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Abstract

I introduce the concept of convention-affirming equilibrium (CAE) and study its impli-

cations in a number of settings. A convention-affirming equilibrium represents a stationary

outcome in a population of agents who do not know the strategies of other agents, but who

correctly understand the process they are embedded in and the reasoning and possible be-

liefs of other agents, and who observe a sample of the outcomes of play around them. In a

convention-affirming equilibrium, all agents believe that they are in some possible convention-

affirming equilibrium, but may be uncertain which is the true one. Because of the circularity

in this, convention-affirming equilibrium is defined setwise, with sets of convention-affirming

equilibria (CAE sets) being the primitive concept.

In the first chapter, I analyze the convention-affirming equilibria for a simple 2x2 coor-

dination game. If agents have a common prior, the set of convention-affirming equilibria

coincides with the set of Nash equilibria. If agents may think others have a different prior

than they do, there is a larger set of convention-affirming equilibria, which I characterize.

In the second chapter, I study the convention-affirming equilibria of a simple, two-stage

game of effort choice on a joint project. I focus on cases where most agents play according

to one of the four pure symmetric paths of play, and show that each such case can be

a convention-affirming equilibrium for some values of the payoff parameters. The results

highlight the importance of strategic uncertainty about the outcome of deviation, as distinct

from a known punishment path, as a reason why agents may conform to cooperative behavior
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widespread around them. They also highlight how the convention-affirming equilibrium

concept can give rise to forward induction-like reasoning in a way that arises naturally and

from first principles.

In the third chapter, I apply the convention-affirming equilibrium concept to a simple

model of matching and bargaining between two populations. I characterize a natural solution

set in which all matches result in immediate agreement on either the high wage or the low

wage. In the high-wage case, all agents are able to infer each other’s equilibrium strategies

from the available information. In the low-wage case, their equilibrium behavior instead

reflects their subjective confidence in the demands they can successfully make, which is prior-

dependent due to limited information. The results thus highlight how both strong strategic

inferences and subjective confidence (or lack thereof) in the absence of such inferences can

support convention-affirming equilibrium bargaining outcomes, and clarifies which outcomes

can be supported by one or the other.
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Introduction

In the three chapters that follow, I introduce the concept of convention-affirming equilibri-

um and then apply it to two economic applications of interest. The first chapter characterizes

the behavior of the concept in simple 2×2 games. The second applies the concept to a simple

game of joint effort and seeks to understand the emergence (or lack thereof) of cooperative

behavior. The third applies it to a simple matching-and-bargaining framework and studies

the outcomes that can arise there.

One primary contribution of the present work is the introduction of this solution concept

itself, along with the illustration of the kind of outcomes it can give rise to provided by the

applications. A second is the results for the applications themselves, which are of interest in

their own right and may illuminate the further insights that may be gained by the study of

further applications.
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Chapter 1

Convention-Affirming Equilibrium

Abstract

I introduce the concept of convention-affirming equilibrium, and study its implications

in 2 × 2 games. In a convention-affirming equilibrium, all agents in a population believe

they are in some convention-affirming equilibrium, and the choices they make on the basis of

such beliefs in fact lead to one. In the case where agents have a common prior, convention-

affirming equilibrium coincides with Nash equilibrium. When they may think other agents

have different priors than they do, non-Nash outcomes are possible, within limits.

1.1 Introduction

We often interpret equilibrium concepts as representing conventions that might prevail

in some society. In games with multiple equilibria, this interpretation naturally extends to

thinking about multiple possible conventions which might prevail in different societies. The

presumption is that behavior in any given society will be governed by some convention or

other, a view which casual observation tends to support. The question is which patterns of

behavior are likely to arise as conventions, and which conditions favor the emergence of one

over another.
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It is reasonable to expect that people entering some society will share this same presump-

tion. Some convention or other already prevails, and one’s task is to figure out which it is

by observing the behavior of others. People who understand that the prevailing convention

has emerged through the choices of other people who faced the same situation they do may

plausibly also reason like game theorists, attempting to identify plausible candidates for the

actual convention by reasoning about which hypothetical conventions could plausibly emerge

in a world where everyone reasons and behaves in this way.

I introduce the concept of convention-affirming equilibrium to capture these ideas. In a

convention-affirming equilibrium (CAE), all agents in a population believe the population

plays according to some convention-affirming equilibrium (though they do not know which),

and choose their own actions to maximize their expected payoff given this belief and some

observations of the actions chosen by others in the population, which they use to Bayes up-

date their prior about which convention-affirming equilibrium they are in. As this description

would suggest, CAE is defined circularly and setwise; a distribution of play is a CAE if there

is a set of distributions containing it all of whose elements can be equilibrium conventions

for a population that views it as the set of possible conventions.

The definition of convention-affirming equilibrium differs from that of Nash equilibrium in

that it does not require that agents best respond to the actual distribution of play. On the

other hand, it builds in both a correct understanding of the payoffs and reasoning of others

comparable to rationalizability and a presumption of being in some (convention-affirming)

equilibrium compatible with them. It thus occupies a middle ground between strategic

sophistication with no further structure and equilibrium compatible with best response to

the true situation. The ability of agents to observe what others are doing lends predictive

power to the concept, by allowing them to react not just to the empirical distribution, but

to facilitate potentially stronger inferences about ‘which (convention-affirming) equilibrium

they are in’.
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The assumption that agents are informed about the state of play in their society by seeing

the actions and outcomes of others is a plausible one in many settings. Many games are

played in public view, or at least in such a way that people will learn about their typical

outcomes through gossip, reading, education, and so on. It is of interest to see both whether

‘misunderstandings’ can persist even for large numbers of such observations, and whether

even small numbers suffice to strongly restrict outcomes when combined with the interactive

reasoning aspect of the concept. As we will see, both can happen, in a certain sense and

under the right conditions.

Alternative sources of empirical information could also be considered, such as learning from

one’s own past matches, actively choosing how much information to gather, or observing a

sample that is not representative in some way. These alternatives are plausible but would

add technical complexity; I focus on the simplest case of passive observation of others to

more easily isolate the effect of the reasoning about potential equilibria that is the main

contribution of this concept.

Much of the value of this concept lies in the way it allows us to consider the joint effects

of learning from observation, strategic reasoning about the beliefs and motives of others,

and the presumption of a world in equilibrium that is plausible in many contexts, without

imposing further prior knowledge about which equilibrium has been realized in a way that

is hard to justify. Agents are still assumed to have a correct understanding of the overall

process, but this is more plausible in many settings than assuming a correct understanding

of the particular outcome the process has led to. This strikes a balance between concepts

where agents know more than is often plausible (as in Nash equilibrium and its refinements),

and those where their ability to engage in strategic reasoning or understand the nature of

the process they are engaged in is artificially curtailed (as in models of simple learning rules

in games), and arguably corresponds more closely to the informal game-theoretic intuitions

we are inclined toward in many real-world settings than either.
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I study the consequences of the CAE concept primarily in 2 × 2 coordination games,

the simplest context in which interesting questions arise about whether this concept selects

for a strict subset of multiple Nash equilibria, and whether some non-Nash outcomes can

also be CAE (in Section 1.6 I consider also some modest extensions). I study two different

versions of the CAE concept: ‘unitary’ CAE, in which agents have a common prior over

which CAE is the true one, and ‘diverse’ CAE, in which each agent thinks the other agents

in the population may have a different prior than they do, and are uncertain about which

one it is. These lead to starkly different predictions.

In Section 1.4, I characterize the set of unitary CAE in 2 × 2 coordination games, and

show it coincides with the set of Nash equilibria. The reason is structural: if agents are best

responding, the frequency with which each action is played will change faster than one-to-one

with the probability of observing each action, and there can thus be at most one interior

CAE if agents have a common prior, which can only be the mixed Nash.

In Section 1.5 I show that the diverse CAE concept with unrestricted beliefs allows any

outcome to be a CAE. With mild restrictions on beliefs, which essentially require agents not

to ignore their observations completely, the set of possible outcomes narrows, with different

possibilities depending on the sample size and the minimal responsiveness of allowed priors

to data.

It is desirable that a set of CAE is also complete: not only is each playable as an equilibrium

convention given a belief in the set, but all outcomes playable in that sense are included.

If a set of CAE is incomplete, non-CAE play is possible for agents who believe in it, so we

cannot be as confident in it as a prediction. I will show that complete CAE sets exist, for

some specifications of the priors agents are allowed to have.
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1.1.1 Related Literature

The notion of equilibrium developed here is related to the sampling equilibrium of Osborne

and Rubinstein (2003) and the more general ‘sampling equilibrium with statistical inference’

concept of Salant and Cherry (2020). As with these concepts, my CAE concept involves

agents who observe a random sample of the actions of others, and a notion of equilibrium

in which the distribution of actions is reproduced by the distribution of choices they make

after processing this sample.

The major difference is that I study agents who reason explicitly about which possible

equilibria they might be in, and ground this reasoning in strategic thinking about the infor-

mation, payoffs, and choice process of others, while the preceding papers focus on a notion of

equilibrium in solely data-driven decision processes without this a priori strategic reasoning,

and compare alternative ways agents may process their data. The focus in my context is

thus on which sets of candidate equilibria can survive the restrictions imposed by agents’

reasoning about one another’s reasoning, with the observation of samples being one of the

factors that generates these restrictions, and not on properties of or comparisons between

alternative observation structures or inference procedures.

Conceptual questions very similar to those of the present work are studied by Young

(1993a), as well as the substantial subsequent literature on equilibria selected by population

learning processes with a permanent stochastic component (such as Kandori et al. (1993),

which covers much of the same ground as Young, Ellison (1993), which studies the effect of

different interaction structures, and Bergin and Lipman (1996) and Binmore and Samuelson

(1997), which consider the effects of alternative specifications of the random component). As

in the present work, the focus is on which equilibria will emerge as conventions in a population

in which agents observe a sample of past play. It differs in that agents mechanically best-

respond to the sample average, rather than reasoning in a fully Bayesian way about the
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process and each other. The focus in this literature is also on studying the ergodic distribution

of an explicit dynamic, while I formulate a static equilibrium concept.

Models of observational learning in which agents learn about the value of choices available

to them by observing or talking to others, either by sophisticated inferences (e.g. Banerjee

(1992), Bikhchandani et al. (1992)), or by following simple heuristics (e.g. Ellison and Fu-

denberg (1993), Ellison and Fudenberg (1995)), also consider a setting in which agents make

choices after observing others in the population; in these models, they observe something

about the frequency with which other agents take different actions, the payoffs they receive

from certain actions, or both. While agents are influenced by the choices of others in these

settings, the focus is generally on whether or not agents will end up adopting the ‘right’ ac-

tion, according to some exogenously given activity; this is in contrast to the present setting,

where there is direct interdependence of payoffs because agents face each other in a game.

The convention-affirming equilibrium concept can also be compared to the concept of

self-confirming equilibrium (Fudenberg and Levine, 1993), especially the variants with a

‘rationalizability’ component (Dekel et al. (1999), Fudenberg and Kamada (2015), Fudenberg

and Kamada (2018)). Both describe a notion of equilibrium among agents who only partly

observe the play of others, and the latter variants also share with the present context the

attempt to combine this with a priori restrictions in the spirit of rationalizability.

One difference between the two is that self-confirming equilibrium describes a setting in

which agents observe the outcomes of their own strategy, whereas in a convention-affirming

equilibrium agents observe the outcomes of strategies commonly played by others. Another

is that convention-affirming equilibrium allows degrees of frequent or infrequent observation,

whereas in a self-confirming equilibrium everything is either fully known or not observed.1

1These first two differences also explain why self-confirming equilibrium is an extensive-form concept
(knowing the outcomes of your own strategy is not enough to know the whole distribution of play only
if your choices prevent you from observing part of your opponent’s strategy), while convention-affirming
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For the rationalizable variants, there is the additional difference that in these papers the

rationalizability-style requirement is imposed at the level of strategies in the game itself,

whereas in a convention-affirming equilibrium it is imposed on the larger process mapping

observations to action choices from which the actions chosen in the game are derived.

Finally, the convention-affirming equilibrium concept connects to two broader literatures –

the literature on conventions in philosophy, and the literature on culture in political economy.

Lewis (1969) proposes an analysis of ‘convention’ according to which a convention is an

equilibrium of a coordination game – one of multiple ways in which a group of agents might

accomplish some goal that is in all of their interests – which has become commonly known

to be the typical way of accomplishing this, and thus self-sustaining (see also Vanderschraaf

(2001), which provides both an alternative analysis of ‘convention’ as a kind of correlated

equilibrium, and an explicit evolutionary game theory model of how conventions might arise).

This notion of ‘convention’ – picking out a certain kind of equilibrium in a certain kind

of game – is narrower and more specialized than the sense I have in mind in ‘convention-

affirming equilibrium’, where agents observe which outcomes are ‘conventional’ in the weaker,

colloquial sense of ‘widespread’. An equilibrium ‘convention’, in my sense, is thus a near-

synonym for ‘equilibrium’ (in the game-theoretic sense) in general – some outcome in a

strategic situation which is stable once established – and need not refer to the particular sort

of equilibrium considered in the literature following Lewis (1969). The CAE concept could

possibly be useful in studying ‘conventions’ in the latter sense, as well, though I have not as

of this writing made a serious attempt to explore this possibility.

Bednar and Page (2007) define ‘cultural behavior’ as behavior that is consistent across

activities and across individuals within a given culture, different across cultures, persistent

even in the face of changing circumstances, and potentially suboptimal. Other attempts

equilibrium is nontrivial even in normal-form games.
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in the literature to understand cultural behavior include Greif (1994), which contrasts the

historical evolution of institutions across different cultures, Fearon and Laitin (1996), which

studies the strategies different ethnic groups may develop to avoid conflict with each other,

and Henrich et al. (2001), which studies the differences in play of experimental games of

subject groups from different cultures. See also Alesina and Giuliano (2015) for a survey of

the literature on this topic.

There is plausibly potential for the CAE concept to connect and contribute to the study of

questions of this kind, as it offers a general, flexible, fully formal way of modeling the possible

range of ‘typical’ behaviors which might perist when agents observe them and reason about

how they will influence the expectations and thence choices of others. But, any such attempt

would require a larger model capable of expressing ideas about e.g. different cultural groups,

changing circumstances, perceived links across games and choice situations, etc. Accordingly

such connections belong for now to the realm of future research.

1.2 Model

1.2.1 Action Distributions

Fix a symmetric, normal form game with two players (i and j) and finite set of actions

A. An action distribution in this game is an probability measure p ∈ ∆A which assigns a

probability to the event that each action a ∈ A is played. Write pa for the probability of a

under p.

I take each action distribution to represent an outcome of play in the game, in a setting

where agents drawn at random from the same population are matched to play each other. I

assume that each player chooses each action a with the probability pa, and that these choices

are independent, so that the probability of a given action profile (ai, aj) being the outcome

of the game is just the product pai · paj .
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The convention-affirming equilibrium concept will select a subset of action distributions

as predicted equilibria. Note that more familiar equilibrium notions can also be written this

way: we can identify a symmetric pure Nash equilibrium with the action distribution placing

probability one on the equilibrium action, or a symmetric mixed Nash equilibrium with the

action distribution assigning the same probability to each action as does the mixed action it

prescribes for both players.

1.2.2 Samples and Sample Distributions

Fix an integer N , assumed to be not too small. Each agent, before choosing their action,

will observe the realized action profiles of N matches between players whose actions are

drawn from the true action distribution p. Since actions are chosen independently, and

agents understand this, they see as informative only the frequency with which each action is

chosen, and thus view what they observe as a sample of 2N action choices, as follows.

A sample is a tuple s = (sa)a∈A, where each sa ∈ {0, 1, ...2N} represents the number of

times action a was observed and
∑

a∈A sa = 2N , so that each sample contains exactly 2N

observations in total. Let S denote the collection of all possible samples.

Every action distribution p induces a sample distribution fp ∈ ∆S, which describes the

probability of observing each possible sample in a population playing according to that action

distribution. Since each sample contains 2N iid draws from the fixed distribution p ∈ ∆A,

the sample distribution is multinomial, with probability mass function

fp(s) =
(2N)!∏
a∈A sa!

∏
a∈A

psaa
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1.2.3 Reaction Functions and Fixed Points

A reaction function is a map r : S → ∆A. That is, a reaction function specifies, for

each sample, the mixed action a player will choose after observing that sample.2 We will

be interested in action distributions which are reproduced by a given reaction function; that

is, where the distribution of play resulting from applying the reaction function r to the

distribution over samples fp reproduces the original action distribution p. Thus:

Definition 1 (Fixed Point). An action distribution p ∈ ∆A is a fixed point for reaction

function r if for each a ∈ A,

pa = Σs∈Sfp(s) · r(s)(a)

where r(s)(a) is the probability assigned to a by the mixed action r prescribes at s.

1.3 Convention-Affirming Equilibrium

1.3.1 Beliefs and Best Responses

I now consider reaction functions describing the behavior of agents who use their sample

to Bayes update some prior over possible action distributions, and then choose an action to

maximize the expected payoff given their posterior belief. The reaction functions that can be

thus chosen will be called best responses to a given prior belief, and are the building blocks

of the equilibrium concept to follow.

Fix a non-empty, finite subset P of ∆A – the set of action distributions which agents

consider possible – and consider a prior µ ∈ ∆∆A which has support P .3 For each sample

2In cases where many players behave according to the same reaction function, we have a choice of inter-
pretations. We can think of individual players choosing mixed actions, or of their choosing pure actions in
a way that ‘adds up’ to the mixed frequencies prescribed.

3That is, which assigns positive probability to all and only those points in P, and zero probability to the
complement of P in ∆A.
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s which has positive probability under fp for some p ∈ P , the posterior belief µs of an agent

with prior µ who observes s assigns to each p ∈ P the probability:

µs(p) =
µ(p)fp(s)∑

p′∈P µ(p
′)fp′ (s)

Definition 2 (Best Response to µ). Reaction function r is a best response to prior µ if for

each sample s with positive probability under fp for some p ∈ P and for each as ∈ A assigned

positive probability by the mixed action r(s), we have

as ∈ argmax
ai∈A

∑
aj∈A

(
u(ai, aj)

∑
p∈P

pajµs(p)

)

where u(ai, aj) is the payoff to player i of the action profile (ai, aj), and the argmax is

thus taken over expected payoffs of each possible action ai for player i, given the posterior

µs.

1.3.2 Convention-Affirming Equilibrium

In a convention-affirming equilibrium (CAE), all players must believe they are in some

CAE, though they need not know which. The concept of CAE is thus defined setwise as

follows.

Definition 3 (Convention-affirming equilibrium). A non-empty, finite subset P∗ of ∆A is:

A unitary set of convention-affirming equilibria (or unitary CAE set) if there exists a

single prior µ with support P∗ and a reaction function r which is a best response to µ, such

that each p ∈ P∗ is a fixed point for r.

A diverse set of convention-affirming equilibria (or diverse CAE set) if there exists, for

each p ∈ P∗, a prior µ with support P∗ and a reaction function r which is a best response to

µ, such that p is a fixed point for r.
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Say that an action distribution p∗ is a unitary convention-affirming equilibrium if it belongs

to a unitary CAE set and a diverse convention-affirming equilibrium if it belongs to a diverse

CAE set. Note that every unitary CAE is also a diverse CAE, but not vice versa.

In both cases, agents agree on – and are, in a sense, ‘right’ about – the set of possible action

distributions which can occur as equilibria. In both cases too, all such action distributions

can be fixed points of a reaction function which is a best response to beliefs allowed under

the equilibrium definition. The difference is that in the ‘unitary’ case, agents have a common

prior about the probability that each action distribution they consider possible is the true

one – and thus ‘know the true reaction function’, since everyone reacts in the same way they

themselves do – while in the latter case, agents may be uncertain of the prior probabilities

others assign to different action distributions, and thus about which reaction function is the

true one.4

1.3.3 Interpretation

Although I do not model the dynamics of any out-of-equilibrium process here, we can

think of a CAE as representing the limiting outcome of such an adjustment process, after

an initial phase between when a society comes into existence and when it arrives at some

equilibrium convention. The assumption that agents believe they are already in some CAE

might correspond to the belief that most societies are old, and agents don’t know exactly how

old theirs is (so that the possibility they were born in the initial adjustment phase can be

dismissed as unlikely). In such a process we would also have in mind that the sample agents

receive comes from learning about the outcomes of past matches (at an earlier time but from

the same equilibrium distribution), and that they update based on this before playing their

match.

4In general, we would want to consider possible distributions over priors, and hence over reaction functions.
But since, as we will see in Section 1.5, the set of fixed points consistent with a class of allowed beliefs is
defined by the most extreme possible reaction functions, it is without loss of generality to use the definition
given above.
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It is natural in this motivating story to think of agents who see the game played by others

many times but do not play many times themselves; games associated with a given life or

career stage which occurs only once, for example. In the present setting, this is less restrictive

than it may appear. An agent who observes an action played by their own opponent receives

exactly the same information as if they observed the same action played in a match they

were not a part of. This is in contrast to, say, an extensive game, in which a player with

an unusual strategy might learn about different aspects of their opponent’s strategy than

would be revealed in that opponent’s matches with others. Only the total sample size of

observed actions matters in our setting, not their source. A model where agents play many

times would thus differ only in that their sample size would increase over a lifetime; in the

case where their sample of others’ matches is large relative to the number of times they

themselves play, it would be well approximated by the present case.

The notion of ‘society’ involved here can be flexible, corresponding perhaps to a whole

society in the typical sense of the term, or perhaps to a particular community or organization

within one. The functional definition is something like ‘the unit within which an equilibrium

convention is determined for the game in question’; hence, all matches within the bounds of

a given ‘society’ are governed by the same convention, whereas crossing the boundary from

one ‘society’ to another may result also in a change of convention. Which way of drawing

these boundaries, and thus specifying the population whose conventions we are studying, is

most plausible will depend on the application.

The unitary version of the concept corresponds to a setting in which there is prior agree-

ment (and hence, presumably, accurate information) about the relative likelihood of different

conventions across all possible societies, even though agents may not know which of these

has been realized in their own society. This is plausible in settings where the sort of ‘society’

considered is relatively small (e.g. individual organizations or communities), and there is a

substantial amount of ambient, accurate information about the distribution of conventions
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across all such societies available to the agents in each (through, say, word-of-mouth or wide-

ly publicized studies) which fixes ideas about relative frequencies of conventions in general

before agents attempt to determine the particular convention they face. It is also plausible

if societies have a publicly observable reputation for what kind of internal conventions they

are believed to have, which coordinates expectations among new agents before they enter

(and thus before they receive their samples as ‘insiders’ and update about whether the public

reputation was accurate or not).

The diverse version probably makes more sense in the converse cases – when the ‘society’

in question is large and without many alternatives to compare it to, or where widely dis-

seminated information about the distribution of conventions or the reputations of specific

societies is not available, or where such information as is available is not considered credible

or trustworthy.5

To fix ideas, imagine a world in which there is some number of firms employing workers,

some of whom begin their careers at some such firm in any given period. Within each firm,

some convention prevails, and those about to enter any such firm know which conventions are

possible. Prior to entering a firm, each worker forms a prior belief about which convention

will prevail there, based on whatever information they have as an ‘outsider’. Once they enter

it, and become an ‘insider’, they hear candid details about the interactions among others

there and their outcomes, and use this to update their belief about which convention really

prevails there before playing themselves.

As candidates for the unitary concept, we could imagine cases where there are many similar

firms drawing on the same pool of workers, and some widely publicized recent survey finding,

say, that 75% of them follow convention A and 25% convention B, but with the identity of the

5This difference in plausible applications across the two versions of the concept, together with the different
predictions associated with the two versions which will be established below, could in principle be the basis
for a testable empirical claim.
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specific firms following each kept confidential. Alternatively, we could imagine that a given

firm has, say, received recent media attention over claims that it follows convention A. In

either case, we may imagine that people who anticipate entering these firms take an interest

in this information, and believe others have taken an interest in it, and believe others believe

others have..., leading to coordination on a common prior based on this public information.

As candidates for the diverse concept, we might imagine instead a setting dominated by

a few firms whose inner workings are opaque and not reported on, or where such reports as

exist are believed to be influenced by internal disputes or interests resulting in an unknown

bias. People who anticipate entering these firms have much less clear information to go on

before actually entering, and thus may more reasonably form different priors, and believe

others will form different priors, and...

1.4 Unitary Convention-Affirming Equilibria

In this section, I will show that the unitary CAE concept coincides, in 2× 2 coordination

games, with the concept of Nash equilibrium. This is interesting in itself, and also motivates

the study of the diverse CAE concept in the following section, in which non-Nash outcomes

can also occur.

1.4.1 Pure Nash Equilibria

I start by establishing that symmetric pure Nash equilibria are also CAE. The arguments

and constructions involved are very simple, but also illuminating regarding the context for

later results to come. Identify each pure (symmetric) Nash equilibrium of the game with

the action distribution p assigning probability 1 to the equilibrium pure action a∗, and each

mixed (symmetric) Nash equilibrium with the p prescribing the same action frequencies as

the equilibrium mixed action; hence when I speak of Nash equilibria in what follows I refer

to these action distributions.
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Call the sample in which only action a is observed the extreme sample for a, and the set of

such samples for each a ∈ A the extreme samples. The following is an obvious but important

observation.

Proposition 1 (Extreme Samples Suffice). An action distribution placing probability one on

action a is a fixed point of reaction function r if and only if r prescribes a with probability

one after observing the extreme sample for a

Proof. At such an action distribution, only the extreme sample for a is observed; thus it

is a fixed point for r if and only if the mixed action r prescribes at this extreme sample

reproduces the action distribution.

We can then settle the pure Nash question accordingly.

Corollary 1. Any P∗ containing only pure Nash equilibria is a unitary CAE set.

Proof. Any reaction function which assigns to each extreme sample associated with some

pure Nash equilibrium in the set the corresponding pure Nash action makes each point in

the set a fixed point. Such a reaction function must be a best response because at each such

sample agents can rule out all points in P∗ except the one they are at, and this is assumed

to be a Nash equilibrium.

The reaction functions used in the above are unrestricted except at the extreme samples,

since an agent observing any non-extreme sample will rule out any pure Nash equilibrium (if

two or more actions are being played, the true action distribution cannot place probability

one on any single action). This will change as we now turn to considering sets that include

action distributions which place positive weight on more than one action, starting with mixed

Nash equilibria.

17



1.4.2 Mixed Nash Equilibria

For the remainder of Section 1.4 and Section 1.5, I will study the following 2 × 2 game,

which I shall henceforth call the simple coordination game.6

A B

A 1, 1 0, 0

B 0, 0 1, 1

Figure 1.1: The Simple Coordination Game

Since there are only two actions, specifying the probability of A, pA, and the number

of times A was observed, sA, is equivalent to specifying p and s. I will for convenience

henceforth work with pA and sA rather than p and s when dealing with 2 × 2 games. The

sample distribution fp over sA is then binomial with parameters 2N and pA.

I start by showing that the set PNash = {0, 1
2
, 1} consisting of the two pure Nash equilibria

pA = 0 and pA = 1, along with the unique mixed Nash equilibrium pA = 1
2
, is a unitary CAE

set for the simple coordination game.

Proposition 2. PNash is a unitary CAE set for the simple coordination game.

Proof. From Proposition 1, above, we know that r(0) = B and r(2N) = A are necessary

and sufficient to make the two pure equilibria fixed points. The question is then how to fill

in the other values of r to make the mixed Nash a fixed point as well, and to show that such

an r is a best response to some valid prior.

Let r be defined so that r(sA) = B if sA < N , and r(sA) = A if sA > N .7 Let r(N) be

the action distribution which places probability 1
2
on both A and B.

6A more general 2× 2 coordination game is considered in the extensions.

7That is, the distribution of actions played among players who observe samples sA ∈ {0, ..., N − 1} places
probability 1 on B, and that among players who observe sA ∈ {N + 1, ...2N} places probability 1 on A.

18



The sample distribution f 1
2
associated with the mixed Nash assigns to each sA the

probability
(
2N
sA

)
(1
2
)sA(1

2
)2N−sA =

(
2N
sA

)
(1
2
)2N . In particular, for sA < N , πpA= 1

2
(sA) =

πpA= 1
2
(2N − sA). Hence, the total probability of the set of samples for which all players

choose A is the same as that of the set where all choose B. Since A and B are also chosen

equally often at the one sample not in either set, sA = N , we have that A and B are chosen

equally often overall. So, pA = 1
2
is also a fixed point for r.

I now turn to showing r as constructed is rational for a prior µ supported on PNash.

Let µ assign prior probability 1
3
to each of the three Nash equilibria. (It is easy to see the

argument I am about to make will work for any prior assigning positive probability to all

three points; I make this specific choice for simplicity.)

Because the sample distributions for the two pure Nash equilibria place probability one on

the extreme samples, players seeing any sample sA ∈ {1, ..., 2N − 1} will assign probability

zero to both of them. Thus, players observing these other samples will be certain they

are at the mixed Nash equilibrium. Since they are thus indifferent between A and B, any

distribution of actions can be chosen, so the distributions assigned under the reaction function

r I constructed in particular are consistent with r being a best response.

It remains to check the two extreme samples. sA = 0 has positive probability under

pA = 1
2
and pA = 0 but not pA = 1. The posterior belief is thus a convex combination of

these with strictly positive weights and thus strictly below 1
2
, which makes the choice of B

a best response. The analogous argument works for sA = 2N .

Because agents know they are not at either of the pure equilibria whenever they see both

actions being played, their actions after such samples depend only on the probabilities they

assign to action distributions under which both actions have positive probability. When the

only such distribution they consider possible is the mixed Nash, they are certain that this is

the true distribution after any such sample. They are thus indifferent between their actions

at all such samples, so it is rather easy to construct a reaction function accommodating all
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three Nash equilibria which is also a best response to some prior.

1.4.3 Unitary CAE Must Be Nash

Thus far, we have considered only sets of Nash equilibria, and the inference problem of

players observing non-extreme samples has been rather trivial because they consider only

one interior8 action distribution possible. So, let us consider sets P containing more than one

interior action distribution; we thus now also consider P including some action distributions

which are not Nash equilibria.

Definition 4. A reaction function r is a cutoff reaction function if there exists an integer

n ∈ 1, ..., 2N − 1 and a number x ∈ [0, 1] such that

r(sA) = B for all sA < n

r(sA) = A for all sA > n

r(sA)(A) = x, for sA = n

Call the number n− x ∈ [0, 2N − 1] the index of the reaction function.

That is, a cutoff reaction function assigns a mixed action with probability x on A to some

non-extreme sample, and the pure action A (B) to all samples above (below) this one. Note

that this includes the case where only pure actions are played, since x can be 0 or 1. It is

easy to see that each cutoff reaction function has a unique index, and each index picks out

a unique cutoff reaction function.

8Interior in the sense of pA strictly between the endpoints 0 and 1.
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Let 0 < p1 <
1
2
< p2 < 1. p1 and p2 are understood as two different probabilities with

which players in the population will play A, which will remain fixed in what follows.

Proposition 3. Suppose p1, p2 ∈ P and r is a best response to some prior µ with support P.

Then either r is a cutoff reaction function, or it is such that no p ∈ (0, 1) is a fixed point for

r.

Proof. From Proposition 1 in Milgrom (1981) and the fact that binomial samples sA have the

monotone likelihood ratio property for the parameter pA, it follows that players’ posterior

probability of their opponent playing A,
∑

pA∈P pA µsA(pA), must be strictly increasing in

their sample sA, for any such prior. Since their best response is to play A when this estimate

is strictly above 1
2
, B when it is strictly below, and either action otherwise, any r which is a

best response to some prior must either be a cutoff reaction function, or it must assign action

A or B with probability one to all but perhaps one extreme sample, and assign a strictly

mixed action to the latter if the action assigned to it is different from the others. In the

latter case, there can be no interior fixed point, because the frequency of extreme samples is

always less than that of the corresponding actions, as already noted.

Remark 1. The statement of the previous result rests on the fact that we have defined cutoff

reaction functions to always assign play of only B at the smallest sample and only A at the

largest. Higher and lower cutoffs than this are uninteresting, in light of this result.

The next two results work toward the claim that each cutoff reaction function makes at

most one interior action distribution a fixed point. Together with the preceding, this implies

that there cannot be unitary CAE sets containing more than one interior point, and thus

also that there cannot be non-Nash unitary CAEs.

Proposition 4. For each pA ∈ (0, 1), there exists exactly one cutoff reaction function r such

that pA is a fixed point for r.

Proof. Note first that the right-hand side of the fixed point equation pA =
∑

sA
fpA(sA)r(sA)(A),

is continuous and strictly decreasing in the index of r for fixed, interior pA (a higher index
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and hence a higher cutoff means A is played weakly less often at every sample, and strictly

less often at some sample). As observed above, the frequencies of the two extreme samples

are always less than the frequencies of corresponding actions at any interior p. Thus, in

particular, the cutoff reaction functions corresponding to the highest and lowest index assign

probabilities of A that are too low and too high to be fixed points, respectively. By the

intermediate value theorem, there thus exists an interior index such that the fixed point

equation is satisfied. Because the RHS is strictly decreasing, there can be at most one such

value.

In light of the preceding, we can talk unproblematically about a function g : (0, 1) →

[0, 2N − 1] taking each action distribution pA to the index of the reaction function making

it a fixed point, denoted g(pA) ∈ [0, 2N − 1]. Clearly g is continuous. We have also the

following.

Proposition 5. g is strictly increasing.9

Proof. I will show that, for any fixed reaction function r, changing the ratio pA
1−pA

by a fixed

scalar multiple γ ≈ 1 leads to a continuous and strictly larger change in the ratio of frequency

of A to frequency of B played under r. Since equality of these ratios is equivalent to the

fixed point condition, it follows that, starting from some pA and the corresponding g(pA),

a slightly larger (smaller) pA can be a fixed point only for r with a slightly higher (lower)

cutoff, since g(pA) itself over-(under-)shoots the target in these cases.

It is a basic property of the binomial distribution10 that the sample frequencies fpA(sA)

can be written recursively given the value fpA(0) as

fpA(k + 1) =
2N − k

k + 1

pA
1− pA

fpA(k)

9An increasing index implies an increasing cutoff, and thus a decreasing frequency of A played at each
p. Since the frequencies played increase faster than those generating the sample at a given equilibrium, the
cutoff must increase somewhat, decreasing the frequency with which A is played at each p, in order to make
some slightly higher p an equilibrium instead.

10See e.g. Krishnan (2006) p. 39
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Suppose r has a cutoff at sample sn, n = 1, ...2N − 1, with fraction x playing A at sn

(equivalently, suppose the index of r is n−x). The ratio of the frequency of A played to the

frequency of B played under r at p is

xfpA(n) + fpA(n+ 1) + ...+ fpA(2N)

fpA(0) + ...+ fpA(n− 1) + (1− x)fpA(n)

This is the ratio of the total frequency of observed samples where A is played to the total

frequency of observed samples where B is. Let βn = ( pA
1−pA

)n
∏n−1

k=0
2N−k
k+1

. We can rewrite

this, in light of the above, as

xβnfpA(0) + βn+1fpA(0) + ...+ β2NfpA(0)

fpA(0) + ...+ βn−1fpA(0) + (1− x)βnfpA(0)
=

xβn + βn+1 + ...+ β2N
1 + ...+ βn−1 + (1− x)βn

Suppose a small change from pA to p
′
A satisfies pA

1−pA
= γ

p
′
A

1−p
′
A

, γ ≈ 1. Let α denote

the corresponding multiplicative change in the frequency of the smallest sample, so that

fp′A
(0) = αfpA(0). Then we have

xfp′A
(n) + fp′A

(n+ 1) + ...+ fp′A
(2N)

fp′A
(0) + ...+ fp′A

(n− 1) + (1− x)fp′A
(n)

=

=
xαβnγ

nfpA(0) + αβn+1γ
n+1fpA(0) + ...+ αβ2Nγ

2NfpA(0)

αfpA(0) + ...+ αβn−1γn−1fpA(0) + (1− x)αβnγnfpA(0)
=

=
xβnγ

n + βn+1γ
n+1 + ...+ β2Nγ

2N

1 + ...+ βn−1γn−1 + (1− x)βnγn

If γ > 1, we then have

xβnγ
n + βn+1γ

n+1 + ...+ β2Nγ
2N

1 + ...+ βn−1γn−1 + (1− x)βnγn
> γ

γxβn + γ2(βn+1 + ...+ β2N)

(1 + ...+ βn−1) + γ(1− x)βn
≡ γxβn + γ2BH

BL + γ(1− x)βn

We want to show that this is greater than γ times the original ratio, that is, that
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γxβn + γ2BH

BL + γ(1− x)βn
> γ

xβn +BH

BL + (1− x)βn

Rearranging and canceling yields the equivalent inequality

x(1− x)β2
n < BLBH

Since x(1 − x) ≤ 1
4
and BL and BH are sums of all the betas above and below βn (and

there is always at least one of each), a sufficient condition for this is

β2
n < 4βn−1βn+1

Plugging in the definition of βk, we have

(
pA

1− pA
)2n(

n−1∏
k=0

2N − k

k + 1
)2 < 4(

pA
1− pA

)n−1(
n−2∏
k=0

2N − k

k + 1
)(

pA
1− pA

)n+1(
n∏

k=0

2N − k

k + 1
)

which reduces to

n− 1

n

2N − (n− 1)

2N − (n− 2)
< 4

n

n+ 1

2N − n

2N − (n− 1)

Since n−1
n

< n
n+1

and the ratio of 2N−n
2N−(n−1)

to 2N−(n−1)
2N−(n−2)

is maximized for n = 2N − 1,

where it is 1
2
/2
3
= 3

4
, the inequality holds for all n.

Thus, a scalar change of γ > 1 in pA
1−pA

leads to a scalar change strictly larger than γ in

the ratio of frequencies prescribed by r.

An exactly analogous argument holds for γ < 1.

We then have the following, because g is strictly increasing, and accordingly no two interior

pA can be made fixed points by the same cutoff reaction function.

Corollary 2. If P∗ is a unitary CAE set, then either P∗ contains no pA ∈ (0, 1
2
), or P∗
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contains no pA ∈ (1
2
, 1).

Observing that any interior point above (below) the mixed Nash implies a strict preference

for A (B), and that agents will thus be certain that one action is strictly preferable to the

other at any non-extreme sample if P contains some p ∈ (0, 1
2
) but no p ∈ (1

2
, 1) or vice

versa, we have also the following.

Theorem 1. If P∗ is a unitary CAE set, then all of its elements are Nash equilibria.

In other words, the set PNash which we showed was a unitary CAE set earlier is in fact

the largest possible unitary CAE set. Note that this result does not depend much on the

game, beyond the cutoff structure of best responses that all non-trivial 2 × 2 games share.

It derives from a structural property of reaction functions – they lead to frequencies of play

that change more quickly than those they are reacting to around any interior equilibrium

point, forcing uniqueness.

1.4.4 Discussion

Let us now pause and take stock. Starting with the unitary CAE concept, which assumed

a common prior about the likelihood of possible conventions but no knowledge of the actual

one, we have recovered Nash equilibrium. Note that the preceding result does not depend in

any way on agents having or accumulating large amounts of information; it is consistent with

sample sizes in the single digits. Accordingly, it is the interactive reasoning process itself,

including reasoning about the observations and updating of others and their implications,

which allows us to arrive at such a restricted result.

Taken back to our interpretation of unitary CAE as a case where agents are informed of

the distribution of conventions across different societies but not the realized convention in

their own, or where their society has some public reputation observed by all who enter it

before they receive their idiosyncratic samples, we may predict that in such cases the set
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of Nash equilibria is likely to be a good prediction of realized behavior. That is, we may

expect behavior in any such society to correspond to one of the Nash equilibria, though we

cannot predict in advance which one, and agents themselves may never learn for sure which

one they face (though in the mixed case many will).

As we shall see in the following section, the diverse CAE concept makes quite different

predictions, and in particular does not coincide with Nash equilibrium. Accordingly, another

benefit of the preceding result is clarifying that it is the presence of non-common beliefs,

specifically, that breaks the connection with Nash equilibrium when we consider the diverse

version of the concept. Limited sample size, per se, and the according inability of agents to

directly estimate the action distribution to high confidence, is not the issue.

1.5 Diverse Convention-Affirming Equilibria

Our inability to get multiple interior points, and thus non-Nash points or interesting

inference problems for interior samples, is a direct consequence of the assumption of a single

prior, and thus a single reaction function, which must simultaneously justify all points in a

unitary CAE set. This motivates study of the more general diverse CAE concept.

First I show that the diverse version, in the absence of further restrictions, pushes us to

the opposite extreme of ‘anything goes’.

Proposition 6. Let P∗ be any finite set of points in [0, 1] containing p1, p2 s.t. 0 < p1 <
1
2
<

p2 < 1. Then P∗ is a diverse CAE set for the simple coordination game.

Proof. We need to construct, for each p ∈ P∗, a cutoff reaction function making it a fixed

point, which is a best response to some prior with support P∗. The two pure Nash equilibria,

if included, are fixed points for any reaction function prescribing the corresponding action at

the corresponding extreme sample; such a reaction function is a best response to any prior
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putting probability sufficiently close to one on the pure Nash equilibrium in question, and

only a small amount on each other point.

From the above, any interior p ∈ P∗ is a fixed point for some cutoff reaction function.

It thus suffices for the rest to show that any cutoff reaction function is a best response to

some prior with support P . I do this by constructing such priors which place probability

arbitrarily close to one on just the two points p1 and p2.

Since 0 < p1 <
1
2
< p2 < 1, B is a best response if p1 is the true distribution, and A is a

best response if p2 is. Assume the total weight placed by the prior on all points other than

p1 and p2 is at most ϵ, and let ϵ approach zero. With the conditional distribution over points

other than p1 and p2 fixed as ϵ→ 0, the overall posterior for any given interior sample is less

than 1
2
when almost all prior weight is on p1, greater when almost all prior weight is on p2,

and strictly increasing in the fraction of the weight on both which is placed on p2. To justify

any given cutoff reaction function, then, it suffices to set these prior weights in such a way

that the posterior is exactly 1
2
at the sample where actions may be mixed.

1.5.1 Restricted Priors

This is, perhaps, a little too unrestrictive. The proof relies heavily on constructing priors

that effectively write off all but a few possible action distributions. It is thus natural to

wonder next whether forcing priors to place at least some minimum weight on each possible

distribution would lead to a narrower set of restrictions. The answer is yes, at least if the

sample size N is also sufficiently large.

Definition 5. P∗ is an ϵ-skeptical diverse CAE set if it is a diverse CAE set and each p ∈ P∗

is a fixed point for some reaction function which is a best response to a prior µ with support

P∗ satisfying µ(p) ≥ ϵ for every p ∈ P∗.

That is, an ϵ-skeptical diverse CAE is one that can be played even by agents who are

not ‘dogmatic’, in the sense that they assign some minimum probability to each distribution
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they consider possible. We have the following.

Proposition 7. For each ϵ > 0 and each δ > 0 there exists N s.t. for all larger sample sizes,

any ϵ-skeptical diverse CAE set can contain only interior p within distance δ or less of the

mixed Nash equilibrium.

Proof. This is immediate from the fact that the posterior will concentrate on those subjec-

tively possible points nearest the sample average, for ϵ fixed and in the limit of large N .

There is thus concentration on a set including the true p, which if it is not close to the mixed

Nash contains only points making A or B a strict best response.

This has an interesting interpretation if we think of the sample size representing how

commonly played a game is in agents’ society, and thus how many times they are likely

to observe the outcome of others playing it. Any game, no matter how often played, can

be played with positive frequencies on both actions that do not coincide with the mixed

Nash. But, very eccentric such distributions survive only if the game is rare, and agents thus

have limited data about it; in games played very frequently, we do get convergence to Nash

outcomes, in the sense that the true frequencies are close to the Nash ones.

1.5.2 Completeness

This still leaves us with a large and somewhat unclear set of possibilities. There is a

reasonable refinement which can help us narrow the set of possibilities. I will say that a

CAE set is complete if it contains every action distribution which can be a fixed point for

a reaction function which is a best response to some allowed prior over it. I will make this

precise in what follows.

But first, since as we will see finding complete CAE sets requires looking at infinite sets

of action distributions, I will introduce a more general way of specifying admissible sets of

action distributions and allowed priors over them, and a new, more general definition of
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(diverse) CAE sets relative to such choices of allowed classes. I will then show that the class

we have been considering contains no complete CAE sets, and will specify an alternative

class, in which there are complete CAE sets that I will characterize.

Fix a collection of admissible subsets P ⊆ ∆A of action distributions and, for each of

these, a collection M(P) ⊆ ∆∆A of allowed priors over each P . For example, in the original

definition of a diverse CAE set the admissible P were the finite subsets, and all priors

supported on each were allowed. At the end of the previous subsection, we narrowed the set

of allowed priors to contain only those satisfying the ϵ-skepticism condition.

Given a choice of the admissible subsets and allowed priors, the population response map

is defined as follows.

Definition 6. The population response map R takes each admissible P to the set of p ∈ ∆A

which can be fixed points for some reaction function r which is a best response to some prior

µ ∈ M(P). Say that ({P}, {M(P)}) is response-closed if for each admissible P, R(P) is

also admissible.

For obvious reasons, we prefer to work with response-closed classes of sets. We can then

recast the definitions of diverse CAE and completeness, relative to a fixed choice of allowed

sets, as follows.

Definition 7. A diverse CAE set for allowed sets {P} and {M(P)} is an admissible P ⊆ ∆A

with the property P ⊆ R(P).

It is complete if it also satisfies R(P) ⊆ P (equivalently P = R(P)).

This is a new definition, because it works with general classes of allowed sets, not just the

particular choices made originally. I now show that there are no non-trivial finite complete

CAE sets for allowed priors satisfying the ϵ-skepticism condition, which will motivate study-

ing a different ({P}, {M(P)}) for the remainder of this section. Since the class of allowed
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priors over any finite P satisfying the ϵ-skepticism condition is convex, the following implies

that no finite P can be a complete CAE set for this class of allowed priors.

Proposition 8. If M(P) is convex, then R(P)
⋂
(0, 1) is convex.

Proof. If R(P)
⋂
(0, 1) is empty or contains only a single p, this holds trivially. Suppose it

contains two or more p.

Fix p1, p2 ∈ R(P)
⋂
(0, 1). By definition, there exist µ1, µ2 ∈ M(P) and r1, r2 which are

best responses to them such that p1 is a fixed point for r1 and p2 is a fixed point for r2.

Consider the collection of convex combinations yµ1 + (1 − y)µ2, y ∈ [0, 1]; by assumption

each is also is an allowed prior.

The map from y to the new prior thus defined, the map from this prior to its posterior

under each possible sample, and the map from each such posterior to the associated point

estimate of the true p are all continuous, so their composition is as well. Thus, by the in-

termediate value theorem, every possible point estimate of the true p after a given sample

between that prevailing under µ1 and that prevailing under µ2 occurs for some y. In partic-

ular, if for a given sample this is above 1
2
for µ1 and below it for µ2, it is exactly

1
2
for some

y.

Consider any reaction function r with an index i between that of r1 and r2. By assumption

⌈i⌉ is weakly smaller than the ceiling of the higher of the two indices for r1 and r2, and weakly

larger than that of the lower. It follows that the associated point estimates for the sample

sa = ⌈i⌉ under µ1 and µ2 are such that one is weakly higher and the other weakly lower than

1
2
. So, by the above, the prior associated with some y makes it exactly 1

2
, and r is thus a

best response to it. The result then follows from Propositions 4 and 5.

Accordingly, if we wish to find complete CAE sets, we have to consider collections of

allowed P that include intervals. For the remainder of this section, I will take the admissible

P to be all sets of the form [q, 1 − q]
⋃
{0, 1} for q ∈ [0, 1

2
). That is, an admissible P is a

set of action distributions consisting of the two extreme distributions together with a closed
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interval which is symmetric around 1
2
. Let Pq denote the admissible set containing the

interval [q, 1− q]; it is easy to see that the mapping from q to this admissible set is bijective,

so that we can take the class of admissible P to be indexed by q ∈ [0, 1
2
).

We want the class of allowed priors over each Pq to capture the same idea as the ϵ-

skepticism assumption did in the preceding section, in a way appropriate for priors with

continuous support. For simplicity, and since we are interested here in which interior e-

quilibria are possible, I will assume agents attach no weight to either of the two extreme

distributions (given our previous results about cutoff reaction functions and extreme sam-

ples, these will be fixed points in any case where interior fixed points are also possible). The

set of allowed priors M(Pq), which are thus supported on the interval [q, 1− q], will then be

those with a density11 bounded by upper and lower multiples of the uniform distribution on

[q, 1− q].

Fix a parameter η ∈ (0, 1), which determines how strict the bounds on allowed beliefs

are, with higher η corresponding to stricter bounds. I then define M(Pq) to consist of all

probability measures supported on [q, 1− q] with densities whose range is bounded between

η 1
1−2q

and 1
η

1
1−2q

. Since the uniform distribution on [q, 1− q] has constant density 1
1−2q

, this

just says that lower bound on allowed prior densities is η times the uniform density, and

the upper bound is 1
η
times the uniform density. Note that as η approaches zero, we move

toward a case where all densities are allowed prior densities, whereas as η approaches one,

we approach a state in which only the uniform density is allowed.

In seeking complete CAE sets, we have an additional restriction. Most fixed points, as

we have seen, arise in connection with reaction functions that mix at some sample. But

since mixing requires indifference, such points cannot define the endpoints of the interval

of possible action distributions; more extreme mixtures can be best responses to the same

11I do not require this to be continuous, as allowing discontinuities simplifies some of the following proofs.
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beliefs. We need accordingly to restrict our search to intervals with the ‘right’ class of

endpoints. This is formalized as follows.

Definition 8. A pure cutoff reaction function r is a cutoff reaction function with the property

that x = 0 or x = 1. Let rm denote the cutoff reaction function with the property that

rm(sA) = A iff sA > m.

Let pm denote the unique interior fixed point associated with rm. Note that m1 < m2

implies pm1 < pm2 (from Proposition 5).

We thus further restrict attention to Pq for which q = pm for some m.12 Write Pm for an

element of this class (which consists of finitely many sets). We have the following.

Proposition 9. ({Pm}, {M(Pm)}) is response-closed.

Proof. By Proposition 8, R(Pm)
⋂
(0, 1) must be an interval. By symmetry, it must be a

symmetric interval. The results from Section 1.4.3 establishing the relation between cutoff

reaction functions and fixed points, and that every best response is a cutoff reaction function,

apply unchanged to this setting, so by the above reasoning about pure cutoffs it must be a

closed interval whose endpoints are equal to some pm. The two extreme action distributions

are fixed points for any cutoff reaction function. The pure cutoff reaction function rN is a

best response to the uniform prior, which is always allowed, so existence is not an issue.

We are now in a position to prove the existence of complete CAE sets. They exist only for

some values of the parameter η; this is a consequence of the finite set of possible endpoints,

which may fail to ‘line up’ in any case with the interval of possible fixed points for reactions

functions which are best responses to allowed beliefs over any one of them. But, we can

always choose to work with η for which they do exist, if analyzing complete CAE sets is

desired.

12Note, by symmetry, that q = pm iff 1− q = pm′ , for some m
′
.
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Our goal is to prove the following.

Theorem 2. For each N , 2 < m < N , there exists an interval η(N,m) ⊆ (0, 1) s.t. if

η ∈ η(N,m), then Pm is a complete CAE set.

It will be helpful to prove the following claim first, and then use it to prove Theorem 2.

Proposition 10. Fix Pm, a sample s, and 0 < η1 < η2 < 1. Then the posterior point estimates

of p agents may hold after observing s form an interval whose endpoints are strictly between

pm and 1−pm for the classes of allowed beliefs associated with both η1 and η2, and the highest

and lowest allowed posterior point estimates associated with η1 are strictly higher and lower,

respectively, than those associated with η2.

Proof. The first claim is a direct consequence of the fact that priors are bounded below by a

strictly positive density, together with the convexity property used in the proof of Proposition

8.

For the second, I will show, for each allowed belief under η2, a way of constructing allowed

beliefs under η1 that give strictly higher and lower posterior point estimates.

Note first that, if a density µ over [a, b] ⊆ [pm, 1−pm] satisfies the bounds in the definition

of an allowed prior for η2, then the density αµ satisfies the bounds for η1 for any multiplicative

factor α ∈ [η1
η2
, η2
η1
].

Given an allowed density µ under η2, construct a new density µ
′
whose restriction to the

interval [pm,
1
2
] is αL times that of µ, and whose restriction to the complementary interval is

αH times that of µ, for some choice of αL and αH within the interval [η1
η2
, η2
η1
] which make µ

′

also a probability measure. Clearly there exist such choices, some satisfying αL < 1 < αH

and some the reverse.

The posterior point estimate at s given µ can be written as a weighted sum of the

conditional expectations under the posterior µs of p in the intervals above and below 1
2
,

weighted by the total probability of these upper and lower intervals. This is
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∫ 1
2

pm
fp(s)dµ∫ 1−pm

pm
fp(s)dµ

∫ 1
2

pm
pfp(s)dµ∫ 1

2

pm
fp(s)dµ

+

∫ 1−pm
1
2

fp(s)dµ∫ 1−pm
pm

fp(s)dµ

∫ 1−pm
1
2

pfp(s)dµ∫ 1−pm
1
2

fp(s)dµ
≡ WL · EL +WH · EH

Since EL and EH are unchanged by any multiplicative change in the density over their

respective intervals (it factors out of both sides of the ratio and cancels), the change in overall

posterior point estimate is exhausted by the change in the weights. Since these sum to one,

it is without loss to focus only on WL.

We can rewrite WL = L
L+H

, where L =
∫ 1

2

pm
fp(s)dµ, H =

∫ 1−pm
1
2

fp(s)dµ. After rescaling

by αL and αH , this becomes L
L+

αH
αL

H
, which is strictly less than L if αH

αL
> 1 and strictly

greater if αH

αL
< 1. Thus, from the above there exist choices of αL and αH which move these

weights, and thus the overall posterior point estimates, in either direction.

This proves the result.

Proof of Theorem 2. Since agents are indifferent when their point estimate is exactly 1
2
, a

given cutoff is possible if and only if it is possible for the point estimate to equal 1
2
at

the associated sample. Since the posterior point estimates for any given prior are strictly

increasing in the sample, the lowest and highest such samples for which this is possible define

the set of possible cutoffs and thus fixed points. By symmetry, these endpoints are of the

form pm, 1− pm.

From Proposition 10, reducing η expands the set of possible point beliefs at each sample

in a continuous and strictly monotone way. As η approaches zero or one, it is eventually

the case that the posterior point estimate at any 2 < m < N can be 1
2
or that it cannot,

respectively (as priors with arbitrary loose bounds can essentially ignore samples of any fixed

size, and the limiting uniform prior can only have posterior point estimate 1
2
for m = N).

Therefore, there exists an intermediate range of η for which m, 2N −m are the smallest and

largest samples for which indifference is possible.
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1.5.3 Discussion

The concept of complete diverse CAE has thus given us a different predicted set. The Nash

equilibria are all still possible, but in addition so are a range of possible ‘misunderstandings’,

in which agents, on average, best respond to an estimate of the convention they face that

is on the opposite side of the mixed Nash from the convention they actually face. The

possibility of such misunderstandings makes them rational: if agents believe other agents

can guess wrong in this way, it opens up the support of their priors in a way that allows

them to guess wrong themselves (by coming to believe in an interior action distribution less

than 1
2
when the true distribution is greater, or vice versa). The sample size also now affects

the predicted set, forcing possible misunderstandings to be smaller the more agents observe,

whereas previously the exact Nash result held even for quite small samples.

The intermediate nature of this prediction – there can be misunderstandings, but only suf-

ficiently small misunderstandings – is intuitive given the intermediate nature of the concept.

Agents don’t completely know the convention they face, so they cannot be expected to avoid

misunderstandings entirely. But they also see enough, and know others see enough, not to

be fooled into going along with a misunderstanding that is too extreme, and the more they

see, the harder they are to fool. This is, arguably, realistic as a description of the situation

of actual agents in the settings we have described.

1.6 Extensions

1.6.1 The General Coordination Game

Consider the following parameterized game matrix, which I call the general coordination

game.
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A B

A a, a x, 0

B 0, x x+ b, x+ b

Figure 1.2: The General Coordination Game

Here, a is the gain from successfully coordinating if one plays A, b is the gain from success-

fully coordinating if one plays b, and x is a decision-irrelevant shift parameter that represents

the payoff gain from one’s opponent playing B rather than A, independent of one’s own ac-

tion. Assume a, b ≥ 0 and x ∈ R. Note that the simple coordination game is a special case

of the general coordination game with a = b = 1 and x = 0.

The unique mixed Nash equilibrium of the general coordination game is at p = b
a+b

. That

is, the fraction playing A is equal to the ratio of the loss from miscoordinating while playing

B to the sum of the losses from miscoordinating on A and on B; in particular, the fraction

playing A must go down when the relative loss from miscoordinating on B goes up, to

keep players indifferent between the two actions. (A,A) and (B,B) are also still pure Nash

equilibria, since a, b ≥ 0.

Let PNash again denote the set consisting of the three Nash equilibria of the general

coordination game. We can extend the result for the simple coordination game as follows.

Proposition 11. PNash is a CAE set of the general coordination game.

Proof. As before, we need r(0) = B and r(2N) = A to accommodate the two pure Nash

equilibria. Under the sample distribution associated with the mixed Nash, there are thus

at least fraction ( b
a+b

)2N playing A and fraction ( a
a+b

)2N playing B. Observe that these are

strictly smaller than the total fractions playing A and B at the mixed Nash, b
a+b

and a
a+b

.
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We thus have room to specify actions at the remaining samples which allow the mixed Nash

to be a fixed point (for any values of a and b).

Complete the specification of r by setting, for all sA ∈ {1, ...2N − 1}, r(sA) to be the

action distribution with

pA =
b

a+b
− ( b

a+b
)2N

1− ( b
a+b

)2N − ( a
a+b

)2N

This makes the overall distribution of actions played under r at pA = b
a+b

equal to those

of the mixed Nash, so the mixed Nash is also a fixed point for r.

As before let us use the prior assigning equal weight to all three elements, though any

prior would do. As before, players who see any sample where both actions are played are

certain they are at the mixed Nash, so they are indifferent and the distribution we assign

them after such samples is consistent with r being a best response. When they see an extreme

sample, they assign weight to both the mixed Nash and the corresponding pure Nash and

thus strictly prefer to match the action in the sample they see, also as before.

The construction here largely matches the previous one. The additional insight is that the

assignments of actions to the extreme samples needed to make the two pure Nash equilibria

fixed points for r never interferes with our ability to also make the mixed Nash a fixed point

for r, no matter where the mixed Nash is located.

1.6.2 3 × 3 Games

All the foregoing focused on the special case of 2× 2 games, which can be analyzed in one

dimension and thus exhibit many special properties. As a first investigation of how much of

the preceding results generalize, I consider now two simple 3× 3 games. The first is a direct

generalization of the simple coordination game to three dimensions, which in this setting I

will call the 3× 3 coordination game, or just the coordination game.
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A B C

A 1, 1 0, 0 0, 0

B 0, 0 1, 1 0, 0

C 0, 0 0, 0 1, 1

Figure 1.3: The 3× 3 Coordination Game

The second is Shapley’s game,13 in which agents, instead of wanting to match their oppo-

nent’s action, seek to play the action alphabetically after it: B against A, C against B, A

against C.

A B C

A 0, 0 0, 1 1, 0

B 1, 0 0, 0 0, 1

C 0, 1 1, 0 0, 0

Figure 1.4: Shapley’s Game

Both these games have the property that one’s best response depends only on one’s sub-

jective belief about which action is most commonly played in the population; the relative

frequencies of the two less common actions do not matter. The coordination game has four

Nash equilibria – three in pure strategies and a mixed one where each action is played a

third of the time. Shapley’s game has only one, mixed, Nash equilibrium, also with equal

frequencies.

The following is an easy generalization of the construction used above in 2× 2 games.

13See e.g. Fudenberg and Levine (1998), p. 34.
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Proposition 12. The sets PNash containing all and only the Nash equilibria are unitary CAE

sets in the 3× 3 coordination game and in Shapley’s game.

Proof. In Shapley’s game, agents are certain of the mixed Nash and thus indifferent after

every observation, so it is very easy to construct a reaction function that works.

In the 3× 3 coordination game, players who see one of the three extreme samples believe

in some mixture between the corresponding pure Nash and the mixed Nash, giving them a

strict preference to match the pure Nash; since any r which assigns the matching actions to

the extreme samples makes the pure Nash outcomes fixed points, this takes care of all but

the mixed Nash.

For the mixed Nash, note again that the extreme samples are less frequent at it than the

frequencies of corresponding actions it prescribes, and there is thus room enough left to use

indifference at all other samples to make the mixed Nash an equilibrium too.

Remark 2. It is not hard to see how the proof which has worked for this setting and the

previous one could continue to work in general, for any game in our class and collection of

points consisting of all the pure symmetric Nash equilibria and some mixed Nash equilibrium

in which every action is played. What is less clear, and may be difficult to settle in general,

is the status of sets of all Nash equilibria, including perhaps multiple mixed Nash equilibria

placing positive probability on different subsets of actions.

This takes care of the question of whether the Nash outcomes are still supportable in this

context. What is less clear is whether the arguments against non-Nash outcomes for a single

prior still apply in this setting, and whether the implications of the diverse CAE concept are

different here.
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1.7 Conclusion

I have introduced the concept of convention-affirming equilibrium and characterized the

outcomes it predicts in 2 × 2 coordination games. In the unitary version, this provided a

justification for expecting Nash equilibrium to prevail in settings in which the relative fre-

quencies of different conventions across societies is commonly known. In the diverse version,

it provided a reason to expect non-Nash conventions featuring a degree of ‘misunderstand-

ing’ to arise, but also to expect the scale of misunderstandings to be limited by how much

is observed.

The predictions in both cases are clear-cut and illuminating, and provide reason for opti-

mism about the value of this solution concept in more general settings. One natural direction

for future work is to see if the basic predictions – Nash equilibrium in the unitary case, some

limited set of additional possible misunderstandings in the diverse case – extend to general

games in the class I study here. Another is applying the concept to extensive games, where

limits on how much of the strategy distribution is observed come into play, and it may lead

to interesting equilibrium selection results. A third is to study directly out-of-equilibrium

dynamics that may lead to CAE.

40



Chapter 2

Deterred by Not Knowing: Equilibrium

Cooperation Without Strategic Certainty

Abstract

I apply the concept of convention-affirming equilibrium (Hudson, 2023) to a simple, two-

stage game of effort choice on a joint project. I study four classes of strategy distributions

in the game, in which most agents play according to one of the four pure symmetric paths

of play, and show that each can be a convention-affirming equilibrium under certain circum-

stances. The results highlight the importance of strategic uncertainty about the outcome of

deviation, as distinct from a known punishment path, as a reason why agents may conform

to cooperative behavior widespread around them. They also highlight the dependence of the

possible equilibrium outcomes on the payoff parameters of the game.

2.1 Introduction

Cooperative behavior is ubiquitous, and plays a fundamental role in a wide range of human

phenomena. For self-interested agents, engaging in cooperative behavior that is individually

suboptimal in the present requires that their expectation of future outcomes for themselves be
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contingent on their current cooperation. As such, explanations of the origins and persistence

of such expectations, and predictions about the form they will take, are also of fundamental

importance.

The incentive to cooperate entails not just that one’s own cooperation will in fact be

rewarded by more favorable future behavior by others, but that one is subjectively confident

enough of this at the time of one’s own decision to form the basis for choosing to cooperate.

In order for cooperation among self-interested individuals to reliably arise in practice, most

of them must hold beliefs about the future according to which cooperating in the present

will make them better off in the long run than not doing so.

In studying cooperative behavior, we may ask both how it arises in the first place, and why

it may be expected to persist once present. We might call these ‘the evolutionary question’

and ‘the stability question’, respectively. Both have been studied extensively in the literature,

and both can motivate predictions about which sort of behavior is most likely. The present

paper is about the stability question, with a particular thesis about the evolutionary question

playing a motivating role in the background.

I apply the concept of convention-affirming equilibrium (Hudson, 2023) to a simple two-

player game in which the value of a joint project is determined by the effort choices of both

players across two periods. In the first stage, each player’s effort increases the value to both

players of the eventual outcome – albeit by less than the individual effort cost – in a way

that is additively separable from the value added in the second stage. The second stage is a

coordination game, with one of the two coordination outcomes being better than the other,

but also more costly to miscoordinate on. This captures many of the key general features

of settings in which forward-looking incentives are necessary to support initial cooperation,

notably the need for expected outcomes in the second stage to be (subjectively) contingent

on initial behavior.
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Convention-affirming equilibrium predicts play in the game that can persist across time in

a setting where it is played by successive cohorts of agents, none of whom know the whole

distribution of strategies played by others, but all of whom have observed some sample of

the outcomes of past play and all of whom also understand which strategy distributions are

possible convention-affirming equilibria, and believe that the distribution they face must be

one of those. There is thus a circularity in the definition, which I address by defining sets

of convention-affirming equilibria as the primitive concept, in the formal definition below.

The background thesis about the evolutionary question is thus that agents always expect

to be entering a world in equilibrium, and make their inferences and choices accordingly.

The stability question then becomes: which outcomes reproduce themselves in the face of a

population of agents who think this way?

In the results, where I construct sets of convention-affirming equilibria for the game (or

CAE sets, as I will usually call them), or where I show that such sets cannot be found

for certain cases, I focus on sets that are, in a certain sense, maximal. If it is possible

to expand a CAE set slightly, by adding more strategy distributions ‘at the margin’, and

arrive at something that is also a CAE set, then there is a sense in which the original was

‘unnaturally small’ – restricting agents to believe in a smaller set of similar possibilities than

they reasonably might. I get around this by focusing, in the results, on what I call locally

complete CAE classes (LCCCs for short). A LCCC is a collection of (generally ‘similarly

shaped’) sets with the property that one of them is CAE and all of them are such that a

population of agents who believe one of them is the set of possible strategy distributions

cannot itself play a strategy distribution that is close to, but not within, the union of sets in

the class.

The goal is to establish properties of CAE sets which are the ‘largest’, and hence the most

interesting, within a given region. Since characterizing the largest sets themselves would

involve prohibitive technical difficulties, I instead look at classes of sets constructed so as
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to include all CAE sets in a given region, along with some other sets that are not CAE. In

proving that some property holds for all sets in the class, or for all sets in the class that

are CAE, I also prove that this property holds for the ‘largest’ CAE sets within the class,

without first needing to establish which exactly these are. The predictions of interest are

still these largest CAE sets; the LCCC construction is just a device for indirectly proving

things about them that would be very hard to prove directly.

The LCCC concept in general is very permissive; there can be LCCCs including many sets

that are very different from any CAE set they contain. It is accordingly reasonable to state

general criteria by which to judge whether a LCCC constitutes an ‘interesting’ or ‘reasonable’

prediction – whether it is ‘tight’, in a qualitative sense at least, around the largest CAE sets

it contains. For LCCCs whose sets are all contained in some small neighborhood of strategy

distribution space – those that all agree some pure path of play is almost always played, for

example – a reasonable criterion is that all sets in the LCCC should agree on which actions,

at histories reached with positive probability under strategy distributions in sets in the class,

are played commonly, which rarely, and which never (i.e. each strategy distribution in each

set in the LCCC should designate common, rare, and never played status to the same actions,

and this designation should also be the same across all sets in the LCCC). In addition, if a

history is never reached within the class, there should be no restrictions on the distribution

of actions that can be played there. This last is an expression of the principle that agents’

beliefs about what is possible should be restricted only by their observations and knowledge

of the process they are embedded in (including the reasoning of other agents).1 I call this

last condition ‘empiricism’ in the main text, and the condition that there is agreement on

which actions are never played ‘same possible actions’; both are defined formally in Section

2.3.5. Agreement on what is ‘common’ or ‘rare’ is a fuzzier condition, and I do not attempt

to formally define what this means in general. In the results, common actions are (implicitly)

1It is unproblematic to express this by considering any behavior possible because in the present setting
there are no dominated actions in the second stage.
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functionally defined as actions common enough that the distribution of play at the history

immediately following them can be estimated fairly precisely from agents’ samples, and rare

actions as actions rare enough that they cannot.

We may of course wish to study CAE sets in which strategy distributions within several

different neighborhoods are all possible. In this case, we can consider LCCCs whose elements

are unions of sets in each of the neighborhoods, and put conditions on the class of sets possible

for each neighborhood (the ‘components’ of the LCCC) like those stated above for an LCCC

in a single neighborhood. This is related also to the ‘local’ part of the LCCC definition.

If we wish to consider predictions outside of a given neighborhood, we ought to consider a

class of sets large enough to include them and ask if it is LCCC, rather than worrying about

whether agents who believe only strategy distributions in a certain neighborhood are possible

may nevertheless manage to play according to a distribution well outside the neighborhood;

the latter approach would be against the spirit of the concept, according to which agents

understand accurately the set of possibilities they face and attempt to discern the case they

are in accordingly.

In the cases I consider, agents will be entering a world in which most other agents follow

a single, symmetric path of play in the game, which I will call the conventional path. I use

the word ‘convention’ to pick out the collection of strategy distributions which have a given

conventional path. Such a collection corresponds to the event that following this path is

typical behavior, and agents observe that it is typical. It is ‘affirmed’ – roughly speaking – if

a population of agents who observe this continue to play along with it, and in a convention-

affirming equilibrium agents will believe only in strategy distributions that are affirmable

(by some population or other, not necessarily the one they are in). As such, ‘convention’

or ‘conventional’ in the present context merely denotes a way of playing the game which is

typical or widespread. There is no normative meaning attached to it, and no descriptive
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content beyond merely saying that other ways of playing are uncommon.2

There are four possible choices of conventional path – high effort in both periods, low

effort in both periods, low effort followed by high effort, and high effort followed by low

effort. I will show that all four can arise in convention-affirming equilibrium under certain

conditions on payoff parameters, which I characterize. There is a sense in which these are

the only ‘natural’ candidate outcomes. If more than one path were observed frequently,

then agents would have enough information to assess the relative payoffs of the different

kinds of strategies frequently played by others, and would thus not rationally be able to

play according to all of them except in knife-edge cases of near-indifference, which I do not

consider.

In such cases, then, agents understand the consequences of playing as others typically do,

but will have at most very limited observations about the consequences of playing different-

ly, with the off-path play of others accordingly being substantially uncertain and assessed

according to an agent’s prior belief, even when they have many observations of conventional

play. In assessing whether a given strategy distribution can be a convention-affirming equi-

librium or not, we must thus consider the reasoning process of agents confronted with such

an environment, who observe what others usually do and perhaps a few examples of unusual

behavior as well, but who remain uncertain of what would happen if they behaved in an

unusual way themselves. This necessarily involves a payoff comparison between the largely

known outcome of conventional behavior and the largely unknown – and from an empirical

standpoint, largely unknowable – outcome of other possible courses of action.

In the results, which largely concern which conventional paths can arise for populations

facing particular values of the payoff parameters of the game, three general kinds of cases

2This minimalist use of the word in particular diverges from some other established uses in the literature
on game theory and philosophy. See, for example, Rescorla (2019), or the discussion of these connections in
Hudson (2023).
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will arise. In the first case, playing along with a given conventional path, so long as most

others are doing so, is strictly better or strictly worse than any other course of action no

matter what would happen if one did otherwise. This case arises for conventional paths

prescribing high effort initially when the gain from cheating on an opponent who exerts high

effort exceeds any possible loss in the second round (relative to the conventional path). It

also arises for conventional paths prescribing low effort initially when the loss from exerting

high effort when one’s opponent does not exceeds any possible second round gain (again,

relative to the conventional path). These are the simplest cases, as they do not require us

to consider beliefs off the conventional path.

In the second kind of case, it is possible in principle to gain by deviating, but the presence

of deviators undermines play of the convention itself. In any case where deviation is not ruled

out by knowledge of the conventional path alone, the assumptions of ‘same possible actions’

and ‘empiricism’ imply that any LCCC must allow some agents to deviate and others not

to; if either behavior is then not optimal for some belief, there cannot be an LCCC for the

convention.

This case arises for the conventional paths featuring high effort in both periods and low

effort in both periods, for payoff parameters making first-period deviation worthwhile if and

only if one expects to coordinate on high effort in the second stage after deviating. Under

these payoff parameters, one can only deviate if one expects then to coordinate on high

second-period effort, and other agents, understanding this, must accordingly respond to a

deviator with high effort. This undermines the convention, as such a deviation then yields a

higher payoff for the conventional path.

This case represents a more complicated way in which a convention can fail to be sup-

portable in LCCC – not because the path itself is inherently suboptimal, but because there

is no set of strategy distributions associated with it which can satisfy all the conditions of
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the solution concept simultaneously. There is a forward induction-like logic to such cases:

reasoning about the possible motivations of deviators restricts the possible responses to devi-

ators in a way that then undercuts the motivation to play according to the convention itself.

This emergence of forward induction-like reasoning – organically and from first principles,

without imposing forward induction – is one of the virtues of the LCCC solution concept. I

discuss this and related issues more in Sections 2.6.3 and 2.6.4.

In the third kind of case, we construct a CAE set (and associated LCCC) in which it is

possible to believe that deviation is worthwhile, but also that it is not; where most agents

can in fact choose not to deviate for some of the beliefs they might hold, and where the

actual frequency of deviation must be sufficiently low. (If deviation were too frequent, most

agents would have samples containing enough observed deviations to estimate post-deviation

play confidently, and either non-deviators or some kind of deviator would learn from this

that their strategy is suboptimal). This case arises for the two conventional paths featuring

high effort in the first period, for payoff parameters under which deviation can be motivated

by expecting reliable coordination on either second-stage outcome. In such cases, a deviator

can reasonably play either second-stage action, and one may respond to a deviator with

either second stage action. Because both of these second-stage outcomes are possible, it is

also possible to consider both responses to a deviation relatively likely, in which case there

is a fear of miscoordinating in the second round if one deviates at first. If most agents in

the population do in fact have such beliefs, it will seem better in expectation to follow the

conventional path, so that high initial effort will remain stable.

The fear of miscoordination under strategic uncertainty is thus a source of forward-looking

incentives that can sustain initial effort in this case. It is, in fact, the only way in which

high initial effort can be sustained in a LCCC for this game. An outcome where most agents

switch from high to low second-stage effort in response to a first-stage deviation is ruled out

by the forward induction-like logic discussed above. The threat of miscoordination works
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precisely because no one knows how to get out of it; since agents are genuinely confused about

what to expect at post-deviation histories, the threat is credible even if neither party would

be willing to carry it out if they knew enough to avoid it. For agents who are not confident,

for whatever reason, that they can predict their opponent’s response to a deviation, it is

safer not to rock the boat. It is for this reason also that high effort followed by low effort

can be a convention-affirming equilibrium outcome; one might make an effort even with no

expectation of getting the better second-stage outcome for fear that not doing so would lead

to a misunderstanding that would be even worse.

I define the model and the solution concept in sections 2.2 and 2.3, respectively. Section

2.4 presents results, first for agents whose beliefs are concentrated on each conventional path

separately and then for the case when all four are possible. Section 2.5 compares these results

to those induced by other solution concepts in the same game. Sections 2.6 and 2.7 discuss

the results and related issues in light of the broader literature.

2.2 Model

2.2.1 The Game

Stage 1 Stage 2

H1 L1 H2 L2

H1 1, 1 −l, 1 + g H2 VH , VH 0, e

L1 1 + g,−l 0, 0 L2 e, 0 VL, VL

Figure 2.1: The Game

I study the two-stage, simultaneous-move extensive game of perfect information depicted

in Figure 2.1. Parameter values are such that l, g > 0, and 0 < e < VL < VH . Final payoffs

are the sum of payoffs in the two stages, with no discounting.
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The first stage is the standard normalized prisoner’s dilemma. The second stage is a

coordination game, in which the action associated with the better pure Nash equilibrium

is also the one giving a lower payoff if one’s partner fails to coordinate. It becomes a pure

coordination game in the limit as e approaches 0, and a stag hunt game as e approaches VL

(so that, in the cases we consider, it is intermediate between the two).

A natural interpretation is as follows. Two players are tasked to work together on some

joint project across two periods, and can choose high or low effort in each.

In the second period, the project is due shortly and must be completed. There are three

possible outcomes. Both players may coordinate on a more ambitious completion (both play

H2), or a less ambitious one (both play L2). The effort cost of the former for each player

exceeds that of the latter by e, but the net payoff for both players is higher. Players may also

miscoordinate; this leads to the worst outcome (i.e. ambitious and unambitious completions

involve mutually exclusive lists of sub-tasks that can’t be mixed), and is more costly for the

ambitious player.

In the first period, the final outcome of the project is not determined, but the players can

do some work in advance which makes each of the three possible completions in the second

round better or worse, depending on effort choices in the first round. This takes the form of

shifting the value of each possible completion in the second round by a fixed constant. That

is, if both players make high effort in the first round, say, the total value associated with a

more ambitious completion is 1+VH for each player; if both made low effort at first it would

be just VH . The assumption of additive separability across rounds here is presumably not

realistic in all applications, but is convenient for our purposes.

Assuming that the cost of effort depends only on one’s own choice of H1 or L1, the case

l ≥ g corresponds to a ‘convex final outcome improvement technology’ (the gain from high
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effort of both players is more than double that of only one, so that the gain from slacking off

when one’s opponent does not is less than when one’s opponent also does), while the opposite

case l ≤ g corresponds to a ‘concave’ one (slacking off is more valuable when one’s opponent

makes an effort). In either case, (H1, H1) is efficient but L1 is stage-game dominant.

2.2.2 The Four Unitary Conventions

In what follows, I will mainly focus on the four cases in which most agents play strate-

gies leading to the same, symmetric path of play. I call this the conventional path and the

outcomes (distributions of strategies in the population) in which most agents play according

to a given conventional path unitary conventions. There are four possible unitary conven-

tions, corresponding to the four possible choices of (H1, H1) or (L1, L1) in the first round

and (H2, H2) or (L2, L2) in the second round. As we will see, all four of them can occur

as convention-affirming equilibrium outcomes, though the conditions under which they can

are different in informative ways. I briefly describe each here, and preview the later results

about which payoff parameters allow each to be a convention-affirming equilibrium outcome.

‘Collective Procrastination’ In this case, agents start by playing (L1, L1), but then play

(H2, H2) in the second round. That is, they do not avail themselves of opportunities to

improve their total payoff in the early stages, but when the deadline comes they work hard

and do the best they can within the payoff possibilities they have left themselves. Agents in

this case conventionally play a stage-game dominant strategy followed by the best possible

second-stage outcome; this is a strict best response to a case where most others are doing

so no matter what would have happened had they worked hard in the first round instead.

Unsurprisingly, this convention is possible for all values of payoff parameters. It is also,

casual observation might suggest, a very common tacit arrangement in practice.

‘Always Low (Effort)’ In this case agents play (L1, L1) and then (L2, L2). This is the

case where agents avoid effort in both periods and coordinate on the unambitious outcome.
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They face uncertainty here about what would happen if they chose H1 in the first period.

Obviously, they want to do so only if they have a high probability of coordinating on the

ambitious outcome in the second round, to compensate them for the up-front cost of effort

in the first round, and to minimize the risk of playing H2 in the second round, where

the opponent’s action is uncertain. This convention is only possible when the loss from

unilaterally deviating to high effort in the first period is higher than the difference in value

between the two second-stage outcomes; if it is not, deviating this way ‘signals’ an intent to

make high effort in the second round, and this destroys the incentive to play along with the

convention.

‘Always High (Effort)’ In this case agents play (H1, H1) and then (H2, H2). This is Pareto

efficient, and presumably the convention we would most like to encourage. Agents work hard

in the first round to maximize the value of their second-stage options, then coordinate on

the most ambitious completion. The uncertainty agents face in this case is about what their

opponent would do if they chose L1 in the first round. This convention is possible only for

intermediate values of the gain from ‘cheating’ in the first period, g. If g is too high, all

agents want to cheat no matter what, but if it is too low, then an agent can only choose

to ‘cheat’ if they still expect H2 in the second round, which as in the previous case signals

this expectation to the opponent and destroys the incentive to follow the convention. For

intermediate values of g, when coordinating on either second-round outcome with certainty

would motivate cheating, the convention can be followed if most agents are sufficiently sub-

jectively uncertain which second-round outcome to expect. Cheating is deterred in this case

by strategic uncertainty and the risk of miscoordination; this is credible because both players

are uncertain about the belief of the other about play after a deviation, so that neither has

the means to prevent miscoordination even if they wished to.

‘High, Then Low’ This is the opposite case from ‘collective procrastination’: agents start

with (H1, H1) and then play (L2, L2). That is, they work at first to improve their final pay-
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off, but then coordinate on the unambitious completion. It is tempting to assume that this

cannot happen for reasons similar to those explaining the robustness of ‘collective procras-

tination’ – agents are playing a dominated stage game strategy, and yet not being rewarded

by coordinating on the better second-stage outcome, so why would they work hard in the

first stage? But that turns out to be false. Agents cannot be motivated to work hard at

first by the threat of moving to a worse second stage coordination outcome, but strategic

uncertainty and the risk of miscoordination can still deter them from deviating from this

convention in some cases. The upper bound on g is tighter in this case than the previous

(since agents have less to lose in the second round relative to the conventional outcome),

but there is no lower bound, since it is always the case that an agent will wish to deviate

from this convention in the first round if they can predict either second stage action with

sufficient confidence.

2.2.3 Strategy Distributions and Population Behavior Strategies

The set of histories in the game, H, consists of the empty history ∅, the four length-

one histories (H1, H1), (H1, L1), (L1, H1), (L1, L1), and the sixteen length-two or terminal

histories consisting of the concatenation of one of the former with (H2, H2), (H2, L2), (L2, H2),

or (L2, L2). Denote the set of terminal histories by Z, and for generic elements write h ∈ H

and z ∈ Z.

A (pure) strategy in the game is an element s ∈ S = {H1, L1} × {H2, L2}4. It specifies a

choice of H1 or L1 at the empty history, and a choice of H2 or L2 at each length-one history.

I will assume all agents play pure strategies.3 For each terminal history z, let Si(z) and Sj(z)

be the subsets of S that are consistent with reaching z for player roles i and j, respectively.

3As we are dealing with a continuum population, this is without loss of generality with respect to the
distributions over outcomes that can occur.

53



I seek to predict aggregate play in a continuum population, from which agents are randomly

matched in pairs to play the game. Since the game is symmetric, and the agents in both

player roles are drawn from the same population, the possible outcomes of aggregate play can

be identified with the space ∆S of possible aggregate probabilities with which each strategy

is chosen; the strategies of the two players are drawn iid from some such distribution, and

the distribution over terminal histories is induced by this distribution over strategy pairs.

A strategy distribution is an element p ∈ ∆S. Denote the probability of strategy s under p

by ps. In light of the above, we can think of each strategy distribution as a mixed strategy for

the population, so that the aggregate play of the population induces the same distribution

over terminal histories as would a single pair of players both literally playing the mixed

strategy p. In particular, we can identify symmetric Nash equilibria and other outcomes we

might naturally express by a choice of some such strategy with their population strategy

distribution analogues.

By Kuhn’s Theorem, each such ‘population mixed strategy’ is realization-equivalent to a

behavior strategy for the population, and we will prefer in most of what follows to work with

the latter. A population behavior strategy (PBS) is a vector σ ∈ Σ ≡ [0, 1]5, with coordinates

written as σ = (σ(∅), σ(H1, H1), σ(H1, L1), σ(L1, H1), σ(L1, L1)). That is, each σ assigns a

number in the unit interval to each non-terminal history, interpreted as the proportion of

agents in the population who play the ‘cooperative’ strategy at that history (H1 at ∅, H2 at

the others) as a fraction of the total proportion whose strategies allow them to reach that

history.4

4For example, if half of agents choose H1 at first, and 30% of those agents then choose H2 at (H1, L1),
σ(H1, L1) is also just 30%; the fraction able to reach (H1, L1) doesn’t enter the calculation, and neither does
the probability that their opponent plays L1 initially (so that (H1, L1) is actually reached). Note that this
probability is for the first player role; the probability for the second in this case would be given by σ(L1, H1),
which may be different.
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Write the PBS induced by p ∈ ∆S as σp. It pins down the probability of each choice

at each history and also the distribution over terminal histories which will determine what

agents observe. As such, it is sufficient to focus on PBSs, both from the point of view of

predicting the probability of outcomes and as the possible states of play that agents reason

about; no information not contained in σp is relevant for agent updating or optimization, or

for pinning down the play that occurs.

The probability of a given terminal history z ∈ Z under PBS σ, denoted σ(z), can be

straightforwardly calculated in terms of the four action probabilities involved; for example,

the probability of z = ((H1, L1), (L2, L2)) under σ is σ(z) = σ(∅)(1−σ(∅))(1−σ(H1, L1))(1−

σ(L1, H1)).

2.2.4 Samples and Sample Distributions

We need now to specify what agents observe before choosing their strategies and playing

the game. Fix an integer N , which is commonly known. I assume that each agent, before

choosing their own strategy, observes a random sample of N terminal histories reached by

other pairs of agents in the population, drawn from a distribution induced by the prevailing

aggregate strategy distribution p, through population behavior strategy σp.

A sample is a tuple x = (xz)z∈Z , with xz ∈ {0, 1, ...N} for all z and
∑

z∈Z xz = N . That

is, xz is the number of times terminal history z was observed under sample x, and the total

number of such observations must add up to the sample size N . Write X for the space of all

possible samples. We may assume for concreteness that all observed terminal histories are

written from the perspective of the first player role, though the perspective taken is irrelevant

to inference.

As noted above, the prevailing population behavior strategy σp induces a probability σp(z)

with which each terminal history z is reached. The associated sample distribution is thus
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multinomial, with outcome space Z and probabilities σp(z). The probability mass function

is

fσp(x) =
N !∏

z∈Z xz!

∏
z∈Z

σp(z)
xz

2.2.5 Reaction Functions and Aggregate Play

A (pure) reaction function is a mapping r : X → S, which assigns to each possible sample a

choice of strategy. A reaction function is thus a sort of super-strategy, a complete contingent

plan specifying which strategy to choose after every possible sample. Write R for the set of

all pure reaction functions; note in particular that it is finite.

A mixed reaction function is an element ρ ∈ ∆R. We will think of mixed reaction functions

as describing populations in which different agents may have different pure reaction functions,

in which the probabilities that a given agent has each possible pure reaction function are

given by ρ. I work in what follows primarily with mixed reaction functions; this includes

point masses on pure reaction functions as a special case and is thus without loss.

The aggregate play induced by ρ and σ is the PBS α(σ, ρ) ∈ Σ resulting from a population

described by mixed reaction function ρ and making observations generated by the (possibly

different) PBS σ. ρ and σ naturally define a strategy distribution p(σ, ρ) by the formula

p(σ, ρ)(s) =
∑
x∈X

fσ(x)ρ({r : r(x) = s})

That is, the aggregate frequency of each s ∈ S is the probability of the event that a given

agent in the population has a sample and a reaction function leading them to play s. The

aggregate play is then just

α(σ, ρ) = σp(σ,ρ)
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Definition 9. A population behavior strategy σ∗ is a fixed point for mixed reaction function

ρ if σ∗ = α(σ∗, ρ).

2.3 Convention-Affirming Equilibrium

2.3.1 Priors and Updating

Let C be a closed subset of Σ, understood as the subset of PBSs an agent considers

possible, and let µ ∈ ∆C be an agent’s prior. Agents update their prior using their sample

and Bayes’ rule. For each sample x with positive probability under the prior, their posterior

belief µx after seeing sample x assigns to each Borel subset B of C the probability

µx(B) =

∫
B
fσ(x)dµ∫

C
fσ(x)dµ

In the case of a zero-probability sample, I assume the agent will stick with their prior.

I will assume in what follows that an agent’s prior and their sample are statistically

independent. Thus, the distribution of posteriors under a given sample distribution and a

given distribution of priors will be that resulting from independent draws from each followed

by application of the above formula.

2.3.2 Best Responses

I assume agents always choose strategies which are best responses to their posterior point

estimates of the true PBS after observing their sample. We will say a reaction function is

a best response to an agent’s prior if the strategies it prescribes are all optimal given the

posteriors derived from the prior after each sample, as follows.

Definition 10. The posterior point estimate of σ under posterior µx, denoted σ̂(µx), is
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σ̂(µx) =

∫
C

σdµx

Definition 11. A pure reaction function r is a best response to a prior µ if for each sample

x,

r(x) ∈ argmax
s∈S

v(s, σ̂(µx))

where v(s, σ̂(µx)) is the expected payoff of strategy s playing against the behavior strategy

σ̂(µx).

2.3.3 Convention-Affirming Equilibrium

Given a closed subset C ⊆ Σ, let M(C) ⊆ ∆C be a set of possible priors over C, called

the allowed priors over C. A convention-affirming equilibrium set will be a pair (C,M(C))

with the property that each σ ∈ C could be the aggregate play of a population of agents

who all hold allowed priors µ ∈ M(C).

Which PBSs could be the aggregate play for a given allowed set is formalized as follows.

Definition 12. A population behavior strategy σ is affirmable for (C,M(C)) if there exists a

mixed reaction function ρ such that σ is a fixed point for ρ and each pure reaction function

in the support of ρ is a best response to some prior µ ∈ M(C). Write A(C,M(C)) for the

set of σ which are affirmable for (C,M(C)).

Definition 13. (C,M(C)) is a convention-affirming equilibrium set if C ⊆ A(C,M(C)).

This definition leaves open the possibility that there may be additional affirmable PBSs

which are not included in the CAE set. If this is the case, there is a danger of arbitrariness

in the use of CAE as a prediction, since some outcomes ruled out seem reasonable in exactly
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the same sense those predicted do. One solution is to focus on CAE sets that contain all

affirmable PBSs; I call these CAE sets complete.

Definition 14. (C,M(C)) is a complete convention-affirming equilibrium set if C = A(C,M(C)).

In a convention-affirming equilibrium, agents understand the convention-forming process,

and have correct beliefs about which conventions can actually occur, but are uncertain which

convention actually holds. They are uncertain also about the distribution of priors over the

true convention held by other agents, which may differ from their own and one another’s, and

possible hypotheses about the true convention are tied to hypotheses about the distributions

of priors for which it can occur. A complete CAE set does not restrict these hypotheses

beyond requiring that they be possible for some populations holding allowed beliefs over the

set, while an incomplete CAE set incorporates additional restrictions imposed by the analyst

on which conventions, and hence belief distributions, agents consider possible, and also the

restriction that one of these is the convention which actually occurs.

It is obviously attractive to work with complete CAE sets if possible, since the set of

outcomes they predict is transparently self-consistent, with no additional restrictions. The

collection of all CAE sets includes also many which are too small to be reasonable – e.g.

subsets of larger CAE sets with some affirmable points arbitrarily deleted, or singleton sets

which are best responses to themselves only because they exclude most off-path possibilities.

But working with complete CAE sets is not always possible. The most fundamental

problem is that, for many sets of allowed priors, complete CAE sets may fail to exist. The

reason is that the set of affirmable PBSs A(C,M(C)) is tied to the subset of pure reaction

functions which can be best responses for agents with beliefs in M(C). Since R is finite,

and thus has finitely many subsets, there are accordingly also finitely many sets which can

be A(C,M(C)) for some C and M(C), and in general none of them may coincide with any
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of the C for which this is true. Even in cases where a complete CAE set does exist, it may

be very difficult to characterizes, for technical reasons of limited economic interest.

In the following section, I will accordingly define a modified solution concept which coin-

cides with completeness when a single complete set exists, but allows us to focus on a class

of ‘similar’ sets rather than a single set in other cases. This sidesteps most of the thorniest

technical problems associated with completeness. If this class is well-chosen, the interpreta-

tion of showing that it is a solution to this modified concept will have a similar economic

interpretation to showing a single CAE set is complete.

2.3.4 Locally Complete CAE Classes

I will say a collection of subsets of Σ is a locally complete CAE class (LCCC) if it contains

a CAE set, and if each affirmable PBS for each set in the class is either contained in some

other set in the class, or is some minimal distance from all sets in the class.

Definition 15. Let C be a class of closed subsets C ⊆ Σ and let M(C) denote the set of

allowed priors over each C ∈ C. Say that (C, (M(C))C∈C) is a locally complete CAE class if

(i) There exists C ∈ C s.t. (C,M(C)) is a CAE set

(ii) There exists some ϵ > 0 s.t. for each C
′ ∈ C,5 A(C

′
,M(C

′
))
⋂
Bϵ(
⋃

C∈C C) ⊆⋃
C∈C C

Note that a singleton class consisting of a complete CAE set is necessarily a LCCC, since

by definition it is CAE and contains all points affirmable for itself. General LCCCs differ

from this special case in two ways. First, I require that any PBS affirmable for a set in

the class is either contained in some set in the class or is not ‘close’ to the class. This is

the ‘local’ part; there is no ‘global’ requirement that all affirmable points are in the class.

Second, the ‘completeness’ criterion applies within the class, rather than within a single set

5Where Bϵ(
⋃

C∈C C) is the ball of radius ϵ around the union, according to the supremum metric – the set

of all σ whose coordinates are all within ϵ of those of some σ
′
in some C ∈ C.
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– nearby affirmable points for one set in the class must be contained in another, but not

necessarily in the first set itself.

Locally complete CAE classes, in general, do not inherently impose non-trivial restrictions;

the class of all closed subsets of Σ, each endowed with the set of all possible priors over them,

is always trivially a locally complete CAE class, for example.6 Rather, the quality of the

prediction is tied to the choice of class, particularly the extent to which all sets in the class

occupy a ‘similar’ region of Σ (so that the weakening of the concept relative to that of a

single complete CAE set is less severe). In the following section, I explain the kinds of classes

I will investigate.

2.3.5 Maintained Assumptions

I will mostly be interested in classes (C, (M(C))C∈C) for which all C ∈ C are closed, convex

subsets of Σ, and which also satisfy the following two properties:

Same possible actions: If some C ∈ C is such that σ(h) = 0 or σ(h) = 1 for all σ ∈ C and

some non-terminal history h, then the same is true for all other C
′ ∈ C.

Empiricism: If h is reached with probability zero under all σ ∈ C for some C ∈ C (equiv-

alently for all C ∈ C in light of the ‘same possible actions’ condition), then σ ∈ C implies

σ
′ ∈ C, where σ

′
is any PBS s.t. σ(h

′
) = σ

′
(h

′
) for all h

′ ̸= h.

The first condition says that an action cannot be played with positive probability under

one set in the class but not another. The second says that there can be restrictions on

possible behavior only at histories which might be reached (where play might thus have

actually been observed by someone, so that there is an empirical basis for these restrictions

somewhere in the population). Thinking of C as the class of possible supports of agents’

6There is always at least one CAE set because any singleton consisting of a Nash equilibrium is a CAE
set, and the game has a Nash equilibrium.
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beliefs, these conditions say that agents consider the same subset of actions in the game

subjectively possible under each C ∈ C, and moreover that they are totally agnostic about

play at histories which they are ex ante convinced are never reached. Note that the latter

includes histories that they may contemplate reaching themselves by deviating in a way they

are convinced no one else ever does.

Fix η ∈ (0, 1), a parameter of the model commonly known among the agents. For each

C ∈ C, let M(C) be the set of all priors over C with densities bounded by upper and lower

multiples of the uniform prior7 on C, with the upper and lower multiples being η and 1
η
.

In what follows, I will sometimes abuse notation by writing C for (C,M(C)) and C for

(C, (M(C))C∈C) on the understanding that each M(C) is defined in this way.

The purpose of working with this class of allowed priors is to ensure that there is some

threshold in the number of observations at any given history, uniform across the population,

such that all posterior point estimates of play at this history will be within any given tolerance

of the sample average above this threshold (whenever the sample average is consistent with

the support of their beliefs). That is, there are no ‘unboundedly stubborn’ priors, a possibility

not ruled out by the weaker assumption of full support. The parameter η controls how

stubborn agents are allowed to be in sticking with their prior in the face of their observations,

with lower values of η allowing more stubbornness.

In what follows, I will say a class (C, (M(C))C∈C) satisfying all these conditions is a

candidate class. That is, (C, (M(C))C∈C) is a candidate class if it satisfies ‘same possible

actions’ and ‘empiricism’, all C ∈ C are closed and convex, and all sets of allowed priors

M(C) are defined as above.

7The Euclidean measure of dimension appropriate to C, restricted to C and normalized to 1.

62



In the final subsection of the results, I will consider a class which is the union of several

candidate classes but not a candidate class itself. This class will be constructed from the

specific candidate classes identified in earlier subsections; as such, I do not attempt to define

a larger collection of possibilities to which this case belongs in the way I have for candidate

classes.

I will in what follows generally assume that η is small, and that N is large relative to

η. That is, I consider cases where agents are allowed to be relatively stubborn – so that

sufficiently small numbers of observations at a given history do not constrain the strategies

they may choose in the subgame starting there – but where the sample size is also so large

that only if a history is very rarely reached in the population overall will their observations

at that history really be sufficiently small in this sense (excepting outliers with vanishing

probability).

2.3.6 Interpretation

While the solution concept here is taken as primitive from the point of view of the formal

analysis, rather than derived in a rigorous way from any larger process, we can have the

following story in mind when interpreting it. There is some class of organizations within

which personnel are often assigned to work on group projects with the structure of the

game we consider. Each such organization has existed for a long time already, so that some

convention or other is presumed to be present in it, but personnel come and go – if not from

the organization as a whole, at least from whatever role within it makes one a candidate to

play the game – too quickly to accumulate much personal experience from past play. They

do, however, hear candid discussions of the outcomes of past games played by others in the

organization, which they use to update their prior over which convention is present before

playing themselves. A convention which persists across cohorts of agents who learn and

behave in this way is a convention-affirming equilibrium.
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A number of restrictive assumptions are present and should be highlighted. One, already

mentioned, is that only the experience of others and not one’s own past experience influences

beliefs at the time of play. If one has many observations of the play of others, this only

matters much if one plays unconventionally oneself (so that one accumulates more ‘off-path’

information than would be available otherwise); if the sample size is small, the fact that it

grows over time might also matter in the alternative scenario where agents play more than

once.

Additionally, we assume that agents are stuck with their partners – they cannot rematch

and start over, say, or join a different group mid-game if they don’t like what their opponent

is doing. As we will see in what follows, agents who cheat in the first period will in some cases

still have the ability to coordinate on the good outcome in the second period, since their

opponent is stuck with them in what at that stage is a coordination game; the assumption of

fixed partners is important for this. Because one’s opponent is also playing only once, their

past history cannot follow them into later games, or be observed in the present game; this

also is relevant to the logic of the results for the present case below.

2.4 Results

In the next four subsections, I derive a locally complete CAE class for each unitary con-

vention separately, and establish the conditions on payoff parameters for which each exists

or fails to. In the final subsection, I address the (relatively modest) additional issues needed

to derive a locally complete CAE class with components corresponding to all the unitary

conventions that exist for given payoff parameters.

A general point about unitary conventions is worth noting at the outset. I will focus on

cases where the probability of deviation from the convention is small enough that agents are

significantly uncertain about play following a deviation, and have beliefs about it which are
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thus non-trivially prior-dependent (sets with probabilities larger than this cannot be CAE in

any of the four cases). Since the sample size is assumed large relative to the bound on allowed

priors, a frequency of deviation small enough to create such uncertainty is also small enough

that the possibility of one’s opponent deviating can be ignored in making (strict) payoff

comparisons. Thus, an agent’s choice to deviate or not depends only on their belief about

their opponent’s action at the second-stage history after they deviate and their opponent did

not; their opponent’s action at that history in turn depends only on their opponent’s belief

about the second-stage play of those rare agents who deviate in the first-round.

The LCCCs I derive for each of the four unitary conventions will also all have the property

that all agents must always play the second-stage conventional action after the conventional

first-stage action profile. Because the second stage is a coordination game and agents are

certain the convention is usually followed, this is a necessary condition for best responding

to any allowed belief. In considering PBSs ‘close’ to the LCCC, we technically need to check

also PBSs where there is a slight probability of deviation after the first-stage conventional

action profile. It is immediate from the support of their beliefs and the assumption that

they stick with their priors after observing ‘impossible’ samples that such points are never

affirmable. Having noted this here, I omit this step from the proofs below for simplicity.

2.4.1 The ‘Collective Procrastination’ Convention

I first consider the ‘collective procrastination’ convention. This convention prescribes the

play of a stage-game dominant action in the first period followed by the best payoff for

both players in the second; as such, playing along with it is a strict best response to any

population where most other players also play according to it, no matter what beliefs one

may hold about play off the conventional path. As this would suggest, it is particularly easy

to construct a simple complete CAE set for this case.
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Let C∗
LH ⊆ Σ be the set consisting of all and only those σ with σ(∅) = 0 and σ(L1, L1) = 1

(that is, the subset in which the entire population plays according to this convention). I will

show that C∗
LH is a complete CAE set, from which it follows immediately that the singleton

class C∗
LH consisting only of C∗

LH is a locally complete CAE class.

Proposition 13. For all η sufficiently close to zero, C∗
LH is a complete CAE set.

Proof. Observe first that agents whose beliefs are supported on C∗
LH must assign probability

one to the event that their opponent follows the convention, because all σ ∈ C∗
LH assign

probability one to this event. Furthermore, for any sample observable at some σ ∈ C∗
LH ,

an agent’s posterior belief will be the same as their prior; since all samples consist only

of observations of the conventional terminal history, no agent has information that would

cause them to update about play at those histories they can be uncertain about for beliefs

supported on C∗
LH .

Accordingly, the question of whether a given σ is affirmable for C∗
LH reduces to the

question of whether every strategy in the support of some strategy distribution consistent

with it is a best response to the prior point estimate associated with some allowed prior over

C∗
LH (that is, the posterior point estimate for the case where the posterior equals the prior).

I show first that no σ /∈ C∗
LH can be affirmable for C∗

LH . σ /∈ C∗
LH implies either σ(∅) > 0

or σ(L1, L1) < 1. In the latter case, some agents who make low effort at first proceed to

make low effort in the second round as well. Since they are certain given beliefs supported

on C∗
LH that their opponent will make a high effort in such a case, they have an expected

payoff of e from doing so, which is less than the expected payoff of VH from making high

effort in the second stage; this cannot be optimal, so such σ cannot be affirmable.

If σ(∅) > 0, some agents are choosing to make a high effort in the first stage. For beliefs

supported on C∗
LH , their expected payoff from doing so cannot exceed −l + VH , while they

have a larger expected payoff of VH from following the convention. This cannot be optimal

either. It follows that any σ affirmable for C∗
LH must be contained in C∗

LH .

It remains then to show that every σ ∈ C∗
LH is in fact affirmable for C∗

LH ; that is, we need
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to show that agents whose priors have support in C∗
LH could choose either action at the three

histories never reached under C∗
LH . For the two histories believed unreachable given one’s

opponent’s action – (L1, H1) and (H1, H1) – this is trivially true; since agents are certain

these histories are never reached, play there does not enter their expected payoff calculation,

so that any off-path play is consistent with best responding.8

For play at the history (H1, L1) following one’s own deviation, note that as η approaches

zero, it is possible to construct allowed priors which put almost all weight on σ ∈ C∗
LH for

which σ(L1, H1) (the probability of my opponent playing H2 if I am at (H1, L1), which is

(L1, H1) from their perspective) is arbitrarily close to either zero or one. For example, one

can construct priors which have the maximal density 1
η
on some subset, and the minimal

density η elsewhere. As η approaches zero, the first subset can be made arbitrarily small and

thus contained within the subset of σ for which σ(L1, H1) is within any tolerance of zero or

one; since almost all weight in the prior is on this subset, and the posterior is the same as

the prior, the posterior point estimate can also be placed within any tolerance of zero or one

by this same scheme. Thus, either action can be played at (H1, L1) as well. This completes

the proof.

It is not difficult to see that playing along with the convention is also a strict best response

for beliefs supported on any set in which the maximum probability of deviation is sufficiently

small. Accordingly, no superset of C∗
LH which includes also small probabilities of deviation

can be a CAE set – such distributions would not be playable for populations certain the

convention was usually followed – and no class including such sets could thus be a locally

complete CAE class, since including C∗
LH in addition to such sets would violate the ‘same

possible actions’ condition, and no larger set is CAE itself.

8Note that this argument depends on the fact that we only require ex ante rationality, not sequential
rationality. See Section 2.6.4 for discussion on this point.
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There is a sense in which conventions which are strictly best to play along with knowing

only the conventional path, regardless of beliefs about behavior at unconventional histories,

are ‘naturally’ complete for this reason. The same will be true of the ‘always low’ convention

considered next, for the parameter values under which it can occur.

Conventions for which the optimality of following the convention itself depends upon beliefs

at unconventional histories, like the other two we will consider, are more delicate, as agents

knowing only the convention may well choose to deviate from it. Non-degenerate locally

complete CAE classes, rather than single complete CAE sets, arise naturally in such cases.

2.4.2 The ‘Always Low’ Convention

I now consider the ‘always low’ convention. There are two cases. When payoff parameters

are such that even a guarantee of coordinating on high effort in the second round cannot

compensate the agent for the cost of effort in the first period against an opponent who is

almost certain to make a low effort, we can find a complete CAE set representing it.

When payoff parameters do not satisfy this condition, there is no locally complete CAE

class for this convention. If it is possible for agents to respond to a deviator with high

effort in the second period, choosing to deviate would then signal, by a forward induction-

like argument, that the deviator expects to coordinate on high effort in the second period,

thus incentivizing the other player to do the same and undermining the convention. If a

candidate class of sets for this convention does not allow for this possibility, it cannot be

locally complete.

Let C∗
LL ⊆ Σ be the set of all and only those σ with σ(∅) = 0 and σ(L1, L1) = 0 (again,

the subset in which the entire population plays according to this convention). I will show

first that C∗
LL is a complete CAE set, from which it again follows immediately that the
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singleton C∗
LL consisting only of C∗

LL is a locally complete CAE class, for a specific set of

payoff parameters.

Proposition 14. If l > VH − VL, then for all η sufficiently close to zero, C∗
LL is a complete

CAE set.

Proof. This proof parallels that for C∗
LH , with the same sequence of steps.

Agents assign probability one to other agents following the convention, and always have

posteriors equal to their priors, given beliefs supported on C∗
LL. We can accordingly restrict

attention to whether given strategies can be played for allowed prior point estimates in asking

if a given σ is affirmable for C∗
LL or not.

Any σ outside C∗
LL either has a positive probability of high effort in the first period or of

high effort after both players made low effort in the first period. The second is suboptimal

for agents with beliefs supported on C∗
LL because it gives them 0 instead of VL, the first

is suboptimal because, by assumption, the first-period loss from making high effort when

one’s opponent doesn’t, l, exceeds the difference between VH and VL, the highest possible

gain from such a deviation in the second period (since agents following the convention get

VL in the second period, and VH is the highest possible second-period payoff). Ruling out

strategies which take either of these actions rules out also any σ outside C∗
LL being affirmable

for C∗
LL.

To show any action can be played at the other three second-stage histories, and thus

that all σ ∈ C∗
LL are affirmable for C∗

LL, we note again that anything is a best response at

the two believed unreachable given the opponent’s strategies, and then construct beliefs at

the remaining history (H1, L1) identical to those used for the same history in the proof of

Proposition 13

Say that a class of sets CLL is an ϵ-component class for LL and ϵ ≥ 0 if it is a candidate

class, and for all C ∈ CLL and all σ ∈ C, σ(∅) ≤ ϵ and σ(L1, L1) = 0.
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Proposition 15. If l < VH − VL, then for all sufficiently small ϵ ≥ 0 and all η sufficiently

close to zero, no ϵ-component class CLL for LL is a locally complete CAE class.

Proof. By ‘same possible actions’, since CLL is a candidate class, either σ(∅) = 0 for all σ ∈ C

and all C ∈ CLL (the ϵ = 0 case), or every C ∈ CLL contains some σ with σ(∅) > 0.

In the first case, all agents are certain that the convention will always be played, regardless

of their priors and samples. By ‘empiricism’, we must thus consider in this case the singleton

class consisting of only C∗
LL (since the convention is always played, agents cannot rule out

any action probabilities off the conventional path).

If this class were to be a locally complete CAE class, it would have to be the case that

all agents find it a strict best response to play according to the convention, for all possible

off-path posterior point estimates; otherwise there would be PBSs with arbitrarily small

positive probabilities of deviation which were affirmable for sets in the class but not included

in a sufficiently small neighborhood of the class, violating local completeness.

But, as η approaches zero, posterior point estimates of σ(L1, H1) arbitrarily close to 1 are

possible for agents – σ with such values of σ(L1, H1) are in the support of their beliefs, and

their subjective probability cannot be reduced by observation when only the conventional

path is observed. But, an agent who believed σ(L1, H1) was close to 1 – that is, that an

opponent who saw them make high initial effort would very likely make high second-stage

effort – would instead want to deviate. So CLL cannot be a locally complete CAE class for

ϵ = 0, as PBSs involving deviation would thus be affirmable for it.

I now consider the other, ϵ > 0 case. By the ‘same possible actions’ condition all C ∈ CLL

must contain some σ with σ(∅) > 0 if one of them does. Since all C ∈ CLL are convex, the

same must be true of some open subset of C, which must have positive probability under

the prior. Thus all agents with beliefs supported on any C ∈ CLL must believe deviations

may occur with positive probability.

If there were to be some CAE set C ∈ CLL, both strategies which play along with the

convention and those which deviate from it must be best responses to some possible posterior
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for agents with beliefs supported on C; if this were not true, σ with positive probabilities of

both deviation and non-deviation – which we have established are contained in any C ∈ CLL

– could not be affirmable for C.

It is necessary for this, in turn, that C contain σ with σ(L1, H1) > 0 and σ with

σ(L1, H1) < 1; that is, it is possible in C for a player whose opponent deviated to high

effort in the first round to respond with high or low effort in the second round. If such a

player could only respond with L2, deviation could not be a best response to any belief,

since a player deviating in such a case would get at most −l + VL, while they get VL from

following the convention. If only H2 was possible, non-deviation could not be a best response

to any belief, since a deviator would then get −l + VH which for the payoff restriction we

have assumed must exceed the payoff of VL from following the convention. (Agents are not

completely certain that their opponent will follow the convention, but the probability they

will not is bounded by ϵ; since the inequality we have assumed is strict, for any values of

the parameters satisfying it there is some choice of ϵ small enough to ensure that both the

above payoff comparisons hold.)

Since choosing to deviate by playing H1 in the first period is costly, it can only be rational

for agents expecting a better payoff in the second round than the convention allows; this can

only occur if the deviator plays H2 in the second round (since VL is the highest possible payoff

if one plays L2). If the payoff restriction assumed is satisfied, deviating and then playing

H2 is subjectively better than the convention if one assigns sufficiently high probability to

the opponent playing H2 (because −l + VH > VL, and sufficiently high probabilities of H2

correspond to expected payoffs from such a deviation arbitrarily close to −l + VH). Since

deviating and then playing L2 is worse than following the convention for any belief (−l+VL,

the maximal payoff from doing so, is less than the conventional payoff VL), it is then also

necessary, if C were to be a CAE set, that σ(H1, L1) = 1 for all σ ∈ C; that is, anyone who

deviates plays H2 subsequently.

But given this restriction, it cannot be rational for agents deviated on to play L2, so it
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must also be necessary that σ(L1, H1) = 1 for all σ ∈ C. We have arrived at a contradiction.

It is necessary that both actions be playable at this history and also that only H2 is. We

conclude that no ϵ-component class of the CLL can be a locally complete CAE class, since

no C ∈ CLL can be a CAE set.

Comparing these two results, there is a sense in which both this convention and the

previous are robust with respect to beliefs: if agents are a priori certain these conventions

are usually played by others, they always play according to them themselves, regardless of

the other details of their priors. On the other hand, unlike collective procrastination, the

always low convention is somewhat fragile with respect to payoff parameters – it becomes

impossible to sustain as soon as there is any possibility of profiting by unilaterally deviating

to high effort.

2.4.3 The ‘Always High’ Convention

I now consider the ‘always high’ convention. This differs from the previous two in that

agents must take a stage-game dominated action in the first stage, which they can only

do if they expect a sufficiently higher payoff in the second stage relative to the alternative.

Somewhat counterintuitively, this cannot be supported by the expectation that most players

will switch to low effort in the second period if their opponent makes low effort in the first. If

the difference in value between the more and less ambitious completions in the second round

is large enough that the threat of switching from the one to the other would deter low effort

in the first round, it must also be the case that someone who deviates to low effort in the

first round must be expecting to coordinate on the high outcome anyway, which thus also

gives their opponent an incentive to choose high effort in the second round, undermining the

convention. (Alternatively, if the possibility of responding to a deviation in this way is ruled

out a priori, the resulting component cannot be locally complete.)

72



Instead, strategic uncertainty is needed to deter deviation. If it is possible for players who

deviate to low effort to play either action in the second stage, the players deviated on will be

unsure of which action to expect and thus also able to respond with either action, depending

on the details of their priors. The possibility of both responses in turn also ensures it is

possible in the first place for deviators to play either second-stage action, also depending on

the details of their priors. This means that an agent thinking about whether to deviate faces

a threat of miscoordinating in the second round if they do so. The threat is credible not

because any player would wish to carry it out once they have arrived at the second stage,

but because they lack the information they would need to avoid doing so.

If all agents believe miscoordination is too likely for deviation to be worthwhile, in expec-

tation, the whole population can still play according to the convention in this case. But,

there is no reason to expect all agents to have such beliefs; presumably most populations

would have at least a few people who are subjectively confident, for whatever reason, that

they can predict their opponent’s response. In seeking LCCCs for this convention, we thus

need to consider populations that may have small numbers of deviators. Agents whose priors

strongly incline them to deviate will do so if they do not observe samples convincing them

that deviation is not worthwhile. We thus need to allow for frequencies of deviation large

enough to provide sufficient (discouraging) information about the outcome of deviation that

no larger frequency of agents will want to deviate after observing the associated sample dis-

tribution (considering only frequencies smaller than this would allow PBSs with marginally

higher frequencies of deviation to also be affirmable, violating part (ii) of the local complete-

ness condition). In the CAE set within such a class that we construct, deviation will be

rare, in the sense that it is observed seldom enough to allow agents to remain sufficiently

uncertain about its outcome; the constructive part of the proof is thus close to that of the

previous, with some modifications to account for the rare deviators and outlier samples.
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Say that CHH is an ϵ-component class for HH and ϵ ≥ 0 if it is a candidate class, and for

all C ∈ CHH and all σ ∈ C, σ(∅) ≥ 1 − ϵ and σ(H1, H1) = 1. The next three results show

that some such CHH is a locally complete CAE class for some payoff parameter values but

not others.

Proposition 16. If g < VH − VL, then for all sufficiently small ϵ ≥ 0 and all η sufficiently

close to zero, no ϵ-component class CHH for HH is a locally complete CAE class.

Proof. The proof of this result mirrors that of the negative result for ‘always low’.

If ϵ = 0, ‘empiricism’ requires unrestricted play at unreached histories, and the absence of

nearby affirmable PBSs requires a strict preference for playing according to the convention

for all possible beliefs, and these contradict each other (since agents expecting the high

outcome with high confidence in the second period even if they deviate will want to do so).

If ϵ > 0, we need both actions to be possible at the history where one’s opponent has

deviated to make both deviating and non-deviating potential best responses, but deviation is

possible only for agents who intend to play H2 in this case (since deviating and then getting

VL is worse than playing according to the convention for these payoff parameters), so we also

need H2 to be the only possible response in order for those deviated on to be best responding.

This too is a contradiction, and the two cases are exhaustive.

For the next two results, we will need also conditions on the worst-case second-stage

expected payoff, denoted V = VHVL

VH+VL−e
, which is achieved for the posterior point estimate

making an agent exactly indifferent between the two second-stage actions. (Note that V <

VL.)

The following is trivial from the fact that any strategy playing H1 in the first round is

strictly dominated under the condition stated (since the first-round gain from deviating, g, is

assumed greater than the difference between the largest and smallest possible second-round

payoffs, VH and V ).
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Proposition 17. If VH − V < g, then for all sufficiently small ϵ ≥ 0 no ϵ-component class

CHH for HH is a locally complete CAE class.

The remaining case is when g is between these two extremes.

Proposition 18. If VH − V > g > VH − VL, then for some ϵ > 0, for all η sufficiently close

to zero, and for all N sufficiently large relative to ϵ and η, there exists an ϵ-component class

CHH for HH which is a locally complete CAE class.

Proof. Consider the class Cϵ
HH consisting of the sets Cq,q′ = {σ : σ(∅) ≥ 1 − q, σ(H1, H1) =

1;σ(H1, L1), σ(L1, H1), σ(L1, L1) ∈ (q
′
, 1− q′)}, for q ∈ (0, ϵ], q

′ ∈ [0, ϵ]. I will show that Cϵ
HH

is a locally complete CAE class for some ϵ > 0. I first show that one of its elements (with q

sufficiently close to zero, and q
′
sufficiently large relative to q) is a CAE set, and then show

that there are no σ with σ(∅) ∈ [ϵ, ϵ + ϵ
′
) for sufficiently small ϵ

′
which are affirmable for

any Cq, which is sufficient for Cϵ
HH as defined to satisfy condition (ii) of the definition of a

locally complete CAE class.

I first show that for q sufficiently small, and q
′
large enough relative to q, Cq,q′ is a CAE

set. This requires showing that, for a generic σ ∈ Cq,q′ , σ is affirmable for Cq,q′ . I will show

this by showing the existence a collection of pure reaction functions which are best responses

to certain kinds of allowed priors over Cq,q′ , and showing that, for each σ, the convex hull of

the strategy distributions p(σ, r) induced by σ and each of these pure reaction functions r

contains a strategy distribution which induces σ, which is sufficient for σ to be a fixed point

for a mixed reaction function (with the same weights) supported on these r, and thus for σ

to be affirmable.

The prevailing PBS is pinned down by the probabilities assigned by the prevailing strategy

distribution to the ‘reduced strategies’ which specify an initial action, and specify an action at

each of the two second-stage histories reachable given this initial action (these are technically

equivalence classes of full strategies in the game). There are six such reduced strategies which

can have positive probability within the component we consider – two which play H1 initially,
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and then specify a choice of H2 or of L2 against an opponent who deviated (played L1)

initially, and four which play L1 initially (that is, deviate), and then specify a choice of either

H2 or L2 at each of the two second stage histories consistent with this. It will be convenient in

what follows to make a unique choice of strategy distribution (over these reduced strategies)

to associate with each PBS σ, from among the strategy distributions inducing it. Let this

be the unique (among those that induce σ) distribution over reduced strategies for which

the specified choices of actions at each history are statistically independent (that is, e.g.

the frequency of agents who deviate and would play H2 at either subsequent history is

the product of the total frequency of deviation with the frequencies of H2 at each of these

histories separately; play of H2 at one of them is not correlated with play of H2 at the other,

conditional on deviation).

I now show how to construct allowed priors for each of these six strategies in such a way

that an agent holding such a prior would play the prescribed strategy ‘almost always’ in

a population where observed deviations were sufficiently rare. Note that any prior which

is the product of some density over σ(∅) with densities over the probability of H2 at each

of the three unconventional second-stage histories, σ(H1, L1), σ(L1, H1), and σ(L1, L1) is an

allowed prior if each of these densities is bounded between η
1
4 and 1

η
1
4
. Note also that, for each

of the marginal densities on second-stage histories and for small η, there exist allowed priors

putting the ceiling density 1

η
1
4
on some interval with left endpoint q

′
, some interval with right

endpoint 1 − q
′
, and some interval centered on the worst-case probability associated with

V ; and which place the floor density η
1
4 everywhere outside the given interval. The length

of each such interval is uniquely determined by η, and approaches zero as η does. Since

q
′
is assumed small, the intervals at the left and right ends of the range are in particular

inside the range for which H2 or L2 is a strict best response for η small enough, and the

interval centered on the V probability is strictly inside the range for which deviating initially

is strictly suboptimal (in the case of σ(H1, L1), specifically).

Thus, by considering priors which are products of such marginal densities we can make
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each of our six reduced strategies an ex ante best response, by choosing a marginal density

for a second-stage history with very low or very high probability of H2 if we wish an agent

to play L2 or H2 at that history, respectively, and choosing a marginal density for σ(H1, L1)

which is centered on the worst-case miscoordination probability if we wish an agent not to

deviate initially (for the extreme marginal densities at σ(H1, L1), they will instead choose to

deviate and then take the corresponding action).

Because the priors considered are product measures, only direct observations of play at

each second-stage history can influence beliefs about it, and as the density for this history

becomes arbitrarily concentrated on the interval chosen, a correspondingly large number of

observations at this history are needed to prevent the posterior point estimate from specifying

a probability making the prescribed action a best response.

Consider next the six pure reaction functions associated with some choice of a prior for

each of our six reduced strategies. If all samples contained sufficiently few observations of

each unconventional history, agents with each of these reaction functions would always play

a single strategy, and we could simply choose weights over them corresponding to the weights

on these strategies which generate the strategy distribution associated with σ. Because some

samples will contain unusually large numbers of deviations, we also have to account for the

small fraction of agents with each of these reaction functions who play a different strategy

because they observe something unusual.

For any fixed N , as q is taken to zero, the frequency of samples with n > 1 or more

observations at any unconventional history vanishes relative to the frequency of deviations,

for any frequency of deviations less than or equal to q. In particular, the frequency of agents

who observe more than one deviation can be made smaller than q
′
. By the same logic,

the frequency of agents who observe more than two deviations can be made smaller than

(1 − σ(∅)) · (q′)2. Since no agent with the priors chosen will, for η small enough, play a

strategy different than that associated with their prior unless they observe more than one

or two deviations, the strategy distribution p(σ, r) induced by σ under the reaction function
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r associated with each of these priors has an overall frequency of the strategy associated

with this prior strictly higher than 1− (1− σ(∅)) · (q′)2, and thus a frequency of each other

strategy less than (1− σ(∅)) · (q′)2.

Under any σ ∈ Cq,q′ , by definition, the two non-deviating strategies must have frequency

at least q
′
(so that each possible response to a deviator has probability at least q

′
), and the

four deviating strategies must have frequency at least (1− σ(∅)) · (q′)2 (the total frequency

of deviation times the minimum frequency playing a given action at each of the two post-

deviation histories conditional upon reaching them; recall that these last two are assumed

independent under the strategy distribution associated with σ). Accordingly, ‘outliers’ alone,

for agents who have any of our six pure reaction functions and observations from σ, can

account only for a frequency of play of each of the six reduced strategies that is strictly less

than that prescribed under the strategy distribution associated with σ.

It remains to show that each σ ∈ Cq,q′ is a convex combination of the strategy distribu-

tions p(σ, r) generated by agents with each reaction function r who observe samples from

σ. Establishing this will immediately imply that σ is a fixed point for the mixed reaction

function whose support is these six pure reaction functions, with the same weights. Since

this scheme will work for each such σ ∈ Cq,q′ , this will establish that they are all affirmable

for Cq,q′ , and thus that Cq,q′ is CAE.

To begin, choose an arbitrary σ ∈ Cq,q′ , fix any one of the six aggregate play distributions

p(σ, r), and fix any convex combination of the other five. By construction, p(σ, r) has a

greater frequency of its prescribed strategy than the strategy distribution associated with

σ does, and any convex combination of the others has a smaller frequency of it. Thus, by

the intermediate value theorem, there exists a unique convex combination of p(σ, r) and the

given convex combination of the others whose frequency of the prescribed strategy exactly

matches that under the strategy distribution associated with σ.

Consider the self-map on the space of non-negative weights summing to one over the six

p(σ, r) (the 6-simplex) which assigns to each p(σ, r) the unique weight whose existence was
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asserted in the previous paragraph, given the (renormalized to one) weights on the others

under the input set of weights. It is easy to see that it is continuous. Since the 6-simplex

is compact and convex, the Brouwer fixed point theorem applies. Since any fixed point of

this map, by construction, gives the weights of a convex combination of the p(σ, r) which is

equal to the strategy distribution associated with σ, it follows that σ is affirmable for Cq,q′ .

Thus, Cq,q′ is a CAE set, satisfying part (i) of the LCCC definition.

It remains to show that, for each Cq,q′ , A(Cq,q′ ) is either contained in Cϵ,ϵ (which, given

the nested structure, is equal to the union of all Cq,q′ ) or is distance at least some ϵ
′
> 0 from

Cϵ,ϵ. Let ϵ be large enough that most agents have a sufficiently large subsample of actions

at (H1, L1) to force their posterior point estimate of play at that history to be within some

tolerance of the subsample average. This can be ensured to any tolerance with as small an

ϵ as we like, by choosing N sufficiently large.

If ϵ is sufficiently small, the choice of whether to deviate or not reduces to a payoff

comparison of the convention against the expected outcome when one deviates and one’s

opponent does not (that is, the possibility of one’s opponent deviating is negligible). It is a

best response to deviate and play L2 (resp. H2) if the probability of one’s opponent playing

L2 (resp. H2) is sufficiently high, and to not deviate when the probability of one’s opponent

playing H2 is intermediate.

If one’s posterior point estimate is constrained to be close to the subsample average, it

can for a given subsample occupy at most two of these regions. In particular, no subsample of

sufficient size is such that one agent can deviate to H2 after seeing it and another deviate to

L2. Note in connection with this that for sufficiently large N , by the law of large numbers,

most agents observe subsamples with average close to the true probabilities at the post-

deviation history.

Assume for a contradiction that there were a σ with σ(∅) between ϵ and ϵ + ϵ
′
which

was affirmable for some Cq,q′ . By the above reasoning, at least one of the two deviations

(deviate and then H2, deviate and then L2) is such that almost no agents observing samples
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generated by σ will play it. If the other deviation is played with frequency at least ϵ, then

for sufficiently large N almost all agents will expect the second-stage action associated with

this deviation with high probability after observing L1 in the first round, and match it, and

almost all agents, including almost all deviators, will expect this as well. Accordingly, if σ

were to be affirmable, almost all deviations would have to end in coordination on one of the

two second-stage coordination outcomes. But if this were true, almost all agents would see it

and thus would deviate, contradicting that the frequency of deviation under σ is no greater

than ϵ+ ϵ
′
.

Thus we conclude no such σ are affirmable for any Cq,q′ .

An important property of the LCCC described in Proposition 18, which supports the ‘al-

ways high’ convention, is that the conventional strategy and strategies that deviate from it

correspond to different priors. A deviator is someone whose prior is sufficiently weighted to-

ward one action or the other that they think they can predict their opponent’s response with

sufficient confidence to make deviating worthwhile in expectation. A non-deviator is instead

someone who is sufficiently uncertain of the response to cheating that it is subjectively not

worth taking the risk. Both types of beliefs are allowed over this CAE set, though a pop-

ulation which really does play the conventional path with high frequency must accordingly

contain mostly agents who are too uncertain to risk cheating, through some combination of

prior uncertainty and observed miscoordination.

2.4.4 The ‘High, Then Low’ Convention

Finally, I consider the ‘high, then low’ convention. For rather obvious reasons, this behavior

cannot be enforced by any threat of coordinating on a different outcome in the second round.

But can, nonetheless, be enforceable under a threat of miscoordination, albeit under payoff

conditions in a sense more stringent than in the previous case: it is now the gap between

the worst-case miscoordination payoff and the low effort coordination payoff, rather than the
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high effort payoff, that must exceed the gain from deviating.

Say CHL is an ϵ-component class for HL and ϵ ≥ 0 if it is a candidate class, and for all

C ∈ CHH and all σ ∈ C, σ(∅) ≥ 1 − ϵ and σ(H1, H1) = 0. The proofs of the following are

essentially identical to those of their counterparts for the ‘always high’ convention.

Proposition 19. If VL − V < g, then for all sufficiently small ϵ ≥ 0 no ϵ-component class

CHL for HL is a locally complete CAE class.

Proof. The maximal second-period loss in this case is less than the gain from deviating in the

first period if one’s opponent makes high effort there. Thus, if one’s opponent is sufficiently

likely to play H1 (ϵ sufficiently small), any strategy prescribing play of H1 oneself is strictly

worse than some other strategy for any allowed prior, and thus no σ with positive probability

of H1 can be affirmable.

Proposition 20. If VL − V > g, then for some ϵ > 0, for all η sufficiently close to zero, and

for all N sufficiently large relative to ϵ and η, there exists an ϵ-component class CHL for HL

which is a locally complete CAE class.

Proof. (sketch) This works for a class Cϵ
HL exactly paralleling Cϵ

HH in Proposition 18, above.

Allowed priors and pure reaction functions can be chosen exactly as before to justify each

of the six possible strategies for ‘uninformative’ samples, and each σ in a sufficiently small

set within the class can thus be shown to be affirmable.

For ϵ large enough, we can again show that almost all deviators will play one or the other

of the second-round actions, and derive a contradiction, as before.

2.4.5 All Unitary Conventions

The purpose of this final subsection is to prove that the results proved above for agents

with beliefs over a single unitary convention are still valid if we consider instead agents with

beliefs over all four unitary conventions. This is the main result of the paper, because it
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ties together all the previous cases and characterizes the play of agents who – realistically

– consider multiple conventions possible until they learn from their sample which one they

likely face.

For fixed values of payoff parameters, say an element of {LH,LL,HH,HL} is a live

convention if those parameter values are such that the payoff restrictions required for Propo-

sitions 13, 14, 18, and 20, respectively, are satisfied (Proposition 13 does not specify a payoff

restriction, so LH – ‘collective procrastination’ – is always a live convention). Conventions

which are not live are dead. Let CLH , CLL, CHH , and CHL be the LCCCs identified in con-

nection with those propositions. Call these the components associated with their respective

conventions (note that two of these components depend on a parameter ϵ; I will assume it

is the same ϵ in what follows). For Λ ⊆ {LH,LL,HH,HL}, let C∗(Λ) denote the collection

of all C ⊆ Σ which are unions of a collection of |Λ| subsets of Σ, exactly one of which is in

the component associated with each convention in Λ.

Theorem 3. Fix values of the payoff parameters. Then for all sufficiently small ϵ > 0, for

all η sufficiently close to zero, and for all N sufficiently large relative to ϵ and η, C∗(Λ∗) is

a LCCC, where Λ∗ is the set of live conventions. Additionally, C∗(Λ
′
) is not a LCCC, if Λ

′

contains a dead convention.

Proof. I will show that the analysis of each component separately does not, in this case,

differ from the earlier one-component analysis in any way that could affect the results. The

result then follows from Propositions 13-20.

Note first that no agent at a PBS in the HH component can assign positive probability

to being in the HL component or vice versa, and the same is true of LH and LL (because

unconventional second-stage actions are never played after the conventional first-stage profile

in every case). Thus, agents at a PBS in the component for LH or LL can assign positive

probability to being at HH or HL, and agents at HH or HL can assign positive probability

to being at LH or LL (when these conventions are live).
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All these connections are driven entirely by observation of the two samples associated

with LH and LL, respectively – the samples in which all observations are of the LH path or

the LL path – which can be extreme outliers for HH or HL. As N increases, the frequencies

of such samples under any PBS in the component for HH or HL vanishes. Accordingly, any

agent who observes them should believe they are at LH or LL, respectively, with probability

that becomes arbitrarily high for any allowed belief.

Accordingly, the change in agents’ beliefs when they have priors over C∗(Λ∗) or C∗(Λ
′
),

instead of just having priors over the component they are in, is only this: If they are at HH

or HL and observe one of the vanishingly rare samples which contains only observations of

the LH path or the LL path, they believe, mistakenly but with overwhelming confidence,

that they are in the LH component or the LL component (if the latter is a component they

consider possible), instead of believing they are observing an extreme outlier. If instead they

are at LH or LL, they assign some vanishingly small probability to being at HH or HL (if

one or both of these is a component they consider possible), but still remain overwhelmingly

convinced they are in the component they in fact are in.

The result then follows from noting that a change of posterior for a vanishing frequency

of samples in the HH and HL cases, and a tiny sliver of doubt about the true component

in the LH and LL cases, does not invalidate any of the previous arguments. To see this, it

will help to group the above results into three categories.

Propositions 13, 14, 17, and 19 involve a sort of dominance argument – knowing the

conventional path is usually followed is enough to make it a strict best response either to

follow it or not to follow it. Changing the belief at the two extreme samples in question

clearly cannot prevent most agents concluding that most others follow the true conventional

path in any of these three cases, so these results all hold as before.

Propositions 15 and 16 are based on pseudo-forward induction reasoning about the

thought process of a deviator. In the first case, almost all agents observing a deviator

will still assign probability very close to one (reduced only slightly by the possibility they
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are seeing an outlier) to their intending subsequent high effort, and almost all prospective

deviators will know they face a population of opponents of which this is true; this is suffi-

cient for the argument to go through as before. In the second case, a vanishing fraction of

agents will mistakenly believe they are in a different component than they are, but this will

not significantly alter the calculations of a prospective deviator, who expects with very high

confidence not to face such an opponent; thus again the argument goes through as before.

In the remaining cases, Propositions 18 and 20, I provided a method of constructing

distributions of priors for which each strategy distribution in the set I showed was CAE

could be a fixed point for a population where all agents best respond. This construction was

such that the distributions of priors needed could be shown to exist without needing to know

the strategies they lead to after ‘unusual’ samples. Accordingly, altering the strategy played

at these two extreme outlier samples cannot invalidate the construction; it works as before,

for the same choices of η, N , and ϵ.

2.5 Comparisons With Other Concepts

In this section, I compare the results above to those obtainable with some natural alter-

native solution concepts, and explain the reasons for the differences. Since the results in

this paper focus on cases where most agents play according to a single path, I shall restrict

attention in the comparisons to such cases also. It is more natural for some concepts to

compare the LCCC results to a ‘pure’ equilibrium for the alternative concept, where the

conventional path is followed with probability one. I choose ‘pure’ or ‘slightly mixed’ cases

for the concepts below according to what seems the most natural comparison. Where more

than one version of an alternative concept is available, I focus on the version(s) that seem

most directly comparable to the present work, also.

As in the results above, the decision to play according to the conventional path or not

in the below cases usually hinges on a comparison between the payoff on the conventional
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path and that associated with a unilateral deviation. When the conventional path is known,

the question of whether it can be sustained reduces to the question of which beliefs about

post-deviation play in the second stage are permitted by a given concept, and whether this

implies a different answer to whether/which deviations can be a best response than LCCC

does.

It will again be useful to divide Propositions 13-20 into three categories for the purpose

of comparison. Propositions 13, 14, 17, and 19 are results based on dominance; knowing the

conventional path is usually followed is sufficient for following it (in the first two cases) or

deviating from it (in the latter two) to be a strict best response, irrespective of beliefs about

play at other histories. Accordingly, these results will continue to hold for any concept in

which agents are rational and know the analogue of the ‘conventional path’ is usually followed.

Rationality holds in all the alternative concepts I consider; knowledge of the conventional

path fails only for ‘unconventional’ players in a self-confirming equilibrium.

The other two cases are Propositions 15 and 16, which are based on pseudo-forward induc-

tion reasoning, and Propositions 18 and 20, which involve the construction of a particular

distribution over priors. I call these the ‘pseudo-forward induction’ cases and the ‘construc-

tive’ cases, respectively. The extent of difference between these results and the analogous

results for alternative concepts will largely hinge on whether the set of post-deviation beliefs

which are possible for those concepts is different, and allows a different set of strategies.

2.5.1 Subgame-Perfect Equilibrium

I will focus on subgame-perfect equilibria (SPE) with a single, pure path of play. Thus,

the four cases above in which most, but not necessarily all, agents play according to a given

conventional path are compared to candidate SPE strategy distributions in which literally

all agents play according to the same path. Since agents know the strategies of others in a
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SPE (or act as if they do), the notion, natural for CAE, that agents are uncertain of play at

rarely reached histories does not translate well to the SPE setting.

The subgame following each of the four first-stage histories is the same game in every case,

and has three Nash equilibria – two pure and one mixed – whose payoffs to both players are

VH , VL, and V , respectively. Asking whether a given pure path can be sustained in SPE

is thus equivalent to asking whether it has a higher overall payoff than first-stage deviation

from it followed by one of these three payoffs (since we can choose any of the three to be

the post-deviation outcome). Since both the highest (VH) and lowest (V ) possible payoffs in

the second stage are among the three that can be chosen as the (SPE candidate) outcome

following a deviation, a given conventional path can be supported as a SPE so long as there

is any belief about post-deviation play that makes playing along with it rational. It is

immediate from this that LCCC refines SPE in this context, since play of the conventional

path in a LCCC must be a best response to some belief(s) about post-deviation play.

The refinement is in fact strict. Specifically, SPE allows the outcomes ruled out by the

pseudo-forward induction cases of Propositions 15 and 16. We are free in constructing SPEs

to mandate that the VL outcome (or even the V one) be played after a deviation, making

deviating to high or low effort, respectively, in these two cases ‘not worth it’. Doing so

creates a completely arbitrary expectation which is self-enforcing (and thus remains purely

counterfactual) once it has somehow been placed in the minds of all agents. This is ruled out

in LCCC because it violates the ‘local completeness’ condition – there is no reason agents

should be certain all other agents have such an expectation in the absence of any decisive

empirical or a priori reason to be certain of this – and the presence of even a sliver of doubt

about the expectations others may have leads to an actual deviator being interpreted as

expecting high effort, and thus to an incentive to deviate.

86



The ‘constructive’ cases of Propositions 18 and 20 are also supportable as SPEs, though

the reasoning behind them is different. Since there are no actual deviators in a pure SPE, we

need only find beliefs justifying adherence to the path, and assigning the mixed equilibrium

after a deviation – for which the worst-case miscoordination payoff V is achieved – gives

more or less the same belief in SPE that motivated adherence to the path in the LCCCs

constructed in these two cases.9 In these SPE cases, we take agents to know for sure that

this miscoordination danger is present, so that it could not be rational for them to deviate,

given the equilibrium strategies. In the LCCC cases, agents were not certain that deviation

was not worthwhile; most just had beliefs (potentially as a result of both their priors and

some limited empirical information) making them too nervous to try it.

There is an argument against the plausibility of the mixed Nash of the second-stage sub-

game in a SPE, based on its ‘fragility’. How compelling this argument is in relation to the

comparisons made here depends on the extent to which the analogous belief distributions in

the LCCCs of Propositions 18 and 20 are ‘less fragile’. This in turn depends on not yet fully

answered questions about which distribution-of-priors/strategy distribution pairs induce the

CAE outcomes in these LCCCs. It is also not clear e.g. how ‘dynamically stable’ these

LCCCs outcomes would be under various ways of operationalizing that question. But, to

the extent one accepts on intuition that the mixed expectation is reasonable in LCCC but

not SPE, we instead have incomparability: LCCC rules out ‘always low’ and ‘always high’

for the parameter values in the pseudo-forward induction cases, while SPE does not; and

SPE rules out ‘always high’ for the parameter values of Proposition 18 and rules out ‘high,

then low’ altogether, while LCCC allows both these cases.

9Though note that the beliefs assigned to deviators in these LCCCs could not coexist with the beliefs
given to non-deviators within the same SPE, since the disagreement among such agents about the true
strategy profile violates the condition that they know the true strategy profile in a SPE. The assumption
that there are no deviators in the SPE analogues for these cases is necessary here.
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To summarize: SPE with the second-stage mixed Nash allowed differs from LCCC in

allowing ‘always low’ for all parameter values, not just l > VH − VL, and in allowing ‘always

high’ for g < VH − VL. SPE without the second-stage mixed Nash also differs from LCCC

in not allowing ‘high, then low’, and in not allowing ‘always high’ for parameter values

VH − VL < g < VH − V .

2.5.2 Non-Strategic Bayesian Inference (‘Sampling Equilibrium’)

Next, I consider a case identical to the current model, except that agents have priors

over all of Σ, with densities bounded between multiples η and 1
η
as before. We will take

our predictions in this case to be just the set of strategy distributions affirmable for Σ and

these allowed priors. This is, in essence, a modified version of the current model in which

strategic reasoning – embodied in the requirement that priors be supported on CAEs – has

been stripped out. It is more or less identical in spirit, if not exactly the same formally, to

the Bayesian inference variant of sampling equilibrium in Salant and Cherry (2020).

In studying this case, I consider the parameter limit where η approaches zero (the bounds

on priors become very loose) and N becomes large relative to η, and I focus on strategy

distributions in which all but at most fraction ϵ of agents play according to a given ‘con-

ventional path’, where ϵ is small relative to N . This is the same parameter limit and class

of strategy distributions considered in the results about possible LCCCs, above. The key

observation to make about this case is that agents with such beliefs and samples facing such

a strategy distribution will have very high confidence that their opponent will in fact play

according to the given conventional path (because N is large relative to η), but have more

or less unrestricted posteriors about off-path play (ϵ being sufficiently small relative to N

implies their subsample of play at all off-path histories is also small, and η is assumed to

be small, so that their posterior point estimates need not be significantly restricted by small

subsamples).
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The four cases involving only beliefs about the conventional path (Propositions 13, 14,

17, and 19) are thus the same in this case as they were for LCCC and SPE; under all three

concepts agents know the conventional path is usually followed and that is decisive by itself

in all these cases.

The pseudo-forward induction cases are again not ruled out in this case, however. Since

beliefs off-path are unrestricted in this case, it is possible in particular for all agents to

expect payoff VL in the second stage after a deviation, and if all agents held such beliefs they

could play according to the ‘always low’ or ‘always high’ path for the parameter values of

Proposition 15 and Proposition 16, respectively.

The two ‘constructive’ cases of Propositions 18 and 20 are again supportable here, albeit

for a different reason than in either of the previous two cases. Since off-path beliefs can be

completely arbitrary in this case, we can in particular assign beliefs to all agents inducing

the expected payoff V after a deviation, as in the proofs of the above propositions. Unlike in

the SPE case, we can also assign a small number of them beliefs motivating deviation as well;

indeed, we will need to if strategy distributions involving a positive frequency of deviators

are to be fixed points.

To summarize, this ‘sampling equilibrium’ case differs from LCCC in allowing ‘always low’

for all parameter values, not just l > VH −VL, and in allowing ‘always high’ for g < VH −VL.

2.5.3 Self-Confirming Equilibrium

In a self-confirming equilibrium (Fudenberg and Levine, 1993), all agents have correct

beliefs about the play they will face at histories they can reach when playing their own

strategy against the prevailing strategy distribution in the population. In particular, agents

who play in a way compatible with a given ‘conventional path’ will know that most other

agents also do so, and will also know the true distribution over the second-round actions
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of rare deviators, if first-round deviation occurs with positive probability. Rare deviators

from a given conventional path will know the first-round action distribution and the true

distribution over responses to a first-round deviation, but may not know the true conventional

path (i.e. the second round action distribution after both agents play ‘conventionally’ in the

first round). Deviators may not know the behavior of other deviators, and non-deviators may

not know the response of other non-deviators to deviators. Since all agents best-respond to

beliefs that are correct about the distribution of play given their own strategy, play at every

second-stage history reached with positive probability must correspond to a Nash equilibrium

– if it did not, some of the agents who reach that history and thus know the distribution over

their opponents’ play there would not be best responding – but this restriction need not be

reflected in the beliefs of agents.

There is a stronger argument against the mixed Nash as a second-stage outcome in the

case of SCE, since SCE represents the limiting outcome of a process of learning about the

consequences of one’s own strategy and the mixed Nash of a 2× 2 coordination game tends

to be dynamically unstable under the sorts of learning processes one might imagine this

outcome being derived from. Because of this, and for simplicity, I will focus on cases where

pure Nash outcomes are played at reached second-stage histories. Note that this does not

prevent agents from having mixed beliefs about histories they do not reach themselves. It is

natural, in comparing SCE to LCCC, to consider both SCE where literally all agents follow

the conventional path and SCE where a small fraction do not. I consider these cases in turn.

In the case where literally all agents follow a given conventional path, they know that

all agents do so, and have beliefs which are otherwise unconstrained. Accordingly, the

beliefs they can hold are precisely the same as in the preceding case, of ‘Bayesian sampling

equilibrium’ in the parameter limit paralleling the analysis in this paper. The differences

with LCCC are thus the same as well: ‘always high’ and ‘always low’ are allowed for the

parameter values of Propositions 15 and 16 under ‘pure’ SCE but not LCCC.
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In the other case, where there are some deviators, the allowed beliefs for non-deviators are

not importantly different – they still believe with near-certainty their opponent will follow

the conventional path if they do, and still do not know the distribution of play they would

face if they deviated, and so it is possible for them to follow the path in a SCE under the same

parameter conditions as before. As noted above, the play after a deviation will correspond

to one of the two pure second-stage Nash equilibria. So, what we need to determine is in

which cases a small fraction of deviators can find it optimal, for beliefs correct about the

consequences of their own strategy, to deviate in the first round and then play according to

one of the pure second-stage Nash equilibria.

The two ‘dominance’ results from the LCCC case which ruled out play of a given conven-

tional path – Propositions 17 and 19 – will still hold in this case, since non-deviators know

the conventional path and would thus know that they are getting a payoff worse than any

possible result of deviation. But since the deviators in this case do not know the conventional

path, it is not guaranteed that the two ‘dominance’ results ensuring all agents play a given

conventional path – Propositions 13 and 14 – hold in this case. Since a deviating agent has

correct beliefs about the consequences of deviating, they may deviate in a case where agents

knowing the true conventional path cannot rationally deviate only if their belief about the

value of following the conventional path is incorrect in a pessimistic direction. Since their

belief about play after the conventional first-stage history is unrestricted, it is without loss,

from the point of view of whether deviation from a given conventional path is supportable,

to set the subjective value they attach to it at V in every case. Since their payoff after a de-

viation is maximized if the population coordinates on high effort after one player deviates, it

is also without loss to assume this is true. If deviation from a given conventional path can be

supportable in SCE at all, it will be supportable for this belief about the conventional path

and this objective post-deviation play. From this, it is immediate that we may have SCE in

which most, but not all, agents play the ‘collective procrastination’ path if l < VH−V and in
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which most, but not all, agents play the ‘always low’ path if l < VL − V (the interpretation

in both cases being that their stage-game loss from deviating is less than their imagined

second-stage gain from deviating). This is the only case in which deviation from ‘collective

procrastination’ is possible.

In the psuedo-forward induction cases, any actual deviators must make high effort. Since

the actual play of deviators must be known in SCE to non-deviators, actual play after a

deviation must also be coordination on high effort in SCE. Even so, non-deviators may still

believe that they would receive the miscoordination payoff V from deviating, so we cannot

rule out play of the ‘always low’ and ‘always high’ conventional paths for the parameter

values of Propositions 15 and 16, even if deviations happen with positive probability. This

is different from LCCC, but matches the case of SCE without deviators.

Finally, in the constructive cases of Propositions 18 and 20, we can support the ‘always

high’ and ‘high, then low’ paths as before when there is a positive fraction of deviators,

but with the new restriction that play after a deviation always coordinates on either low

or high effort. Thus, there cannot be actual miscoordination, but non-deviators may still

fear miscoordination because they are uninformed about how other non-deviators respond

to deviation; the presence of an objectively superior deviation, whose actual payoff is known

to the deviators, need not induce them to switch to deviation as well.

The key property of SCE involved in much of the foregoing is that an agent who chooses a

rare deviant strategy can remain wholly ignorant about what happens to agents who choose a

conventional strategy; somehow they never manage to learn about the outcomes experienced

by the vast majority of other agents around them. This is, frankly, hard to motivate in a

setting like the informal ‘many people work on joint projects within a large organization’

story I have told about the game in this paper, if we imagine these agents never hear reports

about what happens to others; it may be easier to motivate if we add features to the story
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that make these reports subjectively unreliable, because of e.g. a lack of trust. The condition

that non-deviators exactly know the behavior of deviators even when deviation is very rare

also requires these agents to have played a very large number of times if it is to be a good

approximation to what they have learned. On the other hand, in fairness, the ignorance

about one’s own strategy inherent in CAE may be implausible in a setting where agents

repeatedly play an unconventional strategy even a modest number of times and learn from

their own experience. And there are clearly settings where a concept in which the information

available to agents takes a form which is somewhere between these two extremes would be

plausible; such an approach is left to future work.

In summary: SCE with zero deviations exactly matches the preceding ‘Bayesian sampling

equilibrium’ case. SCE with positive probability deviations differs from LCCC in allowing

small numbers of deviators from the ‘collective procrastination’ and ‘always low’ paths in

some cases, in allowing the ‘always low’ and ‘always high’ paths to be followed for the

parameter values of Propositions 15 and 16, respectively, and in requiring post-deviation

play to involve objective coordination on one of the pure second-stage Nash outcomes in the

‘constructive’ cases of Propositions 18 and 20.

2.5.4 Rationality and Common Strong Belief in Rationality

In considering the outcomes that would be predicted by rationality and common strong

belief in rationality, or RCSBR (Battigalli and Siniscalchi, 2002), it is natural to restrict

attention to cases in which all agents believe a given conventional path is followed at least

most of the time, as the analogue of agents having observed this in the LCCC case. Following

Battigalli and Friedenberg (2012), the outcomes consistent with RCSBR and this additional

restriction are given by the ∆-rationalizability procedure of Battigalli and Siniscalchi (2003),

for a subset of beliefs about the opponent’s strategy that place initial probability at most ϵ

on strategies not consistent with a given conventional path (where ‘beliefs’ in this case are
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conditional probability systems ala Battigalli and Siniscalchi (2002)). Starting from the set

of all strategies, the algorithm iteratively deletes strategies which are not a sequential best

response to some belief satisfying both the given restriction and strong belief in the subsets

of strategies at each previous stage of the algorithm.

In the cases of Propositions 13 and 14, where knowing most others play according to the

conventional path – or, translated to this case, knowing one’s opponent plays according to

it with initial probability close to one – is sufficient to make doing so oneself a strict best

response, the first stage of the algorithm clearly eliminates all and only those strategies

which do not play according to the given conventional path. Since this same collection of

strategies can all be best responses to beliefs assigning probability one to remaining on the

conventional path whenever play has not yet gone off it (this is strong belief in the strategy

subset surviving the first round, which implies and is thus consistent with the initial belief

restriction), the algorithm terminates after one round, and we are left with a non-empty

predicted set of strategies any pair of which play the conventional path when facing each

other. This, translated to the language of this concept, ‘matches’ the LCCC result: most

agents playing these paths is possible for the given parameter values, and agents must do so

with probability one if most do so.

In the cases of Propositions 17 and 19, where playing according to the conventional path is

worse than any possible outcome of not doing so, the first round of the algorithm eliminates all

strategies that can play according to the conventional path. Strong belief in the complement

of the set of strategies that do so contradicts the initial belief restriction, so we are left with

an empty set of strategies. This, also, matches the LCCC result, translated to the RCSBR

context – such paths cannot be played by most agents for the parameter values in question.

In the pseudo-forward induction cases, we, perhaps not surprisingly, derive an actual

forward induction argument along the same lines in the RCSBR case. The order of moves is
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the same as in the LCCC case. Given the initial belief restriction, we eliminate strategies that

deviate and then make low effort in the first round, while strategies that deviate and make

high effort survive. This leads to strategies that respond to deviation with low effort being

eliminated in the second round (they cannot be best responses to agents who strongly believe

in the first-round set), and thence to elimination of strategies that follow the conventional

path in the third. Agents who strongly believe the latter restriction – no possible strategy

follows the conventional path – cannot satisfy the initial belief restriction, so we are again

left with an empty set of strategies in the fourth round. This again matches the LCCC case:

these paths cannot be followed for the parameter values of Propositions 15 and 16.

Finally, in the ‘constructive’ cases of Propositions 18 and 20, the first round eliminates

strategies that do not play according to the conventional path in the second stage conditional

on both players doing so in the first stage, but nothing else – we can choose beliefs supporting

each other strategy in essentially the same way we did in the proofs of those propositions,

all of which satisfied the initial restriction imposed here.10 Since all of these beliefs placed

probability one on the second stage of the conventional path being followed if the first was,

they are also consistent with strong belief in this first round restriction. Thus, the algorithm

terminates after the first round. This allows the outcomes of Propositions 18 and 20, with the

same set of deviations allowed to occur with positive probability. But it is weaker than these

results for the LCCC case, in that it does not require deviation to be rare. Thus, RCSBR

differs from LCCC in this case by being more permissive, because the requirement that the

play of agents who believe in the initial belief restriction reproduce the kind of observations

which generated the initial belief restriction (this is, essentially, ‘local completeness’ – the

second part of the LCCC definition) is absent.

10Note also that all of them placed positive probability on every first-stage outcome, so in focusing on these
beliefs we need not worry about the general differences between standard Bayesian priors and conditional
probability systems.
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In summary, RCSBR differs from LCCC only in allowing a wider range of outcomes in the

‘constructive’ cases of Propositions 18 and 20. This difference in outcomes, and the difference

in interpretation of other cases, is related to the fact that the LCCC framework provides an

explicit account of what agents observe, while the framework of the analogous RCSBR case

– even with an initial belief restriction inspired by what is observed in the corresponding

LCCC cases – does not.

2.5.5 Distinguishing Between Concepts Empirically

The differences between the predictions of the various concepts discussed above and those

of LCCC can also in principle form the basis for testing between these concepts empirically.

The most natural setting would be to somehow get data on behavior within an actual large

organization in which many small-scale projects of the same kind are regularly undertaken,

and where this has been going on for long enough for behavior in any given project to be

influenced by expectations derived from the sorts of behavior which have characterized work

on past projects, which people within the organization presumably hear about. The crucial

requirement is that there be a way to measure the level and trajectory of effort (i.e. which

of the pure paths in the game we should interpret a given outcome as) and a way to measure

the payoff characteristics of the game, so we know which of the key parameter inequalities

applies (one could look, for example, at opportunity costs associated with higher effort, if

both an individual’s effort on the project in question and their performance across other job

tasks were observable). For given payoff conditions, some observed outcomes will falsify some

concepts and support others (for example, seeing low effort throughout when l < VH − VL is

evidence against LCCC, but consistent with SPE).

A complication is that some of these concepts are tied to specific notions about where

agents get their information, which may or may not be observable. LCCC and ‘sampling

equilibrium’ both presuppose hearing about what happened to others but limited personal
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experience, while SCE presupposes extensive personal experience but little or no learning

from hearsay. SPE and RCSBR are more opaque, though motivating stories could be found.

Accordingly, if one knew the amount and nature of information about one another individuals

in a given organization had, one might restrict attention to testing the concepts intended to

explain behavior for such information structures, to see whether their predictions coincide

with actual behavior of agents who get their information in such a way. If the information

is not known, the exercise becomes instead a joint test of whether the concept is good and

whether the information structure in the data is appropriate to the model.

Beyond these specific comparisons, there is a distinctive reasoning process inherent in

CAE and LCCC which one might attempt to test in general. I briefly discuss three possible

methods for doing so – belief elicitation, experimental replication of the ‘entering a world in

equilibrium and wondering which it is’ environment, and ‘story elicitation’.

In the first case – belief elicitation – one could approach agents in some real-world set-

ting whose features fit the CAE story (a large number of agents engage in some common

sort of strategic interaction with other agents, they engage in such interactions only a few

times themselves but are well-informed about what happened to others in the same situa-

tion, and such interactions have been happening regularly for a long time), and measure by

some reasonable method what probabilities they assign to various actions of their opponent

(according to some way of operationalizing the available ‘actions’ in a real-world ‘game’).

To the extent one fixes a game to describe the situation and an LCCC consistent with the

observed distribution of play in the game, there will be definite predictions about these be-

liefs that are often stronger than could be obtained by merely inverting the best response

correspondence (in ‘collective procrastination’, for example, agents should believe literally

everyone will follow the convention, which is stronger than needed for it to be one’s own best

response).
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The background story of CAE according to which a game has been played by many people,

and newcomers have heard and formed expectations based on reports of past play, over a

long period of time, cannot be directly mapped into a single experiment, where time and

scale are necessarily limited. But, there are some imperfect workarounds. One might recruit

from some existing population already believed to play according to some potentially CAE

outcome ‘in the wild’ and have them play the same game in the laboratory, maybe stressing

at the beginning that it is the same game they play in other settings and that their partners

are from the same population they encounter in those settings. This is, arguably, a direct

sample of play from the existing possibly-CAE outcome, and one can assess the likelihood

it really came from a strategy distribution which is CAE. Or, in the case of games which

have already been played in many previous experiments, one might inform agents at the

outset of the distribution of outcomes in past iterations of the same experiment they are

about to participate in (or maybe about outcomes for subjects ‘similar to you’ – the ‘same

population’, in a more abstract sense), and see if agents react to this in a way consistent

with the reactions agents in a CAE might have to a comparable sample. Or, one might

randomly match agents in an artifically enlarged population containing the subjects and a

much larger number of computerized opponents pre-programmed to play along with a given

CAE, and show agents a sample of the play of the computer agents against each other

before the agents play, explaining that they will typically encounter such opponents but

may occasionally encounter each other (and won’t observe whether their opponent is human

or not). For many CAE outcomes, this infusion of new agents with a potentially different

prior distribution need not preserve the equilibrium, but the direction of departure should

be predictable. Alternatively, one might elicit beliefs at the start of the experiment and then

ensure the CAE played by the computers is a fixed point for the distribution of priors among

the subjects (so that the CAE ought to reproduce itself even with the new entrants, up to

some noise associated with the finite population size).
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Finally, one might take a more qualitative approach, asking agents to tell stories about the

kinds of behavior they expect others to engage in in a given environment, and about what

agents who act in a given way are likely to be thinking to motivate them to do so, and see

whether the descriptions are consistent with CAE. One can ask this about a real world setting

the agents have experience with, or a hypothetical setting; the latter has the disadvantage of

being more artificial but the advantage of being more controllable. In the hypothetical case,

one may also ask for an ex ante or ex post answer – with or without being given a ‘sample’

(or just a description) of behavior in the population being considered. Conformance with

CAE/LCCC only really requires having posterior beliefs of the kind predicted – a population

of agents who arrive at such posteriors would always behave in the ways predicted, even

if their mental states were totally different than the model describes before they observe

their sample, a point of particular importance with respect to LCCCs in games where the

number of possible ‘conventional paths’ is very large – but the ex ante answer would also

be interesting. In addition to revealing whether subjects get the ‘right answer’, this exercise

could be illuminating on a number of other points. Do subjects typically try to reason in

terms of other people’s observations and beliefs about others’ strategies, even if they reach

different conclusions? If their descriptions fit with some CAE set, is it generally ‘complete’

(i.e. LCCC) or does it often end up describing a smaller CAE set? If so, which one(s),

and is this an oversight or something subjects stick to even when prompted to consider the

‘missing’ possibilities? Are some of the factors relevant to CAE/LCCC – thinking about

people’s observations, beliefs about others’ beliefs and strategies, payoffs/optimization, or

the possibility of sustaining both deviation and non-deviation when deviations are common

enough to be often observed – more often considered than others, and are factors irrelevant

to CAE/LCCC sometimes considered? And how does all this depend on the characteristics

of the subject, the game, and the setting? This sort of qualitative investigation would

compliment the more quantitative approaches, and provide guidance about when the kind

of reasoning postulated in a CAE is a good match to how agents actually reason. In the
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event that the stories told about hypotheticals were less in accordance with CAE than stories

about situations agents have real-world experience with, we would also have evidence that

such reasoning emerges in equilibrium more readily than in the mind of any given agent in the

abstract (perhaps because speculation about the range of possible beliefs others might have

and the strategies that might result gets around through the same channels as observations

in the samples do; this sort of crowdsourced strategic reasoning would seem plausible on

grounds of casual empiricism).

2.6 Discussion

2.6.1 Payoff Parameters and Live Conventions

The results above constitute a set of predictions about which of our four unitary conven-

tions might arise for certain values of the parameters of the game. Let us now take stock

and interpret these results in light of our original story.

The collective procrastination convention is, as we have seen, the most robust, being a live

convention for all payoff parameters and being consistent with all allowed prior beliefs. We

predict that, in any organization where this pattern of first low effort and then high effort

has become widespread – and thus widely observed – all agents will fall into conformity with

it, regardless of the details of the game (the exact nature of the ‘joint project’) and of their

beliefs, including what other conventions they might have come to conform to upon entering

an organization with a different history.

The ‘always low’ convention is similarly robust with respect to beliefs if the cost of initial

effort when one’s opponent slacks initially is higher than any possible gain. As soon as such

a gain is possible, however – which can only mean the deviator hopes to coordinate on high

second-stage effort and thus to make a high effort in both rounds – the convention becomes
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untenable. The threshold between these cases involves a comparison between the loss l from

making high initial effort when one’s opponent makes low effort (the amount by which the

cost of effort exceeds the value added of only one player making an initial effort), to the

difference in value between the two second-stage coordination outcomes. When the former

exceeds the latter – when the cost of first-round effort is relatively large compared both to

the value added from one-player first round effort (the other factor determining l) and to the

difference between high- and low-effort outcomes in the second round – the convention can

arise, and indeed will be played by any population which observes it is already widespread.

We can think of the case where the ‘always low’ convention is live as representing a case

where effort in the project in question is ultimately not very important to the outcome. It

needs to be done, but no one will be all that much better off because it is also done well. In

such a case, the direct effect of exerting high initial effort is mostly downside – more work

for oneself, with the improvements ultimately being not so important – and the enticement

of a higher quality completion of the project is also not very enticing. Otherwise, we have

relatively higher gains from effort – a lower net loss from unilateral initial effort and/or a

greater difference in second-stage outcomes – which would motivate agents to find a way out

of this convention if they believed themselves to be stuck in it. This convention is thus live

in cases where effort is relatively less important. In this sense, it occurs in cases where it is

less harmful for it to occur, though it is still inefficient.

The ‘always high’ convention splits into three cases – one where it is live and two where

it isn’t, for different reasons. These cases correspond to different values of the parameter g,

interpreted as the gain from making low effort in the first period if one’s opponent makes

high effort (the amount by which the averted cost of effort exceeds the gain from both players

making high effort rather than just one). When g is less than the difference between the

high and low second-stage coordination payoffs, deviation ‘signals’ intended high effort, as in

the analogous case for ‘always low’. When g is higher than the difference between the high
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second-round coordination payoff and the worst-case miscoordination payoff, making high

initial effort is strictly dominated.

We can think of the former case – g lower than the difference between the second-stage

coordination outcomes – as representing a case where the value added of high effort (in

both periods) is relatively important compared to the cost of first-period effort. The only

difference is that in this case the comparison involves the value of first period effort when

one’s opponent also exerts effort, rather than when they do not. Intuitively, ‘always high’ is

dead in this case because the value of the better second-stage coordination outcome is ‘too

high to risk’. One must accordingly conclude that if one’s partner slacks off at first, they do

not subjectively perceive themselves to be risking it – they still expect to coordinate on the

high second-stage outcome, and will act accordingly. Such a partner may be irritating, but

the only best response is to play along with what they are doing – the loss to both parties

of failing to do so acts as a kind of blackmail to prevent a different response. Since both

partners can anticipate this response, the convention is undermined.

The other case where ‘always high’ is dead – when g is too high – involves the risk not

of the worse coordination outcome but of miscoordination in the second round. This has a

different interpretation. While it is costly to cut corners in an organized way that makes

the outcome less good than it could have been, it is more costly to end up working on

incompatible things that leave the project unfinished or in shambles at the end. If the gain

from avoiding first period effort is so high that even the risk of this loss cannot outweigh it,

there is a natural sense in which the temptation to avoid it is too overwhelming to admit

any other action.

The case where ‘always high’ is live puts g in between these two extremes. It is not worth

exerting high initial effort just to avoid cutting corners in the second stage, but it is worth

doing so if a complete breakdown of the project is too likely otherwise. For agents working
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on a project of this type, in an organization where making high effort throughout is typical,

a partner who slacks off at first is hard to read, because they may be thinking two different

things. They may believe their lack of initial effort will just be ignored, so that they can

get away with it and coordinate on the high second-stage outcome anyway. They may also

believe it will convince their partner they are ‘unserious’ about the project and trigger a

low-effort regime in the second stage, also. If such deviations are unusual, one will generally

not have much information about the relative frequency of partners who think in these two

different ways. It is for this reason that choosing to deviate in the first place is risky – one’s

partner may misread one’s own intentions, leading to chaos.

Whether ‘high, then low’ is live also depends on the risk of miscoordination. It differs

from the ‘always high’ case in that it is the comparison between the worst miscoordination

expected payoff and the low-effort coordination outcome in the second stage that matters.

Avoiding effort in the first round is obviously optimal if one expects effort in the second

round to remain reliably low. But, as in the ‘always high’ case, a partner who deviates can

be thinking two different ways, and if such behavior is unusual the difficulty of knowing what

they are thinking, and the associated risk of deviating in the first place, can maintain the

convention if agents are subjectively unsure what to expect.

‘High, then low’ ceases to be live if the gain from deviating becomes large enough that it

necessarily outweighs the risk of miscoordination in the second round. This happens for a

lower value of g than under ‘always high’, since the loss is relative to the worse coordination

outcome in this case. There is no lower bound on g necessary for this convention to be live,

however, because there is no case in which certainty of the better coordination outcome can

justify deviation but certainty of the worse one cannot. This has an interesting consequence:

When g – the gain from initially slacking on a partner making high effort – is sufficiently

low, the ‘always high’ convention cannot occur, but the ‘high, then low’ convention can.

Intuitively, agents who have less to lose in trading the conventional second-round outcome
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for a different coordination outcome also have more to fear regarding their partner’s inability

to predict their intentions. This can be effort-promoting, when the inherent cost of effort is

relatively minor.

Finally, let us take stock of which sets of live conventions are allowed for given parameter

values – which possible ways of handling a project with given payoff properties might emerge

in different organizations in which projects of this kind are worked on. ‘Collective procras-

tination’ is always an option, so the question can be framed in terms of which combinations

of the other three can be live or dead.

‘Always high’ and ‘high, then low’ both depend on g but not l. As we have seen, ‘always

high’ is live for an intermediate interval of g, while ‘high, then low’ is live for all g below

some lower bound. This lower bound is necessarily lower than the high endpoint of the

interval where ‘always high’ is live; thus there are always some values of g which are too

high for ‘high, then low’ to be live, but where ‘always high’ is still live. Conversely, as

noted above, sufficiently small g will make ‘always high’ dead but ‘high, then low’ live. The

comparison between the lower endpoint for ‘always high’ (VH − VL) and the cutoff for ‘high,

then low’ (VL − V ) is indeterminate. When the former is higher – this happens when the

difference in value of the second stage coordination outcomes is large and the cost e of higher

second-stage effort (which reduces the net gain from the high outcome) is lower – only one of

‘always high’ and ‘high, then low’ can be possible for any project, with the former requiring

strictly higher values of g than the latter. In the reverse case, there is a range of g for which

both conventions are possible, consisting of the lower part of the range for ‘always high’ and

the higher part of the range for ‘high, then low’. Intuitively, when the loss of moving from

the high to the low second-stage coordination outcome is large relative to the additional

loss from miscoordination, agents will be willing to accept the latter for lower gains from

initial slacking than would cause them to (possibly) accept the former. The interval of values

supporting ‘always high’ is also narrower in this case; there is a smaller range of g for which

104



agents accept the worse coordination loss but not the miscoordination loss. In the converse

case, the risk of miscoordination is relatively more important, and there are accordingly cases

where it can motivate agents to stick to both conventions.

The other convention, ‘always low’, is the only one whose live or dead status depends on

l (and not on g). As such, it can be live or dead independently of the others. We may have

only ‘collective procrastination’, only ‘collective procrastination’ and ‘always low’, or either

of these subsets together with ‘always high’, ‘high, then low’, or both. (in particular, all four

conventions are live when g is intermediate and l is large). When multiple conventions are

live, each live convention will tend to be reproduced by agents in an organization where they

observe it is already widely followed.

There is a parallel, however, between the condition on l making ‘always low’ dead and the

condition on g making ‘always high’ dead on the grounds that deviation ‘signals’ high effort

– both require that VH − VL is large relative to the first-stage parameter l or g. Recall that

l ≥ g corresponds to a ‘convex’ map from first-round effort to value added, and g ≥ l to a

‘concave’ one. In the convex case, mutual effort more than doubles the value added of one-

player effort, so it is is less costly (and thus more beneficial) to slack when one’s opponent

is also doing so. This causes ‘always high’ to be ruled out on ‘signaling’ grounds for more

values of VH − VL than ‘always low’ is. It is inherently more tempting to slack off when the

marginal contribution of one’s own effort is lower, and the marginal contribution of effort

when one deviates in ‘always low’ is less here, while the loss from deviating from ‘always

high’ is greater (thus undermining the risk of miscoordination for more parameters, since a

larger gain is required to be willing to accept the lower coordination outcome in exchange

for slacking initially). In the concave case, the marginal contribution of one player exerting

effort exceeds that of the other player also doing so. This makes the inherent temptation

to deviate from ‘always high’ greater (and thus creates a risk of miscoordination for more

values), while also increasing the temptation to deviate from ‘always low’.
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Finally, thinking about equilibrium beliefs as well as payoffs, we should note that there is

no case in which high initial effort is the most ‘robust’ outcome. It always requires special

beliefs that are not guaranteed by knowledge of the convention alone. But, high initial effort

is possible in a convention-affirming equilibrium for some payoff values, and when it does

occur the presence of the right kind of beliefs in the population is an important part of the

explanation for why it has in fact occurred.

2.6.2 Cooperation

In comparing the present work to the previous work on the emergence of cooperation, we

should note at the beginning that this literature has tended to focus on indefinitely repeated

games, while I focus on a simpler, two-stage game. As such, the conclusions about e.g. which

payoff parameters support which outcomes need to be interpreted in light of this difference

between games, as well as between solution concepts. The ability to compare a fully known

conventional path to an unknown (but one-dimensional and straightforward) post-deviation

outcome in the second stage – central to the logic of all the results in the present paper

– depends on the fact that play after the initial effort choices consists only of a one-shot

coordination game.

If the second stage were to be decomposed further into another extensive game (thus

moving in the direction of indefinite repetition, though not necessarily all the way to it),

(a) the full distribution of play following an initial deviation would be harder to estimate

based on observed deviations, (b) what a deviation ‘signals’ would not be as clear (since it

could become ‘I will trick you initially and cheat you in the future’ instead of guaranteeing

‘I hope to coordinate on the high outcome’), and thus (c) whether a cooperative outcome

emerges or not is likely to be more prior-dependent, since the conventional path observed

is less informative about the full strategy distribution and agents’ deductions from their

strategic reasoning about how deviations are likely to play out are less powerful. There is
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no way to fully work out how much and in what way these differences between games affect

the comparisons of results, but they should be noted up front, so that too much is not read

into the difference in solution concept alone.

The ‘evolution of cooperation’ literature is one natural source of comparisons with the

present work. It has generally focused on cases where inefficient outcomes will be under-

mined by mutations (e.g. Binmore and Samuelson (1992), Fudenberg and Maskin (1990)),

though there are cases justifying inefficiency (e.g. Volij (2002)) or arguing for continual long-

run change in strategies/outcomes (e.g. Imhof et al. (2005), Garcia and van Veelen (2016))

as well. In the present work, there is no comparable case to be made for the ‘robustness’ of

efficiency; ‘collective procrastination’, with its only partial cooperation, is the ‘robust’ out-

come here, though this is probably partly an artifact of the different game considered. There

is an informal sense in which the forward induction-like argument ruling out ‘always low’

for certain parameters is reminiscent of the ‘secret handshake’ argument of Robson (1990)

for efficiency-promoting mutants – a deviation ‘signals’ something allowing it to prosper and

take over – though the fully efficient ‘always high’ can be undermined in the same way in

the present context.

There is much evidence in experiments and adjacent theoretical work for the importance

of the parameters l and g, in particular the importance for cooperation of both being small.

Subjects can struggle in experimental settings to find their way to cooperation when they

are not (dal Bo and Frechette, 2018). The parameter l can be understood to determine

the ‘riskiness’ of cooperation if the opponent’s strategy is uncertain (Blonski and Spagnolo,

2015), which matters in such settings over and above the short-term value of defecting from

a cooperative outcome given by g. One key difference between the present setting and the

‘cold start’ natural in thinking about experiments is that the ability to observe the existing

conventional path – and the presumption that one enters a world in equilibrium – removes

strategic risk from the conventional path, so that the fear of being defected on if one follows
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a cooperative convention is no longer a significant consideration. This likely explains why l

plays such a limited role in the results of the present paper: Lowering it sufficiently rules out

‘always low’, but raising it never makes it harder to sustain high initial effort; this is because

the high-initial-effort convention is observed, and taken for granted by agents.

In the present context, the fully cooperative outcome ‘always high’ also requires g to be of

moderate size, rather than small. The intuition – that projects which are ‘too important to

be completed badly’ must require high effort from all parties at the end no matter what, and

that only when the second round difference is not too important is it possible one’s opponent

will just ‘give up’ if you don’t play along with the convention – is tied to the different game

considered here, which has only a one-shot coordination game after the initial effort choices.

It is also tied to the observability of the conventional path: Knowing what one’s opponent

is risking by deviating, and thus which second-stage actions a belief leading to deviation is

compatible with, requires knowing the conventional path they are deviating from.

Finally, we can consider the relative magnitude of payoffs and payoff differences in the

first vs. the second stage, which is a proxy for the size of the discount factor in indefinitely

repeated games. ‘Scaling up’ the second stage can only move ‘always low’ from live to dead,

and can only move ‘high, then low’ from dead to live; both these results are consistent with

the notion that greater weight on the future promotes initial cooperation. The ‘always high’

case is more complicated, with an increasingly important second stage moving it from dead

to live, then live to dead again; the intuition in this latter case is just a restatement of that

for g, about the ‘signalling’ properties of cases where the second stage effort is too important

not to coordinate on.

2.6.3 Forward Induction

There is in much of the foregoing a kind of forward induction-like reasoning involved in the

results, where agents see a deviation by their opponent from the conventional path and infer
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from this something definite about the action this opponent must intend to take in the second

round. This effect is not true forward induction in the sense the literature has considered

(see e.g. Kohlberg and Mertens (1986), Stalnaker (1998), Battigalli and Siniscalchi (2002),

Battigalli and Friedenberg (2012)), because it does not involve changing beliefs about an

opponent after observing a zero-probability event. Rather, agents have ex ante uncertainty

over a collection of possible equilibria, some of these have a low but positive probability

of deviation, and the set of equilibria considered possible may impose restrictions on which

second-stage action the deviators will play (and may need to impose such restrictions in

order to be a CAE set).

In a CAE set, all agents deviating in these equilibria are behaving rationally given their

beliefs because this is part of the definition of a CAE set, and the interpretation of their

behavior by agents with beliefs over some CAE set follows from this. A convention which is

to correspond to a CAE set must be playable even for agents who make such inferences, and

if it cannot be, it is ruled out as CAE.

There is no case studied in this paper in which agents encounter ‘impossible’ events which

may force them to revise their beliefs about their opponent in the course of play. This is

not to say that the analysis could not be extended to examine such cases or that it might

not be interesting, only that I do not consider such possibilities here, and it is not necessary

to consider them to obtain the pseudo-forward induction effects which arise in the present

framework.

2.6.4 The ‘Empiricism’ Condition

In Propositions 15 and 16, where I ruled out LCCCs for ‘always low’ and ‘always high’

when the difference in second-stage payoffs was too large, LCCCs with a positive frequency

of deviation were ruled out by pseudo-forward induction arguments. The argument against

an LCCC with literally no deviations instead leaned on the ‘empiricism’ condition. This
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condition requires that any and all off-path behavior be considered possible if a history is

literally off-path (reached with probability zero) and it was then easy to show that such

unrestricted off-path beliefs can justify deviations, undermining local completeness. This

second step was fairly simple; the deeper issues at work here concern the meaning and

justification of the ‘empiricism’ condition itself.

As an example of what this rules out, consider the singleton distribution in which ‘always

high’ is always played and any deviation is followed by coordination on ‘always low’ (this

is basically ‘grim trigger’, translated to the present context). It is CAE, as any singleton

consisting of a Nash equilibrium would be.

The intuitive problem with such cases is that they involve a sort of prior coordination

on certainty of particular strategies derivable neither from observation nor knowledge of the

process. In interesting, nontrivial CAE sets, restrictions on what kind of play can occur

should be derived from observations and best responses to reasoning about observations –

not necessarily about one’s own observations, but at least about general facts connecting

who observes what, and who thinks whom else might have observed what,...to who can play

which strategy.

A case in which a history is a priori certain to be literally never reached is a case in which

there are no such observations to reason about, and thus no basis for having restricted beliefs

about it. If it might be reached, there is some empirical information about it somewhere in

the population, so we allow for a much more permissive range of cases, though as we have

seen all of these may be ruled out for other reasons.

A final point should be noted in connection with this. The assertion that ‘all possible

play is allowed’ at zero probability histories is unproblematic here because the subgame

starting at all unreached histories is a coordination game (so that all second-stage actions
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are stage-game rationalizable). In a game where there were dominated actions at later stages,

we might want to employ a somewhat different assumption to rule out beliefs that assign

positive probability to those dominated actions.

2.7 Other Related Literature

The CAE concept in general is related to the concept of sampling equilibrium (Osborne and

Rubinstein (2003), Salant and Cherry (2020)), in that both define equilibrium as a strategy

distribution that reproduces itself through the behavior of agents who observe some sample

from it. CAE differs in studying agents who engage in sophisticated strategic reasoning about

each other and about the larger process they are embedded in, rather than the behavior of

agents who employ simpler decision rules under various statistical estimation procedures.

CAE is also related to self-confirming equilibrium (Fudenberg and Levine, 1993), especially

the ‘rationalizable’ variants (Dekel et al. (1999), Fudenberg and Kamada (2015), Fudenberg

and Kamada (2018)), in that it defines a notion of equilibrium in which agents are partially

uncertain of the strategy distribution. It differs in that agents are uncertain of the outcomes

of strategies rarely played by others, not the strategies they themselves don’t play. It differs

also from the ‘rationalizable’ variants in imposing a rationalizability-like restriction on the

larger process the game is embedded in, not strategies in the game itself.

Further connections between the literature and CAE in general are discussed in Hudson

(2023).
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Chapter 3

The Confidence Game: Equilibrium

Bargaining under Strategic Uncertainty

Abstract

I study a simple bargaining game, in which populations of firms and workers bargain

over whether they will split output according to a high or low wage, and study it from the

perspective of convention-affirming equilibrium, a notion of equilibrium for agents who are

strategically sophisticated but do not know each other’s strategies ex ante. I characterize

a natural solution set in which all matches result in immediate agreement on either the

high wage or the low wage. In the high-wage case, all agents are able to infer each other’s

equilibrium strategies from the available information. In the low-wage case, their equilibrium

behavior instead reflects their subjective confidence in the demands they can successfully

make, which is prior-dependent due to limited information. The results thus highlight how

both strong strategic inferences and subjective confidence (or lack thereof) in the absence of

such inferences can support convention-affirming equilibrium bargaining outcomes.
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3.1 Introduction

Many real-world bargaining situations involve agents who must come to some agreement

relatively quickly, and whose bargaining outcomes are thus shaped by their perceptions of

their near-term outcomes rather than some (potentially) exhaustive process of exploration.

Workers may need to have some job in order to continue to pay their bills; firms may need to

maintain a sufficient number of employees in order to continue operations. The assumption

of a short, hard time-limit is plausibly a good approximation to reality in many such cases.1

If agents inform themselves about what to expect in their own situation by observing

or hearing about what happened in the bargaining of others, and if it is typical for those

around them to reach immediate agreement when they bargain, they may remain uncertain

what would happen if they tried to demand a more favorable agreement for themselves than

what is typically agreed upon. Thus, in the absence of some prior understanding of the full

strategies of others – which is not easy to motivate in a setting where only initial agreement

is observed – it is natural for strategic uncertainty to inform their own choice of bargaining

strategy.

This paper is an attempt to understand the equilibrium outcomes which would arise in

a market occupied by agents who must make some agreement quickly,2 and who observe

only the typical outcomes around them and thus face strategic uncertainty. Such outcomes

can depend on agents’ subjective ‘confidence’ – the probability they assign to a demand for

a better-than-usual outcome being accepted, when their observations are consistent with a

range of values of this probability. They can also be restricted by ‘objective’ deductions

agents make about their opponent – if one’s opponent cannot optimally pursue a given strat-

1Hurkens and Vulkan (2015) also consider bargaining in a population of agents with hard deadlines. They
consider a more general class of possibilities, from the more traditional point of view of subgame perfection.

2It is unclear whether the inability to make a larger number of offers and counteroffers, or to rematch
repeatedly, is truly necessary for the kind of effects I consider and results I derive. But the intuition is
clearest in this case, and it is the case I consider in this paper.
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egy given the typical behavior one observes, and believes they also observe, one may deduce

from their rationality that they will not, and act accordingly. Both of these possibilities will

be important to the results.

I study a simple alternating-move bargaining game played by agents who are randomly

matched from two continuum populations (who for concreteness I call firms and workers).

Within each match first the firm and then the worker offer either the high wage or the low

wage. If their proposals are the same, the match ends with surplus between them being

divided according to that wage. If not, first the firm has a single chance to accept or reject

the worker’s offer. If the firm rejects, then the worker accepts or rejects the firm’s offer.

Acceptance in either case also constitutes agreement on the division associated with that

wage. Mutual rejection ends the match with no deal. Workers may rematch once in their

lifetimes, and care about the (discounted) value of whichever wage they agree to. Firms may

not rematch, and thus always prefer some deal to no deal.

I study the outcomes of this game predicted by convention-affirming equilibrium. A

convention-affirming equilibrium of the game is a distribution over strategies, and hence

over outcomes, with the property that it is playable by a population of agents who believe

they are in some convention-affirming equilibrium or other, and make inferences and choices

rationally on the basis of such beliefs. There is an obvious circularity in this notion; it is

dealt with by taking sets of convention-affirming equilibria (or CAE sets) to be the primitive

solution concept. A set of possible strategy distributions is a CAE set if any distribution in

it could be the aggregate play of agents who all take this set to be the set of all strategy

distributions that are possible. Intuitively, the CAE concept predicts the possible behavior

of agents who rationally respond to a correct understanding of the process they are acting

within, and believe other agents rationally respond to the same correct understanding, and

so on, but do not know exactly which strategy distribution they face; they learn the latter

only partially by observing a sample of the outcomes of others’ games.
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Among CAE sets, I focus on those that are, in a certain sense, maximal. If it were possible

to expand a CAE set slightly, by adding more strategy distributions at the ‘margin’, and

arrive at something that is also a CAE set, there would be a sense in which the original was

‘unnaturally small’ – restricting agents to believe in a smaller set of similar possibilities than

they reasonably might. I address this by constructing what I call a locally complete CAE

class (LCCC for short). A LCCC is a collection of (generally ‘similarly shaped’) sets with

the property that one of them is CAE and all of them are such that a population of agents

who believe they are the set of possible strategy distributions cannot itself play a strategy

distribution which is close to, but not within, the union of sets in the class.

The goal is to establish properties of CAE sets which are the ‘largest’, and hence the most

interesting, within a given region. Since characterizing the largest sets themselves would

involve prohibitive technical difficulties, I instead look at classes of sets constructed so as

to include all CAE sets in a given region, along with some other sets that are not CAE. In

proving that some property holds for all sets in the class, or for all sets in the class that

are CAE, I also prove that this property holds for the ‘largest’ CAE sets within the class,

without first needing to establish which exactly these are. The predictions of interest are

still these largest CAE sets; the LCCC construction is just a device for indirectly proving

things about them that would be very hard to prove directly.

The LCCC concept in general is very permissive; there can be LCCCs including many sets

that are very different from any CAE set they contain. It is accordingly reasonable to state

general criteria by which to judge whether a LCCC constitutes an ‘interesting’ or ‘reasonable’

prediction – whether it is ‘tight’, in a qualitative sense at least, around the largest CAE sets

it contains. For LCCCs whose sets are all contained in some small neighborhood of strategy

distribution space – those that all agree some pure path of play is almost always played, for

example – a reasonable criterion is that all sets in the LCCC should agree on which actions,

at histories reached with positive probability under strategy distributions in sets in the class,
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are played commonly, which rarely, and which never (i.e. each strategy distribution in each

set in the LCCC should designate common, rare, and never played status to the same actions,

and this designation should also be the same across all sets in the LCCC). The main result

will feature an LCCC whose elements are unions of sets from two such neighborhoods; the

sets in each of these neighborhoods separately do in fact exhibit such agreement about the

‘qualitative frequency’ of actions.

In the LCCC I construct, all convention-affirming equilibria will be such that most of

the population agrees immediately, through their initial offers, on the same wage. That is,

there are convention-affirming equilibria where most matches end in immediate agreement

on the low wage and – as it turns out – a single convention-affirming equilibrium where all

agents agree immediately on the high wage, but there are no cases where both wages are

agreed on with substantial probability within the same population. What is interesting in

this result is not just what happens but why it happens, and how the ‘why’ differs across

the two cases. Widespread initial agreement on either wage precludes reaching, and thus

observing, what would have happened after an initial disagreement; thus, agents have little

empirical information about the consequences of playing differently. Nevertheless, there is an

important sense in which the high-wage equilibrium is based on ‘objective’ thinking, while

the low-wage cases depend on ‘subjective’ factors.

When there is immediate agreement on the high wage, all agents observe this and believe

they are in a case where this happens. Since all matches end in agreement, all workers are in

their first match, and could rematch if their current match ended with no deal. Accordingly,

since they believe they are certain to agree on the high wage in the rematch, they will reject a

lower offer. Firms anticipate this, and thus offer a high wage initially, since neither rejection

nor delaying agreement is in their interest. Thus, even though later play is not observed,

a unique prediction about it is derivable from the agents’ interactive reasoning about each

other. Agents’ posteriors will concentrate on this unique prediction after observing that
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immediate agreement on the high wage is typical, so there is thus a sense in which they come

to ‘know the equilibrium strategy profile’, despite not being informed of it a priori.

In the low-wage case, by contrast, there is nothing inherent in the set of possible equilibria

which requires a worker to match a low initial offer by the firm, or, if they make a high

counteroffer, to accept or reject the firm’s offer if the counteroffer is rejected. Similarly,

there is no inherent restriction on whether the firm must accept or reject a high counteroffer.

The intuition for such CAEs is as follows. A worker who makes a high counteroffer and

then rejects the firm’s initial offer if it is rejected may be acting rationally if they believe

most other firms would accept the high counteroffer and thus, in particular, that the firm

they rematch with is likely to. Since workers may hold such beliefs, a firm who sees a high

counteroffer may believe the worker they face does, and thus be motivated to accept the

counteroffer rather than risk rejection. But because of this, it may be rational for a worker

who is not so confident as the first type of worker to ‘bluff’ by making a high counteroffer,

but then accept the low offer if it is rejected. Accordingly, firms may also rationally ‘call’

a potential bluff. The accept and reject strategies for firms and for workers thus form a

self-consistent set of possibilities, each of which can be motivated by some belief over the

others.

A worker who thinks the firm is unlikely to accept a high counteroffer will instead agree to

the low offer initially. In any low-wage equilibrium, by definition, most workers do this. But

it is somewhat subjective, requiring a particular conjecture about counterfactual play, when

other conjectures are also possible. This subjective lack of confidence can be driven by prior

beliefs, observations, or some combination. But it must be prior-dependent in the sense that

observed deviations are not frequent enough to swamp the prior about them completely; we

will see in the main result that a strategy distribution allowing for precise estimation of the

post-deviation play could not be a convention-affirming equilibrium.
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The rest of this section discusses the related literature. Section 3.2 defines the model and

Section 3.3 the solution concept. Section 3.4 contains the results. Section 3.5 compares the

results to those induced by alternative solution concepts. Section 3.6 discusses some further

issues. Section 3.7 concludes.

3.1.1 Related Literature

The most directly related work is the literature on decentralized matching and bargaining

in markets following Rubinstein and Wolinsky (1985), which embeds the alternating-offer

bargaining game of Rubinstein (1982) in a larger dynamic market and studies its steady-state

equilibria. Much of this literature has studied the extent to which the outcomes in such a

‘decentralized’ market can approximate classical Walrasian outcomes, and how it depends on

the details of the model and definitions (e.g. Rubinstein and Wolinsky (1990), Gale (1986a),

Gale (1986b), Gale (1987), Binmore and Herrero (1988), McLennan and Sonnenschein (1991),

Lauermann (2013)).

The present work differs from this literature in developing a model of equilibrium bargain-

ing under strategic uncertainty, while this previous work studies perfect equilibrium outcomes

in which the strategies of others are known. Persistent strategic uncertainty is natural in a

market where most bargains end in immediate agreement – it is not clear how one would

know the strategies of others if they are never observed – and developing a model of equilibri-

um bargaining that allows for this is thus one of the main contributions of the present paper.

The game I study is in many ways also simpler than the (potentially) infinitely repeated

alternating-offer game of Rubinstein (1982) which much of this literature is based on. This

simplicity is a benefit of the present approach; allowing for strategic uncertainty opens up

new directions for inquiry which may be of interest even in fairly simple games.

Friedenberg (2019) also considers bargaining under strategic uncertainty, with a known

equilibrium path in the spirit of self-confirming equilibrium. This paper differs from the
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present one in considering an alternating bargaining game in isolation, without the larger

matching and rematching structure considered here, and in applying the rationality and

common strong belief in rationality condition of Battigalli and Siniscalchi (2002), which

shares with the present approach the assumption that agents engage in strategic reasoning,

but situates it within a given play of the game itself rather than the larger sampling-and-

matching process considered in the present work.

Also related is the evolutionary bargaining model of Young (1993b), and the subsequent

work based on it (e.g. Agastya (1997), Agastya (1999), which study the evolution of coali-

tions, and Saez-Marti and Weibull (1999), which considers a version with ‘level 1’-reasoning

agents; see also the different evolutionary approach of Ellingsen (1997)). It is similar to the

present framework in involving a population of agents whose expectations are determined

by observing the divisions of surplus which are already typical – ‘conventional’ – in the

population they are in. It differs in studying the Nash demand game (Nash, 1953), rather

than the simple alternating-offer game studied here. It also differs in studying the long-run

average outcomes of agents who best respond to the sample average they see and sometimes

make mistakes, rather than a notion of equilibrium among agents who engage in strategic

reasoning about each other and the process as in the present model.

The concept of convention affirming equilibrium in general is related to sampling equilib-

rium (Osborne and Rubinstein (2003), Salant and Cherry (2020)) in that it involves a notion

of equilibrium in which agents observing a sample from the population around them act in

a way that preserves the prevailing strategy distribution. It differs from this literature in

studying agents who engage in strategic reasoning about one another and the process they

are embedded in, rather than the impact of different statistical inference procedures on the

behavior of agents who do not engage in strategic reasoning.
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The convention-affirming equilibrium concept also has general connections with the con-

cept of self-confirming equilibrium (Fudenberg and Levine, 1993), especially the ‘rationaliz-

able’ variants (Dekel et al. (1999), Fudenberg and Kamada (2015), Fudenberg and Kamada

(2018)), in that both involve agents who do not observe and are unsure about part of the

strategy distribution they face. Convention-affirming equilibrium differs in that agents are

unsure about the outcomes of strategies not often tried by others, not the outcomes of s-

trategies they themselves don’t play. It differs additionally from the rationalizable variants

of SCE in imposing a rationalizability-like restriction on the larger population-sampling-and-

inference model the game is embedded in, not on strategies within the game itself.

Further connections between the literature and CAE in general are discussed in Hudson

(2023).

3.2 Model

I consider a setting with two continuum populations which I will call for concreteness

firms (i) and workers (j). Successive generations of each are matched at random to play

a simple bargaining game which determines how the value of output is split between them.

Workers in each generation may rematch at most once if they walk away from a deal in their

first period of life, but firms may only match with workers in the period they appear (so

that ending with no deal is always a loss for them). Although the story and motivation are

dynamic, I will define the formal solution concept in such a way that (convention-affirming)

equilibrium outcomes can be studied in a static way.

3.2.1 The Game

I first describe the game played between a matched firm and worker. In the following

section I will describe the larger matching process in which the game is embedded. I will
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assume two wage levels are possible – a low wage and a high wage – and seek to understand

if and under what conditions workers will be paid the low wage, the high wage, or some

mixture over the two.

When a firm and worker are first matched, the firm makes a wage offer from the set

of possible wages W = {wL, wH}, with 0 < wL < wH < 1. The worker then makes a

counteroffer, also from W . If these two offers are the same, the game ends, with the worker

getting payoff w and the firm payoff 1−w, where w is the wage offer made by both parties.

If the two offers are different, the firm chooses whether to accept the counteroffer or reject

it. In the latter case the worker decides whether to accept the original offer or reject it. If

the firm accepts the counteroffer, or if the worker accepts the original offer after the firm

rejects the counteroffer, the firm and worker get payoffs 1 − w − c and w − c, respectively,

where w is the wage thus accepted and c > 0 is a small cost borne by both parties as a result

of not agreeing initially.3 I assume in particular that c < wl and c < 1− wH so that neither

party ever feels compelled not to push for a better deal due to this cost alone.

If both parties reject after failing to match initially, the firm gets zero, and the worker gets

either zero (if they are in their second and last match), or the payoff in their second match,

discounted by the discount factor β ∈ (0, 1).

I maintain two additional assumptions on the payoff parameters of the game, beyond the

above. These are

c < (1− β)wL (3.1)

and

3We can think of this as representing, say, awkwardness or bruised feelings in the working relationship
due to its more adversarial beginning. This interpretation makes more sense than would treating it as cost
of delay, since the worker can get out of this cost again by rematching.
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(1− β)(wL − c) < β(wH − wL) (3.2)

Inequality (1) says that the loss c to a worker from accepting the low wage at a later stage

in their first round rather than accepting it initially is less than the loss due to discounting

of accepting the low wage at a given stage in their first round rather than accepting it at the

same stage of their second round. That is, the cost of going to the second round exceeds that

of going to a later stage of the first round, at least for the low wage. Inequality (2) says that

the loss due to discounting of accepting a low wage at the end of the second round, rather

than the end of the first, is less than the discounted gain of getting the high wage instead of

the low wage.

The first inequality ensures that the worker will not wish to move to the second round just

to avoid the cost of initial disagreement c, without expecting any other gain. The second

ensures that the worker will in fact wish to move to the second round if they think they

are sufficiently likely to get a high rather than a low wage by doing so. Assuming both

inequalities thus allows us to focus on the interesting case: workers whose decision to ‘walk’

or not reflects their subjective assessment of the options awaiting them elsewhere in the

market.

3.2.2 The Matching Structure

There are two continuum populations, of firms (i) and workers (j). Firms are matched with

some number of workers in a way that is random and independent of any characteristics of

individuals. Since the payoff of their game with one worker does not depend on the outcome

of games with any others, it will not matter for firms’ strategies how many workers they are

matched with, or what the further details of this matching process are. Implicitly, I assume

a linear technology where each worker produces an output with value 1, independent of the

number of other workers employed.
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I assume that firms are only concerned with the outcome of their interactions with the

workers they are presently matched with (say, because they are run by managers with short

tenures who care only about profit under their own management), and that all interactions

are resolved simultaneously, so that firms face no dynamic considerations, neither forward-

looking incentives nor learning from their own past experience.

Workers are matched with exactly one firm at a time, and may rematch at most once in

their lives. If their first match ends in mutual rejection, they rematch at the same time the

next cohort makes their first matches. If this match also ends in mutual rejection, they get

nothing (so that optimally they will always accept at the end of the second match).

The overall payoff of workers is the payoff of their first match, if it ends in matching offers

or acceptance, or the payoff of their second match, discounted by β ∈ (0, 1), if they match

twice. Their incentive to reject at the end of the first match thus depends on their subjected

expected outcome in the second match. Workers know whether they are in their second

match or not but firms do not observe this, so that a firm will play the same strategy against

all workers, but workers may condition their strategy on their match number.

Although the story here is implicitly dynamic – we have successive generations matching,

with some workers potentially playing in two periods – the formal model and solution concept

I consider here will be static. Given the assumption that play is constant across periods and

that all agents believe this, to be made below, we can study the conditions for such a constant

distribution of play to be a convention-affirming equilibrium or not. In particular, since the

fraction rejecting in the first match is fixed in a given equilibrium, the total population

of workers playing in each period will be all the first-round workers plus this fraction of

rematchers, with the latter group playing the conditional second-round strategy distribution

associated with those whose first round outcomes ended in rejection. All this will be made

precise in the next section.
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3.2.3 (Simplified) Strategy Spaces

I denote firms by i and workers by j, and their strategy spaces by Si and Sj. For simplicity,

I will assume that firms and workers each choose from only 3 strategies, so that Si =

{sMi , sAi , sRi } and Sj = {sMj , sAj , sRj } (mnemonic for M atch, Accept, Reject).4 Technically,

these will actually be equivalence classes of strategies which play identically against each

of the three allowed equivalence classes for the other player role; since they are outcome-

equivalent in this way I will just refer to them as strategies in what follows. It would not be

difficult to show that firms and workers optimally must play strategies in one of these three

classes, starting from the set of all their extensive-game strategies, but it will be simpler for

our purposes to just treat this strategy restriction as an assumption.

All worker strategies immediately accept the high wage. That is, if the firm’s initial offer

is wH , they all make counteroffer wH , ending the game immediately with wH as the realized

wage. They differ in their play after the firm initially offers wL. The ‘match’ strategy sMj

makes counteroffer wL after initial offer wL, ending the game immediately in this case as well

(actions at histories after a mismatch are not reachable given sMj and are thus not specified).

The ‘accept’ strategy sAj makes a high counteroffer, but then accepts the initial offer if the

counteroffer is rejected. The ‘reject’ strategy sRj makes a high counteroffer and rejects the

initial offer if the counteroffer is rejected.

The ‘match’ strategy for the firm, sMi , makes initial offer wH (thus ending the game with

immediate agreement on wH for any possible worker strategy). The ‘accept’ strategy sAj

makes a low initial offer but then accepts a high counteroffer if one is made. The ‘reject’

strategy sRj makes a low initial offer and rejects a high counteroffer.

4Sj is the space of stage-game strategies for workers. They will choose an element of Sj to play in their
first match, and another, possibly different element if they reach their second match. The connection between
these two stage-game strategy choices will be explained a little later.
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I also label the terminal histories associated with the various pairings of these strategies,

as follows. Let zH and zL denote the terminal histories in which the high wage and the low

wage, respectively, have been agreed upon immediately. The other three terminal histories

begin with a low initial offer and a high counteroffer: zA denotes the case where the firm

accepts the counteroffer, zRA the case where the firm rejects it but the worker accepts the

initial offer, and zRR the case where both parties reject, ending the game with no deal. Let

Z = {zH , zL, zA, zRA, zRR} denote the set of all these terminal histories.

The relationship between strategy pairs and terminal histories is summarized in Figure

3.1.

sMj sAj sRj

sMi zH zH zH

sAi zL zA zA

sRi zL zRA zRR

Figure 3.1: Strategies and Terminal Histories

3.2.4 Strategy Distributions

A strategy distribution for the population of firms is an element σi ∈ ∆Si and a strategy

distribution for the population of workers is an element σj = (σ1
j , σ

2
j ) ∈ (∆Sj)

2, the first

coordinate being the distribution among the workers in their first match, and the second the

distribution prevailing among the workers who reach their second match when they are in it.

A strategy distribution overall is then denoted σ = (σi, σj) ∈ ∆Si × (∆Sj)
2. Let Σ denote

the space of strategy distributions, and Σi and Σj the spaces of strategy distributions for

firms and workers, respectively.
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Let λσ ∈ [0, 1] be the frequency with which first matches end in mutual rejection under σi

and σ1
j . Since workers only rematch after reaching the terminal history zRR, which is reached

only under the strategy pair (sRi , s
R
j ), we have λσ = σi(s

R
i )σ

1
j (s

R
j ). The fraction of first-round

matchers in the worker population is thus 1
1+λσ

and that of second-round matchers is λσ

1+λσ
.

Let σ̄j = 1
1+λσ

σ1
j +

λσ

1+λσ
σ2
j then denote the overall strategy distribution among workers of

both vintages.

Let Si(z) and Sj(z) denote the strategies for firms and workers, respectively, that are capa-

ble of reaching terminal history z. Each strategy distribution σ induces a unique probability

σ(z) of each terminal history z, according to the formula σ(z) = σi({si : si ∈ Si(z)})σ̄j({sj ∈

Sj(z)}). I will in what follows sometimes abuse notation and write σ(si) for σi(si) and σ(sj)

for σ̄j(sj).

3.2.5 Samples and Sample Distributions

Before being matched (in the case of workers, before the first match), all agents in both

populations observe a random sample of the terminal histories reached in the matches of

others under the prevailing strategy distribution (in observing others, neither workers nor

firms observe whether the worker was on their first or second match). We can imagine that

prospective workers or managers intending to enter a given profession or industry talk to

others having done the same, but that their experiences are iid across the population and

thus informative about the distribution but not the particular firms or workers who our

soon-to-be entrants will encounter in the future. Agents will use their sample to update

their beliefs about the prevailing strategy distribution in the market before choosing their

own strategies.

Formally, fix an integer N , assumed to be a commonly known parameter of the model.

Each agent (firm and worker) will observe a random sample of the terminal histories z reached
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in N matches. A sample is a tuple x = (xz)z∈Z , with xz ∈ {0, 1, ...N} for each z ∈ Z and∑
z∈Z xz = N . Let X denote the set of all possible samples.

The prevailing strategy distribution σ induces a probability of each terminal history σ(z) as

described above. The distribution over samples under σ is thus multinomial, with probability

mass function

fσ(x) =
N !∏

z∈Z xz!

∏
z∈Z

σ(z)xz

3.2.6 Reaction Functions and Aggregate Play

A pure reaction function for firms is a map ri : X → Si which assigns a choice of firm

strategy after every possible sample. A pure reaction function for workers is a map rj : X →

S2
j which assigns a pair of worker strategies to each possible sample – one to be played in the

first match, one in the second. Write r1j and r2j for the projections of rj onto the first and

second match coordinates, respectively (e.g. r1j (x) is the first round strategy played after

observing sample x). Note that only workers whose first match strategies are consistent with

reaching the mutual rejection terminal history zRR play in the second round, so the reaction

function for other workers contains some irrelevant information.

Write Ri and Rj for the spaces of pure reaction functions for firms and workers, respec-

tively. A mixed reaction function for firms is a probability measure ρi ∈ ∆Ri and a mixed

reaction for workers is a probability measure ρj ∈ ∆Rj. Note that since Ri and Rj are finite,

these are probability distributions over finite sets. A pair ρ = (ρi, ρj) provides a complete

description of how a population will behave in aggregate under any possible distribution over

samples. As we will see below, mixed reaction functions correspond to distributions over pri-

or beliefs; we can accordingly treat as somewhat interchangeable the distribution over priors

prevailing in a population and the mixed reaction functions describing that population.
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The aggregate play induced by σ and ρ, denoted by α(σ, ρ), is the strategy distribution

which would prevail in a population with mixed reaction functions ρ and observations gen-

erated by σ. It is pinned down by its components for firms, first-match workers, and second

match workers as α(σ, ρ) = (αi(σ, ρ), α
1
j (σ, ρ), α

2
j (σ, ρ)). The components are defined as

follows.

αi(σ, ρi)(si) =
∑
x∈X

fσ(x)ρi({ri : ri(x) = si})

α1
j (σ, ρj)(sj) =

∑
x∈X

fσ(x)ρj({rj : r1j (x) = sj})

α2
j (σ, ρj)(sj) =

∑
x∈X

fσ(x)ρj({rj : r1j (x) ∈ Sj(zRR), r
2
j (x) = sj})

where Sj(zRR) is the subset of worker strategies consistent with reaching the mutual

rejection terminal history zRR. λα(σ,ρ), αj(σ, ρ), and ᾱj(σ, ρ) are then defined analogously to

λσ, σj, and σ̄j, above.

Definition 16. A population behavior strategy σ∗ is a fixed point for mixed reaction function

ρ if σ∗ = α(σ∗, ρ).

Note in particular that since α(σ, ρ) defines a continuous self-map on Σ for each ρ, each

mixed reaction function has at least one fixed point, by the Brouwer fixed point theorem.

Note also that αi(σ, ρi) is the weighted sum over αi(σ, ri) for ri in the support of ρi, with

the weights induced by ρi. In particular, the subset of Σi that can be αi(σ, ρi) for some ρi

supported on a given subset of Ri is the convex hull of the αi(σ, ri) for ri drawn from this

subset. The analogous statements are true for α1
j (σ, ρj) and α

2
j (σ, ρj).
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3.3 Convention-Affirming Equilibrium

3.3.1 Priors and Updating

Let C be a closed subset of Σ, understood as the subset of strategy distributions an agent

considers possible, and let µ ∈ ∆C be an agent’s prior. Agents update their prior using their

sample and Bayes’ rule. For each sample x with positive probability under their prior, their

posterior belief µx after seeing sample x assigns to each Borel subset B of C the probability

µx(B) =

∫
B
fσ(x)dµ∫

C
fσ(x)dµ

I will assume in what follows that an agent’s prior and their sample are statistically

independent. Thus, the distribution of posteriors under a given sample distribution and a

given distribution of priors will be that resulting from independent draws from each followed

by application of the above formula.

3.3.2 Best Responses

After updating in light of their sample, agents choose strategies by forming a posterior

point estimate of the distribution of play they face, and then choosing a best response to this

point estimate (slightly modified to weed out dominated strategies, in a way to be described

below). An agent’s reaction function is said to be a best response to their prior if their

strategy choice after every sample is a best response to their posterior point estimate in this

way.

Definition 17. The posterior point estimate (PPE) of σ under posterior µx, denoted σ̂(µx),

is

σ̂(µx) =

∫
C

σdµx
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Let σe
i ∈ ∆Si and σe

j ∈ ∆Sj denote the distributions over firm and worker strategies,

respectively, that assign equal probability to all three strategies. I will define best responses

as the limit of best responses to a mixture of this belief with the agent’s PPE, as the weight

on the former is taken to zero. This is for technical reasons, to rule out play of dominated

strategies at histories that will not be reached in some of the CAE we study later.

Definition 18. A pure reaction function for firms ri is a best response to a prior µ if for each

sample x,

ri(x) ∈ lim
ϵ→0

argmax
si∈Si

vi(si, (1− ϵ)¯̂σj(µx) + ϵσe
j )

where vi(si, σ̄j) is the expected payoff for a firm of strategy si playing against the worker

strategy distribution σ̄j.

Definition 19. A pure reaction function for workers rj is a best response to a prior µ if for

each sample x,

r1j (x) ∈ lim
ϵ→0

argmax
sj∈Sj

v1j (sj, (1− ϵ)σ̂i(µx) + ϵσe
i )

and

r2j (x) ∈ lim
ϵ→0

argmax
sj∈Sj

v2j (sj, (1− ϵ)σ̂i(µx′ ) + ϵσe
i )

where x
′
is the original sample x with an additional observation of zRR added, and v1j

and v2j are the expected payoff functions for first and second match workers, respectively.

Since a worker only reaches the second round if their first match ends in mutual rejection,

they will play in any case where they reach the second round with one more data point in

which a firm strategy consistent with mutual rejection was encountered; their second round

strategy must thus be a best response to a posterior that incorporates this. The difference

in their first and second round expected payoffs is that they get zero from mutual rejection
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in the second round, but the discounted expected second round payoff in the first round.

The subgame after an initial mismatch is depicted in Figure 3.2, below. V (µ, x) is zero

for second-round workers, and for first-round workers it is the limiting maximized value of

v2j , which in particular anticipates the slightly more pessimistic posterior an agent will have

upon reaching the second round.

Worker

A R

Firm A 1− wH − c, wH − c 1− wH − c, wH − c

R 1− wL − c, wL − c 0, βV (µ, x)

Figure 3.2: The Post-Mismatch Subgame

3.3.3 Convention-Affirming Equilibrium

Given a closed subset C ⊆ Σ, let M(C) ⊆ ∆C be a set of priors over C, called the allowed

priors over C. A convention-affirming equilibrium set will be a pair (C,M(C)) with the

property that each σ ∈ C could be the aggregate play of a population of agents who all hold

allowed priors µ ∈ M(C).

Which strategy distributions could be the aggregate play for a given allowed set is formal-

ized as follows.

Definition 20. A strategy distribution σ is affirmable for (C,M(C)) if there exists a mixed

reaction function ρ such that σ is a fixed point for ρ and each pure reaction function in the

support of ρ is a best response to some prior µ ∈ M(C). Write A(C,M(C)) for the set of

σ which are affirmable for (C,M(C)).

Definition 21. (C,M(C)) is a convention-affirming equilibrium set if C ⊆ A(C,M(C)).

This definition leaves open the possibility that there may be additional affirmable strategy

distributions which are not included in the CAE set. If this is the case, there is a danger
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of arbitrariness in the use of CAE as a prediction, since some outcomes ruled out seem

reasonable in exactly the same sense those predicted do. One solution is to focus on CAE

sets that contain all affirmable strategy distributions; I call these CAE sets complete.

Definition 22. (C,M(C)) is a complete convention-affirming equilibrium set if C = A(C,M(C)).

In a convention-affirming equilibrium, agents understand the convention-forming process,

and have correct beliefs about which conventions can actually occur, but are uncertain which

convention actually holds. They are uncertain also about the distribution of priors over the

true convention held by other agents, which may differ from their own and one another’s, and

possible hypotheses about the true convention are tied to hypotheses about the distributions

of priors for which it can occur. A complete CAE set does not restrict these hypotheses

beyond requiring that they be possible for some populations holding allowed beliefs over the

set, while an incomplete CAE set incorporates additional restrictions imposed by the analyst

on which conventions, and hence belief distributions, agents consider possible, and also the

restriction that one of these is the convention which actually occurs.

It is obviously attractive to work with complete CAE sets if possible, since the set of

outcomes they predict is transparently self-consistent, with no additional restrictions. The

collection of all CAE sets includes also many which are too small to be reasonable – e.g.

subsets of larger CAE sets with some affirmable strategy distributions arbitrarily deleted,

or singleton sets which are best responses to themselves only because they exclude most

off-path possibilities.

But working with complete CAE sets is not always possible. The most fundamental

problem is that, for many sets of allowed priors, complete CAE sets may fail to exist. The

reason is that the set of affirmable strategy distributions A(C,M(C)) is tied to the subset of

pure reaction functions which can be best responses for agents with beliefs in M(C). Since

R is finite, and thus has finitely many subsets, there are accordingly also finitely many sets
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which can be A(C,M(C)) for some C and M(C), and in general none of them may coincide

with any of the C for which this is true. Even in cases where a complete CAE set does exist,

it may be very difficult to characterizes, for technical reasons of limited economic interest.

In the following section, I will accordingly define a modified solution concept which coin-

cides with completeness when a single complete set exists, but allows us to focus on a class

of ‘similar’ sets rather than a single set in other cases. This sidesteps most of the thorniest

technical problems associated with completeness. If this class is well-chosen, the interpreta-

tion of showing that it is a solution to this modified concept will have a similar economic

interpretation to showing a single CAE set is complete.

3.3.4 Locally Complete CAE Classes

I will say a collection of subsets of Σ is a locally complete CAE class if it contains a CAE

set, and if each affirmable strategy distribution for each set in the class is either contained

in some other set in the class, or is separated by some minimal distance from all sets in the

class.

Definition 23. Let C be a class of closed subsets C ⊆ Σ and let M(C) denote the set of

allowed priors over each C ∈ C. Say that (C, (M(C))C∈C) is a locally complete CAE class if

(i) There exists C ∈ C s.t. (C,M(C)) is a CAE set;

(ii) There exists some ϵ > 0 s.t. for each C ∈ C, and each σ ∈ A(C,M(C)) which assigns

positive probability only to samples with positive probability under some σ
′ ∈ C

′ ∈ C, either

σ ∈
⋃

C∈C C, or σ /∈ Bϵ(
⋃

C∈C C).
5

Note that a singleton class consisting of a complete CAE set is necessarily a locally com-

plete CAE class, since by definition it is CAE and contains all points affirmable for itself.

General locally complete CAE classes differ from this special case in two ways. First, I

5Where Bϵ(
⋃

C∈C C) is the ball of radius ϵ around the union, according to the supremum metric – the set

of all σ whose coordinates are all within ϵ of those of some σ
′
in some C ∈ C.
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require that any strategy distribution affirmable for a set in the class is either contained in

some set in the class or is not ‘close’ to the class. This is the ‘local’ part; there is no ‘global’

requirement that all affirmable points are in the class. Second, the ‘completeness’ criterion

applies within the class, rather than within a single set – nearby affirmable points for one

set in the class must be contained in another, but not necessarily in the first set itself. The

restriction to samples possible within the class avoids cases where a strategy distribution is

affirmable only because agents have arbitrary posteriors after a zero-probability event.

Locally complete CAE classes, in general, do not inherently impose non-trivial restrictions.

For instance, the class of all closed subsets of Σ, each endowed with the set of all possible

priors over them, is always trivially a locally complete CAE class.6 Rather, the quality of

the prediction is tied to the choice of class, particularly the extent to which all sets in the

class occupy a ‘similar’ region of Σ (so that the weakening of the concept relative to that of

a single complete CAE set is mild).

3.4 Results

In the main result to follow, I will construct a LCCC consisting of two possible outcomes

– immediate agreement on the high wage and immediate agreement on the low wage. In the

high-wage case, all firms will play sMi and all workers will play sRj , so that this bargaining

outcome is literally reached in every match. In the low-wage case, firms will play either sAi

or sRi (both compatible with immediate agreement on the low wage), and most workers will

play sMj (compatible with the same), but some may also play sAj or sRj .

Informally, the logic of the LCCC is as follows. Firms and workers enter the world with

prior beliefs about both the relative likelihood of different CAE within each of these two

6There is always at least one CAE set because any singleton consisting of a Nash equilibrium is a CAE
set, and the game has a Nash equilibrium.
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cases, and about the relative likelihood of these two cases overall. But since no sample

agents might observe is consistent with both cases – firms only make high offers in the first

case and only make low offers in the second case – agents will be certain which case they

are in once they observe their sample. Accordingly, only the distribution over conditional

priors within each case will influence which strategy distributions consistent with each case

are affirmable for a given population.

In the high wage case, since only one strategy is ever played by each side of the population,

affirmability (of this single high-wage CAE) requires only that these strategies are strict best

responses to each other. Since agents observing samples from this distribution are certain

it is the true one, this implies affirmability (and the absence of other affirmable points, in

which other strategies are played with positive probability.)

In the low wage case, all agents are convinced that all firms make low offers and that

high counteroffers are rare, but workers are unsure whether firms would accept or reject

a high counteroffer, and firms are unsure whether a worker who made a high counteroffer

would accept or reject the firm’s original offer if the counteroffer were rejected. There are

many such distributions that agents consider possible, that differ on how rare the rare high

counteroffers are, and also differ on the conditional distribution of play following a high

counteroffer. Showing that all strategy distributions in such a collection are affirmable, and

thus part of a CAE set, requires showing that we can assign agents prior beliefs over the

collection in a way that makes each strategy distribution within the collection consistent

with subjectively optimal behavior for all agents. Roughly speaking, this involves varying

the priors of firms to make the subjective probability that a high-counteroffer worker is

‘bluffing’ high or low, and varying the priors of workers to make the subjective probability

of a firm ‘calling a bluff’ high or low. A CAE distribution where all these strategies are

played with nontrivial frequency will involve agents with posteriors that differ along these

dimensions, so that they view different strategies as best responses to the environment they
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face. Such disagreement in equilibrium is possible so long as play after a high counteroffer is

rarely observed. As observations of high counteroffers become more common, there comes a

point where posteriors can no longer differ to the necessary degree; this defines the boundary

of the low-wage component of the LCCC.

3.4.1 Firm and Worker Best Responses

In this first subsection, I explain how agents’ beliefs influence their choice of strategy

within the set of strategies playable in the low-wage case. This will help to clarify what is

going on in the proof below, and why.

The Firm’s Problem

For a firm choosing between sAi and sRi , the only relevant issue is the probability with

which a worker who makes a high counteroffer (a worker playing either sAj or sRj ) will accept

the firm’s initial (low) offer if the firm rejects their counteroffer. Denote this probability by

qj. It is the ratio, under the firm’s posterior point estimate σ̂(µx), of the probability of sAj

to the total probability of both sAj and sRj .

Conditional on not initially agreeing (under initial agreement these strategies generate

identical payoffs), the firm’s expected payoff from sAi is (1 − wH − c) while their expected

payoff from sRi is qj(1 − wL − c). Thus, sAi is weakly better if qj ≤ 1−wH−c
1−wL−c

. This threshold

value for the subjective probability qj completely determines the firm’s choice between these

two strategies.

The Worker’s Problem

The worker’s problem is more complicated, because they are deciding among three s-

trategies and considering outcomes across (possibly) two matches. Workers, for the possible

strategies we consider here, believe any firm will play either sAi or sRj , so their own choice
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of strategy must hinge on their posterior point estimate of the probability of sAi . Denote

their first-round posterior point estimate of it by qi and their second-round posterior point

estimate of it by q
′
i. These are different, because in the second round they have an additional

observation. Since the second round is only reached if they encounter a firm playing sRj , thus

reaching the terminal history zRR, q
′
i is unique given their posterior belief in the first round

and in particular is foreseeable from the first round, though q
′
i < qi.

The strategy sMj , which agrees immediately to the low wage, yields a certain payoff wL.

The expected payoff of sAj is qi(wH − c) + (1 − qi)(wL − c) in the first round and q
′
i(wH −

c) + (1− q
′
i)(wL − c) in the second round. Rearranging, sMj is weakly preferred to sAj in the

first round if qi ≤ c
wH−wL

and in the second if q
′
i ≤ c

wH−wL
.

The strategy sRj can only be a best response in the first round, since in the second it is

strictly worse than sAj whenever the firm might play sRi . In the first round, since they lead to

different outcomes only when playing against a sRi firm, the payoff comparison between the

two hinges on the relative values of wL−c (the payoff of accepting the firm’s initial offer if the

counteroffer is rejected) and βV (µ, x), the discounted expected value of the second round,

conditional on continuing to it. Under the maintained assumption on payoff parameters that

c < (1− β)wL, the worker cannot reject if they intend to play sMi in the second round. The

payoff from the latter would be βwL, while that from accepting at the end of the first round

would be wL − c, and it is easy to see the maintained assumption implies the latter exceeds

the former.

Thus, any worker playing sRj in the first round will play sAj in the second, and we calculate

V (µ, x) accordingly. Given q
′
i (itself implicitly a function of µ and x), V (µ, x) = q

′
i(wH −c)+

(1− q
′
i)(wL− c), the expected payoff of sAj in the second round. Playing sAj in the first round

is thus subjectively better than playing sRj if βV (µ, x) is less than wL − c, which reduces to

the condition q
′
i ≤

1−β
β

wL−c
wH−wL

.
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Note that the choice between sAj and sRj in the first round thus depends on the estimate of

the firm acceptance probability the worker would have in the second round. Note also that,

under the assumed condition c < (1 − β)wL, we also have 0 < c
wH−wL

< 1−β
β

wL−c
wH−wL

< 1,

where the last inequality follows from (1− β)(wL − c) < β(wH − wL), the other maintained

assumption on parameters.

Thus, we can characterize the conditions for each first-round worker strategy to be a best

response as follows. When qi ≤ c
wH−wL

, sMj is a best response. When q
′
i ≥

1−β
β

wL−c
wH−wL

, sRj

is a best response. And when either c
wH−wL

≤ qi ≤ 1−β
β

wL−c
wH−wL

or c
wH−wL

≤ q
′
i ≤

1−β
β

wL−c
wH−wL

,

sAj is a best response. (Since q
′
i < qi, either of these inequalities implies the negation of the

previous two.) Thus, in qualitative terms, first-round workers immediately agree to the low

wage if they think the frequency of firms that would accept a high counteroffer is low, make

a high counteroffer and reject at the end of the first round if they think this frequency is

high, and make a high counteroffer but accept at the end of the first round if they believe it

is intermediate.

The Frequency of Second-Round Deviators

Let q1j denote the probability a first round worker plays sAj , conditional on their playing

either sAj or sRj . Since all workers who play sRj in the first round play sAj in the second, and

since the fraction of these who make it to the second round is determined by the probability

1− qi of firm rejection, the conditional probability of acceptance among all workers, qj, can

be written in terms of q1j and qi as

qj =
q1j + (1− q1j )(1− qi)

1 + (1− q1j )(1− qi)
(3.3)

Note that this is the conditional frequency of sAj among the workers who deviate (play

some strategy other than sMj ) not the overall frequency.
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When qi = 0 (all firms reject), this ranges from 1
2
to 1 as q1j ranges from 0 to 1. When

qi = 1 (all firms accept), it ranges from 0 to 1. There is thus a dependency of the range of

possible values of qj on the value of qi. This is, in general, a reason why firms might care

about observations of what other firms are doing, though it will not much affect matters in

the result I prove below.

Let Σ∗ ⊆ Σ denote the set of all σ ∈ Σ with the property that σ2
j (s

A
j ) = 1. These are the

strategy distributions in which all second-round workers play sAj , which as we have seen are

the only cases consistent with worker optimization (against the possible firm strategies I will

consider). Clearly, equation (3) and the associated restrictions on σ̄j will be satisfied by any

σ ∈ Σ∗.

3.4.2 The Match-High/Match-Low LCCC

Let CH be the singleton class consisting of the set CH ⊂ Σ∗ which is itself a singleton

consisting of the unique strategy distribution σH which satisfies σ(sMi ) = σ(sRj ) = 1.

Let CL(ϵ̄, ϵ) be the class of CL ⊂ Σ∗ containing all and only those σ satisfying σ(sMi ) = 0,

σ(sMj ) ≥ 1 − ϵ for some ϵ ∈ (0, ϵ̄), and
σ(sAj )

σ(sAj )+σ(sRj )
,

σ(sRj )

σ(sAj )+σ(sRj )
, σ(sAi ), σ(s

R
i ) ∈ (ϵ, 1 − ϵ) for

some ϵ ∈ [0, ϵ). That is, CL(ϵ̄, ϵ) is a class of sets indexed by the maximum frequency ϵ̄ of

workers who can ‘deviate’ from the low-wage regime by making a high counteroffer and the

minimum fraction ϵ of agents who deviate or respond to a deviation in any particular way

conditional on being in a match with deviation, and we consider different possible upper

bounds on these parameters by writing the class as a function of ϵ̄ and ϵ.

Let C∗(ϵ̄, ϵ) be the class consisting of all unions of CH with some CL ∈ CL(ϵ̄, ϵ). I will say

the two classes CH and CL(ϵ̄, ϵ) are the components of C∗(ϵ̄, ϵ), and similarly that CH and CL

are the components of C = CH

⋃
CL ∈ C∗(ϵ̄, ϵ).
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Say that a strategy is live for a component of C if it has positive probability under some

strategy distribution in the component. Otherwise it is dead. The strategies SM
i and SR

j are

the only live strategies for CH , while all strategies except SM
i are live for each CL.

Fix a parameter η ∈ (0, 1), which is common knowledge. For C = CH

⋃
CL ∈ C∗(ϵ̄, ϵ), let

M(C) be defined as follows. Consider the collection ML(CL) of priors over CL which have

densities bounded by lower and upper multiples of the uniform density on CL, with bounds

η and 1
η
. M(C) contains all priors which are mixtures of some prior in ML(CL) with the

point mass on σH , with strictly positive weights on each.

I show that (C∗(ϵ̄, ϵ), {M(C)}C∈C∗(ϵ̄,ϵ)) is a LCCC, for some choices of ϵ̄, ϵ.

Theorem 4. For all ϵ̄ sufficiently close to zero, for all η sufficiently close to zero, for all N

sufficiently large given η and ϵ̄, there exists ϵ > 0 such that (C∗( ¯ϵ, ϵ), {M(C)}C∈C∗(ϵ̄,ϵ)) is a

locally complete CAE class.

Proof. We need to show that (C∗(ϵ̄, ϵ), {M(C)}C∈C∗(ϵ̄,ϵ)) satisfies conditions (i) and (ii) of the

LCCC definition.

Note first that the set of terminal histories which have positive probability under some

σ ∈ CL ∈ CL(ϵ̄, ϵ) and the set with positive probability under σH are disjoint. Thus, for agents

observing a sample drawn from some element of either component, all strategy distributions

in the other component will have zero posterior probability, and the agent’s posterior given

their sample will be the same as the posterior of an agent whose prior is equal to the

conditional prior over the component they are in.

In looking for mixed reaction functions that make a strategy distribution in one com-

ponent a fixed point, we can thus focus on conditional priors over that component and

corresponding strategies that can be played after samples possible under that component.

In particular, in finding a CAE set in the class to satisfy part (i) of the definition, we can

check the condition for σ in each component separately.
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Any C ∈ C∗(ϵ̄, ϵ) has the singleton consisting of σH as its CH component, and as noted

agents making observations at σH will attach probability one to the event that they are in

fact at σH , and their posterior will thus be trivial: concentrated on one point. Thus, it

suffices to show that playing along with σH – playing sMi for firms and sRj for workers – is a

best response for agents with posterior certainty of σH .

For firms facing sRj for sure, sMi is a strict best response. Playing sRi instead would result

in a zero payoff, and sAi would result in a payoff of 1−wH − c, which is worse than the payoff

1− wH from playing sMi .

All worker strategies match the high offer. For workers who were to somehow encounter a

firm making a low offer, it is a strict best response to make a high counteroffer and reject the

low offer, since the worker expects immediate agreement on the high wage with probability

one in their second match, and thus cannot optimally choose to end their first match with

a strictly lower payoff than this. (Note that the definition of best response as a limit of

mixtures of the PPE with a small full support hypothesis is invoked here, as are the assumed

conditions on payoff parameters.)

To find a CAE set C ∈ C∗(ϵ̄, ϵ), it thus suffices to find some CL ∈ CL(ϵ̄, ϵ) with the property

that all σ ∈ CL can be the aggregate play of a population with some allowed distribution of

posterior beliefs over CL; we can then use CL

⋃
{σH} as our CAE set satisfying (i).

There are two live firm strategies (sAi and sRi ) and three live worker strategies (sMj , sAj ,

and sRj ) for CL(ϵ̄, ϵ). I will show there exist choices of one allowed prior for each of these

five strategies – chosen so that agents holding such a prior will for a high-probability subset

of samples always choose that strategy – and then show that each σ ∈ CL(ϵ̄, ϵ) is a fixed

point for some mixed reaction function supported on the pure reaction functions induced by

these priors. Since the aggregate play of any such mixed reaction function at σ is just the

weighted sum of the aggregate play induced by each of the pure reaction functions, αi(σ, ri)

and α1
j (σ, rj),

7 weighted by their probabilities under the mixture, it suffices to show that

7As explained in the previous section, σ2
j is necessarily a point mass on sAj whenever workers best respond,
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some such mixture can be found for each σ ∈ CL.

For the firm strategies sAi and sRi , I choose priors whose weight is concentrated on σ with

values of
σ(sAj )

σ(sAj )+σ(sRj )
close to 0 and 1, respectively. That is, firms with the prior for sAi will

be very certain that most deviating workers reject and vice versa. Formally, note that given

the definition of the set of allowed beliefs ML(CL), there is a unique cutoff value ψ such

that there exists an allowed prior assigning the ceiling density ( 1
η
times the uniform density)

to all σ ∈ CL with
σ(sAj )

σ(sAj )+σ(sRj )
≤ ψ and the floor density (η times the uniform density) to all

other σ, and that ψ approaches zero as η does.

Let the prior µA
i associated with sAi be the unique prior defined in this way. Let the prior

µR
i associated with sRi then be defined analogously to place the ceiling density on σ with

σ(sAj )

σ(sAj )+σ(sRj )
≥ 1− ψ (where the ψ in this case may be different, even for the same η, but still

goes to zero as η does).

The priors for the worker accept and reject strategies, µA
j and µR

j are then defined iden-

tically in terms of the unique floor/ceiling cutoff in the probability σ(sAi ) of firm acceptance.

Let the prior µM
j for sMj be defined instead to place the ceiling density on the interval of

values of σ(sAi ) of uniquely determined (and vanishing in η) length ψ, which is centered on

the value 1
2
( c
wH−wL

+ 1−β
β

wL−c
wH−wL

) (i.e. the midpoint of the range of σ(sAi ) making sMj a best

response).

The set CL that we are proving is part of a CAE set will be such that its maximum

frequency of deviation ϵ1 ∈ (0, ϵ̄) is very small, and the minimum relative frequencies of the

accept/reject strategies for both players ϵ2 ∈ (0, ϵ) is large relative to ϵ1. In particular, for ϵ1

chosen small enough for any fixed N , deviation will be rare enough that the total frequency

of agents who make more than one observation other than immediate agreement on the low

wage (zL) is strictly less than any positive multiple of ϵ2.

It is easy to see that, for agents with any of the five priors defined above and η small

and we have built this into the definition of CL by assuming it is a subset of Σ∗. It thus suffices to show the
mixed reaction function reproduces the strategy distributions for firms and for first-round workers.
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enough, they cannot optimally choose to play a strategy other than that associated with

the prior unless they observe more than one terminal history which is not zL. Observing

zL does not inform them about the relative probabilities of acceptance and rejection they

care about, and as η approaches zero the concentration of the prior on values making the

prescribed strategy a strict best response must dominate the impact of one observation.

Thus, from the above conditions on ϵ1 and ϵ2, the aggregate play αi(σ, ri) for firms with

a reaction function ri which is a best response to µA
i or µR

i must for any σ ∈ CL assign

probability strictly less than ϵ2 to their not playing the associated strategy. Thus, σi(s
A
i )

lies in between the probabilities of sAi under the two αi(σ, ri), for any two such ri, so that

by the intermediate value theorem there exists a convex combination of the two αi(σ, ri)

whose probability of sAi exactly matches σi(s
A
i ). In this case, the probability of sRi must

obviously match too, so the mixed reaction function with corresponding weights on the two

ri is consistent with σ being a fixed point, for each σ ∈ CL.

It thus suffices to show that there is a mixed reaction function for first-round workers

that reproduces each σ1
j . Since there are three worker strategies in play, the argument is

a little more complicated, but in the same spirit. Note first, by the same logic and under

the same limit conditions as above, that the frequency of agents observing more than two

deviations is less than any positive multiple of ϵ
′
ϵ2 (i.e. the minimum frequency of each

deviating worker strategy, if the minimum frequency conditional on deviation is ϵ2 and the

total frequency of deviating workers is ϵ
′ ∈ (0, ϵ1)). More than two observed deviations are

needed to swamp a stubborn prior for the same reason more than one is, so we conclude

also that for each σ ∈ CL, with associated total frequency of deviation ϵ
′
, the aggregate

play α1
j (σ, r

1
j ) associated with some reaction function r1j which is a best response to any

of the three chosen worker priors assigns probability less than ϵ
′
ϵ2 to play of any strategy

other than the prescribed one, and thus in particular to each of the non-prescribed strategies

individually.

It remains to show that for each σ ∈ CL, σ
1
j is a convex combination of the α1

j (σ, r
1
j )
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for some choice of three r1j that are best responses to µM
j , µA

j , µ
R
j , respectively. From this

it immediately follows that a mixed reaction for first-round workers with the same weights

is consistent with each σ ∈ CL being a fixed point. Putting this together with the mixed

reaction function for firms constructed above for each σ ∈ CL, we then conclude that each

is in fact a fixed point, and that CL

⋃
{σH} is thus a CAE set.

To begin with, observe that for each of the three α1
j (σ, r

1
j ) and for each convex combination

over the other two, there exists a unique convex combination of α1
j (σ, r

1
j ) and the given convex

combination over the others such that the resulting distribution assigns the same probability

to the strategy associated with the given r1j that σ does. This is again guaranteed by the

intermediate value theorem.

Next, consider the self-map on the set of weights for all possible convex combinations

over the three α1
j (σ, r

1
j ) (the 3-simplex), which assigns to each of the α1

j (σ, r
1
j ) the unique

weight whose existence was asserted in the previous paragraph, given the weights on the

other two (normalized so that they sum to one). It is easy to see that it is continuous.

Since the 3-simplex is compact and convex, the Brouwer Fixed Point Theorem applies. By

construction, any fixed point of this map gives the weights of a convex combination of the

α1
j (σ, r

1
j ) which is equal to σ1

j .

This completes the proof of part (i).

It remains to show part (ii). We need only check σ supported on the live strategies for

one of the two components, as any other σ will assign positive probability to some samples

with zero probability under all σ
′ ∈ C, for all C ∈ C∗(ϵ̄, ϵ). Trivially, since there are no

strategy distributions other than σH supported on the live strategies for CH , there are no

such strategy distributions which are affirmable for any C ∈ C∗(ϵ̄, ϵ).

Consider some strategy distribution σ supported on the live strategies for CL(ϵ̄, ϵ) which

is δ-close to the union over CL(ϵ̄, ϵ) for some δ > 0, but not contained in any CL ∈ CL(ϵ̄, ϵ).

It must then satisfy σ(sMi ) = 0 and σ(sMj ) ∈ (1− ϵ̄, 1− ϵ̄−δ]. As N becomes large relative to

η, almost all agents at σ must have samples with arbitrarily large numbers of observations of
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play after (wL, wH), and thus in particular almost all workers must have posterior estimates

of the probability a firm accepts a high counteroffer (the relative frequency of sAi among

those playing either sAi or sRi ) which are arbitrarily close to the true value.

The best response of workers depends only on their estimate of this probability. First-

round workers optimally play sMj for sufficiently low estimates of the firm acceptance rate,

sRj for sufficiently high estimates, and sAj for those in the middle (and almost all workers

are first round under any σ ∈ CL ∈ CL(ϵ̄, ϵ)). In particular, since this middle region is of

fixed length, as the number of observed deviations increases and most workers come, by the

Law of Large Numbers, to have PPEs close to the true frequency of firm acceptance, there

cannot be both a nontrivial fraction of both sMj and sRj played. Since any point close to CL

prescribes a high frequency of sMj , we conclude that almost all deviant workers must accept

in such a case, which is rational only if a sufficient number of firms reject. If they did, then

most firms would have samples that convince them most workers accept, so almost all firms

should reject. But if this were the case, almost all workers – in particular, more than 1− ϵ̄ –

should play sMj , which contradicts the presumed frequency of sMj for the σ we consider. We

thus conclude no such σ can be affirmable.

Remark 3. The LCCC identified here is arguably the ‘largest’, in a qualitative sense, among

those that do not consider outcomes in which multiple paths in the game are played with

substantial probability. (If there were a single path of play always played other than immediate

agreement, it would be worse for someone than immediate agreement, and thus not CAE.)

While we could consider such mixed cases, they would more or less by definition be knife-edge

cases and thus not necessarily interesting. If we leave aside such cases, we can consider the

LCCC of Theorem 4 a more or less a complete description of convention-affirming predictions

for this game.
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3.5 Comparisons With Other Concepts

In this section, I compare the LCCC derived in Theorem 4 to the predictions of a number

of alternative solution concepts which could be applied to the same setting. For the sake of

apples-to-apples comparison, I shall restrict attention to predictions of these other concepts

in which there is immediate agreement on either the high wage or the low wage. Where

multiple versions of these concepts are available, I try to focus on the one that offers the

closest possible comparison.

3.5.1 Subgame-Perfect Equilibrium

I take a subgame-perfect equilibrium for the game in this paper to be a case where the

(pure or mixed) strategy distribution played by each of the three player roles – firm, first-

round worker, second-round worker – is commonly known among all players, and where

these strategies are objectively optimal in the subgames starting at all non-terminal histories

(including the optimal choice of a first-round worker to reject at the end of their first match

or not, given their objective continuation value if they do). One difficulty in translating to

the SPE context is that the ‘matching’ strategies sMi and sMj do not specify behavior at all

histories (since they guarantee these histories are not reached, given their opponents’ possible

strategies). I get around this by also specifying in the SPE context which of the other two

strategies (A or R) a M agent would deviate to, if they were to deviate. It is natural in

considering SPE analogues of the above results to focus on cases where the paths of play we

focus on (immediate agreement on either the high or low wage) are followed with probability

one; since the true strategy profile is known, the diverse beliefs that could motivate both

adherence to and deviation from the low wage LCCC could not arise in SPE.

There is always immediate agreement on the high wage just in case firms always choose

the strategy sMi (since all worker strategies immediately accept a high offer). Thus, any SPE

supporting this outcome will assign firms this pure strategy and assign some mixed strategy
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to each vintage of workers. As noted in the LCCC case as well, a worker who expects to

receive the high wage with certainty upon rematching (in the SPE case, because they know

the firm’s strategy a priori) cannot optimally accept a low wage at any point in their first

match. This implies the first-round worker must play SR
i with probability one. Since second-

round workers have zero probability in this case, a firm who deviates from sMi must deviate

to sAi ; otherwise they are not playing optimally after a high counteroffer, since the worker is

certain to reject. Given this, second-round workers must play sAj , since doing so leads to the

counteroffer being accepted. Since this whole derivation was from necessary conditions, this

is the only SPE with immediate agreement on the high wage. It is the same outcome as the

high-wage part of the LCCC of Theorem 4, except that strategies are fully specified even at

histories they make unreachable, and are known a priori rather than derived in part from

observations and reasoning about observations.

There is always immediate agreement on the low wage if firms mix between sAi and sRi and

workers all play sMj . From the calculations in Section 3.4.1, sMj is optimal only when the

worker expects the relative frequency of sAi in this mixture to be sufficiently low. In SPE

then, it is necessary that the true weight on sAi in the firm’s mixture in fact be sufficiently

low. From the same calculations, we know that sMj being optimal for first-round workers

implies sAj being better than sRj for first-round workers; thus, a first-round worker would

deviate to sAj if they were to deviate from sMj when sMj is optimal. Since all workers are

first-round workers in this case also, this implies all firms must play sRi (since it is a strict

best response to a sAj worker in the subgame after deviation to a high counteroffer). This

satisfies the condition on worker payoffs for first-round workers to optimally play sMj and

deviate to sAj if they deviate, and implies the same optimal play for second-round workers.

This is again the unique SPE for this case, as we have derived everything from necessary

conditions.
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The key difference in outcomes between SPE and LCCC is that the LCCC beliefs are

‘objective’ only in the high wage case, while the SPE beliefs are objective in both cases, and

also specify counterfactual behavior to a greater degree than is necessary in LCCC. This

difference arises because knowledge of strategies in a LCCC must be derived from agent

observations and strategic reasoning if it is to be present, and full knowledge is not always

derivable in this way. In a SPE, full knowledge is assumed ex ante, having already been

arrived at by an unspecified process, so that the two cases cannot differ on this point.

To summarize: Both LCCC and SPE predict probability-one adherence to immediate

agreement in the high-wage case, and sufficient knowledge of strategies to anticipate one’s

opponent’s response to a deviation, though SPE specifies one’s own optimal post-deviation

behavior as well. In the low-wage case, LCCC predicts that positive probability deviations

may arise that may or may not be profitable, and that whether they are profitable is unknown

to agents, whereas in SPE the value of deviation is known and worse than the on-path payoff,

as all firms reject high counteroffers and all agents know this.

3.5.2 Non-Strategic Bayesian Inference (‘Sampling Equilibrium’)

Next, I consider a case identical to the current model, except that agents have priors

over all of Σ, with densities bounded between multiples η and 1
η
as before. We will take

our predictions in this case to be just the set of strategy distributions affirmable for Σ and

these allowed priors. This is, in essence, a modified version of the current model in which

strategic reasoning – embodied in the requirement that priors be supported on CAEs – has

been stripped out. It is more or less identical in spirit, if not exactly the same formally, to

the Bayesian inference variant of sampling equilibrium in Salant and Cherry (2020).

In studying this case, I consider the parameter limit where η approaches zero (the bounds

on priors become very loose) and N becomes large relative to η, and I focus on strategy

distributions in which all but at most fraction ϵ of agents agree immediately on either the
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high or the low wage, where ϵ is small relative to N . This is the same parameter limit and

class of strategy distributions considered in the LCCC of Theorem 4, except that I allow for

the possibility of positive-probability deviation from the high wage case. The key observation

to make about this case is that agents with such beliefs and samples facing such a strategy

distribution will have very high confidence that immediate agreement will occur if they play

along with it (because N is large relative to η), but have more or less unrestricted posteriors

about play if they don’t (ϵ being sufficiently small relative to N implies their subsample of

play at all unusual histories is also small, and η is assumed to be small, so that their posterior

point estimates need not be significantly restricted by small subsamples).

It is easy to see that this case allows immediate agreement by all agents on either the high

or low wage. They could all have priors that are very concentrated on near-certain rejection

if they don’t, for example. The key difference in this case, relative to SPE and LCCC, is that

positive probability deviation is possible for both cases. Just as we constructed beliefs in the

low-wage part of the LCCC for which deviators expected their counteroffer to be accepted

and non-deviators expected it not to be, we can construct beliefs for firms in this case for

which workers would almost always accept a low offer if one were made. Firms with such

beliefs would in fact deviate in this setting, because they do not think strategically about

what the workers observe, and thus do not incorporate the restriction that workers who

know high firm offers are very common must optimally reject low offers. This is still true of

workers who observe near-universal agreement on the high wage, however, so it is still the

case that deviant firms in the high-wage case must be rejected, while high counteroffers in

the low wage case might be accepted or rejected.

To summarize: This case differs from LCCC in allowing firms to deviate to a low offer in

the high-wage case, although such offers must still be rejected. It allows for the same range

of behavior as LCCC in the low-wage case.
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3.5.3 Self-Confirming Equilibrium

In a self-confirming equilibrium (Fudenberg and Levine, 1993), all agents have correct

beliefs about the play they will face at histories they can reach when playing their own

strategy against the prevailing strategy distribution in the population. It is natural to

consider comparisons with both SCE where literally all agents agree immediately on either

the high or the low wage, and SCE in which some small fraction of agents may not do so.

In the first case – immediate agreement is literally always reached – the beliefs of agents

about what would happen following a deviation to a low initial offer (in the high wage case)

or a high counteroffer (in the low wage case) are completely unrestricted (deviation to a

low counteroffer in the high wage case or a high initial offer in the low wage case is strictly

dominated given universal immediate agreement). Thus, it is possible to assign priors to

agents that expect rejection after any deviation, and thus support both outcomes. So, there

are SCE where immediate agreement on each wage happens with probability one. It remains

to check which cases with immediate agreement by most but not all can also arise in SCE.

If there is almost always immediate agreement on the high wage, all workers will imme-

diately accept the high wage in every match where they are offered it and will thus know

this almost always happens. They will thus reject any low offer in their first round, for the

same reasons as before. Since most workers in such a case are first round and all first-round

workers behave this way, any firm which offered a low wage initially would experience rejec-

tion in almost every case. Such a firm would not know the outcome of offering a high wage,

but the lowest possible payoff of doing so not much less than the payoff they are already

receiving given their current strategy. There is thus a sense in which there cannot be positive

probability deviations from the high-wage case in a SCE with ‘reasonable beliefs’. The only

beliefs supporting this outcome are those for which workers are expected to refuse the high

wage with near-certainty, with the degree of certainty needed approaching one as deviations
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by firms become rare. This would be ruled out by, for example, beliefs about off-path play

bounded by some η as in the allowed class considered in this paper, if the frequency of

deviation were sufficiently small.

If there is almost always agreement on the low wage, all workers know the low wage is

almost always offered, and in particular believe this is also true in the second round. Workers

who accept the low wage do not know what would happen if they made a high counteroffer

instead, and thus may believe that it would almost certainly be rejected, so that accepting

the low wage is a subjective best response. A worker who makes a high counteroffer does

better than accepting the low wage (an outcome they know they can guarantee if there is a

low initial offer) only if sufficiently many firms objectively accept a high counteroffer, and

workers who do make high counteroffers know whether this is true or not. Accordingly, a

necessary condition for there to be high counteroffers in a mostly-low-wage SCE is that firm

strategies do in fact lean toward acceptance in this way. A firm who plays sAi (make a low

initial offer, but accept high counteroffers) never learns whether the worker was ‘bluffing’

or not, so there are always firm beliefs that allow firms to play sAi . Firms who play sRi can

be present too so long as most workers who deviate are playing sAj , so that rejection is not

objectively suboptimal. Thus, we can have low-wage SCE with positive probability deviation

so long as both sides of the market lean sufficiently toward acceptance after a deviation. This

is more restrictive than the LCCC case, because of the requirement that deviators know the

consequences of their own deviation.

In summary, SCE (with ‘reasonable beliefs’) agrees with LCCC that the high wage outcome

will involve immediate agreement with probability one, but for a different reason – empirical

knowledge of the deviators about the true consequences of deviating, rather than deduction

about one’s opponent’s strategy from knowledge of their payoffs and observations. SCE

also agrees with LCCC that there can be positive probability deviations from the low wage

outcome, but these must take a more restricted form, again because of the requirement that
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deviators have learned the true consequences of deviating empirically.

3.6 Discussion

3.6.1 Simpler Versions of the Game

Since the game considered here has up to four moves – with agreement or disagreement

reachable, in a sense, at three of them – one might instead consider truncated versions with

the last one or two moves deleted. One might also consider a case where no rematching is

allowed. In this section, I provide a brief, informal sketch of what might change in such

cases.

Consider first a case in which the possibility of worker rematches is as before, but the

bargaining game has fewer moves. If there are only the first two moves, with the match

ending immediately with no deal if the two proposals are not the same, then under large

sample sizes workers have a very accurate estimate of their expected payoff from rematching

(i.e. the probability they will be offered the high wage), and firms have a very accurate

estimate of what most workers’ estimates will be. Thus, there is no significant room for

uncertainty or disagreement about which offers workers will accept. We would accordingly

expect CAE in this case to coincide with Nash equilibria.

If, instead, the third move – the firm accepting or rejecting the counteroffer – were included

but the game ended with no deal following a firm rejection, the firm would never reject, since

doing so gives them the worst outcome. Were we to give firms rather than workers the ability

to rematch, so that rejection could conceivably benefit them, we might instead have a case

much like that studied in the present paper. If firms and workers typically observe a large

subsample of worker responses to an initially low offer, then both sides have a largely accurate

estimate of the firm’s expected payoff from making a low offer and from rematching. If only
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high offers are typically made, there may instead be uncertainty and potential disagreement

about both these expected payoffs. The LCCC for such a case would plausibly look much like

that constructed in the present work, with the roles of firms and workers (and high and low

wages) reversed. The game studied in this paper is arguably more realistic as a description

of at least some wage bargaining situations – where the firm’s offer, once made, stays on the

table for a predetermined length of time whether or not a counteroffer is made or rejected

within this time window.

If there are no rematches, both parties understand that the final mover will always want

to accept. This would seem to induce a backward induction logic which also eliminates the

possibility of equilibria with lingering strategic uncertainty.

3.7 Conclusion

In this paper, I have characterized a LCCC solution to a simple bargaining game for agents

in two randomly matched populations. The result highlights the importance of subjective

confidence in supporting some convention-affirming equilibria in such a setting, and provides

proof-of-concept for the general value of studying this notion of equilibrium in bargaining

situations.

There are a number of directions in which future work might extend these results to

more complicated games and settings. Some natural possibilities include games with larger

numbers of moves or potential rematches, games with incomplete information about which

offers a player may rationally accept (i.e. that are better than no deal), settings in which

the set of individually rational divisions for each side of the market varies over time (so that

there can be changes such that e.g. firms which could afford to pay a high wage before no

longer can, due to, say, changes in technology which only they observe directly), and settings

in which the bargaining and matching structure is explicitly embedded in a larger market
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model (with, e.g. explicitly modeled demand, production technology, and/or entry/exit).

There is also a rationale for considering the effect of hypothetical policy changes which

somehow shift the distribution of prior beliefs on one or both sides of the market (i.e. some

kind of intervention making firms or workers more or less confident about what they can

demand through some change exogenous to the game and matching/sampling process itself).

This would be a ‘comparative dynamics’ exercise – comparing the equilibria in the population

before and after the change, and the adjustment process between them – and as such would

require appending an explicit dynamic process to the model from which adjustment dynamics

were derived.

The contribution of this paper thus hopefully consists both of the specific results derived

therein, and in opening up opportunities for these various further directions to be explored.
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Conclusion

In this work, I have introduced the concept of convention-affirming equilibrium, and em-

ployed it to study a few specific games. This work should hopefully illustrate the value of

the concept; that it is intuitive, relatively easy to use, and capable of generating interesting

and novel outcomes even within fairly simple and standard games. Future work should both

broaden and deepen our understanding of the concept itself – its foundations, its general

properties, and general techniques which are useful in employing it – and seek to apply it

to a wider set of contexts; both more elaborate models of the same economic phenomena

studied here, and other economic applications of interest.
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