. 2), we focused on remdesivir (1), 

umifenovir (2), bromhexine (3), galidesivir (4), ritonavir (5), cobicistat (6), ribavirin (7), 

camostat (8), darunavir (9), nelfinavir (10), favipiravir (11), and baricitinib (12). In most 

cases, the proposed route has the same number, or fewer, steps than the established 

routes, and initiates from distinct starting materials. Our analysis yielded alternate starting 

material proposals for 1–12, which can relieve pressure on the fine chemical supply chain. 

Using galidesivir (4) as an example (24-Fig. 3), the software proposed a sequence 

hinging on a trans-hydroiodination of alkyne 13, an Evans alkylation to form 18, an Ullman 

coupling to form 19, and an enantioselective Heck-coupling to give 22. The software 

proposed that the latter reaction mixture could be subjected in situ to hydrochloric acid to 

remove the Boc-protecting groups in a one-pot operation. Dihydroxylation of 22 would 
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complete the synthesis of 4. Exemplary starting materials 23–25 were excluded from the 

search based on the appearance of their SMILES strings in published routes to 4. The 

algorithm successfully navigated around five established pyrrolopyrimidine starting 

materials to arrive at 21, which is cost-competitive with the established nucleobase 

sources; for instance, the 7-des-bromo analog of 21, 4-chloro-5H-pyrrolo[3,2-

d]pyrimidine, is listed at $9.90/g while a 4–OH analog of 21, 7-bromo-5H-pyrrolo[3,2-

d]pyrimidin-4-ol, which is used in the reported synthesis of 4, is listed at $280/g. On a 

production scale, all starting material pricing would likely be customized based on 

competitive bidding, but in any event, the high list price of 21 is comparable to starting 

material analogs currently described in patents. The proposed use of an Evans auxiliary 

to produce 18 highlights the software’s desire to select robust chemistry, but this step 

could likely be replaced with a catalytic protocol to avoid auxiliary use for large-scale 

production if needed. Indeed, the overall route proposes a variety of catalytic operations. 

For the production of 1–12 on large scale, routes could be found that minimized use of 

cryogenic conditions, pyrophoric reagents, or expensive catalysts, which were the main 

biases imposed in our manual review of answer sets beyond route length and starting 

material cost. For 1, novel starting materials were identified but the route bore high 

similarity to known routes, mirroring the automated retrosynthesis findings of the 

Grzybowski lab for this target64. While the software was challenged by esoteric 

functionalities like a chiral phosphorus atom, the predicted route to 4 discussed above, 

and those to 2 and 3 discussed below, represent typical outputs. 

 

Retrosynthesis and experimental syntheses of Umifenovir 
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Umifenovir (2), is an antiviral drug developed to combat influenza infections whose use 

against SARS-CoV1 made it an attractive synthetic target for this study. It is believed that 

2 inhibits the entry of viruses into human cells, and the antiviral has been used in many 

clinical trials as an investigational COVID-19 therapy63. Although 2 shows promising in 

vitro activity against the novel coronavirus, recent clinical results suggest limited efficacy 

for 2 against COVID-19 in humans72. Using the search criteria described above, we 

arrived at a series of routes to 2 based on the oxidative cyclization of aniline with a β-

ketoester73. Since it is a commodity chemical, ethyl acetoacetate 27 was not included in 

the exclusion criteria of our heuristic and appears as a starting material here, although it 

has been used previously in the synthesis of 2. Starting materials 28–30, among several 

others (see Supplementary Information), were excluded. A key theme that separated the 

predicted routes from the established indole-forming routes, and enabled the use of 

distinct starting materials, was the incorporation of a Baeyer–Villiger oxidation to utilize 

an acetyl group as a surrogate to the requisite hydroxyl group at C1. We found this 

proposal of a Baeyer–Villiger oxidation to be a surprising solution. Among other proposals 

that were non-obvious to us was the suggested C–H oxidation of an ethyl group where 

the use of C–H functionalization logic74-77 reduces the cost of the starting materials. The 

software proposed an inefficient three-step sequence to N-methylate the indole, whereas 

published syntheses of 2 reported N-methylation directly from the indole with methyl 

iodide and sodium hydride. We opted to use this one-step precedent instead of the 

software’s three-step proposal. In another search, a proposed sequence to 2 was initiated 

with a pre-installed halogen coupling handle, instead of a C–H bond, to enable a related 
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indole formation, but instead invoked a Bamberger rearrangement to functionalize the C–

H bond. As described below, these four routes were reduced to experimental practice 

with only minor modifications to reaction conditions and sequences proposed by the 

software. 

 

To experimentally validate routes to 2, we first investigated the proposed indole formation 

from 1-(4-aminophenyl)ethan-1-one (26, $1.15/g) and ethyl acetoacetate (27, $0.03/g) 

using oxidative reaction conditions (25-Fig. 4 route A). Pretreatment of 26 and 27 with 

1 mol% indium(III) bromide, to form 31, was followed by oxidative cyclization to form 32. 

While the published reaction conditions for the suggested reaction73 did provide the 

desired indole 32, the yield was only 20%. Using magnesium sulfate to promote the 

formation of 31 improved the yield of 32 to 47%. As described below, other 

implementations of this reaction gave much higher yields. N-Methylation occurred 

smoothly to produce 33 in 99% yield. An issue was encountered in the experimental 

realization of the Baeyer–Villiger oxidation using mCPBA in that a mixture of oxidation 

products was obtained. Unstable products we believe to be from oxidation of the indole’s 

double bond accounted for the bulk of the reacted material, and only traces of 34 were 

isolated. While the formation of 34 was accurately predicted, the subtle interplay of 

electronics that govern the preference for the desired Baeyer-Villiger oxidation over the 

undesired Prilezhaev oxidation could not be teased out by the software, and the best 

modification of reaction conditions we found yielded small amounts of 34 as a mixture 

with undesired oxidation products. A literature search on related indoles revealed that the 

α-chloroketone 35 should be a viable substrate for the Baeyer–Villiger78, with the chloro-
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group acting as a directing group to favor oxidation of the ketone. We thus modified the 

route and, indeed, chlorination of 33 led to 35, which underwent selective Baeyer–Villiger 

oxidation to produce 36. Subsequent bromination produced 37, which underwent 

thioetherification with 38 and in situ saponification to produce 39. Here, the route 

intercepts known syntheses of 2 via alkylation with 4079. All intermediates predicted by 

the software were observed, but a modification to incorporate a chlorine directing group 

was necessary to achieve usable levels of selectivity in the formation of 36. This change 

led us to demonstrate the bromination of 36 to produce 37, instead of brominating 34, yet 

the selective bromination of 34 en route to 39 is a known reaction80. 

 

The output of a SYNTHIATM search is a ranked list of route proposals. Several other 

computed routes to 2 were also experimentally vetted. One route, based on a variation of 

the same indole-formation and Baeyer–Villiger sequence described above, proposed a 

benzylic C–H oxidation of indole 43 (25-Fig. 4, route B). The indole-synthesis was more 

productive with 41 than with 26, yielding 42 in 79% yield. Methylation gave 43 in 92% 

yield. SYNTHIATM predicts reaction sequences. Corresponding reaction conditions are 

recommended based on what was reported in the source literature. While these 

recommendations work well for a majority of substrates, exact recipes for specific 

substrates may require user direction. Software-recommended conditions of Oxone® with 

potassium bromide81 for the C–H oxidation of 43 were unsuccessful in our hands. An 

experimental survey of oxidants revealed the recently disclosed Baran-Roček oxidation82, 

83 could selectively oxidize C14 in 62% yield, thus intercepting the previous route to 2. 
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While the generation of chromium waste is only viable on small scale, this result validates 

the proposed C–H functionalization hypothesis. 

 

The direct installation of the chloromethyl ketone via a Friedel–Crafts acylation would 

provide a concise and alternative route to 2. Indeed, the software had proposed a route 

that used a Friedel–Crafts acylation (25-Fig. 4, route C). This route was intriguing in that 

it initiated the synthesis from 45, an exceptionally cheap starting material. While the 

software proposed a Friedel–Crafts acylation with acetyl chloride, we modified the route 

to use instead chloroacetyl chloride (48, $0.13/g), thus installing the chloride directing 

group in a single step. Experimentally, oxidative indole-coupling to form 46, followed by 

methylation to form 47, occurred smoothly. Friedel–Crafts acylation of 47 with 48 under 

influence of aluminum(III) chloride gave 35 and intercepted the other routes. The 2:1 

regioselectivity of the acylation would require optimization for production on production 

scale. Aside from this reaction, the regioselectivity for desired isomers was excellent for 

all other C–H functionalization events. We expect the frequent suggestion by the software 

to convert C–H bonds into other functionalities is the result of the preference for low-cost 

starting materials in our heuristic, with C–H bonds in many instances being cheaper than 

other functionalities. The Friedel–Crafts acylation route described replaces six C–H bonds 

with new functionalities over seven reactions to convert 27 and 45 into 2. 

 

We next employed a different tactic. Most routes to 2 hinge on a Nenitzescu indole 

coupling79 between 1,4-benzoquinone and a β-aminocrotonic ester71. Indeed, the 

Nenitzescu reaction using known starting materials featured as a proposal in our query 
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results when default search criteria were used, so the keyword “Nenitzescu” was used as 

an exclusion criterion. This heuristic did not employ a SMILES exclusion criterion, so 

starting material 52 was employed even though this chemical has been used in a prior 

synthesis of 2. The results of this search led to yet another proposal to use a C–H bond 

as a feedstock, via a Bamberger rearrangement to install the C1 hydroxyl (25-Fig. 4, route 

D). SYNTHIATM proposed the use of 5-bromo-2-chloro-1-nitrobenzene as a starting 

material. In our hands, the requisite indole coupling on the chloride gave only traces of 

39, and we ultimately modified the starting material to use 2,5-dibromo-1-nitrobenzene 

(49) instead. This modification allowed the indole coupling to proceed, as discussed 

below, with the added benefit that 49 is cheaper than the corresponding chloride. In 

practice, 49 was reduced to the hydroxylamine, and treated with aqueous trifluoroacetic 

acid to affect the Bamberger rearrangement yielding 50, which was methylated to arrive 

at 51. Copper-catalyzed coupling to 53, itself obtained through the union of 52 and 38, 

produced 39 in 66% yield when 54 was used as a ligand. These conditions were the result 

of a rapid optimization campaign using high-throughput experimentation (see 

Supplementary Information). Subsequent alkylation of 39 with 40 produced 2. With this 

latter route, convergency is maximized, so the longest-linear sequence is just five steps. 

 

One-step synthesis of bromhexine 

 

Finally, we looked at 3 (26-Fig. 5), a transmembrane protease, serine 2 (TMPRSS2) 

inhibitor that was being investigated in five clinical trials for COVID-19. A SYNTHIATM 

search provided new reaction sequences of comparable length to known routes, 
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identifying 55 as a novel starting material71 by navigating around known starting materials 

56–59 and others. The predicted route invoked a C–H oxidation of the benzylic methyl 

group, presumably to arrive at cheaper starting materials, which readied 60 for reductive 

amination with 61. The proposed route completed the synthesis of 3 by N-methylation of 

62 with 63. We considered instead that 3 could be synthesized from 2,4,6-tribromoaniline 

(64, $0.51/g), which is used in the textile industry and readily available, with N,N-

dimethylcyclohexylamine (65, $0.10/g), a commodity chemical used in oil refining, via the 

direct C–H functionalization recently reported by Shirakawa84. While this manually 

designed route does not serve as a test of the software’s capability per se, our motivation 

here was largely to do what we could as synthetic chemists to support the production of 

a potentially beneficial medicine during a pandemic. The key reaction was added to the 

SYNTHIATM database so it would appear as a general solution to subsequent searches, 

and indeed this route came up as a top hit in a subsequent search for 3. To experimentally 

realize this one-step route, we found that 64 could be heated in excess 65 in the presence 

of tert-butylperoxide84 to produce 3 in 41% yield. Further optimization of reaction 

conditions—to improve yield, ease of purification of 3, and address the hazard of using 

peroxide on large scale—would be needed for commercial production. Nonetheless, this 

strategic disconnection reduces 3, in a single step, to starting materials that are 

considerably cheaper than those in commercial use. 

 

In this work, we show disconnection of drugs into affordable reagents for 12 drugs through 

the merger of crowd-sourcing and retrosynthetic software. Four predicted routes to 2 and 

one route to 3, manually designed but added to the software’s database for future use, 
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were experimentally validated. Navigating the combinatorial explosion of routes towards 

twelve distinct synthetic targets to arrive at distinct and affordable starting materials was 

a data handling challenge that could only be navigated with automated retrosynthesis. 

Our work was performed over nine weeks in Spring 2020 against the backdrop of a 

developing pandemic. While full process development would require a longer timeline—

for instance, reagents such as peroxides would likely be replaced for production on 

commercial scale—our results show that automated retrosynthetic predictions can rapidly 

highlight alternative starting material supply chains to pharmaceuticals. 

 

 

22-Fig. 1 | Workflow to identify alternate starting material supply chains. 1. 

Published starting materials are encoded as SMILES strings, which are 2. excluded from 

automated retrosynthetic searching. 3. Select routes are validated in the wet lab. 
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23-Fig. 2 | Therapeutics being evaluated for COVID-19 and their retrosynthetic 

analysis networks. The number of clinical trials is based on search results for all listed 

trials, completed, active, or planned, found on www.clinicaltrials.gov (accessed July 7th, 

2020). For the route networks, the yellow dot at the center is the target molecule. Routes 

in grey and orange below the target are published, and the routes in purple and pink 
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above the target are routes predicted. Intersection nodes in literature routes reflect 

common intermediates or starting materials. A version of this diagram is available as an 

interactive route visualizer. 
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24-Fig. 3 | Predicted synthetic sequence to 4. Reaction conditions are proposals from 

the SYNTHIA™ software. 
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25-Fig. 4 | Experimental demonstration of four routes to 2. Each route terminates in 

inexpensive starting materials. 26, 41, 45, 48, and 49 have not been used in a published 
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synthesis of 2. The conversion of 33 into 35, and the use of starting material 49, instead 

of 5-bromo-2-chloro-1-nitrobenzene, were manual modifications to the software’s 

prediction. See main text for details. 
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26-Fig. 5 | Predicted and realized routes to 3. Dashed arrows are predicted, while the 

solid arrow is manually designed and experimentally validated, with the subsequent 

addition of the key reaction to the SYNTHIA™ database. 
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Analyzing Conceivable Reactions from Commercially Available Chemical Building 

Blocks 

 

27-Graphical Abstract | Enumerative combinatorics is taken beyond amines and acids 

to all common building block types. 

This project contains information regarding distributions and analyses of common building 

block classes in the Sigma-Aldrich catalog. It is shown that enumerated transformations 

are plentiful between various building block types that are perhaps less often used 

compared to common building blocks such as boronates and halides. Using the extent of 

transformations found in drug compounds and the abundance of building block classes 

in commercial catalogs, a metric is developed to gauge the most valuable 

transformations. Several of these unconventional reactions between building blocks are 

experimentally shown. 
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Abstract 

 

The navigation of chemical space is highly dependent on the availability of chemical 

building blocks. A common drug discovery tactic is to attach commercially available 

building blocks to a core moiety using robust chemical transformations. This systematic 

matching of commonly available building blocks such as those bearing amines, acids, 

alcohols, aldehydes, halides and boronates to popular reactions such as the amide 

coupling, Buchwald-Hartwig coupling, Fisher esterification, or Suzuki coupling has formed 

the basis for modern medicinal chemistry. Here, we explore the interplay of commercially 

available building blocks with existing and hypothetical reaction methods to evaluate 

purchasable substrates classes through chemoinformatic analyses in Python. Several 

case studies are presented to showcase examples of high value transformation space. 

 

Main 

 

Modern pharmaceutical synthesis favors a subset of robust reactions including amide 

coupling, reductive amination, Suzuki coupling, Buchwald-Hartwig coupling and related 

aryl-heteroatom couplings (28-Fig. 1A).30, 85-88 These well-known reactions perform 

robustly across many substrate classes and also enjoy a diversity of commercially 

available amine, acid, halide, boronate and aldehyde feedstocks. Often likened to the 

plastic blocks of the popular Lego® toy, the availability of chemical building blocks 

frequently dictates the physicochemical property space that can be reached in a drug 

discovery program.89-92 Commercially available building blocks provide access to a broad 
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swath of physicochemical property space, and are typically united with pharmacophoric 

cores using popular transformations such as the amide coupling.93 The merger of building 

blocks with predictable reactions that unite them forms the basis of modern Make-On-

Demand virtual libraries, which have been demonstrated to offer high quality drug leads.94, 

95 Building on these trends, large virtual libraries developed from building block libraries 

via robust chemical coupling reactions have become an important source of lead 

discovery through ultralarge-scale virtual screening.96-99 

	

We have recently shown that chemical reactions themselves play a major role in 

impacting physicochemical properties,1, 100 and have developed a series of reaction 

methods based on diverse amine–acid couplings.101-104 Here, we expand the analysis to 

include other popular building blocks such as alcohols, halides, boronates, and aldehydes 

(28-Fig 1B) and specifically link the reactions to commercially available building blocks. 

Several examples of high impact transformations between abundant building blocks as 

identified in this report have been published recently.105-107 

 

Rational modulation of physicochemical properties is critical to the macroscopic 

phenotype of a small molecule, such as its solubility, metabolic stability, or affinity to a 

target protein. Traditionally, such property modulation has relied on the availability of 

diverse building blocks. In a classic medicinal chemistry optimization campaign, it may be 

necessary to evaluate several hundred building blocks, united with a single 

pharmacophoric core using a single reaction (Fig. S1). Our lab has been exploring a 

complementary approach, wherein we consider coupling a single building block to a 

single pharmacophoric core using hundreds of conceivable reactions, even if the requisite 
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reaction method has not yet been developed.1, 100 The majority of commercially available 

building blocks fall around 12 heavy atoms, whereas most reactions change 2–6 heavy 

atoms at a time (28-Fig. 1C). Thus, in the status quo, the tuning of property diversity by 

interchanging building blocks requires a coarse-tuning modulation of around 12 heavy 

atoms at a time. Contrarily, our reaction-centric approach to property modulation changes 

only a few atoms at a time but achieves comparable physiochemical property diversity, 

thus offering a fine-grain modulation of properties.17, 18 

 

While the coupling reactions we propose may not yet exist, we envision acceleration of 

reaction method development through the advent of high-throughput experimentation,36, 

108-113 machine learning,114 and novel chemical reactivity. Emerging chemical 

technologies115, 116 such as C–H functionalization,117-119 photoredox operations,120 

transition metal catalysis, and electrochemistry121 to name a few, will further expand the 

breadth of imaginable coupling reactions.  

 

While we propose that the coupling of available building blocks should be accomplished 

via many diverse chemical transformations, only a handful of these chemical 

transformations exist. It currently requires significant resources to invent recipes for new 

chemical reaction methods, but the process is becoming increasingly automated.114 The 

analysis described in 29-Fig. 2 provides one possible formula to triage specific high-

impact coupling reactions for invention. Since the objective is to identify novel reaction 

methods of high impact, our analysis is completely agnostic of reaction mechanism or 

feasibility. As per our earlier analysis, we only require that products observe the octet rule. 
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One key parameter we consider is the prevalence of reaction product substructures in 

drugs. This is shown in chord diagrams in 29-Fig. 2A and 29-Fig. 2B where 15 antivirals 

under trial for COVID-19 treatment including bromhexine, remdesivir, and umifenovir are 

linked to conceivable reactions in boronate–bromide coupling space and amine–acid 

coupling space.  

 

Each line in 29-Figs 2A-2C represents the observation of the reaction product 

substructure in a pharmaceutical, and the lines are colored by the number of times the 

substructure appears in each pharmaceutical. It is easy to see that the amine–acid space 

is more densely populated than the boronate–bromide space, which is rationalized since 

most of the “white space” in the boronate–bromide chord diagram represents product 

substructures containing a boronate or a bromide, which occur rarely in drugs. In contrast, 

products where both the boronate and bromide do not appear, as in the products of Suzuki 

coupling and related C–C coupling methods, have high prevalence in drugs. Expanding 

the analysis to other common functional groups prevalent as reactive handles in building 

blocks – acids, aldehydes, alcohols, amines, halides, and boronates – shows that the 

amine–acid coupling space yields the most product substructures (3,050) that appear in 

the targeted pharmaceuticals (29-Fig. 2C and 29-Fig. 2D). Meanwhile, within the 

boronate–boronate couplings, there are only 71 substructure matches across the 15 

pharmaceuticals, demonstrating that there are fewer reactions of high impact that 

preserve one or both boronate groups, and reaction discovery should be focused towards 

coupling reactions that form C–C bonds while losing both boronates. The richness of 
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opportunity to impact drug discovery makes the amine–acid coupling space an ideal 

venue for reaction method development. 

 

By considering both the availability of commercial building blocks and the prevalence of 

the transformations born from their respective enumeration, we can gauge potential 

reaction classes for pareto optimality (30-Fig. 3). Through our analysis, it is revealed that 

reactions utilizing carboxylic acids, amines, and alcohols push the pareto frontier, and are 

thus highly valuable targets for research. In our studies, we have discovered several non-

traditional couplings between these Pareto-optimal building blocks. For instance, we have 

discovered an unusual rearrangement between aldehyde 9 and activated benzylamine 

10 to form 12, as opposed to the traditional reductive amination to form 11.122 In studies 

on the carbon–nitrogen coupling between bromide 13 and piperidine 14 to form 

Buchwald-Hartwig product 15, we realized a significant impact of base leading to 

rearranged product 16, similar to that recently reported by Bandar et al.123 Finally, as an 

example of a non-expected C–H functionalization to form a carbon-nitrogen bond, we 

showcase our previously reported one-pot synthesis of bromhexine (19) when treating 

compound 18 with excess tribromoaniline 17. 

 

Two examples that are under exploration in our lab are the amine–acid deaminative–

decarboxylative C–C coupling of alkyl amines and alkyl and aryl acids,104 and the amine–

acid esterification of aryl amines and aryl or alkyl carboxylic acids.102 For each 

transformation, we conducted a head-to-head comparison with the boronate-bromide 

Suzuki coupling. Building blocks that had the relevant functional groups were extracted 
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from the Sigma-Aldrich catalog, and their chemical space overlap plotted as Venn 

diagrams (31-Fig. 4). In 31-Fig. 4A, the transformation involved forming a sp3–sp3 C–C 

bond at the α position of the building block while losing both amine and carboxylic acid 

functional groups, for instance creating 22 from 20 and 21, whereas 31-Fig. 4B considers 

a sp3–sp2 C–C bond formation with an aryl carboxylic acid, such as forming 25 from 

activated amine 23 and acid 24.   In each instance, the building blocks were coupled with 

our developed C–C coupling methods, in tandem with the Suzuki coupling. Morgan 

fingerprints were subsequently computed for all products, and they were clustered via t-

distributed stochastic neighbor embedding (t-SNE). 

 

Similarly, amine–acid esterification chemistry was analyzed, where diazonium salts like 

26 undergo deaminative esterification with acids such as 27 to form compounds like 28. 

(Fig. S2A).101 Aryl amines that are commercially available building blocks but non-existent 

as alcohols provide an alternative to the Fisher esterification. (Fig. S2B) Both para- and 

ortho-substituted anilines provide access to chemical space unreachable by their phenolic 

counterparts. (Fig. S2C) An inspection of the physicochemical property profile of anilines 

and phenols showed that purchasable anilines are more druglike (Fig. S2D), as 

evidenced by aniline distributions scoring higher on druglikedness scores compared to 

the phenol distributions. A similar analysis was performed on another amine–acid 

esterification between alkyl amines and alkyl acids,103 and it was found that alkyl amines 

provide access to more druglike molecules compared to alcohols. (Fig. S3) Finally, head-

to-head analyses of the physicochemical properties of the building blocks within the 



 

 75 

classes used in the esterification chemistries reveal the substrate versatility reactivities 

need to achieve desired property distributions in a product molecule. (Fig. S4) 

 

Conclusion 

 

The common drug discovery tactic of unifying diverse building blocks with select robust 

reactions has resulted in large commercial libraries containing popular functional groups. 

We have demonstrated that by leveraging novel reactivities between common functional 

groups, the accessible chemical space can be vastly expanded. Many reactions fit the 

criteria of high prevalence of product substructure in pharmaceuticals and broad 

commercial availability of building blocks. Mining transformation and building block space 

will continue to guide the efforts of reaction discovery. In conjunction with reaction 

informatics, the most valuable transformations can be identified and invented to access 

relevant chemical space with higher efficiency. Furthermore, modern efforts in physical 

organic chemistry are elucidating the mechanistic understanding of cross-coupling 

reactions.  Mapping the extent of cross-coupling reactivity is an invaluable step in applying 

current mechanistic understanding towards the discovery of high value transformations. 
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28-Fig. 1 | Analysis of building blocks from the MilliporeSigma catalog. (A) Popular 

reactions in medicinal chemistry and popular building block classes. (B) Comparison of 

scope between our prior work and current work. (-X = halides, -BXn = boronates) (C) 

Distribution of heavy atoms in commercially available amines and acids. 
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29-Fig. 2 | (A) Chord diagram linking 399 conceivable boronate–bromide transformations 

to 15 antiviral drugs. A transformation (yellow arc) to drug (black arc) linking lines indicate 

the corresponding substructure produced by the transformation exists in the respective 

drug. (B) All conceivable reactions (222,740 transformations) between an amine and acid 

provides considerable access into drug-like chemical space. (C) Distribution of 

transformations in examined drugs from all conceivable transformations between building 

blocks. (D) Number of transformations between building blocks that exist in examined 

drugs. 
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30-Fig. 3 | Scatter plot of the commercial availability of building blocks against the 

transformation frequency of substructures formed found when enumerating 

transformations for the respective building block. High value transformations identified on 

the Pareto front are exemplified. Isolated yields are shown. Conditions: (A) NaBH4 (1 

equiv.), p-toluenesulfonic acid monohydrate (1 equiv.), 25 ºC, 0.5 h. (B) 1) 

triphenylpyrylium (1.0 equiv.), ethanol (1.0 M), 80 ºC 2) benzaldehyde (1.0 equiv.), 

Cs2CO3 (1.5 equiv.), DMSO (0.1 M), 60 ºC 3) InBr3 (1.0 equiv.), chloroform (0.1 M), 60 
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ºC. 4) NaBH4 (1.0 equiv.) (C) Pd(OAc)2 (0.1 equiv.), XantPhos (0.1 equiv.), KOtBu (2.0 

equiv.), toluene (0.2 M), 80 ºC, 18 h. (D) KOtBu (2.0 equiv.), DMSO (0.2 M), r.t., 18 h. (E) 

tBuOOtBu, 130 ºC, 40 h. 

	

	

31-Fig. 4 | Recently reported amine–acid chemistries analyzed for chemical space 

access. On the left are Venn analyses of commercially available sp3 and sp2 amines, 

bromines, boronates, and carboxylic acids indicating novel chemical space reachable by 

recently discovered amine–acid chemistry. The t-SNEs to the right compares the 

structural access provide when using acids or amines instead of bromides or boronates. 

(A) The analysis performed for an sp3–sp3 deaminative–decarboxylative C–C cross 

coupling. (B) The analysis performed for an sp3–sp2 deaminative–decarboxylative C–C 

cross coupling. 
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One Step Retrosynthesis of Drugs by Cross-Coupling from Building Block 

Catalogs 

In this work reaction targeting was used to focus on retrosynthetic routes that formed 

target molecules via one transformation from one or two substrates that are purchasable. 

Specifically, DrugBank was used as a target catalog and the SigmaAldrich commercial 

catalog was used as the building block dataset. Each bond of each drug was 

decomposed, and the resultant synthons were enumerated with building block handles 

then cross-referenced against the commercial catalog. If both synthons (or synthon, in 

the case of an intramolecular disconnection) could be purchased, then the reaction was 

saved and organized by reaction type (bond formed, local atomic features). A stunning 

number of one-step cross coupling routes were identified.  

  



 

 81 

Abstract 

 

Enumerative combinatorics can be utilized to decompose target molecules into 

components. Cross-referencing these synthons to commercial datasets can reveal 

valuable reactivities. In this report, the compounds listed in DrugBank were mapped to 

Sigma-Aldrich’s commercial catalog through reaction agnostic one step retrosynthetic 

decomposition. Decomposed synthons were linked to target molecules by 

transformations that form one bond after the elimination of each synthon’s respective 

functional handle, as indicated by their building block class. The analysis is performed at 

the highest level, considering only the bond formed and the minimal substructure template 

of each building block class. Specific reactivities were analyzed after post-hoc refinement 

and clustering of commercial synthons. Maps between boronates, bromides, iodides, 

amines, acids, chlorides, alcohols, and various C–H motifs to form alkyl–alkyl, alkyl–aryl, 

and aryl–aryl carbon–carbon, carbon–nitrogen, and carbon–oxygen bonds are reported 

herein, with specific examples for each provided.  

 

Introduction 

 

Computer aided synthesis is a valuable tool in designing and evaluating experiments to 

create chemical matter efficiently and optimally.54, 124-127 Modern retrosynthetic algorithms 

rely on reactivities reported in the literature to propose synthetic routes to targets,128-133 

and the exploration of chemical space is largely biased by known reactivities as indicated 

by the large majority of reactions run in the pharmaceutical industry being one of four or 
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five common types (amide, Suzuki, Buchwald-Hartwig, Boc (de-)protection, etc.)30, 134 In 

contrast, enumerative combinatorics can generate hypothetical transformations that have 

yet to be discovered between substrate classes.1, 135 In reaction targeting, enumerated 

transformations are evaluated for utility and impact through a variety chemoinformatic 

means such as chemical space access analysis, retrosynthetic value, and property or 

topological distribution analysis. When extending the enumerative combinatorics 

algorithm to a variety of common building block classes such as amines, acids, alcohols, 

halides, boronates, etc., a wealth of hypothetical yet realistic and feasible reactivities are 

revealed.  

 

The most valuable reactivities are those that utilize highly available commercial 

building blocks and provide access to many drug or druglike structures (32-Fig. 1A). In 

this study, we focus on a specific transformation identified through enumerative 

combinatorics – the general class of cross-coupling reactions that form a single bond 

between carbon, nitrogen, or oxygen atoms after the elimination of a building block 

handle, for instance by coupling 1 and 2 to form structure 3. (32-Fig. 1B). A distributable 

algorithm was used to decompose compounds listed in DrugBank into synthons, which 

were enumerated as building blocks and cross-referenced against Sigma Aldrich’s 

commercial catalog. In the case where two commercial compounds could cross-couple 

into a drug molecule, an entry was recorded. Retrosynthetic entries were visualized in 

bulk via chord diagrams, where one synthon (synthon a) is arrayed along the bottom-left 

arc, the other synthon (synthon b) is arrayed along the bottom-right arc, and target 

molecules are arrayed along the top arc. A chord between a synthon and the target 
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molecule indicates that the synthon can be used to form the target in one step when 

merged with a compound found in the other synthon arc. (32-Fig. 1C)  

 

In the analysis reported in this paper, building blocks are linked to synthetic targets in 

DrugBank through enumerated hypothetical cross-couplings. We consider the formation 

of a single bond between alkyl and aryl carbon atoms, nitrogen atoms, and oxygen atoms 

due to their high prevalence in druglike structures (32-Fig. 1D). Furthermore, the analysis 

focuses on common building blocks found in commercial catalogs to maximize the utility 

of available feedstock (32-Fig. 1E). Post-hoc refinement of the dataset enables analysis 

of more precise building blocks. For instance, alcohol building blocks hits can be grouped 

into primary, secondary, tertiary, or aryl subclasses, and C–H building blocks can be split 

into benzylic and non-benzylic motifs. The results reveal a wealth of viable reactivities 

that can form druglike molecules in one step via cross-coupling between two commercial 

substrates, some of which have been previously reported as methodologies. We posit 

that many of these reactivities can be developed through literature mining and high 

throughput experimentation.108, 136, 137 

 

In 33-Fig. 2A, the utility of bonds formed at C–H motifs are valuable in expanding chemical 

space and in synthesizing drug compounds in one step from commercial compounds. 

Particularly, benzyl activations such as the formation of 6 from 4 and 5 or the formation 

of 9 from 7 and 8 are high value reactions due to their commercial prevalence. Similarly, 

forming a bond at a C–H motif alpha to a heteroatom is a valuable reactivity to form drugs 
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directly, such as the formation of bromhexine 12 from 10 and 11, which was 

experimentally proven. (33-Fig. 2B)  

 

The analysis was initially performed on carbon-nitrogen and carbon-oxygen bonds. (34-

Fig. 3) Examples of these disconnections that were experimentally validated on drug-like 

molecules are shown. We now focus on one step reactions where one synthon is an 

activated C–H motif. (35-Fig. 4) As an example, we show how drug 15 could theoretically 

be formed in one step from commercial compounds 13 and 14 using a benzylic activation. 

The analysis is expanded to other common building block classes. 36-Fig. 5 and 37-Fig. 

6 showcase the chord diagrams and example reactions (16 – 33) for one-step syntheses 

of drugs from alcohols, boronates, amines, acids, and halides, organized by bond formed.  

 

Methods 

 

In the analysis reported herein, the DrugBank dataset and commercial catalogs were 

filtered to compounds with molar mass less than 500 and 200, respectively, and desalted. 

A command line script was written to cross reference targets with commercial datasets. 

Given a commercial data set, target molecule, and building block parameters, the script 

will produce the one step disconnection map between the catalog and the target 

molecule. This script is massively parallelizable and can be utilized trivially on high 

performance clusters.   

 

The algorithm is briefly described: 
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1. Identify target bond in target compound dataset. Store all compounds that contain 

the target bond. 

2. Decompose the target bond for all hits, forming two synthons 

3. Enumerate the synthons at the disconnection point to generate building block 

analogs 

4. Cross-reference the enumerated building blocks against the commercial catalog. 

Store the transformation if both synthons can be found as commercial analogs. 

 

Conclusion  

 

A method to rapidly form single-bond cross coupling maps between target molecules and 

commercial catalogs is reported and showcased via an analysis of compounds in 

DrugBank and the commercial catalog provided by Sigma Aldrich. Coupling maps are 

grouped and filtered to reveal various perspectives of reaction targeting. Several 

reactivities that have been previously reported were showcased as transformations found 

in the analysis, and examples of prospective chemistries are shared. Mining other maps 

of coupling modes will continue to reveal the most valuable reactions to target in synthetic 

campaigns. 
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32-Fig. 1 | An analysis of commercial building blocks and reported drug structures. 

a) A Pareto front cartoon exemplifying the value of certain building blocks. Building blocks 

that are highly available and can be used to form drugs are of high value. b) Enumerative 

combinatorics can identify target bonds between building blocks. In this study we focus 

on cross-couplings that form one bond after the elimination of both building block handles. 

c) Retrosynthesis of target and its representation as a chord diagram. d) Prevalence of 

bond types in DrugBank compounds. The alkyl-alkyl C–C bond is the most common bond 
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type found, followed by the alkyl-alkyl C–N and C–O bonds and the alkyl-aryl C–C bond. 

e) Prevalence of building block classes in the Sigma Aldrich commercial catalog.  

 

 

33-Fig. 2 | C–H motifs can be viewed as valuable and versatile building blocks. a) 

Pareto front and building block analysis of the commercial dataset. Classes of building 
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blocks that have many commercial substrates and can be found often in one step 

retrosyntheses of drug compounds lie on the Pareto front.  Core structures of benzyl–H 

and benzyl–amine, benzyl-halide, and benzyl-alcohol compounds in the commercial 

dataset are compared in the Venn diagram. Many benzylic compounds do not exist as 

their amine/halide/alcohol functionalized counterpart. b) Examples of couplings using 

unconventional building blocks. 
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34-Fig. 3 | a) All hypothetical single bond C–H cross couplings between benzylic carbon 

atoms and nitrogen atoms to form DrugBank compounds from commercial substrates. A 

benzylic functionalization previously reported by the Stahl group is exemplified as a 

reaction identified in the analysis.138 b) All hypothetical single bond C–H cross couplings 

between benzylic carbon atoms and oxygen atoms to form DrugBank compounds from 

commercial substrates. Another example from the Stahl group is showcased here as a 

reaction found by the targeting algorithm.139. 
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35-Fig. 4. | One step cross coupling maps for various activated C–H motifs. In the 

first row and column, synthon a is grouped by commercial compounds that react at a 
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carbon alpha to a carbonyl group with another alkyl building block. In the third row and 

first column, synthon a is grouped by compounds that couple at a benzylic hydrogen with 

another building block, such as benzyl alcohol 13 reacting with 14 to form drug 15. 

 

36-Fig. 5 | a-g) Examples of one step syntheses found in the analysis. f) The synthesis 

of bromhexine identified in this analysis was previously validated. 
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37-Fig. 6 | Single step cross coupling maps between DrugBank and purchasable 

compounds in Sigma-Aldrich’s catalog, trellised by synthon A building block and bond 

formed. In the first column, both synthons link at an alkyl carbon. In the second column, 

synthon A, which is the building block group for the row, is alkyl and the remaining synthon 

b is aryl. In the third column, the building block arc contains aryl synthons and synthon b 

contains alkyl synthons. In the final column, both synthons are aryl. Compound numbers 

refer to retrosynthetic reactions shown in 36-Fig. 5. An example of a one-step synthesis 

of bromhexine experimentally validated is shown above and indicated on the bromide 

aryl-alkyl C-c bond chord plot.54 
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Chapter III. High Throughput Experimentation 

 

The dawn of miniaturized chemistry has ushered in an era that closely mirrors the 

evolution of high throughput screening platforms used in biological assays. Traditionally, 

synthetic experiments were large-scale and labor-intensive; however, the advent of 

miniaturized chemistry has allowed these experiments to be performed in a compact, 

plated format.35, 36, 110-113, 134, 136, 140, 141 Additionally, the rise of robotics and liquid-handling 

technologies has made a significant impact on the field. These cutting-edge innovations 

have transformed synthetic protocols, making them more conducive to automation.134 

With the inclusion of such advanced techniques, the process has not only become more 

efficient but also more precise, greatly enhancing the quality of experiments. 

 

The advantages of these advancements are not limited to increased efficiency and 

precision. In fact, they have paved the way for the collection of extensive, standardized 

reaction datasets. These comprehensive datasets provide an ideal basis for training 

predictive models using advanced data science techniques.114, 125, 137 The ability to collect 

and analyze such large volumes of data enables researchers to make accurate 

predictions and gain in-depth insights. High throughput experimentation, with its capacity 

for large-scale data collection and analysis, holds immense promise for discovering 

numerous high-value transformations, which can be identified through reaction 

targeting.101-104 
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Automatable reaction protocols that function in miniaturized formats are revolutionizing 

the synthesis of pharmacophore libraries, streamlining processes that were once complex 

and time-consuming. This progress, combined with the development of direct-to-biology 

protocols, is significantly enhancing the effectiveness of high throughput experimentation 

campaigns in drug discovery. This chapter aims to present an overview of recent 

advancements in high throughput experimentation, as well as methodologies discovered 

and optimized using this technique. It also discusses the limitations of contemporary 

electronic lab notebooks in capturing the intricacies of plated reaction arrays, introducing 

the development of phactor, our laboratory's high throughput experimentation manager. 

Developed over several years and refined based on feedback from over 100 research 

chemists, phactor promises to significantly improve the management of high throughput 

experimentation. 
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Rapid Planning and Analysis of High-Throughput Experiment Arrays for Reaction 

Discovery 

This manuscript details the development of phactor, a software solution for high-

throughput experimentation (HTE) in reaction discovery and stands out as a significant 

milestone. During its creation, we recognized the need for software to navigate data-rich 

experiments in chemical laboratories. As a result, phactor was designed to streamline 

HTE performance and analysis. It enabled researchers to rapidly design arrays of 

chemical reactions or direct-to-biology experiments using different wellplate formats, 

access online reagent data, and generate instructions for manual execution or automated 

handling. Importantly, phactor stores all chemical data, metadata, and results in machine-

readable formats, fostering standardized data management and facilitating subsequent 

analysis. The project's impact became evident as phactor not only expedited experiment 

ideation and result interpretation but also fostered creativity and supported reaction 

discovery and optimization through the availability of standardized reaction data. Notably, 

the software's successful application in identifying a potent inhibitor of the SARS-CoV-2 

main protease highlighted its efficacy. To encourage collaboration, we made phactor™ 

freely available for academic use in select wellplate formats. 
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Abstract 

 

High-throughput experimentation (HTE) is an increasingly important tool in reaction 

discovery. While the hardware for running HTE in the chemical laboratory has evolved 

significantly in recent years, there remains a need for software solutions to navigate data-

rich experiments. Here we have developed phactor™, a software that facilitates the 

performance and analysis of HTE in a chemical laboratory. phactor™ allows 

experimentalists to rapidly design arrays of chemical reactions or direct-to-biology 

experiments in 24, 96, 384, or 1,536 wellplates. Users can access online reagent data, 

such as a chemical inventory, to virtually populate wells with experiments and produce 

instructions to perform the reaction array manually, or with the assistance of a liquid 

handling robot. After completion of the reaction array, analytical results can be uploaded 

for facile evaluation, and to guide the next series of experiments. All chemical data, 

metadata, and results are stored in machine-readable formats that are readily translatable 

to various software. We also demonstrate the use of phactor™ in the discovery of several 

chemistries, including the identification of a low micromolar inhibitor of the SARS-CoV-2 

main protease. Furthermore, phactor™ has been made available for free academic use 

in 24- and 96-well formats via an online interface. 

 

Introduction 

 

Miniaturized high-throughput experimentation (HTE) has emerged as an accessible, 

reliable, economical, and environmentally friendly technique for the rapid discovery of 
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new reactivities.35, 36, 108-113, 124, 134, 140-162 Curated HTE data has proven to be increasingly 

valuable for predictive models.144-149 While in experimental practice, the community has 

gravitated towards liquid handling techniques in glass shell microvials with tumble stir 

dowels, or in plastic 384 or 1,536 wellplates35, 36, 108-112, 134, 140-143, a standard for HTE data 

handling has yet to be established. The organizational load required to perform a simple 

24-well reaction array is generally manageable by repetitive notebook entries or with 

spreadsheets, yet managing multiple reaction arrays in a single day, or running ultraHTE 

in 1,536 wellplates,108 is challenging without information management software. 

Moreover, no readily available electronic lab notebook (ELN) can store HTE details in a 

tractable manner150, 151 or provide a simple interface to extract data and results from 

multiple experiments simultaneously.152, 153 Contemporary HTE software provide HTE 

solutions but are only commercially available.163, 164 To continue developing HTE research 

and position data outputs for machine learning studies, detailed reaction data must be 

easily accessible for standardized rapid extraction and analysis.154-156 

 

With these issues in mind, we developed the software phactor™ to streamline the 

collection of HTE reaction data. Our primary objective was to develop a robust yet 

generalizable HTE workflow solution that captures the nuances of chemical 

experimentation while reporting data in a standardized, machine-readable format. 

phactor™ minimizes the time and resources spent between experiment ideation and 

result interpretation. This enables creativity by freeing up time otherwise used thinking 

about experiment logistics, facilitates reaction discovery and optimization, and serves as 

a tool to bolster the amount of available reaction data reported in a standardized format. 
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We have provided phactor™ as a free web service to the academic community, currently 

supporting 24- and 96-well formats, which can be accessed at 

https://phactor.cernaklab.com.  

 

Results 

 

phactor™ workflow overview 

The workflow of a typical high-throughput experiment involves design of the reaction 

array, preparation of reagent stock solutions, dosing of stock solutions according to the 

reaction array recipe (either by hand or with robotics), analysis of reaction outcome, 

followed by visualization and analysis of data and documentation of results. A 

standardized reaction template classifies substrates, reagents, and products (38-Fig. 1a). 

Interconnecting experimental results with online chemical inventories through this shared 

data format creates a closed-loop workflow for HTE-driven chemical research (38-Fig. 

1b) and enables rapid reaction array design and analytics. While developing phactor™, 

we sought to maximize the automation of data movement and processing. Recognizing 

the rapidly accelerating chemical research software ecosystem,28, 157-162, 165-178 the 

philosophy behind phactor™’s data structure was to record experimental procedures and 

results in a machine-readable yet simple, robust, and abstractable format to naturally 

translate to other system languages (Supplementary Fig. 8). As such, the inputs and 

outputs of phactor™ can be procedurally generated or modified with basic Excel or 

Python knowledge to interface with any robot, analytical instrument, software, or custom 

chemical inventory containing metadata (e.g., the organophosphorous ligand platform 
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Kraken179) such as reagent location, molecular weight, CAS number or SMILES string. 

Examples of interfacing phactor™ outputs with ORD,149 XDL,178 or EDBO+176 are shown 

in Supplementary Figs. 14-16. 

 

The event workflow of a typical phactor™ experiment is shown in 38-Fig. 1c. The user 

selects desired reagents from the inventory for automatic field population or enters 

specific reagent entries manually, such as for a custom substrate. Once all relevant 

chemicals are selected, the reaction array layout is designed automatically or manually, 

as the user prefers. Reagent distribution instructions are generated to be executed either 

manually or by an interfacing liquid handling robot. Last-minute changes in the face of 

unforeseen circumstances during reaction setup, such as poor chemical solubility, 

chemical instability, or the need to premix reagents before dosing can be made at any 

time. Stock solutions are prepared in vials or wellplates and distributed to their respective 

locations on the reaction wellplate. Once the reactions are complete, they are quenched 

and analysed. Any data with a well location map can be uploaded. This allows both data 

on reaction performance (e.g., UPLC-MS conversion) and biological assay results (e.g., 

bioactivity data) to be viewed in concert. 

 

The workflows for executing HTE can vary depending on available equipment and desired 

throughput of the experiment. phactor™ incorporates these parameters into its user 

interface to ensure a consistent workflow experience agnostic of hardware capabilities 

(38-Fig. 1d). Examples herein demonstrate phactor™’s use with manual dosing as well 

as integration with the Opentrons OT-2 liquid handling robot for experiments of 384-well 
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throughput or less, and the SPT Labtech mosquito® robot for 1,536-well ultraHTE (38-

Fig. 1e). Regardless of instrumentation or throughput, all results are stored in the same 

format, facilitating analysis of results across multiple experiments. Reaction discovery and 

library synthesis campaigns utilizing standard 24-, 96-, 384- and 1,536-well experiments 

are described in detail.1, 54, 102, 180-182  

 

Experimental Analysis 

 

Phactor™ facilitates the discovery of new reactivity. Our lab is broadly interested in 

amine-acid coupling reactions1, 102, 180-182 and particularly amine-acid C–C coupling 

reactions.102, 181  Diverse chemistries discovered with the aid of phactor™ are shown in 

39-Fig. 2. 39-Fig. 2a shows the discovery of a deaminative aryl esterification.180 In the 

reaction array design, an amine, activated as its diazonium salt (1), a carboxylic acid (2), 

one of three transition metal catalysts, with one of four ligands, in the presence or absence 

of a silver nitrate additive were to be dosed to each reaction well in acetonitrile, then 

stirred at 60 ºC for 18 hours. phactor™ automatically designed the reagent distribution 

recipe by splitting the plate into a simple four-row and six column multiplexed array. At 

completion, a solution containing one molar equivalent of caffeine was added to each well 

as an internal standard. An aliquot of each reaction was transferred to a plastic wellplate, 

then diluted with acetonitrile for UPLC-MS analysis of the desired ester product (3). 

UPLC-MS output files were analysed by the commercial software Virscidian Analytical 

Studio, which provided a CSV file containing peak integration values for each of the 24 

chromatographic traces. This file was fed into phactor™ to record the experimental 
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outcome and produce the heatmap shown in 39-Fig. 2a. Analysis on phactor™ indicated 

an 18.5% assay yield when using 30 mol% CuI, pyridine and AgNO3, and these specific 

conditions were triaged for further study.  

 

In the example of 39-Fig. 2b, we optimized the penultimate step in our synthesis of 

umifenovir,54 an oxidative indolization reaction between 4 and 5 to produce 6. Inspired by 

the conditions of Glorius,183 a reaction array was performed using copper catalysts and 

ligand/additive combinations. Four copper sources at 20 mol%: cuprous iodide, cuprous 

bromide, tetrakis(acetonitrile) copper(I) triflate, or cupric acetate, were distributed into the 

four rows while combinations of magnesium sulfate (0.0 equiv or 1.0 equiv) with 2-(1H-

tetrazol-1-yl)acetic acid (L1), or 2,6-dimethylanilino(oxo)acetic acid (L2) at 40 mol% were 

distributed into the columns as DMSO solutions, with 3.0 equivalents of  cesium 

carbonate added to every well as a suspension in DMSO. The reactions were manually 

arrayed in a glovebox, sealed, and stirred at 55 ºC for 18 hours. Well B3 (copper bromide 

with L1 and no magnesium sulfate) was found to perform best, and a 0.10 mmol scale-

up reaction produced desired indole 6 in 66% isolated yield. 

 

In 39-Fig. 2c, the allylation of furanone 7 or furan 8 with reagents 9 or 10 was investigated. 

For each combination of nucleophile and electrophile, one of three ratios of Pd2dba3 to 

(S,S)-DACH-phenyl Trost ligand L3 was added, followed by the addition or omission of 

potassium carbonate as a base. Each reaction was run in toluene for 24 hours at room 

temperature, quenched, and then analysed by UPLC-MS for conversion and selectivity. 

Multiplexed pie charts generated by phactor™ revealed that the conditions of well D3, 
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with a 2:1 palladium catalyst to ligand loading and no base generated the desired γ-

regioisomer with the greatest selectivity, along with α-allylation and its olefin isomer when 

8 was used. 

 

An organocatalyzed asymmetric Mannich reaction is detailed in Supplementary Fig. 17. 

Aldehyde 13, p-anisidine (14), and ketone 15 are used to form desired product 16 via a 

solvent and catalyst reaction array that was analysed by TLC, which revealed the 

formation of undesired product 17.  

 

With phactor™, HTE becomes an exercise in workflow execution, with automation of the 

organizational aspect of the experiment. This allows chemists to focus on the design and 

analysis of the reaction array, rather than workflow details (40-Fig. 3). 40-Figs. 3a–3c 

display three examples of 24-well experiments. 40-Fig. 3a shows an amide coupling 

reaction array performed in preparation for an ultra-high throughput direct-to-biology 

assay (vide infra), with the aim of producing inhibitors of the SARS-CoV-2 main protease 

(MPro).184 A screen of three anilines, two coupling agents HATU or DCC/HOBt and a 

carboxylic acid, with or without base, produced all desired products. Amide 18 was 

produced in high conversion using HATU, DMAP, and DIPEA. 40-Fig. 3b and 40-Fig. 3c 

detail the optimization of a recently published deaminative decarboxylative sp2–sp3 C–C 

coupling from an acid activated as an N-acyl-glutarimide and an amine activated as a 

Katritzky salt.181 Reaction array 3b screened 24 ligands in NMP under nickel catalysis to 

generate product 19, which was subsequently found with improved yield when using a 

bipyridine ligand and phthalimide as additive (40-Fig. 3c).  
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40-Figs. 3d-3f contain 96-well experiments designed with phactor™. 40-Fig. 3d and 40-

Fig. 3e show the results from a recently reported deaminative-decarboxylative sp3–sp3 

C–C coupling coupling181 that generated products 20 and 21. Three catalysts, four 

additives, four ligands, and two reductants were tested in 40-Fig. 3d, and it was found 

that 20 was afforded at 47% product/internal standard with NiCl2•glyme as the catalyst, 

4,4’-di-tert-butyl-2,2-bipyridine as ligand, zinc as the reductant, and lithium perchlorate as 

an additive.  After additional optimization, the reaction array in 40-Fig. 3e was run to test 

the reaction’s scope. Product 21 was afforded with optimal conditions of NiBr2•glyme, 

4,4’-bis-trifluoromethyl-2,2’-bipyridine, and manganese in 1:1 dioxane:acetonitrile. 40-Fig. 

3f shows the results of a 12 ligand – eight metal catalyst reaction array further developing 

the analogous sp2–sp3 decarboxylative deaminative C–C coupling, optimizing the yield of 

model product 22.102  

 

40-Figs. 3g–3i show several ultraHTE reaction arrays. 40-Fig. 3g and 40-Fig. 3h are 

reaction arrays produced in the development of our aryl amine esterification reaction.180 

Both reaction arrays were substrate scope experiments, producing ester compounds 

such as 23 and 24. In 40-Fig. 3g, lutidine and Cu(MeCN)4BF4 in benzonitrile showed good 

scope. Replacing lutidine with collidine expanded the reaction scope and reproducibility 

across quadruplicate measurements as shown in 40-Fig. 3h. Finally, 40-Fig. 3i contains 

the UPLC-MS results of a direct-to-biology reaction array towards the creation of SARS-

CoV-2 MPro inhibitors, generating amides such as 25. Files needed for all 24 and 96 well 

experiments shown in 40-Fig. 3 are provided as examples to learn the phactor™ 
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workflow. The layouts for several reaction arrays are displayed in the Provided Examples 

section of the Supplementary Information.  

 

Discovery of a low micromolar inhibitor of SARS-CoV-2 MPro via direct-to-biology assay.  

 

An amide coupling experiment was planned based on an inventory of amines, largely 

anilines, and a tetrahydroquinoline carboxylic acid pharmacophore (26) found to be a 

potent inhibitor of MPro.184 A preliminary 24-well amide coupling reaction array was 

performed to test the effectiveness of various amide coupling conditions for the acid and 

anilines (see 40-Fig. 3a and Supplementary Fig. 21). A diluted aliquot from each well was 

subjected to a RapidFire™ MS binding assay to determine concentration-response 

curves.185 Curves were found to correlate with yield and literature reported IC50 values 

were replicated utilizing this assay.184  Following an optimized direct-to-biology ultraHTE 

workflow (41-Fig. 4a), amide coupling reactions were executed with the aim of making 

diverse amides, which were directly tested for activity against MPro in a single experiment. 

Conducting an experiment of this complexity using spreadsheet software would be 

challenging. However, with the use of phactor™, ultraHTE and direct-to-biology 

experiments can be swiftly developed and assessed within a matter of minutes, especially 

if corresponding input or inventory files are in hand. Eight amide coupling conditions were 

tested in duplicate for each of the 80 amines, resulting in 1,280 reactions (41-Fig. 4b). A 

key step in this workflow is the distribution of the 1,536-well reaction plate into four 384-

well analysis assay plates suitable for UPLC-MS or RapidFire™ analysis. As such, some 

of the wells in the 1536-well reaction plate were not utilized to account for the four control 
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columns necessary in each of the four 384-well RapidFire™ assay plates to allow 

calculation of Z prime for the assay (0.961).186 This distribution as well as the chemical 

and biological assay results are shown in 41-Fig. 4c and 41-Fig. 4d. Additional data 

analyses comparing chemical yield to biological response are shown in Supplementary 

Figs. 24 and 25. We note that reproducibility is a common concern in HTE and ultraHTE, 

and analyses of repeat experiments are provided in Supplementary Fig. 26. Both 

chemistry and biology assays are shown to be consistent, with 87% and 93% of data 

points having less than 10% error in the respective assays. From these analyses, three 

amides (27, 28, and 29) were chosen for scale-up and IC50 determination, two of which 

(27 and 28) were previously unreported in the literature. Compound 28 was found to have 

a IC50 of 5.06 µM (41-Fig. 4e), competitive with the best known MPro inhibitors in this 

series.184  Notably, IC50 trends from pure compounds isolated on larger reaction scale are 

well matched to the percent inhibition trends obtained on the nanomole scale. 

 

Methods 

 

General phactor™ workflow for general use and to recreate the chemistry reported in this 

and other manuscripts.1, 54, 102, 180-182 

 

The workflow for phactor™ contains six stages: Settings, Factors, Chemicals, Analysis, 

and Report (42-Fig. 5). The first stage, Settings, simply begins the plate development 

process when provided an experiment name, reaction volume, and throughput 
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(Supplementary Fig. 1a). The remaining stages can be optionally expedited with pre-

generated workflow files that match a specified format.  

 

The workflow files needed to reproduce the chemistry shown in 39-Figs. 2a-b, and 40-

Figs. 3a-f are provided in an online repository. To replicate these studies, a 24- or 96- 

well reactor block, the corresponding amount of glass vials and stirbars, a hotplate with 

magnetic stirring, and autopipette will be required. The necessary solvents and reagents 

will also be required to the amounts as calculated on phactor™. Detailed specifications 

of hardware and chemical sources are provided in the Experimental Section of the 

Supplementary Information. Having these files in hand provide an expedited utilization of 

phactor™ – the user can directly drop any file that matches the chemical input 

specification directly into the Chemicals stage and click ‘Run’ to instantly get the 

procedural instructions for the experiments. Likewise dropping the provided 

corresponding analytical file into Analysis will display out reported results of the 

experiment.  

 

Phactor™ can automatically distribute a list of chemicals into a multiplexed reaction array 

given that the chemicals are labeled as one of the reagent classes within the set 

{Electrophile, Nucleophile, Catalyst1, Catalyst2, Ligand1, Ligand2, Base/Acid, 

Reductant/Oxidant, Solvent1, Additive, or Other} and that the product of the amounts of 

each reagent class within the list is equal to or less than the wellplate size. For instance, 

a list containing six electrophiles, four nucleophiles, and a solvent can be automatically 
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“plated” by phactor™. The desired plate design is specified in the Factors stage 

(Supplementary Fig. 1b).  

 

Once the factors have been input and saved, the user can add reagents to be used in the 

experiment in the Chemicals stage (Supplementary Fig. 1c). These reagents can be 

either input by hand via textbox, where the user personally reports the reagent name, 

molecular weight, reagent class label, and density or reagents can be added directly from 

an online inventory. All chemicals are associated with a colour, which can be changed by 

clicking on the chemical’s corresponding colour bar in the table. If factors were specified 

on the previous stage, a checklist is provided to ensure the requirements for the automatic 

distribution are met. Once all lines are green, hitting run will design the plate on the 

following Grid stage. A third alternative to populating reagents is to upload a CSV file 

containing reagent data in a specified format. As mentioned, example files corresponding 

to the experiments in this manuscript are provided in an online repository. In the case 

where the input reagent file contains a distribution of reagents that would perfectly fill out 

the reaction plate, the factors are automatically updated and thus factors need not be 

specified on the factors stage.  

 

Following the Chemicals stage is the Grid stage, which is prepopulated if the automatic 

distribution feature was utilized. On this stage, an interactive grid allows the user to add 

or remove reagents to wells in bulk. Individual wells in the digital reaction array can be 

selected to view reaction details. In addition to the reaction array grid, a table containing 

the recipes for stock solutions, which indicate the mass of reagent and volume of solvent 
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to be added to each source vial. The volume and locations of aliquots from each source 

vial are shown as well, to be executed via autopipette or liquid handling robot.  Finally, a 

suite of buttons interfacing the designed reaction array to a variety of hardware and 

software are provided. On the provided version, MassLynx and Virscidian files are 

preformatted and provided with prepopulated metadata to facilitate the characterization 

of the reaction array. 

 

When the reaction array is fully designed, the recipe can be downloaded. Stock solutions 

are dosed according to the generated procedure, and the reaction plate is moved to a 

reactor with the appropriate atmosphere, pressure, and temperature. After the designated 

reaction time has elapsed, the reactions are quenched, and aliquots of each reaction are 

transferred to an analytical plate containing internal standard in a UPLC-MS compatible 

solvent. Once the analytical plate has been characterized, the resultant file containing 

well locations and output results can be dropped into the Analysis stage of phactor™. 

Here an interactive triptych display allows the user to view several output results in the 

same view. Clicking on a well displays the input and outputs of the reaction, as well as an 

image of the product if specified.  

 

The final stage is Report. An overall one-page summary of the results is shown here via 

visualizations of inputs and outputs. Additionally, statistics of the results are calculated, 

and the top performing reagents are shown. Most importantly, here is where the user can 

download the compiled results of the entirety of the reaction array in a single CSV file. 

This file contains the inputs and metadata associated with each reaction of the reaction 
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array, including reagent labels, SMILES, molarities, and solvents, as well as the output 

values associated with each reaction. This file can be trivially collated with other plate 

outputs to make supermassive reaction datasets.  

 

Machine learning Python scripts for phactor™ output. 

 

In the provided repository an example Python notebook is provided to facilitate 

downstream machine learning analyses from the phactor™ output file. In this example 

notebook, tSNE plots are generated from collated from a deaminative-decarboxylative 

sp3–sp3 C–C coupling optimization campaign dataset (43-Fig. 6). Product SMILES are 

encoded into fingerprints using RDKit, and fingerprint matrices are fed into the tSNE 

algorithm to reduce the dimensionality of the dataset into two dimensions. These are 

subsequently plotted and coloured by the average output value of each product to provide 

a rapid visualization of the reaction manifold. Areas of reaction success and failure are 

then readily identified in a singular display. Notebooks for conversion to heatmaps and 

kernel density estimate plots are also provided. Sample notebooks converting phactor™ 

output to ORD, EDBO+, and XDL are also provided within the repository. All the provided 

scripts can be easily modified by changing the input file string to work with other datasets.  

 

In conclusion, we present the HTE ELN phactor™, which records all details of an 

experiment to allow for robust reproduction and accelerated discovery. phactor™ stores 

all experimental details in a machine-readable yet tractable and interpretable format with 

an SQL database and on the cloud to facilitate the use of downstream statistical analysis. 
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As all reaction arrays are stored in a centralized database, bulk analyses of multiple 

reaction arrays can be performed. phactor™ provides an exposed API that can be used 

to develop interfaces to other robots, assays, and software. Examples of various 

integrations and code infrastructures are shown in the Discussion section of the 

Supplementary Information. Furthermore, we are currently developing additional 

integrations with AI and ML models to generate and evaluate reaction arrays,137 and to 

discover additional amine acid couplings via automated mining of relevant literature.187-

191 We hope that phactor™’s ease of use provides increased accessibility to HTE and 

HTE data in the chemistry community. Registration free and non-commercial use of 

phactor™ in 24- and 96-well formats is available through https://phactor.cernaklab.com/.  
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38-Fig. 1 | Overview of the phactor™ software. a Anatomy of a reaction as encoded 

by phactor™. b High-level software workflow of phactor™. Reaction arrays are designed 

from chemical inventories and reaction informatics. Resultant data is stored in delimited 

text (CSV) or in a relational database (SQLite3). phactor™ can convert results to Open 

Reaction Database (ORD)149 and Chemical Description Language (XDL)178 and is readily 

compatible with optimization programs such as EDBO+176 and LabMate.ML177. c 

Workflow of phactor™. Once the reaction array is designed, phactor™ provides human-

readable or machine instructions to execute the dosing manually or robotically (UPLC 

ultra-performance liquid chromatography). d phactor™ supports custom volumes 

allowing for reaction arrays to be performed at any scale. At a minimum, the hardware 

needed to execute a reaction array is an autopipette and an array reactor block. e 

phactor™ facilitates the design and execution of ultraHTE in 1536 wellplates. 
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39-Fig. 2 | Reaction arrays executed with the phactor™ software. The reaction array 

design and results are shown here as displayed on phactor™. Colour bars adjacent to 

compound numbers correspond to the colour bars in the reaction array design grid 

generated by phactor™. Product/internal standard ratios are calculated using the 

observed UV-derived peak area, while assay yields account for differences in product 

absorptivity by calibrating to authentic samples of products. a Preliminary esterification 

hit leading to publication180. b Optimized oxidative indolization conditions towards the 

synthesis of umifenovir54. c Allylation catalyst/ligand concentration ratio and base reaction 

array analysed by conversion and selectivity. 
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40-Fig. 3 | phactor™ has been utilized in a variety of synthetic campaigns. a–i 

Chemistries discovered via reaction arrays designed with phactor™. All input and output 

files used to produce reaction arrays (a–f) are provided via an online repository in addition 

to all compiled HTE results in a machine-readable format. Reaction schemes can be 

found in the “Selected screening examples” section of the Supplementary Information. 
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41-Fig. 4 | phactor™ facilitates ultraHTE direct-to-biology campaigns. a Event 

workflow for performing ultraHTE using phactor™ and a Mosquito robot. b Design of 1280 

well amide coupling plate. 80 amines were selected to react with carboxylic acid 26. Eight 

conditions were run in duplicate for each amine. c Results of the amide coupling are 

shown as a product/internal standard integration ratio from a 2-min LCMS injection of 

each well. The Mosquito robot is utilized to split the size 1536 plate into four sizes 384 

plates for LCMS and bioassay analysis. d Percent inhibition of SARS-CoV-2 MPro when 

treated with a sample of the reaction mixture from the corresponding well. The 1280 plate 

is visually recreated. e IC50 curves for three scaled-up compounds chosen from the 

reaction array. Compounds 27–29 display a range of assay and inhibitory responses. 

 

42-Fig. 5 | The six stages in the phactor™ workflow. Each stage is progressed 

sequentially. With an input reagent CSV, reaction arrays can be designed in seconds. 

Once the experiment has been executed, a standardized output can be downloaded on 

the report stage. 
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43-Fig. 6 | phactor™ enables rapid machine-learning analysis of multiple reaction 

arrays in tandem. Standardized output files can be rapidly merged to create massive 

datasets. Shown is a tSNE (t-distributed stochastic neighbour embedding) of all products 

made in the decarboxylative–deaminative sp3–sp3 C–C coupling detailed in ref. 181, 

coloured by average product/internal standard. 
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Ultrahigh-Throughput Experimentation for Information-Rich Chemical Synthesis 

This review covers several important advancements that have led to contemporary 

ultrahigh throughput experimentation. The incorporation of data science has sparked a 

revolution in organic chemistry, enabling accurate prediction of reaction outcomes, 

computational planning of retrosynthetic routes, and design of sophisticated molecules. 

However, the scarcity of available reaction data poses a challenge for building predictive 

models. Literature mining provides some data, but it is often reported in text format, 

difficult for computers to process, and biased toward "productive" reactions. High-

throughput experimentation (HTE) has emerged as a solution, offering systematic and 

consistent data points, including negative outcomes, in a machine-readable format. HTE, 

particularly ultrahigh-throughput experimentation (ultraHTE), using microliter-scale 

droplets in 1536-well microtiter plates, has generated a wealth of reaction data. This data 

has been instrumental in identifying optimal substrate-catalyst pairs for novel cross-

coupling reactions. UltraHTE's compatibility with diverse solvents, catalysts, and 

biochemical assays, along with the development of supporting software, has paved the 

way for extensive exploration of reaction space and a holistic systems chemistry 

approach. This work is feature in Accounts of Chemical Research.108 
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Abstract 

The incorporation of data science is revolutionizing organic chemistry. It is becoming 

increasingly possible to predict reaction outcomes with accuracy, computationally plan 

new retrosynthetic routes to complex molecules, and design molecules with sophisticated 

functions. Critical to these developments has been statistical analysis of reaction data, 

for instance with machine learning, yet there is very little reaction data available upon 

which to build models. Reaction data can be mined from the literature, but experimental 

data tends to be reported in a text format that is difficult for computers to read. 

Compounding the issue, literature data are heavily biased toward “productive” reactions, 

and few “negative” reaction data points are reported even though they are critical for 

training of statistical models. High-throughput experimentation (HTE) has evolved over 

the past few decades as a tool for experimental reaction development. The beauty of HTE 

is that reactions are run in a systematic format, so data points are internally consistent, 

the reaction data are reported whether the desired product is observed or not, and 

automation may reduce the occurrence of false positive or negative data points. 

Additionally, experimental workflows for HTE lead to datasets with reaction metadata that 

are captured in a machine-readable format. We believe that HTE will play an increasingly 

important role in the data revolution of chemical synthesis. This Account details the 

miniaturization of synthetic chemistry culminating in ultrahigh-throughput experimentation 

(ultraHTE), wherein reactions are run in ∼1 μL droplets inside of 1536-well microtiter 

plates to minimize the use of starting materials while maximizing the output of 

experimental information. The performance of ultraHTE in 1536-well microtiter plates has 

led to an explosion of available reaction data, which have been used to identify specific 
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substrate–catalyst pairs for maximal efficiency in novel cross-coupling reactions. The first 

iteration of ultraHTE focused on the use of dimethyl sulfoxide (DMSO) as a high-boiling 

solvent that is compatible with the plastics most commonly used in consumable well 

plates, which generated homogeneous reaction mixtures that are perfect for use with 

nanoliter-dosing liquid handling robotics. In this way, DMSO enabled diverse reagents to 

be arrayed in ∼1 μL droplets. Reactions were run at room temperature with no agitation 

and could be scaled up from the ∼0.05 mg reaction scale to the 1 g scale. Engineering 

enhancements enabled the use of ultraHTE with diverse and semivolatile solvents, 

photoredox catalysis, heating, and acoustic agitation. A main driver in the development 

of ultraHTE was the recognition of the opportunity for a direct merger between 

miniaturized reactions and biochemical assays. Indeed, a strategy was developed to feed 

ultraHTE reaction mixtures directly to a mass-spectrometry-based affinity selection 

bioassay. Thus, micrograms of starting materials could be used in the synthesis and direct 

biochemical testing of drug-like molecules. Reactions were performed at a reactant 

concentration of ∼0.1 M in an inert atmosphere, enabling even challenging transition-

metal-catalyzed reactions to be used. Software to enable the workflow was developed. 

We recently initiated the mapping of reaction space, dreaming of a future where 

transformations, reaction conditions, structure, properties and function are studied in a 

systems chemistry approach. 

 

 

Introduction 
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Moore’s law projected that computer power would accelerate because of the 

miniaturization of silicon transistors.192 Through miniaturization, more information can be 

generated and processed per space unit: in terms of hardware, such as a computer chip, 

this leads to parallel processing. Nearly every advanced technology reaches a state 

where miniaturization and parallelization become necessary for advancement. Synthetic 

chemistry is now entering an era where new tools of data science are increasingly 

applicable114 yet there are not enough synthetic chemistry data available to satiate 

modern computing power and scientific creativity. Miniaturization and parallel processing 

of chemical synthesis represent a strategy to generate more data. This Account details 

efforts to miniaturize synthetic chemistry experiments to the nanoscale and the 

implications of such a development for establishing an interface of chemical synthesis 

and data science. A significant portion of this work was performed at Merck & Co., Inc. 

Colleagues there have already reviewed the strategic application of HTE in 

pharmaceutical synthesis.193 There have been a number of other reviews of HTE as 

well.113, 194-197 This Account specifically covers reaction miniaturization to generate more 

reaction data per experiment, enabling a systems-level evaluation of synthesis. As the 

merger of chemical synthesis and data science enters the mainstream,198 new tools to 

generate large chemical synthesis datasets will be needed. We advocate for miniaturized 

HTE as an ideal tactic to enable a systems chemistry approach to chemical synthesis. 

 

The journey to miniaturize chemical synthesis to the nanoscale began during work on a 

diacylglycerol acyl transferase 1 (DGAT1) lead identification effort.110 A series of 2-

piperidinylpyridines, such as 3 (44-Fig. 1a), emerged as potent DGAT1 inhibitors and 
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were prioritized for further investigation. However, challenges in the synthesis of these 

compounds significantly impeded the advancement of the lead series, with the key SNAr 

reaction used to make them typically giving <10% (and often 0%) yields of the desired 

products. The challenges of producing new analogues in this series and the desire to 

produce libraries of analogues using parallel medicinal chemistry, where robust reactions 

with broad substrate tolerance are needed,199 made it clear that improved reaction 

conditions would be required. Here we turned to high-throughput experimentation (HTE) 

to survey reaction performance systematically. Starting materials were precious, so it was 

decided to explore miniaturized HTE in 8 mm × 13 mm glass shell microvials charged 

with a 1.67 mm × 2.01 mm parylene coated stir dowel. Identifying mild reaction conditions 

to perform the key SNAr reaction involved admixing electrophile 1 with nucleophile 2 in an 

array of four solvents and six bases to produce a library of 24 reactions (44-Fig. 1b). Each 

solvent–base combination was studied in an individual vial, and the 24 vials were housed 

in an aluminum parallel reactor block that is now commercially available. From this simple 

experiment we identified a variety of promising reaction conditions, including those using 

N-methylpyrrolidinone (NMP) or cyclopentyl methyl ether (CPME) as the solvent and N,N-

diisopropylethylamine (DIPEA) or sodium bicarbonate as the base. One of the benefits of 

HTE is the ability to systematically interrogate multiple reaction parameters at once. Our 

survey of bases and solvents had been performed on a single substrate pair (1 + 2), but 

since a primary objective was to identify reaction conditions that were ideal for library 

synthesis, we elected to repeat the four best sets of conditions from this survey—NMP 

with NaHCO3, NMP with DIPEA, CPME with NaHCO3, and CPME with DIPEA—using 12 

electrophile–nucleophile pairs. Surprisingly, while the best conditions for coupling 1 to 2 
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were CPME with DIPEA, these specific conditions were the least productive, in terms of 

average conversion to product, across all 12 electrophile–nucleophile pairs interrogated. 

This holistic analysis revealed NMP with NaHCO3 to be the most successful reaction 

conditions across diverse substrate pairs, and these conditions were used to advance the 

chemical series. Indeed, multiple compounds were prepared via the optimized SNAr 

reaction conditions as single reactions and in parallel synthesis campaigns using 

NaHCO3 as the base in NMP as the solvent. The reaction conditions were incredibly 

robust and became widely adopted by the team, leading to many promising compounds 

that collectively advanced the 2-piperidinylpyridine series. For instance, one parallel 

synthesis campaign culminated in spirocycle 4,110 while another library array revealed 

biaryl electrophiles as viable precursors, resulting in 5.199 These compounds were critical 

stepping stones in the development of advanced compounds 6200 and 7 (44-Fig. 1d).201 

The registration of compounds bearing a 2-aminopyridine moiety accelerated 

considerably following the identification of NMP and NaHCO3 as ideal promoters for the 

reaction (44-Fig. 1c). Indeed, an advanced compound reported from the series was 

discovered using an SNAr reaction promoted by the NMP and NaHCO3 conditions, 

highlighting the impact that a simple HTE campaign can have on a drug discovery 

program. 

 

Our successful application of HTE in the hunt for DGAT1 inhibitors cemented the use of 

the technology on the frontlines of medicinal chemistry and emboldened us to explore 

other increasingly challenging chemistries. Around this time, an effort to perform late-

stage functionalization (LSF) was launched to investigate the role of specifically targeting 
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C–H bonds for diversification in medicinal chemistry.75 One such application from our 

studies was the development of ligand–solvent arrays for iridium-catalyzed borylation of 

aryl C–H bonds,202-204 as shown in 45-Fig. 2 to convert 8 to 9, 10, and 11.205 Six diverse 

nitrogen- or phosphorus-containing ligands were interrogated in combination with 

tetrahydrofuran (THF), hexanes, dioxane, or NMP as the solvent. From these studies we 

identified conditions for productive bisborylation of C3 and C6 to provide 10. Subsequent 

HTE studies surveying various acids and protic additives identified mild conditions for the 

selective deborylation of 10 to give 11 by heating in CPME with methanol as a mild proton 

source. These results are a single case study, but we routinely used HTE to enable LSF. 

This case study is just one example of how miniaturized HTE arrays were key to enabling 

the exploration of C–H functionalization on complex molecules, where typically substrate 

amounts were limited and product decomposition and undesired side reactions were 

common. 

 

Our application of HTE in medicinal chemistry was consistently challenged by the 

availability of precious starting materials. On the front lines of drug discovery, substrates 

have typically been optimized, or partially optimized, toward multiple desired objectives 

such as desirable solubility, permeability, metabolic stability, and efficacy; therefore, 

these substrates tend to be structurally complex and typically can be accessed only by 

multistep synthesis. For this reason, in the exploration of new pockets of chemical space, 

there is rarely a significant amount of physical material with which to perform reaction 

condition studies. However, the more complex the molecule’s structure is, the more likely 

that reaction condition studies will be required to obtain meaningful amounts of a target 
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compound. To address this issue, we became interested in miniaturizing synthesis 

beyond the 13 mm × 48 mm and 8 mm × 13 mm glass shell microvials that we were 

currently using for HTE. To miniaturize further, we elected to study the tools of the 

biochemical sciences, where high-throughput screening (HTS) and ultrahigh-throughput 

screening (uHTS) on fleeting amounts of chemical or biological reagents are routinely 

performed. 

 

Reactions on Nanomole Scale 

 

In 1950, Gyula Takátsy invented the 96-well microtiter plate206 to miniaturize the amount 

of precious blood samples that would be required for clinical investigations. In the 

decades following, an entire industry of automated miniaturized experimentation had 

evolved to support advanced biochemical HTS and uHTS studies. While the 96-well 

microtiter plate was the workhorse of benchtop biochemical experimentation, higher-

density automated liquid handling was easily achievable in 384-, 1536-, and 3456-well 

microtiter plates. We considered that synthetic chemistry could be performed using the 

tools of the biochemical trade, where miniaturization and parallel processing are the 

status quo. However, using biochemical tools required overcoming several engineering 

challenges. For instance, miniaturized biochemical experimentation typically takes place 

in plastic reaction vessels, in water, with reagents that dissolve well in water, at high 

dilution (nanomolar to micromolar reagent concentration) and at room temperature or 37 

°C. In contrast, chemical synthesis typically takes place in glass reaction vessels, in 

anhydrous organic solvents that dissolve many plastics, with reagents that are frequently 
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insoluble in the reaction medium, at low dilution (molar reagent concentration) across a 

broad range of temperatures (−78 to 200 °C). These differences in the experimental 

requirements of biochemistry versus synthetic chemistry presented major hurdles to the 

miniaturization of chemical synthesis. Nonetheless, it was hard to ignore the opportunity 

presented by the six decades of engineering and infrastructure that had gone into 

developing miniaturization and automation for the biochemical sciences, where it is 

possible to perform millions of biochemical reactions in a single day. 

 

Miniaturizing chemical synthesis involved considerable experimentation. From the outset, 

our objective was to miniaturize synthetic chemistry experiments in such a way that they 

still approximated classic synthesis experiments. We did not want to perform reactions at 

high dilution or open to air since that would preclude the use of most transition-metal-

catalyzed reactions. This was particularly important to us because our reaction 

miniaturization efforts were concurrent with our studies in LSF, where air-sensitive 

transition metal catalysts were commonly used. Many classic organic reactions like amide 

coupling, reductive amination, or sulfonamide formation with amines and sulfonyl 

chlorides are bread-and-butter reactions in medicinal chemistry.30, 207, 208 These reaction 

classes can often work very well in an aerobic atmosphere, at high reaction dilution, and 

in a variety of solvents, including water. Reactions using transition metal catalysts, in 

contrast, often require an anaerobic environment and a high reaction concentration and 

may be heavily influenced by the choice of solvent. These reaction attributes presented 

engineering challenges to the miniaturization of chemical synthesis. For instance, our 

earliest studies were performed in microtiter plates made of polystyrene, which is a 
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common plastic used in liquid handling consumables but has poor compatibility with 

organic solvents. Many initial experiments ended prematurely because the reaction 

vessel dissolved into the organic reaction medium being used. After some 

experimentation, it became clear that cyclic octane copolymer (COC) was a more robust 

material for organic chemistry experimentation. Luckily, 384- and 1536-well microtiter 

plates made of COC were commercially available. Subsequently, polypropylene was 

used because it is relatively inexpensive and robust toward many solvents. Glass 384- 

and 1536-well microtiter plates were also engineered to maximize chemical compatibility, 

but the high cost and fragility of these glass plates has to date been a hurdle to their wide 

adoption in reaction miniaturization. The lack of commercial availability of affordable 

1536-well reaction vessels with high chemical compatibility and thermal stability remains 

a challenge for the field. 

 

Beyond the reaction vessel, we invested considerable effort studying reaction solvents 

for miniaturization. An analysis of 240 years of chemical synthesis data revealed that 

dichloromethane, THF, and methanol are the three most frequently selected reaction 

solvents in chemical synthesis.209 These solvents are challenging to use in miniaturization 

because they are too volatile. Miniaturized chemistry can in principle be performed with 

a diversity of solvents, even those with relatively low boiling points, but it becomes 

necessary to run reactions at high dilution to counteract evaporation.38 The kinetics of 

many important reactions preclude their use at high dilution. Our target reaction volume 

was ∼1 μL, such that 0.05 mg of a typical drug-like substrate210 (500 g/mol) would produce 

a 0.1 M reaction concentration, which is a typical reaction concentration used in chemical 
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synthesis. To achieve a reaction volume of ∼1 μL, it was necessary to use high-boiling 

solvents, and we gravitated to the use of dimethyl sulfoxide (DMSO) and NMP. These 

solvents have been used in a diversity of chemistries and additionally are quite good at 

dissolving complex molecules, ensuring that reactions are homogeneous. Reaction 

homogeneity was a desirable experimental trait since we did not stir or agitate reaction 

mixtures at the outset. Homogenous liquids are also much easier to manipulate with liquid 

handling automation. 

 

In addition to the engineering requirements of the reaction vessel and the solvent, the 

selection of the ideal automation technology required consideration. We aspired to 

execute chemistry inside an inert-atmosphere glovebox so that air-sensitive catalysts 

could be used. After evaluating a number of liquid handling systems, we arrived at the 

SPT Labtech mosquito as a preferred system for our needs. The small footprint of this 

robot enabled it to be easily enclosed inside a typical glovebox, allowing air-sensitive 

chemistries to be explored. As opposed to common air-displacement liquid handlers, the 

mosquito liquid dosing mechanism was based on positive displacement with a plunger in 

each pipet tip, which was distinct from other liquid handling technologies. The use of this 

positive-displacement liquid handling mechanism turned out to be highly enabling 

because multiple reagents could be loaded into each consumable tip of the liquid handler 

(46-Fig. 3b) and mixed by drawing the liquid up and down upon dosing into the receiving 

reaction plate. This dosing protocol ensured an even distribution of reagents throughout 

the reaction droplet. Additionally, the positive-displacement mechanism is based on the 

distance the plunger travels in the pipet tip and thus is generally agnostic of solution or 
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suspension viscosity and heterogeneity, allowing us to handle diverse reagent or reaction 

mixtures, even those that did not dissolve. 

 

Having navigated the challenges of hardware engineering, we were ready to explore 

miniaturized chemical synthesis. The first reactions we explored in 1536-well microtiter 

plates were Buchwald–Hartwig couplings (46-Fig. 3a,c),36 which are among the most 

important reactions used in synthesis for drug discovery.30, 207, 211 Santanilla and Dreher 

had discovered the perfect set of reaction conditions for ambient-temperature cross-

coupling in a homogeneous reaction medium, utilizing the third-generation (G3) Buchwald 

precatalysts and P2Et as the base in DMSO.212 The reagents and substrates dissolved 

well in DMSO, a high-boiling solvent that was compatible with the COC plastic plates and 

could be easily dosed in 1 μL reaction droplets on a mosquito liquid handler (46-Fig. 3b) 

in an inert-atmosphere glovebox. With this novel setup, we were able to run 1536 

reactions and at once survey the performance of catalyst and additive combinations with 

diverse electrophiles and nucleophiles. This realized our first ability to perform ultrahigh-

throughput experimentation (ultraHTE) for chemical synthesis. Initial studies revealed a 

significant impact of matching specific ligand–base selections to various nucleophile–

electrophile substrate pairs. These effects were observable because the miniaturized 

chemical synthesis platform allowed the collection of a high density of reaction data from 

each experiment. The biggest concern that we had in the development of a miniaturized 

reaction platform was the ability to repeat the miniaturized experiments, which were 

performed on a reaction scale of ∼50 μg, on a meaningful reaction scale of at least tens 

of milligrams. Because the reactions were generally homogeneous with reagent and 
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substrate mixtures that were soluble in DMSO, we anticipated that reactions would be 

reproducible on a larger scale. Indeed, reaction performance on the nanomole scale 

correlated well with reaction performance on the millimole scale, and in the instance of 

coupling 12 to 13 with tBuXPhos Pd G3 and P2Et, the reaction was repeated on the gram 

scale with product 14 being isolated in 79% yield (46-Fig. 3a). 

 

Having demonstrated the feasibility of performing transition-metal-catalyzed coupling 

chemistry on the nanomole scale in 1536-well plates, several opportunities for platform 

expansion based on engineering and technological improvements emerged.141 The 

platform was focused on the use of reactions that perform well in DMSO at room 

temperature. The use of DMSO has significant advantages in that (i) pharmaceutical 

compound collections are generally stored in DMSO and could potentially be used as a 

source of substrates for miniaturized synthesis and (ii) many bioassays are tolerant of 

DMSO, paving the way to the potential merger of ultraHTE with in-line bioassays. 

Nonetheless, the menu of popular synthetic chemistries that perform well in DMSO at 

room temperature is currently limited. To expand the menu of usable solvents, 

subsequent studies augmented the capability through further engineering. While DMSO 

and other high-boiling polar aprotic solvents were straightforward to use on the mosquito, 

the use of lower-boiling solvents such as 1,4-dioxane required complementary liquid 

handling equipment that could rapidly dose in parallel with a 384-channel pipetting head. 

With a diversity of solvents and chemistries came a diversity of reagent mixture solubility 

characteristics, wherein many reactions were suspensions instead of solutions. Here we 

designed customized well plate holders so that we could use specialized glass 1536-well 
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microtiter plates and a resonant acoustic mixer to agitate the reaction plates. These 

customized well plate holders could also be heated and outfitted with glass bottoms so 

that the miniaturized reaction mixtures could be illuminated with light from high-intensity 

light-emitting diodes for the execution of metallophotoredox catalysis experiments. In 

these studies, analytical chemistry was vastly accelerated through the incorporation of 

MALDI, allowing a 1536-well microtiter plate to be analyzed in 8–11 min. 

 

We next explored the use of the ultraHTE capability in the development of new cross-

coupling strategies in partnership with the Buchwald lab.213 Isolated oxidative addition 

complexes (OACs) had been demonstrated as viable coupling partners for protein 

modification.214 We considered that OACs derived from pharmaceuticals might improve 

cross-coupling performance in a drug discovery setting. Pharmaceutically derived OACs 

proved to be excellent coupling partners with diverse nucleophiles. While the use of a 

stoichiometric equivalent of palladium is an atypical strategy, cost analyses showed that 

the complex pharmaceutical substrates we used were orders of magnitude more 

expensive than commercial palladium complexes, suggesting that on a discovery scale 

of dozens of milligrams the OAC approach can be highly economical if it improves the 

chances that synthesis will succeed on the first attempt. A library of 384 nucleophiles, 

such as amines, alcohols, and thiols, were subjected to coupling with rivaroxaban (15) 

(47-Fig. 4a) under catalytic conditions using 5 mol % tBuXPhos Pd G3 and P2Et. Among 

384 diverse amines, only 39 coupling products were observed by ultrahigh-performance 

liquid chromatography–mass spectrometry (UPLC–MS). Simultaneously, the analogous 

tBuXPhos OAC 16, prepared from 15 and a stoichiometric equivalent of a palladium 
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complex with tBuXPhos as a supporting ligand, was used as a coupling partner with the 

same 384 amines and P2Et as the base. In this instance, 206 of the 384 diverse coupling 

products were observed by UPLC–MS (47-Fig. 4c), and key reactions were successfully 

reproduced on traditional reaction scale to yield dozens of milligrams each of 17–22 and 

many other congeners (47-Fig. 4b). 

 

It quickly became clear that the miniaturized platform we had developed was ideal for 

merging chemical synthesis with in-line biochemical studies. The synthesis of small 

molecules and testing of their reversible affinity to protein targets of interest are two of the 

core operations of drug invention. In the interest of accelerating this process, we sought 

to merge our ultraHTE platform with an in-line high-throughput biochemical assay. Each 

reaction we ran contained ∼0.05 mg of theoretical product, which is ample material to run 

multiple in vitro biochemical assays. Following consideration of various bioassay 

platforms, we gravitated to affinity-selection mass spectrometry (ASMS).215-217 In ASMS, 

the affinity of a small molecule for a protein target of interest is registered through the 

observation of the small molecule’s mass-to-charge ratio following incubation with the 

target protein, size-exclusion chromatography to separate unbound ligands from protein–

ligand complexes, denaturation of the protein–ligand complexes, and mass spectrometric 

analysis. The technique is commonly used to identify protein ligands from mixtures of 

small molecules, suggesting that it would be possible to differentiate protein-binding 

compounds from other reaction components such as residual phosphine ligands, 

catalysts, and other chemical reagents as long as they had distinct molecular formulae. 

Indeed, we found that crude reaction mixtures from ultraHTE could be subjected to ASMS 
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analysis with facile separation of compounds that had high affinity for specific proteins 

from those that had little or no affinity.35 To increase throughput, reaction mixtures were 

pooled, while ensuring that no isobaric products were combined into the same well. A 

technique was developed to rank protein affinity by titrating the protein concentration 

while holding the concentration of the compound test mixture constant and monitoring the 

disappearance of the small molecule’s mass spectral signal. Those compounds whose 

mass spectral signal persisted at the lowest protein concentration were expected to have 

the highest affinity to the protein target, and this was confirmed in control studies. Multiple 

libraries were compared wherein crude reaction products from nanoscale synthesis 

(∼0.05 mg) were compared to chromatographically purified compounds prepared on a 

traditional reaction scale (∼50 mg). A library of 384 nucleophiles were cross-coupled with 

simultaneous screening of four reaction conditions (48-Fig. 5). The most productive 

reactions were submitted directly to the bioassay. Excellent fidelity between the crude 

and purified products was observed by the affinity ranking experiments, confirming that 

the same conclusions could be reached even when reactions were run on a nanomole 

scale and subjected to bioassays without compound purification. As an example, 

checkpoint 1 (CHK1) kinase inhibitor 25 was readily differentiated from structurally related 

analogues 23 and 24, which had no observable affinity for CHK1. The real estate on the 

well plate allows for positive and negative control experiments to be included. A series of 

known CHK1 inhibitors ranging in CHK1 activity (IC50) from 19 to >10 000 nM were spiked 

into the ASMS sample pools, providing an estimation of the test compounds’ CHK1 

activities. This merger of chemical synthesis and biochemical testing significantly 
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streamlines the drug discovery process and simultaneously provides useful data for 

learning about reaction optimization and protein affinity. 

 

To facilitate HTE and ultraHTE research in our academic laboratories at the University of 

Michigan, we have developed phactor,218 a full-stack software that allows bench chemists 

to design complex reaction arrays in just a few button clicks. In addition to experimental 

identification of winning reaction conditions, an advantage of HTE is the capture of 

systematically performed reaction data. In phactor, HTE and ultraHTE results are 

recorded in a machine-readable format for future statistical analyses. Designing 

experiments along with analyzing, visualizing, and reporting the results takes just a few 

button clicks in phactor, thus allowing the chemist to focus on idea generation, data 

interpretation, and reaction mechanism instead of experimental logistics. An example of 

phactor’s reaction array design tool is shown in 49-Fig. 6. 

 

Using phactor to facilitate our exploration of amine–acid coupling space, we explored an 

esterification coupling (50-Fig. 7a) as a direct complement to the venerable amide 

coupling where the N–H is replaced with an oxygen atom (28). Experimentally, we 

investigated the coupling of o-toluic acid (26) with diazonium salt 27 using transition 

metals [CuI, Pd(OAc)2, Pd(dba)2, NiCl2•diglyme] and common ligands (pyridine, di-tert-

buylbipyridine, triphenylphosphine, and xantphos), with silver nitrate included in selected 

wells as an additive. The heat map of UPLC–MS results indicates that CuI, AgNO3, and 

pyridine were the best conditions (50-Fig. 7b). 
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Since our preliminary report in this space,36 there has been considerable innovation in 

the field of miniaturized HTE.35, 38, 54, 110, 114, 141, 142, 197, 205, 213, 219-224 Identifying viable 

reaction conditions for any transformation is a multidimensional problem. When all of the 

combinations of catalysts, ligands, additives, and solvents that could be investigated are 

considered, the search space becomes nearly infinite. Through the rational design of 

arrays of reaction conditions, one can accelerate the navigation of the experimental 

search space. Exploration and exploitation are possible since larger amounts of 

systematically captured data are available. Looking forward, we see ultraHTE as a critical 

experimental technique to enable a systems chemistry approach (51-Fig. 8). We envision 

a future in which chemical transformations, reaction conditions, molecular structures, and 

physicochemical properties are directly linked to molecular function in the form of systems 

chemistry, much in the same way that systems biology links metabolites, genes, proteins, 

and pathways to disease. To lay a foundation for explorations in systems chemistry and 

to complement our ultraHTE experimental strategy, we have recently developed a system 

for mapping chemical transformations.219 To date we have shown that amines and 

carboxylic acids can be coupled in hundreds of ways beyond the classic amide coupling 

and that each amine–acid coupling imprints a unique physicochemical footprint on the 

product. The use and rapid invention of new reactions to control molecular properties and 

function can be realized only through the rapid generation of reaction data, and thus, 

ultraHTE is uniquely suited to enable systems chemistry. 

 

Much as Moore’s law describes the acceleration and advancement of information transfer 

in computer science on the basis of hardware miniaturization, the miniaturization and 
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parallelization of chemical synthesis leads to more reaction information. As data science 

plays an increasingly prominent role in chemical synthesis,198 the ability to generate larger 

amounts of reaction data will be needed. The development of ultraHTE allows a systems 

chemistry approach at the nexus of transformations, reaction conditions, chemical 

structure, properties, and ultimately molecular function. 

 

44-Fig. 1 | (a) HTE was used to develop reaction conditions for a key SNAr coupling. (b) 

A first survey of four solvents and six bases revealed several productive conditions for 

the coupling of 1 and 2 to form 3. Among the best conditions from this screen, the use of 

NaHCO3 in NMP was revealed as the most robust set of conditions through subsequent 

parallel synthesis studies (not shown). (c) Registration of compounds with the 2-
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aminopyridine motif on the DGAT1 program accelerated after the day that the screen was 

run (red line). (d) The availability of these reaction conditions enabled hit expansion on a 

series of DGAT1 inhibitors, culminating in key compounds such as 3–7. 

 

 

45-Fig. 2 | (a) Miniaturized reaction exploration on a milligram scale was a key enabling 

tool in the late-stage functionalization of medicinal compounds. (b) A survey of ligands for 

the iridium-catalyzed C–H borylation enabled the selective functionalization of 8. 

Abbreviations: dtbpy = 4,4′-di-tert-butyl-2,2′-bipyridine; P(C6F5)3 = 

tris(pentafluorophenyl)phosphine; Me4Phen = 3,4,7,8-tetramethyl-1,10-phenanthroline; 

dbfa = (E)-N,N-dibenzyl-N′-(pyridin-2-yl)formimidamide; MeDPA = N-methyl-N-(pyridin-2-

yl)pyridin-2-amine; tdtbpp = tris(2,4-di-tert-butylphenyl) phosphite. 
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46-Fig. 3 | Development of ultraHTE. Chemical synthesis was performed in 1536-well 

plates. (A) Complex medicinally relevant molecules such as 14 could be synthesized on 

the gram scale using air-sensitive catalysts that were synthesized under conditions 

determined on the nanomole scale. (B) SPT Labtech mosquito. (C) Heat map of reaction 

performance for 1536 cross-coupling reactions on complex substrates. 
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47-Fig. 4 | (a) Use of ultraHTE to explore the substrate scope of cross-couplings on 

isolated palladium oxidative addition complexes (OACs). (b, c) Exploration of the 

substrate scope (b) on the nanoscale (c) highlights that OACs are robust coupling 

partners, with product observed by UPLC–MS for 54% of 384 nucleophiles attempted, 

compared with 10% using complementary catalytic conditions for the same library of 

nucleophiles. 
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48-Fig. 5 | Nanoscale synthesis and affinity ranking using ASMS analysis of crude 

ultraHTE reaction mixtures. A series of known CHK1 inhibitors were used as 

benchmarking compounds (right ordinate). Compound 25 was readily observable as a 

molecule with higher affinity for CHK1 than 23 and 24 based on protein titration affinity 

ranking. 
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49-Fig. 6 | phactor is a high-throughput experimentation design software. The reaction 

array design tool is shown. 
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50-Fig. 7 | HTE screen of transition metals and ligands, designed in phactor, to realize a 

deaminative esterification. 

 

51-Fig. 8 | A systems chemistry approach that links chemical transformations and 

reaction conditions to structure, properties, and molecular function is enabled by 

ultraHTE. 
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Miniaturization of Popular Reactions from the Medicinal Chemists’ Toolbox for 

Ultrahigh-Throughput Experimentation 

In this work, I compiled and visualized various datasets obtained through the development 

of miniaturized reactions that are popular in medicinal chemistry. The data was organized 

to inform the community the effectiveness of these reactions at nano and micro scale. 

This report is featured in Nature Synthesis.134 
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52-Fig. 1 | Popularity of common reactions in the synthesis of pharmaceuticals. 
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53-Fig. 2 | Nanoscale ultraHTE Suzuki coupling reaction performance.a, Boronates (1–

10) and halides (11–22) used in the study. b, Heatmap of conversion to product as 
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determined by UPLC–MS relative to an internal standard at λ = 254 nm. c, Plate map. d, 

Box-plots comparing the effects of base, cosolvent and catalyst on reaction 

performance (black circles indicate outlying points). Bpin, 4,4,5,5-tetramethyl-1,3,2-

dioxaborolane; Cbz, benzyloxycarbonyl; tAm, tert-amyl; r.t., room temperature; 

PROD/IS, product/internal standard; aq., aqueous. 

 

 

54-Fig. 3 | Nanoscale reaction optimization for the reductive amination of staurosporine 

(36) with eight aldehydes, eight ketones and 48 reaction conditions. See Supplementary 

Section 5.1 for full list of aldehydes and ketones. Relative percentage conversion was 

determined by UPLC–MS at λ = 254 nm. Conc., concentration. 
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55-Fig. 4 | Nanoscale staurosporine analogue library synthesis via reductive amination. 

a, Heatmap of conversion to product for the reductive amination of staurosporine 36 

with 48 aldehydes using eight reaction conditions. A representative example of 

aldehydes is shown (see Supplementary Section 5.2 for full list). Relative conversion 

was determined by UPLC–MS at λ = 254 nm. b,c, Selected reactions were repeated on 

50 µmol scale giving 45–50 and S1 (b) or 0.30 mmol scale giving 51–53 (c). Yields are 

of purified products. 
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56-Fig. 5 | Two-step nanoscale synthesis of MK2-inhibitor analogues (56) and (57) via 

N-alkylation followed by Boc-deprotection. a, Electrophiles 58–69 were coupled to 54 

and 55. b, Heatmap of reaction performance determined by UPLC–MS at λ = 254 nm 
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relative to standard curves created from isolated products. c, Selected examples 70–73 

repeated on 40 µmol scale (see Supplementary Section 6.5 for full scope). Yields are of 

purified products. LiHMDS, lithium bis(trimethylsilyl)amide.  
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Development of copper-catalyzed deaminative esterification using high-

throughput experimentation 

In this work led by Yuning Shen, a copper-catalyzed deaminative esterification was 

developed. In this transformation, an amine activated as a diazonium salt reacts with a 

carboxylic acid to form various esters. The reaction was optimized to perform well in 

ultrahigh throughput format and is amenable to a various of substrates. We show that 

amine substrates provide better access to novel space compared to their phenol 

counterparts. This work is featured in Chemical Communicatons.180 
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57-Fig. 1 | HTE enabled amine–acid esterification and its application in drug 

molecules. A The amine–acid esterification. B Esters are an important medicinal 

functionality as in drugs 1–3. C Reaction discovery, optimization, and scope profiling is 

achieved using HTE. 

 

58-Fig. 2 | Physicochemical properties of amides and esters and complementary 

chemical space of anilines to phenols. A An amine and carboxylic acid can be 

coupled in a variety of transformations beyond the traditional amide coupling, including 

the esterification reaction developed here, which gives a unique property footprint. B 
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Venn diagram showing the complementarity of phenol to aniline building blocks 

available in the MilliporeSigma catalog. C tSNE analysis showing the complementarity 

of ester products generated by coupling aspirin to phenol (blue dots) versus aniline 

(yellow dots) building blocks available in the MilliporeSigma catalog. D Ester products 

have a higher predicted blood–brain permeability (CNS-pMPO score) than classic 

amide products produced from the same set of anilines when coupled to the drug 

metaclopramide. 
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59-Fig. 3 | Reaction discovery and profiling with HTE. A General deaminative 

esterification reaction. B Heatmap showing the discovery of the esterification reaction in 

24 glass microvials. Dtbpy = 4,4′-di-tert-butyl-2,2′-dipyridyl, xantphos = 4,5-

bis(diphenylphosphino)-9,9-dimethylxanthene. C Heatmap showing optimization of 

esterification in 96 glass microvials (see Supplementary Information for details). Pybox 

= 2,6-bis[(4 S)-(–)-isopropyl-2-oxazolin-2-yl]pyridine, box = 2,2-Bis((4 S)-(–)-4-
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isopropyloxazoline)propane, terpy = 2,2′:6′,2′′-terpyridine, dmphen = 4,7-dimethoxy-

1,10-phenanthroline, CuTC = copper(I) thiophene-2-carboxylate, CuPC = copper(II) 

phthalocyanine. D Heatmap showing the reproducibility of quadruplicate data for a 

library of 96 acids coupled to 7–10 in plastic 1536-well plates. The overall average 

standard deviation across the quadruplicate data was 5.5%. The wells with the gray 

color indicated that the dosage of the internal standard was missing. E UV-Vis 

absorbance data show an interaction between Cu(MeCN)4BF4, 4 and 2,4,6-collidine. F 

Reaction optimization. a 1H-NMR yield with 1,3,5-trimethoxybenzene as internal 

standard, b Isolated yield. G Diazonium salts used in the 1536 screen shown in D. H 

Select reactions from those shown in D were repeated on a 0.300 mmol scale using 

Cu(MeCN)4BF4 (100 mol%) to produce 11, 12, and 13 in isolated yield shown. 
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60-Fig. 4 | Substrate scope. Reactions were run with carboxylic acids (0.300 mmol), 

diazonium salts (1.5 equiv.), Cu(MeCN)4BF4 (30 mol%), and 2,4,6-collidine (1.5 equiv.) 
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in anhydrous acetonitrile (0.1 M) at room temperature, generally over 16 h. Reported 

yields are isolated yields of purified products. 
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61-Fig. 5 | The amine–acid esterification applied directly to over-the-counter pills. 

Ester products 42–45 are derived from both reagents and OTC pills 

(See Supplementary Information for details).
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The Formal Cross-Coupling of Amines and Carboxylic Acids to Form sp3–sp2 

Carbon–Carbon Bonds 

In this work led by James Douthwaite, a nickel-catalyzed deaminative decarboxylative 

C–C bond forming reaction was developed. In this transformation, an amine activated 

as a Katritzky salt reacts with a carboxylic acid activated as a twisted amide to form 

various C–C bonds. The reaction was optimized using phactor through a serious of high 

throughput experiments and is amenable to a various of substrates. We show that 

amine and acid substrates provide better access to novel space compared to their 

boronic and halide counterparts used in the Suzuki reaction. This work is featured in 

JACS.102  

 
  



 

 165 

 

62-Fig. 1 | (A) Cross-coupling of amines and carboxylic acids to form C(sp3)–C(sp2) 

bonds as a complement to amide coupling. (B) Substructure search of 320 possible 

products from amine–acid coupling in the DrugBank database. (C) Analysis of building 

block availability from MilliporeSigma. Unions represent exact substructures differing 

only by the indicated functionality. 
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63-Fig. 2 | (A) HTE optimization on 10 μmol scale in 24- and 96-reaction arrays. Assay 

yields were determined by UPLC-MS. Selected conditions were repeated on the 0.25 

mmol scale and analyzed by 1H NMR with an internal standard. Isolated yield in 

parentheses. (B) Key compounds. 
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64-Fig. 3 | Substrate scope of C(sp3)–C(sp2) coupling of N-acyl-glutarimides with 

primary alkylpyridinium salts on 0.10–0.25 mmol scale. Isolated yields are shown. 

 

65-Fig. 4 | (A) Effect of RuCl3 on selectivity. Isolated yield on 0.25 mmol shown. Pie 

charts determined from 1H NMR analysis of crude reaction with reference to an internal 

standard. (B) Effect of RuCl3 in the absence of NiBr2·DME. TPP = triphenylpyridinium. 
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(C) Coupling of 1 and 2 in the presence of ketone 37 and RuCl3. aNot detected by 

UPLC-MS. bYield from 1H NMR. 

 

66-Fig. 5 | Substrate scope of C(sp3)–C(sp2) coupling of N-acyl-glutarimides with 

secondary and benzyl alkylpyridinium salts on 0.25 mmol scale. Isolated yields are 

shown. 
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67-Fig. 6 | (A) Replacement of 1 with N-acyl phthalimide 45, 1H NMR yields shown. (B) 

DFT comparison of oxidative addition of 1 and 45. (C) Proposed catalytic cycle.  
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Expansion of NanoSAR for the Deconvolution of Large Compound Libraries 

In this work we collaborated with the company Relay Therapeutics to expand the 

NanoSAR platform.35 An amide coupling was developed to work in ultrahigh throughput 

format and a chemical library was developed for direct-to-biology studies. In this project, 

aliquots from reactions were pooled before being tested in affinity selection mass 

spectrometry. Much of the analysis relied on the deconvolution mass hits found and 

matching compounds to reaction wells. 
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68-Fig. 1 | Approaches to nanoscale synthesis and affinity ranking (NanoSAR); (a) 

Previously, crude nanoscale reactions were assayed by ASMS with affinity ranking 

achieved by decreasing the concentration of target protein to induce competition among 

compounds; (b) introduction of a Caliper bioassay into the workflow allows larger libraries 

of thousands of compounds to be evaluated and reduces the need for mass encoding. 

 

69-Fig. 2 | Chemical assay results of ultrahigh throughput experiment performed for the 

project. Heatmaps represent the UV, MS, and ELSD integrations of the product over 

internal standard respectively. 
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70-Fig. 3 | Library design and synthesis (left) tSNE comparing targeted compounds to 

virtual compounds generated from enumeration of the enamine acid catalog. The targeted 

compounds cover a large portion of chemical space. (right) Relative conversion to product 

for the ultraHTE amide coupling of pharmacophore amines with 128 different acids as 

determined by UPLC-MS. Three detection methods, UV-absorbance, MSTIC(+) and 

ELSD were utilized. Each point represents one reaction, colored by percent inhibition 

observed when subjected to Caliper biochemical assay. 
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71-Fig. 4 | Affinity Selection Mass Spectroscopy chord diagrams for each pool of 

reactions. All reactions were initially split into four pools, based on reagents, resulting in 

768 reactions per pool. Chords connect reactions to compound masses found in that 

reaction. Each reaction may be connected to multiple masses, and heatmaps 

representing chemical and biological assay results are shown on the periphery of the 

reaction arc. Chords are colored by the lowest ALIS protein concentration that a 

compound in that reaction bound to. In the second iteration, 16 pools were made where 

reactions were split by conversion.
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Chapter IV. Reagent Discovery 

 

High-throughput experimentation is a valuable technology that allows for the rapid testing 

of various experimental conditions in chemical reactivity. However, due to the vast 

number and combinations of reagents available for testing, it becomes necessary to 

intelligently select the experimental conditions.114, 125 While algorithms have been 

developed to optimize continuous variables such as concentration and temperature, the 

sampling of discrete variables or combinations of discrete variables still presents a 

challenging problem. 

 

Expert chemists traditionally rely on literature searching and high-throughput 

experimentation to optimize reactivities, but there is a growing desire to automate this 

experimental design process in order to create self-driven laboratory workflows and 

optimize the reaction development process. The goal is to develop algorithms that can 

efficiently navigate the complex landscape of possible experimental conditions and 

intelligently select the most promising ones to test. By leveraging machine learning and 

artificial intelligence techniques, researchers aim to develop algorithms that can 

effectively explore the vast chemical space and guide the discovery of new reactions.41, 

144, 161, 176, 225, 226 
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The automation of experimental design holds great potential for the discovery of 

conditions that enable novel reactivity. Currently, this is achieved through transfer 

learning from relevant literature and reaction datasets. Expert chemists leverage their 

knowledge and experience to identify key factors and parameters that contribute to 

desired reactions. By training algorithms on large datasets of known reactions,149 it 

becomes possible to extract patterns and correlations that can guide the optimization of 

experimental conditions. This approach enables the efficient exploration of a vast 

chemical space, accelerating the discovery of new reactivity and facilitating the 

development of innovative chemical processes. Through the integration of high-

throughput experimentation, machine learning, and automation, researchers aim to 

revolutionize the field of chemical discovery and enable the creation of self-driven 

laboratory workflows.136, 157 
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Designing Chemical Reaction Arrays using phactor and ChatGPT 

The year 2023 brought the emergence of near lifelike artificial intelligence that could be 

spoken to naturally in a conversational manner. In this work, the artificial intelligence 

ChatGPT was interrogated to design reaction arrays to optimize common reactions 

between various substrates. In conjunction with phactor, these experiments were 

executed, and all designs resulted in the formation of the desired product. The artificial 

intelligence was then directly incorporated into phactor.  
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Abstract 

 

High throughput experimentation (HTE) is a common practice in the optimization of 

chemical synthesis. Chemists design reaction arrays to optimize the yield of couplings 

between building blocks. Popular reactions used in pharmaceutical research include the 

amide coupling, Suzuki coupling, and Buchwald-Hartwig coupling. We show how the 

artificial intelligence (AI) language model ChatGPT can automatically formulate reaction 

arrays for these common reactions based on the literature corpus it was trained on. 

Critically, we showcase how ChatGPT results can be directly translated into inputs for the 

management software phactor, which enables automated execution and analysis of 

assays. This workflow is experimentally demonstrated, with modest to excellent yields of 

products obtained in each instance on the first attempt. 

 

Introduction 

 

Chemical synthesis is a primary bottleneck in drug development. High throughput 

experimentation (HTE) is a widely practiced method for the discovery and optimization of 

reaction conditions in medicinal chemistry campaigns.35, 36, 108, 140, 141 Chemists typically 

design reaction arrays based on conditions found in the literature, using search tools such 

as Google, SciFinder, or Reaxys. The automated generation of reaction arrays to optimize 

or discover a coupling reaction between two substrates is a contemporary problem.124, 

125, 161, 176, 225, 227, 228 Recently, generative transformers, a form of artificial intelligence (AI), 

have emerged as interactive language models that can interpret and answer scientific 
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questions via verbal human input.229, 230  Herein we demonstrate how the general-purpose 

language model ChatGPT (version 3.5) can be utilized to generate initial-guess reaction 

array designs for specific substrate pairs. Due to the flexibility of the AI model, the output 

can be directly translated into input files for the HTE management software phactor.136 

We showcase several case studies of using ChatGPT to aid in designing reaction arrays 

for phactor, specifically for transformations that are most commonly used in 

pharmaceutical chemistry.30 With phactor, we execute the arrays designed by ChatGPT 

experimentally leading to viable first-pass reaction conditions from simple prompts that 

are easy to devise by non-expert users.  

 

Experimental 

 

To test the effectiveness of reaction arrays designed by ChatGPT, a workflow to 

automatically generate reagent proposals and execute reaction arrays for popular 

reactions was developed. A typical workflow can be summarized in three steps (72-Fig. 

1): 

• First, have ChatGPT generate reaction array designs for specific substrates based on 

simple text prompts.  

• Then, translate the output from ChatGPT into an input file for the HTE management 

software phactor. An interfacing script written in python is provided online.  

• Finally, use phactor to create stock solutions and distribute the chemicals into the 

reaction array, manually or robotically, and then analyze its results. 
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ChatGPT can be interrogated during the design step to elaborate on experimental details 

or reasonings and was asked to clarify experimental details at times. Each product was 

scaled up using the best conditions identified for its respective reaction array and isolated. 

 

Results 

 

ChatGPT is a newly released general-purpose AI language model developed by 

OpenAI.231 It serves as a conversational model where the user can ask a series of 

questions and receive text answers based on the context of the conversation. While not 

directly a model for chemistry, ChatGPT has been trained on a large corpus of scientific 

literature. As such, in its own words, ChatGPT has “knowledge of basic chemistry 

concepts, such as the periodic table, chemical reactions, acids and bases, and 

thermodynamics. It can also provide information on more advanced topics, such as 

organic chemistry, biochemistry, and physical chemistry.” We demonstrate how ChatGPT 

can be asked to generate reaction arrays of viable reagents and catalysts for common 

reaction classes for specific substrates. For each class of reactions (amide, Suzuki, and 

Buchwald-Hartwig couplings), we ask ChatGPT to develop an experimental design for 

various pairs of substrates. While we hypothesize that the model is exercising little, in 

any, physical and chemical intuition in its designs, its ability to select popular reagents 

and catalysts associated with reaction-type keywords leads to viable and interesting 

proposals for array recipes. Critically, the merger with phactor exploits the strength of 

ChatGPT to propose several plausible answers, then sample them systematically using 
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HTE as opposed to relying on a single “correct” answer. Ultimately, this merger of 

ChatGPT and phactor led to successful reaction conditions in every case interrogated. 

 

1. Amide Coupling 

 

In the first conversation, we requested the generation of a reaction array to optimize an 

amide coupling between 2-methylbenzoic acid (1) and p-toluidine (2) to form amide 3 (73-

Fig. 2). 
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DOIs have been omitted from the shown response as the DOI and citation references did 

not match the article titles. Furthermore, many of the references are, to the best of our 

knowledge, not real. This is because ChatGPT is a language model rather than a 

Prompt: “Generate a reaction array with 3 coupling 
agents, 2 bases, 2 solvents and 2 additives to optimize 
an amide coupling between 2-methylbenzoic acid and p-
toluidine. Add each reagent into a single table, where 
each row has a column for the reagent class and a 
column for the reactant name.  As well, include specific 
recommendations and values for other reaction 
parameters for this screen. Respond succinctly. Finally, 
cite some literature references from which this screen 
was designed with DOIs.” 
 

ChatGPT Response: 
Reagent 

Class 
Reactant Name 

Coupling Agent HATU 
Coupling Agent EDC 
Coupling Agent PyBOP 

Base DIPEA 
Base TEA 

Solvent DMF 
Solvent DCM 
Additive HOAt 
Additive DMAP 

 
For reaction parameters, some specific 
recommendations for this amide coupling reaction could 
include: 
• Temperature: 0-25°C (refrigeration) 
• Time: 2-24 hours 
• Stoichiometry: 1.2-2.0 equivalents of coupling agent, 

1.0-1.5 equivalents of base, and 1.0-1.2 equivalents 
of amine relative to carboxylic acid 

• Concentration: 0.1-0.5 M 
• Inert atmosphere: nitrogen or argon 
 
References: 
• Li, H.; Banerjee, S.; Liao, L.; Pei, X.; Chen, X.; Miao, 

Q.; Huang, W. An efficient one-pot approach for the 
synthesis of unsymmetrical ureas via domino 
reaction of isocyanides with amines using EDC as 
the coupling agent. 

• Kamber, D. N.; Jeon, J.; Lee, S. H.; Kim, S. K. 
Efficient N,N'-dimethylformamide catalyzed 
synthesis of amides from carboxylic acids using 
HATU as a coupling reagent. 

• Hwang, S. H.; Park, S. H.; Yang, J. E.; Yoon, Y. J.; 
Kim, D. S.; Lee, D. W. High yield synthesis of 
peptide-PEGylated sunitinib via EDC-mediated 
conjugation. 
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knowledge model, which has been reported to hallucinate citations. Despite this, the array 

design is reasonable. Further examples of “references” for each subsequent array design 

are included in the Supporting Information. We also note that the model struggled to 

accurately recreate the SMILES of compounds when asked (see Supporting Information), 

but structures were derived from the IUPAC name output, which were always reasonable. 

 

The experimental execution of this reaction array precisely followed the suggestions from 

ChatGPT with resultant reaction metadata such as concentrations, volumes and well 

locations designed by phactor (74-Fig. 3). Two-thirds of the array produced hits with 

moderate assay yield, while reactions 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide 

(EDC) as a coupling agent failed entirely. Well D5, the best hit using benzotriazol-1-

yloxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) and N,N-

diisopropylethylamine (DIPEA) with (4-dimethylaminopyridine) DMAP in dichloromethane 

(DCM), was scaled up and resulted in an 94% isolated yield of product 3. 

 

2. Amide Coupling on Complex Molecule Sitagliptin 

 

Next, we explored how the conversation can be continued with a more complex substrate 

for the amide coupling. In the same dialog, we asked ChatGPT to refer to the previous 

question but to instead optimize the amide coupling between sitagliptin (4) and carboxylic 

acid 2 to form amide 5 (75-Fig. 4). 
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Again, the reaction array generated by ChatGPT was executed using the recipe designed 

by phactor (76-Fig. 5) Seemingly, the results of this array performed better than the 

original amide coupling, with only 3 failed hits, but with lower overall yields. The best hit 

was well A6, which produced 5 in 62% yield when using 7-Azabenzotriazol-1-

yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyAOP), triazabicyclodecene 

(TBD), and 1-Hydroxy-7-azabenzotriazole (HOAt) in dimethylformamide (DMF). When 

scaled up, the reaction yielded 62% isolated product. 

 

3. Suzuki Coupling  

 

Prompt: “Generate a similar reaction assay that instead 
optimizes the coupling of Sitagliptin with 2-methylbenzoic 
acid. Respond in the same format.” 
 

ChatGPT Response: 
Reagent 

Class 
Reactant Name 

Coupling Agent HBTU 
Coupling Agent TBTU 
Coupling Agent PyAOP 

Base DIEA 
Base TBD 

Solvent DMF 
Solvent DCE 
Additive DMAP 
Additive HOAt 

 
For other reaction parameters, the following values are 
recommended: 
• Temperature: 0-25°C (refrigeration) 
• Time: 2-24 hours 
• Stoichiometry: 1.2-2.0 equivalents of coupling agent, 

1.0-1.5 equivalents of base, and 1.0-1.2 equivalents 
of amine relative to carboxylic acid 

• Concentration: 0.1-0.5 M 
• Inert atmosphere: nitrogen or argon 
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We then attempted to optimize a Suzuki coupling reaction. A new chat was initiated with 

ChatGPT to propose new inputs for phactor. Here we asked for an optimized reaction 

array to form biaryl 8 from the Suzuki coupling between boronate 6 and chloride 7 (77-

Fig. 6). A typical ligand versus catalyst screen is generated, as requested. The model 

performed well at pulling ligands and catalysts from the literature corpus, as well as 

generating additional parameters needed for the assay. These probabilistic proposals for 

ligands and reagents are the perfect input for phactor, which then enables systematic 

testing of all combinations.  

 

 

 

Prompt: “Generate a 6 ligand by 4 catalyst reaction 
array to optimize an Suzuki coupling between o-
tolylboronic acid and 1-chloro-4-methylbenzene. 
Separate each parameter into a single table, where each 
row has a column for the reagent class and a column for 
the reactant name.  As well, include specific 
recommendations and values for other reaction 
parameters for this screen. Respond succinctly. Finally, 
cite some literature references from which this screen 
was designed with DOIs.” 
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We note that the model does not discuss the addition of a base, so we directly ask in the 

same conversation:  

 

 

 

 

The Suzuki coupling between 6 and 7 proved to be more challenging for ChatGPT, with 

slightly over half the plate failing to produce a hit (78-Fig. 7). Pd(dppf)Cl2 performed 

consistently well and DavePhos produced a hit whenever used. The unusual combination 

of Pd(dppf)Cl2 and BrettPhos, which has not been previously reported, to our knowledge, 

generated the best hit with a 25% product/internal standard integration ratio. When scaled 

ChatGPT Response: 
Reagent 

Class 
Reactant Name 

Ligand XPhos 
Ligand SPhos 
Ligand RuPhos 
Ligand BrettPhos 
Ligand Buchwald ligand 
Ligand DavePhos 

Catalyst Pd2(dba)3 
Catalyst Pd(OAc)2 
Catalyst PdCl2 
Catalyst Pd(dppf)Cl2 

Substrate o-tolylboronic acid 
Substrate 1-chloro-4-methylbenzene 

 
Conditions: The reaction should be performed under 
nitrogen atmosphere, and solvents such as DMF, DMSO, 
or toluene could be used. The reaction should be 
performed at 100-120°C for 12-24 hours, with a 1:1 ratio 
of the two substrates, and 2 mol% of Pd catalyst. The 
ratio of the Pd catalyst to the ligand should be 1:2. 

Prompt: “What base should I use?” 
 

The model responds: A base is typically not necessary 
for Suzuki coupling reactions since the reaction proceeds 
via a transmetalation step rather than a deprotonation 
step. However, if a base is needed, a common choice is 
potassium carbonate (K2CO3) or cesium carbonate 
(Cs2CO3) at a loading of 1.2-2 equiv. 
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up, 66% of the product was isolated. Interestingly Pd2(dba)3 has been previously reported 

to yield over 95% with these substrates with when run with a bisimidazolyl ligand232 or the 

WK-Phos ligand.233 These reports were seemingly missed by the AI. 

 

We noted that ChatGPT did not mention the addition of water as an additive in the Suzuki 

coupling reaction conditions, which is typically required to activate boronic acids.234 When 

asked, the model responds that water may or may not be beneficial to the yield of the 

reaction (see Supporting Information). We repeated the design above with base added 

as an aqueous solution to compare the results, finding that the yields are significantly 

improved across the plate (79-Fig. 8).  

 

4. Buchwald-Hartwig Coupling 

 

Finally, we explored the ability for the model to optimize a Buchwald-Hartwig coupling. 

With this transformation, the interplay of ligands and base effects is often more complex. 

Again, a new conversation was started. In this final example, we asked the model to 

generate a three factorial screen to optimize the C–N coupling between aryl chloride 9 

and aniline 2 to form compound 10 (80-Fig. 9). 

 

 

Prompt: “Generate a 3 ligand by 4 catalyst by 2 base 
reaction array to optimize an Buchwald-Hartwig coupling 
between 1-chloro-2-methylbenzene and p-toluidine. Add 
each reagent into a single table, where each row has a 
column for the reagent class and a column for the 
reactant name.  As well, include specific 
recommendations and values for other reaction 
parameters for this screen. Respond succinctly. Finally, 
cite some literature references from which this screen 
was designed with DOIs.” 
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We note the incorrect output “P(t-Bu)3”, which we manually corrected to the palladium 

complex Pd(Pt-Bu3)4 in our experimental execution. We asked additional questions to 

clarify the experimental details. 

 

 

 

 

 

 

ChatGPT Response: 
Reagent 

Class 
Reactant Name 

Ligand XPhos 
Ligand SPhos 
Ligand RuPhos 

Catalyst Pd2(dba)3 
Catalyst Pd(dppf)Cl2 
Catalyst P(t-Bu)3 
Catalyst Pd(OAc)2 

Base K3PO4 
Base NaOtBu 

 
Other recommended reaction parameters: 
• Solvent: DMF 
• Temperature: 100°C 
• Reaction time: 24 hours 
• Stoichiometry: 1:1 ratio of 1-chloro-2-methylbenzene 

and p-toluidine 
• Concentration: 0.1 M 

Prompt: What catalyst, ligand, and base concentrations 
should I use for this reaction? 
 

ChatGPT Response: The specific concentrations of 
catalyst, ligand, and base to use for the reaction depend 
on various factors such as the desired reaction rate, 
reaction yield, and the specific reactants being used. 
However, as a general guideline, a common catalyst 
concentration range for Buchwald-Hartwig couplings is 
0.5-5 mol%. Ligand concentrations can range from 1-10 
mol%. Base concentrations can range from 0.5-2 equiv. 
It's important to note that these concentrations may need 
to be optimized for specific substrates and conditions. 

Prompt: How about the order of addition for the 
reagents? 
 



 

 189 

 

 

 

 

  

 

We note that the quench of the reaction should be performed after cooling for safety. A 

follow up question was asked to interrogate if ChatGPT would identify the single best 

answer from the array performed with ChatGPT and phactor. 

 

ChatGPT Response: The order of addition for the 
reagents can also be important for optimizing the 
reaction conditions. In a typical Buchwald-Hartwig 
coupling, the base is usually added first to the reaction 
mixture, followed by the catalyst and the ligand. The 
organic halide and the amine are then added to initiate 
the reaction. However, depending on the specific 
reactants and conditions, the order of addition may 
need to be adjusted to achieve the desired reaction 
outcome. Therefore, it's always a good idea to consult 
the literature or perform some preliminary experiments 
to determine the optimal order of addition for the 
specific reaction being performed. 

Prompt: How would I quench and work up this reaction? 
 

ChatGPT Response: After the Buchwald-Hartwig 
coupling reaction is complete, it can be quenched by 
adding a quenching agent to the reaction mixture. 
Common quenching agents include ammonium chloride 
or hydrochloric acid. The choice of quenching agent may 
depend on the specific reaction conditions and the nature 
of the products. 
 
To work up the reaction, the mixture is typically cooled 
and then diluted with an appropriate solvent such as 
water or ethyl acetate. The reaction mixture is then 
filtered to remove any solid catalyst or byproducts. The 
organic layer is separated and washed with water or brine 
to remove any remaining inorganic salts. The organic 
layer is then dried over anhydrous sodium sulfate or 
magnesium sulfate and concentrated under reduced 
pressure to yield the crude product. Purification of the 
product can be done using techniques such as column 
chromatography or recrystallization. 
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This reaction array was executed experimentally with the exact specifications given by 

ChatGPT and exact array design given by phactor. The best hit was repeated on a 0.2 

mmol scale.  (81-Fig. 10). The array produced many hits with moderate yield with respect 

to internal standard. Furthermore, the absence of impurities and byproducts simplified 

purification. Well B5 was scaled up and resulted in an 84% isolated yield of product 10.  

The best conditions for coupling this substrate pair reported in the literature yielded 98% 

of 10 when using a N-heterocyclic carbene-palladium(II) chloride complex and potassium 

tert-butoxide as reaction conditions.235  

 

The model’s output seemed to select catalysts and ligands that have performed well in 

the literature but may be less aware of how they are used together. Moreover, phactor 

necessarily combines the answers from ChatGPT, which were not likely given with an 

understanding of combinatorial enumeration. As such, the resultant array includes 

unusual combinations of palladium sources and ligands, such as PdCl2(dppf) and RuPhos 

wherein two phosphine ligands are present. Furthermore, DMF and DMSO are less 

Prompt: What do you think the single best combination 
of ligand and catalyst would be for this reaction, given the 
reaction array you generated earlier? Respond with a 
single best guess. 
 

ChatGPT Response: It's difficult to predict the single 
best combination of ligand and catalyst for the Buchwald-
Hartwig coupling reaction between 1-chloro-2-
methylbenzene and p-toluidine without performing 
experiments or conducting computational studies. 
However, based on the reaction array I provided earlier, 
a possible combination of a ligand and a catalyst that 
could work well together for this reaction is SPhos as the 
ligand and Pd2(dba)3 as the catalyst. This is just a best 
guess, and it's important to note that the optimal 
combination of ligand and catalyst may depend on 
various factors, such as the specific reaction conditions, 
and could require further optimization to achieve the best 
results. 
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typical than ethereal solvents for this reaction. Despite this, the assay still produced 

positive results. 

 

The combination of Pd(dppf)Cl2 and RuPhos is a surprising result, since there is 

conceivably an equilibrating mixture of Pd(dppf)Ln and Pd(RuPhos)Ln complexes. We 

suspect the proposal to mix these compounds arises as an artifact of making a 

combinatorial array (phactor) out of popular Pd complex and ligand choices from the 

literature (ChatGPT). Nonetheless, the observation that this "cocktail" of ligands was the 

most productive result could be supported by related reports of "cocktail" catalysis in the 

Buchwald-Hartwig coupling.236-239 

  

Discussion 

 

With several reaction arrays executed and an understanding of effective prompt 

engineering ChatGPT needs to generate effective arrays, we sought to integrate 

ChatGPT directly into the interface of phactor. The design goal was to allow chemists to 

generate relevant reagents for specific substrate pairs and a given transformation, even 

if they were non-experts. The GPT-3.5 API provided by OpenAI, enabled integration on 

the “chemicals” tab of phactor (82-Fig. 11). Here, the user selects substrates already 

added to the design stage in phactor and describes the desired reaction. Given the user 

inputs, the prompt template is automatically filled with ChatGPT’s proposals. The user 

retains the ability to modify the prompt as desired to add or lessen constraints. Once the 

prompt is submitted, the AI responds with a given number of reagents specified by the 
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user. These compounds can be instantly added to phactor with a molecular weight and 

SMILES by clicking the “add” button, as long as they appear in PubChem. 

 

Conclusion 

 

The software ChatGPT was utilized to generate reaction array designs with the HTE 

design software phactor for several popular reactions. The desired product was observed 

in every instance tried on the first attempt, and isolated yields ranged from 62%–94%. 

This initial study showcases the impact that large language model predictions can have 

on chemical synthesis when coupled to HTE. 

 

 

72-Fig. 1 | Overview of the ChatGPT to phactor workflow. Verbal input is given by a 

human to have ChatGPT generate a reaction array design for a particular coupling and 

substrate pair. The output can be fed directly into phactor, creating an assay recipe to be 

executed robotically or manually. 
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73-Fig. 2 | The amide coupling between 1 and 2 ChatGPT was asked to optimize. The 

reagent classes are specified in the prompt, but the specific species are generated by 

ChatGPT. 

 

 

74-Fig. 3 | Executed reaction array and UPLC assay results of the screen designed by 

ChatGPT to perform the amide coupling between 1 and 2. The top performing reaction 

condition was repeated on 0.2 mmol scale to yield 3 in 94% isolated yield. 

 

 

75-Fig. 4 | The amide coupling between 4 and 1 ChatGPT was asked to optimize. The 

resultant design is different than with the original simpler substrates. 
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76-Fig. 5 | Results of the amide coupling to produce 5 designed by ChatGPT and phactor 

when executed experimentally. The top performing reaction condition was repeated on 

0.4 mmol scale to yield 5 in 62% isolated yield. 

 

 

77-Fig. 6 | The Suzuki coupling between 6 and 7 ChatGPT was asked to optimize. 
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78-Fig. 7 | Results of the Suzuki coupling reaction array designed by ChatGPT and 

executed with phactor. The top performing reaction condition was repeated on 0.2 mmol 

scale to yield 8 in 66% isolated yield. 

 

 

79-Fig. 8 | Results of the repeated Suzuki coupling reaction array designed by ChatGPT 

when 20% water is added. 

 

 

80-Fig. 9 | The Buchwald-Hartwig coupling ChatGPT is asked to optimize.  
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81-Fig. 10 | (A) 0.2 mmol scale-up result of the best hit from the reaction array proposed 

by ChatGPT-phactor. The combination of palladium catalyst complex Pd(dppf)Cl2 and 

RuPhos gave the best result. (B) The reaction array design and results. (C) Crude UPLC 

trace for selected well B5.  
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82-Fig. 11 | Integrated GPT interface in phactor. Based on the substrates selected by the 

chemist and a description of the desired transformation, chemicals suggested by the AI 

can be automatically added into the reaction array design by phactor. 
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Weighted Reaction Fingerprints for Visualizing Reactivity Cliffs and Generality 

In this project, a simple algorithm was developed to visualize reaction datasets. By simply 

adding the fingerprints of the various components in a reaction for each reaction in a 

dataset, the resultant matrix could be embedded into a two-dimensional manifold. 

Multiplying certain components by a scaling factor enabled manipulation of the manifold. 

With this technique, reactivity cliffs, generality, and other reactivity trends are quickly 

identified.  
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Abstract 

 

Visualization of reaction space is a critical step in improving human understanding of bulk 

chemical reaction data. We present weighted reaction fingerprinting, a simple method to 

rapidly analyze and evaluate the results of large reaction corpuses which we have found 

to be helpful in the analysis of high-throughput experimentation (HTE) campaigns. 

Weighted reaction fingerprints can be utilized to rapidly identify successful and failing 

conditions and systems for chemical transformations. Reactions are encoded into a 

standard “reaction anatomy” comprising popular reagent components such as 

nucleophile, electrophile, catalyst, ligand, and solvent. Each reaction is converted into a 

typical fingerprint matrix and multiplied by a weight vector to generate the weighted 

reaction fingerprint. These fingerprints are fed into dimensionality reduction algorithms 

such as principal component analysis (PCA) or t-stochastic neighbor embedding (t-SNE) 

to create visualizable 2-D manifolds that visually reveal reactivity trends such as catalysts 

with high substrate generality or reactivity cliffs.  

 

Introduction 

 

Statistical modeling of chemical reactions requires large datasets of chemical reactions 

from high-throughput experimentation (HTE) campaigns or curations of published data. 

Our group has been using HTE1, 35, 36, 102, 103, 108, 110, 134, 136, 140-142, 181, 240 to explore chemical 

reactivity. The primary goals of HTE analysis include statistical data profiling, allowing 

chemists to rapidly identify best, worst, and average performing reaction conditions, to 

understand which reaction conditions work best for certain substrate pairs, and to inspire 



 

 200 

the generation of ideas for new experimental space to explore. HTE reaction array 

visualizations as simple rectangular heatmaps are common ways to show the physical 

location on a wellplate where each reaction took place, but these rectangular heatmaps 

cannot easily communicate trends such as catalyst generality against substrate pairs or 

reactivity cliffs. Similarly, common machine learning or artificial intelligence algorithms for 

reaction informatics are opaque and challenge human-interpretable analyses. As reaction 

data136 is deposited into centralized databases,149 visual tools that communicate reaction 

performance in HTE campaigns, or related reaction datasets, are needed to identify 

patterns and trends. 

 

Machine-readable molecular representations241 are critical in understanding trends of 

chemical reactivity from large datasets. Graph representations135 and molecular 

fingerprints have been used for the prediction of chemical properties, similarity searching, 

and structure optimization. In a reaction context, embeddings of the molecules from 

chemoinformatic, chemometric and quantum descriptors in conjunction with reaction 

outcomes are used to train models to predict reactivity and elucidate mechanisms.124, 125 

In particular, fingerprinting methods, such as the Morgan instantiation242 of extended 

connectivity fingerprints (ECFP),243 provide a fast and computationally non-intensive 

method to analyzing chemical data and the influx of reported reaction data in a 

standardized format. In recent literature, fingerprinting methods for reactions have 

included the concatenation of reagent fingerprints,161, 244 feature binning fingerprints,245  

and reaction difference fingerprints.22 
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Herein, we demonstrate the utility of weighted reaction fingerprinting (83-Fig. 1) – a simple 

abstractable method applicable to any large reaction corpus stored in a standardized 

format. Reaction discovery campaigns are analyzed to evaluate the results of multiplexed 

reaction arrays and large reaction datasets. We show that this visual tool can be used to 

analyze and draw conclusions from large corpuses of reaction data. 

 

Methods 

 

We introduce reaction array fingerprinting with a dataset consisting of 2,786 Suzuki 

reactions.134 Each reaction is composed of an electrophile, nucleophile, catalyst, base, 

and solvent. In 84-Fig. 2, the Morgan Fingerprint with radius 4 and 2,048 bits was 

calculated for each substance, then summed such that the five 2,048-bit binary 

fingerprints for each reaction become a single 2,048-bit count reaction array fingerprint – 

a one-dimensional array representation of the coupling. This array of 2,786 reaction 

fingerprints was fed into a t-SNE algorithm with no hyperparameter tuning to generate 84-

Fig. 2A, where reaction points are colored by the product yield for the reaction – high, 

medium, low, and 0% – based on product/internal standard (PROD/IS) integrations. The 

observed clusters are chemically distinguishable, with each cluster composed of similar 

or identical topological fragments in the reaction mixture. This reaction fingerprinting 

method (Figure S1) contrasts with currently published methods that include reagent 

concatenation,161, 244 reaction feature binning,245 and reaction difference fingerprints,22 

although weighing can at times be used in other reaction fingerprints to a similar effect. 

Results of different dimensionality reduction algorithms such as PCA, UMAP, and SOMs 
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as well as different fingerprint representations, including one-hot encoding, are shown in 

the Supporting Information (Figure S2). Effects of modifying the perplexity of the t-SNE 

for this analysis is shown in Figure S3 and the same analysis is shown with molecular 

access system (MACCS) fingerprints246 in Figure S4. Results of unsupervised versus 

supervised UMAP for the dataset is shown in Figure S5, and comparisons of weighted 

fingerprints against concatenated and difference fingerprints are shown in Figure S6. The 

six plots of 84-Fig. 2C display the same embedding shown in 84-Fig. 2B with six 

alternative color scales representing different features. The first plot’s points are colored 

by the exact product/internal standard value for each reaction as calculated in the dataset. 

The remaining five plots are each colored by reagent per specific reagent class as defined 

in the template (this reaction dataset consists entirely of electrophile, nucleophile, 

catalyst, base, and solvent components.) 

 

An example of a reaction cluster identified from the manifold is shown in 84-Fig. 2D. All 

reactions in the dataset using bromide electrophile 1 and boronate nucleophile 2 exist 

within this cluster. It is rapidly identified that this substrate pair was tested with 16 different 

catalysts and six different bases. 84-Fig. 2E showcases a simple extension of the 

fingerprinting algorithm using the data from this cluster. When summing the fingerprints 

of the individual components, a weight factor can be multiplied into a reagent’s fingerprint 

to influence the clustering within the manifold. The 96 reactions between 1 and 2 were 

encoded as reaction fingerprints in two different formats. Once where the catalyst 

fingerprint was weighed by a factor of three, and again where the base fingerprint was 

weighed by a factor of three.  These two datasets were then fed into the t-SNE reduction 
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algorithm, and three plots colored by product/internal standard integrations, catalyst, and 

base for each of the two datasets are displayed in 84-Fig. 2E. As revealed by the color 

encoded reagents, elevating the catalyst weight produces manifolds with catalyst 

clusters, and similar behavior is seen with base clusters when elevating the base weight. 

This fingerprinting method can be used to identify reagents with high generality.  For the 

same dataset, weighing is used to cluster electrophile and nucleophile pairs (Figure S7).  

When weighing the catalyst component, RuPhos Pd G3 was found as a high generality 

palladium catalyst and resulted in a 0.49 PROD/IS integration across 20 

electrophile/nucleophile pairs.  Similarly, 2-tert-butyl-1,1,3,3-tetramethylguanidine was 

found as a high generality base and a mixture of water and DMSO was found as a high 

generality solvent that worked consistently across the substrate scope used in the 

campaign. 

 

Results and Discussion 

 

85-Fig. 3 shows a reaction landscape from the discovery of a sp3–sp3 deaminative–

decarboxylative carbon–carbon cross coupling reaction over multiple HTE experiments. 

In this study, the fingerprints of all acid electrophiles were multiplied by 3 (we = 3) before 

summing with the fingerprints of the other reagents. This trivial modification resulted in 

clusters of reactions based on electrophile.   

 

As shown in 85-Fig. 3, with the acid electrophiles having an elevated weight, the clusters 

within the manifold are split into three distinct regimes reflecting the stages in the 
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discovery and development of the chemistry. The discovery campaign began with using 

the free acid 4 as the model substrate (85-Fig. 3 – Initial Reactions) but after a limit to the 

reactivity was realized, efforts moved to the NHPI activated acid 5 (85-Fig. 3 – 

Methodology Development). In this case, the activated acid electrophile NHPI ester N-

Boc-proline was used as the model substrate for the reaction, resulting in a large cluster 

with few substrates and many conditions. Thus, most of the reactions in this dataset fall 

within the NHPI activated (5) and free acid (4) N-Boc proline clusters colored in black (85-

Fig. 3B – Initial Reactions) and yellow (85-Fig. 3B – Methodology Development) 

respectively. In the PROD/IS manifold shown in 85-Fig. 3C, a direct path can be followed 

as experiments drive the product output from 0% to close to 100% within the NHPI 

activated N-Boc proline cluster (Methodology Development). Once ideal conditions were 

developed for N-Boc proline, this reaction system was tested with a variety of other acid 

electrophile substrates, creating a tight cluster of many electrophile acids and few 

conditions (6-26, Scope Exploration).  The efficacy of this system on these substrates is 

shown in the t-SNE with clusters of various acid electrophile substrates forming in 

different locations, each with their own PROD/IS distributions. Average PROD/IS results 

of each acid electrophile tested are shown below the plots in 85-Fig. 3C as well as the 

number of reactions they were tested in. 

 

In 86-Fig. 4, a case study analyzing the Suzuki dataset reveals reactivity cliffs – clusters 

that contain some reactions that fail and some that are successful, indicating minor 

changes to the system that cause the reaction to “flip” on or off.247  An electrophile 

nucleophile substrate pair is identified to have a reactivity cliff in 86-Fig. 4A. The plots in 
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86-Fig. 4A are reaction array fingerprints only containing the fingerprints for the 

electrophile and nucleophile to emphasize focus on the substrate flexibility of the Suzuki 

reaction as opposed to the specifics of the reagents. Using this technique, a cluster 

containing a single nucleophile/electrophile pair was identified. On further analysis of this 

cluster with reactions that use electrophile 27 and nucleophile 28 to form 29, it is revealed 

that this substrate pair was tested with four different solvents, six bases, and eight 

catalysts. In 86-Fig. 4B, we plot the reaction array fingerprints for these reactions, 

producing clean clusters that separate all components and producing a humanly 

interpretable explanation of the behavior behind the reactivity. Since experimental 

chemistry is rife with reactivity cliffs, oftentimes as subtle as a switch in solvent or order 

of reagent addition, it is critical to be able to visualize and interpret this behavior. From 

the color-coded solvent plot, it is clear that the reactivity of the substrate pair 28 and 29 

is controlled by the solvent system used. The manifold directly identifies failing and 

working solvents when traversing the space from 1:9 tAmOH:NMP to 1:3 water:NMP. The 

addition of water in the solvent system is found to be critical in achieving desired reactivity 

as shown by another reactivity cliff between 1:3 water:NMP and pure NMP. A chi-squared 

analysis is reported in the Supporting Information to validate this finding (Figure S8). 

Thus, it can be rapidly identified which solvent systems poison the reaction even though 

a variety of reagents are being changed. This analysis is compared to boxplots of the 

solvent system used (Figure S9).  

 

The creation of reaction array fingerprint manifolds is automatable. When using a HTE 

management system such as phactor or obtaining machine readable reaction data in a 
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standardized format, reaction arrays can be rapidly analyzed using this method. In 87-

Fig. 5, we show the automated creation of six reaction fingerprint t-SNEs utilizing output 

files procedurally generated from phactor. Hyperparameters including t-SNE perplexity 

and reagent weights (wx) were optimized to best illuminate reactivity trends (see 

Supporting Information). In all cases, specific reagent classes were clustered. For 

instance, there are four clusters in 87-Fig. 5A representing the four ligands used in the 

reaction array which couples 30 and 14 to form 31. These clusters are split into two 

subclusters, each representing one of the two reductants used. These clusters are then 

further split into three column-shaped clusters that represent the three catalysts and each 

of these columns consist of four points each corresponding to one of the four additives in 

the reaction array. Four clusters were formed in 87-Fig. 5B which shows 12 electrophile 

acids and 8 nucleophile amines, producing a successful reaction that uses 32 and 5 to 

form 33. Each of the 12 acids formed a cluster in the manifold. In 87-Fig. 5C eight ligands 

and 12 catalysts were used to make 36 from 34 and 35. The t-SNE clustered each 

reaction by ligand, resulting in eight clusters. In substrate scope ultraHTE experiments 

shown in 87-Fig. 5D, the t-SNE is clustered by the eight diazoniums used in the screen. 

In 87-Fig. 5D the reaction where 39 was formed from 37 and 38 is highlighted in the 

manifold. Finally, in the ultraHTE direct-to-biology assay shown in 87-Fig. 5E, a cluster is 

formed for each of the 80 amines used in the reaction array. The reaction which amide 

inhibitor 42 is generated from the coupling of 40 and 41 is identified in the t-SNE. This 

visual format is compared against pivot table heatmaps in Figure S10. 
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Reaction fingerprints can be used to rapidly identify the best conditions for a given 

substrate pair and transformations. As part of our studies, we have been exploring mild 

benzoic acid decarboxylation methods. We discovered simple reaction conditions for a 

decarboxylative–deaminative amine–acid sp2–sp2 C–C coupling reaction between 

quinidinyl acids and amine diazoniums. This transformation proceeds when both 

substrates are added to solvent and irradiated by light, based on a recent report on 

irradiating diazoniums in methanol to achieve various chemistries.191 Ultimately 424 

experiments were performed over a series of 24 and 96-well reaction arrays (88-Fig. 6A).  

 

Isoquinolines 43, 46, 47, and 48, and diazonium salts 44, 49, 50, 51, 52, and 53 produced 

appreciable yields (measured by product/internal standard integrations) in methanol, 

DMSO, and a 1:1 mixture of methanol and DMSO (88-Fig. 6B) to form biaryl products 

such as 45. An array performed in the campaign is shown in 88-Fig. 6C, where the four 

acids and six diazonium salts in 88-Fig. 6B were irradiated in methanol under UV light for 

18 hours. For the reaction between 43 and 49 to form 54, we are able to rapidly identify 

from the HTE results and reaction fingerprint arrays (88-Fig. 6D) that the reaction works 

best in blue light and with 50:50 DMSO:methanol, as we can directly compare the 

PROD/IS result against the reaction performed in other regimes.  

 

Conclusion 

 

Weighted reaction fingerprinting is an easy-to-perform method for the analysis of massive 

reaction datasets. The algorithm allows chemists to rapidly navigate through large 
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collections of reaction data. Reaction embeddings can be easily optimized and modified 

by changing the reagent weights.  

 

 

83-Fig. 1 | A) Anatomy of a reaction. Electrophiles and nucleophiles are arbitrarily defined 

as the reacting partners that form the product. B) The reaction fingerprint can be 

calculated by taking the product between a matrix of component fingerprints and a vector 

of weight arrays. Any fingerprint or feature vector can be utilized as long as the vector 

lengths for each reaction components are equal. Reaction component weights (wn) are 

initialized at 1 and can be set to any value by the user. A component * weight product is 

added to the sum for each reaction component n. 
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84-Fig. 2 | 2,786 Suzuki reactions performed in a high-throughput format plotted using a 

t-SNE trained on reaction fingerprints, each of which formed through the sum or 

concatenation of a reactant fingerprint for all components involved a particular reaction. 

(A) The template of the reaction performed across all experiments. (B) The 2,048-bit 

radius four Morgan Fingerprint of each reaction’s electrophile, nucleophile, base, catalyst, 

and solvent were summed, plotted, and colored by output group. (C) The same manifold 

colored by exact product/internal standard values and reagent components (electrophile, 

nucleophile, catalyst, base, solvent.) (D) A specific reaction cluster containing all 

reactions between substrates 1 and 2. (E) t-SNE of the reactions in the selected cluster 

when the catalyst fingerprint is multiplied by three (top) and when the base fingerprint is 

multiplied by three (bottom). The three manifolds for each result are colored by 

product/internal standard values, catalyst, and base. 
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85-Fig. 3 | 1,296 reactions performed in an HTE format towards the development of a 

novel sp3–sp3 deaminative-decarboxylative carbon–carbon cross coupling (ref. 13). The 

manifold splits into three regimes, each representing a different stage of the discovery 

campaign. (A) The manifold points are colored by the acid used in the experiment. (B) 

The manifold points are colored by the recorded PROD/IS value of the reaction. (C) All 

acids used in the experiment, with average PROD/IS values and the number of 

experiments they were used in. 
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86-Fig. 4 | Reactivity cliffs are identified when focusing on specific substrate pairs. (A) 

Compounds 27 and 28 cluster together with high and poor performing reactions. (B) 

Repeating the analysis on the cluster that form 29 from 27 and 28 reveals reagents that 

cause this reactivity to flip on. Reactivity cliffs are readily identified between solvent 
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regimes. The 1:3 water:NMP regime sits between two reactivity cliffs, separating it from 

the two failing solvent systems 1:9 tAmOH:NMP and pure NMP. 

 

 

87-Fig. 5 | Reaction array manifolds can be procedurally generated from the output files 

produced by phactor. (A)-(F) reaction array results as reported in ref. 8 and their 
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corresponding manifolds colored by output value. Perplexity and weights were modified 

as described in the Supporting Information to optimize the latent space for visualization. 
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88-Fig. 6 | (a) Standard conditions for catalyst-free light-enabled decarboxylative–

deaminative sp2–sp2 C–C coupling. (b) Sampling of substrates explored. (c) Screen 

design and execution. (d) Trellised reaction array fingerprint of experimental campaign. 

Each box contains all reactions performed for the given light and solvent regime. 

Reactions that perform well in one regime but not others are quickly identified.  
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Reaction Array Analysis and Design via Reagent Networks 

In this work, a circular network design was developed to visualize and evaluate the 

progress of reaction discovery campaigns. Reagent datasets for each component in a 

reaction were embedded into manifolds and spaced evenly around a circle. Links or 

chords connecting points from each manifold indicate their co-use in a reaction. When 

visualizing reaction data with the networks in a sequential format, a clear logic is 

developed that enables the invention and optimization of reactions. Initial experiments 

are generally mined from the literature or involve screening reagent inventories. When 

reactivity ceilings are hit, additional components of changes in reaction regimes are 

necessary for further optimization. Using this logic, Andrew McGrath optimized the one-

pot etherification of esters. 
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Abstract  

 

Reactions can be described in a standardized template of reagents, which facilitates the 

multiparameter analysis and design of reaction arrays in high throughput experimentation 

campaigns. Reagent networks can be utilized to evaluate the effectiveness of reaction 

arrays and to identify trends leading to desired reactivity. Herein, several high throughput 

experimentation campaigns from previously published methodologies are analyzed with 

reagent networks, from which a generalizable logic for reaction optimization was 

developed. This logic was then utilized to design reaction arrays towards the optimization 

of an etherification reaction from ester substrates. 

 

Introduction 

 

High-throughput experimentation (HTE) is a modern tactic in synthetic chemistry to invent 

and optimize novel reactivities and provides a way to efficiently search reaction space. 

Reaction array design is traditionally performed by interrogating literature as well as 

chemist intuition and expertise. However, the emergence of data-driven modeling has 

provided the modern chemist with tools to execute reaction arrays in a more efficient and 

effective manner.248 Several studies have shown the utility of HTE in data-driven model 

development to predict reaction performance.41, 125, 226, 244, 249, 250 These publications 

reveal marginal increases to reaction performance, indicating that machine learning 

models are not able to entirely capture the chemical reactivity from the provided reaction 

parameters. Indeed, much of the reported datasets are inconsistent, and are biased for 



 

 220 

working or high-yielding reactions. Recent work has attempted to standardize the 

reporting of HTE data, which streamlines analytics and ensures all aspects of the 

experimental procedure are captured.  

 

We have recently disclosed a standardized template for the typical chemical reaction (89-

Fig. 1A) and several reports of optimized methodology achieved through HTE with the 

HTE management software phactor. The machine-readable output from the HTE 

campaigns were collated and analyzed through network visualization (89-Fig. 1B). In this 

style of visualization, each vertex corresponds to a particular reagent class from the 

reaction template, and points within the vertices are specific reagents of that class to a 

point in each other vertex. The manifolds within the vertices are principal component 

embeddings of featurized molecules. Depending on the reagent class, a different 

featurization can be utilized for the embedding. A reaction is encoded by connecting the 

points in each vertex. Colored points represent reagents that have been tested in the HTE 

campaign and correspond to the mean product over internal standard integration for that 

reagent across all experiments. Similarly, links between points are colored by mean 

product over internal standard integrations for all experiments containing the reagents 

linked by the chord. Black points in the manifold represent compounds within the reagent 

class that have yet to be tested. 

 

We show in this analysis that critical insights derived from the literature can inform initial 

plate designs as well as lead to key experiments that provide the highest boosts to 

reactivities. By viewing the networks in a sequential fashion, modifications to the reaction 
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conditions that lead to large increases in product formation can be rapidly identified. 

Herein, we showcase the network analysis of several campaigns, and point to literature 

reports that led to reaction array designs that improved target reactivity, as evidenced by 

the change in reaction network visualizations once the literature information was 

incorporated into the campaign. Finally, we utilize the methodology optimization logic 

distilled from this analysis developed on previous chemistries to guide a novel 

optimization of an ester to ether reduction methodology.  

 

In the first analysis, the optimization of an alkyl-aryl deaminative decarboxylative carbon-

carbon coupling is tracked with sequential reaction networks. (90-Fig. 2A) Notably, the 

reaction networks consider the cumulative effect of the campaign, and colors represent 

the mean yields of reagents and reagent pairs across all experiments performed. The first 

reaction array (A) tested eight ligands, three solvents, and four catalysts in a 96-well plate. 

The design of this plate was based on reagents found in the 2020 Organic Letters report 

on nickel-catalyzed deaminative acylation between activated amines and amides by the 

Matsuo group.251 The corresponding reaction network show faint lines, indictive of the 

initial hit of the desired C-C bond formation activity. The brightest network represents the 

reaction between activated acid 1 and activated amine 2 to form product 3 under nickel 

catalysis. A contemporary report in Science informed the additive screen B, where it was 

found that phthalimide drastically improved the yield of the reaction for many substrates, 

where in the meantime the nickel catalyst was slightly optimized to Nickel (II) Bromide. 

The addition of phthalimide is strongly indicated in the network, with bright connections 

emitting from the additive vertex. Finally, plate C was informed by the uncovering of a 
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1966 Journal of the American Chemical Society study by Halpern and Kemp on the role 

of Ru(II)Cl2 in the decarbonylation of formic acid.252 A screen of 24 Lewis acids in our 

inventory found that Ru(III)Cl3 provides a fantastic boost to desired reactivity while 

decreasing formation of side products across many substrates. The final reaction 

conditions were able to produce a yield of 94% between 1 and activated acid 4 to generate 

5. Indeed, the point representing Ru(III)Cl3 is colored brightly and emits bright chords to 

the other vertices in the network.  

 

In 90-Fig. 2B, an analogous analysis is performed on the optimization of an alkyl–alkyl 

deaminative–decarboxylative carbon–carbon coupling. The discovery campaign was 

initially attempted through photoredox conditions found in the literature to couple activated 

acid 6 with activated amine 7 to form 8 through iridium catalyst under blue light.253-257 In 

this initial screen (90-Fig. 2B – screen A), the best hit resulted in a PROD/IS integration 

of 15%. As a limit to the reactivity was realized, efforts moved couple the substrate pair 

with nickel catalysis in reductive conditions found in the literature (90-Fig. 2B – screen 

B).258-262 By this point in the campaign, the conditions were far more effective in creating 

the desired product, as evidenced by the results of the plate and the improved connectivity 

in the network diagram. In this case, the change in reactivity regime is identified through 

the use of lithium chloride as additive, and a bright focal point can be identified in the 

additive manifold, as well as a general improvement of connections throughout the entire 

network. By switching to conditions that utilize a zinc reductant instead of photocatalysts, 

the desired product was obtained in 77% PROD/IS integration. The final boost in reactivity 

was identified through the optimization of the ligand and through the replacement of zinc 
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with manganese as the reductant. The idea of using manganese as reductant was once 

again borne from literature data.251, 263-266 With di-trifluoromethylbipyridine as ligand and 

the use of manganese, the optimal reaction conditions were found, resulting in reactivity 

amenable to activated primary amines such as 7 and activated secondary amines such 

as 9. With these conditions a variety of substrates were used to form diverse products 

such as 10, the extent of which shown in the colored connections between the amine and 

acid manifolds in the network. Additionally, thick and brighter lines are emitted from the 

ligand and reductant manifolds, reflecting the improvement in reactivity due to the use of 

these reagents. 

 

The analysis of the previous campaigns can be reduced to a logic for HTE optimizations. 

Initial plate designs can be made using the ‘shotgun’ approach, where reagents are tested 

in a somewhat random or blind manner or be informed from literature on similar 

reactivities. After an initial hit is found, reagents similar to those found in the initial hit are 

tested, leading to minor improvements in yield and selectivity as local chemical space is 

explored. In periods of stagnation, additional factors or components can be added or 

removed from the conditions in hope of a serendipitous boost in yield, or new or existing 

literature can be incorporated in the design of the next reaction array. We can use reaction 

networks to clearly map the areas of reaction space that has been tested (and to what 

effect), as well as areas of unexplored reaction space. With statistical algorithms, the most 

promising networks can be tested in plate format.  

 



 

 224 

We showcase how this logic was used in the optimization of an ester to ether reaction 

(91-Fig. 3A). Initial studies were based off of two papers indicating the use of silanes and 

Lewis acids in the reduction.267, 268 In 91-Fig. 3B, we identify that the silanes, boranes, 

and Lewis acids can be used to perform this reduction in an initial screen, albeit to low 

yields via PROD/IS integration. The large cloud of black points in silane and borane space 

reveal that there are many untested reagents that could improve the yield further. In 91-

Fig. 3C, we looked to test the reagents from the untested pool using trends from the 

previous assay and interaction effects between the silanes and boranes, and the initial 

hit was expanded in a 96 well reaction array, testing a larger extent of metals, boranes, 

and silanes. Again, diphenylsilane proved to be the most effective reductant, and gallium 

(III) iodide was found to be the best Lewis acid tested in the assays. At this point, no 

borane nor silane was found to significantly outperform another, and a reactivity ceiling 

was hit. The reaction network clearly indicates the strong performance of the gallium 

reagent, whereas bright chords fail to emit from silane or borane space. Nonetheless, it 

was clear that additional screening of borane or silanes would not improve reactivity much 

further to an acceptable range. Using the logic developed through previous discovery 

campaigns, it was decided to expand the experimental space by adding an additional 

component to the reaction. In 91- Fig. 3D. the final optimization assay is shown, where 

gallium (III) iodide and diphenylsilane are standard conditions used in each reaction, and 

boranes and silane additives269, 270 are screened. To our delight, the inclusion of an 

additional silane additive improved the reactivity drastically, as indicated by the many 

bright chords that are in the corresponding reaction network.  
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Conclusion 

 

We present reagent networks as a method to analyze series of sequential reactions. Key 

reagents are readily identified through the formation of chords connecting embedded 

reagents from various manifolds representing classes of reaction conditions. Reactions 

can be optimized to high yields by following a logic developed from the analysis of reaction 

invention campaigns. Yield ceilings can be broken by incorporating additional reagents 

into the reaction mixture or changing reaction condition regimes after sufficient testing 

reveals limits to initial reactivity. 
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89-Fig. 1 | A) A standardized template for chemical reactions. B) A reagent network 

containing 817 high throughput reactions performed in an optimization campaign of an 

alkyl-aryl deaminative decarboxylative carbon-carbon coupling method. Each vertex 

corresponds to a different class of reagents used in the reaction. These vertices are 

reduced manifolds of reagents corresponding to that class and can be formed from 

different featurizations depending on the class. Points are colored by mean yields of the 

reagent, and links between two points are colored by mean yield of reactions containing 

both reagents, indicating the effectiveness of their co-use. Black points indicate reagents 

not utilized in the campaign and serve as potential design space. 
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90-Fig. 2 | A) Graphical and reagent network analysis of an alkyl-aryl deaminative 

decarboxylative carbon-carbon coupling methodology optimization campaign. B) The 

analysis repeated on an alkyl-alkyl deaminative decarboxylative carbon-carbon coupling 

methodology optimization campaign. 

 

 
91-Fig. 3. A) Best reaction from initial reaction array and reagent network analysis of ester 

to ether methodology campaign. The initial reaction array design was derived from a 
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literature report. B) The second reaction array in the campaign. Boxplot trends reveal 

gallium iodide as the most robust Lewis acid for the transformation. C) Expected 

improvement manifolds calculated from the featurized silane and borane chemical 

spaces. New silanes and boranes were automatically selected to be tested in the follow 

up experiment. 
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Chapter V. Molecular Compression 

 

Computational molecular representation plays an integral role in streamlining the 

selection of efficacious reagents for chemical reactivity and finetuning the structural 

integrity of drugs. Key factors such as chemical features that bear relevance to the 

optimization issue at hand need to be encoded. This aids in crafting a precise and ideal 

depiction of the chemical space that's being traversed.24 Essentially, a molecule's 

chemical attributes are intrinsically interconnected with its chemical structure.1 This 

necessitates that computational representations take into account both the physical 

shape of a molecule, the graphical connections it comprises, and how these aspects 

interact with the properties the molecule presents. String representations like SMILES 

(Simplified Molecular Input Line Entry System)241 or SELFIES (Self-Referencing 

Embedded Strings)271 offer canonical textual formats to depict molecules. However, the 

potential to efficiently analyze sequential or textual information was only recently achieved 

by computation. Molecular fingerprints, another computational method, encapsulates a 

molecule by converting it into a string of bits, each bit signifying the absence or presence 

of a specific molecule feature.243, 245, 272 

 

The key to successful molecular compression is twofold. First, the representation must 

be computer-friendly or easily readable by a machine. Second, the original structure that 

was compressed needs to be accurately decompressed or reconstructed from the 
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encoded representation. While SMILES and SELFIES can be reformed into a graphical 

rendition of the molecule, the majority of fingerprinting techniques result in a loss of vital 

information. This subsequently hinders the accurate reconstruction of the original 

molecular structure. In light of this challenge, this chapter introduces an innovative 

approach that looks at music as a potential data-rich platform onto which molecular 

information can be encoded. 

 

Music, inherently sequential and temporal, mirrors the atomic structure of molecules, 

which follows a similar canonical sequencing. Therefore, it can serve as an alternative 

and perhaps a more effective representation. Additional molecular properties can be 

encoded into the musical domain, which allows for the embedding of more information 

gathered or discerned from the molecule. Both local and global properties of the molecule 

can be incorporated into the music, through features like timbre or note length that are 

reflective of the molecule's characteristics. For instance, note-wise properties could mirror 

local molecular attributes, while score-wise features could represent global molecular 

properties. Thus, the music offers a potentially powerful and more comprehensive way to 

represent and understand the complexities of molecular structures. 
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Molecular sonification for molecule to music information transfer 

This creative work brought the merger of molecules and music using an encoding and 

decoding algorithm. The one-to-one algorithm used string representations of molecules 

to create musical scores based on the atomic structure and properties of the molecule. 

These musical scores were then shown to have molecular relevance. A seq-to-seq 

network was trained on the molecular music, and interpolation of the latent space created 

new music that generated novel molecules when decoded. When surveying a class of 

students, it was found that the majority of students were able to discern the similarity of 

molecules when listening to their musical encodings without any visual information.  
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Abstract 

 

Organic chemical structures encode information about a molecule's atom and bond 

arrangement. The most established way to encode a molecular structure is through line 

drawing, although other representations based on graphs, strings, one-hot encoded 

labels, or fingerprint arrays are critical to the computational study of molecules. Here we 

show that music is a highly dimensional information storage medium that can be used to 

encode molecular structure. The resultant method allows a molecular structure to be 

heard as a musical composition, where the key of the music is based on the molecular 

properties and the melody is based on the atom and bond arrangement. This allows for 

a molecular generation approach that leverages modern artificial intelligence tactics for 

music generation. 

 

Introduction 

 

The representation of chemical structures is critical to the study and invention of functional 

molecules. Organic molecules are classically described as line drawings,273 where all 

atoms and their corresponding bonds are drawn on paper or on a computer. Other simple 

molecular representations or identifiers include molecular formulae, IUPAC names or 

CAS numbers, which require little memory and are machine readable, but carry minimal 

information. Molecules can also be represented as graphs, with atoms as nodes and 

bonds as edges. By encoding atomic coordinates and connectivities line by line, the 

topology of molecules can be embedded as a graph on a computer for rendering, editing 
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and analysis. The transmission of molecular information into machine-readable formats 

has invited new molecular structure representations, such as SMILES,274 SMARTS,275 

InChI keys,276 DeepSMILES,277 and SELFIES.271 These representations are cheap to 

store in memory and provide valuable structural information for rapid lookup and 

comparison. While these aforementioned representations have been useful for inputting 

molecules into computers, and encoding structural and stereochemical information, they 

are one-dimensional string representations that are more difficult for human users to 

interpret and interact with than the classic line drawing representation of molecules. To 

adapt them for machine learning and data science algorithms, SMILES and other strings 

are typically converted to vector representations via molecular fingerprints such as 

Extended Connectivity Fingerprints (ECFP),243 Morgan Fingerprints,242 atom-pair 

fingerprints,278 and others. This dimensionality expansion is a core tactic in the analysis 

of virtual chemical libraries or predictions of molecular properties. Other high-

dimensionality fingerprint representations, such as physics-based descriptors279 or 

physicochemical descriptors,142, 280 are also common. While computers can easily parse 

molecular information from these representations, interactivity with human users is 

difficult with the fingerprint-based information media. In addition, once converted to such 

a fingerprint, the molecule is typically no longer uniquely revertible to its atom-bond 

representation.272  

 

Music is a high-dimensional information storage medium that maximizes both human and 

computer interactivity, interpretability, and creativity. We considered that music could be 

used for storage of molecular information. While many aspects of a molecule are readily 
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visible to the trained eye, a soundbite may be able transmit more information about the 

molecule into the mind. The encoding of molecules as music is particularly intriguing since 

the multiple dimensions of music can allow encoding of many molecular properties.281 

Music is also highly interactive both for humans and for computers. Musicians can control 

many parameters that can embed information about a molecule, such as tempo, rhythm, 

notes, key, instrument, effects, etc. If molecules could be encoded as music, opportunities 

would emerge for visual-to-audio sensory substitution, for instance providing blind 

chemists new ways to interact with molecules.282 Contemporary chemistry and drug 

discovery leverage artificial intelligence283 (AI) and there has meanwhile been an 

explosion of AI methods in the study and creation of music,284 so we were excited by the 

prospects of merging modern chemistry machine learning (ML) techniques with recent 

ML techniques for music. Our initial impetus was to explore how music could be used as 

a creative medium to generate new molecules, but in the course of our studies we have 

learned that molecules likewise can provide an inspiration and creative outlet for the 

generation of new music.  

 

Sonification is the encoding of non-musical information as music and provides a means 

to encode information in many musical dimensions, while simultaneously providing a new 

means of interactivity.285 A variety of information sources have been sonified, such as 

visual art,286 the architecture of spider webs,287 infrared spectra of chemicals,288 amino 

acid sequences,289 air pollution,290 fire,291 and many more.292-299 The SELFIES 

representation provided a viable input for molecular sonification, both for the encoding of 

molecules into a melody and the construction of new molecules via performance on a 
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musical instrument such as the piano. We developed a workflow for transferring 

molecules into music, and vice versa, which we call Sonic Architecture for Molecule 

Production and Live-Input Encoding Software, or SAMPLES (92-Fig. 1).  

 

Methods and Workflow 

 

Encoding 

To create a melody based on a molecular structure, the key and the sequence of notes 

are derived from its physicochemical properties and its SELFIES sequence, respectively. 

To determine the key, the physicochemical properties of a molecule—such as log P, 

molecular weight, and number of hydrogen bond donors and acceptors—are summed, 

and the final number is linearly projected into the integer space between 1 and 12 from 

the minimum and maximum values found in the entire dataset (in this case, DrugBank), 

with each bin corresponding to a particular key. In our encoding scheme, the projection 

is largely dictated by the molecular weight due to its magnitude with respect to the other 

features. Due to low deviation, low mean, and outliers of high molecular weight, most 

molecules from the DrugBank dataset fall into the first bin. In our scheme, the keys 

represented by the bins are ordered by the popularity of keys found on Spotify, with the 

most popular bin being the key of G (see Fig. S1). As such, most compounds in DrugBank 

are encoded into G and larger molecules are encoded into the less popular keys. The 

sequence of notes is determined from a one-to-one mapping between the SELFIES token 

of the molecule and multi-octave steps in the major scale (see ESI for the specific 

mappings and key distribution used in this study). By adding the MIDI value of the 
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melody's key to the MIDI shifts that correspond to notes of the major scale (derived from 

the SELFIES tokens of the molecule), the final melody is produced. In our case, the MIDI 

shifts correspond to SELFIES tokens as ranked by their popularity in DrugBank. As such, 

lower MIDI shifts away from the encoded key of the molecule indicate the more popular 

the SELFIES token. Every fourth note, starting from the first note, was converted to a 

major chord to increase the texture of the music. We envision polyphony as a potential 

avenue to encode atomic features. This algorithm could be extended by including more 

descriptors in the encoding and assigning distinct keys to clusters. As well, mapping more 

elements or structural subgroups to MIDI shifts or other musical parameters can enable 

the encoding of proteins, inorganic molecules, and other chemical phenomena.  

 

Decoding 

The MIDI shifts are reverse calculated for each key and converted into a molecular 

structure. As such, multiple structures are generated (one for each key) for the same MIDI 

sequence. Each structure is then hashed into a key using the original key encoding 

algorithm. If the hashed key matches the key used in the reverse calculation, the 

molecular structure is decoded. It is guaranteed that at least one decoding key will match 

a hashed key for any MIDI generated from SAMPLES.  

 

A demonstration of the SAMPLES encoding function is shown in 93-Fig. 2. Ammonia (1) 

appears as a single note while benzene (2) generates a slightly more complex musical 

composition. The unity of these two molecules produces aniline (3) whose musical 

sequence highly resembles the concatenation of the two musical sequences of 1 and 2. 
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Expansion of 3 into indole (4) creates a slightly more complex melody owing to both the 

increased molecular size and the additional information content required to describe a 

ring fusion between the 5- and 6-membered rings. In the reverse direction, songs are 

readily translated to molecules, such as 5, which is produced from the song “Twinkle, 

twinkle little star” when played using D flat as the reference note (the decoding key).  

 

SAMPLES is readily scaled to more complex and drug-like molecules (94-Fig. 3). 

Tolmetin (6) and ketolorac (7) create a rich and textured musical composition. Meanwhile, 

tabersonine (8) and vindoline (9) provide complex melodies. Scaling to large complex 

molecules, such as taxol, oxytocin, or vincristine (see ESI) required no modifications and 

generated nuanced euphonic melodies.  

 

Case studies 

 

To showcase the utility of this novel algorithm, four experimental case studies are 

presented. Using our approach, molecular properties can be heard. For instance, the 

songs generated from molecules that pass the Lipinski rules300 can be auditorily 

distinguished from those that fail the Lipinski rules based on the musical key. This is 

largely because the molecule's aggregate physicochemical properties were hashed to the 

musical key, with the most popular physicochemical property fingerprints from the 

pharmaceutical database DrugBank hashing to the most popular song keys from the 

music database Spotify.301 The concept of molecular similarity is of high importance to 

molecular invention, such as in selecting molecules with comparable functional properties 
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for drug discovery. We were curious to explore if SAMPLES generated from molecules 

with high Tanimoto similarity302 (fingerprint based) would sound similar, appreciating that 

both molecular similarity and musical similarity are difficult to define.303 Molecules 

represented in the t-SNE in 95-Fig. 4 are more similar if closer to each other on the plot. 

Indeed, we deemed the SAMPLES of codeine (10) and morphine (11) to sound similar to 

each other while the SAMPLES of sulfamethoxazole (12) and sulfadoxin (13) likewise 

sound similar, while the pair of 10 and 11 sounded distinct from the pair of 12 and 13 (95-

Fig. 4).  

 

Our second experiment investigates the generation of molecules via modification of the 

music domain. A key motivator for our research was the ability to generate new molecules 

through the interactivity of a piano keyboard, or other musical hardware or software. This 

was made possible in SAMPLES through the application of SELFIES, which enable 

editing of string bits while consistently producing valid molecular structures. Thus, starting 

from morphine (11), the musical score could be modified one note at a time (96-Fig. 5) to 

generate new chemical structures 14–16 bearing a clear relationship to 11 but with 

noticeably modified bond and atom architecture. Due to our encoding scheme, shifts 

further away from the melody's key result in SELFIES being modified into to atoms less 

commonly found in the DrugBank database. Random modification of SELFIES can result 

in drastic changes to molecular structure as seen in 96-Fig. 5, due to the non-atom 

encoding SELFIES tokens that dictate the size of features such as branches and rings. 

Note that SAMPLES may generate undefined stereocenters.  
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Having demonstrated the feasibility of molecular generation using SAMPLES, we 

explored the ability of modern machine learning methods developed for music generation 

as tools for molecule generation. In this third case study, we applied the melody mixing 

function of MusicVAE304 using MIDI melodies derived from SAMPLES as inputs. Using 

MusicVAE, two melodies could be blended to generate an interpolated melody, and that 

new melody could be translated back to a molecular structure using SAMPLES, thus 

creating a new molecule that was a “blend” of the two input molecules (97-Fig. 6). We call 

this function CROSSFADE. The blending of musical compositions is an established 

practice, with considerable hardware and software to support the musical blending 

process. While algorithms that generate new molecules by blending the structures or 

properties of input molecules are known,305 we are intrigued by the interactivity offered by 

CROSSFADE. As an example, glutamic acid (17) and acetylcholine (18) were 

CROSSFADEd to produce 19, 20 and 21 CROSSFADE to 22 and similar results are 

obtained for 23–28. A four-step interpolation is shown in the ESI.  

 

As a final experiment, to take the editing of the molecules on the keyboard a step further, 

and to demonstrate the human-interactivity enabled by the SAMPLES algorithm, a human 

created a monophonic composition inspired by SAMPLES-generated music (98-Fig. 7), 

which was decoded to molecule 29. It was necessary to exert some human bias into the 

musical composition, based on the composer's knowledge of chemistry and SAMPLES, 

since generating a molecule that is as carboniferous as most drugs and natural products 

requires bias towards the key's tonic note, in this case C, since that is mapped to the 

carbon atom. In other words, the song was written to ensure that the most played note 
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corresponded to the carbon atom to reflect the nature of organic molecules. This required 

a basic understanding of organic chemistry and musical theory. While this implementation 

of SAMPLES focuses on major scale notes, the embedding algorithm can be easily 

modified to include mappings for minor scale notes or accidentals.  

 

One goal of this embedding algorithm was to show that music can be used as a medium 

to encode molecular information and that similar molecules can produce similar sounding 

melodies. While this is largely dependent on the featurization and encoding of the 

molecules into music, our algorithm seemed to perform well for some druglike molecules 

as tested by the human ear. We surveyed 75 participants from a senior level 

undergraduate medicinal chemistry course with a blind multiple-choice poll. Students 

were given four questions, each of which asking the student to compare the melody of 

four encoded molecules to the melody of an encoded molecule given in the question. The 

student is prompted to select the melody that they believe to sound most similar to the 

given sample for each question without being shown any structures. In the first question, 

10 was given to the student and the student was given a choice between the melodies of 

11, 30, 31, and 32. In this case, despite the high Tanimoto similarity between codeine 10 

and morphine 11, most students did not recognize similarity between the two encodings, 

instead hearing 30 and 31 to sound more like 10. However, in question two where 12 was 

compared to 13, 33, 34, and 35, most students correctly identified the melodies of 

sulfamethoxazole (12) and sulfadoxin (13) to be most similar. Students were also able to 

identify the most similar melodies and molecules as described by Tanimoto similarity in 

questions three and four, where melodies of 7 and 9 were correctly chosen to be similar 
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to 6 and 8 over 36–38 and 39–41, respectively. Puzzlingly, question one had the highest 

similarity between the test molecule and correct answer molecule compared to the other 

question pairs (99-Fig. 8).  

 

Conclusion 

 

We report an alternative means of encoding organic molecules through music. The 

resultant melodies allow a human to interact with molecular structures through musical 

hardware and software via note editing, insertion and deletion, as well as produce 

molecular structures through original compositions. We note that far more molecular 

features can be encoded into a melody or even a short soundbite than can be visually 

represented by the 2D or 3D structure. Indeed, many richer possibilities can be enabled 

by encoding more features into musical elements such as other scales, chord 

compositions, rhythms, timings, timbres, etc. One transfer learning application for which 

the current study may be used is music generation. The motivation for machine learning 

for content generation is its generality, that is no formal grammar or rules must be 

specified for such a model to generate content.284 Transforming molecules into music 

provides a rich collection of musical data that can be used to train music generation 

models, as seen with MusicVAE. Particularly, sequence to sequence (seq2seq) models, 

such as recurrent neural networks,306 allow for the interconnection of domains containing 

data signals with variable lengths such as text, music, and machine-readable molecular 

representations based on structure. Seq2seq models can learn a fixed length embedding 

of variable length signals that can be used for classification tasks and direct mathematical 
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comparison. For instance, word2vec307 and GloVe308 provide pretrained word 

embeddings that have been learned from massive text corpuses such as Wikipedia or 

Twitter. In a molecular context, variational autoencoders have been used to learn the 

distribution of molecular features, such as SELFIES tokens, to provide a continuous 

embedding of molecular space.24 SAMPLES provides an avenue to directly connect 

molecules to content-generating machine learning models in the music domain. 

Computational exploration and interpolation within the melodies described herein is 

possible, generating new molecules that sound and look similar to existing molecules. 

This highlights the possibility of leveraging music-based artificial intelligence for molecular 

design. An online implementation of the encoding portion of the SAMPLES algorithm can 

be accessed at http://samples.cernaklab.com.  
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92-Fig. 1 | (A) Workflow for SAMPLES. Molecules are first assigned a musical key based 

on aggregate chemical properties, then converted into a sequence of notes based on 

SELFIES encoding. MusicVAE is trained on a collection of sonified molecules to formulate 

the chemical/musical latent space. The latent embedding of molecular music can then be 

sampled, for instance through the interpolation between two embedded molecules, 

decoded by the MusicVAE decoder, then converted back into a molecular structure by 

SAMPLES. (B) Detailed workflow schematic of SAMPLES. Molecules are binned into 

base keys based on their physicochemical properties. More druglike molecules 

correspond to melodies that are more popular as reflected in the distribution of songs 

listed in Spotify. Specific SELFIES tokens are mapped to MIDI shifts, that result in a final 

MIDI value when summed with the base key of the molecule, which is hashed from 

aggregate physicochemical properties. The MIDI shifts correspond to SELFIES tokens as 

ranked by their popularity in DrugBank. As such, lower MIDI shifts away from the encoded 

key of the molecule indicate the more popular the SELFIES token. Melodies can then be 

decoded back into molecules. 
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93-Fig. 2 | SAMPLES translates molecules into music. (A) The generation of increasingly 

complex molecules from 1 through 4 corresponds to increasing musical complexity. Each 

line shows the molecular structure, the corresponding musical score, and a waveform of 

the MIDI output. Audio recordings are available in the ESI and can be quickly retrieved 

by scanning the QR code with a mobile device. (B) In the reverse direction, the song 

“Twinkle, Twinkle Little Star” produces molecule 5. 
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94-Fig. 3 | SAMPLES is amenable to encoding complex molecules. (A) The pair of similar 

molecules 6 and 7 have SAMPLES compositions that are distinct from another similar 

pair of molecules 8 and 9. (B) QR codes linking to SAMPLES encodings of select large 

complex molecules. 
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95-Fig. 4 | tSNE embedding of 11 159 drugs from DrugBank (2048 bit Morgan 

Fingerprints of radius 2), coloured by their SAMPLES musical key. Similar molecules 10 

and 11 have SAMPLES outputs that are distinct from other similar molecules 12 and 13. 

The music encoded by the score adjacent to the molecules can be listened to by following 

the QR code. It can be heard that these similar molecules have similar musical encodings 

when using our algorithm. 
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96-Fig. 5 | Molecular editing in SAMPLES generates distinct but related molecules. The 

manual editing of single notes in the SAMPLES of 11 leads to 14, 15, or 16. 
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97-Fig. 6 | CROSSFADE merges SAMPLES with the melody mixing function of 

MusicVAE to create interpolated molecules based on two input molecules. 

 

98-Fig. 7 | A human created music composition leading to 29. 
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99-Fig. 8 | (A) Survey results from 75 participants. Each participant was given the 

SAMPLES encoded melody of four survey molecules. For each survey molecule, without 
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knowledge of the name or structure of any molecule, each participant was asked to 

choose the most similar melody from a selection of four other SAMPLES encoded drugs. 

Survey responses are cross examined against the Tanimoto similarity between each test 

molecule and survey molecule for each question. (B) Superimposed waveforms, for each 

question, of the survey molecule, the molecule most structurally similar to survey 

molecule, and the most popular answer if the majority response in incorrect. (C) 

Structures of survey and test molecules for each question. One structure for each set of 

test molecules was chosen to have high similarity to the respective question's survey 

molecule to serve as the ‘correct answer’. 
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Molecular Featurization via Musical Additive Synthesis 

In this project, we took the concept of sonification a step further by recreating an 8-bit 

additive synthesizer. Chemical properties are encoded into various settings of each 

synth. Molecular properties are encoded into features that affect the musical output 

globally, and atomic properties dictate the sequence of notes and corresponding 

musical features at that specific time such as note velocity and pitch. A unique data 

interface is provided allowing external programs to be written and generate their own 

encoding schemes. 
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100-Fig. 1 | The interface when caffeine is encoded. SMILES can be input in the bottom 

right to bootstrap a song. The number of notes corresponds to the size of the molecule, 

and additional notes and synths can be added at will. Notes can be changed using the 

interactive piano, and oscillators and filters can be modified on the left hand side. 

 



 

 257 

 

101-Fig. 2 | The encoding of bromhexine produces a different musical output. 
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102-Fig. 3 | An abstractable data structure dictates the settings and notes for each 

synth. This data structure can be recreated in external scripts and dropped into the 

program to create the music. 
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Chapter VI. Informatics Tools and Software for Education and Automated 

Research Workflows 

 

This chapter discusses informatics tools and education software that I have significantly 

contributed to or led during my PhD with relevance to the thesis of this dissertation. While 

the work described in this chapter and in this overall thesis is not comprehensive of my 

total efforts, the general outline and scientific progress discussed herein share a theme 

of advancement and education of medicinal chemistry in a systematic effort. It is my hope 

that any reader that reads to this point can recognize the dedication I have committed to 

my studies and towards general science. 

  



 

 260 

Interactive Python Notebook Modules for Chemoinformatics in Medicinal 

Chemistry 

In this project, I helped developed a lab section within the medicinal chemistry curriculum 

that taught undergraduate students chemoinformatics using python. A large effort was 

standardizing the software such that it was compatible with all computers and firmware 

that students were using. By the end of the class sessions, students had a firm 

understanding of basic chemoinformatic concepts in medicinal chemistry and the ability 

to execute some basic analyses given datasets. 
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Abstract 

 

Data science is becoming a mainstay in research. Despite this, very few STEM graduates 

matriculate with even the most basic formal training in programming. This lesson plan 

was developed to introduce undergraduates studying chemistry or biology to 

chemoinformatics and data science in medicinal chemistry. The objective of this lesson 

plan is to introduce students to common techniques used in analyzing medicinal 

chemistry datasets, such as visualizing chemical space, filtering out non-Lipinski 

molecules, and principal component analysis. The content provided in this lesson plan is 

intended to serve as a tutorial-based reference for aspiring researchers to use in future 

research. The lesson plan is split into two three-to-four-hour class sessions, each with an 

introductory slide deck, Python notebook consisting of several modules, and lab report 

template. During this activity, students learned to parse medicinal chemistry datasets with 

Python, perform machine learning analyses, and develop interactive graphs. During each 

session, students completed the Python notebook protocol and fill out a lab report 

template after a short lecture. By the end of the lesson plan, students were able to 

generate and manipulate various plots of chemical space and reported to have increased 

confidence in their understanding of chemistry, Python, and data science.  

 

Introduction 

 

Chemoinformatics is the use of computational techniques to solve problems in chemistry. 

These in silico methods can be used to transform data into information and aid in the 

process of drug discovery. Recently, a rise in computational power and increased 
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availability of developed tools have turned chemoinformatics into an invaluable tool for 

research. There has been recent interest in teaching young scientists how to work at the 

interface of physical science and data science.309-314 In previous works, lesson plans have 

been developed incorporating programming into physical chemistry courses,309, 311 a 

general chemistry course,312 bioinformatics,314 and an analytical chemistry course.313 This 

paper extends the previous works through a lesson plan that introduces students to the 

basics of chemoinformatics in medicinal chemistry with the most popular scripting 

language, Python. Specifically, the exercises included in this activity are based on 

traditional techniques used by medicinal chemists to visualize and analyze chemical 

space. 

 

Objectives 

 

The purpose of this experiment is to introduce fundamental chemoinformatics using 

Python through medicinal chemistry-based exercises. The modules teach:  

• how to load compiled medicinal chemistry datasets that is suitable for sharing and 

analysis 

• how to visualize drug-like chemical space in a multitude of ways  

• how to filter chemical datasets based on medicinal chemistry properties 

• how to validate medicinal chemistry principles using data visualization 

• how to simplify multidimensional physicochemical properties of drugs using principal 

component analyses (PCA) 
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Structure and Content 

 

In this text, “lesson plan” refers to the entirety of this work and consists of two “class 

sessions”. Each “class session” consists of a brief lecture, to be administered at the 

beginning of the class session, a Python notebook consisting of several “modules” to be 

completed by students, and a lab report to be completed and submitted for a grade. As 

mentioned, this lesson plan is executed over two separate three-to-four-hour class 

sessions, supervised by one or two graduate student teaching assistants. Students 

participating in this activity are expected to have familiarity with basic concepts of 

chemistry, such as knowledge of molecules and druglike properties. Classes are typically 

between 20-40 students. Each class session consists of a brief slide deck and lecture 

introducing the very basics of Python and its capabilities, presented to the students, 

followed by an interactive Python notebook, composed of multiple modules.  

 

These notebooks are written in Google Colaboratory (Colab)315, an easily accessible 

online Python environment that executes code on the cloud for free, based on the popular 

Jupyter software.316 Colab has several important data science packages preinstalled, 

including Pandas,317 Numpy,318 Scipy,319 and Matplotlib320 – Python add-ons that simplify 

the manipulation and visualization of data. Its primary advantages here are allowing a fast 

and simple way for new students to get started coding, as it is agnostic of computer, 

operating system and requires no technical setup. Code is separated into blocks called 

‘cells’, which execute independently of each other. The two Colab notebooks are 

organized by modules, each with specific objectives and corresponding questions in the 
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notebook’s respective lab report and walk the students through various exercises to meet 

the teaching objectives. Each notebook is to be completed alongside provided lab report 

templates consisting of module-specific questions and discussion items. Graduate 

student teaching assistants provide guidance and feedback to students during the class. 

 

Class Session 1: Introduction to Colab, Python, and Chemoinformatics 

 

In the first class session, an initial slide deck is presented by the graduate student 

teaching assistants to the class explaining the increasing popularity of scripting languages 

and their use in the industrial market and in academia. Several examples of data 

visualizations generated by Python are shared with the students (Fig. S1). Python as a 

scripting language is then formally introduced, as well as Colab; students are directly 

shown how to execute “print(“hello world”)” and are encouraged to log into Colab from 

their computer and run a line of code. Lists and dictionaries are introduced as two basic 

data structures. If statements and for loops are introduced through their utility in filtering 

a list of dictionaries. Finally, it is shown how the Python package Pandas317 can be used 

to load tabulated datasets from CSVs or JSON files. Students then complete the first 

Python notebook and its corresponding lab report template after the brief lecture in the 

remaining class time with graduate student supervision. 

 

The notebook given in the first class session introduces students to Google Colab, plotting 

in Python, and basic chemoinformatic concepts. The objectives of this notebook are to 

learn basic python coding and to quickly load and plot chemoinformatic data from 
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spreadsheets or other data formats. The module also exemplifies how to customize plots 

generated in Python. 

 

The first module walks through basic plotting in Python. The students receive a code 

template (103-Fig 1a, Fig S2), which generates a plot when executed in the notebook. 

Several lines have been deactivated, as indicated by lines containing green text and 

beginning with a “#”. Students are instructed to run the script, note what happens, then 

reactivate a line of code (by deleting the “#” symbol) and run the script again. This 

approach is intended to build familiarity with Colab and to exemplify how certain lines of 

code affects the script’s output.  

 

As with the code template, most Python scripts begin with a list of package imports, lines 

of code containing the keyword “import”. Packages in Python are codebases that can be 

downloaded and utilized in new scripts. For instance, to avoid writing the code to render 

plots ourselves, Python is instructed to import the package “Matplotlib”, a well maintained 

and versatile graphing software. At this point forward in the code, functions (blocks of 

code that generate a specific response when executed) provided by the imported 

package can be utilized by referencing the desired function in a line of code. As seen in 

the first line of the code template, a package is imported through specific syntax: “import 

<package_name>” or “import <package_name> as <variable>”. In the first syntax, future 

references to the package must use the exact package name written in the import 

statement. In the second syntax, the “as” keyword instructs Python to allow the coder to 

refer to the package as “plt”, a “variable” that represents the package in code. Variables 
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are abstract objects that are named by the user and can store data or references to 

previously written code in other files or installed packages. Variables are subsequently 

referred to in code by their given name.  

 

In the following two lines, two lists are instantiated. Lists are variables that store data in a 

sequential order, similar to a row in a spreadsheet. The first list is named “asdf”, and 

stores the integers 1,2, and 3, in that order.  The second list is named “qwer” and stores 

the integers 3,5, and 6 in sequential order.  In the following line of code, the variables “fig” 

and “ax” are instantiated and set equal to the output of the function “plt.subplots()”. This 

“subplots” function is provided by the Python package “Matplotlib” (referred to in code as 

“plt”, as imported earlier) and provides a blank canvas to be later manipulated by the 

programmer. In Python, a function is asked for a response by “calling” it, which is done 

by appending parenthesis () to the function name – in this case, “plt.subplots”, where the 

period between “plt” and “subplots” indicates that “subplots” is a function defined in the 

package “plt” (short for “Matplotlib”). The response is captured in the variables “fig” and 

“ax”, as named by the user, and are later referred to in the code to draw and save a plot. 

The portion of the response that is stored in “fig” is described as “the top-level container 

for all the plot elements” in its documentation.321 In essence, the variable “fig” now 

represents the digital data structure, stored in the computers random access memory, 

that will eventually render into a visual image. Similarly, “ax” represents an abstract object 

that is used in code to draw plots. The scatter function, found in the object represented 

by the variable “ax”, can be provided data to generate a scatter plot. As with before, the 

function is called by appending parenthesis to the name of the function, “ax.scatter()”. 
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Data is “passed” to the function as input through what is written between the parenthesis 

of the function call, otherwise known as the “parameters” of the function. In the case of 

the code template, 4 lines of code are written in-between the parentheses, each 

representing a parameter to the scatter function. Syntactically, parameters must be 

separated by commas, and new lines between parameters are optional but encouraged 

for legibility. The first parameter is passed in line six, where it is specified to the function 

that the x axis data is equal to the list of data that is represented by the variable “asdf”. In 

the following line, the y data is set to “qwer”. The final two lines of parameters are 

“commented out”, and thus deactivated. The scatter function requires both x axis data 

and y axis data to be provided. The remaining parameters are optional. Following a 

deactivated line of code after the scatter function, the final line of code is “plt.show()”, 

which instructs the notebook to render the plot. Thus, running the code as given generates 

the scatter plot shown in 103-Fig. 1B. By “uncommenting” the line “# s = 275”, students 

reactivate the size parameter of the scatter plot function. Rerunning the code now 

generates the plot of 103-Fig. 1C. Reactivating the color parameter creates the plot of 

103-Fig. 1D. Students can then change the background color of the plot by using the 

“set_facecolor” function provided by “ax”. By uncommenting the line of code, a 

hexadecimal color code is passed as a parameter to the function, and results in the plot 

of 103-Fig. 1E. In the module, students are provided the documentation to the scatter 

function,322 and are asked to add an additional parameter to change the shape of the 

points, generating a plot such as 103-Fig. 1F. 
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To expand on module one, the second module guides the students through creating a 

plot of a large dataset, which is provided as a datafile to the students. The datafile is a 

JavaScript Object Notation file (json file) and contains a list of dictionaries (similar to a 

list, but data is stored via key:value pairs, where the value is retrieved by passing the key 

to the dictionary). Each dictionary in the list contains information regarding a drug in 

DrugBank,323 containing its SMILES as well as pre-calculated physicochemical 

properties. Students are instructed to upload their data file into Colab by dragging and 

dropping their file into the file system tab. (Fig. S3) With provided code, students are then 

instructed to import the data contained in the given file using the json package and to 

convert the data into a “DataFrame”, a data structure representation provided by the 

Pandas package, allowing for spreadsheet like manipulation of the dataset. (Fig. S4) 

Using a “for loop”, ten dictionaries from the json file are added to a list, and the 

“pd.DataFrame” function is used to store the data as a DataFrame. Students then print 

the contents of the DataFrame and inspect the contents of the json file. (104-Fig. 2, Fig. 

S5) Finally, another graphing template is provided, and the students must execute it to 

plot the drugs by their properties in an x-y scatter plot. In this template, a “for loop” is used 

to iterate through the DataFrame, and store the LogP, polar surface area, and quantitative 

estimate of druglikedness of each drug into respective lists that were initialized. Then, the 

scatter function is used to plot the drugs on a graph where the x axis represents the logP 

of the drug and the y axis represents the polar surface area of the drug. (Fig. S6) The list 

of quantitative druglikedness estimates is passed into the scatter function via the color 

parameter (c), coloring each point on the scatter plot by the drug’s druglikedness score. 
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Through this exercise, the Lipinski properties and their correlation to druglike molecules 

is explored, and students are exposed to a method of visualizing large chemical spaces. 

 

In the third module, the student uses the code provided in module 2 to generate another 

plot that visualizes the uploaded DrugBank data but with a different color than before. In 

this module, additional physicochemical properties are introduced. Common parameters 

of druglikedness are included in the dataset such as LogP, polar surface area, number of 

aromatic rings, and hydrogen bond donors. The full list of included properties is listed in 

the supporting information. Concepts such as variables (user specified names that 

represent values stored in the computer’s memory) and f-strings (a feature in Python that 

allows values to be embedded in text) are introduced here. The user can set the color 

variable to a column header from the DataFrame. Through function parameters, the color 

of the plot and the title of the output figure is automatically updated.  

 

In the final module, students are asked to now modify the axes of the plots, which can be 

easily changed by switching the DataFrame header referred to in the code. The student 

also has the option to investigate in a third dimension by modifying the color of the plotted 

points. In the cumulation of this notebook, students are now comparing trends of 

physicochemical properties by modifying the x-axis, y-axis, and color attributes. Several 

plots generated by students are showcased in 105-Fig. 3. 

 

This notebook is concluded with the following questions, which the students answer in 

the discussion of their lab report: 
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1. What are the Lipinski rules? 

2. Write code for filtering by drugs that pass all the Lipinski rules 

3. Suggest a research question that you could ask of the DrugBank dataset 

 

These discussion questions evaluate student understanding of medicinal chemistry 

concepts such as druglike properties and their ability to manipulate datasets containing 

these properties into basic Python plotting code. It is expected students will utilize internet 

search engines to assist in the writing of filter code to answer the second question, to 

emphasize the importance of independent problem solving when encountering unfamiliar 

bugs or errors when coding. Filters can be written manually with if statements and for 

loops, as explained in the preliminary presentation, or using a function included in the 

Pandas package.  

 

The second class session begins with another short lecture. In this lecture, the concept 

of machine-readable molecular representations is introduced through SMILES. Box plots 

are shown as a way to visualize molecular datasets via distributions of Lipinski300 and 

other relevant medicinal chemistry properties. Finally, histograms and principal 

component analyses are introduced as other ways to analyze distributions of molecular 

data. The second notebook and its lab report are then completed after the lecture.  

 

The notebook provided with this class session utilizes a dataset from Diamond XChem’s 

COVID Moonshot project.324 Inhibition data against the SARS-COV-2 main protease 

alongside precalculated physicochemical properties and SMILES for various inhibitors 
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are included in a CSV provided to the students. The learning objectives of this notebook 

are to filter out unusable data, use data visualization to validate medicinal chemistry 

principles, perform basic statistical analyses, and simplify multidimensional data using 

principal component analysis. 

 

In the first module, students are provided with the Moonshot CSV and is instructed to load 

and inspect the CSV using the Pandas package. (Fig. S7, Fig. S8) Some lines are missing 

data, and the concept of curating datasets is introduced. Using Pandas, entries without 

IC50 values are then filtered, and students are asked to record the number of remaining 

molecules in their report.  

 

In the second module, the students are asked to validate GlaxoSmithKline’s (GSK) 

Solubility Forecast Index325 using the filtered dataset from the previous module. This 

module emphasizes the importance of certain physicochemical properties in compound 

solubility, an important concept in medicinal chemistry. (Fig. S9) The students are 

directed to use the template, plotting code to show how solubility is affected by the number 

of aromatic rings and LogP. (106-Fig. 4) In this case, the template script is missing lines 

of code, requiring students to fill the missing portions themselves. (Fig. S10) This requires 

students to correctly plot certain properties from the dataset, which is possible given an 

understanding of the components in the index and the script template, directly building on 

the concepts of the first lab exercise. By this point, students should be comfortable loading 

datasets into Python and creating and styling plots based on column headers and have 

growing familiarity with visualizing and exploring chemical space via relevant properties.  
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Also in this module, students are instructed to make box plots of various properties 

encoded in the datafile, providing an alternative visualization of the dataset. The code 

template is provided, and students are asked to analyze and modify the code to reshape 

the grid of boxplots. Students are encouraged to improve the plots aesthetically and to 

practice modifying the data that is plotted by changing the variables. Here the ability to 

plot multiple distributions into the same figure using Matplotlib’s “subplots” function is 

introduced. As molecules can have many descriptors, multiplexed figures are essential in 

evaluating medicinal chemistry datasets. 

 

In the third module, a principal component analysis (PCA, a technique that identifies 

patterns in multidimensional datasets by looking for the most important components) is 

performed on the dataset. The utility of a PCA is explained to the students within the 

lecture slides as a method to combine multiple features of a datapoint into a one or two 

axes, while the math is omitted. Students are instructed to create a matrix containing the 

Lipinski physicochemical properties for each entry in the dataset, resulting in a 

DataFrame with five columns and a row for each compound. Using the provided template 

code (Fig. S11), the students feed their matrix into scikit-learn’s PCA decomposition 

algorithm, where the matrix is reduced to two dimensions. The resultant data is then 

plotted and colored by a property. Students are subsequently instructed to filter out non-

Lipinski compliant molecules, rerun the reduction and compare the final graphs. (107-Fig. 

5) To complete this objective, students must use what they have learned in the previous 

modules or in the lecture notes to write a “for loop” and use “if statements” to collect 
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datapoints that pass the Lipinski filter rules. Alternatively, students are encouraged to 

search for Pandas documentation and to perform the data filtration using a DataFrame 

function. In this module students begin to familiarize with dimensionality reduction and 

the identification of features that lead to dataset variance. 

 

In the final module, students use the filtered dataset and are introduced to a new package 

that allows for the creation of interactive plots. Using the template code, students use the 

package plotly to generate an interactive PCA that displays SMILES and other information 

for each plotted entry. Plotly works similarly to the Matplotlib package, but instead 

produces an interactive scatter plot, where datapoints can be hovered over with the cursor 

to inspect additional information. Students are asked to engage with the interactive scatter 

plot and record several of molecules from different clusters.  

 

Participants 

 

The participants in this study were students enrolled in a senior level undergraduate 

medicinal chemistry course. Anecdotally, through in-class surveys, we found that nearly 

all participants had little to no previous coding experience at the time of the study, and 

these modules were their first introduction to a hands-on coding activity. This study was 

developed and conducted over five years of students; in an in-person and remote format. 

In the first two years, only the first module was taught. Over 100 students have 

participated in the study.  
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Implementation 

 

This lesson plan was given to undergraduate classes of pharmaceutical science majors 

in mid-semester of their senior year, after several units introducing basic medicinal 

chemistry concepts are completed. In our case, each class consisted of around 30 

students and were supervised by two graduate student teaching assistants. As 

mentioned, the lesson plan is split into two three-to-four-hour class sessions. At the 

beginning of each class session, graduate student teaching assistants present a lecture 

and slide deck with basic coding and Python concepts before the students begin working 

on the notebook corresponding to the class session (notebook 1 for the first class, 

notebook 2 for the second class). The initial implementation of this activity was done 

without Colab, with tutorials provided to install Python on each student’s personal 

computers. The diverse operating systems and security settings of individual required 

some installation oversight for a handful of students each year. With the introduction of 

Colab to the academic community, the onboarding process for the activity was greatly 

simplified as it became guaranteed any student could complete the activities agnostic of 

personal hardware or software. During the class sessions, graduate student teaching 

assistants are available for troubleshooting and questions. In our implementation, the 

most common problem students encountered were syntax issues in their code. While the 

templates and instructions provided were meant to minimize syntax errors, it was 

beneficial for the graduate student teaching assistants to have familiarity with common 

Python error messages to quickly identify the source of the bug and to direct the students 

to correct the invalid syntax. Students are permitted to work in groups to complete the 
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exercises, and most students were able to independently complete all exercises without 

supervision or additional guidance from an instructor.   

 

Assessment of Effectiveness 

 

As of 2023, nearly all senior undergraduates who have enrolled in the class have reported 

having little to no experience in coding or programming prior to taking this lab exercise. 

Throughout the lesson plan, students submitted plots they have generated to the 

graduate student teaching assistants alongside their code to be graded for accuracy. By 

the end of the two classes, each student was able to successfully use the code to 

generate various plots of chemical space that were correctly labeled. Grades for 

submitted lab reports were consistently above 90%, with competent students able to 

produce plots from text prompts and no provided template. Furthermore, after the lab 

sessions, students from the last two years lab were asked to complete the following five-

question survey:  

 

1. This exercise improved my understanding of chemistry 

2. This exercise improved my understanding of Python 

3. This exercise improved my understanding of chemical space 

4. This exercise improved my data science 

5. I enjoyed this exercise 
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Based on the responses received and the high marks earned by the students on their lab 

reports, we conclude that the current state of the module is effective in improving the 

understanding of basic data science and informatics in medicinal chemistry for most 

students (108-Fig. 6).  

 

Summary 

 

A lesson plan to teach undergraduates the basics of data science in medicinal chemistry 

was developed and validated over several semesters. Over the course of two lab 

sessions, students are introduced to Python, Google Colaboratory, and several Python 

packages. Students learn these tools through guided, interactive modules that begin at 

learning how to function Colab and ends with developing a program that reads 

abstractable datasets and generates user-interactive data analytics through Python. An 

assessment reveals the lesson plan seems to be effective in improving student’s 

familiarity with modern chemoinformatic tools and concepts. We postulate that the lesson 

plan may be effective for younger students and can be completed by anyone with a 

computer and internet access.  
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103-Fig. 1 | (a) A self-contained code template generates several plots and is provided 

to students. Several lines are deactivated, as indicated by green text. Lines of code can 

be reactivated by removing the leading “#”, resulting the code to produce a different visual 

output when executed. (b) The plot generated by the code in (a) when run as is. The three 

plotted points are defined in the code template, connecting the code to its visual output. 

(c) The plot generated when line 8 of (a) is activated, resulting in larger points. (d) The 

plot generated when line 9 is also activated, resulting in different point colors. (e) The plot 

generated when line 11 is activated, creating the same scatter plot with a blue 

background. (f) A potential plot generated after students are instructed to include an 

additional parameter to the scatter function. In this case, the shape of the points are 

changed. 
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104-Fig. 2 | Students are provided with the code to import any tabular JSON file. The 

utility of the package Pandas is used in reading tables programmatically. The 

“alldrugsprops.json” file is provided to students, and provided with a template to import 

the data into Python, as seen in the input block. Students then inspect the contents of the 

file with Python, revealing a datafile of over 9,000 drugs and their properties downloaded 

from DrugBank.  

 

 

105-Fig. 3 | Four chemoinformatic experiments run by students during the first session. 

In each graph, over 9,000 drugs are graphed onto scatter plots as point, where their x 

and y locations correspond to calculated properties of the drug. Students learn how 
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variables can be used to rapidly change the axes and colors of the plot, exposing them 

to a strategy to rapidly investigate chemical space and generate reports. 

 

 

106-Fig. 4 | (a) The template plotting code is incrementally improved until it can be used 

effectively to make manuscript-ready graphics. This code creates a scatter plot of the 

Moonshot compounds provided in the CSV, where the x axis represents a compound’s 

number of aromatic rings, and the y axis represents its LogP. (b) By coloring the points 

by the compound’s recorded solubility, a trend is revealed where compounds with fewer 

aromatic rings and lower LogP are more soluble. Validating GSK’s Solubility Forecast 

Index is a simple experiment to allow students to build confidence in their ability to 

manipulate and analyze datasets. 

 

 

107-Fig. 5 | By the end of the modules, students have implemented a data filter and a 

principal component analysis on a dataset of SARS-COV-2 Main Protease inhibitors. (a) 
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the PCA before the data filter is applied. Points represent DrugBank compounds and are 

colored by their molecular weight. By changing the color of the points, the correlation of 

the reduced axes can be mapped to specific features of the dataset. In this instance, 

molecular weight tracks with the first principal component, increasing as the x value 

increases. (b) the PCA after the Lipinski filter is applied. Outliers are removed by the filter, 

and the distribution of molecular weights in the first principal component becomes wider.  

 

 

108-Fig. 6 | Student feedback to the lesson plan collected after the lab. Questions were 

intended to gauge the student’s perspective on their learning experience. In the first year, 

students felt strongly that their understanding of Python, chemical space, and data 

science were improved. In the second year, students felt strongly that their understanding 

of data science improved but were neutral on other learning objectives. The difference 

between the two years may be accounted for by the level of involvement the graduate 

student teaching assistance had in developing the course. In the first year, the class was 

taught by the writer of the lesson plan; the second year was taught by assistants who 

were given the lesson plan to teach.  
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LRphase: an efficient algorithm for haplotagging long reads 

For a class project, I wrote an algorithm that phased long-read DNA samples by 

statistically matching them to the maternal or paternal allele based on the number of 

associated single nucleotide polymorphisms. In collaboration with the Boyle lab in the 

bioinformatics department, the package was extended into a full research paper. This is 

a classical bioinformatic package that can be installed with pip and used in typical 

bioinformatic pipelines.  
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109-Fig. 1 | Overview of LRphase. A. Long sequencing reads are first prepared from 

genomic DNA fragments isolated from cells with available phased variant data for all 

parental haplotypes. Reads are mapped to the reference genome, either within LRphase 

with minimap2, or externally using any desired mapping/filtering workflow, with mapped 

reads supplied in BAM format. B. Haplotagging begins by intersecting individual mapped 

reads with known phased, heterozygous single-nucleotide variants (SNVs) supplied as a 

VCF file. The number of matches and mismatches are counted for both maternal and 

paternal phases and resulting counts are subsequently used to choose the best match to 

phase using one of the two scoring modes. C. Reads may be haplotagged using either 

the scoring model (Mode 1, orange box), or by simply assigning to the phase with the 

greatest number of matching alleles across all heterozygous sites (Mode 2). In Mode 1, 
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match and mismatch counts are used to calculate log-likelihoods for matching to maternal 

and paternal phases. Likelihoods are computed as multinomial probabilities (Pmaternal and 

Ppaternal respectively), representing the aggregate probability of obtaining the observed 

number of matches and mismatches to either phase given the observed sequencing error 

rate, 𝛜. Pmaternal and Ppaternal are adjusted by a Bayesian prior (ßm and ßp) and log-likelihood 

ratios (LLRs) Lmat/pat and Lmat/pat, are calculated to determine which phase has the most 

evidence for matching a given read. Reads are assigned to the phase corresponding to 

the greater of Lmat/pat and Lmat/pat, are labeled “unphased” if there is a tie, or “nonphasable” 

if there are no intersecting heterozygous variants. D. After all reads are haplotagged, the 

false-discovery rate (FDR) is controlled by calculating the expected number of incorrect 

haplotags, N𝜀, as the mean of the negative-binomial distribution with N = the number of 

phaseable reads and Psuccess = 1-(𝛜/3). Phaseable reads are sorted by LLR and the N𝜀 * 

(1-FDR) lowest-scoring reads are relabeled as unphased. The remaining haplotagged 

reads are expected to include errors at a rate corresponding to the specified FDR. Finally, 

haplotagged results are written to output file(s) in BAM format, with the assigned 

haplotype stored in the “HP” tag, while custom tags are used to store all variables used 

in LLR calculations. 
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110-Fig. 2 | Haplotagging performance of LRphase and WhatsHap. Precision-Recall 

(PR) curves are used to assess the ability of LRphase (A) and WhatsHap (B) to identify 

the correct haplotag. Curves describe the fraction of correct and incorrect haplotag 

assignments across varying score thresholds. Individual points along each curve are color 

coded to illustrate score ranges at each combination of precision and recall. A. PR curve 

for LRphase haplotag assignments. B. PR curve for WhatsHap haplotag assignments. 
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An Automated and Colorful PAMPA Assay To Investigate Drug Permeability  

In this work, we introduce students to a popular early-stage tool to determine the 

permeability of compounds called the parallel artificial membrane permeability assay 

(PAMPA). Students use PAMPA to determine the permeability of two brightly colored drug 

molecules, phenazopyridine and methylene blue. The students use the Opentrons OT2 

robot, an inexpensive liquid handling robot that can be controlled using simple python 

code, to perform the assay. 
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111-Fig. 1| A representative cartoon of how PAMPA works. 

 

 

  

112-Fig. 2 | Structures of phenazopyridine and methylene blue. 

 

113-Fig. 3 | A PAMPA plate donor plate (left) and the acceptor plate (right) after a one-

hour incubation. Note only phenazopyridine is permeable. 
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114-Fig. 4 | The setup of the Opentrons OT-2 layout. 

 

  

115-Fig. 5 | Top: Opentrons transferring from PAMPA plate to plate reader plate. Right: 

PAMPA (white, source) and plate reader (black, destination) plates for Opentrons 

dosing. Blue represents methylene blue and yellow represents phenazopyridine. The 

height of the color represents relative concentration. The source plate shows what was 
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placed into the donor plate. Row A in acceptor plate is methylene blue calibration curve, 

Row B is phenazopyridine calibration curve, and row C is what permeated through the 

donor plate. 

116-Fig. 6 | Distribution of students correctly answering each part of the lab report. 

N=75 
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Chapter VII. Software Packages 

 

During my graduate studies, I composed an extensive array of codes and software 

packages. While this chapter does not encompass all the software I have crafted, it does 

include those that have reached a significant level of completion. My undergraduate 

training as a full-stack developer proved invaluable, allowing me to expand many of my 

research projects and codebases to the web. The browser served as a robust interface 

for interactive visualizations and workflows. All the software documented in this chapter 

was developed as Python/React packages, wherein the backend and API were built using 

Python, while React was used for developing the front-end graphics. 

 

As I delved deeper into the development of these codebases, I gradually became adept 

at structuring data to enhance connectivity between the front and back ends. This led to 

a more efficient development process and a streamlined code infrastructure. The core 

philosophy I adopted involved maintaining all information within a single JSON object. 

This object could be seamlessly passed between the front and back end, and stored as 

memory on the front end in the browser. Such an approach eliminated the need for 

updating any database with each user action or the use of back-end session memory 

leading to cache memory build-up. Instead, long-term storage could be facilitated by 
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saving the JSON object on demand. The reloading of this object would subsequently 

recreate the state of the software. 

 

This methodology also proved beneficial for larger infrastructures, where independent 

software could generate the data object to be input into another software. Consequently, 

communication between two distinct software could be abstracted into a single data 

format. This eliminated the need for a developer to understand the details or structure of 

the other software. A practical demonstration of this philosophy can be seen in the 

database software I have developed for managing the lab's reagent and compound 

inventory. Through this web app, the required data structure can be directly integrated 

into phactor's data structure, facilitating the creation of screen designs without 

necessitating an understanding of phactor's internals. 

 

The software described in this chapter are: 

1. Phactor – the high throughput experimentation manager 

2. Phactor inventory – a database webapp managing the lab’s reagent and 

compound collection 

3. SAMPLES – the molecule to music sonification webapp 

4. Retrosynthetic visualizer – the webapp visualizing the routes analyzed in our 

COVID-19 work 
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phactor 

  

117-Fig. 1 | A visualization of phactor’s codebase. 



 

 292 

  

118-Fig. 2 | The settings page of phactor. 

  

119-Fig. 3 | The factors page of phactor. 
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120-Fig. 4 | The product input pop-up page of phactor on the factors stage. 

  

121-Fig. 5 | The chemicals stage of phactor with compounds input. 
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122-Fig. 6 | The connected inventory input pop-up page of phactor on the chemicals 

stage. 

  

123-Fig. 7 | The connected ask GPT input pop-up page of phactor on the chemicals 

stage. 
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124-Fig. 8 | The grid stage of phactor displaying a 24-well reaction array. 

 

125-Fig. 9 | The grid stage of phactor displaying a 1536-well reaction array with 1,280 

reactions. 
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126-Fig. 10 | The connected internal standard calculator pop-up page of phactor on the 

grid stage. 

  

127-Fig. 11 | The analysis stage of phactor displaying the results of a 24-well reaction 

array. 
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128-Fig. 12 | The UPLC-MS analytics popup on the analysis stage of phactor displaying 

UPLC-MS trace of a completed reaction. 

 

129-Fig. 13 | The report stage of phactor displaying the report of a completed 24-well 

reaction array.  
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phactor inventory 

 

 

130-Fig. 1 | Visualization of the phactor inventory codebase.  
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131-Fig. 2 | Request table of the phactor inventory. 

 

132-Fig. 3 | Confirm arrival pop-up of the request page. 

 

133-Fig. 4 | Compounds table of the phactor inventory. 
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134-Fig. 5 | BarCodak instance pop-up table of the phactor inventory.  

 

135-Fig. 6 | PCA embedding page of the phactor inventory. 

 

136-Fig. 7 | Consumables table of the phactor inventory. 
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137-Fig. 8 | Edit consumable form of the phactor inventory. 

 

138-Fig. 9 | Consumable shopping cart table of the phactor inventory. 
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139-Fig. 10 | Request compound form of the phactor inventory. 

 

140-Fig. 11 | Register compound form of the phactor inventory. 

 

141-Fig. 12 | Search database form of the phactor inventory. 
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142-Fig. 13 | Admin panel of the phactor inventory.  
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samples 

 

143-Fig. 1 | Samples webapp playing taxol.  

 

144-Fig. 2 | Prototype of the SAMPLES additive synthesizer webapp. 
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145-Fig. 3 | 8-bit sequencing prototype implementation of samples. 
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146-Fig. 4 | 8-bit sequencing prototype implementation of samples with filters and low 

frequency oscillators. 
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147-Fig 5. | iPhone implementation of SAMPLES algorithm  



 

 309 

retrosynthetic visualizer 

  

148-Fig. 1 | Retrosynthetic analysis of remdesivir on the visualizer webapp. 

  

149-Fig. 2 | Retrosynthetic analysis of bromhexine on the visualizer webapp. 
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150-Fig. 3 | Retrosynthetic analysis of umifenovir on the visualizer webapp. 

 

  

151-Fig. 4 | Retrosynthetic analysis of favipiravir on the visualizer webapp. 
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152-Fig. 5 | Retrosynthetic analysis of ritonavir on the visualizer webapp. 

 

  

153-Fig. 6 | Retrosynthetic analysis of cobicistat on the visualizer webapp. 
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154-Fig. 7 | Retrosynthetic analysis of ribavirin on the visualizer webapp. 

 

155-Fig. 8 | Retrosynthetic analysis of camostat on the visualizer webapp. 
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156-Fig. 9 | Retrosynthetic analysis of darunavir on the visualizer webapp. 

 

157-Fig. 10 | Retrosynthetic analysis of nelfinavir on the visualizer webapp. 
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158-Fig. 11 | Retrosynthetic analysis of galidesivir on the visualizer webapp. 

 

159-Fig. 12 | Retrosynthetic analysis of gelsemine on the visualizer webapp. 
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160-Fig. 13 | Retrosynthetic analysis of baricitinib on the visualizer webapp. 
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Chapter VIII. Conclusion 

 

This thesis collates a large portion of the work I have completed throughout my Ph.D. 

studies. Throughout this experience, I helped create a synthetic laboratory from the 

ground up. I learned the difficulties in maintaining an organized lab and shared in the joy 

when scientific discoveries were made using the environment we had fostered. I became 

a better experimental chemist by learning how to run reactions efficiently in the lab and 

overcame the learning curve of column chromatography. I sat through weekly two-hour 

group meetings for five years and watched hundreds of chemical reactions presented and 

optimized. I cycled through several computers and wrote thousands and thousands of 

lines of code. I endured with the lab through phases of grant proposal struggles and 

celebrated winning many big-name grants at once after several cycles of edits. I watched 

Tim transition from an industrialist to an academic who is likely to soon win tenure. I too 

am not the same person that I was when I began working with Tim. When I had finished 

my undergraduate studies, I was not very exceptional on paper – Tim gave me a chance 

to distinguish myself and I took it. Now, as I head to MIT with a clearer vision of my future, 

I feel that my accolades better match my ego. Most importantly, what I had learned 

throughout my studies, under Tim’s supervision, was why we as chemists perform and 

study synthesis. While it may be obvious to some, it was a hard-earned realization for me 

that all matter must be made. In fact, this is the overall theme of this thesis: a valuable 
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molecule is a product just like any other item. It must be optimized and synthesized, and 

this is done through chemistry. A good reaction lets us create many molecules with what 

we have at hand, and these valuable reactions must be invented. I look forward in 

continuing aiding the creation of robust, automatable, eco-friendly, high-value reactions 

that will lead to the discovery of high-impact molecules.  
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APPENDICIES 
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Appendix A 

 

NMR Spectra of Isolated Compounds 

 

 

161-Fig. A1 | Proton NMR of 2-oxo-1,2,3,4-tetrahydroquinoline-4-carboxylic acid.  
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162-Fig. A2 | Carbon NMR of 2-oxo-1,2,3,4-tetrahydroquinoline-4-carboxylic acid.  
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163-Fig. A3 | Proton NMR of N-(benzo[d]thiazol-2-yl)-2-oxo-1,2,3,4-tetrahydroquinoline-

4-carboxamide.  
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164-Fig. A4 | Carbon NMR of N-(benzo[d]thiazol-2-yl)-2-oxo-1,2,3,4-tetrahydroquinoline-

4-carboxamide.  

-100102030405060708090100110120130140150160170180190200210220230
f1	(ppm)

0

5

10

15

20

25

30

35

40

45carbon_phactor_ht_sample_filtered

3
0.

57

4
8.

9
7

11
6

.0
5

11
8.

17
12

1.
0

3
12

1.
3

0
12

2.
18

12
2.

6
3

12
4

.1
6

12
5.

8
7

12
6

.6
6

12
8.

6
5

12
9

.0
7

13
8.

9
3

14
8.

8
3

15
8.

0
9

16
8.

8
1

1

2

3

4

5

6

NH
7

8

9

10

O
11

12

O

13

NH
14

15

N16

1718

S
19

20

2122

23

3827 



 

 323 

 

165-Fig. A5 | Proton NMR of N-(4-(tert-butyl)phenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-

4-carboxamide.  
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166-Fig. A6 | Proton NMR of N-(4-(tert-butyl)phenyl)-2-oxo-1,2,3,4-tetrahydroquinoline-

4-carboxamide.  
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167-Fig. A7 | Proton NMR of 2-oxo-N-(p-tolyl)-1,2,3,4-tetrahydroquinoline-4-

carboxamide.  
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168-Fig. A8 | Carbon NMR of 2-oxo-N-(p-tolyl)-1,2,3,4-tetrahydroquinoline-4-

carboxamide.  
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169-Fig. A9 | Proton NMR of 1-(p-tolyl)isoquinoline.  
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170-Fig. A10 | Proton NMR of 1-(4-ethylphenyl)isoquinoline.  
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171-Fig. A11 | Proton NMR of 1-([1,1'-biphenyl]-4-yl)isoquinoline.  
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172-Fig. A12 | Proton NMR of 2-methyl-N-(p-tolyl)benzamide. 1H NMR (500 MHz, CDCl3) 

δ 7.63 (s, 1H), 7.46 (dd, J = 24.8, 7.7 Hz, 3H), 7.34 (t, J = 7.5 Hz, 1H), 7.26 – 7.20 (m, 

2H), 7.16 (d, J = 7.9 Hz, 2H), 2.47 (s, 3H), 2.34 (s, 3H).  
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173-Fig. A13 | Carbon NMR of 2-methyl-N-(p-tolyl)benzamide. 13C NMR (126 MHz, cdcl3) 

δ 168.11, 136.57, 136.35, 135.50, 134.16, 131.17, 130.14, 129.54, 126.67, 125.83, 

120.04, 26.38, 20.92, 19.80.  
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174-Fig. A14 | Proton NMR of (R)-2-methyl-N-(4-oxo-4-(3-(trifluoromethyl)-5,6-dihydro-

[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)-1-(2,4,5-trifluorophenyl)butan-2-yl)benzamide. 1H 

NMR (500 MHz, dmso) δ 8.14 (t, J = 8.8 Hz, 1H), 7.53 – 7.38 (m, 2H), 7.27 (td, J = 7.6, 

1.4 Hz, 1H), 7.16 (t, J = 6.8 Hz, 2H), 7.06 (dd, J = 7.8, 1.5 Hz, 1H), 5.05 (d, J = 3.9 Hz, 

1H), 4.88 (d, J = 3.7 Hz, 1H), 4.60 (d, J = 4.8 Hz, 1H), 4.29 (dq, J = 38.5, 6.5 Hz, 1H), 

4.01 (dddd, J = 38.2, 20.6, 14.5, 7.8 Hz, 3H), 3.03 – 2.94 (m, 1H), 2.77 (ddd, J = 23.4, 

14.8, 8.4 Hz, 3H), 2.07 (s, 1H), 2.01 (s, 1H), 1.90 (s, 1H).   
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175-Fig. A15 | Carbon NMR of (R)-2-methyl-N-(4-oxo-4-(3-(trifluoromethyl)-5,6-dihydro-

[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)-1-(2,4,5-trifluorophenyl)butan-2-yl)benzamide. 13C 

NMR (126 MHz, dmso) δ 169.76, 168.91, 151.45, 137.58, 135.78, 135.08, 130.73, 

129.63, 127.04, 125.79, 119.99, 117.98, 106.53, 104.88, 46.53, 43.98, 42.55, 41.71, 

38.63, 38.23, 33.16, 21.48, 19.23, 19.10. 
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176-Fig. A16 | Proton NMR of 2,4'-dimethyl-1,1'-biphenyl. 1H NMR (499 MHz, cdcl3) δ 

7.28 – 7.23 (m, 8H), 2.42 (s, 3H), 2.29 (s, 3H).  
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177-Fig. A17 | Carbon NMR of 2,4'-dimethyl-1,1'-biphenyl. 13C NMR (126 MHz, cdcl3) δ 

139.02, 135.39, 130.26, 129.84, 129.06, 128.76, 127.05, 125.73, 21.17, 20.50.  
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178-Fig. A18 | Proton NMR of 2-methyl-N-(p-tolyl)aniline. 1H NMR (499 MHz, cdcl3) δ 

7.22 (dd, J = 8.0, 1.3 Hz, 2H), 7.18 – 7.11 (m, 3H), 6.98 – 6.90 (m, 3H), 2.35 (s, 3H), 2.30 

(s, 3H).  
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179-Fig. A19 | Carbon NMR of 2-methyl-N-(p-tolyl)aniline. 13C NMR (126 MHz, cdcl3) δ 

142.02, 141.01, 130.89, 130.56, 129.87, 127.10, 126.79, 121.19, 118.72, 117.36, 29.76, 

20.70, 17.90.
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