
Resource-constrained Coding for Communication and Computation
Applications

by

Chin-Jen Pang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical and Computer Engineering)

in the University of Michigan
2023

Doctoral Committee:

Associate Professor Hessam Mahdavifar, Co-Chair
Professor S. Sandeep Pradhan, Co-Chair
Associate Professor Achilleas Anastasopoulos
Associate Professor Mahdi Cheraghchi



Chin-Jen Pang

cjpang@umich.edu

ORCID iD: 0000-0002-0735-8967

© Chin-Jen Pang 2023



To My Family.

ii



ACKNOWLEDGEMENTS

I am deeply grateful to my advisors Prof. Hessam Mahdavifar and Prof. S. Sandeep
Pradhan for all that they have provided throughout the course of my PhD. They have been
of constant help and support in every way possible, and it has truly been a pleasure to
work with them. I have learnt a great amount from them on numerous aspects of academic
research, and I am sure that it will reflect positively on my entire career.

I would also like to thank the rest of the committee members: Prof. Achilleas Anas-
tasopoulos and Prof. Mahdi Cheraghchi. Their mentorship and insightful comments have
helped shape the dissertation tremendously.

I am thankful to all of my past and present colleagues for their ongoing friendship, and
for providing a highly enjoyable working environment. It was also a great pleasure to work
and interact with each of them.

Finally, I express my deepest gratitude to my parents, my brothers, and my wife for their
constant care and support throughout all stages of my life, and I sincerely thank all of my
friends in Ann Arbor for making my experiences truly memorable.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Codes for Crowdsourced Label Learning . . . . . . . . . . . . . . . . . . . 2
1.3 Codes Defined by Sparse Generator Matrices . . . . . . . . . . . . . . . . 2
1.4 Codes with Large Minimum Distance . . . . . . . . . . . . . . . . . . . . . 3
1.5 Codes with Abelian Group Structure . . . . . . . . . . . . . . . . . . . . . 3
1.6 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Coding for Crowdsourced Classification with XOR Queries . . . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Capacity-achieving Polar-based Codes with Sparsity Constraints on the
Generator Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Sparse Polar Code Constructions based on Large Kernels . . . . . . . . . . 25
3.4 Splitting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Low-complexity Decoder for Polar-based Codes: BEC . . . . . . . . . . . . 30
3.6 Low-complexity Decoder for Polar-based Codes: BMS . . . . . . . . . . . . 38
3.7 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 New Bounds on the Size of Binary Codes with Large Minimum Distance 44

iv



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Main Results - Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Main Results - Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Abelian Group Codes for Classical and C-Q Channel Coding: one-shot
rate bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Abelian Group Code Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 One-shot Classical Group Coding . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 One-shot Classical-Quantum Group Coding . . . . . . . . . . . . . . . . . . 90

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A Supplementary material for Chapter 3 . . . . . . . . . . . . . . . . . . . . . 97

A.1 Proof for Section 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2 Proofs for Section 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.3 Proof for Section 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.4 Proofs for Section 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B Supplementary material for Chapter 4 . . . . . . . . . . . . . . . . . . . . . 107

B.1 Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.2 Proof of Proposition 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

v



LIST OF FIGURES

FIGURE

3.1 Multiplicative rate loss factor γ versus λ . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Encoding structure change due to the DRS algorithm with N = 8, wu.b. = 4 . . 33
3.3 Encoding block for generator matrix DRS(G⊗3

2 ) when wu.b. = 2 . . . . . . . . . 33
3.4 Encoding/decoding diagrams for standard and DRS-modified polar codes . . . . 35
3.5 Error probability for polar-DRS codes with n = 10 . . . . . . . . . . . . . . . . 37
3.6 ADRS scheme for a split XOR of first iteration of polarization . . . . . . . . . . 39
3.7 ADRS example with N = 8 and wu.b. = 2 . . . . . . . . . . . . . . . . . . . . . 40
3.8 Error probability for polar-ADRS codes with N = 1024, K = 512 . . . . . . . . 42

4.1 Upper bounds on logA(n,d)
logn

for d = ⌈n/2− ρ
√
n ⌉ . . . . . . . . . . . . . . . . . . 66

A.1 Encoding Block for G′
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2 Encoding Block Bm+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.3 Equivalent Encoding Block Bm+1 . . . . . . . . . . . . . . . . . . . . . . . . . . 104

vi



LIST OF APPENDICES

ASupplementary material for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . 97

BSupplementary material for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . 107

vii



ABSTRACT

Coding for data transmission has been extensively studied since the publication of Shan-
non’s seminal work [126] in 1948. The research in coding theory has seen significant advances,
including the invention of Reed-Solomon codes, convolutional code, LDPC codes, and Polar
codes, over the past seven decades. However, many modern applications from disciplines
such as wireless communications, machine learning, and quantum information transmission
give rise to new challenges for which the coding theory is a framework that can offer novel
solutions. Driven by such challenges, in this dissertation, we consider four coding theory
problems with constraints on various aspects of the codes. In the first part, we model the
problem of crowdsourced labeling, where labels for target items are retrieved through queries
from a crowd of workers, as a coding problem where the generator matrices must be sparse.
Leveraging prior results for codes with sparse representation, we propose querying schemes
with almost optimal number of queries, each of which involving only a constant or a relatively
small number of labels, for the reliable and unreliable query response scenarios, respectively.
We further consider clustering the items based on two correlated classification criteria.

Motivated by the utility of codes with sparse generator matrices in the first problem, in the
second part, we study the design of codes with a certain constraint on the weights of all the
columns in the generator matrix (GM). In particular, we propose polar-based coding schemes
to construct capacity-achieving codes, referred to as polar-DRS and polar-ADRS codes, for
BEC and BMS channels respectively. We make significant contributions by demonstrating
several properties of the codes including low encoding and decoding complexity, fast decay
in error rate, and state-of-the-art upper bounds on the weights of the GM columns.

Next, we consider the critical problem of finding channel codes with large minimum
distance. The large-minimum distance regime is of both theoretical and practical interests,
as the transmission of information in many extreme conditions requires coding schemes that
are highly robust with small or moderate rate. We present two novel construction of BCH-
like cyclic codes and lower bounds on the maximal size of codes in the targeted regime. We
also give asymptotic upper bounds that are stricter than all prior known bounds, which is
proved by combining a new approach to bound the maximal eigenvalues of adjacency matrix
induced by a Hamming ball with harmonic analysis on the Hamming cube as a group.

viii



We then study the one-shot channel coding problem over classical and classical-quantum
channels, where the underlying codes are constrained to be group codes. In the achievability
part, we introduce a new distribution that incorporates the encoding homomorphism and the
underlying channel law. Using a random coding argument, we characterize the performance
in terms of a single-letter relative-entropy type quantity. In the converse part, we establish
bounds by leveraging a hypothesis testing-based approach.
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CHAPTER 1

Introduction

1.1 Motivation and Background

The subject of coding for data transmission have been extensively studied since the pub-
lication of Shannon’s seminal work [126] in 1948, which showed that, given a noisy com-
munication channel, there is a quantity, known as the capacity of the channel, such that
reliable communication can be achieved at any rate below the channel capacity, if proper
encoding and decoding techniques are used. In barely more than 70 years, coding theory has
seen phenomenal growth. It is now a field with broad applications in a multitude of com-
munication and storage applications. While Shannon [126] settled the question “Do good
codes exist?” in the affirmative, two other questions naturally follow: “How can we find
such codes?” and “How can we decode them?”. In the effort to find good codes for practical
purposes, researchers have studied not only various block codes, e.g., the Hamming codes,
the BCH codes, Reed-Solomon codes, and the low-density-parity-heck(LDPC) codes, but
also codes in other paradigms, such as convolutional codes, turbo codes, and even quantum
codes. Polar codes, discovered by Erdal Arıkan in 2009 [13] using a concept called channel
polarization, have been the subject of active research in the past decade. They are the first
class of provably capacity-achieving codes with explicit construction and low complexity of
encoding and decoding. While the polar codes provide a solution to the two questions about
code construction and decoding, the search of codes that meet requirements other than the
rate and decoding complexity remains a vibrant realm, from both the theoretical and prac-
tical points of view. Inspired by real-world applications, we study codes with constraints on
the sparsity of the generator matrices and/or parity-check matrices, the minimum distance,
or the underlying algebraic structure in this dissertation.
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1.2 Codes for Crowdsourced Label Learning

From personal assistants on mobile devices such as Siri and Alexa, to the analysis of
genome sequencing data sets [85], to spam detectors in email servers, machine learning
(ML)-based systems have become ubiquitous in our daily lives. ML owes its success not only
to the improvements in computing power but also to the development of big data technol-
ogy. Specifically, driving these systems are ML models that must be trained on data sets
labeled according to target concepts (e.g., speech labeled by their corresponding commands,
genome sequences labeled by the associated diseases, emails labeled as malicious or not).
Additional application include activity recognition which labels videos with activities, and
sentiment annotation that labels texts with sentimental markers. Although such tasks are
easy for humans, they are in general difficult for the computers. How, then, can we provide
a sufficiently large number of labels for the representative objects to train these learning
models? Crowdsourcing systems, e.g., Amazon’s Mechanical Turk and CloudResearch, have
emerged as an effective large-scale human-powered platform [144] for the labelling problem.
Since most crowdsourcing tasks are labeled by amateur workers instead of domain experts
and are assigned with low reward (a few cents per task), the labels are often noisy and
hence unreliable. To improve the quality of labels for subsequent use, it is essential to utilize
appropriate inference algorithms (e.g. Majority voting). In this dissertation, we model the
crowdsourced labelling problem as a coding problem, and aim to obtain the best possible
trade-off between reliability and redundancy. Specifically, we leverage the duality between
source coding and channel coding problems to provide querying schemes with almost optimal
number of queries, each of which involving only a constant number of items when the workers
are perfectly reliable. A similar result, where the number of items in each query scales at
most logarithmically with the the total number of items, is shown when the workers are not
always responsive.

1.3 Codes Defined by Sparse Generator Matrices

Capacity-approaching error-correcting codes such as low-density parity-check (LDPC)
codes [50] and polar codes [13] have been extensively studied for applications in wireless
and storage systems. Besides conventional applications of codes for error correction, a surge
of new applications has also emerged in the past decade including crowdsourcing [74, 139],
distributed storage [34], and speeding up distributed machine learning [84, 67]. To this
end, new motivations have arisen to study codes with sparsity constraints on their generator
and/or parity-check matrices. For instance, the stored data in a failed server needs to
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be recovered by downloading data from a few servers only, due to bandwidth constraints,
imposing sparsity constraints in the decoding process in a distributed storage system. In
crowdsourcing applications, e.g., when workers are asked to label items in a dataset, each
worker can be assigned only a few items due to capability limitations, imposing sparsity
constraints in the encoding process. More specifically, codes defined by sparse generator
matrices become relevant for such applications [100, 108]. In this dissertation, we focus on
polar codes in order to construct a sequence of codes defined by sparse generator matrices
with practical utility, such as low decoding complexity, explicit construction, sufficiently fast
decay in the error probability, and the potential to approach capacity at large block-length.

1.4 Codes with Large Minimum Distance

Let A(n, d) denote the maximum size of a binary code of length n and minimum Hamming
distance d. Studying A(n, d), including efforts to determine it as well to derive bounds
on A(n, d) for large n’s, is one of the most fundamental subjects in coding theory. In
this dissertation, we explore new lower and upper bounds on A(n, d) in the large-minimum
distance regime, in particular, when d = n/2−Ω(

√
n). We first provide a new construction

of cyclic codes, by carefully selecting specific roots in the binary extension field for the check
polynomial, with length n = 2m − 1, distance d ⩾ n/2 − 2c−1

√
n, and size nc+1/2, for any

m ⩾ 4 and any integer c with 0 ⩽ c ⩽ m/2 − 1. These code parameters are slightly worse
than those of the Delsarte–Goethals (DG) codes that provide the previously known best lower
bound in the large-minimum distance regime. However, using a similar and extended code
construction technique we show a sequence of cyclic codes that improve upon DG codes and
provide the best lower bound in a narrower range of the minimum distance d, in particular,
when d = n/2 − Ω(n2/3). Furthermore, by leveraging a Fourier-analytic view of Delsarte’s
linear program, upper bounds on A(n, ⌈n/2− ρ

√
n ⌉) with ρ ∈ (0.5, 9.5) are obtained that

scale polynomially in n. To the best of authors’ knowledge, the upper bound due to Barg
and Nogin [20] is the only previously known upper bound that scale polynomially in n in this
regime. We numerically demonstrate that our upper bound improves upon the Barg-Nogin
upper bound in the specified high-minimum distance regime.

1.5 Codes with Abelian Group Structure

The results in the early development of coding theory and discussed in most standard
coding theory textbooks often assume a finite field expression for the discrete input and/or
output alphabets for a channel. As a finite field exists only with a prime power size, such
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assumption were extended to weaker algebraic structures such as rings and groups in later
works [45, 28, 88, 89, 52, 121]. The motivation for studying Abelian group codes beyond the
non-existence of finite fields over arbitrary alphabet size is that the algebraic structure of the
code imposes certain restrictions on the performance. Specifically, in certain problems, linear
codes were shown to be suboptimal [81] compared to Abelian group codes. For example, when
phase shift keying (PSK) is the modulation scheme, codes over a group whose size matches
the order of the PSK may outperform binary linear codes [88]. For another example, consider
a distributed source coding problem with two statistically correlated but individually uniform
quaternary sources X and Y that are related via the relation X = Y + Z, where + denotes
addition modulo-4 and Z is a hidden quaternary random variable that has a non-uniform
distribution and is independent of Y . The joint decoder wishes to reconstruct Z losslessly.
In this problem, codes over Z4 perform better than linear codes over the Galois field of
size 4. Hence information-theoretic characterizations of the performance of Abelian group
code ensembles for various communication problems and under various decoding constraints
became important.

1.6 Thesis Overview

In this thesis, we consider four different problems described in separate chapters. In Chap-
ter 2, our work “Coding for crowdsourced classification with XOR queries” [108] is presented.
In this chapter, the crowdsourced labelling problem for the binary label case is shown to be
equivalent to a source coding problem, when the workers are always reliable, and a source
and channel coding problem when they may be unresponsive or return faulty answers. We
provided two querying schemes where the number of queries are ϵ-close to the information
theoretic lower bound by exploiting the trade-off between sparsity and probability of er-
ror for LDPC and LDGM codes. In Chapter 3, we present our work “Capacity-achieving
Polar-based Codes with Sparsity Constraints on the Generator Matrices” [111]. This work
provides our results concerning constructions for linear block codes defined by sparse gen-
erator matrices. The novel constructions, inspired by the polar codes, also inherit many
of the properties including the speed of decay in error probability, the ability to achieve
capacity at large block lengths, and low encoding and decoding complexities. In Chapter 4,
our work “New Bounds on the Size of Binary Codes with Large Minimum Distance” [112]
(see also [110]) is presented. In this chapter, we consider the problem of bounding the max-
imal size of binary codes with large minimum distance. In the considered regime, the size
scales sub-exponentially in the block-length and renders most known bounds on the rate for
a given relative distance ineffective. We provide two families of lower bounds on the size by
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giving explicit cyclic code constructions. A sequence of upper bounds is also shown via a
new bounding technique motivated by a Fourier-analytical proof of the MRRW bound [106].
In Chapter 5, we present our work “Abelian Group Codes for Classical and C-Q Channel
Coding: one-shot rate bounds” [113]. In this work, we consider the one-shot channel coding
problem for both classical and classical-quantum channels. Additionally, the code is required
to be a (shifted) group code, i.e., the encoding is realized by a group homomorphism with
a shift vector. Characterization of the rate are provided in terms of a relative-type quantity
known as the hypothesis testing relative entropy.
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CHAPTER 2

Coding for Crowdsourced Classification with
XOR Queries

This chapter presents a model for the crowdsourced labeling/ classification problem as
a sparsely encoded source coding problem, where each query answer, regarded as a code
bit, is the XOR of a small number of labels, as source information bits. We leverage the
connections between this problem and well-studied codes with sparse representations for the
channel coding problem to provide querying schemes with almost optimal number of queries,
each of which involving only a constant number of labels. We also extend this scenario to the
case where some workers can be unresponsive. For this case, we propose querying schemes
where each query involves only log n items, where n is the total number of items to be labeled.
Furthermore, we consider classification of two correlated labeling systems and provide two-
stage querying schemes with almost optimal number of queries each involving a constant
number of labels.

2.1 Introduction

2.1.1 Crowdsourcing for Classification

Crowdsourcing is a human-based problem-solving mechanism that allows a large crowd
to distributively handle a massive number of queries. These problems, such as image classifi-
cation, video annotation, form data entry, optical character recognition, translation, recom-
mendation, and proofreading [75, 140], typically require human involvement or suit human
better than machines [136]. In crowdsourcing systems, there are usually platforms, such as
Amazon Mechanical Turk, CrowdFlower, and Figure Eight, that match the taskmaster to a
huge worker crowd. However, the workers may be unreliable for several reasons: the reward
for each task is usually as small as a few cents, the tasks are tedious, and one can still collect
his rewards even if his answer is incorrect.
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Many crowdsourcing-based real-life problems have one common goal deep down: classi-
fication/labeling of the items [69]. Formally, the label learning problem can be defined as
follows: suppose there are n items, and the i-th item has a label Xi ∈ {0, 1, ..., L − 1}, for
i ∈ {1, 2, ..., n}. The goal is to identify the labels of the items. This problem is equivalent
to clustering n items into L clusters with ground truth. Using crowdsourcing, a taskmaster
can send queries to workers (sometimes called oracles, human annotators , or labelers). For
instance, same cluster queries are adopted in [16], where in each query two items u and v are
sent to a worker and the worker is asked "do u and v belong to the same label cluster?" In
[75] and [76], single-item queries are considered, where the worker receives an item for each
query and answers a question, such as "This is a picture of a dog, true or false?". In another
related work, each item is associated with a certain number of properties and workers are
imperfect, and the goal is to identify an item by querying the workers the properties [138].
In general, in all these scenarios, the objective is to minimize the number of queries, for a
given type of query, sent to the workers, while being able to recover the labels with certain
reliability/fidelity constraints. Note that, in practice, a certain number of queries can be as-
signed to one worker as a task, however, in the context of this thesis, the goal is to minimize
the number of queries regardless of how many workers are involved.

2.1.2 Our Contributions

In this chapter we consider the 2-cluster case, i.e., L = 2, together with XOR queries,
similar to the model adopted in [101]. Unlike several prior works which considered queries
involving only 1 or 2 items [16, 75], we consider a generalized scenario, as considered in
[101], where the number of items involved in a query can be more than 2 and up to a
certain threshold. Furthermore, besides the scenario where answers to queries are perfect,
we consider an extension where some of the workers may not answer the queries assigned to
them. We first show that, in the scenario with perfect answers, the proof of [101, Theorem
1] is incorrect, with the random ensemble adopted therein, and hence fails to support the
theorem. Note that the existential claim of the theorem may still be true if an alternative
proof is given. We show that, with perfect workers, there exists a querying scheme within
distance ϵ from the theoretic lower bound, in terms of the number of queries normalized
by n, with up to log 1

ϵ
items in each query. A similar result is shown for the scenario with

unanswered queries and with up to log n log 1
ϵ

items in each query.
We further extend the problem to the scenario when items need to be clustered according

to two different clustering criteria. Ideas from correlated-source and channel coding allow us
to recover two types of clustering with less queries than when the two types of labeling are
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recovered separately. We show that a querying scheme within distance 2ϵ from the theoretic
lower bound, in terms of the number of queries normalized by n, is achievable with log 1

ϵ

items per query.

2.2 Preliminaries

2.2.1 Crowdsourcing and Linear Channel Codes

From crowdsourcing’s perspective, when XOR query scheme is adopted, the process is
similar to a linear source coding problem. In other words, the output of a query is the XOR
of binary labels, i.e., addition over the binary field F2, of all items involved in that query. In
particular, let n be the total number of items to be labeled and X = (X1, X2, . . . , Xn)

t ∈ X n,
where X = {0, 1}, considered as a column vector, denote the true labels, unknown to the
taskmaster. Let also A ∈ Fm×n

2 denote the query matrix, where ones in the i-th row of A
correspond to the indices of items in the i-th query. Under the XOR model for the query
answers, the correct answer to the i-th query is equal to the i-th element of AX, where all
operations are over F2, i.e., Xi’s are regarded as elements of F2. Given the limited capabilities
of human workers, the queries need to be designed to be sparse. More specifically, the number
of items per query, which is equal to the number of ones in each row of A, must be small,
e.g., bounded by a constant value.

It is common to assume the apriori distribution of the labels are known to the taskmaster
[75, 102]. In particular, for the binary label model adopted in this chapter, an i.i.d. Ber(p)
distribution is assumed for the labels, where p is known to the taskmaster. Note that due
to the duality between source coding and channel coding problems, the parity-check matrix
of a linear code C designed for transmission over a memoryless binary symmetric channel
(BSC) with transition probability p, BSC(p), can be used to compress an i.i.d. Ber(p)
source. In fact, the probability of error of the maximum-likelihood (ML) decoder would be
the same when the code is used either for channel coding across BSC(p) or source coding
of an i.i.d. Ber(p) source. Hence, low-density parity-check (LDPC) codes become relevant
for the considered crowdsourced clustering problem with XOR query scheme and bounded
number of items in each query.

2.2.2 LDPC and LDGM Codes

LDPC codes were originally introduced by Gallager [49] in 60’s and were later rediscov-
ered in 90’s [92] and were shown to offer near-capacity performance under practical belief-
propagation (BP) decoding algorithms. In [49], Gallager proved that right-regular LDPC
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codes, where each row of the parity-check matrix H has a constant weight ∆, can not achieve
the channel capacity on BSC. He also showed that the gap to capacity diminishes exponen-
tially fast with ∆. In [119] and [124], similar results are shown when the row weights and
average row weights of H are upper bounded by ∆, respectively. In terms of code con-
structions, several works on regular LDPC codes have shown that rates close to the provided
upper bounds are attainable [124, 23, 24]. In section 2.3.1, we leverage results from [124] and
[82] and propose a scheme with sparse queries in the context of crowdsourced classification.

When considering unreliable workers in the crowdsourcing setup another class of codes
with sparse representations, namely low-density generator-matrix (LDGM) codes, become
relevant. In LDGM code, the generator matrix is assumed to be sparse. In general, as
opposed to LDPC codes, the performance of LDGM codes has not been very well-studied in
the literature. Several works have empirically shown the existence of LDGM codes with close-
to-capacity performance [146, 137, 43]. It is shown in [73] that ensembles of LDGM codes
are capacity achieving over BSCs when the row weights scale linearly with n. Furthermore,
row weights of O(log n) suffice to achieve the capacity of binary erasure channels (BECs)
[73]. Scaling exponent of such codes were studied in [95]. In our works [109, 111], capacity-
achieving LDGM codes with sublinear bounds on the row weights are constructed for the
transimission over BSC and general BMS channels. Furthermore, the codes allow for low
complexity encoding and decoding and have the same rate of decay of the error probability
as the standard polar codes.

2.2.3 Prior Work

In [101], three scenarios, namely noiseless queries and exact recovery, noiseless queries
and approximate recovery, and noisy queries and approximate recovery, are discussed. Here,
a query is noisy if the workers are unreliable, i.e., the query answers may be inaccurate, and
is noiseless if it is always correct. A recovery is assumed to be perfect if the (block) error
probability vanishes as the number of items grows large, and is considered to be approximate
if up to a constant probability of error in recovering labels/source bits is allowed.

In [101], Mazumdar and Pal attempt to show that, under the XOR query model with
noiseless answers, perfect recovery of all labels (i.e. source compression) is achievable with
sparsely encoded source coding, when the number of items in each query is bounded by a
constant value ∆. Note that in several other prior works, queries involving ∆ = 1, 2, 3 items
were considered [75, 148, 76, 16, 83, 141].

LDPC codes have been considered for source compression in [26] and [99]. In particular, it
is pointed out in [26] that the analogy between linear source codes and LDPC channel codes
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was largely neglected in the literature and it is shown that LDPC-based data compression
for either memoryless sources or sources with memory are practical.

2.3 Main Results

We discuss in this section strategies for perfect recovery for the scenario where all workers
are perfect, and also the case with possibly having unresponsive workers. We further study
the problem of clustering the items based on two correlated classification criteria. The main
results of this chapter are stated in this section. The proofs of Propositions 1 to 5 can be
found in Section 2.4.

2.3.1 Noiseless Queries and Perfect Recovery

Problem Formulation: We adopt the same model as in [101, Section 3.1]. Consider the
crowdsourced classification problem where there are only two label types for each item and
XOR queries are adopted, as discussed in Section 2.2.1. Suppose that the labels Xi ∈ X =

{0, 1}, for 1 ⩽ i ⩽ n, are i.i.d. Ber(p) random variables. Without loss of generality, we may
assume p ∈ (0, 0.5). In this subsection, we assume a nonadaptive/one-shot scenario, in which
all queries are generated and sent to the workers at the same time. This is in accordance
with several prior works, e.g. [75, 83].

In [101, subsection 3.1], the number of items in each query given to workers is fixed to ∆,
and the worker returns an error-free XOR of the labels in the given query. Let Hb(p) denote
the binary entropy function. The following result is claimed in [101].

Theorem 1. [101, Theorem 1] There exists a querying scheme with

m =
n(Hb(p) + o(1))

log2
1
α

queries, of above type, where α def
= 1

2

[
1 + (1− 4p(1− p))∆

]
, that achieves perfect recovery.

The proof provided in [101] is based on the following. The average probability of error
of a randomly chosen query scheme, consisting of m independently and uniformly selected
random queries involving exactly ∆ items, is analyzed and is claimed that it approaches 0 as
n grows large. However, we show here that the provided proof does not hold. In particular,
we show in Proposition 1 that the average probability of error over the considered ensemble
is bounded away from 0.

10



Proposition 2. The average probability of error, denoted by Pe, in a scheme with

m =
n(Hb(p) + o(1))

log 1
α

independent and uniformly distributed random queries involving ∆ items does not vanish as
n, the number of items, grows . More precisely,

Pe ⩾ (1− ϵ)
[
exp

(
−∆ ·Hb(p)

log 1
α

)
− ϵ′

]
> 0, (2.1)

where ϵ, ϵ′ > 0 can be chosen arbitrarily small as n→∞

Proof: The proof is given in Section 2.4.1.

Remark 1. In [10, Theorem 2], the authors consider uniformly random queries, essentially
a random ensemble same as in Proposition 2, and show that m = Θ(n log n) queries is
necessary and sufficient for perfect recovery regardless of whether the workers are perfect or
not, when no apriori distribution is assumed.

This does not imply that the theorem itself, [101, Theorem 1], does not hold. Note also
that such results are not about specific constructions and state that the average probability
of error of certain random ensemble is bounded away from 0. In fact, there are trivial cases
of a query matrix providing perfect recovery with m = n queries, e.g., the identity matrix.
However, the question of whether less than n queries, and more specifically close to nHb(p)

queries, is sufficient for perfect recovery or not is not properly answered by [101] and has not
been considered in [10]. We answer this question in Proposition 3.

Proposition 3. Suppose that workers are perfect and labels have prior distribution Ber(p).
Then, for ϵ ∈ (0, 1) and sufficiently large n, there exists a querying scheme using

m = n[Hb(p) + ϵ(1−Hb(p))] (2.2)

queries, each involving no more than

K1 −K2ln(ϵ)

1− ϵ
(Hb(p)

−1 − 1)

items, that achieves perfect recovery, where K1 and K2 depend only on p.

Proof: The proof is given in Section 2.4.2.
By Shannon’s source coding theorem we need at least nHb(p) queries to achieve perfect

recovery, when the query answers are binary. Hence, the compression rate, i.e., the number
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of queries normalized by the number of items, must be at least Hb(p). In Proposition 3, it is
shown that for any chosen ϵ ∈ (0, 1), compression rate as small as Hb(p) + ϵ(1−Hb(p)) can
be achieved by a query scheme, with O(log 1

ϵ
) items per query, thereby providing a scheme

with almost optimal number of queries.

2.3.2 Two-label Perfect Recovery

In this subsection, we extend the problem discussed in Section 2.3.1 to the recovery of two
different clustering based on two properties/labeling criteria associated with the same set of
objects. In particular, suppose that the i-th item can be classified according to two (binary)
labeling systems and is labeled Xi, Yi, respectively. For instance, one labeling system may
involve identifying the objects in pictures, e.g., whether there is a cat or dog in the picture,
and the other may involve identifying the location, e.g., whether this picture is taken indoor
or outdoor. Furthermore, we assume that a two-stage query scheme is adopted, where queries
involving Xi’s are sent in the first stage and queries involving Yi’s are sent in the second
stage.

By leveraging the correlation between labels X and Y , we can recover the clustering by
sending an almost optimal number of queries, under the constraint of finite items per query.

Proposition 4. Let (Xi, Yi)
i.i.d.∼ PX,Y (x, y), for 1 ⩽ i ⩽ n. Then there exists a two-stage

querying scheme using
m = n(H(X, Y ) + 2ϵ) (2.3)

queries, where H(X, Y ) is the joint entropy function, each involving no more than O(log 1
ϵ
)

items, that achieves perfect recovery for sufficiently large n.

Proof: The proof is given in Section 2.4.3.

2.3.3 Noisy Queries and Perfect Recovery

In this section, we consider imperfection in workers’ replies. Due to the monotonicity of
queries, low payment for completion of queries, or the fact that workers may not be experts,
two noisy scenarios for the answers to queries can emerge. In the first case, it is assumed that
some queries are not replied within a certain specified response time, or not replied at all.
This scenario can be modeled as follows: each query is replied (correctly) with probability
1 − r and is not replied with probability r, for a certain parameter r, independent from
other queries. Consequently, this scenario becomes related to the channel coding problem
over the binary erasure channel (BEC) with erasure probability r. In the second case, it is
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assumed that the workers have accuracy 1− q, that is, the answer from a worker is correct
with probability 1− q. This is related to the channel coding problem over BSC(q).

In this chapter, we focus on the first case and leave the second case for future work. In
particular, we show that concatenation of LDGM and LDPC codes achieve compression rate

R = [Hb(p) + ϵ(1−Hb(p))]/(1− r),

with row weights upper bounded by ∆ = O(log 1
ϵ
log n).

Let AN×K denote the set of N ×K binary matrices and let B(AN×K , p) denote a distri-
bution on AN×K , where the entries of a random A ∼ B(AN×K , p) are distributed i.i.d. with
Ber(p). We utilize the following result from [73] to derive the main result of this section.

Theorem 5. [73, Theorem 5] Consider BEC(r) and let K = NR, where R < 1−r. Suppose
A ∼ B(AN×K , ρ(N)), where ρ(N) = Θ( logN

N
). Let pc(A) denote the probability of correct

decoding, under ML, using At as the generator matrix and assuming transmissions over
BEC(r). Then

lim
n→∞

EA(pc(A)) = 1, (2.4)

where the expected value is taken with respect to A.

Note that the generation of A ∼ B(AN×K , ρ(N)) does not guarantee that all row weights
are bounded by logN . We extend Theorem 5, in order to ensure that all row weights are
bounded, in Proposition 6.

Proposition 6. Let A ∈ AN×K and let At be the generating matrix corresponding to a code
of rate R = K

N
< 1 − r with transmissions over BEC(r). For any ρ(N) = Θ( logN

N
), the

expected value of pc(A) over all matrices with B̃(AN×K , ρ(N)) distribution tends to 1 as N
approaches infinity, i.e.,

lim
N→∞

EA∼B̃(pc(A)) = 1, (2.5)

where B̃(AN×K , ρ(N)) is obtained from the distribution B(AN×K , ρ(N))) by removing ma-
trices that have at least one row with Hamming weight larger than or equal to Θ(logN).

Proof: The proof is given in Section 2.4.4.

Theorem 7. Suppose that queries are answered with probability 1− r, independent to each
other. Then there exists a query scheme with

m = n[Hb(p) + ϵ(1−Hb(p))]/(1− r) (2.6)

queries, each involving O(log 1
ϵ
log n) items, that guarantees perfect recovery of the labels as

n grows large.
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Proof: The following statements holds for sufficiently large n. The parity-check matrix
of LDPC codes is applied first for the compression. By Proposition 3 there exists an mH(n)×
n binary matrix Hn, where mH(n) = n[Hb(p)+ϵ(1−Hb(p))], with row weights bounded from
above by (Hb(p)

−1 − 1)
K1−K2 ln

1
ϵ

1−ϵ
. Note that Hn can be used to compress an i.i.d. Ber(p)

source sequence with perfect recovery.
Then, the compressed bits are further encoded to recover from erasures caused by the

BEC(r). By Proposition 6, there exists a mG(n) ×mH(n) matrix Gn, with all row weights
being O(logmH(n)), for transmission of mH(n) bits over BEC(r), while the expected prob-
ability of correct decoding approaches 1 as n→∞ for any Rc

def
= mH(n)/mG(n) < 1− r.

Next, the two linear operations, one for the compression and the other one for the erasure
correction, are concatenated, leading to the overall query matrix. Let GSC(n)

def
= GnHn, with

dimensions mG(n)×n, denote the corresponding overall encoding matrix. Note that all row
weights of GSC(n) are bounded from above by

K1 −K2 ln
1
ϵ

1− ϵ
(
Hb(p)

−1 − 1
)
O(logmH(n)) = O

(
log

1

ϵ
log n

)
,

and also the number of queries is equal to mG(n), where

mG(n) >
mH(n)

1− r
=
n[Hb(p) + ϵ(1−Hb(p))]

1− r
,

is sufficient to show that GSC(n) guarantees perfect recovery of the labels as discussed
next. Let X denote the vector of n labels, Y = HnX denote the compressed labels, and
Z = GnY = GSC(n)X and the taskmaster collects Z corrupted with erasures with probability
r. The taskmaster can recover Y, with high probability, by the choice of Gn. Then, having
recovered Y, perfect recovery of X is possible by the choice of Hn. That completes the proof
of theorem.

2.4 Proofs

2.4.1 Proof of Proposition 2

We analyze the average probability of error, Pe, of the querying scheme given in [101,
Theorem 1], and provide a lower bound for it. Consider the following two typical sets in
{0, 1}n,

An
ϵ (X)

def
={xn : np(1− n− 1

3 ) ⩽ wH(x
n) ⩽ np(1 + n− 1

3 )},

Bn
ϵ (X)

def
={xn :np(1− n− 1

3 ) + 1⩽wH(x
n)⩽np(1 + n− 1

3 )− 1},
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where wH(x
n) denotes the hamming weight of vector xn. Then, we have

Pr(An
ϵ (X))→ 1 and Pr(Bn

ϵ (X))→ 1 as n→∞.

Note that for xn ∈ Bn
ϵ (X),

np(1− n− 1
3 ) ⩽ wH(x

n + e) ⩽ np(1 + n− 1
3 ),

for any e ∈ {0, 1}n with unit weight, i.e., wH(e) = 1. Hence, xn + e ∈ An
ϵ (X), for any

xn ∈ Bn
ϵ (X). Then Pe can be expressed and lower bounded as follows:

Pe =
∑

xn∈Xn

P n
X(x

n) Pr(x̂n ̸= xn)

=
∑

xn∈Xn

P n
X(x

n) Pr(∃x̃n ̸= xn, x̃n ∈ An
ϵ (X), Qxn = Qx̃n)

⩾
∑

xn∈Bn
ϵ (X)

P n
X(x

n) Pr(∃x̃n ̸= xn, x̃n ∈ An
ϵ (X), Qxn = Qx̃n)

⩾
∑

xn∈Bn
ϵ (X)

P n
X(x

n) Pr(xn + e1 ∈ An
ϵ (X), Qxn = Q(xn + e1)),

where e1 = (1, 0, 0..., 0, 0) and Q is the m × n query matrix corresponding to the query
scheme described in Proposition 1.

For xn ∈ Bn
ϵ (X), we always have xn + e1 ∈ An

ϵ (X). Note that Qxn = Q(xn + e1) if and
only if Q(e1) = 0, which is also equivalent to the first label not being queried by any of the

m queries. The probability that a query does not use the first label is (n−1
∆ )
(n
∆)

= 1− ∆
n
. Thus,

Pr
(
Q(e1) = 0

)
=

(
1− ∆

n

)m

,

where m = n(Hb(p)+o(1))

log 1
α

as in [101, Theorem 1]. Then we have

Pr
(
Q(e1) = 0

)
=

[
(1− ∆

n
)n
]Hb(p)+o(1)

log 1
α −−−→

n→∞
exp

(
−∆ ·Hb(p)

log 1
α

)
> 0.

Therefore,

Pe ⩾
∑

xn∈Bn
ϵ (X)

P n
X(x

n)

(
1− ∆

n

)m

⩾ (1− ϵ)
[
exp

(
−∆ ·Hb(p)

log 1
α

)
− ϵ′

]
̸= 0,
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for n sufficiently large, where ϵ, ϵ′ can be chosen arbitrarily small as n→∞.

2.4.2 Proof of Proposition 3

We leverage a result from [124], which establishes a connection between sparsity of the
parity-check matrix and reliability performance of LDPC codes. First, the density of parity-
check matrix of a linear code is defined as follows.

Definition 1. Given anm×n parity-check matrixH, the density ofH, denoted by ρ = ρ(H),
is the number of ones in H normalized by n, i.e., the total number of ones in H is (n−m)ρ.

Theorem 8. [124, Theorem 2.2] For any BSC or BEC, there exists a sequence of ensembles
of regular LDPC codes which achieves, under ML decoding, a fraction 1 − ϵ of the channel
capacity with vanishing block error probability, and the asymptotic density of their parity-
check matrices satisfles

lim
n→∞

ρn ⩽
K1 −K2ln(ϵ)

1− ϵ
, (2.7)

where K1 and K2 depend only on the channel.

In particular, for BSC(p) with capacity 1 − Hb(p), there exists an ensemble of regular
(n, n−m) LDPC codes achieving channel rate

R =
n−m
n

= (1− ϵ)C = (1− ϵ)(1−Hb(p)).

The parity check matrices from this ensemble have m = n[Hb(p) + ϵ(1−Hb(p))] rows, each
with weight

(n−m)ρn/m =
(
[Hb(p) + ϵ(1−Hb(p))]

−1 − 1
)
ρn

⩽ (Hb(p)
−1 − 1)ρn

⩽ (Hb(p)
−1 − 1)

K1 −K2ln(ϵ)

1− ϵ
, (2.8)

for sufficiently large n.
As mentioned in Section 2.2.1, we note that the parity-check matrix of a linear code C

designed for transmission over a BSC(p), can be used to compress an i.i.d. Ber(p) source
with the same block error probability Pe under ML decoding.
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2.4.3 Proof of Proposition 4

We use a two-stage querying scheme. Let Xi
i.i.d.∼ Ber(p), q = Pr(Yi = 1|Xi = 1) and

r = Pr(Yi = 1|Xi = 0). First, we use

m1 = n [Hb(p) + ϵ(1−Hb(p))]

queries to retrieve Xi’s. From Proposition 3, (Hb(p)
−1 − 1)K1−K2ln(ϵ)

1−ϵ
items per query are

sufficient for perfect recovery of the Xi’s.
Second, we consider the conditional distribution of the Yi labels. Suppose that Xi’s are

recovered correctly. Let n1 =
∑n

i=1Xi and n2 = n − n1 denote the number of items with
labels Xi = 1 and Xi = 0, respectively. By law of large numbers, for any given ϵ′, we have
n1 ⩽ np(1 + ϵ′) and n2 ⩽ n(1− p)(1 + ϵ′), with high probability, for sufficiently large n. By
Proposition 3, there exists a querying scheme with

m2 = n1[Hb(q) + ϵ(1−Hb(q))]

queries, each involving no more than (Hb(q)
−1−1)

K′
1−K′

2ln(ϵ)

1−ϵ
items that recovers the Yi labels

for the items labeled Xi = 1. Also, there exists a querying scheme with

m3 = n2[Hb(r) + ϵ(1−Hb(r))]

queries, each involving no more than (Hb(r)
−1−1)K

′′
1 −K′′

2 ln(ϵ)

1−ϵ
items that recovers the Yi labels

for the items labeled Xi = 0. The total number of queries is then

m1 +m2 +m3 ⩽ n[Hb(p) + pHb(q) + (1− p)Hb(r)] + nϵ(1 + p+ (1− p))

− n[ϵHb(p) + p ϵHb(q) + (1− p)ϵHb(r))− ϵ′]

⩽ nH(X, Y ) + 2nϵ.

Note that, given p, q, r, the number of items involved in a query is related to the gap to
capacity as O(log(1

ϵ
)).

2.4.4 Proof of Proposition 6

The following lemma is a direct consequence of Chernoff bound and the proof is omitted
here:

Lemma 9. Let X1, X2, ..., XN be N independent random variables with Xi ∼ Ber(pi). Let
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µ =
∑N

i=1 pi. Then

Pr
(∑N

i=1
Xi ⩾ (1 + δ)µ

)
⩽ e−

δ2

2+δ
µ, ∀δ > 0. (2.9)

For any ρ(N) = Θ( logN
N

), there exist M > 1,m > 0 such that m logN
N

⩽ ρ(N) ⩽ M logN
N

for N sufficiently large. If p = p1 = p2 = ... = pN = ρ(N), we have

m logN ⩽ µ = Np ⩽M logN.

Then,

Pr

(
N∑
i=1

Xi ⩾ δ(m)M logN

)
⩽ Pr

(
N∑
i=1

Xi ⩾ δ(m)µ

)
⩽ e−2 logN = N−2,

where δ(m) > 1 is chosen such that (δ(m)−1)2

2+δ(m)−1
m > 2.

Next, we discuss the probability that a matrix A ∼ B(AN×K , ρ(N)) has heavy rows,
where a heavy row is a row with weight larger or equal to δ(m)M logN .

Pr (each row of A has weight less than δ(m)M logN)

= 1− Pr

(
N⋃
i=1

{
ith row has weight ⩾ δ(m)M logN

})

⩾ 1−
N∑
i=1

Pr
(
ith row has weight ⩾ δ(m)M logN

)
= 1−N · Pr(1st row has weight ⩾ δ(m)M logN)

⩾ 1−N ·N−2,

which goes to 1 as N grows large. Let ph(N) denote the probability that A has at least one
heavy row. Then we have ph(N)→ 0. Note that

EA(pc(A)) = ph(N)EA(pc(A)) + (1− ph(N))EA∼B̃(pc(A)),

where the expectations are taken with B(AN×K , ρ(N)) distribution, B(AN×K , ρ(N)) distri-
bution and heavy-row condition, and B̃(AN×K , ρ(N)) distribution.
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From [73, theorem 5],

1 = lim
N→∞

EA∈AN×K
(pc(A))

= lim
N→∞

[ph(N)EA(pc(A)) + (1− ph(N))EA∼B̃(pc(A))]

= lim
N→∞

EA∼B̃(pc(A))

2.5 Conclusion and Outlook

In this chapter, crowdsourced classification problems with XOR querying schemes involv-
ing a limited number of items in each query sent to the crowd workers are considered. The
goal is to perform the classification efficiently, that is, to minimize the number of queries sent
to workers. We discuss the scenario where all workers are perfect, and then extend to the
case with possibly having unresponsive workers. We further consider clustering the items
based on two correlated classification criteria. In all of the above cases, we provide querying
schemes with almost optimal number of queries each with limited number of items.

There are several directions for future work. In this chapter, we focus on binary labels
and generalizing the results to classification problems with more than two possible labels is
an interesting direction. To this end, one needs to consider non-binary codes with sparse
representations. When considering noisy queries, only the scenario with unresponsive workers
are studied. As stated in Section 2.3.3, it is possible that workers do not provide the correct
answer. In the binary labeling case, such scenario corresponds to coding over BSC. Hence,
designs of good LDGM codes for transmission over BSCs are needed for such classification
problems with unreliable workers, which is another direction for future work. Furthermore,
alternative methods, such as a joint source-channel coding design, can be utilized and may
lead to more efficient querying schemes involving unreliable/unresponsive workers.
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CHAPTER 3

Capacity-achieving Polar-based Codes with
Sparsity Constraints on the Generator Matrices

3.1 Introduction

In general, the generator matrix sparsity is a critical factor in determining the encoding
complexity of a linear code. Further, certain applications, e.g., distributed crowdsourcing
schemes utilizing linear codes, require most or even all the columns of the generator matrix
to have some degree of sparsity. In this chapter, we leverage polar codes and the well-
established channel polarization to design capacity-achieving codes with a certain constraint
on the weights of all the columns in the generator matrix (GM) while having a low-complexity
decoding algorithm. We first show that given a binary-input memoryless symmetric (BMS)
channel W and a constant s ∈ (0, 1], there exists a polarization kernel such that the cor-
responding polar code is capacity-achieving with the rate of polarization s/2, and the GM
column weights being bounded from above by N s. To improve the sparsity versus error rate
trade-off, we devise a column-splitting algorithm and two coding schemes for BEC and then
for general BMS channels. The polar-based codes generated by the two schemes inherit sev-
eral fundamental properties of polar codes with the original 2× 2 kernel including the decay
in error probability, decoding complexity, and the capacity-achieving property. Furthermore,
they demonstrate the additional property that their GM column weights are bounded from
above sublinearly in N , while the original polar codes have some column weights that are
linear in N . In particular, for any BEC and β < 0.5, the existence of a sequence of capacity-
achieving polar-based codes where all the GM column weights are bounded from above by
Nλ with λ ≈ 0.585, and with the error probability bounded by O(2−Nβ

) under a decoder
with complexity O(N logN), is shown. The existence of similar capacity-achieving polar-
based codes with the same decoding complexity is shown for any BMS channel and β < 0.5

with λ ≈ 0.631.
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3.1.1 Polar Codes

Channel polarization, introduced by Arıkan [13, 12], is one of the most recent break-
throughs in coding theory. Polar codes are a class of provably capacity-achieving channel
codes with explicit construction for general BMS channels, and have attracted significant
attention due to their error correction performance, as well as their low-complexity decod-
ing algorithms. Within the ongoing fifth generation wireless systems (5G) standardization
process, polar codes have been adopted for uplink and downlink control information for the
enhanced mobile broadband (eMBB) communication service. Furthermore, polar codes and
polarization phenomenon have been successfully applied to a wide range of problems includ-
ing data compression [14, 5], broadcast channels [104, 55], multiple access channels [30, 97],
physical layer security [98, 11], and coded modulations [96].

3.1.2 LDGM and Related Works

A related line of work on studying linear codes with sparsity constraints on their generator
matrices is by associating them with sparse graph representations [27]. In this context,
they are referred to as low-density generator matrix (LDGM) codes, also regarded as the
counterpart of LDPC codes. The sparsity of the generator matrices of LDGM codes leads
to a low encoding complexity, and has been adopted in applications such as lossy source
compression [58] and multiple description coding [145]. In [92, 93] it was pointed out that
certain constructions of LDGM codes are not asymptotically good, a behavior which is also
studied using an error floor analysis in [147, 51].

In terms of the sparsity of the GM, the authors of [73] showed the existence of capacity-
achieving codes over binary symmetric channels (BSC) using random linear coding arguments
when the column weights of the GM are upper bounded by ϵN , for any ϵ > 0, where N is the
code block length. Also, it is conjectured in [73] that column weight upper bounds that scale
sublinearly in N suffice to achieve the capacity. For binary erasure channels (BEC), bounds
that scale as O(logN) suffice for achieving the capacity, again using random linear coding
arguments [73]. Furthermore, the scaling exponent of such random linear codes are studied
in [95]. Later, in [86], the existence of capacity-achieving systematic LDGM ensembles over
any BMS channel with the expected value of the weight of the entire GM bounded by ϵN2,
for any ϵ > 0, is shown. While the (ensemble-averaged) block-error probability for the codes
goes to zero as the block-length grows large, the speed of decay in the error probability is
not provided in [73, 86].

In [100], the problem of label learning through queries from a crowd of workers was
formulated as a coding theory problem. Due to practical constraints in such crowdsourcing
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scenarios, each query can only contain a small number of items. In [108], we considered
the same setting as in [100] with the additional consideration that some workers may not
respond to queries, a scenario that resembles a binary erasure channel. Then we showed that
a combination of LDPC codes and LDGM codes gives a query scheme where the number of
queries approaches the information-theoretic lower bound [108].

In the realm of quantum error correction, quantum low-density-generator-matrix
(QLDGM) codes, quantum low-density-parity-check (QLDPC) codes, and other sparse-
graph-based schemes have been extensively studied due to the small numbers of quantum
interactions per qubit during the encoding and/or error correction procedure, avoiding addi-
tional quantum gate errors and facilitating fault-tolerant decoding. Amongst these schemes,
the error correction performance of the LDGM-based codes proposed in [47] was shown to
outperform all other Calderbank-Steane-Shor (CSS) and non-CSS codes of similar complex-
ity.

In the realm of machine learning, gradient-based methods, such as the gradient descent
(GD) algorithm, are one of the most commonly used algorithms to fit the machine learning
models over the training data. Using LDGM codes, authors of [68] proposed a distributed
implementation of a stochastic GD scheme, which allowed the master node to recover a
“high-quality unbiased” estimate of the gradient at low computational cost and provided
overall performance improvement over the GD scheme with gradient coding.

In all three applications highlighted above, the benefit of the LDGM codes follows from a
certain upper bound on the column weights of the GM, ensuring the columns are relatively
low weight. Motivated by these applications, the main goal of this chapter is to construct
sequences of codes where all of the columns of the GM are low weight, where certain upper
bounds on the weight will be specified later.

3.1.3 Our Contribution

In this chapter, we study capacity-achieving polar and polar-based codes over BMS chan-
nels with sparsity constraints on generator matrix column weights. Leveraging polar codes
based on general kernels, with rates of polarization studied in [78], we show that capacity-
achieving polar codes with column weights bounded from above by N s exist for any given
s > 0, where N is the code block length. This verifies the conjecture given in [73]. There is,
however, a trade-off between the sparsity parameter s and the rate of polarization, given by
s
2
.

For the case when the speed of decay for block-error probability and the GM sparsity are
both constrained, we propose two new code constructions with sparse GM columns, which
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provide a better trade-off for s > 0.585. We first consider BEC, and propose a splitting
algorithm termed decoder-respecting splitting (DRS) algorithm, which, roughly speaking,
splits heavy columns in the GM into several light columns. Note that if one splits the heavy
columns in an arbitrary manner to form a new GM, the code defined by the new GM may be
substantially different from the original one in terms of the error probability and/or having
a low-complexity decoder. Leveraging the fact that the polarization transform of a BEC
leads to BECs, the DRS algorithm converts the encoder of a standard polar code into an
encoder defined by a sparse GM without hurting the reliability of the bit-channels observed
by the source bits. Furthermore, the specific structure of DRS enables a low-complexity
successive cancellation decoder in a recursive fashion inheriting that of original polar codes.
In particular, we show a sequence of codes defined by GMs with column weights upper
bounded by Nλ, for any λ > λ∗ ≈ 0.585 and the existence of a decoder with computation
complexity O(N logN) under which the block-error probability is bounded by 2−Nβ for any
β < 0.5.

Next, for general BMS channels, we propose an enhancement of the DRS-based encoding
scheme, referred to as augmented-DRS (ADRS) scheme, which requires additional channel
uses and decoding complexity. In spite of these limitations, we show that there exists a
sequence of capacity-achieving codes, referred to as the polar-ADRS codes. The sequence of
codes is defined by GMs with column weights upper bounded by Nλ, for any λ > λ† ≈ 0.631,
and can be decoded with complexity O(N logN).

The rest of this chapter is organized as follows. In Section 3.2, we introduce basic notations
and definitions for channel polarization and polar codes. Section 3.3 provides a sparsity result
for polar codes with general kernels. In Section 3.4, we introduce the notion of splitting
algorithms and define the DRS algorithm. Section 3.5 provides the corresponding code
construction over the BEC. The successive cancellation (SC) decoder is also described and
shown to be of low computation complexity. Another code construction scheme aimed for
transmission over general BMS channels, denoted as the ADRS scheme, is introduced in
Section 3.6, where a corresponding SC decoder with low computation complexity is also
discussed. Finally, Section 3.7 concludes this chapter. The proofs for the results in Sections
3.3, 3.5, and 3.6 are included in Appendix A.

3.2 Preliminaries

Let hb(·) denote the binary entropy function, exp2 (x) denotes the function 2x, ln(·) be
the logarithmic function with base e, and log(·) be the logarithmic function with base 2.
Z(W ) denote the Bhattacharyya parameter of a channel W . We recall definitions for the
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BMS channel and capacity-achieving codes.

Definition 2. A binary memoryless symmetric channel (BMS) W : X → Y is a noisy
memoryless channel with binary input alphabet X , and channel output alphabet Y , (we use
X = {0, 1}, and assume Y is finite, in this chapter.) such that Pr[Y = y|X = 0] = Pr[Y =

ϕ(y)|X = 1] for all y ∈ Y for some involution ϕ on Y .

Definition 3. A type of code is said to be capacity achieving over a BMS channel W with
capacity C = I(W ) > 0 if, for any given constant R < C, there exists a sequence of codes
with rate R and the block-error probability vanishes as the block length N grows large. The
block-error probability is evaluated under the maximum likelihood (ML) decoder, unless a
different decoding scheme is specified.

3.2.1 Channel Polarization and Polar Codes

The channel polarization phenomenon was discovered by Arıkan [13] and is based on a
2×2 polarization transform as the building block. Let A⊗B denote the Kronecker product of
matrices A and B, and A⊗n denote the n-fold Kronecker product of A, i.e., A⊗n = A⊗A⊗(n−1)

for n ⩾ 2 and A⊗1 = A. Let W denote the class of all BMS channels. Consider a channel
transform W 7→ (W−,W+) that maps W to W2. Suppose the transform operates on an
input channel W : X → Y to generate the channels W− : X → Y2 and W+ : X → Y2 × X
with transition probabilities

W−(y1, y2|x1) =
∑
x2∈X

1

2
W (y1|x1 ⊕ x2)W (y2|x2),

W+(y1, y2, x1|x2) =
1

2
W (y1|x1 ⊕ x2)W (y2|x2),

where ⊕ denotes mod-2 addition. This transformation W 7→ (W−,W+) is referred to as a
polarization recursion. Then a channel W s1,s2,...,sn is defined for si ∈ {−,+} , i = 1, 2, . . . , n,
resulting from applying the channel transform n times recursively as

W s1,s2,...,sn =

(W s1,s2,...,sn−1)− if sn = −,

(W s1,s2,...,sn−1)+ if sn = +.

For N = 2n, the polarization transform is obtained from the N × N matrix G⊗n
2 , where

G2 =
[
1 0

1 1

]
[13], and A⊗n denote the n-fold Kronecker product of A. A polar code of length

N is constructed by selecting certain rows of G⊗n
2 as its generator matrix. More specifically,

let K denote the code dimension. Then all the N bit-channels in the set {W s1,s2,...,sn : si ∈

24



{−,+} for i = 1, 2, . . . , n}, resulting from the polarization transform, are sorted with respect
to an associated parameter, e.g., their probability of error (or Bhattacharyya parameter), the
best K of them with the lowest probability of error are selected, and then the corresponding
rows from G⊗n

2 are selected to form the GM. Hence, the GM of an (N,K) polar code is
a K × N sub-matrix of G⊗n

2 . Then the probability of error of this code, under successive
cancellation decoding, is upper bounded by the sum of probabilities of error of the selected
K best bit-channels [13].

3.2.2 General Kernels and Error Exponent

It is shown in [78] that if G2 is replaced by an l× l matrix Gl, then polarization still occurs
if and only if Gl is an invertible matrix in F2 and it is not upper triangular under any column
permutation, in which case the matrix Gl is called a polarization kernel. Furthermore, the
authors of [78] provided a general formula for the speed of the error rate decay of polar
codes constructed based on an arbitrary l × l polarization kernel Gl. More specifically, let
N = ln denote the block length and C denote the capacity of the channel. For any fixed
β < E(Gl) and fixed code rate R < C, where E(Gl) denotes the rate of polarization (see
[78, Definition 7]), there is a sequence of polar codes based on Gl with probability of error
Pe under SC decoding bounded by Pe(n) ⩽ 2−Nβ

, for all sufficiently large n. The rate
of polarization E(Gl) is given by E(Gl) = 1

l

∑l
i=1 loglDi, where {Di}li=1 are the partial

distances of Gl. More specifically, for Gl = [gT1 , g
T
2 , . . . , g

T
l ]

T , the partial distances Di are
given by Di ≜ dH(gi, span(gi+1, . . . , gl)) for i = 1, 2, . . . , l, where dH(a, b) is the Hamming
distance between two vectors a and b, and dH(a, U) is the minimum distance between a
vector a and a subspace U , i.e., dH(a, U) = minu∈U dH(a, u).

3.3 Sparse Polar Code Constructions based on Large

Kernels

In this section we first show the existence of capacity-achieving polar codes with generator
matrices for which all column weights scale at most polynomially with arbitrarily small degree
in the block length N , hence validating the conjecture in [73]. Second, we show that, for any
polar code of rate 1, almost all of the column weights of the GM are polynomial in N .

Theorem 10. For any fixed s ∈ (0, 1) and any BMS channel, there are capacity-achieving
polar codes under SC decoding, with generator matrices having column weights bounded by
N s, where N denotes the block length of the code.
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Proof: Consider an l × l polarizing matrix Gl =

[
I l

2
0 l

2

I l
2

I l
2

]
, where l is an even integer

such that l ⩾ 2
1
s . The partial distances are Di = 1 for 1 ⩽ i ⩽ l

2
and Di = 2 for l

2
+1 ⩽ i ⩽ l.

Hence, the rate of polarization E(Gl) = 1
2
logl 2 > 0, and there is a sequence of capacity-

achieving polar codes constructed using Gl as the polarizing kernel. Note that in Gl, each
column has weight at most 2 and, hence, the column weights of G⊗n

l are upper bounded by
2n. By the specific choice of l, we have 2n ⩽ (ls)n = (ln)s = N s, where N = ls is the block
length of the code. This completes the proof.

Remark 2. While Theorem 10 provides a theoretical guarantee on the existence of capacity-
achieving polar codes with sparse generator matrices, the sparsity comes at a cost. Specifi-
cally, the rate of polarization E(Gl) =

1
2
logl 2 ⩽ s

2
is smaller than that associated with the

kernel G2, given by E(G2) = 0.5. On the other hand, while the SC decoding complexity for
polar codes defined by general l × l kernels behaves as O(2l

l
N loglN)[78], in this case, the

complexity scales as O(N loglN) by considering the following viewpoint. Interleave (l/2)n

copies of the polar code with block length 2n based the standard G2 kernel, to form a code
with block length N = ln with an n-stage recursive encoder structure. By decoding each
copy with complexity O(2n log 2n) = O(n2n) under the SC decoder, the entire code can be
decoded with complexity O((l/2)n · n2n) = O(N loglN).

Since we can construct capacity-achieving codes with column weights upper bounded by
N s with any fixed s > 0, by using polar codes, the question now is whether it is possible to
further improve the sparsity of polar code GMs. For instance, we know it is possible to have
an upper bound of O(logN) on all the GM column weights of capacity-achieving codes, over
the BEC, by utilizing random linear ensembles [73]. For rate-1 polar codes, the proposition
below answers the inquiry in the negative, by showing that almost all the GM columns have
weights lower bounded by a polynomial in N .

Proposition 11. Given any l ⩾ 2, l× l polarizing kernel Gl, and 1
l
> r > 0, the fraction of

columns in G⊗n
l with O(N r logl 2) Hamming weight vanishes as n grows large, where N = ln.

Proof: The proof is given in Appendix Section A.1.
The trade-off highlighted in Remark 2 suggests that off-the-shelf polar code constructions

with large kernels may not be the ideal option when the speed of decay of the error probability
is a concern. However, the heaviest column in the polar code with kernel G2 scales as Θ(N)

for any code rate. To construct codes with sparse GM and suitable decay of the error
probability, in the next section, we propose a splitting algorithm for the generator matrix
and investigate the resulting codes in terms of the error probability, GM column sparsity,
and the decoding complexity.
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3.4 Splitting Algorithm

When all columns of a matrix G are required to be sparse, that is, have low Hamming
weights, a splitting algorithm is applied. Given a column weight threshold wu.b., a splitting
algorithm splits any column in G with weight exceeding wu.b. into columns that sum to the
original column both in F2 and in R, and that have weights no larger than wu.b..

Note that a column of G is left intact by the splitting algorithm as long as its Hamming
weight does not only exceed wu.b.. Thus a splitting algorithm would be described as an
algorithm which takes as input a column vector v and a weight threshold wu.b., and returns
a set of column vectors whose lengths are equal to the length of v. Given a matrix A

with m columns and a threshold wu.b., with a slight abuse of notation, the matrix generated
by a splitting algorithm is defined as the matrix whose column vectors are those from the
m sets, which are respectively the outputs of the algorithm for each column of A. For

example, consider a 4 × 2 matrix A =

[
1 0 1 1

1 1 1 0

]T
= [a1, a2], a threshold wu.b. = 2,

and a splitting algorithm S. Let S(ai, wu.b.), i = 1, 2, be the sets of vectors returned by
S, given by S(a1, wu.b.) =

{
[1, 0, 1, 0]T , [0, 0, 0, 1]T

}
,S(a2, wu.b.) =

{
[1, 0, 1, 0]T , [0, 1, 0, 0]T

}
.

The matrix generated by S for A is then a 4× 4 matrix of the form [[1, 0, 1, 0]T , [0, 0, 0, 1]T ,

[1, 0, 1, 0]T , [0, 1, 0, 0]T ], or a column permutation of it.
Let an (N,K) polar code C have a K×N submatrix of G = G⊗n

2 as the generator matrix,
and G′ denote the N ×N(1+γ) matrix generated by the splitting algorithm, where N = 2n.
A new code based on G′ selects the same K rows of G′ as the polar code C to form the
generator matrix, where all the column weights are bounded by wu.b.. Such a code is referred
to as a polar-based code corresponding to G′, or a PB(G′) code, in this dissertation.

Note that more detailed description is needed to uniquely specify a splitting algorithm,
which then determines the term γ and the performance of the PB(G′) code. Specifically,
the channel polarization phenomenon and the recursive encoding and decoding structure
may be invalid when the GM is modified by the splitting algorithm. These changes also
imply that the codes with the split GM may suffer from drawbacks such as weaker bounds
on error probability and larger decoding complexity, as well as the rate loss with a multi-
plicative factor of 1 + γ, when compared to the polar codes. In this section, we introduce a
splitting algorithms, referred to as the decoder-respecting splitting (DRS) algorithm. When
the threshold wu.b. is chosen appropriately, we show in Section 3.4.1 that the term γ goes
to 0 exponentially fast in n, when the DRS algorithm is applied to columns of the matrix
G = G⊗n

2 .
The DRS algorithm is crucial to two encoding schemes, described in subsequent sections,
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that are effective in avoiding the drawbacks that may arise with an arbitrary splitting algo-
rithm. These schemes enable low-complexity SC decoders based on likelihood ratios that can
be calculated with a recursive algorithm. The encoding of the resulting PB(G′) codes can
be realized by a encoding scheme which inherits the recursive structure of the original polar
codes, except only at locations that corresponds to a split of a column of G, as dictated by
the DRS algorithm. At these locations, the exclusive-OR operations are removed and addi-
tional copies of the underlying channel are used. The PB(G′) codes suffer only a negligible
1 + γ multiplicative factor of rate loss compared to the original polar codes for large n. For
BEC, this sequence of codes is capacity-achieving with an error exponent of 1

2
, under a new

SC decoding scheme (see Theorem15 in Section 3.5). For general BMS channels, another
encoding scheme, referred to as the ADRS scheme, is proposed in Section 3.6. This scheme
introduces additional ‘noise’ nodes and requires even more copies of the underlying channel
when the DRS algorithm requires a split. For codes generated by this scheme, results similar
to that in Theorem15 are available with a slightly stricter condition on the choice of wu.b..

3.4.1 Decoder-Respecting Splitting Algorithm

The main idea of the DRS algorithm is to construct a generator matrix that can be
realized with an encoding pattern similar to conventional polar codes such that the column
weights of the matrix associated with the diagram are at most wu.b.. The pseudo code for
the algorithm is provided in Algorithm 1.

The core of the algorithm is the DRS-Split function. When the weight of the input the
vector x is larger than the threshold, it splits the vector in half into vectors xh and xt, and
recursively finds two sets, Yh and Yt, composed of vectors with the length halved compared to
the length of x. The vectors are then appended to the length of x, which collectively form the
output of the function. For a vector u ∈ {0, 1}m×1, let |u| = m denote its length, and wH(u)

its Hamming weight. We note that the weights of vectors in Yh and Yt are respectively upper
bounded by the weights of xh and xt, both of which are bounded by k = |xh| = |xt|, and
that the value of k is halved each iteration. Hence, the function is guaranteed to terminate
as long as the threshold is a positive integer.

We use a simple example to illustrate the algorithm. Let n = 3, v = [0, 0, 0, 0, 1, 1, 1, 1]T

and wu.b. = 2. Since the weight of v exceeds the threshold, it is first split into xh =

[0, 0, 0, 0]T and xt = [1, 1, 1, 1]T . Since xh is an all-zero vector, Yh is an empty set according
to line 14 to 15. To compute Yt =DRS-Split(2, [1, 1, 1, 1]T ), the function splits the input
into half again, thereby obtaining x′

h = [1, 1]T and x′
t = [1, 1]T . The corresponding Y ′

h

and Y ′
t are then both

{
[1, 1]T

}
and, hence, we have Yt =

{
[0, 0, 1, 1]T

}
∪
{
[1, 1, 0, 0]T

}
=
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Algorithm 1 DRS algorithm
Input: weight threshold wu.b. ∈ N, a column vector v ∈ {0, 1}2

n×1

Output: the set of vectors with length 2n returned by DRS-Split(wu.b.,v)
1: function DRS-Split(wu.b.,x)
2: if wH(x) > wu.b. then
3: k ← length(x)/2
4: xh ← (x1, . . . , xk)

T , xt ← (xk+1, . . . , x2k)
T

5: Yh ← DRS-Split(wu.b.,xh)
6: Yt ← DRS-Split(wu.b.,xt)
7: if xh = 0k×1 then
8: return

⋃
y∈Yt

{(01×k, y
T )T }

9: else if xt = 0k×1 then
10: return

⋃
y∈Yh

{(yT ,01×k)
T }

11: else
12: return

⋃
y∈Yt

{(01×k, y
T )T } ∪

⋃
y∈Yh

{(yT ,01×k)
T }

13: end if
14: else if wH(x) = 0 then
15: return {}
16: else
17: return {x}
18: end if
19: end function

{
[0, 0, 1, 1]T , [1, 1, 0, 0]T

}
. Since xh = 04×1, the function proceeds to lines 7 and 8, and

returns
{
[0, 0, 0, 0, 0, 0, 1, 1]T , [0, 0, 0, 0, 1, 1, 0, 0]T

}
.

In order to analyze the effect of the DRS algorithm on the matrix G⊗n
2 , we show that the

size of the algorithm output does not depend on the order of a sequence of Kronecker product
operations, where the size of a set of vectors stands for the number of vectors in the set.
Suppose that the Kronecker product operations with the vector [1, 1]T for n1 times and with
the vector [0, 1]T for n2 times are applied on a vector v, where n = n1 + n2 and the order of
the operations is specified by a sequence (s1, s2, . . . , sn) ∈ {−,+}n with |{i : si = −}| = n1

and |{i : si = +}| = n2. Also, let v(i) denote the output of applying the first i Kronecker
product operations on v. It is defined by the following recursive relation:

v(i) =

v(i−1) ⊗ [1, 1]T , if si = −,

v(i−1) ⊗ [0, 1]T , if si = +,
(3.1)

for i ⩾ 1 and the initial condition v(0) = v. We use v(s1,s2,...,si) instead of v(i) when the
sequence is needed for clarity. The following lemma shows that any two vectors of the form
v(s1,s2,...sn) will be split into the same number of columns under the DRS algorithm as long
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as the sequences associated with them contain the same number of − and + signs.

Lemma 12. Let n = n1 + n2 and (s1, . . . , sn) ∈ {−,+}n be a sequence with n1 minus signs
and n2 plus signs. Let v(n) be the vector defined by a vector v and the sequence (s1, . . . , sn)

through equation (3.1). Then the size of the DRS algorithm output for v(n) depends only on
the values n1 and n2.

Proof: The proof is given in Appendix Section A.2.1.
Let a K × N matrix M = [u1,u2, . . . ,uN ] and a threshold wu.b. be given. Suppose that

the DRS algorithm is applied to each column in M and the sum of the sizes of the output
sets is N(1 + γ). Then DRS(M) is defined as the K ×N(1 + γ) matrix consisting of all the
vectors in the output sets (with repetition).

We study the effect of the DRS algorithm in terms of the multiplicative rate loss, i.e., 1+γ.
Since all the columns of G⊗n

2 are in the form of v(s1,s2,...,sn) with v = [0, 1]T or v = [1, 1]T ,
Lemma 12 substantially simplifies the analysis for γ. In particular, the following proposition
shows an appropriate choice of wu.b. guarantees the existence of a sparse polar-based GM
with vanishing γ.

Proposition 13. Let the columns of G⊗n
2 be the inputs for the DRS algorithm and

DRS(G⊗n
2 ) be the N × N(1 + γ) matrix generated by the DRS algorithm for G⊗n

2 . The
term γ vanishes exponentially fast as n goes to infinity for any wu.b. = 2nλ with λ > λ∗ ≜

hb(
2
3
)− 1

3
≈ 0.585.

Proof: The proof is given in Appendix Section A.2.2.
For the effect of the DRS algorithm on G⊗n

2 with finite n, we compute values of γ for
various combinations of n and λ, as shown in Figure 3.1. The numerical results with 6 ⩽

n ⩽ 26 indicate that, for 0.5 ⩽ λ < 0.6, the multiplicative rate loss γ is larger with larger
n, and for λ ⩾ 0.65, γ is smaller with larger n. The fact that the n = 26 does not provide
the smallest γ for λ close to λ∗ should not be considered a contradiction to Proposition 13.
Instead, the closer λ > λ∗ is, the larger n it takes for the exponential decay of γ to dominate.

3.5 Low-complexity Decoder for Polar-based Codes:

BEC

In this section, we show two results for the polar-based code corresponding to DRS(G⊗n
2 )

over the BEC. Such codes are referred to as the polar-DRS codes in this dissertation. First,
we propose a low-complexity suboptimal decoder for the polar-DRS codes. Second, with the
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Figure 3.1: Multiplicative rate loss factor γ versus λ

low-complexity suboptimal decoder, the polar-DRS codes are capacity-achieving for suitable
column weight threshold.

It is known that when the channel transformation with kernel G2 is applied to two BECs,
the two new bit-channels are also BECs. Specifically, for two binary erasure channels W1 and
W2 with erasure probabilities ϵ1 and ϵ2, respectively, the polarized bit-channels W−(W1,W2)

and W+(W1,W2) are binary erasure channels with erasure probabilities ϵ1 + ϵ2 − ϵ1ϵ2 and
ϵ1ϵ2, respectively.

The mutual information I(·) and Bhattacharyya parameter Z(·) of a BEC W with erasure
probability ϵ are given by: I(W ) = 1−ϵ, Z(W ) = ϵ. For a sequence (s1, s2, . . . , sn) ∈ {−,+}n,
the function Bi2De(s1, s2, . . . , sn) returns the decimal value of the binary string in which a
minus sign for si is regarded as a 0 and a plus sign as a 1, e.g., Bi2De(−,+,+) = (011)2 = 3.
Let G denote G⊗n

2 and G′ denote DRS(G⊗n
2 ), and let Z(s1s2...sn)

G denote the Bhattacharyya
parameter of the bit-channel W s1s2...sn , which is equal to W (Bi2De(s1,s2,...,sn)+1)

N in [13, page 3].
The term Z

(s1s2...sn)
G′ denotes the Bhattacharyya parameter of the bit-channel observed by

the source bit of the same index corresponding to G′.
The following lemma shows that the bit-channel observed by each source bit is better in

terms of the Bhattacharyya parameter when G′ is the generator matrix instead of G.

Lemma 14. Let wu.b. and n be given, and let G denote G⊗n
2 and G′ denote DRS(G⊗n

2 ). The
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following is true for any (s1, s2, . . . , sn) ∈ {−,+}n:

Z
(s1s2...sn)
G′ ⩽ Z

(s1s2...sn)
G .

Proof: The proof is given in Appendix A.3.

Remark 3. A key to the proof of Lemma 14 is a recursive encoding scheme for the relation-
ship x = uG′, where u and x are row vectors of lengths N = 2n and N(1 + γ), respectively.
The encoding scheme is most easily understood by considering the low-complexity encod-
ing structure for the standard polar code, as seen in [15], and replacing the exclusive-OR
(XOR) operations at locations that correspond to the splitting operations dictated by the
DRS algorithm. Specifically, when a split is required on a column of G, the corresponding
XOR node is removed, the input bit for the ‘worse’ channel remains untouched, and two
copies of the input bit for the ‘good’ channel are transmited through the underlying channel.
For example, consider G = G⊗3

2 . The encoding diagram for codes defined by G is shown in
Figure 3.2a. We have

G =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


, G′ =



1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 1 1 1 0 0 0 0
0 1 0 0 0 1 0 0 0
0 1 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1 0
0 1 1 1 1 1 1 1 1


,

where G′ is the matrix DRS(G⊗3
2 ) when wu.b. = 4. The encoding structure for G′ is shown in

Figure 3.2b. Since the first column is the only column of G split by the DRS algorithm when
wu.b. = 4, we remove the XOR node that performs U ′′′

1 = U ′′
1 + U ′′

5 , and assigns U ′′′
1 = U ′′

1 ,
U ′′′
5,1 = U ′′

5 and U ′′′
5,2 = U ′′

5 . Two solid circles, representing transparent nodes where the
output variable(s) are identical to the input variable, are used to indicate the location of
the removed XOR node. For the case when wu.b. = 2, the DRS algorithm would split the
first column of G into three vectors, and the second, third, and fifth column once each.
The corresponding encoding diagram is shown in Figure 3.3, where we color the solid circles
associated with splits on the first, second, third, and fifth columns by black, green, orange,
and blue, respectively.

We are ready to show the existence of a sequence of capacity-achieving codes over the
BEC with GMs where the column weights are bounded by a polynomial in the blocklength,
and that the block error probability under a low complexity decoder vanishes as n grows
large.
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Theorem 15. Let β < E(G2) = 0.5, λ > λ∗ = hb(
2
3
) − 1

3
≈ 0.585, and a BEC W with

capacity C be given. There exists a sequence of polar-based codes corresponding to DRS(G⊗n
2 )

with the following properties for all sufficiently large n: (1) The error probability under a SC
decoder is upper bounded by 2−Nβ , where N = 2n, (2) The Hamming weight of each column
of the GM is upper bounded by Nλ, (3) The rate approaches C as n grows large, and (4) The
codes can be decoded by a SC decoding scheme with complexity O(N logN).

Proof: Let the threshold for DRS algorithm be wu.b. = 2nλ, G denote G⊗n
2 , and G′

denote DRS(G⊗n
2 ). We prove the four claims in order. First, Lemma 14 shows that for a

given n and any t > 0, the following is true:

{s ∈ {−,+}n : Zs
G ⩽ t} ⊆ {s ∈ {−,+}n : Zs

G′ ⩽ t} . (3.2)
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Using [13, Theorem 2], for any β < 1
2
, we have

lim inf
n→∞

1

N

∣∣∣{s ∈ {−,+}n : Zs
G ⩽ 2−Nβ

}∣∣∣ = I(W ) = C (3.3)

Let SG and SG′ denote the sets of the sequences s ∈ {−,+}n that satisfy Zs
G ⩽ 2−Nβ and

Zs
G′ ⩽ 2−Nβ , respectively. Equation (3.2) guarantees that SG is a subset of SG′ . Assume

the code corresponding to G freezes the input bits observing bit-channels W s1s2...sn for all
(s1, s2, . . . , sn) /∈ SG. For the code corresponding to G′, we use the bit-channels with the
same index as the code corresponding to G, for transmission of information bits, and leave
the rest as frozen. The probability of block error under SC decoding, which is described in
the last part of this proof, for the code corresponding to G′, Pe,G′ , can be bounded above, as
in [13], by the sum of the Bhattacharyya parameters of the bit-channels for the source bits
(that are not frozen), that is,

Pe,G′ ⩽
∑
s∈SG

Zs
G′ ⩽

∑
s∈SG

2−Nβ

= |SG| 2−Nβ

,

where the second inequality follows because, for s ∈ SG, we must have s ∈ SG′ and thus
Zs

G′ ⩽ 2−Nβ . From (3.3), for all sufficiently large n, we have Pe,G′ ⩽ NC2−Nβ
. With some

calculus, one may show that, for any β′ < 1
2
, Pe,G′ ⩽ 2−Nβ′ for all sufficiently large n.

The second claim follows from the fact that the GM for the code corresponding to G′

is a submatrix of G′, and the Hamming weight of each column of G′ is upper bounded by
wu.b. = 2nλ = Nλ.

The third claim is a consequence of Proposition 13 and Lemma 14. The number of
information bits of the code corresponding to G′ is given by |SG|, and the length of the code
is N(1 + γ). Hence the code rate is |SG|

N(1+γ)
. Since the term γ vanishes as n grows large, we

have
lim inf
n→∞

|SG|
N(1 + γ)

= lim inf
n→∞

|SG|
N

= I(W ) = C. (3.4)

Finally, we prove the claim for the existence of a low-complexity decoder. Just like that of
the SC decoder for conventional polar codes with kernel G2, the decoding algorithm proceeds
in a recursive manner. Let U1, . . . , UN be the inputs, and Y1, . . . , YN1 , YN1+1, . . . , YN1+N2 the
outputs, where N1 + N2 = N(1 + γ), as shown in Figure 3.4b. However, while the polar
code based on G⊗n

2 , as shown in Figure 3.4a, is recursive in the encoder structure, i.e., the
two encoding sub-blocks corresponding to G⊗n−1

2 are identical, the code based on (G⊗n
2 )′ is

not, as the blocks W u
n and W l

n are not necessarily equal. In fact, when there is a split in
the GM due to the DRS algorithm, i.e., when one or more of the XOR operations shown in
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Figure 3.4b is replaced by two solid black circle, the number of inputs of the block W l
n will

be larger than that of W u
n .
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Figure 3.4: Encoding/decoding diagrams for standard and DRS-modified polar codes

Let F ⊆ {1, . . . , N} be the set of the indices of the frozen bits. The decoder declares
estimates Ûi of the inputs, for 1 ⩽ i ⩽ N , sequentially by:

Ûi =

ui, if i ∈ F ,

ψi(Y
N1+N2
1 , Û i−1

1 ,Wn) if i /∈ F ,
(3.5)

where ψi(Y
N1+N2
1 , Û i−1

1 ,Wn) can be found in following four cases, and Wn denotes the encod-
ing block shown in Figure 3.4b. Let the symbol e denotes an erasure, and assume e⊕ b = e

for b ∈ {0, 1, e}. We write ψi in place of ψi(Y
N1+N2
1 , Û i−1

1 ,Wn) for the sake of space in the
following.

• If i is odd and Xi = Ui⊕Ui+1, which corresponds to an unsplit XOR operation observed
by Ui,

ψi ≜

X̂i ⊕ X̂i+1 if X̂i ̸= e, X̂i+1 ̸= e,

e, otherwise.

• If i is odd and Xi = Ui, which corresponds to a split XOR operation, ψi ≜ X̂i.
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• If i is even and Xi−1 = Ui ⊕ Ui−1, which corresponds to an unsplit XOR operation,

ψi ≜



X̂i, if X̂i ̸= e, X̂i−1 ̸= e, X̂i = X̂i−1 ⊕ Ûi−1

or X̂i ̸= e, X̂i−1 = e, ,

X̂i−1 ⊕ Ûi−1, if X̂i = e, X̂i−1 ̸= e, Ûi−1 ̸= e

e, otherwise.

• If i is even and Xi,1 = Xi,2 = Ui, which corresponds to a split XOR operation,

ψi ≜



X̂i,1, if X̂i,1 ̸= e, X̂i,2 = e,

or X̂i,1 = X̂i,2 ̸= e,

X̂i,2, if X̂i,1 = e, X̂i,2 ̸= e,

e, otherwise.

The estimates X̂1, X̂3, . . . , X̂N−1 and X̂2, X̂4, . . . , X̂2j,1, X̂2j,2, . . . , X̂N are found in a sim-
ilar approach using the blocks W u

n and W l
n along with the outputs Y1, . . . , YN1 and

YN1+1, . . . , YN1+N2 , respectively.
For the right-most variables, the blocks they observe are identical copies of the BEC W .

Hence the estimates of the variables, denoted as X̂(n)
1 , X̂

(n)
2 , . . . , X̂

(n)
N1+N2

are naturally defined
by the outputs of the channels, i.e., X̂(n)

i = Yi for i = 1, 2, . . . , N1 +N2.

At each stage there are at most N1 +N2 = N(1+ γ) = O(N) estimates to make, and the
recursion ends in log(N) steps. Since each estimate is obtained with constant complexity,
the total decoding complexity for the code based on DRS(G⊗n

2 ) is bounded by O(N logN).

We evaluate the performance of the polar-DRS codes with n = 10 and λ = 0.6, 0.8, 1.0,
under the SC decoding scheme described in the proof of Theorem 15, over the BEC with
erasure probability ϵ = 0.5. In Figure 3.5a, the block error probabilities for the curves with
smaller λ are smaller, due to the improvement of some of the Bhattacharyya parameters
observed by the information bits. That is, there are sequences (s1, s2, . . . , sn) ∈ {−,+}n

for which the inequality in Lemma 14 is strict. However, after factoring in multiplicative
rate loss γ, we may observe in Figure 3.5b that the performance of the codes with λ = 0.6

are substantially worse than the original polar code (λ = 1 curve), and those with λ = 0.8

deliver trade-off between code rate and error probability comparable to the original polar
code, while guaranteeing the threshold wu.b. is one-fourth of the latter.
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Figure 3.5: Error probability for polar-DRS codes with n = 10

Remark 4. We note that for general BMS channels, Lemma 14 may fail. One key part
in the proof (see Appendix A.3) is the fact that the Bhattacharyya parameter for the bit-
channel observed by Ui is a non-decreasing function of those of W (X1), . . . ,W (Xf(m)) for
i ⩽ 2m, and of W (Xf(m)+1), . . . , W (X2f(m)) for i > 2m, when all the channels are BECs. We
now provide an example where we see the argument for Lemma 14 fail for BMS channels.
Let a, a′, b, b′ be four distinct elements and Y = {a, a′, b, b′}. Let two BMS channels W1,W2 :

{0, 1} → Y be given, and that W1(y|0) = W1(ϕ(y)|1) and W2(y|0) = W2(ϕ(y)|1) for all y ∈ Y
where the involution ϕ maps a 7→ a′, b 7→ b′. Assume the channel transition probabilities
are W1(a|0) = 6/9,W1(b|0) = 1/9, W1(b

′|0) = 1/9,W1(a
′|0) = 1/9 and W2(a|0) = 5/11,

W2(b|0) = 4/11, W2(b
′|0) = 1/11, W2(a

′|0) = 1/11. The Bhattacharyya parameters for
W1,W2 are respectively 0.7666 and 0.7702. If m = 1 and Bm is simply the kernel G2, the
symbols X1, X2 are functions of U1, U2 given by X1 = U1 + U2 and X2 = U2.

We now consider two possible cases for the pair (W (X1), W (X2)). If (W (X1),W (X2)) =

(W1,W2), the Bhattacharyya parameters for the bit-channels observed by U1, U2 are respec-
tively 0.9147 and 0.5904. If (W (X1),W (X2)) = (W2,W2), the Bhattacharyya parameters for
the bit-channels observed by U1, U2 are respectively 0.9137 and 0.5932. We note that while
the Bhattacharyya parameters for W (X1), W (X2) in the second case are no less than in the
first case, the Bhattacharyya parameter Z(U1) in the second case is smaller than in the first
case. With the above observation, one can not claim the validity of Theorem 15 for general
BMS channels. This motivates a new code construction for general BMS channels.
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3.6 Low-complexity Decoder for Polar-based Codes:

BMS

This section introduces a capacity-achieving polar-based coding scheme with low-
complexity decoder for general BMS channels. For general BMS channels, the Bhattacharyya
parameter of the bit-channel W− cannot be expressed only in terms of parameters of the
channel W . This implies that Lemma 14 and Theorem 15 are not applicable for channels
other than BEC, as pointed out in Remark 4. A procedure that augments the generator
matrix corresponding to G′, the output of the DRS algorithm for the matrix G⊗n

2 , may be
used to construct a capacity-achieving linear code over any BMS channel W .

3.6.1 ADRS Scheme

The encoding scheme, termed augmented-DRS (ADRS) scheme, avoids heavy columns
in the GM and, at the same time, guarantees that the bit-channels observed by the source
bits Ui have the same statistical characteristics as when they are encoded with the generator
matrix G⊗n

2 . Specifically, the ADRS scheme modifies the encoder for G⊗n
2 starting from

the split XOR operations associated with the first polarization recursion, then the second
recursion, and proceed all the way to the n-th recursion, where a XOR operation is split if
and only if it is split in an encoder with generator matrix DRS(G⊗n

2 ).
Assume an XOR operation with operands U (n−j)

i1
and U

(n−j)
i2

and the output U (n−j+1)
i1

,
where i1 = Bi2De(s1, . . . , sj−1, sj = −, sj+1, . . . , sn) + 1 and i2 = Bi2De(s1, . . . , sj−1, sj =

+, sj+1, . . . , sn) + 1 = i1 + 2n−j, is to be split (see Section 3.5 for the function Bi2De(·)). If
j = 1, before modification, the variables U (n)

i1
and U

(n)
i2

are transmitted through two copies
of W , and the bit-channels observed by U (n−1)

i1
and U (n−1)

i2
are W− and W+, respectively, as

shown in Figure 3.6a. If the XOR operation is split according to DRS(G⊗n
2 ), ADRS scheme

replaces the structure by that given in Figure 3.6b, where ni1,1 is a Bernoulli(0.5) random
variable independent of all the other variables.

If j ⩾ 2, assume that the ADRS modification for the split operations for the first (j − 1)

recursions are completed. Let ni1,j be a Bernoulli(0.5) random variable independent of all
the other given variables. The part of encoding diagram to the right of U (n−j+1)

i1
is replicated,

where ni1,j takes the place of U (n−j+1)
i1

in the replica. And then we let U (n−j+1)
i1

= U
(n−j)
i1

⊕ni1,j.
In addition, the part of encoding diagram to the right of U (n−j+1)

i2
is replicated, and a copy of

U
(n−j)
i2

is transmitted through the replica. The variable U (n−j+1)
i2

remains U (n−j+1)
i2

= U
(n−j)
i2

.
We demonstrate the procedure described above through the following example. Assume

n = 3, N = 8, and wu.b. = 2. The encoding diagram for G⊗3
2 is shown in Figure 3.7a, and the
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Figure 3.6: ADRS scheme for a split XOR of first iteration of polarization

XOR operations that are split in DRS(G⊗3
2 ) are marked in green and blue, which indicate

the operations are due to the first and the second polarization recursions (i.e., s1 and s2),
respectively. The notations U ′

i , U
′′
i , U

′′′
i are used to represent U (1)

i , U
(2)
i , U

(3)
i . Replacing the

XOR operations marked in green as described for the case of j = 1, the encoding diagram
is now shown in Figure 3.7b. For the XOR operations marked in blue, we proceed by using
the step for j ⩾ 2 and obtain the diagram shown in Figure 3.7c.

It can be noted that the bit-channels observed by each of U (j)
i , for i = 1, 2, . . . , N and

j = 0, 1, 2, . . . , n, in the ADRS encoder are the same as those in the standard encoder
for the generator matrix G⊗n

2 (The variable U (0)
i are given by Ui for 1 ⩽ i ⩽ N). When

an XOR operation associated with the j-th recursion, with operands U (n−j)
i1

and U
(n−j)
i2

and the output U (n−j+1)
i1

, is split and modified under the ADRS scheme, the complexity of
computing the likelihood or log-likelihood for U (n−j)

i1
and U

(n−j)
i2

can be upper bounded by
2(21 + 22 + . . .+ 2j)c = 2(2j+1 − 2)c, for some constant c > 0.

3.6.2 Polar-ADRS Code Performance

We are now ready to show the performance of the polar-based code whose encoding
structure is given by the ADRS scheme, referred to as the polar-ADRS code. First we show
the existence of a low-complexity decoder.

Proposition 16. Let a constant λ > λ† ≜ (log2 3)
−1 ≈ 0.631 be given. The decoding

complexity for a SC decoder for the polar-ADRS code is bounded by O(N logN) for all
sufficiently large n if the threshold for the DRS algorithm is wu.b. = 2nλ.

Proof: The proof is provided in Appendix A.4.1.
Second, it can be observed that the number of additional copies of channels due to the

modification for an XOR operation at the j-th polarization recursion is 2j. We find the total
number of extra channel uses and the ratio γ of that to the number N = 2n of channel
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Figure 3.7: ADRS example with N = 8 and wu.b. = 2

uses for the code corresponding to G⊗n
2 in the following. Assume that the column weight

threshold of the DRS algorithm is given by wu.b. = 2nλ.

Proposition 17. Let N(1 + γ) be the number of channel uses of the encoder for the ADRS
scheme based on DRS(G⊗n

2 ) with wu.b. = 2nλ. Then the term γ goes to 0 as n grows large,
if we have λ > λ†.

Proof: The proof is provided in Appendix A.4.2.
We are ready to show the existence of a sequence of capacity-achieving codes over general

BMS channels with GMs where the column weights are bounded by a polynomial in the
blocklength, and that the block error probability under a low complexity decoder vanishes
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as n grows large. Note that while this result is also applicable when the underlying channel
is a BEC, the constraint on λ is stricter than that in Theorem 15, due to the difference in
the encoding and decoding schemes.

Theorem 18. Let β < E(G2) = 0.5, λ > λ†, and a BMS channel W with capacity C be
given. There exists a sequence of codes with the following properties for all sufficiently large
n: (1) The error probability under SC decoding is upper bounded by 2−Nβ , where N = 2n,
(2) The Hamming weight of each column of the GM is upper bounded by Nλ, (3) The rate
approaches C as n grows large, and (4) The codes can be decoded by a SC decoding scheme
with complexity O(N logN).

Proof: We prove the four properties in order as follows. First, similar to the proof of
Theorem15, for i = 1, 2, . . . , N , the bit Ui is frozen in the polar-ADRS code with rate R < C

if and only if it is frozen in the polar code with kernel G2, blocklength N = 2n, and the rate
R. Hence, the probability of error of the polar-ADRS code can be bounded in the same way
as its polar-code counterpart, since the bit-channels observed by the source bits Ui, and the
corresponding Bhattacharyya parameters, are identical to those when they are encoded with
the standard polar code.

Second, when the ADRS scheme is based on DRS(G⊗n
2 ) with wu.b. = 2nλ, the generator

matrix for the polar-ADRS code is a submatrix of DRS(G⊗n
2 ). The column weights of the

GM for the polar-ADRS code are thus upper bounded by wu.b. = 2nλ = Nλ. The third claim
holds by using an argument similar to the one used in the proof of Theorem 15. This is
because the term γ vanishes as n grows large according to Proposition 17. Finally, note that
the fourth claim is equivalent to Proposition 16.

We evaluate the performance of the polar-ADRS codes with N = 1024, K = 512 and
weight thresholds wu.b. ∈ {64, 128, 256, 512, 1024}, under the SC decoding scheme, over the
BI-AWGN channels whose SNR (Eb/N0) ranges from 0.5 to 3 dB. The indices of frozen bits
are designed using a Monte-Carlo scheme for the BI-AWGN channel with Eb/N0 = 2 dB.
The auxiliary noise variables are generated with independent Bernoulli(0.5) distribution. The
stopping criterion for each data point is iteration = 105 or Block error count = 100,
whichever is reached first. In Figure 3.8a, the block error probabilities are very close for
codes with different weight thresholds over the range of simulated SNR. This is because
the bit-channels observed by each information bit are exactly the same with or without
the ADRS scheme, and that the block error probability of the codes are determined by the
characteristics of the information bit channels.

Note that the use of the auxiliary noise variables are of theoretical reasons and is required
for the proof of Theorem 18. In practice, we may freeze the auxiliary noise variables to
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Figure 3.8: Error probability for polar-ADRS codes with N = 1024, K = 512

avoid the channel uses for the transmission of them. In particular, when the auxiliary noise
variables are frozen to fixed values known to both the encoder and decoder, the decoder
can be considered as a genie-assisted decoder and its performance is better or equivalent
to that of a decoder without the information of the auxiliary noise variables. We simulate
the performance of the ADRS-polar code with N = 1024, K = 512 and weight thresholds
wu.b. ∈ {64, 128, 256, 512, 1024}, where the values of the auxiliary noise variables are fixed to
0’s, over the BI-AWGN channels with 0.5 ⩽ Eb/N0 ⩽ 3 (dB), and obtain Figure 3.8b. The
error rates of codes with small thresholds are lower than those with large or no thresholds,
a trend which is similar to that observed in Figure 3.5a.

3.7 Conclusion and Outlook

This chapter provided three constructions for capacity-achieving linear codes, based on
polar coding, where all the GM column weights are upper bounded sublinearly in the block
length. The first construction is a sequence of polar codes based on general polarization
kernels where the GM column weights are upper bounded by N s for any fixed s > 0, and
allows the codes to be decoded by a SC decoder. In order to attain a better trade-off
between the GM sparsity and the fall in error probability, we then proposed a column-
splitting algorithm for the GM, termed the DRS algorithm. With the DRS algorithm, we
designed two encoding schemes which yield two polar-based codes, referred to as polar-
DRS codes and polar-ADRS codes, that are decodable with low-complexity decoders for
the BECs and general BMS channels, respectively. The polar-based codes preserve several
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fundamental properties of the standard polar code with G2 kernel including the asymptotic
error rate upper bound and decoding complexity. Further, the GM column weights of the
polar-DRS and polar-ADRS codes are bounded from above by Nλ, for λ ≈ 0.585 and λ ≈
0.631, respectively, while the best bound for the standard polar codes scales linearly in
N . The proposed constructions are also distinct from known constructions for codes with
constraints on the GM sparsity by having analytical error probability upper bounds scaling
as O(2−Nt

) under SC decoders, for any t < 0.5. A future direction is to design splitting
algorithm and/or encoding schemes that preserve key properties of the polar codes based
on general polarization kernels, and show that the corresponding polar-based codes exhibit
better sparsity versus error rate trade-off.
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CHAPTER 4

New Bounds on the Size of Binary Codes with
Large Minimum Distance

4.1 Introduction

An error-correcting code C of length n and minimum distance d over a finite field Fq is
a subset of the vector space Fn

q with d = min dH(x, y), over all distinct x, y ∈ C. Here,
dH(x, y) =

∑n
i=1 1{xi ̸=yi} is the Hamming distance between x and y. The code C is said to

be linear if C is a subspace of the vector space Fn
q . The capabilities and limitations of error-

correcting codes are, in general, closely related to their minimum distance. For instance,
the maximum number of errors a code can correct in the Hamming space is upper bounded
by half of its minimum distance. This has led to a vast range of studies spanning several
decades to answer one of the most fundamental and classical problems in coding theory,
which is to determine (or to derive bounds on) the maximum size Aq(n, d) of an error-
correcting code C of length n over Fq and with minimum distance d [94, 59, 134]. Several
of the most well-known results in the literature focus on the regime where n → ∞ and d is
proportional to n, namely d = δn, for some 0 < δ < 1. The question then is to find the
asymptotic maximal rate R(δ) of an error-correcting code with relative distance δ, where we
define R(δ)def= lim supn→∞

1
n
logq Aq(n, ⌊nδ⌋).

Lower bounds on Aq(n, d) are often obtained by constructions, either explicitly or implic-
itly, i.e., via existence arguments. One of the most well-known lower bounds on Aq(n, d) is
the Gilbert–Varshamov (GV) bound [53, 135]:

Aq(n, d) ⩾
qn

Vq(n, d− 1)
,

where Vq(n, d) =
∑d

i=0

(
n
i

)
(q − 1)i is size of a Hamming ball of radius d in Fn

q . Several
improvements have been proposed to strengthen the GV bound, see, e.g., [42, 17, 107, 71,
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130, 143]. Among them, the most notable improvement in the binary case is due to Jiang and
Vardy [71], who improved the GV lower bound on A2(n, d) for δ < 0.499 by a multiplicative
factor of c log2 V2(n, d), for some constant c, via studying the independence number of the
sparse Gilbert graph on Fn

2 . For prime powers q = p2k with q ⩾ 49, explicit constructions of
q-ary linear codes, obtained through algebraic-geometric codes, that surpass the GV bound
are known [132]. For q = 2, a well-known conjecture asserts that the binary version of the
GV bound is asymptotically tight, when expressed as a lower bound on R(δ). For a survey
on the known bounds with finite n and d, the reader is referred to [87] and the websites
[6, 22]. For asymptotic lower bounds and an overview of known results the reader is referred
to [71, 48].

The best asymptotic upper bounds currently known are due to McEliece, Rodemich,
Ramsey and Welch (MRRW) [103]. Built upon Delsarte’s linear program (LP) approach
[32], these bounds are established by showing valid solutions to the dual LPs, and are often
called the first and the second linear programming bounds. In addition to the original proof
in [94], which utilizes Delsarte’s LP and properties of Krawtchouk polynomials, the first LP
bound has also been proved using various techniques including harmonic analysis of Boolean
functions [46, 106, 122], spectral analysis [20], and functional and linear-algebraic approaches
[19]. There is substantial empirical evidence [18] indicating that the bounds in [103] asymp-
totically give the exact answer in the asymptotic Delsarte problem. Consequently, several
works introduce new hierarchies of LPs, which include Delsarte’s LP as the weakest member
of this family [29, 90, 91]. Among them, the concurrent works [29] and [90] study similar
families of LPs applicable to linear codes only, and empirically show significant improve-
ment compared to Delsarte’s. In [91], new hierarchies of LPs for linear and general codes
along with the first dual feasible solutions to the LP’s that recover the first LP bound, are
developed.

4.1.1 Motivation

Low-rate codes are becoming increasingly important with the emergence of low-capacity
scenarios, including the Internet of Things (IoT) and satellite communications. For instance,
in IoT network, the devices need to operate under extreme power constraints and often need
to communicate at very low signal-to-noise ratio [116]. In the standard, legacy Turbo codes or
convolutional codes at moderate rates together with many repetitions are adopted to support
communication at low rates. It is expected, however, that repeating a moderate-rate code
to enable low-rate communication will result in rate loss and suboptimal performance. As
a result, studying low-rate error-correcting codes for reliable communications in such low-
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capacity regimes has become a subject of extensive recent works [127, 44, 1, 38, 2, 40, 4, 70,
39, 133, 3].

Motivated by the need to revisit various aspects of channel coding in the low-rate regime,
from efficient code design to reliable decoding algorithms, in this dissertation we focus on
the minimum distance properties of binary codes in the low-rate regime, which can be also
described as the large minimum distance regime, to be specified later. Let C be a binary
code of length n, size M , and minimum distance d = (n − j)/2, referred to as an (n,M, d)

code (for the sake of simplifying the equations, we reserve the parameter j to denote n− 2d

in various places throughout the chapter). With a slight abuse of terminology, the dimension
of C, including for non-linear codes, is denoted by k = log2M . Also, let R = k/n denote the
code rate. In this chapter, we focus on studying bounds on A2(n, d) in the large-minimum
distance regime, in particular, when d = n/2−Ω(

√
n), i.e., j = Ω(

√
n). For ease of notation,

we use A(n, d) to denote A2(n, d) throughout the chapter keeping in mind that the focus is
on studying binary codes.

4.1.2 Related Works

For j = n − 2d ⩽ 0, provided that a sufficient number of Hadamard matrices exist, a
widely accepted conjecture, Plotkin and Levenshtein (see [94, Chapter 2, Theorem 8]) have
essentially settled the problem and showed that A(2d, d) = 4d, A(n, d) = 2 ⌊d/(2d− n)⌋ for
even d > n/2, and A(n, d) = 2

⌊
d+1

2d+1−n

⌋
for odd d > (n− 1)/2.

In what follows, we consider the scenario with j > 0. When j scales linearly with n,
asymptotic results can be found in [59, 71]. In particular, the conjecture is that there does
not exist any binary code exceeding the GV lower bound (Theorem 19). There are a limited
number of studies in the literature targeting the regime where j is sub-linear in n. In 1973,
McEliece (see [94, Chapter 17, Theorem 38]), utilizing the LP approach, established the
following bound that is valid for j = o(

√
n):

A(n, d) ≲ n(j + 2). (4.1)

For j ≈ n1/3, codes have been constructed [128] to meet McEliece’s upper bound, and hence,
showing the tightness of this bound in this regime. A few improvements [131, 79] have been
derived in the literature in the regime j = o(n1/3). For j = Ω(

√
n), the Delsarte–Goethals

(DG) codes, first introduced as a generalization of Reed-Muller codes [77, 33, 57, 56, 63],
are a class of nonlinear code and are known to be the best known codes, in terms of the
minimum distance given a code size, in this regime. When j = Θ(

√
n), a sequence of DG

codes with sizes scaling polynomially in n can be constructed.
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While no explicit upper bounds on A(n, d) are derived in the literature targeting the
specific regime j = Ω(

√
n), the results by Barg and Nogin [20] can be tailored to provide

a sequence of bounds on A(n, d) scaling polynomially in n for j = Θ(
√
n). To the best of

our knowledge, this is the only existing result in the literature leading to upper bounds that
scale polynomially with n in this regime.

4.1.3 Our Contribution

We study the cardinality A(n, d) of binary codes in the large minimum distance regime
where j = n− 2d scales as j = Ω(

√
n) ∩ o(n). In particular, we show the following results:

• Two code constructions with sizes scaling polynomially and quasi-polynomially in n

are presented for cases with d = n/2−Ω(
√
n) and d = n/2−Ω(n2/3), respectively, by

demonstrating explicit and carefully designed BCH-like cyclic linear codes. Specifically,
for c ∈ N, the first construction has size nc+ 1

2 and d ⩾ n/2− 2c−1
√
n, and the second

construction has size n
logn
6

+ 3c2

2
+ 5c

2
+ 5

6 and d ⩾ n/2− 2c−1n2/3 − 22c−1n1/3.

• Compared with the state-of-the-art lower bounds on A(n, d) based on the Delsarte–
Goethals codes, the first cyclic construction is inferior by a multiplicative factor of
Θ(n3/2) in the regime j = Θ(

√
n). In the regime j = Θ(n2/3), the second construction

is superior to the DG codes by a multiplicative factor of Θ(n
3
2
c2+ 3

2
c−1) and provides

the best lower bound in this regime.

• Asymptotic upper bounds for A(n, n/2− ρ
√
n), based on an improved bounding tech-

nique inspired by [106] and a new method to bound the maximal eigenvalues of adja-
cency matrix induced by a Hamming ball Br ∈ {0, 1}n with finite r, are shown.

• The asymptotic scaling behaviour of the proposed Fourier-analytical based upper
bounds for A(n, n/2 − ρ

√
n) and the spectral-based bounds derived from [20], both

of which are polynomial in n, are plotted for ρ ∈ (0.5, 9.5), where the former are
slightly stronger.

The rest of this chapter is organized as follows. In Section 4.2 we review several well-
known bounds on A(n, d) and examine their scaling behaviour when j = Θ(

√
n). Results

in a prior literature by Barg and Nogin [20] that can be used to provide upper bounds on
A(n, d) when j = Θ(

√
n) are discussed in Section 4.2.3. In Section 4.3.1, a BCH-like cyclic

code construction, with j scaling from Θ(
√
n) to Θ(n), is presented. Section 4.3.2 describes

another construction with better performance in the regime j = Ω(n
2
3 ). In Section 4.4.1,

we review an alternative proof of the first linear programming bound on A(n, d) (formally
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decribed in Section 4.2.2) through a covering argument using Fourier analysis on the group
Fn
2 . An asymptotic upper bound on A(n, d) with d ⩾ n/2−

√
n that are strictly tighter than

all prior results is derived in Section 4.4.2. The upper bounding technique is extended in
Section 4.4.3 and yields a family of bounds on A(n, d) with d ⩾ n/2−ρ

√
n for ρ ∈ (0.5, 9.5).

The bounds are compared with a sequence of bounds derived from [20] for the same range
of d in Section 4.4.4. Finally, the chapter is concluded in Section 4.5.

4.2 Preliminaries

Notation. Let f and g be two real-valued functions of n ∈ N. We write f(n) ≲ g(n) if
f(n) ⩽ (1 + o(1)) g(n), write f(n) ≳ g(n) if f(n) ⩾ (1 + o(1)) g(n), and write f(n) ∼ g(n) if
limn → ∞ f(n)/g(n) = 1. Let H2(·) denote the binary entropy function. For positive integers
r, n ∈ N with n ⩾ r, let Br(0, n) ∈ {0, 1}n denote the Hamming ball of radius r centered at
0 = (0, 0, . . . , 0), and its volume by Vol(r, n)

def
= |Br(0, n)| =

∑r
i=0

(
n
i

)
. When n is clear from

the context, we write Br and Br(0, n) interchangeably. We recall the following bounds for
r ⩽ n/2

1) Vol(r, n) ⩽ 2H2(r/n)n; and

2) Vol(r, n) ⩾ 2H2(r/n)n−o(n) for sufficiently large n.

We study asymptotic lower and upper bounds on A(n, d) in this section, and evaluate
them in the large minimum distance regime j = Ω(

√
n) ∩ o(n).

4.2.1 Lower Bounds

We review some asymptotic lower bounds on A(n, d) in this section. The first one is the
well-known GV lower bound. Note that there is an improvement to the GV bound by Jiang
and Vardy [71] that is not considered here because the constraint on the relative distance
0 ⩽ δ < 0.499 in [71] does not hold for large n when j = Ω(

√
n) ∩ o(n).

Theorem 19 (GV lower bound, [53, 135]). Let positive integers n and d ⩽ n/2 be given.
Then

A(n, d) ⩾
2n

Vol(d− 1, n)
. (4.2)

Asymptotically, suppose 0 ⩽ δ < 1/2, then there exists an infinite sequence of (n,M, d)

binary linear codes with d/n > δ and rate R = k/n satisfying R ⩾ 1−H2(d/n). To evaluate
Theorem19 when j = Θ(

√
n), consider j = 2a

√
n. The central limit theorem, coupled with

the Berry–Esseen theorem, provides an upper bound Vol(d− 1, n) = 2n [Q(2a) +O(1/
√
n)] ,
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where Q(·) denotes the tail distribution function of the standard normal distribution. Hence
we have

A(n, n/2− a
√
n) ⩾

[
Q(2a) +O(1/

√
n)
]−1

, (4.3)

which is loose compared with the Plokin-Levenshtein bound A(2d, d) = 4d.
The Delsarte–Goethals (DG) codes are a class of nonlinear codes that are associated with

the Reed-Muller codes and are the best known codes for their parameters.

Theorem 20 (Delsarte–Goethals code [77, 33, 57, 56, 63]). Let m ⩾ 4 be an even integer
and 0 ⩽ r ⩽ m/2 − 1 be an integer. The Delsarte–Goethals code DG(m, r) is a binary
code of block length n = 2m, size 2k, where k = r(m − 1) + 2m, and minimum distance
2m−1 − 2m/2+r−1. For r = m/2 − 1, DG(m, r) = RM(m, 2), the second order Reed-Muller
code. For 0 ⩽ r ⩽ m/2− 2, DG(m, r) is a nonlinear subcode of RM(m, 2).

For the case when j = Θ(
√
n), one may consider DG(m, r) codes with a finite r, and

show that A(n, d) ⩾ 2−rnr+2 for n an even power of 2 and d = n/2− 2r−1
√
n. For the case

when j = Θ(n2/3), considering DG(m, r) codes with m a multiple of 6 and r = m/6 + c for
some finite c, one may show that A(n, d) ⩾ n2 (n/2)

logn
6

+c, where n = 26ℓ for some ℓ ∈ N
and d = n/2− 2c−1n2/3.

4.2.2 Asymptotic Upper Bounds

The following upper bounds on the size of binary codes can be found in standard coding
theory textbooks, e.g. [94],[59]. Bounds for the regime j = n − 2d = Θ(

√
n) are derived

and given following the general bounds, e.g. inequalities (4.5), (4.6), (4.7), and (4.8). When
the scaling behaviour of j matters, we choose j = 2a

√
n, i.e., d = n/2 − a

√
n, for ease of

comparison between bounds.

Theorem 21 (Hamming Bound). For every (n,M, d) code C ⊂ {0, 1}n,

M ⩽ 2n/Vol(e, n), (4.4)

where e = ⌊(d− 1)/2⌋.

In the asymptotics, Theorem21 bounds the rate from above, in terms of the relative
distance δ, by R ≲ 1−H2(δ/2). For j = Θ(

√
n), the term e = n/4−Θ(

√
n), and Vol(e, n) ⩾

2H2(1/4)n−o(n). Hence Theorem 21 becomes

M ⩽ 2(1−H2(1/4))n+o(n) ≲ 20.189n, (4.5)

for all sufficiently large n.
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Theorem 22 (Singleton Bound). Let C ⊂ {0, 1}n be a binary code with distance d and
dimension k, then k ⩽ n− d+ 1.

For j = Θ(
√
n), Theorem22 yields M ⩽ 2n/2+O(

√
n), which is weak compared to (4.5).

Theorem 23 (Plotkin Bound, [115]). The following holds for any code C ⊂ {0, 1}n with
distance d.

1) If d = n/2, |C| ⩽ 2n.

2) If d > n/2, |C| < 2
⌈

d
2d−n

⌉
.

One may use a combinatorial argument and Theorem23 to derive the following corollary.

Corollary 24. If a (n,M, d) binary code C has distance d < n/2, then the size M ⩽

d · 2n−2d+2.

Using Corollary 24, one may bound the size of any code with d = (n− j)/2 < n/2 by

M ⩽ d · 2j+2 < 2n · 2j. (4.6)

When j scales as j = Θ(
√
n), the size M is bounded sub-exponentially in n. In particular,

set j = 2a
√
n, i.e. d = ⌈n/2− a

√
n ⌉, (4.6) becomes

M ⩽ 2n · 22a
√
n. (4.7)

Theorem 25 (Elias-Bassalygo Bound). For sufficiently large n, every code C ⊂ {0, 1}n

with relative distance δ ⩽ 1/2 and rate R satisfies the following: R ≲ 1 −H2(J2(δ)), where
J2(δ)

def
= 1

2
(1−

√
1− 2δ).

Assuming d = ⌈n/2− a
√
n ⌉, one may adopt steps similar to the proof of Theorem 25 as

in [59, p.147] to show an upper bound:

M ⩽ n3 · 2
a

ln 2

√
n+O(1). (4.8)

The last upper bound we introduce is known as the first linear programming bound or
the MRRW bound on binary error correcting codes, or, alternatively, on optimal packing
of Hamming balls in a Hamming cube. The bound was originally proved by McEliece,
Rodemich, Rumsey, and Welch [103], following Delsarte’s linear programming approach [32],
and is the best known asymptotic upper bound on the cardinality of a code with a given
minimal distance scaling linearly in n, for a significant range of the relative distance.
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Theorem 26 (MRRW Bound, [103]). For sufficiently large n, every code C ⊂ {0, 1}n with
relative distance δ and rate R satisfies the following:

R ≲ H2

(
1/2−

√
δ(1− δ)

)
. (4.9)

Remark 5. Another bound, known as the second linear programming bound, is also given
in [103] in the form

R ≲ min
0⩽u⩽1−2δ

1 + g(u2)− g(u2 + 2δu+ 2δ), (4.10)

where the function g(x)
def
=H2((1 −

√
1− x)/2). For 0.273 ⩽ δ ⩽ 0.5, the bound (4.10)

simplifies to that of (4.9). For δ < 0.273, the inequality (4.10) is strictly tighter than (4.9).

Plugging in δ = d/n into (4.9), we have the following bound:

M ⩽ 2
nH2

(
1/2−
√

d/n(1−d/n)
)
+o(n)

. (4.11)

Note that, due to the o(n) term, the bound (4.11) is not tighter than (4.6) when j = Θ(
√
n).

This appears to the contrary of the fact the MRRW bound is tighter than all the other
bounds for relative distance 0.273 < δ < 0.5. However, a tailored treatment of the proof
technique may lead to a nontrivial bound as in the derivation of (4.8) from Theorem25. In
Section 4.4.2, one such bound is given through an alternative proof of the Theorem26 by
working with the maximal eigenfunctions of Hamming balls.

4.2.3 Spectral-Based Upper Bound

One approach to proving the first linear programming bound is the spectral-based tech-
nique in [20], which relies on the analysis of eigenvectors of some finite-dimensional operators
related to the Krawtchouk polynomials. While the main goal of the work [20] is to establish
the MRRW bounds from a spectral perspective, some of the analytical results in it can be
used to derive upper bounds on A(n, d) in the large minimum distance regime. In particular,
while all the other upper bounds on A(n, d) scale superpolynomially in n when j = Θ(

√
n),

a sequence of bounds scaling polynomially in n can be derived from [20]. A key result in [20]
is the following bound on the size of a binary code with minimum distance d.

Theorem 27 ([20] Theorem 2, binary case). Let C be an (n,M, d) binary code. Then

M ⩽
4(n− k)
n− λk

(
n

k

)
(4.12)

51



for all k such that λk−1 ⩾ n−2d, where λk is the maximal eigenvalue of the (k+1)× (k+1)

self-adjoint matrix S = (si,j)
k+1
i,j=1 defined by si,i+1 = si+1,i =

√
i(n+ 1− i) for i = 1, 2, . . . , k

and si,j = 0 otherwise.

Upper and lower bounds on λk are also provided.

Lemma 28 ([20] Lemma 2, binary case). Let k < n/2. For all s = 2, . . . , k + 1,

2
√
k(n− k + 1) ⩾ λk ⩾

2(s− 1)

s

√
(k − s+ 2)(n− k + s− 1).

To establish bounds on A(n, d) for the regime d = n/2− Θ(
√
n), consider a finite k ∈ N

and s ∈ {2, . . . , k + 1}. Letting n → ∞, we have

λk ⩾
2(s− 1)

s

√
(k − s+ 2)(n− k + s− 1) =

2(s− 1)

s

√
k − s+ 2(1 + o(1))

√
n.

Thus λk ≳ λk
√
n, where λk is given by

λk = max
2⩽s⩽k+1

{
2(s− 1)

s

√
k − s+ 2

}
. (4.13)

Since λk scales as Θ(
√
n) for all finite k, the bound on A(n, d) is asymptotically equivalent

to
A(n, d) = O(nk) as long as d ⩾

n

2
−
λk−1

2

√
n. (4.14)

By solving (4.13) for k = 1, 2, 3, we obtain λ1 = 1, λ2 =
√
2, λ3 = 4

3

√
2, which, via (4.14),

lead to A(n, d1) = O(n2), A(n, d2) = O(n3), A(n, d3) = O(n4) as long as d1 ⩾ n
2
− 1

2

√
n, d2 ⩾

n
2
−

√
2
2

√
n, d3 ⩾ n

2
− 2

√
2

3

√
n, respectively. Many more bounds for the large minimum distance

regime can be obtained by choosing other k ∈ N. These bounds and the new upper bounds
shown in Section 4.4.3 are both polynomial in n and are tighter than all other known bounds,
as discussed in Section 4.2.2. In Section 4.4.4, the asymptotic behavior of the two types of
bounds when d = n/2− ρ

√
n are plotted for ρ ∈ (0.5, 9.5).

4.3 Main Results - Lower Bounds

Two polynomial-based cyclic code constructions are given in this section. The first con-
struction, described in Section 4.3.1, leads to a family of codes where the term j ranges from
Θ(
√
n) to Θ(n). The second construction, described in Section 4.3.2, applies to a smaller

range of j, between Θ(n2/3) and Θ(n), but are tighter than the first construction over this
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range. Note that the results in this section are not asymptotic and hold for finite values of
n, i.e., the first construction only requires n ⩾ 15 and the second one requires n ⩾ 63.

4.3.1 Cyclic Codes with j = Ω(
√
n)

We construct a binary cyclic code C with high minimum distance as follows.

Theorem 29. Let n = 2m − 1, and m ∈ N be an even integer with m ⩾ 4. Let c be an
integer with 0 ⩽ c ⩽ m/2 − 1. There exists a binary cyclic code C of length n, dimension
(c+ 1/2)m, and minimum distance

d ⩾ 2m−1 − 2m/2+c−1 ⩾ n/2− 2c−1
√
n. (4.15)

Proof: Consider the finite field F = F2m and the subfield K = F2 < F . Let α be a
primitive root of unity in F , and set αi = α1+2m/2+i for i = 0, 1, 2, . . . , c. Consider the binary
cyclic code with the generator polynomial

g(x) =
xn − 1∏c

i=0Mαi
(x)

,

where Mβ(·) is the minimal polynomial of β over K. Note that the αi’s belong to different
conjugacy classes, i.e,

Ai
def
=
{
α2j

i | j = 0, 1, 2, . . . ,m− 1
}
=
{
α2j+2m/2+i+j | j = 0, 1, 2, . . . ,m− 1

}
are disjoint subsets of F \ {0}, and |A0| = m/2, |Ai| = m for i ̸= 0. This is ensured by the
particular choice of αi’s. More specifically, let

Pi ≡ {2j + 2m/2+i+j mod 2m − 1 | j = 0, 1, . . . ,m− 1}

be the set of the exponents of α for elements in Ai. Each Pi is a cyclotomic coset mod 2 in
F and the length-m binary representation for each p, p′ in Pi are cyclic shifts of each other.
Let pi = 1 + 2m/2+i be the coset representative of Pi. The claim on the size of |Ai| holds
by noting that |Ai| = |Pi| = m for i ̸= 0, and |A0| = |P0| = m/2. To claim that Ai’s are
disjoint, it suffices to show that the cyclotomic cosets Pi’s are disjoint. First note that for
two cyclotomic cosets Pi and Pk, they are either disjoint or identical. Assume for some i ̸= k,
cosets Pi and Pk are identical. Then pi = 1 + 2m/2+i is an element in Pk, that is, there is
a p′ = 2ℓ + 2m/2+k+ℓ ∈ Pk for which pi = p′ modulo 2m − 1. As both pi and p′ are sums of
two powers of 2, we note that neither m | ℓ and m | (ℓ + k − i), nor m | (ℓ −m/2 − i) and
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m | (m/2 + k + ℓ), can happen. Hence pi /∈ Pk, and thus Pi and Pk are disjoint. Thus the
degree of the polynomial g(x) is n− (c+1/2)m. Hence, the dimension of the code is at least
(c+ 1/2)m.

For the minimum distance, let t = 2m−1 + 2m/2+c−1 + 1. We show next that for j =

t, t + 1, . . . , 2m − 1, αj is a root for the generator polynomial g(x). In other words, Pi ∩
{t, t + 1, . . . , 2m − 1} = ∅, for i = 0, 1, 2, . . . , c. This is by noting that the elements in Pi,
after taking modulo 2m − 1, can be written as a sum of two powers of two, i.e., 2ℓ + 2j,
where the difference between ℓ and j is at least m/2 − c, and that such a number does
not belong to {t, t + 1, . . . , 2m − 1}. Hence, the minimum distance of the code d is at least
2m − t+ 1 = 2m−1 − 2m/2+c−1 by BCH bound [65, 21] (see also [94, 117]).

Note that the parameters of the codes constructed in Theorem29 and the Delsarte–
Goethals codes are both sitting between those of the first order and the second order Reed–
Muller (RM) codes of length n = 2m. More specifically, RM(m, 1) has minimum distance
equal to n/2 and dimension equal to m+1, while RM(m, 2) has minimum distance n/4, and
dimension 1 +m +

(
m
2

)
. A comparison between the DG codes and our new construction in

the regime j = Θ(
√
n) can be made as follows. Let c ⩾ 0 be a finite integer. The DG(m, c)

code has length n = 2m, minimum distance d = n/2−2c−1
√
n and size 2−cnc+2. On the other

hand, the code parameters given in Theorem29 are length n = 2m − 1, minimum distance
d ⩾ n/2 − 2c−1

√
n , and size (n + 1)c+1/2. Therefore the former leads to a stronger lower

bound on the size, by a multiplicative factor of 2−cn3/2, in the asymptotics.

4.3.2 Cyclic Constructions for j = Ω(n2/3)

We adopt an approach similar to that in the proof of Theorem29 to construct a sequence of
cyclic binary codes with j = n− 2d scaling as j = Ω(n2/3) in this section. This construction
is preferred over that in Section 4.3.1 for all j = Ω(n2/3), and yields a tighter bound on
A(n, d) than the DG codes does.

Theorem 30. Let n = 2m − 1, and m ∈ N be a multiple of 6. Let c be an inte-
ger with 1 ⩽ c ⩽ m/3 − 1. There exists a binary cyclic code C of length n, dimension
k = m

(
m
6
+ 3c2

2
+ 5c

2
+ 5

6

)
, and minimum distance

d ⩾ 2m−1 − 2
2m
3

+c−1 − 2
m
3
+2c−1 ⩾ n/2− 2c−1n

2
3 − 22c−1n

1
3 . (4.16)

Proof: Consider the finite field F = F2m and the subfield K = F2 < F . Let α be a
primitive root of unity in F . Let ℓ = m/3 − c, and define three sets consisting of triples of
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integers,

S1 = {(m/3,m/3,m/3)} ,

S2 = {(d1, d1, d2) | d1 ⩾ ℓ, d2 ⩾ ℓ, d1 ̸= d2, 2d1 + d2 = m} ,

S3 = {(d1, d2, d3) | d1 > d2 > d3 ⩾ ℓ or d1 > d3 > d2 ⩾ ℓ, d1 + d2 + d3 = m}.

A combinatorial argument shows that the sizes of the sets are

|S1| = 1, |S2| =
⌊
m− 3l

2

⌋
, |S3| =

1

3

[(
m− 3l + 2

2

)
− 3

⌊
m− 3l

2

⌋
− 1

]
.

For (d, e, f) ∈ S1∪S2∪S3
def
=S, define αd,e,f = αpd,e,f ∈ F where pd,e,f = 2m−1+2e+f−1+2f−1.

We define a binary cyclic code with the generator polynomial

g(x) =
xn − 1∏

(d,e,f)∈S Mαd,e,f
(x) ·

∏m/6+c
i=0 Mαi

(x)
.

For i = 0, 1, 2, . . . , c, define the sets Pi = {2j + 2m/2+i+j mod 2m − 1 | j = 0, 1, 2, . . . ,m− 1}
and Ai = {αp | p ∈ Pi} (as in the proof of Theorem29). Consider sets Ad,e,f , Pd,e,f as follows:

Ad,e,f
def
=
{
α2j

d,e,f | j = 0, 1, 2, . . .
}

Pd,e,f
def
={2m−1+j + 2e+f−1+j + 2f−1+j mod 2m − 1 | j = 0, 1, 2, . . .}.

The set Pd,e,f consists of the exponents of α for elements in Ad,e,f . Note that |Pd,e,f | = m/3

for (d, e, f) ∈ S1, |Pd,e,f | = m for (d, e, f) ∈ S2, and |Pd,e,f | = m for (d, e, f) ∈ S3. Two
cyclotomic cosets Pd,e,f and Pd′,e′,f ′ are disjoint as long as (d, e, f) ̸= (d′, e′, f ′). Since each
element of Pi is a sum of two powers of 2 and each element of Pd,e,f a sum of three powers of
2, we also have Pi ∩ Pd,e,f = ∅, for all i ∈ {0, 1, 2, . . . , c} and (d, e, f) ∈ S. Thus the degree
of the polynomial g(x) is

deg g(x) = n− (m |S3|+m |S2|+m/3 |S1|)−m (m/6 + c+ 1/2)

= n−m
(
m/6 + 3c2/2 + 5c/2 + 5/6

)
.

Hence, the dimension of the code is at least m(m/6 + 3c2/2 + 5c/2 + 5/6).

For the minimum distance, we proceed similarly to the steps taken in the proof of Theo-
rem29. Let t = 2m−1 +2m−1−ℓ +2m−1−2ℓ +1. We show next that for j = t, t+1, . . . , 2m− 1,
αj is a root for the generator polynomial g(x). In other words, Pi∩{t, t+1, . . . , 2m−1} = ∅,
for i = 0, 1, 2, . . . ,m/6 + c, and Pd,e,f ∩ {t, t+ 1, . . . , 2m− 1} = ∅ for (d, e, f) ∈ S. This is by
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noting that elements in Pi and Pd,e,f are sums of two or three powers of 2, and the powers
differ by at least ℓ. Such a number can not be found in {t, t + 1, . . . , 2m − 1}. Hence, by
the BCH bound [65, 21] (see also [94, 117]), the minimum distance d of the code is at least
2m − t+ 1 = 2m−1 − 2m−1−ℓ − 2m−1−2ℓ = 2m−1 − 22m/3+c−1 − 2m/3+2c−1.

For the regime j = Θ(n2/3) we compare the performance of the DG codes and the con-
struction in Theorem30. Let c be a positive integer. The DG(m, r) codes with r = m/6 + c

has length n = 2m, minimum distance d = n/2 − 2c−1n2/3, and size M = n2
(
n
2

) logn
6

+c.
The cyclic code described in the proof of Theorem 30 has length n = 2m − 1, minimum
distance d′ ⩾ n/2 − 2c−1n

2
3 − 22c−1n

1
3 , and size M ′ ⩾ n

logn
6

+ 3c2

2
+ 5c

2
+ 5

6 . While the terms
j = n−2d = 2cn

2
3 and j′ = n−2d′ ⩽ 2cn

2
3 −22cn

1
3 are asymptotically equivalent, i.e., j ≳ j′,

the bound of the size based on the new cyclic construction is stronger. More explicitly, we
have M ′ ⩾ 2cn

3c2

2
+ 3c

2
−1 ·M , where the degree 3c2

2
+ 3c

2
− 1 is positive for all c ∈ N.

Remark 6. Codes with minimum distance scaling as n/2 − Θ(n
2
3 ) can be constructed in

the manner described in Theorem29 too, by choosing c ≈ m/6. Specifically, if one chooses
c = m/6 + r in Theorem 29, the code would have dimension k = (m/6 + r + 1/2)m and
minimum distance d ⩾ n/2 − 2r−1n

2
3 . For the same r, if one chooses c = r − 1 in Theo-

rem30, the code has dimension k′ =
(

m
6
+ 3(r−1)2

2
+ 5(r−1)

2
+ 5

6

)
m and minimum distance

d′ ⩾ n/2 − 2r−2n
2
3 − 22r−3n

1
3 . For all suffciently large n and r ⩾ 2, the latter construction

provides a better trade-off since k′ > k and n/2− 2r−2n
2
3 − 22r−3n

1
3 > n/2− 2r−1n

2
3 .

The advantage of the second construction is even more evident when one considers the
following cases. Taking c = m/6 + s

√
m for s > 0 in Theorem29, we have a code C with

dimension k = (m/6 + s
√
m + 1/2)m and minimum distance d ⩾ n/2 − 2s

√
m−1n

2
3 . Taking

c = s
√
m in Theorem30, we have a code C ′ with dimension k′ =

(
m
6
+ 3s2m

2
+ 5s

√
m

2
+ 5

6

)
m ⩾(

1+9s2

6
m+ 5

6

)
m, and minimum distance d′ ⩾ n/2− 2s

√
m−1n

2
3 − 22s

√
m−1n

1
3 . For large n, the

bounds for the minimum distances d and d′ are almost the same, and the dimension k′ of
the code C ′ is multiple times larger than k, as k′ ≈ (1 + 9s2)k.

Remark 7. The constructions used in the proofs of Theorem29 and Theorem30 draw on
the fact that nonzero elements in F can be generated by a primitive root of unity α. Any
nonzero element β ∈ F can thus be expressed as αp for some p ∈ {0, 1, . . . , 2m − 1}. Using
the binary expansion, p = bm−12

m−1 + bm−22
m−2 + · · · + b12

1 + b0, roots for Mβ(x) are
of the form αp·2j = αp′ where p′ = bm−12

m−1+j + bm−2+j2
m−2+j + · · · + b12

1+j + b02
j ≡

bm−1−j2
m−1 + bm−2−j2

m−2 + · · ·+ b12
1+j + b02

j + bm−12
j−1 + · · ·+ bm−j after taking modulo
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2m − 1. The length-m binary expressions

p = (bm−1bm−2 . . . b1b0)2,

p′ = (bm−1−jbm−2−j . . . bm−j)2

are cyclic shifts of each other. The key idea behind the proof techniques of Theorem29 and
Theorem30 is to leverage the BCH bound with a focus on finding length-m binary sequences
(bm−1, bm−2, . . . , b1, b0) and two integers t1, t2 with t1 < t2 ⩽ 2m − 1, such that cyclic shifts
of the binary sequences do not correspond to values in the range {t1, t1 + 1 . . . , t2}.

Remark 8. According to the discussion in Remark 7, the BCH-like construction technique
for large minimum distance codes described in Sections 4.3.1 and 4.3.2 can be tailored towards
deriving lower bounds in narrower ranges of d. In particular, the construction in Section 4.3.1
admits all m-bit binary sequences with exactly two 1’s spacing at least ℓ = m/2 − c bits
apart (distance is evaluated in a wrap-around manner), and that in Section 4.3.2 all m-bit
binary sequences with two or three 1’s spacing at least ℓ = m/3− c bits apart. By extending
such arguments to consider all m-bit binary sequences with Hamming weight between 2 and
w ∈ N, such that the 1’s are at least ℓ = m/w − c bits apart, one can construct codes with
minimum distance scaling as d = n/2−O(nw−1

w ).

4.4 Main Results - Upper Bounds

4.4.1 Harmonic Analysis Approach

We adopt a covering argument similar to Navon and Samorodnitsky [106] and show upper
bounds on the size of any code C with length n and minimum distance d scaling as d ⩾

n/2−Ω(
√
n). The viewpoint presented in [106], providing an alternative proof to the MRRW

bound, is different from the original proof found in [103] which relies on analytical properties
of the Krawchouk polynomials, and instead employs Fourier analysis on the group Fn

2 as
their main tool.

In particular, the authors of [106] exploit the expediency of working with the maximal
eigenfunctions of Hamming balls. One key finding was that, given any real-valued function f
on {0, 1}n with a small support B ⊂ {0, 1}n, such that the adjacency matrix of the Hamming
cube acts on f by multiplying it pointwise by a large factor, the cardinality of error-correcting
codes with minimum distance d can be upper bounded by n |B|. The applicability will depend
on the value of the multiplying factor. By proposing functions f supported on Hamming
balls B = Br(0, n) of different radii r, one may derive a lower bound of the multiplying
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factor, formally called the maximal eigenvalue of adjacency matrix of the subgraph incduced
by B. This makes possible a simple proof of the first linear programming bound.

Let us now state the definition of the maximal eigenvalue of a graph. Let G = (V,E) be
a (finite, undirected, simple) graph. Let AG = (Aij) denote the |V | × |V | adjacency matrix
of G, defined by Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise for vertices i, j ∈ V . Note that
AG is symmetric, so its eigenvalues are real, and can be ordered as λ1 ⩾ λ2 ⩾ . . . ⩾ λn. For
any function f on Fn

2 , the function Af sums at each point of {0, 1}n the values of f at its
neighbours. That is, the value taken by the function Af at a vertex x ∈ Fn

2 , denoted by
(Af)(x) or Af(x), is given by Af(x) =

∑
y∈Fn

2 :wH(x,y)=1 f(y). When B is a subset of the cube
Fn
2 , set

λB
def
= max

{
⟨Af, f⟩
⟨f, f⟩

∣∣∣∣ f : Fn
2 → R, supp(f) ⊆ B

}
, (4.17)

where ⟨f, g⟩def= 1
2n

∑
x∈Fn

2
f(x)g(x) for real-valued functions f, g on Fn

2 . That is, λB is the
maximal eigenvalue of adjacency matrix of the subgraph of {0, 1}n induced by B.

Two lemmas were shown in [106] to show (4.9).

Lemma 31 ([106] Prop 1.1). Let C be a code with block length n and minimal distance d.
Let B be a subset of {0, 1}n with λB ⩾ n− 2d+ 1. Then |C| =M ⩽ n |B|.

Lemma 32 ([106] Lemma 1.4). Let B = Br(0, n) ⊆ {0, 1}n. The maximal eigenvalue
associated with B is λB ⩾ 2

√
r(n− r)− o(n).

To prove (4.9), we note that Lemma32 implies that a radius r∗ = n/2−
√
d(n− d)+o(n)

exists such that λBr∗ ⩾ n − 2d + 1. Lemma31 in turn shows that any code of length n

and minimal distance d has at most n |Br∗| = n · Vol(r∗, n) codewords. The cardinality of
a Hamming ball of radius r is Vol(r, n) = 2H2(r/n)n+o(n). Equation (4.11) follows the above
argument, hence yielding equation (4.9).

We note that the above argument can not be used directly to show an upper bound
when d = n/2 − Θ(

√
n). In particular, the o(n) term in Lemma32 renders the search

for a meaningful r∗ impossible, as we would ideally require a subset B with λB close to
n− 2d+ 1 = Θ(

√
n).

4.4.2 Bounds for d ⩾ n/2−
√
n

We show in this section an approach to lower bound λB for the Hamming ball B =

B3(0, n), which, when coupled with a new proposition stronger than Lemma31, leads to an
upper bound scaling as A(n, d) = O(n3.5) for d ⩾ n/2−

√
n.

First we provide a proposition in place of Lemma32 that does not require an o(n) term.
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Proposition 33. Let B = B3(0, n) ⊆ {0, 1}n be the Hamming ball of radius 3. The maximal
eigenvalue associated with B is λB ⩾

(√
3 +
√
6 + o(1)

)√
n ≳ 2.334

√
n.

Proof: Recall the definition of the maximal eigenvalue in (4.17). We prove the propo-
sition by constructing a function f with support in B, and for which ⟨Af, f⟩/⟨f, f⟩ ≈√

3 +
√
6
√
n. The function f will be symmetric, namely its value at a point will depend

only on the Hamming weight of the point. With a slight abuse of notation, such a function
is fully defined by its values f(0), f(1), . . . , f(n) at Hamming weights 0, 1, . . . , n.

Set f(0) = 1, f(j) = 0 for j ⩾ 4, and let

λf(i) = Af(i) = if(i− 1) + (n− i)f(i+ 1) (4.18)

for i = 0, 1, 2 (assuming f(−1) = 0), where λ = t
√
n. We have

f(1) =
λf(0)

n
=

t√
n
, f(2) =

λf(1)− 1f(0)

n− 1
=
t2 − 1

n− 1
,

f(3) =
λf(2)− 2f(1)

n− 2
=

1

n− 2

(
t2 − 1

n− 1
t
√
n− 2

t√
n

)
.

We may use the values f(i) and calculate

2n⟨Af, f⟩ = 2t
√
n+ t(t2 − 1)2

n
√
n

n− 1
=
(
2t+ t(t2 − 1)2 + o(1)

)√
n,

2n⟨f, f⟩ = 1 + t2 +
1

2

n

n− 1
(t2 − 1)2 +

1

6

n− 1

n− 2
t2
[

n

n− 1
(t2 − 1)− 2

]2
= 1 + t2 + (t2 − 1)2/2 + t2(t2 − 3)2/6 + o(1).

We are now ready to optimize the value

⟨Af, f⟩
⟨f, f⟩

=

[
2t+ t(t2 − 1)2

(t6 − 3t4 + 9t2 + 9)/6
+ o(1)

]√
n (4.19)

over t > 0. Taking t =
√

3 +
√
6, the square bracket term in (4.19) achieves its maximum√

3 +
√
6 + o(1).

In order to provide a bound as tight as possible, we improve upon Lemma31 and show
the following proposition.

Proposition 34. Let C be a code with block length n and minimal distance d. Let B be a
subset of {0, 1}n with λB > n− 2d. Then |C| =M ⩽ n

λB−(n−2d)
|B|.

The proof can be shown using a similar argument as in the proof of Lemma31 in [106],
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and is provided in Appendix B.2 for reference.
With Propositions 33 and 34, we are ready to state the upper bound on A(n, ⌈n/2−

√
n ⌉).

Theorem 35. If a (n,M, d) binary code C has minimum distance d ⩾ n/2−
√
n, then

M ⩽

√
n√

3 +
√
6− 2 + o(1)

Vol(3, n) = O(n3.5).

Proof: Let B = B3(0, n) be the radius-3 Hamming ball. The maximal eigenvalue
induced by B is λB ≳

(√
3 +
√
6 + o(1)

)√
n according to Proposition 33. Since n − 2d ⩽

2
√
n ≲ λB, the cardinality of C can be upper bounded using Proposition 34 as

M ⩽
n

λB − (n− 2d)
|B| ⩽

√
n√

3 +
√
6− 2 + o(1)

Vol(3, n).

Remark 9. We note that the argument above can upper bound the size as M = O(n3.5) as
long as (n− 2d)/

√
n is strictly smaller than

√
3 +
√
6. That is, for any d ≳ n/2− ρ

√
n, for

some constant ρ <
√

3 +
√
6/2 ≈ 1.167, we have A(n, d) = O(n3.5).

4.4.3 Bounds for d ⩾ n/2−Θ(
√
n)

In general, it is possible to generalize the approach in Section 4.4.2 that lower bounds
λB for B = Br(0, n) from r = 3 to any given r ∈ N. Specifically, setting λ = t

√
n, we

would need to apply the recurrence equation (4.18) iteratively to find f(i) as a function of
both t and n, for i = 1, . . . , r, compute inner products ⟨Af, f⟩ and ⟨f, f⟩, and solve the
optimization problem that maximizes the quotient as in (4.19). The procedure could be
almost intractable for large (but finite) r.

A more feasible approach is given in this section to lower bound the maximal eigenvalue
associated with B = Br(0, n). The approach is comprised of four parts. The first part
constructs a symmetric function g on {0, 1}n based on a recursive relation involving λ = t

√
n,

and a scaled version of g denoted by g̃, both of which are defined independent of r and have
support on the entire domain {0, 1}n. In the second part, we define a function f which is
identical to g on B and 0 elsewhere, evaluate the quotient seen in (4.17), i.e., ⟨Af, f⟩/⟨f, f⟩,
and show that it can be expressed concisely as the difference of λ and another term involving
g̃(r) and g̃(r+1), where g̃(i) depends on i, n and t. The quotient can thus be lower bounded
by λ which guarantees that either g̃(r) or g̃(r+1) is 0. (That is, for a given r, one may choose
t and n appropriately so that g̃(r) = 0, or g̃(r+ 1) = 0, and t

√
n would be a lower bound of

λB.) In the third part, we introduce two other functions h and h̃ which, broadly speaking,
act as the respective proxies of g and g̃. In particular, as n grows large, the maximal root
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of g̃(k) (when viewed as a function of t) converges to that of h̃(k), denoted by th(k), a value
independent of n. The fourth part concludes the argument by showing that the quantity
λB/
√
n is lower bounded by the maximal root of h̃(r+1), when viewed as a function of t, for

sufficiently large n. Finally we leverage Proposition 34 to show A(n, d) = O(nr+1) as long as
(n− 2d)/

√
n < th(r + 1)− s for some s > 0. Throughout this section, we assume λ = t

√
n

for some constant t > 0.

Part 1

We first consider a symmetric function g : Fn
2 → R, and with a slight abuse of notation,

write g(x) = g(wH(x)) for x ∈ Fn
2 . Define g by the initial condition g(0) = 1, and the

recurrence relations
λg(i) = Ag(i) = ig(i− 1) + (n− i)g(i+ 1) (4.20)

for i = 0, 1, 2, . . . , n− 1, assuming g(−1) = 0. For example, we have

g(1) =
λ

n
, g(2) =

1

n− 1

(
λ2

n
− 1

)
, g(3) =

1

n− 2

(
λ3

n(n− 1)
− 2λ

n
− λ

n− 1

)
.

Define a real-valued function g̃ by g̃(i) = ni/2g(i) for i = 0, 1, . . . , n. The values g̃(i) for
i = 0, 1, 2, 3 are g̃(0) = 1, g̃(1) = t, g̃(2) = n

n−1
(t2 − 1), g̃(3) = n

n−2

(
t3n
n−1
− 2t− tn

n−1

)
.

Remark 10. For each i = 0, 1, 2, . . . , both g(i) and g̃(i) are functions of t and n. For a fixed
t, g̃(i) scales with n as O(1), and that g(i) = O(n−i/2).

Remark 11. For any finite k ∈ N, it can be shown that g̃(k+1) = 0 only when g̃(k) ̸= 0 and
g̃(k− 1) ̸= 0, and that g̃(k) is a degree-k polynomial in t with leading coefficient 1+O(n−1).
Specifically, for an even k ∈ N,

g̃(k) = tk(1 +O(n−1))− gk,k−2t
k−2(1 +O(n−1)) + . . .+ (−1)k/2gk,0(1 +O(n−1)) ;

for an odd k ∈ N,

g̃(k) = tk(1 +O(n−1))− gk,k−2t
k−2(1 +O(n−1)) + . . .+ (−1)(k−1)/2gk,1(1 +O(n−1)),

where the coefficients gk,k−2ℓ, 1 ⩽ ℓ ⩽
⌊
k
2

⌋
are positive integers independent of n and t.
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Part 2

Let B = Br(0, n) for some finite r. Consider a symmetric function f supported on B,
defined by f(i) = g(i) for all i = 0, 1, . . . , r, and f(i) = 0 for all i > r. First, we have

2n⟨f, f⟩ = f(0)2 +

(
n

1

)
f(1)2 + . . .+

(
n

r

)
f(r)2 =

r∑
i=0

(
n

i

)
f(i)2 =

r∑
i=0

(
n

i

)
g(i)2

Using the observation g(k) = O(n−k/2) and that f(0)2 = 1, the sum scales as 2n⟨f, f⟩ = Θ(1).
Note that Af(i) = Ag(i) = λg(i) for i = 0, 1, . . . , r−1 and Af(r) = rf(r−1)+(n− r)f(r+
1) = rg(r − 1). Hence,

2n⟨Af, f⟩

= Af(0)f(0) +

(
n

1

)
Af(1)f(1) + . . .+

(
n

r

)
Af(r)f(r)

= λg(0)2 +

(
n

1

)
λg(1)2 + . . .+

(
n

r − 1

)
λg(r − 1)2 +

(
n

r

)
rg(r − 1)g(r)

= λ2n⟨f, f⟩+
(
n

r

)(
rg(r − 1)g(r)− λg(r)2

)
= λ2n⟨f, f⟩ −

(
n

r

)
g(r)(n− r)g(r + 1)

= λ2n⟨f, f⟩ −
(
n−r

(
n

r

))(
1− r

n

) (
nr/2g(r)

) (
n

r+1
2 g(r + 1)

)√
n

= λ2n⟨f, f⟩ −
(
n−r

(
n

r

))(
1− r

n

)
g̃(r)g̃(r + 1)

√
n,

where the fourth equality holds by evaluating the recursion relation (4.20) with i = r.
The ratio between ⟨Af, f⟩ and ⟨f, f⟩ is thus

⟨Af, f⟩
⟨f, f⟩

= λ− 1

2n⟨f, f⟩

(
n−r

(
n

r

))(
1− r

n

)
g̃(r)g̃(r + 1)

√
n, (4.21)

which scales as Θ(
√
n) since 2n⟨f, f⟩ = Θ(1). Denote by tg(i) = tg(i, n) the maximal root

of g̃(i) = g̃(i, n, λ = t
√
n) when viewed as a function of t, for i = 1, 2, . . .. For example,

tg(1) = 0 since g̃(1) = t, tg(2) = 1 since g̃(2) = n
n−1

(t2 − 1), and tg(3) is the maximal root
of the polynomial t3n − 3tn + 2t = 0. Then λB ⩾ max (tg(r)

√
n, tg(r + 1)

√
n) because the

second term in (4.21) is 0 when λ is either tg(r)
√
n or tg(r + 1)

√
n.

The first two steps successfully simplify the problem for finding a lower bound on λB to
the following. First solve g(r) and g(r + 1) by recursively applying (4.20), and then find
the maximal roots of g̃(r) = 2r/2g(r) and g̃(r + 1) = 2(r+1)/2g(r + 1), which are viewed as
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functions of t. The recursive steps, however, still pose a great challenge when the radius
r for B = Br(0, n) is large. For example, g(3) = 1

n−2

[
t
√
n

n−1
(t2 − 1)− 2t√

n

]
and g(4) =

1
n−3

(
t
√
n

n−2

[
t
√
n

n−1
(t2 − 1)− 2t√

n

]
− 3

n−1
(t2 − 1)

)
. Solving roots of g̃(r) and g̃(r + 1), which in

general are complicated functions in both n and t, is an even greater challenge. The following
third step shows that tg(i) converges to the maximal root of a simpler polynomial in t for
all finite i when n→∞.

Part 3

Define a function h : {0, 1, . . . , n} → R by setting h(0) = 1 and the recurrence relation
(assuming h(−1) = 0)

λh(i) = ih(i− 1) + nh(i+ 1) for i = 0, 1, 2, . . . , n− 1, (4.22)

which differs from (4.20) only in the coefficient of h(i+1). It can be shown that h(k+1) = 0

only when h(k) ̸= 0 and h(k−1) ̸= 0, and that h(k) is either 0 or scales as Θ(n−k/2) for each
finite k. The functions h and g coincide asymptotically for all finite k. We state precisely a
bound on the ratio between the two in the following lemma.

Lemma 36. For any given k ∈ N ∪ {0}, if h(i) ̸= 0 for all i ⩽ k − 1 , then

g(k) =

h(k)(1 +O(n−1)) if h(k) ̸= 0,

O(n−(k+2)/2) if h(k) = 0.

Proof: First note that g(0) = h(0) = 1, g(1) = h(1) = λ
n

and g(2) = 1
n−1

(
λ2

n
− 1
)
=

1
n
(1 + 1

n−1
)
(

λ2

n
− 1
)

= (1 + O(n−1)) 1
n
(λh(1)− 1h(0)) = h(2) (1 +O(n−1)). Also, h(2) =

0 if and only if g(2) = 0. Hence the lemma holds for k = 0, 1, 2. Assume, for some k ⩾ 2,
h(i) ̸= 0 and g(i) = h(i)(1 + O(n−1)) for i = 0, 1, . . . , k. Then g(i) and h(i) both scale as
Θ(n−i/2) for i = 0, 1, . . . , k. Equation (4.22) yields

h(k + 1) = n−1 (λh(k)− kh(k − 1))

and (4.20) yields

g(k + 1) = (n− k)−1 (λg(k)− kg(k − 1))

=
(
1 +O(n−1)

)
n−1[λh(k)(1 +O(n−1))− kh(k − 1)

(
1 +O(n−1)

)
)],
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which implies g(k+1) = h(k+1)(1+O(n−1)) when h(k+1) ̸= 0 since both λh(k) and kh(k−1)
scale as Θ(n−(k−1)/2). When h(k + 1) = 0, g(k + 1) = O(n−1n−(k−1)/2n−1) = O(n−(k+3)/2).
Hence the lemma holds by the principle of mathematical induction.

Consider a real-valued function h̃ : {0, 1, . . . , n} → R defined by h̃(i) = ni/2h(i). The
values h̃(i) for i = 0, 1, 2, 3, 4 are h̃(0) = 1, h̃(1) = t, h̃(2) = t2 − 1, h̃(3) = t3 − 3t, h̃(4) =

t4 − 6t2 + 3.

Remark 12. The function h̃ satisfies the recurrence relation

th̃(i) = ih̃(i− 1) + h̃(i+ 1), (4.23)

which follows from the recurrence relation (4.22) and that h̃(i) = ni/2h(i).

Remark 13. For k a finite positive integer, h(k) depends on both n and t, whereas h̃(k)
is independent of n and is a degree-k monic polynomial of t. The polynomial h̃(k) can be
expressed as follows:

h̃(k) =

tk − gk,k−2t
k−2 + . . .+ (−1)k/2gk,0 for even k,

tk − gk,k−2t
k−2 + . . .+ (−1)(k−1)/2gk,1 for odd k,

where the coefficients gk,k−2ℓ, 1 ⩽ ℓ ⩽
⌊
k
2

⌋
are the same as those in Remark 11.

Denote by th(i) the maximal root of h̃(i) when viewed as a function of t, for i ⩾ 1. For
example, th(1) = 0, th(2) = 1, and th(3) =

√
3. We now show that, for all finite k, the

maximal roots th(i) and tg(i) are equal when n→∞.

Lemma 37. Let k ∈ N be finite. Then limn→∞ tg(k, n) = th(k).

Proof: First we prove that for any finite k ∈ N, (th(1), th(2), . . . , th(k)) is a strictly
increasing sequence, using the principle of mathematical induction. For k = 3, the sequence is
(0, 1,

√
3), which verifies the claim. Assume for a finite k, the sequence (th(1), th(2), . . . , th(k))

is strictly increasing. Note that h̃(k + 1) = th̃(k) − kh̃(k − 1) is negative when t = th(k)

since h̃(k) = 0 and h̃(k − 1) > 0. Since the leading term in h̃(k + 1) is tk+1 and thus grows
to positive infinity for t large enough, we must have th(k + 1) > th(k).

We now show that, the sequence of roots tg(k, n) of g̃(k), for n = 1, 2, . . ., converges
to th(k). Let δ ∈ (0, th(k) − th(k − 1)) be a small constant such that h̃(k, t) > 0 for all
t ∈ (th(k), th(k) + δ], and h̃(k, t) < 0 for all t ∈ [th(k)− δ, th(k)). Let ϵ > 0 be the minimum
ϵ = min

{
−h̃(k, th(k)− δ), h̃(k, th(k) + δ)

}
. Leveraging Lemma 36, g̃(k, th(k) + δ) ⩾ ϵ(1 +

O(n−1)) and g̃(k, th(k) − δ) ⩽ −ϵ(1 + O(n−1)). This implies the existence of a root of g̃(k)
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when viewed as a function of t in the interval (th(k)− δ, th(k)+ δ), for all sufficiently large n.
Note also that, for t > th(k)+ δ, g̃(k, t) is strictly positive for all sufficiently large n, because
h̃(k, t) ⩾ ϵ. Since δ > 0 can be chosen arbitrarily small, the root tg(k, n) converges to th(k)
as n grows to infinity.

Remark 14. It is known that the roots of a polynomial (counting multiplicities and only up
to permutation) depend continuously on the coefficients of the polynomial [61, 64]. Hence,
Theorem36 also follows as a direct consequence of Remarks 11 and 13.

Part 4

We are now ready to state the main result in this section, which admits a practical
approach to lower bound λB for fixed r and sufficiently large n.

Theorem 38. Let B = Br(0, n) and λB be the maximal eigenvalue of adjacency matrix of
the subgraph of {0, 1}n induced by B. Then λB is lower bounded by (th(r + 1) + o(1))

√
n.

Proof: (4.21) guarantees that λB ⩾ max{tg(r, n)
√
n, tg(r + 1, n)

√
n}. Since th(k) is

strictly increasing in k, Lemma 37 implies that for large n, the bound reduces to λB ⩾

(th(r + 1) + o(1))
√
n.

Theorem 38 generalizes Proposition 33 by establishing lower bounds on λBr for fixed r

other than the special case r = 3. This in turn yields a sequence of bounds on |C| whose
applicability depends on the scaling behaviour of the minimum distance in terms of the
blocklength n.

Corollary 39. If a (n,M, d) binary code C has distance d > 1
2
[n− (th(r + 1)− s)

√
n ] for

some r ∈ N and s > 0, and n is sufficiently large, then

M ⩽

√
n

s+ o(1)
Vol(r, n) = O(nr+ 1

2 ).

Proof: Let B = Br(0, n). We have n−2d < (th(r+1)−s)
√
n ≲ (th(r+1)+o(1))

√
n ⩽ λB

due to Theorem 38. The size of the code C can thus be bounded using Proposition 34 as

M ⩽
n

λB − (n− 2d)
|B| ⩽

√
n

(th(r + 1) + o(1))− (th(r + 1)− s)
|B| =

√
n

s+ o(1)
Vol(r, n).

4.4.4 Bounds for d ⩾ n/2−Θ(
√
n) - Numerical Results

Using similar steps as in the proof of Proposition 33, one may show lower bounds of the
maximal eigenvalues associated with Hamming balls of different radii, which could be a
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for d = ⌈n/2− ρ
√
n ⌉

daunting procedure even for a radius as small as 5. Alternatively, results from Section 4.4.3
suggest a more feasible approach. For k = 1, 2, . . ., we first find h̃(k) by solving the recursive
relations 4.23 with the initial conditions h̃(0) = 1, h̃(−1) = 0, and solve the maximal roots
th(k) of the polynomials h̃(k). Theorem 38 then yields a bound λBk

≳ th(k + 1)
√
n. For

example, we have h̃(1) = t, h̃(2) = t2 − 1, h̃(3) = t3 − 3t, h̃(4) = t4 − 6t2 + 3, h̃(5) =

t5−10t3+15t. The corresponding maximal roots are th(1) = 0, th(2) = 1, th(3) =
√
3, th(4) =√

3 +
√
6 ≈ 2.334, th(5) =

√
5 +
√
10 ≈ 2.857. Applying Theorem 38 to r = 3 shows that

λB3 ≳
√
3 +
√
6
√
n, which recovers Proposition 33 in Section 4.4.2. With computer program

assistance, we are able to solve maximal roots th(k) for k as large as 101.
Consider now a (n,M, d) binary code C with minimum distance d = ⌈n/2− ρ

√
n ⌉, i.e.,

j = 2ρ
√
n. Corollary 39 entails the following: If ρ < th(r + 1)/2 for some r ∈ N, then M =

O(nr+0.5). For example, with ρ = 1, the smallest integer r for the inequality to hold is r = 3

since 1 < th(4)/2 ≈ 1.167, and thus M = O(n3.5). We plot in Figure 4.1 the the exponent
r+0.5 in the asymptotic bound for A(n, d) for 0.5 = th(2)/2 < ρ < th(101)/2 ≈ 9.5, based on
values of th(k) for k = 2, 3, . . . , 101. For example, values of th(3) and th(5) lead to the bounds
A(n, n/2 − ⌈ρ1

√
n ⌉) = O(n2.5), A(n, ⌈n/2− ρ2

√
n ⌉) = O(n4.5), for all ρ1 <

√
3/2 ≈ 0.866

and ρ2 < 1.428. One another case, when r = 7, the point (2.072, 7.5) guarantees that a code
with minimum distance d ⩾ n/2− 2

√
n must have M ≲

√
n

4.14−4
Vol(7, n) = O(n7.5).

As discussed in Section 4.2.3, the spectral-based bounds for A(n, d) [20] in the large
minimum distance regime can be stated as follows:

A(n, d) = O(nk) as long as d ⩾ n/2− λk−1

√
n/2,
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where λk is defined in equation (4.13). We compute numerically λk for k = 1, 2, . . . , 100 and
show the associated bounds in Figure 4.1. We can see that the two families of bounds scale
in a similar fashion, while our newly derived upper bounds, due to Corollary 39, are slightly
tighter.

Remark 15. When the function f is constrained to be symmetric and the support of f
constrained to be the Hamming ball Br(0, n), the value λB (see (4.17)) reduces to the
maximal eigenvalues λr in [20]. However, due to the distinct proof techniques, our upper
bounds, based on harmonic analysis on the Hamming space, only require knowledge of λr,
while bounds in [20] require that of both λr and λr−1.

4.5 Conclusion and Outlook

In this chapter, we study bounds on the cardinality of codes with specified minimum
distance d targeting the regime with d = n/2 − Ω(

√
n). The codes in this regime have

vanishing rate, which renders known bounds that dictate the tradeoff between the code rate
and relative distance ineffective. We obtain two families of codes based on specifically crafted
BCH-like constructions, and a sequence of upper bounds for d ⩾ n/2−ρ

√
n for ρ ∈ (0.5, 9.5).

The proposed cyclic code constructions are targeted at the regimes d ⩾ n/2 − Ω(
√
n)

and d ⩾ n/2 − Ω(n2/3), and have sizes that are polynomial and quasi-polynomial in n,
respectively. The proof of the upper bound makes extensive use of Fourier analysis on
the Hamming cube as a group, and a new bounding technique for the maximal eigenvalue
associated with Hamming balls of finite radii.

An interesting problem for future work is to study the potential of the Fourier-analytical
approach to upper bound the sizes of constant weight codes with large minimum distance.
This problem has been studied in the regime d = δn with δ ∈ (0, 0.5) and the best known
result is the second linear programming bound. Another interesting problem, as pointed
out by authors of [20], is the underlying similarities between the spectral-based and the
Fourier-analytical approaches. For example, if one considers only the Hamming balls B =

Br(0, n) among all subsets of {0, 1}n, and requires functions f to be symmetric, the maximal
eigenvalue λBr appears to be equivalent to the value λr in [20]. This implies that our bounds
on λBr improves on the bounds on λr for finite r, and that for r scaling sub-linearly in n,
the latter may yield new bounds on A(n, d) in the regime d = n/2−Θ(ns) for s ∈ (0.5, 1).
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CHAPTER 5

Abelian Group Codes for Classical and C-Q
Channel Coding: one-shot rate bounds

5.1 Introduction

Information Theory is the mathematical theory of information–processing tasks such as
storage and transmission of information. An information source produces some outputs (or
signals) more frequently than others. Due to this redundancy, one can reduce the amount of
space needed for its storage by identifying and using structures that exist in the data while
guaranteeing a certain degree of recovery of its content. Such data compression is achieved by
a suitable encoding of the output of the source, hence it is usually known as the source coding
problem. In the transmission of information through a channel, it is often advantageous
to add redundancy to a message, in order to combat the effects of noise. Specifically, a
channel models a physical device that takes an input and generates an output. Reliable and
efficient transmission is typically realized with coding, where an encoder incorporates some
degree of redundancy into the source information so as to form a codeword and where a
decoder reconstructs the data from the noisy channel output. The channel coding problem
investigates the minimal amount of redundancy which needs to be added, as well as efficient
implementation of the encoding and decoding.

Classical Information Theory studies the storage and transmission of information when
the signals, including the source output, channel input, and channel output, are all classical.
Quantum Information Theory studies how such tasks can be accomplished using quantum
mechanical systems. It deals with how the quantum–mechanical properties of physical sys-
tems can be exploited to achieve efficient storage and transmission of information. The
underlying quantum mechanics leads to important differences between Quantum and Clas-
sical Information theory.

We study in this chapter both classical channel coding and classical-quantum channel
coding, to be specified later. In both problems, the data to be transmitted reliably are classi-
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cal, but the channel output of the former must have a classical alphabet. Classical-quantum
channel coding has been studied extensively in a scenario where the channel can be used
arbitrarily many times. The channel coding theorem for stationary memoryless classical-
quantum channels, established by Holevo [66] and Schumacher and Westmoreland [125],
provides an explicit formula for the rate at which data can be transmitted under the as-
sumption that each use of the channel is independent of the previous uses. More general
channel coding theorems that do not rely on this independence assumption have been de-
veloped in later work by Hayashi and Nagaoka [62] and by Kretschmann and Werner [80].
These results are asymptotic, i.e., they refer to a limit where the number of channel uses
tends to infinity while the probability of error is required to approach zero.

5.1.1 Abelian Group Codes

Approaching information theoretic performance limits of communication using structured
codes has been of great interest for the last several decades [8, 9, 54, 36, 35]. The earlier
attempts dictate the use of finite fields in the coding schemes. In the channel coding problem
[94], the channel input alphabets are replaced with finite fields and encoders are replaced
with matrices. Later these coding approaches were extended to weaker algebraic structures
such as rings and groups [45, 28, 88, 89, 52]. The motivation for this are two fold: a)
finite fields exist only for alphabets with a prime power size, and b) for communication
under certain constraints, codes with weaker algebraic structures have better properties. For
example, when communicating over an additive white Gaussian noise channel with 8-PSK
constellation, codes over Z8, the cyclic group of size 8, are more desirable over binary linear
codes because the structure of the code is matched to the structure of the signal set [88], and
hence the former have superior error correcting properties. As another example, construction
of polar codes over alphabets of size pr, for r > 1 and p prime, is simpler with a module
structure rather than a vector space structure [120, 123, 114].

Group codes were first studied by Slepian [129] for the Gaussian channel. In [7], the
capacity of group codes for certain classes of channels has been computed. Further results
on the capacity of group codes were established in [8, 9]. The capacity of group codes over a
class of channels exhibiting symmetries with respect to the action of a finite Abelian group
has been investigated in [28]. In [121], the asymptotic performance of Abelian group codes
for the lossy source coding problem for arbitrary discrete memoryless sources, as well as the
channel coding problem for arbitrary discrete memoryless channels is studied. Specifically, for
the channel coding problem, the group capacity is characterized in a single-letter information-
theoretic form.
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5.1.2 One-shot Approach

All the aforementioned capacities are evaluated under the asymptotic assumption, and
many assume additionally that the channels are memoryless and stationary. However, in
many real-world scenarios, we encounter channels which are neither stationary nor memory-
less. Therefore, it is of fundamental importance to think of coding schemes for the channels
which fail to satisfy these assumptions. The independent channel uses are relaxed in [60, 62]
and general channels with memory are studied in [31, 37], albeit these results are derived in
the form of a limit such that the error probability vanishes as the number of channel uses
goes to infinity. Later researchers considered single-serving scenarios where a given channel
is used only once. This approach gives rise to a high level of generality that no assumptions
are made on the structure of the channel and the associated capacity is usually referred to
as one-shot capacity. The one-shot capacity of a classical channel was characterized in terms
of min- and max-entropies in [118]. The one-shot classical capacity of a quantum channel
is addressed by a hypothesis testing approach in [105] and [142], yielding expressions in
terms of the generalized (Rényi) relative entropies and a smooth relative entropy quantity,
respectively.

In this work, we consider a scenario where a given classical or classical-quantum channel is
used only once and derive tight bounds on the number of classical bits that can be transmitted
with a given average error probability ϵ. This one-shot approach provides a high level of
generality, as nothing needs to be assumed about the structure of the channel (Note that
any situation in which a channel is used repeatedly can be equivalently described as one
single use of a larger channel.) Our derivation is based on the idea of relating the problem of
channel coding to hypothesis testing. Here, we use a relative-entropy-type quantity defined
in [142] known as hypothesis testing relative entropy, denoted Dϵ

H(·∥·).
The rest of this chapter is organized as follows: In Section 5.2, we briefly introduce

some definitions for the channel models, achievability conditions, and the hypothesis test-
ing relative entropy, and basic facts about algebraic groups. In Section 5.3, we introduce
the ensemble of Abelian group codes and a few useful results from [121]. In Section 5.4,
achievability and converse bounds are established for the one-shot classical coding problem
in terms of Dϵ

H(·∥·) Similar results for the one-shot classical-quantum coding problem are
shown in Section 5.5.
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5.2 Preliminaries

Classical Channel Model

We consider discrete memoryless channels used without feedback. We associate two finite
sets X and Y with the channel as the channel input and output alphabets. The input-output
relation of the channel is characterized by a conditional probability law WY |X(y|x) for x ∈ X
and y ∈ Y . The channel is specified by (X ,Y ,WY |X).

Classical-Quantum Channel Model

We also study the case of classical-quantum channel coding, where the data to be trans-
mitted reliably are classical. No assumptions are made about the channel that is used to
achieve this task, i.e., the inputs and outputs may be arbitrary quantum states. However,
since the quantum-mechanical structure of the input space is irrelevant for the encoding
of classical data, it can be represented by a (classical) set X . For any input x ∈ X , the
channel produces an output, specified by a density operator ρx on a Hilbert space B. For
our purposes, it is therefore sufficient to characterize a channel by a mapping N : x 7→ ρx

from a set X to a set of density operators.

Groups

All groups referred to in this paper are Abelian groups. Given a group (G,+), a subset H
of G is called a subgroup of G if it is closed under the group operation. In this case, (H,+)

is a group in its own right. This is denoted by H ⩽ G. A coset C of a subgroup H is a shift
of H by an arbitrary element a ∈ G (i.e. C = a+H for some a ∈ G). For a subgroup H of
G, the number of cosets of H in G is called the index of H in G and is denoted by |G : H|.
The index of H in G is equal to |G|/|H| where |G| and |H| are the cardinality or size of
G and H respectively. For a prime p dividing the cardinality of G, the Sylow -p subgroup
of G is the largest subgroup of G whose cardinality is a power of p. Group isomorphism is
denoted by ∼=.

Group Codes

Given a group G, a group code C over G with block length n is any subgroup of Gn. A
shifted group code over G, C+V is a translation of a group code C by a fixed vector V ∈ Gn.
Group codes generalize the notion of linear codes over fields to sources with reconstruction
alphabets (and channels with input alphabets) having composite sizes.
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Achievability for Classical Channel Coding

For a group G, a group transmission system with parameters (n,Θ, τ) for reliable com-
munication over a given channel (X = G,Y ,WY |X) consists of a codebook, an encoding
mapping and a decoding mapping. The codebook C is a shifted subgroup of Gn whose size
is equal to Θ and the mappings are defined as

Enc : {1, 2, · · · ,Θ} → C

Dec : Yn → {1, 2, · · · ,Θ}

such that

Θ∑
m=1

1

Θ

∑
x∈Xn

1{x=Enc(m)}
∑
y∈Yn

1{m̸=Dec(y)}W
n(y|x) ⩽ τ

We say an (M, τ) coding scheme exists for a channel (X = G,Y ,WY |X) if a group transmis-
sion system with parameters (1,M, τ) does. Given a channel (X = G,Y ,WY |X), the rate R
is said to be achievable using group codes if for all ϵ > 0 and for all sufficiently large n, there
exists a group transmission system for reliable communication with parameters (n,Θ, τ) such
that

1

n
log Θ ⩾ R− ϵ, τ ⩽ ϵ

The group capacity of the channel C is defined as the supremum of the set of all achievable
rates using group codes.

Achievability for Classical-Quantum Channel Coding

Given a classical-quantum channel N = {ρx}x∈X from the classical alphabet X to the
quantum system B, where X = G is an Abelian group, a group transmission system with
parameters (n,Θ, τ) for reliable communication over N consists of a codebook, an encoding
mapping and a decoding positive operator-valued measure (POVM). The codebook C is a
shifted subgroup of Gn whose size is equal to Θ. The encoding mapping is defined as

Enc : {1, 2, · · · ,Θ} → C.

The decoding POVM is a set {Λm}Θm=1 of operators such that Λm ⩾ 0,∀m and
∑

m Λm = I.
The probability of obtaining outcome j is tr(Λjρ) if the state is in a mixed state described
by some density operator ρ. The group transmission system with parameters (n,Θ, τ) over
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N exists if

Θ∑
m=1

1

Θ

∑
x∈Xn

1{x=Enc(m)}[1− tr(Λmρx)] ⩽ τ

We say an (M, τ) coding scheme exists for N if a group transmission system with parameters
(1,M, τ) does. Given a channel N , the rate R is said to be achievable using group codes
if for all ϵ > 0 and for all sufficiently large n, there exists a group transmission system for
reliable communication with parameters (n,Θ, τ) such that

1

n
log Θ ⩾ R− ϵ, τ ⩽ ϵ

The group capacity of the channel C = C(N ) is defined as the supremum of the set of all
achievable rates using group codes.

Hypothesis Testing Relative Entropy

The hypothesis testing relative entropy, denoted as Dϵ
H (ρ||σ), is an entropy measure

derived from the error probabilities arising from a quantum measurement that attempts
to distinguish between the states ρ and σ (a quantum hypothesis test). The most general
measurement that one could use in such a test is a two-outcome POVM {Q, I −Q} where
0 ⩽ Q ⩽ I. The outcome Q corresponds to deciding that the state is ρ and the outcome
I−Q corresponds to deciding that the state is σ. Thus, the probability of guessing correctly
when the state is ρ is equal to tr {Qρ}, and the probability of guessing incorrectly when the
state is σ is equal to tr {Qσ}. In an asymmetric quantum hypothesis test, we try to find a
POVM that guesses ρ correctly with high probability, so that

tr {Qρ} ⩾ 1− ϵ, (5.1)

for some small, fixed ϵ ⩾ 0, while minimizing the probability that we guess σ incorrectly. This
naturally leads to a semidefinite optimization program, specified by the following quantity:

βϵ (ρ, σ) ≡ min
Q
{tr {Qσ} : 0 ⩽ Q ⩽ I, tr {Qρ} ⩾ 1− ϵ} . (5.2)

By taking the negative logarithm of βϵ (ρ, σ), we arrive at the hypothesis testing relative
entropy defined in [25, 142]:

Dϵ
H (ρ||σ) ≡ − log βϵ (ρ, σ) . (5.3)
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One can derive other entropic measures based on the hypothesis testing relative entropy that
have various natural properties [41]. Also, one may define, for two distributions P,Q on a
classical alphabet X , the hypothesis testing relative entropy Dϵ

H(P∥Q) by

Dϵ
H(P∥Q) = − log2 inf

A:P (A)⩾1−ϵ
Q(A),

where A ⊂ X is sometimes called the decision region. This corresponds to the case when
the two states ρ, σ are simultaneously diagonalizable with respect some basis {|i⟩}, and
P (i), Q(i) are the eigenvalues of ρ, σ for the eigenvector |i⟩, respectively.

Notation

In our notation, O(ϵ) is any function of ϵ such that limϵ→0+ O(ϵ) = 0, P is the set of all
primes, Z+ is the set of positive integers and R+ is the set of non-negative reals. Since we
deal with summations over several groups in this paper, when not clear from the context,
we indicate the underlying group in each summation; e.g. summation over the group G is

denoted by

(G)︷︸︸︷∑
. Direct sum of groups is denoted by

⊕
and direct product of sets is denoted

by
⊗

.

5.3 Abelian Group Code Ensemble

In this section, we use a standard characterization of Abelian groups and introduce the
ensemble of Abelian group codes used in [121] and this chapter.

5.3.1 Abelian Groups

For an Abelian group G, let P(G) denote the set of all distinct primes which divide |G|
and for a prime p ∈ P(G) let Sp(G) be the corresponding Sylow subgroup of G. It is known
that any Abelian group G can be decomposed as a direct sum of its Sylow subgroups in the
following manner

G =
⊕

p∈P(G)

Sp(G) (5.4)

Furthermore, each Sylow subgroup Sp(G) can be decomposed into Zpr groups as follows:
Sp(G) ∼=

⊕
r∈Rp(G)Z

Mp,r

pr .where Rp(G) ⊆ Z+ and for r ∈ Rp(G), Mp,r is a positive integer.
Note that ZMp,r

pr is defined as the direct sum of the ring Zpr with itself for Mp,r times.
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Rewriting Equation (5.4), we can represent any Abelian group as follows:

G ∼=
⊕

p∈P(G)

⊕
r∈Rp(G)

Z
Mp,r

pr =
⊕

p∈P(G)

⊕
r∈Rp(G)

Mp,r⊕
m=1

Z
(m)
pr (5.5)

where Z(m)
pr is called the mth Zpr ring of G or the (p, r,m)th ring of G. Equivalently, this can

be written as follows

G ∼=
⊕

(p,r)∈Q(G)

Z
Mp,r

pr =
⊕

(p,r,m)∈G(G)

Z
(m)
pr , (5.6)

where Q(G) ⊆ P × Z+ is defined as Q(G) = {(p, r) | p ∈ P(G), r ∈ Rp(G)} and G(G) ⊆
P×Z+×Z+ is defined as G(G) = {(p, r,m) | (p, r) ∈ Q(G),m ∈ {1, 2, . . . ,Mp,r}}. This means
any element a of the Abelian group can be regarded as a vector whose components are indexed
by (p, r,m) ∈ G(G) and whose (p, r,m)th component ap,r,m takes values from the ring Zpr .
With a slight abuse of notation, we represent an element a of G as a =

⊕
(p,r,m)∈G(G) ap,r,m.

Furthermore, for two elements a, b ∈ G, we have a+ b =
⊕

(p,r,m)∈G(G) ap,r,m+pr bp,r,m , where
+ denotes the group operation and +pr denotes addition mod-pr. This can equivalently be
written as [a+ b]p,r,m = ap,r,m +pr bp,r,m, where [·]p,r,m denotes the (p, r,m)th component of
it’s argument.

Example 1. Let G = Z4 ⊕ Z3 ⊕ Z2
9. Then we have P(G) = {2, 3}, S2(G) = Z4 and

S3(G) = Z3 ⊕ Z2
9, R2(G) = {2}, R3(G) = {1, 2}, M2,2 = 1, M3,1 = 1, M3,2 = 2 and

G(G) = {(2, 2, 1), (3, 1, 1), (3, 2, 1), (3, 2, 2)}

Each element a ofG can be represented by a quadruple (a2,2,1, a3,1,1, a3,2,1, a3,2,2) where a2,2,1 ∈
Z4, a3,1,1 ∈ Z3 and a3,2,1, a3,2,2 ∈ Z9.

In the following section, we introduce the ensemble of Abelian group codes which we use
in the chapter.

5.3.2 The Image Ensemble

Recall that for a positive integer n, an Abelian group code of length n over the group G
is a coset of a subgroup of Gn. Our ensemble of codes consists of all Abelian group codes
over G; i.e., we consider all cosets of subgroups of Gn. The following lemma ([121, Lemma
1]) effectively characterizes all subgroups of Gn:
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Lemma 40. For an Abelian group G̃, let ϕ : J → G̃ be a homomorphism from some Abelian
group J to G̃. Then ϕ(J) ⩽ G̃; i.e. the image of the homomorphism is a subgroup of
G̃. Moreover, for any subgroup H̃ of G̃ there exists a corresponding Abelian group J and a
homomorphism ϕ : J → G̃ such that H̃ = ϕ(J).

Definition 4. Let G be an Abelian group. For p ∈ P(G), define rp = maxRp(G), and
S(G) = {(p, s) | p ∈ P(G), 1 ⩽ s ⩽ rp}.

It is shown in [121] that we only need to consider homomorphisms from an Abelian group
J to G̃ such that

P(J) ⊆ P(G̃), and s ⩽ rq = maxRq(G̃) for all (q, s, l) ∈ G(J).

To construct Abelian group codes of length n over G, let G̃ = Gn. We have

Gn ∼=
⊕

p∈P(G)

⊕
r∈Rp

Z
nMp,r

pr =
⊕

p∈P(G)

⊕
r∈Rp

nMp,r⊕
m=1

Z
(m)
pr =

⊕
(p,r,m)∈G(Gn)

Z
(m)
pr (5.7)

Define J as

J =
⊕

q∈P(G)

rq⊕
s=1

Z
kq,s
qs =

⊕
q∈P(G)

rq⊕
s=1

kq,s⊕
l=1

Z
(l)
qs =

⊕
(q,s,l)∈G(J)

Z
(l)
qs (5.8)

for some positive integers kq,s. Define k =
∑

q∈P(G)

∑rq
s=1 kq,s and wq,s = kq,s

k
for q ∈ P(G)

and s = 1, · · · , rq, so that we can write

J =
⊕

q∈P(G)

rq⊕
s=1

kwq,s⊕
l=1

Z
(l)
qs (5.9)

for some constants wq,s adding up to one.

Definition 5. The ensemble of Abelian group encoders consists of all mappings ϕ : J → Gn

of the form

ϕ(a) =
⊕

(p,r,m)∈G(Gn)

(Zpr )︷︸︸︷∑
(q,s,l)∈G(J)

aq,s,lg(q,s,l)→(p,r,m) (5.10)

for a ∈ J where aq,s,lg(q,s,l)→(p,r,m) is the short-hand notation for the mod-pr addition of
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g(q,s,l)→(p,r,m) to itself for aq,s,l times, and

g(q,s,l)→(p,r,m)


= 0 if p ̸= q

∼ Unif(Zpr) if p = q, r ⩽ s

∼ Unif(pr−sZpr) if p = q, r ⩾ s

The corresponding shifted group code is defined by

C = {ϕ(a) + V |a ∈ J}, (5.11)

where V is a uniform random variable over Gn.

The rate of this code is given by

R =
1

n
log |J | = k

n

∑
q∈P(G)

rq∑
s=1

swq,s log q. (5.12)

5.3.3 The Hθ̂ coset

A characterization of the joint distribution of the codewords corresponding to two mes-
sages is given in this section. This result, shown in [121], requires the following definitions
of the coset index θ̂ and the corresponding subgroup Hθ̂ of G. In addition, two definitions
are provided to set the notations for the conditional distributions of the channel input and
output given the coset information of the codeword, for both classical and classical-quantum
channels.

For an Abelian group G defined in (5.5), denote a vector θ̂ whose components are indexed
by (p, s) ∈ S(G) by (θ̂p,s)(p,s)∈S(G), where 0 ⩽ θ̂p,s ⩽ s, θ̂p,s ∈ Z. For θ̂ = (θ̂p,s)(p,s)∈S(G), define

θθθ(θ̂) =

 min
(p,s)∈S(G)
wp,s ̸=0

|r − s|+ + θ̂p,s


(p,r)∈Q(G)

.

Let Hθ̂ be a subgroup of G defined as

Hθ̂ =
⊕

(p,r,m)∈G(G)

pθθθ(θ̂)p,rZ
(m)
pr . (5.13)
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For a ∈ J and θ̂ = (θ̂p,s)(p,s)∈S(G), let

Tθ̂(a) = {ã ∈ J | ãp,s − ap,s ∈ p
θ̂p,sZ

kp,s
ps \pθ̂p,s+1Z

kp,s
ps ,∀(p, s) ∈ S(G)}.

Then we have |Tθ̂(a)| =
∏

(p,s)∈S(G) p
(s−θ̂p,s)kp,s for all a ∈ J . Therefore, we may write

|Tθ̂(a)| = |Tθ̂| without any ambiguity. Let ωθ̂ be defined by

ωθ̂ =

∑
(p,s)∈S(G) θ̂p,swp,s log p∑
(p,s)∈S(G) swp,s log p

, (5.14)

we have

log |Tθ̂| =
∑

(p,s)∈S(G)

(s− θ̂p,s)kp,s log p = k ·

[∑
(p,s)∈S(G) (s− θ̂p,s)ωp,s log p∑

(p,s)∈S(G) sωp,s log p

] ∑
(p,s)∈S(G)

sωp,s log p

= (1− ωθ̂)k
∑

(p,s)∈S(G)

sωp,s log p = (1− ωθ̂)nR. (5.15)

For any a ∈ J , {Tθ̂(a)}θ̂ is a union of disjoint sets whose union is ∪θ̂Tθ̂(a) = J . Hence∑
θ̂ |Tθ̂| =

∑
θ̂ |Tθ̂(a)| = |J |. Exploiting equation (5.15), we have that

∑
θ̂ 2

(1−ωθ̂)nR = |J |, or
equivalently,

∑
θ̂ 2

(1−ωθ̂) = 1.
We are now ready to state the result from [121].

Lemma 41. For a, ã ∈ J , x, x̃ ∈ Gn and for (p, s) ∈ Q(J) = S(G), let θ̂p,s ∈ {0, 1, · · · , s}
be such that ãp,s − ap,s ∈ pθ̂p,sZkp,s

ps \pθ̂p,s+1Z
kp,s
ps , i.e., ã ∈ Tθ̂(a). Consider a random homo-

morphism ϕ and a dither V with distribution specified as in Definition 5. Then,

Pr (ϕ(a) + V = x, ϕ(ã) + V = x̃) =

{
1

|G|n
1

|Hθ̂|n
if x̃− x ∈ Hn

θ̂

0 otherwise

We use the following notations for the conditional distributions of the codeword and
channel output given the coset information.

Definition 6. Let H = Hθ̂ be a subgroup of G and xr ∈ G. Let X be distributed according
to PX ≡ Unif(X ), the uniform distribution over X = G, and W = (X ,Y ,WY |X) be a classical
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channel. Then, for a coset [xr]θ̂ = xr +H of H in G, define

P[Xr]([xr]) ≜ Pr(X ∈ [xr]) =
|H|
|G|

,

PX|[Xr](x | [xr]) ≜ Pr(X = x | X ∈ [xr]) =

 1
|H| if x ∈ [xr],

0 otherwise,

PY |[Xr](y | [xr]) ≜ Pr(Y = y | X ∈ [xr]) =
∑
x∈[xr]

PX|[Xr](x|[xr])WY |X(y|x)

=
∑
x∈[xr]

1

|H|
WY |X(y|x),

where we write [xr] and [xr]θ̂ interchangeably when the dependency of θ̂ is clear from the
context. For xnr = (xr,1, xr,2, . . . , xr,n) ∈ Gn, [xnr ] denotes the coset xnr +Hn in Gn, and the
product conditional distribution P n

Y |[Xr]
is defined as

P n
Y |[Xr](y

n | [xnr ]) ≜
n∏

i=1

PY |[Xr](yi | [xr,i]) =
∑

x1∈[xr,1]

· · ·
∑

xn∈[xr,n]

1

|H|n
WY |X(y1|x1) · · ·WY |X(yn|xn)

=
∑

xn∈[xn
r ]

P n
X|[Xr](x

n|[xnr ])W n
Y |X(y

n|xn).

For the transmission over a classical-quantum channel, given the coset information, we
use the following notation for the conditional distribution of (classical) codeword and the
expected output (quantum) state.

Definition 7. Let H = Hθ̂ be a subgroup of G and xr ∈ G. Let X be distributed according
to PX ≡ Unif(X ), the uniform distribution over X = G, and N = {ρx}x∈X be a classical-
quantum channel from the classical alphabet X to the quantum system B. Then, for a coset
[xr]θ̂ = xr +H of H in G, define P[Xr]([xr]) ≜ Pr(X ∈ [xr]) =

|H|
|G| , PX|[Xr](x | [xr]) ≜ Pr(X =

x | X ∈ [xr]), which is 1
|H| for x ∈ [xr] and 0 otherwise. Also, define

ρB[xr] ≜
∑
x∈[xr]

PX|[Xr](x|[xr])ρBx =
∑
x∈[xr]

1

|H|
ρBx .

For xnr = (xr,1, xr,2, . . . , xr,n) ∈ Gn, [xnr ] denotes the coset xnr +Hn in Gn, and the conditional
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expected state ρBn

[xn
r ]

on B⊗n is defined as

ρB
n

[xn
r ]
≜ ρB1

[xr,1]
⊗ ρB2

[xr,2]
⊗ · · · ρBn

[xr,n]
=
∑

xn∈[xn
r ]

P n
X|[Xr](x

n|[xnr ])ρB
n

xn .

5.4 One-shot Classical Group Coding

In this section, we consider the one-shot coding problem for a classical channel W where
the code is a group code in the form of (5.11), i.e., C = {ϕ(a)+V |a ∈ J}. Two approaches are
given in the achievability part. The main result from the first approach resembles the group
capacity results from [121], while the second approach is more comprehensive and implies
the result of the first approach. A converse bound is shown in Section 5.4.2 by considering
subcodes of a given code C.

Let Abelian groups G and J be given, as in equations (5.6) and (5.8) respectively, by

G ∼=
⊕

p∈P(G)

⊕
r∈Rp(G)

Z
Mp,r

pr =
⊕

(p,r,m)∈G(G)

Z
(m)
pr . (5.16)

J =
⊕

q∈P(G)

rq⊕
s=1

Z
kq,s
qs =

⊕
q∈P(G)

rq⊕
s=1

kq,s⊕
l=1

Z
(l)
qs =

⊕
(q,s,l)∈G(J)

Z
(l)
qs . (5.17)

For two distributions P,Q on a classical alphabet, recall the hypothesis testing relative
entropy Dϵ

H(P∥Q) is given by

Dϵ
H(P∥Q) = − log2 inf

A:P (A)⩾1−ϵ
Q(A).

Given a channel W = (X = G,Y ,WY |X), let the joint distribution PXY be PXY = PX ·WY |X

with PX being the uniform distribution over X , and PY be the marginal distribution of PXY

over Y . Let Hθ̂ be a subgroup of G defined in (5.13). When [X] = [X]θ̂ = X +Hθ̂ for some
θ̂, we have

Dϵ
H(PXY ∥P[X]PX|[X]PY |[X])

= − log2 inf
A⊂X×Y

PXY (A)⩾1−ϵ

∑
[xr]

|Hθ̂|
|G|

∑
x∈[xr]

PX|[Xr](x | [xr])
∑

y:(x,y)∈A

PY |[Xr](y | [xr]) (5.18)

= − log2 inf
A⊂X×Y

PXY (A)⩾1−ϵ

∑
(x,y)∈A

1

|G|
PY |[Xr](y | [x]). (5.19)

We can also denote this quantity as Dϵ,θ̂
H (PXY ∥P[X]PX|[X]PY |[X]) if we would like to make its
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dependence on θ̂ explicit.

5.4.1 Achievability

Let the ensemble of homomorphisms ϕ from J to G and the group code C = {ϕ(a)+V |a ∈
J} be given as in Definition 5 with n = 1. Given a channel W = (X = G,Y ,WY |X), consider
a decision region Aϵ ⊂ X × Y , which will be constructed explicitly later, such that

PXY (Aϵ) =
∑

(x,y)∈Aϵ

PX(x)WY |X(y|x) ⩾ 1− ϵ, (5.20)

where PX is uniform over G.
To find an achievable rate, we use a random coding argument in which the random

encoder is characterized by the random homomorphism ϕ and a random vector V uniformly
distributed over G. Given a message u ∈ J , the encoder maps it to x = ϕ(u) + V and
x is then fed to the channel. At the receiver, after receiving the channel output y ∈ Y ,
the decoder looks for a unique ũ ∈ J such that (ϕ(ũ) + V, y) ∈ Aϵ. If the decoder does
not find such ũ or if such ũ is not unique, it declares error. Thus, the error event can
be characterized by the union of two events: E(u) = E1(u) ∪ E2(u) where E1(u) is the
event that (ϕ(u) + V, y) /∈ Aϵ and E2(u) is the event that there exists a ũ ̸= u such that
(ϕ(ũ) + V, y) ∈ Aϵ. We can provide an upper bound on the probability of the error event as
Pr(E(u)) ⩽ Pr(E1(u)) + Pr(E2(u) ∩ (E1(u))

c).
Denote by Perr(u) the probability of the event E2(u) ∩ (E1(u))

c, averaged over the ran-
domness of ϕ, V .

Perr(u) ≜ E [Pr(E2(u) ∩ (E1(u))
c)]

=
∑

(x,y)∈Aϵ

WY |X(y|x) Pr (ϕ(u) + V = x, ∃ũ ∈ J : ũ ̸= u, (ϕ(ũ) + V, y) ∈ Aϵ)

⩽
∑

(x,y)∈Aϵ

∑
ũ∈J
ũ̸=u

∑
x̃∈G

(x̃,y)∈Aϵ

WY |X(y|x) Pr (ϕ(u) + V = x, ϕ(ũ) + V = x̃)

=
∑
θ̂ ̸=s

∑
(x,y)∈Aϵ

∑
ũ∈Tθ̂(u)

∑
x̃∈G

(x̃,y)∈Aϵ

WY |X(y|x) Pr (ϕ(u) + V = x, ϕ(ũ) + V = x̃)

=
∑
θ̂ ̸=s

Perr(u, θ̂), (5.21)
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where Perr(u, θ̂) ≜
∑

ũ∈Tθ̂(u)
Perr(u, ũ) and for ũ ∈ Tθ̂(u),

Perr(u, ũ) ≜
∑

(x,y)∈Aϵ

∑
x̃∈G

(x̃,y)∈Aϵ

WY |X(y|x) Pr (ϕ(u) + V = x, ϕ(ũ) + V = x̃) , (5.22)

and s denote the vector whose compnents satisfy s(p,s) = s for all (p, s) ∈ S(G). The term
Pr(ϕ(u) + V = x, ϕ(ũ) + V = x̃) in (5.22) can be found using Lemma 41. Hence

Perr(u, ũ) =
∑

(x,y)∈Aϵ

∑
x̃∈x+Hθ̂

WY |X(y|x)IAϵ(x̃, y)
1

|G|
1

|Hθ̂|

=
∑
x∈X

∑
x̃∈x+Hθ̂

∑
y:(x,y)∈Aϵ

(x̃,y)∈Aϵ

WY |X(y|x)
1

|G|
1

|Hθ̂|

⩽
∑
x∈X

∑
x̃∈x+Hθ̂

∑
y:(x̃,y)∈Aϵ

WY |X(y|x)
1

|G|
1

|Hθ̂|

=
∑
[xr]

|Hθ̂|
|G|

∑
x∈[xr]

∑
x̃∈[xr]

∑
y:(x̃,y)∈Aϵ

WY |X(y|x)
1

|Hθ̂|
2

=
∑
[xr]

P[Xr]([xr])
∑
x̃∈[xr]

∑
y:(x̃,y)∈Aϵ

PX|[Xr](x̃ | [xr])PY |[Xr](y | [xr]), (5.23)

where [xr] denotes a coset of Hθ̂ in G, that is, [xr] = xr +Hθ̂.

5.4.1.1 First Approach

Let a set of parameters {ϵθ̂}θ̂ ̸=s
be given such that ϵθ̂ > 0 for each θ̂ and that

∑
θ̂ ϵθ̂ = ϵ. Let

the set A∗
ϵθ̂

be a maximizer of the right-hand side of (5.18) for Dϵθ̂,θ̂

H (PXY ∥P[X]PX|[X]PY |[X]),
i.e., PXY (A

∗
ϵθ̂
) ⩾ 1− ϵθ̂ and

D
ϵθ̂,θ̂

H (PXY ∥P[X]PX|[X]PY |[X])

= − log2
∑
[xr]

P[Xr]([xr])
∑
x∈[xr]

PX|[Xr](x | [xr])
∑

y:(x,y)∈A∗
ϵ
θ̂

PY |[Xr](y | [xr]).
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Now we set explicitly Aϵ = ∩θ̂A∗
ϵθ̂

. The probability of the event E1(u) can be bounded as:

Pr(E1(u)) = Pr ((ϕ(u) + V, Y ) /∈ Aϵ) = Pr((X, Y ) /∈ Aϵ)

= Pr
(
(X, Y ) ∈ ∪θ̂(A

∗
ϵθ̂
)C
)

⩽
∑
θ̂

Pr
(
(X, Y ) ∈ (A∗

ϵθ̂
)C
)
⩽
∑
θ̂

ϵθ̂ = ϵ.

Since Aϵ ⊂ A∗
ϵθ̂

, the term in (5.22) can then be upper bounded by

Perr(u, ũ) ⩽
∑
[xr]

P[Xr]([xr])
∑
x̃∈[xr]

∑
y:(x̃,y)∈A∗

ϵ
θ̂

PX|[Xr](x̃| [xr])PY |[Xr](y| [xr])

= exp2

{
−Dϵθ̂,θ̂

H (PXY ∥P[X]PX|[X]PY |[X])
}
,

which implies the following bound on Perr(u):

Perr(u) ⩽
∑
θ̂ ̸=s

|Tθ̂(u)| exp2

{
−Dϵθ̂

H (PXY ∥P[X]θ̂
PX|[X]θ̂

PY |[X]θ̂
)
}
.

Therefore, we have Pr(E(u)) ⩽ ϵ+
∑

θ̂ ̸=s |Tθ̂(u)| exp2

{
−Dϵθ̂

H (PXY ∥P[X]θ̂
PX|[X]θ̂

PY |[X]θ̂
)
}
. The

average probability of error of the group transmission scheme can be upper bounded by

Pr(error) =
∑
u∈J

1

|J |
Pr(E(u)) ⩽ ϵ+

∑
θ̂ ̸=s

|Tθ̂(u)| exp2

{
−Dϵθ̂

H (PXY ∥P[X]θ̂
PX|[X]θ̂

PY |[X]θ̂
)
}
.

Exploiting equation (5.15), we may state the result in terms of the rate R of the code:

Theorem 42. Let ϵ and {ϵθ̂} be given with ϵθ̂ > 0 for all θ̂ and
∑

θ̂ ϵθ̂ ⩽ ϵ. Then there exists
a (J, ϵ′)-code such that

ϵ′ ⩽ ϵ+
∑
θ̂ ̸=s

exp2

{
(1− ωθ̂)R−D

ϵθ̂
H (PXY ∥P[X]θ̂

PX|[X]θ̂
PY |[X]θ̂

)
}
,

where the rate R = k
∑

(p,s)∈S(G) sωp,s log p is given in Equation (5.12).

Example 2. Let J = Z4, G = Z8. In this example, we have G(G) = {(2, 3, 1)} and G(J) =
{(2, 2, 1)}, k2,1 = 0, k2,2 = 1, k2,3 = 0, and the term g(2,2,1)→(2,3,1) is a uniform random
variable over 2Z8. For simplicity, we write u = u2,2,1 ∈ J and g = g(2,2,1)→(2,3,1) ∈ Z8. Then
r2 = maxR2(G) = 3 and the set Q(J) = S(G) = {(2, 1), (2, 2), (2, 3)}, and s(2,1) = 1, s(2,2) =

2, s(2,3) = 3. For distinct u, ũ ∈ J , the vector θ̂ = (θ̂2,1, θ̂2,2, θ̂2,3) for which ũ ∈ Tθ̂(u) must
have θ̂2,1 = 1, 0 ⩽ θ̂2,2 < 2, θ̂2,3 = 3. Thus Perr(u) ⩽ Perr(u, (1, 0, 3)) + Perr(u, (1, 1, 3)).
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The set Q(G) = {(2, 3)}, so θθθ(θ̂) = θθθ(θ̂)(2,3) and

θθθ(θ̂)(2,3) = min
(2,s)∈S(G)
w2,s ̸=0

{
|3− s|+ + θ̂2,s

}
= |3− 2|+ + θ̂2,2 = 1 + θ̂2,2.

Case 1: θ̂2,2 = 0, θθθ(θ̂)(2,3) = 1

For ũ ∈ Tθ̂(u), ũ− u ∈ Z4\2Z4, and Hθ̂ = 2Z8. The double sum∑
(x,y)∈Aϵ

∑
x̃∈G

(x̃,y)∈Aϵ

WY |X(y|x) Pr (ϕ(u) + V = x, ϕ(ũ) + V = x̃)

=
∑

(x,y)∈Aϵ

∑
x̃∈x+Hθ̂

WY |X(y|x)IAϵ(x̃, y)
1

|G|
1

|Hθ̂|
⩽
∑
x∈X

∑
x̃∈x+Hθ̂

∑
y:(x̃,y)∈Aϵ

WY |X(y|x)
1

|G|
1

|Hθ̂|

=
∑
[xr]

|Hθ̂|
|G|

∑
x∈[xr]

∑
x̃∈[xr]

∑
y:(x̃,y)∈Aϵ

WY |X(y|x)
1

|Hθ̂|
2

=
∑
[xr]

|Hθ̂|
|G|

∑
x̃∈[xr]

∑
y:(x̃,y)∈Aϵ

PX|[Xr](x̃| [xr])PY |[Xr](y| [xr])

⩽
∑
[xr]

|Hθ̂|
|G|

∑
x̃∈[xr]

∑
y:(x̃,y)∈A∗

ϵ/2,θ̂

PX|[Xr](x̃| [xr])PY |[Xr](y| [xr])

= 2
− logD

ϵ/2
H (PXY ∥P[X]

θ̂
PX|[X]

θ̂
PY |[X]

θ̂
)
,

where A∗
ϵ/2,θ̂

is a maximizer for Dϵ/2
H (PXY ∥P[X]θ̂

PX|[X]θ̂
PY |[X]θ̂

) and Aϵ ⊂ A∗
ϵ/2,θ̂

.
Hence we have

Perr(u, (1, 0, 3)) =
∑

ũ∈Tθ̂(u)

∑
(x,y)∈Aϵ

∑
x̃∈G

(x̃,y)∈Aϵ

WY |X(y|x) Pr (ϕ(u) + V = x, ϕ(ũ) + V = x̃)

⩽
∣∣T(1,0,3)(u)∣∣ exp2

[
− logD

ϵ/2
H (PXY ∥P[X]θ̂

PX|[X]θ̂
PY |[X]θ̂

]
.

Case 2: θ̂2,2 = 1, θθθ(θ̂)(2,3) = 2

In this case, Hθ̂ = 4Z8, and we have

Perr(u, (1, 1, 3)) =
∑
ũ∈Tθ̂

∑
(x,y)∈Aϵ

∑
x̃∈G

(x̃,y)∈Aϵ

WY |X(y|x) Pr (ϕ(u) + V = x, ϕ(ũ) + V = x̃)

⩽
∣∣T(1,1,3)(u)∣∣ exp2

[
− logD

ϵ/2
H (PXY ∥P[X]θ̂

PX|[X]θ̂
PY |[X]θ̂

]
.
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Therefore the error probability for a message u is

Pr(E(u)) ⩽ Pr(E1(u)) + Pr(E2(u) ∩ (E1(u))
c)

⩽ ϵ+
∣∣T(1,0,3)(u)∣∣ exp2

[
− logD

ϵ/2
H (PXY ∥P[X]θ̂

PX|[X]θ̂
PY |[X]θ̂

]
θ̂=(1,0,3)

+
∣∣T(1,1,3)(u)∣∣ exp2

[
− logD

ϵ/2
H (PXY ∥P[X]θ̂

PX|[X]θ̂
PY |[X]θ̂

]
θ̂=(1,1,3)

,

where we consider the decision region Aϵ = ∩θ̂A∗
ϵ/2,θ̂

. More generally, one may show that

Pr(E(u)) ⩽ ϵ+
∑
θ̂

|Tθ̂(u)| exp2

[
− logD

ϵθ̂
H (PXY ∥P[X]θ̂

PX|[X]θ̂
PY |[X]θ̂

]
,

where ϵθ̂ > 0 for all θ̂ and
∑

θ̂ ϵθ̂ ⩽ ϵ. That is, let {ϵθ̂} be given with ϵθ̂ > 0 for all θ̂ and∑
θ̂ ϵθ̂ ⩽ ϵ′. Then there exists a (J, ϵ)-code such that

ϵ ⩽ ϵ′ +
∑
θ̂

|Tθ̂(u)| exp2

[
− logD

ϵθ̂
H (PXY ∥P[X]θ̂

PX|[X]θ̂
PY |[X]θ̂

]
.

5.4.1.2 Second Approach

Let Θ be the set of vectors θ̂ indexed by (p, s) ∈ S(G) such that 0 ⩽ θ̂p,s ⩽ s and
θ̂ ̸= s, and denote its size by M ≜ |Θ| . We may also index the vectors in the set, so that
Θ =

{
θ̂1, θ̂2, . . . , θ̂M

}
. In addition, denote by θ̂0 = s, and denote by Θ∗ the union Θ∪

{
θ̂0

}
.

For θ̂ ∈ Θ∗, let [xr] denote [xr] = [xr]θ̂ = xr +Hθ̂. Define two conditional joint distributions
PXY |[Xr] by

PXY |[Xr](x̃, y | [xr]) ≜ PX|[Xr](x̃ | [xr])PY |[Xr](y | [xr]),

PXY |θ̂(x̃, y) ≜
∑
[xr]

P[Xr]([xr])PXY |[Xr](x̃, y | [xr]),
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and a joint distribution

PXY |J(x̃, y) ≜ |J |−1
∑
θ̂∈Θ∗

|Tθ̂|PXY |θ̂(x̃, y) (5.24)

= |J |−1
∑
θ̂

|Tθ̂|
∑
[xr]

P[Xr]([xr])PX|[Xr](x̃ | [xr])PY |[Xr](y | [xr])

= |J |−1
∑
θ̂

|Tθ̂|
1

|G|
∑
x∈[x̃]

1

|Hθ̂|
WY |X(y|x) (5.25)

= |J |−1
∑
θ̂

∑
ũ∈Tθ̂(u)

∑
x∈G

WY |X(y|x) Pr (ϕ(u) + V = x, ϕ(ũ) + V = x̃) , (5.26)

where u is an arbitrary element of J . Note that PX(x) =
1
|G| for all x ∈ X , thereby

PXY |J(x̃, y) = PX(x̃) |J |−1
∑
θ̂

|Tθ̂|
∑
x∈[x̃]

1

|Hθ̂|
WY |X(y|x) (5.27)

= PX(x̃) |J |−1
∑
θ̂

|Tθ̂|PY |[Xr](y | [x̃]). (5.28)

Let Aϵ be a subset of X × Y that achieves Dϵ
H(PXY ∥PXY |J). That is, PXY (Aϵ) ⩾ 1 − ϵ

and
Dϵ

H(PXY ∥PXY |J) = − log2 PXY |J(Aϵ), (5.29)

where we use PXY |J(A) as a shorthand notation for
∑

(x,y)∈A PXY |J(x, y). The probability
for the event E1(u) is given by

Pr(E1(u)) = Pr ((ϕ(u) + V, Y ) /∈ Aϵ) = 1− Pr ((ϕ(u) + V, Y ) ∈ Aϵ)

= 1−
∑
x

Pr(ϕ(u) + V = x)
∑

y:(x,y)∈Aϵ

WY |X(y |x)

= 1−
∑

(x,y)∈Aϵ

PX(x)WY |X(y |x) = 1− PXY (Aϵ) ⩽ ϵ, (5.30)

where PX is the uniform distribution on X .
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Combining (5.21) and (5.23), we have

Perr(u) ⩽
∑
θ̂ ̸=s

∑
ũ∈Tθ̂(u)

∑
[xr]

∑
x̃∈[xr]

∑
y:(x̃,y)∈Aϵ

P[Xr]([xr])PX|[Xr](x̃ | [xr])PY |[Xr](y | [xr])

=
∑
θ̂ ̸=s

∑
ũ∈Tθ̂(u)

∑
[xr]

∑
(x̃,y)∈Aϵ

P[Xr]([xr])PXY |[Xr](x̃, y | [xr])

=
∑

(x̃,y)∈Aϵ

∑
θ̂ ̸=s

∑
ũ∈Tθ̂(u)

PXY |θ̂(x̃, y)

=
∑

(x̃,y)∈Aϵ

∑
θ̂ ̸=s

|Tθ̂(u)|PXY |θ̂(x̃, y), (5.31)

where the first equality holds because PXY |[Xr](x̃, y | [xr]) vanishes for x̃ /∈ [xr], and the last
equality holds because for any x, y, the term PXY |θ̂(x, y) depends only on θ̂ and is independent
of ũ. Finally, note that (5.31) can be further upper bounded as

Perr(u) ⩽
∑

(x̃,y)∈Aϵ

∑
θ̂∈Θ∗

|Tθ̂(u)|PXY |θ̂(x̃, y) = |J |
∑

(x̃,y)∈Aϵ

PXY |J(x̃, y) = |J |PXY |J(Aϵ). (5.32)

We now provide an upper bound for the probability of error for the coding scheme as follows.

Pr(error) =
1

|J |
∑
u∈J

Pr(E(u)) =
1

|J |
∑
u∈J

[Pr(E1(u)) + Perr(u)]

⩽ ϵ+ |J |PXY |J(Aϵ) = ϵ+ 2R−Dϵ
H(PXY ∥PXY |J ), (5.33)

where the inequality follows from (5.30) and (5.32). The last equality follows from (5.29)
and the rate of the code R being R = log2 |J |, as in equation (5.12). The characterization
of error probability for the coding scheme in this section implies the following theorem.

Theorem 43. Let G be an Abelian group in the form of (5.16). Then there exists an Abelian
group J in the form of (5.17) and a (|J | , ϵ)-code such that

R ⩾ Dϵ′

H(PXY ∥PXY |J)− log2
1

ϵ− ϵ′
,

for any ϵ′ ∈ (0, ϵ), where the rate R = log2 |J |.

5.4.2 Converse

According to Lemma 40, for each group code C ⩽ G, there exists a group J and a
homomorphism such that C is the image of the homomorphism. Assume now that a group
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transmission system with parameters (1, |J | , ϵ) exists over a channel (X = G,Y ,WY |X), and
that the group J takes the form in equation (5.17). Assume that the homomorphism ϕ for
the group code C is a one-to-one mapping. We can express the code compactly as follows:

C =

 ⊕
(p,r,m)∈G(G)

rp∑
s=1

up,sg(p,s)→(r,m) + V : up,s ∈ Zkp,s
ps ,∀(p, s) ∈ S(G)

 .

The rate of this code is given by R = log |J | = k
∑

(p,s)∈S(G) sωp,s log p.
Let θ̂ be a vector indexed by (p, s) ∈ S(G) with 0 ⩽ θ̂p,s ⩽ s. For an message u ∈ J ,

construct a one-to-one correspondence between up,s ∈ Zkp,s
ps and the tuple (ũp,s, ûp,s) where

ũp,s ∈ pθ̂p,sZkp,s
ps and ûp,s ∈ Zkp,s

pθ̂p,s
. Let U denote the random message of the group transmission

system of the code. Let Û denote the part of the random message such that Ûp,s ∈ Zkp,s

pθ̂p,s
,

for all (p, s) ∈ S(G). Consider the subcode of C:

C1(θ̂, û) =

 ⊕
(p,r,m)∈G(G)

rp∑
s=1

(ũp,s + ûp,s)g(p,s)→(r,m) + V : ũp,s ∈ pθ̂p,sZkp,s
ps ,∀(p, s) ∈ S(G)

 .

Let x = ϕ(u) + V be the channel input and Hθ̂ be given as in (5.13). Then C1(θ̂, û) =

[x]θ̂ = x + Hθ̂. That is, there is a one-to-one correspondence between Û and [X]θ̂. Also,
|Tθ̂(u)| =

∣∣∣C1(θ̂, û)
∣∣∣ = |Hθ̂| for all u ∈ J .

Define a one-to-one correspondence between x and the tuple (x̃θ̂, [x]θ̂) where x̃θ̂ = ϕ(ũ).
Consider a genie-aided receiver which gets access to Û and performs maximum likelihood
decoding. Equivalently, this receiver has access to the coset information [X]θ̂ of X and can
be written as Dga : ([x]θ̂, y) 7→ x′ ∈ X . Clearly the average probability of error for this
decoder must be not greater than ϵ. Let X ′ ∈ X be the output of Dga. For every θ̂ with
0 ⩽ θ̂p,s ⩽ s, θ̂ ̸= s, the average probability of error for this decoder is∑

û

∑
x,x′

Pr(û)PXX′|Û(x, x
′ | û)1{x′ ̸=x} =

∑
x,x′

PXX′(x, x′)1{x′ ̸=x} ⩽ ϵ,

where PXX′|Û(x, x
′|û) ≜ PX|[Xr](x|[x])

∑
y:Dga([x],y)=x′ W (y|x) and [x] = [x]θ̂ = x+ C1(θ̂, û).

Consider a strategy to distinguish PXX′ and PÛ(PX|Û ⊗ PX′|Û) as follows. The strategy
guesses PXX′ if it sees X = X ′, and guesses PÛ(PX|Û ⊗ PX′|Û) otherwise. When PXX′ is
the true underlying distribution, the type-I error probability is exactly the probability that
X ̸= X ′ computed from PXX′ , namely, the average probability of a decoding error, and
is thus not larger than ϵ. When PÛ(PX|Û ⊗ PX′|Û) is the true underlying distribution, the
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probability of type-II error (misdetection) is∑
û

PÛ(û)
∑
x,x′

PX|Û(x | û)PX′|Û(x
′ | û)1{x′=x}

=
∑
[xr]

P[Xr]([xr])
∑
x,x′

PX|[Xr](x | [xr])PX′|[Xr](x
′ | [xr])1{x′=x} (5.34)

=
∑
[xr]

|H|
|G|

∑
x

PX|[Xr](x | [xr])PX′|[Xr](x | [xr])

=
∑
[xr]

|H|
|G|

∑
x∈[xr]

1

|H|
PX′|[Xr](x | [xr]) =

1

|H|
,

where we wrote H for Hθ̂, and (5.34) follows from the one-to-one mapping between Û and
[X]θ̂. Thus,

Dϵ,θ̂
H (PXY ∥P[X]PX|[X]PY |[X]) ⩾ Dϵ,θ̂

H (PXX′∥P[X]PX|[X]PX′|[X]) = Dϵ
H(PXX′∥PÛ(PX|Û ⊗ PX′|Û))

⩾ − log2
1

|H|
= log2 |H| = log2 |Tθ̂(u)|

= (1− ωθ̂)k
∑

(p,s)∈S(G)

sωp,s log p., (5.35)

where the first inequality follows from the DPI and the last equality is shown in
equation (5.15) in Section 5.3.3. Equivalently, we may rewrite (5.35) compactly as
Dϵ,θ̂

H (PXY ∥P[X]PX|[X]PY |[X]) ⩾ (1− ωθ̂)R. Thus we have the following theorem

Theorem 44. Assume that a group transmission system with parameters (1, |J | , ϵ) exists
over a channel (X = G,Y ,WY |X), and that the group J takes the form as in equation (5.17).
Then the rate of the code, R = log |J |, is bounded as:

R ⩽ min
θ̂ ̸=s

1

1− ωθ̂

Dϵ,θ̂
H (PXY ∥P[X]PX|[X]PY |[X]).

Example 3. Consider the sets J = Z4, G = Z8 as in Example 2. We have G(G) = {(2, 3, 1)}
and G(J) = {(2, 2, 1)}, S(G) = {(2, 1), (2, 2), (2, 3)}, and k2,1 = 0, k2,2 = 1, k2,3 = 0. The
vector θ̂ with 0 ⩽ θ̂p,s ⩽ s, θ̂ ̸= s must be θ̂ ∈ {(1, 0, 3), (1, 1, 3)}.

Case 1: θ̂2,2 = 0, θθθ(θ̂)(2,3) = 1, Hθ̂ = 2Z8.
In this case, ũ2,2 ∈ Z4, û2,2 ∈ Z1 ≡ {0}, and C1(θ̂ = (1, 0, 3), û = 0) =

{ũ2,2g + V : ũ2,2 ∈ Z4} = C. Thus, equation (5.35) yields

Dϵ
H(PXY ∥P[X]PX|[X]PY |[X]) = Dϵ

H(PXY ∥PXPY ) ⩾ log2 |H| = 2 = R,
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where the first equality holds because [X] = X +Hθ̂ = C1(θ̂ = (1, 0, 3), û = 0) = C.
Case 2: θ̂2,2 = 1, θθθ(θ̂)(2,3) = 2, Hθ̂ = 4Z8

In this case, ũ2,2 ∈ 2Z4, û2,2 ∈ Z2, and C1(θ̂ = (1, 1, 3), û =

0) = {ũ2,2g + V : ũ2,2 ∈ 2Z4} = {V, 2g + V } and C1(θ̂ = (1, 1, 3), û = 1) =

{(ũ2,2 + 1)g + V : ũ2,2 ∈ 2Z4} = {g + V, 3g + V }. Equation (5.35) yields

Dϵ
H(PXY ∥P[X]PX|[X]PY |[X]) ⩾ log2 |H| = 1 = R/2,

5.5 One-shot Classical-Quantum Group Coding

The one-shot coding problem for the transmission over a classical-quantum channel using
group codes is studied in this section. The technique adopted in the achievability part is
similar to the second approach in Section 5.4.1. The converse part is proved by considering
subcodes of a given code C, and the main result is given in a similar manner to that of the
classical channel given in Section 5.4.2.

We recall a few properties of the hypothesis testing relative entropy Dϵ
H(ρ∥σ), defined in

Section 5.2, from [142].

Lemma 45. Dϵ
H(ρ∥σ) has the following properties, all of which hold for all ρ, σ and ϵ ∈ [0, 1):

• Positivity: Dϵ
H(ρ∥σ) ⩾ 0, with equality if ρ = σ and ϵ = 0.

• Data Processing Inequality (DPI): for any Completely Positive Map E, Dϵ
H(ρ∥σ) ⩾

Dϵ
H(E(ρ)∥E(σ)).

• Let D(·∥·) denote the usual quantum relative entropy, then Dϵ
H(ρ∥σ) ⩽

(D(ρ∥σ) +Hb(ϵ)) /(1− ϵ).

The following lemma by Hayashi and Nagaoka [62, Lemma 2] will serve, roughly speak-
ing, as the quantum analog to the equation Pr(E(u)) ⩽ Pr(E1(u)) +

∑
ũ̸=u Perr(u, ũ) in

Section 5.4.1.

Lemma 46. For any positive real c and any operators 0 ⩽ S ⩽ I and T ⩾ 0, we have

I − (S + T )−1/2S(S + T )−1/2 ⩽ (1 + c)(I − S) + (2 + c+ c−1)T.

5.5.1 Achievability

Consider Abelian groups G and J as in Section 5.3.1. Given a classical-quantum channel
N = {ρx}x∈X from the classical alphabet X to the quantum system B, where X = G is an
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Abelian group. Let u, x and ρx be the message, the channel input and the channel output
respectively. Consider the group code C = {ϕ(a) + V |a ∈ J}, where the distributions of ϕ
and V are specified in Definition 5. Let πAB denote the joint state of the input and output
for an input chosen according to the uniform distribution PX ≡ Unif(X ), i.e.,

πAB ≜
∑
x∈X

PX(x)|x⟩⟨x|A ⊗ ρBx ,

for any representation of the inputs x in terms of orthonormal vectors |x⟩A on a Hilbert
space A, and where πA and πB are the corresponding marginals. Let θ̂ be a vector indexed
by (p, s) ∈ S(G) with 0 ⩽ θ̂p,s ⩽ s. Define the joint state πAB

θ̂
by

πAB
θ̂

≜
∑
x∈X

PX(x)
∑

x̃∈x+Hθ̂

PX|[Xr](x̃|x+Hθ̂)|x̃⟩⟨x̃|
A ⊗ ρBx

=
∑
[xr]

P[Xr]([xr])
∑
x∈[xr]

∑
x̃∈[xr]

PX|[Xr](x|[xr])PX|[Xr](x̃|[xr])|x̃⟩⟨x̃|A ⊗ ρBx

=
∑
[xr]

P[Xr]([xr])
∑
x̃∈[xr]

PX|[Xr](x|[xr])|x̃⟩⟨x̃|A ⊗ ρB[xr] ,

where [xr] = [xr]θ̂ is the coset xr+Hθ̂. Let Θ be the set of vectors θ̂ indexed by (p, s) ∈ S(G)
such that 0 ⩽ θ̂p,s ⩽ s and θ̂ ̸= s, and denote its size by M ≜ |Θ| . We may also index the
vectors in the set, so that Θ =

{
θ̂1, θ̂2, . . . , θ̂M

}
. In addition, denote by θ̂0 = s, and denote

by Θ∗ the union Θ ∪
{
θ̂0

}
. Define a joint state πAB

J by

πAB
J ≜ |J |−1

∑
θ̂∈Θ∗

|Tθ̂|π
AB
θ̂

=
∑
θ̂∈Θ∗

2(1−ωθ̂)πAB
θ̂
. (5.36)

The last equality holds by noting that log |Tθ̂(a)| = (1− ωθ̂)R according to (5.15), and that
the rate of the code is R = log |J |. One may also plug in the definition of πAB

θ̂
and show that

πAB
J = |J |−1

∑
θ̂∈Θ∗

|Tθ̂|
∑
x∈X

PX(x)
∑

x̃∈x+Hθ̂

PX|[Xr](x̃|x+Hθ̂)|x̃⟩⟨x̃|
A ⊗ ρBx

= |J |−1
∑
θ̂

∑
ũ∈Tθ̂(u)

∑
x,x̃

Pr (ϕ(u) + V = x, ϕ(ũ) + V = x̃) |x̃⟩⟨x̃|A ⊗ ρBx , (5.37)

where u is an arbitrary element of J .
Let Q∗ be a positive operator that achieves Dϵ′

H(π
AB∥πAB

J ). That is, tr[Q∗πAB] ⩾ 1 − ϵ′
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and

Dϵ′

H(π
AB∥πAB

J ) = − log2 tr[Q
∗πAB

J ].

We define the decoding POVM by its elements,

Eu =

(∑
u′∈J

Ax(u′)

)− 1
2

Ax(u)

(∑
u′∈J

Ax(u′)

)− 1
2

,

where x(u) ≜ ϕ(u) + V and Ax ≜ trA
[(
|x⟩⟨x|A ⊗ IB

)
Q∗]. For any state ρB on the Hilbert

space B, we have

tr
{
Axρ

B
}
= tr

{(
|x⟩⟨x|A ⊗ ρB

)
Q∗} . (5.38)

For a specific choice of ϕ and V and a message u ∈ J , the probability of error is given by

Pr(error|u, ϕ, V ) = tr[(I − Eu)ρx(u)].

Applying Lemma 46 with S = Ax(u) and T =
∑

u′ ̸=uAx(u′), we may bound this term by

Pr(error|u, ϕ, V ) ⩽ (1 + c)
(
1− tr[Ax(u)ρx(u)]

)
+ (2 + c+ c−1)

∑
u′ ̸=u

tr[Ax(u′)ρx(u)].

Taking expectation over all choices of ϕ, V , but keeping the transmitted message u fixed, we
find

Pr(error|u) ⩽ (1 + c)
[
1− Eϕ,V tr[AX(u)ρX(u)]

]
+ (2 + c+ c−1)

∑
u′ ̸=u

Eϕ,V tr[AX(u′)ρX(u)].

(5.39)

Rewriting the first expectation via (5.38) and the linearity of the trace operator,

Eϕ,V tr[AX(u)ρX(u)] = Eϕ,V tr
[(
|X(u)⟩⟨X(u)|A ⊗ ρBX(u)

)
Q∗]

= tr
[
Eϕ,V

(
|X(u)⟩⟨X(u)|A ⊗ ρBX(u)

)
Q∗]

= tr
[
Q∗πAB

]
⩾ 1− ϵ′.

Hence we may bound the first term by (1 + c)
[
1− Eϕ,V tr[AX(u)ρX(u)]

]
⩽ (1 + c)ϵ′.

For the sum in the second term of (5.39), we adopt an approach similar to that in
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Section 5.4.1.∑
u′ ̸=u

Eϕ,V tr[AX(u′)ρX(u)] =
∑
θ̂ ̸=s

∑
ũ∈Tθ̂(u)

∑
x,x̃

Pr (ϕ(u) + V = x, ϕ(ũ) + V = x̃) tr[Ax̃ρx]

=
∑
θ̂ ̸=s

∑
ũ∈Tθ̂(u)

∑
[xr]

∑
x∈[xr]

∑
x̃∈[xr]

Pr (ϕ(u) + V = x, ϕ(ũ) + V = x̃) tr[Ax̃ρx]

=
∑
θ̂ ̸=s

Perr(u, θ̂), (5.40)

where Perr(u, θ̂) ≜
∑

ũ∈Tθ̂(u)
Perr(u, ũ) and, for ũ ∈ Tθ̂(u),

Perr(u, ũ) ≜
∑
[xr]

∑
x∈[xr]

∑
x̃∈[xr]

Pr (ϕ(u) + V = x, ϕ(ũ) + V = x̃) tr [Ax̃ρx]

=
∑
[xr]

P[Xr]([xr])
∑
x∈[xr]

∑
x̃∈[xr]

PX|[Xr](x|[xr])PX|[Xr](x̃|[xr])tr [Ax̃ρx]

=
∑
[xr]

P[Xr]([xr])
∑
x̃∈[xr]

PX|[Xr](x̃|[xr])tr
[
Ax̃ρ[xr]

]
. (5.41)

Leveraging equation (5.38), the above equation can be written as

Perr(u, ũ) =
∑
[xr]

P[Xr]([xr])
∑
x̃∈[xr]

PX|[Xr](x̃|[xr])tr
[(
|x̃⟩⟨x̃|A ⊗ ρ[xr]

)
Q∗] = tr[Q∗πAB

θ̂
].

Therefore the sum in (5.40) is given by∑
u′ ̸=u

Eϕ,V tr[AX(u′)ρX(u)] =
∑
θ̂ ̸=s

|Tθ̂(u)| tr[Q
∗πAB

θ̂
] ⩽

∑
θ̂∈Θ∗

|Tθ̂(u)| tr[Q
∗πAB

θ̂
]

= tr

Q∗

∑
θ̂∈Θ∗

|Tθ̂(u)|π
AB
θ̂

 = tr

Q∗

∑
θ̂∈Θ∗

2(1−ωθ̂)2RπAB
θ̂


= 2R tr[Q∗πAB

J ] = 2R−Dϵ′
H (πAB∥πAB

J ).

The bound in (5.39) is thus

Pr(error|u) ⩽ (1 + c)ϵ′ + (2 + c+ c−1)2R−Dϵ′
H (πAB∥πAB

J ),

which is independent of u. Therefore we have demonstrated the existence of a (2R, ϵ)-code
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with

R ⩾ Dϵ′

H(π
AB∥πAB

J )− log2
2 + c+ c−1

ϵ− (1 + c)ϵ′
. (5.42)

Optimized over c, this bound implies the following theorem

Theorem 47. Given a classical-quantum channel N = {ρx}x∈X , where X = G, an (2R, ϵ)

coding scheme exists for N with

R ⩾ Dϵ′

H(π
AB∥πAB

J )− log2
4ϵ

(ϵ− ϵ′)2

for any ϵ′ ∈ (0, ϵ).

5.5.2 Converse

Based on Lemma 40, for each group code C ⩽ G, there exists a group J and a homomor-
phism such that C is the image of the homomorphism. Assume now that a group transmission
system with parameters (1, |J | , ϵ) exists over a classical-quantum channel N =

{
ρBx
}
x∈X ,

where X = G is an Abelian group, and that the group J takes the form in equation (5.17),
i.e., J =

⊕
p∈P(G)

⊕rp
s=1Z

kp,s
ps . Assume that the homomorphism ϕ for the group code C is a

one-to-one mapping. We can express the code complactly as follows:

C =

 ⊕
(p,r,m)∈G(G)

rp∑
s=1

up,sg(p,s)→(r,m) + V : up,s ∈ Zkp,s
ps ,∀(p, s) ∈ S(G)

 .

The rate of this code is given by R = log |J | = k
∑

(p,s)∈S(G) sωp,s log p.
Let θ̂ be a vector indexed by (p, s) ∈ S(G) with 0 ⩽ θ̂p,s ⩽ s. For an message u ∈ J ,

construct a one-to-one correspondence between up,s ∈ Zkp,s
ps and the tuple (ũp,s, ûp,s) where

ũp,s ∈ pθ̂p,sZkp,s
ps and ûp,s ∈ Zkp,s

pθ̂p,s
. Consider the subcode of C:

C1(θ̂, û) =

 ⊕
(p,r,m)∈G(G)

rp∑
s=1

(ũp,s + ûp,s)g(p,s)→(r,m) + V : ũp,s ∈ pθ̂p,sZkp,s
ps ,∀(p, s) ∈ S(G)

 .

Let x = ϕ(u) + V be the channel input and Hθ̂ be given as in (5.13). Then C1(θ̂, û) =

[x]θ̂ = x + Hθ̂. That is, there is an one-to-one correspondence between Û and [X]θ̂. Also,
|Tθ̂(u)| =

∣∣∣C1(θ̂, û)
∣∣∣ = |Hθ̂| for all u ∈ J .

Define a one-to-one correspondence between x and the tuple (x̃θ̂, [x]θ̂) where x̃θ̂ = ϕ(ũ).
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Consider a genie-aided receiver which gets access to Û and denote it by Dga,. Equivalently,
this receiver has access to the coset information [X]θ̂ of X and can be realized by a family
of POVMs

{
E

[x]
x

}
. Clearly the average probability of error for this decoder must be not

greater than ϵ. Let X ′ ∈ X be the output of Dga. For every θ̂ with 0 ⩽ θ̂p,s ⩽ s, θ̂ ̸= s, the
average probability of error for this decoder is∑

û

∑
x,x′

Pr(û)PXX′|Û(x, x
′ | û)1{x′ ̸=x} =

∑
x,x′

PXX′(x, x′)1{x′ ̸=x} ⩽ ϵ,

where PXX′|Û(x, x
′|û) ≜ PX|[Xr](x|[x])tr

[
E

[x]
x′ ρx

]
and [x] = [x]θ̂ = x+ C1(θ̂, û).

Note that the decoding POVM can be viewed as a CPM. This CPM maps πAB to the
(classical) state PXX′ denoting the joint distribution of the transmitted codeword X and the
decoder’s guess X ′. Similarly, it maps πAB

θ̂
to PÛ(PX|Û ⊗ PX′|Û). Hence, it follows from the

DPI for Dϵ
H(ρ∥σ) that

Dϵ
H(PXX′∥PÛ(PX|Û ⊗ PX′|Û)) ⩽ Dϵ

H(π
AB∥πAB

θ̂
) .

Consider a strategy to distinguish PXX′ and PÛ(PX|Û ⊗ PX′|Û) as follows. The strategy
guesses PXX′ if it sees X = X ′, and guesses PÛ(PX|Û ⊗ PX′|Û) otherwise. When PXX′ is
the true underlying distribution, the type-I error probability is exactly the probability that
X ̸= X ′ computed from PXX′ , namely, the average probability of a decoding error, and
is thus not larger than ϵ. When PÛ(PX|Û ⊗ PX′|Û) is the true underlying distribution, the
probability of type-II error (misdetection) is∑

û

PÛ(û)
∑
x,x′

PX|Û(x | û)PX′|Û(x
′ | û)1{x′=x}

=
∑
[xr]

P[Xr]([xr])
∑
x,x′

PX|[Xr](x | [xr])PX′|[Xr](x
′ | [xr])1{x′=x} (5.43)

=
∑
[xr]

|H|
|G|

∑
x

PX|[Xr](x | [xr])PX′|[Xr](x | [xr])

=
∑
[xr]

|H|
|G|

∑
x∈[xr]

1

|H|
PX′|[Xr](x | [xr]) =

1

|H|
,

where we wrote H for Hθ̂, and (5.43) follows from the one-to-one mapping between Û and
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[X]θ̂. That is,

Dϵ
H(π

AB∥πAB
θ̂

) ⩾ Dϵ
H(PXX′∥PÛ(PX|Û ⊗ PX′|Û)) = log2 |H| = log2 |Tθ̂(u)|

= (1− ωθ̂)k
∑

(p,s)∈S(G)

sωp,s log p., (5.44)

where the last equality is shown in equation (5.15) in Section 5.3.3. Equivalently, we may
rewrite (5.44) compactly as Dϵ

H(π
AB∥πAB

θ̂
) ⩾ (1−ωθ̂)R. Thus, we have the following theorem

Theorem 48. Assume that a group transmission system with parameters (1, |J | , ϵ) exists
over a classical-quatum channel N =

{
ρBx
}
x∈X , and that the group J takes the form as in

equation (5.17). Then the rate of the code, R = log |J |, is bounded as:

R ⩽ min
θ̂ ̸=s

1

1− ωθ̂

Dϵ
H(π

AB∥πAB
θ̂

).
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APPENDIX A

Supplementary material for Chapter 3

A.1 Proof for Section 3.3

Proof of Proposition 11: Since Gl is a polarization kernel, there is at least one column in
Gl with weight at least 2. To see this, note that Gl being invertible implies that all rows and
columns are nonzero vectors. If all the columns of Gl have weights equal to 1, then all the
rows must also have weights equal to 1, i.e., Gl is a permutation matrix. Then Di = 1,∀i,
and E(Gl) = 0, which implies that Gl can not be polarization kernel. The contradiction
shows that at least one column in Gl have a weight at least 2.

Let k ⩾ 1 denote the number of columns in Gl with a weight at least 2. Let v be a
randomly uniformly chosen column of G⊗n

l , and w(v) be the Hamming weight of v. For
1
l
> r > 0,

Pr
(
w(v) = O(N r logl 2)

)
⩽ Pr

(
2
∑n

i=1 Fi = O(N r logl 2) = O(2nr)
)
,

where Fi is the indicator variable that one of k non-unit-weight columns is used in the i-
th Kronecker product of Gl to form v. The variables F1, F2, . . . , Fn are i.i.d. as Ber(k/l).
The law of large numbers implies that

∑n
i=1 Fi ⩾ kn

l
> nr with high probability. Thus,

Pr
(
2
∑n

i=1 Fi = O(2nr)
)
→ 0 as n→∞ for any r > 0.

A.2 Proofs for Section 3.4

A.2.1 Proof of Lemma 12

In order to understand the DRS algorithm’s effect on G = G⊗n
2 , we first study how the

order of two special Kronecker product operations affects the number of output vectors. We
present the following Lemmas 49 and 50 toward the proof of Lemma 12.
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Lemma 49. Let a column vector v and a column weight threshold wu.b. be given. Then the
outputs of the DRS algorithm for (v ⊗ [1, 1]T )⊗ [0, 1]T and (v ⊗ [0, 1]T )⊗ [1, 1]T contain the
same number of vectors.

Proof: The input vectors can be denoted by:

(v ⊗ [1, 1]T )⊗ [0, 1]T ≡ vLR

(v ⊗ [0, 1]T )⊗ [1, 1]T ≡ vRL.

We note that 2wH(v) = wH(vLR) = wH(vRL), and prove the lemma in two cases:

1. 2wH(v) ⩽ wu.b.: In this case, the algorithm will not split either vLR or vRL. Both
outputs contain exactly one vector.

2. 2wH(v) > wu.b.: Let nDRS(v) denote the size, or more precisely, the number of column
vectors the DRS algorithm returns when it is applied to v.

For vLR, the DRS algorithm observes xh = 0, hence the number of output vectors
is the same as the size of DRS-Split(wu.b., (v

T , vT )T ) (see Section 3.4.1). With
2wH(v) > wu.b., the size of DRS-Split((vT , vT )T ) is the sum of the sizes of Yh =

DRS-Split(wu.b.,xh = v) and Yt = DRS-Split(wu.b.,xt = v). By assumption,
|Yh| = |Yt| = nDRS(v), giving nDRS(vLR) = 2nDRS(v).

For vRL, the number of vectors in the DRS algorithm output is the sum of the sizes
of two sets Yh = DRS-Split(wu.b.,xh = (0T , vT )T ) and Yt = DRS-Split(wu.b.,xt =

(0T , vT )T ). It is easy to see that |Yh| = |Yt| = |DRS-Split(wu.b., v)|, which equals
nDRS(v). Thus, nDRS(vRL) = 2nDRS(v).

The next lemma shows the effect of the DRS algorithm from a different perspective. If
there are two vectors with the same column weights, and numbers of vectors of the DRS
algorithm outputs are identical when they are the inputs, the properties will be preserved
when they undergo some basic Kronecker product operations.

Lemma 50. Let u1 and u2 be two vectors with equal Hamming weights. Assume, for a given
wu.b., the DRS algorithm splits u1 and u2 into the same number of vectors. Then the DRS
algorithm also returns the same number of vectors for u1 ⊗ [1, 1]T and u2 ⊗ [1, 1]T , as well
as for u1 ⊗ [0, 1]T and u2 ⊗ [0, 1]T .

Proof: We first discuss the case when u1 ⊗ [1, 1]T and u2 ⊗ [1, 1]T are processed by
the DRS algorithm. If 2wH(u1) = 2wH(u2) ⩽ wu.b., no splitting is done. If 2wH(u1) =
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2wH(u2) > wu.b., the size of the DRS algorithm output for the input u1 ⊗ [1, 1]T is the sum
of the sizes of Yh = DRS-Split(wu.b.,xh = u1) and Yt = DRS-Split(wu.b.,xt = u1), both
of which are nDRS(u1). The size of the output for the input u2 ⊗ [1, 1]T can be found in a
similar way to be 2nDRS(u2). Note that nDRS(u1) = nDRS(u2) by assumption. Therefore,
the sizes of the outputs of the DRS algorithm, when u1 ⊗ [1, 1]T and u2 ⊗ [1, 1]T are the
inputs, are equal. Similarly, one can easily show that when u1 ⊗ [0, 1]T and u2 ⊗ [0, 1]T are
processed by the DRS algorithm, the number of output columns are equal.

Proof of Lemma 12: Suppose that there is an index i such that (si, si+1) = (+,−). Let
v(i+1) and (v(i+1))′ be defined by (3.1) with sequences (s1, . . . , si−1, si = +, si+1 = −) and
(s1, . . . , si−1, s

′
i = −, s′i+1 = +), respectively. We note that

v(i+1) =
(
v(i−1) ⊗ [0, 1]T

)
⊗ [1, 1]T

(v(i+1))′ =
(
v(i−1) ⊗ [1, 1]T

)
⊗ [0, 1]T .

Lemma 49 shows that the DRS algorithm splits v(i+1) and (v(i+1))′ into the same number
of columns. Furthermore, Lemma 50 shows that the number of output vectors of the DRS
algorithm for v(n) = [v(i+1)](si+2,...,sn) and (v(n))′ = [(v(i+1))′](si+2,...,sn) are equal.

Therefore, an occurrence of (si, si+1) = (+,−) in a sequence can be replaced by
(si, si+1) = (−,+) without changing the number of output vectors of the DRS algorithm.
Since any sequence (s1, s2, . . . , sn) with n1 minus signs and n2 plus signs can be permuted
into (s′1, s

′
2, . . . s

′
n), where s′i = − for i ⩽ n1 and s′i = + for i > n1, by repeatedly replacing any

occurrence of (+,−) by (−,+), the above arguments show nDRS(v
(n)) = nDRS(v

(s′1,s
′
2,...s

′
n))

always holds. Hence, the size of DRS algorithm output for v(n) depends only on the values
n1 and n2.

A.2.2 Proof for Proposition 13

First note that there is a bijection between {−,+}n and the columns of G⊗n
2 as follows.

For each s = (s1, . . . , sn) ∈ {−,+}n, there is exactly one column of G⊗n
2 in the form 1(s) (see

equation (3.1) and the paragraph following it, where we use v = v(0) = [1] ∈ F2 to be the
length-1 vector). The term γ can be characterized as follows:

γ =

[
1

N

∑
s∈{−,+}n

nDRS(1
(s))

]
− 1.
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By Lemma 12, the terms in the summation can be grouped according to the number of minus
and plus signs in the sequence. Hence,

γ =

[
1

N

n∑
i=0

(
n

i

)
nDRS(1

(s1=−,...,si=−,si+1=+,...,sn=+))

]
− 1.

Let ui denote the vector 1(s1,...,sn) with sl = − for l ⩽ i and sl = + for l > i. Without loss
of generality, let nλ ∈ N. For i ⩽ nλ, the Hamming weight of ui is 2i ⩽ 2nλ = wu.b.. Hence,
nDRS(ui) = 1. For i > nλ, ui is split into 2i−nλ vectors, each of which having weight equal
to 2nλ. Therefore, nDRS(ui) = 2i−nλ.

The term γ can be written as follows:

γ =
nλ∑
i=0

1

N

(
n

i

)
+

n∑
i=nλ+1

1

N

(
n

i

)
2i−nλ − 1 =

n∑
i=nλ+1

ai, (A.1)

where ai ≜ 1
N

(
n
i

)
(2i−nλ − 1). Now, let α = i/n. Since i > nλ for each summand ai, we

consider α > λ > 1
2

in the following calculations. The term ai can be written as

ai = anα = 2−n

(
n

nα

)
2nα−nλ+o(1)

= 2−n · 2nhb(α)+o(1) · 2nα−nλ+o(1)

= 2n·f(α,λ)+o(1), (A.2)

where the third equality is due to an asymptotic approximation of the binomial coefficient,
and f(α, λ) ≜ hb(α) + α− λ− 1.

Consider f(α, λ) as a function of α over the interval [0, 1]. We find its first and second
derivatives with respect to α as follows:

∂f(α, λ)

∂α
= 1− log

α

1− α
, (A.3)

∂2f(α, λ)

∂2α
= − 1

ln 2

( 1
α
+

1

1− α

)
< 0, for 0 < α < 1. (A.4)

Thus, for any fixed λ, f(α, λ) is a concave function of α and has local maximum when
∂f(α,λ)/∂α = 0. From (A.3), the equality holds if and only if α = 2

3
, and the maximum is

sup
α∈(0,1)

f(α, λ) = hb

(
2

3

)
+

2

3
− λ− 1 = λ∗ − λ. (A.5)
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Also, when α = 0, f(0, λ) = −λ − 1, and when α = 1, f(1, λ) = −λ. Hence,
supα∈[0,1] f(α, λ) = λ∗ − λ. When λ > λ∗, we know f( i

n
, λ) ⩽ supα f(α, λ) < 0 for all

integers 0 ⩽ i ⩽ n, and (A.2) implies that ai → 0 exponentially fast for each i. Equation
(A.1) then shows that γ vanishes exponentially fast in n.

A.3 Proof for Section 3.5

Proof for Lemma 14: We show the claim by proving the following: when we encode the
source bits according to G′, the bit-channels observed by the source bits are BECs and that
the erasure probabilities are less than or equal to those when G is used. We use proof by
induction on n. For ease of notation, we use M ′ to denote DRS(M) for a given matrix M
in this proof.

For n = 1, if G2 = G′
2, we naturally have Z(s1)

G′
2

= Z
(s1)
G2

for s1 ∈ {−,+}. If G2 ̸= G′
2, the

latter must be
[
1 0 0

0 1 1

]
, corresponding to the encoding block diagram in FigureA.1, where

the solid black circles indicate a split of the XOR operation, i.e., the two operands of the
original XOR operation are transmitted through two copies of channel W . The bit-channels

!

!

!!

!"

"!

""

! ""#

Figure A.1: Encoding Block for G′
2

observed by U1 and U2, denoted by W⊟ and W⊞, are BECs with erasure probability ϵ and
ϵ2, respectively. Note that the Bhattacharyya parameters satisfy the following:

Z
(−)

G′
2
= Z(W⊟) = ϵ ⩽ Z

(−)
G2

= Z(W−) = 2ϵ− ϵ2,

Z
(+)

G′
2
= Z(W⊞) = ϵ2 = Z

(+)
G2

= Z(W+).

Suppose that, for a fixed wu.b., the claim holds for all n ⩽ m for some integer m ⩾ 1. Let
Bm denote the encoding block corresponding to the generator matrix (G⊗m

2 )′, with inputs
U1, . . . , U2m and encoded bits X1, . . . , Xf(m), where f(m) is the number of columns in (G⊗m

2 )′.
Using the matrix notation, the relation between the input bits and encoded bits is:

(U1, . . . , U2m)(G
⊗m
2 )′ = (X1, . . . , Xf(m)).
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For n = m+ 1, the matrix (G⊗m+1
2 )′ is associated with (G⊗m

2 )′ as follows:

(G⊗m+1
2 )′ = DRS

([
(G⊗m

2 )′ 0

(G⊗m
2 )′ (G⊗m

2 )′

])
. (A.6)

Since (G⊗m
2 )′ consists of the outputs of the DRS algorithm, the columns in the right half

of the input matrix in equation (A.6) remain unaltered in the output. For the columns in
the left half, they are of the form [vT , vT ]T for some column v of (G⊗m

2 )′. If 2wH(v) > wu.b.,
the outputs of the DRS algorithm are [0T , vT ]T and [vT ,0T ]T because the vector v must
have weight no larger than the threshold. If 2wH(v) ⩽ wu.b., the algorithm leaves the vector
unchanged. We may represent the encoding block Bm+1 as in FigureA.2, where it is assumed
that the j-th column of the input matrix in (A.6) is halved by the DRS algorithm.
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Figure A.2: Encoding Block Bm+1

The erasure probabilities for the bit-channels observed by Xi, denoted here as W (Xi), are
less than or equal to 2ϵ− ϵ2 for 1 ⩽ i ⩽ f(m), and are equal to ϵ2 for f(m)+1 ⩽ i ⩽ 2f(m),
respectively. Hence we may replace the XOR operations to the right of the Xi’s as well as
the transmission over W ’s by BECs W (X1), . . . ,W (Xf(m)), W (Xf(m)+1), . . . ,W (X2f(m)), as
in Figure A.3.

One may observe that the erasure probability for the bit-channel observed by Ui is a non-
decreasing function of those of W (X1), . . . ,W (Xf(m)) for i ⩽ 2m, and of W (Xf(m)+1), . . . ,
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W (X2f(m)) for i > 2m. Thus, for i ⩽ 2m, we have

Z(G⊗m+1
2 )′ (Ui | Z(W ) = ϵ)

⩽ Z
[
W (Ui) | Z(W (Xj)) = 2ϵ− ϵ2, for 1 ⩽ j ⩽ f(m)

]
= Z(G⊗m

2 )′

(
Ui | Z(W ) = 2ϵ− ϵ2

)
⩽ ZG⊗m

2

(
Ui | Z(W ) = 2ϵ− ϵ2

)
= ZG⊗m+1

2
(Ui | Z(W ) = ϵ) ,

where the first inequality is due to Z(W (Xj)) ⩽ 2ϵ − ϵ2 for 1 ⩽ j ⩽ f(m) and the second
inequality follows from the hypothesis of the induction.

Similarly, for i > 2m, we have

Z(G⊗m+1
2 )′ (Ui | Z(W ) = ϵ)

= Z
[
W (Ui) | Z(W (Xj)) = ϵ2, for f(m) + 1 ⩽ j ⩽ 2f(m)

]
= Z(G⊗m

2 )′

(
Ui−f(m) | Z(W ) = ϵ2

)
⩽ ZG⊗m

2

(
Ui−f(m) | Z(W ) = ϵ2

)
= ZG⊗m+1

2
(Ui | Z(W ) = ϵ) .

Hence the inequality holds when n = m+ 1 as well.

A.4 Proofs for Section 3.6

A.4.1 Proof of Proposition 16

First note that each XOR operation at the j-th recursion can be associated with exactly
one vector s = (s1, s2, . . . , sn) ∈ {−,+}n and sj = −. For example, assume that the number
of minus signs in s, denoted as m(s), is larger than nlub = logwu.b. = nλ, and let τ = τ(s) be
the index such that m(sτ , sτ+1, . . . , sn) = nlub and sτ = −. Then for each index i in the set
{k : 1 ⩽ k < τ, sk = −}, there is a bijection between the pair (s, i) and an XOR operation at
the i-recursion which is split and modified in the ADRS scheme. Hence, the extra complexity
of the SC decoder for the ADRS scheme, compared to that of the SC decoder for the code
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Figure A.3: Equivalent Encoding Block Bm+1

based on G⊗n
2 , is given by

n−nlub+1∑
l=1

|{s ∈ {−,+}n : τ(s) > l, sl = −}| 2(2l+1 − 2)c

=

n−nlub+1∑
l=1

n−nlub+1∑
k=l+1

|{s ∈ {−,+}n : τ(s) = k, sl = −}| ·

2(2l+1 − 2)c

=

n−nlub+1∑
k=1

[(
n− k + 1

nlub

)
2k−2

k−1∑
l=1

2(2l+1 − 2)c

]

⩽ 4c

n−nlub+1∑
k=1

(
n− k + 1

nlub

)
2k−2

k−1∑
l=1

2l

= 4c

n−nlub+1∑
k=1

(
n− k + 1

nlub

)
2k−2(2k − 2)

⩽ 4c

n−nlub∑
k=0

(
n− k
nlub

)
22k. (A.7)
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Now, let α = k
n
∈ [0, 1− λ]. Using Stirling’s approximation we have(

n− k
nlub

)
22k =

(
n(1− α)
nλ

)
22αn ≈ 2n(1−α)hb(

λ
1−α

)+2αn,

for all sufficiently large n. It suffices to assume that λ < 3
4
. For λ ⩾ 3

4
, note that fewer XOR

operations are split and modified, and that the resulting additional decoding complexity
is not larger than when λ < 3

4
is used. Let f(α, λ) = (1 − α)hb(

λ
1−α

) + 2α. We find its
maximum, for a given λ, by solving

0 =
∂

∂α
f(α, λ) =

∂

∂α

[
− (1− α)

(
λ

1− α
log

λ

1− α

)
− (1− α)

(
1− λ

1− α

)
log

(
1− λ

1− α

)
+ 2α

]
=

1

ln 2
[− ln(1− α) + ln(1− α− λ)] + 2,

which is true if and only if α = 1− 4
3
λ. And note that ∂2f(α,λ)

∂α2 = 1
ln 2

[
1

1−α
− 1

1−α−λ

]
< 0 for

all α ∈ [0, 1− λ]. The maximum of the function is then given by f(1− 4
3
λ, λ) = 2− λ log 3.

Using the union bound, the sum in (A.7) can be bounded by 4cn2n(2−λ log 3), and the ratio of
the sum to N = 2n, denoted by γC , is bounded from above as γC ⩽ 4cn2n(1−λ log 3). Since the
exponent n(1− λ log 3) goes to negative infinity as n grows when λ > λ† = 1/ log 3 ≈ 0.631,
the ratio γC vanishes exponentially in n when λ > λ†. The proposition follows by noting
that the SC decoding complexity for the code based on G⊗n

2 is N logN .
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A.4.2 Proof of Proposition 17

Similar to the proof of Proposition 16, the number of additional channels due to the ADRS
scheme modification is given by

n−nlub+1∑
l=1

|{s ∈ {−,+}n : τ(s) > l, sl = −}| 2l

=

n−nlub+1∑
l=1

n−nlub+1∑
k=l+1

|{s ∈ {−,+}n : τ(s) = k, sl = −}| 2l

⩽
n−nlub+1∑

k=1

(
n− k + 1

nlub

)
2k−2

k−1∑
l=1

2l

⩽
n−nlub∑
k=0

(
n− k
nlub

)
22k. (A.8)

By the argument in the proof of Proposition 16, the sum in (A.8) can be upper bounded by
n2n(2−λ log 3), and the ratio of the sum to N = 2n, denoted by γ, is bounded from above as
γ ⩽ n2n(1−λ log 3). Since the exponent n(1−λ log 3) goes to negative infinity as n grows when
λ > λ† = 1/ log2 3 ≈ 0.631, the ratio γ vanishes exponentially in n when λ > λ†.
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APPENDIX B

Supplementary material for Chapter 4

B.1 Harmonic Analysis

We compile in this section harmonic analysis preliminaries as in [106, 72]. See [72] for a
more detailed treatment. Here we list several necessary definitions and simple facts.

Consider the abelian group structure Fn
2 = (Z/2Z)n on the hypercube {0, 1}n. The

characters of the abelian group Fn
2 are {χz}z∈Fn

2
, where χz : {0, 1}n → {−1, 1} is given by

χz(x) = (−1)⟨x,z⟩ and ⟨x, z⟩ =
∑n

i=1 xizi.
Consider the R-vector space L(Fn

2 ) = {f : Fn
2 → R} endowed with the inner product ⟨·, ·⟩,

associated with the uniform distribution on {0, 1}n:

⟨f, g⟩ = EUn fg =
1

2n

∑
x∈Fn

2

f(x)g(x). (B.1)

The set of 2n characters {χz}z∈Fn
2

form an orthonormal basis in the space L(Fn
2 ), equipped

with uniform probability distribution. That is, for each z, z′ ∈ {0, 1}n, ⟨χz, χz′⟩ = δz,z′ , where
δ is the Kronecker delta function. The Fourier transform of a function f ∈ L(Fn

2 ) is the
function F(f) = f̂ ∈ L(Fn

2 ) given by the coefficients of the unique expansion of f in terms
of the characters:

f(x) =
∑
z

f̂(z)χz(x) or equivalently, f̂(z) = ⟨f, χz⟩. (B.2)

One may show that F(F(f)) = 2nf , and E f = f̂(0). For f, g ∈ L(Fn
2 ), the Parseval’s

identity holds: ⟨f, g⟩ =
∑

z f̂(z)ĝ(z) = 2n
〈
f̂ , ĝ
〉
. A special case of the above equality is the

following equality: E f 2 =
∑

z f̂(z)
2
.

The convolution of f and g is defined by (f ∗ g)(x) = Ey f(y)g(x+ y) =
1
2n

∑
y∈Fn

2
f(y)g(x+ y). The convolution transforms to dot product: f̂ ∗ g = f̂ · ĝ. The con-

volution operator is commutative and associative. For arbitrary functions f, g, h ∈ L(Fn
2 ),
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the following equality holds:
⟨f ∗ g, h⟩ = ⟨f, g ∗ h⟩. (B.3)

Also, it can be shown that E(f ∗ g) = E f · E g for all functions f, g ∈ L(Fn
2 ).

In this section and in Appendix-B.2, L ∈ L(Fn
2 ) is a function defined by L(x) = 2n for

x ∈ {0, 1}n with wH(x) = 1, and L(x) = 0 otherwise. Let A denote the 2n × 2n adjacency
matrix of Fn

2 , such that Af(x) = (Af)(x) =
∑

y∈Fn
2 :dH(x,y)=1 f(y). For any f ∈ L(Fn

2 )

holds Af = f ∗ L because for x ∈ Fn
2 , Af(x) =

∑
y:dH(x,y)=1 f(y) =

∑
y:wH(y)=1 f(x + y)

= Ey L(y)f(x + y) = (L ∗ f)(x) = (f ∗ L)(x). The Fourier transform of L is the function
F(L) = L̂ given by L̂(z) = ⟨L, χz⟩ =

∑
x:wH(x)=1 (−1)⟨x,z⟩ = n− 2 · wH(z).

For C ⊂ Fn
2 , let 1C ∈ L(Fn

2 ) be the indicator function of C. It can be shown that a code
C has minimum distance d if and only if (1C ∗ 1C)(x) = 0 for all 0 < wH(x) < d.

B.2 Proof of Proposition 34

Let fB be an eigenfunction supported on B corresponding to its maximal eigenvalue λB.
That is λB = ⟨AfB, fB⟩/⟨fB, fB⟩. It is known that the maximum can be attained with an
non-negative function fB, and further we have AfB ⩾ λBfB (see [46, p.13-15 and appendix
C]) for details). We write f = fB and λ = λB interchangeably, and denote the Hamming
weight of x ∈ Fn

2 by |x| = wH(x), in this proof. As f is supported on B, Cauchy-Schwarz
inequality yields the following:

E2 f = ⟨f, 1B⟩2 ⩽ E f 2 · E(1B)2 = E f 2 · |B| /2n. (B.4)

Let ϕ ∈ L(Fn
2 ) be a function such that (ϕ̂)2 = ϕ̂ ∗ ϕ = 1C ∗ 1C . Equivalently, ϕ ∗ ϕ =

2n1̂C ∗ 1C = 2n1̂C
2
. Therefore we have

ϕ ∗ ϕ ⩾ 0 and
E(ϕ2)

E2(ϕ)
=

(ϕ ∗ ϕ)(0)
ϕ̂2(0)

= |C| . (B.5)

Now let F = ϕ ∗ f . We estimate the product ⟨AF, F ⟩ in two ways. First,

⟨AF, F ⟩ = ⟨(ϕ ∗ f) ∗ L, ϕ ∗ f⟩ = ⟨ϕ ∗ ϕ ∗ f, f ∗ L⟩

= ⟨ϕ ∗ ϕ ∗ f, Af⟩ ⩾ ⟨ϕ ∗ ϕ ∗ f, λf⟩

= λ⟨ϕ ∗ f, ϕ ∗ f⟩ = λ⟨F, F ⟩ = λEF 2.
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Second, by Parseval’s identity,

⟨AF, F ⟩ = 2n
〈
ÂF , F̂

〉
= 2n

〈
L̂ · F̂ , F̂

〉
=
∑
z

(n− 2 |z|) F̂ 2(z).

Since F̂ = ϕ̂ · f̂ and (ϕ̂)2(z) = (1C ∗ 1C)(z), F̂ (z) = 0 for all 0 < |z| < d. We can estimate
⟨AF, F ⟩ by ∑

z

(n− 2 |z|) F̂ 2(z) = nF̂ 2(0) +
∑

z:|z|⩾d

(n− 2 |z|) F̂ 2(z)

⩽ nF̂ 2(0) + (n− 2d)
∑
z

F̂ 2(z) = nE2 F + (n− 2d)EF 2.

Combining the two estimates, we have the following inequality: nE2 F ⩾ (λ− (n− 2d))

EF 2. Since
E2 F = E2(ϕ ∗ f) = [ϕ̂ ∗ f(0)]2 = [ϕ̂(0)f̂(0)]2 = E2 ϕE2 f,

EF 2 = ⟨F, F ⟩ = ⟨ϕ ∗ f, ϕ ∗ f⟩ = ⟨ϕ ∗ ϕ, f ∗ f⟩

⩾ 1/2n(ϕ ∗ ϕ)(0)(f ∗ f)(0) = 1/2n Eϕ2 E f 2,

as ϕ ∗ ϕ = 2n · 1̂C
2
⩾ 0, we now have

nE2 ϕE2 f ⩾ (λ− (n− 2d))
1

2n
Eϕ2 E f 2. (B.6)

Leveraging equations (B.4), (B.5), and (B.6), the size of any code C with minimum distance
d is

|C| = Eϕ2

E2 ϕ
⩽

n

λ− (n− 2d)
· 2nE

2 f

E f 2
⩽

n

λ− (n− 2d)
|B| .
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