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ABSTRACT

Robots in the future need to work in natural scenarios and finish a variety of tasks without much

supervision from humans. To achieve this goal, we want the robots to perform perception and

action robustly and adaptively in unstructured environments. For example, robots are expected to

correctly perceive objects in unseen cases, such as dark environments, heavy clutter or transparent

materials. Besides, they should learn skills that are transferable across novel objects in categories

rather than fixed on known instances. In this dissertation, we focus on the problem of perceiving

and manipulating various objects in complex adversarial environments. Specifically, we explore on

three aspects including robustness to adversarial environments, synergistic perception and action,

and adaptable data-driven perception pipelines for customized settings.

First, we explore the possibility to achieve robustness for object pose estimation algorithms

against environmental changes, like object occlusions and lighting changes. We contribute a two-

stage approach GRIP that combines both the discriminative power of deep convolutional neural

networks (CNNs) and robustness in probabilistic generative inference. Our results indicate that

GRIP has better accuracy through comparison with end-to-end pose estimation baselines, and

efficacy in a grocery packing task in the dark scene.

Second, we focus on how to generalize object representation to category-level with grounded

affordance for task execution. We propose the Affordance Coordinate Frame (ACF) representation

that enables direct connection between perception and executable action. Along with that, an

object part category-level scene perception pipeline is contributed to estimate ACFs in cluttered

environments on novel objects. Our pipeline outperforms state-of-the-art methods for object

detection, as well as category-level pose estimation for object parts. We further demonstrate the

applicability of ACF to robot manipulation tasks like grasping, pouring and stirring.
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Third, we contribute an annotation pipeline that enables large-scale dataset creation and bench-

marking on transparent objects. The proposed ProgressLabeller pipeline has a multi-view annotation

interface that allows fast and accurate pose annotation on RGB-D video streams. ProgressLabeller

is proved to generate more accurate annotations in object pose estimation and grasping experiments.

Using ProgressLabeller, we contributed ClearPose as the first large-scale RGB-D transparent object

dataset with various adversarial conditions such as lighting changes, object clutters. ClearPose

is made to support benchmarking of data-driven approaches on depth completion, object pose

estimation and robotic manipulation. Then, we built an object pose estimation based manipulation

framework, TransNet, for daily transparent objects. The system aims to generalize the pose esti-

mation to unseen novel objects defined in several categories like wine cups and bottles. We finally

demonstrate the efficacy of the system with robotic pick-and-place and pouring tasks, paving the

way for more complex manipulations such as table-setting and drink serving.
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CHAPTER 1

Introduction

1.1 Motivation

The era of robotics and automation began with the invention of the Unimate, the first industrial

robot by George Devol in 1954 [46]. Since then, robots have taken on various forms, including

but not limited to industrial robot arms, domestic service mobile manipulators, legged mobile bots,

and humanoids, to cater to diverse application scenarios (Figure 1.1). Advancements in robotic

hardware systems have driven the aspiration for robots to become intelligent, which involves having

a general-purpose understanding of the physical world, learning from humans to acquire specific

skills, and being aware of potential failures or safety issues. However, most robots in the past few

decades have been designed to perform repetitive tasks in highly structured environments, such

as welding and screw tightening in factory production lines [120]. These robots are efficient for

specific tasks but lack flexibility to handle the diversity and uncertainty present in open, unstructured

environments like homes. For example, objects will have various appearances under different

lighting conditions and occlusions, and robots could fail to sense accurate depths on black surfaces

or transparent material. Achieving a general-purpose intelligent robot poses several challenges in

perception, planning, and control, as well as integrating individual systems into the real world.

In this dissertation, we focus mainly on the perception aspect of robotics. The rise of deep

learning suggests a new way for robotic visual perception. Since AlexNet [97] demonstrated

that deep learning could achieve better accuracy than traditional machine learning on image clas-

sification, vision tasks have been approached in a new way to achieve better performance, like
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Figure 1.1: Robots in various applications. (Top Left) The first industrial robot, Unimate [141], is pouring coffee for
a woman. (Top Middle) Industrial robot arms are assmbling metal parts [4]. (Top Right) A PR-2 robot is cooking in
household environment [5]. (Bottom Left) A Boston Dynamics Spot mobile robot [2] is collecting the helmet on the
snowy ground. (Bottom Middle) A self-driving vehicle equipped with various sensors like LiDAR and camera [3].
(Bottom Right) An Agility Digit humanoid robot [1] is stepping upstairs while carrying a box.

human [63] and object [75] pose estimation, 3D scene understanding [168], visual navigation [9],

neural rendering and reconstruction [131], etc. These methods could provide essential 3D infor-

mation of the environment around the robot, leading to vision-based systems for navigation [9],

manipulation [213], and robot-human interaction [11], and learning from demonstration [207].

However, the deployment of vision-based robot manipulation systems will raise new problems

and challenges, such as the imperfect sensor readings, and the learning gap between simulation

and the real world environment. We expect generalized object representation that supports robot

manipulation, and current 2D detection/segmentation works are still not enough as they cannot

directly provide actionable outputs such as grasp poses or motion trajectories. In this work, our aim

is to provide actionable representations for robot manipulation, while having the visual perception

system robust to uncertainty in unstructured environments.
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Figure 1.2: Challenges faced in robot visual perception system. (a) Two rooms with normal and dark lighting conditions.
(b) Two clusters of different liquid containers that all share ‘grasp’, ‘contain’, and ‘pour’ affordances. (c) A scene with
common transparent furniture and another scene with transparency, reflective metal, and occlusions between objects.

1.2 Challenges

In this dissertation, we address problems in robotic perception that will enable deployment of

real robots to accomplish manipulation tasks in common human environments. Specifically, the

difficulty of learning generalized knowledge of objects, and the surrounding environments comes

from at least three basic aspects.

The first is the partial observability and openness to adversarial conditions that lead to inefficient

data. Range sensors like RGB, RGB-D, stereo cameras or LiDAR have limited working ranges,

resolutions, and measurement noises. The sensor readings can be affected by environments or the

structure of the individual objects themselves. For example, the RGB pixel values of objects will

vary under different lighting conditions, as shown in Figure 1.2 (a). Human environments also have

objects with black surfaces, and metal or transparent materials that could cause invalid measurement

on depth sensors. Since the training data is mostly limited and hard to cover all these variations, the
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testing environment is considered ‘adversarial’ and could cause failure in perception.

The second is the diversity of object forms and functionalities, as shown in Figure 1.2 (b).

There are massive object categories, various articulated objects like pliers and drawers, non-rigid

deformable objects like ropes, cloth, plastic bags, etc. Objects with the same ‘affordance’, which

can be defined as the ability to support certain types of actions, could have different appearances.

However, for instance-level 6 degree-of-freedom (DOF) pose estimation systems [182, 187], they

assume known object geometry models, which constrains the methods to a finite set of rigid objects.

The third is the complexity of scene context, as shown in Figure 1.2 (c). The object appearances

could change under different lighting conditions, or occluded by the other objects around. The

spatial and affordance relations between objects are also important for completing a task. For

example, the robot needs to consider the supporting relations when it works with object clutter,

open a drawer before retrieving the target object inside, and be careful when it is picking up a full

cup of water.

Our aim in this dissertation is to provide robustness, generalized representation, and scalability

for robot perception systems to tackle the aforementioned three challenges. First, for the robustness

to the imperfect sensor readings and limited data, we want to marry the robustness from probabilistic

inference with the speed and accuracy advantage of deep learning algorithms to reach a balance

on precision and recall, especially we expect a combined system to work robustly in adversarial

environments. An example of object manipulation in the dark environment is shown in the top

left image of Figure 1.3. Second, for the generalizable representation for various objects that

share the same affordances, we want to generalize the object-specific learned representation, e.g.

6D pose, to category-level, so that the system trained on a small set of object instances could

generalize to other unseen instances and relax the dependency on known object 3D geometry

models. A robot demonstration of using novel object to execute pouring and stirring affordance

is shown in the bottom left image of Figure 1.3. Third, for the adaptability for the complicated

combination of different objects and their contexts, we want to have the ability to create enough

data for deep learning based system to adapt quickly to any customized environment. Given the
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Figure 1.3: Demonstrations of robots and tools working against various challenges. (Top Left) The Fetch robot picks
up an object under the dark environment. (Bottom Left) The Fetch robot uses the novel bottle and spatula to execute
pouring and stirring affordances. (Top Right) RGB, segmentation mask, surface normal, and ground truth depth
annotations of the collected large-scale transparent dataset. (Bottom Right) The Fetch robot uses novel transparent
glasses to execute pick-place and pouring affordances.

current computation power, we could build pipelines that create data for pretrained models to

quickly adapt to specific robotic deployment scenarios. Besides, such a data generation system

paves the way for research on challenging objects or environments, such as transparent objects that

lack distinguishable RGB features and cannot be detected by most depth sensors due to lack of light

reflection. The dataset sample and robot manipulation demonstration using the trained perception

system are shown in the right two images of Figure 1.3.

1.3 Dissertation Contribution

In this dissertation, our objective is to develop data-driven robotic perception systems on object

state estimation for manipulation that are robust, generalizable, and scalable to novel environments

or objects. In particular, we make the following contributions:
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• In GRIP (Chapter 3), we improve the robustness of perception systems by proposing a

combined discrimitive-generative method for robust pose estimation and robot manipulation

in adversarial environments. Through comparison with end-to-end pipelines, we demonstrate

the probabilistic inference could enhance robustness when CNNs fail to localize objects

correctly in challenging unseen environments in the training set.

• In ACF (Chapter 4), we generalize the system to category-level by exploring synergistic

visual perception and robot action through the concept of affordance with a deep network

that estimates object part-level executable representation for robot manipulation. The pro-

posed system frees the assumption of known object 3D model and demonstrates generalized

manipulation across object instances within each category.

• In ProgressLabeller (Chapter 5), we contribute a rapid data generation pipeline to improve the

adaptability and scale of data-driven perception systems. Our pipeline could create enough

data to feed a deep network towards its best performance with little effort in data annotation,

and also open possibility of creating dataset for transparent objects.

• In ClearPose (Chapter 6), we contribute a large-scale RGB-D transparent object dataset using

ProgressLabeller. The dataset could open the door for data-driven perception research on

transparent objects, including tasks like detection, depth completion, pose estimation, and

robot manipulation etc.

• In TransNet (Chapter 7), we build a category-level transparent object pose estimator for robot

manipulation. TransNet could generalize the estimated pose to novel object instances and

perform pick-and-place as well as pouring tasks in the new environment settings.
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CHAPTER 2

Related Works

This dissertation is aimed to explore robust, adaptive, and generalizable robotic object perception

in complex, adversarial environments. In relation to this goal, we provide an overview of several

sub-areas in the following sections in this paper: object pose estimation, affordance representation

and learning, and dataset and annotation pipelines. We list current state-of-the-art robotic visual

perception systems, focusing on their inherent affordance and functionality, as well as the degree

of uncertainty they encounter within the surrounding environment. The unique contribution of

this work is to integrating the level of function generalization concerning object affordance and

sequential task, while adapting to adversarial environments including different object materials,

lighting conditions, and occlusion between objects. Through this comprehensive approach, this

paper seeks to fill the gap of existing works and makes a step forward towards general object

perception and task execution. The overall contribution of this dissertation relative to concurrent

research works is illustrated in Figure 2.1 below.

2.1 Robotic Perception for Manipulation

Robots need sensors to receive feedback from their surroundings, and vision sensors, like

RGB and depth cameras, are a common choice. Robotic perception and manipulation systems

are often constructed as a sequential two-stage pipeline. First, the states of objects of interest are

estimated using computer vision approaches from the sensor images or 3D point clouds. Then, the

grasping pose or manipulation trajectory can be calculated or estimated based on the object state
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Figure 2.1: Current state-of-the-art robotic visual perception systems on object state estimation.

estimates and carried out by the robot to accomplish the tasks. Methods like model registration using

local [84, 158] or global descriptors [159, 8, 191], or analysis-by-synthesis [169, 99], were proposed

to estimate object 6D poses from 2D image features or object renderings, often with assumption

of known object 3D models. Local refinement methods like Iterative Closest Point (ICP) [156],

RANSAC [56], importance sampling [173], etc., are used to further correct the estimations. The

pioneer works [34, 35, 137, 138] in this area integrated these methods and proposed pose estimation

pipelines and did simple object grasping and pick-place manipulation. More recently, robotic

grasping detection and object-level 6D pose estimation emerged with the application of deep

learning. Grasp Pose Detection (GPD) [177], DexNet [122] introduced end-to-end grasp pose

estimation from RGB(D) images directly that are object-model agnostic. On the other hand,

PoseCNN [193] and DenseFusion [187] proposed end-to-end deep pose estimation based on RGB

and RGB-D image input, respectively. The estimated object poses can be directly applied for

grasping and manipulation.
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2.2 Object 6D Pose Estimation

Object 6D pose is a great representation that can be directly used in generating robotic grasping

and manipulation trajectories. Prior works take the assumption of known object 3D models in a

database, and the problem is converted to a classification plus 3D rigid shape registration. Before

the prevalence of deep learning, traditional methods using Random Forest [13, 130], template

matching [75], descriptor matching [84, 159], point-pair features [76], analysis-by-synthesis [169,

99] have been proposed to detect objects and estimate their poses. Then there comes pure end-

to-end deep-learning pipelines from PoseCNN [192], BB8 [151], and SSD-6D [92] started the

trend, followed by a large set of methods using RGB images [182, 14, 105, 147, 100, 70], or

RGB-depth images [187, 73, 74] as input. Besides, there are two-stage methods that take the neural

network output as a prior, and search the object pose through probabilistic inference [173], point-set

matching [132] or Monte-Carlo Tree Search [133].

In order to generalize pose estimation approach to category-level and free of object 3D models,

Wang et al. [188] proposed Normalized Coordinate Space (NOCS) that learns a canonical 3D shape

for all instances within a category and generalizes to novel unseen instances. Later works [179, 7,

102, 28, 21, 106, 82] explored ideas including geometry shape priors, canonical shape encoding,

convolutional layers that fuse RGB and depth input, etc. and improve the pose estimate accuracy

with respect to 3D Intersection-over-Union (IoU), and percentage within certain distance/angle

threshold, e.g. 50% within 5◦ and 5cm. Recent works have achieved much higher accuracy.

6D-ViT [218] directly proposed a transformer-based end-to-end pipeline. FS-Net [26] that learns

explicitly two orthogonal axes that represent the 3D rotation. GPV-Pose [47] reduce errors further

by cross-checking different types of losses for reconstruction, bounding box estimation, and axis

estimation. Very recently, there are works exploring completely 3D model-free pose estimation

without even a category prior. Gen6D [116] implements a image patch matching pipeline to retrieve

an unseen object pose relative to a few images with provided poses.
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2.3 Object Affordance Representation and Learning

The concept of ‘Affordance’ was introduced by J.J. Gibson back in 1977 [58] in Psychology

to describe specific combination of the properties of its substance and its surfaces taken with

reference to an animal This definition basically tells what the environment could offer the animal

for good or ill. The application of this term in Computer Vision and Robotics is specified to the

functionality of everyday objects to certain goal-directed tasks, for example, we say a cup has

contain and pour affordance because it could contain or pour water. How to build a knowledge-base,

reason, sense, and act over object affordances become a popular research direction [68, 205, 160].

AFNet [185, 186] proposed a knowledge network and its ontology for robotics, which classifies

common affordances into 3 categories: structural, material, and semantic affordances. Structure

affordance corresponds to the 2D/3D shape of objects that mainly affect the visual recognition and

afforded motions, while material and semantic affordances define fine-grained classifications and

the usages. Recently, more works have been proposed in visual recognition like object detection and

segmentation [48, 198, 33], motion generation [67, 66, 128], model-based synergistic perception

and action [125, 57, 31, 95], and robot task learning [65, 150, 174, 213].

2.4 Datasets and Annotation Pipelines

As deep-learning based approaches outperformed traditional vision-based robotic systems in

perception accuracy, the acquirement on large-scale, high-quality datasets become a new bot-

tleneck. Different from pure RGB images for vision tasks like image classification and object

detection [40], robotic tasks based on visual perception often require RGB-D or 3D point cloud

data to support manipulation reasoning. Recent general-purpose object grasping datasets include

Jacquard [42], GraspNet-1billion [54], while most of robotic grasping works experiment with

smaller scale datasets [122, 177, 32]. For object pose estimation, LINEMOD [75], T-LESS [77],

YCB-Video [192], Rutgers-APC [153], IC-BIN [49], HOPE [183], etc., were contributed each with
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a small set of object instances with 6D pose annotations. More recently, category-level object pose

estimation became a new research topic based on the NOCS dataset [188] with 6 categories: bottle,

bowl, camera, can, laptop, and mug. The annotation approach of object poses mostly depends

on the estimated camera trajectories estimated with external hardware like fiducial tags [143],

turntable [91] or motion capture systems, or without hardware using RGB structure-from-motion

or depth-based fusion systems like KinectFusion [139], ElasticFusion [190], etc.. Then the object

poses are manually annotated once in 3D workspace, and calculated to each image frame based

on the camera poses. LabelFusion [126] was proposed as a tool in such way to create customized

large-scale dataset which uses ICP to assist object model registration to the reconstructed 3D point

clouds. Besides real-world datasets, synthetic data generation is another import source to create

large-scale training data for deep networks. Platforms like Unreal NDDS [181], BlenderProc [41],

Unity Perception [12], etc., support photorealistic rendering and domain randomization that could

create a large amount of data with object shape models from public model sets [19, 142]. Besides,

some robotic simulation software like NVIDIA Isaac Sim [38], AI2THOR [96], Habitat 2.0 [175],

etc., could also support ray-tracing in rendering and generate pose data. Despite the smaller differ-

ence between synthetic and real data, the sim2real gap still remains an active research question. A

recent work [197] developed a crowdsource UI to augment open-source object CAD models onto

scanned real-world scenes for 3D tabletop scene understanding.
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CHAPTER 3

GRIP: Generative Robust Inference and Perception for

Semantic Robot Manipulation in Adversarial Environments

3.1 Motivation

Taking advantage of the renaissance in deep neural networks, machine learning has achieved

great progress in object detection and segmentation and image recognition. These deep learning

methods are also prevalent in robotics for problems, including manipulation in clutter [62] and

learning of manipulation actions [103]. For 6D object pose estimation, learning-based Convolutional

Neural Networks (CNNs) have achieved promising accuracy and real-time inference speed [192,

182, 187]. Notably, these successes rely on well-designed models and adequate training resources.

The robustness and generalization capability of CNNs heavily depend on the training data, which

represents a certain range of conditions that could be faced by robots. However, due to the complex

and dynamic nature of the real world, robots are subject to unforeseen environmental conditions,

which are not present in the training data.

More specifically, CNNs recognition systems introduce vulnerability to errors (both benign and

malicious) due to the effects of overfitting during the training process. Distorted objects and/or

objects captured under poor lighting conditions could be enough to defeat the recognition abilities

of a CNN [51]. Such perception errors can lead to (potentially disastrous) outcomes for embodied

systems acting in the real world. These challenges for robust perception become that much more

challenging when an adversary can modify the environment to exploit the vulnerabilities of a CNN.
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Figure 3.1: Our GRIP system perceiving and grasping an object in adversarially darkened lighting. GRIP uses two
stages of (a) PyramidCNN object detection bounding boxes with confidence score greater than 0.1 (green boxes), shown
along with the ground truth (red box), and (b) sample-based generative inference. The (c) resulting estimate and (d) its
localized pose (highlighted in cyan) enables (e) the Michigan Progress Fetch robot to accurately grasp the potted meat
can object.
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For instance, in the context of object recognition for a robotic system, a possible malicious attack

(through simple modifications of an environment) has the potential to drastically alter and even

manipulate a robot’s final behavior. Fig. 3.1 shows such a robot manipulation task under dark scene.

Generative-discriminative algorithms [173, 113] offer a promising avenue for robust perception.

Such methods combine inference by deep learning (or other discriminative techniques) with sam-

pling and probabilistic inference models to achieve robust and adaptive perception in adversarial

environments. The value proposition for generative-discriminiative inference is to get the best out

of existing approaches to computational perception and robotic manipulation while avoiding their

shortcomings. We want the robustness of belief space planning [86, 87] without its computational in-

tractability. The recall power of neural networks without excessive overfitting [103]. The efficiency

of deterministic inference without its fragility to uncertainty [55, 134]. Generative-discriminative

algorithms may be especially advantageous when exposed to adversarial attack, building on foun-

dational ideas in this space [137, 138, 117, 85, 35]. Furthermore, we expect our approach will

be more generally applicable to guard against broad categories of attack with a clear pathway for

explanability of the resulting perceptual estimates.

In this paper, we present Generative Robust Inference and Perception (GRIP) as a two-stage

method to explore generative-discriminiative inference for object recognition and pose estimation

in adversarial environments. Within GRIP, we represent the first stage of inference as a CNN-

based recognition distribution. The CNN recognition distribution is used within a second stage of

generative multi-hypothesis optimization. This optimization is implemented as a particle filter with a

static state process. We show that our GRIP method produces comparable and improved performance

with respect to state-of-the-art pose estimation systems (PoseCNN [192] and DOPE [182]) under

adversarial scenarios with varied lighting and cluttered occlusion. Moreover, we demonstrate the

compatibility of GRIP with goal-directed sequential manipulation in object pick-and-place tasks

with a Michigan Progress Fetch robot.
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Figure 3.2: Overview of GRIP. The robot operating in a dark and cluttered environment is to grasp the meat can from
its RGBD observation. Stage 1 takes the RGB image and generates object bounding boxes with confidence scores.
Stage 2 takes the depth image and performs sample-based generative inference to estimate the pose for each object in
the scene. The samples in Stage 2 are initialized according to bounding boxes from Stage 1. From this estimate, the
robot performs manipulation on the meat can object.

3.2 Related Works

To get the best of both worlds, we consider the state-of-the-art as the relative strengths and

weaknesses of deep learning and generative inference for robust perception. We are particularly

interested in complementary properties of these methods for making perceptual decisions, where

the weaknesses of one can be addressed by the strengths of the other. Despite the strengths of

CNNs, they have several shortcomings that leave them vulnerable to adversarial action, such as

their opacity in understanding how its decisions are made, fragility for generalizing beyond overfit

training examples, and inflexibility for recovering when false decisions are produced. For these

methods, Goodfellow et al. [60] demonstrated that adversarial examples are misclassified both

in the case of different architectures or different subsets of the training data. These weaknesses

for CNNs play to the strengths of robustness for generative probabilistic inference, which are

inherently: explainable, general, and resilient through the process of generating, evaluating, and

maintaining a distribution of many hypotheses representing possible decisions. However, this
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robustness comes at the cost of computational efficiency. Probabilistic inference, in contrast to

CNNs, is often computationally intractable with complexity that grows exponentially with the

number of variables. GRIP aims to overcomes these limitations by combining the strengths of

deep learning and probabilistic inference through a two-stage algorithm, illustrated in Fig. 3.2 and

discussed later in Section 3.4. The remainder of this background section will provide a broader

overview of related existing works.

3.2.1 Perception for Manipulation

Perception is a critical step for robotic manipulation in unstructured environments. Ciocarlie

et al. [34] proposed an architecture for reliable grasping and manipulation, where non-touching,

isolated objects are estimated by clustering the surface normal of RGBD sensor data. The MOPED

framework [35] has been proposed for object detection and pose estimation using iterative clustering

estimation from multi-view features. A bottom-up approach is taken in [144] using RANSAC and

Iterative Closest Point registration (ICP), relying solely on geometric information. Narayanan et

al. [137] integrated global search with discriminatively trained algorithms to balance robustness

and efficiency, which works on multi-object identification, assuming known objects.

For manipulation in dense cluttered environments, ten Pas and Platt [178] showed success in

detecting grasp affordances from 3D point clouds. In [177], they sample grasp pose candidates based

on their geometric plausibility, from which feasible grasp poses are selected by a CNN. Regarding

manipulation with known object geometry models, [172, 43, 208] proposed generative sampling

approaches to scene estimation for object poses and physical support relations. However, these

methods used object detection bounding boxes with hard thresholding as the prior for generative

sampling, which might cause false negatives.

3.2.2 Object Detection and Pose Estimation

Learning-based approaches have been used as modules in object pose estimation systems,

or directly built end-to-end approaches. Sui et al. [173] proposed a sample-based two-stage
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framework to sequential manipulation tasks, where object detection results are used as prior of

sample initialization. Mitash et al. [132] developed a two-stage approach, which ran stochastic

sampling of congruent sets [129] to get object poses based on the semantic map from a segmentation

network. Regarding end-to-end systems, PoseCNN [192] was proposed by constructing a neural-

network that learned segmentation, object 3D translation, and 3D rotation separately. This work

also contributed a large object dataset, called YCB-Video-Dataset, for benchmarking robotics

pose estimation and manipulation approaches. DOPE [182] outperformed PoseCNN in estimation

accuracy and robustness in dark and occluded scenes by training the network on a generated

synthetic dataset from domain-randomization and photo-realistic simulation. Another recent work,

DenseFusion [187], utilized two networks to extract RGB and depth features separately. 6D poses

are learned from the combined feature and refined the pose by another residual network module.

In this paper, we focus on the pose estimation problem in adversarial scenarios. Liu et al. [113]

provided insight into handling adversarial clutter, yet provided limited evaluations of its approach or

comparisons with state-of-the-art methods. We believe that the performance of CNNs relies highly

on the consistency of the testing environment to the training set, and that the same is true for the

two-stage methods in [173] and [132] since they rely on high-quality CNN output from their first

stages. Our main contribution is the development of a two-stage pose estimation system that is

robust under adversarial scenarios and able to recover from false detections from its own first stage.

3.3 Problem Formulation

Given an RGB-D observation (Zr, Zd) from the robot sensor and 3D geometry models of a

known object set, our aim is to estimate the conditional joint distribution P (q, b|o, Zr, Zd) for each

object class o, where q is the six DoF object pose and b is the object bounding box in the RGB

17



image. The problem can be formulated as:

P (q, b|o, Zr, Zd) (3.1)

= P (q|b, o, Zr, Zd)P (b|o, Zr, Zd) (3.2)

= P (q|b, o, Zd)︸ ︷︷ ︸
pose estimation

P (b|o, Zr)︸ ︷︷ ︸
detection

(3.3)

Equations (3.1) and (3.2) are derived using chain rule statistics and Equation (3.3) represents

the factoring of object detection and pose estimation. Here, we assume that pose estimation is

conditionally independent of RGB observation, while object detection is conditionally independent

of depth observation.

Ideally, we could use Markov Chain Monte Carlo (MCMC) [69] to estimate the distribution

of Equation (3.1). However, the state space of the entire states is so large that it is intractable to

directly compute. End-to-end neural network methods can also be used to calculate the distribution

[192, 182, 187]. These results place a heavy reliance on proper coverage of the input space in

the training set. This data reliance makes such methods vulnerable to unforeseen environment

changes. SUM [173] implements a combination of Equation (3.1) to filter over hard detections

provided by a CNN, thereby enabling it to filter out false positive CNN detections. The limitation of

SUM is its inability to recover from false negatives that are eliminated from consideration in object

proposal and detection stages. On the other hand, our GRIP paradigm is able to compensate for

data deficiency by employing a generative sampling method in the second stage.

3.4 Approach

We propose a two-stage paradigm to combine object detection and pose estimation, as shown

in Fig. 3.2. In the first stage of inference, PyramidCNN performs object detection and generates a

prior distribution P (b|o, Zr) of 2D bounding boxes for each object label o. In the second stage, we

perform generative multi-hypothesis optimization to estimate the joint distribution P (q, b|o, Z(r,d))
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for each object label o using the first stage output as prior. The second stage is implemented as an

iterated likelihood weighting filter [127]:

P (q0, b0|o, Z(r,d))︸ ︷︷ ︸
Sample Initialization

= P (q0|b0)P (b0|o, Zr) (3.4)

P (qt, bt|o, Z(r,d)) = η P (Z(r,d)|qt, bt, o)︸ ︷︷ ︸
Likelihood

P (qt, bt|o, Z(r,d))︸ ︷︷ ︸
Proposal

(3.5)

P (qt, bt|o, Z(r,d)) =

∫ ∫
P (qt, bt|qt−1, bt−1)︸ ︷︷ ︸

Diffusion

·

P (qt−1, bt−1|o, Z(r,d))dqt−1dbt−1 (3.6)

where η is the normalizing factor. In Equation (3.4), initial pose q0 is generated from bounding

boxes b0, which are sampled from the prior distribution generated by the first stage. After the second

stage, we get a probability distribution of pose estimation as shown in Equation (3.1). We consider

the best estimate as the one with highest probability. Equivalently, best pose q∗ satisfies,

q∗, b∗ = argmax
q,b

P (q, b|o, Zr, Zd) (3.7)

3.4.1 Object Detection

The goal of the first stage is to provide a probability distribution map for an object class o in

a given input image. To achieve this, we exploit the discriminative power of CNNs. Inspired by

region proposal networks (RPN) in [152], our PyramidCNN serves as a proposal method for the

second stage. We choose VGG-16 networks [165] to extract features, which are directed to two fully

convolutional networks (FCN) [118]: a classifier learning the object labels and a shape network

learning the bounding box aspect ratios. The structure of PyramidCNN is detailed in Fig. 3.2.

The input to our networks is a pyramid of images at different scales. This enables the networks

to detect objects with different sizes and appearing at various distances. Thus, the output contains a

pyramid of heatmaps representing bounding boxes associated with confidence scores, positions,
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aspect ratios, and sizes for each object class. Different from end-to-end learning systems, we do not

apply any threshold to the confidence scores in order to avoid any false negatives generated by the

first stage.

3.4.2 Pose Estimation

The purpose of the second stage is to estimate the object pose by performing iterated likelihood

weighting, which offers us robustness and versatility over the search space. This is critical in our

context since the manipulation task heavily depends on the accuracy of pose estimations. We expect

the second stage to perform robustly even with inaccurate detection from the first stage.

3.4.2.1 Initial Samples

We use a set of weighted samples {q(i), w(i)}Mi=1 to represent the belief of object pose, where

each 6D sample pose q(i) corresponds to a weight w(i). Given an object class o, its pose q, and the

corresponding geometry model, we can render a 3D point cloud observation r using the z-buffer of

a 3D graphics engine. Essentially, these rendered point clouds are what would be observed if the

object had the hypothesized poses, which we refer to as rendered samples hereafter. The samples

are initialized according to the first stage output. As mentioned in Section 3.4.1, our CNN produces

a density pyramid that is essentially a list of bounding boxes with confidence scores. We perform

importance sampling over the confidence scores and initialize our samples uniformly within the 3D

workspaces indicated by sampled bounding boxes as shown in Equation (3.4). More samples are

spawned within bounding boxes with higher confidence scores.

3.4.2.2 Likelihood Function

The weight of each sample is calculated by the likelihood function, which evaluates the compat-

ibility of a sample with observations as shown in Equation (3.5). The likelihood function consists

of several parts, including bounding boxes weight, raw pixel-wise inlier ratio, and feature-based
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inlier ratio. We first define the raw pixel-wise inlier function as:

Inlier(p, p
′
) = I

(
||p− p′ ||2 < ε

)
, (3.8)

where p, p′ ∈ R3 refer to a point in observation point cloud z and a point in rendered point cloud

from sample pose respectively. I is the indicator function. A rendered point is considered as an

inlier if it is within a certain sensor resolution range ε from an observed point. The point-wise inlier

ratio of a rendered sample is then defined as:

I =
1

|r|
∑

(u,v)∈z

Inlier(r(u,v), z(u,v)), (3.9)

where (u, v) refers to 2D image indices in the rendered sample point cloud r and observation point

cloud z. | · | refers to point cloud size.

Besides raw point-wise inliers, we extract geometry feature point clouds from both rendered

samples and observation point clouds and compute feature inlier ratios. Hereby, we enhance the

robustness of the likelihood function by considering contextual geometric information from 3D

point clouds. This term prunes wrong poses that agree with the observation only in individual

points but neglect higher-level geometric information such as depth discontinuity and sharp object

surfaces. We apply feature point extraction introduced by Zhang et al. [210] based on local surface

smoothness:

c(u,v) =
||
∑

(u′,v′)∈N(u,v)

(
p(u′,v′) − p(u,v)

)
||

|N(u, v)| · ||p(u,v)||
(3.10)

c(u,v) is calculated by adding all displacement vectors from p(u,v) to each of its neighbor points

N(u, v). The point cloud p here can be either rendered sample r or observation z. The value is then

normalized by the size of N(u, v) and the length of vector p(u,v). Intuitively, c describes the depth

changing rate within a certain local range, which has larger values in areas with acute depth changes

and smaller values where object surfaces are consistent. We extract two features, edge points and

planar points, by selecting point sets with largest and smallest c values respectively. To balance
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feature point density in areas with different observation quality, we set a maximum number of edge

points and planar points to be extracted from a certain local area. Essentially, a point at (u, v) can

be selected as an edge or a planar point only if its c value is larger or smaller than a threshold and if

the number of selected points has not exceeded the limit. We find that the algorithm is insensitive to

our feature extraction parameters. Finally, we apply feature extraction on both rendered sample and

scene observation point cloud to get sample features and observation features. We use the same

inlier calculation in Equations (3.8) and (3.9) to calculate feature inlier ratios.

The weight w of each hypothesis q is defined as

W (q) = αboxwbox + αbIb︸ ︷︷ ︸
network terms

+αrIr + αeIe + αpIp︸ ︷︷ ︸
geometric terms

(3.11)

where wbox is the confidence score of the bounding box. Ir is the ratio of pixel-wise inliers in the

whole rendered sample point cloud. Ib is the inlier ratio in the portion of rendered sample that is

within the bounding box (Ib is 0 if no rendered sample point falls into the bounding box). Ie and

Ip are inlier ratios in sample edges and sample planars with respect to observation features. The

coefficients α∗ represent the importance of each likelihood term and sum up to 1. The first two

terms, wbox and Ib, network terms, are heavily determined by the bounding boxes and describe the

consistency between pose sample and detection result. The last three terms, geometric terms, weigh

how much the current hypothesis explains itself in the scene geometry.

3.4.2.3 Update Process

To produce object pose estimations, we follow the procedure of iterated likelihood weighting by

first assigning a new weight to each sample. Resampling is done with replacement according to

sample weights. During the diffusion process shown in Equation (3.6), each pose q(i)t is diffused in

the space subject to zero-mean Gaussian noises NT,t(0, σ2
T,t) and NR,t(0, σ2

R,t) with time-varying

variances for translation and rotation respectively. The standard deviations σT,t and σR,t at iteration

t are decayed according to W (q∗t ), the weight of best pose estimation q∗t at that iteration. Bounding
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boxes b(i)t are diffused uniformly within the image. The algorithm terminates when W (q∗t ) reaches

a threshold w̄, or the iteration limit is reached. Finally, we assume the pose weights of objects in the

scene will be much higher than those for non-existing objects.

3.5 Experiments

3.5.1 Implementation

We use PyTorch for our CNN implementation based on a VGG16 model pre-trained on ImageNet

[40]. (more architectures are tested in [113]). The shape network branch of our CNN predicts 7

different aspect ratios. The size of a training image is 224×224 and contains a single object. The

aspect ratio of an object in the training image can be inferred from the width and height of the

object. We apply a softmax at the end of the network to generate probability distribution of object

classification and aspect ratio. We use cross entropy as the loss function in training.

Our second stage pose estimation relies on the OpenGL graphics engine to render depth images

with 3D geometry models and hypothesis poses on Nvidia GTX1080/RTX2070 graphics cards.

During the iterated likelihood weighting process, we allocate 625 samples for each iteration and run

the algorithm for 400 iterations in total, with ε set to 0.005m. The sample size is limited by the buffer

size of our rendering engine, while the iteration limit was set since our pose estimation converges

after approximately 150 iterations (see, e.g., Fig. 3.3) in less than 10s (∼60ms per iteration). Point

distance threshold ε was set to approximated distance between adjacent points in 3D point clouds.

In the feature extraction mentioned in Section 3.4.2.2, we extract up to 5 edge points and 2 planar

points from each 5×5 pixel non-overlap sliding window. Given a 3D point cloud p, we consider

p(u,v) as an edge point if ln(c(u,v)) ≥ −5.5 (see Equation (3.10)), or a planar point otherwise. These

hyper-parameters are determined experimentally for clear indication of object boundaries as well

as surfaces. The likelihood coefficients are set to αbox = 0.1, αb = 0.1, αr = 0.3, αe = 0.25, αp =

0.25. Through experiments, we find that the system performance is sensitive to the total category

weight allocated to network terms and geometric terms, rather than the allocation within each
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Figure 3.3: Plot of pose accuracy vs. iteration numbers of all converged trials. The point-wise distance is calculated
using ADD and ADD-S metrics [192] and not used in pose estimation. After about 150 iterations, the point-wise
distance reaches below 0.005m.

category. If the first stage produces accurate detection evaluated by mean average precision (mAP),

one can take advantage of it by allocating more weight to network terms. Otherwise, one should

reduce the weight of network terms to attenuate the negative impact of underperforming first stage.

Since our first stage produces low-mAP detection, we allocate only 20% of the weight on network

terms. We allocate the remaining 80% to geometric terms since these terms are robust to adversarial

scenarios and unreliable first stage detection. Further weight allocation within each category is done

approximately evenly.

During diffusion, standard deviations of the Gaussian noises are decayed by a common factor

λt, which drops exponentially from 1.0 to 0.0 as W (q∗t ) increases from 0.6 to 1.0. In other words,

the standard deviations at iteration t are given by σ∗,t = λtσ∗,0, where

λt = IW (q∗t )≥0.6 ·
(

1−W (q∗t )

1− 0.6

)5

+ IW (q∗t )<0.6 · 1 (3.12)

Initial standard deviations are σT,0 = 0.07m and σR,0 = 0.3rad for translation and rotation
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respectively. The threshold w̄ for convergence is set to 0.9.

3.5.2 Dataset and Baselines

We use the YCB video dataset [192] as the training data for our first stage PyramidCNN. The

YCB video dataset consists of 133,827 frames of 21 objects under normal conditions with balanced

and adequate lighting but no occlusion. To test the performance of our two-stage method with

baseline methods, PoseCNN [192] and DOPE [182], we collect a testing dataset (i.e., adversarial

YCB dataset) from 40 scenes with 15 out of 21 objects from YCB video dataset under adversarial

scenarios. In each scene, we place 5-7 different objects on a table and collect seven frames: one in

normal lighting, one in darkness, two with different single light sources, and three with different

cluttered object placements (see Fig. 3.4). The dark setting and two single-lighting settings cause

bias in image pixels values from the training set and thus undermine network prediction. We refer to

these settings as varied lighting for simplicity. In addition, object clutter causes occlusions as well

as natural information loss and challenges the robustness of pose estimation algorithms. All the

scene images and 3D point clouds are gathered by the RGB-D sensor on our Fetch robot. Ground

truth bounding boxes and 6D poses are manually labeled.

3.5.3 Evaluation

3.5.3.1 Comparing accuracy with PoseCNN and DOPE with 4 YCB objects

We compare our pose estimation accuracy with PoseCNN (with ICP refinement) and DOPE

on the YCB dataset under different adversarial settings. We use pre-trained models from the

authors’ Github page for PoseCNN1 and DOPE2 and train our first stage PyramidCNN using

2500 frames from the original YCB video dataset. Since DOPE is trained with 5 of 21 objects

from the YCB Video Dataset, we first compare all three methods on 4 of them: 003 cracker box,

005 tomato soup can, 006 mustard bottle and 010 potted meat can. The fifth object, 004 sugar box,

1https://rse-lab.cs.washington.edu/projects/posecnn/
2https://github.com/NVlabs/Deep Object Pose
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Figure 3.4: Testing dataset with YCB objects under adversarial settings. The base-setting data is collected with regular
lighting without occlusions. The dark-setting data is collected with lights off in the room. The single lighting data is
collected with a flash light. Object poses are the same in previous three settings. Data in three occlusion scenes is
collected with the same objects randomly stacked.

was unavailable from the market when this experiment was set up. We use ADD and ADD-S metrics

[192] to calculate pose error for asymmetric and symmetric objects (marked with asterisks in Table.

3.1) respectively. In manipulation tasks, the bearable pose estimation error is bounded by the

clearance that objects have when placed in the robot end effector. Based on the sizes of Fetch

robot gripper and target objects, we choose 0.04m as the maximum error tolerance. We then plot

accuracy-threshold curves within a range of [0.00m, 0.04m] in Fig. 3.5 and calculate AUC (Area

Under accuracy-threshold Curve) as the evaluation metric. GRIP outperforms the other two methods

under most error thresholds, especially lower ones, and thereby facilitates robotic manipulation

tasks. See Fig. 3.6 for a qualitative comparison of all three methods with different adversarial
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(a) Base settings.

(b) Varied Light settings.

(c) Occlusion settings

Figure 3.5: The comparison between DOPE, PoseCNN+ICP and our GRIP two-stage method on pose estimation
accuracy of 4 objects mentioned in Sec. 3.5.3.

settings.

3.5.3.2 Comparing accuracy with PoseCNN with 15 YCB objects

Next, we perform an extensive comparison of our method with PoseCNN (with ICP) on 15 of the

21 YCB objects. Table 3.1 and Fig. 3.7 show our overall results and detailed accuracy evaluations

for each object.

GRIP outperforms PoseCNN+ICP for most objects under all 3 settings. All methods have

worse performances under varied lighting and occlusions as opposed to the basic setting. We

can infer the strengths and weaknesses of each method from its performance variance among

different objects. For example, PoseCNN with ICP performs better on symmetric objects such as

003 cracker box and 061 foam brick as opposed to others such as 021 bleach cleanser. Symmetric
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Figure 3.6: Comparison of GRIP, DOPE and PoseCNN under adversarial scenarios. In varied lighting condition, DOPE
only detects 006 mustard bottle correctly while PoseCNN makes inaccurate depth estimation (marked yellow). In
occlusion condition, DOPE misses half of the objects while PoseCNN fails to detect object poses in clutter. GRIP
correctly detects all objects under both scenes except 051 large clamp under occlusion setting (cyan arrow) where the
sampling converges to object 052 extra large clamp because of their geometric similarity.

objects contain repetitive features which are more likely to be captured by learning-based systems.

GRIP performs better on objects that are well recognizable under a depth camera. Large and

compact objects such as 006 mustard bottle and 024 bowl naturally generate dense and continuous

3D point cloud observations that effectively capture their geometry. Objects with thin or articulated

parts, such as 037 scissors, 052 extra large clamp, and 025 mug, produce sparse point clouds

around their handle-like parts that do not effectively reveal the scene geometry, especially object
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Figure 3.7: Overall pose estimation accuracy of 15 YCB objects using PoseCNN and our GRIP method.
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Area Under Accuracy-
Threshold Curve

Base Varied Lighting Occlusions
DOPE PoseCNN∗ GRIP DOPE PoseCNN∗ GRIP DOPE PoseCNN∗ GRIP

003 cracker box∗ 0.6384 0.5925 0.7878 0.5509 0.6225 0.7923 0.5703 0.4850 0.7442
005 tomato soup can∗ 0.7691 0.5535 0.9015 0.5326 0.5181 0.8104 0.6372 0.6013 0.8347
006 mustard bottle∗ 0.5720 0.4280 0.8860 0.6290 0.6310 0.8552 0.7295 0.5864 0.8208
007 tuna fish can∗ 0.3763 0.7670 0.3616 0.7849 0.3915 0.6220
010 potted meat can∗ 0.5556 0.6756 0.8226 0.4347 0.5273 0.5006 0.5045 0.5962 0.6342
011 banana 0.3922 0.5467 0.3449 0.5591 0.2137 0.2750
019 pitcher base 0.2442 0.1774 0.2490 0.1659 0.3341 0.1874
021 bleach cleanser 0.3302 0.5671 0.3111 0.5523 0.2204 0.4635
024 bowl∗ 0.3190 0.8674 0.3397 0.7109 0.2345 0.6185
025 mug 0.3491 0.2201 0.3176 0.2170 0.2216 0.2094
037 scissors 0.5450 0.3192 0.5812 0.1647 0.3548 0.1783
040 large marker∗ 0.2071 0.7537 0.4094 0.6750 0.2736 0.6711
051 large clamp 0.2405 0.4927 0.2061 0.1642 0.0645 0.2551
052 extra large clamp 0.4000 0.1742 0.1460 0.1742 0.2147 0.1441
061 foam brick∗ 0.8094 0.8333 0.6380 0.8011 0.5419 0.8297
Overall 0.4308 0.6078 0.4136 0.5285 0.3556 0.4992

Table 3.1: Overall Performance (Area Under accuracy-threshold Curve) of 15 YCB Objects on DOPE, PoseCNN with
ICP and our GRIP method. Symmetric objects are marked with stars and evaluated using ADD-S; asymmetric objects
are evaluated using ADD.

orientations. Hence, our GRIP algorithm best suits scenarios where rich depth sensory data are

available due to detectable object dimensions and surface materials or high-definition depth sensors.

Finally, distinguishing near-identical objects remains challenging. For instance, 051 large clamp

and 052 extra large clamp have identical colors and shapes and differ only insignificantly in sizes.

This results in poor estimation accuracy by all methods.

3.5.4 Robotic Manipulation

GRIP has been successfully used as the perception module in real robot manipulation tasks,

such as a grocery packing task shown in the video3. Figure 3.8 shows snapshots from the sequence

of the task.

3.6 Summary

We have introduced GRIP as a two-stage method for robust 6D object pose estimation suited

to adversarial settings. GRIP demonstrated similar and improved performance with respect to

3https://www.youtube.com/watch?v=W0KvzMhIJxo
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Figure 3.8: A Fetch robot is packing grocery based on pose estimates from the GRIP pipeline.

state-of-the-art neural network pose estimators considering the adversarial YCB dataset. The key

insight of GRIP is to avoid hard thresholding, which introduces false positives and false negatives,

until a final pose estimate is required. Avoiding hard thresholds increases the possibility of finding

the real pose in adversarial environments. In addition, a generative second stage inherently provides

an avenue for explainable perception, without requiring deciphering network weights. Also, this

generative process readily extends to tracking over multiple instances of time through the inclusion

of a proper process model. The results presented are also amenable to improvement due to the

limited types of features considered. These benefits come at the cost of assuming only one instance

of each object is present in the scene. For future work, we aim to investigate these limitations

through exploring features amenable to robust inference with multiple object instances in greater

clutter and sampling techniques for faster convergence.
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CHAPTER 4

ACF: Manipulation-Oriented Object Perception in Clutter

through Affordance Coordinate Frames

4.1 Motivation

In order for robots to assist people in unstructured environments such as homes and hospitals,

they must be capable of performing diverse manipulation actions. Simple pick and place actions are

not sufficient for robots to exploit the affordances [59] of objects when executing common tasks,

such as grasping a container to pour as shown in Figure 4.1. Object affordances [186] provide an

agent-centric way of describing available actions that an object offers given the capability of the

agent. To interact with common household objects, a robot must make use of the actions afforded

by the component parts of the object. In this work, we exploit the notion of affordance and represent

an object class as a composition of functional parts, which we call affordance parts. As shown in

Figure 4.2, the concept of a mug can be generalized to the composition of two affordance parts,

namely the container and the handle parts.

Recently, the notion of affordance for manipulation has garnered increasing interest in the

robotics community. Previous work on object affordances for robotic manipulation focuses on

recognizing the affordance labels of novel objects [48], which does not directly translate to specific

manipulation poses for use by a planner towards task completion. Recent advances have enabled

pose estimation of novel objects at the category level [188, 21]. However, robots often need fine-

grained pose information about specific object parts (e.g. a container handle) for manipulation
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Figure 4.1: Affordance Coordinate Frames (ACF) provide keypoint and axis constraints for each manipulation action
afforded by an object. In the above example, we estimate a “grasp” ACF on the handle of a mug, as well as a “pour”
ACF on the body of a mug (bottom left). The robot uses the estimated ACFs to execute a task involving pouring liquid
from the mug (right). The ACF is generalizable across object instances.

actions. For such tasks, the category-level object pose is not sufficient to perform manipulation,

due to large intra-category variance. Generalizable representations for object localization using

keypoints have been proposed [125, 149], but they rely heavily on user-specified constraints in order

to define manipulation actions over the keypoints.

In this paper, we aim to develop a generalized object representation, the Affordance Coordinate

Frame (ACF), that seamlessly links object part affordances and robot manipulation poses. Our

key insight lies in that each object class is composed of a collection of functional parts, where

each part is strongly associated with its affordances (see Figure 4.2). For robots to exploit the

affordances of object parts, we learn a category-level pose for each object part, similarly to the

notion of category-level pose for objects [188]. In particular, the category-level pose for each

object part serves as a coordinate frame (hence the name Affordance Coordinate Frame) in which

to pre-define manipulation poses, such as grasp and pour actions. Building on the insights from

Zeng et al. [206], our work proposes a deep learning based pipeline for estimating the ACF of
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Figure 4.2: Objects can be divided into functional parts which represent their affordances. The Affordance Coordinate
Frame (ACF) is defined as a 3D keypoint and a directed axis, which are consistent across affordance classes. The ACF
can be used by a robot to plan manipulation actions. The object parts can be re-assembled to generate new instances
with novel shapes.

object parts from RGB-D observations. A robot can attach pre-defined manipulation poses to the

estimated ACF when executing tasks. By defining the ACF with respect to object parts, our method

allows for better generalization and robustness under occlusion, because the robot can see and act on

observable parts directly. For example, the handle of a mug can be grasped when its container part

is not visible. In contrast to works aimed at pose estimation for robotic manipulation [182, 146],

we do not assume known 3D object geometry models or 6D object poses. We show the accuracy

and generalization of our method in detecting novel object instances, as well as estimating ACF for

novel object parts in our experiments. We demonstrate that the proposed method outperforms the

state-of-the-art methods for object detection, as well as category-level pose estimation for object

parts. We then demonstrate manipulation tasks through ACF estimation in cluttered environments

in both simulation and on a Fetch manipulation platform.

4.2 Related Works

In the following subsections, we discuss related works in three aspects: the affordance concept

initiates the proposition of our work that connects visual perception and robotic manipulation
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through our proposed representation; the object pose estimation basically shows a pipeline of

manipulation based on poses of entire objects, with which we compare the estimation accuracy in

experiments; the task-oriented grasping includes related application to robot grasping, with which

we both interact with objects considering part semantics while our pipeline also fits other actions

than grasp.

4.2.1 Affordances for Robotic Manipulation

The concept of affordance has been explored in many aspects of robot manipulation. For visual

perception, Nguyen et al. [48] proposed AffordanceNet to achieve state-of-the-art accuracy on

affordance detection and segmentation on affordance datasets [140, 136]. The affordance detection

together with segmentation can reduce search space of grasp pose for manipulation as explored

in [45], and grasp center point and axis are fitted from the shape of masks in [33]. Our main

contribution is to propose a model that jointly learns part-based 3D keypoints and axes as well

as association between parts. On the other hand, various affordance representations have been

proposed for task execution. Affordance templates [66] were developed for highly constrained

manipulation tasks but require user inputs to manually register it with robot observations. Affordance

wayfield [128] extended the similar idea to a gradient field. In [88, 89], affordances are modeled as

an existence possibility using certainty or belief functions, based on the relation of environmental

shape primitives and end-effector poses. The formulation supports hierarchical relations from basic

grasps to bi-manual operations. Our work differs from these works as we define affordances from

object part level to be visually perceivable and generalizable to objects with similar functionality.

Recent works that connect visual perception of object affordances with robot manipulations are

most relevant to our work. kPAM [125] uses 3D semantic keypoints as the object representation

for category-level object manipulations. The core advantage of ACF over kPAM is: when multiple

instances are presented in the cluttered environment, ACF has the notion of compatibility to

determine which ACFs compose to the same object, so it would be robust to cluttered scenes.

Specific to tool manipulation, Qin et al. [149] also proposed a keypoint-based representation, which
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specifies the grasp point and function point (hammer head for example) on the tool and effect

point on the target object. The robot motion was solved through optimization over the keypoint-

based constraints. Compared to 3D keypoints registered on whole objects, our ACF representation

decomposes object into object parts based on their functionality, and include explicit orientation for

manipulation. Similarly, kPAM 2.0 [57] and AffKp [198] also introduces the orientation from/with

keypoints to define manipulation constraints.

4.2.2 Object Pose Estimation for Manipulation

Object pose estimation offers a formal way to perform manipulation with known object geometry

models. Instance-level pose estimators have been extensively studied in the vision community [182,

74]. In the robotics community, works have focused on the problem of object localization in clutter

for the purpose of robotic pick and place tasks [207, 172, 27]. The success of parts-based methods

have been demonstrated in highly cluttered scenes [44, 146]. However, they rely on known mesh

models and do not extensively validate the representations for manipulation.

Recently, several works aim to extend that to category-level pose estimation, which relaxes

the assumption of known object geometry models. Wang et al. [188] proposed Normalized Object

Coordinate Space (NOCS) as a dense reconstruction of object category in canonical space, under the

assumption that the intra-category shape variance can be well approximated by a representative 3D

shape. Chen et al. [21] gave another category-level representation modeled by a latent space vector

generated from a variational autoencoder, which does not assume dense point correspondence. A

recent work [104] extended [188] to articulated objects, which solves the joint axes and parameters

after estimating poses of individual parts. Compared to these representations of whole objects, the

ACF focuses on functional parts of objects rather than entire object-level poses.

4.2.3 Task-Oriented Grasping

Task-oriented grasping incorporates semantics into classic grasping to provide richer affordance-

based manipulation. Our part-based affordance representation shares the same idea as in [45, 95,
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Figure 4.3: The perception pipeline for estimating the affordance coordinate frames of a mug with two affordance
parts: a container part and a handle part. (a) The Faster R-CNN module detects bounding boxes from features extracted
through feature pyramid network out of a 4-channel fused RGB-depth image. (b) The corresponding region of interest
(ROI) features are further fused with global features using self-attention module in [17]. 3D keypoint and directed axis
endpoint offsets are learned in two parallel network heads (C is the number of part classes). The voters are formed by
adding the learned offsets to uniformly sampled seeds within a bounding box and estimated keypoints and axes are
computed by clustering the voter points. (c) Another network head learns 2D part affinity fields, which connect parts of
an object.

110] that use task semantics to prioritize different regions of objects for task-oriented grasping

detection. Similarly in [167], task-based external wrench is considered through grasp analysis to

extend DexNet [123] to a task-oriented grasping service. Compared to [10], our representation

also divides the whole objects into functional parts but also adds keypoints and axes for ease of

manipulation. In general, we share the common part-based representation for robot manipulation,

while ACFs can afford guidance on the motion trajectory after grasping by modeling the whole

objects into connected parts.

4.3 Affordance Coordinate Frames

4.3.1 Representation

Given a predefined task, our goal is to detect and localize objects in a scene in terms of their

parts such that manipulation actions can be executed towards task completion. The problem is

divided into two subtasks: the first is to perceive affordances from RGB-D observations from a
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robot, and the second is to generate manipulation actions from the perceived affordances. We define

affordances as the functional interaction between an object and an agent. For common household

objects, such affordances are associated with object parts, rather than the whole object, and we

therefore associate ACFs with object parts. An ACF is formally defined as a 3D keypoint with a

directed axis with its origin at the keypoint location. The ACF allows the affordance to be perceived

from visual data while also acting as a concrete and generalization parametrization of a robot action.

Figure 4.2 illustrates the geometric relation of the defined axes. The advantages of the ACF are

two-fold:

1. Better generalization to novel objects with similar functionality, since parts in one category

have smaller visual difference compared to full objects.

2. They provide a sparse representation while providing enough constraints for robotic manipu-

lation by exploiting the symmetric nature of object parts.

4.3.2 Estimation Pipeline

We estimate instance-level object part ACFs using a network similar to Mask R-CNN [71].

The overall framework is illustrated in Figure 4.3. To incorporate depth information, we add an

additional channel to the first backbone layer to accept 4-channel RGB-D input. We add three

network head architectures for 3D keypoint, axis and part affinity field estimation. Similar to

the mask head, estimates are made in every proposed region of interest (ROI) with a detected

bounding box and corresponding ROI feature. We concatenate each ROI feature with a global

feature computed using Global Context Block (a self-attention module) from [17] to fuse spatial

and channel context. In this pipeline, all three heads use convolutional layers and we employ deep

Hough voting [74] to estimate the 3D keypoint and axis.
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4.3.2.1 3D Keypoint Estimation

We sample 3D seed points and estimate the keypoint position by learning the position offset

between all the seeds and the target keypoint. Each ROI consists of N × N superpixels. The

image pixel coordinates and depth values of the seeds are computed through bilinear interpolation

similar to RoIAlign [71]. Their 3D positions are restored through an inverted camera intrinsic

transformation.

The keypoint loss is defined as L1 loss of estimated 3D offset against ground truth offset filtered

by ground truth mask:

fvote(loss(i)) =

∑N×N
i=1 loss(i) ·M∗

i∑N×N
i=1 M∗

i

(4.1)

Lkeypoint = fvote

( ∑
k∈{x,y,z}

∥∥tki − tk∗i ∥∥1
)

(4.2)

where Equation (4.1) describes the voting loss function fvote which averages the loss value loss(i)

at seed i region with the confidence score M∗
i . tki denotes the offset of seed i along direction k, tk∗i

denotes ground truth offset.

4.3.2.2 Directed Axis Estimation

We represent the directed axis using two 3D endpoints. We learn two separate 3D keypoints to

form the axes using a network structure similar to the 3D keypoint estimation head.

The loss function is composed of three parts. The first loss Lendpoint is similar to Lkeypoint, where

the loss is the sum of losses for both endpoints. The second loss Laxis encourages the voter points to

be near to the axis by calculating the distance from the voter points to the ground truth axis:

Laxis = fvote

(∥∥(ti,m − t∗i,m)× n∗
∥∥
2

)
(4.3)

where t∗i,m is the ground truth translation from the seed i to the mth axis endpoint, and n∗ is the

ground truth normalized 3D axis. The third loss Ldirection corrects the direction of the estimated axis.
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Since the connection of two 3D keypoints determines the axis direction, the directions of connection

between corresponding voters of the two keypoints should be close to the ground truth axis:

Ldirection = fvote (1− (ti,2 − ti,1) · n∗) (4.4)

The final loss for axis estimation is the sum of Lendpoint, Laxis and Ldirection. During inference, two

endpoints are clustered with the same method as for 3D keypoint estimation. Then, the final output

axis is a directed link between endpoints.

4.3.2.3 Part Affinity Field Estimation

In multi-instance environment, we also need to determine which parts can be associated to the

whole objects. In human pose estimation community, to represent association property between

joints, Part Affinity Field (PAF) was proposed in [18]. PAF is a set of 2D unit vectors that indicate

the connecting directions between neighbor limbs. Inspired by this, the network is designed to

predict a set of 2D unit vectors, which determine the potential associated part direction for each ROI.

The network structure is similar to the mask head, estimating 2D vectors pi for seed i that point

from the corresponding part keypoint to its associated part keypoint. The loss function is defined as:

Lpaf = fvote(‖pi − p∗‖) (4.5)

where p∗ is the ground truth 2D unit vector pointing toward the target part keypoint. During

inference, the mean direction of affinity fields within estimated mask will be used as final field

direction.

4.4 Experiments

We evaluate our method from the following perspectives: part-level pose estimation accuracy;

and robustness of applying ACF to robot manipulation.
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Figure 4.4: The models in the train set and the validation / test set. For the synthetic dataset and robot simulation
experiments, we add random texture to each object, as shown in Figure 4.8 and Figure 4.9.

Dataset: We create a synthetic dataset of images which includes RGB, depth, instance seg-

mentation and object part pose in cluttered indoor environments using the NDDS data generation

plugin [181] in Unreal Engine 4. We select several hand-scale objects that support robot grasping

and manipulation for the drink-serving task. The object models include the bottle, mug and bowl

categories from the ShapeNet dataset [19], and the spoon, spatula, hammer categories from public

available object model cites like TurboSquid [142], as shown in Figure 4.4. We divide objects into

four predefined parts: container, handle, stir, scoop. The object-part-action relation is detailed

in Table. 4.1. The keypoints for container and scoop are defined as the center of their geometry

shapes. The keypoints for scoop and handle are the tangent points on the line parallel to the upright

orientation. The axes are labeled as follows: container, from bottom to top; handle, from external

tangent point to container direction; handle, from the tail endpoint to scoop endpoint; scoop, the

upwards normal at the center point of concave surface. Examples are shown in Fig. 4.2. During the

rendering, all object models are randomly translated and rotated. Scene backgrounds and object

textures are randomized. In total, we render 20k images, with 1k images each for validation and

test.

Implementation: We use Pytorch to implement the deep network modules. We use ResNet50 [72]

with feature pyramid network as a backbone with a pretrained model on the COCO dataset. The

initial weight for the input depth channel is set as the average of the 3 RGB channels at the first
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Table 4.1: Object-Part-Action Relations. The top table indicates the parts contained in an object with an ‘x’. The
bottom table indicates the actions which correspond to a part. The ‘container’ and ‘handle’ parts are separated in the
way shown in Figure 4.2. ‘stir’ refers to the straight handle part of spoons, spatulas and hammers, and ‘scoop’ refers to
the head part that supports scoop of spoons and spatulas.

Part

Object container handle stir scoop

bottle x
mug x x
bowl x

spoon x x
spatula x x

hammer x

Action container handle stir scoop

grasp x x x
stir x

scoop x x
contain x

pour x

layer of the backbone network. The axis endpoint head and the 3D keypoint head consist of

shared multi-layered perceptrons. During inference, from each ROI, we select seed samples whose

projected coordinates fall into masks, and get 3D position voters by adding estimated offsets. Then,

the Mean Shift algorithm [36] is applied to cluster voters, and the center of clusters is regarded as

the final estimate. The implementation of the mean shift algorithm for deep Hough voting has the

same structure as in He et al. [74]. We trained our network on a Nvidia 2080 Super GPU with a

batch size of 2 for 60 epochs, using the Adam optimizer with 0.001 learning rate and 0.001 weight

decay.

4.4.1 Ablation Studies on Axis Estimation

Apart from using two 3D keypoints as representation (we call the method ACF-Endpoints),

we tested another two ways to represent a 3D axis. ACF-Vector represents the ACF as a 3D unit

vector. During training, the loss Lvector is defined to be the difference between estimated vector n

and ground truth direction vector n∗. During inference the estimated vector is directly regarded as
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the axis. ACF-ScatterLine uses a 3D point set along the axis, with a binary label indicating the

closer endpoint for each point in the set. During training, the loss is defined as the sum of Laxis,

Linner and Llabel. Linner pushes points to make offsets t perpendicular to the axis direction n∗ so that

points spread out along the axis direction which benefits the linear regression during inference. Llabel

corrects the two endpoints order by a binary cross entropy with logits loss (BCELoss in Equation

(8)) between estimated closer endpoint index l and ground truth closer endpoint index l∗. During

inference, the axis is solved through linear regression with RANSAC from estimated point set and

the axis direction is determined by point labels.

Lvector = fvote(‖ni − n∗‖) (4.6)

Linner = fvote(ti · n∗) (4.7)

Llabel = fvote(BCELoss(li, l∗i )) (4.8)

We compare the three variants of learning ACF axis. The metric of calculating angular distance

between estimated and ground truth axis n1, n2 is defined as 180/π ·arccos (n1 · n2). From Table 4.2

and the first row in Figure 4.5, we find ACF-Endpoints achieves the highest mean average precision

(mAP) on container, handle parts and slightly worse as ACF-Vector on scoop parts. The reason

might be that the scoop parts do not span a long distance along the direction of defined ACF axis,

so the two endpoints cannot be learned to be as distinct as other parts. ACF-ScatterLine performs

much better in stir and container parts compared to scoop and handle. We believe that is because

the line-shape scatter suits better to straight line or cylinder shapes with a clear center axis or a

distinct primary direction. Overall, ACF-Endpoints performs robustly among parts with different

shapes and achieves 40.9 mAP within 15◦, 5cm threshold.

4.4.2 Comparison with NOCS

We compare our method with a state-of-the-art category-level 6D object pose estimation method

NOCS [188]. We trained NOCS network to do part category-level pose estimation and compared
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Figure 4.5: Comparison between each method for different part estimation with respect to mAP curves. The top row
shows rotation accuracy and the bottom row shows translation accuracy.

Figure 4.6: Qualitative results on our dataset with the ACF-Endpoints method. The red points show the keypoint of
each part, orange arrows show the estimated axes and green arrows show the ground truth axes. Then, the white line
shows the connection of two parts.
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Table 4.2: Comparison of proposed ACF method with different axis representation and NOCS on object part keypoint
position and axis estimation. The numbers inside the table are mean Average Precision (mAP) within different error
tolerances.

Part Method 10◦|2cm 15◦|2cm 10◦|5cm 15◦|5cm

container

NOCS 4.9 7.2 8.9 15.9
ACF-Endpoints 37.7 46.3 49.7 63.1
ACF-Vector 28.4 37.8 37.4 51.0
ACF-ScatterLine 17.0 20.8 36.0 44.7

handle

NOCS 0.4 1.7 0.7 2.6
ACF-Endpoints 14.4 24.9 19.2 35.0
ACF-Vector 12.1 22.4 17.7 33.6
ACF-ScatterLine 3.0 6.1 1.4 4.7

stir

NOCS 3.1 4.1 17.9 24.1
ACF-Endpoints 20.4 26.4 33.3 45.0
ACF-Vector 15.9 23.2 23.9 35.8
ACF-ScatterLine 30.2 30.5 58.3 58.8

scoop

NOCS 0.0 0.1 0.1 0.3
ACF-Endpoints 7.1 14.9 9.2 20.4
ACF-Vector 7.5 15.9 10.0 20.9
ACF-ScatterLine 0.3 0.7 0.7 1.8

mean

NOCS 2.1 3.2 6.9 10.8
ACF-Endpoints 19.9 28.1 27.9 40.9
ACF-Vector 16.0 24.8 22.2 35.3
ACF-ScatterLine 12.6 14.5 24.9 28.6

the two methods with respect to part keypoint position and axis direction. The results are shown

in Table 4.2 and Figure 4.5. We can figure out that the NOCS does not perform well in our tasks.

We think there are two main reasons: (1) The intra-class variance. In the NOCS original paper,

they considered object-level classes. For instance, they separate objects into mug, bottle, and bowl

classes based on their geometry. However, we regard all of these containers as the container and

handle classes based on their functionality. The container parts of mug, bottle and bowl could vary

more than that within one object class. (2) The amount of data versus information needed to learn.

Compared to the training dataset used in [188], our dataset is about 20X smaller and our training

iteration is 4X fewer.

44



4.4.3 Object-Level Detection Accuracy

Besides part level keypoint and axis estimation for manipulation, we also aim to evaluate object

level detection. The intuition is that compared to whole object detection, part-based representation

might be more robust in highly cluttered scenes where objects are partly occluded. We choose mugs

as test objects and compare our method with a Mask R-CNN baseline. Mask R-CNN achieves 93.2

and 70.6 mAP on uncluttered and cluttered scenes respectively, while ACF-Endpoints achieves 93.3

and 90.2 mAP on uncluttered and cluttered scenes. Both methods perform similarly in uncluttered

scenes, while ACF-Endpoints performs better in heavily clutters. The result supports reliability for

robotic manipulation in cluttered environments based on the proposed part-level perception method.

4.4.4 Application to Robotic Manipulation Task

To test the perceived ACF applicability, we created a scenario for robotic manipulation to

complete a drink-serving task in CoppeliaSim simulation platform [154] as well as using a Fetch

robot in real world. During the task execution, we assume individual step sequence (grasp, pour,

stir) is given as shown in Figure 4.7 so that after successful grasps, the pour, stir action can be

finished without need of re-grasping.

Figure 4.7: Grasp poses and pour, stir manipulation waypoints composed from detected ACFs.

For mugs, the grasp pose is located at handle keypoint, with blue axis orthogonal to both the
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handle and container axes, and green axis parallel to the container axis; For bottles, the grasp pose

is located at container keypoint, with green axis parallel to container axis, and blue axis towards the

container keypoint; For spoons, the grasp pose is located at handle keypoint, with green axis parallel

to its stir axis, and blue axis towards the handle keypoint. We don’t have grasp poses for bowls

yet. For pouring, the trajectory of pourer is first constrained to avoid liquid spilling by holding its

container part axis to be upright. The pouring action rotates the axis in vertical plane, with keypoint

located at a fixed height H=15cm, and a rotation radius R=5cm relative to the receiver’s keypoint.

For stirring, the spoon is supposed to move downwards with its stir axis aligned with container axis,

till its scoop keypoint reaches the container keypoint. Then the spoon is to move along its scoop

axis to stir.

Figure 4.8: An example of ACF estimation based grasping pipeline. From left to right, 3 pairs of estimation result
images (detected body, handle, stir, head are with blue, green, red and purple masks) and grasping snapshots are shown
for 3 objects (highlighted in red bounding boxes) in object clutter. The grasp poses are decided as shown in Figure 4.7.

Figure 4.9: An example of ACF estimation based drink serving pipeline. From left to right, we show the ACF estimation
result (left most) and snapshots of grasping two containers and pouring liquid (in cyan and yellow), and grasping a
spoon to stir the liquid inside the container.

As shown in Figure 4.8, 4.9, random object clutters including containers and spoons are

generated on tabletop, and a KUKA arm equipped with a parallel gripper is performing actions step

by step to finish the task. Two RGB-D cameras are set on the two sides of the table and provide

input to the ACF perception system, which estimates ACF keypoints and axes. The manipulator IK

and motion planning (SBL [162]) algorithms are provided by CoppeliaSim and OMPL library.
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Table 4.3: Task evaluation on grasp, pour, stir and drink serving which includes two pour and a stir action in sequence.

Task # Trials Success Rate

Grasp Mug 340 62.65%
Grasp Bottle 162 70.99%
Grasp Spoon 152 63.81%
Pour 130 78.46%
Stir 133 71.43%
Drink serve 143 37.06%

We evaluate the accuracy of ACF estimation with respect to the task success rate of three

individual actions: grasping, pouring liquid (simulated as a set of particles) from one container into

another, and stirring liquid in a container. We also evaluate the overall drink serving task, which

includes pouring two kinds of liquid into the same container and stir the liquid afterwards.The

grasping is considered successful when the gripper is able to grasp the object and lift it up without

dropping. For evaluations on pouring actions, we calculate the ratio of the change in liquid volume

of pourer and receiver, and consider it successful if the ratio is greater than 0.7. For stirring, it is

considered successful when the position error is less than 2cm. The overall drink serving task is

considered successful if all single actions succeed. Number of trials and success rates for all tasks

are listed in Table 4.3. We find mugs and spoons are more challenging to grasp than bottles, because

spoons have larger position errors in ACF estimation and mug handles have very small areas for

valid grasps as shown in Figure 4.7. We find similar success rate for pour and stir actions, while

pour often fails during the pouring action and stir often fails during motion. The main failure of

the pour task is that much of water is poured outside of container because the pourer doesn’t reach

close to above the center of receiver. On the other hand, the stir task requires the robot to insert the

spoon into the container from above, which will lead to collision with container inner surface. For

drink serving, many trials fail on one of two pour actions which leads to a lower success rate. We

expect taking masked object part point cloud into consideration could help design more adaptive

trajectories.

We further evaluated the efficacy of ACF-based manipulation on a real Fetch robot. We realized

the network purely trained from synthetic data could not generalize well to real objects, so we fine-
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tuned the network with around 10K images collected and labelled through ProgressLabeller [29].

We tested pour and stir tasks and got both 60% success rate out of 10 trials over novel instances.

In failed trials, the errors were mostly due to the MoveIt! motion planner. Figure 4.10 shows

snapshot of one grasp-pour and one grasp-stir task. The entire tasks recording will be attached in

the supplementary video.

Figure 4.10: The mask, ACF keypoint and axis estimations are overlaid on the left images. On top-right, Fetch robot is
grasping cups, pouring to another container based on ACF estimation in top-left image. On bottom-right, Fetch robot is
picking up a spoon to stir inside a bowl based on bottom-left image.

4.5 Summary

We present a novel representation of object affordances called Affordance Coordinate Frame

(ACF), and we propose a deep learning based perception method for estimating ACF given a RGB-D

image. We demonstrate that our proposed perception method outperforms state-of-the-art method

(NOCS [188]) in estimating ACF of novel objects. Our method also outperforms Mask R-CNN

in detecting novel objects especially under cluttered environment. We further demonstrate the

applicability of ACF for a drink serving task. In future, we will extend the work to incorporate a
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larger variety of object categories and compare with other analytical geometry-based manipulation

systems.
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CHAPTER 5

ProgressLabeller: Visual Data Stream Annotation for Training

Object-Centric 3D Perception

5.1 Motivation

Visual perception tasks often require vast amounts of labelled data due to their use of deep

neural networks. Such deep neural networks have outperformed traditional methods in object

pose estimation [100, 73, 78] when trained on public large-scale datasets [192, 77, 75]. However,

considering the practice of deploying such systems in real-world robotics applications, such as

semantic grasping and manipulation, current pose estimation systems can prove the difficulty of

adaptation to different objects and settings without retraining with a customized large-scale dataset.

In particular, our need for training data is a result of object labels for pose estimation being

defined to specific 3D object models (both geometry shape and texture). Learned models cannot

be fine-tuned to transfer to similar object instances without additional training data. Recent work

has made advances in category-level or unseen pose estimation [104, 145]. However, the objects

included only cover a small set and there is no evidence showing the estimated pose is reliable

enough for robotic manipulation. Further, the estimation results of deep neural networks are often

vulnerable to environmental changes [27], including different lighting conditions, occlusions and

object’s special appearance like transparent or reflective surfaces. Synthetic data generation with

domain randomization and photo-realistic rendering [181, 41] could improve generalizability, but

it is still challenging to simulate real-world lighting as well as the noise inherent in the sensor
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Figure 5.1: The ProgressLabeller offers an interactive GUI for aligning all kinds of objects in the 3D scene to generate
large-scale datasets with ground truth pose labels. The left image shows the rough 6D pose estimates from one state-
of-the-art RGB-D deep models trained on public YCB dataset, and the right images shows fine-tuned pose estimates
from the same model after retraining using generated data from ProgressLabeller. The pose estimates are then used for
robotic grasping experiments.
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modality. We show in the experiment that the network trained using real data is still over-performing

synthetic data.

To address the problem of adaptation for deep pose estimation systems and their application

to robotic manipulation, we propose ProgressLabeller (illustrated in Figure 5.1) as a method and

implementation for creating large customized datasets more efficiently. Inspired by LabelFusion

[126], ProgressLabeller collects training data of objects in situ in a mixed-initiative manner, similar

in spirit to work by Gouravajhala et al. [61]. It takes visual streams of color images that observe

objects in a physical environment as input. Objects in this stream only need to be labelled once by a

human user through visual annotation. ProgressLabeller builds on recent advances in Structure-from-

Motion [163] and visual SLAM [135] to produce both a 3D reconstruction and camera pose along

the trajectory of the collected visual stream, where the annotated object labels can be propagated to

all frames.

Compared to depth-based fusion methods, the color feature-based pipeline of ProgressLabeller

suffers less noisy or invalid readings than that from depth sensing. Further, the use of color by

ProgressLabeller allows it to include objects that are transparent and reflective [111] into the pose

estimation process, as long as there exists textures from other objects or background. From an

interface perspective, our implementation of ProgressLabeller aims to provide a more interactive

design geared for users performing labeling tasks. This interface design enables seamless labelled

pose validation in different views by checking and correcting the discrepancy between the masks

of re-projected object models and original RGB images (an example is shown in Figure 5.2). The

intuition is that, if then the labelled pose is close to ground truth, the re-projected object mask

should align with the object’s true area in RGB images from multiple views.

In this paper, we introduce ProgressLabeller as a semi-automatic approach to object 6D pose

labelling on RGB(D) image sequence/video frames that works for transparent objects. Our aim is

to release ProgressLabeller as an open-source tool for more effective dataset generation for object

and pose recognition by robots. We evaluate the labelling accuracy of ProgressLabeller against

LabelFusion on data stream samples from 4 public datasets with respect to segmentation mask
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and object pose accuracy. With the proposed system, we created a dataset of YCB objects [15]

(about 1.2M object instance labels) within 2 days of data collection and labelling. The dataset

presents more challenges than the public YCB-Video dataset [192] with more occlusions and better

coverage of camera view directions, and collected using three different RGB-D cameras to evaluate

the generalization across sensors. We fine-tuned a state-of-the-art RGB-D deep pose estimator [73]

on our dataset and observed a large improvement on pose estimation accuracy and robotic grasping

success rate, compared with the pretrained model on public dataset, as well as on the same amount

of data from image-synthesis or LabelFusion annotation.

5.2 Related Work

With ProgressLabeller, a user can scalably label new datasets with camera world pose, scene

object poses and scene object segmentations. This process is enabled by fusing streaming RGB

(or RGB-D) inputs into a single scene-wide representation, and then allowing a human user to

input relevant 6-DoF information via 3D modelling interfaces (such as those provided by Blender

[37]). This process demonstrates label stability even over long input video streams, and due to its

functionality with direct RGB inputs, can label even difficult objects such as transparent cups. We

discuss below methods related to ProgressLabeller.

5.2.1 Direct & Human-in-the-loop labelling

The creation of 2D segmentation data is analogous to the object detection, keypoint detection,

or semantic segmentation tasks (depending on desired output labels). Tools such as LabelMe [157]

required users to directly interact with the underlying data to be labelled. This manual process

was improved by model-assisted approaches such as Deep Extreme Cut [124] which decreases the

amount of user effort necessary to label images. Shared autonomy and mixed-initiative methods

have also been used in this approach, in which the user provides coarse pose or other estimations

which are fine-tuned via a model-informed approach [200].
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5.2.2 End-to-End Labellers

Previous tools have been created to enable this style of learning process. LabelFusion [126] is

perhaps the most commonly utilized example. LabelFusion utilizes streaming RGB-D inputs to

create a dense reconstruction of the scene, which is then labelled semi-manually by aligning 3D

object models to the 3D reconstruction. While this approach is typically robust, it relies on RGB-D

input for reconstruction, and experiences difficulties under certain regimes. In particular, transparent

objects cause problems for commonly employed depth sensor technologies, and long-running input

streams typically result in large amounts of ’drift’.

Some methods have been introduced to eliminate the need for CAD models in the labelling

process. Singh et al. [166] proposed a method which utilizes user labelled keypoints and bounding

boxes to generate pose and segmentation labels. This frees the system from dependency on CAD

models, but requires user interaction directly with the images. SALT [170] proposed utilizing

GrabCut to generate 3D bounding boxes and image segmentation labels for relevant scenes. This

allows removing the dependency on object masks while also allows the labelling of dynamic scenes

such as human gait videos.

Other works sought to improve the labelling procedure itself. EasyLabel [171] allows for semi-

automatic labelling of scenes via sequentially added objects. This process is scalable, and generates

high quality labels. However, it requires tight physical control over the scene to be labelled, which is

not always feasible to obtain. Objectron [6] utilized modern smartphone’s AR capabilities combined

with human-labelled 3D bounding boxes to scalably create a large scale dataset. This method

however is susceptible to label drift during long-duration input videos. KeyPose [112] specifically

sought to generate labelled datasets for transparent objects. This method utilized stereoscopic

images taken from a robot armature in order to avoid the problems of typical depth cameras have

with transparent objects.
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5.3 ProgressLabeller

In ProgressLabeller, we provide an interactive GUI for users to label object poses for a large

amount of data in several steps. We incorporate camera pose estimation systems that reconstructed

a 3D scene for aligning objects with, and calculate pose transforms that can be use to propagate the

labelled object pose to all image frames. We provide interface to switch views among every RGB

images to enable verification of labelled object pose by checking the alignment of re-projected mask

with RGB images in multiple views. In this work, we assume the 3D mesh models of objects are

provided and the objects are static in the scene during data collection (in special cases like T-LESS

dataset [77], the objects are put onto a turntable and moving altogether while the cameras are static,

the algorithm can still work because no environment background is captured by the cameras).

5.3.1 Camera pose estimation

We incorporated ORB-SLAM3 [16], KinectFusion [139] and COLMAP [163, 164] to do RGB,

depth or RGB-D camera pose estimation as well as reconstruction. ORB-SLAM3 is selected as the

default method for its balanced speed and accuracy. COLMAP was tested and proved to be more

accurate but the time cost of reconstruction over more than 1000 images is unaffordable.

5.3.2 Object alignment by multi-view silhouette matching

Different from methods that align object 3D models with reconstructed point clouds, our system

created a multi-view graphical user interface that overlays the object model’s projection onto the

original RGB images, so that the object pose errors could be easily detected from areas with

misalignment of object texture, silhouette and boundary, as shown in Figure 5.2. Compared to depth

reconstructed based methods, the pose label accuracy is improved based on higher accuracy of RGB

than depth sensing. Besides, the system can also be used to label scenes with unreliable depth from

transparent objects and backgrounds (see Section 5.4.4).
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Figure 5.2: Capture of ProgressLabeller user interface for multi-view re-projection checking. The top-left view shows
the aligned object models with rendered texture at labelled poses. The bottom-left view and top-right view show the
silhouettes and boundaries respectively at the same camera view, and the bottom-right view shows the boundaries from
another view for validation.
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5.3.3 Semi-automatic labelling pipeline

We build ProgressLabeller as a plugin on Blender [37], which provides a good multiple view

interface of overlaid RGB image, 3D reconstructed scene and objects for labelling and verifying

poses. The overall procedure of labelling object poses includes several steps within the Blender

graphical interface:

1. Import RGB(D) images and object 3D models into the 3D interactive workspace. Set

parameters including camera intrinsics, camera pose estimation parameters and display

settings, etc.

2. Do camera pose estimation, then the estimated camera poses and a reconstructed 3D point

cloud will be added to the workspace. Depth images are used to solve the scale of reconstruc-

tion.

3. (optional) When depth input is available, another point cloud fusing depth input based on

estimated camera poses can be generated to provide a denser view of the entire scene and

help find objects’ rough positions.

4. (optional) Do plane alignment for a better viewpoint and ease of correcting object pose

5. Align the object so that its re-projection matches the ground truth area in multiple views of

RGB images

6. Export labelled object poses and render segmentation masks, bounding box labels, etc.

In step 2, when there is only RGB image available, the scene scale (3D point cloud and camera’s

trajectory position) is unknown, to solve this scale problem, we take advantage of the known object

sizes by dragging them to align with the 3D reconstruction and verify that in multiple different

views. In step 3, we implemented a depth fusion module based on the estimated camera poses from

RGB reconstruction, based on the Signed Distance Functions as in KinectFusion [139]. The fused

point cloud could give a rough reference of object locations. In step 4, Iterative Closest Point (ICP)
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is used for aligning RGB feature or depth point cloud to X-Y plane in Blender. In step 5, the object

pose is labelled with visually ensured accuracy, which is the essential design that enables labelling

of objects with only RGB images based on multi-view geometry. By re-projecting object’s 3D

model and check whether it aligns perfectly with the object’s true textures or silhouettes in the RGB

images from multiple views, users can fine-tune the object’s pose and verify the error seamlessly

until the object matches the images.

The entire labelling pipeline typically takes around 30 minutes for one data stream about 5K

images. Data import and export takes about 20-30% of time, with a rendering speed around 4-20

images per second depending on number of objects in the scene. The rendering could be done in

parallel on a GPU if a vast amount of data is required. ORB-SLAM3 camera pose estimation takes

about 10-20% of time. Manual labelling and verification take the rest of time.

5.3.4 Annotation accuracy estimation from simulation

We verify the accuracy of annotations throughout this multi-view silhouette matching process by

simulating an iterative object pose update process. In each iteration, given a certain camera frame,

we assume the object will be translated in a plane parallel with its x-y plane, or rotated about z-axis

(for better control), towards a pose that maximizes the Intersection-over-Union (IoU) between the

rendered silhouette at current pose and ground truth.

5.3.4.1 Problem Definition

Given set of N images I{i} with their corresponding camera pose T {i} in the world frame,

i ∈ {1, 2, 3, . . . , N}. Our goal is to find ground truth object pose T obj{j}
gt in the world frame

for all the objects j ∈ {1, 2, 3, . . . ,M} in the scene. We define the projection operator as

S{i,j} = Proj(T {i}, T obj{j}), which render object j given its CAD model, camera pose T {i}

and object pose T obj{j} into an object texture/silouette S{i,j}. Also defined the IoU operator as

IoUobj{j}(I
{i},Proj(T {i}, T obj{j})) to calculate the IoU for pixels in object j between real image I{i}

and synthetic texture/silouette S{i,j}.
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The multi-view texture/silhouette matching iterative update is proceeded with a goal to maximize

the IoU. Given the pose for object j in the kth iteration T obj{j}
(k) , in (k + 1)th iteration:

T
obj{j}
(k+1) = argmax

f [T
obj{j}
(k)

]
IoUobj{j}(I

{i},Proj(T {i}, f [T
obj{j}
(k) ])) (5.1)

where f [T
obj{j}
(k) ] describes all possible translation start from the T obj{j}

(k) that is within the plane p or

the rotation along the axis ω as shown in Figure 5.3. So:

f [T
obj{j}
(k) ] = expξ̂1θ1 expξ̂2θ2 T

obj{j}
(k) (5.2)

where ξ1 =

−ω × vo
ω

, ξ2 =

v
0

 are the twist coordinates for twist ξ̂1, ξ̂2.

Figure 5.3: Diagram for an object shown under a camera. c denote the location of camera and cx, cy, cz are its x, y, z
axis. p is a plane parallel to camera plane and passing through object’s center vo. ω the rotation direction parallel to cx
and passing through vo. θ1 is the magnitude of rotation radius. v is the translation direction within the plane p and θ2 is
the translation magnitude. On the right hand side is the projection image, the object in the transparent color is the object
with ground truth pose.
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5.3.4.2 Simulation results

We generate a CAD model sets with 44 different CAD models. For each run, we generate T obj
gt

with a random rotation matrix and location at the origin. 40 cameras are created with their z axis

pointing towards the origin and a random location at a sphere around the object. The initial pose

T obj
0 is generated by adding a random position noise from Gaussian distribution with variance of

10cm to origin and with a random 3D orientation. During each iteration, v, θ1, θ2 in Equation 5.2 are

discretized for simulation. The result shows that it takes around 10.36 iterations for the algorithm

to converge within 1mm location error and dot product larger than 0.99 between ground truth and

converged rotation axes.

5.4 Experiments

Figure 5.4: From left to right, we show the 3D labeller view of LabelFusion, ProgressLabeller and cropped RGB image
with masks from LabelFusion, ground truth and ProgressLabeller. The top and bottom row show a sample from HOPE
and YCB dataset respectively. We find even ground truth pose labels have easily observable errors, shown as the spacing
between black masks and object boundaries.

In this section, we report results on several evaluation experiments on the data generated using

ProgressLabeller. The output label quality is firstly evaluated on public datasets against ground

truth. Then we introduce a large scale dataset with object pose annotations, and report the evaluation

results of fine-tuning a state-of-the-art deep pose estimation on accuracy. The improved accuracy

is further evaluated in robotic grasping experiment. Finally, we show two potential applications:
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labelling a complex scene with transparent objects in front of reflective backgrounds, and training a

neural rendering model on a single object from collected data and do image synthesis.

Dataset Method Mask IoU ↑ Pos (cm) ↓ Rot (quat) ↓ ADD (AUC-0.1d) ↑ ADD-S (AUC-0.1d) ↑ Feature (Pixel) ↓ Time (min)

HOPE LabelFusion∗ 0.6729 1.5825 0.2561 0.7095 0.7101 4.1248 31
ProgressLabeller 0.8600 1.0948 0.0801 0.9566 0.9566 1.9479 48

Ground Truth - - - - - 2.2752 -

YCB-Video LabelFusion 0.9089 0.5165 0.0741 0.9977 0.9989 4.7365 29
ProgressLabeller 0.8849 1.7537 0.0636 0.7642 0.7662 3.08 16

Ground Truth - - - - - 3.3868 -

NOCS∗ LabelFusion 0.7684 2.2825 2.9092 0.6436 0.6438 - 12
ProgressLabeller 0.8785 1.4949 2.6153 0.8674 0.8679 - 15

T-LESS∗ LabelFusion* - - - - - - -
ProgressLabeller 0.8810 0.6779 0.0856 0.6626 0.6642 - 8

Table 5.1: Results on feature matching distance between rendered object RGB image and original image. ’Pos (cm)’,
’Rot (quat)’ refers to positional error in centimeters and rotational error calculated as norm of difference in quaternions
as in [80]. LabelFusion cannot work on T-LESS data streams at all, and it cannot reconstruct one of HOPE samples
scene entirely, so we trim the sequence to 1/4 length. Object models in T-LESS and NOCS datasets do not have enough
features to measure the feasure-based pixel distances.

5.4.1 Evaluation on label generation

We evaluate the label quality with respect to pose accuracy against ground truth and time

cost on ProgressLabeller versus LabelFusion [126]. Specifically, we use both tools to label on 64

object instances from 8 sample sequences among the 4 public pose estimation datasets including

YCB-Video [192], T-LESS [77], NOCS [104], and HOPE [183].

Evaluation metrics. We use mask Intersection-over-Union (IoU) between rendered mask of object

at labelled pose and at ground truth to evaluate the segmentation, and select 4 distance metrics to

compare a labelled pose with ground truth pose, including 3D positional error Ep, 3D rotational

error Er, average pairwise distance (ADD) EADD [75] and average pairwise distance in symmetric

case (ADD-S) EADDS [192], defined as follows:
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Ep = ‖t− t∗‖, Er = min{‖q − q∗‖, ‖q + q∗‖} (5.3)

EADD =
1

|M |
∑
x∈M

‖(Rx+ t)− (R∗x+ t∗)‖ (5.4)

EADDS =
1

|M |
∑
x1∈M

min
x2∈M

‖(Rx1 + t)− (R∗x2 + t∗)‖ (5.5)

where M = {xi ∈ R3} is the object 3D point set, and R, q, t, R∗, q∗, t∗ refers to the 3D rotation

matrix, rotation represented in quaternion, 3D position vector of labelled pose and ground truth

respectively. Specifically for ADD and ADD-S, we report the value of area under the accuracy-

threshold curve obtained by varying the distance threshold from 0 to 0.1 diameter of objects

(AUC-0.1d) following metrics among pose estimation papers.

Besides, from the observation that even ground truth labels are still not perfectly correct (re-

projected object masks align with true area in RGB images from multi-view), we propose an RGB

feature based evaluation on object pose without ground truth. Specifically, we render the object

at labelled pose to get an image with only an object in front of black background, and extract

SIFT features from both the rendered image and original RGB image, then calculate the average

of feature matching distance in pixels. In practice, we assume the labelled pose is close to ground

truth, and remove incorrect matching with a distance threshold of 10 pixels. Figure 5.4 shows

qualitative examples of labelled poses, where we observe more accurate re-projection results from

ProgressLabeller than LabelFusion output as well as provided ground truth on masked RGB images.

We believe the main error cause in LabelFusion is the accumulated depth sensing error during

reconstruction. Another drawback of LabelFusion UI design is that, there is no measurement or

display of object poses in the 3D scene, so the users need to switch back-and-forth between the 3D

scene and the final generated images that has image masks rendered at labelled poses. Also its 3D

model as well as rendering result doesn’t display textures, so it’s hard to deal with symmetric-shape

objects in HOPE and NOCS.

The quantitative results are shown in Table 5.1. From the comparison, we see both labellers took
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similar amount of time to annotate data streams, while ProgressLabeller is more accurate and robust

in most streams. LabelFusion has higher accuracy on YCB-Video dataset, which has a large feature-

based pixel distance. For example, we found the pose annotation of object 006 mustard bottle was

flipped 180◦ in one scene.

5.4.2 Multi-camera dataset creation

From analysis of absolute accuracy result above and to evaluate robustness on existing deep

pose estimation networks, we aim to create a more accurate, multi-camera, cluttered dataset on

YCB objects [15]. We mounted 3 RGB-D cameras with different sensing technologies, ASUS Xtion

Pro Primesense Carmine 1.09 (structured light), Intel RealSense D435i (stereo) and RealSense

L515 (LiDAR), on a Fetch robot and collected data streams at ∼15Hz when Fetch is slowly driving

around the tabletop object scene with a constant speed. Each scene contains almost a bit more than

full round, with 1K∼3K paired RGB-D images from each camera. In this way, the collected data is

free of motion blur and covers full round view of objects and occlusions. The dataset includes 16

scenes with 10 objects placed in both isolation and dense clutter, and another 4 scenes each with a

single object for unit test. Figure 5.5 gives an example. It took 2 days collected and labelled the

dataset, with about 120K images and 1.2M labelled object instances.

Figure 5.5: The top and bottom row shows RGB images in training and testing set respectively. From left to right, the
images are taken from Primesense, RealSense D435i and L515.
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Train set/Test set Primesense RealSense L515 RealSense D435i

Metric: AUC (0-10cm) ADD ADD-S ADD ADD-S ADD ADD-S

Pretrained on Asus Xtion Pro Live 21.63 41.16 47.43 72.90 44.67 68.00
Fine-tuned on Primesense 60.02 79.21 55.32 77.85 49.75 73.35
Fine-tuned on RealSense L515 33.45 58.16 68.84 83.69 57.67 76.26
Fine-tuned on RealSense D435i 26.39 50.38 63.82 82.52 64.64 82.36

Table 5.2: The pose estimation accuracy of FFB6D cross-validated on datasets collected using three cameras.

5.4.3 6D object pose estimation Fine-tuning

Using the collected dataset, we fine-tuned one of the state-of-the-art deep pose estimation neural

networks taking RGB-Depth images as input, FFB6D [73] over its pretrained model on YCB-Video

dataset. In particular, we created 3 training sets by downsampling to 1/10 the training set collected

by 3 cameras respectively and got 3 fine-tuned models by training on a RTX 3080 with batch size 6

for 20 epochs and default settings in other parameters. Then, we cross-validated the 3 fine-tuned

models, along with pretrained model, on 3 test sets taken from 3 cameras.

5.4.3.1 Evaluation on pose accuracy across different cameras

We report the AUC for ADD and ADD-S metrics between 0 and 10cm, to match the original

result in [73]. The result is shown in Table 5.2, where we find the fine-tuned dataset recognizes the

sensor modality and noise difference between 3 cameras as the test set ADD and ADD-S are mostly

the highest on the same training set.

5.4.3.2 Evaluation against LabelFusion and synthetic data on pose accuracy and robotic

grasping

We used 3 datasets to train FFB6D with the same setting as above. The first is the collected

Primesense subset labelled by ProgressLabeller, the second is the same data labelled by LabelFusion,

and the third is synthesized images by rendering YCB objects over both raw RGB and depth images

according to the labelled poses using Blenderproc [41], which mostly maintain the same object
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Figure 5.6: A synthesized RGB image using Blenderproc is shown on the left. The original image is shown on the right.
The YCB objects are rendered and overlaid to original image according to labelled poses. Depth synthesized images are
generated in the same way.

pose distribution and sensor noise as real data, as shown in Figure 5.6.

We tested pose estimation accuracy from models trained on the above 3 datasets, with respect to

ADD-AUC and pose-based grasping success rate. For pose-based grasping, we manually defined

grasp poses along the symmetrical axes on the object 3D models, and grouped them by the grasping

tolerance, defined by the distance between two gripper fingers (10.39 cm for Fetch) minus the

object’s diameter along the grasping direction. Obviously, a smaller grasping tolerance requires more

accurate pose estimates for a successful grasp. For example, 002 master chef can is challenging to

grasp as its tolerance is only 0.36 cm. We repeated grasping on every tolerance for 5 times based on

the pose estimates, and the success/failure statistics is shown in Table 5.3. Overall, the fine-tuning

over ProgressLabeller data improves the grasping success rate the most. Among experiments, we

found in some cases the grasp is still successful given large rotational error, where the object was

aligned to another pose during grasping, such as 002 master chef can and 006 mustard bottle when

grasping from the side. Also, sometimes the objects were grasped along another direction, such as

009 gelatin box and 010 potted meat can, in this case, their actual grasp tolerance might change.

We expect evaluation on object placement accuracy to reveal these errors. Otherwise, the grasping

test results generally matches the pose accuracy presented in ADD. Figure 5.7 shows an example of

grasping experiment.
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Network model Pretrained Blenderproc LabelFusion ProgressLabeller

Object name Grasp tolerance (cm) ADD Grasp ADD Grasp ADD Grasp ADD Grasp

002 master chef can 0.36 25.16 0/5 48.67 3/5 44.78 4/5 55.42 5/5

003 cracker box 3.90 19.57 1/5 50.76 1/5 60.8 4/5 71.01 5/5

005 tomato soup can 3.65 27.74 1/5 51.12 2/5 65.48 4/5 66.79 5/5

006 mustard bottle
6.33

31.02
1/5

58.87
5/5

70.77
5/5 73.47 5/5

2.50 0/5 5/5 4/5 5/5

007 tuna fish can
7.09

15.14
2/5

26.41
3/5

30.02
5/5 39.87 5/5

2.04 2/5 4/5 4/5 5/5

009 gelatin box
7.60

13.25
2/5

32.79
4/5

51.45
5/5

55.24
5/5

3.14 2/5 3/5 5/5 5/5
1.62 2/5 4/5 5/5 4/5

010 potted meat can
4.75

19.68
5/5

39.56
3/5

47.48
4/5

50.64
5/5

2.08 1/5 4/5 4/5 4/5
0.78 2/5 0/5 5/5 5/5

025 mug 1.24 19.10 1/5 60.70 3/5 49.31 1/5 66.53 4/5

040 large marker 8.67 20.10 0/5 44.75 2/5 55.89 3/5 53.73 3/5

overall - - 22/75 - 46/75 - 62/75 - 70/75

Table 5.3: Grasp record comparison on part of YCB objects using grasp poses generated based on pose estimates from
pretrained and fine-tuned FFB6D on the collected dataset, with Blenderproc data synthesis, LabelFusion annotations
and ProgressLabeller annotations.
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Figure 5.7: The Fetch robot is grasping objects on tabletop based on estimated poses. The pose estimates are shown as
projected point clouds and coordinate frames in top-right smaller images. The higher and lower frames correspond to
pre-grasp and grasp poses.
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Figure 5.8: Comparison of best (left) and worst (right) validation pose renderings from the NSVF model. The smaller
images with black background on top corners are the ground truth masks, and those on bottom corners are rendered
output from NSVF, and the middle larger images are the renderings imposed onto the original captured image in
greyscale. The best image (left) had an average pixelwise L2 error of 0.0067, and the worst (right) had an average
pixelwise L2 error of 0.1867.

5.4.4 Other applications

5.4.4.1 Transparent Dataset Labelling

We collected RGB-D videos with transparent cups and labelled their poses using Progress-

Labeller. Figure 5.9 shows in detail that even there is no 3D points around the transparent area

when we fused raw depth according to the estimated camera poses, the tool enables accurate pose

labelling by matching the object’s mask with RGB images. We believe a large-scale 3D dataset of

transparent objects can be efficiently created using ProgressLabeller.

5.4.4.2 Training neural radiance fields on objects

As a brief additional experiment, we provide prima facie data to show the effectiveness of our

labeller in generating datasets for training a Neural Sparse Voxel Fields (NSVF) model [108]. This

model permits rendering objects at novel poses given multiple input views with corresponding

camera poses. We use ProgressLabeller to label a scene containing a 003 cracker box, with 3509

images in total. From this dataset, we uniformly random sample 100 images with object poses

for train, test and validation set respectively. We remove the background from the training images

using the segmentation from labeller, and an NSVF model was trained to 75k total iterations on a

dual GPU machine consisting of an Nvidia RTX 3060 TI and RTX 3070. After training, renderings

were made at each camera pose given in the train, test, and validation sets. These renderings

were evaluated via a pixel averaged L2 error against the ground truth segmented images produced
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Figure 5.9: The labelling on transparent champagne cups. When there is no reliable depth (top-left), ProgressLabeller
enables checking the pose validity by re-projection object models (bottom-left) to RGB images from different views
(top-right and bottom-right).
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by ProgressLabeller where each pixel channel was normalized to the range [0, 1]. Those results

presented in Table 5.4. Visual comparisons between the best and worst validation set renderings

along with their associated errors are presented in Figure 5.8.

Dataset Train Validation Test

Per-pixel L2 error 0.0108 0.0460 0.0409

Table 5.4: Average pixelwise errors for the train, validation, and test sets from the NSVF model trained on ProgressLa-
beller outputs.

5.5 Summary

In this work, we have presented the design and application ProgressLabeller for object pose

annotation. Through comparison to LabelFusion, we show that its higher accuracy with similar la-

belling time, efficiency of creating a large-scale customized dataset, and potential in fine-tuning pose

estimation deep neural networks for robotic grasping. In future, we can improve ProgressLabeller

by adding online object model generation and support for dynamic scenes.
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CHAPTER 6

ClearPose: Large-scale Transparent Object Dataset and

Benchmark

6.1 Motivation

Transparent and translucent objects are prevalent in daily life and household settings. When com-

pared with opaque and Lambertian objects, they present additional challenges to visual perception

systems. The first challenge is that transparent objects do not exhibit consistent RGB color features

across varying scenes. Since the visual appearance of these objects depends on a given scene’s

background, lighting, and organization, their visual features can drastically differ between scenes

thereby confounding feature-based perception systems. The second challenge is the inaccurate

depth measurements among RGB-Depth (RGB-D) cameras on transparent or translucent materials

due to the lack of reliable reflections. This challenge is especially meaningful for state-of-the-art

pose estimation approaches that require accurate depth measurements as input. To overcome these

challenges, computational perception algorithms have been proposed for a variety of visual tasks,

including image segmentation, depth completion, and object pose estimation. In this paper, our aim

is to complement recent work in transparent object perception by providing a large-scale, real-world

RGB-D transparent object dataset. Furthermore, we use the new large-scale dataset to perform

benchmark analysis of state-of-the-art perception algorithms on transparent object depth completion

and pose estimation tasks.

There are several existing datasets focusing on transparent object perception with commodity
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Figure 6.1: Sample images from existing transparent datasets. TOD and StereOBJ-1M are collected using stereo RGB
cameras, and other datasets used RGB-D cameras (except for Omniverse which is completely synthetic).

Table 6.1: Comparison between existing transparent object datasets and ClearPose. ∗Trans10K is a transparent
segmentation dataset and has no object-centric pose labels. ∗StereObj1M is not publicly available at the time of
submission so the #frame and #pose annotation are estimated based on the published ratio of transparent objects in the
entire object set [111]

dataset modality #obj #frame #pose annotation
TOD [112] RGB-D 15 48K(real) ∼0.1M
ClearGrasp [161] RGB-D 10 50K(syn)+286(real) ∼0.2M
TODD [196] RGB-D 6 15K(real) ∼0.1M
Omniverse [217] RGB-D 9 60K(syn) ∼0.2M
TransCG [53] RGB-D 51 58K(real) ∼0.2M
Trans10K∗ [194] RGB 10K 15K(real) seg only
ProLIT [214] Light-Field 5 75K(syn)+300(real) ∼0.1M
StereObj1M∗ [111] Stereo 7 ∼150K(real) ∼0.6M
ClearPose (ours) RGB-D 63 360K(real) ∼5M

RGB stereo or RGB-D sensors, as summarized in Figure 6.1. While these datasets target transparent

object perception, most are relatively small-scale (no more than 50K real-world frames), include

few cluttered scenes (typically with less than 3 objects per image), do not offer diverse categories of

commonplace household objects, and record limited lighting changes. These limitations motivate

the introduction of ClearPose, a large-scale real-world transparent object dataset labeled with

ground truth pose, depth, instance-level segmentation masks, surface normals, etc. that (1) has a

comparable size with ordinary opaque object pose estimation datasets like YCB-Video [192]; (2)
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contains challenging heavy clutter scenes including multiple layers of occlusion between transparent

objects; (3) contains a variety of commonplace household object categories (bottle, cup, wine,

container, bowl, plate, spoon, knife, fork, and some chemical lab supplies); (4) covers diverse

lighting conditions and multiple adversarial testing scenes. Further details of ClearPose in relation

to existing datasets is included in Table. 6.1 with sample images from ClearPose shown in Figure 6.2.

Figure 6.2: Sample images from ClearPose dataset. On the left, we show RGB images taken for different object subsets
under various lighting conditions and backgrounds. On the right, we show examples of different types of testing scenes,
such as covered by a translucent box (top-left), novel background with opaque distractor objects (top-right), non-planar
cases (middle-left), filled with liquid (middle-right), and heavy clutters of transparent objects (bottom).

The labeling of such a large-scale dataset requires both efficiency and accuracy. To achieve

these qualities in ClearPose, we take advantage of a recently published pipeline named Progress-

Labeller [29]. The ProgressLabeller pipeline combines visual SLAM and an interactive graphical

interface with multi-view silhouette matching-based object alignment to enable efficient and ac-

curate labeling of the transparent object poses from RGB-D videos, which realizes rapid data

annotation and exempts from the broken depth problem by transparent objects. Given the unique

scale and relevance of ClearPose, we envision it will serve beneficial as a benchmark dataset on

transparent perception tasks. In this current paper, we include benchmark analysis for a set of
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state-of-the-art visual perception algorithms on ClearPose. We target our benchmark analysis on the

tasks of depth completion and RGB-D pose estimation.

6.2 Related Work

6.2.1 Transparent Dataset and Annotation

As mentioned in Table 6.1, there are several existing datasets and associated annotation pipelines

that focus on transparent objects. With the exception of works such as Trans10k [194], Tran-

sCut [199] and TOM-Net [22] that are focused on 2D image segmentation or matting, most recent

transparent perception datasets are collected in an object-centric 3D setting using RGB-D, stereo or

light-field sensor modalities.

Similar to the case of opaque objects, datasets created in simulation, supporting photo-realistic

rendering with ray-tracing, are more readily created and can produce very realistic examples of

transparent object appearance. Examples of such simulated datasets include those [161] rendered

by Blender, [214] by Unreal Engine and [217] by Nvidia Omniverse platform. While simulated

datasets are appealing for their ease of creation, they often lack realistic feature artifacts (e.g. sensor

noise, object wear marks, true lighting etc.) which can impact downstream perception systems that

rely on the synthetic dataset (i.e. the syn-to-real gap).

Among existing real-world datasets, TOD [112] and StereObj1M [111] use RGB stereo cameras

together with AprilTags. First, camera pose transforms are solved from AprilTag detection, and

then several 2D keypoints on the objects are manually annotated in keyframes that are farthest to

each other in the sequence. The corresponding 3D keypoint positions are solved by multi-view

triangulation from those labeled 2D keypoints, and finally, the object 6D poses are solved from

3D keypoints as an Orthogonal Procrustes problem and propagated to all frames. In TOD, the

authors also introduced a method to record ground truth depth images: they record the positions

of transparent objects in the scene, and put their opaque counterparts that share the same shape

at the same pose in separate collects. This pipeline was also used for real-world data collection
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in ClearGrasp [161], however, it’s extremely inefficient to replace transparent objects and their

counterparts repetitively. Moreover, it is unclear how or whether this approach could be applied

to data collection in complex scenes with cluttered objects as is typical in household settings. In

Xu et al. [196], transparent objects are placed in several fixed locations relative to AprilTag arrays,

with pose distribution diversity achieved by attaching a camera to a robot end-effector. This method

still restricts the relative position between objects and is inefficient for complex scenes. In Fang et

al. [53], all objects are attached to a large visual IR marker so that an optical tracking algorithm

can estimate the objects’ 6D poses. In this way, the collection can support dynamic scenes. On the

other hand, all the object instances in collected data are accompanied by visually obscuring external

labels which may not exist in natural environments.

Overall, datasets except for StereObj1M are still not large-scale and require external efforts on

hardware, such as deploying robotic arms, calibration between multiple sensors, fiducial or optical

markers. Instead of using markers or complex robotic apparatuses, we take advantage of an existing

labeling system, ProgressLabeller [29], that is based on visual SLAM to produce accurate camera

poses efficiently on recorded RGB-D videos. There are two assumptions in our labeling pipeline,

both of which can be easily met: our pipeline assumes static scenes during video capturing and that

scene backgrounds have adequate RGB features for visual SLAM processing.

6.2.2 Transparent Depth Completion and Object Pose Estimation

Zhang et al. [212] presented early work on the problem of depth completion from inaccurate

depth using deep neural networks. Zhang et al. introduced an approach to estimate surface normal

and boundaries from RGB images that then solved for the completed depth using optimization.

ClearGrasp [161] adapted the method to work for transparent objects and demonstrated robotic

grasping experiments on transparent objects from completed depth. Tang et al. [176] integrated the

ClearGrasp network structure with adversarial learning to improve depth completion accuracy. Zhu

et al. [217] proposed a framework that learns local implicit depth functions from the inspiration of

neural radiance fields and performs self-refinement to complete the depth of transparent objects. Xu
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et al. [196] proposed to first complete the point cloud by projecting the original depth using a 3D

encoder-decoder U-Net and then re-project the completed point cloud back to depth, and finally

complete this depth using another encoder-decoder network given the ground truth mask. Fang

et al. [53] also used a U-Net architecture to perform depth completion and demonstrated robotic

grasping capabilities with their approach.

KeyPose [112] was proposed for keypoint-based transparent object pose estimation on stereo

images. It outperformed DenseFusion [187], even with ground truth depth, and achieved high

accuracy on the TOD dataset. Chang et al. [20] proposed a 3D bounding box representation

and reported results comparable to KeyPose in multi-view pose estimation. StereObj1M [111]

benchmarked KeyPose and another RGB-based object pose estimator, PVNet [147], on more

challenging objects and scenes, where both methods achieved lower accuracy with respect to the

ADD-S AUC metric (introduced in [192]) with both monocular and stereo input. Xu et al. [195]

proposed a two-stage pose estimation framework that performs image segmentation, surface normal

estimation, and plane approximation in the first stage. The second stage then combines output from

the first stage with color and depth RoI features for input to an RGB-D pose estimator originally

designed for opaque objects [180] to regress 6D object poses. This method also outperformed

DenseFusion and [180] fed with ClearGrasp output depth by a large margin. In this paper, we

evaluate how well state-of-the-art RGB-D methods [73] designed for opaque object pose estimation

can perform on transparent objects compared with [195].

6.3 Dataset

6.3.1 Dataset Objects and Statistics

As shown in Figure 6.3, there are 63 objects included in the ClearPose dataset. There are 49

household objects, including 14 water cups, 9 wine cups (with a thin stem compared with water

cups), 5 bottles (with an opening smaller than the cross-section of the cylindrical body), 6 bowls, 5

containers (with 4 corners while bowls are classified with round shapes), and several other objects
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like pitcher, mug, spoon, etc. Moreover, the dataset contains 14 chemical supply objects, including

a syringe, a glass stick, 2 reagent bottles, 3 pans, 2 graduated cylinders, a funnel, a flask, a beaker,

and 2 droppers.

Figure 6.3: Objects included in the ClearPose dataset. On the left, we show the rendered CAD models for each object.
From top to bottom there are bowls and plates (1st row), containers and bottles (2nd row), wine cups, two mugs and a
pitcher (3rd row), water cups (4th row), and spoons, a fork, knives as well as chemical supplies (bottom row). On the
right, we show real images of household objects on the top right, and chemical supplies on the bottom right.

All the images are collected using a RealSense L515 RGB-depth camera, with a raw resolution

of 1280×720. After object pose annotation, the central part of each image is cropped and reshaped

to 640×480 for reduced storage space and faster CNN training and inference. For the training set,

we separate all 63 objects into 5 separate subsets and collected 4-5 scenes with different backgrounds

for each subset. Each scene is scanned by the hand-held camera moving around the tabletop scene

at 3 different heights with 3 different lighting conditions (bright room light, dim room light, dim

room light with sidelight from a photography lighting board). For the testing set, as the appearance

of transparent objects depends on their context within a scene, we consider 6 different test cases and

collect corresponding scenes as follows: (1) different backgrounds: novel backgrounds that never

appeared in the training scenes with each object subset. (2) heavy occlusions: cluttered scenes each

with about 25 objects that form multiple layers of occlusion when viewed from the table’s side. (3)

translucent/transparent covers: scenes with all transparent objects placed inside a translucent box.

(4) together with opaque objects: transparent objects placed together with opaque YCB and HOPE

objects, which did not appear in the training set. (5) filled with liquid: scenes with transparent

objects filled with different colored liquid. (6) non-planar configuration: scenes with objects placed
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Figure 6.4: Distribution of instance annotations and viewpoint orientation coverage statistics for every object in the
ClearPose dataset. The ‘kitchen’ category includes fork, spoon, knife, mug, plate and pitcher objects.

onto different surfaces with multiple heights. Sample RGB images from both training and test sets

are included in Figure 6.2.

We calculate several statistics about the ClearPose dataset. In total there are 362,325 RGB-

D frames captured in 56 scenes, with 4,927,806 object instance annotations with 6 DoF poses,

segmentation masks, surface normals, and ground truth depth images. The distribution of object

instance annotation and camera viewpoint coverage are shown in Figure 6.4 colored by object

category, where we see our dataset has roughly even viewpoint coverage for most objects. Viewpoint

coverage is calculated by projecting collected object orientations onto a unit sphere and counting

the covered region percentage over the sphere’s surface. For symmetrical objects, regions with the

same object appearance are considered together. Some objects like plates, forks, large bowls can

only be placed in certain orientations, so they have reduced viewpoint coverage. The 2nd water cup

was broken during the data collection process so it has fewer instance annotations.

6.3.2 Pose Annotation

We use the ProgressLabeller [29] to annotate the 6D poses of transparent objects and render

object-wise segmentation masks, ground truth depths, surface normals, etc. from the labeled poses.

As shown in Figure 6.5, the first step of the ProgressLabeller pipeline is to run ORB-SLAM3 [16] on

collected RGB-D video frames to produce camera pose estimates. During data collection, we notice
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Figure 6.5: Transparent object pose annotation pipeline using ProgressLabeller. On top-left we show one sample of
aligned RGB-D images from continuous streams captured by the camera. The frames are fed into visual SLAM to
estimate camera trajectory, then the objects’ poses are annotated in a multi-view silhouette alignment interface shown at
the bottom-right. Finally, the object poses, surface normals, and fixed depths are calculated and rendered as output.

ORB-SLAM3 sometimes couldn’t estimate camera pose well in case of extreme transparent object

clutter, where background RGB features are heavily distorted. In these cases, the camera view needs

to capture some background area or other landmark objects that can provide stable features. The

next step is to import the reconstructed scene (cameras and point cloud) into the Blender workspace,

select several camera views from different orientations, and import the object 3D CAD model into

the workspace. Then, the object silhouettes/boundaries can be directly compared and matched with

original RGB images from multiple views simultaneously when the user drags the object across

the scene to tune its position and orientation. Figure 6.5 shows an example case of a matched

transparent bottle. Optionally, the user can select to first locate the object onto the 2D fitting plane

of the support table, etc., as shown on top-left of Figure 6.5. After labeling all objects’ poses in the

3D workspace, their poses in every camera frame are calculated by dividing them with estimated

camera poses. The output ground truth depth images (fixed depth) are generated by overlaying

rendered object CAD model depth to the original depth images. Then the surface normals are
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calculated from the depth images. It takes around 30 minutes to finish labeling one scene using this

pipeline, including visual SLAM for camera pose estimation, object pose manual alignment, and

output image rendering.

6.4 Benchmark Experiments

In this section, we provide benchmark results of recent research on depth-related transparent

object perception using deep neural networks, including scene level depth completion, and both

instance-level and category-level RGB-D pose estimation. As mentioned in Section 6.3.1, we test

the generalization capability of such systems on 6 aspects of appearance novelty with transparent

objects: new background, heavy occlusion, translucent cover, opaque distractor objects, filled with

liquid, and non-planar placement. Specifically, around 200K images are selected for training, and

for each of 6 test cases, 2K images from corresponding scenes are randomly sampled to compose

the testing set for evaluation.

6.4.1 Depth Completion

We selected two recent depth completion works that are publicly available, ImplicitDepth [217]

and TransCG [53] as baseline methods for the depth completion task on transparent object scenes.

(ClearGrasp [161] was shown to be less accurate than both works, and Transparenet [196] was

released around the date of this submission.) ImplicitDepth is a two-stage method that learns local

implicit depth functions in the first stage through ray-voxel pairs similar to neural rendering and

refines the depth in the second stage. TransCG is built on DFNet [79] which was initially developed

for image completion. We trained both networks following their original papers’ training iterations

and hyper-parameters. Specifically, ImplicitDepth was trained on a 16G RTX3080 GPU with a

0.001 learning rate and iterated around 2M frames for each of the two stages. TransCG was trained

on an 8G RTX3070 GPU with a fixed 0.001 learning rate and iterated around 900K frames in total.

Both works use Adam as the optimizer. Then we evaluated the two works on 6 test sets mentioned
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in Section 6.3.1 with metrics defined in [50]. The results are shown in Table 6.2. TransCG surpassed

ImplicitDepth in most tests with fewer training iterations, which implies that methods using DFNet

can outperform designs using voxel-based PointNet for transparent depth completion. Across

different tests, both methods perform poorly in Translucent Cover scenes and achieved the best

performance in New Background scenes. Other scene variations such as Filled Liquid, Opaque

Distractor, and Non Planar do not substantially impact the methods’ accuracy. Figure 6.6 shows

examples of qualitative results from both methods compared with the ground truth.

Table 6.2: Depth completion benchmark results of ImplicitDepth and TransCG on 6 different test scenarios of the
ClearPose dataset.

Testset Metric RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑

New Background
ImplicitDepth 0.07 0.05 0.04 67.00 87.03 97.50
TransCG 0.03 0.03 0.02 86.50 97.02 99.74

Heavy Occlusion
ImplicitDepth 0.11 0.09 0.08 41.43 66.52 91.96
TransCG 0.06 0.04 0.04 72.03 90.61 98.73

Translucent Cover
ImplicitDepth 0.16 0.16 0.13 22.85 41.17 73.11
TransCG 0.16 0.15 0.14 23.44 39.75 67.56

Opaque Distractor
ImplicitDepth 0.14 0.13 0.10 34.41 55.59 83.23
TransCG 0.08 0.06 0.06 52.43 75.52 97.53

Filled Liquid
ImplicitDepth 0.14 0.13 0.11 32.84 53.44 84.84
TransCG 0.04 0.04 0.03 77.65 93.81 99.50

Non Planar
ImplicitDepth 0.18 0.16 0.15 20.34 38.57 74.02
TransCG 0.09 0.07 0.07 55.31 76.47 94.88

6.4.2 Instance-Level Object Pose Estimation

There is one recent work of Xu et al. [195] focusing on transparent object pose estimation

using raw RGB and depth images. This work doesn’t have source code publicly available, so we

re-implemented the proposed method following the original paper for inclusion in our benchmark

analysis. This method is implemented as a two-stage pipeline, for which we trained Mask R-

CNN [71] for instance-level segmentation and DeepLabv3 [24] for surface normal estimation, and

with an XYZ 3D coordinate map of the supporting plane feature in the first stage. The second stage

replicates most of the architecture and loss functions described in [180] to ultimately regress dense
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Figure 6.6: Qualitative depth completion results. From left to right, there are RGB image, raw depth, ground truth depth
rendered using object CAD models, completed depth by TransCG and ImplicitDepth.

pixel-wise 3D translation, 3D rotation delta from a set of fixed rotation anchors, and confidence

scores. In practice, we trained the networks on an RTX2080-SUPER GPU. Mask R-CNN has

trained 5 epochs with SGD optimizer, batch size of 5, and learning rate of 0.005. DeepLabv3 was

trained 2 epochs with Adam optimizer, batch size of 4 and learning rate of 0.0001, and second stage

network was trained around 180K iterations with Adam optimizer, batch size of 4, and learning rate

of 0.0005. We compare this method [195] with a state-of-the-art RGB-D pose estimator that was

originally designed for opaque objects, FFB6D [73]. The FFB6D estimator follows a two-stream

RGB and point cloud encoder-decoder architecture with fusion between blocks. FFB6D is trained
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on a 16G RTX3080 GPU for 5 epochs with batch size 6. All the hyper-parameters follow the default

value from the original implementation. For our analysis of FFB6D pose estimation performance,

we run experiments with different depth options in training and testing: with raw, ground truth, and

completed depth from TransCG, as detailed in Table 6.3.

Table 6.3: Pose estimation accuracy comparison on different test sets of the ClearPose dataset. FFB6Dr/r refers to
train and test FFB6D model both on raw depth. Similarly, FFB6Dg/c, FFB6Dg/g refer to train on ground truth, test on
completed depth from TransCG, and train and test both on ground truth, respectively. The values are averaged across all
objects in the dataset.

Testset Metric Xu et al. FFB6Dr/r FFB6Dg/c FFB6Dg/g

New Background Accuracy 50.958 44.264 49.517 59.694
ADD(-S) 45.233 43.452 47.691 58.224

Heavy Occlusion Accuracy 24.193 14.723 15.160 26.331
ADD(-S) 22.953 17.869 17.862 31.875

Translucent Cover
Accuracy 14.353 5.5617 4.5345 13.433
ADD(-S) 14.311 7.5983 5.8054 17.620

Opaque Distractor
Accuracy 42.630 0.4618 1.3331 2.3525
ADD(-S) 39.036 0.7628 1.5516 3.0685

Filled Liquid
Accuracy 34.500 7.6908 9.0584 16.228
ADD(-S) 32.251 11.153 10.828 18.583

Non Planar
Accuracy 21.024 7.4924 7.5843 15.567
ADD(-S) 18.411 7.8021 6.7339 16.986

For evaluation, we use two metrics based on Average-point-Distance (ADD and ADD-S)

from [192]. ADD is calculated as the average Euclidean distance of corresponding point pairs from

two object point clouds separately at the ground truth pose and predicted pose. ADD-S is calculated

as the minimum distance of every point from the predicted point cloud to the ground truth point

cloud. In Table 6.3, ‘Accuracy’ is calculated as the percentage of all pose estimates on the test set

with ADD error less than 10cm. ‘ADD(-S)’ is calculated as Accuracy-Under-Curve area integrated

from 0-10cm error, which is then scaled from 1 to 100 as the percentage.

As shown in Table 6.3, from the comparison between different training and testing combination

within FFB6D, the upper bound performance appears when the network are both trained and tested

on ground truth depth. When both the training and testing data come to raw, the metric drops a lot.
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Figure 6.7: Visualization of pose estimation in ClearPose dataset. From left to right, they are raw image, ground truth
object poses, pose estimation results of method from Xu et al., FFB6Dg/g , FFB6Dg/c, FFB6Dr/r. From top to bottom,
results are shown in different test scenes in Table 6.3. Objects are projected to color masks based on their pose estimates,
with their 6DoF poses marked as the red-green-blue coordinate frame.

Obviously, inaccurate depth would be the difficulty for transparent object pose estimation. It should

be mentioned that training on ground truth depth, testing on completed depth (from TransCG) almost

display the same accuracy. Although TransCG is good at depth completion, the disparity between

ground truth and depth completion would make the network in vain. Generally, the easiest test case

is New Background, and the accuracy drops a lot in the other 5 scenarios. When we compare the

accuracy of Xu et al. with variants of FFB6D, we find they are comparable in New Background,

Heavy Occlusion, Translucent Cover, and Non Planar scenes, while Xu et al. is much better in

Opaque Distractor and Filled Liquid scenes. One possible reason is that there are some unseen

colors mixing in the transparent objects, adding remarkable noise to object keypoint regression

84



during the FFB6D inference process, which is not used by Xu et al. Overall, the pose estimation

accuracy of current methods is still much worse than that on opaque objects with RGB features

(with ADD-S around 90 on public datasets [78]). Some qualitative examples of pose estimates are

shown in Figure 6.7.

6.5 Discussions

There are some common classes of objects with transparency/translucency not included in our

dataset, for example, those with colored transparent/translucent materials, with markers or labels,

together with opaque parts, etc. Instead, our focus in the ClearPose dataset is to investigate pure

transparency that exhibits relatively few features for perception. On the other hand, we anticipate the

open-source ProgressLabeller [29] will facilitate more large-scale customized transparent datasets

in the future.

As for benchmarking perception models, we didn’t include a complete list of recent state-of-

the-art approaches due to resource constraints (i.e. compute and time limitations). Based on our

current dataset and benchmark results, there are several possible extensions: (1) Comparison of

RGB-only pose estimators with RGB-D methods that are free of transparent object broken depth

issues. (2) Category-level pose estimation for transparent objects, for which the ClearPose dataset

has categories of bowls, bottles, wine cups, etc. that are with similar 3D shape and topology. (3)

Neural rendering on transparent objects considering environment contexts, such as varied lighting

and occlusions. (4) Transparent object grasping and manipulation experiment in practical scenes,

including the 6 test scenarios mentioned in the benchmark.

Besides, an especially interesting problem emerging from our heavy cluttered, and translucent

covered test scenes is the multi-layer appearance of transparent objects. As shown in Figure 6.8,

because of transparency/translucency, some image pixels could belong to more than one object.

New detection and segmentation annotation rules, such as bounding box non-maximum suppression

threshold, or segmentation mask format over the image, could be proposed and explored based on
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Figure 6.8: Examples of multi-layer transparent object appearance. In the left image, the annotated bounding boxes
show large overlap between object pairs, where the objects behind are still perceivable in some cases with less light
distortion. In the right image, objects behind the translucent surface are still detectable as well.

our dataset as future work.

6.6 Summary

In this paper, we described the contribution of ClearPose, a new large-scale RGB-D transparent

object dataset with annotated poses, masks, and associated labels created using a recently proposed

pipeline. We performed a set of benchmarking experiments on depth completion and object pose

estimation tasks using state-of-the-art methods over 6 different generalization test cases that are

common in practical scenarios. Results from our experiments demonstrate that there is still much

room for improvement in some cases, such as heavy clutter, transparent objects filled with liquid, or

being covered by other translucent surfaces. The dataset and benchmark code implementations will

be made public with the intention to support further research progress in transparent RGB-D visual

perception.
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CHAPTER 7

TransNet: Transparent Object Manipulation Through

Category-Level Pose Estimation

7.1 Motivation

From glass doors and windows to kitchenware and all kinds of containers, objects with transpar-

ent materials are prevalent throughout daily life. Thus, perceiving the pose (position and orientation)

of transparent objects is a crucial capability for autonomous perception systems seeking to interact

with their environment. However, transparent objects present unique perception challenges both in

the RGB and depth domains.

For RGB, the color appearance of transparent objects is highly dependent on the background,

viewing angle, material, and lighting condition, due to light reflection and refraction effects. For

depth, common commercially available depth sensors record mostly invalid or inaccurate depth

values within the transparent region. Such visual challenges, especially missing detection in the

depth domain, pose severe challenges for autonomous object manipulation and obstacle avoidance

tasks. This paper addresses these challenges by studying how category-level transparent object pose

estimation may be achieved using end-to-end learning.

Recent works have shown promising results on grasping transparent objects by completing the

missing depth values followed by the use of a geometry-based grasp engine [161, 81, 53], transfer

learning from RGB-based grasping neural networks [189], light-field feature learning [215], or

domain-randomized depth noise simulation [39]. For more advanced manipulation tasks such
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as rigid body pick-and-place or liquid pouring, geometry-based estimations, such as symmet-

rical axes, edges [148] or object poses [121, 195, 39], are required to model the manipulation

trajectories. Instance-level transparent object poses could be estimated from keypoints on stereo

RGB images [112, 111], a light-field camera [216, 214], or directly from a single RGB-D im-

age [195] with support plane assumptions. Recently emerged large-scale transparent object

datasets [161, 196, 111, 53, 30] pave the way for addressing the problem using deep learning.

In this paper, we set out to extend the frontier of 3D transparent object perception by building

upon recent work. We introduce TransNet [209], a category-level pose estimation pipeline for

transparent objects that outperforms a state-of-the-art baseline. We further explore the effect of

input modalities, feature embedding methods, and depth-normal consistency through the learning

process to provide insights for future research. Moreover, we build an autonomous transparent

object manipulation system using TransNet and demonstrate its efficacy in pick-place and pouring

tasks.

7.2 Related Work

7.2.1 Transparent Object Visual Perception for Manipulation

Transparent objects must be perceived before they can be acted on. Lai et al. [101] and Khaing et

al. [93] developed CNN models to detect transparent objects from RGB images. Xie et al. [194]

proposed a deep segmentation model that achieved state-of-the-art accuracy. ClearGrasp [161]

employed depth completion for use with pose estimation on robotic grasping tasks, where they

trained three DeepLabv3+ [25] models to learn transparency mask, surface normal, and boundary,

respectively. Follow-on studies developed different approaches for depth completion, including

implicit functions [217], NeRF reconstruction [81], combined point cloud and depth features [196],

adversarial learning [176], multi-view geometry [20], RGB image completion [53], and sim2real

transfer [39]. Weng et al. [189] used transfer learning from the RGB to the depth sensor domain

without completing raw depth. For instance-level pose estimation, Xu et al. [195] utilized segmen-
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tation, surface normal, and image coordinate UV-map as input to a network similar to [180] that can

estimate 6 DOF object pose. Keypose [112] proposed to estimate 2D keypoints and regress object

poses from stereo images using triangulation. For other special sensors, Xu et al. [199] used light-

field images to perform segmentation using a graph-cut-based approach. Kalra et al. [90] trained

Mask R-CNN [71] using polarization images as input to outperform the baseline that was trained

on only RGB images by a large margin. Zhou et al. [216, 215, 214] employed light-field images to

learn features for robotic grasping and object pose estimation. Along with the proposed methods,

massive datasets, across different sensors and both synthetic and real-world domains, have been

collected and made public for various related tasks [194, 161, 112, 214, 90, 111, 217, 196, 53, 30].

Compared with these previous works, and to the best of the authors’ knowledge, we propose the first

category-level pose (6D pose + 3D scale) estimation approach developed specifically for transparent

objects.

7.2.2 Opaque Object Category-level Pose Estimation

Category-level object pose estimation aims to estimate unseen objects’ 6D pose within seen

categories and their scale or canonical shape. Wang et al. [188] introduced the Normalized Object

Coordinate Space (NOCS) for dense 3D correspondence learning and solved for object pose and

scale using the learned NOCS map and masked depth [184]. More recent works explored different

aspects to improve pose estimation accuracy. A category-level shape prior is found to be beneficial

for pose estimation accuracy in [179] and further improved in [23, 26, 47]. DualPoseNet [106], 6D-

ViT [218], ACR-Pose [52], and CPPF [203] proposed to incorporate rotation-invariant embedding,

Transformer networks, Generative Adversarial Networks, and deep point-pair-feature, respectively.

However, these techniques require high-quality depth input provided by opaque objects with

Lambertian light reflectance. One recent work by Dai et al. [39] proposed a data generation system

that simulates the noise on non-Lambertian surfaces of active stereo depth cameras and demonstrated

its usage in category-level pose estimation and robotic grasping.

Compared with these techniques, TransNet takes advantage of recent advances in transparent
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depth completion approaches and directly learns category-level pose estimation from imperfect

depth predictions, carefully considering multi-modal input, feature embedding architecture, and

depth-normal consistency.

7.3 TransNet

Figure 7.1: The two-stage architecture of TransNet. Image patches of RGB, ray direction, surface normal, and completed
depth are concatenated and embedded to learn the translation, x-axis, z-axis, and scale separately of the estimated
category-level pose.

Given an input RGB-D pair (I , D) viewing a scene that includes transparent objects, our goal is

to predict the objects’ 6D rigid body transformations [R|t], 3D scales s in the camera coordinate

frame and object classes within a predefined category set, where R ∈ SO(3), t ∈ R3 and s ∈ R3
+.

In this problem, inaccurate or invalid depth readings exist within the image region of transparent

objects (represented as a binary mask). To solve the category-level pose estimation problem, we

propose a novel two-stage deep neural network pipeline, TransNet.

7.3.1 Architecture Overview

TransNet first applies a fine-tuned instance segmentation module to extract individual object

patches from the overall image. As shown in Figure 7.1, in the first stage, TransNet takes the patches
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as input and extracts multi-modal features corresponding to each transparent object instance. Depth

completion and surface normal estimation are applied on RGB-D patches to obtain depth-normal

pairs through cross-task consistency learning. The estimated depth-normal pairs, RGB, and ray

direction patches are concatenated to feature patches, followed by a random sampling strategy within

the instance masks to generate features referred to as the generalized point cloud. In the second

stage, the generalized point cloud is processed through Pointformer [218] to produce embedded

feature vectors. The pose is then separately estimated in four decoder modules for object translation,

x-axis, z-axis, and scale, respectively.

7.3.2 Object Instance Detection and Segmentation

Similar to other category-level pose estimation work [47], we fine-tune a Mask R-CNN [71]

model to obtain the object’s bounding box B, segmentation maskM and category label Pc. Patches

of ray direction RB, RGB IB and raw depth DB are extracted according to the bounding box B

and serve as input to the first stage of TransNet. The UV mapping itself is an important cue when

estimating poses from patches [83], as it provides information about the relative position and size

of the patches within the overall image. We use ray direction instead of UV mapping because it

also contains camera intrinsic information. Here the ray directionR represents the direction from

camera origin to each pixel in the camera plane under the camera frame. For each pixel (u, v):

p =

[
u v 1

]T
R =

K−1p

‖K−1p‖2

(7.1)

where p is the homogeneous UV coordinate in the image plane and K is the camera intrinsic matrix.

7.3.3 Cross-task Consistency for Depth-Normal Pairs

We apply a recent state-of-the-art approach, TransCG [53] for depth completion (FD) and

U-Net [155] for surface normal estimation (FSN ).
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D̂B = FD (IB,DB)

ŜB = FSN
(
D̂B
) (7.2)

where the depth estimation D̂B is used as input to the surface normal estimation module. The two

models are first trained separately with depth and surface normal losses, Ld and Ls, and then trained

together using cross-task consistency. Following [204], we design a consistency loss Lcon to train

both networks. Both Ld and Ls are implemented using L2 loss for depth completion and surface

normal estimation within transparent maskM.

Ld =
1

Np

∑
p∈M

∥∥∥D̂p −D∗p∥∥∥2
Ls =

1

Np

∑
p∈M

∥∥∥Ŝp − S∗p∥∥∥2
Lcon =

1

Np

∑
p∈M

∥∥∥Ŝp −FSN(D∗B)p

∥∥∥2
(7.3)

whereD∗ and S∗ are the ground truth depth and surface normal images, and Np refers to the number

of masked pixels, respectively. During training, these losses are used according to the perceptual

loss training strategy described by Zamir et al. [204]. Following cross-task consistency training, the

depth completion and surface normal estimation networks are frozen and used to generate input for

the second stage of TransNet.

7.3.4 Generalized Point Cloud

The generalized point cloud is implemented as a concatenation of multi-modal input features:

IB, RB, D̂B, and ŜB. Specifically, we randomly sample N pixels within the transparent maskM

of the feature patch to obtain a generalized point cloud P ∈ RN×10. The experiment described in

Section 7.4.2 explores the best choice of features for use in the generalized point cloud.
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7.3.5 Transformer Feature embedding

Given a generalized point cloud P corresponding to a detected object, TransNet employs

Pointformer [218], a multi-stage transformer-based point cloud embedding method to encode object

features Pemb ∈ RN×demb .

Pemb = FPF (P) (7.4)

Experiments described in Section 7.4.2 evaluate the effectiveness of using alternative point cloud

embedding methods, such as 3D-GCN [107], for use in the transparent object context with noisy

depth data.

Next, a Point Pooling layer (a multilayer perceptron (MLP) with max-pooling) is applied to

extract global features Pglobal. The global features are then concatenated with local features Pemb

and a one-hot category Pc label from the instance segmentation network. The concatenations result

in a feature vector to be used as input to the decoder:

Pglobal = MaxPool (MLP (Pemb))

Pconcat = [Pemb,Pglobal,Pc]
(7.5)

7.3.6 Pose and Scale Estimation

After the feature embeddings are extracted based on multi-modal input, four separate decoders

are applied to estimate the object’s translation, x-axis, z-axis, and scale.

Translation Residual Estimation The translation decoder Ft learns a 3D translation residual from

the object translation prior tprior calculated as the average of predicted 3D coordinate over the

sampled pixels in P .

tprior =
1

Np

∑
p∈N

K−1 [up vp 1]T D̂p

t̂ = tprior + Ft ([Pconcat,P ])

(7.6)

93



where up, vp are the 2D pixel coordinate for the selected pixel. We use the L1 loss between the

ground truth and estimated position:

Lt =
∣∣t̂− t∗∣∣ (7.7)

Rotation Estimation

We decouple the 3D rotation matrix R into two orthogonal axes, x-axis ax and z-axis az, and

estimate them separately. The network learns confidence values to deal with the problem that the

regressed two axes are not orthogonal:

[âi, ci] = Fi (Pconcat) , i ∈ {x, z}

θz =
cx

cx + cz

(
θ − π

2

)
θx =

cz
cx + cz

(
θ − π

2

) (7.8)

where cx, cz denotes the confidence for the learned axes. θ represents the angle between ax and az.

θx, θz are obtained by solving an optimization problem and then used to rotate ax and az within

their common plane.

For the training loss, we use L1 plus cosine similarity loss Lrx ,Lrz for each individual axis.

Angular loss, La, is also used to constrain a perpendicular relationship between the two axes and

confidence loss Lconx ,Lconz to learn axis confidence:

Lri = |âi − a∗i |+ 1− 〈âi, a∗i 〉 , i ∈ {x, z}

La = 〈âx, âz〉

Lconi
= |ci − exp (α ‖âi − a∗i ‖2)| , i ∈ {x, z}

(7.9)

where α is a constant to scale the distance. Thus the overall loss for the second stage is:

L =λsLs + λtLt + λrxLrx + λrzLrz+

λraLa + λconxLconx + λconzLconz

(7.10)
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where λrx , λrz , λra , λt, λs, λconx , λconz are weights for each loss.

Scale Residual Estimation Similar to the translation decoder, we define the scale prior sprior as

the average of scales of all object 3D CAD models within each category. Then the scale of a given

instance is calculated as follows:

ŝ = sprior + Fs (Pconcat) (7.11)

The loss function is defined as the L1 loss between the ground truth scale and estimated scale:

Ls = |ŝ− s∗| (7.12)

7.4 Experiments

Dataset We evaluated TransNet and baseline models on the Clearpose Dataset [30] for depth

completion, surface normal estimation, and categorical transparent object pose estimation tasks.

As shown in Figure 7.2, 33 object instances from 3 ClearPose categories (bowl, water cup, and

wine cup) were selected for evaluating the relevant models on each task. 25 of the objects are used

in the training set, totaling 190K RGB-D images. Hence, 8 objects not seen during training are used

for testing, with 60K test images available. In practice, we train the models using the full 190K

image training set and uniformly sample images of the test object to form a representative 5K image

test set. For the robot manipulation experiments, we used 1 bowl object and 1 wine cup object from

the test set along with another 1 new wine cup and 2 new water cups purchased from the market

that fit the robot parallel gripper.

Implementation Details Our model was trained in several stages. For experiments included in the

ablation study and baseline comparison, ground truth instance segmentations are used to generate

input patches, while for the robot experiments, a Mask R-CNN [71] model fine-tuned on the

Clearpose dataset is used for generating input patches. The image patches were generated from

object bounding boxes and re-scaled to a fixed shape of 256× 256 pixels. Cross-task consistency
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Figure 7.2: Transparent objects used in experiments. The image on the left show the 25 objects in the training set. The
image on the right shows 8 novel objects in the test set for vision evaluation and robotic experiments.

training is performed using the AdamW optimizer [119] with learning rate of 1e−3. The pretrained

surface normal estimation model provided by Zamir et al. [204] is used for initial network parameters.

Cross-task training hyperparameters follow the perceptual loss strategy described in [204] until

convergence using a batch size of 8. For TransCG, the AdamW optimizer [119] is used for training

with λsmooth = 0.001 and the overall learning rate is 0.001 to train the model until converge. For

U-Net, we used the Adam optimizer [94] with a learning rate of 1e−4 to train the model until

convergence. For both surface normal estimation and depth completion, the batch size was set

to 24. For the second stage, the training hyperparameters of Pointformer and pose and scale

estimation were selected following [218, 47]. The learning rate for all loss terms were kept the same

during training, {λrx , λrz , λra , λt, λs, λconx , λconz} = {8, 8, 4, 8, 8, 1, 1} e−4. The Ranger optimizer

[109, 202, 211] was used with a linear warm-up for the first 1000 iterations, then a cosine annealing

method at the 0.72 anneal point was used. All the experiments for pose estimation were trained on a

16G RTX3080 GPU until loss convergence.

Evaluation metrics For category-level pose estimation, this study follows [47, 26] in using 3D

intersection over union (IoU) between the ground truth and estimated 3D bounding box at 25%,

50% and 75% thresholds. Additionally, 5◦5cm, 10◦5cm, and 10◦10cm are used as metrics. The

reported measurements for each of these three metrics represent the percentage of a model’s pose

96



estimates with error less than the specified metric’s degree and distance thresholds.

For depth completion evaluation, the root of mean squared error (RMSE), absolute relative error

(REL) and mean absolute error (MAE) are used as metrics along with δ1.05, δ1.10, δ1.25, where δn is

calculated as:

δn =
1

Np

∑
p

I

(
max

(
D̂p
D∗p

,
D∗p
D̂p

)
< n

)
(7.13)

where I(·) represents the indicator function. D̂p and D∗p represent estimated and ground truth depth

for each pixel p.

For surface normal estimation, RMSE and MAE errors of normalized vectors are used as metrics

with thresholds of 11.25◦, 22.5◦, and 30◦. Here, measurements reported for the 11.25◦ metric

represent the percentage of estimates with an angular distance less than 11.25◦ from the ground

truth surface normals. The mean angular error in degrees (MEAN) is also reported.

7.4.1 Comparison with Baseline

We chose one state-of-the-art categorical opaque object pose estimation model (GPV-Pose [47])

as a baseline, which was trained with estimated depth from TransCG [53] for a fair comparison.

From Table 7.1, TransNet outperformed the baseline in most of the metrics on the Clearpose

dataset. The 3D25 metric is relatively easy to achieve strong performance, so there is no substantial

difference between the two models’ corresponding 3D25 performance. When compared to the

baseline on the remaining metrics, TransNet achieved around a 3 × improvement on 3D75, 3.5 ×

on 10◦5cm, 10◦10cm and 8 × on 5◦5cm. Qualitative results are shown in Figure 7.3 for TransNet.

Table 7.1: Comparison with the baseline on the Clearpose Dataset.

Method 3D25 ↑ 3D50 ↑ 3D75 ↑ 5◦5cm ↑ 10◦5cm ↑ 10◦10cm ↑
GPV-Pose 95.4 65.1 13.2 2.7 12.5 15.5
TransNet 97.3 80.3 39.9 22.7 45.4 50.6
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Table 7.2: Ablation study for TransNet

Trial Embedding Generalized Point Cloud
Consistency Separate Category 3D25 ↑ 3D50 ↑ 3D75 ↑ 5◦5cm ↑ 10◦5cm ↑ 10◦10cm↑

PF 3D-GCN RGB Depth Normal Ray-direction
1 X X X X 98.3 72.7 17.6 6.6 22.5 28.0
2 X X X X 97.9 76.9 28.4 9.4 8.0 29.6
3 X X X X 95.4 61.6 11.6 3.6 15.3 31.3
4 X X X X X 98.4 81.6 34.4 13.0 38.6 45.1
5 X X X X X X 98.1 81.8 39.2 15.8 41.4 46.1
6 X X X X X X X 97.3 80.3 39.9 22.7 45.4 50.6

7.4.2 Ablation Study

In Table 7.2, we compared the performance of TransNet to that of modified versions of the

network architecture. The results of this study informed Trial 6 as the final architecture of TransNet

and the one that was used in robot experiments. Results from the ablation study may also be used to

guide future work in the area of transparent object pose estimation.

Embedding Method Between trial 1 and trial 2, we compared the effect of the embedding method,

3D-GCN [107] and Pointformer [218], on TransNet accuracy. The use of Pointformer resulted in

higher accuracy for TransNet on most metrics compared to when 3D-GCN was used. More details

are shown in Table 7.3. Crucially, when the ground truth depth was changed to estimated depth

(modeling the change from opaque to transparent setting), Pointformer retained substantially more

accuracy than 3D-GCN. A possible explanation for this result is based on how 3D-GCN propagates

information between nearest neighbors. While this is an efficient method for propagating information

locally, it suffered when given the noisy completed depth as input. Pointformer, on the other hand,

shares information across the whole point cloud, possibly contributing to increased robustness when

input data is noisy. Therefore, given depth with large uncertainty, the transformer-based embedding

method might be more powerful than embedding methods using nearest neighbors.

Modalities for Generalized Point Cloud The comparison of trials 24 was used to identify the

optimal combination of feature inputs for the generalized point cloud in TransNet. For trials 2 and

4, we compared the effect of adding the estimated surface normal to the generalized point cloud.

Results from this comparison imply that surface normals serve as a good complement when depth

estimation is not accurate, as in the transparent setting. For trials 3 and 4, we compared the potential
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Table 7.3: Comparison between different embedding methods

Depth type Embedding 3D25↑ 3D50↑ 3D75↑ 5◦5cm↑ 10◦5cm↑ 10◦10cm↑

Ground truth
3D-GCN 99.8 96.6 55.4 70.9 86.0 90.3

Pointformer 99.7 96.6 74.5 61.9 83.7 86.5

Estimation
3D-GCN 98.3 72.7 17.6 6.6 22.5 28.0

Pointformer 97.9 76.9 28.4 9.4 29.6 35.3

Table 7.4: Accuracy for depth-normal pair estimation

Depth Metrics RMSE↓ REL↓ MAE↓ δ1.05↑ δ1.10↑ δ1.25↑
w/o consistency 0.056 0.044 0.041 68.61 89.35 98.89
w consistency 0.057 0.044 0.041 70.49 89.47 98.57

Surface Normal Metrics RMSE↓MAE↓MEAN↓ 11.25◦↑ 22.5◦↑ 30◦↑
w/o consistency 0.19 0.13 11.43 56.75 88.45 96.64
w consistency 0.12 0.08 8.96 73.62 92.56 96.58

benefit of including ray-direction. Notably, the ray-direction input contains both camera intrinsic

and pixel positional information, which we hypothesize is critical for the network to be able to

model accurate 3D spatial relationships. All the metrics showed that including both surface normal

and ray-direction results in improved pose estimation accuracy.

Consistent Learning For trials 4 and 5 in Table 7.2, TransNet is trained without and with cross-

task consistency, respectively. For trial 4, both surface normal estimation and depth completion

networks in TransNet’s first stage are trained separately and without the Lcon loss. Results from this

comparison show that adding cross-task consistency training improved TransNet performance on

high accuracy metrics: 5◦5cm, 3D75. From Table 7.4, adding a cross-task consistency loss resulted in

improved accuracy for depth-normal pair estimation, particularly for the surface normal estimation

network. Therefore, cross-task consistent training improves the performance of category-level

transparent object pose estimation and is included in TransNet.

Separate Category As shown in Table 7.2 when comparing results in trial 5 and trial 6, it was

found that TransNet’s accuracy improves when a single instantiation of the model is trained per

category as opposed to being trained on multiple categories. Notably, this result is most apparent

for the high accuracy metric 5◦5cm
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Why TransNet Outperforms GPV-Pose Comparing GPV-Pose with the trial 1 model leads to an

observation that both models use 3D-GCN and a similar network architecture. The only difference

is that instead of using the generalized point cloud as input, GPV-Pose directly uses a point cloud

(the multiplication of depth and ray direction) as input. Yet, trial 1 outperforms GPV-Pose on

pose estimation tasks. We hypothesize that the camera intrinsic and pixel positional information

contained in ray-direction degrades in accuracy after being multiplied directly with noisy depth data

to form the point cloud input to GPV-Pose. In contrast, TransNet retains ray-direction and depth

information as distinct feature channels in the generalized point cloud with learned transformations

to combine each feature modality. These learned transformations potentially allow TransNet to be

more robust in the face of noisy depth data.

7.4.3 Robot Experiment

We used a Fetch robot for manipulation and an Intel RealSense L515 camera to take RGB-D

images as used in the ClearPose dataset. The robot-camera extrinsic calibration is done using

AprilTags [98]. Inspired from [31], we designed two robot manipulation tasks: pouring and pick-

and-place to evaluate the efficacy of TransNet to support robot manipulation of transparent objects

using 3 water cups, 2 wine cups, and 1 bowl not appearing in the training set.

For grasping the object, we calculate the approaching direction as orthogonal to the object’s

symmetrical axis and the grasp location as the object’s center point.

Pick-and-place This task is composed of a pick action and a place action. For the pick action, the

robot is to grasp a cup (either water cup or wine cup) on the table-top with its parallel gripper based

on its pose estimate from TransNet. For the place action, the robot is to place the cup upright in a

pre-defined location. The target poses for the robot’s gripper are solved by aligning the object’s

estimated bottom surface parallel to the target location surface with a 2 cm offset.

Pouring This task is composed of a pick action and a pouring action. The pick action follows

the same protocol as pick-and-place. For the pouring action, the robot moved the cup above the

bowl based on the bowl’s estimated location while also keeping the cup’s z axis upright to prevent
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Table 7.5: Robot experiment success rate

Task Objects #Pick Success Rate #Place(Pour) Success Rate

Pick & Place
water cup 16/20 80% 12/16 75%
wine cup 13/20 65% 12/13 92.3%

Pouring
water cup & bowl 15/20 75% 10/15 66.7%
wine cup & bowl 14/20 70% 11/14 78.6%

spilling. Then the content in the cup is poured into the bowl by tilting the cup’s z axis.

Result The poses and scales used by the robot are output directly from TransNet without additional

post-processing. Quantitative results measuring the robot’s success rate are included in Table 7.5.

TransNet enabled the robot to perform pour and pick-place actions with promising success rates.

Visualization examples are included in Figure 7.4.

7.5 Summary

In this paper, we introduced TransNet, a two-stage pipeline for category-level transparent object

pose estimation that outperformed the baselines. Ablation studies were performed to understand

the benefits of using multi-modal input, feature embedding modules, and cross-task consistency.

The efficacy of TransNet was demonstrated by enabling a robot system to perform transparent

object manipulation tasks with high success rates. In the future, we could further improve the pose

estimation accuracy as there is still a large gap between TransNet and state-of-the-art opaque object

datasets. One direction is to consider objects’ material information, as we observed a performance

gap between perceiving glass and plastic objects.
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Figure 7.3: Qualitative results of category-level pose estimates from TransNet. White bounding boxes depict ground
truth pose annotations, while colored boxes depict TransNet’s estimates. Different colors represent different categories.
The top two rows show accurate estimates, while the bottom row highlights inaccurate estimates when TransNet is
confronted with heavyily cluttered scenes. Objects with no bounding box correspond to categories not used during
training and evaluation. For axial symmetric objects, we use the ground truth x-axis to produce a 3D bounding box.
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Figure 7.4: Robotic experiments. The top row is the demo of pouring using a water cup and a bowl. The bottom row is
the demo of pick-and-place using two water cups. The left column is the initial state, the middle column is picking, and
the right column is pouring or placing.
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CHAPTER 8

Conclusion and Discussion

8.1 Conclusion

A practical manipulation robot should be able to perceive objects and accomplish tasks based

on the generalizable affordance representation in complex environments, such as varied lighting

conditions, object occlusions, unseen object instances, and challenging materials like transparency.

In this dissertation, we focused on the aforementioned difficulties in robot perception and contribute

methods and datasets to enable robustness to adversarial environment changes, generalizable

affordance across object instances, and scalablity through large-scale data collection, when facing

challenging robot manipulation scenarios.

In GRIP, we combined deep neural networks with probabilistic inference, to achieve fast and

robust pose estimation in dark environments. Based on the adversarial YCB dataset we collected,

we provide quantatitive evidence of better robustness of GRIP than pure neural networks. In ACF,

we proposed generalized object representation that could support affordance-based manipulation

tasks like grasp, pour, stir, etc., directly for novel object instances with recognized affordance

combinations. The learned 3D keypoint and axis estimation system could generate robot manip-

ulation trajectories and accomplish robotic tasks. In ProgressLabeller, we contribute a dataset

generation approach using video annotation. Based on visual SLAM camera trajectory estimation

and a multiview object pose annotation interface, a large-scale dataset could be annotated in a few

days. We show ProgressLabeller could provide even better accuracy on several public datasets

on object pose estimation. Further, we contribute the largest comprehensive RGB-D dataset of
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transparent objects, ClearPose with annotation from ProgressLabeller. ClearPose contains various

testing scenes, such as transparent containers filled with liquid, heavy occlusion between objects,

mixed opaque and transparent objects, etc. We then build a deep-learning based category-level pose

estimation approach, TransNet, which could learn from the vast data in ClearPose and generalize to

novel objects. Finally, we demonstrate TransNet could support pick-and-place as well as pouring

tasks on novel transparent objects based on the affordance representation proposed in ACF.

8.2 Limitations

There are several limitations for the proposed dissertation that could be further refined. First, we

make an assumption on the objects of interest as rigid objects. In this case, our system cannot deal

with deformable objects like towels and clothes [201]. To extend the current approach to deformable

object manipulation, proper object representation is necessary. However, this problem is highly

illposed and still remains an active research question. Second, in GRIP, we contributed a combined

discrimitive-generative perception pipeline, but later we did not further explore more advanced

systems, and explored on deep-learning based approaches instead. The main reason on this point

is that we cannot find a good way to accelerate current probabilistic inference approaches, for

example particle filters. There are concurrent works [114, 115] focusing on hardware acceleration

of such methods and they are potential improvements to the proposed perception system. Third, the

way of applying estimated object poses to real robotic movements is not carefully explored in this

dissertation. We demonstrated object pose-based grasping in GRIP and ProgressLabeller experi-

ments, and pouring and stirring actions in ACF experiments, but the actions are hardcoded manually.

The proposed system could be expanded to incorporate learning from human demonstration, or

reinforcement learning based on object pose estimates.
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8.3 Future Directions

The output of this paper could serve as a basis towards the goal of more generalized robotic

sensing and acting. In general, we aim to have robots to estimate the state of arbitrary objects within

novel environments, and also be able to accomplish the afforded tasks by the objects.

8.3.1 Novel Object Pose Estimation and Manipulation

From instance-level to category-level, the object pose estimation task is generalized gradually

to unseen objects from the training set. Recently there are publications [116] focused on the pose

estimation task over completely novel objects without a categorical prior. From the view of robotic

perception and manipulation, one first step to examine and utilize the pose estimates is to do

pose-based grasping over these unseen objects. Besides, how to transfer robot manipulation policy

from known objects to novel objects based on their pose estimates, or design robot learning systems,

could also be further explored.

8.3.2 Dense Reconstruction for Transparent Shapes

With the 3D object shape models, 2D depth measurements and camera trajectory provided in

ClearPose, dense reconstruction on transparent objects become a feasible research direction. Single-

view depth estimation of transparent shapes have been proved to support robotic grasping [161], yet

for 3D reconstruction, most existing works require complex optical hardware or setup, e.g., active

light source and light-field and polarization cameras, to recover the light rays through reflection and

refraction patterns, which is extremely difficult to integrate with a robot platform. A recent work

incorporates light reflection model into Neural Radiance Field (NeRF) [64], and it is possible to

also consider light refraction to deal with small scale objects for robotic manipulation.
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8.3.3 Affordance-grounded Robotic Task Execution

Affordance could serve as a better semantic representation than object in various robotic tasks.

Currently, affordance mostly serve as a label manually annotated over objects in datasets, and

they haven’t covered most of daily manipulation tasks. One direction is to collect a large-scale

affordance dataset including both visual representations like object detection/segmentation and

keypoints, and robot dynamic motion, like trajectories. Possibly language descriptions could be

annotated as well. One of our recent works [213] categorized everyday manipulation tasks by

motion constraints, which is an extension of the affordance coordinate frame proposed in this

paper. The work also includes a manipulation benchmark that provides language description,

multi-view camera observation, and object states during the task execution. Learning approaches on

category-level manipulation policy and task execution could be proposed based on this benchmark.

8.3.4 Human-factor Research in Robotic Data Annotation

ProgressLabeller [29] provides a way of annotating videos for 3D visual perception tasks, like

3D detection and 6D object pose estimation. Currently it has only been tested within a small

population of researchers on 3D object pose data generation. Based on this work, human-factor

research [200] could be explored focusing on improving the efficiency and user experience of this

system. We could also add more features to expand this system for adaptive data annotation on

dynamic scenes, non-rigid objects, or objects without known 3D CAD models.

8.4 Summary

This dissertation provides experience and insights in object-centric robotic visual perception

under complex environments. One insight to deal with potential neural network errors in adversarial

environments is to combine that with probabilistic generative methods. We propose GRIP as such an

approach robust to lighting changes and object occlusions. Another complimentary way is to enable
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fast real-world dataset creation. We contribute such a pipeline, ProgressLabeller, and demonstrate

its efficacy on improving end-to-end pose estimators. We also expand the applicability of the object

state estimates. We propose ACF as a representation that could be used to do tasks like pouring and

stirring with novel object instances. We finally integrate these factors into a ‘bartender bot’ that

could perceive and manipulation transparent objects by category, and accomplish a series of tasks

like pick-and-place and pouring liquid.
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[42] A. Depierre, E. Dellandréa, and L. Chen. Jacquard: A large scale dataset for robotic grasp
detection. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3511–3516. IEEE, 2018.

[43] K. Desingh, O. C. Jenkins, L. Reveret, and Z. Sui. Physically plausible scene estimation
for manipulation in clutter. In 2016 IEEE-RAS 16th International Conference on Humanoid
Robots (Humanoids), pages 1073–1080. IEEE, 2016.

[44] K. Desingh, S. Lu, A. Opipari, and O. C. Jenkins. Efficient nonparametric belief propagation
for pose estimation and manipulation of articulated objects. Science Robotics, 4(30), 2019.

[45] R. Detry, J. Papon, and L. Matthies. Task-oriented grasping with semantic and geometric
scene understanding. In IROS, pages 3266–3273. IEEE, 2017.

[46] J. G. C. Devol. Programmed article transfer, June 13 1961. US Patent 2,988,237.

[47] Y. Di, R. Zhang, Z. Lou, F. Manhardt, X. Ji, N. Navab, and F. Tombari. Gpv-pose:
Category-level object pose estimation via geometry-guided point-wise voting. arXiv preprint
arXiv:2203.07918, 2022.

[48] T.-T. Do, A. Nguyen, and I. Reid. AffordanceNet: An end-to-end deep learning approach for
object affordance detection. In ICRA, pages 1–5. IEEE, 2018.

112

https://developer.nvidia.com/isaac-sim
https://developer.nvidia.com/isaac-sim


[49] A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T.-K. Kim. Recovering 6d object
pose and predicting next-best-view in the crowd. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3583–3592, 2016.

[50] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a
multi-scale deep network. Advances in Neural Information Processing Systems, 27, 2014.

[51] I. Evtimov, K. Eykholt, E. Fernandes, T. Kohno, B. Li, A. Prakash, A. Rahmati, and D. Song.
Robust physical-world attacks on deep learning models. arXiv preprint arXiv:1707.08945,
1:1, 2017.

[52] Z. Fan, Z. Song, J. Xu, Z. Wang, K. Wu, H. Liu, and J. He. Acr-pose: Adversarial canonical
representation reconstruction network for category level 6d object pose estimation. arXiv
preprint arXiv:2111.10524, 2021.

[53] H. Fang, H.-S. Fang, S. Xu, and C. Lu. Transcg: A large-scale real-world dataset for
transparent object depth completion and grasping. arXiv preprint arXiv:2202.08471, 2022.

[54] H.-S. Fang, C. Wang, M. Gou, and C. Lu. Graspnet-1billion: A large-scale benchmark for
general object grasping. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11444–11453, 2020.

[55] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem proving
to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

[56] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Communications of the ACM,
24(6):381–395, 1981.

[57] W. Gao and R. Tedrake. kpam 2.0: Feedback control for category-level robotic manipulation.
IEEE RA-L, 2021.

[58] J. J. Gibson. The theory of affordances. Hilldale, USA, 1(2):67–82, 1977.

[59] J. J. Gibson and L. Carmichael. The senses considered as perceptual systems, volume 2(1).
Houghton Mifflin Boston, 1966.

[60] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

[61] S. R. Gouravajhala, J. Yim, K. Desingh, Y. Huang, O. C. Jenkins, and W. S. Lasecki. Eureca:
Enhanced understanding of real environments via crowd assistance. In Sixth AAAI conference
on human computation and crowdsourcing, 2018.

[62] M. Gualtieri, A. ten Pas, and R. Platt. Pick and place without geometric object models. In
2018 IEEE International Conference on Robotics and Automation (ICRA), pages 7433–7440.
IEEE, 2018.

113
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[77] T. Hodan, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and X. Zabulis. T-less: An rgb-d
dataset for 6d pose estimation of texture-less objects. In 2017 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 880–888. IEEE, 2017.
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