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ABSTRACT

Over the past few decades, embedded systems, like those in spacecraft and aircraft, have evolved
into complex distributed systems with hundreds of nodes and dozens of network switches. With
this shift comes new challenges. One challenge is performance. Embedded systems are often
required to mask faults. Unfortunately, traditional fault masking approaches, like state machine
replication, require nodes to coordinate their actions by exchanging messages over several com-
munication rounds. This means that in modern systems, where these messages often need to
traverse multiple switch hops and must compete with hundreds or thousands of other traffic flows,
traditional fault masking protocols can have high worst-case latencies that make it difficult or im-
possible to meet deadlines. For a variety of embedded systems, missing deadlines can be just as
dangerous as generating incorrect outputs — potentially even causing system failure. A second
challenge is security. As embedded systems have grown, designers have looked for new ways to
reduce size, weight, and power. One popular approach is to use mixed-criticality networks, which
let systems share a single network between critical and non-critical devices. These networks are
designed to ensure that non-critical devices, which often come from unsecured supply chains, have
no way to disrupt the critical systems. However, the existence of shared network resources provides
a potential means for attackers to bypass these isolation guarantees.

To overcome the performance challenge, I introduce two new Byzantine fault-tolerant (BFT)
state machine replication (SMR) protocols that exploit emerging hardware trends in embedded
systems. The first, IGOR, exploits the increasing prevalence of multi-core processors. Rather than
requiring nodes to agree on a single set of redundant sensor data to execute on, as in traditional
protocols, IGOR lets nodes execute on multiple sets of redundant sensor data simultaneously on
different cores. A coordination protocol is used in the background to determine which execution
will determine the system’s final state, reducing the system’s latency to the time needed for either
execution or coordination — whichever takes longer. The second protocol, CROSSTALK, exploits
an increasingly popular network topology, in which messages travel simultaneously through redun-
dant planes of switches. By using novel algorithms to move sensor data back and forth between
the redundant planes, CROSSTALK can ensure processing nodes maintain identical state with-
out requiring any communication between the nodes, significantly reducing latency. Moreover,
CROSSTALK can be used on even modest single-core embedded processors.

xii



To illustrate the security challenge, I introduce PCSPOOF, a new cyberattack on a popular
mixed-criticality network technology called Time-Triggered Ethernet (TTE). TTE is used in a va-
riety of critical systems, including spacecraft, aircraft, and wind turbines. PCSPOOF shows that
TTE’s switch forwarding rules can allow a malicious non-critical device to infer secret informa-
tion about the TTE network that can be used to construct fake TTE synchronization messages. By
using a small amount of extra circuitry, the malicious device can inject the fake synchronization
messages into the network, disrupting the operation of critical systems. Moreover, an attacker can
exploit a flaw in the implementation of modern TTE devices to increase the rate of successful in-
jections. PCSPOOF was disclosed to multiple impacted organizations in 2021, including several
large spaceflight companies. The disclosure had significant real-world impacts, with multiple or-
ganizations acknowledging the attack and implementing defenses. PCSPOOF has also influenced
changes to the standard for the TTE synchronization protocol (SAE AS6802).
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CHAPTER 1

Introduction

1.1 Background and Trends

Embedded systems are rapidly growing in size, as well as becoming increasingly distributed. For
example, the growing complexity of software systems [1, 2], as well as the need for increased
onboard autonomy [3], has dramatically increased the number of microprocessors in spacecraft,
aircraft, and automobiles [4, 5, 6]. In the past few decades, automobiles have grown from having
15 processors on average [7] to more than 100 [4]. In the same time frame, crewed spacecraft have
gone from containing a handful of processors to over 50 [8, 5]. Emerging commercial aircraft are
expected to contain hundreds of processors [6]. Similarly, embedded data networks are growing to
accommodate the increasing processor counts. Modern commercial aircraft can contain as many as
8 network switches [2], with next-generation aircraft expected to contain more than 10 [6]. Modern
spacecraft commonly contain anywhere from 6 to 12 switches [9].1

Meanwhile, the importance of fault tolerance in embedded systems is increasing. For exam-
ple, the growing processor counts in embedded systems mean the probability of a processor fault
occurring is increasing, which if not mitigated, could cause a system to fail [12]. Additionally,
the desire for faster processing means smaller transistors are being used [13, 14], which are more
susceptible to transient upsets from environmental factors like radiation and electromagnetic in-
terference [13, 15]. Moreover, embedded systems are increasingly being asked to autonomously
perform safety and mission critical functions that in the past would have been controlled by human
operators [3, 16, 17, 18, 19]. For example, crewed spacecraft being developed for deep space mis-
sions, such as to asteroids and Mars, will have significant delays when communicating with Earth
(e.g., 10–20 minutes [20]) — meaning they cannot be controlled and troubleshooted from Earth
like most spacecraft today [3, 21]. Similarly, small modular reactors, which are being developed
to reduce the costs and risks of nuclear power production, will be required to operate with near

1These switch counts do not account for onboard redundancy to tolerate failures, which often doubles or triples the
actual number of switches in practice [10, 11].
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autonomy to be financially viable [22]. Finally, autonomous automobiles [19] and aircraft [23]
will be required to navigate safely without any operator control.

Unfortunately, traditional fault tolerance approaches used in embedded systems scale poorly to
large networks. For example, it has been shown that in order for processors to reach agreement on
some data in the presence of faults [24] — a common requirement of fault tolerance protocols in
practice [25, 26] — the processors must exchange messages with each other over multiple com-
munication rounds [27]. The number of required rounds grows as the number of faults to tolerate
increases. This need for multiple communication rounds leads to large system response times [28]
— particularly as the number of network hops between processors, as well as the amount of net-
work traffic (which grows with the number of processors), increases. These large response times
can make it difficult or impossible for systems to meet certain end-to-end deadlines (i.e., from
sensors, to processors, to actuators) [28], which commonly must be on the order of tens of mil-
liseconds to ensure adequate control stability [29, 26]. The problem is compounded by the need
for systems to host an increasing number of fault-tolerant functions, which require software tasks
be replicated on multiple processors and thus consumes more total processor time — possibly
preventing some tasks from being schedulable [28].

Additionally, the growing size of embedded systems, as well as the increasing importance
of fault tolerance (and thus need for replication [30]) in these systems, naturally increases size,
weight, power, and cost (SWaP-C). In order to counteract this increase, a new trend has emerged in
which, instead of using multiple data networks — each optimized for different purposes (e.g., de-
terministic command and control traffic, high-throughput video streaming), an embedded system
will have a single network that is intended to meet the needs of all its subsystems [31, 32, 33, 34].
Such networks are called mixed-criticality networks because they allow both highly critical devices
and less important commercial-off-the-shelf (COTS) devices to share the same switches [35]. For
example, the flight computers and digital engine controllers in an airplane can connect to the same
switches as the onboard Wi-Fi access point and passenger entertainment system [35].

The use of a mixed-criticality approach means the network is responsible for isolating critical
traffic from non-critical COTS traffic [36]. In other words, even if a COTS device is faulty or
compromised by an attacker, it should not be able to interfere with the correct or timely execution of
a critical function [36]. This isolation is important, since COTS devices often come from unsecured
supply chains and typically do not go through any detailed verification process that would detect
tampering [37, 38]. Mixed-criticality networks are rigorously tested and sometimes even formally
verified [39] to ensure they provide this isolation under all possible conditions.
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1.2 Thesis Statement

At first glance, it appears like the need for coordination between redundant processors [27] means
there is no way to avoid the poor performance of traditional fault-tolerant techniques when used
in large distributed embedded systems. However, this is not the case. Rather, it is possible to take
advantage of recent hardware trends in novel ways in order to counteract large message delays
between processors and, as a result, significantly increase performance. Similarly, it appears like
mixed-criticality networks are a safe and effective way to reduce the cost of constructing embed-
ded systems. However, even the most rigorously verified network technologies are not infallible.
The existence of shared resources means there can still be ways for an attacker to circumvent the
isolation guarantees of the network in order to interfere with critical systems.

Thesis Statement
In this dissertation, I describe new ways to leverage multi-core processors and redundant
switched network topologies in order to significantly increase the performance of fault-
tolerant embedded systems. In addition, I show how the use of mixed-criticality network
technologies can make systems susceptible to a new type of cyberattack from a malicious
COTS device.

1.3 Dissertation Contributions

1.3.1 Leveraging Hardware Trends to Reduce Latency

The first part of this dissertation describes new ways to leverage recent hardware trends to increase
the performance of fault-tolerant embedded systems. In particular, I focus on reducing the worst-
case latency of Byzantine fault-tolerant (BFT) state machine replication (SMR). BFT SMR is a
fault tolerance technique commonly used in critical systems like spacecraft [40, 41], airplanes [26,
42], wind turbines [43], and nuclear reactors [44, 22]. In general, it works by executing identical
software simultaneously on multiple processors, or replicas. If some of the replicas become faulty
— perhaps generating erroneous output — the actuators can perform a majority vote of the outputs
of the replicas in order to determine the correct result.

BFT SMR suffers from high latencies due to the need for replicas to reach agreement on sensor
data before executing. For example, the replicas may agree to execute on data d1 from some sensor
s1, and that d1 is the median value produced by three redundant sensors. Without agreement, non-
faulty replicas could operate on different data and therefore generate different outputs — causing
the majority vote at the actuators to fail. Agreement protocols take at least f + 1 communication
rounds to tolerate f faults [27], meaning at least f + 1 communication delays are added to the
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latency of every execution. Commonly, the agreement process alone can take up more than half
the time needed to execute the overall BFT SMR protocol [28].

IGOR— Accelerating Byzantine Fault Tolerance with Eager Execution. To address the prob-
lem of high latency in BFT SMR, this dissertation introduces the concept of eager execution. Eager
execution is a speculative computing technique that allows BFT SMR systems to overlay agree-
ment on sensor data with execution, reducing the overall latency to the time taken by the agreement
or execution process, whichever is longer. The main challenge of this approach is ensuring non-
faulty replicas operate on the same sensor data. Eager execution overcomes this challenge by
exploiting parallelism. Specifically, the approach leverages multi-core processors to allow replicas
to execute on data from multiple redundant sensors simultaneously (rather than on data from just
one agreed-upon sensor). Each execution is performed on a different core. While these executions
are in progress, an agreement process is used to select which sensor’s data (i.e., which execution)
will determine the system’s final state. This dissertation will show that, with this eager execution
technique, it is possible to ensure the selected execution was always performed by a majority of
non-faulty replicas. Moreover, the selected sensor data is guaranteed to either originate from a
non-faulty sensor, or be bounded by data from non-faulty sensors.

The dissertation then describes IGOR, the first BFT SMR protocol to use eager execution. IGOR

uses new agreement protocols that work in any network topology (e.g., point-to-point, multidrop
bus, switched) and are optimized for the single or multi-fault cases. The standard (single-fault)
version of IGOR takes the theoretical minimum number of communication rounds [27] to reach
agreement and can use any existing Byzantine agreement protocol [45, 46, 47] as a primitive.
Compared to the state-of-the art, it reduces latency by roughly 30% and improves schedulability by
1.88× on average. However, it can suffer from large latencies when tolerating multiple faults due to
the need to split large messages into fragments. To address this, I introduce a multi-fault optimized
version of IGOR that uses a binary reduction technique to convert agreement on arbitrary-length
sensor data to agreement on a single bit. This multi-fault optimized protocol can reduce latency by
as much as 1.75× and improves schedulability by 3.22× over the state of the art.

CROSSTALK— Making Low-Latency Fault Tolerance Cheap with Redundant Networks. The
main shortcoming of IGOR is that, despite its latency and schedulability improvements, it requires
execution on multiple cores. This means that it is not possible to use IGOR on low-powered single-
core embedded processors [48]. Moreover, even if a multi-core processor is used, the need to
perform eager executions on different cores means the capacity for the system to perform other
computations is reduced. For example, a taskset that fully utilizes a single core on a non-fault-
tolerant system might fully utilize three cores if all tasks were converted to use IGOR.

To overcome this shortcoming, this dissertation presents CROSSTALK, a new BFT SMR proto-
col that achieves comparable or lower latency than IGOR without requiring multi-core processing.
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The key insight behind CROSSTALK is that the reason IGOR is potentially expensive is that it
makes no assumptions about the network topology — instead treating the replicas as if they are
connected by unicast channels. By making slightly stronger assumptions about the network topol-
ogy, it is possible to have significantly lower overheads.

Specifically, CROSSTALK leverages the fact that modern real-time embedded systems are al-
most universally adopting redundant switched networks — i.e., switched networks where fault
tolerance is provided by sending messages through redundant planes of switches [49, 11, 50, 51,
52, 53, 54, 55, 56, 57]. CROSSTALK exploits this topology by crossing messages between the
planes using special algorithms to ensure no non-faulty replica can receive data from a sensor that
other replicas did not also receive. In other words, CROSSTALK solves agreement entirely in the
network without requiring communication between replicas. CROSSTALK also leverages special
features of modern switches, such as the use of self-checking pairs to mask transmission errors, to
avoid the need for voting logic and digital signatures that would otherwise require significant pro-
cessing time. The result is that CROSSTALK can improve schedulability by 2.13–4.24× compared
to IGOR, while still staying compatible with networks that systems often use in practice.

In presenting CROSSTALK, this dissertation also proves for the first time the impossibility of
tolerating timing faults in synchronous agreement protocols that do not feature any communication
between replicas. This proof is important not just for CROSSTALK, but because it shows that some
recent results [58] on constructing BFT protocols for embedded systems can actually be incorrect
if timing faults are possible.

1.3.2 Compromising Safety in Mixed-Criticality Networks

Like virtually all fault tolerance techniques used in safety and mission-critical real-time systems
today [26, 59, 42, 60, 61, 62, 63, 64], IGOR and CROSSTALK make some basic assumptions about
the behavior of non-faulty devices. These assumptions include that non-faulty processing nodes
are synchronized to one another, and that messages sent over non-faulty network segments will be
delivered successfully and by known deadlines.

The second part of this dissertation shifts gears and considers how a malicious actor might
break these assumptions in mixed-criticality networks, causing even non-faulty processing nodes
and network segments to become unpredictable (mimicking the behavior of faulty devices). It
specifically focuses on Time-Triggered Ethernet (TTE), a popular technology used in a variety of
critical systems, including spacecraft [59, 52, 11], aircraft [65, 66, 67], and wind turbines [68].
The TTE protocol allows safety-critical devices, like flight computers, to communicate with low
latency and jitter over multiple redundant planes. TTE’s isolation guarantees also allow COTS
devices to share the network while ensuring they cannot interfere with the TTE communication.
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TTE is perhaps the most well-vetted mixed-criticality network technology in use today, and many
of its sub-protocols have been formally verified [39].

PCSPOOF— Compromising the Safety of Time-Triggered Ethernet. PCSPOOF is the first
cyberattack to break TTE’s isolation guarantees, allowing a malicious COTS device connected to
a TTE network — perhaps compromised by a supply chain attack — to cause resets of the TTE
synchronization protocol [32]. Each reset can interfere with the timing of interrupts on critical
processors connected to the network, as well as cause TTE messages to be delayed or dropped.

PCSPOOF works by exploiting a weakness in the TTE synchronization protocol, which is that a
specific synchronization message, or protocol control frame (PCF), from a trusted switch can cause
a processor to detect a clique (a set of processors synchronized to each other, but not to the rest
of the system) [69]. Upon detection of a clique, the processor briefly loses synchronization before
resynchronizing to the network [32]. Normally, it is impossible for a COTS device to send such a
message (it is dropped by the switch). However, by conducting electromagnetic interference (EMI)
into the switch through an Ethernet cable, it is possible for a COTS device to send the message and
trick the switch into forwarding it to other TTE devices. Moreover, only five circuit components
are needed to generate the required EMI, meaning that the current process [37] used for verifying
COTS devices for use in critical systems may not detect the malicious circuity.

This dissertation shows that PCSPOOF attacks can be repeated as often as every 10–15 seconds.
Each attack can cause TTE devices to lose synchronization for up to a second and drop tens of TT
messages — both of which can result in the failure of critical systems like spacecraft or aircraft [26,
29]. It also shows that, in a simulated spaceflight mission, PCSPOOF can cause uncontrolled
maneuvers that threaten safety and mission success.

The development of PCSPOOF has had significant impact on real systems. In 2021, the attack
was disclosed to multiple organizations, including NASA, ESA, Northrop Grumman, and Airbus,
and several have implemented mitigations suggested in this dissertation. The TTE standard, SAE
AS6802 [32], is also being updated to enable the use of larger TTE PCFs, which, once incorporated
into next-generation devices, will disable the mechanism PCSPOOF uses to trick the switch into
forwarding malicious PCFs.

1.4 Road Map

The remainder of this dissertation is structured as follows. First, Chapter 2 describes eager exe-
cution, a new technique for reducing the latency of BFT SMR in embedded systems, as well as
IGOR, the first BFT SMR protocol to use this technique. Next, Chapter 3 describes CROSSTALK,
a BFT SMR protocol that improves on the schedulability of IGOR by exploiting common aspects
of switched networks used in modern embedded systems. Chapter 4 then describes PCSPOOF,
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the first attack capable of breaking TTE’s isolation guarantees. Finally, Chapter 5 concludes and
discusses how future research could build on the work in this dissertation.
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CHAPTER 2

IGOR: Accelerating Byzantine Fault Tolerance with
Eager Execution

2.1 Introduction

Real-time control systems, such as those in spacecraft and aircraft, often use Byzantine fault-
tolerant (BFT) state machine replication (SMR) to mask errors due to hardware faults and environ-
mental factors, such as cosmic radiation [62, 63, 61, 70, 71, 64, 44, 42, 72, 14, 73, 74, 75, 40, 26,
76]. In these systems, the same function is performed simultaneously by multiple processors (i.e.,
replicas), each of which receives data from redundant sensors. To ensure that the replicas maintain
the same internal state and produce the same output, care must be taken to ensure they operate
on the same input data. This is typically accomplished by having the replicas run an agreement

protocol on the data from each sensor [26, 77, 42]. The replicas then perform a source selection to
choose a single “best” sensor value as the system input [71, 78, 26]. The source selection step is
typically application-specific, and can be as simple as a mid-value selection [71, 26]. Finally, the
replicas execute on the selected input value.

Unfortunately, this “agree-execute”1 approach used in traditional BFT SMR systems has a sig-
nificant drawback: high latency. Since any deterministic agreement protocol requires at least f+1

rounds of communication to tolerate f faulty replicas [27], requiring that the replicas reach agree-
ment on inputs before executing adds at least f + 1 rounds of communication latency to every

execution they perform on the incoming data. As we show in §2.6, this additional delay can make
it impossible to meet certain hard deadlines. Moreover, even when all deadlines can be met, the
added latency results in an unavoidable reduction in real-time control performance and system
stability, and thus increases the complexity of the control software to compensate for the extra
delay [80].

1We borrow the term “agree-execute” from [79], but narrow its meaning to refer specifically to BFT systems that
agree on inputs before executing.
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A standard approach to addressing this challenge in non-real-time systems, such as data centers
and blockchains [81, 82, 83, 84, 85, 86], is to adopt speculative execution, which forgoes agreement
on the inputs altogether and assumes the replicas will end up in identical states. In the common case
where replicas do not diverge, this approach completely avoids running an agreement protocol.
However, when the states do diverge — which can be caused by faulty replicas — the system
needs to rollback and repeat previous executions [81, 82, 83, 84, 85]. This outcome is not generally
acceptable for real-time systems, since repeating executions can substantially increase worst-case
response times, leading to deadline misses.

In this paper, we present IGOR, a novel speculative BFT SMR approach that leverages the
increasing prevalence of multi-core processors in real-time embedded systems [14, 48] to enable
speculation without rollback. The key idea behind IGOR is to eagerly execute on the data from
redundant sensors simultaneously, without knowing which execution (and thus which sensor) will
be used to determine the system’s final state. While these executions are underway, the replicas
reach agreement on which states to discard and which to keep. As soon as the executions and
the agreement process are completed, IGOR can deliver results to the actuators. Thus, when the
executions take longer than agreement (which is common in practice, as we show in §2.6), IGOR’s
end-to-end latency (from sensors to actuators) is the same as that of a non-replicated system —
that is, IGOR achieves the minimum possible latency. In all other cases, IGOR’s ability to overlay
agreement and execution inevitably results in latency savings.

It is not sufficient to simply run an existing agreement protocol concurrently with the specu-
lative executions, however. The reason is that, although the source selection algorithm will still
select a single “best” sensor value, we cannot guarantee that the selected sensor value has been
executed on by enough non-faulty replicas, and thus there may not be enough non-faulty replicas
with the same state to out-vote the faulty replicas (c.f. §2.4.1). We solve this problem by intro-
ducing new agreement protocols that allow replicas to simultaneously reach agreement on both (1)
the sensor values they received and (2) how many replicas received each of those sensor values.
As such, the protocols are able to guarantee that a given sensor value cannot be selected unless
there is a high enough number of replicas claiming to possess the value such that, even if some of
those replicas are faulty, a sufficient number of replicas must have executed on the value success-
fully. Importantly, IGOR can provide this guarantee without sacrificing correctness or using more
communication rounds than that of a traditional agreement protocol.

To evaluate IGOR’s performance, we implemented a prototype of IGOR in NASA’s Core Flight
System (cFS) [87], an open-source general-purpose flight software framework used in a variety
of real spacecraft, including the Lunar Reconnaissance Orbiter and Parker Solar Probe [88]. Our
experimental evaluation shows that, for realistic system configurations, IGOR reduces latency by
up to 1.75× and improves schedulability by 1.88–3.22× compared to the state of the art, and
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that its latency closely matches the theoretical minimum (produced by a non-replicated system).
We also used IGOR to execute simulated guidance, navigation, and control software from a real
spacecraft (including multiple genuine flight software components); our evaluation shows that
IGOR is able to meet deadlines that existing solutions cannot, leading to improved vehicle stability
and performance.

In summary, we make the following contributions:

• IGOR: a speculative BFT SMR system with low latencies in both the presence and absence
of faults (§2.4).

• A prototype of IGOR for NASA’s cFS framework (§2.5).
• An experimental evaluation of IGOR, including benchmarks (§2.6.1) and schedulability anal-

ysis (§2.6.2).
• A case study of IGOR in a spaceflight application (§2.6.5).

2.2 Background and Challenges

In this section, we describe how BFT SMR systems are built today and why such a design results
in poor performance.

2.2.1 Overview of a BFT SMR System

A typical BFT SMR system consists of multiple redundant processors (i.e., replicas) that commu-
nicate with a variety of redundant input and output devices [62, 63, 61, 64, 44, 42, 72, 70, 71, 14,
73, 74, 75, 40, 26, 76]. Depending on the application, these devices may include inertial mea-
surement units, star trackers, remote interface units, and engine or thruster controllers. In modern
systems, all these devices are connected to a single backbone network [71, 89, 59, 90]. For sim-
plicity, we refer to all input devices as “sensors” and all output devices as “actuators”. We refer to
each input data item from a sensor as a “value”.

To ensure non-faulty replicas never produce conflicting commands, it is necessary to ensure
they maintain the same internal state, which in turn requires replicas to operate on the same inputs
in the same order. Typically, the ordering of the inputs is known a priori (e.g., because system
components are synchronized and tasks and traffic patterns are scheduled offline [91]). To ensure
that the actual content of the inputs is identical, the replicas run an agreement protocol on all inputs
before executing [77, 71].

Figure 2.1 illustrates this “agree-execute” approach: 1 Each sensor sends its value to each of
the replicas; since sensor 3 is faulty, some replicas receive different values from this sensor. 2 The
replicas then use an agreement protocol to agree on the value from each sensor, and 3 perform

10



Replicas:

Sensors:

Actuators:

5, 7, 3 5, 7, 8 5, 7, 8 5, 7, 8
5, 7, 8 5, 7, 8 5, 7, 8 5, 7, 8

7 7 7 7

A A A

Inputs:
Agreed on:

Selected:

States:

1

2

3
4

5

1

Figure 2.1: Traditional BFT SMR — Overview of a traditional agree-execute BFT SMR system.
Sensor 3 and replica 4 are faulty.

source selection2 to choose a single “best” sensor value to use as input for the computation. 4

The replicas then perform the same deterministic computation on the selected input, and thus all
non-faulty replicas end up with the same state. The replicas use the state to determine the system
output, then send the output to the actuators.3 5 The actuators use a majority vote to mask the
output of a bad replica.

Notice that if the replicas did not run an agreement protocol before executing, then the source
selection could result in different non-faulty replicas using different sensor values as their inputs,
which would cause their internal states to diverge.

2.2.2 Drawbacks of the Agree-Execute Approach

Real-time systems require low latency for tight control loops and hazard response. Unfortunately,
traditional BFT SMR systems suffer from high latency, as the replicas must reach agreement before
executing and the latency of the agreement protocol is often significant.

The latency of an agreement protocol depends on two factors: the number of communication
rounds in the protocol and the length of each round. A round must be large enough to ensure all
messages sent at the start of a round are received by the end of that round [45, 46, 92]. Therefore,
the round length must be at least as large as the worst-case traversal time (WCTT) of a message
over the network.

In large systems like spacecraft and aircraft, which commonly have thousands of traffic flows
and large networks spanning multiple switches [57, 93, 94], the message WCTT — and thus mini-

2The source selection process is typically application-specific; it could be as simple as a mid-value selection [26].
3A state change does not always require an output to be sent to the actuators.
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mum round length — can be on the order of several milliseconds [93, 94, 95, 96, 57]. For example,
in deterministic Ethernet (AFDX [31]) networks used in avionic systems, the WCTT can be up to
3–4 ms for individual Ethernet frames [57, 96]. Large messages must be fragmented into multiple
frames sent at least 1 ms apart [31], and more commonly 4+ ms apart [57], which can result in mes-
sage WCTTs that are multiple times that of a single frame [31]. We note that since agreement pro-
tocols often require replicas to send increasingly larger messages in each round [46, 45, 92, 97, 98],
fragmentation is common, even if the data to agree on is small. For example, agreeing on 250 bytes
in a typical 1 fault-tolerant BFT SMR system (4 replicas, where 1 replica may be faulty) requires
replicas to broadcast 2250 bytes of data in the second round, which must be fragmented across at
least 2 Ethernet frames. Agreeing on 1200 bytes would require 8 fragments.

Time-triggered networks [34, 99, 32, 100] can reduce frame WCTTs to hundreds of microsec-
onds [89, 101]. However, if the frame WCTT is short, the round length is then dictated by other
factors. For example, each round cannot be shorter than the period at which the network schedule
lets devices access the network, which is often on the order of milliseconds to avoid delaying or
dropping other traffic [102, 89]. Further, the round length cannot be shorter than what the soft-

ware schedule allows. For example, replicas typically communicate through a dedicated I/O task
or partition that executes with a fixed period [103, 104], which is often 10+ ms to avoid excessive
processing overhead [105, 104]. Lastly, large messages still need to be fragmented across multiple
time slots [95].

Since a single round can take several milliseconds, and any deterministic agreement protocol
must take at least f + 1 rounds [27], simply having the replicas agree on sensor data can take
upwards of 10 ms even for small values of f . Often, this agreement latency can be as much as,
or exceed, the time needed for execution on the agreed upon data [106, 107], thus resulting in
end-to-end latencies that are 1.5–2× higher than that of a non-replicated system (see §2.6).

The standard way to reduce the average latency of BFT SMR in non-real-time systems is to
adopt a speculative approach [81, 82, 83, 84, 85] that avoids executing an agreement protocol in
the (common) fault-free case. Unfortunately, using this strategy in a real-time system makes little
sense, since the maximum latency, which occurs when replicas are faulty and requests need to be
re-executed, can be even higher than in traditional BFT SMR systems.

2.3 Models

This section describes our system and fault models. Our models are consistent with real-time
systems that rely on BFT in practice [62, 63, 26, 70, 59, 42].
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2.3.1 System Model

We consider a distributed system of processors, sensors, and actuators (which we collectively refer
to as devices) connected to a network. We assume the system is synchronous, i.e., there are known
upper bounds on the time needed for processors to perform computations and for messages to
traverse the network [108, 109, 46]. This is typically accomplished using specialized real-time
operating systems [110, 111] and networking protocols [31, 32, 100, 42, 33, 112].

We assume all devices are synchronized, either via the network [32, 100, 33] or external timing
equipment [113], and that the system progresses in a series of rounds. At the start of each round,
devices send messages. At the end of each round, devices read messages and perform computa-
tions. Messages are received in the same round they are sent.

We assume replicas can communicate directly with each other, and with sensors and actua-
tors, over the network. This assumption follows trends in distributed real-time control systems,
which are becoming increasingly “flat”, with a single backbone network connecting all system
components [60, 71, 89, 59]. The network can use any physical topology, which may include
switches [33, 32, 31], buses [100, 60], or point-to-point links [42, 62, 61]. Regardless of topology,
we model communication between devices as point-to-point.

Lastly, we assume a device can identify the sender of any message it receives. This is a neces-
sary assumption in any BFT system [46], since otherwise a faulty device could impersonate all the
other devices [114]. The assumption is trivially satisfied in point-to-point networks. In other net-
works, it is typically satisfied using (1) static routing tables, where the devices connected to each
switch port (for example) are known a priori, and switches discard messages that disagree with the
table [31, 32, 33], or (2) a time-division multiple access scheme [60, 70, 59, 112], in which the
sender is implied by the time a message is received.

2.3.2 Fault Model

We consider the classical Byzantine fault model, where, in a system with n replicas and m sensors,
f < n/3 of the replicas [46] and g < m/2 of the sensors [115, 40] can be faulty. Faulty devices can
exhibit any possible behavior, including pretending to have received messages that were never sent,
dropping or failing to send messages, sending messages at the wrong time, or sending conflicting
messages to different devices. For example, a faulty replica that is supposed to broadcast some
value v to all replicas may instead send v to some replicas, v′ to some other replicas, and no value
to the rest of the replicas.

Byzantine behaviors can have multiple causes in practice, e.g., software errors [116], device
wear-out [117], and bits flips from charged particles [118]. Broadcast networks can prevent some
of these behaviors, since messages are sent only once by the device and replicated by the switch
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or bus [31, 32]. However, Byzantine behaviors can still result from a faulty device that transmits
different values on different redundant networks, with some receivers reading the message from
network A first while others from network B first [70]. A faulty device can also transmit a marginal
signal that is interpreted differently by different receivers receiving the same message [119].

In contrast to the replicas and sensors, we assume the network itself is reliable. This has two
implications. First, the network cannot drop messages. This is typically accomplished using auto-
matic retransmissions [33], or redundant network planes [31, 32, 100], in which messages are sent
over multiple independent networks simultaneously. Second, the network cannot corrupt or create
messages. This is typically accomplished by having network cards vote messages from redundant
networks [71, 70], or by using specialized self-checking switches that are proven to fail silent with
sufficiently high probability [120, 60, 59]. We note that by not worrying about network faults, we
keep IGOR’s design general and applicable to a broad range of architectures; there is no reason
IGOR could not be analyzed in the context of network faults.

Finally, in safety-critical systems, where BFT is perhaps most used in practice [62, 63, 61, 70,
71, 64, 44, 42, 73, 74, 75, 40, 26], cryptographic methods like digital signatures are typically con-
sidered an insufficient means of constraining the behavior of faulty devices [121, 122, 123, 124].
We design IGOR to avoid cryptographic assumptions and to be correct in all possible executions.

2.4 Design

This section describes IGOR, a new speculative approach for building high-performance BFT SMR
systems suitable for real-time applications. In general, IGOR has two main goals:

• Low latency in all executions — Real-time systems must meet deadlines in the worst-case
scenario (i.e., under faults). There is no benefit to being fast in the absence of faults if the
system is slow when faults do occur.

• Robustness to faulty sensor data — Traditional BFT SMR architectures use a source se-
lection process to reject bad sensor data and select a single “best” input. Despite IGOR’s
speculative approach, it needs to retain this same robustness to faulty sensor data.

IGOR accomplishes these goals using a speculative approach, in which — rather than agreeing
on sensor data before executing — replicas eagerly execute on sensor data while simultaneously
agreeing on which data to use. The key idea is to keep replicas from wasting time communicat-
ing when they could be getting closer to delivering a result. Of course, IGOR’s ability to reduce
latency relies on the replicas’ ability to perform extra computations. However, we believe this is
a worthwhile trade-off in critical low-latency applications (e.g., flight control) that could not meet
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Figure 2.2: Overview of IGOR — High-level design of IGOR showing eager speculative execu-
tions on data from different sensors. Sensor 3 is faulty.

deadlines otherwise. It also lets IGOR take advantage of emerging aerospace processors, which
can feature 4, 8, or more cores [14, 48].

Figure 2.2 gives an overview of IGOR’s design. 1 Like in traditional BFT SMR systems,
the replicas get a value from each sensor; however, they do not run an agreement protocol on
the values directly. 2 Instead, each replica delegates each sensor value to a different core and
executes on each value simultaneously. Each execution produces a (potentially different) resulting
state, which is stored temporarily. 3 While these executions are in progress, the replicas use an
agreement protocol to determine which replicas claim to possess the value from each sensor. As
a result of the agreement process, the replicas end up with an identical set of “candidate” sensors
— sensors whose value could be selected as the “trusted” system input. IGOR ensures that if a
sensor is non-faulty, it is guaranteed to be in this candidate set. 4 The replicas then perform a
source selection process to determine which candidate sensor, and therefore which execution, will
be used to determine the system’s final state. This process is analogous to the source selection
performed in an agree-execute system. 5 Once the executions on the sensor values are complete,
the replicas commit the state resulting from the chosen execution and discard other states. If an
output is required, the replicas reference their (now final) state to determine the output and send it
to the actuators. Like in agree-execute systems, the actuators use a majority vote to determine the
system output.

IGOR also uses two key optimizations to make BFT SMR more efficient. First, it uses a binary

reduction technique [125, 126, 127, 128] to reduce the problem of agreeing on arbitrarily large
sensor data to that of agreeing on a small constant number of bits. This technique enables IGOR to
achieve low latencies even when tolerating multiple faults, which would otherwise be impossible
due to the added latency of fragmenting large messages (see §2.6.1). Second, IGOR exploits the
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Figure 2.3: Stages of IGOR — Stages of IGOR optimized for the single (left) and multiple (right)
fault-tolerant cases.

fact that, even though all non-faulty replicas must agree on the system state before the next iteration
of the protocol, only a subset of those replicas are needed to deliver correct results to the actuators.
Therefore, IGOR can produce an output before the agreement process is actually completed.

The following sections describe IGOR in detail. We start with a version of IGOR that is opti-
mized for low latency in the single-fault case (§2.4.1). We then modify the protocol using a binary
reduction technique to make a version of IGOR optimized for tolerating multiple faults (§2.4.2).

2.4.1 Optimizing Eager Execution for the Single-Fault Case

Figure 2.3 shows an outline of the protocol, which proceeds in multiple stages. The Agreement
and Source Selection Stages are executed in parallel with the speculative executions. The State
Dispersal Stage is executed concurrently with delivering results to the actuators. We now describe
each stage in detail.

2.4.1.1 Agreement Stage

Each replica starts executing on the value from sensor k immediately after receiving it, with the
execution assigned to core k. However, since sensor k may be faulty, and thus can send different
values to different replicas, two non-faulty replicas may execute on different values on their k-th
core. The goal of the Agreement Stage is to detect these kinds of inconsistencies and to ensure
replicas agree on the content of the data.

Unfortunately, it is not sufficient for IGOR to simply place a traditional agreement protocol in
parallel with the speculative executions. The reason is that, although traditional agreement proto-
cols guarantee all non-faulty replicas end up with the same value, they make no guarantees about
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how many replicas started with — and thus executed on — that value [45, 129, 130]. Even agree-
ment protocols with stronger guarantees [131], such as ensuring that a value cannot be decided
unless at least one non-faulty replica started with that value, are not sufficient. For example, con-
sider a typical system with 4 replicas (1 faulty) and 3 sensors (1 faulty). The faulty sensor may send
a value v to one replica and v′ to the others, which the replicas start speculatively executing on.
After running an agreement protocol, the replicas may decide on the value v from the faulty sensor,
and that value may be selected by the source selection process as the system input. However, only
one non-faulty replica actually executed on that value originally, and thus has the resulting state,
which is not enough to out-vote a faulty replica when delivering results to the actuators.

IGOR’s Agreement Stage fixes this problem by having replicas simultaneously agree on both
the content of the sensor data and how many replicas received it. This is described in Protocol 2.1,
which the replicas execute on each sensor value. It uses an existing Byzantine agreement (BA)
protocol [46, 129, 130] as a primitive, which guarantees that, when a faulty replica broadcasts a
value, all other non-faulty replicas receive the same value [46].

In Protocol 2.1, MyValuek is the value the replica received from sensor k. If no value was
received, it is set to a predetermined default value. Valuesk is an n-dimensional vector used to
store values other replicas received from sensor k (recall that n is the number of replicas). All
elements are initialized to ⊥ to indicate the values are missing. Candidatek and MyAcceptk are
variables indicating whether sensor k’s value is a candidate for source selection and whether the
replica executed on that value originally, respectively. Both are initialized to False. Note that
broadcasting includes logically sending to one’s self.

Protocol 2.1: Agreement Stage
• Broadcast MyValuek to all replicas using a BA protocol

• Valuesk[j] ← the value broadcasted by replica j (if any)

if ≥ n− f values in Valuesk are the same then:

— Candidatek ← True

— Let v be the value with ≥ n− f matching copies

— if MyValuek = v then: MyAcceptk ← True

— else: MyValuek ← v

LEMMA 2.1. For any sensor k, Candidatek is the same for all non-faulty replicas. Further, if
Candidatek is True, MyValuek is the same for all non-faulty replicas.

Proof. Each value in Valuesk was broadcasted with a BA protocol; hence, it is the same for all
non-faulty replicas. Thus, if one non-faulty replica sets Candidatek ← True, so do all non-faulty
replicas. Otherwise, Candidatek is False.
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We next prove the second part of the lemma. Suppose two non-faulty replicas Ri and Rj end up
with different values for MyValuek. Since Candidatek is True, the two replicas must have received
different sets of ≥ n− f values that match the MyValuek they end up with. Since the values were
broadcasted with a BA protocol, each replica must possess the same values in Valuesk. However,
any two sets of ≥ n− f values must overlap at ≥ n− 2f values, which is ≥ 1. Hence, Ri and Rj

could not have received different sets of ≥ n− f matching values, which is a contradiction.

2.4.1.2 Source Selection Stage

In the Source Selection Stage, the replicas decide which of the candidate sensors will determine
the system’s final state using an existing deterministic source selection algorithm. This process
is analogous to the source selection process in traditional agree-execute systems, except that it
happens in parallel with the executions.

Protocol 2.2 describes the Source Selection process. SelectedSource is a variable containing
the ID of the selected sensor, which in turn determines the selected state.

Protocol 2.2: Source Selection Stage
• Let C be a set of tuples of the form (k,MyValuek), where Candidatek =

True for each tuple

• Use the source selection algorithm to select the sensor with the

“best” value in C
SelectedSource ← the ID of the selected sensor

LEMMA 2.2. All non-faulty replicas have the same set C and the same SelectedSource.

Proof. By Lemma 2.1, if one non-faulty replica includes sensor k in C, then all non-faulty replicas
do too. Also, by the same lemma, MyValuek is the same for any sensor k included in C. Thus, set C
is the same for all non-faulty replicas, and as long as the source selection algorithm is deterministic,
all non-faulty replicas select the same sensor.

LEMMA 2.3. If some sensor k is non-faulty and sends value v, then set C contains sensor k (and
its value v).

Proof. Since sensor k is non-faulty, all non-faulty replicas set MyValuek ← v and broadcast v in
the Agreement Stage. Since ≤ f replicas are faulty, each non-faulty replica receives ≥ n − f

copies of v, sets Candidatek ← True, and keeps MyValuek as v. Thus, for all non-faulty replicas,
set C contains (k, v).
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2.4.1.3 State Consolidation Stage

Once Source Selection is over, all non-faulty replicas know which sensor value was selected as the
input. During State Consolidation, replicas that executed on that value commit the resulting state,
and all replicas discard states resulting from the other speculative executions.

Protocol 2.3 describes the State Consolidation Stage. SavedState is a variable containing the
current system state, which persists to the next iteration of the protocol. TempStatek is the tempo-
rary state resulting from executing on sensor k’s value.

Protocol 2.3: State Consolidation Stage
• if MyAcceptSelectedSource = True then:

— SavedState ← TempStateSelectedSource

• Discard TempStatek for all k = 1, ...,m

LEMMA 2.4. At least n− 2f non-faulty replicas have MyAcceptSelectedSource = True and have the
same SavedState. At most f non-faulty replicas have MyAcceptSelectedSource = False (i.e., do not
have the state).

Proof. By Lemma 2.2, all non-faulty replicas set SelectedSource to the same sensor k from set C.
A sensor k is only in C if Candidatek = True, which means≥ n−f replicas Byzantine broadcasted
the same value v from that sensor to all replicas in the Agreement Stage. Of these replicas, ≤ f

may be faulty. Thus, ≥ n − 2f non-faulty replicas started with MyValuek = v, and thus set
MyAcceptk ← True. Moreover, these ≥ n− 2f non-faulty replicas all speculatively executed on
v (since they started with it). Since they all perform the same computation on v in the same state
(shown later), they produce the same state TempStatek, which they then store in SavedState.

Now we prove the second part of the lemma. Above we said ≥ n − 2f non-faulty replicas
possess the same SavedState. Since there are ≤ f faulty replicas and n total replicas, there are
≥ n− f non-faulty replicas, and thus at most (n− f)− (n− 2f) = f non-faulty replicas do not
have the state.

2.4.1.4 State Dispersal Stage

At the end of the Stage Consolidation stage, at least n−2f non-faulty replicas possess the final state
and can deliver results to the actuators. However, up to f non-faulty replicas still do not possess
the updated state. The purpose of the State Dispersal Stage is to provide the updated state to those
replicas. Importantly, this state dispersal process happens simultaneously with sending results to
the actuators, so does not contribute to the end-to-end latency. Moreover, it can be overlaid with
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the process of receiving sensor data in the next iteration of the protocol, as long as the state is
finished updating before the next speculative executions begin.

Protocol 2.4 describes the State Dispersal Stage. States is an n-dimensional vector used to store
the SavedState from each replica. All elements are initialized to ⊥.

Protocol 2.4: State Dispersal Stage
• if MyAcceptSelectedSource = True then:

— Broadcast SavedState to all replicas

• if MyAcceptSelectedSource = False then:

— States[j] ← the state broadcasted by replica j (if any)

— SavedState ← the majority of the non-⊥ states in States

The correctness of the protocol will be shown in Theorem 1.

2.4.1.5 Deliver Outputs

At the same time as the State Dispersal Stage, the replicas deliver outputs to the actuators. The
protocol is shown in Protocol 2.5. The actuators use a majority vote of the outputs to resolve the
final system output.

Protocol 2.5: Deliver Outputs
• if MyAcceptSelectedSource = True then:

— Reference SavedState to determine the output

— Send the output to actuators

We now prove the correctness of the overall protocol.

THEOREM 2.1. Given there are n > 3f replicas and m > 2g sensors: (1) the system always
operates on correct sensor data, (2) all non-faulty replicas obtain the same correct state, and (3) all
non-faulty actuators obtain the correct system output.

Proof. We first consider condition (1). If the Source Selection Stage selects a value from a non-
faulty sensor, (1) is trivially satisfied. Now we consider the case where the selected value comes
from a faulty sensor.

By Lemmas 2.2 and 2.3, all non-faulty replicas are guaranteed to agree on C, and C must include
all values sent from non-faulty sensors. Since there are m > 2g sensors, this means that C contains
≥ (2g + 1) − g = g + 1 non-faulty sensor values and up to g faulty sensor values. Thus, as
long as a source selection algorithm that tolerates a minority of the sensors being faulty is used,
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the input to the non-faulty replicas is guaranteed to be correct. For example, in the common case,
where source selection is a mid-value selection [132, 26, 71], a faulty sensor value that is selected
is guaranteed to be upper and lower bounded by at least one non-faulty sensor value on each side.
In other words, the selected value must fall within the range of values from non-faulty sensors.

We now consider (2). Let Shappy be the set of non-faulty replicas for which MyAcceptSelectedSource

= True at the end of the State Consolidation Stage, and Ssad be the set of non-faulty replicas /∈
Shappy. By Lemma 2.4, |Shappy| ≥ n − 2f , and all replicas ∈ Shappy have the same SavedState s,
which they obtained by executing on the (correct, as shown above) value from the selected sensor.
In the State Dispersal Stage all replicas ∈ Shappy broadcast s to all replicas, and replicas ∈ Ssad do
not broadcast their states. Thus, at the end of the State Dispersal Stage, all replicas ∈ Ssad possess
≥ n − 2f copies of s from non-faulty replicas, and at most f states s′ ̸= s from faulty replicas.
Since n > 3f, n− 2f > f . Thus s must be the majority of non-⊥ states held by replicas ∈ Ssad.

The correctness of (3) follows from the logic in (2). All replicas ∈ Shappy have the same correct
SavedState, as shown above. Thus, referencing SavedState produces the same correct output. Each
replica ∈ Shappy sends the output to the actuators, and replicas ∈ Ssad do not send an output. Since
|Shappy| ≥ f + 1, each actuator gets ≥ f + 1 correct outputs and ≤ f outputs from faulty replicas.
Thus the majority of the outputs received by the actuators must be correct.

2.4.2 Scaling Eager Execution for the Multi-Fault Case

The protocol we described above is fast when tolerating a single fault. However, it requires replicas
to broadcast full copies of the sensor data they receive using a Byzantine agreement protocol. As
we show in §2.6.1, this results in high latency when tolerating multiple faults, since large messages
sent in later rounds of the agreement protocol need to be fragmented into multiple frames.

The multi-fault version of IGOR fixes this problem using a binary reduction technique [125, 126,
127, 128]. The idea is to add an extra stage, which we call Filtering, before the Agreement Stage.
The Filtering Stage ensures that no two non-faulty replicas can accept different data from the same
sensor, thus reducing the agreement on each sensor value to agreement on a single bit (accepted
value, or did not accept value). Since the size of the data to agree on is reduced, fragmentation
(and the resulting latency) is reduced as well.

An outline of the revised protocol is shown in Figure 2.3 (right picture). The Filtering Stage, as
a well as a new Agreement Stage, replace the Agreement Stage in the earlier protocol optimized
for single faults. The other stages (State Dispersal, Consolidation, etc.) remain the same. Below,
we describe the new Filtering and Agreement Stages in detail.
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2.4.2.1 Filtering Stage

The protocol for the Filtering Stage is shown in Protocol 2.6, which the replicas execute on each
sensor value. The output of the protocol is a single bit indicating whether the value is accepted
(True) or not accepted (False).

MyValuek is the value the replica received from sensor k. If no value was received, it is set to
⊥ (missing). Valuesk is an n-dimensional vector used to store values other replicas received from
sensor k. All elements are initialized to ⊥. MyAcceptk is a variable indicating whether to accept
the value from sensor k. It is initialized to False.

Protocol 2.6: Filtering Stage
• if MyValuek ̸= ⊥ then:

— Send MyValuek to all replicas

• Valuesk[j] ← the value sent from replica j (if any)

if ≥ n− f non-⊥ values in Valuesk match MyValuek then:

— MyAcceptk ← True

After the Filtering Stage, we have the following guarantees:

LEMMA 2.5. If sensor k is non-faulty and sends v, all non-faulty replicas set MyValuek ← v and
MyAcceptk ← True.

Proof. Since sensor k is non-faulty, all non-faulty replicas receive v and store it in MyValuek.
Then, all non-faulty replicas forward v to all replicas. Since there are ≥ n− f non-faulty replicas,
all non-faulty replicas receive ≥ n − f values that match MyValuek and set MyAcceptk ← True

LEMMA 2.6. MyValuek is the same for all non-faulty replicas that set MyAcceptk ← True.

Proof. Suppose two non-faulty replicas Ri and Rj accept different values from sensor k. That
means each replica received ≥ n − f values from distinct replicas that match its own value. Any
two sets of n − f replicas intersect at ≥ 2(n − f) − n = n − 2f replicas. That means ≥ n − 2f

of the matching values for Ri and Rj came from the same replicas. Since n > 3f , at least one of
those replicas must be non-faulty. A non-faulty replica sends the same values to all replicas. Thus,
Ri and Rj accepted the same value, which is a contradiction.

2.4.2.2 (Revised) Agreement Stage

At the end of the Filtering Stage, each replica chose to accept or reject the value from each sensor.
In the Agreement Stage, the replicas use this information, along with values leftover from the
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Filtering Stage, to agree on (1) which sensors are candidates for source selection and (2) what
values those sensors sent.

The Agreement Stage is shown in Protocol 2.7. The replicas run a separate instance of the
protocol for each sensor. The protocol uses any existing BA protocol as a primitive [129, 46,
130]. Acceptsk is an n-dimensional vector used to store MyAcceptk bits from other replicas. All
elements are initialized to ⊥. Candidatesk is a variable indicating if sensor k is a candidate for
source selection. It is initialized to False.

Protocol 2.7: (Revised) Agreement Stage
• Broadcast MyAcceptk to all replicas using a BA protocol

• Acceptsk[j] ← the bit broadcasted by replica j (if any)

if count(True) in Acceptsk ≥ n− f then:

— Candidatek ← True

if MyAcceptk = False then:

— For all j where Acceptsk[j] = False, Valuesk[j] ←⊥
— MyValuek ← the most common non-⊥ value in Valuesk

The rest of the stages are the same as in the single-fault optimized protocol. Therefore, to
establish the correctness of the multi-fault protocol, we only need to re-prove a few of the lemmas
from §2.4.1.

(REVISED) LEMMA 2.1. For any sensor k, Candidatek is the same for all non-faulty replicas.
Further, if Candidatek is True, MyValuek is the same for all non-faulty replicas.

Proof. Each bit in Acceptsk was broadcasted with a BA protocol, and thus is the same for all non-
faulty replicas. Hence, either all non-faulty replicas set Candidatek ← True or they all keep it
False.

Now we prove the second part of the lemma. Let Shappy be the set of non-faulty replicas that set
MyAcceptk to True in the Filtering Stage. Let Ssad be the set of all non-faulty replicas /∈ Shappy.
By Lemma 2.6, MyValuek is the same for all Ri ∈ Shappy. Call this value v. Each Ri ∈ Shappy

sent v to all replicas in the Filtering Stage and broadcasted True in the Agreement Stage. Since
Candidatek is True, |Shappy| ≥ (n − f) − f = n − 2f . Thus, at the end of the stage, each Ri ∈
Ssad has ≥ n − 2f copies of v in Valuesk. Also, since all Ri ∈ Ssad broadcasted False, no Ri ∈
Ssad possesses a non-⊥ value from an Rj ∈ Ssad. Thus, for each Ri ∈ Ssad, any v′ ̸= ⊥ that is not
v came from a faulty replica. Since ≤ f replicas are faulty, each Ri ∈ Ssad has ≤ f such v′ values.
Since n > 3f , we know |Shappy|, which is at least n− 2f , is > f . Thus, for all Ri ∈ Ssad, v is the
most common non-⊥ value in Valuesk.
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(REVISED) LEMMA 2.3. If some sensor k is non-faulty and sends value v, then set C contains
sensor k (and its value v).

Proof. If sensor k is non-faulty and sends v, then by Lemma 2.5, all non-faulty replicas set
MyValuek ← v and MyAcceptk ← True. All non-faulty replicas then broadcast True with a
BA protocol, which each non-faulty replica stores in Acceptsk. As there are ≥ n − f non-faulty
replicas, Acceptsk contains ≥ n − f True bits for all non-faulty replicas. Thus, all non-faulty
replicas set Candidatek ← True, and C contains (k, v).

(REVISED) LEMMA 2.4. At least n − 2f non-faulty replicas have MyAcceptSelectedSource = True

and have the same SavedState. At most f non-faulty replicas have MyAcceptSelectedSource = False

(i.e., do not have the state).

Proof. By Lemma 2.2, all non-faulty replicas set SelectedSource to the same sensor k from C.
A sensor k is in C only if Candidatek = True, which means ≥ n − f replicas claimed to set
MyAcceptk ← True. Up to f of these replicas are faulty, so ≥ n− 2f non-faulty replicas actually
did set MyAcceptk ← True. By Lemma 2.6, these ≥ n− 2f non-faulty replicas all had the same
MyValuek at the start of the protocol, which they speculatively executed on. Since the replicas
perform the same computation on the same value in the same state, they produce the same state
TempStatek, which they store in SavedState.

We next prove the second part of the lemma. As discussed above, ≥ n − f replicas claimed
to set MyAcceptSelectedSource ← True. In the worst case, all replicas which did not claim to set
MyAcceptSelectedSource ← True are non-faulty. Thus, at most f non-faulty replicas do not have the
state.

2.5 Prototype Implementation

To evaluate our solution, we built a prototype of IGOR in NASA’s Core Flight System (cFS) [87],
an open-source software framework used in a variety of real spacecraft [88] (and planned to be
used in several future NASA missions [133]). Overall, our prototype consists of 5976 lines of C
code.

Our prototype runs on a cluster of Raspberry Pi (RPi) 3B+ computers with 1.4 GHz ARM
Cortex-A53 processors. We chose RPis as they use the same processor as NASA’s upcoming High
Performance Spaceflight Computing (HPSC) chiplet [14] (though the HPSC will have twice as
many cores). Each RPi runs Raspbian 9.4 with kernel version 4.14.34 and the PREEMPT RT
patch, with dynamic clock scaling disabled to improve real-time performance. The RPis schedule
tasks using the cFS scheduler [105], a cyclic executive that triggers tasks to run in predefined
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time slots of a periodic schedule. The RPis’ schedulers are synchronized to a common external
timing circuit. To minimize timing variability, one core of each RPi is reserved for inter-replica
communication, and the remaining three cores are used for task execution.

All RPis communicate through a gigabit Ethernet switch. We implemented a software layer in
cFS to emulate the AFDX [31] network found in typical aircraft [50]. The worst-case Ethernet
frame latencies measured in our prototype are a couple of milliseconds, which are similar to those
observed in real AFDX networks [57, 96]. Messages that are sent to the same destination in the
same round are batched whenever possible to reduce overhead.

For comparison, we also implemented two state-of-the-art systems, namely OM and TC. OM
is an agree-execute system based on Lamport, Shostak, and Pease’s Oral Messages agreement pro-
tocol [46, 92], which has the theoretical minimum number of rounds [27] and is used extensively
in practice [62, 63, 61, 64, 42]. OM is also the basis for all existing Byzantine agreement proto-
cols that meet this lower bound [45, 134, 135]. TC is an agree-execute system based on Turpin
and Coan’s reduction protocol [125], which uses a similar reduction approach to IGOR and takes
fewer rounds than any existing protocol that uses a binary reduction [136, 128, 137, 126]. We
used OM as the binary agreement primitive in TC, as well as in our IGOR prototype. Lastly, we
also implemented a system without replication, NOREP, which provides the theoretical minimum
latency.

2.6 Evaluation

To evaluate IGOR’s performance and practical applicability, we conducted a series of experiments
on our prototype. We had four key questions for our evaluation: (1) How effective is IGOR in
reducing end-to-end latency? (2) How much can IGOR improve schedulability? (3) What are
IGOR’s computation and communication overheads? and (4) How well does IGOR perform in a
real spaceflight application?

2.6.1 Latency

Experimental setup. For this experiment, we considered a range of workload parameters based on
practical aircraft systems. Specifically, the sensor data size was distributed in the range {250, 750,
1250} bytes, and the task’s worst-case execution time (WCET) was in {5, 10, 15, 20} millisec-
onds; these values were chosen to match those found in typical aircraft [107, 57]. (Note that the
sensor data size is relatively large, since data delivered to the flight computers are often batched by
downstream devices [59, 132].) We set the actuator data size, task’s state size, and source selection
time to be 500 bytes, 1500 bytes, and 1 ms, respectively, based on NASA’s Orion Ascent Abort-2
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Figure 2.4: IGOR’s Latency — End-to-end latencies of IGOR and other state-of-the-art protocols
compared to a non-replicated system. Plots (a) and (b) use 750 bytes of sensor data with 3 sensors.
Plots (c) and (d) use 12 ms execution times with 3 sensors.

system used in our case study (§2.6.5). The number of sensors was 3, the typical redundancy level
found in aircraft and spacecraft [40]. The band allocation gap (BAG) – i.e., the minimum time
between AFDX frames sent on the same virtual link – was 1 ms, which is the minimum allowed
by the AFDX standard [31].

The workloads executed on the experimental platform described in §2.5. We used a 500 Hz
cFS schedule (2 ms per slot), the highest rate that can be achieved with our timing circuit (and
also the upper limit of what is typically seen in practice [95, 105, 138]). One of the RPis acted as
the sensors and actuators, and the remaining RPis were used as replicas. We considered two fault
settings: f = 1, with 4 RPis serving as replicas; and f = 2, with 7 RPis serving as replicas.

To determine the schedule table for each system (IGOR, OM, TC, NOREP), we first measured
the maximum time required to execute each stage of the system (e.g., reading from sensors, agree-
ment, and execution) over 100 iterations, then added 10% margin to each measured value. We
then rounded each quantity up to the next time slot and scheduled the stages in sequence. Finally,
we validated that the resulting schedule worked on our hardware cluster as expected (e.g., with-
out causing any message drops or overrun of task’s WCET). We measured the latency as the time
between the instant the sensors were scheduled to transmit their data and the instant the actuators
were scheduled to read outputs from the replicas.
Results. Figure 2.4 shows the results of all four systems under each fault setting, as we varied the
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Figure 2.5: IGOR’s Schedulability — Increase in schedulability when using IGOR. IGOR makes
it possible to schedule significantly more tasksets than the state of the art.

task’s execution time and sensor data size. As shown in the figure, IGOR achieves a latency very
close to, or the same as, that of NOREP (the theoretical minimum) in all cases. For example, under
the f = 1 setting, its latency is equal to NOREP’s for all execution times of 10 ms and above.
Moreover, IGOR’s Filtering (§2.4.2) approach makes it especially fast when tolerating multiple
faults: IGOR’s latency when tolerating 2 faults is even lower than the latency of the best existing
system (OM) when tolerating 1 fault for all execution times of 10 ms and above. The next fastest
system (TC) has a 1.5–1.75× higher latency than IGOR’s. Thus, IGOR not only delivers close-to-
optimal latency but also substantially reduces latency compared to existing systems. Its benefits
also increase with more faults.

2.6.2 Schedulability

Next, we evaluated whether IGOR could be used to improve the schedulability of a BFT SMR
system.
Experimental setup. We considered application workloads consisting of independent constrained-
deadline periodic BFT tasks, which are distributed over 3 cores on each replica (as on our RPis).
We varied the workload utilization per core from 0.1 to 1, in steps of 0.1. For each utilization, we
randomly generated 1000 tasksets. The tasks’ WCETs were randomly selected from {5, 10, 15,
20}ms (the same range used in our latency experiments). The task periods were randomly selected
from {200, 100, 50, 25}ms, which are commonly used in practice [104]. The tasks’ deadlines (i.e.,
the maximum time allowed between reading a sensor input and producing a result) were uniformly
distributed between their WCETs and periods. Notice that a task’s deadline is also the maximum
allowed time to finish all of the filtering, agreement, and execution stages.

We scheduled tasks using a common heuristic, where we organized tasks into rate groups and
scheduled tasks with higher rates first [139]. Per cFS’ design, tasks were scheduled without split-
ting into smaller sub-tasks. We used 2.5 ms slots to accommodate the tasks’ periods. We deter-
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mined the WCET for each protocol stage, such as filtering and agreement, from our earlier latency
experiment.

We assumed sensor data is available whenever the BFT tasks expect it; in other words, the net-
work imposes no additional constraints on the scheduling. As in our prototype, all inter-replica
communication is handled by a separate core. Since we focused on the schedulability of execu-
tion tasks on the replicas, to simplify the analysis, we assumed that the source selection and the
communication with sensors/actuators take negligible processor time; however, our results should
apply to the general setting as well.

For each schedule, we determined whether the fastest existing BFT protocol (OM for f = 1,
TC for f > 1) can feasibly schedule all BFT tasks. If not, we used IGOR instead for those tasks that
were unschedulable (while still using the fastest existing protocol for tasks that were schedulable),
and we checked whether the system would then become schedulable. For each task scheduled by
IGOR, we replaced it with three speculative copies (assuming 3 redundant sensors). The IGOR

tasks were scheduled in the same time slots on all 3 cores, at the start of their respective rate group.
Besides meeting deadlines, IGOR tasks were also required to complete state dispersal by the end
of their periods.
Results. Figure 2.5 shows our results for the two cases: when the best protocol is used alone, and
when it is used in conjunction with IGOR. As expected, as the utilization increases, the fraction of
schedulable tasksets also decreases for both cases. Notice that, in our workloads, tasks’ deadlines
can be much smaller than their periods, which explains the large drop in the number of schedulable
tasksets at higher utilizations.

The results show that IGOR is able to substantially increase the number of schedulable tasksets,
compared to using the best existing protocol alone: it is able to schedule 1.88× and 3.22× more
tasksets under the single-fault and two-fault settings, respectively. This demonstrates that, even
with the potential computation overhead for speculative execution, IGOR’s efficiency in reducing
overall latency also results in a substantial increase in the schedulability of the overall system.

2.6.3 Computation Overhead

Experimental setup. To evaluate IGOR’s computation overhead, we repeated the same experiment
as in §2.6.2. For each BFT taskset, we calculated the remaining available CPU capacity per core
after having scheduled the taskset, and we report the average across all tasksets that were schedu-
lable at each workload utilization. (Note that we excluded unschedulable tasksets, as we focus
on hard real-time systems and hence a taskset is only accepted to run if it is schedulable.) As in
our schedulability evaluation, our goal was to compare between (1) a system that used the fastest
existing protocol on its own, and (2) a system that used the fastest existing protocol together with
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Figure 2.6: IGOR’s Computation Overhead — Available compute capacity when using IGOR

compared to the best existing protocol alone.

IGOR, where IGOR was used for the tasks that could not meet deadlines in (1).
Results. Figure 2.6 shows our results. In the figure, a higher remaining capacity corresponds
to a higher resource use efficiency and thus a smaller overhead. The difference between the
green/purple column (case 1) and the red column (case 2) represents the computation overhead
added by IGOR.

When tolerating 1 fault, using IGOR results in only 1.1–20% reduction in remaining average ca-
pacity than a system that uses only OM. When tolerating 2 faults, using IGOR results in a slightly
higher overhead, at 3.3–38% lower average remaining capacity. Note, however, that the computa-
tion costs in both fault settings are reasonably small compared to IGOR’s substantial improvements
in latency and schedulability reported in Figures 2.4 and 2.5.

2.6.4 Communication Cost

Experimental setup. Network bandwidth is often at a premium in real-time embedded systems.
To evaluate IGOR’s bandwidth usage, we sniffed all traffic entering the Ethernet switch and counted
the total number of bytes (including Ethernet headers) over 100 iterations of each of the four
systems (IGOR, OM, TC, and NOREP) on our prototype. Our AFDX layer uses Ethernet broadcast
to emulate VL multicasting in AFDX networks, so each frame broadcasted by a given RPi was
counted only once. We used 3 sensors in our tests, each generating 750 bytes (both numbers are
the defaults in our latency evaluation).
Results. Figure 2.7 shows our results. In general, IGOR communicates roughly the same number
of bytes as the existing state-of-the-art systems in both the single- and two-fault settings. The
reason for IGOR’s slightly higher communication cost is its need to distribute the state after each
execution. IGOR’s bandwidth usage could be reduced by dispersing only deltas from the previous
state, or by not transferring parts of the state that are known not to change based on the sensor data
being processed. Both of these techniques are commonly used in existing BFT protocols [79], and
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Figure 2.7: IGOR’s Communication Cost — Total bytes transmitted in IGOR and other state-of-
the-art protocols over 100 iterations.

Figure 2.8: IGOR Spaceflight Simulation — Orion AA-2 simulation moments after the crew
module (left) separates from the launch abort system (right).

could be integrated into our prototype.
The reason for IGOR’s high communication efficiency in the multi-fault case is its use of a

Filtering Stage. When minimizing network bandwidth is a priority, the Filtering Stage could also
be used in the single-fault case. However, this would result in a slightly higher latency (about 2 ms
in our tests).

2.6.5 Case Study: Orion Ascent Abort-2

To evaluate how well IGOR performs in a real spaceflight application, we conducted a case study
of NASA’s Ascent Abort-2 (AA-2) flight test. The AA-2 test was performed in 2019 to exercise
the launch abort system (LAS) for Orion, a spacecraft intended to take astronauts to lunar orbit.
The purpose of the LAS is to pull the spacecraft away from the rocket if an emergency happens
during ascent. In the AA-2 test, the LAS was intentionally activated, and it carried the spacecraft
away and jettisoned the craft into the ocean.

We ported a simulation of the Orion guidance, navigation, and control software (GNC) to 4 RPis
in our cluster. The software included multiple genuine Orion flight software components, including
code for absolute navigation, optical navigation, propellant balancing, and abort functionality [95].
The software ran against a high-fidelity simulation, which models the vehicle’s trajectory, as well
as the sensors and actuators. Figure 2.8 shows a screenshot of the simulation.
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Figure 2.9: Spacecraft Task Scheduling — Time slot allocations for IGOR and OM when running
the AA-2 flight software in the single-fault case.

The GNC software ran in a 40 Hz control loop. Every 25 ms, it read sensor data (e.g., from in-
ertial measurement units, barometric altimeters), performed GNC computations, and commanded
the actuators. We batched the sensor data into three redundant groups, each 772 bytes, to simulate
batching from remote interface units or data concentrators. The GNC computations took roughly
9.6 ms and maintained 1304 bytes of internal state. The actuator data totaled 376 bytes.

We determined the schedule using the same process as in our latency evaluation (e.g., mea-
sured the worst-case execution time, added 10% margin), except that we used 2.5 ms time slots
to accommodate the 40 Hz control loop. State consolidation was performed before sending to the
actuators.

Our results are shown in Figure 2.9. As expected, IGOR adds no additional latency compared
to a non-replicated system. In contrast, OM (the fastest existing protocol) adds 10 ms of latency.
Therefore, in order to run at a 40 Hz rate, OM has to overlap sending to the actuators with reading
from the sensors. This means that feedback from the output of a given GNC execution cannot
be incorporated into the inputs of the next execution, which causes a noticeable reduction in ve-
hicle stability. This was observed during our experiment, where the LAS tower rocked back and
forth after igniting instead of traveling in a straight path. The results demonstrate that IGOR’s
ability to minimize latency not only improves schedulability but also enables much better control
performance and system stability compared to state-of-the-art techniques.
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2.7 Related Work

Speculation to avoid agreement. Several BFT SMR protocols designed for data centers use spec-
ulation to avoid the overhead of executing an agreement protocol [81, 85, 83, 84, 82]. In these
systems, replicas execute client requests directly and are assumed to produce consistent states. If
state divergence occurs, then the system rolls back to a previous state and repeats the execution.
This approach makes sense in non-real-time systems that prioritize graceful executions over the
worst case. However, it is a poor fit for real-time systems, which require low latency in all execu-
tions. IGOR’s speculation is completely different in that it is eager rather than predictive. This way,
IGOR gets the benefits of speculation in all executions, albeit at the expense of extra computation.

Overlapping agreement and execution. Several protocols use speculation as a way to overlap
agreement with executing client requests [140, 141, 142, 143, 144]. In these systems, replicas
execute while an agreement protocol is run in the background. If the agreement protocol detects
inconsistency, the system rolls back and the computations are repeated. IGOR also uses speculation
to overlay agreement and execution. However, since IGOR’s speculation is not predictive, there is
no need to rollback. Other predictive protocols avoid the need for rollback by generating an opti-
mistic (possibly incorrect) result quickly, and a guaranteed correct result after some delay [145].
Unlike these systems, IGOR never exposes incorrect results to the actuators, and it uses speculation
to reduce the latency of generating a guaranteed correct result (and not just an optimistic one).

Multi-core state machine replication. Several solutions increase the performance of SMR on
multi-core processors by allowing replicas to execute independent requests in parallel [146, 147,
79, 148, 149, 150, 151]. This approach can greatly increase throughput when requests are mostly
independent, which is important for web services with millions of clients. However, it does not
significantly reduce the latency of executing individual requests. In general, IGOR is orthogonal
to these works, and there is no reason IGOR could not be extended to also parallelize independent
executions. Execute-Verify [79] systems allow multi-core replicas to execute dependent requests
nondeterministically; however, they require replicas to run an agreement protocol afterwards to de-
tect state divergence. In contrast, IGOR assumes deterministic execution, and parallelizes execution
and agreement.

Byzantine extension protocols. Several Byzantine agreement protocols are built as extension
protocols, i.e., they use techniques that reduce the problem of agreeing on arbitrarily large values
to that of agreeing on a small number of bits [152, 153, 154, 47, 128, 127, 155, 156, 157, 158,
159, 160, 125, 126]. As a result, these protocols can often achieve low communication complexi-
ties when the value to agree on is sufficiently large. IGOR also uses a reduction-based technique,
but for the purpose of reducing latency by preventing message fragmentation. To our knowledge,
IGOR’s Filtering and Agreement Stages take fewer rounds than any other reduction-based Byzan-
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tine agreement protocol [125].

Non-equivocation. Several protocols use a combination of cryptography and trusted hardware to
restrict a faulty device’s ability to send conflicting information to other devices (i.e., equivocate),
thus making agreement less expensive [158, 161, 162, 163, 164, 165, 166]. Other protocols pre-
vent equivocation by having devices echo values they receive to one another, and make decisions
based on a quorum of matching echoes [167, 168, 114, 169, 170]. IGOR also uses the idea of
echoing values in its Filtering Stage to prevent faulty sensors from equivocating, without relying
on cryptography or trusted hardware assumptions.

2.8 Conclusion

This paper presented IGOR, a new speculative BFT SMR approach that leverages multi-core pro-
cessors to achieve low latency in both the presence and absence of faults. IGOR provides systems
a means of meeting tight deadlines that would otherwise be impossible with classical BFT SMR
approaches. Our experiments show that IGOR achieves up to 1.75× lower latency than the state of
the art, often matching the latency of a non-replicated system, and improves the schedulability of
BFT tasks by 1.88–3.22×. We show that IGOR has immediate benefits when used for a real space-
flight application, and we believe it is broadly applicable to other BFT systems seeking improved
real-time control performance.
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CHAPTER 3

CROSSTALK: Making Low-Latency Fault Tolerance
Cheap by Exploiting Redundant Networks

3.1 Introduction

Real-time control systems perform a variety of critical functions in the modern world, including
flight control in spacecraft [28] and aircraft [26], and monitoring and reactor safing in nuclear
plants [44]. A common way that these systems tolerate faults, such as memory corruptions in
nodes [58] and stuck bits in network cards [123], is with Byzantine fault-tolerant (BFT) state
machine replication (SMR) [28, 62, 63, 61, 73, 40, 26, 64]. In BFT SMR, the same function
is performed simultaneously by multiple nodes (or replicas) and their outputs are compared. To
ensure the non-faulty replicas have the same state (and can thus out-vote faulty replicas), it is
necessary to ensure they all operate on identical inputs [26]. Traditionally, this is done by having
the replicas run an agreement protocol on all sensor data they receive before each execution [28].
An example of a traditional BFT SMR protocol is shown in Figure 3.1a.

One problem with traditional BFT SMR protocols is that reaching agreement on sensor data
is slow. It is well known that replicas must exchange messages for at least f + 1 communication
rounds to reach agreement if f replicas may be faulty [27]. If the replicas are not co-located, as
is typical in order to tolerate scenarios like fires or attacks that could disable all replicas [171,
172], these messages must traverse several network hops in each round, resulting in significant
added latency. Moreover, additional latency comes from the need for tasks on the replicas to read,
process, and send messages between rounds [28]. Overall, the latency of ensuring agreement can
be a significant portion of the time needed to execute the overall BFT SMR protocol (e.g., 50%
or more), making it difficult or even impossible to meet certain hard deadlines or successfully
schedule BFT tasks [28].

A recent RTAS paper, IGOR [28], was designed to address this problem. Figure 3.1b shows
an overview of IGOR. Instead of reaching agreement on sensor data before executing, replicas
in IGOR reach agreement while execution on the sensor data is underway. Thus, in cases where
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Figure 3.1: Overview of Existing BFT SMR Protocols — Example executions of a traditional
BFT SMR protocol (left) and the state-of-the-art IGOR protocol (right). Sensor 3 and replica 2 are
faulty. The network is not shown.

agreement takes less time than execution, IGOR’s latency matches that of a non-BFT system (i.e., it
is optimal). Unfortunately, while traditional protocols allow the replicas to down-select redundant
sensor values to a single value before executing, IGOR requires replicas to simultaneously execute
on data from every redundant sensor. This means that: (1) IGOR cannot be used on single-core
processors (which are still common in practice [48]) and (2) IGOR’s computation overhead is
typically at least 3× higher than traditional protocols. Moreover, IGOR requires 3f + 1 replicas to
tolerate f faults [28], while traditional protocols often only need 2f + 1 [46].

We observe that the reason IGOR is so computationally expensive (and traditional protocols are
so slow) is that, in order to be general, they make no assumptions about the network topology —
instead treating the replicas as if they are interconnected by point-to-point channels [28]. As a
result, they cannot exploit the redundancy and connectivity that often already exist in the network
in order to increase performance.

We present CROSSTALK, a new BFT SMR protocol that minimizes latency (matching or beat-
ing IGOR) without requiring multi-core processors, without requiring any additional processing or
replicas compared to traditional BFT protocols, and while remaining generally-applicable. The
key insight is that embedded systems requiring BFT SMR are all moving towards or have al-
ready adopted the same general network architecture, which we refer to as a redundant switched

network [173, 57, 174, 175]. In these networks, devices communicate through switches, and the
whole network is replicated to form redundant planes. We observe that this design already provides
enough redundancy and nearly enough connectivity to satisfy the “f + 1 round” [27] requirement
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for agreement, merely as a consequence of the paths messages take through the network.
CROSSTALK works by taking these redundant switched networks that systems already use

in practice, and adding a small number of new connections, or cross-links, between the planes.
We show in §3.3.2 that by exploiting state-of-the-art techniques to restrict the behavior of faulty
switches, it is possible to add these cross-links safely. With these cross-links in place, and by
moving messages between the planes according to a specific algorithm, CROSSTALK can solve
agreement entirely in the network as messages travel from the sensors to the replicas. In other
words, agreement happens in a single round. Importantly, CROSSTALK does not require any non-
standard capabilities in the switches, and thus can be used with existing network hardware and
protocols.

One unique challenge of CROSSTALK’s single-round design is tolerating timing faults, such
as a sensor transmitting later than expected. In fact, we prove — to our knowledge, for the first
time — that it is impossible to tolerate all timing faults with a single-round agreement protocol in
synchronous systems. The main intuition is that, while the synchronous model assumes bounds on
network latency, the exact latency is not known [176]. Thus, a message may arrive slightly before
a deadline for some replicas (and thus be accepted) but after the deadline for others. In §3.4.4, we
show how CROSSTALK can circumvent the impossibility result using network timestamps.

We developed a prototype of CROSSTALK for a NASA flight software framework [87] and
evaluated it in a real avionics development lab. CROSSTALK achieved comparable or lower la-
tency than the state of the art at a fraction of the computation cost, resulting in 2.13–4.24× better
schedulability (§3.6.2). By requiring fewer replicas, CROSSTALK also reduced mass and cost
(§3.6.3). We also executed simulated flight software from a real spaceflight mission and found
that CROSSTALK met all deadlines while tolerating more faults than the state of the art and using
nearly 3× less CPU time.

In summary, we make the following contributions:

• CROSSTALK: a novel BFT SMR protocol that exploits redundant switched network topolo-
gies that systems already possess to achieve low latencies without added computation costs
(§3.4).

• A new proof on the impossibility of tolerating timing faults with single-round agreement
protocols (§3.4.3) and a novel method for overcoming this result (§3.4.4).

• An experimental evaluation of CROSSTALK’s performance and schedulability on a real
avionics testbed (§3.6).

• A case study using CROSSTALK in a real spaceflight abort scenario (§3.6.5).
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Figure 3.2: Redundant Switched Network — Example redundant switched network with two
planes. Nodes here may be replicas, sensors, or actuators. Note that the topology inside a plane
can take many different forms, including a star or ring.

3.2 Background: Redundant Switched Networks

Over the past decade, the need for higher bandwidths and increased scalability in embedded sys-
tems has driven designers to adopt switched networks. For example, aircraft have replaced AR-
INC 429 and 629 buses with Avionics Full-Duplex Switched Ethernet (AFDX) and Fibre Chan-
nel [53, 57]. Spacecraft have replaced MIL-STD-1553 buses with AFDX, Time-Triggered Ether-
net, and SpaceFibre [28, 173, 53]. Trains and industrial control systems are replacing specialized
fieldbuses with Time-Sensitive Networking (TSN) [174, 175].

Today, the most dominant strategy for tolerating switch faults in these systems is to replicate
the entire network to form multiple planes (2–3 planes are typical) [11, 173, 57]. Each node is
connected to all planes. To minimize latency, all planes are typically active simultaneously [31,
32, 175]. A node communicates by sending the same message over all planes, and the receiver
accepts the first valid copy to arrive [31, 32]. Figure 3.2 depicts this redundant switched network

topology.
Unfortunately, redundant switched networks are highly susceptible to Byzantine faults of

nodes [71, 11]. For example, a faulty sensor can send different messages to different planes.
Depending on which message happens to arrive first at each replica, different replicas may accept
different messages [28]. Similarly, a faulty sensor may transmit two different messages on the
same plane, and no messages on the other planes. If a switch in the plane is also faulty, it can fail
to forward each message to different sets of replicas, causing disagreement.

As we will show, CROSSTALK exploits the redundant switched network topology systems al-
ready use to make masking these Byzantine faults fast and efficient.
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Figure 3.3: CROSSTALK’s System Model — CROSSTALK’s system model when f = 1 and
g = 2. The squares are switches and the lines are links. The nodes can connect at any position on
the network. The only thing we assume that systems in practice may not already contain are the
cross-links (shown in red).

3.3 Models

3.3.1 System Model

Our system model is shown in Figure 3.3. The system consists of replicas, sensors, and actuators
(collectively called nodes) connected to a redundant switched network, as described in §3.2. There
are n network planes, and each plane has a unique identifier {1, . . . , n}. We use bik to refer to
the switch in plane i at position k. We assume the topologies of the planes are all identical, and
that a given node connects to the planes at the same switch position on all planes (e.g., b1k and
b2k). These assumptions are almost always satisfied in practice [57, 11]. CROSSTALK could also
be extended to work in networks where these assumptions do not hold.

We assume the system is synchronous, meaning there are a priori known bounds on the time it
takes nodes to execute tasks and for messages to traverse each switch. These assumptions are often
satisfied using specialized real-time operating systems and deterministic switched networks [53,
57, 11]. As in past work [28, 58], we also assume nodes are synchronized within a bounded skew.
A variety of fault-tolerant synchronization protocols could be used for this purpose [32, 177].

We assume messages take a pre-planned route from a sender, through the switches, and to one
or more destination nodes. We refer to each such route as a virtual channel. Each message contains
an identifier specifying its virtual channel. The switches are pre-programmed with a routing table
indicating, for each message with a specific ID that arrives on a given ingress port, to which egress
ports the message should be forwarded. If a message with ID x arrives on a switch port for which
no route exists for ID x, the message is dropped. We use “sending on virtual channel x” to refer to
transmitting a message containing the ID for virtual channel x, and “receiving on virtual channel
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x” to refer to receiving a message with the ID for virtual channel x.

Cross-links between planes. The only somewhat non-standard assumption we make, which en-
ables the CROSSTALK approach, is that switches at a subset C of switch positions in different
planes are connected to one another. That is, for all c ∈ C, bic is connected to bjc for any two
planes i and j. We call these connections cross-links and the positions in C cross-link positions.
We formalize the required number of cross-link positions in §3.3.2. The choice of C does not
impact correctness, but does impact latency. We describe how to choose C to minimize latency in
§3.4.

The required cross-links for CROSSTALK can be added to systems with low size, weight, and
power impacts. The reason is that, as shown in Figure 3.3, cross-links are only added between
redundant versions of the same switch (i.e., switches at the same position in different planes). Often
these switches are co-located to reduce harness mass. As we will show in §3.6.3, CROSSTALK’s
cross-links add negligible mass and cost to the system. In fact, because CROSSTALK requires
fewer replicas than the state-of-the art (IGOR [28]), CROSSTALK actually reduces mass and cost
overall (§3.6.3).

3.3.2 Fault Model

We assume a Byzantine fault model for the nodes, where in a system with 2f + 1 sensors, 2f + 1

replicas, and 2f + 1 actuators, up to f sensors, f replicas, and f actuators can deviate arbitrarily
from the protocol (≥ 2f + 1 redundancy is needed to solve BFT SMR [28, 46]). This includes
corrupting messages, sending different messages to each plane, and sending messages out of or-
der [46, 28]. Initially, we assume faults do not occur in the time domain — i.e., messages from
faulty nodes are generated in an a priori known bounded time [178]. This assumption is common
in past work [58]. In §3.4.3, we relax this assumption to allow nodes to fail arbitrarily in the time
domain.

The only restriction is that a babbling node cannot consume all the network bandwidth in order
to prevent messages sent by other nodes from being delivered. This is almost always prevented in
practice by using a bandwidth allocation system monitored and enforced by the switches [31, 33].

We consider a more restricted fault model for the switches, where in a system with g+1 network
planes and at least g + 1 cross-link positions (i.e., ≥ (g + 1)2 switches have cross-links), up to g

switches can be omission faulty [32]. This means faulty switches can fail to forward any messages
they receive to any receivers, potentially resulting in some receivers getting a message and others
not [32]. However, faulty switches cannot undetectably corrupt messages, create messages, or
delay messages an unbounded amount of time [178, 32].

This is the standard switch fault model used in a variety of real BFT embedded systems in
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practice [32, 177, 33]. In discussions with avionic systems designers, we found there are several
reasons this is the case:

1. Switches are often implemented as self-checking pairs, with each switch containing two
processors. The switch cannot send a message unless both processors produce the same
message at the same time [71].

2. System designers use safety-layer protocols with features like layered CRCs, sequence num-
ber checking, and timestamp checking to minimize the probability of faulty switches unde-
tectably altering or replaying messages sent by non-faulty nodes [179, 180].

3. Other critical parts of the system break if faulty switches can exhibit Byzantine behavior.
For example, we are not aware of any BFT time synchronization protocol used in practice
that tolerates more severe switch faults than omission [32, 177].

It is the omissive behavior of modern switches that makes adding cross-links between planes
in CROSSTALK safe. Even if a switch is faulty, it has no way to consume excessive bandwidth or
pass incorrect messages on the other planes.

Finally, we note that unlike CROSSTALK, most prior work on BFT SMR (including IGOR [28])
does not consider switch faults [46, 58]. Thus, CROSSTALK’s fault model is strictly more general.

3.4 Design

This section describes CROSSTALK, a new low-cost BFT SMR protocol. CROSSTALK has two
main goals: (1) Low latency — CROSSTALK aims to be fast in both the presence and absence
of faults, and (2) Low computation overhead — CROSSTALK aims to be usable on single-core
processors and to have minimal processing overhead. In contrast, the state of the art in low-latency
BFT protocols has high overheads and requires multi-core processors [28].

The key idea of CROSSTALK, which allows it to achieve these goals, is to solve agreement
indirectly as a consequence of routing messages between network planes. An overview is shown
in Figure 3.4. 1 First, each redundant sensor sends a message with its value to each plane. Rather
than traveling directly to the replicas, the message is first routed through g+1 switches with cross-
links (i.e., switches in C). Note that two sensors at different positions in the network may send
their messages through the cross-link switches in different orders to minimize latency. Moreover, if
|C| > g+1, each sensor’s messages may travel through a different set of g+1 cross-link switches
(i.e., C can be different from each sensor’s perspective). 2 As a message travels through a cross-
link switch on a given plane k, the switch forwards a copy of the message to the “next” plane k+1.
Each copy continues to traverse the cross-link switches, which in turn create copies and forward
them to the next plane (until no such plane exists). 3 After traversing g + 1 cross-link positions,
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Figure 3.4: Overview of CROSSTALK — Example execution of CROSSTALK (f = 1, g = 2). We
only show the flow of traffic sent by one sensor to one plane (v11). However, the sensor also sends
traffic to the other planes (v12 and v13). Similar traffic flows exist for each sensor. For clarity we
do not depict faults. Note that there may be any number of switches upstream or downstream of
the cross-link switches, which are not shown.

Sensor data must traverse all sets of cross-link switches
(red squares) before traveling to the replicas (blue lines)

(a) Good choice of cross-link positions (b) Worse choice of cross-link positions

1

Figure 3.5: Choosing Cross-link Positions — Example of strategically choosing cross-link posi-
tions (red switches) to minimize latency in a system with 3 replicas and 2 planes. Only showing
one sensor for clarity. Note that in (a), traffic does not deviate from the shortest path on its way
from the sensor to the replicas.

each message is routed to the replicas. The protocol ensures that any message that arrives at one
replica (potentially from a faulty plane), must arrive at all replicas. 4 The rest of the protocol
continues as in a traditional BFT SMR system (Figure 3.1a), with replicas using source selection
to pick a sensor value, executing on that sensor value, and sending results to the actuators.

CROSSTALK reduces latency in two ways. First, the agreement process happens at network

speed, with no need for any communication between replicas. That is, the time to reach agreement
is bounded only by how fast the switches can forward messages to the replicas. Second, the cross-
link positions can be chosen strategically. Latency is minimized when messages are not forced to
go “out of their way” in order to traverse the cross-link switches before proceeding to the replicas.
An example is shown in Figure 3.5.

CROSSTALK’s approach also results in significantly lower computation overhead than the state
of the art. Most importantly, since the replicas are not involved in agreement, the agreement process
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is agnostic to the number of replicas. Thus, unlike other systems with perfect correctness (i.e., not
relying on cryptography [28]), CROSSTALK requires only 2f + 1 replicas (enough to mask output
errors) instead of 3f + 1 [46]. Moreover, unlike IGOR, CROSSTALK does not require replicas to
perform any redundant computations on different cores.

Below we describe CROSSTALK in more detail. We focus on the rules for routing sensor data
to the replicas and the agreement process, since these aspects are unique to CROSSTALK.

3.4.1 Routing Sensor Data to Replicas

This section describes the virtual channels CROSSTALK uses to route sensor data to the replicas.
Data from each sensor is routed using n different virtual channels — one corresponding to each
plane. Let si be a sensor that sends data to the replicas. Let mij be a message si sends on plane j.
Let vij be the virtual channel used to carry mij .

The routing rules for vij are shown in Protocol 3.1. Let P be a list of all the plane identifiers
({1, . . . , n}), with ID j appearing first. The remaining order does not impact correctness, but as
discussed next, can be adjusted to balance the traffic load across planes. Also, assume that C is
sorted such that latency is minimized as mij travels through the switches in C to the replicas (as
shown in Figure 3.5). Let P [1] and C[1] refer to the first items in P and C respectively.

Protocol 3.1: Routing Rules for Sensor Data
• mij is routed from si along plane j to switch bjc, where c← C[1]

• for each x← 1, . . . , n do: # for all planes

— Let p← P [x]

— for each y ← 1, . . . , g + 1 do: # for all cross-link positions

— — Let c← C[y]

— — if x ̸= n then: # route to next plane

— — — bpc routes mij to bqc, where q ← P [x+ 1]

— — if y ̸= g + 1 then: # route to next cross-link position

— — — bpc routes mij to bpd, where d← C[y + 1]

• for each x← 1, . . . , n do: # for all planes

— Let p← P [x] and c← C[g + 1] # last cross-link position in plane

— mij is routed from bpc along plane p to all replicas

Figure 3.4 shows the results of routing some mij (m11 in the example) through vij (v11) in a
simple network. As shown, more network traffic is generated on planes at higher indexes in P .
Thus, to balance the traffic load across the planes, P should be chosen so the same plane does not
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appear at the same index in P for multiple virtual channels originating at the same sensor. For
example, P might contain {1, 2, 3} for vi1, but {2, 3, 1} and {3, 1, 2} for vi2 and vi3 respectively.

As a result of routing sensor data according to Protocol 3.1, we have the following guarantees.

LEMMA 3.1. If a non-faulty replica r receives a message m on vij , then all non-faulty replicas
receive m on vij (agreement). Also, if si and some plane j are non-faulty, and si sends m, then all
non-faulty replicas receive m on vij (validity).

Proof. First, consider agreement. Since switches are limited to omission, a faulty switch cannot
create or alter messages. Also, switches drop messages that arrive on ports where no routing rules
exist. Thus, m must have traversed a legal route in vij . Since |C| ≥ g + 1, there must be at
least one c ∈ C for which bpc is non-faulty for all p ∈ {1, . . . , n} (i.e., all cross-link switches at
position c are non-faulty). According to Protocol 3.1, m’s route to r must have entered such a bpc

from some plane p = P [x]. At that point, m is forwarded through all planes P [x], ..., P [n]. Also,
to get to plane P [x], m must have traversed planes P [1], ..., P [x]. Thus m traverses all planes
P [1], ..., P [n]. Since there are g + 1 planes, at least one plane k is non-faulty and forwards m

through any remaining cross-over switches on plane k, and then to all replicas. Thus, all non-
faulty replicas get m on vij .

Next, consider validity. Since si is non-faulty, it sends m to all planes (i.e., on vi1, ..., vin). Since
plane j is non-faulty, m travels through each bjc, where c ∈ C, and then to all replicas. Thus, all
non-faulty replicas receive m on vij .

We note that other routing rules could be used with CROSSTALK besides those in Protocol
3.1. For example, a system could tolerate more scenarios with more than g faulty switches if each
cross-link switch forwarded messages to all planes and not just the next plane. However, such
approaches have much higher communication costs, and still cannot tolerate all g+1 faulty switch
scenarios (which is impossible with only g + 1 planes, since all planes could be blocked).

3.4.2 Agreement and BFT SMR Protocols

With the virtual channels for routing sensor data to the replicas defined, we can now describe a
simple protocol that ensures replicas agree on data from a potentially faulty sensor si. The protocol
starts at a synchronized time t′, at which si transmits and the replicas start gathering messages. It
ends at a predetermined time t = t′ + ∆, which is chosen to accommodate the known worst-case
latency from si to all replicas. In general, the protocol works by having the replicas select among
the messages received on each virtual channel using a simple priority-based scheme.

The protocol is shown in Protocol 3.2. Let Mi be an n-dimension vector used by the replicas to
store messages from sensor si (i.e., store what si sent to each plane). All elements are initialized
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to ⊥ to indicate the messages are initially missing. Let mi be the final message the replicas accept
from si. It is initialized to a default value.

Protocol 3.2: Agreement Protocol
Sensor si (at time t′):

• Send message m on virtual channels vi1, ..., vin
Each replica (at time t = t′ +∆):

• for each j ← 1, . . . , n do: # for all planes

— Let Wij ← the messages received on vij

— if Wij contains only one unique message m then:
— — Set Mi[j]← m # set value received from si on vij

• for each j ← 1, . . . , n do: # for all planes

— if Mi[j] ̸= ⊥ then: Set mi ←Mi[j] # priority-based selection

The agreement protocol provides the following guarantees.

THEOREM 3.1. All non-faulty replicas agree on mi (agreement). If si is non-faulty and sends m,
then mi is m (validity).

Proof. First, consider agreement. All non-faulty replicas decide on mi by applying the same
priority-based selection to Mi. Thus, we simply need to prove all non-faulty replicas agree on
Mi. We make the proof by contradiction. Say that at the end of the protocol, two non-faulty repli-
cas r1 and r2 have different values Mi[j] for some j. This means r1 and r2 have different sets Wij .
Thus, one replica (say r1) received a message m on vij in time interval [t′, t′ + ∆] that the other
(r2) did not. Lemma 3.1 implies r2 also receives m. Moreover, since ∆ is chosen to accommo-
date the worst-case traversal time from the sensor to the replicas, sensor si is not subject to timing
faults (we relax this assumption in §3.4.4), and faulty switches are omissive and thus cannot delay
messages, m must arrive at r2 in [t′, t′ +∆]. This is a contradiction. Thus, all non-faulty replicas
agree on mi.

Next, consider validity. Since at least one plane j is non-faulty, Lemma 3.1 implies all non-
faulty replicas receive m on vij . Since switches are limited to omission, they cannot create or alter
messages. Similarly, all switches drop messages that arrive on ports where no routing rules exist.
Since si is non-faulty, it sent only m. Thus, non-faulty replicas can receive no message besides m
on vi1, . . . , vin. Thus, for all non-faulty replicas, Mi[j] = m and Mi contains only m or ⊥. Thus,
all non-faulty replicas set mi ← m.

The rest of CROSSTALK proceeds identically to a traditional BFT SMR system (see Figure
3.1a). Specifically, as a result of running Protocol 3.2 for each sensor, all non-faulty replicas
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possess an identical vector of sensor values (up to one per sensor). Next, the replicas use a source
selection process to determine which of these values to use as the input to their execution. Source
selection is application specific, but is often simply a mid-value selection [26]. It has been shown
that, with 2f +1 sensors, the non-faulty replicas are guaranteed to select a value from a non-faulty
sensor or a value bounded by values from non-faulty sensors [28].

Next, the replicas execute on the selected sensor value. If the same deterministic execution is
performed on all replicas, all non-faulty replicas are guaranteed to produce the same output. Lastly,
the replicas send their outputs to the actuators, with each output traveling from each replica to each
actuator over each redundant plane. The actuators accept the first valid message that arrives from
each replica. The actuators perform a majority vote of the accepted messages to decide which
operation to perform. Since there are 2f +1 replicas, the voted output is guaranteed to be correct.

3.4.3 The Trouble with Timing Faults

In the previous section, we made the simplifying assumption that the sensors were not subject to
timing faults — i.e., if a faulty sensor generates a message, it is guaranteed to do so within an a
priori known bounded time. Having a bound allows designers to calculate a time t at which, if
a replica is going to receive a message from a sensor, that message is guaranteed to have arrived.
When combined with the design of the virtual channels, it ensures that all non-faulty replicas agree
on the data from all redundant sensors at time t (see Protocol 3.2).

Traditional agreement protocols tolerate timing faults as a consequence of requiring multiple
communication rounds between the replicas. For example, a faulty sensor could delay sending its
message m until right before the deadline for the first round, t1, resulting in some replicas getting
m before t1, and others not. However, in the next round, the replicas share the messages they
received with each other. As a result, any replica that failed to receive m by t1 will receive it by
the deadline for the second round, t2.

Unfortunately, tolerating timing faults in a protocol with a single communication round (from
sensors to replicas) is not so easy. Since the replicas cannot communicate with each other, they
have no way to differentiate between a message that arrived before the deadline for some replicas,
and one that arrived before the deadline for all replicas.

The challenge of ensuring agreement in the presence of timing faults is not specific to
CROSSTALK. In fact, it can be shown that timing faults make it impossible for any protocol
with only one communication round to ensure agreement by some synchronized deadline t. The
result holds even if the network is reliable and has the guarantees of a broadcast channel [108] (i.e.,
it is impossible for the sensor to send a message to some replicas and not to others). This detail is
important, because it means some recent guidance on constructing BFT protocols using broadcast
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channels [58] is actually incorrect if timing faults can occur.

PROPOSITION 3.1. In a synchronous system subject to timing faults, it is impossible for a pro-
tocol that uses only a single communication round to guarantee both the agreement and validity
properties of Theorem 3.1 by an a priori known time t.

Proof. We construct the proof by contradiction. Assume that such a protocol exists and that all
replicas are non-faulty. We will show that there exists a scenario in which agreement is violated.
Consider three possible scenarios below.

Scenario 1: Sensor si is non-faulty and sends m on time. m arrives at all the replicas before
time t. By the validity property of the protocol, all replicas must set mi ← m.

Scenario 2: Sensor si is faulty and crashes. Thus, no message arrives at any replica before t.
By the agreement property of the protocol, all replicas must set mi to the same message (e.g., a
predetermined default).

Scenario 3: Sensor si is faulty and sends m after some arbitrary delay. Now, say we split the
replicas into two sets — Set 1 and Set 2. The network latency in a synchronous system is bounded,
but not exactly known (the exact latency depends on network loading) [46]. Thus, even if Set 1
and Set 2 are perfectly synchronized, m may arrive at Set 1 and Set 2 at slightly different times —
e.g., before t for Set 1 and after t for Set 2. Even if t is increased, a faulty sensor can always delay
longer to cause the same scenario. Alternatively, it is well known that perfect synchronization in
a distributed system is not achievable [181] — meaning local time t on Set 1 may occur slightly
after local time t on Set 2 in wall-clock time. Thus, even if the latencies from si to all replicas were
exactly known and the same, m may arrive before t for Set 1 and after t for Set 2.

From the perspective of the replicas in Set 1, this scenario is identical to Scenario 1 — thus,
all replicas in Set 1 must decide on m. From the perspective of the replicas in Set 2, this scenario
is identical to Scenario 2 — thus, all replicas in Set 2 must decide on a default value. m and the
default value may not be the same. Hence, the agreement property of the protocol is violated.

3.4.4 Overcoming the Impossibility Result

In order to circumvent the impossibility result in Proposition 3.1, we need a way to bound when
sensors can send messages to some safe temporal window, such that no replica can receive a
message too early or too late. A Byzantine faulty sensor may send messages at arbitrary times
regardless of any rules we impose on it. Thus, enforcement of this window must be outside the
control of the potentially faulty sensor.

One solution is to use a time-triggered network, like TTEthernet [32] or IEEE 802.1Qbv [34],
in which the switches are tightly synchronized to the nodes, and the exact timing of all message
transmissions is scheduled offline. This design allows the switches to enforce a window during
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Figure 3.6: Suitable Time Bounds — Suitable time bounds for timestamping in CROSSTALK

(shown with no skew between devices).

which a message from a node is allowed to arrive. Unfortunately, there are downsides to such
networks, including the need for expensive specialized switches and network cards, as well as
proprietary network scheduling tools [182].

A simpler approach is to use network timestamps. Let bjk be the switch on plane j connected to
sensor si. Then, in Protocol 3.1, have bjk place the synchronized time that each message m arrives
from si in m before forwarding m on vij . Since switches are constrained to omission (§3.3.2),
meaning bjk cannot put different timestamps in different outgoing copies of m, this scenario is
indistinguishable from si sending messages to bjk that already contain timestamps and bjk not
altering any messages. This means the agreement and validity conditions of Lemma 3.1 still hold.
Moreover, since bjk is limited to omission, the timestamp in m accurately reflects when m arrived
at bjk.

With this timestamping function in place, CROSSTALK can be altered to tolerate timing faults
by slightly altering Protocol 3.2. Specifically, rather than letting Wij ← all messages received on
vij , let Wij only contain messages with timestamps that fall within a specific acceptance window.1

Figure 3.6 defines suitable bounds for the acceptance window (which are similar to [183]). In
addition, it defines the window during which messages timestamped within the acceptance window
may arrive at the replicas (i.e., the receive window). The duration of the agreement protocol (i.e.,
adjusted Protocol 3.2) is equal to the width of the receive window, which is 4(SkewMax) +

LS→SW+LSW→R, where SkewMax is the maximum skew between any two synchronized devices,
and LS→SW and LSW→R are the worst-case latencies from the sensor to switch bjk and from bjk

1We acknowledge that this technique requires replicas to have a priori knowledge of when sensors are scheduled
to send messages. However, this knowledge is already available in synchronous flight software frameworks that we
are familiar with (e.g., NASA’s cFS [87]).
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to the replicas respectively. In modern networks SkewMax values as small as a microsecond
are possible [184, 182], while worst-case message latencies (i.e., LS→SW + LSW→R) are typically
several milliseconds [95, 57], Thus, the extra latency needed to make CROSSTALK tolerate timing
faults is largely insignificant.

With these windows defined, we can prove the correctness of the revised CROSSTALK protocol.

LEMMA 3.2. If a non-faulty replica r receives a message m on vij , then if m was timestamped
within the acceptance window, m must have arrived within r’s receive window.

Proof. Assume the receive window shown in Figure 3.6 starts at time 0 for each device. Since the
switches are limited to omission, and drop messages that arrive on ports where no routing rules
exist, the timestamp in m must be the time m entered the network on plane j at some switch bjk

(the switch directly connected to the sensor on plane j). Since switches are not subject to timing
faults, the latest time at which r receives m (on r’s clock) is the time bjk timestamped m according
to r’s clock (call this time t) +LSW→R. Say bjk is skewed SkewMax after r. In this case, t can
be at most 4(SkewMax) + LS→SW at r — i.e., the end of the acceptance window in Figure 3.6,
skewed right by SkewMax. Thus, m can arrive at r as late as 4(SkewMax) +LS→SW +LSW→R

according to r’s clock, which is at the end of r’s receive window. Similarly, the earliest m can
arrive at r is at t (if the network latency was zero). Say bjk is skewed SkewMax before r, in
which case t can be as little as time 0 at r — i.e., the start of the acceptance window in Figure 3.6,
skewed left by SkewMax. Thus, m can arrive at r as early as time 0 (per r’s clock), which is in
r’s receive window.

LEMMA 3.3. If si and some plane j are non-faulty, and si sends m, then all non-faulty replicas
receive m on vij within their respective receive windows. Moreover, m is timestamped within the
acceptance window.

Proof. Lemma 3.1 implies all non-faulty replicas receive m on vij . Since si is non-faulty, it trans-
mitted at the scheduled time (“Sensor Transmits” in Figure 3.6). Thus, m arrived at bjk as early
as time SkewMax on bjk’s clock, and as late as 3(SkewMax) + LS→SW on bjk’s clock. Thus m
must contain a timestamp within the acceptance window. Thus, Lemma 3.2 implies m arrives at
all non-faulty replicas within their respective receive windows.

THEOREM 3.2. In the presence of timing faults, all non-faulty replicas agree on mi (agreement).
Also, if si is non-faulty and sends m, then mi is m (validity).

Proof. First, consider agreement. Like in the original Theorem 3.1, we simply need to prove all
non-faulty replicas agree on Mi. We will prove by contradiction. Suppose that at the end of the
protocol, two non-faulty replicas r1 and r2 have different values Mi[j] for some j. This means r1
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and r2 have different sets Wij . Thus, one replica (say r1) accepted a message m on vij that r2 did
not. This means m contained a timestamp within the acceptance window and arrived within r1’s
receive window. Lemma 3.1 implies r2 receives the same m on vij as r1 (with same timestamp).
Lemma 3.2 implies m arrives within r2’s receive window. Since r1 is non-faulty and accepted m,
r2 also accepts m, which is a contradiction.

Next, consider validity. Since at least one plane j is non-faulty, Lemma 3.3 implies all non-
faulty replicas receive the same m on vij within their respective receive windows, and that m’s
timestamp is within the acceptance window. Thus, all non-faulty replicas accept m. Since switches
are limited to omission, they cannot create or alter messages. Similarly, all switches drop messages
that arrive on ports where no routing rules exist. Since si is non-faulty, it sent only m. Thus, non-
faulty replicas receive no message besides m on vi1, . . . , vin. Thus, for all non-faulty replicas,
Mi[j] = m and Mi contains only m or ⊥. Thus, all non-faulty replicas set mi ← m.

3.5 Prototype Implementation

To evaluate our approach, we implemented a prototype of CROSSTALK in ∼8800 lines of C and
Python code (including supporting tooling and scripts). The replicas were realized on a cluster
of 5 embedded AsRock J3160 computers with 1.6 GHz quad-core processors. We selected this
platform because its performance is comparable to state-of-the-art single board computers used
in avionic systems [48]. The replicas communicated with two HP Z2 workstations with 3.2 GHz
Intel Core i7-8700 processors — one representing a set of 3 redundant sensors, and the other a set
of 3 redundant actuators. The computers all ran CentOS 7.9 with kernel 3.10.0-1160.53.1 and the
PREEMPT RT patch.

The replicas, sensors, and actuators communicated using real AFDX network cards manufac-
tured by TTTech. We used NASA’s TTX library [95] for interfacing to the cards. The cards each
connected to 2–3 network planes (depending on the experiment), each consisting of a variable
number of AFDX switches. Due to limited hardware availability (some experiments required 10+
switches), we also used a Dell Precision 7920 server with dual Intel Xeon 6242R processors to
emulate switches in some experiments. The server was directly wired to the real AFDX switches,
and was configured to execute the AFDX protocol and to mimic the delays of the real switches.

The replicas executed NASA’s Core Flight System (cFS) [87], an open flight software frame-
work used in real spacecraft. cFS tasks run in fixed time slots according to a cyclic executive. We
synchronized the replicas using periodic interrupts from an external timing circuit. We used a 500
Hz interrupt rate, which matches real systems and past work [28].

We implemented two state-of-the-art protocols for comparison. The first, OM, is a traditional
BFT SMR protocol based on Lamport’s signed messages [46], which solves agreement in the theo-
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retical minimum number of rounds. Like CROSSTALK, OM requires only 2f+1 replicas to tolerate
f faults. We used a simple signature scheme in OM based on modular inverse [46], which takes
only around 0.01 ms to sign and verify a 200-byte message on our replicas. The second, IGOR [28],
is a recent BFT SMR protocol that, to our knowledge, achieves lower worst-case latency than any
existing protocol. IGOR has an optional “Filtering Stage”, which is designed to reduce latency
when message fragmentation is slow (e.g., there is 1+ ms between sending fragments). However,
NASA’s TTX library and our AFDX cards allow fragments to be sent back-to-back with no de-
lay. Thus, we report IGOR’s latency without the optional Filtering Stage, which minimizes IGOR’s
latency on our testbed (it is 10–20% lower than with Filtering). We used SM as the agreement
primitive in IGOR. Unlike CROSSTALK, IGOR requires 3f + 1 replicas to tolerate f faults.

Lastly, we compared CROSSTALK to NOREP, an SMR system with 2f + 1 replicas, but no
agreement protocol. Thus, NOREP does not tolerate Byzantine faults, and represents the theoretical
minimum latency that can be achieved.

3.6 Evaluation

Our evaluation was designed to answer five key questions: (1) How does CROSSTALK’s latency
compare to the state of the art? (2) How much does CROSSTALK’s low computation over-
head improve schedulability? (3) What is the cost of CROSSTALK’s cross-links? (4) What is
CROSSTALK’s communication overhead? and (5) How does CROSSTALK perform in a real space-
flight mission?

3.6.1 Latency

Experimental setup. For this experiment, we considered three representative network topologies
shown in Figure 3.7. The first is an aircraft network from a recent ONERA paper [96]. The
second and third are a space capsule network and space station network from a recent NASA
presentation [9].

For each topology, we considered both f = 1 and f = 2 faulty replicas and g = 1 and
g = 2 faulty switches. These values were chosen to reflect the requirements of real systems in
practice [10, 133, 173]. For each combination of f and g, we executed three trials. In each trial,
we randomly selected the positions of 2f + 1 replicas, one redundant set of sensors, and one
redundant set of actuators. As is typical in practice [171, 172], replicas were required to connect
to different switches to reduce the chance of common-cause failures.

We developed tools based on Python’s NetworkX [185] library to determine the rules for routing
virtual channels between the nodes, as well as to select the cross-link positions for CROSSTALK.

50



(a) Aircraft (b) Space Capsule (c) Space Station

1

Figure 3.7: Network Topologies — Network topologies used in our evaluation. Each figure shows
the switches in a single network plane.

The tools start by considering a single-plane version of the network, and use search to identify the
shortest routes between all nodes that need to communicate, while meeting any protocol-specific
constraints. For example, CROSSTALK requires that all routes from a given sensor to the replicas
traverse a common set of g + 1 switches in the same order (as shown in Figure 3.4). These
common switches were then used as the cross-link positions for that sensor, and the final multi-
plane routes were determined by replicating the original single-plane routes on all planes, then
extending them across planes at the cross-link positions. For NOREP, OM, and IGOR, the final
routes were determined by simply using the original single-plane routes on each plane.

In each trial, the worst-case execution time (WCET) of the execution on the replicas was 10
ms, and the size of the sensor and actuator data was 200 bytes. Both were chosen to reflect typical
values in commercial aircraft [107, 57, 96].

We instrumented the network so that each switch delayed each message approximately 1 ms
when forwarding the message to a device on the same plane, which reflects typical delays in avion-
ics networks due to network congestion [57, 96]. We configured the delay over cross-links to be
0.5 ms to reflect the fact that these links are significantly less congested (many systems do not
currently use cross-links) [10].

We constructed the cFS task schedule by executing each segment of each protocol (e.g., a round
of agreement) for 600 iterations and estimating each segment’s WCET by adding 10% margin to
the longest measurement. We then arranged the protocol segments in sequence, with each segment
allocated enough time slots to accommodate the WCET. Lastly, we executed the resulting cFS
schedule on our testbed, verified all deadlines were met, and recorded the end-to-end latencies of
each protocol from sensors to actuators.

We note that the latencies of all the protocols are the same in both the presence and absence of
faults. Thus, we did not explicitly inject faults when taking measurements. Moreover, the latencies
for OM, IGOR, and NOREP are the same regardless of the number of planes, so we do not specify
g in the results for those protocols.

Results. Our results are shown in Figure 3.8. In all cases, CROSSTALK’s latency was compa-
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Figure 3.8: CROSSTALK’s Latency — Average worst-case latency of CROSSTALK compared to
state-of-the-art BFT protocols and NOREP.

rable to or better than the best existing protocol (IGOR), meaning it can meet tighter deadlines.
Importantly, CROSSTALK achieves this latency without requiring computations on multiple cores
(which, as we will see next, results in much higher schedulability).

Moreover, CROSSTALK’s latency savings increase as the number of faulty replicas, as well
as the size of the network, increases. For example, in the space capsule, CROSSTALK’s latency
is 1.2–1.4× lower than the best existing protocol when tolerating f = 2 faults. In the space
station network, CROSSTALK’s savings increase to 1.5–1.6×. The reason is that, as f increases,
the time needed for other BFT protocols to reach agreement increases due to the need for more
communication rounds. Similarly, as the size of the network increases, the duration of each round
increases.

We acknowledge that as the number of faulty switches (g) increases, the need for more cross-
plane communication causes CROSSTALK’s improvement over IGOR to decrease. However, unlike
CROSSTALK, IGOR does not consider switch faults. Moreover, CROSSTALK’s latency is still 8.7%
lower than IGOR’s on average when g = 2. Finally, we note that we are not aware of any system
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required to tolerate more than 2 switch faults in practice.

3.6.2 Schedulability

Unlike IGOR, CROSSTALK can be realized on a single processor core. In this experiment, we
evaluated how much this design improves schedulability.

Experimental setup. We considered workloads consisting of independent constrained-deadline
BFT tasks executed on either a single-core, or distributed over three cores. In each case, we
varied the application utilization per core from 0.1 to 1, and randomly generated 1000 tasksets per
utilization. The task WCETs and periods were randomly chosen from {5, 10, 15, 20} ms and {25,
50, 100, 200} ms respectively, which are common values in practice and match prior work [28].

For each task, we randomly selected a topology and set of replicas, sensors, and actuators
from §3.6.1. We used the data from §3.6.1 to specify the WCTT of messages and WCET of each
protocol segment (e.g., a round of agreement). Each task was randomly assigned an end-to-end
deadline within which data was required to leave the sensors, be processed on the replicas, and
arrive at the actuators. The deadlines were uniformly distributed between the worst-case latency
for NOREP (the best latency that can be achieved) and the task period.

For each utilization, we report the fraction of schedulable tasksets with each protocol. We
scheduled tasks on the processor cores using the same heuristic as in IGOR [28], where tasks with
smaller periods were scheduled first.

As in past work, we did not use IGOR for every BFT task when evaluating IGOR. Otherwise,
IGOR would have very low schedulability due to requiring execution on all three cores. Instead,
we used the strategy from the IGOR paper [28] in which we first attempted to use OM for all tasks.
If any tasks were not schedulable with OM, we attempted to schedule only those tasks with IGOR.
Thus, the system only incurs the overhead of IGOR when needed to meet deadlines.

Results. Our results are shown in Figure 3.9. As shown, we were able to schedule signifi-
cantly more tasksets with CROSSTALK than with the best existing protocols. For example, in
the single-core case, 2.37–3.12× more tasksets were schedulable with CROSSTALK than with
OM. In the multi-core case, 2.13–4.24× more tasksets were schedulable with CROSSTALK than
with SM+IGOR. Importantly, CROSSTALK also achieves very high schedulability at high utiliza-
tions. For example, with 3 cores in the f = 1, g = 1 case, we could schedule 88% of tasksets
with CROSSTALK at a core utilization of 1.0, while we could only schedule 1% of tasksets with
SM+IGOR.
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Figure 3.9: CROSSTALK’s Schedulability — Schedulability improvement when using
CROSSTALK. Note that IGOR cannot be used on single-core processors.

3.6.3 Cost Trade-off of Cross-Links

In the previous sections, we used our network scheduling tools to select g + 1 cross-link positions
for each sensor, such that the length of the routes from the sensor to the replicas was minimized.
Thus, since there may be many sets of sensors in a system, all for different purposes and at different
positions, the system may contain more than g + 1 total cross-link positions. In this section, we
evaluate the cost of this approach (e.g., in mass), as well as determine how much reducing the
number of cross-links positions — which lowers costs but also forces some sensors to use “worse”
cross-link positions — still allows us to retain CROSSTALK’s latency benefits.

Experimental setup. We randomly generated 15 system configurations, each containing a topol-
ogy from §3.6.1 and the positions of 2f + 1 replicas, one set of redundant actuators, and 8 sets of
redundant sensors (representing the many sensors in a real system). We varied the total number
of cross-link positions allowed in the network from 2 to 7 (the number of switches in the smallest
topology in Figure 3.7). For each BFT SMR protocol, system configuration, number of allowed
cross-link positions, and combination of f = {1, 2} and g = {1, 2}, we used our network tools (as
described in §3.6.1) to find the exact cross-link positions and message routes that minimized the
length of the longest route from the sensors to the actuators. Then, in each case, we calculated the
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Figure 3.10: Impact of Cross-links on Latency — Impact of the total number of cross-link po-
sitions (the number of switches with cross-links per plane) on CROSSTALK’s system-wide worst-
case latency. We only show up to 7 cross-link positions, since more cross-link positions result
in no additional latency savings for CROSSTALK. Note that when g = 2, CROSSTALK requires
≥ g + 1 = 3 cross-link positions.

protocol’s worst-case latency using the switch delays and WCETs from 3.6.1. We report, for each
number of cross-link positions, the average worst-case latency for each protocol across all sensors
and configurations.

In addition, we calculated the mass of the replicas and cross-links needed for CROSSTALK

compared to OM and IGOR for each combination of f , g, and the total number of cross-link posi-
tions in the system. We assumed each replica is 4.5 kg (based on a typical single board computer
chassis [186]), each cross-link is 0.1 kg/m (a standard approximation in avionic systems [187]),
and that each cross-link is 2 m long — which is more than the required network plane separation
in safety-critical applications [188]. We then converted our mass results to monetary cost in a typ-
ical spaceflight application, assuming each replica costs $200K (the cost of a typical spaceflight
computer [13]), each cross-link costs $150/m (the cost of space-qualified cables [189]), and that it
costs $15K to launch 1 kg of mass to low Earth orbit (which is typical [190]).

Results. Figure 3.10 shows how the total number of cross-link positions in the system impacts
CROSSTALK’s latency (and thus ability to meet deadlines). As shown, CROSSTALK’s latency is
minimized with around 6 cross-link positions, with more cross-link positions yielding no addi-
tional benefit. This is because, in general, 6 cross-link positions is enough to allow each sensor’s
traffic to traverse the required g + 1 cross-link positions while still taking the shortest path to
the replicas (as shown in Figure 3.5). Conversely, restricting the number of cross-link positions
increases CROSSTALK’s latency — but only gradually. For example, with only 3 cross-link po-
sitions, CROSSTALK’s latency is still lower than IGOR’s in most cases. Moreover, we emphasize
that when f = 2, CROSSTALK’s latency is always strictly smaller than IGOR’s for all numbers of
cross-link positions.
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Table 3.1: Mass of CROSSTALK — Mass of the replicas and cross-links for each protocol when
configured to tolerate different numbers of faults. Results are in kilograms.

Faults SM IGOR CROSSTALK (# of cross-link positions)
f g 2 3 4 5 6 7

1 1 13.5 18 13.9 14.1 14.3 14.5 14.7 14.9
1 2 13.5 18 N/A 15.3 15.9 16.5 17.1 17.7
2 1 22.5 31.5 22.9 23.1 23.3 23.5 23.7 23.9
2 2 22.5 31.5 N/A 24.3 24.9 25.5 26.1 26.7

Table 3.2: Cost of CROSSTALK — Cost of the replicas and cross-links for each protocol in a
typical spaceflight application. Results are in hundreds of thousands of US dollars.

Faults SM IGOR CROSSTALK (# of cross-link positions)
f g 2 3 4 5 6 7

1 1 8 10.7 8.1 8.1 8.2 8.2 8.2 8.3
1 2 8 10.7 N/A 8.3 8.4 8.5 8.6 8.7
2 1 13.4 18.7 13.4 13.5 13.5 13.5 13.6 13.6
2 2 13.4 18.7 N/A 13.7 13.8 13.9 14 14.1

Tables 3.1 and 3.2 show how CROSSTALK’s mass and cost compare to IGOR when restricted
to different numbers of cross-link positions. As shown, even with 7 cross-link positions (which is
more than needed to minimize CROSSTALK’s latency), CROSSTALK is always lighter and cheaper
than IGOR. For example, when f = 2 and g = 1, CROSSTALK is 7.6 kg lighter and >$500K
cheaper. The reason is that CROSSTALK requires f fewer replicas than IGOR to tolerate f faults,
and these replicas are much heavier and more costly than CROSSTALK’s cross-links. Note than
since IGOR is based on overlapping quorums of replicas, there is no way to reduce the number of
replicas it requires.

We note that, while we assumed single and multi-core replicas have the same monetary cost,
multi-core replicas may be more expensive in practice — in which case IGOR’s costs would be even
higher (i.e., CROSSTALK would have larger cost savings). Moreover, while we did not measure
energy consumption, it is expected that CROSSTALK’s need for fewer replicas, as well as only
single-core replicas, would result in significant power savings over IGOR.

Lastly, we note that while CROSSTALK’s mass and cost were slightly higher than OM, OM
has significantly higher latency (up to 2× higher, see Figures 3.8, 3.10) and worse schedulability
(Figure 3.9).
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Figure 3.11: CROSSTALK’s Communication Overhead — Number of kB received by each
replica per plane per sensor in CROSSTALK compared to other protocols.

3.6.4 Communication Overhead

Experimental setup. One common concern regarding BFT SMR protocols is that they produce
large amounts of network traffic. Since the switches in CROSSTALK create copies of messages
in the network, one cannot evaluate CROSSTALK’s communication overhead by measuring the
amount of traffic transmitted by a node. Instead, we placed a network tap between one replica
and one network plane, and used the tap to capture all traffic received by the replica. We captured
traffic for 60 executions of each protocol in a representative space station network (repeating the
experiment from §3.6.1). We report the amount of traffic received by the replica per sensor.

We note that, as described in §3.4.1, the virtual channels in CROSSTALK are balanced so that
replicas receive the same amount of traffic from each plane. Similarly, the traffic in NOREP, OM,
and IGOR is identical across all planes. Thus, the choice of plane to tap does not matter. Moreover,
since we log traffic as it enters the replica and not elsewhere in the network, the choice of network
topology and positions of the nodes (e.g., replicas) does not impact the results.

Results. Our results are shown in Figure 3.11. In general, CROSSTALK’s communication overhead
is lower than other state-of-the-art protocols. Additionally, its relative efficiency increases with f .
For example, when f = 2, CROSSTALK’s communication overhead is 12.83× lower than IGOR

and OM. The reason is that CROSSTALK does not require any rounds of communication between
replicas, while other protocols need at least f + 1 inter-replica rounds (with increasing message
sizes). We acknowledge that using IGOR’s optional Filtering Stage would decrease its overhead
when f = 2, but at the expense of increased latency (as described in §3.5) due to needing an
additional round. Moreover, we note that while IGOR requires 7 replicas to tolerate f = 2 faults,
there are only 5 replicas in our testbed. Running IGOR with 7 replicas would result in higher
communication overheads for IGOR and more relative savings for CROSSTALK.
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Figure 3.12: CROSSTALK Spaceflight Simulation — View from inside and outside the simulated
capsule after being jettisoned from the rocket.

3.6.5 Case Study: Spaceflight Abort Test

Lastly, we wanted to determine how CROSSTALK performs in a concrete system. For this purpose,
we used simulated flight software from a NASA abort test, which we obtained from the authors of
IGOR [28]. The simulation, shown in Figure 3.12, is based on a real mission conducted in 2019.
During the mission, a rocket carried an empty crew capsule to an altitude of 9.5 km, at which an
abort was intentionally triggered and the capsule was safely ejected from the rocket. We executed
the provided flight software on replicas in our cluster. The flight software communicated through
our AFDX switches with a provided NASA simulation, which modeled the vehicle dynamics,
sensors, and actuators. The network was instrumented to induce delays comparable to AFDX
avionics networks in practice [57, 96], as in §3.6.1.

The main flight software control loop executed at 40 Hz — in each execution reading data from
the sensors, performing computations, and sending results to the actuators. The end-to-end latency
requirement from the sensors to the actuators was 25 ms. If this deadline was not met, the rocket
deviated from its correct flight path and the abort failed.

We scheduled the flight software using the same approach as in §3.6.1 and executed both
CROSSTALK and IGOR on our testbed. Both protocols met all deadlines when f = 1, result-
ing in correct behavior of the rocket and capsule. This includes CROSSTALK in the g = 2 (two
faulty switches) case, which executed with approximately 4 ms of margin. However, while IGOR

failed to meet deadlines when f = 2 by several milliseconds (resulting in the capsule ejecting at
an incorrect orientation that compromised safety), CROSSTALK continued to meet deadlines when
f = 2, even with g = 2 faulty switches. Thus, CROSSTALK’s ability to reduce latency com-
pared to IGOR directly resulted in improved fault resilience — while both protocols could be used,
CROSSTALK was able to tolerate an additional faulty replica. Moreover, CROSSTALK did so while
using nearly 3× less total CPU time.
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3.7 Related Work

Making agreement fast. Several protocols use techniques to reduce the latency of reaching agree-
ment. Some do this by allowing replicas to stop an agreement protocol early when no faults occur
or all replicas initially agree [191, 192, 154, 47, 193, 194, 195, 196] — sometimes resulting in
protocols that appear to solve agreement in a single round. However, these protocols provide no
latency savings when faults occur. Other protocols use a speculative approach, in which replicas
(1) execute on client requests optimistically while running an agreement protocol in the back-
ground [140, 141, 142, 143, 144], or (2) forgo agreement altogether and check for state diver-
gence after the execution [81, 82, 83, 84, 85, 197]. In either case, if divergence is detected, the
system is rolled back and the execution is repeated, resulting in high worst-case latencies. In con-
trast, CROSSTALK is designed to achieve low latency in both the presence and absence of faults.
IGOR [28] has similar goals to CROSSTALK. However, CROSSTALK does not require replicas to
perform multiple computations on different cores, resulting in increased schedulability.

Leveraging the network topology. Several protocols exploit network redundancy in their designs.
One class of protocols, fault-tolerant routing protocols [198, 199, 200], are concerned with creating
a reliable communication channel between a sender and receiver. However, importantly, these
protocols cannot tolerate Byzantine end nodes. Another class of protocols aims to solve consensus
in directed graphs [201, 202]. However, they are aimed at maximizing resilience in arbitrary

network topologies. As a result, CROSSTALK is significantly more efficient when used in realistic
embedded networks.

Other solutions leverage unique aspects of embedded networks to increase performance. One
patent [203] inserts skew between redundant time-triggered messages to ensure agreement among
receivers. Other protocols vote on message copies received on redundant planes to mask transmis-
sion faults [71, 173]. Importantly, unlike CROSSTALK, both approaches can only tolerate a single
faulty device (switch or end node) at a time.

Agreement in the network. Several protocols modify the switches or use software-defined net-
works (SDNs) to execute an agreement protocol in the network or otherwise guarantee message
ordering [204, 205, 206]. However, these protocols are all limited to tolerating crash faults of
both the switches and end nodes. In contrast, CROSSTALK can tolerate omissive switches and
Byzantine faulty end nodes, and can be used without requiring SDNs or switch modifications.

Impossibility results. Fischer and Lynch proved f+1 communication rounds are needed for agree-
ment in synchronous systems with point-to-point channels [27]. Despite its “single round” design,
CROSSTALK does not violate this result. Rather, the required rounds (g+1 for CROSSTALK) take
place in the network as messages are forwarded between planes. The FLP result [207] showed
agreement is impossible in asynchronous systems subject to crash faults. We use similar intuition
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in our impossibility proof. However, the proof is distinct. Specifically, while synchronous systems
can tolerate timing faults with f + 1 rounds of exchange between replicas, as well as Byzantine
faults in the value domain without requiring any rounds between replicas (given sufficient rounds
occur in the network), we prove it is not possible for synchronous systems to tolerate timing faults
without rounds between replicas (regardless of rounds in the network).

3.8 Conclusion

BFT SMR is essential for tolerating faults in critical embedded systems. However, existing BFT
SMR protocols force designers to choose between high latencies and substantial computation over-
heads due to redundant computations. We presented CROSSTALK, a new BFT SMR protocol that
leverages redundancy that already exists in embedded networks to minimize latency without requir-
ing extra computation. Our evaluation showed that CROSSTALK improves system schedulability
by 2.13–4.24×, and can increase the resilience and control performance of real systems. In the fu-
ture, we believe more opportunities will exist for protocols like CROSSTALK to exploit emerging
networking trends to increase the performance of real-time embedded systems.
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CHAPTER 4

PCSPOOF: Compromising the Safety of
Time-Triggered Ethernet

4.1 Introduction

Increasingly, embedded systems are using mixed-criticality network technologies that allow traffic
with different timing and fault tolerance requirements to coexist in the same physical network [31,
32, 33, 34]. These technologies let designers reduce size, weight, power, and cost by sharing
the same network between critical and non-critical parts of the system. For example, aircraft
can share one network between vehicle control systems and passenger Wi-Fi and entertainment
systems [208, 209]; spacecraft can share one network between life support systems and onboard
experiments [11, 133]; and manufacturing plants can share one network between robot control
systems and data collection systems [210].

One of the most successful mixed-criticality network technologies is Time-Triggered Ethernet

(TTE) [32]. Today, TTE serves as the network backbone for several spacecraft, including NASA’s
Orion capsule [59], NASA’s Lunar Gateway space station [11], and ESA’s Ariane 6 launcher [52].
TTE is also widely used in aircraft [65, 66, 67], energy generation systems [39], and industrial
control systems [211, 212], and is a leading contender to replace CAN bus and FlexRay as the
standard network technology in future automobiles [213, 214].

TTE has several properties that make it attractive for safety and mission-critical applications.
Most notably, TTE follows a time-triggered (TT) paradigm, in which devices are tightly syn-
chronized, and they send messages and execute software according to a predetermined sched-
ule. This TT approach reduces message latencies to hundreds of microseconds and jitter to near-
zero [95, 101], making TTE appropriate for even the tightest control loops. TTE also provides fault
tolerance by replicating the whole network to form multiple planes, and by forwarding messages
over all planes simultaneously [215].

In addition, TTE enables mixed-criticality architectures by being 100% compatible with stan-
dard Ethernet [216]. This means that non-critical systems, which typically use standard Ethernet
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hardware to lower costs [217], can send messages over the same cabling as the critical TTE de-
vices. Unlike TT traffic, standard Ethernet traffic is forwarded on a best-effort (BE) basis, filling
in space around the TT traffic [216]. Also, standard Ethernet traffic typically only travels over a
single network plane, so does not have any fault tolerance guarantees [11].

A key aspect of TTE’s mixed-criticality design is that the TT part of the system is isolated

from the BE part. In other words, no matter how the BE devices behave, they should not be
able to disrupt the synchronization between TTE devices or the timely/successful delivery of TT
traffic [36]. This isolation is commonly used as a justification for several cost-cutting measures,
including: (1) procuring BE devices from relatively untrusted (but low cost) suppliers [218, 219];
(2) relaxing security requirements for BE devices [220]; and (3) reducing the scope of analysis
and certification of a system to focus solely on the TTE devices [221]. For example, on NASA
spacecraft, onboard experiments are often provided by university research groups, are operated by
the university students with minimal NASA involvement, and are not considered in safety reviews
or the certification process of the overall vehicle [222, 223].

In this paper, we present PCSPOOF, a new attack that breaks TTE’s isolation guarantees for the
first time — allowing a single malicious BE device on a single plane to disrupt synchronization and
communication between TTE devices on all planes. PCSPOOF is based on two key observations:

First, it is possible for a malicious BE device to infer private information about the TTE network
that is needed to construct valid TTE synchronization messages, called protocol control frames

(PCFs). For example, an attacker can exploit the fact that (1) all PCFs in the network contain a
common identifier, and that (2) BE devices are not allowed to send messages containing this iden-
tifier. Such messages are simply dropped by the switches. Therefore, by issuing phony ARP [224]
requests to other BE devices (e.g., routers), tricking them into sending messages containing possi-
ble identifiers, then checking which of the messages are dropped, an attacker can quickly determine
the actual identifier used in the PCFs (see §4.4.1.2).

Second, using a few extra circuit components, a malicious BE device can conduct electromag-
netic interference (EMI) into a TTE switch and trick the switch into forwarding PCFs that the BE
device is not allowed to send. In particular, by conducting EMI into the switch over an Ethernet
cable, resulting in radiated EMI inside the switch, a BE device can cut the header off of a BE
message in flight, revealing a malicious PCF in the message’s payload (a type of packet-in-packet
attack [225]). Since the EMI radiates from inside the switch, the attack cannot be prevented by
conventional switch and cable shielding. Additionally, since the source of the radiated EMI (the
port connected to the attacker) is close to the internal switch components (1–10 cm), the EMI re-
quires relatively little power to be effective, and therefore can be generated with a small circuit
(e.g., a 2.5 cm× 2.5 cm square, see §4.4.2.5). As we show in §4.3, such a circuit could reasonably
be hidden in a BE device and integrated into a TTE system without detection.
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Finally, our work reveals a flaw in modern TTE devices that makes them especially susceptible
to PCSPOOF’s EMI injection. In particular, while modern devices verify the contents of the pream-
ble that precedes each message, they do not verify the preamble length. An attacker can exploit
this by sending very large BE messages, which are more likely to reveal PCFs when corrupted by
EMI, without the PCFs being rejected by downstream TTE devices (see §4.4.2.2).

We evaluated PCSPOOF on a real TTE testbed. Our results show that PCSPOOF can suc-
cessfully inject a malicious PCF in 10–20 s. A single injection can cause TTE devices to lose
synchronization for up to a second and fail to transmit tens of TT messages — both of which can
cause the failure of critical systems [29, 26]. Moreover, in the worst case, PCSPOOF causes these
outcomes simultaneously for all TTE devices in the network (see §4.6.2). We also evaluated PC-
SPOOF on an avionics testbed for a real spaceflight mission; our results show that PCSPOOF can
threaten mission success and safety from a single BE device, such as those used in an onboard
research experiment developed by a university.

In summary, we make the following contributions:

• PCSPOOF: the first attack to break TTE’s isolation guarantees; PCSPOOF can disrupt critical
TT systems from a single malicious BE device (§4.4).

• An extensive study of the susceptibility of TTE hardware to PCSPOOF, which reveals a
security flaw in the implementation of modern devices (§4.4.2.2).

• A detailed experimental evaluation of PCSPOOF on a real TTE testbed that assesses the
probability and impact of successful attacks (§4.6).

• A case study demonstrating the effect of PCSPOOF on a simulated spaceflight mission
(§4.6.4).

• A detailed description of methods to make TTE systems more resilient to PCSPOOF (§4.7).

4.1.1 Responsible Disclosure

We disclosed our attack to several organizations using TTE for critical applications, including
NASA, ESA, Northrop Grumman Space Systems, and Airbus Defense and Space. All organi-
zations acknowledged the seriousness of the attack and several are implementing mitigations we
suggest in this paper. Our work is also making NASA reconsider the way that onboard experiments
and commercial-off-the-shelf devices are verified to be safe.

We also disclosed our attack to TTTech Computertechnik AG, the leading provider of TTE
equipment and chip-IP. TTTech acknowledged the attack and is working on hardware, configura-
tion, and tooling updates to mitigate it.

Moreover, the SAE AS-2D2 committee is working to mitigate our attack by revising the TTE
standard (SAE AS6802) to allow PCFs up to 1518 bytes (the max Ethernet frame size). The use of
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Figure 4.1: Example TTE Network — Example of a typical fault-tolerant TTE network with
redundant planes. The attacker controls a single BE device on a single plane.

max-sized PCFs would prevent the PCF injection method we use (cutting the header off a frame in
flight) from producing a PCF that is accepted by TTE devices.

4.2 Background

In this section, we describe Time-Triggered Ethernet and the synchronization protocol it is based
on.

4.2.1 Time-Triggered Ethernet (TTE)

TTE networks contain two types of devices, switches and end systems, where each end system con-
sists of a host processor (which runs user software) and a TTE network interface card (NIC) [70].
Like in standard Ethernet, the switches forward messages, or frames, between the end systems.
For redundancy, the entire network is replicated, creating multiple paths between each end sys-
tem [215]. We refer to each redundant network as a plane. End systems send frames simultane-
ously through all planes, and receivers accept the first frame that arrives. This approach allows the
system to continue operating even after multiple failures. An example of a typical TTE network is
shown in Figure 4.1.

TTE networks utilize a time-triggered design, in which all TTE devices are tightly synchro-
nized, and the behavior of the network is determined by a global schedule [32]. The schedule
is built offline and loaded onto each TTE device before the system is deployed. The schedule
specifies when TT frames are forwarded and expected to arrive. In addition, it specifies the tim-
ing of interrupts that software running on the end systems use to coordinate their actions [11].
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This design reduces network latency and jitter to a minimum, resulting in very predictable system
performance [95, 101].

Additionally, TTE networks are compatible with standard Ethernet [216]. This allows designers
to use (inexpensive) standard Ethernet hardware for devices without strict timing or fault tolerance
requirements, like passenger entertainment systems in airplanes or monitoring systems in power
plants [226, 227]. These devices can plug directly into TTE switch ports and treat the TTE network
exactly like a standard Ethernet network. We refer to these standard Ethernet devices as best-effort

(BE) devices, since the switches forward their traffic around the pre-scheduled TT traffic only as
bandwidth allows.

TTE uses several mechanisms to isolate the TT traffic from the BE traffic, including not allow-
ing BE traffic to be transferred in windows reserved for TT traffic, and storing TT and BE frames
in separate switch buffers [216]. Together, these mechanisms aim to ensure malicious BE devices
have no way to interfere with the TT part of the system [36].

On the surface, attacks that break TTE’s isolation guarantees seem impossible. For example,
since the TTE switches reserve bandwidth for TT traffic and store TT and BE traffic separately,
flooding the network from a BE device cannot cause TT traffic to be delayed or dropped [228].
The switches will simply drop the excess BE traffic to allow TT traffic to flow. Also, a BE device
cannot generate its own TT traffic, since the switches ignore any TT traffic that is not defined in
the pre-loaded schedule [229]. Even in the extreme case where a malicious BE device somehow
kills the switch it is connected to, the TTE devices will continue to operate without disruption over
the redundant planes.

4.2.2 The TTE Synchronization Protocol

TTE networks rely on a synchronization protocol to enable communication between devices [32],
and PCSPOOF works by disrupting this protocol. Below, we describe the synchronization protocol
and why it is susceptible to PCSPOOF.

There are two main roles that TTE devices can take in the synchronization protocol: (1) sync

master and (2) compression master [32]. Typically, a subset of the end systems act as sync mas-
ters (based on the required fault tolerance), and 1–2 switches per plane act as compression mas-
ters [215]. The remaining devices act as sync clients, which use the synchronized time base, but
do not help maintain it [32].

In general, synchronization works by continuously exchanging special messages, called proto-

col control frames (PCFs), between the devices [32]. This exchange is repeated at regular periods
called integration cycles [32]. At the start of each integration cycle, each sync master sends a
PCF with its local clock value to the compression masters. The compression masters average the
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Figure 4.2: Synchronization State Machine — Simplified version of the state machine that sync
masters execute in the TTE synchronization protocol.

received clock values, then send out the resulting clock value in a new PCF to the sync masters and
clients, which use it to correct their local clocks.

In addition, receiving certain PCFs from a compression master can cause sync masters and
clients to lose synchronization. Specifically, a special “coldstart acknowledgement” PCF tells a
sync master that another sync master detected synchronization was lost and is reestablishing it [32].
Similarly, the contents of a normal (i.e., integration) PCF can tell a sync master/client that cliques

— multiple groups not synchronized to each other — have formed [69]. In either case, the sync
master/client briefly loses synchronization and attempts to resynchronize with the network. Figure
4.2 shows how these PCFs impact the sync master state machine.

Because a single PCF can knock devices out of synchronization, significant effort has been
spent to ensure all PCFs generated by compression masters can be trusted. For example, the TTE
standard requires each compression master to be a self-checking pair — i.e., it only produces a
PCF if two independent processors agree on the contents [32].

In PCSPOOF, we exploit the trust the TTE protocol puts in compression masters. By injecting
PCFs into the network that look like they came from real compression masters, an attacker can
make sync masters/clients repeatedly lose synchronization. We note that because synchronization
loss between non-faulty devices is so rare in practice (requiring multiple specific failures), systems
are often not designed to tolerate it [70, 28, 230]. Also, even systems that do tolerate synchroniza-
tion loss are not designed to tolerate the repeated synchronization loss caused by PCSPOOF (see
§4.6.4).

4.3 Threat Model

We assume a standard multi-plane TTE network like those used today in spacecraft [59, 11, 52],
aircraft [67], and energy generation systems [231] (see §4.2.1). The network includes both TTE
and BE devices. For fault tolerance, the TTE end systems are connected to and communicate
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over all redundant planes simultaneously. In contrast, BE devices typically do not have any fault
tolerance requirements, so often connect to only a single switch in a single plane in order to save
wiring mass and cost [11].

We assume the attacker has the ability to execute malicious software on a single BE device,
including sending and receiving standard Ethernet messages. The connectivity of the attacker’s
BE device is shown in Figure 4.1. In addition, we assume the BE device includes additional circuit
components that allow it to conduct electromagnetic interference (EMI) through its Ethernet cable
and into the switch. As we show in §4.4.2.5, such a circuit can be constructed from as little as 5
circuit components, and can take up as little as 2.5 cm × 2.5 cm on a single-layer printed circuit
board.

There are two realistic ways these assumptions can be satisfied in practice: (1) the BE device is
supplied by a malicious third-party and integrated into the TTE network at design time, or (2) the
BE device is connected to the TTE network after the network is deployed.

First, the system integrator could obtain the BE device from a malicious third-party and inte-
grate it into the system at design time. In TTE networks, non-critical functions are commonly
performed using commercial-off-the-shelf (COTS) devices to reduce costs [11]. This is true even
in critical industries like spaceflight and aviation [37, 38]. Unlike critical TTE devices, which come
from secure supply chains, COTS devices come from unsecured supply chains that are susceptible
to tampering [37]. Also, the companies that design COTS devices are often relatively untrusted,
and do not typically follow any formal development process to ensure safety and security (e.g.,
RTCA DO-254) [37]. In addition to COTS suppliers, BE devices in spaceflight commonly come
from university research groups and laboratories [222]. In any of these organizations, a rogue em-
ployee, student, or team could alter the device with the malicious circuit and software [232, 233].
A simple ticking timebomb [232] trigger, which enables malicious behavior after a configurable
amount of time, could be used to activate the circuit and software after the network is deployed —
without requiring any input from the attacker.

Even in critical industries like spaceflight and aviation, such malicious hardware and software
is not likely to be caught by the system integrator. The reason is that, besides through well-known
means like causing an explosion or fire, there has been no known way for non-critical BE devices in
a TTE network to disrupt the operation of critical TT devices. As a result, verification of these BE
devices is limited to ensuring they do not contain dangerous substances, will survive the operating
environment (e.g., vibration and thermal qualification), and perform their intended function [223,
37]. For example, explosives are detected by swabbing, and other dangerous materials are detected
through outgassing tests [234]. However, no detailed analysis of the circuit components, circuit
layout, or software is performed [223, 235, 236, 37]. The malicious circuit and software needed for
PCSPOOF cannot be detected by such basic safety testing. Moreover, a ticking timebomb trigger
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could simply delay activating the malicious circuit and software until after all functional testing is
completed [232].

Second, instead of compromising the system at design time, an attacker could connect a mali-
cious BE device to the network after the network is deployed. For example, TTE allows a factory
to share switches between the assembly line and non-critical hardware, like laptops used for mon-
itoring and analysis [212, 237]. If an employee could be tricked into plugging a malicious device
(e.g., a USB to Ethernet dongle) into one of these switches, for example, through a supply chain
attack (as above) or social engineering, they could inadvertently disrupt the control of critical plant
processes and halt production of the entire facility. Alternatively, consider a future commercial
airplane that shares a TTE network between the passenger cabin and vehicle control systems.1

Modern airplanes contain exposed seat electronics boxes under the seats for connecting entertain-
ment units to the passenger network [227]. If a passenger has knowledge of the connectors used,
they could secretly disconnect one of these electronics boxes during a flight, plug in a malicious
device [227], and interfere with the safe operation of the aircraft — even if the vehicle control data
is all encrypted.

We stress that in all the above cases, an attacker with a connection to only a single network
plane can disrupt TTE devices throughout the network and on all planes (see §4.6). We also note
that the connection from the attacker to the TTE network could span more than a single Ethernet
cable. The attack works even if the connection is made via a series of several cables, patch panels,
and Ethernet jacks.

Lastly, we stress that, besides the single BE device, the attacker has no access to or knowledge
of any part of the TTE network. In particular, the attacker has no information about the TT network
schedule or the position of devices within the network. Additionally, the attacker cannot receive
any TT messages, or access any telemetry or diagnostic information from the TTE switches or end
systems.

4.4 Design

This section describes PCSPOOF, the first attack capable of disrupting critical TTE traffic flows and
interrupts from a BE device. PCSPOOF achieves this goal by disrupting the TTE synchronization
protocol [32]. Disrupting synchronization lets PCSPOOF potentially disrupt any TT traffic flow,
without needing the attacker to know what traffic flows exist or what they are used for. It also makes
PCSPOOF broadly applicable, since all TTE networks use the same synchronization protocol [32].

1While, to our knowledge, no commercial airplanes currently share switches between the passenger cabin and
critical devices, device manufacturers have advocated that TTE’s isolation guarantees would make such sharing safe,
while reducing size, weight, power, and cost [208, 209].
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Figure 4.3: Overview of PCSPOOF — High-level design of PCSPOOF showing the two stages of
the attack. First, the attacker learns how to construct malicious synchronization messages. Then,
the attacker uses EMI to inject them into the network.

Of course, disrupting the TTE synchronization protocol from a BE device should be impossible.
The protocol is formally verified to work correctly in spite of a malicious TTE end system and any
number of malicious BE devices [39].

To overcome this challenge, we use two key observations: (1) an attacker can deduce secret
information, known only to TTE devices, in order to create malicious protocol control frames
(PCFs), and (2) an attacker can use EMI generated from a BE device to inject these malicious
PCFs into the network and get them accepted by TTE devices.

Figure 4.3 gives an overview of PCSPOOF. The attack proceeds in two stages. In the first stage,
the attacker learns how to craft authentic-looking PCFs, which requires two pieces of information.
The first is the critical traffic marker, a special bit pattern found at the start of every PCF. The
second is a virtual link ID, which identifies the switch that sends a given PCF. As we will show in
§4.4.1, the first value is found indirectly by observing how the switches respond when forwarding
different types of BE traffic. The second value is inferred using knowledge of common network
scheduling practices and public hardware documentation.

In the second stage, the attacker injects malicious PCFs into the network. However, since
switches block PCFs from BE devices, this requires somehow bypassing the switch. To accom-
plish this, we leverage the fact that, by conducting EMI through the Ethernet cable and into the
switch, it is possible to induce link resets in different switch ports. These link resets can be used to
“transform” BE traffic, which the attacker is allowed to send, into PCFs as they leave the switch.
Since the transformation happens downstream of the switch logic, it cannot be prevented by extra
switch error checking or self-checking pair processors [238].

Next, we describe in detail how to craft malicious PCFs (§4.4.1) and inject them into the net-
work (§4.4.2).
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4.4.1 Stage 1: Crafting Malicious PCFs

In the first stage of PCSPOOF, the attacker learns how to craft authentic-looking PCFs. Below,
we describe the structure of a PCF, as well as how to obtain the information necessary to make
injected PCFs look legitimate.

4.4.1.1 Anatomy of a PCF

In general, the structure of a PCF is the same as a standard minimum-sized IEEE 802.3 Ethernet
frame [32, 239]. However, unlike standard Ethernet frames, PCFs are not forwarded according to
a destination media access control (MAC) address. Instead, the first 6 bytes of the frame, which
would normally contain the destination MAC address, are replaced with the following two fields:

• Critical Traffic Marker — A special value used to identify all PCFs and TT traffic in the
network.

• Virtual Link ID — Identifies the source of the PCF. For our purposes, it typically identifies a
switch.

In order for a PCF to be seen as legitimate, these fields must both match values specified in the
network schedule loaded onto the TTE devices when the network was deployed.

In addition, PCFs contain the following fields. However, unlike the critical traffic marker and
virtual link ID, it is easy for an attacker to pick suitable values for these fields. This is because
either (1) the range of acceptable values is very small or (2) the fields are simply not checked by
the TTE hardware.

• Source MAC Address — Identifies the source of a frame. Note, however, that since the virtual
link ID also identifies the source, this field is not checked in practice. We tested a large array
of modern and legacy TTE hardware (listed later in Table 4.1), and found that it is never
used. For our purposes, it can be set to any value.

• EtherType / Length — Indicates that the frame is a PCF. It must be set to 0x891d [32].
• Integration Cycle — Tracks the current synchronization period. It must fall within a range

defined in the schedule [32]. However, a value of 0x0 is always valid.
• Membership New — Identifies which sync masters contribute to the synchronized time base.

When injecting integration PCFs, setting this to a high enough value tricks devices into
detecting a clique [228]. In our tests, a value of 0x1 was always sufficient.

• Sync Priority — Must match the compression master priority in the network schedule. Most
TTE networks use only one priority [240], so the value 0x1 is usually correct. Otherwise,
the hardware limits the possible values to a small range (e.g., 0x1–0x3) [241, 242].
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• Sync Domain — Identifies a specific set of synchronized devices in the network. Most
networks have only one sync domain [215], so the value 0x0 is usually correct. Otherwise,
the hardware limits the possible values to a small range (e.g., 0x0–0x7) [241].

• Type — Identifies the type of PCF. It must be set to 0x08 for a coldstart acknowledgement
PCF or 0x02 for a normal integration PCF (see §4.2.2).

• Transparent Clock — Tracks delay in the switches. It must fall within a range determined
by the hardware. In our tests, a value of 0x0 was always valid.

Since the critical traffic marker and virtual link ID are the only fields that are difficult for an
attacker to select, we focus the rest of this section on how an attacker can determine them.

4.4.1.2 Finding the Critical Traffic Marker

Generating authentic-looking PCFs requires the attacker to find the critical traffic marker used in
the network schedule. To accomplish this, they can take advantage of the following rules, which
TTE switches use when determining how to forward frames [32].

• If the destination MAC address contains the critical traffic marker, the virtual link ID is valid,
and the frame comes from a known TTE device, the frame is forwarded according to the TTE
schedule.

• If the destination MAC address contains the critical traffic marker but the virtual link ID is
invalid, or the frame comes from a BE device, the frame is dropped.

• If the destination MAC address does not contain the critical traffic marker, the frame is
forwarded according to the rules of IEEE 802.3 (standard Ethernet) [239].

From these rules, we see that all frames sent by BE devices should be delivered (as bandwidth
allows), except those containing the critical traffic marker. Thus, an attacker can infer the critical
traffic marker by tricking other BE devices into sending the attacker frames containing possible

critical traffic markers and checking which frames do not arrive. Below, we describe one method
for accomplishing this by abusing the Address Resolution Protocol (ARP) [224], which is used by
nearly all BE Ethernet devices.

To start, the attacker must find the IP address of another BE device in the network, which we
refer to as the target. Any device can be used, such as a router used for passenger Wi-Fi in an
airplane, or an inventory management computer in a factory. To get the target’s IP address, the
attacker sends Internet Control Message Protocol (ICMP) echo requests to all IP addresses in the
subnetwork and sees who responds. The standard fping utility can do this out of the box, and the
process takes tens of seconds even in large networks.
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Next, the attacker cycles through a list of possible critical traffic markers. For each one, the
attacker sends an ARP request to the target saying “Which MAC address goes with IP X? Tell
MAC Y ,” where X is the IP address of the target, and Y is the MAC address containing the critical
traffic marker to test. Upon receiving this message, the target replies to MAC address Y with the
target’s MAC address.

Assuming the attacker spoofs their source MAC address as Y in each ARP request, each reply
for which Y does not contain the critical traffic marker is forwarded to the attacker. This is because,
with each ARP request, the switch learns to associate MAC address Y with the attacker’s port.
Otherwise, the reply is dropped. Thus, the attacker can identify the critical traffic marker by
sending an ARP request for each possible critical traffic marker and checking which request gets
no reply. To handle the fact that BE messages can be dropped for reasons unrelated to the critical
traffic marker (e.g., buffer overflows), the attacker repeats this process in phases; in each phase,
only testing critical traffic markers for which no reply was received previously.

There are only around 1 billion possible critical traffic markers [31, 32], so brute forcing the
critical traffic marker is fast in practice. We used a Raspberry Pi 4 to find the critical traffic marker
in multiple representative spacecraft networks with real surrogate spaceflight hardware. It took
only 6–7 hours on average when sending ARP requests at 100 Mbps, and 24 hours when sending
requests at 25 Mbps.

We note that, since the critical traffic marker is part of the TTE schedule, it typically does
not change over a system’s lifetime [173]. The reason is that the schedule typically undergoes a
thorough verification and validation process [243, 244, 245]. Changes to the schedule can require
repeating this process, which is expensive and time consuming [173, 243]. This means the attacker
does not need to determine the critical traffic marker all at once, or at the same time as they execute
the rest of the attack.

Finally, we acknowledge that if all BE devices in the network were configured to use static
MAC/IP mappings and drop ARP requests, the method described above would not work. How-
ever, when testing on real COTS devices used in flight (e.g., routers), we found that these devices
respond to ARP requests. Also, our discussions with avionic designers have revealed industry is
explicitly embracing ARP to avoid the complexity of managing static MAC/IP mappings.

However, we note that even if ARP is disabled on all BE devices, an attacker can still easily
find the critical traffic marker by using two malicious devices. One device simply sends frames
with every possible critical traffic marker to the other device. Since the switch does not know
the identity of every BE device, it will flood each frame out of all ports. The second device then
tracks which frames are not received. This method cannot be prevented in any TTE switch that has
default routes enabled, and we have successfully tested it on a variety of real spaceflight switches.
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4.4.1.3 Finding the Virtual Link ID

The last piece of information the attacker needs to generate PCFs is the virtual link ID correspond-
ing to a real compression master (i.e., switch) that generates PCFs in the network. That way, once a
PCF is injected on a given network segment, downstream TTE devices cannot tell that the injected
PCF is illegitimate.

Theoretically, the virtual link ID could be any 16-bit number, so there are 65536 possibilities.
However, there are two pieces of information an attacker can use to reduce the number of possible
virtual link IDs to 2 or fewer.

First, even though there are theoretically 65536 possible virtual link IDs, existing switches do
not support that many. Also, the number of IDs that switches do support is public information. For
example, TTTech’s Space ASIC, which is used in NASA’s Gateway and ESA’s Ariane 6 launcher,
only supports 4096 virtual link IDs [246]. TTTech’s aircraft switches are limited to the same
number [242].

Second, existing TTE scheduling tools use extremely predictable rules for assigning virtual link
IDs to PCFs. For example, the most popular scheduling tools assign virtual link IDs in reverse

order from the maximum value supported by the hardware (i.e., 4096) [241]. Virtual link IDs for
sync masters (i.e., end systems) are assigned first, with a different ID used for each of three PCF
types [32]. Virtual link IDs for compression masters (i.e., switches) are assigned next, with each
switch using the same ID for all PCF types.

As the number of sync masters and compression masters in a system is predictable, so is the
virtual link ID the attacker needs. For example, existing switches support at most 8 sync mas-
ters [247]. Additionally, most TTE systems have one compression master per plane. We are
not aware of any existing system with more than two compression masters per plane. Thus, in
a large system like a spacecraft or aircraft, the virtual link ID needed by the attacker is likely
4095− (8× 3) = 4071, and more rarely 4070.

As we show in §4.6.1, PCF injection is so fast that, even if the attacker cannot determine the
virtual link ID with certainty, they can simply try all possible values until injection succeeds. Also,
we note that, like the critical traffic marker, virtual link IDs are part of the TTE schedule [241], so
are unlikely to change once a system is deployed [173].

4.4.2 Stage 2: Injecting PCFs into the Network

Now that the attacker knows how to construct a PCF, they need a way to inject the PCF into the
network. The attacker cannot simply send the PCF directly, since all PCFs sent from BE devices
will be dropped by the switch. To overcome this challenge, PCSPOOF uses EMI to “transform” a
BE frame, which the BE device is allowed to send, into a PCF.
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Figure 4.4: Ethernet Encapsulation — Ethernet frames generated by software on the host pro-
cessor (CPU) are encapsulated by both MAC and PHY.

In order to perform this transformation, the attacker stores a PCF inside the payload of a benign
BE frame. By carefully corrupting the BE frame in transit, it is possible to then trick the switch
into sending the PCF. Attacks that use this general approach, hiding a malicious message inside a
benign message, are called packet-in-packet attacks [225].

Below, we describe what makes Ethernet susceptible to packet-in-packet attacks, how TTE
hardware can prevent these attacks, and how PCSPOOF defeats these defenses.

4.4.2.1 Packet-in-Packet Attacks on Ethernet

To understand why Ethernet is susceptible to packet-in-packet attacks, it is first necessary to un-
derstand how Ethernet frames are generated and interpreted by Ethernet devices.

Two types of integrated circuits are needed for a device to send and receive Ethernet frames
–– the media access controller (MAC) and the physical layer transceiver (PHY). The MAC is
responsible for assembling and validating Ethernet frames, and for passing them between the host
processor and PHY. The PHY is responsible for translating these frames between bytes understood
by the MAC, and special symbols used at the physical layer, and for writing and reading these
symbols to and from the Ethernet wiring.

Figure 4.4 shows the path of a frame through the MAC and PHY. Each circuit adds additional
information to the frame. Specifically, the MAC adds the preamble (7 bytes of 0x55), which allows
a receiver to “lock on” to the incoming frame, as well as the start frame delimiter (SFD) (1 byte
of 0xd5), which signals the start of the Ethernet header. The MAC also adds the frame check
sequence (FCS) at the end of the frame. The PHY adds a start-of-stream delimiter (SSD) to signal
the start of the transmission, as well as an end-of-stream delimiter (ESD) to signal the end of the
transmission.

When receiving a frame, the PHY waits until it sees the SSD, at which point it tells the MAC
the preamble is starting. The MAC then reads the preamble until it gets to the SFD byte, at which
point it reads in the Ethernet frame. When the PHY receives the ESD symbol, it again signals the
MAC, at which point the MAC knows the frame is complete. The last 4 bytes read by the MAC
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Figure 4.5: Packet-in-Packet Attacks — Two types of packet-in-packet attacks have been demon-
strated on wired Ethernet.

are treated as the FCS.
This design has been shown to be susceptible to two types of packet-in-packet attacks, which we

show in Figure 4.5. In the figure, assume an attacker wants to send a malicious frame (the “inner
frame”) past a switch to some receiver. However, the switch is configured to drop this frame.

The first type of packet-in-packet attack is a runaway preamble attack. Here an attacker exploits
the fact that, if a frame’s SFD byte is corrupted after the frame is forwarded by the switch, the
receiver’s MAC will treat this SFD byte (and any following bytes) as preamble [248]. Many
MACs do not check that the preamble matches the expected pattern (all 0x55). Thus, by placing a
fake SFD byte in the frame’s payload, immediately before the inner frame, an attacker can trick a
receiver into reading the inner frame [248].

The second type of packet-in-packet attack uses link resets [249]. In Ethernet, the PHY con-
tinuously checks for link pulses and idle symbols produced by the device on the other side of
the cable [239]. If these indicators are disrupted, the link is “lost,” and the PHY stops transmit-
ting frames. However, the MAC is not aware of link status changes and will continue transmit-
ting [249]. An attacker can exploit this by sending a frame (the same structure as above) through
the switch while the link is down on the outgoing port. If the attacker is lucky, the link will recover
in the middle of the fake preamble being transmitted by the MAC, resulting in only the inner frame
actually being sent by the switch.

Note that for either approach to work, the FCS of the original frame must be made to match
that of the inner frame. For this, an attacker can exploit the fact that, by adding a 4-byte FCS
complement to a frame’s payload, it is possible to force the frame’s FCS to any value [248]. For
more details on calculating and using the FCS complement, see past work on packet-in-packet
attacks [248, 249].
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PreambleDevice
Too Long Too Short Non-0x55

TTTech Dev. 1G SW Y, ≤11 bytes N N
TTTech PMC 1G NIC Y, ≤11 bytes N N
TTTech A664 Lab SW Y, ≤1451 bytes Y, ≥3 bytes Y, 1st two bytes
TTTech OBC HiRel SW Y, ≤1451 bytes Y, ≥3 bytes Y, 1st byte
TTTech Space Lab SW Y, ≤1451 bytes Y, ≥3 bytes Y, 1st byte
TTTech A664 Lab NIC Y, ≤1451 bytes Y, ≥3 bytes Y, 1st two bytes

Table 4.1: TTE Device Testing — The table indicates whether TTE switches (SWs) and network
cards (NICs) accept PCFs with non-standard preambles. “Too Long, Y, ≤ 11 bytes” means the
device accepts PCFs with longer-than-normal preambles up to 11 bytes. Devices labeled “1G” are
an older generation of devices.

4.4.2.2 Susceptibility of TTE Hardware

We tested a wide variety of modern and legacy TTE devices to determine how susceptible they are
to both types of packet-in-packet attacks. For each device, we used an XMOS XCORE-200 [250]
to generate PCFs with various non-standard preamble and SFD patterns, and determined whether
the PCFs were accepted.

Our results are shown in Table 4.1. In all cases, a PCF is only accepted if either (1) the preamble
contains only 0x55 bytes, or (2) the preamble starts with one or two non-0x55 bytes, but the rest
of the preamble is all 0x55 bytes.

These results show that, unlike standard Ethernet hardware [248], TTE hardware can completely

prevent runaway preamble attacks. There are two reasons. First, the original frame’s header, as
well as the FCS complement, will not be treated as preamble by the receiver unless they both
only contain 0x55 bytes. Second, the switch can prevent the frame from ever being forwarded to
the receiver by filtering all BE traffic with a destination MAC starting with a valid preamble/SFD
pattern (e.g., 0xd5, 0x55d5, 0x5555d5). This is a capability of all TTE switches we have tested.

In contrast, the fact that modern TTE devices accept frames with such long preambles makes
them very susceptible to link reset attacks. The reason is the attacker can send packet-in-packet
frames with 1000+ bytes of fake preamble, maximizing the chance that the link recovers while this
fake preamble is being forwarded, while still ensuring the resulting PCF is accepted by downstream
TTE devices.

4.4.2.3 Enabling PCF Injection

In the past, link reset packet-in-packet attacks on wired Ethernet have been considered impractical,
since there was no known way for an attacker to cause link resets without physically manipulating
the network — e.g., unplugging a cable or rebooting a switch [249].

In contrast, PCSPOOF allows a networked device, controlled by the attacker, to cause link resets
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Figure 4.6: EMI Injection — Effect that a common mode surge on an Ethernet twisted pair has
on the inside of a switch.

between the switch and other devices. In general, it accomplishes this by conducting electrical
noise into the switch over the Ethernet cable, which results in radiated EMI inside the switch and
disrupts the operation of the PHYs on other switch ports.

Figure 4.6 shows how this EMI is generated in more detail. The figure depicts a malicious
BE device connected to a TTE switch. For simplicity, we assume the connection uses a twisted-
pair Ethernet cable (e.g., 100BASE-TX), which is the most popular choice today due to cost and
reliability [251, 252]. When the cable is plugged in, the wires in the cable are electrically connected
to copper traces on the switch printed circuit board (PCB) inside the switch chassis.

Faraday’s Law tells us that, by causing rapid high-voltage surges on the wires in the cable, and
thus on the above traces, it is possible to generate a changing magnetic field that induces errors
in different traces and chips on the switch PCB through inductive coupling [253]. Similarly, it is
possible to generate strong electric fields that induce errors in parallel traces on the switch PCB
through capacitive coupling [253]. Both fields are examples of EMI.

Due to the proximity and parallel orientation of traces and circuitry related to different switch
ports on the switch PCB, it is common for EMI generated from one port to cause link resets on
other ports. This is due to the EMI directly causing glitches in other PHYs, or causing noise on
traces between other PHYs and their respective switch ports.

Of course, it is not possible to cause surges on wires while they are being used for communi-
cation. Instead, the attacker has two options. First, they can cause surges on unused wires in the
cable. For example, a Cat 5/6 cable has 4 twisted pairs, but only two are used for 100BASE-TX
communication. Second, the attacker can alternate between using the same pairs for inducing link
resets and sending BE frames.

We note that, in addition to causing link resets in other ports, PCSPOOF causes link resets in
the port connected to the attacker. This is fine; as long as the attacker’s link recovers before the
outgoing port, meaning the outgoing port could wake up while a frame is in flight, PCF injection
is possible. In our tests, this happened about half the time.
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Figure 4.7: Noise Generation Circuit — Simple transformer driver circuit that, when placed
inside a BE device, generates EMI inside a switch.

4.4.2.4 Avoid Killing the Switch

The challenge of using high voltage to induce link resets is that we must be careful not to kill the
switch or PHY connected to the attacker. Doing so would close our attack vector and result in the
network continuing to operate normally over the redundant planes.

To accomplish this, PCSPOOF takes advantage of the fact that IEEE 802.3 requires galvanic
isolation to protect the PHY from large voltage surges on the Ethernet cable, such as from light-
ning [239]. In twisted-pair Ethernet, this isolation is performed using small transformers, which
in TTE switches are packaged in magnetics chips on the switch PCB [254] or on a connected
daughter card [242].

Figure 4.6 shows the design of an Ethernet transformer. A different transformer is connected
to each twisted pair in the Ethernet cable. In normal operation, opposite voltages are applied to
each wire in a pair, causing current to flow through the primary winding of the transformer. As the
current changes, it creates a changing magnetic field, inducing a voltage across the secondary that
is seen by the PHY.

This means that, if PCSPOOF caused high-voltage surges on only one wire in a twisted pair,
high voltages would be induced in the PHY and kill it. To avoid this, PCSPOOF generates common

mode surges [255] in which the same voltage is applied to both wires in a pair. In this case, a
“center tap” in the primary winding allows the current to return to ground. Since current flows in
opposite directions from each wire towards the tap, the magnetic fields cancel and high voltage is
not directly induced in the PHY.

4.4.2.5 Example Attack Circuit

Figure 4.7 shows a simple circuit capable of generating the common mode surges needed for
PCSPOOF. Disclaimer: The high voltages produced by this circuit can be extremely dangerous.

The circuit briefly works as follows. When power is applied, current flows to the base of the
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transistor, turning it on and letting current flow through the primary winding of the transformer.
As current in the primary rises, the magnetic field increases in the transformer core, decreasing
current in the feedback winding and turning the transistor back off.

When this happens, current abruptly stops flowing through the primary, generating a high-
voltage spike known as an inductive kick, which we measured as around 100 V.

The kick induces a voltage across the secondary, causing current to rush into the Ethernet cable.
Since the secondary has so many turns, this voltage is very large (10–20 kV). Eventually, the
voltage gets so large that current arcs across the spark gap, and the secondary voltage drops back
to zero.

Meanwhile, the power supply turns the transistor back on, and the process repeats (i.e., the
circuit oscillates on its own). This means that, as long the circuit is powered, it will generate EMI
in the switch that can cause link resets.

The design of the circuit makes it easy to hide inside another device. Even with large through-
hole parts, the whole circuit fits on a 2.5 cm × 2.5 cm PCB. There exist suitable transformers (the
largest part) that are just 2.5 cm× 1.25 cm [256] and look like those in typical embedded computers
and power supplies. Similarly, glass-enclosed spark gaps that look like small light emitting diodes
are available [257]. Finally, we note that the circuit oscillates so fast that, with small gap sizes, it
makes almost no audible noise.

4.5 Implementation

To evaluate our attack, we implemented PCSPOOF and executed it on a real TTE testbed used to
verify real-life avionic systems. The testbed was designed to mimic a typical fault-tolerant network
in a crewed spacecraft or aircraft [59, 11, 52]. Four switches acted as compression masters, and
four end systems acted as sync masters. Also, a fifth end system acted as a sync client [32]. The
end systems communicated over two redundant planes, each containing half of the switches.

The end systems were implemented on a Dell PowerEdge T620 running CentOS 7.9 with kernel
3.10.0-1160.11. We used TTTech A664 Lab NICs — lab versions of real TTE NICs used in flight.
Due to limited hardware availability, we also used older TTTech 1G NICs for some network-level
experiments. However, in these cases, the older and newer NICs were verified to behave the same.

For switches, we used modern TTTech OBC HiRel switches [258], as well as older TTTech
Development 1G switches in cases where behavior differences were not relevant. We selected
the OBC HiRel switch because it is an engineering development unit of a real radiation-hardened
spaceflight switch. It also uses TTTech’s Space ASIC, which is currently being used in real space
vehicles [52, 259].

For scheduling the TTE network, we used TTTech’s TTE Tools v5.4 [241], which were the most
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up-to-date scheduling tools for our hardware, and the same tools used in real systems. We stress
that we used the same configurations and settings as are used for real spacecraft avionic systems.

We created an attack device that connected to one TTE switch in one plane. The device used a
Raspberry Pi (RPi) 4B with Ubuntu 20.04 LTS and kernel 5.4.0-1041 to run the PCSPOOF code.
The device used a high-voltage circuit, based on Figure 4.7, to induce link resets and enable PCF
injections. The RPi communicated using 100BASE-TX, and the two unused cable pairs carried
the high voltage signal.

We used SF/FTP shielded Cat 6A cables for all the connections between the various devices.
The connection from the attack device to the switch consisted of a 10 m cable, an Ethernet coupler,
and a 3 m cable.

4.6 Evaluation

As we showed in §4.4.1, an attacker can reasonably determine how to craft a legitimate PCF in a
matter of hours, even with modest embedded hardware and limited network bandwidth. Therefore,
we focused our evaluation on assessing the likelihood and impact of successful PCF injections.

Specifically, we conducted a series of experiments on our testbed to answer four key questions:
(1) What is the probability of successfully injecting a PCF? (2) How much does a PCF injection
disrupt synchronization between TTE devices? (3) How much does a PCF injection disrupt the
delivery of TT messages? and (4) How much damage do PCF injections cause in a real spaceflight
application?

4.6.1 Probability

Experimental setup. To determine the probability of successfully injecting a PCF, we needed to
answer two questions. Question 1: How often is an attacker able to inject a PCF — i.e., transform a
BE frame into a PCF that gets forwarded by the switch connected to the attack device? Question 2:
Given a PCF is injected, how often does a downstream TTE device, which receives the PCF from
the switch, accept that PCF? Moreover, we wanted to determine how the network settings (e.g.,
transmission rate, background traffic load, drop rate) impacted the answers to these questions.

To answer Question 1, we varied the distance between the switch port connected to the attack
device (attack port) and the nearest switch port connected to a TTE device (target port) from 4
ports away (14 cm) to 7 ports away (21 cm), where 7 ports is the maximum separation between
two ports on the OBC HiRel switch. For each distance, we continuously sent a 1500-byte BE
frame containing a PCF from the attack device to the switch for 5 minutes. To induce link resets in
the target port, we enabled/disabled the high-voltage circuit approximately every 1.5–2 s. We used
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a Fluke OptiView XG analyzer to capture frames forwarded out of the target port and identify the
injected PCF.

We repeated the above experiments in four different setups. In the first, there was no background
traffic, and we varied the attacker’s transmission rate from {25, 50, 100} Mbps, where 100 Mbps
is the maximum rate of the network. In the second, we configured background BE traffic flowing
through the switch and out the target port to consume all but {20, 50, 80}Mbps of the bandwidth,
and the attacker to send at the maximum rate. This range was chosen to span the network’s total
bandwidth, while reflecting the fact that real systems leave bandwidth margin for performance
reasons and to enable future expansion [260]. In the third, we repeated the second setup except
with background TT traffic instead of BE traffic. In the fourth, we configured background TT
traffic to flow at 20 Mbps, background BE traffic to flow at 70 Mbps, the attacker to send at the
maximum rate, and the network to drop {0.01, 0.1, 1}% of all frames. The fourth setup is a realistic
representation of real systems, where TT traffic is commonly limited to 10–20 Mbps [71, 261], and
a bandwidth margin of at least 10% is typical [262].

To answer Question 2, we varied the integration cycle of the network from {0.5, 1, 2, 4, 8} ms,
where a smaller integration cycle causes tighter synchronization. This range reflects values used in
real avionic systems [263, 264, 265]. For each cycle, we used a hardware tap to inject 1000 PCFs
on the link between two switches, and recorded the number of injections that caused at least one
end system to lose synchronization. We then repeated the process for a link between a switch and
end system.

We performed the above experiment in four different setups representing the most extreme
configurations from Question 1: (1) no background traffic, (2) 80 Mbps of background BE traffic,
(3) 80 Mbps of background TT traffic, and (4) 20 Mbps of background TT traffic, 70 Mbps of
background BE traffic, and a 1% drop rate. We report results for coldstart acknowledgement (CA)
PCFs only, as the results for integration (IN) PCFs are nearly identical.

Results. Figure 4.8 shows our results for Question 1. As the figure shows, PCSPOOF can inject
PCFs in a matter of seconds. This is true even in configurations with heavy background traffic.
For example, in a realistic configuration with 90% of the bandwidth consumed by TT and BE
traffic, and with an extremely high 1% drop rate [266], we observed 20 injections in 5 minutes
(roughly one every 15 seconds). The injection rate decreases as the amount of background TT
traffic increases, since the attacker is limited to a smaller portion of the bandwidth, resulting in
more of the attacker’s frames being dropped. However, even in the unlikely case of TT traffic
consuming 80% of the bandwidth [71], we still observed more than one injection per minute on
average. The figure also shows that PCF injections are possible when the attack and target ports
are far apart from each other.

Tables 4.2 and 4.3 show our results for Question 2. With a 1 ms integration cycle, which is
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Figure 4.8: PCF Injections — Number of PCF injections in 5 minutes under different conditions
(e.g., background traffic, drop rate) and with different distances between attack and target ports.

common in practice [265], switches accepted 3.9% of injected PCFs under realistic traffic loads
and a 1% drop rate. When combined with the results from Figure 4.8, this means PCSPOOF is
likely to inject a PCF and get it accepted by a switch in 6–7 minutes. Even with a larger 4 ms
integration cycle, PCSPOOF is likely to inject a PCF and get it accepted by a switch in 30–40
minutes. Unlike switches, end systems accept all PCFs they receive (i.e., all injections succeed).
Thus, PCSPOOF is likely to inject a PCF and get it accepted by an end system in tens of seconds,
regardless of the integration cycle.

4.6.2 Interrupts

Experimental setup. TTE uses synchronized periodic interrupts to coordinate the execution of
software on the end systems [11]. Often, two interrupts are used, a major interrupt and a minor

interrupt, where the major interrupt period divides evenly by the minor interrupt period [105, 87,
95].
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Background TrafficIntegration Cycle
None BE TT TT+BE (1% drop)

8 ms 0.4% 0.3% 0.3% 0.5%
4 ms 0.7% 0.7% 0.5% 0.8%
2 ms 2.0% 1.7% 1.8% 1.6%
1 ms 4.4% 4.2% 3.3% 3.9%

500 µs 8.0% 7.1% 7.2% 6.3%

Table 4.2: Successful Injections (Switches) — Percentage of injected PCFs that were accepted
on links to switches.

Background TrafficIntegration Cycle
None BE TT TT+BE (1% drop)

8 ms 100% 100% 100% 99.0%
4 ms 100% 100% 100% 99.1%
2 ms 100% 100% 100% 99.0%
1 ms 100% 100% 100% 99.1%

500 µs 100% 100% 100% 98.8%

Table 4.3: Successful Injections (End Systems) — Percentage of injected PCFs that were ac-
cepted on links to end systems.

By interfering with these interrupts, an attacker could cause significant problems that systems
are not designed to handle, such as end systems performing computations on old information,
sending data when it is not expected, or failing to generate outputs when needed [28, 267, 268].

To determine how PCSPOOF affects these interrupts, we configured our testbed with a 1 s major
interrupt, 25 ms minor interrupt, and 4 ms integration cycle. These values are commonly used in
real systems [104, 87], and match those in our case study of a real spaceflight mission (§4.6.4). We
note that 4 ms is the smallest integration cycle allowed with our interrupt configuration [241], and
minimizes the time it takes the network to recover from PCF injections.

We used a hardware tap to perform 250 successful PCF injections on both inter-switch links
and links between switches and end systems. We repeated this process for both CA and IN PCFs,
and report the time between the interrupts immediately before and after each injection. We also
report interrupt timing for a 5 minute control case, in which no PCFs were injected.

Results. Figure 4.9 shows our results; a single PCF injection can significantly disrupt interrupt
timing. For example, a single PCF injection on an end system link can delay the major interrupt
by more than a second and the minor interrupt by more than 25 ms. An inter-switch link injection
can delay the minor interrupt by more than 40 ms.

In addition, PCF injections on inter-switch links cause interrupt delays on multiple end systems

at once. This happens because the injected PCF is forwarded to multiple end systems. Importantly,
this means that N-modular redundancy [269], a fault tolerance technique where the same function
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Figure 4.9: Impact on Interrupts — Average-Max-Min charts showing the time between inter-
rupts following successful PCF injections on links to switches (SWs) and end systems (ESs).

is performed on multiple end systems, cannot protect systems from PCSPOOF. A single injection
could simply delay the interrupts on all redundant end systems simultaneously.

In safety-critical systems, where N-modular redundancy is widely trusted for important func-
tions [61, 60, 71], these delays could be disastrous. For example, in automobiles, steering outages
exceeding 50 ms can be non-recoverable [29]. Similarly, aircraft can require inputs as often as
every 40 ms to avoid failures [26]. Moreover, as we show in §4.6.4, even in cases where a single
widespread outage (such as from an inter-switch injection) does not cause system failure, repeated
isolated outages (such as from end system injections) can cause redundant systems to fail.

Moreover, we observed that, in the worst case, a single PCF injection can disrupt the interrupt
timing of all end systems in the network. This is because, when used in a fault-tolerant configura-
tion, TTE requires 3 sync masters to be operational for synchronization between any end systems

to be possible [241]. Thus, if enough end systems lose synchronization, all end systems do — even
ones that never receive the injected PCF.

4.6.3 Messaging

Experimental setup. To determine the effect PCSPOOF has on TT messaging, we repeated the
experiment from §4.6.2, with one end system configured as the sender, and the others as receivers.
The sender continuously wrote messages with 100-byte payloads to its NIC, representing typical
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Figure 4.10: Impact on Messages — Average-Max-Min charts showing the message delays fol-
lowing successful PCF injections on links to switches (SWs) and the sender end system (ES).

traffic in embedded systems [57]. The messages were stored in a queuing buffer of default size for
our hardware [241]. The network was scheduled to continuously transmit the oldest message in
the queue to the receivers at a rate from {5, 40} Hz, representing the minimum and maximum data
rates typically found in real systems [104, 28].

For each rate, we used a hardware tap to perform 250 successful PCF injections on both inter-
switch links and links between switches and end systems. We repeated the process for both CA
and IN PCFs, and report the time between when an end system last received a message before each
injection and next received a message after the injection. We also report the number of message
drops caused by each injection — i.e., the number of times the sender successfully stored a message
in its NIC, but the message was not received. Finally, we report results for a 5 minute control case
with no PCF injections.

Results. Figure 4.10 shows our results. As expected, by disrupting synchronization, PCF in-
jections can cause large message delays. For example, a single PCF injection caused a message
expected every 25 ms to not arrive for up to 65 ms. As discussed in §4.6.2, such delays can be
disastrous for critical applications like steering and engine control, where delays beyond 40–50 ms
can be nonrecoverable [29, 26].

Table 4.4 shows the number of message drops caused by each PCF injection. In summary, each
successful injection resulted in approximately 20 message drops in a row for all receivers. Thus,
successful PCF injections do not only result in message delays but also cause TT messages to be
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Data Rate: 10 Hz 40 Hz
PCF Type: CA IN CA IN
Link Type: SW ES SW ES SW ES SW ES
Min Drops: 20 20 20 20 20 19 20 20
Max Drops: 21 20 21 20 21 20 21 20

Table 4.4: Message Drops — Message drops following successful PCF injections on links to
switches and the sender end system.

permanently lost. Interestingly, we observed a similar number of drops regardless of the rate at
which messages were transmitted, seemingly due to messages being purged from NIC and switch
buffers when synchronization is disrupted.

We stress that PCF injections caused these message drops even though TT traffic travels over

multiple planes simultaneously, and PCFs were only injected on a single plane. Therefore, redun-
dant communication paths are not an effective way of mitigating PCSPOOF. The reason is that,
since PCSPOOF disrupts the synchronization protocol, it disrupts communication on all planes
simultaneously.

4.6.4 Case Study: NASA Asteroid Redirect Mission

To determine how much damage PCSPOOF causes in a real spaceflight application, we conducted
a case study based on NASA’s planned Asteroid Redirect Mission [270], in which a robotic space-
craft would move an asteroid into a stable orbit around the Moon. A crewed spacecraft, such as
NASA’s Orion, would then carry astronauts to the asteroid in order to study it, take samples, and
return the samples to Earth.

We executed a subset of the mission on a real avionics testbed, during which a representative
Orion capsule approached and attempted to dock with the robotic spacecraft. The Orion guidance
software, which included several genuine Orion flight software components (e.g., for optical navi-
gation) [95], ran against NASA’s Trick Simulation [271], which modeled the vehicles in space, as
well as Orion’s sensors and actuators. The Orion subsystems and simulation communicated over a
fault-tolerant TTE network, similar to Figure 4.1. We used network settings from the real mission.

We executed the mission twice. In the first trial, no PCFs were injected. In the second trial,
we executed the full end-to-end attack, including finding the critical traffic marker and injecting
PCFs with the attack circuit. After determining the rate at which PCFs were injected on links to the
flight computers (roughly every 16 seconds), we switched to injecting PCFs on those links with a
hardware tap. This let us assess the impact of PCSPOOF over a long mission (hours), without risk
of damaging the switch.

Our results are shown in Figure 4.11. As expected, in the absence of PCF injections, the mission
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Figure 4.11: Asteroid Redirect Mission — NASA spaceflight simulation without (left) and with
(right) PCSPOOF. PCSPOOF caused a significant deviation in the vehicle’s flight path, which pre-
vented docking.

completed successfully. Orion approached the robotic spacecraft at a relative velocity of 2–3 m/s
until it was approximately 300 m away, aligned itself with the robotic spacecraft, and proceeded
straight at 0.1–0.5 m/s until docking was complete.

In contrast, PCSPOOF caused message drops and delays that caused Orion to deviate from its
intended flight path. Rather than aligning with the robotic spacecraft, Orion swung underneath it at
a distance of approximately 115 m, missed the docking opportunity, and floated away at a rate of 1–
2 m/s. These results show that PCSPOOF can significantly disrupt the operation of critical systems
that rely on TTE. PCSPOOF also threatens safety, as the uncontrolled maneuvers we observed
could easily cause collisions with other objects or vehicles.

4.7 Mitigations

In this section, we discuss potential mitigations to PCSPOOF. In general, mitigations fit into four
major categories.

4.7.1 Prevent Attackers from Crafting PCFs

Hide the critical traffic marker. In PCSPOOF, attackers determine the critical traffic marker used
in PCFs by observing which BE frames are dropped by the switches (see §4.4.1.2). Designers can
prevent attackers from finding the critical traffic marker by configuring switches to drop additional
BE traffic that does not contain the critical traffic marker. However, this causes switches to deviate
from the IEEE 802.1D standard [272], prevents BE devices whose MAC addresses overlap with
the blacklisted addresses from receiving messages, and causes certain BE multicast addresses to
become unusable.
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Another option is to increase how long it takes to deduce the critical traffic marker, e.g., with
switch port rate limiting. However, since the critical traffic marker typically does not change
over a system’s lifetime [173], this method cannot prevent attacks, only delay them. Regularly
changing the critical traffic marker would improve security, but could increase costs due to repeated
verification and validation (see §4.4.1.2).

Hide virtual link ID assignments. Designers can also prevent attackers from creating PCFs by
hiding the virtual link IDs switches use for transmitting PCFs. In existing schedulers, virtual link
IDs for PCFs are assigned in reverse order from publicly-available values, making them easy for
attackers to predict (see §4.4.1.3). Assigning these values using less predictable methods (e.g.,
randomly), or regularly changing them, would improve security. However, like in the case of the
CT Marker, neither mitigation is likely sufficient for highly-critical systems.

Check the source MAC address. Since TTE devices use the virtual link ID to identify the source
of incoming PCFs, they do not check a PCF’s source MAC address field (see §4.4.1.1). This means
attackers do not need to determine the MAC address of a real compression master in the network in
order to craft authentic-looking PCFs. TTE devices could improve security by checking the source
MAC address in received PCFs against known correct values. However, doing so would require
changes to the TTE hardware.

4.7.2 Prevent Attackers from Injecting PCFs

Block EMI. PCSPOOF enables PCF injections by conducting EMI into the switch over an Ethernet
cable. This interference can be prevented by using optocouplers or surge protector devices between
the Ethernet cables and TTE switch ports. However, such devices often suffer from performance
limitations [273], decrease system reliability by introducing new points of failure, and can increase
size, weight, and power due to the inclusion of new hardware [274].

Another option is to use fiber-optic cables, which are incapable of conducting EMI into the
switch. However, such cables have several downsides compared to copper, including higher cost,
worse durability, and decreased compatibility with commercial hardware [252]. For these reasons,
most TTE systems use copper physical layers [133, 275, 276, 277].

Compression master placement. PCSPOOF requires injected PCFs to look like they came from
real compression masters (CMs). By carefully placing the CMs, designers can ensure injected
PCFs will not be used. For example, if CMs and BE devices are placed on opposite sides of the
network, injected PCFs will come from paths with no CMs, and thus be ignored. However, this
separation may not be possible in networks with few switches, and can increase size, weight, and
power by requiring long cable runs between where BE devices are needed and allowed to connect
to the network.
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Limit the BE traffic rate. Our results in §4.6.1 show that lowering the rate BE devices are allowed
to send messages, e.g., with switch port rate limiting, can decrease the probability of successful
PCF injections. However, many TTE switches do not have this feature [247, 254]. Also, as we
have shown, successful PCF injections are still highly probable, even when the BE traffic rate is
low. In our evaluation, an attacker transmitting at 25 Mbps could still inject more than 1 PCF
per minute. Moreover, BE rate limits can disrupt BE data flows that require high data rates, like
high-definition video [278].

Disable dangerous state transitions. PCSPOOF exploits the fact that end systems that receive
a coldstart acknowledgement PCF will temporarily lose synchronization (see §4.2.2). Thus, one
way to combat PCSPOOF is to disable this state transition in the configurations loaded on the end
systems [32]. Unfortunately, removing this transition also impacts the ability for the network to
detect cliques at system startup [32]. It also does nothing to prevent an attacker from injecting
integration PCFs, which can also disrupt synchronization (see §4.2.2).

4.7.3 Prevent Devices from Accepting Injected PCFs

Use link-layer security. One way to mitigate PCSPOOF is to use a link-layer authentication
protocol, like IEEE 802.1AE [279]. Unless the attacker knows the cryptographic key used in the
network, they cannot inject PCFs that are accepted by TTE devices. Unfortunately, link-layer
security is not implemented in existing TTE devices. Adding authentication would require updates
to the TTE hardware, as well as impact compatibility with existing TTE systems.

Check the preamble length. PCSPOOF cuts the headers off frames in flight, causing receivers
to get injected PCFs with potentially very long preambles (see §4.4.2). TTE devices would be
less likely to accept these PCFs if they rejected frames with long preambles. This would force
attackers to send smaller BE frames, making the link less likely to recover in the region required
for successful injections. Modern TTE devices do not limit the preamble length (see Table 4.1),
and doing so would require updates to the device hardware.

Decrease the resynchronization rate. Our results in §4.6.1 show that decreasing the TTE resyn-
chronization rate (i.e., increasing the integration cycle) decreases the probability of PCSPOOF
succeeding on inter-switch links. Unfortunately, decreasing this rate also increases timing skew be-
tween synchronized devices, and reduces the usable network bandwidth for TT traffic [241, 280].
Moreover, since end systems accept all injected PCFs regardless of the resynchronization rate, de-
creasing the rate has no effect on the probability of successful injections on links between switches
and end systems.

89



4.7.4 Minimize the Impact of Accepting Injected PCFs

Use more sync masters. If PCSPOOF disrupts enough sync masters, it causes the whole network
to lose synchronization, regardless of whether all devices received an injected PCF or not (see
§4.6.2). Increasing the number of sync masters can reduce the probability of this happening, but
may not be possible in small systems like automobiles. Also, even if a network has many sync
masters, care must be taken in choosing their locations in the network. Otherwise, a single injected
PCF could still take out all the sync masters.

Decrease periods. PCSPOOF causes larger timing disruptions to interrupts and traffic flows with
larger periods (see §4.6). Therefore, PCSPOOF can be somewhat mitigated by using smaller peri-
ods than needed. For example, messages needed every 20 ms could be scheduled every 5–10 ms
instead. However, this approach wastes network bandwidth, increases processing demands (e.g.,
CPU, memory), and makes the network more difficult to schedule [241]. Also, this approach does
not work for interrupts that require large periods, like the 1 second major interrupt used in avionic
systems to trigger the start of the flight software schedule [104, 87].

4.8 Related Work

Attacks on TTE’s isolation guarantees. Because of its use in critical applications, much effort
has been spent trying to break TTE’s isolation guarantees [101, 281, 282, 227]. For example, the
Aviation Cyber Security Study [281] analyzed the ability of BE devices to interfere with TT traffic
via denial-of-service or MAC flooding attacks. To our knowledge, no successful attacks have ever
been reported. TTE’s security has also been studied in much less restricted threat models, such as
when an attacker controls critical TTE devices [283, 284], or has physical access to the system and
can thus unplug cables and intercept messages [229, 285]. In contrast, PCSPOOF does not require
the attacker to have physical access to the system, and it can succeed from a single BE device
connected to a single network plane.

Ethernet packet-in-packet attacks. Several packet-in-packet attacks have been developed [225,
286, 248, 249]. Recently, EtherOops [248] showed that runaway preamble attacks on wired Ether-
net were possible by exploiting data corruptions, like those caused by faulty cables. However, as
shown in §4.4.2.2, this attack can easily be prevented in modern TTE networks. Other researchers
showed that Ethernet packet-in-packet attacks could be accomplished by exploiting link resets, like
those caused by unplugging and replugging cables [249]. However, the attacker had no ability to
cause these link resets to occur. PCSPOOF also uses link resets to let an attacker inject malicious
PCFs into the network. However, importantly, PCSPOOF lets the attacker induce those link resets
at will from a networked BE device.
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EMI attacks on Ethernet. Several studies have explored methods for inducing errors in Ethernet
networks by exposing switches and cables to EMI [248, 287, 288, 289, 290]. For example, [288]
studied the susceptibility of office networks to nearby electromagnetic pulse devices. However,
such attacks are mostly effective only on networks with unshielded cables, require the attacker to
be in close proximity to the network (e.g., a few meters), and require large antennas to radiate the
EMI [248, 288]. In contrast, PCSPOOF induces switch errors by conducting EMI from a networked
device, through an Ethernet cable, and into the switch. This means PCSPOOF works on networks
with shielded cables, works from any distance — provided the attack device connects to a switch
— and takes up little physical space (see §4.4.2.3).

Timing attacks on real-time systems. There exist several timing-based attacks on TT and other
real-time systems [291, 292, 293, 294, 295, 296, 297, 298]. Generally, these attacks work by (1)
using side channels to infer the task or communication schedule [291, 292, 293, 294, 295, 296],
then (2) interfering with critical tasks or traffic by consuming shared resources when they are
needed [297, 298]. PCSPOOF is orthogonal to these methods. In particular, PCSPOOF does
not rely on knowledge of timing to be successful. Also, while designers can mitigate interfer-
ence attacks by planning for the worst-case contention that critical TT tasks and messages may
experience [297, 298], PCSPOOF can disrupt all TT tasks and messages regardless of temporal
overprovisioning.

Destructive high-voltage circuits. Several devices use high voltage to damage electronic equip-
ment [299, 300, 301]. For example, the venerable EtherKiller [300] destroys Ethernet switches by
shorting a switch port to a wall socket. USBKill [299] devices destroy computers by discharging
high-voltage capacitors into the computer’s USB port. Unlike these devices, PCSPOOF is not in-
tended to damage a TTE switch; doing so would prevent successful attacks. Rather, it is designed
to induce controlled errors in the switch that cause link drops on other ports. Also, PCSPOOF is
designed to introduce these errors from a fully-functioning Ethernet device.

4.9 Conclusion

TTE is a popular choice for mixed-criticality systems because of its ability to share the network
between critical TT and non-critical BE devices. However, this design requires that the critical
TT services be completely isolated from the BE devices. We presented PCSPOOF, the first attack
capable of breaking TTE’s isolation guarantees. Our results show that PCSPOOF threatens the
safety of critical TTE systems, like spacecraft and aircraft. We hope the description of our attack,
as well as the mitigations we identified, will influence the deployment of current TTE systems, as
well as the designs of future mixed-criticality network technologies.
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CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

Modern embedded systems, like those in spacecraft and aircraft, can be large distributed systems
with hundreds of nodes and thousands of traffic flows. Meeting requirements in these systems is a
significant design challenge. For example, these systems are often required to operate in the pres-
ence of faults, which typically requires redundant processing nodes to coordinate by exchanging
messages. Unfortunately, this need for coordination means traditional fault tolerance protocols are
often unable to meet real-time requirements in modern systems, where nodes are often not co-
located and the network is heavily loaded. Another challenge is security. Modern embedded sys-
tems feature a mix of critical and non-critical devices, with critical devices undergoing a stringent
verification and review process, and non-critical devices purchased off-the-shelf and undergoing
little review. All these devices often share the same network to reduce size, weight, power, and
costs, providing a theoretical means by which non-critical devices could disrupt critical systems. It
is the responsibility of the network to ensure such disruption cannot happen, isolating the critical
systems from a potentially malicious non-critical device.

In Chapter 2, I described IGOR, a novel Byzantine fault-tolerant (BFT) state machine replica-
tion (SMR) protocol that reduces the worst-case latency of real-time embedded systems by letting
replicas parallelize coordination and execution. Unlike traditional BFT SMR protocols, the repli-
cas are not required to agree on one set of sensor data before executing. Instead, they eagerly
execute on data from multiple redundant sensors, some of which may be arbitrarily faulty, and
reach agreement on which execution will become persistent in the background. IGOR’s approach
allows it to meet deadlines that are not practical for other state-of-the-art protocols.

In Chapter 3, I described CROSSTALK. CROSSTALK shows that by making a few assumptions
about the network topology, it is possible to reduce the worst-case latency of BFT SMR in real-
time systems without requiring the replicas to have multiple cores. Specifically, CROSSTALK takes
advantage of the prevalence of redundant switched networks in practice, routing messages between
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the planes to ensure that replicas maintain identical states without needing the replicas to run any
coordination protocol. As a result, CROSSTALK can achieve similar or better worst-case latency
than IGOR while also having improved schedulability.

In Chapter 4, I described PCSPOOF, a new attack on mixed-criticality Time-Triggered Ethernet
(TTE) networks used in critical applications, and the first attack capable of breaking TTE’s iso-
lation guarantees. PCSPOOF allows a malicious non-critical device to craft fake synchronization
messages and inject them into the network, potentially disrupting the operation of some or even
all critical devices. In general, PCSPOOF shows that it is possible to compromise the safety of
even the most robust mixed-criticality network technologies. I also described multiple defenses
designers can use to protect their systems from PCSPOOF.

5.2 Future Work

In this dissertation, I introduced several approaches to make distributed fault-tolerant embedded
systems more performant and secure. However, multiple challenges still remain. I describe some
of these challenges below.

5.2.1 Probabilistic BFT SMR with Eager Execution

The IGOR protocol in Chapter 2 is error-free [47], meaning it is guaranteed to produce correct
results as long as the fault model is valid (i.e., f < n/3 replicas are faulty). IGOR was designed
to be error-free intentionally, since error-free protocols are required in a variety of safety-critical
applications, such as commercial aerospace [122, 123]. It is well known that, without making any
assumptions about the network topology, at least 3f + 1 replicas are needed to solve BFT SMR in
the error-free case [46]. IGOR exploits the fact there are at least 3f + 1 replicas to ensure at least
f + 1 replicas are non-faulty and end up with the same correct state, which is enough to out-vote
up to f faulty replicas when delivering results to the actuators.

However, in some less critical systems, like automotive systems, it may not be necessary to
have perfect correctness. Similarly, it may be too expensive to have 3f +1 replicas. In such cases,
it is more attractive to use a probabilistic [58] BFT protocol, which has some small probability of
being incorrect even when the fault model holds, but only requires 2f + 1 replicas [46],

Trying to apply IGOR’s approach to the probabilistic setting is not trivial. For example, with
2f + 1 replicas, the standard IGOR protocol would only guarantee that a single non-faulty replica
ends up with the correct state, which is not enough to out-vote any faulty replicas. From some
preliminary investigation, it appears like a solution might be possible by starting the protocol with
a new pre-processing stage consisting of two rounds of consistent broadcast [168]. However, it
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seems likely that such a design would result in little or no latency savings compared to traditional
BFT protocols when tolerating small numbers of faults (e.g., f = 1 or 2).

5.2.2 CROSSTALK with Byzantine Switches

The CROSSTALK protocol is Chapter 3 uses an omission fault model for the switches. This model
is common in safety-critical applications, like crewed spaceflight, where switches may be imple-
mented as self-checking pairs [71]. The model is powerful because it allows a replica that received
a message from a sensor to know the message must have taken a specific path. In CROSSTALK, the
path is chosen to traverse a sufficient number of switches with cross-links such that one of them
must be non-faulty and ensure the message ends up on a non-faulty plane.

However, in some domains, constraining faulty switches to omission may be too costly. Unfor-
tunately, it is not trivial to adapt CROSSTALK to tolerate Byzantine switches. The reason is that a
message would no longer be constrained to specific known paths. For example, a message from
a faulty sensor could proceed directly to a replica without first traversing the cross-link switches.
Similarly, the message could travel to a Byzantine non-replica node that incorrectly retransmits
the message on a different network plane. One method to ensure a message takes a specific path
would be to have the switches sign messages in flight. However, the use of signatures has been
shown to significantly degrade the performance of embedded hardware [302]. Signatures would
also prevent CROSSTALK from being used with commodity network switches.

5.2.3 Optimizing the Network Topology for BFT SMR

As discussed in Chapter 3, traditional BFT SMR protocols are expensive in latency and message
complexity because they make no assumptions about the network topology. CROSSTALK shows
that, by making a few assumptions about the topology, it is possible to significantly reduce the cost
of BFT SMR. However, the topology used in CROSSTALK is still based on the redundant switched
topology systems commonly use in practice, which is not explicitly intended to make BFT SMR
cheap. Rather, this topology is derived from older redundant bus designs [71] and is meant to strike
a balance between cable mass, message latency, and design complexity [187].

This raises the question of whether the cost of BFT SMR could be further reduced by better
optimizing the network topology. Researchers have had success using techniques such as binary
programming to find topologies that minimize straightforward objectives like cable mass and the
number of hops between nodes [187]. However, I am not aware of any work that uses network
topology optimization to reduce the cost of executing complex distributed protocols. One challenge
is that the ideal choice of topology depends on the steps of the protocol and vice versa. As such, a
network/protocol co-design optimization approach might be most fruitful.
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5.2.4 Compromising Security in Mixed-Criticality Networks

The PCSPOOF attack in Chapter 4 exploits a flaw in wired Ethernet to allow a malicious end device
to inject an arbitrary message into an Ethernet network. The reason such an attack is dangerous in
TTE is that, in the TTE synchronization protocol [32], a single message (a compressed protocol
control frame) has the power to make critical devices lose synchronization. Other Ethernet-based
protocols used in critical applications have a similar deficiency. For example, the recent time-
triggered Time-Sensitive Networking (TSN) standards [34] use a variant of IEEE 1588 (PTP) [303]
for time synchronization. In IEEE 1588, time is distributed to the switches and end devices from
a number of designated time servers. If one of these time messages was spoofed, it could cause
parts of the network to lose synchronization and critical messages to be dropped. Synchronization
protocols used on top of Avionics Full-Duplex Switched Ethernet networks (e.g., [177]) also
appear to be susceptible to message-injection attacks.

Similarly, message-injection attacks could be possible in non-Ethernet-based networks that rely
on time synchronization. For example, in SpaceFibre [304], a popular network technology used
in spaceflight applications, time-critical traffic is sent at prescheduled times according to a global
synchronized clock.1 The synchronized time is distributed with simple broadcast messages [305].
If these messages were spoofed, it could disrupt synchronization and prevent operation of critical
devices. However, unlike in Ethernet (Figure 4.5), it has not yet been shown to be possible to inject
malicious messages into a SpaceFibre network.

1Contrary to its name, SpaceFibre can be implemented on copper physical layers [304].
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temps-réel (ETR), Rennes, France, August 2015. http://etr2015.irisa.fr/ima
ges/presentations/TTEthernet_ETR_2015_Rennes.pdf.

[266] Cristina Plettner. COTS for Space. In Proc. Radiation Effects on Components and Systems
(RADECS), Geneva, Switzerland, October 2017. https://indico.cern.ch/event
/649606/sessions/246265/attachments/1522111/2403688/COTS_ple
ttner_v2.pdf.

[267] Gerald Cohen, William Lee, and Michael Strickland. Final Report: Design of an Integrated
Airframe/Propulsion Control System Architecture. NASA Contractor Report 182007, Boe-
ing Advanced Systems, March 1992.

[268] Ricky Butler. A Survey of Provably Correct Fault-Tolerant Clock Synchronization Tech-
niques. Technical Report NASA-TM-100553, NASA Langley Research Center, February
1988.

[269] Fred Schneider. Implementing Fault-Tolerant Services Using the State Machine Approach:
A Tutorial. ACM Computing Surveys, 22(4), December 1990.

116

https://www.tttech.com/wp-content/uploads/TTTech_TTE-Switch-OBC-HiRel-Box-1.pdf
https://www.tttech.com/wp-content/uploads/TTTech_TTE-Switch-OBC-HiRel-Box-1.pdf
https://www.tttech.com/wp-content/uploads/TTTech_TTE-Switch-OBC-HiRel-Box-1.pdf
https://www.eenewseurope.com/news/time-triggered-ethernet-space
https://www.eenewseurope.com/news/time-triggered-ethernet-space
https://ntrs.nasa.gov/api/citations/20160012363/downloads/20160012363.pdf
https://ntrs.nasa.gov/api/citations/20160012363/downloads/20160012363.pdf
https://ntrs.nasa.gov/api/citations/20160012363/downloads/20160012363.pdf
http://etr2015.irisa.fr/images/presentations/TTEthernet_ETR_2015_Rennes.pdf
http://etr2015.irisa.fr/images/presentations/TTEthernet_ETR_2015_Rennes.pdf
https://indico.cern.ch/event/649606/sessions/246265/attachments/1522111/2403688/COTS_plettner_v2.pdf
https://indico.cern.ch/event/649606/sessions/246265/attachments/1522111/2403688/COTS_plettner_v2.pdf
https://indico.cern.ch/event/649606/sessions/246265/attachments/1522111/2403688/COTS_plettner_v2.pdf


[270] Asteroid Redirect Robotic Mission. NASA Jet Propulsion Laboratory, August 2022. http
s://www.jpl.nasa.gov/missions/asteroid-redirect-robotic-mis
sion-arrm.

[271] Trick 13 Simulation Environment. NASA Johnson Space Center, August 2022. https:
//software.nasa.gov/software/MSC-25665-1.

[272] IEEE 802.1D-2004: IEEE Standard for Local and Metropolitan Area Networks — Media
Access Control (MAC) Bridges. Institute of Electrical and Electronics Engineers, June
2004.

[273] Ronn Kliger. Integrated Transformer-Coupled Isolation. IEEE Instrumentation and Mea-
surement Magazine, March 2003.

[274] Tupavco TP302 Ethernet Surge Protector PoE+ Gigabit RJ45 Lightning Suppressor, August
2022. https://www.tupavco.com/products/ethernet-surge-protect
or.

[275] Wilfried Steiner and Michael Paulitsch. TTEthernet in Orion. In Industrial Communication
Technology Handbook. CRC Press, August 2014.
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mann, and Ingo Wüllner. Susceptibility of 100Base-T1 Communication Lines to Coupled
Fast Switching High-Voltage Pulses. In Proc. International Symposium on Electromagnetic
Compatibility (EMC) Europe, Rome, Italy, September 2020.

[290] Akira Tsukada, Ken Okamoto, Yuichiro Okugawa, Jun Kato, and Makoto Nagata. System-
Level Response of Ethernet Linkage to Bulk Current Injection into Cables. In Proc. Interna-
tional Symposium on Electromagnetic Compatibility (EMC) Europe, Rome, Italy, Septem-
ber 2020.

[291] Chien-Ying Chen, Sibin Mohan, Rodolfo Pellizzoni, Rakesh Bobba, and Negar Kiyavash.
A Novel Side-Channel in Real-Time Schedulers. In Proc. Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), Montreal, Canada, April 2019.

[292] Songran Liu and Wang Yi. Task Parameters Analysis in Schedule-Based Timing Side-
Channel Attack. IEEE Access, 8, September 2020.

[293] Man-Ki Yoon, Sibin Mohan, Chien-Ying Chen, and Lui Sha. TaskShuffler: A Schedule Ran-
domization Protocol for Obfuscation against Timing Inference Attacks in Real-Time Sys-
tems. In Proc. Real-Time and Embedded Technology and Applications Symposium (RTAS),
Vienna, Austria, April 2016.

[294] Chien-Ying Chen, Monowar Hasan, AmirEmad Ghassami, Sibin Mohan, and Negar
Kiyavash. REORDER: Securing Dynamic-Priority Real-Time Systems Using Schedule Ob-
fuscation. June 2018. http://arxiv.org/abs/1806.01393.
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