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ABSTRACT

Neurons make the nervous system tick. By communicating via electrical impulses, neurons
form concentrated networks in localized regions of the brain to carry out the complex tasks required
of the nervous system, ranging from moving the limbs to coordinating circadian rhythms. Despite
their complexity, these networks encode much information in their rates of electrical impulse
production–their firing rates.

In Chapter I, we review firing-rate models. We highlight several models that spearheaded the
development of the field, as well as certain applications. We augment our review with an analysis of
the corresponding network of citations. In doing so, we quantify how key papers contribute to the
literature. We further classify firing-rate models according to modeling methodology.

In Chapter II, we provide a new sensitivity analysis methodology which we use to study a
common type of chronic pain, allodynia, where non-painful stimuli produce pain. To do so, we
employ coupled firing-rate models to understand two biophysically motivated circuit structures that
represent common motifs within the dorsal horn of the spinal cord. The circuit motifs, respectively,
regulate the production of static and dynamic allodynia, wherein gentle pressure (static) and gentle
brushing sensations (dynamic) cause pain.

To investigate variability in allodynia in each circuit motif, we identify the sets of coupling
strengths that produce experimentally observed behaviors. To identify how properly behaving
circuits are most vulnerable towards producing allodynia, we compute the minimal alteration in
coupling strengths needed to induce the circuits to produce allodynia. We cluster the properly
behaving circuits accordingly.

Results indicate that in each circuit motif, allodynia is caused by unbalancing excitation and
inhibition. Results further clarify how differences in coupling strengths or circuit structure lead to
different vulnerabilities towards producing allodynia.

In Chapter III, we introduce a new firing-rate model formalism capable of simultaneously
addressing multiple sources of heterogeneity in a neuronal network. In particular, we apply our
model to the suprachiasmatic nucleus (SCN), which likely coordinates clocks throughout the body

xi



via 24hr oscillations in its firing rates. Further, SCN neurons intrinsically exhibit heterogeneous
properties and various and non-standard forms of electrical impulses.

Our formalism consists of a system of integro-differential equations describing the time evolution
of the mean and standard deviation of synaptic conductances across the network. Properties of SCN
neurons are incorporated by computing responses to synaptic conductance inputs of a Hodgkin-
Huxley-type SCN neuron model that exhibits these non-standard firing patterns. Such responses are
then averaged over distributions of relevant quantities and included in the differential equations.

Results suggest mechanisms by which physiologically relevant changes to firing rates may
appear. For instance, results show that a large spread in circadian phases across SCN neurons reduces
the amplitude of the 24hr oscillations in SCN network firing activity, identifying a mechanism by
which heterogeneities in neuron electrophysiology could influence circadian rhythms.

In Chapter IV, we employ the firing-rate model from Chapter III to mechanistically understand
how environmental light, e.g. sunlight and smartphone light, affects SCN firing activity. In doing
so, we find that we could better describe SCN output than if we use standard firing-rate models.
Further, in modeling the light-to-SCN-output pathway, we identify a novel trajectory traversed
throughout the day by conductances of important potassium ion channels in SCN neurons. The
resulting trajectory clarifies the link between molecular clocks within SCN neurons to the electrical
state of the neurons.

xii



CHAPTER I

Introduction to Firing-Rate Models

Figure I.1: Mean-field theory and coupled oscillator theory–two paradigms for reducing networks of neurons. (Coupled
metronome image source: [Isa13])

1



1.1 The nervous system

The nervous system is fascinating. Not only does it carry out complex tasks, such as moving the
limbs, coordinating circadian rhythms, and processing pain, but it is the source of consciousness.
Moreover, disruptions of the nervous system underlie terrible diseases, ranging from terminal
illnesses such as Alzheimer’s disease, and Parkinson’s disease, to psychiatric disorders such as
dementia, depression, anxiety, and schizophrenia [BCP20], to chronic pain [TC10] and jet lag
[FK17]. Thus, not only would understanding the nervous system clarify the human condition, but
doing so would be of great importance to society.

Despite many advances, numerous important functional aspects of the nervous system remain
poorly understood [BCP20]. Such a lack of understanding stems primarily from the complexity
of the nervous system. Indeed, the nervous system consists of a variety of cells, including a vast
network of neurons, with nearly 100 billion neurons in the human brain alone [ACG+09]. To enable
the nervous system to carry out tasks, such as moving the limbs, coordinating circadian rhythms,
processing pain, and more, the neurons must communicate with one another.

1.1.1 Neurons and neuronal dynamics

Communication between neurons is initiated where their cell bodies, called the soma, meet a
long, tube-like part of the neuron, called the axon (Figure I.2.a), which relays signals towards other
neurons [BCP20]. Specifically, both the soma and the axon, and for that matter the whole neuron,
are approximately enclosed by a membrane which blocks ions from entering and exiting the cell.
However, embedded into this membrane are ion channels, which allow certain ions to enter and/or
exit the cell. Via these ion channels, the neuron creates a charge difference, commonly referred to
as the “membrane voltage” of the neuron, between its interior and the fluid surrounding the cell
[BCP20]. In most neurons, ion channels maintain a charge difference so that the interior of the
neuron has a negative charge relative to the extracellular fluid. This leads to a voltage difference of
about −50 to −80 mV across the cell membrane (Figure I.2.b), usually referred to as the “resting
membrane voltage” [BCP20].
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(a) (b)

Figure I.2: Neuron structure and the voltage difference across the neuron membrane. (a): The structure of a neuron.
The soma is the cell body of the neuron. The soma houses cell organelles such as the nucleus and mitochondria.
Dendrites and axons constitute the neurites. Dendrites receive signals from other neurons, whereas axons send signals
towards other neurons. (b): Charge builds up across the membrane of the cell body, so that the interior of the soma
is negatively charged with respect to the exterior. Under certain conditions the neuron can rapidly depolarize, where
the voltage difference across the membrane of the soma rapidly shrinks, generating an action potential. Images from
[BCP20].

However, based on the value of the membrane voltage, ion channels can open or close to allow
positively charged sodium and potassium ions or negatively charged chloride ions to flow into or out
of the cell [BCP20]. As a result, the interior of the neuron can become more positively charged. We
say then that the neuron depolarizes, as the voltage difference across the cell membrane becomes
less negative. If the depolarization is large enough, it can trigger a cascade, where ion channels
rapidly open, allowing positively charged ions to flow into the cell. As a result, there is a rapid
increase in voltage [BCP20].

When the voltage difference across the membrane of the neuron becomes small or even positive,
though, ion channel configurations change so that the flow of ions into the cell is net negative.
Consequently, the voltage of the neuron rapidly falls or hyperpolarizes. The voltage can fall so
rapidly that it falls below its resting membrane voltage values, after which the neuron slowly
depolarizes back towards its resting membrane voltage [BCP20].

3



Figure I.3: Spikes in the voltage difference across the
neuron membrane–action potentials. An action potential
consists of a rapid rise in the voltage difference across the
neuron membrane, followed by a rapid drop, therefore
resembling a spike. After the rapid drop, the membrane
voltage slowly rises. If the voltage rises high enough,
another spike may occur, and the process repeats, leading
to a series of action potentials, such as that shown in the
figure. Image modified from [MSS+04].

Such a rapid increase followed immediately by a rapid decrease in the membrane voltage is
often referred to as a spike, or “action potential”, by neuroscientists [BCP20]. The action potential
is ubiquitous across neurons and species, and as such has been the subject of much study. Most
notably, the action potential was the subject of the Nobel prize winning work of Hodgkin and
Huxley. Specifically they developed a mathematical model that reproduces the dynamics of ion
channels and the subsequent action potentials [HH52].

To construct their model, Hodgkin and Huxley used that the neuron membrane acts as a capacitor.
Indeed, charge builds up on either side of the membrane. Further, because ions can pass from the
extracellular fluid through the membrane and into the cell via the ion channels, the ion channels
function as resistors arranged “in parallel”. Thus, the electrochemical dynamics of the cell can be
modeled via a resistor-capacitor (RC) circuit.

In typical models of RC circuits, the net flow of charge through the ion channels–the ionic
current Iionic–is taken to be proportional to the rate of change V ′(t) of the membrane potential V .
The corresponding proportionality constant, C, is referred to as the “capacitance”:

C
dV

dt
= Iionic (Typical model of an RC circuit).

This model is extremely intuitive. Indeed, the net flow of charge through the ion channels is precisely
the net amount of charge that enters the neuron per unit time, which, when rescaled appropriately, is
the voltage change per unit time.

Hodgkin and Huxley use the preceding model. However, instead of lumping currents from
all ion channels into one quantity, they individually model the currents IK , INa, and Il across
voltage-dependent potassium ion channels, voltage-dependent sodium ion channels, and all voltage-
independent ion channels, respectively, along with the current Iapplied into the cell due to sources
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external to the neuron. Thus, in the Hodgkin-Huxley model, the membrane voltage V follows:

C
dV

dt
+ IK + INa + Il = Iapplied (Hodgkin-Huxley model).

To model the ionic currents across e.g. potassium channels, one uses that since all ion channels
operate in parallel, one can combine them into a net current which obeys Ohm’s law. Namely,
current through all potassium channels is the change in voltage rescaled by the conductance of the
channels:

Ik = gk(V − Vk).

In the preceding expression, Vk is simply the voltage at which potassium current is zero. Because
the direction of the net potassium current into the cell reverses as Vm increases from below Vk

to above Vk, Vk is referred to as the potassium “reversal potential”. Moreover, gK is voltage and
time dependent. In particular, at very low voltages, potassium ion channels are closed, or “gated”.
However, when voltages rise, potassium ion channels open and potassium flows out of the cell,
helping the neuron to hyperpolarize again. The Hodgkin-Huxley equations incorporate the opening
and closing of ion channels via gating variables, which are functions of membrane voltage and time,
governed by a nonlinear ordinary differential equation. (See computational neuroscience textbooks
such as [Bör17] or [ET10] for more information). An analogous description applies to INa and Il,
as well. However, because sodium-potassium pumps maintain sodium ions at higher concentrations
outside of the cell, whereas they maintain potassium ions at higher concentrations inside the cell,
sodium ions flow into rather than out of the cell when the voltage-gated sodium ion channels open
as voltages start to rise. In all, the standard Hodgkin-Huxley model for a single neuron consists of
four coupled nonlinear differential equations.

1.1.2 Synapses and signaling between neurons

It is widely believed by neuroscientists that action potentials are the basic unit of communication
between neurons. Namely, the voltage spike propagates away from the soma along the axon towards
other neurons (Figure I.2.a).
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(a) (b)

Figure I.4: Synapses, ion channels, and excitatory postsynaptic potentials. A synapse is where signals are passed from
one cell (the presynaptic cell), to another cell (the postsynpaptic cell). (a) Typically, a synapse is where an axon from
the presynaptic neuron comes nearly in contact with a dendrite from the postsynaptic neuron. Once some signal, e.g. an
action potential, arrives at the end of the axon (called the axon terminal), the presynaptic neuron encapsulates chemical
messengers, known as neurotransmitters, in synaptic vesicles, and sends them into the space between neurons (called
the synaptic cleft). The neurotransmitters then bind to the postsynaptic neuron at specific locations known as receptors.
(b) When a neurotransmitter binds to a receptor on a dendrite of the postsynaptic neuron, it may cause ion channels to
open. For instance, if sodium channels open, positively charged sodium ions flow into the cell, causing the voltage
difference across the cell wall of the dendrite to rise. Such a rise in voltage is known as an excitatory postsynaptic
potential (EPSP).

Once the voltage spike reaches the end of the axon (i.e. the axon terminal) it causes the neuron
to release neurotransmitters (Figure I.4.a). These neurotransmitters diffuse through the space
separating the axon terminal and the dendrite (Figure I.2.a) of the neuron on the receiving end of the
signal (the postsynaptic neuron). Once the neurotransmitters reach the dendrite of the postsynaptic
neuron, they induce ion channels on the dendrites to open (Figure I.4.b). At some synapses referred
to as excitatory, a net positive charge of ions flows through ion channels located near the dendrite,
causing a small depolarization in voltage (Figure I.4.b) across the portion of the cell membrane near
the synapse where the presynaptic and postsynaptic neurons meet. Given strong enough signals
from presynaptic neurons, the net positive flow of ions across the dendrite of the postsynaptic
neuron can cause a strong enough depolarization across the postsynaptic neuron’s membrane to
initiate action potential firing in the postsynaptic neuron in turn.

1.1.3 Networks of neurons in the nervous system

Neurons sending action potentials to one another in this way constitutes one of the primary
methods by which neurons communicate. However, pairs of neurons communicating with one
another is insufficient for completing the complex processes carried out by the nervous system.
These complex processes require coordinated activity across different groups–networks–of neurons
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in the brain. Such networks of neurons are often clumped together in space, allowing neuroscientists
to classify brain regions according to the function they carry out. For instance, Brodmann [Bro09]
famously proposed that the cortex, which roughly is the outermost layer of the brain, can be lumped
according to appearance into a number of regions (Figure I.5). It turns out that such regions are
also functional regions [BCP20]. For instance, region 17 is dedicated towards processing visual
information. Indeed without region 17, people are blind [BCP20].

Figure I.5: Mapping the cortex via Brodmann ar-
eas. It is possible to spatially cluster the cortex into
about 50 areas, based on appearance alone. It turns
out that such areas constitute functional networks
of neurons, as well. For instance Area 17 is the
primary visual cortex, and plays a critical role in
how the brain processes visual input. Image source
[BCP20].

In these local neural networks, neurons wire together to generate macroscopic phenomena
such as the recognition of a familiar face in the visual cortex, or to form new memories in the
hippocampus. However, much as how the brain is incredibly complex, so are these smaller functional
networks of neurons. Indeed in area 17, also called V1, it has been found that there are around 35
million neurons for the primate species Galagos, also known as bushbabies [CAY+10]. Moreover,
neurons in these networks can be wired together in complex ways. For instance, given only 18
different neurons, as in the network shown in Figure I.6, there are about 2 · 1076 possible ways to
connect them via synapses to form a network.1 Complicating matters further, each neuron integrates
signals from other neurons in complex ways to produce action potentials and other interesting
voltage dynamics. To make sense of such complexity, researchers have turned to mathematical
modeling approaches.

1In fact, the number of ways dN to connect n neurons is the number dN of directed, weakly connected, unlabeled
graphs with N nodes. Directed, because in chemical synapses, information can usually only flow in one direction
(from the presynaptic to postsynaptic neuron). Weakly connected, because otherwise, the network splits cleanly into
two or more networks which do not interact at all, in which case we would treat the networks it splits into separately.
Unlabeled, if we are to assume there is nothing significant to distinguish one neuron from another. (If instead neurons
were distinguishable, we could label them, which would increase the number of possible networks we could form). See
[GW20] for an examination of networks of neurons with N = 3 neurons, but where two neurons are labeled. This dN
is given by A003085 in The Online Encyclopedia of Integer Sequences.
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1.2 Modeling networks of neurons

To model a network of neurons, typically researchers treat the neurons as “black boxes”, which
receive input signals, integrate those signals, and relay the integrated signals towards other neurons
in the network.

To start, researchers need to decide what “black box” to use to describe the particular means
by which the neuron integrates input signals. The black box could be as simple as passing the
input through an S-shaped function such as a hyperbolic tangent function, or through a “rectified
linear unit”. In fact, the latter function is a common approach when constructing an artificial neural
network, as is done in machine learning algorithms [ESYF+20]. On the other hand, the black
box could be as complicated as a full simulation of the voltage dynamics of an individual neuron,
involving ion channels kinetics as in Hodgkin-Huxley models.

To describe which neurons make synaptic connections, usually researchers will specify some
kind of network architecture, such as that shown in Figure I.6. In such an architecture, nodes of the
network represent neurons, and edges represent synaptic connections. Such a network structure
could be designed according to the network structure of neurons in the brain region in question, for
example. On the other hand, if the network structure is unknown, it might simply be assumed that
all neurons are connected to all other neurons (see e.g. [DJR+08]).

Figure I.6: A sample network of neu-
rons. Each neuron receives signals and
sends signals of its own. The network struc-
ture, formed by connecting two neurons via
synapses, specifies who receives signals from
who. The particular dynamics of each neuron
are often treated as a black box that converts
input signals into output signals.

To describe what happens when a presynaptic neuron’s output signal reaches the postsynaptic
neuron, researchers may use different models for the synaptic input. Such a model, could, for
instance, describe the concentration of neurotransmitter output at the presynaptic axon terminal, and
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describe the impact of the neurotransmitter on the voltage of the postsynaptic neuron. Or, the model
could take a simpler approach, and simply rescale the output of the presynaptic neuron according to
some sort of edge weight.

With these models, researchers can obtain a detailed description of how signals between
neurons evolve, both across the network and over time. However, detailed network models can be
computationally intensive when implemented at very large scales. To illustrate how one may go
about such modeling, and the potential problems it poses, consider the following example.

Namely, consider a network of N = 18 neurons connected according to Figure I.6. We can
describe how neuron j produces output fj via a function gj:

fj(t) = gj(f1(t), f2(t), ..., fN(t), ηj(t)),

where ηj(t) represents signals from external inputs. As is often done, we can assume that neurons
linearly sum their inputs, so that the preceding expression can be replaced by

fj(t) = gj

(
ηj(t) +

N∑
i=1

wijfi(t)

)
,

where wij denotes the strength of the connection between neurons i and j. However, even with only
18 neurons, this is a complicated system of 18 equations, since the function gj is nonlinear.

Moreover, 18 neurons is far fewer than we would wish to model to understand a network of
neurons in the brain. Indeed, neurons in brain networks such as Brodmann Area 17 have on the
order of 108 neurons. In which case, with this simple model we would need to deal with a system
of 108 equations. Further, suppose we were to equip the neuron with realistic dynamics, such
as Hodgkin-Huxley equations which model each neuron with four coupled nonlinear ordinary
differential equations. For that model, we would have an even more unwieldy system of at least
108 × 4 differential equations that we would need to solve simultaneously.

If we were to construct such a large scale, biophysically detailed neural network model, we
would then have all sorts of information available to us about what particular neurons are doing in
the network. How, though, could we relate the information about the behaviors of the individual
neurons to the function of the brain region relative to other brain regions? Such a question begs a
reduction in the degrees of freedom of the problem.
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1.3 The reduction approach: mean field theory

Researchers have used techniques borrowed from mean-field theory in statistical mechanics to
reduce the dimensionality of a model network of neurons. Mean-field theory, instead of describ-
ing the dynamics of each and every neuron in the system, focuses on modeling the probability
distribution of key quantities, typically relating to membrane voltage, across the network. For
example, firing-rate models describe the evolution of the network’s firing-rate statistics, and are
a very popular tool for understanding the signals sent between networks of neurons. Much of the
interest in firing-rate models in neuroscience has been driven by the idea of “rate-coding”, wherein
the information provided by signals sent out from neurons lies in the rate at which they produces
action potentials.

With this key idea behind firing-rate models, namely that much of the information relayed by a
neuron is not contained in the shape of an action potential but rather simply that an action potential
has occurred, one can approximate the activity of a neuron as a series of instantaneous voltage
spikes–a spike train (Figure I.7.a). The assumption is then that spike trains constitute the “neural
code”, famously the subject of the book [RWVSB99].

(a) (b)

Figure I.7: Spike trains and the corresponding firing-rate. (a): a sample spike train. (b): The average firing rate as
calculated from the spike train. The firing rate at time t is determined by counting the number of spikes occuring in the
next ∆t seconds and dividing by ∆t. In this figure, we take ∆t = 1 s.

Spike trains can then be characterized by the rate at which spikes occur. In the “rate-coding”
paradigm of understanding the signals output by a neuron, one simply counts the rate at which
spikes occur, i.e. the “firing-rate”. That is, one views the information encoded by a neuron via

Firing Rate =
# voltage spikes

second

To calculate the firing-rate from a spike train, one can move a time-window across the spike train,
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count the number of spikes that fall in the window at each time, and divide by the width of the
window, as shown in Figure I.7.b.

We have now shown that we can summarize much of the activity of a neuron via its firing
rate. We can run with this idea to represent the activity of entire networks of neurons. To do so,
we look at the spike trains for all neurons in the network. We can represent the spike trains via a
spike raster (Figure I.8.a), wherein for a particular time, a dot is placed in the nth row of a grid to
indicate that neuron n has spiked. In Figure I.8.a,the dots are most dense between times 0.2 and 0.7
s. This indicates that neurons are very active during such times, across the whole population. Such
information is captured by the network average firing rate

Average Firing Rate =
# Spikes

second · neuron
.

Indeed, Figure I.8.b shows that the network average firing-rate is high between times 0.2 and 0.7,
and low at other times. Thus, the network average firing-rate alone tells us that the network is most
active between times 0.2 and 0.7, capturing the most important feature of the corresponding spike
raster. As such, the network average firing-rate provides a tool for reducing the dynamics of a full
network of neurons to a single dimension.

(a) (b)

Figure I.8: Representing network activity: spike rasters and average firing-rates. (a): a spike raster for a network of
neurons. A dot in the nth at time t indicates that neuron n fires at that time. (b): The corresponding network-average
firing-rate. The firing-rate at time t represents the average rate across the network at which neurons are spiking. The
firing-rate captures the key information about network activity as conveyed by the spike raster–that neurons are most
active between times 0.2 and 0.7.
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1.4 Foundational firing-rate models

1.4.1 The Wilson-Cowan model

Firing-rate models are a relatively new development in the history of neuroscience, arising with
the development of the Wilson-Cowan model [WC72] in 1972. The Wilson-Cowan model describes
a cortical network consisting of two populations of neurons. One population consists of excitatory
neurons, whose output excites other neurons, encouraging them to depolarize and produce action
potentials. The other population consists of inhibitory neurons, whose signals inhibit other neurons,
hyperpolarizing them, thereby making it more difficult for them to produce action potentials. Both
of these populations are signaling each other, and at the same time are receiving external signals
(PE and PI) from other sources, as shown in Figure I.9.

(a) (b)

Figure I.9: The Wilson-Cowan model [WC72]. (a): The Wilson-Cowan model consists of two populations of neurons.
One population (I) consists of inhibitory neurons which signal other neurons to lower their activity. The other population
(E) consists of excitatory neurons, which signal other neurons to increase their activity. Both E and I signal themselves
and each other. The two populations receive external signals, PE and PI , respectively to boot. (b): Firing-rates of the
E and I populations show robust oscillations. Image for (a) inspired by [Bör17]. Image source for (b): [Bör17].

The Wilson-Cowan model represents neurons as “threshold neurons”. In particular, if the
excitation experienced by a neuron is below some threshold, the neuron does not fire. On the
other hand, as soon as the excitation experienced by the neuron hits the threshold, the neuron fires,
after which it cannot fire again for a time period called the refractory period. The Wilson-Cowan
model then, in particular, keeps track of the average firing rates E(t) and I(t) for the excitatory and
inhibitory populations respectively. However, because each of these neurons has a refractory period,
over a small enough time window, each neuron can spike at most once. As a result, in small enough
time windows, the number of neurons that are spiking is simply the number of spikes in that time
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window. Thus,

E(t) : =
# of spikes from excitatory neurons
# of excitatory neurons · unit time

=
# of excitatory neurons that are spiking

# of excitatory neurons · unit time

=
proportion of excitatory neurons that are spiking

unit time
.

An analogous argument holds for I(t). Wilson and Cowan, in their original paper, choose to frame
the firing-rates in such a way. Hence, they define E and I to be

E(t) := proportion of excitatory neurons that are firing per unit time

I(t) := proportion of inhibitory neurons that are firing per unit time

The Wilson-Cowan model predicts the robust oscillations in E and I activity shown in Figure I.9.b.
In particular, as E increases, the excitatory neurons excite the inhibitory neurons. As a result I
increases, inhibiting the excitatory neurons, and thus causing E to eventually level off and start to
decrease. As a result I also decreases, releasing E from inhibition and allowing it to activate again.

The model equations that generate these oscillations rely on the “gain functions”, FE and FI .
The gain functions (Figure I.10) transform the input signal to the population into its output signal.
In particular, the Wilson-Cowan model equations are:

τe
dE

dt
= −E + (1− reE)Fe(αeeE − αieI + PE(t)) (I.1)

τi
dI

dt
= −I + (1− riI)Fi(αeiE − αiiI + PI(t)), (I.2)

where τE and τI are time constants, meaning that they determine how quickly E and I change in
response to inputs; re and ri are refractory periods; and αei, for example, scales the strength of
the impact of signals from the excitatory population on the resulting excitation of the inhibitory
population.
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Figure I.10: Gain functions
in the Wilson-Cowan model.
The gain functions are tradition-
ally taken to be sigmoidal–a
bounded, differentiable, strictly
increasing function with 1 inflec-
tion point. The gain function
Fx, shown in this figure is sig-
moidal.

1.4.2 Derivation of the Wilson-Cowan model and its sigmoidal gain function

One of the best aspects of the Wilson-Cowan model is that its derivation is fairly rigorous, and
is a useful starting point for deriving other firing-rate models, such as [DSHSZ74, JR95], as we will
see later in this section (Section 1.4.5). Thus, we now derive the equations for the Wilson-Cowan
model, closely following [WC72]. To do so, we start by computing the response function F (x),
which relates the net excitation, x, coming into a population, with the proportion of neurons in that
population that will be above the firing threshold per unit time.

In particular, in each subpopulation assume that there exists some distribution of neural firing
thresholds D(θ), and assume that all cells receive the same large number of signals from other
neurons in the population. Then, on average, all cells are subjected to the same average excitation
x(t). As a result, we can express the response of a subpopulation to its average excitation x(t) via

F (x) =

∫ x(t)

0

D(θ)dθ

Alternatively, we could assume all cells within a subpopulation have the same firing threshold
θ but that there exists a distribution, C(w), in the number of incoming signals to each cell. Then,
if x(t) is the average excitation induced by one such incoming signal, all cells with at least θ/x(t)

incoming synapses will be expected to receive sufficient excitation. The subpopulation response to
inputs is then

F (x) =

∫ ∞
θ/x(t)

C(w)dw

However, in either of the two preceding scenarios, the response functions F are strictly increasing
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in x with a lower asymptote of 0 and upper asymptote of 1. In particular, if D(θ) or C(w) are
unimodal, the response function will be a sigmoid as shown above. Moreover, having a sigmoid is
often reasonable. Indeed, single cell and population response curves are often sigmoidal functions
of excitation.2 With a sigmoidal response function, too little excitation fails to excite neurons, but
very strong excitation excites all neurons.

In any case, we now have an expression for F , relating the net excitation x coming into a
population to the proportion of the population that goes above threshold per unit time. However, we
can do little with such an expression, unless we know the net excitation x. To find x, we make the
common assumption that individual neurons sum their inputs, so that the average signal coming
into a population is a weighted sum of E, I , and external signals P :

Net signal at time t′ coming into the population = c1E(t′)− c2I(t′) + P (t′),

where c1 and c2 represent the average number of excitatory and inhibitory signals, respectively,
coming to neurons in the particular subpopulation under investigation.

We will also assume that the impact of signals on the population decay according to time course
α(t). Then, at time t, the impact on the population from signaling at previous times t′ is

Average excitation due to signals from time t′ = α(t− t′)[c1E(t′)− c2I(t′) + P (t′)].

As a result, the average excitation due to all signals arriving before time t is

x(t) =

∫ t

−∞
α(t− t′)[c1E(t′)− c2I(t′) + P (t′)]dt′. (I.3)

Then, for a neuron to be firing action potentials, it must not only be above threshold, but it must
not be in its refractory period. To exploit this result, we can take advantage of the law of large
numbers. Namely, instead of directly computing e.g. E(t+ ∆t)–which we take to be the proportion
of excitatory neurons which fire within ∆t seconds of now–we can simply compute the probability
that any neuron fires in the next unit of time. Thus, E(t+ ∆t) is simply:

Prob(the neuron fires) = Prob(above threshold & not in refractory period).

We can simplify the preceding expression by assuming that the event that a neuron is above threshold

2For instance, firing-rates are often a roughly sigmoidal function of applied current. See [RS02] and [THR04] for
experimental results relating average firing-rates of neurons, to each of which is applied a certain current. See chapter 17
of [Bör17], for example, for a description of frequency-current relations predicted by various models of single neurons.
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is uncorrelated with the event the neuron is not in its refractory period. In which case, we can split
the probability of the right-hand side in the preceding expression so that:

Prob(the neuron fires) = Prob(above threshold) · Prob(not in refractory period).

Indeed, if the population is richly interconnected, this absence of correlations is a reasonable
assumption.

Moreover from the law of large numbers, the probability that a neuron will be above threshold
due to excitatory signaling is F (x(t)). Thus:

Prob(above threshold) = F (x(t))

On the other hand, the proportion of neurons which are in the refractory period is simply the
proportion of neurons that have fired during the last r units of time, where r is the duration of the
refractory period. Hence, for the excitatory population:

Prob(in refractory period) =

∫ t

t−τ
E(t′)dt.

Thus,

Prob(not in refractory period) = 1−
∫ t

t−τ
E(t′)dt,

and so,

E(t+ ∆t) =

(
1−

∫ t

t−τ
E(t′)dt

)
F (x(t)).

However, the preceding expression is complicated. We can remove these integrals via temporal
coarse-graining. Namely, assuming that E changes sufficiently slowly relative to the duration of the
refractory period, we can express the average value E(t) of E over a very short time interval ending
at time t as ∫ t

t−r
E(t′)dt′ ≈ rE(t)

If we assume further that α is, without loss of generality, some small value3 k1 up to time k2, and 0

3if the value is large, then the product of E and α may cease to change slowly relative to the refractory period, and
our procedure would fail to work
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afterwards, then for the excitatory population:∫ t

−∞
α(t− t′)[c1E(t′)− c2I(t′) + PE(t′)]dt′ ≈

∫ t

t−k2

k1 (c1E(t′)− c2I(t′) + PE(t′))

≈ k1k2

(
c1E(t)− c2I(t) + P (t)

)
,

where · corresponds to averaging over short time scales. Combining k1k2 into a single variable k,

E(t+ ∆t) ≈ (1− rE(t))FE
(
k
[
c1E(t)− c2I(t) + P (t)

])
.

Dividing through by ∆t and integrating both sides of the result from t to t+ δ yields:

1

∆t

∫ t+∆t

t

E(t+ ∆t)dt ≈ 1

∆t

∫ t+∆t

t

(1− rE(t))FE
(
k
[
c1E(t)− c2I(t) + PE(t)

])
dt.

However, the left-hand-side of the preceding equation is simply E(t+ ∆t). Further, because the
integrand of the right-hand-side is already time coarse-grained, it is constant on short time scales.
Hence,

E(t+ ∆t) = (1− rE(t))FE
(
k
[
c1E(t)− c2I(t) + PE(t)

])
.

Thus,

E
′
(t) ≈ E(t+ ∆t)− E(t)

∆t

=
−E(t) + (1− rE(t))FE

(
k
[
c1E(t)− c2I(t) + PE(t)

])
∆t

.

Taking k = 1 in the preceding expression yields the model equations (Equations I.1 - I.2) discussed
earlier.

As is evident from the (fairly) rigorous derivation, the Wilson-Cowan model provides a good
approximation to the firing activity generated by a network of excitatory and inhibitory “threshold
neurons”. It turns out though, that threshold neurons are not too far from reality. Namely, it is
common that once a particular neuron reaches some sort of threshold voltage, it fires an action
potential. Consequently, the Wilson-Cowan model has been used successfully to model cortical
activity (see e.g [WC73] and [ST08]).
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1.4.3 Accounting for variations over space with the Amari model

Despite the success of the Wilson-Cowan model, it is not readily adapted to describe firing-
rate variations in space across a network of neurons. Firing-rate models that take into account
variations in space are called “neural field models,” (following the terminology of the review papers,
[MPF13, PRbGF14]). These models generally consist of a system of partial differential equations,
where a spatial dimension is added to describe the evolution of quantities such as average membrane
voltages across a neural network as well as across time. Such models were intially introduced by
Amari in 1977 [Ama77].

In particular, the Amari model pertains to neurons arranged in two-dimensional layers (as an
approximation of cortical brain areas). It is assumed that each neuron receives input from neurons
in their own layer as well as other layers of the network and from outside the network. The model
describes the neural integration of these signals in a spatially dependent way to compute the variation
of average membrane voltages and firing-rates across the network.

To describe the model, we follow the original work of [Ama77], but fill in details to make the
model derivation more accessible to non-experts. To start, we introduce some notation. Namely,
consider neurons located at position ~x = (x1, x2) on the ith layer of the network. At time t, let

average membrane voltage = ui(~x, t)

be the average membrane potential of the neurons in layer i at position ~x, and let

average firing rate = fi[ui]

be the corresponding firing-rate, where fi is some nonlinear function, such as a step function or
sigmoidal function, as discussed earlier (see e.g. Figure I.10).

We wish to understand how the neurons at this position respond to action potentials arising
throughout the network, including in other layers. To do so, we assume that the strength of
stimulation from other neurons depends on their position ~y, their layer j, and on how long in the
past they fired action potentials. Thus, if the action potentials stimulating the neurons at location ~x
in layer i occurred at time t′,

strength of stimulation = wij(~x, ~y; t− t′)

is the resulting strength of stimulation at time t.

18



The impact of action potential firing activity originating at time t′ in the past at location ~y in
layer j on the neurons at location ~x in layer i at time t is thus the product

impact of activity = fj[uj(~y, t
′)]wij(~x, ~y, t− t′)

These impacts can be summed across time to yield the total impact

impact of activity over all times =

∫
fj[uj(~y, t

′)]wij(~x, ~y, t− t′)dt′

These impacts can then be summed across all neurons in layer j to yield the total impact from layer
j across all times:

impact of activity from layer j over all times =

∫
fj[uj(~y, t

′)]wij(~x, ~y, t− t′)d~ydt′,

which can be summed in turn across all layers to yield the total impact:

impact of activity from all layers over all times =
∑
j

∫
fj[uj(~y, t)]wij(~x, ~y, t− t′)d~ydt′.

From this expression, we can begin to construct differential equations for the model. Namely, if
neurons in layer i have resting membrane voltage −ri and average external stimulus intensity si,
the steady state voltage of neurons in layer i at location ~x at time t is

steady state average voltage = si − ri +
∑
j

∫
fj[uj(~y, t

′)]wij(~x, ~y, t− t′)d~ydt′.

Further, we assume those neurons converge to this steady state voltage at some rate, τi. To do so,
we write the following differential equation

τi
∂ui(~x, t)

∂t
= −ui(~x, t) + si − ri +

∑
j

∫
fj[uj(~y, t

′)]wij(~x, ~y, t− t′)d~ydt′ (assuming steady external stimuli).

Introducing spatiotemporal deviations of the external stimuli from the mean of the form si(~x, t),
and rewriting si − ri as hi, we obtain the field equation:

τi
∂ui(~x, t)

∂t
= −ui(~x, t) + hi + si(~x, t) +

m∑
j=1

∫
wij(~x, ~y; t− t′)fj[uj(~y, t)]d~ydt′. [Ama77]

We can then arrive at a somewhat more tractable neural field model by making several simplify-
ing assumptions. For instance, recall that we assumed there is a lag between the time a signal from
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a pre-synaptic neuron was produced and the time at which the post-synaptic neuron is affected by
the signal. If we now assume that the time lag is negligible, we can drop the integration of time t
and replace wij(~x, ~y; t) with wij(~x, ~y). Further, we could assume that coupling between neurons is
spatially homogeneous, depending in particular only on the distance between them, in which case

wij(~x, ~y) = wij(~x− ~y) (simplifying assumption).

Finally, we can assume the network consists of a single layer of connected neurons, in which
case we can drop i, j subscripts to obtain

τ
∂u(~x, t)

∂t
= −u+

∫
w(~x− ~y)f [u(~y)]d~y + h+ s(~x, t) (simplified neural field equations).

Amari used this model to analyze traveling waves of firing activity across a cortical network
layer. Traveling waves of neural firing activity are believed to play an important role in the brain
and may be essential for the formation of memories, for example (see [MCRS18] for a review).
As such, neural field models are a useful tool for understanding important activity patterns in the
brain. Using neural field models to understand the generation of such phenomena remains a popular
area of research today, such as in understanding brain imaging data via “dynamic causal modeling”
[MPF13, PRbGF14].

1.4.4 Population density approaches and Fokker-Planck equations

While both the Wilson-Cowan and Amari models were developed during the 1970s, it wasn’t
until the 1990s that researchers developed tools for understanding the full distribution of key
quantities across a network of neurons. The population density approach, introduced by Amit &
Brunel [AB97], as well as by Knight et al. [KMS96], did just that.

Population density approaches typically involve starting with a simple model of a spiking neuron
(see section 11.2 of [ET10]), and deriving a Fokker-Plank equation modeling the time-evolution
of the probability density function of neural state variables across a network. The state variable
is typically membrane voltage but may also include other variables (see [DJR+08]). We explain
how to arrive at such a Fokker-Planck equation by following [DJR+08], but filling in details and
clarifying arguments and notation to make the formalism more accessible.

Let V (t) be the value of the membrane voltage at time t and consider the time evolution of the
probability distribution pVt of voltages at time t across the network. One then uses the law of total
probability to express the probability distribution of Vt+∆t in terms of the joint distribution of Vt+∆t
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and Vt:

pVt+∆t
(v) =

∫ ∞
−∞

p(Vt+∆t,Vt)(v, v
′)dv′ (Chapman-Kolmogorov equation),

which is a particular instantiation of the Chapman-Kolmogorov equation. However, in many
situations, the joint distribution p(Vt+∆t,Vt) may be unknown, e.g. if Vt is a Markov process. Thus, to
simplify the preceding expression, one uses Bayes’ law to express the joint probability distribution
of p(Vt+∆t,Vt) in terms of the probability distribution of Vt and the probability distribution of Vt+∆t

conditioned on Vt:

p(Vt+∆t,Vt)(v, v
′) = p(Vt+∆t|Vt)(v, v

′) · pVt(v′).

Substituting the preceding expression into the Chapman-Kolmogorov equation yields:

pVt+∆t
(v) =

∫ ∞
−∞

p(Vt+∆t|Vt)(v, v
′) · pVt(v′)dv′. (I.4)

From the preceding equation (Equation I.4), we can obtain a Fokker-Planck equation by making
a Kramers-Moyal expansion of the Chapman-Kolmogorov equation (see [RTT19]). Below, we do
so without assuming an advanced knowledge of probability theory, providing the necessary requisite
knowledge along the way. In particular, we seek to find a series expansion of Equation I.4 by first
finding a series expansion of the conditional probability distribution appearing in the integrand of
Equation I.4. To do so, we introduce the small deviation ε, given by

ε = v − v′.

so that v′ = v − ε. Then the complicated term from the integrand of Equation I.4 becomes

p(Vt+∆t|Vt)(v, v
′) = p(Vt+∆t|Vt)(v, v − ε)

To simplify the preceding expression, we fix v and think of p(Vt+∆t|Vt)(v, v − ε) as a function uv
only of ε:

uv(ε) = p(Vt+∆t|Vt)(v, v − ε)

We then seek to rewrite uv by applying the Fourier inversion theorem to a series expansion of its
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Fourier transform ûv. Thus, consider the Fourier transform

ûv(x) =

∫ ∞
−∞

e−iεxp(Vt+∆t|Vt)(v, v − ε)dε

and substitute the Taylor expansion of e−ixε around ε = 0 into the preceding expression:

ûv(x) =

∫ ∞
−∞

∞∑
n=0

(−ix)n

n!
εnp(Vt+∆t|Vt)(v, v − ε)dε.

Assuming that the conditional probability distribution p(Vt+∆t|Vt) is sufficiently nice4, we can switch
the integral with the sum:

ûv(x) =
∞∑
n=0

(−ix)n

n!

∫ ∞
−∞

εnp(Vt+∆t|Vt)(v, v − ε)dε. (I.5)

For notational simplicity, we then denote the integral expression with

〈εn〉t,∆t,v :=

∫ ∞
−∞

εnp(Vt+∆t|Vt)(v, v − ε)dε,

so that the preceding expression becomes

ûv(x) =
∞∑
n=0

(−ix)n

n!
〈εn〉t,∆t,v.

However, we know from the Fourier inversion theorem that

uv(ε) =

∫ ∞
−∞

eixεûv(x)dx.

4What constitutes “sufficiently nice” is somewhat technical, but means, more or less, that the integrals

〈εn〉t,∆,v :=

∫ ∞
−∞

εnp(Vt+∆t|Vt)(v, v − ε)dε

are finite for all n = 0, 1, 2, , .... Specifically, p(Vt+∆t|Vt) is “sufficiently nice” for our purposes as long as it satisfies
the conditions of the Tonelli-Fubini theorem–the usual theorem for switching the order of integration (see [Fol99]).
Namely, we rewrite the integral for ûv as

ûv(x) =

∫ ∞
−∞

(∫ ∞
0

(−ix)n

n!
εnp(Vt+∆t|Vt)(v, v − ε)dn

)
dε,

to which we apply the Tonelli-Fubini theorem. The inner integral is over the counting measure, (where the measure of
any non-negative integer is 1). The outer integral, on the other hand, is the usual integral over the Lebesgue measure on
complex numbers. We leave the remainder of the details to the reader.
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Substituting in the expression we just found for ûv, we obtain:

uv(ε) =

∫ ∞
−∞

∞∑
n=0

eixε
(−ix)n

n!
〈εn〉t,∆t,vdx (I.6)

We have now rewritten uv(ε) using the Fourier inversion theorem and the Fourier transform of
uv(ε).

However, the preceding expression is complex. Unfortunately, we cannot simplify it by switching
the order of the sum and the integral, as we did before. Indeed, let us switch the order of integration,
and see what happens:

uv(ε) =
∞∑
n=0

〈εn〉t,∆t,v
∫ ∞
−∞

eixε
(−ix)n

n!
dx.

However, note that when n = 0, the integrand from the preceding equation becomes∫ ∞
−∞

eixε
(−ix)n

n!
dx =

∫ ∞
−∞

eixεdx,

which is the Dirac-delta function δ(ε), and is thus not a function, per se5. Moreover, now considering
any n, it turns out, as we will see shortly, that∫ ∞

−∞
eixε

(−ix)n

n!
dx =

1

n!
δ(n)(ε),

the nth derivative of the Dirac-delta function, which is also not a function. Even though we cannot
switch the order of the sum and the integral, the relationship of uv(ε) to the Dirac-delta function
will be pertinent, going forward.

The relationship of uv(ε) to the Dirac-delta function is particularly relevant upon substituting
the expression for uv(ε) from Equation I.6 into the integrand for the latest expression for pVt+∆t

(v)

(Equation I.4):

pVt+∆t
(v) =

∫ ∞
−∞

pVt(v
′)

(∫ ∞
−∞

∞∑
n=0

eixε
(−ix)n

n!
〈εn〉t,∆t,vdx

)
dv′.

To simplify the preceding expression, we take a somewhat heuristic approach to avoid getting into
the details of generalized functions such as the Dirac-delta function. To start, even though we cannot

5Rather, the Dirac-delta function is a type of generalized function known as a distribution, (not to be confused with
a probability distribution).
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switch the order of the summation and the rightmost integral in the preceding expression, we can
(somewhat heuristically) move the summation so it comes before both integrals in the preceding
expression:

pVt+∆t
(v) =

∞∑
n=0

∫ ∞
−∞

pVt(v
′)〈εn〉t,∆t,v

(∫ ∞
−∞

eixε
(−ix)n

n!
dx

)
dv′.

Substituting ε = v − v′ back into the preceding expression, we obtain:

pVt+∆t
(v) =

∞∑
n=0

∫ ∞
−∞

pVt(v
′)〈εn〉t,∆t,v

(∫ ∞
−∞

eix(v−v′) (−ix)n

n!
dx

)
dv′.

Conveniently, (and again somewhat heuristically), we have from integration by parts6 in the second
equality, below, that for any sufficiently differentiable function f(v′),∫ ∞

−∞
f(v′)

(∫ ∞
−∞

eixε
(−ix)n

n!
dx

)
dv′ =

(−1)n

n!

∫ ∞
−∞

f(v′)

(∫ ∞
−∞

eixε(ix)ndx

)
dv′

= −(−1)n

n!

∫ ∞
−∞

f ′(v′)

(∫ ∞
−∞

−1

ix
eix(v−v′)(ix)ndx

)
dv′

=
(−1)n

n!

∫ ∞
−∞

f ′(v′)

(∫ ∞
−∞

eix(v−v′)(ix)n−1dx

)
dv′.

Thus, by induction,∫ ∞
−∞

f(v′)

(∫ ∞
−∞

eixε
(−ix)n

n!
dx

)
dv′ =

(−1)n

n!

∫ ∞
−∞

f (n)(v′)

(∫ ∞
−∞

eix(v−v′)dx

)
dv′

=
(−1)n

n!

∫ ∞
−∞

f (n)(v′)δ(v − v′)dv′

=
(−1)n

n!
f (n)(v).

Applying the preceding result to pVt(v′)〈εn〉t,∆t,v, we have that

pVt+∆t
(v) =

∞∑
n=0

(−1)n

n!

∂n

∂vn
[pVt(v)〈εn〉t,∆t,v] .

Noting that the n = 0 term is simply pVt(v), we have then from the limit definition of the

6Since, as mentioned before, the integral
(∫∞
−∞ eix(v−v′) (−ix)n

n! dx
)

is the nth derivative of the Dirac-delta function,
and is thus a distribution rather than a function, integration by parts in this context is perhaps better described as taking
a distributional derivative.
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derivative that

∂pVt+∆t
(v)

∂t
= lim

∆t→0

pVt+∆t
(v)− pVt(v)

∆t

=
∞∑
n=1

(−1)n

n!

∂n

∂vn

[
pVt(v) lim

∆t→0

〈εn〉t,∆t,v
∆t

]
.

The preceding expression is the Kramers-Moyal expansion of the Chapman-Kolmogorov equation
(see [DJR+08]). Moreover, omitting all but the first-two terms of the preceding equation yields
a Fokker-Planck equation which is commonly used in the literature of the population-density
approach:

∂pVt+∆t
(v)

∂t
= − ∂

∂v

[
pVt(v) lim

∆t→0

〈ε〉t,∆t,v
∆t

]
+

1

2

∂2

∂v2

[
pVt(v) lim

∆t→0

〈ε2〉t,∆t,v
∆t

]
.

The task is then to calculate the 〈εk〉 from network connectivity and the underlying voltage
dynamics of neurons in the network. The dynamics simplify particularly nicely if the single neuron
model follows the linear-integrate-and-fire model. In that case, and while making several other
assumptions about the network, one can obtain relatively simple expressions for 〈εk〉 which yield, in
turn, a relatively simple Fokker-Planck PDE [DJR+08]. Such PDEs may be difficult to solve directly
[ET10][DJR+08], particularly if one wishes to make the state variable V (t) multidimensional, as
would would be appropriate for Hodgkin-Huxley-like neuronal dynamics. However, one can
simplify things by looking at the stationary solutions of the Fokker-Planck equation.

While such an approach is capable of describing the time evolution of the full probability
distribution of voltages across a network, it is not an end-all solution for firing-rate models. Namely,
these Fokker-Planck PDEs may be difficult to solve directly [DJR+08]. Further, it is unclear
how well this formalism applies to complicated neuronal dynamics. Nevertheless, Chizhov and
Graham [CG07] attempted to apply the formalism to complicated neuronal dynamics by reducing
a Hodgkin-Huxley-like neuron model to a resetting neuron model similar to the leaky-integrate
and fire neurons. For more information on how such population density models are derived see
[DJR+08] for a nice review.

1.4.5 Extending the Wilson-Cowan formalism–the da Silva et al. and the Jansen-Rit models

The Wilson-Cowan model inspired the development of models critical to understanding brain
activity data recorded as the electroencephalogram (EEG). Of particular importance was the use
of modeling to understand alpha waves, which correspond to roughly 8 - 12 Hz oscillations of the
voltage signal detected by the EEG. Namely, one key paper to investigate such waves in EEG data
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was [DSHSZ74], in which da Silva et al. developed a new firing-rate model for EEG oscillatory
signals.

The da Silva et al. model

The da Silva et al. model [DSHSZ74], much as the Wilson-Cowan model, describes the average
activity of a population of excitatory neurons coupled with a population of inhibitory neurons. In
fact, the da Silva et al. model is very nearly identical to the Wilson-Cowan model. However, to
study EEG data, which tracks changes in the average voltage across networks of neurons in the
brain, da Silva et al. needed to model membrane voltages, rather than model firing-rates, as did
Wilson and Cowan. Thus, the key development of the da Silva et al. model was to essentially
re-formulate the Wilson-Cowan model so it describes the average voltage of a network of neurons,
rather than the average firing-rate.

To reformulate the Wilson-Cowan model in terms of voltage, da Silva et al. take a heuristic
approach. Namely, instead of directly modeling the firing-rates E(t) and I(t) of the excitatory and
inhibitory populations directly, they assume that the firing-rate E(t) for the excitatory population,
for example, depends not on the average excitation x(t) the neuron receives, but instead on that
population’s average voltage VE:

E(t) = f(VE(t)).

In this case, f differs from F from the Wilson-Cowan model by directly modeling the proportion
of neurons that are firing an action potential, rather than measuring the proportion of neurons
that are above threshold, and does not take into account any sort of refractory period, as does the
Wilson-Cowan model.

Moreover, instead of assuming that the signaling from other neurons alters the “average excita-
tion” x(t) to a neuron, da Silva et al. assume that signaling from other neurons directly modulates
the membrane voltage of the population according to impulse response functions hE and hI , for
the excitatory and inhibitory populations, respectively. These impulse response functions are the
analog of the decay function α(t) from the Wilson-Cowan model. So, instead of having a decay α
for all populations, we have decays hE and hI for the two populations. Then, writing the external
signaling to the excitatory population as P (t), and the average number of signals impinging on the
excitatory population from the inhibitory population as c2 leads to

∆VE(t) =

∫ t

0

hE(t− t′)P (t′)− hI(t− t′)c2I(t′)dt′, (I.7)
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where ∆VE = VE−VE,rest is the change in voltage induced by signaling impinging on the excitatory
population. This differs from the expression for the net excitation x(t) from the Wilson-Cowan
model (Equation I.3) only by using he and hi instead of α and by not including recurrent excitation
from the excitatory population to itself.

Da Silva et al. then proceed to replace the quantities in the preceding expression with the
corresponding deviations from the mean of the quantities. They then take Laplace transforms of
the result to arrive at closed form expressions for the Laplace transforms of VE and VI . From the
Laplace transforms of VE and VI , they can then characterize VE(t) and VI(t) via the corresponding
frequency powers spectrums.

While it was instrumental to their analysis to arrive at closed form expressions for VE and VI , it
is likely that their model formalism has been more relevant to the development of computational
neuroscience. Indeed, it has been established, e.g. by [Fre75], that it is reasonable to model the
impact of signals on the average membrane voltage of a neuron using impulse response functions
such as hi and hj . Moreover, the idea of modeling the average membrane voltages of neurons has
been critical for understanding EEG data. This idea was revised in 1993 by Jansen et al. in [JZB93]
and brought to the forefront of research via the Jansen-Rit model in [JR95].

The Jansen-Rit model

The Jansen-Rit model [JZB93] [JR95] advances the da Silva et al. model in a key way. Namely,
to model the voltage-response of a population of neurons to incoming signals, they replace hE(t)

and hI(t) with an alpha function, e.g

α(t) =

 1
τ
te1−t/τ t ≥ 0

0 t < 0
.

We can then use the preceding function, α(t), to write hE(t) and hI(t) as

hE(t) = AEα(t)

hI(t) = AIα(t),

where AE and AI are constants that determine the magnitude of the impulse responses.

However, Jansen and Rit interpret hE and hI differently from da Silva et al. in [DSHSZ74].
Namely, da Silva et al. take hE and hI to be the average response elicited by an excitatory and
inhibitory impulse, respectively. That is, in the da Silva et al. model , hE and hI are intrinsic to
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the presynaptic population. Jansen and Rit on the other hand, assume that a population’s response
to input is the same regardless of the type of input. Thus, in the Jansen-Rit model, hE and hI are
intrinsic to the postsynaptic population. This lets them rewrite the convolution integral (Equation
I.7) for, say, change in VE , using only one response function instead of the two that appear in
Equation I.7) :

∆VE(t) =

∫ t

0

hE(t− t′) [P (t′)− c2I(t′)] dt′.

This choice of representing hE as an α function allows the preceding convolution integral to be
rewritten as a differential equation:

(∆VE)′′(t) +
2

τ
(∆VE)′ +

1

τ 2
∆VE =

AE exp(1)

τ
[P (t′)− c2I(t′)]

=
AE exp(1)

τ
[P (t′)− c2f(VI(t))].

More generally, if a population has impulse response function h(t) = Aα(t), then, its voltage
response, ∆V , is modeled as

(∆V )′′(t) +
2

τ
(∆V )′ +

1

τ 2
∆V =

A exp(1)

τ
· inputs.

Jansen and Rit proceed to write down a system of differential equations that describes the time
evolution of the average membrane voltages of each population of neurons in the cortical networks
that they are investigating. While somewhat more heuristic, the Jansen-Rit model was used
effectively to model alpha rhythms across cortical networks, much as did the da Silva et al. model .

Moreover, the Jansen-Rit model has served as a starting point for dynamic causal modeling (see
[FHP03]), which seeks to model how external controls affect the dynamics of a network of neurons.
For example, dynamic causal modeling reproduces data by fitting parameters from firing-rate models
that describe membrane voltage, such as the Jansen-Rit model in the case of EEG data. Further, one
of the first papers which applies dynamic causal modeling [DF03] , adapts the Jansen-Rit model in
such a way that it produces “the whole spectrum” of EEG rhythmic activity.

1.4.6 Coupled-oscillator theory based approaches

Coupled oscillator theory is a another useful approach for reducing models for networks of
neurons (see e.g. [BGLM20] for a review). In this theory, neurons are reduced to “oscillators” by
assuming that the voltage of each neuron is periodic, as would occur when neurons repetitively fire
action potentials. Typically, a coupled oscillator model replaces the voltage of the neuron with a
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phase in [0, 2π]. This modeling approach has been used to study synchrony of coupled neurons,
which occurs when the neurons have roughly the same phase (see chapter 8 of [ET10]). Whether or
not a network of neurons is synchronous is believed to be one of the most physiologically relevant
macroscopic descriptions of a network of neurons (see e.g. [UPL+09]). For example, synchronous
neural firing is the one of the main culprits behind seizures [RBHK21]. One of the most popular
coupled oscillator models is the “Kuramoto model” [Kur75], which we will discuss further in
Chapter IV. While the original Kuramoto model requires a differential equation for the phase of
each neuron in the network, recently Ott and Antonsen developed an analytical reduction technique
to arrive at a low-dimensional model for the macroscopic or collective activity across the network
[OA08].

Generally, neither the Kuramoto model nor the Ott-Antonsen reductions were initially used to
explicitly describe firing rate activity in networks of neurons. More typically, coupled oscillator
models have been used to instead study synchronization in networks of firing neurons. Moreover,
the firing-rate model literature has remained somewhat separate from the coupled oscillator theory
literature. Nevertheless, over the last decade or so, researchers have used coupled oscillator theory
to describe the firing-rates across networks of neurons [BGLM20]. See [BGLM20] for a nice review
of mean-field reductions of neural (and other biological) oscillators.

1.5 Present and future firing-rate models

Let us highlight the key contributions of these foundational firing-rate models from a historical
perspective. In 1972, the Wilson-Cowan model [WC72] brought firing-rate models into popularity in
computational neuroscience with the development of a computationally tractable, carefully derived
system of equations that captures the oscillations in firing-rates for a population of excitatory neurons
interacting with a population of inhibitory neurons. The da Silva et al. model [DSHSZ74] adapted
the derivation of the Wilson-Cowan model to describe the dynamics of the average membrane
voltage across a system of neurons. Jansen and Rit [JR95] later expanded upon the da Silva et al.
model , so that it could be expressed as a system of differential equations, opening the door for
studies of EEG data via firing-rate models. Meanwhile, in 1977, Amari in [Ama77] introduced
spatial dynamics to firing-rate models. In 1997, Amit & Brunel [AB97] further generalized firing-
rate models by borrowing the population density approach from statistical physics so that they could
describe the full distribution of quantities, such as average membrane voltage7.

Today, these foundational models are widely used in computational neuroscience. In fact, most

7Knight et al. [KMS96] published a population density model a year before Amit & Brunel published theirs, but
cite a preprint of Amit & Brunel’s work, and thus were aware of Amit & Brunel’s work.
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other firing-rate model formalisms that have been developed derive in one way or another from one
of these foundational models.

To explore precisely how today’s firing-rate model literature traces its roots back toward these
foundational firing-rate models, and to identify other key firing-rate models, we have constructed a
citation network of the literature.

To start our analysis, we use a citation network generator that is available online (citationgecko,
link). To the generator, we provide “seed papers” consisting of review papers such as [DJR+08]
as well as papers which developed the foundational firing-rate models, such as the Wilson-Cowan
model. The generator then provides us with a number of possible papers that share with the seed
papers a large number of citing works or a large number of works cited. Going through the resulting
papers by hand, we identify which papers truly pertain to developing new firing-rate models, arriving
at around 30 firing-rate model papers.

We then use those modeling papers as a new set of “seeds” to identify a representation of the
full firing-rate model literature. Unfortunately, the online generator was unable to handle a large
number of papers. Thus, we proceed by identifying all papers citing and cited by the 30 previously
identified modeling papers. Using Web of Science8 and custom Matlab code, we extract the citing
and cited works, and compile them into a network, in the graph theoretical sense.

Of the approximately 6000 papers found, it is possible that some may not pertain directly to
firing-rate models. We identify irrelevant papers by finding the in-degree (the number of citations
the paper has) and the out-degree (the number of works the paper cites) for each paper in the
network. If the in-degree and out-degree are either one or zero, then we know that the paper is not
closely related to any of the 30 seed firing-rate model papers, except for the one that cited it or was
cited by it. We thus conclude that the paper with the very low in-degree and out-degree does not
focus on firing-rate models and we thus discard it from the network. The result of this process is a
smaller network of about 500 papers, which we believe to be a valid representation of the firing-rate
model literature, and is thus our citation network.

To begin to understand the citation network representing the firing-rate model literature, we first
visualize the network. To do so, we wish to take advantage of the specific properties of citation
networks. Namely, each paper was published on a specific date, and all papers which cite the paper

8Web of Science, while to our knowledge the only widely available tool for exporting the reference lists of papers,
does not list certain articles. For instance, it does not contain information about the foundational firing-rate model of da
Silva et al. [DSHSZ74], nor of Knight et al. [KMS96]. Consequently, those papers are not included in our analysis of
the citation network. For future analysis of the literature of firing-rate models, we aim to include information about key
papers missing from the Web of Science database.
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are published at later dates. Thus, if we place papers published earlier in time towards the top of
the network, the flow of information from one paper to the next will be down. We can visualize
the network with papers published earlier near the top of the page via the “Ordered Graph Layout”
plug-in on the network visualization app, Gephi. We show the resulting visualization in Figure I.11.

From the visualization, we can rapidly identify key features of the citation network. For instance,
a node in the graph with many edges exiting it represents a paper that was cited by many other
papers in the network. Clearly some papers, such as the Wilson-Cowan model near the top center
of each of the visualizations in Figure I.11, have many edges exiting it, and are thus well cited by
other papers in the firing-rate model literature.

However, we can characterize the importance of papers a bit more cleverly. Namely, we can
use two measures of importance that are geared specifically for directed graphs: hub centrality, and
authority centrality [New18]. Briefly, “hubs” are papers which cite other hubs and “authorities” in
the network. Thus, hubs provide information about key results in the literature. Well-known review
papers would be an example of a hub. Authorities, on the other hand, are cited by key hubs and
other authorities. Thus, authorities are the key results in the literature. The Wilson-Cowan model,
would thus be an example of an authority in the firing-rate model literature. Using an approach
similar to Google’s PageRank algorithm, we can rank papers according to their hub centrality and
authority centrality (see [New18], for example). Papers with higher hub centrality are thus more
prominent hubs, and papers with higher authority centrality are more prominent authorities.

We compute the hub and authority centrality for each paper in the network and rank them in
Table I.1. In the visualizations, we enlarge nodes with higher authority centrality in Figure I.11.a
and higher hub centrality in Figure I.11.b. Unsurprisingly, we see that a number of the foundational
papers discussed in the preceding section are authorities, with the Wilson-Cowan [WC72] model
being the top authority, and the Amari model [Ama77] and Jansen and Rit [JR95] models appearing
in the top 10. Surprisingly, the original population density model from Amit and Brunel [AB97]
does not make the top 10. Instead, in the top 10, we see mainly papers from the early 2000s
that advanced and/or popularized the population density approach. That the top “authorities” are
dominated by firing-rate models taking the population density approach likely reflects in part the
popularity of the approach, especially in the 2000s, shortly after its advent. We also speculate
that many of the papers on the population density approach are focused on model analysis and
developing new formalisms, and are thus perhaps more likely to cite and be cited by a larger number
of papers specific to the firing-rate modeling literature. As a result, those papers would be more
likely to be more central to the literature of firing-rate models.
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(a) (b)

(c)

Figure I.11: Citation network for papers closely tied to firing-rate model methodologies. Each panel shows the citation
network for papers closely tied to firing-rate model methodologies, where papers near the top were published earlier
in time, and node size indicates a key characteristic of the paper. (a): the top 10 firing-rate model authorities, where
larger node size corresponds to a higher authority score, and the top 10 authorities are labeled. Authorities are papers
which are well-cited by other important authorities and key review papers. (b): the top 10 firing-rate model hubs, where
larger node size corresponds to a higher hub score, and the top 10 hubs are labeled. Hubs are papers that cite the key
authorities and other important papers. (c): the top 10 firing-rate model papers in terms of betweenness centrality, where
larger node size corresponds to higher betweenness centrality. Papers with high betweenness centrality scores lie on
many shortest paths in the citation network, meaning that they are key in passing information from papers published
earlier in time to papers published later. Papers are also colored according to membership in clusters in the network, one
cluster (green), consisting mainly of Wilson-Cowan based firing-rate models, and another cluster (purple), consisting
mainly of population density type models.
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The hubs, on the other hand, are not the foundational papers. Instead, they are more recent
papers (from 2006 and later). Being more recent papers, they can cite many of the key papers from
the 2000s that arose from the foundational papers. Moreover, many of the hubs are review papers,
such as the review papers from Buice and Chow in 2013, [BC13b][BC13a]. The main subjects
of these hubs also span the set of topics in the firing-rate model literature, discussing neural field
models, and more.

We further consider a measure of centrality used less frequently in the citation network literature:
the betweenness centrality. The betweenness centrality of a node relies on the concept of shortest
paths in a network. Namely, a path between two nodes in a network involves starting at one node,
and following edges (in the proper direction, in the case off directed graphs), without revisiting any
node or edge, until one reaches the other node. The “shortest path” is thus any path between the two
nodes that uses the fewest number of edges [New18]. The betweenness centrality, in particular, is
determined by the number of shortest paths between other nodes that the node lies on [New18]. Just
as we did for hub and authority centrality, we rank papers according to their betweenness centrality
(Table I.1), and in the network visualization we enlarge nodes that rank higher in betweenness
centrality in Figure I.11.c.

To illustrate the importance of betweenness centrality, consider the review paper from Deco et al.
in [DJR+08]. The paper is no longer a hub, because it doesn’t cite any of the many papers published
after 2008. Further, while the paper is an authority, it is not one of the very top authorities–it is
a review paper, after all. On the other hand, it has likely been important for facilitating the flow
of information through the firing-rate model literature. Indeed, it contains sufficient details, that
one might only need to read it to learn how to use the population density approach, rather than the
papers from Amit and Brunel or from Knight et al. that introduced the population density approach.
Likewise one might be able to read the Deco et al. review to learn about the Wilson-Cowan model,
rather than reading the Wilson-Cowan model paper itself. As such, the Deco et al. review paper
would lie on a large number of shortest paths from the Wilson Cowan model to other papers, as
well as from the papers on population density from Amit and Brunel or from Knight et al. Thus, the
Deco et al. review would have high betweenness centrality. Indeed, the Deco et al. review is the top
ranked paper in the network in terms of betweenness centrality.
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Firing-Rate Authority Betweenness Hub Modularity Review
Paper Authors rank rank rank class paper?

Deco et al. 2008 [DJR+08] 8 1 0 yes

Brunel 2000 [Bru00] 3 2 1 no

Brunel & Hakim [BH99] 2 3 1 no

Gerstner 2000 [Ger00] 4 4 1 no

Moran et al. 2013 [MPF13] 5 0 yes

Burkitt 2006 [Bur06a] 6 1 yes

Mattia & Del Giudice 2002 [MDG02] 7 7 1 no

Nykamp & Tranchina 2000 [NT00] 5 8 1 no

Omurtag et al. 2000 [OKS00] 6 9 1 no

Ostojic & Brunel 2011 [OB11] 10 1 no

Wilson & Cowan 1972 [WC72] 1 0 no

Amari 1977 [Ama77] 9 0 no

Jansen & Rit 1995 [JR95] 10 0 no

Pietras et al. 2020 [PGS20] 1 1 no

Burkitt 2006 [Bur06b] 2 1 yes

Dumont & Gabriel 2020 [DG20] 3 1 yes

Buice & Chow 2013 [BC13b] 4 1 yes

Bressloff 2011 [Bre11] 5 0 yes

Bressloff 2014 [Bre14] 6 1 yes

Buice & Chow 2013 [BC13a] 7 1 yes

Schwalger et al. 2017 [SDG17] 8 1 no

Kovačič et al. 2009 [KTRC09] 9 1 no

Shao et al. 2020 [SZT20] 10 1 no

Table I.1: Top 10 firing-rate mod-
els by rank in authority centrality,
betweenness centrality, or hub cen-
trality. We also show the modularity
class of the paper. Roughly, class
1 consists of papers that are mainly
concerned with the population den-
sity approach (as in Section 1.4.4),
and class 0 is comprised of all other
papers. We also indicate whether or
not the papers are review papers.

Thus, papers with high betweenness centrality have been critical for facilitating the flow of
information through the firing-rate model literature. We see that many of the papers with high
betweenness centrality are neither the foundational models from early in the development of firing-
rate models, nor are they from the last 10 years, for the most part. Indeed, the foundational models
have been expanded upon enough that they are not directly used in applications as frequently today,
nor have the recent papers had time to accumulate enough citations to lie on many shortest paths.
Instead, the papers with high betweenness centrality consist largely of papers from the 2000s, and
as a result, largely concerning the population density approach, which had just been developed
and was rapidly expanding as a subfield. Nevertheless, we see that the paper with the 5th highest
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betweenness centrality is the review of firing-rate models in dynamic causal modeling from Moran
et al. in 2013 [MPF13], which has likely been the introduction and main source of information for
researchers new to dynamic causal modeling.

These papers with high betweenness centrality are thus likely to be good for learning about the
field. Hubs, on the other hand, are good places to look for references and better understand the
current state of the field, whereas authorities are likely to be foundational papers that started or
popularized a new style of firing-rate formalisms. In any case, all of these centrality measures can
help us decide which papers in the field are important. However, these centrality measures miss
some information about the field as a whole.

Indeed, to gain information about the field as a whole, we note that while the density of papers
in the network visualization is approximately constant as one moves along the vertical axis. Because
the vertical axis is on a logarithmic scale with respect to time, the roughly constant density indicates
that the number of firing-rate papers is growing roughly exponentially. Indeed, we see from Figure
I.12 that the number of papers published per year has grown very rapidly, although not quite
exponentially, since the 1980s. Firing-rate modeling is a rapidly growing field.

To further gain information about the field, we can turn to a clustering analysis. To do so, we
use the modularity algorithm of [BGLL08] (with resolution 1.5) as implemented in Gephi. Upon
repeated iterations under a variety of choices of the resolution parameter for the algorithm, we
find that there are roughly two communities in the citation network, colored green and purple,
respectively in Figure I.11.b. The purple community consists mainly of models in the population
density approach, whereas the green community consists mainly of models using other approaches,
indicating that the population density approach has developed somewhat independently from other
firing-rate models. Moreover, papers on coupled oscillator reductions are largely absent from the
network, indicating a schism in terms of the firing-rate model literature, between coupled oscillator
models, and those that are not coupled oscillator models.
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Figure I.12: Growth in the literature of firing-rate models.
A log-linear plot of the number of papers identified to be
closely related to firing-rate models published over the last
five years, from 2022 to 1985. Our analysis was largely
conducted before 2022 and thus has only one paper pub-
lished in 2022 or later, resulting in the dip in the five-year
moving-average at the right of the plot. If the growth in
the number of papers were exponential, then the plot shown
here would be a straight line. We see however, this is not
quite the case.

1.5.1 Classifying firing-rate models

In addition to classifying firing-rate model studies by their citation properties, we can classify
them by the properties they account for in neuronal networks. Some properties that are of particular
interest to the projects in this thesis are:

1. What statistical quantities are modeled? Namely, does the model describe only mean firing
rates, as in the Wilson-Cowan model? Or, does it describe means and standard deviations,
or whole probability distributions? We say a model is a “neural mass model” if it treats a
population of neurons as a point mass and only examines means. On the other hand, if the
model considers means and at least one higher-order statistic such as variance, we call it a
mean-field model. Finally, if a model describes the probability distribution of features of
neurons (namely, firing-rates), and in particular if it involves Fokker-Planck equations, we
call the model a population density model.

2. Does the model account for spatial evolution of neural properties in addition to evolution over
time? If the model variables evolves over space, we call it a neural field model.

3. What type of underlying neuronal dynamics are assumed? For instance, does the model
assume threshold neurons, as does the Wilson-Cowan model? Or does the model use the
integrate-and-fire neuron, as is common for population density models. Or does the model
assume more complicated neural dynamics, including Hodgkin-Huxley based dynamics, such
as our model that we present in Chapter III?

4. What heterogenieties in the underlying neural network does the model consider? For instance,
is there any heterogeneity in the underlying network structure, or are all neurons simply
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connected to all other neurons? Or is there any heterogeneity in neuron firing properties, e.g.
firing thresholds as in the Wilson-Cowan model?

5. What is the methodology for reducing network dynamics? For instance, does the model
methodology express firing-rates or average membrane voltages via a convolution, as in the
da Silva et al. model [DSHSZ74] or in the Amari model [Ama77]? Or does, the model use
an averaging-based approach, such as in the model from Zandt [ZVvPTH14], or does it use a
Fokker-Planck equation (FPE) approach?

The results of our efforts to classify firing-rate models according to the above criteria is summa-
rized in Table I.1.

Firing-Rate Stat. Quant.s Accounts for Underlying Synaptic Underlying Neuronal Where’s the
Methodology

Paper Name Modeled Space? Dynamics Dynamics Heterogeneity?

Wilson-Cowan [WC72]

Means

No Linear summation Threshold activation Syn. connections/firing thresholds Temporal coarse-graining

Amari 1977 [Ama77] Yes Linear Summation Threshold activation Weights Sigmoidal Gain, Reduction to region boundaries

Crodelle et al. 2017 No Linear summ. Not treated Noise, subpop.s Convolutional w/ Sigmoidal Gain fun. (WC-like)

Da Silva et al. 1974 [DSHSZ74] No Not treated Not treated Multiple subpop.s Heuristic w/ gain functions, Laplace transforms

Bhattacharya et al. 2011 No Linear sum + α syn. Not treated Multiple subpop.s Heuristic w/ Sigmoidal Gain Fun. (Da Silva et al. - like)

Heiberg et al. 2018 [HKT+18] No Linearized activ. fun. Izhikevich/MAT Synapse strength, noisy inputs Convolutional w/ Sigmoidal Gain Fun. (WC-like)

Ben-Yishai et al. 1995 [BYBOS95] Yes cosine coupling stoch state switching spatial preference neural field

Bressloff et al. 2000 [BBC00] Yes variable IF spatial preference neural field

Zandt 2014 [ZVvPTH14]
Multiple moments

No α synapse HH-like Noise, 2 subpop.s Averaging

Ginsberg & Booth [GB23] No α synapse HH-like Firing Regimes, HH parameters Averaging

Amit & Brunel 1997 [AB97] No Exponential synapse IF Weights Population density

Knight et al. 1996 [KMS96]

Whole PDFs

No Linear Summation LIF Neurons Noise, multiple subpop.s Population density

Brunel & Hakim [Bru00] No Linear Summation LIF Neurons Noise, multiple subpop.s Population density

Brunel 2000 [Bru00] No Linear Summation LIF Neurons Noise, multiple subpop.s Population density

Stinchcombe & Forger 2016 [SMW+17] Yes Additive Unspec. Oscillator gCE/αE Population density particle method

Chizhov & Graham 2007 [CG07] No α synapse Simplified HH-like Weights, noise Population density refractory approach

El Boustani & Destexhe 2009 [EBD09] No exponential, α, etc. LIF Neurons Noise, multiple subpop.s, syn. connec.s population density master equation

Table I.2: A summary of selected firing-rate models. For each of the firing-rate papers in the left column, we identify
the statistical quantities modeled (2nd column from the left), whether it accounts for space (3rd column from the left),
the underlying synaptic dynamics (4th column) and neuronal dynamics (5th column) assumed by the model, the sources
of heterogeneity (6th column), and the methodology used to derive the model (7th column).

1.5.2 Challenges for firing-rate models

Like all models, firing-rate models make assumptions about the network of neurons that can
introduce limitations in the usefulness of the model. For example, most models reviewed here have
assumed very simple neuronal dynamics. This raises the question: can we construct firing-rate
models that incorporate complicated neuronal dynamics? I.e. can the models incorporate behaviors
more complicated than leaky-integrate and fire dynamics, such as Hodgkin-Huxley like dynamics?
Another limitation of many models in the literature is that they assume all-to-all coupling of neurons
or purely random coupling (as in Poisson random graphs). While all-to-all coupling and purely
random coupling can be fruitful mathematically, they are fairly unrealistic of graphs in the real
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world [New18] and in the nervous system (see [BS09]). Can we thus address complicated network
architecture, and understand non-Poisson or non-all-to-all connectivity? Further, many models only
address heterogeneous neurons by dividing networks into groups of homogeneous neurons. While
such an approach may be realistic for the cortex (see e.g. [WC73]), this may not be realistic for
other brain regions, as we will see in Chapter III.

The next generation of firing-rate models (see [SC19, BOF+20], has made progress addressing
these challenges. For example, the Ott-Antonsen procedure produces an exact description of the
dynamics of a network of coupled oscillators, and can be equipped to describe firing-rates (see
[BGLM20] for review). Meanwhile, Zandt et al. [ZVvPTH14] incorporate more realistic neuronal
dynamics by replacing the sigmoidal gain function with frequency-current curves computed from
Hodgkin-Huxley-type model neurons by using an averaging procedure. Additionally, Byrne et al.
[BOF+20] replace the sigmoidal gain functions with a Gaussian gain function using Kuramoto
order parameters from coupled oscillator theory. In this thesis, we make our own efforts towards
overcoming some of the challenges faced by firing-rate models (see Chapter III).

1.6 Applications of firing-rate models

Despite the challenges faced by firing-rate models, they have been used widely and successfully
in computational neuroscience to understand the dynamics of networks of neurons. Indeed, much
of the original firing-rate model literature was developed to model cortical neural activity [WC73]
[Ama77]. Moreover, the Jansen-Rit model and the population density models have been used to
understand EEG data, which reflects cortical activity as well as activity from deeper regions of
the brain [SCH+19]. Further, firing-rate models are the current modeling tool of choice by The
Virtual Brain Project, an international collaboration attempting to model the full human brain via an
EEG-like representation [FJS16], and has allowed for clinical trials of patient-specific treatments
for epilepsy [JWT+23].

Firing-rate models have also been used to understand other types of brain recording data. These
types include electrocorticogram [HLVB+13] data which records brain activity via electrodes placed
on the cortex rather than onto the scalp, and has produced results helpful for studying epilepsy;
magnetoencephalography data [MPF13] which measures the magnetic fields produced by the brain;
and functional magnetic resonance imaging [GF11] which measures changes in blood flow in the
brain.

Further, firing-rate models are the basis for an important tool for understanding cycling between
sleeping and waking [PR07]. Of particular interest to this thesis, firing-rate models have been used
to understand how feedforward neural circuits in the spinal cord process painful stimuli [CPHB19]
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(as discussed in Chapter II), and for understanding signals relayed by the master circadian clock in
the brain (as discussed in Chapter III).

1.6.1 Firing-rate models for feedforward networks

As described in Chapter II, we use firing-rate models to analyze the mechanisms that induce pain-
processing circuits in the dorsal horn of the spinal cord to produce chronic pain. It is widely believed
that for spinal cord circuits to function properly, there must be proper balancing between excitatory
signals that induce firing activity that is transmitted to the brain to indicate pain, and inhibitory
signals that reduce firing activity in the circuit. Indeed, it is further believed that dysregulation of
this excitatory-inhibitory balance is a primary culprit behind a common manifestation of chronic
pain, known as allodynia. In allodynia, innocuous mechanical stimuli such as gentle pressure or
light brushing on the skin can induce pain. Chronic allodynia is pervasive, affecting over one
million9 people in the United States alone. Therefore, there is significant motivation to be able to
treat and/or prevent allodynia. To be able to do that, it is vital to understand how exactly excitatory-
inhibitory balance is dysregulated in spinal cord pain-processing circuits so as to induce the circuits
to erroneously relay painful signals towards the brain.

Allodynia comes in a variety of forms, and there is high interindividual variability in the
success of various treatments for chronic pain. Indeed, the particular ways in which the loss of
excitatory-inhibitory balance generates allodynia and the variability therein are poorly understood.

Nevertheless, because excitatory-inhibitory balance occurs at the level of populations of neu-
rons, firing-rate models are well suited for investigating its dysregulation. Further, many recent
experimental observations on the generation of allodynia in the spinal cord dorsal horn pertain to
how changes in whole populations of neurons, such as ablation of certain types of neurons, can
induce allodynia.

1.6.2 Firing-rate models for heterogeneous brain regions

Another brain region for which firing-rate models are particularly relevant is the suprachiasmatic
nucleus (SCN)–the central circadian pacemaker in mammals–located in the hypothalamus. The SCN
exhibits a 24 h variation in its average neuron firing rates that is assumed to be the primary driver
for transmission of daily circadian timing information to downstream targets [JTM15, HMB18,

9Allodynia is estimated to affect 15− 50% of people experiencing neuropathic pain [JF14], a type of pain caused
by damage or disease to the nervous system. In turn, chronic neuropathic pain is believed to affect 3− 17% of the the
population worldwide [VHAK+14]. That would suggest chronic allodynia would affect 0.45− 8.5% of the population.
Even the lower bound of that estimate would place the number of people people in the United States that experience
chronic allodynia at over a million.
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LS98]10.

This transmission is critical for a variety of 24hr bodily rhythms collectively termed circadian
rhythms (circa meaning about, and dies meaning a day). Indeed, SCN transmission of the circadian
rhythm in combination with a homeostatic drive to enter sleep coordinate the timing and duration
of sleep and wake states (see, e.g. the two-process model of sleep-wake regulation, as in [Bor22]).
Other bodily circadian rhythms coordinated by SCN transmission range from variations in core
body temperature to endocrine processes such as variations in appetite, to rhythms in kidney and
liver function (see e.g. [FK17]).

While new and updated firing-rate model formalisms have expanded the accuracy and range
of applications of firing-rate models, recent results have identified properties of SCN neurons and
their network that are not easily accounted for by these models. In particular the following neural
properties all vary across the SCN and over time (Figure I.13): resting voltages, the presence of
spikes, and the size of spikes [BDFP09]. As a result, synaptic signaling varies as well across the
SCN network and over time.

Thus, to model the SCN rate code for the circadian rhythm, there is a need to develop firing-rate
model formalisms capable of accounting for the variety of heterogeneities in the SCN network. In
Chapter III, we present the derivation of a new firing-rate formalism that meets this need, and apply
it to model rhythms in SCN firing rates.

(a)
Morning

(b)
Afternoon

(c)
Afternoon

(d)
Late Afternoon

Figure I.13: SCN electrophysiological activity varies across the network and across the day. In the morning (a),
neurons typically display action potential firing. In the afternoon (b), neurons exhibit membrane oscillations that
are lower-amplitude than action potentials, and also unlike action potentials, consistently remain depolarized. At the
same time, in the afternoon (c) neurons exhibit depolarization block, where they are depolarized but their membrane
potentials roughly constant. In the late afternoon into the evening (d), neurons are usually at rest, with low resting
membrane voltages. Images source: [BDFP09].

10Although, there is also evidence of humoral signaling [LS98, YTLS21], i.e. signaling where hormones released by
neurons enter the blood. In fact, according to [YTLS21], the SCN and the pituitary gland are the only brain regions
involved in “brain portal pathways”, where blood capillaries can convey high concentrations of hormones to specialized
organs in the brain without diluting the hormones in the general circulatory system.

40



1.7 Overview

This thesis is organized as follows: in Chapter II, we introduce a methodology for analyzing
small networks of firing-rate models in the context of pain processing in the spinal cord. We then
use the methodology to uncover how disruptions of balance between inhibition and excitation in
spinal cord circuit motifs can produce chronic pain involving allodynia. In Chapter III, we describe
the need for new firing-rate model formalisms that can study heterogeneous networks of neurons,
develop such a formalism, and apply it to the SCN. In Chapter IV, we use Chapter III’s firing-rate
model formalism to model the effects of changing the external light cycle on the firing rate signals
sent downstream by the SCN that coordinate circadian clocks throughout the body. In particular, we
show that doing so can add information not provided by existing models of the pathway by which
the external light cycle affects the output from the SCN. We then establish a new link between
the electrophysiological state of SCN neurons and the intracellular molecular circadian clocks
keeping track of time in SCN neurons. In Chapter V, we put the work of this thesis into a broader
perspective, and discuss future directions for our work. In Appendix A, we show supplementary
figures for the sensitivity analysis of Chapter II. In Appendix B, we show additional figures and
methods for the firing-rate model we develop in Chapter III.
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CHAPTER II

New Parameter Sensitivity Analysis Methodology Applied to Neural Circuit
Models in the Spinal Cord Dorsal Horn

2.1 Introduction

Chronic pain troubles over 50,000,000 Americans, according to the United States Center for
Disease Control and Prevention [RSSGJ23], and estimates place the worldwide prevalence of
chronic pain at around 30% [CVH21]. As such, chronic pain poses a significant economic burden,
costing the United States alone around $600 billion in 2010 (chapter 2 of [Sim12]) and is often
disabling (chapter 2 of [Sim12]). Thus, there is a pressing need to understand, treat, and prevent the
conditions that lead to chronic pain.

2.1.1 Pain-processing in the spinal cord

Understanding pain-processing circuitry in the spinal cord is vital for understanding the phys-
iological mechanisms responsible for chronic pain conditions [PWZ+15, PDT20]. Indeed, the
spinal cord is responsible for the initial processing of both tactile and pain-inducing stimuli at
the periphery, and then for relaying them towards the brain [BCP20, Tod10, Lec17]. In particular,
tactile and pain-inducing signals travel from the periphery to the spinal cord along different classes
of afferent nerve fibers [BCP20, Tod10, Lec17]. Normally, Aβ-fibers transmit non-painful signals
due to innocuous stimuli such as gentle pressure or the brush of clothing on skin [BCP20, Tod10].
On the other hand, C-fibers, and to some extent Aδ fibers [BCP20, Tod10], transmit pain-inducing
signals in response to heat, noxious chemicals, or intense mechanical stimuli (Figure II.1). These
signals, upon arriving at the spinal cord, are filtered by intermediate circuitry in superficial laminae
(primarily laminae I and II) of the spinal cord’s dorsal horn [DCM18]. From there, they are relayed
towards the brain by projection neurons often in lamina I (but also in deeper laminae, namely
laminae III and IV), of the dorsal horn [DCM18].
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Figure II.1: Overview of processing of painful signals in the spinal cord. Aβ fibers signal non-painful tactile stimuli.
Aδ fibers transmit pain from noxious mechanical stimuli. C-fibers transmit pain inducing stimuli. Intermediate circuitry
in the superficial laminae of the spinal cord dorsal horn processes such signals, and relays them towards the brain via
projection neurons in lamina I of the dorsal horn. Image source: [BSY+19]

It is widely believed that normal processing of afferent signals in the pain-processing circuit of
the dorsal horn relies on a balance between excitation and inhibition [Woo22, PWZ+15, DCM18]
as manifested by the conceptual model of “gate control”, originally due to Melzack and Wall
in 1965 [MW65]. While the original formulation of “gate control” has failed to keep up with
the knowledge gained since 1965 about pain processing circuits in the spinal cord, “gate control”
remains influential, and certain aspects of the theory remain relevant [BSWB14, Woo22, DCM18].
Namely, inhibitory neurons “gate” activity of excitatory neurons that relay pain signals towards
the brain [PWZ+15]. In particular, the paradigm states that Aβ stimuli excite both excitatory and
inhibitory interneuron populations, but that the inhibitory populations can be sufficiently activated
so as to “close” the gate, sufficiently inhibiting the excitatory populations so as to block responses
to pain-inducing signals from C-fibers.

Thus, it should not come as a surprise that some pathological change in spinal cord circuitry
is frequently the culprit behind chronic pain. In particular, two types of chronic pain, neuropathic
pain–pain arising from damage or disease of the nervous system [CVH21]–and pain arising from
chronic inflammation [TC10], are associated with changes in spinal cord circuitry. Such changes
in spinal cord circuitry are termed central sensitization, and involve long-term alterations in the
properties of individual neurons, synapses, glial cells, and even the overall network structure of the
dorsal horn circuitry [TC10]. Such diverse alterations combine to disrupt the excitatory-inhibitory
balance in spinal-cord circuitry, disrupting inhibitory control of excitatory cells.

In allodynia, a type of chronic pain frequently associated with alterations to the spinal cord
pain-processing circuitry [TC10], individuals feel pain in response to normally innocuous stimuli
[HK21]. Allodynia is classified according to the type of innocuous stimuli that is painful [HK21]. In
this work, we focus on two well-studied types of allodynia: static and dynamic [San09, DCB+14].
In static allodynia, individuals feel pain in response to gentle pressure that normally wouldn’t be

43



painful [DCB+14]. In dynamic allodynia, on the other hand, individuals feel pain in response to
brushing sensations, e.g. the brushing of clothing on skin, that again normally wouldn’t be painful
[DCB+14].

Recent rodent experiments [DCB+14, PPF+15, CDH+17, PBT+19] have shown that either type
of allodynia can be induced by activating or inactivating (e.g. ablating) specific populations of
excitatory or inhibitory interneurons in the dorsal horn. In clinical conditions, allodynia likely occurs
through more subtle circuit disruptions. Since E-I balance in a circuit can be achieved by diverse
contributions of different excitatory and inhibitory circuit components, its disruption leading to
allodynia can potentially occur through multiple pathways. In this work, using biophysically-based
mathematical modeling, we develop a methodology to identify likely mechanisms by which spinal
cord dorsal horn circuits may be dysregulated to produce allodynia. We construct models of neural
circuits associated with static and dynamic allodynia and constrain model parameters to obtain E-I
balance in normal conditions. These constraints result in distributions of parameter sets representing
circuits that achieve E-I balance in different ways. We then identify the sensitivity by which E-I
balance can be disrupted to result in allodynia in the circuit population. We find that the particular
means of disruption varies across the circuit population, thus suggesting multiple likely mechanisms
responsible for allodynia.

2.1.2 Proposed pain-processing circuitry in the dorsal horn mediating allodynia

We first identify circuit motifs that reflect recent experimental evidence for the structure of
dorsal horn layer I-II networks mediating static allodynia1 and dynamic allodynia (Figure II.2). In
particular, the aforementioned experiments probing these circuits in rodents have shown that static
allodynia is reliant on activity in somatostatin-positive (SOM+) [DCB+14], calretinin-positive (CR+)
[PBT+19], and protein kinase c γ-positive (PKCγ+) [PPF+15] excitatory interneurons. Inactivation
of either dynorphin-positive (DYN+) [DCB+14] or parvalbumin-positive (PV+) [PPF+15] inhibitory
interneurons is sufficient to produce static allodynia, suggesting that these inhibitory cells usually
gate the activation of SOM+, CR+ and PKCγ+ excitatory cells. That these inhibitory cells gate
those excitatory cells is further evidenced by direct synaptic connections between PV+ and PKCγ+
neurons [PPF+15].

We consider a simplified circuit motif (Figure II.2b) consisting of three populations. One

1In the literature, there is some confusion as to what “static allodynia” means. The confusion lies in the types of
innocuous stimuli that evoke pain. Some sources such as [DCB+14] and [PBT+19] allow static allodynia to be evoked
from a “von Frey device”, which is essentially a narrow-tipped probe that puts pressure on a very small area of skin.
Other sources, however, such as [CDH+17], term that type of allodynia instead as “punctate” allodynia, and only term
the allodynia as “static” if it is evoked from a broad-tipped rather than narrow-tipped probe. The sources we use to
study “static” allodynia–[DCB+14, PPF+15, CDH+17, PBT+19]–all use the von Frey device.
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population, E, consists of excitatory interneurons, representing the collective activity of SOM+,
CR+ and PKCγ+ excitatory cells in layer I dorsal horn that is inhibited by two distinct inhibitory
interneuron populations, I1 representing DYN+ cells and I2 representing PV+ cells. All three
populations receive inputs from Aβ fibers, (as suggested in [DCB+14, HSK+12, PBT+19]), while
the E population is presumed to be additionally targeted by C fiber input (see e.g. [DCB+14,
PBT+19]).

In contrast, dynamic allodynia relies on the activity of SOM+/CR- excitatory interneurons.
Indeed, ablating neurons that express SOM “abolishes or greatly reduces” dynamic allodynia in
mice [CDH+17]. Thus SOM+ neurons are necessary for dynamic allodynia. Further, ablating
neurons expressing the calbindin 2/calretinin gene had no effect on dynamic allodynia in mice
[CDH+17]. Thus, the SOM+ neurons that are necessary for dynamic allodynia must also be negative
for calretinin (CR), hence they are SOM+/CR- neurons.

Dynamic allodynia also is related to DYN+ inhibitory neurons, just as is static allodynia.
Namely, ablation of DYN+ inhibitory neurons is sufficient to induce dynamic allodynia [DCB+14],
suggesting that these inhibitory cells usually gate the SOM+/CR- excitatory interneurons. Inhibitory
neurons, likely including DYN+, also gate VT3+ neurons [CDH+17]. Indeed, when inhibitory
signalling between neurons is blocked, VT3+ neurons begin to fire action potentials in response to
Aβ input.

Further, even when DYN+ neurons are still intact, either ablating or silencing neurons expressing
vesicular glutamate transporter 3, (VT3+ neurons), eliminates or attenuates dynamic allodynia
induced by nerve injury or ablation in mice [CDH+17]. Thus, at least with DYN+ neurons intact,
VT3+ neurons are necessary for dynamic allodynia. It is not clear, however, whether VT3+ neurons
are necessary for dynamic allodynia when DYN+ neurons have been ablated. Moreover, it has
been proposed that the VT3+ neurons themsleves synapse onto the excitatory SOM+/CR- neurons
[CDH+17].

Thus, much as for the static circuit, we have constructed a simplified circuit motif (Figure II.2)
consisting of four populations. One is an excitatory populationE2 representing the collective activity
of SOM+/CR- excitatory neurons that are exctited by a population (E1) represeting representing
VT3+ neurons and inhibited by a population representing DYN+ cells. Meanwhile, E1 receives
inhibitory signals from a second population I1 representing the collective activity of DYN+ neurons
that inhibit it. Further, as for the static circuit, all populations receive Aβ input (as suggested in
[DCB+14, CDH+17]), and again the E population is presumed to be additionally targeted by C
fiber input (see [CDH+17]).
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We acknowledge that these simple representations (Figure II.2) of the neural circuitry associated
with static and dynamic allodynia do not encompass the full range of neuron types and processes
involved in their respective types of allodynias. Thus, our model is more similar to [ZJG14] rather
than the detailed model of [MSH+22]. Nevertheless, the simplicity of these representations provides
ample opportunities to explore precisely how allodynia may be generated from pain-processing
circuitry in the spinal cord.

(a) (b)

Figure II.2: (a) A schematic of the proposed circuit mediating dynamic allodynia. I1 and I2 represent the populations
of dynorphin-positive inhibitory neurons, and E1 and E2 represent the populations of Vglut3-negative and somatostatin-
negative/calretonin-negative excitatory neurons. Aβ and C represent inputs to the circuit relayed from the periphery
along Aβ and C fibers, respectively. (b) A schematic of the proposed circuit mediating static allodynia. I1 and
I2 represent the populations of dynorphin-positive and parvalbumin-positive inhibitory neurons, respectively, and E
represents the population of excitatory neurons. Aβ and C represent inputs to the circuit relayed from the periphery
along Aβ and C fibers, respectively.

2.1.3 Chapter overview

For these circuit motifs, we develop population firing-rate models based on the biophysics of the
dorsal horn of the spinal cord. We use these firing-rate models to analyze mechanisms that maintain
E-I balance under normal conditions and to analyze mechanisms that lead to the disruption of E-I
balance which can occur with allodynia.

In these circuit motifs, as well as in a simple circuit representing a canonical gate control model,
we determine parameter sets that replicate behaviors observed under normal conditions and observed
in response to experimental manipulations. Specifically, we focus on the parameters representing
the synaptic coupling between neural populations in the circuit. We refer to the resulting sets of
coupling strengths as the “allowable parameter space”. To identify the most likely mechanisms
by which E-I balance may be disrupted, we compute the minimal parameter changes needed to
produce responses associated with allodynia. Analysis of the minimal parameter changes reveals
clustering of the allowable parameter space whereby subpopulations of circuits show different
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parameter sensitivities, thus suggesting that the most likely mechanisms for allodynia differ form
subcircuit to subcircuit.

Results show that, in the allowable parameter space, a considerable range of parameter com-
binations can reproduce the experimentally-observed behavior required of the circuit motif under
normal conditions. This highlights the diversity of ways that E-I balance can be obtained within a
circuit. Results further indicate that across and within circuit motifs, there is considerable variation
in the means by which the circuits are most vulnerable to E-I dysregulation that results in allodynia.
For instance, in the proposed circuit mediating static allodynia, there are four different means of
such dysregulation, represented as a clustering of the allowable parameter space into four regions.
Generally, in the static circuit, those means of dysregulation occur primarily via over-excitation
of E in response to Aβ, along with simultaneous disinhibition of the excitatory populations. In
particular, the disinhibition primarily occurs by lowering the activity of the inhibitory population.
However, the degree of over-excitation, and the cause of disinhition vary across the corresponding
allowable parameter space.

As for the proposed circuit mediating dynamic allodynia, such dysregulation can also occur by
four separate mechanisms, illustrated by clustering the allowable parameter space into four regions.
However, unlike in the static circuit, these mechanisms can involve the E1 population rather than
the population (E2) which relays pain-inducing towards the brain. Further, these mechanisms occur
mainly by over-excitation of E2, and disinhibition, without altering the activity of the inhibitory
population. Much as for the static circuit, the degree of over-excitation, and the cause of disinhition
vary across the corresponding allowable parameter space.

These results identify the diverse ways by which excitatory and inhibitory components within
the circuits combine to maintain E-I balance. These results also identify the sensitivity of these
combinations to different mechanisms of disruption that can lead to pathological responses.

The chapter is organized as follows: in Section 2.2, we describe and apply our sensitivity
analysis methodology to the simple circuit representing a canonical gate control model. In Sections
2.3, and 2.4, we do likewise for the proposed circuits mediating dynamic and static allodynia,
respectively. In Section 2.5, we summarize the results and put them into a greater biological context.
Finally, in Sections 2.6 and 2.7, we discuss the methods we use to conduct the sensitivity analysis
in more detail, and provide supporting proofs, respectively.
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2.2 Analysis of a simple “gate control” circuit

Before analyzing the proposed circuits mediating dynamic and static allodynia, we illustrate our
methodology by applying it to a simple circuit representing the “gate control” conceptual model.
The simple circuit consists of two neural populations: one for inhibitory interneurons (I) and one
for excitatory (E) interneurons, where it is assumed that the E population relays pain-inducing
signals to projection neurons that transmit towards the brain. Both populations receive input from
Aβ fibers. Aβ fiber input is scaled by the coupling strength parameters gAβE and gAβI between the
Aβ fibers and the excitatory and inhibitory population, respectively. Under normal ”gate control”
conditions, Aβ signals stimulate the inhibitory population sufficiently so that the net signaling to
the E population is inhibitory. Should pain inducing signals traveling along C fibers arrive at the
E population, the E population would then only relay the pain-inducing signals if the resulting
excitation of the E neurons were sufficiently large to overcome the inhibition arising from Aβ

signaling. Thus, the Aβ signals “gate” pain-inducing signals relayed by the E population. A
schematic of the circuit is shown in Figure II.3.a.

2.2.1 Simple circuit model

In the circuit, we model each population with a firing-rate model. The modeling formalism is
based on the work of Crodelle et al. in [CPHB19]. However, unlike [CPHB19], our model uses
voltage as the state variable, as in the well-used firing-rate models of Jansen and Rit [JR95] and
Phillips and Robinson [PR07]. Modeling the state-variable as a voltage provides certain advantages.
Namely, it allows us to replace the heuristic input-output relation from [CPHB19] with a data-driven
relationship between the population voltage and population firing-rates.

Specifically, from the average population voltage VE of some population, e.g. E, we model the
average population firing rate, fE (in Hz), as a sigmoidal function of VE:

fE(VE) = 0.5maxE

(
1 + tanh

(
Vx − βE
αE

))
.

In the preceding expression, maxE represents the maximum possible firing-rate of the excitatory
population; βE represents the “half-activation” voltage, at which the population fires at half of
its maximum possible firing-rate; and αE represents the “flatness” of the firing-rate’s response
to changes in VE . We determine the parameters of this sigmoidal activation function to match
experimentally determined frequency-voltage relationships (see Section 2.6.2 for details).

We expect that in the absence of input, VE remains at some rest value VE,rest, which is also
based on experimental data (Section 2.6.2). On the other hand, in the presence of steady inputs, we
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expect that VE eventually deviates from rest by an amount equal to the net input signal:

VE = inputs + VE,rest (steady state) .

We take the inputs to be the output firing-rates of populations pre-synaptic to E, for example I ,
along with the input Aβ firing-rate fAβ , weighted by the corresponding coupling strengths:

inputs = gIEfI + gAβEfAβ

We add time dynamics to the system via the following ordinary differential equation:

dVE
dt

=
inputs− VE + VE,rest

τE
. (II.1)

where τE governs how quickly VE moves towards its steady-state value.

We model the inhibitory population analogously, except we choose different parameters for
inhibitory populations. Namely, in this section and throughout this chapter, we take all parameters
for inhibitory populations to be the same and as shown in [RS02], and do likewise for all excitatory
populations. Further, in Section 2.6.1, we provide a general description of how we model the inputs,
voltage, outputs, and dynamics for an arbitrary population x in an arbitrary circuit. Although, rather
than any arbitrary circuit, we expect our model formalism and the methodology, which we will
describe shortly, to be most useful for feedforward circuits, such as those presented in this chapter.

2.2.2 Conditions on simple circuit parameters

To constrain the circuit to display realistic behaviors, we impose conditions on the steady-state
voltages of the E and I populations. To start, we require that steady-state voltages of the E and I
populations remain within reasonable bounds, which we describe further in the methods, Section
2.6.2. Further, under control conditions, we require that the I population fires in response to typical
activity on Aβ fibers, which we choose to be fAβ ∈ [10, 20] Hz (see Section 2.6.2). Notably, we
require that such a response by the I population must happen for all reasonable fAβ . We then require
that the signal from the I population relayed to the E population is strong enough that it not only
prevents the E population from firing, but that the net signals to the E population in response to
any typical Aβ activity are inhibitory, causing the voltage of the E population to drop. Such Aβ
signaling would require pain-inducing inputs from other sources to excite the E population more
than normal to elicit pain, thereby “gating” the E population response. On the other hand, if the I
population is experimentally ablated, then we expect Aβ signaling to cause the E population to fire,
relaying pain-inducing signals from normally innocuous input, thereby creating allodynia.
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Each such condition leads to an inequality that average voltages must satisfy. To illustrate this,
consider the pain-inhibition condition discussed above. Innocuous stimuli make E less likely to
fire and transmit painful signals. Thus, typical Aβ firing activity (fAβ ∈ [10, 20]) should make VE
decrease:

VE,rest ≥ VE,steady

= Change in VE due to weighted inputs + VE,rest

= gAβEfAβ − gIEfI(fAβ) + VE,rest

We summarize these conditions and the corresponding inequalities in Table (II.1). These conditions
on steady state population voltages can be re-written as a system of 6 inequalities, some nonlinear,
on the coupling strengths gAβI , gIE and gAβE) (see Section 2.6.3.1).

3-tuples of coupling strengths, (gAβI , gIE, gAβE), which satisfy these inequalities constitute an
allowable parameter space (APS), in which we expect parameters to lie for the circuit to function
properly. However, because these inequalities must be satisfied for a range of input fAβ signals,
solving them explicitly requires finding the solution to nonlinear optimization problems. For
instance, we can rewrite the pain inhibition condition so it is expressed as an inequality on gAβE:

gAβE ≤
gIEfI(fAβ)

fAβ
.

However, because the pain inhibition condition should hold for all fAβ ∈ [10, 20] Hz, the preceding
inequality must hold for all fAβ ∈ [10, 20] Hz. If the preceding inequality is satisfied for the value
of fAβ that minimizes the right-hand side, the inequality is satisfied for all fAβ ∈ [10, 20]. Thus, the
preceding inequality holds if and only if

gAβE ≤ min
fAβ∈[10,20]

[
gIEfI(fAβ)

fAβ

]
.

While the solutions of these optimization problems may often be expressed using Lambert functions
(see Section 2.6.3.1), the resulting system of inequalities including Lambert function solutions,
while considerably simpler, remains difficult to solve explicitly.

2.2.3 Computing the allowable parameter space (APS)

Since the above constraints that define the APS are difficult to solve explicitly, we instead seek
a representative sample of the APS, namely one for which sampled points are distributed uniformly
in space. By sampling uniformly, we can ensure that statistics of the sample, such as distributions of
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Condition Type Condition Steady state voltage inequality

Control
conditions

VI upper bound VI,max ≥ VI = gAβIfAβ + VI,rest

I fires VI,thr ≤ VI = gAβIfAβ + VI,rest

Pain inhibition VE,rest ≥ VE = gAβEfAβ − gIEfI + VE,rest

VE lower bound VE,min ≤ VE = gAβEfAβ − gIEfI + VE,rest

I ablation conditions
VE upper bound VE,max ≥ VE = gAβEfAβ + VE,rest

E fires VE,thr ≤ VE = gAβEfAβ + VE,rest

Table II.1: Conditions that the simple gate control circuit must satisfy and the resulting inequalities on steady-state
voltages. We ensure that the circuit exhibits appropriate behaviors by imposing conditions (middle column) on the
circuit. Each condition is exhibited in either control or inhibitory-ablation scenarios (left-most column), and is realized
as an inequality (right-most column) on the steady-state voltage of a population. The inequalities in the right-most
column must hold for any reasonable fAβ , which we take to be fAβ ∈ [10, 20] Hz.

coupling strengths across the parameter space or the proportion of sampled points falling in certain
clusters, are representative of the APS as a whole. However, because the APS may be non-convex
(see Figure II.3.d), and since to our knowledge there are no widely-used algorithms for uniformly
sampling from non-convex solids, we develop a sampling algorithm and use it to arrive at the sample
described in Figure II.3.b - e. See the Methods, Section 2.6.4 for a description of the sampling
algorithm.

We illustrate that sampled parameter sets correspond to circuits which yield the desired behaviors
by simulating the simple circuit model with 20 sampled points, in response to a noisy Aβ signal
with mean firing rate in [10, 20] Hz. In doing so, we see pain inhibition in action (see Figure II.3.b).
Indeed, in each simulation, the firing-rate of the I populations rises to at least 80% of the maximum
firing-rate of 80 Hz for the I population (left panel). The inhibition from the I population then
causes voltages of the E population to drop (middle panel), as we require for pain inhibition. Then,
as expected, the E population doesn’t fire (right panel). On the other hand, if we ablate the I
population, we lose pain inhibition (see Figure A.1 in the supplementary material). In this case,
the voltage of the E population sufficiently increases so that the E population fires in response to
innocuous Aβ stimuli, thus simulating allodynia.

To analyze the distributions of the coupling strengths across the sample, we construct violin
plots (Figure II.3.c). In these plots, we see that gAβI has the largest range of allowable values (from
about 2.6 - 7.1 mV/Hz), with gAβE having the second largest range (about 3.5 - 6.9), and gIE having
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the smallest range (about 0.9 - 2.1). Because gAβI can thus be changed the most without exiting
the APS, whereas gIE can be changed the least, they are in some sense the least and most sensitive
coupling strengths, respectively, underlying this circuit.

To begin to understand mechanisms that can induce allodynia in terms of relative changes in
parameter values, we normalize each coupling strength to the range [0, 1]. To do so, we find the
distance between the coupling strength gxy and its smallest allowable value, and set the normalized
coupling strength ĝxy to be that distance expressed as a proportion of the coupling strength’s
allowable range:

ĝxy =
gxy −min {gxy}

max {gxy} −min {gxy}
.

A change in ĝxy by 0.1, for example, thus corresponds to a change in gxy by 10% of its natural
range. By normalizing parameters as such, not only do we control for the effects that having a larger
range of values has on parameter sensitivity, but we are better positioned to compare the effects
of changing one parameter to the effects of changing another. In Figure II.3.d, we show the full
set of normalized sampled points. Notably, we have constructed our sampling algorithm so sets of
normalized coupling strengths are uniformly distributed in the unit cube [0, 1]× [0, 1]× [0, 1].

From the illustration of the sampled points in Figure II.3.d and from the violin plots in Figure
II.3.c, we see that distributions of individual coupling strengths across the APS are skewed towards
zero. To understand the degree to which the distrbutions are skewed towards zero, we can examine
normalized violin plots (Figure A.2). For instance, if the normalized violin plots are symmetric
about 0.5, they are not skewed at all. However, we see that the means of each coupling strength, after
normalization, are roughly the same, and are all around 0.4. Thus, the extent to which distributions
of coupling strengths are skewed towards zero is roughly the same for all three coupling strengths.

Further, from Figure II.3.d, we see relationships between coupling strengths. For instance, we
see that ĝAβE has the largest allowable range when gAβI is at its smallest. Looking at correlations
between coupling strengths (see Figure II.3.e), we see further relationships, namely that when gIE
is near the top of its range, gAβE is also near the top of its range. This highlights that under normal
conditions, the inhibition of E from I is balanced by the excitation of E from Aβ inputs.

2.2.4 Mechanisms for generating allodynia in the simple circuit

Thus far, we have investigated the APS showing which sets of coupling strengths reproduce the
desired behaviors necessary for normal E-I balance in the circuit and for the disrupted E-I balance
arising upon ablation of the inhibitory population. To analyze vulnerability of these model circuits
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to allodynia, we next determine the coupling strength changes that most easily result in E cell firing
in response to innocuous input (fAβ ∈ [10, 20] Hz).

(a)
(b)

(c) (d) (e)

Figure II.3: Allowable parameter space for the simple “gate control” circuit. (a) A schematic of the simple “gate
control” circuit, where I and E represent the populations of excitatory and inhibitory neurons, respectively. (b)
Simulation results showing the mean (black lines) and range (shaded green areas) for the firing rate (left) of the I
population, as well as for the voltage (middle) and firing rate (right) of the E population, calculated for 20 sampled sets
of coupling strengths each with a different random input Aβ stimulus in range [10, 20] Hz. (c) Violin plots showing
the distribution of each coupling strength, the mean (x-marker), and the range of values that lie within one standard
deviation (vertical bar). (d) A scatter plot of the 5000 sampled sets of normalized (gAβI , gIE , gAβE) values that satisfy
the conditions listed in Table II.1. Samples were computed such that normalized samples are uniformly distributed
in the three-dimensional (gAβI , gIE , gAβE)-space. (e) Normalized Pearson correlation coefficients between coupling
strengths among normalized sampled sets of parameters.

Defining allodynia in the simple circuit

In our formalism, allodynia is realized when the steady-state average voltage of theE population,
VE , exceeds the firing threshold for some typical fAβ:

VE,thr ≤ VE,rest + gAβEfAβ − gAβI · fI(fAβ).
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We use this inequality to define a surface in (gAβI , gIE, gAβE) space, which we term the “allodynia
surface”, above which the corresponding circuit produces allodynia for at least some typical
fAβ ∈ [10, 20] Hz. We use “above” in the sense that the gAβE component of a point in parameter
space defines a height for that point. This surface, S, is then the following sets of points:

S :=

{
(gAβI , gIE, gAβE) : gAβE = min

fAβ∈[10,20]

VE,thr − VE,rest + gAβI · fI(fAβ)

fAβ

}
.

The allodynia surface S always lies above the APS, as illustrated in Figure II.4.a. We discuss the
preceding formula for S and the properties of allodynia surfaces further in Section 2.6.5.

For each circuit associated with a point in the APS, we identify its vulnerability to allodynia by
computing the shortest path from the point to the allodynia surface S. The shortest path is a straight
line joining the point in the APS to the corresponding nearest point on S, which we compute using
a customized global optimization scheme described further in Section 2.6.6. Because the shortest
path indicates precisely how to reach the allodynia surface by altering coupling strengths as little as
possible, it represents the direction in parameter space in which the circuit is most vulnerable to
allodynia. In this way, the components of the shortest path vector suggest which circuit components,
along with the corresponding magnitudes of their relative change, will disrupt E-I balance in the
circuit resulting in allodynia.

Summary statistics for the shortest paths to the allodynia surface

We see in Figure II.4.a that in some portions of the APS, the direction needed to travel to reach
the allodynia surface fastest is mainly the −ĝAβI direction. However, in other portions of the APS,
the direction is mainly the −ĝIE direction. Using density-based scanning [EKSX96], we assign
points to clusters based on the directions of their shortest path to S. This cluster analysis identifies
two clusters. For points in cluster 1 (red) the fastest direction to the allodynia surface primarily
involves decreasing ĝAβI , while for points in cluster 2 (cyan), the shortest path involves decreasing
ĝIE and increasing ĝAβE .

Within the APS, cluster 1 is characterized by relatively larger ĝIE and ĝAβE values but consid-
erably smaller ĝAβI values (Figure II.4.b). In fact, ĝAβI values for cluster 1 are so small that they
all lie below the mean ĝAβI for the whole APS. We also see that cluster 1 is generally closer to S
than cluster 2 (Figure II.4.c), indicating that cluster 1 is the more sensitive of the two clusters to
dysregulation. A closer look at the shortest paths from points in cluster 1 to the allodynia surface
reveals that shortest paths involve traveling in a mix of all component directions. The largest
magnitude components of the mix are the decreasing ĝAβI- and increasing ĝAβE-directions (Figure

54



II.4.d). Otherwise, the mix varies from point to point within the cluster, exhibiting no consistent
correlation in the magnitude of changes among the directions (Figure II.4.e). Thus, while the most
efficient means of producing allodynia for circuits in cluster 1 involve disinhibition by lowering
the response of the I population to Aβ input (Figure II.4.f), the most efficient means also involves
reducing ĝIE , thereby reducing the effect of I’s output on E. The most efficient means further
involves increasing ĝAβE , over-exciting E.

Cluster 2, on the other hand, is characterized by larger gAβI values and smaller ĝIE and ĝAβE
values, (Figure II.4.b). Cluster 2 is further characterized by longer distances to the allodynia
surface, indicating that these circuits may be more protected against E-I disruption (Figure
II.4.c). Notably, shortest paths from points in cluster 2 to S only involve changing ĝIE and
ĝAβE (Figure II.4.d), and the changes are in a fixed ratio (Figure II.4.e). Thus, the shortest
paths to the allodynia surface from points in cluster 2 are always in exactly the same direction,
namely a ∼ 30% decrease in gIE and a ∼ 20% increase in gAβE (the direction of the unit vector
(0,−0.2950, 0.2110)/||(0,−0.2950, 0.2110)||).

The difference in the allodynia-sensitivity of circuits in cluster 1 vs circuits in cluster 2 likely
lies in the differences in ĝAβI between clusters. In particular, we see in Figure II.4.f that a typical
point in cluster 1 (top panels) exhibits inhibitory firing-rates around 50 Hz, just over half of the
maximum firing-rate. When a population is at its half-maximum firing-rate, it is engaging its
activation function where the activation function’s slope is steepest, and thus firing rates will be
most sensitive to changes in input. Also considering that ĝAβI modulates the strength of the inputs
to the I activation function, it follows that the I population firing rates for cluster 1 circuits are
particularly sensitive to changes in ĝAβI . On the other hand, for a typical circuit in cluster 2 (bottom
panels), the firing-rate of the I population is saturated at its maximum value (80 Hz). In this case,
the population is engaging the activation function where the activation function’s slope is very flat,
and thus firing rates will be insensitive to changes in input. Hence, I population firing rates for
cluster 2 circuits are very insensitive to changes in ĝAβI .

In summary, all circuits in the APS are most vulnerable to allodynia by the combined effect of
disinhibition and over-excitation. However, the specific circuit components involved are different.
The circuits in cluster 1, for instance, are most easily dysregulated by changes in the responses of
the I and E populations to Aβ input. Specifically, decreased I cell responses and potentiated E cell
responses to Aβ input open the inhibitory gate on E cell activity (see Figure II.4.f, top row). For
circuits in cluster 2, E-I balance is disrupted solely at the E cell population via a decrease in the
efficacy of the inhibitory input from the I population coupled with potentiated responses to Aβ
input (Figure II.4.f, bottom row).
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(a) (b) (c)

Cluster ĝAβI ĝIE ĝAβE Freq

All 0.3493 0.3495 0.3132 1

1 0.1583 0.4695 0.4112 0.5190

2 0.5554 0.2200 0.2075 0.4810

Cluster Mean Dist St Dev Dist

All 0.3182 0.0720

1 0.2769 0.0709

2 0.3627 0.0391

(d)

Cluster ∆ĝAβI ∆ĝIE ∆ĝAβE

All −0.1378 −0.1562 0.1387

1 −0.2654 −0.0275 0.0717

2 0 −0.2950 0.2110

(e) (f)

Figure II.4: Examining the shortest paths to the allodynia surface yields two clusters in the simple circuit. (a) A
scatter plot of the sampled sets of coupling strengths with the allodynia surface overlaid (5000 points colored red
and blue). Overlaid on top is the allodynia surface, and for each sampled set of coupling strengths, the nearest point
on the allodynia surface is also shown (darker red and blue points). Clearly, the data divides into two clusters (red
points versus blue points) based on the direction needed to travel to reach the corresponding closest points on the
allodynia surface. (b) Violin plots (top) of the mean coupling strengths for sampled sets in each cluster. A black “x”
indicates the mean of the corresponding data from points across both clusters. Bottom: mean normalized coupling
strengths for each cluster and for all data.(c) The probability distribution (top) of the shortest distances to the allodynia
surface (overall profile). Contributions to the area under the curve from each cluster are shaded according to the cluster.
Bottom: the mean and standard deviations of the distance to the allodynia surface for each cluster. (d) A parallel
plot representation (top) of the shortest paths from sampled sets of coupling strengths to the corresponding nearest
points on the allodynia surface. Bottom: mean-values of the components of the displacements for sampled sets of
coupling strengths in each cluster. (e) Ratios of components of the displacement vector in the ĝIE-direction (top) and
ĝAβI -direction (bottom) to the component of the displacement vector in the ĝAβE-direction versus the component of
displacement in the ĝAβE-direction. Such ratios are roughly constant for cluster 2 but not cluster 1. (f) Firing-rate
responses to a noisy Aβ input signal for each population (columns) and for each cluster (rows). Solid lines correspond
to a circuit with coupling strengths given by the mean clustering strengths for the particular cluster, and dashed lines
correspond to the circuit with coupling strengths given by the corresponding closest point on the allodynia surface. Aβ
input frequencies are chosen to be the smallest possible Aβ that induces allodynia for each cluster.
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2.3 Analysis of the dynamic allodynia circuit

As discussed in Section 2.1.2, we propose a circuit motif which reflects experimentally identified
layer I-II dorsal horn circuitry involved in mediating dynamic allodynia. The proposed circuit,
which we refer to as the “dynamic circuit”, consists of four populations of neurons: two inhibitory
(I1 and I2), and two excitatory (E1 and E2). All four populations receive an input signal from
Aβ fibers. We assume the excitatory population, E2, is responsible for relaying signals to layer I
projection neurons that signal to the brain. Essentially, the dynamic circuit is two simple circuits
coupled together, with the I1 and E1 subcircuit providing additional excitation to E2, which relays
signals to projection neurons. A schematic of the circuit is shown in Figure II.5.a.

We approach modeling and analyzing the dynamic circuit analogously to how we modeled and
analyzed the simple circuit. As before, we model each population with a firing-rate model, equipped
with activation functions and voltage dynamics as in Section 2.6.1. This time, though, there are 4
populations–I1, E1, I2, and E2–rather than two to worry about, and 7 coupling strengths–gAβI1,
gI1E1, gAβE1, gE1E2, gAβI2, gI2E2, and gAβE2–to worry about, rather than the three from the simple
circuit. We illustrate these 7 coupling strengths, along with the four populations, in the schematic of
the circuit.

2.3.1 Conditions on dynamic circuit parameters

As for the simple circuit, we impose conditions on the steady-state voltages of the E1, E2,
I1, and I2 populations so the circuit displays experimentally observed behaviors under normal
conditions. Specifically, we again require that all steady-state voltages remain within reasonable
bounds. Since we are considering the I1-E1 portion of the circuit to behave as a simple circuit, we
impose the same conditions as on the simple circuit to make it display pain inhibition. Likewise,
under normal conditions, where E1 population activity is gated by inhibition from the I1 population,
the I2-E2 portion of the circuit is essentially disconnected from the I1-E1 portion of the circuit, and
also behaves like a simple circuit. Thus, we impose conditions on the steady states of the I2 and
E2 populations accordingly. However, if the I1 population is ablated, then the E1 population is
expected to fire in response to typical Aβ stimuli, and in turn excite the E2 population. In this case,
we expect the E2 population to also fire, thereby displaying allodynia.

Each of these conditions leads to an inequality on steady state population voltages, as summa-
rized in Table (II.2). This system can be re-written as a set of inequalities for the coupling strengths
that must be satisfied for all fAβ input levels in the range [10, 20] Hz. The resulting system of
inequalities and optimization problems is derived in Section 2.6.3.2, and summarized in Table II.7.
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Proceeding as we do for the simple circuit, we define the APS for the dynamic circuit as the sets
of 7-tuples of coupling strengths (gAβI1, gI1E1, gAβE1, gE1E2, gAβI2, gI2E2, gAβE2) which satisfy the
system of inequalities and optimization problems. As solving the system explicitly is prohibitively
difficult, we simplify the optimization problems using Lambert functions (see Section 2.6.3.2) and
then randomly and uniformly-in-space sample from the defined APS using our customized sampling
algorithm (Section 2.6.4). After analyzing the APS, we then define an allodynia surface (Section
2.6.5) and compute the shortest paths (Section 2.6.6) from points in the APS to the allodynia surface.
Clustering analysis based on these shortest paths identifies different sensitivities across the circuit
population to disruption of E-I balance and hence allodynia.

Condition Type Condition Steady state voltage inequality–for all fAβ

Control conditions

VI1 upper bound VI1,max ≥ VI1 = gAβI1fAβ + VI1,rest

I1 fires VI1,thr ≤ VI1 = gAβI1fAβ + VI1,rest

VI2 upper bound VI2,max ≥ VI2 = gAβI2fAβ + VI2,rest

I2 fires VI2,thr ≤ VI2 = gAβI2fAβ + VI2,rest

Pain inhibition (E2) VE2,rest ≥ VE2 = gAβE2fAβ − gI2E2fI2 + VE2,rest

Pain inhibition (E1) VE1,rest ≥ VE1 = gAβE1fAβ − gI1E1fI1 + VE1,rest

E1 ablation conditions VE2 lower bound VE2,min ≤ VE2 = gAβE2fAβ − gI2E2fI2 + VE2,rest

I1 ablation conditions

E1 fires VE1,thr ≤ VE1 = gAβE1fAβ + VE1,rest

VE2 upper bound VE2,max ≥ VE2 = gAβE1fAβ + gE1E2fE1,I1abl − gI2E2fI2 + VE2,rest

E2 fires VE2,thr ≤ VE2 = gAβE1fAβ + gE1E2fE1,I1abl − gI2E2fI2 + VE2,rest

I2 ablation conditions
VE2 upper bound VE2,max ≥ VE2 = gAβE2fAβ + gE1E2fE1 + VE2,rest

E2 fires VE2,thr ≤ VE2 = gAβE2fAβ + gE1E2fE1 + VE2,rest

Table II.2: Conditions that the proposed circuit mediating dynamic allodynia must satisfy and the resulting inequalities
on steady-state voltages in response to Aβ input. We ensure that the circuit exhibits these behaviors by imposing
conditions (middle column) on the circuit. Each condition is exhibited in either control, E1-ablation, I1-ablation, or
I2-ablation conditions (left-most column), and is realized as an inequality (right-most column) on the steady-state
voltage of a population.

2.3.2 The allowable parameter space (APS) for the dynamic circuit

To illustrate the response of dynamic circuits in the APS to Aβ input, we choose 20 points
sampled from the APS. We then simulate the corresponding circuit models, taking the Aβ input to
be noisy and to have time-averaged firing-rates fAβ in [10, 20] Hz across the network on average. In
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each simulation (see Figure II.5.b), the firing-rates of the I1 and I2 populations typically rise to
nearly their maximum firing-rates of 80 Hz and always rise well above 0. The inhibition from the
I1 population prevents the E1 population from firing, and the inhibition from I2 causes voltages of
the E2 population to drop, as we require for pain inhibition. Then, as expected, the E2 population
doesn’t fire. Hence, the sampled sets of coupling strengths lead to the expected behaviors under
control conditions.

Violin plots (Figure II.5.c)) of the sampled coupling strength values in the APS show that gAβE1

has the largest range of allowable values (from about 2 - 6.9). Although gAβE1 has a long tail of
low values, along which the distribution of gAβE1 is very narrow. If we ignore the tail, the range
of gAβE1 would be comparable to that of gAβE2 (3.5 - 6.9 mV/Hz). The second largest ranges of
coupling strengths belong to gAβI1 and gAβI2s (both about 2.8 - 7.1 mV/Hz), whereas gI1E1 and
gI2E2 have the smallest ranges of allowable values (1.0 - 2.0 and 0.9 - 2.1 mV/Hz, respectively).
Because gAβE1 can thus be changed the most without exiting the APS, it is in some sense the least
sensitive coupling strength underlying this circuit. In the same sense, gI1E is the most sensitive
coupling strength underlying this circuit.

To glean additional information about parameter sensitivity, we control for relative parameter
variations by normalizing all parameters so their ranges are [0, 1], as discussed in (Section 2.2.3).
In the parallel plot of normalized parameter sets (Figure II.5.d) showing the full set of sampled
points in the APS, distinct clustering is not apparent. However, we can begin to see correlations in
the relative values of coupling strengths. Specifically, segments of the lines between two coupling
strength values are flat, such as between ĝI1E1 and ĝAβE1, indicates a strong correlation between
the two coupling strengths. Indeed, correlations (Figure II.5. e)) indicate for instance that ĝI1E1

and ĝAβE1 are strongly positively correlated, as are ĝI2E2 and ĝAβE2, indicating an E-I balance
within the I1-E1 subcircuit and the I2-E2 subcircuit, similar to what we find for the simple circuit.
Further, coupling strengths pertaining specifically to the I2-E2 subcircuit are only weakly correlated
with coupling strengths pertaining to the I1-E1 subcircuit, indicating further that excitation and
inhibition are being balanced within each subcircuit, more so than across the two subcircuits.
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(a) (b)

(c) (d) (e)

Figure II.5: Allowable parameter space for the proposed circuit mediating dynamic allodynia. (a) A schematic of the
dynamic circuit. I1 and I2 represent the populations of inhibitory neurons, and E1 and E2 represent the populations of
excitatory neurons. We assume the E2 population relays signals to projection neurons. Aβ represents inputs to the
circuit relayed from the periphery along Aβ fibers. (b) The mean (black lines) and range (shaded green areas) for the
firing rate (top left) and voltage (top right) of the E2 population, as well as for the firing rates of the I2 (middle left), E1
(middle right), and I1 (bottom left) populations calculated across 20 sampled sets of coupling strengths each with a
different random input Aβ stimulus. (c) Violin plots for each coupling strength across all sampled sets of coupling
strengths. An “x” and a vertical bar represent the mean and the values within one standard deviation of the mean for
the corresponding coupling strength. (d) A “parallel plot” representation of the sampled sets of normalized coupling
strengths. A line gives the values of each coupling strength in a sampled set. (e) Normalized Pearson’s correlation
coefficients between coupling strengths across sampled sets of normalized coupling strengths.

2.3.3 Mechanisms of allodynia in the dynamic circuit

To conduct the analysis of sensitivity to allodynia, we define an allodynia surface Sdyn based on
the condition that the average voltage of the E2 population increases past the firing threshold in
response to Aβ input in the normal range (fAβ in [10, 20] Hz). We then re-write this as a condition
on gAβE2 as follows:
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Sdyn :=

{
(gAβI1, gI1E1, ..., gAβE2) : gAβE2 = min

fAβ∈[10,20]

[
VE2,thr − VE2,rest − gE1E2 · fE1(fAβ) + gI2E2 · fI2(fAβ)

fAβ

]}
.

Recall that the allodynia surface separates circuits which cannot produce allodynia for any typical
fAβ from those that can for at least some fAβ ∈ [10, 20] Hz. We discuss the preceding formula for
the allodynia surface Sdyn and the properties of the allodynia surface further in Section 2.6.5.

Clustering based on the shortest path to the allodynia surface

Much as for the simple circuit, we can divide the APS into clusters according to the shortest
paths from points in the APS to the allodynia surface Sdyn. Doing so via density-based scanning
yields four clusters: cluster 1 (Figure II.6, green), cluster 2 (blue), cluster 3 (red), and cluster 4
(cyan).

Clusters 1 and 2 are the I2-E2 subcircuit’s analog of clusters 1 and 2 appearing in the basic
circuit. In particular, parameter sets belonging to cluster 1 (green) are characterized by having
ĝAβI2 values and ĝI2E2 values considerably smaller and larger than their respective means across
the whole APS. Just as for cluster 1 in the simple circuit, values of ĝAβI1 are so small, that they lie
below the mean value of ĝAβI1 across the whole APS. Also just as for cluster 1 in the simple circuit,
cluster 1 in the dynamic circuit is generally closer to Sdyn than are the other clusters.

A closer look at the shortest paths to Sdyn, again much as for cluster 1 in the simple circuit,
reveals that shortest paths for cluster 1 in the dynamic circuit involve traveling in a mix of all
component directions pertaining to the I2-E2 subcluster (Figure II.6.c). That is, to reach the
allodynia surface, gAβI2 and gI2E2 decrease, gAβE2 increases, and none of the other coupling
strengths change. However, gAβI2 decreases more than gAβE2 increases, and far more than gI2E2

decreases. As such, we expect that upon traveling to the end of the shortest path, the activity of I2

is dramatically reduced in response to normal Aβ input, thereby disinhibiting E2, and producing
allodynia. This is reflected in simulations of cluster 1 circuits (Figure II.6.d, top row), where upon
traveling to the end of the shortest path, in response to normalAβ input, activity of the I2 population
indeed goes down dramatically and E2 fires, thereby producing allodynia.

On the other hand, the distribution of individual coupling strengths for points in cluster 2 do not
greatly differ from the mean or from the overall distribution in the APS. This is mainly because
the majority of points in the APS belong to cluster 2 (Figure II.6.a,b). Nevertheless, there are
some small differences between the means of coupling strengths in cluster 2 versus the whole APS.
Namely, these differences are in ĝAβI2, which is somewhat larger than normal, and in ĝI2E2, which
is somewhat smaller than normal.
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Thus, it should not come as a surprise that the most efficient allodynia-producing mechanism
for cluster 2 involves disrupting E-I balance in the I2 - E2 portion of the circuit, as seen in Figure
II.6.c, without changing coupling strengths in the I1 - E1 portion of the circuit at all. In particular,
the most allodynia-vulnerable direction involves primarily decreasing ĝI2E2 and increasing ĝAβE2,
thereby simultaneously disinhibiting and over-exciting the E2 population solely. Similarly to the
cluster 1, this is reflected in Figure II.6.d, where on the allodynia surface (dashed curves), the E1

population doesn’t fire while the E2 population does fire.

Whereas clusters 1 and 2 are the I1-E1 subcircuit’s analog of clusters 1 and 2 from the simple
circuit, clusters 3 and 4 from the dynamic circuit are the I2-E2 subcircuit’s analog of those same
clusters from the simple circuit. Namely, similarly to cluster 1, parameter sets from cluster 3 are
characterized by very small ĝAβI1 and ĝI1E1 (Figure II.6.a). Cluster 3 parameter sets also have a
smaller ĝAβE1 than normal, much more so than does ĝAβE2 in points belonging to cluster 1. Points
from cluster 3 are generally quite close to the allodynia surface, almost as close as points from
cluster 1.

Because coupling strengths in cluster 3 mainly differ from the APS as a whole in terms of
gAβI1, gI1E1 and gAβE1, it makes sense that that the most allodynia-sensitive direction for cluster 3
involves disrupting E-I balance specifically in the I1-E1 subcircuit. Namely, similarly to cluster
1 from the dynamic circuit, that direction mainly involves decreasing ĝAβI1, to a lesser extent
increasing ĝAβE1. However, because changes in the I1-E1 subcircuit affect the activity of I2 and
E2, the most allodynia-sensitive direction involves at least small changes to all coupling strengths.
Thus, as seen in Figure II.6, bottom row, upon moving coupling strengths to Sdyn along the most
allodynia-sensitive direction (dashed curves), there is no significant change in the firing activity of
I2. However, I1 activity decreases towards 0, disinhibiting E1, and causing E1 to fire strongly in
response to typical Aβ input. As a result E2 becomes over-excited and fires as well, thus producing
allodynia.

Parameter sets belonging to cluster 4 (cyan) are characterized by having considerably larger
values of ĝI1E1 and ĝAβE1 values compared to mean APS values (Figure II.6.a). Cluster 4 is also
significantly further from the allodynia surface than the remainder of the APS (Figure II.6).

The most efficient allodynia mechanism for cluster 4 mainly involves disrupting E-I balance
in the I1 - E1 portion of the circuit, with only small changes in the coupling strengths in the I2 -
E2 portion (Figure II.6.c)). Indeed, the most allodynia-vulnerable direction for points in cluster 4
primarily involves decreasing ĝI1E1 and increasing ĝAβE1, thereby simultaneously disinhibiting and
over-exciting the E1 population. This is reflected in Figure II.6.d, bottom row, showing that with
parameter values on the allodynia surface (dashed curves), the E1 population fires in response to
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normal Aβ input, leading to E2 population firing as well. However, the E1 population itself does
not decrease due to a reduction in inhibitory activity of I1, instead, it decreases due to a reduction
in the impact of inhibitory signaling from I1 to E1.

What seems to distinguish circuits corresponding to cluster 4, and circuits corresponding to all
other clusters, for that matter, is the firing-rates of inhibitory populations in response to normal
Aβ signals under control conditions, much as it does for the simple circuit. Indeed, for cluster
1, firing-rates of I2 are about half-their maximum firing-rate of 80 Hz. Because the slope of the
activation function is steepest when firing-rates are at that point in their trajectories, the activity of
I2 is particularly sensitive to the inputs that are rescaled by gAβI2. Hence, the system for cluster
1 circuits is particularly sensitive to changing gAβI2. Indeed, our clustering indicates that upon
minimally altering our parameters to reach Sdyn, it is ĝAβI2 primarily that is altered. A similar
argument explains why cluster 3 is so sensitive to ĝAβI1.

On the other hand, if the activity for I1 and I2 are saturated near their 80 Hz maximums, then
the system will be particularly sensitive to changing either ĝI1E1 or ĝI2E2. Indeed, because these
two coupling strengths re-scale the firing-rates output by I1 and I2, and because the firing-rates are
so high, small changes in firing activity can have a large effect on the system. Thus, cluster 2 is
particularly sensitive to changing ĝI2E2. However, cluster 2 is not so allodynia-sensitive to changing
ĝI1E1 because the resulting changes on the system could only affect the firing-activity of E2 by
acting through E1 and overcoming the inhibition on I1, which isn’t feasible because E2 itself isn’t
coupled very strongly with Aβ signaling for cluster 2. On the other hand, gAβE1 is large for cluster
4, hence why cluster 4 is so allodynia-sensitive to changes in ĝI1E1 (while simultaneously changing
ĝAβE1, to give the circuit an extra boost).

Nevertheless, the majority of circuits in the APS are most vulnerable to allodynia by altering the
E-I balance on the I2−E2 portion of the circuit. We believe this is because any changes regarding
the activity of the I1-E1 portion of the circuit can only affect E2 by acting through the effect of
E1. Also considering that the distribution of ĝAβE1 is skewed towards 0, it seems to be the case
that in the majority of the APS, E1 is not sufficiently excited by Aβ firing to overcome the direct
inhibition of E2 from I2, even when E1 is disinhibited.
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(a) (b)

Cluster ĝAβI1 ĝI1E1 ĝAβE1 ĝE1E2 ĝAβI2 ĝI2E2 ĝAβE2

All 0.2491 0.4495 0.4399 0.5655 0.4645 0.2838 0.2131

1 0.3000 0.3508 0.3122 0.5892 0.1005 0.4970 0.3448

2 0.3063 0.3812 0.3761 0.5678 0.6144 0.1905 0.1641

3 0.0954 0.6674 0.6747 0.5394 0.5311 0.2548 0.1802

4 0.2394 0.5666 0.7349 0.5195 0.4231 0.2925 0.1708

Cluster Rel. Freq. Dist. Mean Dist. SD

All 1 0.3290 0.0601

1 0.2480 0.2872 0.0663

2 0.4860 0.3613 0.0346

3 0.2630 0.3076 0.0572

4 0.0030 0.4196 0.0299

(c) (d)

Cluster ∆ĝAβI1 ∆ĝI1E1 ∆ĝAβE1 ∆ĝE1E2 ∆ĝAβI2 ∆ĝI2E2 ∆ĝAβE2

All −0.0755 −0.0064 0.0270 0.0055 −0.0705 −0.1562 0.1245

1 0 0 0 0 −0.2737 −0.0282 0.0803

2 0 0 0 0 0 −0.2942 0.2097

3 −0.2872 −0.0211 0.0990 0.0205 −0.0100 −0.0232 0.0099

4 −0.0004 −0.2694 0.3165 0.0221 0 −0.0436 0.0311

Figure II.6: Examining the shortest paths to the allodynia surface yields two clusters in the proposed circuit mediating
dynamic allodynia. (a) Violin plots (top) for each coupling strength in the sampled 7-tuples of coupling strengths. Each
set of rows corresponds to a cluster, with the top row corresponding to points in cluster 1, etc. Each black “x” represents
the mean coupling strength across all sampled points in the corresponding cluster. Mean coupling strengths (bottom) are
shown for each cluster. (b) The probability distribution (top) of the shortest distances to the allodynia surface (overall
profile). Contributions to the area under the curve from each cluster are shaded according to cluster. Bottom: Relative
frequencies of each cluster and values of the mean and standard deviation of the distances from sampled points in the
APS to the allodynia surface. (c) A “parallel plot” representation of the shortest paths to the allodynia surface from each
sampled point in the APS. A kine gives the components of the displacement vector corresponding to one such shortest
path. Displacements cleanly divide into four clusters: cluster 1 (green), cluster 2 (purple). (d) Firing-rate responses to a
noisy Aβ input signal for each population (columns) and for each cluster (rows). Solid lines correspond to a circuit with
coupling strengths given by the mean clustering strengths for the particular cluster, and dashed lines correspond to the
circuit with coupling strengths given by the corresponding closest point on the allodynia surface. Aβ input frequencies
are chosen to be the smallest possible Aβ that induces allodynia for each cluster.
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2.4 Analysis of the proposed circuit mediating static allodynia

As described in Section 2.1.2, we propose a circuit motif that reflects experimentally identified
layer I-II dorsal horn circuitry involved in mediating static allodynia. Going forward, we refer to the
proposed circuit as the “static circuit”. The static circuit consists of three populations of neurons:
two inhibitory (I1 and I2), and one excitatory (E) population with all three populations receiving
input from Aβ fibers. We assume the excitatory population is responsible for relaying signals
to projection neurons. We allow for the two inhibitory populations to have different underlying
parameters, but for the analysis presented in this chapter, we continue to take all parameters for
inhibitory populations to be the same and as shown in [RS02]. In this way, the circuit is symmetric
in the sense that there is nothing to distinguish the two inhibitory populations from one another.
This symmetry is reflected in the structure of the APS for this circuit, as well as in the ways in
which allowable circuits may be induced to produce allodynia. A schematic of the population is
shown in Figure II.7.a.

We approach modeling and analyzing the circuit analogously as in the previous cases. As before,
we model each population with a firing-rate model, equipped with activation functions and voltage
dynamics as in Section 2.6.1. This time, though, there are 3 populations–I1, I2, and E–to worry
about, and there are 5 coupling strengths–gAβI1, gI1E , gAβI2, gI2E , and gAβE–to worry about. As
we do for both the simple and dynamic circuits, we illustrate these 5 coupling strengths along with
the 3 populations in the circuit schematic.

2.4.1 Conditions on static circuit parameters

Also much as for the simple and dynamic circuits, we impose conditions on the steady-state
voltages of the E, I1, and I2 populations so the circuit displays desired experimentally identified
behaviors. In particular, we again require that all steady-state voltages remain within reasonable
bounds. Unlike in the simple or dynamics circuit, in this circuit we require both of the inhibitory
populations to be active in order to maintain pain inhibition. Thus, under control conditions, typical
Aβ stimuli induce both I1 and I2 to fire, preventing E from firing, and reducing VE below its resting
voltage. However, if the I1 population is ablated, we then presume that the excitatory signaling
from Aβ fibers is strong enough to overcome the remaining inhibition of E from I2 to induce E
firing. Likewise, if I2 is ablated, we expect E to fire. We do not incorporate ablation of both I1 and
I2 in developing our conditions for the static circuit, as that would lead to extreme over-excitation
of E.

Each of these conditions results in an inequality on steady state population voltages, leading to
a system of 10 inequalities. We summarize these inequalities and the corresponding condition on
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steady-state voltages in Table (II.3).

We proceed with the analysis just as we did for the simple and dynamic circuits. See Section
2.6.3.3 for the resulting inequalities and optimization problems for the circuit coupling strengths
derived from the conditions in Table II.3. From this system, we define the APS for the static circuit.
See 2.6.5 for the definition of the allodynia surface Sstat for the static circuit.

Condition Type Condition Steady state voltage inequality–for all fAβ

Control conditions

VI1 upper bound VI1,max ≥ VI1 = gAβI1fAβ + VI1,rest

I1 fires VI1,thr ≤ VI1 = gAβI1fAβ + VI1,rest

VI2 upper bound VI2,max ≥ VI2 = gAβI2fAβ + VI2,rest

I2 fires VI2,thr ≤ VI2 = gAβI2fAβ + VI2,rest

Pain inhibition VE,rest ≥ VE = gAβEfAβ − gI1EfI1 − gI2EfI2 + VE,rest

VE lower bound VE,min ≤ VE = gAβEfAβ − gI1EfI1 − gI2EfI2 + VE,rest

I1 ablation conditions
E fires VE,thr ≤ VE = gAβEfAβ − gI2EfI2 + VE,rest

VE upper bound VE,max ≥ VE = gAβEfAβ − gI2EfI2 + VE,rest

I2 ablation conditions
E fires VE,thr ≤ VE = gAβEfAβ − gI1EfI1 + VE,rest

VE upper bound VE,max ≥ VE = gAβEfAβ − gI1EfI1 + VE,rest

Table II.3: Conditions that the proposed circuit mediating static allodynia must satisfy and the resulting inequalities
on steady-state voltages. Much as for the simple circuit and the proposed circuit mediating dynamic allodynia, we
ensure that the circuit exhibits these behaviors by imposing conditions (middle column) on the circuit. Each condition
is exhibited in either control, I1-ablation, or I2-ablation conditions (left-most column), and is realized as an inequality
(right-most column) on the steady-state voltage of a population.

2.4.2 The allowable parameter space (APS) for the static circuit

As previously, to illustrate the response of circuits in the APS to Aβ input, we choose 20 points
sampled from the APS. We then simulate the corresponding circuit models, taking the Aβ input to
be noisy and to have time-averaged firing-rates fAβ in [10, 20] Hz, across the network on average.
In each simulation (see Figure II.7.b), the firing-rates of the I1 and I2 populations always rise to at
least 25% of the maximum firing-rate, and typically approach the 80 Hz maximum. The resulting
inhibition from I1 and I2 prevents the E population from firing, and cause E’s voltage to drop, as
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we require for pain inhibition. Hence, the sampled sets of coupling strengths lead to the expected
behaviors.

Violin plots (Figure II.7.c) of the distributions of coupling strengths in the allowable parameter
space highlight the symmetry of the static circuit. In particular, the distribution of gAβI1 is very
similar to that of gAβI2. Likewise, the distribution of gI1E is very similar to the distribution of gI2E .

Also notable is that the range of gAβE is largest, about 4 mV/Hz; and excluding outliers, the
ranges of gAβI1, gAβI2, and next largest, both about 2 mV/Hz. The smallest ranges belong to gI1E
and gI2E . This indicates that in a sense, the circuit is least sensitive to changes in gAβI1, gAβI2, and
gAβE , but most sensitive to changes in gI1E and gI2E .

However, from the violin plots, we see that gAβE is far larger than in the simple or dynamic
circuit: it varies between roughly 9 and 13 mV/Hz, whereas for the simple circuit and for the
dynamic circuit, coupling strengths between Aβ fibers and excitatory populations were closer to 5
mV/Hz. In the static circuit, however, gAβE needs to balance out two sources of inhibition under
control conditions, and needs to be large enough to overcome the inhibition from one inhibitory
population as would happen in either of the I1 or I2 ablation scenarios.

Further, as seen in Figure II.7.c and d, there are a few points with values of gAβI1 and gAβI2
much larger than is typical. This indicates that there are long and narrow regions of the APS
with very low-volume. These low volume regions appear for high values of gAβI1 and gAβI2, and
would likely look like tails extending in the positive gAβI1 and positive gAβI2 directions. In the
corresponding circuits for these two tails in the APS, the activity of I1 and I2, respectively, would
be very strong, but because gI1E and gI2E are respectively very small, the impact of signals from
the I population on the E population is likely relatively weak.

We also see from the violin plots that values of gAβI1, gAβI2, gI1E , and gI2E are strongly
bimodal. This bimodality is reflected in the two separate trends seen in the parallel plot (Figure
II.5.d) representing the sampled sets of coupling strengths in normalized parameter space. In
one trend, ĝI1E is large (blacker lines), whereas the other trend (redder lines) involves larger ĝI2E
values, further reflecting symmetry in the circuit. From the parallel plot, we can also begin to see
a number of correlations between coupling strengths. For instance, when ĝAβI1 is large, ĝI1E is
small. Further, as symmetry demands, when ĝAβI2 is large, ĝI2E is small. Additionally, when ĝI1E
is large, ĝI2E is small. These correlations are confirmed by calculating the Pearson’s correlation
coefficients between each coupling strength (Figure II.5.e). Generally these correlations reflect an
E-I balance manifested in the previous circuits as a balance of Aβ and inhibitory input to excitatory
populations. However, for the static circuit, we see additional balancing between I1 and I2, where
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if the inhibition from I1 is large, then the inhibition from I2 is small.

(a) (b)

(c) (d) (e)

Figure II.7: The allowable parameter space for the proposed circuit mediating static allodynia. (a) A schematic of the
static circuit. I1 and I2 represent the populations of inhibitory neurons and E represents the population of excitatory
neurons. Aβ represents inputs to the circuit relayed from the periphery along Aβ fibers. (b) The mean (black lines)
and range (shaded green areas) for the firing rate (top left) and voltage (top right) of the E population, as well as for
the firing rates of the I1 (bottom left) and I2 (bottom right) populations calculated from 20 sampled sets of coupling
strengths each with a different random Aβ input stimulus. (c) Violin plots for each coupling strength across all sampled
sets of coupling strengths. The thickness of the violin near values indicates how likely the corresponding coupling
strength is to be near the values. An “x” and a vertical bar respectively represent the mean and the values within one
standard deviation of the mean for the corresponding coupling strength. (d) A “parallel plot” representation of the
sampled sets of normalized coupling strengths. A line gives the values of each coupling strength in a sampled set. (e)
Normalized Pearson correlation coefficients between sampled sets of normalized coupling strengths.

2.4.3 Mechanisms of allodynia in the static circuit

To identify sensitivities of the circuits to allodynia, we define the allodynia surface Sstat as the set
of points in the (gAβI1, gAβI2, gI1E, gI2E, gAβE)-space that satisfy the following (see Section 2.6.5):
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Sstat :=

{
(gAβI1, ..., gAβE) : gAβE = min

fAβ∈[10,20]

VE,thr − VE,rest + gI1EfI1(fAβ) + gI2EfI2(fAβ)

fAβ

}
.

We then compute the shortest distance from each sampled point in the APS to Sstat.

Clustering based on the shortest path to the allodynia surface yields 4 clusters

Density-based scanning indicates that the APS for the static circuit divides into four clusters
based on the shortest paths from APS points to the allodynia surface: cluster 1 (green), cluster 2
(blue), cluster 3 (cyan), and cluster 4 (gray) (Figure II.8).

Cluster 1 (green) is characterized by ĝAβI1 values larger than the APS mean but ĝI1E smaller
than the APS mean (Figure II.8.a, top panel). Conversely, ĝAβI2 values are smaller than the mean
and ĝI2E values are larger. This reflects that circuits in cluster 1 have a highly active I1 population
whose effect on E is weak, and a weakly active I2 population whose effect on E is strong.

Generally portions of the APS corresponding to cluster 1 are further from the allodynia surface
than typical (Figure II.8.b). To actually reach the allodynia surface most efficiently, cluster 1 circuits
primarily need to decrease their ĝAβI2 values (Figure II.8.c). Simultaneously, but to a lesser extent,
they also need to decrease their ĝI2E values, increase their ĝAβE values, and decrease their ĝI1E
values. This makes sense, because the firing activity of I2 is high but not saturated (Figure II.8.c),
and the impact gI2E of signaling from I2 on E is very strong. Thus, mainly decreasing gAβI2
decreases I2 activity. The reduction in inhibitory signaling coming out of I2 is then magnified by
the high gI2E values, leading to even less inhibitory control of E.

Inducing allodynia by primarily reducing gAβI2, and moreover, by not reducing gAβI1 at all,
makes sense because it is inefficient to decrease the ĝAβI1 values (Figure II.8.c). Indeed, as seen in
Figure II.8.d, in a typical circuit in cluster 1, the firing-rate of I1 is saturated near it’s maximum.
Hence, fI1 is insensitive to changes in the inputs to I1, and thus is also insensitive to changes in
ĝAβI1. Indeed, cluster 1 is most easily dysregulated by disinhibition of the I2 population.

Due to the symmetry between the I1 and I2 halves of the static circuit, cluster 2 (blue) is similar
to cluster 1 except with the characteristics of I1 and I2 reversed. Namely cluster 2 is characterized
by large ĝAβI2 values but small ĝI2E values (Figure II.8.a, 2nd panel from the top) as well as small
ĝAβI1 values and large ĝI1E values. Cluster 2 is similarly as distant from the allodynia surface
as is cluster 1 (Figure II.8.b), and allodynia occurs primarily by I1 disinhibition rather than I2

disinhibition (Figure II.8.c and d).

Whereas cluster 1 and cluster 2 both exhibit considerable asymmetry across the two halves of
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the static circuit, cluster 3 (cyan) is symmetric across the two halves of the circuit. Indeed, in cluster
3, the coupling strength distributions for ĝAβI1 and its I2-population analog ĝAβI2 are very similar
(Figure II.8.a, third panel). Likewise, the distributions for values of ĝI1E and ĝI2E are very similar.
Further, the means of coupling strengths for cluster 3 are similar to the APS mean values, with
slightly less bimodal distributions than for the APS as a whole.

Unlike clusters 1 and 2, portions of the APS in cluster 3 are close to the allodynia surface (Figure
II.8.b). In fact, so much of cluster 3 is so much closer to the allodynia surface than are clusters 1
and 2, that cluster 3 causes the full distribution of distances from the allowable parameter space to
the allodynia surface to be bimodal.

To actually induce allodynia in cluster 3 circuits, it is most efficient to decrease ĝAβI1 and ĝAβI2
by roughly equal amounts and to increase ĝAβE (Figure II.8.c). As shown in Figure II.8.d, (third
row from the top), for typical circuits in cluster 3, I1 and I2 firing-rates are both around halfway
between their minimum and maximum values and are thus very sensitive to changing the inputs
scaled by ĝAβI1 and ĝAβI2. Thus E firing occurs due to decreased firing in both the I1 and I2

populations.

Cluster 4 (gray) is likewise symmetric in its distributions of coupling strengths across the two
halves of the static circuit, and has mean coupling strengths typical of the overall parameter space.
However, unlike cluster 3, the distributions of coupling strengths are more bimodal than for the
APS as a whole. This is reflected in the violin plots in Figure II.8.a (bottom panel) showing that the
distributions of ĝAβI1 and ĝAβI2 vanish near their mean values. This suggests that cluster 4 has at
least two spatially disconnected components, which can be confirmed by the parallel plot displayed
in Figure A.3 shown in the supplementary material (Appendix A). In fact, within any one of these
two disconnected components, particular cluster 4 circuits are asymmetric across the two halves of
the static circuit. Nevertheless, allodynia is induced for all circuits in cluster 4 by altering coupling
strengths in almost exactly the same way, thereby underscoring the differences between clustering
in space versus clustering according to the “most sensitive direction”.
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(a)

Cluster ĝAβI1 ĝI1E ĝAβE ĝI2E ĝAβI2

All 0.1568 0.4832 0.4300 0.4411 0.1660

1 0.2863 0.2641 0.4560 0.7138 0.0563

2 0.0534 0.7359 0.4847 0.2486 0.2873

3 0.1455 0.4687 0.3949 0.4079 0.1596

4 0.1675 0.4438 0.4142 0.4179 0.1765

(b)

Cluster Rel. Freq. Mean Dist. Standard Dev. Dist.

All 1 0.1609 0.0370

1 0.2280 0.1980 0.0192

2 0.2310 0.1887 0.0192

3 0.5180 0.1294 0.0138

4 0.0230 0.2228 0.0087

(c) (d)

Cluster ∆ĝAβI1 ∆ĝI1E ∆ĝAβE ∆ĝI2E ∆ĝAβI2

All −0.0891 −0.0236 0.0272 −0.0248 −0.0899

1 −0.0042 −0.0511 0.0353 −0.0160 −0.1958

2 −0.1812 −0.0143 0.0339 −0.0518 −0.0057

3 −0.0948 −0.0156 0.0216 −0.0178 −0.0917

4 −0.0067 −0.1340 0.1253 −0.1339 −0.0079

Figure II.8: Examining the shortest paths to the allodynia surface yields four clusters in the proposed circuit mediating
static allodynia. (a) Violin plots for each coupling strength in the sampled 5-tuples of coupling strengths. Each set of
rows corresponds to a cluster, with the top row corresponding to points in cluster 1, etc. Each black “x” represents the
mean coupling strength for all sampled points in the corresponding cluster. (b) The probability distribution (top) of the
shortest distances to the allodynia surface (overall profile). Contributions to the area under the curve from each cluster
are shaded according to cluster. Relative frequencies of the clusters (bottom), and the mean and standard deviation
of the distances from sampled points in the APS to the allodynia surface. (c) A “parallel plot” (top) representation of
the shortest paths to the allodynia surface from each sampled point from the APS. A line gives the components of the
displacement vector corresponding to one such shortest path. Displacements cleanly divide into four clusters: cluster 1
(green), cluster 2 (blue), cluster 3 (cyan), and cluster 4 (gray). Mean displacements (bottom) are shown for each cluster.
(d) Firing-rate responses to a noisy Aβ input signal for each population (columns) and for each cluster (rows). Solid
lines correspond to a circuit with coupling strengths given by the mean clustering strengths for the particular cluster
(except for cluster 4, which is spatially disjoint, where we use a representative sampled set of clustering strengths), and
dashed lines correspond to the circuit with coupling strengths given by the corresponding closest point on the allodynia
surface. Aβ input frequencies are chosen to be the smallest possible Aβ that induces allodynia for each cluster.
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Indeed, all circuits in cluster 4 are considerably further from the allodynia surface–0.22–than
is typical of the allowable parameter space (Figure II.8.b). To actually induce allodynia in cluster
4 circuits, it is most efficient to decrease ĝI1E and ĝI2E , and simultaneously increase ĝAβE , all in
roughly equal amounts (Figure II.8.c). As shown in Figure II.8.d, (bottom panel), a typical circuit
in cluster 4 has inhibitory populations saturated near the maximum firing-rates. Thus, decreasing
ĝI1E and ĝI2E by just a little greatly decreases the firing-rate signal relayed by the two inhibitory
populations, whereas decreasing decreasing ĝAβI1 and ĝAβI2 has little effect on those firing-rates.
Thus, with a fairly large decrease in the effect of inhibition from I1 and I2 on E, and with a fairly
large increase in ĝAβE , (but with no change in ĝAβI1 and ĝAβI2), the excitatory population relays
pain-inducing signals towards the brain in response to typically innocuous Aβ stimuli, thereby
producing allodynia.

Further, again because the majority of APS points belong to cluster 3, the static circuits as a
whole are most sensitive to breakage by disinhibition, where the two inhibitory populations are less
activated by innocuous Aβ stimuli. As the remainder of the APS largely lies in equal proportions
in cluster 1 and cluster 2, another likely mechanism for allodynia is through disinhibition caused
by only one of the inhibitory populations becoming less activated by innocuous stimuli. Thus, the
static circuit is most sensitive to breakage by disabling the inhibitory control on E cells, by making
either one or both of the two inhibitory populations less active under typical innocuous Aβ stimuli.

2.5 Discussion, summary and takeaways

In this work, we construct a methodology for conducting parameter sensitivity analyses on small
neural population ircuits. The methodology involves the following steps:

1. Translating normal and pathological experimental behaviors that the circuits should replicate
into analytical conditions that model variables must satisfy;

2. Re-framing these conditions into systems of inequalities and optimization problems that the
parameters of interest must satisfy. In our work, we focused on the parameters governing the
coupling strengths between populations. These analytically determined conditions describe
distinct regions of parameter space in which the corresponding circuits display normal
behaviors (the APS) and above which display pathological behavior (above the allodynia
surface).

3. Determine the most likely mechanisms that induce the pathological condition, in our case
allodynia, by finding the shortest path from each parameter set in the APS to the surface at
the boundary of the pathological region
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We apply this analysis to pain-processing circuits in layer I-II of the dorsal horn to identify different
likely mechanisms for allodynia.

Biological interpretation of our results

Our results indicate that under normal conditions, all three of the circuits we investigate – the
simple “gate control” circuit, and the circuits mediating dynamic and static allodynia – exhibit
E-I balance. In such a balance, direct excitatory signaling from Aβ fibers towards pain-relaying
excitatory populations is balanced by inhibition from inhibitory populations.

Each circuit motif shows E-I balance in different ways

In the simple circuit, when the impact of excitatory Aβ signals on the pain-relaying population,
E, is large, generally the impact of inhibitory signaling from I on E is large, as well. This is shown
by a strong positive correlation between the coupling strengths gAβE and gAβI .

For the dynamic circuit, we see E-I balance in a similar form. However, the dynamic circuit
consists of two subcircuits–one subcircuit which consists of the pain-relaying E2 population and
the I2 population which directly inhibits E2, and a second subcircuit which consists of I1 and
E1 coupled together to form a simple circuit. As a result, E-I balance occurs in both the E2-I2

and the E1-I1 subcircuits. Namely, when the impact of excitatory Aβ signals on the E1 and E2

populations are large, generally so are the impacts of direct inhibitory signaling from I2 on E2 and
from I1 on E1.

For the static circuit, E-I balance is obtained similarly. Indeed, under normal conditions, strong
inhibitory signaling from either of the two inhibitory populations (I1 and I2) to the excitatory
population (E) is balanced by strong excitation from Aβ fibers to E. However, because there are
two inhibitory populations simultaneously signaling E, the Aβ to E excitatory signaling needs to
be stronger than in either the simple or the dynamic circuit, so as to balance the extra inhibition.

Disruption of E-I balance produces allodynia

Our results indicate that allodynia is induced by disrupting these E-I balance states. Further,
the particular ways in which the E-I balance is most efficiently disrupted in these circuits to create
allodynia varies within and across circuit motifs. Such variations in pathological disruptions of
E-I balance are indicated by clustering of the shortest paths from the allowable parameter space in
which a circuit functions properly to the boundary of the pathological region, namely the allodynia
surface.
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Indeed, we see two different trends in the means of E-I disruption by which circuits are most
vulnerable to producing allodynia. One trend involves reducing the impact of inhibitory signaling
on excitatory populations while simultaneously over-exciting them. In this case, E-I balance is
disrupted by excitatory populations “escaping” from inhibitory control. The other trend involves
reducing the activity of inhibitory populations as well as over-exciting excitatory populations. In
this case the disruption of E-I balance occurs due to excitatory populations being “released” from
inhibitory control.

In particular, the over-excitation can be caused from an increased impact of signaling from Aβ

fibers on the excitatory population. Such over-excitation could arise from sprouting of synapses
[WSC92], or upregulating the neurotransmitters corresponding to the synaptic inputs, for example
(see [San09]). Reducing the impact of inhibitory signaling on the excitatory population, on the
other hand, could be caused by loss of synapses from the inhibitory to the excitatory population
[PPF+15], reduced neurotransmitter output from inhibitory cell populations [MKK+02], dysregula-
tion of the post-synaptic effects of inhibitory neurotransmission (due to chloride ion concentration
dysregulation) [Wes22], or even loss of inhibitory cells [MKK+02], although there is some debate
about the relevance of losing inhibitory cells to allodynia [San09].

E-I balance disruptions through escape from inhibitory control occur for all three circuits.
For simple circuits, the most likely disruption is manifested by simultaneously reducing ĝIE and
increasing ĝAβE . About half of all simple circuits are most vulnerable towards producing allodynia
via the escape disruption. Such circuits generally have larger ĝAβI values, causing the firing activity
of inhibitory populations to saturate in response to typical Aβ signaling, making them particularly
sensitive to loss of inhibitory gating of the E population by reducing the impact of inhibitory
signaling from I to E.

For dynamic circuits, such disruptions are manifested either in the I2-E2 subcircuit by simulta-
neously reducing the impact of inhibitory signaling on the pain-relaying E2 population (decreasing
gI2E2) and increasing the impact of Aβ signaling on E2 (increasing gAβE2).The I1-E1 subcircuit
can be similarly disrupted by increasing the impact of Aβ signaling on E1 (increasing gAβE1) and
decreasing the efficacy of inhibitory input to E1 (decreasing gI1E1). For the plurality of circuits
(about 49%), the most likely disruption is in the I2-E2 subcircuit, whereas or only 0.3% of circuits
would the disruption be due to escape from inhibitory control in the I1-E1 subcircuit.

For static circuits, E-I balance disruption due to escape from inhibition can be manifested by
reducing ĝAβE and in approximately equal proportions decreasing the impact of I1 on E (decreasing
gI1E) and decreasing the impact of I2 on E (decreasing gI2E). However, only about 5% of static
circuits are most vulnerable to such a disruption.
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In the second trend, where E-I balance occurs due to “release from inhibitory control”, circuits
are most vulnerable to allodynia by reducing the activity of inhibitory populations themselves and
simultaneously over-exciting an excitatory population. Such reduction of activity of inhibitory
populations would likely arise by pruning of Aβ - I synapses, downregulation of synaptic signaling
on the I cells, or even reduced neurotransmitter output in synaptic clefts in Aβ - I synapses.

Such a disruption in E-I balance also occurs mainly in all circuit types, and generally requires
weaker excitation of inhibitory populations from Aβ signals so that inhibitory firing activity doesn’t
saturate. For the simple circuit, such a disruption is manifested primarily by reducing ĝAβI and
simultaneously but to a lesser extent increasing ĝAβE , (and to an even lesser extent decreasing ĝIE).

For static circuits, such a disruption is manifested in several different ways. For instance, in
cluster 2 of static circuits, the disruption happens by primarily decreasing the impact ofAβ signaling
on the I1 inhibitory population (by decreasing gAβI1), whereas for cluster 1, the disruption happens
primarily by decreasing the strength of the impact of Aβ fibers on I2 (by decreasing gAβI2). For
yet another cluster (cluster 3), such disruption happens by simultaneously and in roughly equal
proportions decreasing the strength of impact of Aβ on both I1 and I2. Unsurprisingly, for the
cluster where we produce such disruption by decreasing gAβI1, gAβI1 is only moderately large, so
that the corresponding activation function is near its steepest value (where the firing-rate is about
half of its maximum), making the circuit quite sensitive to changing gAβI1. Similarly, for the cluster
where such disruption happens by decreasing gAβI2, gAβI2 is only moderately large, whereas in the
third cluster, both gAβI1 and gAβI2 are moderately large.

Hence, we see indeed that the means by which circuits are most sensitive to producing allodynia
varies both according to circuit motif and within the allowable parameter space for a specific motif.
For instance, all three circuit motifs–simple, dynamic, and static–have properly behaving circuits
which are most sensitive to allodynia via “escape from inhibitory control” and others most sensitive
to allodynia via “release from inhibitory control”. Hence, there is indeed variation with each motif.
On the other hand, disrupted E-I balance due to “release from inhibitory control”, for example,
can occur in static circuits by simultaneous reducing the activity of two inhibitory populations (I1

and I2), whereas in the dynamic circuit, “release from inhibitory control” involves reducing the
activity from predominantly one inhibitory population at a time. Thus, there is indeed variation
across circuit motifs.

While our analysis has centered around the minimial coupling strength changes that result in
allodynia, it is important to remember that allodynia can be induced by other, much more disruptive
mechanisms. For instance, in all three circuits, it is possible to induce allodynia by sufficiently
increasing the impact of Aβ signaling, alone, on the excitatory population that relays pain-inducing
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signals towards the brain so that it overcomes inhibitory control and fires in response to innocuous
stimuli. Additionally, allodynia can be induced by sufficiently decreasing the impact of inhibitory
input on the pain-relaying excitatory population. However, as larger magnitude changes would be
required in these scenarios, it may be presumed that they are less likely to occur.

Limitations

While our work identifies how E-I balance may be disrupted so as to produce allodynia, and
suggests underlying biological mechanisms by which such disruptions occur, our work does not
specifically identify such biological mechanisms. For instance, our work suggests that to most
efficiently produce allodynia, the firing activity of inhibitory neurons in the static allodynia circuit
typically decreases, and thus that the impact of Aβ signaling on inhibitory neurons decreases. This
in turn suggests that the effect of the neurotransmitters released at the corresponding synapses could
be downregulated, that the number of Aβ-inhibitory interneuron synapses has decreased, or that the
amount of neurotransmitter released at Aβ has gone down, for instance. However, this does not
specify which of such specific biological mechanisms has occurred.

Further, while the work we have conducted focuses on Aβ-fibers, it is possible to incorporate
the pain-inducing signals from C fibers into our model. Upon doing so, and upon incorporating
slowly-varying magnesium currents driven by NMDA released by the C-fibers as in [CPHB19], the
model reproduces wind-up and shows reduced C-fiber-induced firing activity on the pain-relaying
excitatory population upon receiving Aβ signals, further confirming that the model is realistic.

Possible applications of the study outside of pain-processing

The sensitivity analysis methodology that we have presented in this paper doesn’t only apply
to pain-processing circuit in the spinal cord dorsal horn, although we do have follow through
studies in mind related to understanding how spinal cord stimulation can relieve chronic pain (see
Section 5.1). Indeed, the methodology can be used to study any small system of firing-rate models.
Although, because implementing the methodology can be somewhat computationally intensive, the
methodology may be primarily useful for studying small rather than larger systems of firing-rate
models.

Namely, the methodology can be seen to generalize beyond systems of firing-rate model by
thinking of circuits of firing-rate models instead as a network. Then, populations of neurons become
“nodes” in the network, and coupling strengths become “edge weights”. Each node would then
linearly sum weighted inputs from other nodes, and would in turn provide signals to other nodes.
In particular, each node would be equipped with an activation function, which applies a nonlinear
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transform, such as the sigmoidal frequency-voltage relations used in this paper or such as the variety
of activation functions, e.g. sigmoids, hyperbolic tangent, and ReLU [GBB11] commonly used in
today’s artificial neural networks [ESYF+20, AZH+21, CCKC+20].

Our methodology would then be useful for investigating “state changes”, such as when the inputs
for a particular node exceed a certain threshold (which e.g. would cause allodynia). In particular,
our methodology would provide a means to quantify the sensitivity of the network towards changing
states. Our methodology would further break the space of edge weights into regions, according to
the specific changes in edge weights which most efficiently induce the network to reach the target
state. As stated, our methodology is particularly applicable to feedforward networks, as this would
allow our sampling algorithm to be applied.

2.6 Methods

2.6.1 Population firing rate model

For our models of layer I-II dorsal horn neuronal circuits, we implement a well-established
firing rate model formalism that models the average membrane voltage and average firing rates
of neuronal populations2 (see e.g. [Fre75] or the Phillips-Robinson model [PR07]). The efficacy
of synaptic coupling between populations is modeled as proportional to pre-synaptic population
firing rates. Let the populations in the circuit be labeled as x1, x2, ..., xn. Strengths of synaptic
coupling between these populations are given by the parameters gxixj , where gxixj < 0 is equivalent
to population xi inhibiting population xj and likewise gxixj > 0 is equivalent to population xi
exciting population xj . In our circuits, populations also receive external input signals finput within
some normal range, finput ∈ [finput,l, finput,u].

Average firing rates fxi are computed from average voltage, Vxi with a sigmoidal activation
function of the form:

fxi(Vxi) = 0.5maxi

(
1 + tanh

(
Vxi − αi

βi

))
, (II.2)

where maxi is the maximum firing rate of the population, βi is the half-activation voltage and
αi governs the slope of the population’s firing-rate response to voltage changes. We match these

2This, in fact, is effectively the Jansen-Rit model [JR95], where instead of using an α function (see Section 1.4.5) to
model the response of a population of neurons to presynaptic signaling, we use an exponential function of the form

h(t) =

{
1
τ e
−t/τ t ≥ 0

0 t < 0
(exponential response function),

where just as for the α function, τ is a time constant. τ governs the rate at which the response decays. h can be used in
place of [Fre75] or as an approximation to [ZVvPTH14] an α function.
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parameters to experimental measurements of frequency-voltage relationships for dorsal horn neurons
as described in Section 2.6.2. We expect that in the absence of inputs, Vxi remains at a rest value
Vi,rest. In response to synaptic inputs from other populations, Vxi deviates from its rest value
according to the following differential equation3:

dVxi
dt

=
inputs− Vxi + Vi,rest

τi
.

where the inputs are the output firing-rates of populations pre-synaptic to xi weighted by the
corresponding coupling strengths as well as external input:

inputs = gy1xify1 + gy2xify2 + ...+ finput.

We thus expect that in the presence of steady inputs, Vxi approaches a value equal to the net input
signal above its resting voltage. The time constant τi governs how quickly Vx moves towards its
steady state value given by

Vxi = inputs + Vi,rest (steady state)

Table II.4 summarizes the model equations for each circuit we analyze.

3This equation is analogous to the equation for change in voltage from the Jansen-Rit model [JR95], except where
we have replaced the α-function response with the exponential function h. Indeed, using the exponential function, the
convolution integral describing the average voltage V (t) due to signaling from inputs to the neuron,

∆V (t) =

∫ t

0

h(t− t′) · inputs(t′)dt′

is the solution, (as seen via Laplace transforms), to the following ordinary differential equation:

(∆V )′(t) = [inputs−∆V (t)] /τ

Re-writing the differential equation back in terms of V (t), and we obtain

V ′(t) = [inputs− V + Vrest] /τ,

as desired.
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Circuit Motif Population Equation

Simple

circuit

I dVI
dt =

(gAβIfAβ+VI,rest)−VI
τI

E dVE
dt =

(gAβEfAβ−gIEfI(VI)+VI,rest)−VE
τE

Dynamic

Circuit

I1 dVI1
dt =

(gAβI1fAβ+VI1,rest)−VI1
τI

E1 dVE1
dt =

(gAβE1fAβ−gI1E1fI1(VI1)+VE1,rest)−VE1

τE

I2 dVI2
dt =

(gAβI2fAβ+VI2,rest)−VI2
τI

E2 dVE2
dt =

(gAβE2fAβ+gE1E2fE2−gI2E2fI2+VE2,rest)−VE2

τE

Static

Circuit

I1 dVI1
dt =

(gAβI1fAβ+VI1,rest)−VI1
τI

I2 dVI2
dt =

(gAβI2fAβ+VI2,rest)−VI2
τI

E dVE
dt =

(gAβEfAβ−gI1EfI1−gI2EfI2+VE,rest)−VE
τE

Table II.4: Model equations for each circuit. The model equations consist of a system of ordinary differential equations
specifying how the voltages of populations of neurons evolve over time. Thus, for the simple circuit, the system contains
two equations–one for the I population, and the other for the E population. Likewise, for the dynamic circuit, the
system contains four differential equations, and for the static circuit, the system contains 3 differential equations.

2.6.2 Parameters of neuronal population models

We choose parameters for the activation functions of excitatory and inhibitory populations
based on the experimental measurements of membrane properties and firing behavior in rat dorsal
horn neurons reported in Ruscheweyh et al. in [RS02]. In our circuits, we assume all excitatory
populations have the same parameters, and assume the same for inhibitory populations. We assume
that average resting voltages VI,rest and VE,rest are approximately the values reported in [RS02]

VI,rest = VE,rest = −60 mV.

Maximum firing rates of excitatory and inhibitory populations are set to

maxe = 50 Hz

maxi = 80 Hz

based on [MSH+22].

We use the frequency-current relations and current-voltage relations reported in [RS02] to
extract frequency-voltage relations so as to fit firing rate activation functions given in Equation
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II.2. Using Matlab’s curve-fitting functionality, we obtain the values of βi and αi (i = E, I) for
excitatory and inhibitory populations as shown in the Table (II.5).

Maximum and minimum voltages are set to 12αi mV above and below, respectively, the half-
activation voltage value βi. The voltage thresholds for firing are defined as βi − αi. This ensures
that these properties are defined similarly in both populations.

Population type Parameter category Parameter name Parameter symbol Parameter value

I

populations

Activation
function

parameter

flatness αI 9.3 mV−1

half-activation βI −30 mV

Max firing rate maxI 80 Hz

Voltage cutoff

Min voltage VI,min βI − 12αI mV

Resting voltage VI,rest −60 mV

Firing threshold VI,thr βI − αI mV

Max voltage VI,max βI + 12αI mV

ODE specific parameters Time constant τI 0.02 s

E

populations

Activation
function

parameter

flatness αE 7.9 mV−1

half-activation βE −17 mV

Max firing rate maxE 50 Hz

Voltage cutoff

Min voltage VE,min βE − 12αE mV

Resting voltage VE,rest −60 mV

Firing threshold VE,thr βE − αE mV

Max voltage VE,max βE + 12αE mV

ODE specific parameters Time constant τE 0.01 s

Table II.5: Model parameter values for each circuit. We divide parameters for the type of population (left column)
they describe into 3 categories (2nd leftmost column): those that pertain to activation functions, those that give voltage
cutoffs, and those that specifically concern the model differential equations. We further list the name of the parameter
(middle column) and the symbol (2nd rightmost column) that we use to represent the parameter in the text. Finally we
give the value (rightmost column) of the parameter that we use in simulations. All these parameters are fixed at the
same value throughout the analysis and simulations.

Finally, we choose membrane time constants so they are roughly on the same time-scale as those
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of [ZJG14]. Notably, as long as the time constants τE and τI for E and I populations, respectively,
are both roughly on that time scale, the particular choice of τE and τI has little bearing on the
qualitative behavior of the results. We choose τE = 0.01 seconds and τI = 0.02 seconds.

2.6.3 Defining the allowable parameter space (APS) for the circuits

Our parameter sensitivity analysis method consists of translating normal experimental behaviors
that the circuits should replicate into analytical conditions on model variables, specifically on
average voltages. These conditions are then re-written into systems of inequalities and optimization
problems that coupling strength parameters must satisfy. The parameter sets that satisfy these
systems constitute the allowable parameter space (APS). In this section, we derive these systems for
our model circuits. Full details of the derivation are shown for the simple circuit. For the dynamic
and static circuits, the systems are derived similarly and only some details are given here.

2.6.3.1 Simple circuit

For the simple circuit, it is possible to make considerable progress towards deriving an explicit
definition of the allowable parameter space. As described in Table II.1 in Section 2.2.2, the
conditions on average voltages that ensure that the circuit replicates experimentally appropriate
behaviors are given as follows:

VI,max ≥ gAβIfAβ + VI,rest

VI,thr ≤ gAβIfAβ + VI,rest

VE,rest ≥ gAβEfAβ − gIEfI + VE,rest

VE,min ≤ gAβEfAβ − gIEfI + VE,rest

VE,max ≥ gAβEfAβ + VE,rest

VE,thr ≤ gAβEfAβ + VE,rest

(II.3)

The first two inequalities can be rewritten to yield bounds on gAβI :

VI,thr − VI,rest
fAβ

≤ gAβI ≤
VI,max − VI,rest

fAβ
.

However, as these conditions must hold for all fAβ ∈ [fAβ,min, fAβ,max] Hz (considered to be
[10, 20] Hz), we need that

max
fAβ

VI,thr − VI,rest
fAβ

≤ gAβI ≤ min
fAβ

VI,max − VI,rest
fAβ

,
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which can be re-written as

VI,thr − VI,rest
fAβ,min

≤ gAβI ≤
VI,max − VI,rest

fAβ,max
.

Likewise, the last two inequalities from the set in Equation II.3 yield analogous bounds on gAβE:

VE,thr − VE,rest
fAβ,min

≤ gAβE ≤
VE,max − VE,rest

fAβ,max
.

The middle two inequalities can similarly be rewritten so they give bounds on gAβE in terms of
fI and gIE:

max
fAβ

gIEfI − (VE,rest − VE,min)

fAβ
≤ gAβE ≤ min

fAβ

gIEfI
fAβ

. (II.4)

We summarize the resulting system of inequalities in Table II.6. Notably, writing the inequalities as
we do in the table induces a hierarchy on the inequalities, where the E inequalities depend on the
solution to the I inequalities, and are thus higher in the hierarchy. This will prove helpful when
sampling from the allowable parameter space.

Population Condition Inequalities

I Upper bound (UB) + fires VI,thr−VI,rest
fAβ,min

≤ gAβI ≤ VI,max−VI,rest
fAβ,max

E
UB + fires (I1 abl.) VE,thr−VE,rest

fAβ,min
≤ gAβE ≤ VE,max−VE,rest

fAβ,max

LB + pain inhibition maxfAβ
gIEfI−(VE,rest−VE,min)

fAβ
≤ gAβE ≤ minfAβ

gIEfI
fAβ

Table II.6: Inequalities expressed as upper and lower bounds on coupling strengths define the allowable parameter
space for the simple circuit. These inequalities are obtained by algebraically manipulating the inequalities on the
voltages of various populations from (Table II.1) that define the APS for the simple circuit so that the inequalities are
written explicitly in terms of coupling strengths.

However, because fI is a rescaled tanh function whose inputs depend on both fAβ and gAβI , the
maximization and minimization problems in Equation II.4 are generally difficult to solve explicitly.
Nevertheless, we are able to find the explicit solution to the minimization problem. To do so, note
that both expressions to be optimized in Equation II.4 can be rewritten as:
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gIEmaxIfI + C

fAβ
=
gIE0.5 (1 + tanh ((VI − βI)/αI)) + C

fAβ

=
gIEmaxI0.5 (1 + tanh ((gAβIfAβ − βI)/αI)) + C

fAβ

=
gIEmaxI0.5 (1 + tanh (gAβIfAβ/αI + (VI,rest − βI)/αI)) + C

fAβ

=
gIEmaxI (gAβI/αI) 0.5 (1 + tanh (gAβIfAβ/αI + (VI,rest − βI)/αI)) + C (gAβI/αI)

gAβIfAβ/αI

=
gIEmaxI (gAβI/αI) 0.5 tanh (gAβIfAβ/αI + (VI,rest − βI)/αI) + (C (gAβI/αI) + gIEmaxI (gAβI/αI) 0.5)

gAβIfAβ/αI

=
a tanh (x− b) + c

x
,

where

a = 0.5gIEmaxI (gAβI/αI)

b = −(VI,rest − βI)/αI
c = C (gAβI/αI) + 0.5gIE (αI/gAβI) .

Consequentially, the solutions to the preceding optimization problems occur either at fAβ,min,
fAβ,max, or at one of the critical points given by

0 =
d

dx

[
a tanh (x− b) + c

x

]
. (II.5)

We show in Section 2.7.1 that when C = 0, the solutions of Equation II.5 are given in terms of the
0th, W0, and −1st, W−1 branches of the Lambert-W function:

x0,−1 =
1

2

(
c/a−W0,−1

(
−e1−2b

))
(II.6)

so long as x0 or x−1 ∈ [fAβ,min, fAβ,max] or at x = fAβ,min or x = fAβ,max. We address the
case that C 6= 0, also in Section 2.7.1, by showing how to take advantage of the structure of the
optimization problem to solve it numerically. We also describe an alternative approach to solving
the system that defines the APS or the basic circuit. We do not use such an alternative approach
when conducting our analysis, but it motivates a formula that we do use elsewhere

The alternative approach involves rewriting the middle two inequalities so they give bounds on
gIE in terms of fI and gAβI :

max
fAβ

gAβEfAβ + VE,rest − VE,min
fI

≤ gIE ≤ min
fAβ

gAβEfAβ
fI

(II.7)
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Both of the expressions to be optimized in Equation II.7 can be rewritten as:

gAβEfAβ + VE,rest − VE,min
0.5maxI (1 + tanh((gAβIfAβ + VI,rest − βI)/αI))

=
gAβEαI

0.5maxIgAβI

gAβIfAβ/αI + (VE,rest − VE,min)/(gAβEαI)

1 + tanh((gAβIfAβ + VI,rest − βI)/αI)
,

whose local extrema are shared with the following:

gAβIfAβ/αI + (VE,rest − VE,min)/(gAβEαI)

1 + tanh((gAβIfAβ + VI,rest − βI)/αI)
=

x+ A

1 + tanh(x+B)

Consequentially, the solutions to the preceding optimization problems (Equation II.7) occur either
at fAβ,min, fAβ,max, or at one of the critical points which solves

0 =
d

dx

[
x+ A

1 + tanh(x+B)

]
. (II.8)

where

A = (VE,rest − VE,min)/(gAβEαI)

B = (VI,rest − βI)/αI .

We show in section 2.7.1 that the solution to Equation II.8 is expressed in terms of the principal
branch W0 of the Lambert-W function:

x0 = −1

2

(
1 + 2A+W0

(
e2B−2A−1

))
. (II.9)

We make use of the solution (Equation II.9) to Equation II.8 to make sampling from the static circuit
more computationally efficient.

2.6.3.2 Dynamic circuit

For the dynamic circuit, the inequalities on population voltages needed for the circuit to replicate
experimentally observed behaviors are given in Table II.2 in Section 2.3.1. Following a similar
derivation as for the simple circuit, we can rewrite the conditions as the system of inequalities and
optimization problems for the coupling strengths given in Table II.7.
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Population Condition Inequalities

I1 Fires + upper bound (UB) VI1,rest−VI1,min
fAβ,min

≤ gAβI1 ≤ VI1,max−VI1,rest
fAβ,max

E1
LB + pain inhib (no abl.) maxfAβ

[
gI1E1fI1−(VE1,rest−VE1,min)

fAβ

]
≤ gAβE1 ≤ minfAβ

[
gI1EfI1
fAβ

]
Fires + UB (I1 abl.) VE1,thr−VE1,rest

fAβ,min
≤ gAβE1 ≤ VE1,max−VE1,rest

fAβ,max

I2 Fires + UB VI2,rest−VI2,min
fAβ,min

≤ gAβI2 ≤ VI2,max−VI2,rest
fAβ,max

LB (E1 abl.) + pain inhib (no abl.) maxfAβ

[
gI2E2fI2−(VE2,rest−VE2,min)

fAβ

]
≤ gAβE2 ≤ minfAβ

[
gI2E2fI2−gE1E2fE1

fAβ

]
E2 Fires + UB (I1 abl.) maxfAβ

[
gI2E2fI2−gE1E2fE1,abl+(VE2,thr−VE2,rest)

fAβ

]
≤ gAβE2 ≤ minfAβ

[
gI2E2fI2−gE1E2fE1,abl+(VE2,max−VE,rest)

fAβ

]
Fires + UB (I2 abl.) maxfAβ

[
−gE1E2fE1+(VE2,thr−VE2,rest)

fAβ

]
≤ gAβE2 ≤ minfAβ

[
−gE1E2fE1+(VE2,max−VE2,rest)

fAβ

]

Table II.7: Inequalities expressed as upper and lower bounds on coupling strengths define the allowable parameter
space for the dynamic circuit. These inequalities are obtained by algebraically manipulating the inequalities on the
voltages of various populations from (Table II.2) that define the APS for the dynamic circuit so that the inequalities are
written explicitly in terms of coupling strengths. “abl.” means ablation, and “inhib” means inhibition.

These conditions were found in the same manner as described for the simple circuit. For
instance, the lower bound for gAβE1 on the second line of Table II.7 is arrived at from the condition
that the voltage of the E1 population must not be too hyperpolarized under control conditions. This
is analogous to how we arrive at the lower bound (bottom-most inequality in Table II.6) on gAβE
from the simple circuit from the analogous lower bound on the voltage of E.

Notably, much as for the simple circuit, rewriting conditions in such a way induces a hierarchy
on the sets of conditions. For the dynamic circuit in particular, I1 and I2 conditions are lowest
in the hierarchy, followed by E1 conditions, whereas E2 conditions are highest in the hierarchy.
This hierarchical structure, much as for the simple circuit, proves helpful for sampling from the
allowable parameter space (APS).

Further, lower and upper bounds explicitly on gI1E1 and gI2E2 are absent from the Table.
However, to be able to sample from the APS, we will need to be able to find upper and lower
bounds on such parameters. Nevertheless, upper and lower bounds on gI1E1 are straightforward
to find, because the I1-E1 portion of the dynamic circuit has identical constraints to those of
the simple circuit as described in the preceding subsection. To find upper and lower bounds on
gI2E2 specifically when sampling from the APS, on the other hand, we use a more computationally
intensive approach to find the true upper and lower bounds. Namely, given the parameters for
the I1-E1 portion of the circuit, and given gE1E2, we find the set of gI2E2 values such that the
inequalities in the bottom-most three lines of the the table (Table II.7) have a solution. That is, we
choose gI2E2 so that the upper bounds on gAβE2 appearing in the last three lines of the table (Table
II.7) are indeed larger than each of the lower bounds on gAβE2 also appearing in the last three lines
of the table.
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2.6.3.3 Static circuit

As we do for the simple and dynamic circuits, we can re-write the inequalities that population
voltages in the static circuit must satisfy (Table II.3 in Section 2.4.1) as a system of inequalities and
optimization problems for the coupling strengths to define the APS for the static circuit (Table II.8).
To arrive at this system of inequalities and optimization problems for the coupling strengths, we
proceed exactly as we did to arrive at the analogous systems for the dynamic and simple circuits.

As for the other circuits, rewriting conditions in such a way induces a hierarchy on the sets
of conditions. For the static circuit, I1 and I2 conditions are lowest in the hierarchy, whereas E
conditions are highest in the hierarchy. However, writing the inequalities as we do in the table
(Table II.8) creates computationally difficulties.

One issue with the expressions in the table is that expressions such as

gAβE ≥ max
fAβ

(VE,thr − VE,rest) + gI2EfI2
fAβ

(II.10)

may be reduced to optimization problems of the form presented in Equation II.5 from Section
2.6.3.1:

0 =
d

dx

[
a tanh(x− b) + c

x

]
,

where c 6= 1. However, we are unable to find a closed form solution for the preceding expression
(Section 2.7.1). Such difficulties may be overcome either numerically, as outlined in Section 2.7.1,
or by rewriting the original expression in terms of gI1E , as in Equation II.7:

gI2E ≤ min
fAβ

gAβEfAβ − (VE,thr − VE,rest)
fI2

.

The preceding equation can be reduced to an optimization problem of the form described in Equation
II.8:

0 =
d

dx

[
x+ A

1 + tanh(x+B)

]
,

whose solution is given explicitly by Equation II.9. Because we can explicitly find the solution to
the rewritten version of Equation II.10, we can gain a computational speed-up by using it when
sampling the APS. To take advantage of that to some extent, we rewrite the third and fourth top-most
lines of Table II.8 so they are expressed as inequalities on gI2E . As a result, those equations cease
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Population Condition Inequalities

I1 Fires + upper bound VI1,rest−VI1,min
fAβ,min

≤ gAβI1 ≤ VI1,max−VI1,rest
fAβ,max

I2 Fires + upper bound VI2,rest−VI2,min
fAβ,min

≤ gAβI2 ≤ VI2,max−VI2,rest
fAβ,max

Lower bound + pain inhib (no ablations) maxfAβ

[
gI1EfI1+gI2EfI2−(VE,rest−VE,min)

fAβ

]
≤ gAβE ≤ minfAβ

[
gI1EfI1+gI2EfI2

fAβ

]
E Fires + upper bound (I1 ablation) maxfAβ

[
gI2EfI2+(VE,thr−VE,rest)

fAβ

]
≤ gAβE ≤ minfAβ

[
gI2EfI2+(VE,max−VE,rest)

fAβ

]
Fires + upper bound (I2 ablation) maxfAβ

[
gI1EfI1+(VE,thr−VE,rest)

fAβ

]
≤ gAβE ≤ minfAβ

[
gI1EfI1+(VE,max−VE,rest)

fAβ

]
Table II.8: Inequalities expressed as upper and lower bounds on coupling strengths define the allowable parameter
space for the static circuit. These inequalities are obtained by algebraically manipulating the inequalities on the voltages
of various populations from (Table II.3) that define the APS for the static circuit so that the inequalities are written
explicitly in terms of coupling strengths.

being at the same level in the hierarchy as the inequality from the fifth line, and become highest in
the hierarchy.

However, there is still another computational difficulty to overcome when sampling from the
APS. Indeed, no conditions appearing in Table II.8 nor in the re-written version of Table II.8 as
proposed in the preceding paragraph directly yield explicit bounds on gI1E . Nevertheless, they do
yield implicit bounds. Namely, it is possible to use combinations of conditions to extract upper and
lower bounds on these two coupling strengths.

To find an upper bound on gI1E , we can use the upper bound on E during I1-ablation along with
the E lower bound given no ablations to obtain that

max
fAβ

[
gI1EfI1 + gI2EfI2 − (VE,rest − VE,min)

fAβ

]
≤ gAβE ≤ min

fAβ

[
gI2EfI2 + (VE,max − (VE,rest)

fAβ

]
⇒

max
fAβ

[
gI1EfI1 + gI2EfI2 − (VE,rest − VE,min)

fAβ

]
≤ min

fAβ

[
gI2EfI2 + (VE,max − VE,rest)

fAβ

]
,

which requires in particular that for all fAβ ∈ [fAβ,min, fAβ,max]

gI1EfI1 + gI2EfI2 − (VE,rest − VE,min)

fAβ
≤ gI2EfI2 + (VE,max − VE,rest)

fAβ
⇔

gI1EfI1 + gI2EfI2 − (VE,rest − VE,min) ≤ gI2EfI2 + (VE,max − VE,rest)⇔
gI1EfI1 − (VE,rest − VE,min) ≤ VE,thr − VE,rest ⇔

gI1EfI1 ≤ VE,max − VE,min ⇔
gI1EfI1,max ≤ VE,max − VE,min ⇔

gI1E ≤
VE,max − VE,min

fI1,max
.
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To find a lower bound on gI1E , on the other hand, we can use the E lower bound under I1

ablation along with the pain inhibition condition, i.e. that:

max
fAβ

[
gI2EfI2 + (VE,thr − VE,rest)

fAβ

]
≤ gAβE ≤ min

fAβ

[
gI1EfI1 + gI2EfI2

fAβ

]
⇒

max
fAβ

[
gI2EfI2 + (VE,thr − VE,rest)

fAβ

]
≤ min

fAβ

[
gI1EfI1 + gI2EfI2

fAβ

]
.

The preceding condition requires that for all fAβ ∈ [fAβ,min, fAβ,max],

gI2EfI2 + (VE,thr − VE,rest)
fAβ

≤ gI1EfI1 + gI2EfI2
fAβ

⇔

gI2EfI2 + (VE,thr − VE,rest) ≤ gI1EfI1 + gI2EfI2 ⇔
VE,thr − VE,rest ≤ gI1EfI1 ⇔
VE,thr − VE,rest ≤ gI1EfI1,min ⇔
VE,thr − VE,rest

fI1,min
≤ gI1E.

An analogous procedure produces bounds on gI2E . However, the bounds on gI1E and gI2E from
the preceding procedure are loose. For example, gI1E has to be larger than such a lower bound, but
there might never be a circumstance where gI1E actually nears that lower bound. We can attempt
to find maximally tight bounds on gI1E and gI2E , but doing so proves prohibitively difficult, and
involves finding the zeros of expressions wherein Lambert-W functions appear multiple times.

2.6.4 Sampling from the allowable parameter space (APS)

To obtain statistics about the allowable parameter space (APS), we want to sample from it
uniformly in space. However, because the APS is complicated, high-dimensional, can be non-
convex, and is generally of an unknown shape, it is difficult to sample uniformly. In this section we
describe the algorithm we developed to sample the APS’s for the model circuits. We describe the
algorithm in terms of sampling of a general space in Rn constrained by a set of inequalities that
follow a hierarchical structure.

In particular, we first rewrite the sets of inequalities from Table II.10 as a “simple” set of
inequalities (Table II.11) on the coupling strengths. We describe simple sets of inequalities in the
next subsubsection. From those simple sets of inequalities, we determine a rectangular subspace
of Rn that contains the solution to the inequalities, i.e. the APS. We describe how to find those
subspaces in the 2nd subsubsection. We use the resulting subspace to constrain the search space for
sampling from the APS. We then describe in the third subsubsection the procedure to uniformly
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sample from the APS by using the subspaces.

Simple Sets of Inequalities

Roughly, a simple set of inequalities is one that can be rewritten as a hierarchy in the following
sense. Consider a set of inequalities on points in Rn. We say the set of inequalities is “simple” if
the inequalities induce bounds on coordinates for Rn in the following way:

• a1 ≤ x1 ≤ b1

• L2(x1) ≤ x2 ≤ U2(x1) for x2 ∈ [a2, b2]

• L3(x1, x2) ≤ x3 ≤ U3(x1, x2) for x3 ∈ [a3, b3]

...

• Ln(x1, x2, . . . , xn−1) ≤ xn ≤ Un(x1, x2, . . . , xn−1) for xn ∈ [an, bn]

for some labeling x1, x2, . . . xn of the populations in the circuit, some real numbers a1 ≤ b1, . . . an ≤
bn, and some functionals L1 ≤ U1, . . . , Ln ≤ Un. The xn inequalities would then be the highest
in the hierarchy, because it depends on x1, . . . , xn−1; the xn−1 would be 2nd highest, because it
depends on all coupling strengths lower in the hierarchy; and so on.

We say that if the original inequalities are rewritten in the preceding form, than they are in
“normal form”. We see examples of such hierarchically written systems of inequalities for the
simple, static, and dynamic circuits in Section 2.6.3. For the simple circuit for example, (Table
II.6), gAβI inequalities are lowest in the hierarchy, followed by gIE inequalities, and then by gAβE
inequalities. For each circuit, we show the full hierarchies of inequalities in Table II.9.

Note, however, that for any particular set of simple inequalities, there might exist multiple
normal forms. Further, note that we do not require that given any x1, . . . xj−1 satisfying the first
j − 1 inequalities given above, that Uij(x1, x2, . . . , xj−1) > Ln(x1, x2, . . . , xj−1). Hence, the set of
inequalities given above might not describe the exact solution to the original set of inequalities.
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Circuit Hierarchy of inequalities labeled by coupling strength

Simple gAβI , gIE , gAβE

Dynamic gAβI1, gAβI2, gI1E1, gE1E2, gI2E, gAβE2.

Static gAβI1, gAβI2, gI1E, gI2E, gAβE

Table II.9: The hierarchy of inequalities on each coupling strength for each circuit. We see in Table II.6, Table II.7, and
Table II.8, that the inequalities that define the APS for the simple, dynamic, and static circuits, respectively, may each be
rewritten as a simple set of inequalities on the corresponding coupling strengths. This table shows the resulting hierarchy
of inequalities, where inequalities higher in the hierarchy implicitly depend on the coupling strengths corresponding to
inequalities lower in the hierarchy. Namely, we list the inequalities from lowest to highest in the hierarchy.

Finding a rectangular subspace that contains the APS

If we can write our set of inequalities in the normal form described above, then finding a
rectangular subspace that contains the APS is fairly straightforward. Namely, for a simple set
of inequalities, we can fairly easily identify for each coordinate xi, (which in the context of our
pain-processing circuits would be a coupling strength), the interval of values [xi,min, xi,max] in
which xi lies when ~x is in the APS. The rectangular subspace may then be expressed as a Cartesian
product:

[x1,min, x1,max]× [x2,min, x2,max]× · · · × [xn,min, xn,max]

In particular, to identify the values in which xi lies when ~x is in the APS, we use the simple
set of inequalities to generate random (not necessarily uniform-in-space) samples from the APS as
follows:

• Uniformly at random choose a value of x1 in [a1, b1]

• Given the value of x1, uniformly at random choose a value of x2 ∈ [L2(x1), U2(x1)] if such
an interval exists. If such an interval doesn’t exist, start over.

• Repeat for x3, . . . , xn

For each circuit, we generate at least 1000 samples. For each coupling strength, we take it’s
minimum value as the minimum value across all samples, and its maximum value as the maximum
value across all such samples. This defines a rectangular subspace of Rn that contains the APS.
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Naive sampling is inefficient

We now have the upper and lower bounds on each coupling strengths which specify a rectangular
subspace of Rn which contains the APS. From here, we could now implement the naive strategy,
where we uniformly at random sample a point from the rectangular subspace, check to see if the
point is in the APS, and keep it if it is. However, recall that we wish to normalize the APS so that
we can more easily compare the effects of changing coupling strengths. Thus, before applying the
“naive strategy”, we normalize coupling strengths so the upper bound is 1 and the lower bound is 0,
so that all points in the APS lie in the unit hypercube after being normalized.

After normalizing4, we could now implement the naive strategy. However, the naive sampling
strategy has the potential to be computationally inefficient. Indeed, checking if a point is in the APS
requires computing L1, U1, L2, U2, . . . Ln, Un, which, as discussed in Section 2.7.2, takes O(n2)

to do, where n is the number of dimensions. Further, the point will be in the sample space with
probability given by volume(APS), and thus the number of iterations needed to find a point in the
APS will be 1/volume(APS). Thus, the order of the naive algorithm is O(n2/volume(APS)).

However, O(n2/volume(APS)) is likely very bad. Heuristically, if the average width of the
APS in the each component direction is α for some α ∈ (0, 1), then it is reasonable to expect that
volume(APS) ≈ αn, and the algorithm becomes O(n2/αn). Thus, the naive sampling algorithm
is exponential in n!

More efficient sampling algorithm

Thus, we seek to construct a spatially uniform sampling algorithm whose complexity is indepen-
dent of the volume of the APS. To do so, instead of blindly sampling from the unit hypercube, we
sample from a cover of the normalized5 APS by hyperrectangles that approximates the normalized
APS. In particular, our algorithm takes the following strategy:

1. Define a set of hyperrectangles that contains and approximates the allowable parameter space.

2. Uniformly at random select a hyperrectangle

3. Uniformly at random select a point from the hyperrectangle.
4normalizing is not required to implement the naive strategy. However, the step in the naive algorithm where we

uniformly at random sample points from rectangular space containing the APS is very easy if the rectangular space is
a hypercube. Namely, one can simply choose the x1 coordinate of the point by uniformly sampling from [0, 1], and
choose each other coordinate likewise.

5normlizing is also not required to implement this more efficient sampling algorithm. However, for the pain-
processing circuits presented in this paper, we wish to normalize so that we can more effectively compare the effects
of changing various coupling strengths. Thus, we present this more efficient sampling algorithm specifically after
normalizing the APS
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• If the point is not in the parameter space, discard it

4. Otherwise, keep the point with probability proportional to the volume of the hyperrectangle.

Step (4) ensures that the sample is indeed uniform-in-space. We illustrate the sampling algorithm in
Figure II.9.

Figure II.9: Schematic of the sampling algorithm. Cover the allowable parameter space with hyperrectangles (left).
Then, while the number of sampled points is smaller than the desired number of sampled points, randomly select a
hyperrectangle (2nd from left). If a random number, “rand”, is less than the ratio of the hyperrectangle’s volume to the
maximum volume of such hyperrectangles, keep the hyperrectangle (2nd from right); otherwise, randomly select another
hyperrectangle. If the hyperrectangle is kept, randomly and uniformly-in-space select a point from the hyperrectangle,
and store the point as part of the sample (right). In practice, rather than computing the full set of hyperrectangles that
cover the allowable parameter space in advance, it is more efficient compute individual hyperrectangles as they are
being randomly selected, as described in the implementation described in the main body of the text.

To implement the algorithm, we uniformly select a hyperrectangle from a set of hyperrectangles
that covers the APS via steps (1) - (3) below. Specifically, to randomly select the hyperrectangle, in
steps (1) - (3) we randomly select the subintervals whose Cartesian product defines the hyperrectan-
gle. As a result, we avoid the need to precompute the hyperrectangle-cover of the APS. In step (4),
we randomly select a point from the hypercube. In steps (5) - (6), we randomly keep the point with
probability proportional to the hyperrectangles volume, and then discard the point if it fails to fall in
the APS. We describe the details below:

1. Partition [a1, b1] into m1 equal-sized subintervals

• Uniformly at random select a subinterval

• Deterministically select a value of x1 in that subinterval, e.g. by taking x1 to be the left
endpoint.

2. Given the value of x1, compute L2(x1) and U2(x1).

• If L2(x1) ≥ U2(x1), start over.

• Otherwise, partition [L2(x1), U2(x1)] into m2 equal-sized subintervals.
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– Append an interval of size (U2(x1)− L2(x1))/m2 to either side of the partition

• Uniformly at random select a subinterval from the partition

• Deterministically select a value of x2 in that sub-interval.

3. Repeat the preceding step for x3, . . . , xn. We will have now obtained n subintervals whose
cartesian product forms a hypercube

4. Uniformly at random select a point in the hypercube

5. Randomly keep the point with probability proportional to the volume of the hypercube. To do
so,

• Compute the maximal possible volume of the hypercube.

– Because the whole normalized parameter space lies in the unit hypercube [0, 1]×...×
[0, 1] in Rn, and because the selected hypercube has maximal length in dimension j
given by [Uj(x1, x2, . . . , xj−1)− Lj(x1, x2, . . . , xj−1)]/mj ≤ 1/mj , the maximal
possible volume of the hypercube is

(
Πn
j=1mj

)−1

• Randomly select a number in [0, 1]. If that number is smaller than the volume of the se-
lected hypercube divided by the maximum possible volume of selected hyperrectangles,
keep the point.

6. If the selected point is not in the allowable parameter space, discard it.

We show in Section 2.7.2 that the time-complexity of the implementation is much better than
that of the naive algorithm, so long as for all j = 1, .., n, the probability that the upper bound Uj is
larger than the lower bound Lj is close to 1. Indeed, we show that:

Time complexity of selecting a point =


O(n3) Uj ≥ Lj always for j = 1, 2, . . . , n

O

(
n
(

1
β

)n−2
)

Uj < Lj with probability β for j = 1, 2, . . . , n.

We prove that the algorithm and implementation indeed result in a uniform sample, in Section 2.7.3.

2.6.5 Defining the allodynia surface

In this section, we derive the conditions describing the allodynia surface for each circuit. We
present the derivation in terms of a generalized circuit and finding conditions for a generalized
“target state” to occur. In particular, we restrict our attention to circuits where the output signal is
relayed by a single population of neurons, which we denote by y. The “target state” is represented
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by the voltage of this output population Vy increasing above a specified threshold. For our firing
rate model, the steady-state average voltage Vy is given by

Vy,steady = gin,yfin +
n∑
k=1

gxkyfxk(~g, fin) + Vy,rest.

where fin is an external input and fxk are firing rates of the populations pre-synaptic to population
y. The circuit is in the “target state” when

Vy,thr ≤ Vy,steady.

For the simple, dynamic and static circuits, the output populations are E, E2, and E, respectively,
namely the excitatory populations which relay signals to projection neurons that send input to the
brain. The target state for allodynia is that the average voltage of these excitatory populations
increases above the firing threshold. These allodynia conditions are summarized in Table II.10.

Circuit Conditions under which allodynia is produced

Simple VE,thr ≤ VE,steady = gAβEfAβ − gIEfI + VE,rest

Dynamic VE2,thr ≤ VE2,steady = gAβE2fAβ + gE1E2fE1 − gI2E2fI2 + VE2,rest

Static VE,thr ≤ VE,steady = gAβEfAβ − gI1EfI1 − gI2EfI2 + VE,rest

Table II.10: Allodynia conditions on each circuit. In particular, the allodynia conditions specify precisely when the
circuit is producing allodynia–when it is relaying pain-inducing stimuli in response to innocuous fAβ signals. These
conditions are given by inequalities on the voltage of the population E, E2, and E, for the simple, dynamic, and static
circuits, respectively, which relay signals towards the brain.

Using the allodynia condition, we can identify the circuit coupling strengths ~g for which the
target state is attainable. To do so, we rewrite the condition defining the target state as an inequality
on the coupling strength gin,y between the input signal and the population y:

gin,yfin ≥ (Vy,thr − Vy,rest)−
n∑
k=1

gxkyfxk(~g, fin)⇔ (II.11)

gin,y ≥
(Vy,thr − Vy,rest)−

∑n
k=1 gxkyfxk(~g, fin)

fin
. (II.12)

For the target state to be attainable, we don’t need to reach the target state for all values of fin.
Instead, we can reach the target state for the value of fin that minimizes the right-hand side of the
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preceding equation. Thus, the circuit corresponding to a set of coupling strengths ~g can attain the
target state if and only if

gin,y ≥ min
fin∈[fin,min,fin,max]

(Vy,thr − Vy,rest)−
∑n

k=1 gxkyfxk(~g, fin)

fin
. (II.13)

To illustrate this more concretely, the conditions on the coupling strengths for which allodynia is
attainable are summarized in Table II.11 for the simple, dynamic, and static circuits.

Circuit Condition for possible allodynia production

Simple gAβE ≥ minfAβ∈[fAβ,min,fAβ,max]
gIEfI+VE,thr−VE,rest

fAβ

Dynamic gAβE2 ≥ minfAβ∈[fAβ,min,fAβ,max]
gI2E2fI2−gE1E2fE1+(VE,thr−VE2,rest)

fAβ

Static gAβE ≥ minfAβ∈[fAβ,min,fAβ,max]
gI1EfI1+gI2EfI2+(VE,thr−VE,rest)

fAβ

Table II.11: The conditions under which a circuit can produce allodynia. These conditions no longer specify precisely
when the circuit produces allodynia, but instead specify the sets of coupling strengths when the corresponding circuit
will produce allodynia for some typical fAβ . As such, these conditions are defined by inequalities on the coupling
strengths gAβE , gAβE2, and gAβE for the simple, dynamic and static circuits, respectively, between the pain-relaying
population and the Aβ input signal. Notably, the inequalities involve an optimization problem.

Equation II.13 thus defines a target state boundary surface S which divides the set of ~g’s for
which the circuit is in the target state from the set of ~g’s for which it is not. We can express this
surface as

S =

{
~g : gin,y = min

fin∈[fin,min,fin,max]

[
(Vy,thr − Vy,rest)−

∑n
k=1 gxkyfx1(~g, fin)

fin

]}
(II.14)

For the simple, dynamic, and static circuits, this boundary (Table II.12 separates circuits which can
produce allodynia from those than cannot.
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Circuit Allodynia surface

Simple
{
~g : gAβE = minfAβ∈[fAβ,min,fAβ,max]

gIEfI+VE,thr−VE,rest
fAβ

}
Dynamic

{
~g : gAβE2 = minfAβ∈[fAβ,min,fAβ,max]

gI2E2fI2−gE1E2fE1+(VE,thr−VE2,rest)

fAβ

}
Static

{
~g : gAβE = minfAβ∈[fAβ,min,fAβ,max]

gI1EfI1+gI2EfI2+(VE,thr−VE,rest)
fAβ

}
Table II.12: The allodynia surface for the simple, dynamic and static circuits, respectively. The allodynia surface
separates circuits which can produce allodynia in response to typical fAβ signaling from those that cannot.

Properties of the target state boundary surface S

To understand the target state boundary surface, S, it is convenient to think of gin,y as a height.
That is, the height h of a point ~g is its coupling strength gin,y:

h(~g) := gin,y.

We can then express S as the graph of the function

hS(~g) := min
fin

[
(Vy,thr − Vy,rest)−

∑n
k=1 gxkyfx1(~g, fin)

fin

]
,

noting that hS may depend on any coupling strength except for gin,y. Then, circuits whose corre-
sponding coupling strengths ~g with h(~g) ≥ hS(~g) are capable of producing the target state, and
other circuits are not.

This notion of height makes it intuitively clear that S divides the space of coupling strengths
into a part that can produce the target state, and a part that cannot. However, rigorously justifying
that S does so is tricky. One approach towards such a justification would be to use an appropriate
extension of the Jordan Curve Theorem (see [Hat02]) from algebraic topology. However, such
“heavy machinery” is not necessary.

For a simple proof of the result, note that we are working in Rn+1-dimensional space, and that

h : Rn+1 → R

hS : Rn → R,

and that both h and hS are continuous. In Section 2.7.4, we show that S, as well as any other
graph of a continuous function from Rn → R, divides space into two path connected components:
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one that lies above the graph and another that lies below the graph. Moreover, S is the boundary
between these two components.

2.6.6 Computing the distance between sampled points and the allodynia surface

In this section, we discuss the computational algorithm implemented to compute the shortest
path from points in the APS to the allodynia surface. Continuing as above in Section 2.6.5, we
describe the algorithm for a generalized circuit and a generalized target state boundary surface S.

The length of the shortest path between a point ~g in the space of coupling strengths to the
target state boundary surface S indicates how easy it is to move the circuit into the target state. It
also identifies which coupling strengths need to change to reach the target state. We illustrate the
problem of finding the shortest path to S by considering an arbitrary set of coupling strengths or
point in the parameter space

~gp = (gpx1y, · · · , gpxny, gpin,y).

To compute the shortest path from ~gp to S, we need to find the point on S closest to ~gp:

~gsnearest = (gsx1y, · · · , gsxny, gsin,y).

To do so, we need to solve the optimization problem:

~gsnearest = argmin ~gs∈S|| ~gp− ~gs||, (II.15)

where || · || represents the 2-norm.

2.6.6.1 A more computationally efficient strategy

Solving the optimization problem in Equation II.15 directly would require knowing the target
state surface itself or knowing important properties of it such as its gradient. However, the target
state boundary surface in our work is defined via solving a minimization problem over the space
of coupling strengths (excluding the coupling strength gin,y) and is thus difficult to include in
existing optimization algorithms. Thus, we seek to solve this problem without computing an explicit
representation of the target state surface S.

Instead, we solve the higher dimensional problem

( ~gs∗nearest, fin,nearest) := argmin( ~gv,fin)∈S∗|| ~gp− ~gv||, (II.16)
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where S∗ is the following set of coupling strength-input signal pairs defined by removing the
minimization from Equation II.14:

S∗ :=

{
(~g, fin) : gin,y =

(Vy,rest − Vy,thr) +
∑n

j=1 gxiyfxi(~g, fin)

fin
and fin ∈ [fin,min, fin,max]

}
.

Equation II.16 presents a constrained optimization problem that can be solved with high
likelihood using global optimization algorithms based on stochastic gradient descent. As a result,
Equation II.16 is far more tractable than the original problem posed in Equation II.15. Moreover, if
~gs∗nearest = ~gsnearest, the two minimization problems are equivalent, and by solving Equation II.16,
we will have solved the original minimization problem Equation II.15. We show in Section 2.7.5
that if we solve Equation II.16, we do indeed solve Equation II.15.

2.6.6.2 Implementing the computationally efficient strategy

To implement our strategy, we solve the original optimization problem (Equation II.15) by
finding a solution to the secondary optimization problem (Equation II.16). In particular, recall that
the optimization problem from Equation II.16 is to find

argmin|| ~gp− ~g||

over pairs (~g, fin) subject to the conditions that

1. gin,yfin = (Vy,rest − Vy,thr) +
∑n

j=1 gxiyfxi(~g, fin) for some fin ∈ [fin,min, fin,max], i.e. that
a circuit with coupling strengths ~g and input signal fin reaches the target state

2. gx1y, . . . , gxny, gin,y ≥ 0

3. fin ∈ [fin,min, fin,max]

To solve the problem numerically, we use a multi-start stochastic global optimization scheme:

1. For efficiency, we restrict the search space by requiring that

(a) The coupling strengths ĝx1y, . . . , ĝxny, ĝin,y ∈ [−1, 2]

(b) Since we know that the desired ĝin,y ≥ gpin,y, we further restrict ĝin,y ≥ gpin,y

2. We apply Matlab’s stochastic gradient descent-based algorithm fmincon to the preceding
optimization problem with the preceding extra restrictions
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3. We repeat the algorithm 15 times using start points selected uniformly at random from the
preceding constraints, and take as the solution to the optimization problem the value of ~g
yielding the smallest || ~gp− ~g||.

2.6.7 Clustering the data based on shortest paths to the allodynia surface

We use a density-based scanning clustering algorithm coupled with data visualization to identify
clusters in the APS. To do so, we work with the points uniformly sampled from the APS. However,
because we are interested in how circuits may be induced to produce allodynia, we do not simply
cluster points in the APS by location. Rather, we cluster the APS by a different property of points:
the corresponding shortest paths to the allodynia surface. Thus, when clustering the APS, we need
not worry explicitly about the coordinates of the points, and instead we need only consider the
shortest paths from the points to the allodynia surface. Thus, we apply the density-based scanning
algorithm and the data visualization specifically to those shortest paths.

For the simple, dynamic, and static circuits, we see that the shortest paths to the allodynia
surface, represented as displacements, divide into clusters (Figures II.4.d, II.6.c, and II.8.c), and
thus so do points in the APS. Fortunately, for the simple circuits in particular, those displacements
are three dimensional, allowing us to easily visualize the shortest paths as points in R3. We can use
the visualizations of the shortest paths, then, to check which clustering algorithms will be successful.
However we see for the simple circuit, as per Figure II.4.e, that the clusters of shortest paths are not
necessarily spherical. In fact, for the simple circuits, the clusters are flat, with the blue cluster being
a line. As a result, the popular k-means algorithms may fail to detect the clusters. Nevertheless, that
shortest paths are tightly packed within spatially separated clusters bodes well for detecting clusters
via density-based scanning.

Indeed, the clusters for this simple circuit may be detected using density-based scanning with
perfect accuracy. For more complicated circuits, we see that density-based scanning similarly
detects clusters with perfect accuracy. Namely, for the dynamic and static circuits, respectively, the
colors of lines in the parallel plots of shortest paths shown in Figures II.6.c and II.8.c indicate the
clusters assigned by density-based scanning. In particular, dividing the shortest paths into clusters
as density-based scanning does exactly matches how one would spatially divide shortest paths
in the parallel plot. Therefore, all data we present regarding clusters specifically uses the cluster
membership specified via density-based scanning.

To apply density-based clustering to the data, we use Matlab’s dbscan function. Briefly, dbscan

divides the data into equivalence classes, where two datapoints are equivalent if they are sufficiently
close, and identifies equivalence classes as a cluster if they contain a point which exceeds a minimum
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number of sufficiently close neighbors. The function takes three arguments:

1. The data to be clustered: We use the set of shortest path vectors from sampled points in the
APS to the allodynia surface.

2. A sufficiently close distance ε: we use the smallest ε under the euclidean metric that leads to
no outliers in the data.

3. The minimum number of sufficiently close neighbors to identify an equivalence class as a
cluster: we take this to be 5.

2.7 Proofs

2.7.1 Using Lambert-W functions to simplify conditions on coupling strengths

To solve the optimization problems contained in the condition that specify reasonable behaviors
for circuits such as the simple, dynamic and static circuits, it is necessary to find the critical points
x0, x−1 of

a tanh(x− b) + c

x
.

Such critical points are given by the 0 and −1 branch W0 and W−1 of the Lambert-W function
(Equation II.6):

x0,−1 =
1

2

(
c/a−W0,−1

(
−e1−2b

))

We need to find critical points of a tanh(x−b)+c
x

. That is, we need

0 =
d

dx

[
a tanh (x− b) + c

x

]
=
a sech2(x− b)x− (a tanh (x− b) + c)

x2
.

Multiplying through by x2, we thus need that

0 = a sech2(x− b)x− a tanh (x− b)− c.

and thus that

0 = sech2(x− b)x− tanh (x− b)− c/a,
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which denoting c/a by d becomes

0 = sech2(x− b)x− tanh (x− b)− d
= sech2(x− b)(x− b) + b sech2(x− b)− tanh (x− b)− d

which denoting u = x− b becomes

0 = u sech2(u) + b sech2(u)− tanh (u)− d

Multiplying through by cosh2(x− b), we then have that

0 = u+ b− sin(u) cosh(u)− d cosh2(u)

= u+ b− sinh(2u)/2− d(1 + cosh(2u))/2⇔
0 = 2u+ 2b− d(1 + cosh(2u))− sinh(2u)

= 2u+ (2b− d)− d cosh(2u)− sinh(2u)

= 2u+ (2b− d)− d
(
e2u + e−2u

)
/2−

(
e2u − e−2u

)
/2⇔

0 = 4u+ (4b− 2d)− d
(
e2u + e−2u

)
−
(
e2u − e−2u

)
.

Multiplying through by e−2u, we obtain

0 = 4ue2u + (4b− 2d)e2u − d
(
e4u + 1

)
−
(
e4u − 1

)
= 4ue2u + (4b− 2d)e2u + e4u(−d− 1) + (1− d)

= (4u+ 4b− 2d)e2u − e4u(1 + d) + (1− d)⇔

0 =
(
ed−2b(2u+ 2b− d)

)
e2u+2b−d −

(
1 + d

2
e2d−4b

)
e4u+4b−2d + (1− d)/2

=
1− d

2
+
(
ed−2b

)
vev −

(
1 + d

2
e2d−4b

)
e2v ⇔

0 =

(
1− d

2
e2b−d

)
+ vev −

(
1 + d

2
ed−2b

)
e2v
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If d = 1, the preceding equation simplifies to the following:

0 = vev − e1−2be2v ⇔
0 = ve2b−1 − ev ⇔

0 = e2b−1 − 1

v
ev ⇔

e2b−1 =
1

v
ev ⇔

e1−2b = ve−v ⇔
−e1−2b = −ve−v.

Then, as long as

−e1−2b ≥ −e−1 ⇔
e1−2b ≤ e−1 ⇔

1− 2b ≤ −1⇔
2 ≤ 2b⇔
1 ≤ b,

the preceding equation has a solution given by the principal W0 and -1 W−1 branches of the
Lambert-w function:

W0,−1

(
−e1−2b

)
= −v ⇔

v = −W0,−1

(
−e1−2b

)
⇔

2u+ 2b− d = −W0,−1

(
−e1−2b

)
⇔

2u = d− 2b−W0,−1

(
−e1−2b

)
⇔

x− b =
1

2

(
d− 2b−W0,−1

(
−e1−2b

))
⇔

x = b+
1

2

(
d− 2b−W0,−1

(
−e1−2b

))
= b+

1

2

(
c/a− 2b−W0,−1

(
−e1−2b

))
Otherwise, the preceding equation has no solution, and there are no local extrema of the
function being minimized. However if d 6= 1, i.e. if c 6= a, then there does not appear to be a
general solution to the equation in terms of known functions. The solution to Equation II.5
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thus occurs at

x0,−1 =
1

2

(
c/a−W0,−1

(
−e1−2b

))
so long as x0 or x−1 ∈ [fAβ,min, fAβ,max] or at x = fAβ,min or x = fAβ,max

If instead c 6= a, I claim that a tanh(x−b)+c
x

may have at most three critical points.

Indeed, we know from the preceding proof that the extrema occur when

0 = q(u) := (1− d) + (4u+ 4b− 2d)e2u − (1 + d)e4u.

However, it turns out that q(u) can be zero at most three times. To see why, we will show that
q′(u) has at most two extremum on (−∞,∞). Indeed,

q′(u) = (8u+ 8b− 4d+ 4)e2u − 4(1 + d)e4u

= 4e2u(2u+ 2b− d+ 1− (1 + d)e4u),

which is zero only when

(1 + d)e4u = 2u+ 2b− d+ 1⇔

e4u =
2u+ 2b− d+ 1

1 + d
.

Now, make the substitution

r := 2u+ 2b− d+ 1.

Then,

e2r−4b+2d−2 =
r

1 + d
⇔

(1 + d)e−4b+2d−2 = re−2r ⇔
−2(1 + d)e−4b+2d−2 = −2re−2r.

However, we can write the solution to the preceding expression using the 0 (W0) and −1
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(W−1) branches of the Lambert-W function

−2r = W0,−1

(
−2(1 + d)e−4b+2d−2

)
⇔

r = −1

2
W0,−1

(
−2(1 + d)e−4b+2d−2

)
.

Rewriting r back in terms of u, we have

2u+ 2b− d+ 1 = −1

2
W0,−1

(
−2(1 + d)e−4b+2d−2

)
⇔

u0,−1 =
1

2
(−2b+ d− 1)− 1

4
W0,−1

(
−2(1 + d)e−4b+2d−2

)
.

In each of (−∞,min {u0, u−1}], (max {u0, u−1} ,max {u0, u−1}], (max {u0, u−1} ,∞), q is
monotonic, and thus can have at most one zero. Thus, q has at most three zeros. Moreover to
search for critical points, we only need to find zeros in those three intervals, which is a fairly
easy task because q is monotonic in the intervals. Once we find the zeros of q(u) in those
intervals, we change u = x− b back to x, and compute a tanh(x−b)+c

x
at each of the zeros of q

and at the smallest and largest possible values of x. The largest and smallest of those values
of a tanh(x−b)+c

x
are thus the maximum and minimum values of a tanh(x−b)+c

x
.

To solve the optimization problems contained in conditions that circuit parameters need to
satisfy to produce the desired behaviors, it is also helpful to find the critical point x0 of

x+ A

1 + tanh(x+B)
.

Such a critical point is given by the principal branch W0 of the Lambert-W function (Equation II.9):

x0 = −1

2

(
1 + 2A+W0

(
e2B−2A−1

))
.

Indeed, to solve Equation II.8, we need to solve

0 =
d

dx

[
x+ A

1 + tanh(x+B)

]
=

1 + tanh(x+B) + sech2(x+B)(x+ A)

(1 + tanh(x+B))
,

which, multiplying through by the denominator and taking x and B to be positive so tanh(x+
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B) 6= −1, occurs if and only if (⇔)

0 = 1 + tanh(x+B) + (x+ A)sech2(x+B).

Multiplying through by cosh2(x+B), we can simplify the preceding expression so it can be
solved using the Lambert-W function:

0 = cosh2(x+B) + sinh(x+B) cosh(x+B) + (x+ A)

=
1

2
(cosh(2x+ 2B) + 1) +

1

2
sinh(2x+ 2B) + (x+ A)

= x+ A+
1

2
+

1

2
(cosh(2x+ 2B) + sinh(2x+ 2B))

= x+ A+
1

2
+

1

4

(
2e2x+2B

)
= x+ A+

1

2
+

1

2
e2x+2B ⇔

0 = 2x+ 2A+ 1 + e2x+2B ⇔
−1− 2x− 2A = e2x+2B ⇔

1 =
1

−1− 2x− 2A
e2x+2B ⇔

1 = (−1− 2x− 2A)e−2x−2B

= (−1− 2x− 2A)e−2x−2A−1e−2B+2A+1 ⇔
e2B−2A−1 = (−2x− 2A− 1)e−2x−2A−1.

Noting that the left-hand side of the preceding equation is always positive, it follows that
the preceding equation has its only real-valued solution given by the principal branch W0 of
the Lambert-W function

−2x− 2A− 1 = W0

(
e2B−2A−1

)
⇔

−2x = 1 + 2A+W0

(
e2B−2A−1

)
.

The solution to Equation II.8 is thus

x0 = −1

2

(
1 + 2A+W0

(
e2B−2A−1

))
.

2.7.2 Proof that the sampling algorithm has time-complexity O(n3) under ideal conditions

In this subsection, we seek to show that the time complexity of running one iteration of the
sampling algorithm we have constructed is
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Time complexity of selecting a point =


O(n3) Uj ≥ Lj always for j = 1, 2, . . . , n

O

(
n
(

1
β

)n−2
)

Uj < Lj with probability β for j = 1, 2, . . . , n,

where n is the number of coupling strengths underlying the circuit.

In particular, below we show that selecting a hypercube in a cover of the allowable parameter
space (APS) is O(n2), so long as the simple set of inequalities which we are using to define the APS
is a “proper” description of the APS in the sense that the upper bounds on each coupling strength
are indeed larger than the corresponding lower bounds. We then show that the time-complexity of
sampling from the rectangle is O(n) and then argue that the amount of times the algorithm requires
us to toss out the point to ensure we are sampling uniformly from the APS is independent of n:

Indeed, step 1 can be accomplished randomly selecting a number between 0 and 1, multiplying
the number bym1, taking the ceiling of the result, and using that as the index for a preallocated,
linearly spaced partition of [a1, b1]. Hence step 1 is O(1).

Likewise, partitioning [Lj(x1, . . . , xj−1), Uj(x1, . . . , xj−1)] and selecting a value of xj
from the partition is O(1). However, the number of operations needed to compute Lj and
Uj likely scales with the number of coordinates that Lj and Uj depend upon, which is j − 1.
Thus, the whole process of selecting xj–computing Lj and Uj , partitioning [Lj, Uj], randomly
selecting a subinterval from the partition, and deterministically selecting an xj from the
subinterval–is O(j).

Thus, if Uj ≥ Lj always, steps (1) - (3) collectively take:

Order of steps (1) - (3) = O(1) +O(2) + · · ·+O(n)

= O(n2)

However if Un < Ln with some fixed probability β, then, we need to recompute
x1, . . . xn−1, Ln, and Un with probability β ∈ (0, 1). Thus, we would need to recompute Un
and Ln O(β−1) times. However, we would need to recompute xn−1 an additional O(β−1)

times, as well. If we seem that Un−1 < Ln−1 with probability β as well, for each time
we would need to recompute Un and Ln, we would need to recompute Un−1 and Ln−1 an
additional O(β−1) times, leading to a total of O(β−2) times that we would need to recompute
Un−1 and Ln−1. Thus, by induction, we would need to recompute Un−j and Ln−j a total of
O(β−j) times. Since computing Un−j and Ln−j once is O(n−j), we would spend a total time
O((n− j)β−j) computing Un−j and Ln−j . Thus, the total amount of time spent computing
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the bounds is

Order of steps (1) - (3) = O

(
n−2∑
j=0

(n− j)β−j
)
.

However, we can simplify the preceding sum by replacing β−1 with some constant κ ∈ (1,∞)

and splitting the resulting sum into two sums:

n−2∑
j=0

(n− j)κj = n
n−2∑
j=0

κj −
n−2∑
j=0

jκj.

The former sum in the split is a geometric series and thus sums to:

n

n−2∑
j=0

κj = n
κn−1 − 1

κ− 1

The latter sum in the split, on the other hand, is the derivative of a geometric series. Indeed:

n−2∑
j=0

jκj = κ
n−2∑
j=0

jκj−1

= κ
n−2∑
j=0

d

dκ

[
κj
]

= κ
d

dκ

[
n−2∑
j=0

κj

]
.

Using the formula for the sum of a geometric series and differentiating we obtain:

n−2∑
j=0

jκj = κ
d

dκ

[
κn−1 − 1

κ− 1

]
=

(n− 2)κn − (n− 1)κn−1 + κ

(κ− 1)2 .

Adding the two sums together and simplifying, we obtain:

n−2∑
j=0

(n− j)κj = n
κn−1 − 1

κ− 1
− (n− 2)κn − (n− 1)κn−1 + κ

(κ− 1)2

= n
κn − κn−1 − κ+ 1

(κ− 1)2
− (n− 2)κn − (n− 1)κn−1 + κ

(κ− 1)2

=
2κn + lower order terms

(κ− 1)2 ,
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which has complexity given by

n−2∑
j=0

(n− j)κj ∼ O
(
κn−2

)
∼ O

(
1

βn−2

)
.

However, in step (4), we need to uniformly at random selecting a point from the hyperrectangle,
which requires O(n) operations, thus, the time complexity of randomly sampling one point
from the allowable parameter space is:

Time complexity of selecting a point = O(n) · Order of steps (1) - (3)

=


O(n3) Uj ≥ Lj always for j = 1, 2, . . . , n

O

(
n
(

1
β

)n−2
)

Uj < Lj with probability β for j = 1, 2, . . . , n.

In step (5), discarding point from the hypercube with probability proportional to the
volume of the hyperrectangle will require the algorithm to take additional iterations. In
particular, it will add a number of iterations proportional to one divided by the ratio of the
average rectangle volume and the max possible rectangle volume. However, we see no reason
for such a ratio to be dependent on either m1,m2, . . . ,mn or on the number of dimensions as
long as the max possible rectangle volume is chosen well. Indeed, if the APS wound up being
a hyperrectangle, then each selected hyperrectangle in the cover of the APS would have the
same volume, and the ratio of the seelected hyperrectangle volume to the max hyperrectangle
volume would be 1. Thus, each rectangle would be kept with probability 1, so the number of
times we would need to repeat steps (1) - (4) added by discarding the point with probability
proportional to the volume of the hyperrectangle would be O(1).

In step (6) Discarding the point from the hyperrectangle if the point fails to fall in the
APS may increase the number of iterations the algorithm takes. However, as long as the
hyperrectangle cover of the APS is a good approximation of the APS, the probability that
the point fails to fall in the APS is low. For instance, if the APS is itself a hyperrectangle,
such a probability is 0. Thus, we expect step(6) to increase the number of iterations in a
dimension-independent manner.

2.7.3 Proof that the sampling algorithm indeed produces a uniform sample

Recall that we have constructed an algorithm for randomly and uniformly-in-space sampling
that allowable parameter space (APS), in Section 2.6.4.
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To prove that the algorithm and implementation work we first show that in steps (1) - (3) of the
implementation, there are m1Πn

j=1(2 + mij) hyperrectangles that can be selected, and that these
hyperrectangles are selected uniformly at random in each iteration of the sampling algorithm.

The hyperrectangles that can be selected are the same across all iterations of the sample.
These hyperrectangles in particular are specified as the Cartesian product of the n-subintervals
selected in one iteration of our algorithm.

Indeed, recall that in the first step of an iteration of our algorithm, we partition [a1, b1]

into m1 equal-sized subintervals and uniformly at random select a subinterval. However,
uniformly at random selecting a subinterval amounts to uniformly at random selecting one
endpoint c1 of the form

c1 = a1 + d
b1 − a1

m1

for any d = 0 . . . ,m1 − 1

from the partition. The corresponding subinterval is[
c1, c1 +

b1 − a1

m1

]
,

which forms the x1 portion of the Cartesian product that specifies the hyperrectangle. In the
next iteration of the algorithm, in selecting a subinterval from [U2(c1)−L2(c1)], we uniformly
at random select an endpoints of the form

c2 = L2(c1) + d
U2(c1)− L2(c1)

m2

for any d = −1, 0 . . . ,m2

for which the corresponding subinterval is[
c2, c2 +

U2(c1)− L2(c1)

m2

]
which in turn forms the x2 portion of the Cartesian product that specifies the hyperrectangle.
Repeating this process, we select a hyperrectangle of the form:[

c1, c1 +
b1 − a1

m1

]
×
[
c2, c2 +

U2(c1)− L2(c1)

m2

]
× · · · ×

[
cn, cn +

Un(c1, . . . cn−1)− Ln(c1, . . . , cn−1)

mn

]
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for any

c1 = a1 + d
b1 − a1

m1

for any d = 0 . . . ,m1 − 1

c2 = L2(c1) + d
U2(c1)− L2(c1)

m2

for any d = −1, 0 . . . ,m2

...

cn = Ln(c1, . . . , cn−1) + d
Un(c1, . . . cn−1)− Ln(c1, . . . , cn−1)

mn

for any d = −1, 0 . . . ,mn.

Note that such hyperrectangles are disjoint. Moreover, from Bayes’ law, any set
{c1, c2, . . . , cn} is selected with probability

Pr ({c1, c2, . . . , cn}) = Pr(c1) · Pr(c2|c1) · ... · Pr(cn|c1, . . . , cn−1)

=
1

m1

· 1

m2 + 2
· ... · 1

mn + 2
,

where the last step follows because each cij is the left endpoint of a uniformly at random
selected subinterval given values of c1, . . . , cj−1. Thus, each set {c1, c2, . . . , cn} is selected
uniformly at random, and so each hyperrectangle is selected uniformly at random.

Having shown that each hyperrectangle is selected uniformly at random, we can now show that
the algorithm selects points uniformly at random from the allowable parameter space. To see why,
we can compute the probability distribution P of selected points by considering some point x in
some hyperrectangle Rj . In particular, from the law of total probability:

P (x) = Pr(Rj is selected) · Pr(x is selected |Rj is selected) · Pr(x is kept |x is selected and Rj is selected

=

(
1

m1

· 1

m2 + 2
· ... · 1

mn + 2

)
· 1

Volume(Rj)
· Volume(Rj)

Maximum Possible Rectangle Volume

=

(
1

m1

· 1

m2 + 2
· ... · 1

mn + 2

)
1

Maximum Possible Rectangle Volume
,

which is constant. Therefore, steps (1) - (4) indeed select points randomly and uniformly in space
within the set of hyperrectangles approximating the allowable parameter space.

Thus, if the union of hyperrectangles from which we sample points contains the APS, we can
obtain a uniform-in-space sample of the APS simply by discarding any of the points contained in
steps (1) - (4) that are not actually in the allowable parameter space. We show next that under the
right conditions, it is indeed the case that such a union of hyperrectangles does indeed contain the
APS. Namely, if U2, U3, . . . , Un and L2, L3, . . . , Ln change sufficiently slowly, and if m1, . . . ,mn
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are sufficiently large, the set of hyperrectangles approximating the allowable parameter space
contains the allowable parameter space.

Indeed, consider some point x in the APS, and denote its coordinates by (x1, . . . , xn). We
now show that each x1, x2,... lie within the intervals we partitioned in steps (1) - (3) of the
algorithm. Namely, because x1 ∈ [0, 1], there exists c1 such that

x1 ∈
[
c1, c1 +

b1 − a1

m1

]
We know that

L2(x1) ≤ x2 ≤ U2(x1).

However, for x to fall in one of the desired rectangles, we want to show that x2 falls between
the upper and lower boundaries of the partition constructed in step (2) of the algorithm:[

L2(c1)− U2(c1)− L2(c1)

m2

, U2(c1) +
U2(c1)− L2(c1)

m2

]
.

This is clearly the case if x1 = c1, since then we would have that

L2(c1) ≤ x2 ≤ U2(c1).

Then assuming U2 and L2 change sufficiently slowly on
[
c1, c1 + b1−a1

m1

]
,

L2(c1)− U2(c1)− L2(c1)

m2

≤ L2(x1)

U2(x1) ≤ U2(c1) +
U2(c1)− L2(c1)

m2

so

L2(c1)− U2(c1)− L2(c1)

m2

≤ x2 ≤ U2(c1) +
U2(c1)− L2(c1)

m2

Likewise, if for each j = 1, . . . , n it’s true that Uij(c1, . . . , cj−1) and Lij(c1, . . . , cj−1)
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vary sufficiently slowly, then

Lij(c1, . . . , cj−1)− Uij(c1, . . . , cj−1)− Lij(c1, . . . , cj−1)

mij

≤ x2 and

x2 ≤ Uj(c1,...,cj−1
) +

Uij(c1, . . . , cj−1)− Lij(c1, . . . , cj−1)

mij

.

Therefore, x lies in one of the desired hyperrectangles. Thus, if U1, . . . , Un and L1, . . . , Ln

do not change sufficiently slowly, then choosing m1, . . . ,mn sufficiently large then the
hypercube approximation of the allowable parameter space will be a good approximation of
the actual allowable parameter space

Thus, simply discarding points not in the allowable parameter space leads to a sample of points in
the allowable parameter space that is uniformly distributed in space. �

2.7.4 Proof that surface S divides parameter space into two disconnected components

In this section, we attempt to show that the graph S of any continuous function k : Rn → R
divides Rn+1 into two portions: one connected portion that lies above S,and another connected
portion that lies below S. Moreover, the union of the two portions is disconnected, and all paths
between the two cross S. To start, we attempt to validate my claim that the portion of Rn+1 lying
strictly below the graph of any continuous function is connected:

Indeed, consider arbitrary points

~x = (x1, x2, . . . , xn, xh)

~y = (y1, y2, . . . , yn, yh)

in the portion of Rn+1 lying strictly below the graph S of k and think of the coordinate xh
and yh as the heights of the respective vectors. We attempt to find a path lying strictly below
the parameter space and joining ~x to ~y.

To do so, we find a path contained in S that joins the points ~X and ~Y in S directly above
~x and ~y, respectively, where

~X = (x1, x2, . . . , xn, Xh)

~Y = (y1, y2, . . . , yn, Yh)

In particular, let P be a path in Rn joining (x1, . . . , xn) and (y1, . . . , yn) with a parametrization
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p of P where

p(0) = (x1, x2, . . . , xn),

p(1) = (y1, y2, . . . , yn).

By the continuity of k, (P, k(P )) is a path in S joining ~X and ~Y . For instance,

(p(0), k(p(0))) = (x1, x2, . . . , xn, Xh),

(p(1), k(p(1))) = (y1, y2, . . . , yn, Yh)

Then, if we can shift the path (P, k(P )) vertically by a continuous function r : P → Rn+1

such that the height of r(P ) is strictly negative and all other components of r(P ) are identically
zero, then (P, k(P )) shifted by r lies strictly below S. Moreover, if we choose r such that

r(x1, . . . , xn, xh) = (0, 0, . . . , 0, xh −Xh)

r(y1, . . . , yn, yh) = (0, 0, . . . , 0, yh − Yh),

then k(P ) shifted by r joins ~x and ~y. Indeed, if p is parametrization of P where p(0) = ~x and
p(1) = ~y,

(p(0) + r(p(0)), k(p(0)) + r(p(0)) = (x1, x2, . . . , xn, Xh + (xh − Yh)) = ~x

(p(0) + r(p(0)), k(p(1)) + r(p(1) = (y1, y2, . . . , yn, Yh + (yh − Yh)) = ~y,

as desired. Such an r is easy to construct. Indeed, a parametrization of r(P ) is given by

r(p(t)) = (0, . . . , 0, (xh −Xh)(1− t) + (yh − Yh)t).

for any t ∈ [0, 1].

Hence, there is a path contained in the “below space” that joins ~x and ~y, hence the “below-
space” of parameter space is path-connected. Likewise, the portion of parameter space lying
above the graph of h, the “above-space”, is also path-connected. Since both the “above-space”
and “below-space” lie in Rn, they each are connected spaces. �

I further claim that the “above-space” and the “below-space” are not path connected.

To do so, we show that any path joining arbitrary points ~x and ~y be above and below S,
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respectively, must intersect S. Let P̃ ∈ Rn+1 be a path parameterized as

(p1(t), p2(t), . . . , pn(t), ph(t)) (parameterization of P̃ )

for t ∈ [0, 1] that connects ~x and ~y and let p(t) = (p1(t), p2(t), . . . , pn(t)) be the projection
of that parametrization into Rn. Then the path (P, k(P )) parameterized by

(p1(t), p2(t), . . . , pn(t), k(p1(t), p2(t), . . . , pn(t)) (parameterization of (P, k(P )))

for t ∈ [0, 1] lies in S.

Define the vertical displacement between P̃ and

(P, k(P ))

to be d(t). Note that

d(t) = k(p1(t), p2(t), . . . , pn(t))− ph(t)

and note that d is continuous and its magnitude is the distance between the two paths. Note
further that

d(0) = k(p1(0), p2(0), . . . , pn(0))− ph(0) = Xh − xh > 0

d(1) = k(p1(1), p2(1), . . . , pn(1))− ph(1) = Yh − yh < 0

because ~x and ~y lie below and above S, respectively. Since d is continuous and changes
sign, it must at some point be 0. In other words, P̃ and (P, k(P )) must intersect. At such an
intersection point, P̃ thus intersects S.

Hence, all paths joining ~x and ~y intersect S and thus the “above-space” and “below-space”
must not be path-connected. �

Therefore, the graph S of any continuous function k partitions Rn+1 into two connected spaces:
the space above S, and the space below S. Therefore, the surface S which is the graph of hS truly
does divide parameter space into space lying above (and including) S in which the target state is
attainable and a space lying strictly below S where the target space is unattainable. �

114



2.7.5 Proof that the primary and secondary optimization problems are equivalent

Recall that the primary optimization problem (Equation II.15) is to find the closest point ~gs on
the attainable-state boundary S to the point ~gp in the allowable parameter space:

~gsnearest = argmin ~gs∈S|| ~gp− ~gs||,

where we denote

~gsnearest = (gsx1y, · · · , gsxny, gsin,y).

However, because of the difficulty in finding S, recall that we instead try to solve the secondary
optimization problem (Equation II.16) is

( ~gs∗nearest, fin,nearest) = argmin( ~gv,fin)∈S∗|| ~gp− ~gv||,

where S∗ is the following set of coupling strength-input signal pairs defined by removing the
minimization from Equation II.14:

S∗ :=

{
(~g, fin) : gin,y =

(Vy,rest − Vy,thr) +
∑n

j=1 gxiyfxi(~g, fin)

fin
and fin ∈ [fin,min, fin,max]

}
,

and where going forward we will denote the solution ~gs∗nearest as

~gs∗nearest = (gs∗x1y
, · · · , gs∗xny, gs∗in,y).

Thus, for the preceding strategy to work, we need

~gs∗nearest = ~gsnearest.

Indeed, it can be proven that ~gs∗nearest = ~gsnearest via the steps outlined below:

1. We show that the two optimization problems are “well-behaved” in that solutions to the
primary and secondary optimization problems exist and lie in S and S∗ (the projection of S∗

onto the space of coupling strengths), respectively.

2. We then provide a simpler way of showing that the solutions to the secondary optimization
problem solve the original optimization problem. Namely, we show that ~gs∗nearest solves the
original optimization problem if and only if ~gs∗nearest ∈ S.

115



3. We establish that ~gs∗nearest = ~gsnearest by showing that ~gs∗nearest ∈ S.

The details are as follows:

1. Lemma: ~gsnearest exists and ~gsnearest ∈ S. Likewise, ~gs∗nearest exists and ~gs∗nearest ∈ S∗,
the projection of S∗ onto the space of coupling strengths:

S∗ :=

{
~g : gin,y =

(Vy,rest − Vy,thr) +
∑n

j=1 gxjyfxj (~g, fin)

fin
for some fin ∈ [fin,min, fin,max]

}
.

Proof:

(a) Since S is the graph of a continuous function on R, it follows that S is a closed
and connected n-dimensional manifold embedded in Rn+1. Further, the minimization
function ||gp− gs|| is continuous and bounded away from infinity. Therfore, the map
from S → R given by ~gs→ || ~gp− ~gs|| is continuous on a bounded and connected set,
and therefore maps to a bounded and connected set in R which has a maximum and
attains the maximum for some ~gs ∈ S. Thus ~gsnearest exists, and ~gsnearest ∈ S.

(b) Likewise, S∗ is the graph of a continuous function on Rn × [fin,min, fin,max] (where
gin,y defines the height of the graph, much as discussed previously). Hence S∗ is closed
and connected, and so its projection onto the space of coupling strengths S∗ is a closed
(n+ 1)-dimensional manifold embedded in Rn+1. Thus, following the argument given
for ~gsnearest, ~gs∗nearest exists, and ~gs∗nearest ∈ S∗

2. Lemma: ~gs∗nearest exists and solves the original optimization problem Equation II.15 if and
only if (⇔) gvnearest ∈ S.

(a) “⇒”: If ~gs∗nearest solves Equation II.15, then, gvnearest ∈ S by the preceding lemma.

(b) “⇐”: If gvnearest ∈ S, then by construction,

min
~gs∈S
||~g − ~gs|| ≤ ||~g − ~gs∗nearest||.

However, since S ⊂ S∗ (as per the proof in (c), below),

min
( ~gv,fin)∈S∗

||~g − ~gv|| ≤ min
~gs∈S
||~g − ~gs||.

Thus,

min
~gs∈S
||~g − ~gs|| = ||~g − ~gs∗nearest||,
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and so ~gs∗nearest solves the original minimization problem Equation II.15. �

(c) Lemma for “⇐”: S ⊂ S∗. Proof:

~gs satisfies

gsin,y =
(Vy,rest − Vy,thr) +

∑n
j=1 gsxjyfxj(~g, fin)

fin

for some fin ∈ [fin,min, fin,max]. Indeed, as long as 0 6∈ [fin,min, fin,max], the
function being maximized in Equation II.14 is continuous and thus must attain its
maximum at some fin ∈ [fin,min, fin,max]. Hence, any point gs ∈ S must also be
in S∗, and so S ⊂ S∗. �

3. I claim that ~gs∗nearest is the point ~gc ∈ S given by

~gc :=

(
gs∗x1y

, . . . , gs∗xny,min
fin

[
(Vy,rest − Vy,thr) +

∑n
j=1 gs

∗
xjy
fxj( ~gs

∗
nearest, fin)

fin

])
.

If we can establish such a result, we will have shown that ~gs∗nearest ∈ S, and so ~gs∗nearest

solves the original optimization problem (Equation II.15). To establish such a result, we will
use that because ~gc and ~gs∗nearest are vertically displaced from one another, ~gc = ~gs∗nearest

if and only if

|| ~gs∗nearest − ~gp|| = ||~gc− ~gp||.

To show this, we show (a) that || ~gs∗nearest − ~gp|| ≤ ||~gc − ~gp||. We then show (b) that
|| ~gs∗nearest − ~gp|| ≥ ||~gc− ~gp|| using the result shown in (c):

(a) Indeed, by the construction of ~gs∗nearest,

|| ~gs∗nearest − ~gp|| ≤ ||~gc− ~gp||.

(b) To show that ||~gc − ~gp|| ≥ ||~gc − ~gp|| we want to determine whether the following
argument holds:

‖~gc− ~gp‖ = ‖
(
gs∗x1y

, . . . , gs∗xny,min
fin

[
(Vy,rest − Vy,thr) +

∑n
j=1 gs

∗
xjy
fxj( ~gs

∗
nearest, fin)

fin

])
− ~gp‖

= ||
(
gs∗x1y

− gpx1y, . . . , gs
∗
xny − gpxny,min

fin

[
(Vy,rest − Vy,thr) +

∑n
j=1 gs

∗
xjy
fxj( ~gv, fin)

fin

]
− gpin,y

)
||

≤ ||
(
gs∗x1y

− gs∗x1y
, . . . , gs∗xny − gpxny, gs∗in,y − gpin,y

)
||

= || ~gs∗nearest − ~gp||.
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The issue is the third of the four equations listed above. It turns out that to show the
third equation holds, it suffices to show that

gs∗in,y − gpin,y > min
fin

[
(Vy,rest − Vy,thr) +

∑n
j=1 gvxjyfxj ( ~gs

∗
nearest, fin)

fin

]
− gpin,y > 0,

or equivalently, that

gs∗in,y > min
fin

[
(Vy,rest − Vy,thr) +

∑n
j=1 gs

∗
xjy
fxj( ~gs

∗
nearest, fin)

fin

]
> gpin,y.

To show that the former of such inequalities holds, note that because ~gs∗nearest ∈ S∗, it
follows that for some fin ∈ [fin,min, fin,max],

gs∗in,y =
(Vy,rest − Vy,thr) +

∑n
j=1 gs

∗
xjy
fxj( ~gs

∗
nearest, fin)

fin
.

Hence,

gs∗in,y ≥ min
fin

[
(Vy,rest − Vy,thr) +

∑n
j=1 gvxjyfxj( ~gs

∗
nearest, fin)

fin

]
.

We show that the latter of such inequalities holds in step (c), below, thereby completing
the proof.

(c) Claim: it is always true that minfin

[
(Vy,rest−Vy,thr)+

∑n
j=1 gs

∗
xjy

fxj ( ~gs∗nearest,fin)

fin

]
≥ gpin,y.

To prove this, we need only show that the point (gs∗x1y
, . . . , gs∗xny, gpin,y), which is

vertically displaced from ~gc, lies on or beneath the allodynia surface. Proof:

Suppose not. Then, (gs∗x1y
, . . . , gs∗xny, gpin,y) lies directly above the allodynia

surface.

However, by construction, ~gp lies below the allodynia surface. Thus, having shown
that the space above the allodynia surface and the space below the allodynia surface
are not path connected, it follows that the line segment joining ~gp and
(gs∗x1y

, . . . , gs∗xny, gpin,y) passes through the allodynia surface.

In particular, there is a point on the line segment that is on the allodynia surface,
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with displacement from ~gp given by

~e := a
[
(gs∗x1y

, . . . , gs∗xny, gpin,y)− ~gp
]

= (gs∗x1y
− gpx1y, . . . , gs

∗
xny − gpxny, 0),

for some a ∈ (0, 1).

Consequently,

||~e|| = a||(gs∗x1y
− gpx1y, . . . , gs

∗
xny − gpxny, 0)||

< ||(gs∗x1y
− gpx1y, . . . , gs

∗
xny − gpxny, 0)||

≤ ||(gs∗x1y
− gpx1y, . . . , gs

∗
xny − gpxny, gs∗in,y − gpin,y)||

= || ~gs∗ − ~gp||.

This contradicts that ~gs∗ is the closest point in S∗ to ~gp! Therefore, it must be
the case that (gs∗x1y

, . . . , gs∗xny, gpin,y) lies on or directly beneath the allodynia
surface. �

Since ~gc lies on the surface and is vertically displaced from (gs∗x1y
, . . . , gs∗xny, gpin,y), it

follows that

gpin,y ≤ ˆgs∗in,y i.e. that

gpin,y ≤ min
fin

[
(Vy,rest − Vy,thr) +

∑n
j=1 gs

∗
xjy
fxj( ~gs

∗, fin)

fin

]
. �

Thus,

||~gc− ~gp|| = || ~gs∗ − ~gp||.

But ~gc and ~gs∗nearest are vertically displaced from one other. Hence, ~gc = ~gs∗nearest. Con-
sequently, ~gs∗nearest ∈ S. So, it is indeed the case that ~gs∗nearest = ~gsnearest, and the two
optimization problems are equivalent. �
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CHAPTER III

A Mean-Field Firing-Rate Model for the Suprachiasmatic Nucleus and
Other Heterogeneous Networks of Neurons

3.1 Introduction

As we discuss in Chapter I, firing-rate models are successful mathematical reductions for the
high-dimensional nonlinear systems representing neuronal networks and their activity. These models
describe average neural firing activity levels across a network. Thus, they are particularly relevant
for networks of neurons where the assumed pertinent information is carried in the neural firing rate,
rather than in the timing of individual neuron spikes relative to each other. The suprachiasmatic
nucleus (SCN) in the hypothalamus, the central circadian pacemaker in mammals, is an example of a
rate-coding neural population. Indeed, its 24-hour variation in average neuron firing rates is assumed
to be the primary driver for transmission of daily circadian timing information to downstream targets
[HMB18]. There is evidence for this transmission to occur via synaptic signaling and humoral
signaling [LS98].

Perhaps the most well-known class of firing-rate models are “convolutional models”, which
assume that a network of neurons may be reduced to several interacting populations. The firing
activity of each population is modeled as a deterministic, often sigmoidal, gain function of the
population’s inputs. The time evolution of such firing activity is then typically modeled using
differential equations whose solutions are convolution integrals over time. The most well known
among such models is the Wilson-Cowan neural mass model [WC72], as discussed in Section
1.4.2. Many next-generation firing-rate models (Section 1.5) seek to improve upon these models
by replacing the logistic gain functions with more accurate functions of neural responses (such as
frequency-current curves) [ZVvPTH14] or of network population activity [BOF+20].

In classic convolutional firing rate models, such as the foundational firing-rate models [WC73,
Ama77, DSHSZ74, JR95] discussed in Section 1.4, state variables represent averages of important
quantities across the network, such as average membrane voltages and average firing rates. Thus,
they do not describe how variability in those important quantities across the network are affected by
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variability of network properties, as may be caused by heterogeneity in neural responses, synaptic
signals or connectivity. Population density approaches account for variability by starting with a
simple model of a spiking neuron, and deriving a Fokker-Plank equation for the time-evolution
of a probability density function of membrane voltages (see for example [DJR+08, ET10], and
the discussion in Chapter 1.4.4). However, obtaining expressions for such probability densities
is often computationally intensive. Furthermore, obtaining resulting average firing rates can be
complex, especially for more biophysically accurate neural responses. An alternate neural mass
model formalism was proposed by Zandt et al. [ZVvPTH14] that accounts for the time-evolution
of distributions of synaptic currents by assuming a normal distribution of currents and firing rates
across the network. This results in integro-differential equations that model the time evolution of
approximations of the mean and standard deviation of synaptic currents and firing rates across the
network.

While such formalisms have expanded the accuracy and range of applications of firing-rate
models, recent results have identified properties of SCN neurons and their network that are not
easily accounted for by these models. For example, while SCN population firing rates display a
∼24 h cycle with higher rates during the day (light period) and lower rates during the night (dark
period), recordings of individual SCN neurons have identified atypical firing patterns across the
circadian cycle [BDFP09]. Specifically, one class of SCN neurons displays the familiar action
potential firing at varying rates throughout most of the 24h day, but during mid-day hours they enter
electrically excited states. These states include depolarization block (DB) or a state characterized
by low-amplitude oscillatory fluctuations in membrane potential, referred to as Depolarized Low-
Amplitude Membrane Oscillations (DLAMOs) [BOMB+21, BDFP09, JYLA97, PdJB+02]. In the
DLAMO state, membrane voltages oscillate nearly sinusoidally with a minimum well above resting
membrane potential and peak well below the maximum voltage in typical action potential firing.

Another property of SCN population activity that challenges firing-rate reductions is hetero-
geneity of neural responses across the network. A primary facet of such heterogeneity lies in
the “molecular clocks” contained in SCN neurons. Namely, the daily variations in SCN neuron
firing patterns are generated by the intracellular transcription-translation feedback loops (TTFLs) of
circadian clock genes and proteins. These molecular clocks modulate the responses of SCN neurons
to synaptic signalling, so that for some clock states the neuron never fires, and in others the neuron
fires spontaneously or exhibits DLAMOs given strong synaptic signaling. Under normal conditions,
when circadian rhythms are entrained to the 24 h environmental light cycle, cellular TTFL circadian
clocks are approximately synchronized. As a result, SCN neurons may be assumed to be exhibiting
oscillating firing patterns synchronized to the circadian clocks. However, this synchronization
can be degraded by disruptions in light schedules as occurs in shift work and jet lag [NAN+03].
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Additionally, degradation of clock cell synchrony may occur during aging [NNT+15]. This desyn-
chrony of intracellular clocks presumably results in wide variation in neural firing patterns and
responses, i.e. action potential spiking, DLAMOs or DB, across the SCN network. Physiologically,
the resulting variation of the firing activity in the SCN has important consequences as it has been
correlated with reduced amplitude of circadian signaling [FMD+12].

A further facet of heterogeneity in the SCN network lies in the function of GABA, the primary
synaptic neurotransmitter in the SCN [MS93]. GABA plays a somewhat unusual role in the SCN
[DMB+15], wherein GABA elicited post-synaptic currents (PSCs) can be either excitatory or
inhibitory. This variability in GABA-mediated PSCs is due to variations in intracellular chloride
concentrations which alter the synaptic current reversal potential in post-synaptic cells [DMB+15].
As a result, neuronal responses to synaptic currents can vary across the network leading to more
variation in neural firing activity.

Thus, the rate code of circadian signaling by the SCN network is influenced by multiple factors
not typically accounted for in firing rate models: atypical neuron firing states as well as variations
in neuron firing states and synaptic currents across the network.

In this chapter, we derive a firing-rate model framework for the average network synaptic and
firing activity, and their standard deviations, of a network of SCN neurons that exhibit diverse firing
patterns across the circadian cycle. A strength of our approach is that it accounts for atypical neuron
firing patterns, and incorporates distributions of neuron firing properties and post-synaptic currents.
While we derive the model for an SCN network, the formalism can be applied generally to other
neural populations with unique and variable neural firing properties.

The chapter is organized as follows. We derive and describe our firing-rate model framework in
the most general context in Section 3.2. We apply our model to the SCN network in Section 3.3,
and show the results of the application to the SCN in Section 3.4. Finally, we provide concluding
remarks that contextualize our formalism within the firing-rate model literature and highlight
predictions made by our model about the SCN in Section 3.5.

3.2 Firing-rate model derivation and description

Our firing-rate model formalism consists of a system of integro-differential equations describing
the time evolution of the means and standard deviations of the firing rates and synaptic conductances
across a single population of neurons, similarly to [ZVvPTH14]. In the model, the synaptic
conductance statistics are the “model variables”, in the sense that integrating the differential
equations explicitly yields the synaptic conductance statistics as a function of time. The firing-
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rate means and standard deviations, on the other hand, are computed implicitly during numerical
integration of the model.

While the statistics of the firing rates and synaptic conductances are the main variables in the
model, a variety of other parameters play an important role. Foremost are the parameters whose
values vary across the network. One such varying parameter is the number of incoming synaptic
connections to each neuron, Nsyn. Other such parameters, which we collectively refer to with the
parameter vector ~P (t) of dimension m, may include synaptic reversal potentials, such as the varying
GABA reversal potential in the SCN, or parameters that influence the firing states of neurons, such
as the time-varying phases of molecular clocks in the SCN. Notably, our model allows for time
dependence in the vector of parameters ~P (t), so long as ~P (t) varies on a much slower time-scale
than the time scale of synaptic integration.

To explain the derivation of the model, we first describe the post-synaptic response of a single
neuron to synaptic input from multiple presynaptic cells (Figure III.1 and Section 3.2.1). We then
describe the calculation of means and standard deviations of the neural responses across the network
(Figure III.2 and Section 3.2.2). But first, we briefly summarize the derivation.

Consider the response of a post-synaptic cell i, at time t, that receives synaptic input from cell
j. As described in Section 3.2.1, we compute the synaptic conductance gji(t) which depends on
two factors. One is the firing rate of presynaptic cell j just prior to time t, fj(s), and the other
factor is the synaptic response function Hα which describes the time-varying post-synaptic response
to a pre-synaptic spike. To account for modulation of synaptic current when a pre-synaptic cell
is in an altered firing state, such as the DLAMO or DB states, we scale Hα by a synaptic gating
variable yj(s) that depends on membrane voltage of pre-synaptic cell j and represents the fraction of
activated post-synaptic current receptors, as is frequently used in spiking neuron networks [ET10].

From the synaptic conductances gji(t) from all presynaptic neurons j to neuron i, we calculate
the total synaptic conductance Gi(s) received by the postsynaptic neuron i. The resulting firing
frequency of postsynaptic cell i may depend on some or all of the parameters in ~P (t), in addition
to Gi(t). The firing rate fi(Gi(t), ~Pi(t)) is then computed from a biophysical, conductance-based
single-neuron model. We additionally compute the synaptic gating variable yi(Gi(t), ~Pi(t)) based
on the membrane voltage predicted from the biophysical SCN neuron model. These variables then
feed back into the model to compute model variables at the next time-step.

To arrive at a time-evolving, mean-field model as described in Section 3.2.2, we compute the
means and standard deviations of the quantities described above at each time step. In particular, we
compute mean synaptic conductance g(t) and its standard deviation σg(t) from mean population
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firing rate f(t) and its standard deviation σf (t), as well as from the synaptic response function Hα

scaled by the mean synaptic gating variable y(t). From g(t) and σg(t), we use network connectivity
statistics to compute the mean and standard deviation of total synaptic conductance, G(t) and σG(t),
respectively. Assuming the form of distributions of parameters in ~P across the network as well as a
Gaussian distribution for total synaptic conductance Gi(t), we compute the means and standard
deviations of firing frequency (f(t), σf (t)) and synaptic gating (y(t), σy(t)) from the frequency and
voltage responses of the biophysical model for individual neurons in the network.

3.2.1 Computing neural firing-rates

To model the post-synaptic response of a neuron to a presynaptic spike, we let g0 be the
maximum synaptic conductance and assume synaptic currents are governed by an α function (see
[ET10]). We define the synaptic response function Hα(t) as:

Hα(t) =

g0
t
τ
e1−t/τ t ≥ 0

0 t < 0
, (III.1)

where time constant τ determines the duration of the synaptic response. However, to allow for
variations in synaptic conductance based on potentially altered presynaptic cell firing states, we
scale g0 by a synaptic gating variable. This synaptic gating variable for pre-synaptic cell j, yj(t),
depends on cell j’s firing rate fj(t) which, in turn, depends on the total synaptic conductance Gj(t)

that cell j receives as well as the parameter values for cell j, ~Pj(t). Thus, postsynaptic current
conductance due to firing activity in presynaptic cell j is described by:

yj(Gj(t), ~Pj(t)) ·Hα(t).

Synaptic conductance (g)

Continuing from above, for postsynaptic cell i, the time-dependent conductance of synaptic
current induced by presynaptic cell j firing at time s is modeled as:

gji(t) = yj(Gj(s), ~Pj(s)) ·Hα(t− s).

Assuming linear temporal summation of conductances due to multiple presynaptic spikes, the
synaptic conductance due to all spikes from presynaptic neuron j in the small time interval (s, s+∆s)
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is

gji(t) ≈ yj(Gj(s), ~Pj(s)) ·Hα(t− s) · # spikes fired

= yj(Gj(s), ~Pj(s)) ·Hα(t− s) · fj(Gj(s), ~Pj(s))∆s.

Figure III.1: Schematic of model algorithm for computing the postsynaptic neuron response. Postsynaptic neuron i
(large rectangle) receives synaptic inputs from multiple presynaptic neurons j as determined by the network structure.
The conductance of the postsynaptic current gj,i(t) induced by presynaptic cell j firing fj(t) is modeled by its
convolution with the synaptic response function Hα scaled by the synaptic current gating variable yj(t). We assume
linear temporal summation of synaptic conductances. Postsynaptic firing rate and maximum synaptic gating variable of
neuron i at time tk, fi(tk) and yi(tk), respectively, are computed from a biophysical SCN neuron model and synaptic
gating functions which depend on parameters ~P (tk). Illustrated here in the case of the SCN, ~P consists of a circadian
phase proxy parameter called R (see Section 3.3) and GABA reversal potential EGABA.
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We now arrive at a convolution integral1 describing the synaptic conductance response of
postsynaptic cell i to all spikes generated by presynaptic neuron j before time t. Namely, dividing
[0, t] into n equal intervals with left endpoints s0, s1, . . . , sn−1, we obtain that

gji(t) ≈
n−1∑
k=0

yj(Gj(sk), ~Pj(sk)) ·Hα(t− sk) · fj(Gj(sk), ~Pj(sk))∆s.

Letting ∆s→ 0 gives the synaptic conductance gji(t) in postsynaptic neuron i induced from firing
of presynaptic neuron j as

gji(t) ≈
∫ t

0

Hα(t− s) · yj(Gj(s), ~Pj(s)) · fj(Gj(s), ~Pj(s))ds. (III.2)

= (Hα ? yjfj) (t). (III.3)

Total synaptic conductance (G) in a postsynaptic neuron

To obtain the total synaptic conductance, we treat the system of synaptic inputs to a postsynaptic
neuron i as a parallel circuit. Hence, we have linear summation of conductances, and the total
synaptic conductance Gi in postsynaptic neuron i is

Gi(t) =
n∑
j=1

gji(t), (III.4)

where n is the total number of presynaptic cells.

Neuron firing-rate (f ) and synaptic gating (y)

From the total synaptic conductance Gi(t), along with the neuron-dependent parameters ~Pi(t),
we model the neuronal firing rate of postsynaptic neuron i as a deterministic function F of (Gi(t),
~Pi(t)):

fi(t) = F (Gi(t), ~Pi(t)). (III.5)

F is computed from a biophysical conductance-based model for the individual neurons in the
network of the form

Ci
dVi
dt

= Isyn,i − Iion,i, (III.6)

where Ci, Vi, Isyn,i and Iion,i describe the capacitance of the cell membrane, the voltage across the
cell membrane, the incoming current via synapses with other neurons, and the membrane ionic

1This convolution integral is similar to the convolution integrals from Section 1.4 describing population level
responses to signaling.
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currents, respectively, for the ith neuron (see Section 3.3 for the SCN neuron model). Synaptic input
is modeled by the synaptic current Isyn,i which for postsynaptic cell i is given by

Isyn,i(t) = Gi(t) · (Esyn,i − Vi(t)). (III.7)

To compute the function F , the neuron model is numerically integrated across appropriate ranges of
G and ~P values, and the value of F is set to the firing frequency of the stationary solution (obtained
when numerical integration reaches a periodic orbit or steady state). We note that since firing rate is
assigned based on the stationary response to Gi(t), there is the underlying assumption that Gi(t)

varies sufficiently slowly so that any transient behavior is negligible.

The synaptic gating variable yi(t) for neuron i is defined by the deterministic function Y that
depends on the same variables and parameters that affect firing rate

yi(t) = Y (Gi(t), ~Pi(t)). (III.8)

To compute Y , the model equations for the synaptic gating variable ŷ(t) are numerically
integrated in conjunction with the neuron model across the ranges of G and ~P values (see Section
3.3 for the model used in the SCN network). The synaptic gating function Y is then set to the
maximum value of ŷ(t) obtained in the stable solution:

Y (G, ~P ) = max
V

{
ŷ(V (t);G, ~P )

}
. (III.9)

3.2.2 Computing statistics of network firing rate

To construct the model for the population firing-rate of the network, we calculate averages and
standard deviations for synaptic conductance and firing rate variables across all neurons in the
network, accounting for distributions in the parameters ~P (t). To do so, we treat these variables,
such as g, G, ~P , Nsyn f , and yf , as random quantities drawn from (potentially time-varying)
distributions. The distributions for each variable are fixed across all synapses and neurons in the
network.
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Figure III.2: Schematic of model algorithm for computing network averages and standard deviations of synaptic
conductances and firing rate variables. Mean firing rate scaled by synaptic gating yf(tk−1) and its standard deviation
σyf (tk−1) at the (k − 1)th step are convolved with the synaptic kernel Hα to yield the mean synaptic conductance
g(tk) and standard deviation σg(tk) at the kth time step. Applying network connectivity statistics yields the mean total
synaptic conductance G(tk) and its standard deviation σG(tk). A uniform distribution for G along with the defined
distributions for ~P form the joint distribution for (G, ~P ). This joint distribution is then used to calculate the expectations
f(tk), y(tk) of the firing rate and the synaptic gating, respectively, as well as their standard deviations σf (tk) and
σy(tk). To provide a concrete example, here we take ~P to represent the parameters constituting ~P in the SCN model
(see Section 3.3): the circadian proxy R and the GABA reversal potential EGABA.

Statistics for firing rate (f ) and synaptic gating (y)

Since firing rate depends on total synaptic conductance G as well as ~P , its mean across the SCN
network and its standard deviation depend on the distributions of those variables and parameters
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in the network. Viewing G, ~P together as a (1 + m)-dimensional stochastic process (G(t), ~P ),
denote the joint distribution at time t of G(t) and ~P by γt(~x), where ~x represents a particular value
of (G(t), ~P (t)). Letting U = R1+m, the mean firing rate f(t) and its standard deviation σf (t) are
computed as:

f(t) =

∫
U

F (~x)γt(~x)d~x (III.10)

σ2
f (t) =

∫
U

[F (x, y, z)− f(t)]2γt(~x)d~x. (III.11)

Similarly, the mean and standard deviation of the product, yf(t), of firing rate f(t) and synaptic
gating y(t) is computed as

yf(t) =

∫
U

Y F (~x)γt(~x)d~x (III.12)

σ2
yf (t) =

∫
U

[Y F (~x)− yf(t)]2γt(~x)d~x. (III.13)

Statistics for synaptic conductance g

The mean synaptic conductance g and its standard deviation σg across all neurons are computed
using the following equations with the derivations given below:

g(t) = (H ? yf)(t) :=

∫ t

0

H(t− s)yf(s)ds (III.14)

σg(t) = (H ? σyf )(t) :=

∫ t

0

H(t− s)σyf (s)ds, (III.15)

where we assume each gi,j is drawn from the same distribution across all synapses. The g(t)

equation is derived by using the Tonelli-Fubini theorem [Fol99] to pass the expectation through the
integral in Equation III.2:

g(t) = E
[∫ t

0

H(t− s) · yf(s)ds

]
=

∫ t

0

H(t− s)E [yf(s)] ds

=

∫ t

0

H(t− s) · yf(s)ds.

The derivation of the σg(t) equation, on the other hand, is more complicated. Namely, it is true
if the autocorrelation coefficient ρyf (s1, s2) ≈ 1, as shown by [ZVvPTH14]. Indeed, following
the derivation from [ZVvPTH14], rewriting the variance using the normalized autocorrelation
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coefficient of yf(t) at times s1 and s2, ρyf (s1, s2), we have that

V ar (H ? yf) (t) = E
[∫ t

0
H(t− s) · yf(s)ds−

∫ t

0
H(t− s) · yf(s)ds

]2

= E
[∫ t

0
H(t− s) · (yf(s)− yf(s))ds

]2

= E
[∫ t

0
H(t− s1)(yf(s1)− yf(s1))ds1

∫ t

0
H(t− s2)(yf(s2)− yf(s2))ds2

]
= E

[∫ t

0

∫ t

0
H(t− s1)H(t− s2) · (yf(s1)− yf(s1))(yf(s2)− yf(s2))ds1ds2

]
=

∫ t

0

∫ t

0
H(t− s1)H(t− s2) · E

[
(yf(s1)− yf(s1))(yf(s2)− yf(s2))

]
ds1ds2

=

∫ t

0

∫ t

0
H(t− s1)H(t− s2) · ρyf (s1, s2)σyf (s1)σyf (s2)ds1ds2.

The convolution integral, however, only depends on the last few seconds because for t − s ≥ 2

seconds, H(t− s) is on the order of machine precision. But, assuming circadian phase varies slowly
(on the scale of hours), yf should vary slowly enough that it is approximately constant on the scale
of the convolution integral. Therefore, the autocorrelation coefficient ρyf (s1, s2) ≈ 1 for times
s1, s2 within about 2 seconds of one another, and thus

V ar (H ? yf) ≈
∫ t

0

∫ t

0

H(t− s1)H(t− s2)σyf (s1)σyf (s2)ds1ds2

=

∫ t

0

H(t− s1)σyf (s1)ds1

∫ t

0

H(t− s2)σyf (s2)ds2

=

(∫ t

0

H(t− s)σyf (s)ds
)2

,

which yields Equation III.15.

For computational simplicity, we rewrite the convolution integrals Equations III.14 and III.15 as
differential equations:

g′′ = −2τ−1g′ − τ−2g + τ−1eg0yf(t) (III.16)

σ′′g = −2τ−1σ′g − τ−2σg + τ−1eg0σyf (t). (III.17)

The veracity of these differential equations is easily checked (see Appendix 2.5).
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Statistics for total synaptic conductance (G)

From the statistics for synaptic conductance g, we calculate total synaptic conductance Gi of
neuron i by treating it as the compound random variable Gi =

∑Nsyn,i
j=1 gj,i, where Nsyn,i is the

number of incoming synaptic connections and gj,i is the conductance induced at the synapse in
neuron i by the jth synaptic connection. Then, if we assume Nsyn,i and gj,i to be uncorrelated for all
synapses j = 1, ..., Nsyn,i incoming into neuron i, we have

G(t) = N syng(t), (III.18)

where Nsyn is the average number of incoming synapses to a neuron across the network.

To compute the standard deviation, σG(t), of the total synaptic conductance, we assume that
gj,i(t) for all j = 1, ..., Nsyn,i are pairwise conditionally uncorrelated with one another given Nsyn,i.
This means that for all i, j, l,

E[gj,igl,i|Nsyn,i] = E[gl,i|Nsyn,i]E[gj,i|Nsyn,i]. (III.19)

We further need to assume that gj,i(t) for all j = 1, ..., Nsyn,i are independent of Nsyn,i. Or, more
simply we could replace these two assumptions with the stronger assumption that gj,i(t) for all
j = 1, ..., Nsyn,i and Nsyn,i form a mutually independent collection of random variables. In either
case, it suffices to calculate the mean and variance of G for a single neuron, and we have from the
law of total variance that

V ar[G] = E [V ar(Gi|Nsyn,i)] + V ar (E [Gi|Nsyn,i])

= E

V ar
Nsyni∑

j=1

gj,i|Nsyn,i

+ V ar

E

Nsyn,i∑
j=1

gj,i|Nsyn,i


= E

Nsyn,i∑
j=1

V ar (gj,i|Nsyn,i) +

Nsyn,i∑
j=1; j 6=l

(E[gj,igl,i|Nsyn,i]− E[gl,i|Nsyn,i]E[gj,i|Nsyn,i])


+ V ar

Nsyn,i∑
j=1

E [gj,i|Nsyn,i]

 ,

where we use the definition of the variance to expand and simply the first term on the right-hand
side. Using Equation III.19 to further simplify the first term on the right hand side above, and using
the independence of gj,i(t) and Nsyn,i for all j = 1, ..., Nsyn,i to remove the conditionality, we have
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that

V ar[G] = E

Nsyn,i∑
j=1

V ar (gj,i|Nsyn,i)

+ V ar

Nsyn,i∑
j=1

E [gj,i|Nsyn,i]


= E

Nsyn,i∑
j=1

V ar (gj,i)

+ V ar

Nsyn,i∑
j=1

E [gj,i]

 .

Assuming that each Nsyn,i is drawn from the same distribution, just as we have assumed for each
gj,i, we can drop the subscripts from the preceding calculation, obtaining that

V ar[G] = E
[
Nsynσ

2
g

]
+ V ar (Nsyng)

= σ2
gE [Nsyn] + g2V ar (Nsyn) ,

and thus obtaining the expression for the variance of G as appears in [ZVvPTH14]:

σ2
G(t) = V ar(Nsyn)(g(t))2 +Nsynσ

2
g(t). (III.20)

While Equations III.18 and III.20 give the statistics needed for our model algorithm, the
preceding discussion does not specify the shape of the distribution beyond its first and second
moments. However, if Nsyn is large and V ar(Nsyn) is small, then Nsyn,i ≈ N >> 0, some large
constant for all neurons i, and we can invoke the central limit theorem to conclude that G is roughly
normally distributed. If, on the other hand, such conditions fail to hold, yet the distributions of
g and Nsyn are known, one may instead obtain the shape of the distribution of G in terms of its
characteristic function φG (see Appendix 2.3).

Joint distribution of (G, ~P )

We have now discussed how one may find the marginal distribution of (G, ~P ) with respect to G,
but to define Equations III.10 - III.13, one must determine the full joint distribution γt(~x) of the
stochastic process (G(t), ~P (t)) at time t. To do so, we assume that G, and the parameters P1, P2,
..., PM constituting ~P , are independent (see further comments in the Discussion). Hence, the joint
probability distribution function γt at time t is

γt(~x) = PDFG(t)(x1) · PDFP1(t)(x2) · · · · · PDFPm(xm+1), (III.21)

where PDFX(t)(·) represents the probability density function at time t of a stochastic process X(t)

for which the random variable Xt is defined by Xt = X(t) with mean X(t) and standard deviation
σX(t) at time t.

A summary of our mean-field firing-rate model is given below.
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Model Summary

Evolve synaptic conductance statistics g(t) and σg(t) as per Equations III.16 - III.17:

g′′ = −2τ−1g′ − τ−2g + eτ−1eg0yf(t)

σ′′g = −2τ−1σ′g − τ−2σg + τ−1eg0σyf (t),

where yf(t) and σyf (t) are given by Equations III.12 - III.13:

yf(t) =

∫
U
Y F (~x)γt(~x)d~x

σ2
yf (t) =

∫
U

[Y F (~x)− yf(t)]2γt(~x)d~x,

and ~x represents values of (G(t), ~P (t)). Firing-rate statistics are obtained at each time by Equations

III.10 - III.11

f(t) =

∫
U
F (~x)γt(~x)d~x

σf (t) =

∫
U

[F (~x)− f(t)]γt(~x)d~x.

Calculation of yf(t), σyf (t), f(t), and σf (t) requires previous identification of:

1. The neuronal firing rate F and the product of F and the synaptic gating Y , Y F , as functions of

total synaptic conductance G and parameters ~P .

• Computed by numerically integrating the single neuron model and synaptic gating equation

over relevant ranges of G and ~P , and linearly interpolating or fitting a polynomial to the

data as appropriate.

2. The joint probability distribution γt of (G(t), ~P (t)).

• Assume that G and the components P1(t), . . . , Pm(t) of ~P (t) are independent to obtain

Equation III.21:

γt(~x) = PDFG(t)(x1) · PDFP1(t)(x2) · · · · · PDFPm(xm+1),

• To calculate the statistics for G, make the simplifying assumptions (see Section 3.2.2) to

obtain Equations III.18 and III.20:

G(t) = N syng(t)

σ2
G(t) = V ar(Nsyn)(g(t))2 +Nsynσ

2
g(t).
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3.3 Applying the firing-Rate model to the SCN

We implement the mean-field firing-rate model formalism described above to simulate time-
varying circadian modulation of SCN population activity. To do so, we must describe the following,
as discussed below:

• The parameters ~P representing neural and synaptic characteristics that vary across the network
(excluding parameters that specify network connectivity).

• The neuronal firing rate F and the synaptic gating Y , as functions of total synaptic conduc-
tance G and parameters ~P .

• The joint distribution γt of (G(t), ~P (t)).

Values for parameters and quantities used to apply the model to the SCN are given in Table B.1 in
Appendix 2.1, and Appendix 2.2 gives details of the numerical methods used.

3.3.1 Parameters ~P which vary across the SCN network

As discussed in the introduction, we consider two sources of heterogeneity in the SCN network.
One is heterogeneity in the GABA reversal potential of SCN neurons (EGABA) which affects the
response to GABAergic synaptic input. For simplicity, we assume that all synaptic inputs in the
SCN are GABAergic and that EGABA is constant for each neuron across the circadian cycle. The
other source of heterogeneity in the SCN network is the circadian phase experienced by different
neurons across the SCN. To describe this circadian phase, we use the quantity R(t), which is a
measure of the EBOX activity in the molecular clock of individual SCN neurons, and which varies
with a 24hr period corresponding to the circadian cycle.

Hence, in applying the formalism to the SCN, we define ~P (t) as:
~P (t) = (R(t), EGABA). (III.22)

3.3.2 Neuron firing Rate (F ) and synaptic gating (Y ) functions for the SCN network

To compute the neuron firing rate function F , we use the conductance-based SCN neuron model
of Diekman et al. [DBI+13] governed by:

C
dV

dt
= Isyn−INa−IK−ICaL−ICaNonL−IKCa(R)−IK−leak(R)−INa−leak [DBI+13] (III.23)

This Hodgkin-Huxley-type model contains spike-generating Na+ and K+ currents, two inward
Ca2+ currents, a Ca2+-dependent K+ current and Na+- and K+-mediated leak currents. This model
replicates the firing responses of SCN neurons across the circadian cycle by accounting for the
effects of circadian clock genes and proteins on membrane K+ currents. Specifically, the circadian
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proxy parameter R(t) modulates the conductance of the Ca2+-dependent K+ current IKCa and the
K+-mediated leak current IK−leak. Low values of R correspond to circadian phases in the night
and result in no firing or low firing rates in response to low values of input, while higher R values
correspond to circadian phases in the middle of the day and can result in DLAMO firing and DB
states and generally lead to higher signalling strength (Figure III.3).

(a) (b)

(c) (d)

Figure III.3: Diverse firing and synaptic gating behavior at different circadian phases in the biophysical SCN neuron
model [DBI+13]. Voltage V (t) traces (left axes, solid blue lines) and synaptic gating ŷ(t) as a function of V (t) (right
axes, dashed red lines) for values of the circadian proxy R and external applied current Iapp exhibiting four firing
regimes. (a): A neuron at rest, with circadian proxy R = −5 and applied current Iapp = 2 µA/cm2. Such behavior
fails to induce postsynaptic current, and is expected of SCN neurons at night [BDFP09]. (b): A neuron with R = −5
and Iapp = 8 µA/cm2, exhibiting typical action potential (AP) firing. Such behavior results in large synaptic gating
during the AP, and is expected in circadian morning and circadian evening [BDFP09]. (c) A neuron with R = 4 and
Iapp = 8 µA/cm2, exhibiting depolarized low-amplitude membrane oscillations (DLAMOs), where the membrane
voltage oscillates roughly sinusoidally at depolarized voltages. Such behavior decreases synaptic gating and is observed
in some neurons around circadian mid-day. (d) A neuron exhibiting depolarization block, with R = 5 and Iapp = 8
µA/cm2, observed in some SCN neurons in circadian afternoon [BDFP09], where membrane voltage is constant and
elevated due to too much excitation, often resulting in non-zero synaptic gating.

GABAergic synaptic current is modeled as:

Isyn(t) = G(t) · (EGABA − V (t)). (III.24)
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Synaptic gating ŷ is modeled as in [DMB+15, ET10]:

dŷ

dt
= ar ·

1

(1 + exp(−(V (t)− (−20))/3))
· (1− ŷ)− ad · ŷ, (III.25)

where ar and ad characterize the rise and decay rates, respectively, of synaptic gating in response to
presynaptic neuron voltage V (t). See Appendix 2.4 for full equations and parameter values.

To explicitly obtain the functions F and Y (defined by Equation III.9), values ofF (G,R,EGABA)

and Y (G,R,EGABA) were computed for each combination of G, R, and EGABA on the 201-by-
201-by-201 rectangular grid for G ∈ [0, 1], R ∈ [−8.5, 8.5], and EGABA ∈ [−110, 0]. We did so by
numerically integrating Eqs III.23 and III.25, holding G, R and EGABA constant until the numerical
solution settled down to a stationary state. Level surfaces of the resulting data F (G,R,EGABA),
Y (G,R,EGABA) and the product Y F (G,R,EGABA) for different values of EGABA are shown in
Figure III.4. In this figure, boundaries between the different firing regimes–action potential firing,
DLAMO, DB, and resting–are indicated.

Generally, higher values of EGABA have a depolarizing effect on neural activity. For instance,
when EGABA = −110 mV for all neurons in the simulation (leftmost column), synaptic currents are
exclusively inhibitory, causing neurons to exit excited states such as DB, DLAMOs, and AP firing
as G increases, and significantly reducing the size of (G,R) phase space in which such excited
states occur. When EGABA = −55 mV (middle column), synaptic currents are primarily inhibitory,
so that neural activity is in a resting state for high G values, but the region of (G,R) phase space
corresponding to each firing regime is significantly larger. On the other hand, when EGABA = 0

mV (rightmost column), synaptic currents are primarily excitatory, leading to AP firing for low
values of R, and to DB for sufficiently large total synaptic conductances G at all values of R. Hence,
for lower values of EGABA, increasing G generally increases inhibition due to synaptic currents,
pushing neurons from the more excited states, DB, DLAMOs or AP firing, to the least excited state,
resting. Increasing G at higher values of EGABA, on the other hand, increases excitation due to
synaptic currents, having the opposite effect on neural activity.

3.3.3 Joint distribution for G(t), R(t), and EGABA for the SCN network

To apply the model formalism to the SCN network, we write the joint probability distribution
function γt at time t given by Equation III.21 using the parameters composing ~P (t):

γt(x, y, z) = PDFG(t)(x) · PDFR(t)(y) · PDFEGABA(z).

For the EGABA distribution, we follow [DMB+15] and assume a normal distribution across the
SCN, with a mean of −55 mV and standard deviation of 7 mV.
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EGABA = −110 mV EGABA = −55 mV EGABA = 0 mV

Figure III.4: Level surfaces (for fixed EGABA) of firing rate function F (G,R,EGABA) (top row), synaptic gating
function Y (G,R,EGABA) (middle row), and their product Y F (G,R,EGABA) (bottom row) for EGABA = −110
(1st column), −55 (2nd column), and 0 mV (3rd column). Regions of each panel between magenta lines correspond to
action potential firing activity, whereas regions between white lines correspond to DLAMOs, regions between gray
lines and the edges of the panel correspond to DB, and the remaining regions correspond to resting. Synaptic gating
Y varies in these regions (row 2): in action potential firing, Y ∼ 0.965; in DLAMOs, Y ∼ 0.965 near the boundary
between action potential firing and DLAMOs, but rapidly decays away from the boundary; in DB, the firing rate is zero
but synaptic gating ranges from about 0 to about 0.9. When the neuron is at rest, both F and Y are zero.

For the time-varying circadian proxy parameter R(t), we let R vary periodically in the range
[−5, 5] over a circadian period, as suggested in [DMB+15]. To model this simply, we assume that
for any neuron, j, its R value, Rj(t), varies sinusoidally, driven by circadian phase θj(t):

Rj(t) = Rampl sin(θj(t)). (III.26)

We take each θj(t) to follow a Gaussian distribution with mean θ(t) varying linearly over a
circadian period from 0 to 2π. In this way, θ = 3π/2 corresponds to the trough in circadian activity,
for example. We further assume that the standard deviation σθ of the Gaussian distribution is
constant with respect to time. The distribution of Rj(t) is then inherited from the distribution of
θj(t) according to Equation III.26. For computational expediency, we consider a “circadian” period
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of about 43 s, as this is the minimal period needed to eliminate hysteresis in model variables across
the cycle.

Finally, for the G distribution, we make the assumptions under which Equation III.20 holds
and G is normally distributed with mean and standard deviation given by Equations III.18 and
III.20, respectively. To use such equations, though, we must calculate the mean Nsyn and variance
V ar(Nsyn) of the number of presynaptic neurons impinging on each neuron. To carry out the
calculation, we use that the SCN has roughly 20,000 neurons [AMGF+16], N = 10, 000 per
hemisphere. We also use that there are about 3− 12 · 106 [Gül76] synaptic connections per SCN
half, with [MB89] putting the number of synapses closer to the higher end of that range at 11 · 106.
Further, since each synaptic connection represents 1 outgoing connection (from the presynaptic
neuron) and 1 incoming connection (to the postsynaptic neuron), there are 11,000,000 incoming
synaptic connections, and the average number of incoming synapses for SCN neurons should be

Nsyn =
# Incoming Synaptic Connections

# Neurons
= 1100.

We recognize that some recent studies such as [SMW+17] suggest that Nsyn should be closer to 10.
Nevertheless, we have opted to use Nsyn = 1100 until a consensus in the SCN community has been
reached, noting that a reduction in Nsyn leads to similar results after compensating by making a
proportional increase in coupling strength g0.

In any case, to use Equations III.20 for the variance of G, observe that if the SCN were to be
modeled as a Poisson random graph with probability that any two neurons share a synapse being
p = Nsyn/N = 0.11, then via basic properties of expectations and variances:

V ar(Nsyn) = Nsyn · (p− p2) = 979.

On the other hand, if for instance the number of incoming synapses to SCN neurons follows a pure
exponential distribution pk = (1− r)kr where 1 > r > 0 is an unspecified constant, then

Nsyn = 1/r

V ar(Nsyn) = (1− r)/r2 = Nsyn
2
(1− 1/Nsyn) = Nsyn

2 −Nsyn,

and hence if Nsyn = 1100,

V ar(Nsyn) ≈ 11002.

V ar(Nsyn) is also ≈ 11002 if the underlying distribution is log-normal, a common assumption for
cortical brain areas [BM14]. We explore the effects of changing V ar(Nsyn) in Section 3.4.2.
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3.4 Results

Here we present numerical results for our mean-field firing-rate model applied to the SCN
network, considering variation of different neural and network parameters, including maximum
synaptic conductance, mean and variance of synaptic reversal potentials, variance of circadian
phases across the population, and variance of the number of incoming synapses per cell. We consider
different amplitudes of the circadian proxy parameter R(t) to illustrate different ranges of neural
activity across the circadian cycle caused by the diverse firing states of the SCN neuron model. We
summarize the effects of changing these parameters on the SCN firing rate statistics in Table III.1,
and validate the model results against a spiking neuronal network in Appendix 2.6.

3.4.1 Effect of changing g0

To investigate effects of changing maximum synaptic conductance g0, we consider four different
values of g0 (in mS

cm2 ): 10−6 (Very weak), 10−5 (weak), 10−4 (middling strength), and 5·10−4 (strong).
To isolate the effects of g0, we take EGABA = −55mV for all neurons in the network (σEGABA = 0)
and let all neurons have the same circadian phase (σθ = 0) with R values that vary periodically with
different amplitudes (Rampl = 5, 3 and 1). We illustrate our findings in Figure III.5.

As expected, increasing g0 from weak coupling to stronger coupling generally leads to higher
mean firing rates as well as higher standard deviations in firing rates. However, for large Rampl (left
column) and particularly for stronger coupling, firing rates dip at peak R(t), the assumed circadian
mid-day, due to neuronal activity entering the DLAMO region, thus leading to a decrease in synaptic
signaling. For smaller Rampl (middle column), firing rates plateau at “mid-day” but still dip for
sufficiently large g0, whereas for still smaller Rampl values (right column), firing rates vary nearly
sinusoidally, with firing rates being significantly lower for strong coupling than weaker coupling.

To clarify the process by which g0 influences firing rates, the trajectories of mean network con-
ductance G(t) across the R(t) cycle are plotted on the neuronal firing rate surface F (G,R,EGABA)

(curves in panels (g) - (i)). From such plots, it is clear that maximum synaptic conductance g0

greatly affects which neuronal firing regions are sampled as R(t) varies. These plots also clarify
the observed behavior of standard deviations in the firing rates. Notably, comparing panels (g)
- (i) to the standard deviations in panels (d) - (f), there is non-zero standard deviation when the
total synaptic conductances G are well above zero (see black and green curves in panels (g) - (i)).
Moreover, peak standard deviations in panels (d) and (e) for stronger g0 occur when G(t) nears the
boundary of firing regimes. For instance, in panels (g) and (h), firing rate standard deviations are
large near transitions from zero to non-zero firing rates, and remain elevated until G(t) is firmly in
the DLAMO regime. Further, for lowest Rampl (panel (i)), the (G(t), R(t)) trajectory remains near
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the threshold for action potential firing throughout the circadian cycle for strong coupling, resulting
in non-zero standard deviations. These higher standard deviations arise because when we integrate
over the G distribution to calculate the standard deviations of the firing rates, we integrate over the
transition from action potential firing to rest.

(a)
Rampl = 5

(b)
Rampl = 3

(c)
Rampl = 1

(d) (e) (f)

(g) (h) (i)

Figure III.5: Effect of maximum synaptic conductance g0 on network firing rate and standard deviation. (a) - (f): Mean
firing rates f(t) (first row) and standard deviations of firing rates σf (t) (2nd row) over multiple R(t) cycles (circadian
period shortened to ≈ 43s) for 4 different values of maximum synaptic conductance g0 (in mS

cm2 ) ranging from strong
coupling (g0 = 5 · 10−4, black curves) to weak coupling (g0 = 10−6, blue curves). Three amplitudes of circadian
variation are simulated, Rampl = 5 (left column), 3 (middle column) and 1 (right column). (g) - (i): (G(t), R(t))
trajectories are plotted (solid lines) on the neuronal firing rate surface F (G,R,−55) for the same values of g0 as in (a) -
(f). Dashed lines represent boundaries between firing regimes, as in Figure III.4. In all panels, EGABA = −55 mV and
there is zero variance in circadian phase across the network.

3.4.2 Effect of Nsyn distribution

Assuming a different network structure in the SCN without changing the number of neurons or
synapses changes V ar(Nsyn), the variance in the number of incoming synapses per SCN neuron.
In Figure III.6, we consider 4 different values for V ar(Nsyn) representing different network con-
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nectivity structures but assuming N = 10, 000 neurons in the network and Nsyn = 1100 incoming
synapses per neuron on average. Specifically we consider V ar(Nsyn) = 0 representing a network
where all neurons receive the same number of incoming synapses, V ar(Nsyn) = 979 corresponding
to a Poisson distribution in Nsyn characteristic of Poisson random graphs, V ar(Nsyn) = 1.21 · 106

corresponding roughly to exponential or log-normal distributions for Nsyn, and V ar(Nsyn) =

9.79 · 106 corresponding roughly to the maximum possible variance according to the inequality
V ar(Nsyn) ≤ (Nsyn,max−Nsyn)(Nsyn−Nsyn,min) where Nsyn,min and Nsyn,max, the smallest and
largest possible values of Nsyn, are 0 and 10, 000, respectively. As seen in the figure, increasing
V ar(Nsyn) slightly reduces firing rate amplitudes but can increase firing rate standard deviations
considerably. For example, when Rampl = 5, increasing V ar(Nsyn) from 1.21 · 106 to 9.76 · 106

more than doubles firing rate standard deviations.
(a)

Rampl = 5
(b)

Rampl = 3
(c)

Rampl = 1

(d) (e) (f)

(g) (h) (i)

Figure III.6: Effect of V ar(Nsyn), the variance in the number of presynaptic neurons per SCN neuron, on network
firing rate and standard deviation given weak coupling (g0 = 5 · 10−5). (a) - (f): In the top row and middle row, firing
rates and firing rate standard deviations, respectively, are graphed for each of four values of V ar(Nsyn). (g) - (i):
(G(t), R(t)) trajectories are plotted (solid lines) on the neuronal firing rate surface F (G,R,−55) for the same values
of V ar(Nsyn) as in (a) - (f). Dashed lines represent boundaries between firing regimes, as in Figure III.4. The left,
middle, and right columns correspond to values of 5, 3, and 1, respectively, for Rampl, simulated over two shortened
circadian cycles. In all panels, EGABA = −55 mV and there is zero variance in both circadian phase and GABA
reversal potential across the network.
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3.4.3 Effect of circadian phase distribution

Introducing variance in the circadian phases of neurons in the SCN network results in a distribution
of R values. In Figure III.7, circadian phase standard deviation σθ values of 0 (no variation), 0.3

(middling), 0.6 (somewhat large), and 0.9 (very large) radians were considered. Increasing σθ
strongly reduces the amplitude of firing rate oscillations. Even for the largest Rampl, increased σθ
removes the “mid-day” dip because the spread in R(t) values attenuates the influence of DLAMO
and DB behaviors on overall firing rate. Additionally, increasing circadian phase standard deviation
keeps firing rates above zero throughout the R(t) cycle. Standard deviations in firing rate are higher
with increased σθ and remain elevated throughout the circadian cycle for largest σθ.

(a)
Rampl = 5

(b)
Rampl = 3

(c)
Rampl = 1

(d) (e) (f)

(g) (h) (i)

Figure III.7: Effect of introducing variance in circadian phase (given g0 = 5 · 10−5 m
cm2 , EGABA = −55mV , and

σEGABA = 0mV ). (a) - (f): In the top row and middle row, firing rates and firing rate standard deviations, respectively,
are graphed for each of four values of σθ. (g) - (i): (G(t), R(t)) trajectories are plotted (solid lines) on the neuronal
firing rate surface F (G,R,−55) for the same values of σθ as in (a) - (f). Dashed lines represent boundaries between
firing regimes, as in Figure III.4. The left, middle, and right columns correspond to Rampl values of 5, 3, and 1,
respectively, simulated over two shortened circadian cycles.
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3.4.4 Effect of EGABA distribution

From our simulations, the standard deviation in EGABA, σEGABA, has non-negligible effects on
firing rate statistics mainly for large maximal synaptic conductances (g0 ≥ 10−4 nS/cm2). However,
even with strong synaptic coupling, introducing a distribution in EGABA only slightly dampens
firing rate oscillation amplitude (Figure III.8). Indeed, as displayed in panels (a) - (c), firing rates
corresponding to higher values of σEGABA have slightly lower peaks mid-day and higher troughs in
the evening (for lowest Rampl, right column). More visible are the changes in firing rate standard
deviation, where increasing σEGABA significantly increases firing rate standard deviations especially
during mid-day of the circadian cycle (panels (d) - (f) of Figure III.8). Further simulations (not
shown) attempting to isolate the effect of σEGABA on firing rate statistics suggest that, particularly
for weaker coupling strengths, increasing σEGABA primarily plays a role in increasing firing rate
standard deviations around circadian mid-day.

(a)
Rampl = 5

(b)
Rampl = 3

(c)
Rampl = 1

(d) (e) (f)

(g) (h) (i)

Figure III.8: Effect of introducing standard deviation in EGABA given strong coupling (g0 = 5 · 10−4 mS
cm2 , EGABA =

−55mV , and σθ = 0.1). (a) - (f): In the top row and middle row, firing rates and firing rate standard deviations,
respectively, are graphed for each of four values of σEGABA. (g) - (i): (G(t), R(t)) trajectories are plotted (solid lines)
on the neuronal firing rate surface F (G,R,−55) for the same values of σEGABA as in (a) - (f). Dashed lines represent
boundaries between firing regimes, as in Figure III.4. The left, middle, and right columns correspond to Rampl values
of 5, 3, and 1, respectively.
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3.4.5 Combined effects of distributions in circadian phase and EGABA

Here we consider the presumably more physiologically accurate condition where there are distri-
butions of circadian phase and GABA reversal potential across the SCN network. Given a more
realistic σEGABA = 7 along with strong coupling g0 = 5 · 10−4 and some variance in σθ, (Figure
III.9), we see firing-rate oscillations qualitatively similar to those without any variance in EGABA
(σEGABA = 0) but still with variance in circadian phase, as in Figure III.7. With variance in both
circadian phase and EGABA, firing rates are generally several Hz lower than with only variance in
σθ, have means with somewhat lower peaks and higher troughs mid-day, and no secondary peaks at
mid-day. Moreover, the standard deviations of firing rates are considerably larger than in Figure
III.7, particularly for small σθ values and at mid-day in the circadian cycle. This suggests that while
σθ has larger effects on mean firing rates than does σEGABA, both variances increase firing-rate
standard deviations, with σEGABA having a larger effect than σθ at mid-day.

(a)
Rampl = 5

(b)
Rampl = 3

(c)
Rampl = 1

(d) (e) (f)

(g) (h) (i)

Figure III.9: Role of changing variance in circadian phase given significant variance in EGABA and strong coupling
between neurons (g0 = 5 · 10−4 mS

cm2 , EGABA = −55mV , σEGABA = 7mV ). (a) - (f): In the top row and middle
row, firing rates and firing rate standard deviations, respectively, are graphed for each of four values of σEGABA. (g)
- (i): (G(t), R(t)) trajectories are plotted (solid lines) on the neuronal firing rate surface F (G,R,−55) for the same
values of σEGABA as in (a) - (f). Dashed lines represent boundaries between firing regimes, as in Figure III.4. The left,
middle, and right columns correspond to Rampl values of 5, 3, and 1, respectively.
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3.5 Discussion

We have introduced a mean-field firing-rate formalism for a population of neurons whose
electrophysiological characteristics, such as firing responses and synaptic current reversal potentials,
are modeled as probability distributions across the network. Such distributions arise in our formalism
from variability in underlying network parameters, such as network connectivity, or in the case
of the mammalian SCN, molecular clock phase and GABA reversal potential. In applying the
formalism to the SCN, not only have we incorporated variation in circadian phases and GABA
reversal potentials across SCN neurons, but we have incorporated into the model the unusual firing
activity of SCN neurons, including DLAMOs and DB. In doing so, we have provided and illustrated
an unusually flexible firing-rate model formalism which accounts for more varied and complex
neuronal properties than is typical of standard firing-rate models.

3.5.1 Advantages of our mean-field firing-rate formalism

Indeed, the primary advantage of our model is that it allows any electrophysiological properties
which can be incorporated into an underlying single-neuron model to vary roughly on a continuum
across the network. In other words, our model can incorporate heterogeneity in far more diverse
ways than can other firing-rate models. To start, our model allows for arbitrary degree distributions
in the underlying neuronal network, that is, in the number of synapses impinging on postsynaptic
neurons, thereby including the primary source of heterogeneity in firing-rate models appearing in
the treatment of population density approaches from [DJR+08] (see Section 1.4.4), although our
model does not include any noise terms. Further, our model expands upon the treatment of the
two sources of heterogeneity appearing in the famous Wilson-Cowan model [WC72] (see Section
1.4.2). One such source of heterogeneity is that one population of neurons is excitatory while
the other is inhibitory. Our model, on the other hand, by assuming varying GABAergic reversal
potentials, allows postsynaptic currents to excite/inhibit postsynaptic neurons to different degrees
within a single population! The other source of heterogeneity in the Wilson-Cowan model is that
the firing thresholds of neurons differ. Our model also accounts for variable firing thresholds
and variable types of firing activity by allowing parameters such as R and EGABA underlying
individual neuronal dynamics to vary. In doing so, our model also captures the heterogeneities in the
“intrinsic frequencies” of neurons in Ott-Antonsen derived oscillator models appearing in [MPR15]
or [BOF+20] (as introduced in Section 1.4.6), and expands upon this by allowing for different types
of activity such as depolarized low-amplitude membrane oscillations.

To capture all those heterogeneities, our model directly incorporates the dynamics of individual
neurons through model variables and the deterministic “transfer” functions F (G, ~P ) and Y (G, ~P )
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describing the firing-rate and gating of synaptic efficacy, respectively, for a neuron with total synaptic
conductance G and parameters ~P . Consequently, our model allows for the neuronal dynamics to
be complex, so long as F and Y may be computed from appropriate single-neuron models. Only
a few other firing-rate models have successfully incorporated complex neuronal dynamics into
firing-rate models, including the convolutional model with averaging of Zandt et al. [ZVvPTH14],
the population density model of [CG07], and the “master equation” population density model of
[CCDP+20].

A further advantage is that our model describes the mean and variance of firing-rates of neurons
across the network without attempting to calculate the full probability distribution. In this sense, our
model can capture the effects of heterogeneity among neurons in the network better than models
that only describe the means, such as classic firing-rate models, including “convolutional models”.
Describing the variance of firing-rates also informs us about the coherence of the signals output by
the modeled network, which has potentially important physiological outcomes, particularly for the
SCN (see Section 3.5.2). Such descriptions are therefore lacking from models that describe only
mean firing rates, including the foundational models of Wilson-Cowan [WC72], Amari [Ama77],
da Silva et al. [DSHSZ74], and Jansen and Rit [JR95] as discussed in Section 1.4. Nevertheless,
such convolutional models remain popular, being used to model neurological processes in a variety
of contexts, including in dynamic causal modeling as used for understanding brain recording data
(as discussed in Section 1.6), and more (see Section 1.6).

On the other hand, there are firing-rate models which directly output both the means and standard
deviations of the firing rates across the network just as our model does, of which the most relevant
to this discussion is that of Zandt et al. [ZVvPTH14]. Other models, such as the population density
approach (as discussed in Section 1.4.4) describe even more information about the variability in
firing rates across the network–they describe the full probability distribution of firing rates. While
these models provide more information about the effects of heterogeneities, they have largely not
yet been used to describe heterogeneities as varied as the SCN network requires.

Despite these advantages, our model formalism does not account for varying synaptic strengths
across the network. Instead, we considered a homogeneous maximum synaptic conductance g0 for
all synaptic connections. Alternatively, heterogeneous synaptic strengths could be included in our
formalism by considering a weighted sum for the total synaptic conductance Gi(t) in Equation III.4.
For two cases, including weighted synaptic strengths can be directly carried through our model
development. For the case where all outgoing synapses from a presynaptic neuron have the same
weight, a scaling factor wj can be included within the summation of Equation III.4. For the model
derivation, the product of the synaptic gating and firing rate functions Y F (G(t), ~P ) in Equations
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III.12 and III.13 would be scaled by this synaptic weight and its distribution would be included
in the joint distribution γt (defined in Equation III.21). For the second case where all incoming
synapses to a postsynaptic neuron have the same weight, a scaling factor wi can be included within
the summation of Equation III.4. For the model derivation, the statistics of the distribution of wi
would be incorporated into the distribution of total synaptic conductance G(t) in Equations III.18
and III.20, thus modifying the distribution of G(t) in Equation III.21. For the case of completely
heterogeneous synaptic strengths, it is possible to extend the model formalism and derive appropriate
statistics for total synaptic conductance [ZVvPTH14]. However, implementation of the model for
this case would depend on the specific weighted connectivity matrix for the network.

Our model formalism also does not include a spatial component, and thus cannot account for
differences in firing behavior between different portions of a network of neurons. Firing-rate models
which include spatial dependencies are typically called neural field models, as discussed in Section
1.5. Examples of neural field models include that of Amari [Ama77], and more recently the model
of wandering “bumps” by Bressloff [Bre19]. Accounting for spatial distributions of firing rates
could improve analysis of SCN network firing activity, as the SCN is divided into dorsal (shell) and
ventral (core) regions, which some evidence suggests could form functionally distinct compartments
within the SCN [YKL+07]. Extending our formalism to account for spatial statistics of firing rates
may be considered in future work.

3.5.2 Summary of effects of SCN cellular variation

To apply our mean-field firing-rate formalism to the SCN, we have considered the scenario
where SCN firing rates exhibit daily rhythmic oscillations, as observed experimentally in recordings
of SCN neural activity [BP09, MSWA97, MGR86, MRG92, VHM+07]. To generate rhythmic
oscillations, we have forced periodic variation in the circadian proxy parameter R(t). However,
the best time profile for R(t) to accurately simulate the effects of the molecular clock on the
electrophysiological properties of SCN neurons has not been identified. Hence, we have simply
modeled R(t) as sinusoidally varying. Furthermore, experimental recordings of SCN electrical
activity indicate that its rhythmic oscillations can vary under different conditions, such as light
intensity [BOMH+21] and seasonality [VHM+07]. Thus, we have considered multiple sinusoidal
time-profiles for R(t) which induce the various ranges of activity levels that can be generated by
the different firing states observed in the single SCN neuron model.

We have investigated the effects of variation in SCN network properties by simulating the model
under a variety of values for four physiologically relevant parameters: synaptic coupling strength
(g0), variance in the number of synapses incoming to SCN neurons (V ar(Nsyn)), standard deviation
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g0 EGABA V ar(Nsyn) σθ σEGABA

Minimum of f − or None − or None − or None + + or none

Maximum of f − or None + − − −
Amplitude of f Variable Variable Variable − −
Minimum of σf + or None None None + − or none

Maximum of σf + or None + + + −
Amplitude of σf + + − − Variable

Amplitude of Mid-Day Dip − Variable Variable − +

Table III.1: Summary of Effects of Various Parameters on SCN Network Firing Rate Statistics. Parameters correspond
to columns, the types of effects on firing rate statistics correspond to rows, and the entry in each box designates the type
of correlation between the corresponding parameter and corresponding aspect of firing-rate statistics. A “+” indicates
positive correlation, a “-” indicates negative correlation.

in GABA reversal potential (σEGABA), and standard deviation in circadian phase (σθ). We have also
investigated the effects of varying mean GABA reversal potential (EGABA), shown in Appendix
2.7. The primary effects of changing these parameters are reflected in the maximum, minimum,
and amplitude of oscillations of mean firing rates f and standard deviations in firing rates σf across
the simulated circadian cycle. Interestingly, we also find that parameter variation affected the
occurrence of a “mid-day” dip in mean firing rates. The observed effects of these parameters on
firing-rate statistics are summarized in Table III.1, below.

Of all the observed effects on firing rates, perhaps the most physiologically significant are the
effects on the amplitude of firing rate oscillations across the circadian cycle. Indeed, our results
highlight mechanisms which shrink the amplitudes of oscillations in SCN firing rates. Decreased
amplitude of SCN firing rate cycling has been observed in aged rodents [FMD+12], and would
likely lead to reduced amplitude of behavioral circadian rhythms. Such blunting of behavioral
circadian rhythms has likewise been associated with aging [FDR+14, HA+17] as well as with
neurodegenerative diseases such as Alzheimer’s disease [CSH+13, LMH+19, PMvGG18] and
Parkinson’s Disease [CSH+13, LMH+19, vOLH+12, WSW95].

Our results indicate that increasing σθ, the standard deviation in circadian phases across SCN
neurons, strongly decreases the amplitude of firing rates. In terms of our model, this happens
because upon increasing standard deviations in circadian phase, the range of neuron firing states
grows wider. Indeed, with a large standard deviation in circadian phase, in the middle of the
circadian night, a typical neuron might be at rest, but other neurons whose phases correspond to
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earlier or later circadian times could be in the action potential firing regime, thus increasing the
minimum average firing rate. Similarly, lower average firing rates may occur in the middle of the
circadian day due to some neurons firing at lower frequencies. Physiologically, wider standard
deviations in circadian phase would correspond to desynchronization in the molecular clocks of
SCN neurons. Desynchronization of gene expression rhythms in the SCN has been observed in
aged rodents [NNT+15] and also in rodents in response to abrupt shifts in the light:dark cycle, as
would occur with jet lag [NAN+03].

Another parameter whose growth reduced the amplitude of firing rates is σEGABA, the standard
deviation of GABA reversal potentials across the SCN network. GABAergic neurotransmission
is fundamental in the SCN [MS93] and consists of both synaptic GABA currents as well as
extrasynaptic tonic GABA-receptor mediated currents [MCA21]. Differences in the locations of
synaptic and extrasynaptic GABA receptors and in the local chloride concentrations may lead to
differences in effective GABA reversal potentials. In our formalism, accounting for variance in
EGABA can reflect such diversity of GABA-mediated signaling in the network. Moreover, wider
variations in EGABA values lead to wider variations in synaptic signaling and thus firing responses
across the network. However, large effects of σEGABA on mean firing rates were observed only
when coupling strength between neurons was high, i.e. when total synaptic conductance was high.

While coupling strength g0 had some effect on the amplitude of oscillations in mean SCN firing
rates, its effects were more nonlinear than those of other parameters. Most notable is that g0 mainly
affects firing rates near circadian “mid-day”. This is because the coupling g0 between two neurons
only matters when the presynaptic neuron is active. Since most SCN neurons are intrinsically
active at times near “mid-day”, whereas few neurons are active near circadian “midnight”, neuronal
signaling has the largest capacity to be influenced by g0 near “mid-day”. In particular, for low
values of g0, mean firing rates show three peaks around “mid-day”, one shortly before “mid-day”, a
second at circadian maximum (i.e. for maximal R), and the third shortly after mid-day. These peaks
reflect variations in activity and synaptic signaling as R(t) and G(t) values traverse the DLAMO
region of the F (G,R,EGABA) surfaces. Increasing g0 from weak coupling reduces and eventually
eliminates the second peak at “mid-day”, resulting in a “mid-day” dip in firing rates.

Variability in the level of high SCN neural activity, including dips, has been observed in
recordings of SCN neural firing activity particularly under long photoperiods [MZJS00, VHM+07].
While the significance of such mid-day dips in SCN firing rates is unclear, we speculate that they
could contribute to the well-documented increased tendency to sleep in afternoons [BD89] and the
afternoon dip in alertness [MH94] in humans.

Other phenomena predicted by our model are that the standard deviations of firing rates are

149



highly variable, varying in patterns similar to the variations in firing rates, but often surging at
circadian “sunrise” and “sunset”. Tracking trajectories of total synaptic conductances show that these
surges occur when neural firing states approach and cross boundaries between firing regimes–where
sunrise corresponds to the transition from rest to action potential firing, and sunset corresponds
to the transition from AP firing to rest. Recordings of individual SCN neural activity show high
variance, particularly in the dorsal region, with some units reaching peak firing at the transition when
lights turn on or off, in contrast to the majority of units firing during lights on [BP09]. The high
firing-rate variance at these transitions suggests that SCN signaling may become more incoherent
and perhaps contribute to “sundowning” [KTSK11], in which certain neuropsychiatric conditions
become exacerbated in dementia patients, for example, at or around sunset. There is evidence that
sundowning is mediated by degeneration of the SCN [KTSK11] and can be improved with bright
light therapy which increases amplitude and reduces variance in SCN neural activity [BOMH+21].

Outside of this surging tendency at boundaries between firing regimes, firing rate standard
deviations were strongly positively correlated with the total synaptic conductance G. Hence,
increasing parameters which increased total synaptic conductance, such as maximum synaptic
conductance g0, tended to increase standard deviations of firing rates. Firing rate standard deviations
also increased as standard deviations in EGABA, in circadian phases, and in Nsyn increased. Notably,
the increase in firing-rate standard deviation as V ar(Nsyn) increased appeared to be the only strong
effect on network firing rate statistics of changing the network connectivity structure, when average
connection density N syn was held constant.

3.5.3 SCN model limitations

Despite the potential predictive power of our model, our results have several limitations. In
particular, we have assumed that the mean circadian proxy R(t) varies sinusoidally throughout the
day. As mentioned above, this assumption captures the observed oscillations in firing characteristics
of SCN neurons [BOMB+21, BDFP09] and generates the observed oscillations in firing rates
[BP09, MSWA97, MGR86, MRG92, VHM+07]. However, a more accurate time-profile for R(t)

may be determined by matching experimental data on the time course of daily changes in SCN firing
properties with the effects of R on firing state in the SCN neuron model. Existing data provides
information on SCN neural firing at different time points across the day, and current work is focused
on estimating the appropriate continuous time-profile to capture this data. Further work is needed,
however, to understand how external light schedules may influence the course of SCN neuron firing
patterns across the day.

Model results would also be improved by incorporating additional distributions of properties
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of SCN neurons. For example, variation in the period of the molecular circadian clocks across the
SCN could be included. It may also be appropriate to incorporate spatial heterogeneity into our
model. Indeed, as mentioned earlier in the Discussion, it may be appropriate to model the SCN as
two populations–one population each for the dorsal (core) and ventral (shell) portions of the SCN.
Not only may these regions play functionally different roles in the SCN [YKL+07], but important
neuronal properties may differ between these regions. For instance, EGABA is typically lower in the
ventral than the dorsal SCN [DMB+15], and differences in circadian phases between the dorsal and
ventral SCN have been reported [ELCCD13].

Further, studies such as [AMGF+16] indicate that ventral SCN neurons have more functional
connections than do dorsal SCN neurons. This in turn suggests that neurons in the ventral SCN
may share a larger number of synaptic connections with other SCN neurons than do dorsal SCN
neurons. Due to the larger number of synapses, ventral SCN neurons would likely experience
more synaptic signaling and thus higher total synaptic conductances G than dorsal SCN neurons.
Because ventral SCN neurons, as mentioned above, also have lower values of EGABA, there would
be an anticorrelation between G and EGABA in the SCN. Such anticorrelation would violate the
assumption of independence we have made to calculate the probability distribution of (G,R,EGABA)

across SCN neurons, potentially altering predicted mean firing-rates.

Finally, even if such assumptions of independence are not violated, it is not clear what the
distribution of the total synaptic conductanceG, alone, should be at any particular time. Indeed, even
though we have provided conditions that would makeG normally distributed, such conditions require
that V ar(Nsyn) be much smaller than Nsyn, which is unknown. Nevertheless, the aforementioned
functional connectivity study finds that functional connections in the SCN follow a power-law
degree distribution [AMGF+16], which, if also true of the synaptic connections, would help us
better understand the distribution of G.

Also potentially affecting the distribution of G and SCN firing activity in general is the presence
of gap junctions in the SCN. Indeed, it has been shown that gap junctions play a role, in particular,
in synchronizing SCN neurons [WCW14]. However, our model only takes into account chemical
synapses in its current formulation, and as it only summarizes firing-rate statistics, is not able to
directly account for synchrony between SCN neurons.

3.5.4 Conclusions

Despite the limitations, our mean-field firing-rate model for the SCN network makes predictions
about the effects on population firing statistics of the unique properties of the SCN neural network,
such as circadian phase effects on firing state, distributions of GABA reversal potentials, and
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modulation of synaptic signaling due to atypical neuron firing states. In doing so, our model
clarifies how these properties can lead to circadian disruptions, such as the blunted circadian rhythm
amplitude associated with aging and neurophysiological diseases. More generally, our model
formalism provides a new method to capture the effects of heterogeneity in the electrophysiological
properties across neurons on the network firing rate statistics.
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CHAPTER IV

Modeling the Effect of Varying Light Schedules on SCN Firing-Rates

4.1 Introduction

4.1.1 Light and circadian rhythms

The behavior of mammals is adapted to the environmental light cycle of the daily sunrise and
sunset [MB22]. For example, humans are typically active during the day. Many rodents, on the other
hand, are typically active during the night. Such synchronization of behavioral rhythms with the
environmental light cycle likely serves an evolutionary purpose [BTDB17]. Indeed, many mammals
that are awake during the day, such as humans, lack the visual acuity needed to find food at night.

Along with activity patterns a number of other mammalian physiological processes are also
synchronized to the light-dark cycle [FK17]. For instance, in humans, body temperature, the levels
of the stress-inducing hormone cortisol, and metabolic activity all peak during the light phase
[FK17]. Such 24 hour rhythmic processes, as discussed in the previous chapter, are called circadian
rhythms.

The proper timing and robustness of circadian rhythms with daily rest and waking activity
patterns is critical for health [FK17]. In particular, it is critical that the circadian rhythms in different
physiological processes are correctly aligned with one another. Indeed, circadian misalignment has
been shown to be a risk factor for diabetes [PR22], heart disease [CVWS19], and cancer [SK19].

The importance of circadian alignment is especially clear when individuals fly across a number
of time zones [FK17]. With the change in the timing of rest and waking activity, individuals may
feel groggy while awake, feel hungry at unusual times of day, and have difficulty sleeping when it is
dark outside. This experience of jet-lag arises because circadian rhythms may be more aligned with
the usual light-dark cycle at their origin location, rather than with the new environmental light cycle
at their destination location.

However, circadian misalignment isn’t limited to long-distance air travel. For instance, many
high-school and college students go to bed earlier and wake up earlier on school nights. On the
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other hand, on the weekend, they stay up late, sleep longer in the mornings and may sleep for longer
durations to make up for any sleep deprivation they incurred during the week. Unfortunately, the
rapid change in sleep schedule going from weekdays to weekends and vice versa disrupts circadian
rhythms and can lead to jet-lag like symptoms. Hence, this phenomenon has been termed social
jet-lag [WDMR06].

Another source of circadian misalignment arises from shift work [BBK22]. Of particular
concern is shift work that involves switching between day shifts and night shifts (see [BBK22]).
Such rapid changes in activity rhythms lead to jet-lag like issues, where circadian rhythms fail to
change fast enough to keep up with the rapid shift in the times of day where the workers need to be
awake and alert. Moreover, because switching between day and night shifts may occur frequently
for months or years, the frequent jet-lag like symptoms can negatively impact quality of life (see
[NKS+18, KKL+16])1.

Thus, it is vital to understand how circadian misalignment arises and how it is corrected. In
particular, it is crucial to understand what aspects of our environment affect circadian rhythms, and
to understand how such interactions occur. Much research has been dedicated towards doing so
over the past fifty years or so (see e.g. [GR10] and [GRPK19] for reviews). Such research has
identified that the most important environmental stimulus for altering our circadian rhythms is likely
environmental light [MM97].

In particular, researchers have identified the pathway by which external light alters circadian
rhythms [MM97], as discussed briefly in the preceding chapter. This pathway starts when light,
particularly blue light, hits the retina, and interacts with cells known as intrinsically photosensitive
retinal ganglion cells (ipRGCs). These cells are similar to cones and rods in the retina, which react
to photons by sending signals towards the visual cortex, and help you develop a visual representation
of the world around you. However, unlike cones and rods, ipRGCs generally do not contribute to
vision, nor are their signals initially processed by the thalamus, as most other sensory input would
be. Instead, signals from the ipRGCs are transmitted directly to the mammalian master clock–the
suprachiasmatic nucleus (SCN)–via the retinohypothalamic tract (RHT) [MM97].

The signals from the ipRGCs, after passing through the RHT, arrive at particular neurons
throughout the SCN [FCHC16]. The signals then coordinate intracellular transcription and transla-
tion processes of genes and proteins, such as PER genes in the Period family, within these neurons
[HMB18]. Specifically, these molecular interactions result in periodic gene and protein expression
that has an approximately 24 hour period. Namely, experiments suggest that inputs from the ipRGCs

1A range of types of shift work, beyond rotating shift work, negatively affects quality of life. [BBK22, FK17,
NKS+18, KKL+16]
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synchronize the rhythms of these intracellular transriptional-translational feedback loops (TTFLs)
in SCN cells to environmental light (see chapter 5 of [FK17]).

The proteins and genes expressed through the intracellular TTFLs affect the electrophysiological
membrane properties of SCN neurons resulting in a daily rhythm of firing activity [JM16]. As a
result of the entrainment of TTFL rhythms by light input, both PER1-expressing [BDFP09, JM16]
and non-PER1-expressing SCN neurons are most active during the light cycle, and least active
during the dark cycle [BDFP09], as seen in Figure IV.1. PER1-expressing neurons may, in particular,
be critical for phasing the rhythms of the intracellular TTFLs with firing-rate rhythms in the SCN
[JM16]. This is important because coordination of “downstream” processes, such as rhythms in the
sleep-promoting hormone melatonin (but not so much in behavioral activity rhythms, see [SLTL96]),
by the SCN is in large part due to synaptic signaling [SLCG05]. Indeed, SCN neurons are known to
project to brain regions related to sleep regulation (see [AM01]), and transplanting healthy SCN
tissue fails to restore circadian rhythms, particularly in endocrine rhythms [MBJM+99], in mice
with damaged SCNs. Moreover, much of the information about such synaptic signaling is carried
along the firing-rates of the SCN [JTM15], (see Figure IV.1).

(a) (b)

Image source: [MSWA97]

Figure IV.1: How light from the eye coordinates circadian processes throughout the body. (a): Light reaches the eye,
and induces signals to be sent from the retina to the suprachiasmatic nucleus (SCN) via the retinohypothalamic tract
(RHT). The light entrains SCN neuron firing activity to the external light-dark cycle, which then coordinates a variety
of bodily processes with 24-hr rhythms. Such processes include the sleep-wake cycle, appetite rhythms, and blood
pressure rhythms. (b): The SCN likely coordinates such processes by sending out robust 24-hr oscillatory signals
described by the firing-rate of its neurons. Panel (a) is from [HMB18], and (b) is from [MSWA97].

4.1.2 Overview of modeling goals

Indeed, the pathway by which light influences firing rates of SCN neurons is complicated, and
has not been completely experimentally identified. To contribute to our understanding of how
varying the external light schedule affects SCN firing rates, we turn to modeling. In particular, we
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seek to create a mechanistic model of how external light specifically affects SCN firing rate (see
[DMB+15] for a related model). To do so, we extend the the previous chapter’s firing rate model
developed for the SCN.

In particular, we model light effects on SCN firing rate as a 3 step process:

1. Input light schedules to a network model for SCN molecular clock phases (θ) [HBF19a].
This step models how altering the external light cycle affects statistics of the phases of the
molecular clocks contained within individual PER-expressing SCN neurons.

2. Convert molecular clock phase to the circadian phase proxy (R) discussed in the preceding
chapter. This step involves mapping the phases of the molecular clocks to the firing activity of
the SCN neurons. In particular, from the statistics for molecular clock phase, this step should
output the statistics for R.

3. Input R statistics into our SCN firing rate model. The statistics for R will influence the mean
and standard deviation of the firing rates across SCN neurons.

We illustrate the model in Figure IV.2.

Figure IV.2: Model of the pathway by which light entrains SCN firing rate statistics. We propose (1) using a model
to describe how external light affects the intracellular molecular clock that keep track of time within individual SCN
neurons. Then, we propose (2) arriving at statistics for the quantity R which alters the electrophysiological state of SCN
neurons in the single neuron model of [DBI+13] from the molecular clock phase statistics in SCN neurons. Finally, (3),
we propose using the statistics of R in the SCN firing rate model we described in the preceding chapter.

This project is still a work in progress. Hence, in this chapter, we discuss our preliminary
results. We begin by discussing step (1), where we provide background for the Hannay et al. model
[HBF19a] in Section 4.2.1, and discuss how it links environmental light to phases of oscillators
underlying the generation of circadian rhythms. We then provide background for step (2), discussing
preliminary efforts to link phases of molecular clocks to the electrophysiological state of neurons
via the SCN single neuron model of [DBI+13], all in Section 4.2.2. We briefly explain how to
combine steps (1) and (2) to find more realistic inputs to our SCN firing-rate model in step (3) in
Section 4.2.3, although, largely, we explain how to combine steps (1) and (2) in Sections 4.2.2 and

156



4.2.3. In Section 4.2.4, we show simulations of the preliminary model of the full pathway by which
environmental light affects SCN outputs. In doing so, we illustrate that this model has the potential
to capture important information not described by existing models of the pathway.

For the remainder of this chapter, we summarize the work we have done towards completing step
(2). Namely, we present results on expressing the electrophysiological activity of PER1-expressing
SCN neurons in terms of rhythms in two potassium conductances according to data from [BDFP09].
These potassium conductances have been found to be the primary physiological changes to SCN
neurons throughout the day [BDFP09], and thus may be the means by which the molecular clock
affects the firing-activity of the neurons [DBI+13]. In particular, we simulate the model from
[DBI+13] for a wide range of combinations of those potassium conductances, and identify firing-
rates and average membrane voltages for each of those combinations. We incorporate heterogeneity
in those potassium conductances by integrating the firing-rate and membrane voltages against a
multivariate normal distribution of those potassium conductances. We then match the resulting
population-average firing-rates and population-average membrane voltages to those computed from
experimental recordings of firing-rates and membrane voltages from actual SCN neurons across the
24 hr day.

We conclude the chapter by discussing the work we have done (Section 4.4). We further discuss
limitations of the work in Section 4.4.1, and begin to discuss how we can go about improving our
model.

4.2 Firing-rate models have the potential to provide information not captured by standard
biological clock oscillator models

4.2.1 Model for statistics of molecular circadian phase

We use the model of Hannay et al. [HBF19a] to complete step (1). In [HBF19a], the authors
start by treating the SCN as a system of coupled oscillators according to [HBF19b]. In particular,
the authors assume that the intracellular molecular clock in each SCN neuron produces regular
oscillations of protein expression so that each neuron i has a phase φi. The neurons are assumed to
be coupled sufficiently weakly that the oscillator network dynamics can be reduced to the system
of coupled Kuramoto phase oscillators [HBF19b]. As such, φi can be expressed as an ordinary
differential equation, wherein in the absence of external input, φi increases linearly at a rate ωi,
which corresponds to the oscillator’s intrinsic frequency:

dφi
dt

= ωi (in the absence of noise and external inputs)
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However, as neuron dynamics are intrinsically noisy due to stochastic opening of ion channels, the
authors assume φi dynamics are subject to the influence of additive white noise of the form

additive white noise =
√
Dηi(t),

where
√
D is the strength of the noise and η is the white noise itself. Coupling between SCN

neurons is modeled as in Kuramoto networks wherein a larger difference in phases between neurons
i and j causes a faster increase in the rate at which the phase of neuron i tends toward the phase of
neuron j, according to

coupling between neurons = K sin(φj − φi + β),

where K is the strength of the coupling, and β represents an offset in the phases at which the
coupling is strongest. Combining these terms describes a Kuramoto network of N weakly coupled
oscillators, where the phase of oscillator i is modeled as

dφi
dt

= ωi +
√
Dηi(t) +

K

N

N∑
i=1

sin(φj − φi + β) .

Hannay et al. [HBF19a] use this model to describe the dynamics of molecular clock phases in SCN
neurons. However, the preceding description is lacking the response of SCN molecular clocks to
external light.

To incorporate light into the preceding Kuramoto-type system of equations, the authors assume
that the clock phase of neuron i responds to light according to its phase response curve. The phase
response curve Q(φi), describes how much the clock phase of the neuron advances, (i.e. the phase
value becomes what it would be later in the day), or delays, (i.e. the phase value becomes what it
was earlier in the day), in response to external light stimuli. Thus, if light were to advance the phase
of neuron i, the rate of change of φi should increase proportionally to the size of the advance. The
authors assume the corresponding proportionality is given by the strength B(t) of the light signal
arriving from the RHT:

change in
dφi
dt
∝ B(t)Q(φi),

where B(t) is derived from the Process L formalism described in [KFJ99]. The resulting phase
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oscillator network model is then

dφi
dt

= ωi +
√
Dηi(t) +

K

N

N∑
i=1

sin(φj − φi + β) +B(t)Q(φi).

The authors then reduce this N -dimensional system to a low-dimensional system of differential
equations using an Ott-Antonsen [OA08] approach, adapted to fit a more realistic distribution of
the intrinsic frequencies ωi according to the reduction from [HBF19a]. The resulting macroscopic
description of the network dynamics describes the time evolution of the (first order) Kuramoto order
parameters ψ and Rk. Rk describes the coherence of the oscillators, or amplitude of the collective
oscillations in phase, and is computed by mapping the phases onto the complex unit circle, finding
the average of the resulting complex numbers, and computing the corresponding magnitude:

Rk :=

∣∣∣∣∣ 1

N

N∑
i=1

eiφi

∣∣∣∣∣ .
Notably, when Rk = 1, all neurons have exactly the same phase, and thus the network is completely
synchronous. In contrast, when Rk = 0, phases are uniformly distributed in [0, 2π], and so the
network is completely asynchronous. The order parameter ψ, on the other hand, describes the mean
phase of the oscillators across the network, and is given by mapping the phases on the complex unit
circle, taking the average, and computing the corresponding argument:

ψ = Arg

(
1

N

N∑
i=1

eiφi

)
.

Because under robust light schedules and behavioral rhythms, the molecular clock in SCN cells
essentially keeps track of the time of day (see e.g. [HMB18]), we expect ψ for the SCN to progress
more or less linearly from 0 to 2π throughout the 24 hr day. The Hannay et al. model [HBF19a]
tracks the impact of light on the Kuramoto order parameters ψ and Rk (see [HBF19a] for a full
description of model equations and parameters).

To incorporate light effects on clock phases in the SCN from the Hannay model into the model
of the pathway for light effects on the firing rates of SCN neurons, we treat the Kuramoto order
parameters as describing the statistics of the phases of the molecular clocks contained in SCN
neurons (below in Section 4.4.1 we discuss limitations of this interpretation).

Besides the mean and amplitude of the molecular clock phases, we can describe the full
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distribution of phases from the complete set of Kuramoto order parameters Zn defined by:

Zn :=
1

N

N∑
k=1

einφk .

That is, Zn is simply the average of einφ across the network. We can re-express Zn in terms of the
circular probability distribution ρ(φ, t), i.e. the probability that a molecular clock has phase φ at
time t. To do so, we simply use the standard computation of the average across the network applied
to einφ:

Zn ≈
∫ 2π

0

ρ(φ, t)einφdφ,

which happens to be (2π times) the nth Fourier coefficient of the distribution. Hannay et al.
[HBF19b] show how the system for Zn can be closed so that phase dynamics appropriately fit
experimental measurements of SCN cell molecular phases.

To describe this closure of Zn, it helps to introduce the higher order parameters Rk,n and ψn:

Rk,n := |Zn|
ψn = Arg(Zn)

so that

Zn = Rk,ne
iψn .

Hannay et al. [HBF19b] show that for molecular phases of SCN neurons the following closure is
appropriate:

Rk,n = Rn2

k

ψn = nψ

Using this, we rewrite ρ in terms of its Fourier series,

ρ(φ, t) =
∞∑

n=−∞

Zn
2π
e−inφ
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which can now be expressed in terms of Rk and ψ:

ρ(φ, t) =
Z0

2π
+

∞∑
n=−∞,n6=0

Zn
2π
e−inφ

≈ Rk,0

2π
+

∞∑
n=−∞,n6=0

Rn2

k e
inψ

2π
e−inφ.

Using that Rk,0 = 1 by definition, applying Euler’s formula, and then rearranging and canceling
terms yields the phase-amplitude form of the Fourier series for ρ(φ, t):

ρ(φ, t) =
1

2π
+

1

2π

∞∑
n=−∞,n 6=0

Rn2

k e
in(ψ−φ)

=
1

2π
+

1

2π

(
∞∑

n=−∞,n6=0

Rn2

k [cos(n(ψ − φ)) + i sin(n(ψ − φ))]

)

=
1

2π
+

1

2π

(
−1∑

n=−∞

Rn2

k [cos(n(ψ − φ)) + i sin(n(ψ − φ))] +
∞∑
n=1

Rn2

k [cos(n(ψ − φ)) + i sin(n(ψ − φ))]

)

=
1

2π
+

1

2π

(
∞∑
n=1

Rn2

k [cos(n(ψ − φ)) + cos(−n(ψ − φ)) + i[sin(n(ψ − φ)) + sin(−n(ψ − φ))]

)

=
1

2π
+

1

2π

(
∞∑
n=1

Rn2

k 2 cos(n(ψ − φ))

)

=
1

2π
+

1

π

∞∑
n=1

Rn2

k cos(n(ψ − φ)).

This series converges as long as |Z1| := Rk < 1, which is almost always the case. Note that the
distribution can be expressed using the Jacobi-theta function:

ρ(φ, t) =
1

2π
Θ

(−(ψ − φ)

2π
,Rk

)
,

where

Θ(z, q) :=
∞∑

n=−∞

qn
2

einz.

Hence, we can obtain the distribution of circadian phases φi from Rk and ψ computed by the
Hannay model.

It turns out that the Fourier series we have just identified is the Fourier series for a wrapped
normal distribution. Indeed, if σ is defined so that

Rk = e−σ
2/2,
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then,

Rn2

k e
iψn = e−n

2σ2/2eiψn,

which is (2π times) the nth Fourier coefficient for the wrapped normal distribution of φi values with
mean µ and variance σ2 given by

µ = ψ

σ2 = −2 ln(Rk).

Because ρ(φ, t) has the same Fourier series as does the wrapped normal distribution with the
preceding parameters, ρ(φ, t) is the preceding wrapped normal distribution.

The fact that ρ(φ, t) follows a wrapped normal distribution allows us to seamlessly integrate
the mean phase ψ and amplitude Rk variables of the Hannay model into our firing-rate model for
the SCN. It is not so clear at first, though, that in our firing-rate model, that “seamless integration”
is possible. Indeed, in our firing-rate model, we never explicitly state that we are assuming a
wrapped-Gaussian distribution for circadian phase. Specifically, in our firing-rate model, we have
assumed that circadian phases θ are normally distributed with mean θ and standard deviation σθ, and
that θ can (theoretically) take any value in (−∞,∞). However, θ is a phase, and thus effectively
lives on the unit circle. The aforementioned normal distribution, thus is an “unwrapped” version
of the corresponding wrapped normal distribution which describes the distribution of phases on
the unit circle. Thus, for all intents and purposes, we treat θ as being distributed according to a
wrapped Gaussian. Namely, in our firing-rate model, we take θ into account only when we calculate
the firing-rate statistics by integrating across the distribution of R. In particular, in Equations III.10,
III.11, III.12, III.13 from the firing-rate model (see IV), we integrate, for example, the firing-rate
function F (G,R(θ), EGaba) against the distribution of θ, integrating over an interval 10 standard
deviations of θ long, centered at the mean θ. However, because R(θ) is 2π-periodic, integrating
against θ over that range amounts to integrating over the wrapped Gaussian.

4.2.2 Mapping molecular clock phases to firing activity of SCN neurons

To incorporate the wrapped-normal distribution of circadian phases output by the Hannay model
into our firing-rate model for the SCN, we need to find the relationship between circadian phase θ
and the quantity R which modulates the electrophysiological state of SCN neurons, as per Diekman
et al. in [DBI+13]. Recall that in the simulations of our firing-rate model in the preceding chapter,
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we assumed that this relationship was given by

R = 5 sin(θ).

To improve upon the choice of the function that maps θ to R, we use a model developed by Alicia
Colclasure (formerly at Colorado School of Mines) and Cecilia Diniz Behn (Colorado School of
Mines) in unpublished work.

To find an improved relationship between θ and R, they examined the daily time course of SCN
neuron firing changes predicted by the model of [DBI+13]. Diekman et al. model individual SCN
neurons in the Hodgkin-Huxley formalism with an applied current, Iapp, two sodium currents, two
calcium currents, as well as three potassium currents:

C
dV

dt
= Iapp − INa − IK − ICaL − ICaNonL − IKCa(R)− IK−leak(R)− INa−leak.

We discuss the details of this model in the appendix and Table B.3. Notably, two of these currents–the
potassium leak current IK−leak and the current through calcium mediated potassium channels IKCa–
depend on the parameter R. R controls these potassium currents by modulating their maximum
conductances, gK−leak and gKCa. Thus,

IKCa = gKCa(R)(V − EK)

IK−leak = gK−leak(R)(V − EK),

where EK is the reversal potential of potassium, (i.e. the membrane potential at which the diffusion
force of K+ ions due to concentration differences across the cell membrane is balanced with the
electrical forces generated by the potential difference across the cell membrane). Specifically, the
two conductances are modeled to be inversely proportional to exp(R), according to:

gKCa(R) = 2 +
198

1 + exp(R)

gK−leak(R) =
0.2

1 + exp(R)
.

Moreover, as shown by [BDFP09], out of a number of the known currents affecting the
electrophysiological behavior of SCN neurons, it is variations in the potassium currents driven
by variations in the corresponding conductances that vary across the circadian day (also see
[POM06, MWM+06, KM04] for evidence indicating the circadian variability of these currents, and
[Col11] for a review of the link between molecular clocks and electrophysiological state of SCN
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neurons). Accordingly, Diekman et al. drive the potassium conductances gKCa and gK−leak by
varying R across the circadian day (hence we call R the “circadian proxy”, in Chapter III). For the
time-dependence of R, they adapt a well-known model of biochemical oscillations–the Goodwin
oscillator (see [GR21] for a review)–to describe the molecular clocks within SCN cells. Thus, as
time progresses across the 24 hr day, so does R. As a result, the values of (gKCa, gK−leak) trace out
a closed loop in (gKCa, gK−leak) parameter space.

Further, as (gKCa, gK−leak) vary with R, the electrophysiological state of the neuron changes,
so that when R is low, the neuron is in a hyperpolarized state, such as rest. However, as R increases,
the neuron enters more depolarized states, transitioning from rest, to action potential spiking,
to depolarized low amplitude membrane oscillations (DLAMOs, as discussed in chapter IV), to
depolarization block.

(a) (b)

Figure IV.3: The relationship between R and θ proposed by Colclasure and Diniz Behn. (a): R as a function of θ. (b):
The corresponding firing-rate and time-averaged membrane voltages for an SCN neuron as described by the Diekman et
al. model of [DBI+13].

However, Alicia Colclasure and Cecilia Diniz Behn note that if R varies as predicted by
[DBI+13], then the timing of the predicted electrophysiological states of the neuron fail to match
the timing of the electrophysiological states observed by Belle et al. in [BDFP09]. To correct this,
Colclasure and Diniz Behn revise the dependence of R on circadian phase θ, as pictured in Figure
IV.3. The resulting neuron firing rates and membrane voltage traces are shown in Figure IV.3.b. As
can be seen from the figure, the model of SCN neurons using the newR function produces consistent
firing activity throughout the day. This new function is somewhat in agreement with data from
[BDFP09] concerning non-PER1-expressing neurons, but is not in agreement with experimental
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data from Belle et al. in [BDFP09] concerning PER1 neurons. Thus, revisions of this R(θ) function
need to be made to be able to describe PER1-expressing neurons. We discuss such revisions in
Section 4.3. In the next section, we implement the Colclasure-Diniz Behn R(θ) function to predict
how light-induced changes in circadian phases affect SCN firing rates.

4.2.3 Modeling light’s effects on statistics of SCN firing rates

With a defined R(θ) function, we can directly input the time-varying statistics of circadian
phases output by the Hannay model into our SCN firing-rate model to predict the effects of changing
light schedules. To obtain preliminary results, we use the Colclasure-Diniz Behn R(θ) function.

4.2.4 Preliminary results

To illustrate the potential usefulness of our model, we apply the model to a jet lag event. In this
jet lag event, an individual travels 8 time zones west via plane, so that they are exposed to light for
an extra 8 hours late in the day. For simplicity, we set the intensity of light exposure to around 1000
lux whenever it is light outside (such a light intensity corresponds to sitting near a window during
the day), and to 0 lux whenever it is dark outside. During the jet lag event, we simply extend the
1000 lux period so it lasts an additional 8 hrs at the end of the day. The resulting light schedule
would then be the one shown in Figure IV.4, where we take the jet lag event to occur on day 6.

Figure IV.4: A jet lag light schedule for someone traveling
8 time zones west. From days 0 - 5, the individual is in
complete darkness (0 light intensity) from midnight to 8
a.m, and in light with intensity resembling filtered sunlight
from 8 a.m to midnight. However, on day 6, the individual
travels 8 time zones west. As a result, daylight lasts 8 hours
later, hence the time in which they are in 1000 lux light
on day six lasts an additional 8 hours. From then on, they
resume their schedule of being in the dark from midnight
- 8 a.m, and being in the dark from 8 a.m to midnight, but
in terms of time in the new time zone. Such a situation
amounts to an 8 hour phase-delaying event.

Such a situation amounts to an 8 hour phase delay. The resulting effects on SCN mean firing rate
and its standard deviation of this 8 hour phase delay are shown in Figure IV.5. The results illustrate
that the phase delay in the light schedule shifts mean firing-rates (f ), so their peaks occur later and
later relative to the control case, where the individual would have stayed at home rather than hopped
on a plane. Eventually, though, the firing rates cease shifting, indicating that the circadian clock
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model has entrained to the new environmental light cycle. A similar shift occurs in the standard
deviations σf of SCN firing-rates (Panel (b) of Figure IV.5).

(a) (b)

Figure IV.5: Jet lag by traveling 8 time zones west: an 8 hr phase delay. (a): the mean firing-rate output by the SCN of
the phase-delayed individual (green), shown alongside the mean firing-rate of the same individual if they had not been
phase-delayed (blue). (b): analogous plots illustrating the standard deviation of firing rates across the SCN.

Interestingly, during days 7 - 11, when the entrainment to the new environmental light cycle
is occuring, the amplitude of firing-rate rhythms is smaller than the control. This can be expected
from variations in circadian clock phase amplitude Rk of the Hannay model during re-entrainment
to the new light schedule, but the magnitude of the reduction in amplitude of the mean firing-rate of
the SCN may differ, as we discuss below. On the other hand, if the individual flies 8 hrs east, they
experience light 8 hrs earlier in the day than in their origin location, and thus experience an 8 hr
phase advance. In this case we obtain much more interesting results (Figure IV.6).

(a) (b)

Figure IV.6: Jet lag by traveling 8 time zones east: an 8 hr phase advance. (a): the mean firing-rate output by the SCN
of the phase-advanced individual (green), shown alongside the mean firing-rate of the same individual if they had not
been phase-advanced (blue). (b): analogous plots illustrating the standard deviation of firing rates across the SCN.
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Namely, not only is there a large reduction in the amplitude of the oscillations in f , there is
a large decrease in the amplitude of σf . In particular, during the dark phase, instead of nearly all
neurons being comparatively inactive (having a firing-rate around 4-6 Hz), firing rates are higher
with a much greater standard deviation.

Relationship between the amplitudes of oscillations in mean SCN firing-rates and in circa-
dian clock phases

To further analyze how circadian clock phases affect SCN firing rates in our modeled pathway,
we compare the amplitude of oscillations in f and Rk. Assuming a fixed amplitude Rk for the
oscillations in circadian clock phase and using that as input to our firing-rate model, we can compute
the resulting oscillations in f output by our firing-rate model. When assuming the sinusoidal R(θ)

function, this amplitude relationship is linear, indicating that firing rate oscillation amplitudes are
directly proportional to circadian clock oscillation amplitudes (Figure IV.7)b. However, when using
the Colclasure – Diniz BehnR(θ) function there is a nonlinear relationship in the amplitudes (Figure
IV.7).a.

(a): Use the proposed R(θ) function (b): Use R(θ) = 5 sin(θ):

Figure IV.7: Relationships between amplitudes in mean firing-rate f oscillations and the amplitude Rk of the
corresponding oscillations in circadian molecular clock phases (θ) across the network. (a): the relationship between
f amplitude and Rk is nonlinear, when using the R(θ) function proposed by Colclasure and Diniz Behn. (b): the
relationship between Rk and the amplitude of oscillations in f is roughly linear, when using R(θ) = 5 sin(θ).

Accounting for σf increases the information in the signal relayed by the SCN

As seen in Figures IV.5 and IV.6, there may be some correlation between f and σf , where
e.g. the peaks of f align with the peaks of σf . This could lead one to suspect that one can gain
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information about the standard deviation of the firing-rate output by our model from the mean
firing-rate alone. However, we show here that that is not the case.

To do so, we choose fixed values of circadian clock amplitude Rk and mean phase θ, and
compute the corresponding statistics for R using the Colclasure – Diniz Behn function. We then
input these statistics into our SCN firing-rate model and simulate it to steady state. We show the
results of these simulations in Figure IV.8.

From Figure IV.8, we see that f and σf vary differently with Rk and θ. For instance, when Rk is
high and θ is at low values, σf varies with changes in θ, whereas Rk varies little. Thus, one would
expect we could gain considerable information about the state of the SCN by considering σf in
addition to f . We verify this using information theory.

(a)
(b)

Figure IV.8: The relationship between circadian clock phase properties and the associated SCN firing-rate statistics. (a):
Mean firing-rate versus the circadian clock phase amplitude Rk and mean phase ψ (which we take to be circadian phase
θ), assuming the R(θ) function proposed by Colclasure and Diniz Behn. (b): The analogous plot, except involving the
standard deviation σf in firing-rates.

To start, we quantify the total amount of uncertainty in (f , σf ) via the joint entropy:

Joint Entropy of (f , σf ) = 5.3180.

This joint entropy is, in other words, the expected amount of information gained upon measuring
both (f , σf ). We can compare this joint entropy to the total amount of information gained about (f ,
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σf ) by measuring f , alone. Such information is described by the mutual information:

Mutual Information of (f , σf ) = 0.8758.

Thus, the amount of information gained by measuring f is only a small proportion of the total
expected amount of information gained by measuring both f and σf . Indeed, the proportion of
expected information conveyed by (f , σf ) that would be gained by measuring σf in addition to f is
given by

Rajski Distance between f and σf = 0.8353.

In particular, the Rajski distance (see [Raj61]), calculated as

Rajski distance :=
joint entropy−mutual information

joint entropy
,

is essentially a normalized mutual information, and lies in [0, 1], (since joint entropy ≥ mutual
information ≥ 0, which in turn follows fairly straightforwardly from the definitions of joint entropy
and mutual entropy). The closer the Rajski distance is to 1, the greater the proportion of expected
information conveyed by (f , σf ) that would be gained by measuring σf in addition to f . Thus, since
the Rajski distance between f and σf is close to 1, most of the information about the (f, σf ) signal
output by the SCN stands to be gained by measuring σf instead of only measuring f . Moreover,
even if we were to use R(θ) = 5 sin(θ) instead of the Colclasure-Diniz Behn R(θ) function, we
would see that the Rajski distance would still be high (0.6501), but not as high.

By directly comparing the values of f and σf (Figure IV.9), we see that σf and f are indeed
related. In fact, the set of possible values of (f, σf ) lie roughly on a parabola. Thus, there is some
relationship between f and σf , hence why the Rajski distance is not 12. However, we can also see
that for given values of one of these quantities, there is considerable uncertainty in the other. For
instance if f = 9, σf could be almost anywhere in its range of 0 to ≈ 6. We see similar uncertainty
when using R(θ) = 5 sin(θ) relationship (data not shown).

2While the information theoretic measures such as mutual information and the Rajski distance, can effectively
describe any kind of relation between two random variables, correlation coefficients can only describe linear relations,
and hence would miss the parabolic relationship between f and σf .
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Figure IV.9: The relationship between mean firing-rates (f ) and the standard deviations σf of firing-rates. While the
set of f -σf pairs is roughly parabolic, there remains considerable uncertainty in the value of σf given f , and vice-versa.

4.3 Improving the mapping of molecular clock phases to firing activity of SCN neurons

As discussed above, the Colclasure-Diniz Behn function R(θ) for the effect of mean circadian
phase on electrophysiological properties of SCN neurons erroneously produces spiking activity
for large stretches of time when per1-expressing SCN neurons should be more-or-less quiescent
(compare Figure IV.3 to Figure IV.10).

Thus, in this section, we construct a more physiologically sound relationship between R and θ.
To do so, we computationally extracted experimental data of firing rates and average membrane
voltage measured across the circadian cycle reported in Figures 1.A, 1.A1, 2.C, and 2.F from
[BDFP09], and report the extracted data in Figure IV.10, (where to illustrate the periodicity of firing
rate and average membrane voltages, we duplicate the data from [BDFP09] so it runs over two
circadian days instead of one). Constraining firing rates and average voltages of the SCN neuron
model [DBI+13] with this data, we determine the changes throughout the day occurring in the
potassium conductances gKCa and gK−leak which are driven by changes in R. Namely, we identify
a probable closed loop in the space of values of (gK−leak, gKCa), which represents the daily time
variation in (gK−leak, gKCa) in SCN neurons, thereby relating the electrophysiological states of the
neurons as per [BDFP09] to the molecular clock phase across SCN neurons.
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(a) (b)

Figure IV.10: Data on electrophysiological activity of per1-expressing SCN neurons extracted from [BDFP09]. (a):
Firing rates vs time across various per1-expressing SCN neurons. Notably, data from about 4.25 to 10 hrs after lights
were turned on are missing. (b): Average membrane voltages vs time across various per1-expressing SCN neurons. For
both (a) and (b), data for day 1 (times 0 - 24) are copied and also shown as data for day 2 (times 24 - 48), for illustrative
purposes. Yellow and black bars above each panel respectively indicate the light and dark phases of the day.

To start, we seek to relate (gK−leak, gKCa) values to the electrophysiological activity of SCN
neurons using the single SCN neuron model [DBI+13]. For ranges of gKCa and gK,leak values, we
simulate the single neuron model until it reaches a stable solution. For each run, we calculate the
corresponding firing-rate F by counting the number of peaks (if any), and calculate the correspond-
ing average membrane voltage Vm by averaging the membrane voltage across one of its oscillations
(assuming it oscillates). We show the results of these simulations in Figure IV.11, panels (a.i) -
(a.iii).

Using the experimental measurements of average membrane voltage and firing rate of SCN
neurons across the circadian cycle reported in [BDFP09], we can gain considerable information
about the neuron’s gKCa and gK,leak by matching to the simulation results. To do so, we attempt to
approximate the actual voltage dynamics of the neuron with the voltage dynamics from the model.
Namely, for a given voltage value Vm = v, we know that the gKCa-gK,leak combination responsible
for that Vm value must lie on the Vm = v contour in (gKCa, gK,leak) space. Such contours are shown
in Figure IV.11. Likewise, for a given firing rate value F = f , we know that the gKCa-gK,leak
combination generating that firing rate must lie on the F = f contour in (gKCa, gK,leak) space.
The (gKCa, gKLeak) combination that generates this average voltage and firing rate then lies at the
intersection of those contours.
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(a.i) (a.ii) (a.iii)

(b.i) (b.ii) (b.iii)

(c.i) (c.ii) (c.iii)

Figure IV.11: Modeled firing-rates and time-averaged membrane voltages of model SCN neurons as a function of the
potassium conductances gKCa and gK−leak which are believed to vary across the 24 hr day [DBI+13]. (a): simulations
of the Diekman model at each (gK−leak, gKCa) combination on an evenly spaced 501× 501 grid. We start with resting
voltage of −67 mV in each simulation. Panel (i) shows a heatmap of the firing-rates for each simulation, and panel (ii)
shows a heatmap of the average membrane voltage across one oscillation for each conductance combination. Panel
(iii) shows the corresponding contour curves for firing-rates (red) and time-averaged membrane voltages (blue). (b):
Assuming that gK−leak and gKCa each follow a normal distribution with means corresponding to points on the grid
and with fixed standard deviations, we compute the expected means of firing-rates (i) and of time-averaged membrane
voltages (ii), and show the corresponding contours in (iii). (c): we show the same plots as in (b), except instead of
means, we show standard deviations.

For instance if F = 12 Hz and Vm = −50 mV, then we find the intersection of the F = 12
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and Vm = −50 contours which occurs, for instance, at log(gKCa), gK,leak = (1, 0.05). On the other
hand, if F = 0 Hz and Vm = −25 mV, then we don’t have enough information to identify a specific
(gKCa, gKLeak) combination. Indeed, the F = 0 “contour” is a wide swath of (gKCa, gKLeak) space
which contains the Vm = −25 contour. Thus, the intersection of the two “contours” is the Vm = −25

contour, which corresponds to a 1-dimensional set of (gKCa, gKLeak) combinations.

This poses a problem. Namely, as would be the case for F = 12 Hz and Vm = −25 mV, data
only about the firing-rate F and membrane voltage Vm of a neuron may be insufficient to specify the
values of gK−leak and gKCa for the neuron. Moreover, we don’t even have data describing the Vm
and F for any one particular neuron. Instead, we have F for a variety of neurons across the day, and
we have Vm for a variety of neurons across the data, but we don’t have any (F, Vm) combinations.

(a) (b)

(c) (d)

Figure IV.12: Firing-rate and average mem-
brane voltage means and standard deviations
for per1-expressing SCN neurons. (a): Using
running time-windows, we compute the mean
firing rate (f red) and the standard deviation σf
of the firing rates, which we visualize by show-
ing f+σf (yellow) and f−σf (purple). (b): we
show the analogous results, but applied to time-
averaged membrane voltages, rather than firing-
rates. Data points (blue circles) in both panels
are those from Figure IV.10, the particular firing-
rates and membrane voltages recorded from
SCN neurons as extracted from figures from
[BDFP09]. (c): Mean firing-rate data (circles)
and the correponding standard deviations (error
bars) from (a) interpolated at 0.5 hour intervals
throughout the day. (d): The same as (c), except
for time-averaged membrane voltages instead
of firing rates. Interpolating ensures that every
0.5 hours, we simultaneously know the mean
and standard deviation across the network of
both firing-rates and time-averaged membrane
voltages, which we can then use to match to sim-
ulations of the Diekman et al. model [DBI+13]
as in Figure IV.11 panels (b.i)-(c.iii). Yellow
and black bars above each panel respectively
indicate the light and dark phases of the day.

We can attempt to instead determine (F, Vm) combinations by computing the average Vm and
the average F across several time bins. Binning the data not only allows us to extract the Vm-F
pairs we are looking for, but we can compute the standard deviations of Vm and F across data in
those bins. We can use the extra information provided by the standard deviations of Vm and F in
those bins to further constrain our estimates of (F, Vm) when most neurons lie in a state such as rest
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or depolarization block where their firing-rates are zero. In Figure IV.12, we show an example of
how we can bin the data across running time windows of 3 hrs to extract combinations of F and Vm
which we can subsequently use to estimate gKCa and gK−leak.

However, to make use of the extra information provided to us by the mean and standard
deviations of F and Vm across a time bin in the experimental data, we need to be able to compute
means and standard deviations of F and Vm across model SCN neurons. To do so, we assume
that some sort of heterogeneity in gK−leak and gKCa will produce a spread in firing-rates and
time-averaged membrane voltages. In particular, to expedite computations, we assume that at any
particular time, gK−leak and gKCa are both normally distributed and are uncorrelated, so that their
joint distribution is

γt(x, y) = PgK−leak(x) · PgKCa(y).

In this expression, PgK−leak(x) and PgKCa(y) are the normal distributions for the respective
potassium conductances. We further assume that the standard deviations of each of the two
conductances are 5% of their respective ranges, (although in the future we hope to be able to fit
those standard deviations to the Belle et al. data [BDFP09], in addition to fitting the corresponding
means). Then, for each possible (gK−leak, gKCa) combination across a 501× 501 uniform grid of
(gK−leak, gKCa) values, we compute the resulting joint distribution γt centered at those combinations.
Moreover, for each of those combinations, we integrate the firing-rate and membrane voltages from
Figure IV.11 panels (a.i) and (a.ii) against the joint distribution γt o firing-rates and membrane
voltages to compute mean values of firing-rates and time-averaged membrane voltages. Wesimilarly
integrate the squared deviation from the mean against the joint distribution γt to compute the
standard deviation of firing-rates and of time-averaged membrane voltages. We show the results of
such simulations in Figure IV.11, panels (b.i), (b.ii), (c.i), and (c.ii).

Then, given f , Vm, σf , and σVm for the bin as computed from experimental data from [BDFP09],
we can find a point in (gK−leak, gKCa) parameter space for which the simulated f , Vm, σf , and
σVm using the SCN neuron model integrated against the joint distribution best match the original
data. To find the best match, we want to make the simulated values of V m and f as close to the
experimentally measured values of V m and f , respectively, as possible.

We also want the simulated values of σVm and σf to be as close as possible to the experimentally
measured values. However, we have chosen a fixed value of the standard deviations of gK−leak
and gKCa which might not be truly representative of the actual spread of gK−leak and gKCa values.
Because the particular values of the predicted gK−leak and gKCa depend on the magnitudes of the
standard deviations of gK−leak and gKCa, it is thus possible that the simulated σVm and σf are not
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representative of the σVm and σf calculated from the experimental data. Thus, until we can get
a better estimate of the magnitudes of the standard deviations in gK−leak and gKCa, we focus on
matching simulated values of f and V m to the f and V m calculated from the experimental data.

To do so, we compute an error measurement for each value of (gK−leak, gKCa), which describes
the quality of the match between f and V m calculated from the experiments in [BDFP09] with the
simulated f and V m. To compute the error measurement, we first normalize all data by dividing by
its range of values. We then find the squared error between simulated f and actual f , add that to the
squared error between simulated V m and actual V m, then take the square root of the result. The
resulting error measurement is

error =

√
(simulated f − f)2 + (simulated V m − V m)2 (IV.1)

where data and predicted data have been normalized appropriately.

We then minimize the error across possible (gK−leak, gKCa) combinations, by computing the
error for all points in the simulated data from Figure IV.11, and selecting the smallest of those
errors. In doing so, we arrive at the trajectory of (gK−leak, gKCa) values that is traversed during one
circadian cycle illustrated in panels (a.i), (a.ii) and (a.iii) of Figure IV.13. Notably, the corresponding
daily variation in mean firing rates and mean membrane voltages obtained with this trajectory loop
are in good agreement with the data from [BDFP09] (panels (b.i) - (b.ii) in the figure), and the
simulated standard deviations in voltage are close to that of the data (panel (c.ii) in the figure). On
the other hand, the simulated standard deviations in firing-rates are quite a bit off (panel (c.i) in the
figure).

We can understand this trajectory in (gK−leak, gKCa) space by considering its predictions for
firing rates and average voltages in different daily time windows. To start, when the lights are turned
on (time 0 h, as reported from the experimental data [BDFP09]), per1-expressing SCN neurons are
all active, which requires that trajectories are in the non-purple region of panel (a.i). Further, at
time 0 h, the corresponding time-averaged membrane voltages are around −50 to −40 mV, which
corresponds to the greenish-blue region in panel (a.ii) which separates depolarization block (yellow)
from other firing regimes. However, because near time 0 h there is action potential firing [BDFP09],
the trajectory must be on the action-potential firing side of the greenish-blue region in the membrane
voltage panel (a.ii) of figure IV.13.
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(a.i) (a.ii) (a.iii)

(b.i) (b.ii)

(c.i) (c.ii)

Figure IV.13: Proposed trajectories
taken by per1-expressing SCN neurons
in (gK−leak, gKCa) phase space. (a):
The trajectories overlaid on a heatmap
of mean firing-rates (i) and mean mem-
brane voltages (ii). Panel (iii) shows the
corresponding plots of gK−leak (blue)
and gKCa (red) versus time. Open cir-
cles indicate points on the trajectory at
each half hour, a selected few of which
are labeled with the corresponding time
after lights on. Arrows indicate the di-
rection the trajectory moves along the
closed loop as time progresses. (b):
Corresponding mean firing rates (i) and
membrane voltages (ii) along the tra-
jectory. Comparison of the simulated
mean-firing rates and mean membrane
voltages (yellow) to the actual data
(red). A scatter plot of the data from
[BDFP09] is shown in the background.
(c): Corresponding standard deviations
of firing rates (i) and membrane volt-
ages (ii) along the trajectory. Yellow
and black bars above panels respec-
tively indicate the light and dark phases
of the day.

However, between times 5.25 h and 10.75 h, no per1-expressing neurons produce action poten-
tials [BDFP09]. Instead, all neurons are either in depolarization block, or are producing depolarized
low-amplitude membrane oscillations–the DLAMOs discussed in the preceding chapter. As such, it
must be the case that between times 5.25 h and 10.75 h, the trajectory must be on the yellow-side of
the greenish-yellow region in panel (a.ii) separating depolarization block from other firing regimes.
Reaching that point in (gK−leak, gKCa) parameter space requires moving towards the bottom left
corner of the parameter space, which amounts to decreasing gK−leak and gKCa, as shown in panel
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(a.iii).

Further, as we near the lights off time (12 h), average voltages drop (panel (b.ii) of the figure).
We see from panel (a.ii) that there are two ways in which voltages can drop: either only increasing
gK−leak, or moving towards the top left corner of the parameter space by simultaneously increasing
gKCa and decreasing gK−leak. In the latter way, the trajectory would have to cross the region where
there is elevated action potential firing. However, this is not the case, because around time 10 h,
the firing activity across the network transitions from mainly DLAMOs, to very low amplitude
firing, around 1 Hz. This requires the trajectory to move away from the DB-DLAMOs boundary,
and towards the AP-rest boundary. This is achieved by slightly decreasing gKCa and significantly
increasing gK−leak, as shown in panel (a.iii) of the figure. Moreover, because as the time of lights
off (12 h) approaches, neurons across the SCN exhibit a very wide range of membrane voltages,
ranging from around −35 to −65 mV, the trajectory must be in a region of (gK−leak, gKCa)-space
which produces high standard deviations in membrane voltages, yet produces some AP firing. Such
a region lies only near the point at which the AP firing regime, DB regime, and rest regime meet.
Thus, during this time gK−leak must increase and gKCa must slightly decrease, so as to move towards
such a point.

In the times immediately preceding time 12 h, though, we see that firing-rates reach their
minimum, which requires decreasing gKCa, increasing gK−leak, or both, so as to move away from
the AP boundary in panel (a.i). In particular, because membrane voltages are starting to drop,
it must be the case that gK−leak increases so as to move to the right in panel (a.ii). However,
Vm measurements extracted from [BDFP09] continue to display a large spread. This spread in
experimentally measured Vm occurs because while many neurons are at rest, others continue to fire
action potentials with elevated membrane potentials, but none are in depolarization block. Thus,
while gK−leak increases, (gKCa, gK−leak) remains near the AP-rest boundary. Voltages are relatively
high still, hence to reproduce the data, while trajectories should move away from the AP-rest
boundary, they should still stay relatively close to the portion of the AP-rest boundary corresponding
to lower values of log(gKCa) in panels (a.i)-(a.ii).

From times 13 - 15.25 h, however, neurons are presumably largely silent [BDFP09]. Moreover,
membrane voltages are quite low, and have a significant spread. The only portion of (gK−leak, gKCa)-
space at which this happens, though, is near the top of the pictured parameter space, attained by
rapidly increasing gKCa and slightly decreasing gK−leak. This portion of the trajectory is represented
by the spike in the red curve in panel (a.iii) of the figure.

From times 15.25 h to the start of the next day, on the other hand, we see that the neurons
are firing action potentials at a low-rate, indicating that the trajectory must be near the boundary
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between action potential firing and rest. However, membrane voltages approach −40 mV, hence
the trajectory must move back towards the greenish-blue portion of figure (a.ii). Hence, gKCa
must rapidly decrease, and gK−leak must slowly decrease (panel (a.iii)) so as to move towards the
boundary between firing and action potential spiking (panel (a.i)). This would result in slowly
increasing firing-rates, and a gradual approach to the (gK−leak, gKCa) values associated with time
0h.

This daily trajectory loop in (gK−leak, gKCa) space replicates well the daily variations in firing
rates and average voltages reported in [BDFP09] (panels (b.i) and (b.ii) in Figure IV.13). However, it
results in less accurate daily fluctuations in standard deviations (panels (c.i) and (c.ii)). In particular,
consider σf between roughly times 5 and 10 h. For this interval, firing-rate data was not included in
[BDFP09]. Hence, the extrapolated red line corresponding to these times in panel (c.i) may not be
representative of the true data. Indeed, Belle et al. in [BDFP09] state that in this time interval there
actually is a wide spread of cellular firing rates ranging between 0 and 7 Hz. This, in fact, agrees
with our prediction that firing-rate standard deviations should be largest during such times.

Additionally, our simulated firing rate standard deviations are in general far higher than is
reported in the data. The cause of this discrepancy lies at least in part with the firing behavior of the
SCN neuron model. Namely, the model produces low firing rates around 1 or 2 Hz only in a very
small range of (gK−leak, gKCa) space along the boundary of the firing regime. Consequently, it is
very difficult, and likely biologically unrealistic, to tune gK−leak and gKCa) so that the model neuron
reproduces firing rates of 1 - 2 Hz observed between times 10 and 20 by [BDFP09]. Instead, to
simulate mean firing rates around 1 - 2 Hz, the predicted trajectory passes through (gK−leak, gKCa)

space near the boundary of firing activity which would represent a situation where most neurons are
either at rest or firing at rates greater than 2 Hz. Since firing rate standard deviations are necessarily
high along this boundary, our simulated results produces higher standard deviations of firing-rates
than does the data.

Also complicating our simulated results is the presence of bistability in the SCN neuron model.
Namely, for a range of (gK−leak, gKCa) space extending from the depolarization block-rest boundary
in panels (a.i) and (a.ii) of Figure IV.13, towards the bottom right of the panels, the corresponding
SCN neuron can be in one of either two states. In particular, the neuron is either in depolarization
block, with membrane voltage around −30 mV, or it can be at rest, with membrane voltage around
−60 mV. This region of bistability has the potential to create large standard deviations in membrane
voltage values. However, because data from experiments in [BDFP09] indicate that transitions out
of depolarization block occur by producing DLAMOs, and then producing action potentials, actual
neuron transitions in firing states seem to avoid the boundary between depolarization block and rest.
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In summary, despite some limitations in the computed trajectory that we predict SCN neurons to
take in (gK−leak, gKCa) space across the day, we believe we have made significant progress towards
finding a good representation of it. Implementing this trajectory into our SCN firing rate model
requires a parameterization of the trajectory loop with respect to circadian phase θ. As a result,
implementing this trajectory into our firing-rate model would also require re-computing steady state
firing rates of the SCN neuron model for ranges of values of synaptic conductance G, circadian
phase θ and GABA reversal potential EGABA, namely the function F (G,R,EGABA) from Figure
III.4 top row, (as well as the maximum synaptic signaling function Y (G,R,EGABA) from Figure
III.4, bottom row). With these modifications to our SCN firing-rate model, we can obtain a more
realistic understanding of the daily variation in SCN firing-rates and thus be one step closer to
understanding how the SCN modulates its output as the environmental light-dark cycle changes.

4.4 Discussion

We have made significant progress towards modeling the pathway by which the SCN modulates
its firing output in response to changes in the light cycle. In particular, we have proposed using
the Hannay model [HBF19a] to predict how changes in the environmental light-dark cycle affect
the statistics of the intracellular molecular circadian clock which keeps track of time within SCN
neurons. We have then elucidated the connection between the phase of the molecular clock and the
electrophysiology of SCN neurons. Finally, we demonstrated how the statistics of circadian phases
can be accounted for in computing statistics of SCN firing rates using our SCN firing-rate model.

Our preliminary results using the Colclasure-Diniz Behn function R(θ) demonstrate that while
phase delays can disrupt the signals output by the SCN, phase advances disrupt them much more
strongly. In particular, not only do phase advances reduce the amplitude of the firing-rate output of
the SCN, as would accompany the reduced amplitude in behavioral rhythms, but phase advances
also increase the firing activity of SCN neurons when they would normally be quiescent. As such,
our model identifies a mechanism by which large phase advances, as would occur with air travel
across many time zones to the east, could contribute to the circadian disruptions associated with jet
lag.

We have further clarified that it is important to describe the signal output by the SCN in terms
of both the mean and standard deviation of the firing rate. In particular, we show using information
theoretic techniques that most of the information described by the mean and standard deviation of
the firing-rates of neurons across the SCN network is not captured by considering the mean alone.
As such, our model of the dependence of SCN firing rate on circadian phase adds considerable
information about the ways in which the environmental light cycle affects the signal output by the
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SCN.

Moreover, in putting our model of the pathway together we, have made significant progress
towards elucidating the effect of the phases of the molecular clocks contained in PER1 expressing
SCN neurons on the firing state of SCN neurons. We have leveraged the SCN single neuron model
of Diekman et al. in [DBI+13] to fit daily rhythms in the conductances of the potassium leak current
and calcium-dependent potassium current that successfully reproduce the daily rhythms in both the
mean firing rates and membrane voltages reported experimentally for SCN neurons [BDFP09].

4.4.1 Limitations

Our model for light’s effects on SCN firing rates has several limitations that ought to be
addressed. To start, it is likely not reasonable to use the Hannay model [HBF19a] “as is” to describe
the statistics of the phases of the intracellular molecular TTFL rhythm across PER1-expressing SCN
neurons. Indeed, the Hannay model, rather than being fit to data regarding molecular clock phases,
is fit to phase response curves of downstream circadian markers including core body temperature
and dim light melatonin onset (DLMO). These phase response curves are likely a reflection of
multiple physiological processes that would be influenced by SCN firing rates. As a result, it is
likely that the parameters of the Hannay model are tuned to describe phenomena other than the
intracellular TTFL phases within SCN neurons.

To overcome such a limitation, we could tune the parameters of the Hannay model differently.
For example, we could tune the parameters of the Hannay model so that when it is used in the model
of the full pathway, the phase shifts obtained in SCN firing rates reproduce the circadian marker
phase response curves. Alternatively, we could replace the Hannay model with a model of the clock
TTFLs themselves, such as [LA21].

Another issue with using the Hannay model “as is” is that it is tuned to human data. Our SCN
firing rate model, on the other hand, relies on the Diekman SCN neuron model that is tuned to rodent
data. This issue can be addressed as implementations of the Hannay model fit to the appropriate
rodent phase response curves exist, as per a personal communication with Kevin Hannay.

Future work, as described in the next chapter, will address these limitations as well as complete
the implementation of our improved mapping of molecular clock phases to SCN neuron firing
activity into our SCN firing rate model.
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CHAPTER V

Summary and Discussion of Future Work

In this chapter, we summarize the work completed on all projects, reiterate the significance of
the projects, and detail future directions regarding pain processing in the spinal cord.

The work shown in this dissertation advances the literature of firing-rate models. Firing-rate
models are significant because they reduce the complicated behavior of individual neurons and
their interactions across a whole network of neurons. In particular, they summarize the network’s
behavior in terms of firing-rates: the number of voltage spikes per second.

Chapter I sets the stage. To start, we provide the necessary neuroscience prerequisites for
understanding the paper. We then review the firing-rate model literature, and augment our review
with an analysis of the citation network of the literature and an identification of key traits of a
selection of models across the literature. The review clarifies where our firing-rate model fits in the
literature. In particular, the firing-rate model used in both Chapters II and III hearken back to the
Jansen-Rit model, which in turn derives from the da Silva et al. model, which itself derives from
the Wilson-Cowan model. The review also clarifies that the models we use belong to the class of
models which derive from the Wilson-Cowan approach rather than the population density approach
or the coupled oscillator approach.

Chapter II uses a system of Jansen and Rit type firing-rate models to understand pain processing
in the spinal cord. Whereas the firing-rate models used are not novel, the analysis of them is.
Our analysis begins by mapping experimentally constrained behavior of feed-forward networks of
firing-rate models to the corresponding set of coupling strengths. We then identify the two regions
in the space of coupling strengths that reproduce “healthy” behaviors and “allodynia” behaviors,
respectively. We characterize the sensitivity of healthy circuits towards producing allodynia, by
solving a control problem: how can we induce a healthy circuit to produce allodynia while changing
coupling strengths as little as possible. The answer is to take the shortest path in coupling strength
space between the healthy circuit space and the allodynia space. The result then characterizes in
which ways a circuit is most vulnerable to producing allodynia. By clustering circuits according
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to those shortest paths, we can identify trends in how the circuit can be dysregulated. Because
we are using firing-rate models that represent whole populations of e.g. excitatory neurons, those
trends represent alterations in the balance between excitation and inhibition in the network. As
a result, our analysis identifies the specific disruptions in excitatory-inhibitory balance that most
effectively produce allodynia. Thus, the use of firing-rate models enables us to uncover mesoscopic
mechanisms of E-I balance.

Whereas Chapter II introduces a novel analysis of firing-rate models, Chapter III introduces a
novel firing-rate model formalism. The firing-rate formalism adopts the approach of [ZVvPTH14],
a firing-rate model descending from the Jansen - Rit model, wherein firing rates are averaged against
a gaussian distribution of underlying currents to obtain both the mean and standard deviation of
firing rates across the network. However, our model formalism captures the effects of heterogeneity
in the electrophysiological properties across neurons on the network firing rate, well beyond only
the heterogeneity of synaptic currents. In particular, recall that our mean-field firing-rate model for
the SCN network makes predictions about the effects on population firing statistics of the unique
properties of the SCN neural network, such as circadian phase effects on firing state, distributions
of GABA reversal potentials, and modulation of synaptic signaling due to atypical neuron firing
states. In doing so, our model clarifies how these properties can lead to circadian disruptions, such
as the blunted circadian rhythm amplitude associated with aging and neurophysiological diseases.
Moreover, because our model describes the statistics specifically of the firing rate across the SCN, it
is well-suited for modeling how the SCN coordinates “downstream” circadian processes, such as
the sleep-wake cycle.

Chapter IV extends the results found in Chapter III so as to model the pathway by which
environmental light affects the firing rate outputs of the SCN. Namely, we couple our firing-rate
model for the SCN from Chapter III to a coupled-oscillator based mean-field reduction describing
the phases of intracellular molecular clocks across the SCN. Thus, the model of our pathway is
essentially two mean-field models coupled together. The way in which the two mean-field models
is coupled, though, is a difficult question. We answer it by fitting experimental data to find a
relationship between the phases of intracellular clocks to key potassium conductances that control
the electrophysiological state of the neuron.

5.1 Future Directions

The analysis of Chapter IV, however, is not yet complete. In particular, while we have found
a link between the phases of intracellular molecular clocks and the electrophysiological state of
the SCN, we have not yet used that link to model the full pathway. To implement the relationship,
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we need to recompute SCN neuron firing rates as a function of model parameters, as described in
section 4.3.

Moreover, the relationship between intracellular molecular clock phase and the electrophysio-
logical state of a neuron was determined only for per1-expressing neurons in the SCN. However,
many neurons in the SCN that also contain molecular clocks do not express per1. Thus, it may
be fruitful to add a third mean-field reduction to the model of the pathway. In particular, whereas
the second mean-field model in the pathway would describe the firing-rate statistics output the by
per1-expressing neurons in the SCN as described via Section 4.3, the third model would describe the
resulting statistics of the firing-rates output by non-per1-expressing neurons in the SCN. Another
approach would be to simply use the data from [BDFP09] on non-per1-expressing neurons to
describe the signal output by the SCN, or to lump the two regions together.

Future improvements to our model of the pathway by which environmental light affects SCN
output include resolving the issues with using the Hannay model “as is” to describe the responses
of the phases of intracellular molecular clocks to environmental light, as discussed in Section 4.4.1.

After resolving the issues with using the Hannay model “as is” and the other issues discussed
above, we will have completed the model of the pathway. We can then use the resulting firing rates
output by the SCN in models of sleep-wake regulation. Namely, leading models of sleep-wake
regulation, such as the Phillips-Robinson model [PR07], or the model of [APDBB22], describe
mean SCN activity heuristically. By using the outputs of our model pathway, not only would the
sleep-wake models be more realistic, but they would incorporate important information about the
SCN relayed only by the standard deviation in SCN firing-rates. As a result, those models would be
well-equipped to describe how environmental light affects the sleep-wake cycle. We could then use
our model to better describe how purposefully altering environmental light could improve sleep in
shift workers and those experiencing jet lag, and better understand the effects of e.g. blue light from
electronic devices on sleep.

The future directions of our research are not limited to applications to circadian rhythms only.
In particular, we also hope to be able to use our analysis of firing-rate models representing pain-
processing circuits in the spinal cord to treat chronic pain. While allodynia, as we investigate in
this work, is a widespread and for many people, chronic, condition, work is underway to alleviate
allodynia. Namely, spinal cord stimulation (SCS) has been shown to alleviate allodynia, although
the mechanisms by which such alleviation happens are poorly understood. Further, spinal cord
stimulation only works for some patients. We speculate that the success of SCS depends on how
the parameters underlying spinal cord circuit motifs have changed from a normal range (e.g. in
the allowable parameter space, as discussed earlier) to a pathological range (e.g. in moving above
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the allodynia surface). Indeed, in this work, we have established that dynamic allodynia and static
allodynia may be produced by altering E-I balance in a variety of ways, and have identified the
most likely allodynia-producing alterations. If we can understand how spinal cord stimulation
interacts with such alterations, e.g. by stimulating axon sprouting between Aβ-fibers and inhibitory
interneurons, or by down-regulating the impact of Aβ signaling on excitatory interneurons, we
will have made significant progress towards understanding how SCS can alleviate allodynia, and
moreover how its success can vary from patient to patient. Our experimental collaborators at the
University of Michigan are engaged in such an effort to understand how SCS affects Aβ signaling
and other aspects of pain-processing circuitry in the spinal cord. We hope that we will be able to
pair together our sensitivity analysis of circuit motifs underlying the spinal cord pain processing
circuitry with our collaborator’s analysis of how SCS affects signaling related to pain-processing
circuitry, to much better understand the mechanisms underlying the alleviation of chronic pain via
SCS.
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APPENDIX A

Supplementary Figures for “A New Parameter Sensitivity Analysis
Methodology Applied to Neural Circuits in the Spinal Cord Dorsal Horn”

(Chapter II)

Figure A.1: Range of voltages and firing-rates for populations in the simple circuit under inhibitory ablation conditions.
(Leftmost panel): Because the inhibitory ablation population is ablated, we represent its firing-rate as 0, in our model.
(Middle panel): Range of voltages and (rightmost panel) firing-rates of the excitatory population. We see that under
inhibitory ablation, the voltage of the excitatory population increases sufficiently that it induces the firing-rate of
the excitatory population to increase. As a result, the circuit relays pain despite the input signals being innocuous
(fAβ ∈ [10, 20]), thereby producing allodynia.

(a) (b) (c)

Figure A.2: Violin plots of the sampled sets of normalized coupling strengths for (a) the simple gate control circuit, (b)
the proposed circuit mediating dynamic allodynia, and (c) the proposed circuit mediating static allodynia.
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Figure A.3: Parallel plot represen-
tation of sampled sets of coupling
strength for the cluster 4 for the pro-
posed circuit mediating static allo-
dynia. We see that cluster 4 con-
sists of at least two spatially discon-
nected regions: one in which ĝAβI1
is low (less than about 0.2) and
gAβI2 is high (greater than about
0.2), and the other where conversely
ĝAβI1 is high and ĝAβI2 is low.
Nevertheless, the corresponding cir-
cuits all are most vulnerable towards
producing allodynia in almost ex-
actly the same ways.
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APPENDIX B

Appendix to “A Mean-Field Firing-Rate Model for the Suprachiasmatic
Nucleus and Other Heterogeneous Networks of Neurons” (Chapter III)

2.1 Parameters for the application to the SCN

In Table B.1 below, we summarize the abbreviations, default values, valid range, and default units
for parameters used to apply the model specifically to the SCN. Note that some parameters have pa-
rameter ranges outside of which our model does not function. Namely, Rampl, EGABA, and σEGABA
are restricted by the values of R and EGABA over which we have calculated Y (G,R,EGABA) and
F (G,R,EGABA). On the other hand, σθ, and g0 make the model impractically slow or subject to
noise if they exceed the parameter range.

2.2 Numerical simulations

All simulations were conducted using Matlab, and code can be made available upon request.

The convolutions used to find the statistics for synaptic conductance, g, rewritten as differential
equations, were solved using an Euler-step algorithm. Notably, switching to more stable algorithms
such as Runge-Kutta in no cases significantly improved the smoothness of solutions. Further, at
times the step-size for the Euler-step algorithm had to be reduced to increase the smoothness of
solutions.

The data underlying the F -G-R-EGABA, Y -G-R-EGABA, and Y F -G-R-EGABA surfaces was
generated by solving the Hodgkin-Huxley type differential equations of Diekman [DBI+13] over
about 2 seconds for roughly 6,000,000 combinations of G,R, and EGABA values. To do so we
took advantage Matlab’s parallel computing capabilities by running the code on the Great Lakes
Computing Cluster using 12 cores over the course of about 20 hours.

To extrapolate from this data to the continuous functions F (G,R,EGABA) and
Y (G,R,EGABA), we linearly interpolated piece-wise between data points. However, to reduce
numerical noise introduced by integrating over piece-wise linear interpolations of the original data
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in simulations for model results, polynomial fits of F (G,R,EGABA) and
Y F (G,R,EGABA) data, as well as of the corresponding boundaries between firing regimes, were
computed for each firing regime present when EGABA = −55 mV. In simulations of our firing-rate
model where EGABA = −55 mV for all neurons in the network, these fits were used instead of
the linear interpolations of the data . In particular, the polynomial fits can be seen in the figures
displaying model simulations where σEGABA = 0 and EGABA = −55 mV (Figures III.5, III.6,
III.7, and the second column of Figure B.2). Fits for each firing regime seen in F (G,R,−55)

and Y F (G,R,−55) as well as for the corresponding boundaries were made using Matlab’s “fit”
command, using a mixture of built-in and custom fit-types.

Parameter Abbreviation Default Range Units

# of Neurons in Simulation N 10,000[a] - # Neurons

Average # Synapses into a Neuron Nsyn 1100[b] - # Synapses

Variance in # of Synapses into Neurons V ar(Nsyn) 979 0 - (N −Nsyn)Nsyn # Synapses

Circadian Proxy R Rampl sin(θ(t)) -8.5 - 8.5 N/A

Circadian Proxy Amplitude Rampl 5[c] 0 - 8.5 N/A

Mean Circadian Phase θ Time-dependent 0 - 2π Radians

Standard Deviation in Circadian Phase σθ 0.1 0 - ≈ 3 Radians

Mean GABA Reversal Potential EGABA −55[b] -110 - 0 mV

Standard Deviation in EGABA σEGABA 7[b] 0 - 11[e] mV

Maximum Synaptic Conductance g0 5 · 10−4 0 - ≈ 10−2 nS/cm2

Synaptic Time Constant τ 34[d] - ms

Table B.1: Summary of Parameters for the Application to the SCN. In the table, [a], [b], [c], [d] indicate that respective
values are due to [AMGF+16], [MB89], [DMB+15], and [ZVvPTH14]. [e] indicates that in particular, we need
that σEGABA ≤ 1

5 max
(
|EGABA + 110)|, |EGABA|

)
, or else when integrating over the EGABA distribution when

calculating expectations of firing rates, we exceed the valid parameter range. The maximum value of σEGABA therefore
is 11 mV, occurring when EGABA = −55 mV.

Finally, to calculate the integrals for standard deviations and means of firing rates f and yf , we
used trapezoidal integration modified to take into account the sparsity of and to interpolate over
the F -G-R-EGABA and Y F -G-R-EGABA surfaces. To further increase the speed of our algorithm,
we only integrated within five standard deviations of the center of the distributions for G, R, and
EGABA, as the contributions of the integrand from other values of G, R, and EGABA were negligibly
small in our simulations.
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2.3 Characteristic function for total synaptic conductance G

The characteristic function for total synaptic conductance G may be used to specify the shape of
the G distribution, and is a function of the statistics for Nsyn and g. In particular, if we strengthen
our assumptions that gj,i(t) for j = 1, . . . Nsyn,i are pairwise uncorrelated with one another and
are independent of Nsyn,i by instead assuming that gj,i(t)for j = 1, . . . Nsyn,i and Nsyn,i form a
mutually independent collection of random variables, we have that the characteristic function is

φG(x) = E
[
eixG(t)

]
= E

[
eix

∑Nsyni
j=1 gj,i

]
= E

[
Π
Nsyni
j=1 eixgj,i

]
= E

[
E
[
Π
Nsyni
j=1 eixgj,i |Nsyn,i

]]
= E

[
Π
Nsyni
j=1 E

[
eixgj,i |Nsyn,i

]]
= E

[
Π
Nsyni
j=1 E

[
eixg
]]

= E
[
(φg(x))Nsyn

]
and hence

φG = GNsyn(φg)

where GNsyn , the probability generating function of Nsyn, is determined exclusively by the degree
distribution of the network.

2.4 Single-cell SCN neuron model

Diekman’s single-cell SCN neuron model [DBI+13] states that the membrane voltage V of an
SCN neuron is modeled by

C
dV

dt
= Iapp − INa − IK − ICaL − ICaNonL − IKCa(R)− IK−leak(R)− INa−leak,

where C = 5.7 pF, voltage is in mV, and membrane currents Ix in pA are given in Table B.2.
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Current (pA) Formula Max Conductance (nS) Reversal potential (mV)

INa gNam
3(t)h(t) · (V (t)− ENa) gNa = 229 ENa = 45

IK gKn
4(t) · (V (t)− EK) gK = 3 EK = −97

ICaL gCaLrL(t)fL(Cas(t)) · (V (t)− ECa) gCaL = 6 ECa = 54

ICaNonL gCaNonLrNonL(t)fNonL(t) · (V (t)− ECa) gCaNonL = 20 ECa = 54

IKCa(R) gKCa(R)s2(t) · (V (t)− EK) gKCa = 198
1+exp(R)

+ 2 EK = −97

IK−leak(R) gK−leak(R) · (V (t)− EK) gK−leak = 0.2
1+exp(R)

EK = −97

INa−leak gNa−leak · (V (t)− ENa) gNa−leak = 0.0576 ENa = 45

Table B.2: Here we present the formulas (2nd column) for ionic currents (1st) column and corresponding constants
(3rd and 4th columns) as appearing in the single neuron model of [DBI+13].

The gating variables q = m,h, n, rL, rNonL, fNonL follow

dq

dt
=
q∞(V (t))− q(t)

τq(V (t))
,

the gating variable s follows

ds

dt
=
s∞(Cas(t))− s(t)

τq(Cas(t))
,

fL follows

fL =
K1

K2 + Cas(t)
,

where K1 = 3.93E − 5mM, K2 = 6.55E − 4mM, and Cas follows

dCas
dt

= −ks(ICaL(t) + ICaNonL(t))− Cas/τs + bs,

where ks = 1.65E − 4 mM/fC and bs = 5.425E − 4 mM/ms. Steady state activation functions q∞
and time constants τq for the gating variables are given in Table B.3:
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Current Type (pA) Gating Variable q q∞ τq

INa m 1
1+exp(−(V (t)+35.2)/8.1)

exp(−(V (t) + 286)/160)

INa h 1
1+exp((V (t)+62)/2)

0.51 + exp(−(V (t) + 26.6)/7.1)

IK n 1
[1+exp(−(V (t)−14)/17)]0.25 exp(−(V (t)− 67)/68)

ICaL rL
1

1+exp(−(V (t)+36)/5.1)
3.1

ICaNonL rNonL
1

1+exp(−(V (t)+21.6)/6.7)
3.1

ICaNonL fNonL
1

1+exp((V (t)+260)/65)
exp(−(V (t)− 444)/220)

IKCa(R) s 107(Cas)2

107(Cas)2+5.6
500

107(Cas)2+5.6

Table B.3: Here we present the gating variables (2nd column) involved in the dynamics of each type of ionic current
(1st column). The 3rd and 4th columns roughly describe the gain functions and the speeds at which gating variables
change, for each gating variable.

2.5 Verification of differential equations

We show that the convolutions from Equations III.14 and III.15,

g(t) = H ? yf = (H ? yf)(t) =

∫ t

0

H(t− s)yf(s)ds

σg(t) = (H ? σyf )(t) =

∫ t

0

H(t− s)σyf (s)ds,

may be written as the differential equations from Equations III.16 and III.17,

g′′ = −2τ−1g′ − τ−2g + eτ−1g0yf(t)

σ′′g = −2τ−1σ′g − τ−2σg + eτ−1g0σyf (t).
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To verify these equations, observe that

d

dt

[∫ t

0
H(t− s)yf(s)ds

]
=

d

dt

[∫ t

0
e · g0

t− s
τ

e−(t−s)/τyf(s)ds

]
=
g0e

τ

d

dt

[
e−t/τ t

∫ t

0
es/τyf(s)ds− e−t/τ

∫ t

0
ses/τyf(s)ds

]
=
g0e

τ

[
e−t/τ

(
1− t

τ

)∫ t

0
es/τyf(s)ds+ tyf(t)−

(
−e−t/τ

∫ t

0

s

τ
es/τyf(s)ds+ tyf(t)

)]
=
g0e

τ

[
e−t/τ

(
1− t

τ

)∫ t

0
es/τyf(s)ds+

1

τ
e−t/τ

∫ t

0
ses/τyf(s)ds

]
= e−t/τ

g0e

τ

[(
1− t

τ

)∫ t

0
es/τyf(s)ds+

1

τ

∫ t

0
ses/τyf(s)ds

]
=
g0e

τ

∫ t

0

(
1− t

τ
+
s

τ

)
e−(t−s)/τyf(s)ds

and

d2

dt2

[∫ t

0
H(t− s)yf(s)ds

]

=
g0e

τ

(
e−

t
τ

−τ

[(
1−

t

τ

)∫ t

0
e
s
τ yf(s)ds+

1

τ

∫ t

0
se

s
τ yf(s)ds

]
+ e−

t
τ

[
d

dt

((
1−

t

τ

)∫ t

0
e
s
τ yf(s)ds

)
+
t

τ
e
t
τ yf(t)

])

= e−
t
τ
g0e

τ

[(
t

τ2
−

1

τ

)∫ t

0
e
s
τ yf(s)ds−

1

τ2

∫ t

0
se

s
τ yf(s)ds−

1

τ

∫ t

0
e
s
τ yf(s)ds+

(
1−

t

τ

)
e
t
τ yf(t) +

t

τ
e
t
τ yf(t)

]
= e−t/τ

g0e

τ

[(
t

τ2
−

2

τ

)∫ t

0
es/τyf(s)ds−

1

τ2

∫ t

0
ses/τyf(s)ds+ et/τyf(t)

]
= e−t/τ

g0e

τ

[(
t

τ2
−

2

τ

)∫ t

0
es/τyf(s)ds−

1

τ2

∫ t

0
ses/τyf(s)ds

]
+
g0e

τ
yf(t)

= e−t/τ
g0e

τ

[(
t

τ2
−

2

τ

)∫ t

0
es/τyf(s)ds−

1

τ2

∫ t

0
ses/τyf(s)ds
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+
g0e

τ
yf(t)

= −e−t/τ
g0e

τ2
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2−

t

τ
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0
es/τyf(s)ds+

1

τ
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0
ses/τyf(s)ds
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g0e

τ
yf(t)
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g0e

τ2
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0

(
2−

t

τ
+
s

τ

)
e−(t−s)/τyf(s)ds+

g0e

τ
yf(t).

and thus

d2

dt2

[∫ t

0
H(t− s)yf(s)ds

]
+

2

τ

d

dt

[∫ t

0
H(t− s)yf(s)ds

]
+

1

τ2

∫ t

0
H(t− s)yf(s)ds− g0e

τ
yf(t)

=
g0e

τ2

∫ t

0

[
−
(

2− t

τ
+
s

τ

)
+ 2

(
1− t

τ
+
s

τ

)
+

(
t− s
τ

)]
e−(t−s)/τyf(s)ds

= 0,

as desired. An analagous argument shows that Equation III.15 may be rewritten as Equation III.17.
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2.6 Validating model results against a spiking neuronal network

To validate the predictions of our firing-rate model, we simulated a network of biophysical model
SCN neurons. The 100-cell network had connectivity similar to the networks underlying results
shown in Figures III.5 - B.1. In particular, synaptic structure was based on a Poisson random graph
with 11% connectivity. The dynamics of each neuron was modeled using the Hodgkin-Huxley-type
SCN neuron model from Equation III.23, and GABA synaptic gating was modeled with Equation
III.25. Total synaptic conductanceG(t) for each neuron was computed by linearly summing synaptic
gating variables over all presynaptic neurons and multiplying by a maximum synaptic conductance
g0. The value of g0 was chosen to be 0.5/Nsyn nS/cm2, similar to the value used in the firing-rate
model. This resulted in values of G(t) between 0 and roughly 0.5 nS/cm2. Synaptic current in each
postsynaptic cell was modeled by Equation III.24 where V (t) is the membrane potential of the
postsynaptic cell.

To validate the ability of the firing-rate model to capture the effects of heterogeneities in
the spiking network model, we simulated the spiking network model for two combinations of
standard deviations in circadian phase values, σθ, and in GABA reversal potential values, σEGABA.
Specifically, we simulated a network with no variance in circadian phases or EGABA (σθ = 0 and
σEGABA = 0 mV) and a network where the variances were set to their largest values considered in
Figure III.9, (σθ = 0.9 and σEGABA = 7 mV). In both these networks, mean EGABA was set to -55
mV, the amplitude Rampl of the circadian proxy was 5, and in the latter network both EGABA and
circadian phase followed Gaussian distributions.

To compare the firing-rate statistics of the firing-rate model to the average activity of the spiking
network, we calculated the mean f and standard deviations σf of the firing rates across the spiking
network. To do so, we binned the spiking activity into 0.125 s intervals, counted the number of
spikes for each neuron in each bin, and divided the spike counts by the bin width to arrive at time-
varying, mean firing rates for each neuron. We then computed the mean and standard deviations of
cellular firing rates across all neurons during each bin.
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(a)
σθ = 0 and σEGABA = 0 mV

(b)
σθ = 0.9 and σEGABA = 7 mV

(c) (d)

Figure B.1: Comparison of Firing-Rate Model Results to Activity in a Spiking Neuronal Network. Mean
firing-rates (top row) and standard deviations (bottom row) for the firing-rate model (red curves) and for a
network of 100 SCN model neurons (black curves). (a), (c): no variance in circadian phases or EGABA (σθ = 0
and σEGABA = 0 mV). (b), (d): σθ = 0.9 and σEGABA = 7 mV as in Figure 9. In the firing-rate model,
g0 = 5 · 10−4 nS/cm2, Rampl = 5, Nsyn = 1100 and V ar(Nsyn) = 979.

As shown in Figure B.1, the firing-rate statistics of the spiking network qualitatively reproduce
the predictions of our firing-rate model. In particular, the peaks and troughs of f and σf predicted
by the spiking network occur roughly at the same time as those predicted by our firing-rate model.
Moreover, each model’s predictions of f typically differ by only up to a few Hz for both the
simulation with σθ = 0 and σEGABA = 0 mV and the simulation with σθ = 0.9 and σEGABA = 7

mV. However, while both model’s predictions of σf have similar magnitudes, it should be noted
that since the spiking network is small and the simulation time is relatively short (lasting 100
seconds), the magnitudes of σf predicted by the spiking network increase with decreasing bin
width. Consequently, comparisons between σf output by the two types of models are best made
qualitatively.
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2.7 Effect of changing EGABA

The effects of EGABA on network synaptic conductance and firing rates are shown in Figure B.2
where three different values of EGABA are considered: −80 mV, −55 mV, and −32 mV. To isolate
the effects of changing EGABA, we assume there to be no variance in circadian phase σθ = 0 or in
EGABA itself (σEGABA = 0). We find that higher values of EGABA lead to higher firing rates, with a
“mid-day” dip occurring for the largest Rampl (left column) when maximum synaptic conductance is
at a moderate level (g0 = 5 · 10−4 mS/cm2). For lower Rampl, the mid-day dip is flattened out since
network activity doesn’t reach the DLAMO region (middle column), and for smallest Rampl, firing
rate varies approximately sinusoidally. Firing rate standard deviations (middle row) remain small,
except for brief spikes as network activity transitions between AP firing and subthreshold regimes.

(a)
Rampl = 5

(b)
Rampl = 3

(c)
Rampl = 1

(d) (e) (f)

(g) (h) (i)

Figure B.2: Effect of EGABA on firing rates when variance in EGABA and circadian phase are not present and synaptic
coupling is weak, fixed at g0 = 5 · 10−5 for all neurons. (a) - (f): Mean firing rates f(t) (first row) and standard
deviations of firing rates σf (t) (2nd row) over multiple R(t) cycles (shortened circadian cycles) for 3 different values
of GABA reversal potential EGABA (in mV), −55 mV likely being the mean EGABA in the SCN. Three amplitudes
of circadian variation are simulated, Rampl = 5 (left column), 3 (middle column) and 1 (right column). (g) - (i):
Trajectories (G(t), R(t)) are plotted on the neuronal firing rate surface F (G,R,−55) for the same values of EGABA
as in (a) - (f). Firing rate standard deviations tend to be largest near transitions between firing regimes.
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Omran Al-Shamma, José Santamarı́a, Mohammed A Fadhel, Muthana Al-Amidie,
and Laith Farhan. Review of deep learning: Concepts, cnn architectures, challenges,
applications, future directions. Journal of big Data, 8:1–74, 2021.

[BBC00] Paul C. Bressloff, Neil W Bressloff, and Jack D. Cowan. Dynamical mechanism for
sharp orientation tuning in an integrate-and-fire model of a cortical hypercolumn.
Neural computation, 12(11):2473–2511, 2000.

[BBK22] Diane B Boivin, Philippe Boudreau, and Anastasi Kosmadopoulos. Disturbance
of the circadian system in shift work and its health impact. Journal of biological
rhythms, 37(1):3–28, 2022.

196



[BC13a] Michael A Buice and Carson C Chow. Beyond mean field theory: statistical field
theory for neural networks. Journal of Statistical Mechanics: Theory and Experiment,
2013(03):P03003, 2013.

[BC13b] Michael A Buice and Carson C Chow. Dynamic finite size effects in spiking neural
networks. PLoS computational biology, 9(1):e1002872, 2013.

[BCP20] Mark Bear, Barry Connors, and Michael A Paradiso. Neuroscience: exploring the
brain, enhanced edition: exploring the brain. Jones & Bartlett Learning, 2020.

[BD89] Roger J Broughton and David F Dinges. Sleep and alertness: chronobiological,
behavioral, and medical aspects of napping. New York: Raven Press, 1989.

[BDFP09] Mino DC Belle, Casey O Diekman, Daniel B Forger, and Hugh D Piggins. Daily
electrical silencing in the mammalian circadian clock. Science, 326(5950):281–284,
2009.

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. Journal of statistical mechanics:
theory and experiment, 2008(10):P10008, 2008.

[BGLM20] Christian Bick, Marc Goodfellow, Carlo R Laing, and Erik A Martens. Understanding
the dynamics of biological and neural oscillator networks through exact mean-field
reductions: a review. The Journal of Mathematical Neuroscience, 10(1):9, 2020.

[BH99] Nicolas Brunel and Vincent Hakim. Fast global oscillations in networks of integrate-
and-fire neurons with low firing rates. Neural computation, 11(7):1621–1671, 1999.
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