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ABSTRACT

Nonlinear wave systems are ubiquitous in nature, and when many incoherent dispersive waves
interact, there is the potential for wave turbulence (WT). Just as in flow turbulence, systems in WT
exhibit inter-scale energy cascades, power-law inertial-range spectra, and even intermittency. Unlike
in flow turbulence, however, a natural analytical closure for field statistics has been developed. By
closing the hierarchy of moment equations that determine field statistics, spectral evolution can be
expressed as a Boltzmann-like Wave Kinetic Equation (WKE). The WKE and its supporting closure
make formal predictions for the steady power-law inertial-range spectra (known as the Kolmogorov-
Zakharov (KZ) spectra), the energy cascade strength and direction, and much more. In addition to
being of great theoretical interest, the WKE has been widely employed as a reduced-order model
for spectral evolution in practical applications such as global ocean wave forecasting models.

The WT closure and the WKE are derived in the large-domain and infinitesimal wave amplitude
limit (together, the kinetic limit), and they describe the average effect of the wave-wave interactions
that drive spectral evolution. When a wave system is realized on a finite domain with finite wave
amplitude, this assumption of the kinetic limit does not hold. As a result, WKE predictions such as
the KZ spectrum become questionable. Numerical and physical experiments in bounded domains
often describe steeper spectra and weaker energy cascades than theory predicts. In extreme cases,
coherent structures can form that even lead to the breakdown of the kinetic wave description.
While recent theory for predicting finite-size effects is in fairly good agreement with observations,
it is a largely qualitative model built on kinematic relationships, considering finite-size effects by
comparing Fourier domain discreteness to nonlinear broadening of the dispersion relation. For
a given domain size, this theory predicts that finite-size effects will dominate when nonlinear
broadening becomes much smaller than characteristic Fourier-space frequency spacing.

In this dissertation, we work towards a more quantitative, dynamics-based understanding of
finite-size effects through numerical studies of the Majda-McLaughlin-Tabak (MMT) model. First,
we explore a limitation of the aforementioned kinematic model: we show that weakly nonlinear
wave dynamics in a finite-domain are shaped by the structure of the Discrete Resonant Manifold
of wave-wave interactions, which in some cases can support WKE-like dynamics even when
nonlinear broadening goes to zero. Next, we explore the properties of the energy cascade in a
bounded domain as nonlinear broadening goes to zero. In addition to showing the importance

xii



of quasi-resonant interactions to kinetic behavior, we develop an interaction-based energy flux
decomposition that allows for a direct, dynamical measurement of nonlinear broadening and a
novel and effective study of the WT closure. This tool is then used to study WT in the kinetic limit
for a one-dimensional model, where we show numerically that, as the domain is made larger and
nonlinearity is made weaker, the error of the WT closure is reduced for a statistically steady WT
field. A final study explores a novel, almost-periodic coherent structure in the two-dimensional
MMT model that emerges when nonlinearity is weak, where we draw a possible connection to
Kolmogorov-Arnold-Moser Theory. We conclude with discussion.
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CHAPTER 1

Introduction

1.1 Wave Turbulence and its Applications

Nonlinear wave systems are ubiquitous in nature, describing phenomena ranging from millimeter-
scale ripples on the ocean’s surface [78] to kilometer-scale motions of the solar wind [38]. Despite
the diverse physical mechanisms that drive these waves, their dynamical descriptions share much
in common. Realistic wave systems are often multi-scale processes, in which their evolution is
determined by motions at a broad range of length- and time-scales. The agitated sea depicted in
Figure 1.1 is an example of a multi-scale system, where waves of many length scales oscillate at
disparate frequencies. Due to the nonlinearity of these systems, these multi-scale dynamics support
an inter-scale energy cascade driven by wave-wave interactions. This energy cascade is frequently
accompanied by power-law energy spectra and self-similar field statistics. Because these behaviors
are highly analogous to those of flow turbulence, such a process in wave systems is referred as wave
turbulence.

Due to the breadth of physical processes that exhibit wave turbulence, Wave Turbulence The-
ory (WTT) has seen a great deal of development since its first descriptions in the early-to-mid
20th century [79, 43, 99]. For a wave field exhibiting WT, the goal of WTT is to describe the
statistical evolution of the field [101, 69]. These statistical descriptions have greatly enhanced
our understanding of nonlinear wave processes, which in turn have enabled predictive modeling
in a variety of contexts. In ocean surface waves, ideas from WTT play a key role in spectral
forecasting models like WaveWatch III [95], which are used to guide safe and efficient maritime
operations, among many other things. Internal ocean gravity waves exhibit wave turbulence and are
a critical mechanism for ocean mixing [81, 75, 97], which drives a litany of important oceanic and
atmospheric processes. Other applications include, but are not limited to, Magnetohydrodynamics
[38], Bose Einstein Condensates [71], Acoustics [59, 41], vibrations of metal sheets [29], and even
Gravitational waves in the early universe [39].

1



Figure 1.1: The rough sea, captured by a NOAA research vessel. Note the range of feature sizes,
from small ripples to swells that are meters in length.

1.2 Statistical Closure and the Wave Kinetic Equation

The challenge in quantitative descriptions of wave turbulence is similar to that of flow turbulence
[72]. Multi-scale nonlinear wave systems evolve according to wave-wave interactions, and for the
large systems typical in nature, the number of interactions is huge. While computational tools
exist for the simulation of these systems, a robust theoretical description of the fully deterministic
field is intractable. For this reason, we turn to a statistical description of the dynamics. To keep
our discussion general, we note here that all subsequent quantities will be unitless, assuming the
wave system of interest has been suitably nondimensionalized. The primary statistic of interest is
wave action spectrum 𝑛(𝒌, 𝑡), where 𝒌 is a 𝑑-dimensional wavenumber vector corresponding to
a 𝑑-dimensional physical space, and 𝑡 is time. Wave action spectrum is a second order statistic
that describes (roughly) the mean-square amplitude of each Fourier component of the field. When
one writes the governing equation for wave action evolution, it is quickly discovered to depend
on multi-mode statistics of a higher order than wave action itself (e.g., fourth order statistics for
surface gravity waves). Thus, to solve for the evolution of wave action spectrum, one must know
the evolution of some set of higher-order statistics. A governing equation can be written for these
statistics also, however they themselves evolve according to even higher-order statistics! In this
way, a hierarchy of statistical dependency is formed.

This problem exists also in flow turbulence, where it is addressed by Kraichnan’s Direct Interac-
tion Approximation (DIA) [51] and subsequent developments [e.g., 52]. Under a set of more-or-less

2



heuristic assumptions, Kraichnan closed the statistical hierarchy to obtain an evolution equation
for the velocity covariance tensor, which is the analogous quantity to the action spectrum of wave
turbulence. A statistical closure expresses high-order statistics as functions of lower-order statistics,
thus closing the hierarchy and allowing for explicit computation of statistical evolution. A statistical
closure for wave turbulence also exists. Due to the structure of nonlinear dispersive wave equations
(compared to the Navier-Stokes equations), the closure arises in a far more natural way than the
DIA, and, recently, has even been rigorously justified for the Nonlinear Schroedinger Equation
(NLS) [22]. While there are many technical aspects to the closure, some of which will be discussed
in detail, the general picture is as follows: under the assumptions of random initial wave phase and
amplitude among Fourier modes, and, in the limits of a large domain and weak nonlinearity, one
can close the governing equation for wave action spectrum up to the so-called kinetic timescale.
For a four wave process (generally, a system with a cubic nonlinearity) the resulting Wave Kinetic
Equation can be written as

𝜕𝑛𝒌

𝜕𝑡
=

∞∫
−∞

∞∫
−∞

∞∫
−∞

4𝜋𝑇2
123𝒌 (𝑛1𝑛2𝑛3 + 𝑛1𝑛2𝑛𝒌 − 𝑛1𝑛3𝑛𝒌 − 𝑛2𝑛3𝑛𝒌)

×𝛿 (𝒌1 + 𝒌2 − 𝒌3 − 𝒌) 𝛿 (𝜔̃1 + 𝜔̃2 − 𝜔̃3 − 𝜔̃𝒌) 𝑑𝒌1𝑑𝒌2𝑑𝒌3,

(1.1)

where 𝑇123𝒌 = 𝑇 (𝒌1, 𝒌2, 𝒌3, 𝒌) is the interaction kernel of the wave equation, 𝑛𝒊 ≡ 𝑛(𝒌𝑖, 𝑡),
𝜔̃𝒊 ≡ 𝜔̃(𝒌𝑖) is the renormalized power-law dispersion relation, and 𝛿 denotes the Dirac delta
function. Immediately, one can see that the WKE expresses wave action evolution as an integral
over all combinations of 4 wave modes in the domain. Hence, the RHS of (1.1) is said to be an
integral over wave-wave interactions. This turns out, in fact, to be critical in understanding the WT
closure and the WKE.

While (1.1) is useful in modeling transient spectra, this dissertation will take special interest in
its predictions for stationary spectra, i.e., those spectra with 𝜕𝑛𝒌

𝜕𝑡
= 0 for all 𝒌. As we will discuss

next, there exist exact, stationary power-law solutions to the WKE, known as Kolmogorov-Zakharov
spectra, whose scaling exponents sometimes agree with experimental observation. These spectra
often require a long integration to develop: typically many times the kinetic timescale over which
the WT is derived. Thus, they are a difficult object for rigorous mathematical analysis, motivating
their numerical study.

1.2.1 Theoretical Predictions for Stationary Spectra and their Realizability

Stationary solutions to (1.1) can be found by substituting a general power-law Ansatz of 𝑛𝒌 = 𝐴|𝒌 |𝛾,
and then, after a series of transformations, known as the Zakharov Transformations, finding zeros
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of the integrand [101, 69]. There exist, in general, four stationary power-law solutions to (1.1). The
first two, representing equipartition of wave action 𝑛𝒌 = 𝐶 and equipartition of energy 𝑛𝒌 = 𝐶/𝜔𝒌 ,
produce no inter-scale flux. The latter of these is known as the Rayleigh-Jeans (RJ) spectrum,
and represents the thermodynamic equilibrium of the system. These solutions are typically not
considered to be wave turbulence. On the other hand, two finite-flux solutions exist, corresponding
to a forward cascade of energy (i.e., from large scales to small scales) and an inverse cascade of
wave action. These spectra take the forms of 𝑛𝒌 = 𝐶0𝑃

𝜃0𝑘𝛾0 and 𝑛𝒌 = 𝐶1𝑄
𝜃1𝑘𝛾1 , respectively,

and are together known as the Kolmogorov-Zakharov (KZ) spectra. Here, 𝑃 represents the average
non-dimensional flux of energy from large scales to small scales, 𝑄 represents the average non-
dimensional flux of wave action from small scales to large scales, and 𝐶0 and 𝐶1 are known as
Kolmogorov constants. While solutions of these forms usually exist to (1.1), whether or not they are
realizable is an important and non-trivial question [101, 69]. For the remainder of this thesis, we
will consider primarily the so-called “forward” cascade KZ solution, corresponding to a spectrum
of 𝑛𝒌 = 𝐶0𝑃

𝜃0𝑘𝛾0 with a flux of energy “forward” from the large scale to the small scale. However,
much of the underlying theory for the “inverse” KZ solution (i.e., corresponding to the wave action
flux 𝑄 from the small scale to the large scale) is similar, and the realizability of these two different
spectra are closely related. Also, many of the conclusions of this dissertation developed for the
forward cascade are expected to hold for the inverse cascade.

Experimental and numerical experiments of the forward cascade of wave turbulence and its
associated spectra are an important topic. To provide even a thorough review of the literature on
this topic is a difficult task, as it has a long history with many facets. For a representative review for
the surface water wave systems, we refer the reader to [31]. Here, we will only take a moment to
note that, for systems such as surface capillary waves, the KZ spectrum has been widely observed
in a variety of numerical and experimental contexts [78, 21, 77, 31].This not generally the case,
however, and often times in numerical studies and physical experiments of other wave systems,
the KZ spectra are not observed. For example, in the internal wave system in a rotating fluid, the
KZ spectrum is only created with the use of a sophisticated experimental setup that eliminates
competing physical mechanisms [67, 70]. Similar mechanisms will be discussed in Section 1.4.
The inevitable conclusion of the broad literature on this topic is that there is no single general reason
why KZ spectra are not observed, but rather a variety of factors that contribute the breakdown of
one or more of the many assumptions required for the KZ spectrum. The remainder of this chapter
will largely be dedicated to describing these mechanisms.

In order for the forward KZ spectrum to be realized in real systems, a few conditions must be
met. Let us assume for now that the assumptions that underlie the WKE are sufficiently satisfied,
so that the WKE is a good model for wave action spectrum. First, the KZ spectrum must be shown
to be local (more precisely, the spectrum must have stationary locality), meaning that the RHS of
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(1.1), known as the collision integral, must not diverge for spectra with 𝛾 in the neighborhood of
𝛾0. Even if the spectrum is in this sense local, it is possible that solution is unstable, or even that
the forward cascade solution corresponds to a non-physical inverse cascade of energy. If the KZ
solution is non-local, unstable, or predicts the wrong sign of energy flux (i.e., is non-physical), the
solution cannot be realized [101, 69]. Additionally, a stationary forward cascade process in a real
system must be accompanied by forcing at some scale and dissipation at disparate, higher scales.
These scales are separated inevitably by a finite distance in 𝒌-space, whereas the KZ spectra are
derived assuming a power-law form for infinite 𝒌. The underlying assumption in realizing the KZ
spectrum is that the forcing and dissipation scales are sufficiently separated to support an “inertial”
range of self-similar dynamics supported only by the nonlinearity of the wave equation. The general
stability of finite-width (in wave number) KZ spectra is an open question [101, 30], with plenty of
evidence that dissipation effects on inertial range dynamics are non-negligible for certain systems
[34, 65]. We note also that there are further considerations not discussed here, such as stability of
the KZ spectra under anisotropic perturbation and evolution locality [101, 69].

Even with these difficulties, there are additional considerations that affect the realizability of KZ
spectra. This class of issues is not to do with technicalities of the WKE, but rather the assumptions
that underlie the WKE as a model for wave action spectrum. The WKE is derived in the so-
called “kinetic limit”, which formally requires that the limits of a large domain and infinitesimal
nonlinearity are taken in a rather delicate way [69, 30, 22]. Real wave systems, however, seldom
take place in a truly infinite domain with infinitesimal wave amplitude, and thus, without careful
analysis, it is unclear to what extent the WKE should apply. Additionally, the statistical assumptions
that produce the WKE are imposed at some initial time 𝑡 = 0, and it must be shown a posteriori
that these assumptions remain valid up to the kinetic timescale (over which the WKE describes
evolution). Whether these assumptions remain valid for the timescales of interest in the study of
realistic stationary spectra must be further considered [30, 73]. Lastly, nonlinearity in the governing
wave equation can produce correlations in wave phases and amplitudes between modes that lead to
the breakdown of the statistical closure [69]. These types of behavior often depend on the specifics
of the wave equation itself and, as will be seen later in this thesis, can radically change the dynamics
of the field. In the following two sections, we explore in greater detail these issues surrounding
the validity of the WKE as a model for wave action evolution and the corresponding effects on
stationary solutions to the WKE.

1.3 The Kinetic Limit and Finite-size Effects

There are a great many relevant problems in wave turbulence, and nonlinear wave physics more
broadly, that fall outside of the kinetic limit. Numerical evaluations of nonlinear wave systems
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frequently occur on periodic domains of some finite size, and physical experiments are typically
constrained to a container or basin of fixed size. Thus, the extent to which WKE predictions like
the KZ spectra can be realized on a bounded domain is of great interest.

Because the wave turbulence closure is derived in the kinetic limit, the WKE can only formally
be expected to hold on an infinite domain under infinitesimal nonlinearity. These limits, in fact,
must be taken in a specific order - the “large-box” limit, referring to (infinite) domain size, must be
taken before the limit of weak nonlinearity [22]. The definition of “weak nonlinearity” can differ
depending on context. For surface gravity waves, it is typically meant that the wave amplitude
of each Fourier mode for surface elevation is small compared to its wavelength. In more general
contexts, a ratio of nonlinear and linear contributions to the evolution of Fourier coefficients can be
used. There is much more to say on the topic of the kinetic limit, as will be discussed extensively
in later chapters. For now, it will suffice to say that the kinetic limit determines two important
features of the dynamics. A large domain ensures that there are many wave-wave interactions that
are quasi-resonant, the definition of which will be provided shortly. On the other hand, weak
nonlinearity restricts only those interactions that are very (asymptotically) close to resonance to
contributing to wave action evolution. Thus, the required order of these two limits ensures there
are a massive number of quasi-resonant interactions available to drive spectral evolution no matter
how small the nonlinearity. On small domains, too few quasi-resonant interactions exist for the
WKE to be a good model of the dynamics. When finite-domain dynamics are compared to WKE
predictions, limited spectral evolution, reductions in the strength of the inter-scale energy cascade,
and steepening of the power-law wave action spectra are observed (see Section 1.3.2 for a brief
review). These anomalies in finite-domain kinetic wave physics are referred to collectively as
“Finite-size effects”. To better understand this picture, we present a popular kinematic explanation
put forward by L’vov and Nazarenko [60].

1.3.1 A Kinematic Understanding

The kinematic description that follows is most clear if we constrain ourselves to a specific class of
system. Thus, we will consider a wave equation evaluated on a two-dimensional (2D), periodic,
square domain of side length 𝐿. The wave equation of interest describes the evolution of a complex
scalar 𝜓(𝒙, 𝑡) ∈ C according to a linear dispersion term and a simple cubic nonlinearity, and
the dispersion relation will be given explicitly by 𝜔(𝑘) = |𝒌 |2. The NLS is an example of a
system in this category, and a closely related system will be studied throughout the majority of
this dissertation. We also will assume that the size of the solution |𝜓(𝒙, 𝑡) | ∼ 𝑂 (𝜀), where 𝜀 is a
small positive number, so that the nonlinearity is weak. Formalities to do with 𝜀, 𝐿, and the wave
equation itself will be precisely defined in Chapter 2.
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For our periodic domain, we say that 𝒙 ∈ T2
𝐿
, or written out, 𝒙 belongs to the 2D torus T2

𝐿
. For a

domain of this type, we can express 𝜓(𝒙, 𝑡) as a Fourier series, summing over all the wave number
vectors 𝒌 that exist in the corresponding Fourier-domain Λ2

𝐿
. The Fourier series representation of

𝜓(𝒙, 𝑡) is given by
𝜓(𝒙, 𝑡) =

∑︁
𝒌∈Λ2

𝐿

𝜓̂𝒌 (𝑡)𝑒𝑖𝒌·𝒙 (1.2)

where Λ2
𝐿
≡ {(𝑚, ℓ) | 𝑚, ℓ ∈ 2𝜋Z/𝐿}. Both the physical domain and the corresponding wave

number domain are depicted in the first row of Figure 1.2. Crucially, for a finite physical domain,
Fourier domain is a lattice. As 𝐿 is made large, the lattice spacing Δ𝑘 = 2𝜋/𝐿 becomes small.

On the other hand, after the kinetic limit is taken, physical domain is given by 𝒙 ∈ R2, so the
corresponding Fourier domain must also be given by 𝒌 ∈ R2 (as the Fourier series (1.2) becomes
a Fourier transformation). Thus, in the kinetic limit, Fourier domain becomes continuous. The
origin of finite-size effects rests with these differences in Fourier domain. To see how, we now
consider the delta functions of the wave kinetic equation, which provide the kinematic conditions
that determine which types of wave-wave interactions contribute to wave action evolution in the
kinetic limit. The collision integral is nonzero only if the following conditions are satisfied for any
4 wave modes,

𝒌1 + 𝒌2 − 𝒌3 − 𝒌 = 0 (1.3)

𝜔1 + 𝜔2 − 𝜔3 − 𝜔𝒌 = 0 , (1.4)

where we have neglected to renormalize the dispersion relation for clarity (see Chapter 2 for details).
Equation (1.3) is often referred to as the wave number condition, and wave-wave interactions that
satisfy this condition are referred to as quartets. This condition results from the cubic nonlinearity
of the wave equation, and must always be satisfied, no matter which assumptions on wave statistics
or nonlinearity we employ. The condition (1.4), on the other hand, emerges only in the kinetic
limit, and is known as the resonance condition. Wave-wave interactions that satisfy the resonance
condition are referred to as resonant interactions or resonant quartets. Quasi-resonant interactions
refer to interactions that approximately satisfy (1.4). Indeed, when 𝜀 is small but not zero,
interactions that satisfy

|𝜔1 + 𝜔2 − 𝜔3 − 𝜔𝒌 | ≤ Γ(𝜀) (1.5)

may contribute to spectral evolution, where Γ decreases as 𝜀 is made small. This fact is intimately
related to the realization of the WT closure on finite domains, as we will later show.

For our chosen domain and dispersion relation, there is a geometric interpretation of these
conditions. When added tip-to-tail, the wave number condition requires that the wave number
vectors form a quadrilateral. If one additionally imposes the resonance condition, it can be shown
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(in Appendix B) that the wave number vectors must be configured in a rectangular fashion, albeit
in a somewhat unintuitive way. In the case of the quasi-resonance condition (1.5), the wavenumber
vectors may only approximate a rectangle. This geometric interpretation of (1.3), (1.4) and (1.5) is
also depicted in Figure 1.2. When 𝒌 is continuous, there are an infinite set of wave-wave interactions
that satisfy these conditions. Recall however, that the WT closure requires sufficiently many quasi-
resonant interactions to exist as the broadening Γ becomes small. Thus, the realization of the WT
closure in finite domain, finite nonlinearity wave systems (and subsequently the observation of
WKE predictions) hinges critically on the number of wave-wave interactions that satisfy conditions
(1.3) and (1.5) when interpreted on the lattice Λ2

𝐿
. As can be deduced from Figure 1.2, as the lattice

becomes coarse, there are fewer ways to draw resonant and quasi-resonant quartets (rectangles).
However, for sufficiently large Γ, we restore many of the interactions that are eliminated as we
admit increasingly skew rectangles. Thus, the magnitude of finite-size effects is said to depend
on the interplay of two competing quantities: the magnitude of nonlinear broadening Γ and the
characteristic frequency spacing Δ𝜔 = 𝑑𝜔

𝑑𝑘
Δ𝑘 , which measures the effect of the discreteness of

Fourier domain.
Using these parameters, we can define two distinct regimes of dynamics. In the case of Δ𝜔 ≪ Γ,

the domain size 𝐿 is sufficiently large for a given (small) 𝜀 to ensure there are many quasi-resonant
interactions to support the WT closure, and as a result, we expect the WKE and subsequent
predictions such as the KZ spectrum to hold. This regime is known as Kinetic Wave Turbulence
(KWT). On the other hand, when Δ𝜔 ≫ Γ, there are insufficient quasi-resonant interactions to
support the WT closure, resulting in finite-size effects. This regime of dynamics is known as
Discrete Wave Turbulence (DWT). In addition to these two regimes, there exists also a Mesoscopic
Wave Turbulence regime, for which Δ𝜔 ∼ Γ, characterized by combinations of kinetic and finite-
size behaviors. This kinematic picture is widely adopted in the WT literature, and is frequently
used to describe finite-size effects as observed in physical and numerical experiments, as will now
be discussed.

1.3.2 Numerical and Physical Experiments

We now briefly revisit the topic of experimental studies, but with a special focus on those studies
to do with finite-size effects. Both experiments and numerical simulations of DWT have shown,
in many cases, steepened spectra compared to the KWT regime [84, 78], as well as restricted
energy transfer [58, 16, 10, 68] or even “frozen turbulence” [84, 65, 103]. Frozen Turbulence
refers to a state where there is insufficient resonance to support any spectral evolution. Because the
relationship between Γ and the discreteness Δ𝜔 is critical to predicting DWT, there are a number
of existing techniques to compare these quantities given data, for example, the coherence function
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Figure 1.2: (a) the 𝐿-periodic physical domain T2
𝐿

and (b) the corresponding wave number domain
Λ2
𝐿
, with lattice spacing Δ𝑘 = 2𝜋/𝐿. (c) a quartet satisfying (1.3) on Λ2

𝐿
, (d) a quartet additionally

satisfying the resonance condition (1.4) for 𝜔𝒌 = |𝒌 |2, and (e) a quartet satisfying the relaxed
quasi-resonant condition (1.5). For a given Δ𝑘 , there are many more quartets satisfying (1.5) than
(1.4), as there are many more slightly skewed rectangles (e) than true rectangles (d) in Λ2

𝐿
.

9



[e.g. 2, 77, 102] and the broadened dispersion relation (𝑘 −𝜔 spectrum) [e.g. 68, 21]. While these
techniques are often an effective way to compare Δ𝜔 and Γ, they do not directly address dynamical
questions regarding the WT closure in the DWT regime. Also, there is work [49, 48, 60] to show
that, in the DWT regime, the remaining resonant interactions may form disjoint sets of modes, and
even drive the formation of integrable or nearly-integrable coherent structures, which brings us to
our next topic.

1.4 Coherent Structures

In addition to finite-size effects, there exists another class of behaviors in nonlinear wave systems
that can lead to the breakdown of the WT closure. The term “coherent structure” serves as a catch-
all category of nonlinear behavior that leads to strong correlations in space and across time. In
the case of nonlinear wave systems, examples of coherent structures include solitons [14, 100, 13],
breathers [14, 13, 26], wave collapses [87], rogue waves [74, 26], and radiative pulses [88], to name
a few. Some of these coherent structures share similar underlying physics. They can form/exist at
high or low nonlinearity, and often depend critically on the specific form of a given wave equation.
Because of this, studies of coherent structures are often constrained to specific phenomena exhibited
in various systems of interest. For example, waves on elastic sheets have been shown to exhibit
“sharpening” of their wave crests, leading to spectra that differ from the KZ spectra [64]. On
the other hand, some coherent structures, such as rogue waves, are observed in a wide variety of
media that are subject to different evolution equations, allowing for more general descriptions and
theories [74, 26]. In both cases, the correlations built by these nonlinear processes lead to the
breakdown of the statistical assumptions that underlie the WT closure. In particular, phenomena
like intermittency are often attributed to the existence/emergence of coherent structures at higher
nonlinearities, and, as will be shown in this dissertation, even coherent structures that form at low
nonlinearities can strongly dominate an otherwise stochastic process. Now we turn our focus to a
particularly relevant class of coherent structure known as breathers.

1.4.1 Breathers in lattices and continuous media

Breathers are a broadly-defined class of features that arise in nonlinear dynamical systems, generally
describing a family of solutions with strong spatial localization and oscillations in time. Together
with solitons, breathers are considered as prototypes for rogue waves that can occur across many
fields, such as water waves [28, 74], optics [26], and plasma physics [25]. In mathematics, breathers
are defined to be fundamental solutions to both continuous field equations and discrete lattice
problems. Breather solutions to continuous systems have been found primarily in one-dimensional
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(1D) nonlinear partial differential equations (PDEs), including the Sine-Gordon equation [18],
the nonlinear Schrödinger equation (NLS) [94, 28, 74, 26, 25], the modified Korteweg–De Vries
(KdV) equation [14], and certain generalized KdV equations [13]. Discrete breathers [37] have
been constructed as solutions to a wide variety of discrete systems, including Josephson Junctions
[96, 66] and the Fermi-Pasta-Ulam-Tsingou (FPUT) problem [57].

Another important category of studies regards the spontaneous emergence of breathers (and
other coherent structures) under the free evolution of a system. These coherent structures include
discrete breathers in the FPUT problem [17] and the discrete nonlinear Schrödinger equation
[86, 85], as well as quasi-solitons [100, 88], quasi-breathers [83], and wave collapses [100, 87, 89]
identified in the 1D Majda-McLaughlin-Tabak model. As in the case of constructing exact breather
solutions to PDEs, these studies are predominantly performed in 1D situations. The only exception,
to our knowledge, is [90], which identifies a breather solution to the NLS with a potential on a two-
dimensional (2D) domain, but the mechanism associated with the breather remains unexplained.
In general, very little is known about 2D breathers in continuous systems.

1.5 Dissertation Overview and Outline

In this dissertation, we explore the dynamics of wave turbulence when realized in finite domains.
There are two major components to this work. The majority is aimed at building upon the picture of
finite-size effects put forward by L’vov and Nazarenko by developing a complimentary dynamical
understanding of finite-domain wave turbulence. In the second component, we explore a novel
breather solution to a system that otherwise is shown to follow a stochastic description.

In the study of finite-size effects, our focus will primarily be on the stationary spectra associated
with forward cascade process, and will (in particular) focus on the energy cascade itself as a
way to understand the changes of wave turbulence in finite domains. This differs from the more
typical approach of studying the wave action spectral slope and spatiotemporal/coherence spectra
to quantify finite-size effects. To do this, we have developed a novel method for the instantaneous
evaluation of inter-scale energy flux that reveals the quasi-resonant contributions to the energy
cascade process. All of these studies will be conducted on the Majda-McLaughlin-Tabak (MMT)
model, a family nonlinear dispersive wave equations that have been widely used to study various
aspects of kinetic wave theory. The basic strategy of each of these studies will be to vary the strength
of the nonlinearity by several orders of magnitude. By changing the nonlinearity, we produce a
transition from Discrete to Kinetic wave turbulence. In the final study on finite-size effects, we
also vary the domain size to numerically approximate the kinetic limit. Given data that captures
the finite-size effects of interest, we then perform an extensive study of the energy cascade process
and spectral form throughout these ranges of dynamics.
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In the second component of this work, we numerically demonstrate the existence of breather
solutions to the MMT model, realized on a 2D domain with periodic boundary conditions. In this
dissertation, we use a physical definition of breather as spatial localization of energy occurring
in a periodic or quasi-periodic pattern in time. In addition to being a novel 2D breather in a
continuous field, other remarkable and distinguishing features of the breather include: (1) the
breather spontaneously emerges from a stochastic wave field after long-time evolution, not relying
on specific initial conditions; (2) the breather appears equivalently for both the focusing and
defocusing cases, but exists only in the weak nonlinearity regime. As the nonlinearity of the system
increases, we find a breakdown of the breather state with the field relaxing to the Rayleigh-Jeans
spectrum. Further analysis suggests that the state trajectory of the breathers is associated with a
Kolmogorov-Arnold-Moser (KAM) torus.

The outline of this dissertation is as follows. In Chapter 2, we review the Majda-McLaughlin-
Tabak model, and provide detailed derivations for our numerical method, the wave kinetic equation,
the Kolmogorov-Zakharov spectra, evaluations of energy flux, and other required formulae for the
subsequent studies. In Chapter 3, we perform a study of decaying wave turbulence on rational and
irrational tori, demonstrating a sensitivity of wave turbulence in the DWT regime to the structure
of the Discrete Resonant Manifold, the set of all interactions on a torus as nonlinear broadening
Γ(𝜀) → 0. In Chapter 4, we provide an extensive study of the forward energy cascade in forced-
dissipated wave turbulence in both the DWT and KWT regimes, where we show definitively the
necessity of quasi-resonant interactions in forming kinetic wave behavior. We extend these ideas
to a study of a 1D MMT model in Chapter 5, where we add a more precise study of the WT closure
by varying not only nonlinear strength 𝜀, but also domain size 𝐿 to numerically approximate the
kinetic limit. In Chapter 6, we pivot our focus to a study of the breather solution, after which
provide a discussion and concluding remarks in Chapter 7.
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CHAPTER 2

The Majda-McLaughlin-Tabak Model and Related
Derivations

2.1 The Majda-McLaughlin-Tabak Model

Developed by Majda, McLaughlin, and Tabak (MMT) in their 1997 paper [61], the MMT model
was first used to assess the claims of WT via a relatively simple, tuneable nonlinear wave system.
The motivation for developing such a system is as follows: real wave systems often require a series
of simplifications before a nonlinear wave equation is found that is suitable for kinetic description.
Because of this, one cannot be sure if discrepancies from WTT predictions are due to a failure
in assumptions that lead to the nonlinear wave equation, or a problem with kinetic description, or
even a complicated combination of the two. Additionally, WT depends critically on dispersion
relation, dimension, and precise properties of the nonlinearity. A single, tuneable model offers
the potential to perform a robust study of theoretical predictions without radically changing the
governing equation. Hence, the MMT model has since been widely employed to study WT and
related problems.

The model describes the evolution of a complex scalar field 𝜓𝒙 ≡ 𝜓(𝒙, 𝑡) ∈ C according to

𝑖
𝜕𝜓𝒙

𝜕𝑡
= |𝜕𝒙 |𝛼𝜓𝒙 + 𝜆 |𝜕𝒙 |𝛽/4

(���|𝜕𝒙 |𝛽/4𝜓𝒙

���2 |𝜕𝒙 |𝛽/4𝜓𝒙

)
, (2.1)

where 𝒙 is the 𝑑-dimensional spatial coordinate, 𝑡 is time, and 𝜆 = ±1 controls the sign of the
nonlinearity, with a positive (negative) sign corresponding to a defocusing (focusing) equation. We
use the term defocusing out of convention, however, with effect of 𝜆 on the formation of coherent
structures in the MMT model being more complicated than that of the NLS, which is the equation
in which this terminology first arose. The derivative operator |𝜕𝒙 |𝛼 is defined in spectral domain.
If we assume a periodic domain of size 𝐿, then the 𝜓(𝒙, 𝑡) can be related to the coefficients of a
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Fourier series by the Fourier transformation

𝜓̂𝒌 =
1
𝐿

𝐿∫
0

𝜓𝒙𝑒
−𝑖𝒌·𝒙𝑑𝒙, (2.2)

where the integral is over a 𝑑-dimensional periodic domain, and the corresponding Fourier series
is given by

𝜓𝒙 =
∑︁
𝒌∈Λ2

𝐿

𝜓̂𝒌𝑒
𝑖𝒌·𝒙 , (2.3)

where Λ𝑑
𝐿
≡ 2𝜋Z𝑑/𝐿. The operator |𝜕𝒙 |𝛼 is then defined as

|𝜕𝒙 |𝛼𝜓(𝒙, 𝑡) ≡
∑︁
𝒌∈Λ2

𝐿

|𝒌 |𝛼𝜓̂𝒌 (𝑡)𝑒𝑖𝒌·𝒙 . (2.4)

Here, 𝛼 explicitly controls the derivative order. We note also that, in general, |𝜕𝒙 |𝛼 is a non-local
operator, and is equivalent to the fractional Laplacian operator for a range of 𝛼 [56].

Using this model in 𝑑 = 1 dimension, the (short) water wave dispersion relation of 𝛼 = 1/2,
MMT demonstrated that, for certain values of 𝛽, the WKE fails to predict the spectrum associated
with the forward cascade process [61]. Instead, non-KZ spectra, later referred to as MMT spectra,
were observed. After validating various aspects of the theory, they eventually found that the WT
closure did not represent the true dynamics of their system. Later studies by their group identified
system configurations that would produce KZ spectra, and they even observed the coexistence of
KZ spectra and the anomalous MMT spectra [8]. Subsequent studies by Zakharov et al. attribute
the MMT spectra to coherent structures [100, 88]. As discussed in the introduction, there are
nevertheless many open questions as to how and when the KZ spectra (or MMT spectra) may be
observed in numerical experiments of the MMT model.

Before we proceed, we note that the MMT model conserves the total number of particles of the
solution

∫
|𝜓𝒙 |2𝑑𝒙 (a term derived from statistical thermodynamics), as well as linear momentum∫ (

𝜓𝒙
𝜕𝜓∗

𝒙
𝜕𝑥

− 𝜓∗
𝒙
𝜕𝜓𝒙

𝜕𝑥

)
𝑑𝒙. Here, 𝜕𝜓𝒙

𝜕𝑥
refers to all 𝑑 components of the gradient in systems with 𝑑 > 1.

Most importantly, the system is Hamiltonian, with 𝐻 given by

𝐻 = 𝐻2 + 𝐻4 =

∫ ���|𝜕𝒙 |𝛼/2𝜓𝒙

���2 𝑑𝒙 + 1
2
𝜆

∫ ���|𝜕𝒙 |𝛽/4𝜓𝒙

���4 𝑑𝒙. (2.5)

The𝐻2 term corresponds to the linear term on the RHS of (2.1) and𝐻4 corresponds to the nonlinear
term. We also note here that, for 𝛼 = 2 and 𝛽 = 0, the MMT model reduces to the cubic NLS
without a potential. For the general case of 𝛼 = 2, the MMT model corresponds to a non-local
derivative NLS. This can be seen using the field transformation 𝜙𝒙 = |𝜕𝒙 |𝛽/4𝜓𝒙 for which (2.1)
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becomes
𝑖
𝜕𝜙

𝜕𝑡
= |𝜕𝒙 |2𝜙 + 𝜆 |𝜕𝒙 |𝛽/2

(
|𝜙 |2 𝜙

)
. (2.6)

For 𝛽 = 2, this system is a non-local form of the derivative NLS of Kaup and Newell [50], and for
𝛽 = 4, (2.6) is local.

We continue our exposition of the MMT model by rewriting (2.1) as an evolution equation
for the Fourier coefficients 𝜓̂𝒌 (𝑡). This step is (a) useful in the understanding of the numerical
evaluation of (2.1) and (b) necessary to the derivation of the WKE. After substituting (2.3) into
(2.1), only the nonlinear term requires special attention. This term can be written as

𝜆 |𝜕𝒙 |𝛽/4
(���|𝜕𝒙 |𝛽/4𝜓𝒙

���2 |𝜕𝒙 |𝛽/4𝜓𝒙

)
=

𝜆 |𝜕𝒙 |𝛽/4 ©­«
∑︁

𝒌1∈Λ2
𝐿

|𝒌1 |𝛽/4𝜓̂1(𝑡)𝑒𝑖𝒌1·𝒙
∑︁

𝒌2∈Λ2
𝐿

|𝒌2 |𝛽/4𝜓̂2(𝑡)𝑒𝑖𝒌2·𝒙
∑︁

𝒌3∈Λ2
𝐿

|𝒌3 |𝛽/4𝜓̂∗
3(𝑡)𝑒

−𝑖𝒌3·𝒙ª®¬ ,
(2.7)

where 𝜓̂2(𝑡) ≡ 𝜓̂(𝒌2, 𝑡) and 𝜓̂∗
𝒌 (𝑡) is the complex conjugate (𝑐.𝑐.) of 𝜓̂𝒌 (𝑡). Recognizing (2.7)

contains sums over strictly independent wave numbers, the terms can be reordered as

𝜆 |𝜕𝒙 |𝛽/4
(���|𝜕𝒙 |𝛽/4𝜓𝒙

���2 |𝜕𝒙 |𝛽/4𝜓𝒙

)
=

𝜆 |𝜕𝒙 |𝛽/4 ©­«
∑︁

𝒌1∈Λ2
𝐿

∑︁
𝒌2∈Λ2

𝐿

∑︁
𝒌3∈Λ2

𝐿

(𝑘1𝑘2𝑘3)𝛽/4𝜓̂1𝜓̂2𝜓̂
∗
3𝑒
𝑖(𝒌1+𝒌2−𝒌3)·𝒙ª®¬ ,

(2.8)

where we have simplified our notation by defining 𝑘𝑖 ≡ |𝒌𝑖 | for 𝑖 = 1, 2, 3. Writing out the full
MMT equation, we now have

∑︁
𝒌∈Λ2

𝐿

𝑖
𝜕𝜓̂𝒌

𝜕𝑡
𝑒𝑖𝒌·𝒙 =

∑︁
𝒌∈Λ2

𝐿

𝑘𝛼𝜓̂𝒌𝑒
𝑖𝒌·𝒙 + 𝜆 |𝜕𝒙 |𝛽/4 ©­«

∑︁
𝒌1∈Λ2

𝐿

∑︁
𝒌2∈Λ2

𝐿

∑︁
𝒌3∈Λ2

𝐿

(𝑘1𝑘2𝑘3)𝛽/4𝜓̂1𝜓̂2𝜓̂
∗
3𝑒
𝑖(𝒌1+𝒌2−𝒌3)·𝒙ª®¬ .

(2.9)

To simplify this equation further, the nonlinear term must be written as a sum over 𝒌. The intuition
behind this is that we would like to exploit the orthogonality of each term in the Fourier series,
which requires us to know each Fourier coefficient of the nonlinear term corresponding to mode 𝒌.
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We achieve this with the Kroeneker delta function 𝛿𝐾 , such that∑︁
𝒌∈Λ2

𝐿

𝑖
𝜕𝜓̂𝒌

𝜕𝑡
𝑒𝑖𝒌·𝒙 =

∑︁
𝒌∈Λ2

𝐿

𝑘𝛼𝜓̂𝒌𝑒
𝑖𝒌·𝒙

+𝜆
∑︁
𝒌∈Λ2

𝐿

∑︁
𝒌1∈Λ2

𝐿

∑︁
𝒌2∈Λ2

𝐿

∑︁
𝒌3∈Λ2

𝐿

(𝑘1𝑘2𝑘3𝑘)𝛽/4𝜓̂1𝜓̂2𝜓̂
∗
3𝛿𝐾 (𝒌1 + 𝒌2 − 𝒌3 − 𝒌)𝑒𝑖𝒌·𝒙 ,

(2.10)

where we have further made use of the identity (2.4), and we have set 𝑘𝑖 = |𝒌𝑖 |. Now, by
orthogonality of the Fourier series, we arrive at the evolution equation for the Fourier coefficients,

𝑖
𝜕𝜓̂𝒌

𝜕𝑡
= 𝑘𝛼𝜓̂𝒌 + 𝜆

∑︁
𝒌1∈Λ2

𝐿

∑︁
𝒌2∈Λ2

𝐿

∑︁
𝒌3∈Λ2

𝐿

(𝑘1𝑘2𝑘3𝑘)𝛽/4𝜓̂1𝜓̂2𝜓̂
∗
3𝛿𝐾 (𝒌1 + 𝒌2 − 𝒌3 − 𝒌). (2.11)

A few comments are in order. First, if 𝜆 = 0 as in the linear case, we can see that each Fourier
mode evolves independently according to 𝜓̂𝒌 (𝑡) = 𝜓̂𝒌 (0)𝑒−𝑖𝜔𝑘 𝑡 , where the dispersion relation is
𝜔𝑘 = 𝑘𝛼. The linear case is fully integrable. When 𝜆 ≠ 0, the cubic nonlinearity produces mode
coupling. This mode coupling takes the form of 4 wave interactions, as a sum over permutations of
3 Fourier modes determines the evolution of a 4th mode (mode 𝒌). As promised in Section 1.3, the
wave number condition, present in the Kronecker delta function, exists long before the kinetic limit
is taken in the WKE derivation. When there are many modes involved in the field, as is typical in
wave turbulence, analytical treatment of the dynamics becomes very difficult. This will be touched
upon in a Section 2.3 when we derive the WKE, however at present we will move on to methods
for the numerical evaluation of (2.11).

2.2 Numerical Evaluation of the MMT model

First, we remind the reader that, for (2.1) evaluated on a domain with periodic boundary conditions,
we can equivalently solve (2.11), and then use the Fourier series (2.3) to obtain a solution to the
original PDE. Because so much of WTT describes spectral behavior, directly simulating (2.11) is
often preferable! The equivalence between solutions to (2.1) and (2.11) is the key step behind the
pseudospectral method that has been widely employed to study nonlinear dispersive wave equations
on simple, periodic domains [e.g., 61, 100, 88, 87].

The basic idea of the pseudospectral method is as follows: (2.1) is first discretized via the
Fourier transform, where our solution is represented as a trunacted lattice of Fourier modes. By
truncated, we mean that the Fourier series contains terms only up to some maximum wave number
in each direction. Suppose this lattice contains 𝑀 total modes. The resulting large system of 𝑀
ODEs (2.11) is coupled only through the nonlinear term, and a naive (direct) evaluation requires
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𝑂 (𝑀4) total operations. To avoid this extreme computational expense, one evaluates the nonlinear
term in (2.11) in physical domain (i.e., one evaluates the nonlinear term in (2.1)). In practice, this
requires first applying a inverse Discrete Fourier Transform (inverse DFT), requiring 𝑂 (𝑀 log𝑀)
operations. Once the values of this nonlinear term are computed, one can take the DFT of the term
in physical domain to obtain the desired term in Fourier domain. The resulting total computational
complexity of each RHS evaluation of (2.11) is a reasonable 𝑂 (𝑀 log𝑀).

For 𝛼 > 1, however, the above scheme is stiff due to the linear dynamics occurring at widely
separated timescales for even a modest number of Fourier modes. This is treated by the use of an
integration factor. Rather than solving (2.11), one first makes the transformation 𝜙𝒌 = 𝜓̂𝒌𝑒

𝑖𝜔𝑘 𝑡 ,
where 𝜙𝒌 evolves according to

𝑖
𝜕𝜙𝒌

𝜕𝑡
= 𝜆𝑒𝑖𝜔𝑘 𝑡

∑︁
𝒌1∈Λ2

𝐿

∑︁
𝒌2∈Λ2

𝐿

∑︁
𝒌3∈Λ2

𝐿

(𝑘1𝑘2𝑘3𝑘)𝛽/4𝜙1𝜙2𝜙
∗
3𝑒

−𝑖(𝜔1+𝜔2−𝜔3)𝑡𝛿𝐾 (𝒌1 + 𝒌2 − 𝒌3 − 𝒌). (2.12)

If we denote the operator F as the DFT, one can easily rewrite the above equation as

𝑖
𝜕𝜙𝒌

𝜕𝑡
= 𝜆𝑘 𝛽/4𝑒𝑖𝜔𝑘 𝑡F

{���F −1
{
𝑘 𝛽/4𝜙𝒌𝑒

−𝑖𝜔𝑘 𝑡
}���2 F −1

{
𝑘 𝛽/4𝜙𝒌𝑒

−𝑖𝜔𝑘 𝑡
}}
, (2.13)

the RHS of which can be explicitly evaluated over a truncated Fourier space (i.e., the wave number
lattice Λ𝐿 truncated to 𝑀 modes). To propagate (2.13) forward in time, we use a 4-th order
Runge-Kutta scheme.

To create a (quasi-) steady forward energy cascade and an accompanying power-law spectrum
it is necessary to first add dissipation at the small scales of the simulation (large 𝑘) of the MMT
model. For the studies in Chapters 4 and 5, we will additionally force the MMT equation at the
large scale, to produce a statistically stationary spectrum. This forcing will also be accompanied
by dissipation at the largest scales (lowest 𝑘), such that the inverse cascade does not accumulate
energy near the 0 mode. Thus, rather than solving (2.11), we instead solve

𝑖
𝜕𝜓̂𝒌

𝜕𝑡
= 𝑘𝛼𝜓̂𝒌 + 𝜆

∑︁
𝒌1∈Λ2

𝐿

∑︁
𝒌2∈Λ2

𝐿

∑︁
𝒌3∈Λ2

𝐿

(𝑘1𝑘2𝑘3𝑘)𝛽/4𝜓̂1𝜓̂2𝜓̂
∗
3𝛿𝐾 (𝒌1 + 𝒌2 − 𝒌3 − 𝒌) + 𝑖𝐹𝒌 − 𝑖𝜈𝒌𝜓̂𝒌 ,

(2.14)

where 𝐹𝒌 is white-noise type forcing, and 𝜈𝒌 is the wave number dependent dissipation parameter.
The form of 𝜈𝒌 will change slightly in subsequent chapters, and will be discussed at that time. It is
important, however, that 𝜈𝑘 be chosen to be effectively (or exactly) zero in the inertial range. The
white noise forcing is applied from some 𝑘 𝑓 1 ≤ 𝑘 ≤ 𝑘 𝑓 2 at the large scale, where 𝐹𝒌 at each mode
and each time step is taken from a Gaussian distribution of 0 mean and standard deviation 𝜎𝐹 that
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determines the forcing strength. Following the work in [61], we can modify our scheme (2.13) to
solve (2.14) via

𝑖
𝜕𝜙𝒌

𝜕𝑡
= 𝑒(−𝜈𝑘+𝑖𝜔𝑘)𝑡

(
𝜆𝑘 𝛽/4F

{���F −1
{
𝑘 𝛽/4𝜙𝒌𝑒

−𝑖𝜔𝑘 𝑡
}���2 F −1

{
𝑘 𝛽/4𝜙𝒌𝑒

−𝑖𝜔𝑘 𝑡
}}

+ 𝑖𝐹𝒌
)
. (2.15)

Finally, we note that a suitable dealiasing scheme is needed for the evaluation of (2.13) and (2.15).
See Appendix C for a detailed discussion. Next, we discuss the derivation of the WKE.

2.3 Derivation of the Wave Kinetic Equation

This derivation will follow [73], which, in our opinion, provides a relatively straightforward
derivation without sacrificing much in the way of rigor within the WT formalism. While more
precise and more general derivations are available [69, 30], the advantages of these methods do
not justify their added complexity for the purposes of this dissertation. In more general theoretical
contexts, these more sophisticated derivations have much to offer. Also, neither this derivation
nor the more sophisticated derivations just mentioned are truly mathematically rigorous. The
mathematically rigorous derivation in [22] is formulated in context of a Cauchy initial value
problem, and includes number-theoretic considerations, among many other nuances that will not
be discussed here.

This section will make use of a truncated notation for practical reasons. We note that a small
amount of this notation will be redefined later in this chapter and dissertation, including 𝜃, which
here denotes angle (to be defined in a moment) for this section only. The derivation of the WKE
begins with the wave number formulation of the MMT model (2.11). We will take this opportunity
to write the Hamiltonian density in its wave number form, which is given by

𝐻 =
∑︁
𝒌∈Λ2

𝐿

𝐻̂2(𝒌) +
∑︁
𝒌∈Λ2

𝐿

𝐻̂4(𝒌) =∑︁
𝒌∈Λ2

𝐿

𝑘𝛼/2 |𝜓̂𝒌 |2 + 𝜀
𝜆

2

∑︁
𝒌∈Λ2

𝐿

∑︁
𝒌1∈Λ2

𝐿

∑︁
𝒌2∈Λ2

𝐿

∑︁
𝒌3∈Λ2

𝐿

(𝑘1𝑘2𝑘3𝑘)𝛽/4𝜓̂1𝜓̂2𝜓̂
∗
3𝜓̂

∗
𝒌𝛿𝐾 (𝒌1 + 𝒌2 − 𝒌3 − 𝒌),

(2.16)

where we assume that the nonlinear term is 𝑂 (𝜀) the size of the linear term, where 𝜀 is a small
quantity. This generally corresponds to a low amplitude solution.

For simplicity of notation, we will rewrite the sums and delta function in (2.16) as

𝐻 =
∑︁
𝒌

𝑘𝛼/2 |𝜓̂𝒌 |2 + 𝜀
𝜆

2

∑︁
123𝒌

(𝑘1𝑘2𝑘3𝑘)𝛽/4𝜓̂1𝜓̂2𝜓̂
∗
3𝜓̂

∗
𝒌𝛿

12
3𝒌 .
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The corresponding wave equation can be written as

𝑖
𝜕𝜓̂𝒌

𝜕𝑡
= 𝑘𝛼𝜓̂𝒌 + 𝜀𝜆

∑︁
123

(𝑘1𝑘2𝑘3𝑘)𝛽/4𝜓̂1𝜓̂2𝜓̂
∗
3𝛿

12
3𝒌 .

We now introduce a canonical transformation to action-angle coordinates, where 𝜓̂𝒌 =
√
𝐼𝒌𝑒

−𝑖𝜃𝒌 ,
𝐼𝒌 is known as the action of degree-of-freedom 𝒌 (here, each degree-of-freedom is associated with
a Fourier mode), and 𝜃𝒌 is known as the angle of each degree-of-freedom. Note that action-angle
coordinates are quite explicitly an interpretation of the complex Fourier mode 𝜓̂𝒌 in polar form.
This is useful because the key statistical assumptions that follow are in easily understood in terms
of actions and angles, rather than through a Cartesian interpretation. Under this transformation,
the evolution equations for 𝐼𝒌 and 𝜃𝒌 are now

𝑑𝐼𝒌

𝑑𝑡
= 2𝜀𝜆

∑︁
123

(𝑘1𝑘2𝑘3𝑘)𝛽/4
√︁
𝐼1𝐼2𝐼3𝐼𝒌 sin

(
Δ𝜃3𝒌

12

)
𝛿12

3𝒌 ,

𝑑𝜃𝒌

𝑑𝑡
= 𝜔𝒌 + 𝜀𝜆

∑︁
123

(𝑘1𝑘2𝑘3𝑘)𝛽/4
√︂
𝐼1𝐼2𝐼3
𝐼𝒌

cos
(
Δ𝜃3𝒌

12

)
𝛿12

3𝒌 ,

(2.17)

where Δ𝜃3𝒌
12 = 𝜃3 + 𝜃𝒌 − 𝜃1 − 𝜃2. In this new form, one can show that a certain subset of interactions

never contribute to action evolution, and contribute to angle evolution independently of the angles
themselves. This occurs when Δ𝜃3𝒌

12 = 0 identically, i.e., when wave numbers 𝒌1 = 𝒌3 and 𝒌2 = 𝒌,
𝒌1 = 𝒌 and 𝒌2 = 𝒌3, or when all 4 wave numbers are the same. As discussed in [73] and [69],
these terms must be properly handled in order to avoid secular growth of the perturbation series at
a later stage in the derivation. One avoids this issue by renormalizing the dispersion relation by
including the effect of these interactions in the definition of 𝜔. As [73] notes, this can be thought
of as an application of the widely-employed Poincaré-Linstedt method. Due to the symmetry of
indices 1 and 2, we need only consider the first of these cases and define

𝜔̃𝒌 ≡ 𝑘𝛼 + 𝜀𝜆
(
2
∑︁

3
(𝑘3𝑘)𝛽/2𝐼3 − 𝑘 𝛽𝐼𝒌

)
. (2.18)

We must also remove those corresponding interactions from the sums in (2.17). A summation over
the remaining interactions will be denoted with a prime, so that

𝑑𝐼𝒌

𝑑𝑡
= 2𝜀𝜆

∑︁
123

′ (𝑘1𝑘2𝑘3𝑘)𝛽/4
√︁
𝐼1𝐼2𝐼3𝐼𝒌 sin

(
Δ𝜃3𝒌

12

)
𝛿12

3𝒌 ,

𝑑𝜃𝒌

𝑑𝑡
= 𝜔̃𝒌 + 𝜀𝜆

∑︁
123

′ (𝑘1𝑘2𝑘3𝑘)𝛽/4
√︂
𝐼1𝐼2𝐼3
𝐼𝒌

cos
(
Δ𝜃3𝒌

12

)
𝛿12

3𝒌 ,

(2.19)
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are the action-angle evolution equations written in our new notation.
We now seek the solution to (2.19) at some time 𝑡 given some initial conditions 𝐼 𝒌 ≡ 𝐼𝒌 (𝑡 = 0)

and 𝜃𝒌 ≡ 𝜃𝒌 (𝑡 = 0). Given that 𝜀 is small, we will write an approximate solution as a perturbation
(power) series in 𝜀,

𝐼𝒌 (𝑡) = 𝐼 (0)𝒌
(𝑡) + 𝜀𝐼 (1)

𝒌
(𝑡) + 𝜀2𝐼

(2)
𝒌

(𝑡)
𝜃𝒌 (𝑡) = 𝜃 (0)𝒌

(𝑡) + 𝜀𝜃 (1)
𝒌

(𝑡) + 𝜀2𝜃
(2)
𝒌

(𝑡).
(2.20)

By substituting these expressions into (2.19), we can successively obtain expressions for the 𝑖-th
order coefficients 𝐼 (𝑖)

𝒌
and 𝜃 (𝑖)

𝒌
. At 0-th order, we have the linear dynamics given by

𝑑𝐼
(0)
𝒌

𝑑𝑡
= 0

𝑑𝜃
(0)
𝒌

𝑑𝑡
= 𝜔̃𝒌 .

(2.21)

This system is easily integrated from the initial conditions to give

𝐼
(0)
𝒌

(𝑡) = 𝐼 𝒌
𝜃
(0)
𝒌

(𝑡) = 𝜃𝒌 + 𝜔̃𝒌 𝑡.
(2.22)

With this substituted into (2.19), we now can write the first order evolution equations as

𝑑𝐼
(1)
𝒌

𝑑𝑡
= 2𝜆

∑︁
123

′ (𝑘1𝑘2𝑘3𝑘)𝛽/4
√︃
𝐼1𝐼2𝐼3𝐼 𝒌 sin

(
Δ𝜃

3𝒌
12 + Δ𝜔̃𝒌 𝑡

)
𝛿12

3𝒌 ,

𝑑𝜃
(1)
𝒌

𝑑𝑡
= 𝜆

∑︁
123

′ (𝑘1𝑘2𝑘3𝑘)𝛽/4

√︄
𝐼1𝐼2𝐼3

𝐼 𝒌
cos

(
Δ𝜃

3𝒌
12 + Δ𝜔̃𝒌 𝑡

)
𝛿12

3𝒌 ,

(2.23)

where Δ𝜔̃
3𝒌
12 = 𝜔̃3 + 𝜔̃𝒌 − 𝜔̃1 − 𝜔̃2. Integrating these expression in time, one obtains

𝐼
(1)
𝒌

(𝑡) = 2𝜆
∑︁
123

′ (𝑘1𝑘2𝑘3𝑘)𝛽/4
√︃
𝐼1𝐼2𝐼3𝐼 𝒌

cos
(
Δ𝜃

3𝒌
12

)
− cos

(
Δ𝜃

3𝒌
12 + Δ𝜔̃𝒌 𝑡

)
Δ𝜔̃

3𝒌
12

𝛿12
3𝒌 ,

𝜃
(1)
𝒌

(𝑡) = 𝜆
∑︁
123

′ (𝑘1𝑘2𝑘3𝑘)𝛽/4

√︄
𝐼1𝐼2𝐼3

𝐼 𝒌

sin
(
Δ𝜃

3𝒌
12 + Δ𝜔̃

3𝒌
12 𝑡

)
− sin

(
Δ𝜃

3𝒌
12

)
Δ𝜔̃

3𝒌
12

𝛿12
3𝒌 .

(2.24)
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Finally, the evolution of 𝐼 (2)
𝒌

(𝑡), after a great deal of reduction, is given by

𝑑𝐼
(2)
𝒌

𝑑𝑡
= 2𝜆2

∑︁
123

′ ∑︁
456

′
4∑︁

𝑚=1
(𝑘1𝑘2𝑘3𝑘)𝛽/4(𝑘4𝑘5𝑘6𝑘𝑚)𝛽/4

√︄
𝐼1𝐼2𝐼3𝐼 𝒌 𝐼4𝐼5𝐼6

𝐼𝒎

×
sin

(
𝜎𝑚Δ𝜃

6𝒎
45 − Δ𝜃

3𝒌
12 + (𝜎𝑚Δ𝜔̃

6𝒎
45 − Δ𝜔̃

3𝒌
12 )𝑡

)
Δ𝜔̃

6𝒎
45

𝛿6𝒎
45 𝛿

12
3𝒌 ,

(2.25)

where the pre-factor 𝜎𝑚 = +1, +1,−1,−1 for 𝑚 = 1, 2, 3, 4. At this point, we may stop, as the
evolution of 𝜃 (2)

𝒌
would not be used. We also need not explicitly integrate this equation, as we only

require a second-order accurate evolution equation for 𝐼𝒌 ,

𝑑𝐼𝒌

𝑑𝑡
= 𝜀

𝑑𝐼
(1)
𝒌

𝑑𝑡
+ 𝜀2 𝑑𝐼

(2)
𝒌

𝑑𝑡
+𝑂 (𝜀3), (2.26)

and we have already achieved this goal.
We proceed by assuming, at 𝑡 = 0, that the angles of each mode are independent and uniformly

distributed. We are interested in the quantity

⟨𝑑𝐼𝒌
𝑑𝑡

⟩
𝜃
= 𝜀⟨

𝑑𝐼
(1)
𝒌

𝑑𝑡
⟩
𝜃
+ 𝜀2⟨

𝑑𝐼
(2)
𝒌

𝑑𝑡
⟩
𝜃
+𝑂 (𝜀3), (2.27)

where ⟨·⟩
𝜃

denotes an ensemble average of some observable (e.g., 𝐼𝒌) over the uniformly distributed,
independent initial angles. Beginning with the first order term, we can see using the linearity of

expectation that ⟨ 𝑑𝐼
(1)
𝒌
𝑑𝑡

⟩
𝜃

is determined by ⟨sin
(
Δ𝜃

3𝒌
12

)
⟩
𝜃
= Im⟨𝑒𝑖Δ𝜃

3𝒌
12 ⟩

𝜃
= 0, as 𝑒𝑖Δ𝜃

3𝒌
12 is uniformly

distributed on the unit circle. Thus, ⟨ 𝑑𝐼
(1)
𝒌
𝑑𝑡

⟩
𝜃
= 0 and the leading order contribution to ⟨ 𝑑𝐼𝒌

𝑑𝑡
⟩
𝜃

is
𝑂 (𝜀2). The angle average of the second order term can be written in complex notation as

⟨
𝑑𝐼

(2)
𝒌

𝑑𝑡
⟩
𝜃
= 2𝜆2Im


∑︁
123

′ ∑︁
456

′
4∑︁

𝑚=1
(𝑘1𝑘2𝑘3𝑘)𝛽/4(𝑘4𝑘5𝑘6𝑘𝑚)𝛽/4

√︄
𝐼1𝐼2𝐼3𝐼 𝒌 𝐼4𝐼5𝐼6

𝐼𝒎
(2.28)

× (𝑒𝑖𝜎𝑚Δ𝜔̃
6𝒎
45 − 1)𝑒−𝑖Δ𝜔̃

3𝒌
12 𝑡

Δ𝜔̃
6𝒎
45

⟨𝑒𝑖(𝜎𝑚Δ𝜃
6𝒎
45 −Δ𝜃3𝒌

12 )⟩
𝜃
𝛿6𝒎

45 𝛿
12
3𝒌

]
, (2.29)

Each term in 𝑚 must be averaged separately. For 𝑚 = 1, the term to be averaged is

⟨𝑒𝑖(𝜎𝑚Δ𝜃
6𝒎
45 −Δ𝜃3𝒌

12 )⟩
𝜃
= ⟨𝑒𝑖Δ𝜃

63𝒌
452 ⟩

𝜃
. (2.30)

This term will evaluate to zero unless the wave number indices match such that 𝜃63𝒌
452 = 0 identically,
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in which case the average is 1. If one considers all 4 values of 𝑚 and sums the result, one can
directly write the expression for ⟨ 𝑑𝐼𝒌

𝑑𝑡
⟩
𝜃
,

⟨𝑑𝐼𝒌
𝑑𝜏

⟩
𝜃
= 4𝜆2

∑︁
123

(𝑘1𝑘2𝑘3𝑘)𝛽/2𝐼1𝐼2𝐼3𝐼 𝒌

(
1
𝐼 𝒌

+ 1
𝐼3

− 1
𝐼1

− 1
𝐼2

) sin
(
Δ𝜔̃

3𝒌
12 𝜏/𝜀2

)
Δ𝜔̃

3𝒌
12

𝛿12
3𝒌 , (2.31)

where we have made the substitution 𝜏 = 𝜀2𝑡, which is known as the kinetic time. We also note
that the primed sum, which excludes certain diagonal interactions, is no longer necessary because
those interaction cancel.

This is a very important stage in the derivation, as we have not made any assumptions about
the size of the domain - only its statistics, and that the nonlinearity is sufficiently small that the
perturbation series (2.20) remains well-ordered. As we will see later in this chapter, a formula
similar to (2.31) can be used to study the closure function sin

(
Δ𝜔̃

3𝒌
12 𝜏/𝜀2

)
/Δ𝜔̃3𝒌

12 to assess validity
of the WT closure when realized in the MMT model on a periodic domain. The derivation continues
with the taking of the large box limit, followed by the weak nonlinearity limit.

The large box limit, where 𝐿 → ∞, can equivalently be formulated as Δ𝑘𝑑 → 0, where Δ𝑘𝑑 is
the volume of Fourier domain occupied by mode 𝒌. This latter formulation is particularly useful,
because we will define (with a slight abuse of notation) action density to be

𝐼′𝒌 ≡ 𝐼𝒌

Δ𝑘𝑑
. (2.32)

In the large box limit, 𝐼′𝒌 is a function of continuous 𝑘 ∈ R𝑑 . As Δ𝑘𝑑 → 0 sums become integrals
and Kronecker delta functions become Dirac delta functions according to the rules specified in
[73, 69, 30]. Making these substitutions and dropping the primes from our notation, we obtain

⟨𝜕𝐼𝒌
𝜕𝜏

⟩
𝜃
= 4𝜆2

∫
123

(𝑘1𝑘2𝑘3𝑘)𝛽/2𝐼1𝐼2𝐼3𝐼 𝒌

(
1
𝐼 𝒌

+ 1
𝐼3

− 1
𝐼1

− 1
𝐼2

) sin
(
Δ𝜔3𝒌

12 𝜏/𝜀2
)

Δ𝜔3𝒌
12

𝛿12
3𝒌𝑑𝒌1𝑑𝒌2𝑑𝒌3.

(2.33)
We also note here that [73] demonstrates convincingly that use of the renormalized frequency is not
necessary after the large box limit is taken provided that limΔ𝑘𝑑→0

𝜀→0
Δ𝑘𝑑/𝜀 = 0, e.g., the large-box

limit is taken before the weak nonlinearity limit. Thus, we use the linear dispersion relation in the
resonance condition for the remainder of this dissertation. This same conclusion is not reached
via other, equally compelling derivations [69, 12], however (see section 3.3.3 in [12] for a detailed
discussion). This discrepancy appears to be related to the manner in which the 𝐿 → ∞ and 𝜀 → 0
limits are taken. It is typical of “physicists” derivations such as this one to take the large-box
limit first, followed by the 𝜀 → 0 limit, citing the intuition developed in Chapter 1 regarding the
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importance of quasi-resonance. On the other hand, the rigorous derivation in [22] takes the kinetic
limit more carefully, according to a scaling law between 𝐿 and 𝜀. While we leave the open questions
regarding the rigorous and justified use of frequency renormalization to future study, we have been
careful throughout the work of this dissertation to verify that our results do not meaningfully change
when the renormalized dispersion relation is used. For a system with 𝛽 = 0, as used in Chapter 5,
the normalized frequency contributions to the resonance condition cancel, and renormalization is
not strictly needed in the WKE.

This discrepancy regarding frequency renormalization is complicated in part because the form
of the generalized delta function is one of the primary differences between the various WKE
derivations [101, 47, 69, 73]. Here, it takes the form sin

(
Δ𝜔3𝒌

12 𝜏/𝜀2
)
/Δ𝜔3𝒌

12 . We refer to this
function as a generalized delta function because, in the weak nonlinearity limit, we have that

lim
𝜀→0

sin
(
Δ𝜔3𝒌

12 𝜏/𝜀2
)

Δ𝜔3𝒌
12

= 𝜋𝛿(Δ𝜔3𝒌
12 ). (2.34)

We now take the limit 𝜀 → 0, and obtain

⟨𝜕𝐼𝒌
𝜕𝜏

⟩
𝜃
= 4𝜋𝜆2

∫
123

(𝑘1𝑘2𝑘3𝑘)𝛽/2𝐼1𝐼2𝐼3𝐼 𝒌

(
1
𝐼 𝒌

+ 1
𝐼3

− 1
𝐼1

− 1
𝐼2

)
𝛿(Δ𝜔3𝒌

12 )𝛿
12
3𝒌𝑑𝒌1𝑑𝒌2𝑑𝒌3. (2.35)

The final step of this derivation is to interpret the action density ⟨𝐼𝒌⟩𝜃 as a stochastic random
variable of some distribution whose expected value (ensemble average) we are now interested in.
Thus, we take the ensemble average ⟨·⟩

𝐼,𝜃
of (2.35), under the assumption that the amplitudes of

each Fourier component are independent. This leads to an equation for wave action spectrum
evolution, where 𝑛𝒌 ≡ ⟨𝐼𝒌⟩𝐼,𝜃 , which is given by

𝜕𝑛𝒌

𝜕𝜏
= 4𝜋𝜆2

∫
123

(𝑘1𝑘2𝑘3𝑘)𝛽/2𝑛1𝑛2𝑛3𝑛𝒌

(
1
𝑛𝒌

+ 1
𝑛3

− 1
𝑛1

− 1
𝑛2

)
𝛿(Δ𝜔3𝒌

12 )𝛿
12
3𝒌𝑑𝒌1𝑑𝒌2𝑑𝒌3. (2.36)

An interesting feature of the system is that the WKE is agnostic to the sign of the nonlinearity,
as 𝜆2 = 1. While the sign of the nonlinearity affects the emergence of coherent structures in the
MMT model [87], it does not change the limiting kinetic description of the field. Thus, it will
be omitted from the WKE from the remainder of this work. As a last step, we assume that the
our previous assumption of initially random phases and amplitudes (RPA) persists over kinetic
timescale 𝜏, allowing us to substitute the initial wave action spectrum 𝑛𝒌 for its values at later times
𝑛𝒌 . See [30] for additional commentary on the validity of this assumption. This last step leads us
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to the WKE for the MMT system, now written with more explicit conventions,

𝜕𝑛𝒌

𝜕𝑡
= 4𝜋

∞∫
−∞

∞∫
−∞

∞∫
−∞

(𝑘1𝑘2𝑘3𝑘)𝛽/2𝑛1𝑛2𝑛3𝑛𝒌

(
1
𝑛𝒌

+ 1
𝑛3

− 1
𝑛1

− 1
𝑛2

)
×𝛿(𝜔1 + 𝜔2 − 𝜔3 − 𝜔𝑘 )𝛿(𝒌1 + 𝒌2 − 𝒌3 − 𝒌)𝑑𝒌1𝑑𝒌2𝑑𝒌3,

(2.37)

where we replace 𝜏 with 𝑡, as is conventional, with an understanding that the evolution is with
respect to the kinetic time.

2.4 The Kolmogorov-Zakharov Spectra

While the forward KZ spectrum 𝑛𝑘 = 𝐶0𝑃
𝜃0𝑘𝛾0 can be found in the general case given (𝛼, 𝛽) and

dimension 𝑑, we will focus our attention on the case of 𝑑 = 1, 𝛼 = 1/2, and 𝛽 = 0. This is the
system we will study in Chapter 5, and this is the only system we study for which we choose to
derive the Kolmogorov Constant 𝐶0, which first requires us to derive 𝛾0 and 𝜃0. We will present
a more general formula for 𝛾0 at the end of this section. Much of the following derivation reflects
that of [100], however with substantially more detail provided and a correction included.

The derivation of the KZ spectrum typically begins by assuming an isotropic spectrum 𝑛𝑘 = 𝑛−𝑘 ,
though it is in general possible to derive an anisotropic WKEs for anisotropic systems [69]. For
𝑑 = 1, this is done by considering all the possible positive and negative combinations of the wave
number condition over which the WKE integrates. Each of 𝒌1, 𝒌2, and 𝒌3 can take a positive
or negative sign in the delta function of (2.37), producing 8 possibilities. However, not every
combination of these signs produces a non-trivial resonance. A trivial resonance is one that
satisfies the resonance conditions (1.3) and (1.4) by having 𝒌1 = 𝒌3 and 𝒌2 = 𝒌, or 𝒌2 = 𝒌3 and
𝒌1 = 𝒌. Although the delta functions in the WKE are non-zero in these cases, the integrand of
(2.37) take a zero value, and thus these case can be ignored. After these trivial cases are removed,
we are left with

𝜕𝑛𝑘

𝜕𝑡
= 4𝜋

∞∫
0

∞∫
0

∞∫
0

𝑛1𝑛2𝑛3𝑛𝑘

(
1
𝑛𝑘

+ 1
𝑛3

− 1
𝑛1

− 1
𝑛2

)
𝛿(𝜔1 + 𝜔2 − 𝜔3 − 𝜔𝑘 )

× (𝛿(𝑘1 + 𝑘2 + 𝑘3 − 𝑘) + 𝛿(𝑘1 − 𝑘2 − 𝑘3 − 𝑘) + 𝛿(−𝑘1 + 𝑘2 − 𝑘3 − 𝑘)
+ 𝛿(−𝑘1 − 𝑘2 + 𝑘3 − 𝑘)) 𝑑𝑘1𝑑𝑘2𝑑𝑘3.

(2.38)

it will later become important to integrate over the resonant manifold, which is much easier to
interpret as quadratic functions in 𝜔. Therefore, we next rewrite the above equation as an integral
over 𝜔, and replace (on the LHS) 𝑛𝑘 , the spectral density in 𝑘 , with N𝜔, the spectral density in 𝜔.
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This leads to

𝜕N𝜔

𝜕𝑡
= 128𝜋

∞∫
0

∞∫
0

∞∫
0

(𝜔1𝜔2𝜔3𝜔)𝑛1𝑛2𝑛3𝑛𝜔

(
1
𝑛𝜔

+ 1
𝑛3

− 1
𝑛1

− 1
𝑛2

)
𝛿(𝜔1 + 𝜔2 − 𝜔3 − 𝜔)

×
(
𝛿(𝜔2

1 + 𝜔
2
2 + 𝜔

2
3 − 𝜔

2) + 𝛿(𝜔2
1 − 𝜔

2
2 − 𝜔

2
3 − 𝜔

2) + 𝛿(−𝜔2
1 + 𝜔

2
2 − 𝜔

2
3 − 𝜔

2)

+ 𝛿(−𝜔2
1 − 𝜔

2
2 + 𝜔

2
3 − 𝜔

2)
)
𝑑𝜔1𝑑𝜔2𝑑𝜔3,

(2.39)

where 𝑛𝜔 = 𝑛(𝑘 (𝜔)), and we have used the facts that 𝑑𝑘 = 2𝜔𝑑𝜔 and N(𝜔)𝑑𝜔 = 𝑛(𝑘)𝑑𝑘 +
𝑛(−𝑘)𝑑𝑘 = 2𝑛(𝑘)𝑑𝑘 . We note that the factor of 2 on the spectral element relation is necessary for
a consistent and correct flux definition. We also note that, by our spectral element definition, 𝑛𝑘
and 𝑛𝜔 are angle-averaged while N(𝜔) is angle-integrated.

With a slight abuse of notation, we assume that 𝑛𝜔 = 𝐴𝜔𝛾, where 𝛾 refers to an arbitrary
exponent that later will become the KZ exponents 𝛾0 and 𝛾1. Substituting this into (2.39), we are
left with

𝜕N𝜔

𝜕𝑡
= 128𝜋𝐴3

∞∫
0

∞∫
0

∞∫
0

𝜔
𝛾+1
1 𝜔

𝛾+1
2 𝜔

𝛾+1
3 𝜔𝛾+1

(
𝜔−𝛾 + 𝜔−𝛾

3 − 𝜔−𝛾
1 − 𝜔−𝛾

2

)
𝛿(𝜔1 + 𝜔2 − 𝜔3 − 𝜔)

×
(
𝛿(𝜔2

1 + 𝜔
2
2 + 𝜔

2
3 − 𝜔

2) + 𝛿(𝜔2
1 − 𝜔

2
2 − 𝜔

2
3 − 𝜔

2) + 𝛿(−𝜔2
1 + 𝜔

2
2 − 𝜔

2
3 − 𝜔

2)

+ 𝛿(−𝜔2
1 − 𝜔

2
2 + 𝜔

2
3 − 𝜔

2)
)
𝑑𝜔1𝑑𝜔2𝑑𝜔3,

(2.40)

Next we employ the Zakharov transformations [101, 69], which are a set of conformal transfor-
mations one applies to the integrand that result in the reduction of the sum of delta functions to
a single delta function. This new structure of the integrand will allow us to (a) explicitly see the
zeros of the equation and (b) allow us to explicitly compute the Kolmogorov constant C. See [61]
for an intuitive, geometric description of how these transformations achieve this effect assuming
only a self-similar spectrum. We distribute the last sum of delta functions, and handle each term
separately. The first term,

𝜕N𝜔

𝜕𝑡

(1)
= 128𝜋𝐴3

∞∫
0

∞∫
0

∞∫
0

𝜔
𝛾+1
1 𝜔

𝛾+1
2 𝜔

𝛾+1
3 𝜔𝛾+1

(
𝜔−𝛾 + 𝜔−𝛾

3 − 𝜔−𝛾
1 − 𝜔−𝛾

2

)
×𝛿(𝜔1 + 𝜔2 − 𝜔3 − 𝜔)𝛿(𝜔2

1 + 𝜔
2
2 + 𝜔

2
3 − 𝜔

2)𝑑𝜔1𝑑𝜔2𝑑𝜔3,

(2.41)

is already of the form onto which we will map the other terms. Here, we have used a superscript
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(1) to denote we are referring to the first term. Now, as an example, we manipulate the second term
in full,

𝜕N𝜔

𝜕𝑡

(2)
= 128𝜋𝐴3

∞∫
0

∞∫
0

∞∫
0

𝜔
𝛾+1
1 𝜔

𝛾+1
2 𝜔

𝛾+1
3 𝜔𝛾+1

(
𝜔−𝛾 + 𝜔−𝛾

3 − 𝜔−𝛾
1 − 𝜔−𝛾

2

)
×𝛿(𝜔1 + 𝜔2 − 𝜔3 − 𝜔)𝛿(𝜔2

1 − 𝜔
2
2 − 𝜔

2
3 − 𝜔

2)𝑑𝜔1𝑑𝜔2𝑑𝜔3,

(2.42)

to which we apply the following transformations: 𝜔1 = 𝜔2/𝜔′
1, 𝜔2 = 𝜔𝜔′

2/𝜔
′
1, and 𝜔3 = 𝜔𝜔′

2/𝜔
′
1.

Under these transformations, 𝑑𝜔1𝑑𝜔2𝑑𝜔3 =

(
𝜔
𝜔′

1

)4
𝑑𝜔′

1𝑑𝜔
′
2𝑑𝜔

′
3, and (2.42) becomes, after some

reduction,

𝜕N𝜔

𝜕𝑡

(2)
= 128𝜋𝐴3

∞∫
0

∞∫
0

∞∫
0

(
𝜔

𝜔′
1

)3𝛾+5
𝜔
′𝛾+1
1 𝜔

′𝛾+1
2 𝜔

′𝛾+1
3 𝜔′𝛾+1

(
𝜔
′−𝛾
1 + 𝜔′−𝛾

3 − 𝜔′−𝛾 − 𝜔′−𝛾
2

)
×𝛿(𝜔′ + 𝜔′

2 − 𝜔
′
3 − 𝜔

′
1)𝛿(𝜔

′2
1 + 𝜔′2

2 + 𝜔′2
3 − 𝜔′2)𝑑𝜔′

1𝑑𝜔
′
2𝑑𝜔

′
3.

(2.43)

We note that the identity
∫
𝛿(𝑎𝑥)𝑑𝑥 =

∫
𝛿(𝑥)/|𝑎 |𝑑𝑥 is used to simply the above expression. The

integrand of (2.43) almost reflects (2.41) with an additional factor of (𝜔/𝜔′
1)

3𝛾+5. If one carefully
looks at the signed terms in the equation, however, it is apparent that certain indices have become
switched as a result of our transformation. Thankfully, the choice of indices is arbitrary, so we
renumber them according to 123 → 132. This leaves us with

𝜕N𝜔

𝜕𝑡

(2)
= −128𝜋𝐴3

∞∫
0

∞∫
0

∞∫
0

(
𝜔

𝜔′
1

)3𝛾+5
𝜔
′𝛾+1
1 𝜔

′𝛾+1
2 𝜔

′𝛾+1
3 𝜔′𝛾+1

(
𝜔′−𝛾 + 𝜔′−𝛾

3 − 𝜔′−𝛾
1 − 𝜔′−𝛾

2

)
×𝛿(𝜔′

1 + 𝜔
′
2 − 𝜔

′
3 − 𝜔)𝛿(𝜔

′2
1 + 𝜔′2

2 + 𝜔′2
3 − 𝜔′2)𝑑𝜔′

1𝑑𝜔
′
2𝑑𝜔

′
3.

(2.44)

In this form, the symmetry with (2.41) is obvious. We perform the remaining Zakharov transfor-
mations (see [101] for the forms of the other transformations), sum the four terms, and drop the
primes from our notation. This results in

𝜕N𝜔

𝜕𝑡
= 128𝜋𝐴3

∞∫
0

∞∫
0

∞∫
0

𝜔
𝛾+1
1 𝜔

𝛾+1
2 𝜔

𝛾+1
3 𝜔𝛾+1

(
𝜔−𝛾 + 𝜔−𝛾

3 − 𝜔−𝛾
1 − 𝜔−𝛾

2

)
×

(
1 +

(𝜔3
𝜔

) 𝑦
−

(𝜔1
𝜔

) 𝑦
−

(𝜔2
𝜔

) 𝑦)
𝛿(𝜔1 + 𝜔2 − 𝜔3 − 𝜔)𝛿(𝜔2

1 + 𝜔
2
2 + 𝜔

2
3 − 𝜔

2)𝑑𝜔1𝑑𝜔2𝑑𝜔3,

(2.45)
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with 𝑦 ≡ −3𝛾 − 5. Careful consideration of the quartet and resonance conditions that remain in the
delta functions reveals that (2.45) is an integral over the intersection of the plane𝜔1+𝜔2−𝜔3−𝜔 = 0
and the sphere 𝜔2

1 + 𝜔
2
2 + 𝜔

2
3 = 𝜔2 for any given 𝜔. Thus, we do not need to consider integrating

over any 𝜔𝑖 > 𝜔. This enables a reparameterization in terms of some 𝜉𝑖 = 𝜔𝑖/𝜔 ∈ [0, 1], so that
(2.45) becomes

𝜕N𝜔

𝜕𝑡
= 128𝜋𝐴3𝜔−𝑦−1𝐼 (𝑦) = 128𝜋𝐴3𝜔−𝑦−1

1∫
0

1∫
0

1∫
0

(𝜉1𝜉2𝜉3)𝛾+1
(
1 + 𝜉−𝛾3 − 𝜉−𝛾1 − 𝜉−𝛾2

)
×(1 + 𝜉𝑦3 − 𝜉𝑦1 − 𝜉𝑦2 )𝛿(𝜉1 + 𝜉2 − 𝜉3 − 1)𝛿(𝜉2

1 + 𝜉2
2 + 𝜉2

3 − 1)𝑑𝜉1𝑑𝜉2𝑑𝜉3.

(2.46)

This is the form of the WKE that yields the possible 𝛾 corresponding to stationary solutions. First,
however, one must show that the collision integral converges in the neighborhood of all 𝛾 for which
the collision integral is stationary (obtaining these 𝛾 will be discussed next). We refer the reader to
[100] for details and proof of stationary locality for this system.

One can see by the second product in the integrand that if 𝛾 = 0, the RHS of (2.46) is identically
0. This corresponds to equipartition of wave action, i.e., 𝑛𝜔 is constant. Also, if 𝛾 = −1, then
the second product is identically 0 whenever the resonance condition is satisfied, also leading to a
0 of the collision integral. This solution 𝑛𝜔 = 𝐴/𝜔 corresponds to the Rayleigh-Jeans spectrum.
As discussed in the introduction, neither of these solutions correspond to wave turbulence, but
rather are equilibrium solutions. The KZ solutions are given by 𝑦 = 0 and 𝑦 = 1, which produce
0’s of the collision integral by the same arguments as the equilibrium solutions. Setting 𝑦 = 0,
one obtains 𝑛𝜔 = 𝐴𝜔−5/3, and for 𝑦 = 1, one obtains 𝑛𝜔 = 𝐴𝜔−2. To determine which of these
out-of-equilibrium spectra correspond to the forward cascade of energy (with exponent 𝛾0) and
which corresponds to the inverse cascade of wave action (𝛾1), one may use Fjørtoft’s argument [69]
or Zakharov’s method via evaluating (2.46) [100], while in both cases being careful to ensure the
flux directions are not non-physical via comparison to the equilibrium spectra [101, 69, 100]. In
[100], it is shown that the forward and inverse cascade for our system has stationary locality and
physical cascade directions, and that 𝑦 = 1 corresponds to the forward cascade.

Next, we derive the Kolmogorov constant 𝐶0 and flux scaling parameter 𝜃0 associated with the
forward cascade. The energy flux through frequency 𝜔 is defined by a control volume argument in
spectral space (see Section 2.5) as

𝑃(𝜔) ≡ −
∞∫

0

𝜔′𝜕N
𝜕𝑡

(𝜔′)𝑑𝜔′ = −128𝜋𝐴3 𝜔
1−𝑦

1 − 𝑦 𝐼 (𝑦), (2.47)

where an negative sign is introduced to ensure that a positive flux corresponds to a cascade of energy
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from large to small scales (long to short time scales via the dispersion relation). For the forward
cascade with 𝑦 = 1, the computation of 𝑃(𝜔) involves the limit of an indeterminate quantity, which
can be obtained via L’Hospital’s rule to be

𝑃(𝜔) = 128𝜋𝐴3 lim
𝑦→1

𝑑𝐼 (𝑦)
𝑑𝑦

. (2.48)

The limit of the desired derivative, 𝑆, is given by

𝑆 = lim
𝑦→1

𝑑𝐼 (𝑦)
𝑑𝑦

=

1∫
0

1∫
0

1∫
0

(𝜉1𝜉2𝜉3)−1
(
1 + 𝜉2

3 − 𝜉2
1 − 𝜉2

2

)
×(𝜉3 ln 𝜉3 − 𝜉1 ln 𝜉1 − 𝜉2 ln 𝜉2)𝛿(𝜉1 + 𝜉2 − 𝜉3 − 1)𝛿(𝜉2

1 + 𝜉2
2 + 𝜉2

3 − 1)𝑑𝜉1𝑑𝜉2𝑑𝜉3,

(2.49)

where we have used the fact that lim𝑦→1
𝑑𝑥𝑦

𝑑𝑦
= 𝑥 ln 𝑥. In Appendix A, we develop a precise method

to numerically evaluate (2.49) to find 𝑆 = 0.09353. We now compute the relationship between 𝐴
and 𝑃(𝜔), revealing both the KZ flux scaling 𝜃0 and Kolmogorov constant 𝐶0 via

𝐴 = 𝐶0𝑃
𝜃0 = (128𝜋𝑆)−1/3 𝑃1/3, (2.50)

resulting in 𝐶0 = 0.2984 and 𝜃0 = 1/3. Given that 𝐶0 is positive, we can now be sure that the
cascade direction is correct. Thus, the KZ spectrum associated with the forward cascade process
in the (𝛼 = 1/2, 𝛽 = 0) MMT model is given by 𝑛𝜔 = 0.2984𝑃1/3𝜔−2, or, via the linear dispersion
relation, 𝑛𝑘 = 0.2984𝑃1/3𝑘−1. We note that this value of 𝐶0 is different from the result of Zakharov
et al. [100], due to their missing factor of 2 in the spectral element relation N(𝜔)𝑑𝜔 = 2𝑛(𝑘)𝑑𝑘 .

We conclude this section by providing the forward cascade KZ spectra 𝑛𝑘 = 𝐶0𝑃
𝜃0𝑘𝛾0 for the

other MMT systems studied in this work. A general derivation of 𝛾0 and 𝜃0 is possible, which
resembles the analysis provided here (see [69]). The result is that, for a 4-wave system, 𝜃0 = 1/3,
and 𝛾0 is determined by the system parameters. For the MMT model, this reduces to 𝛾0 = −𝑑−2𝛽/3.
We will not require the Kolmogorov constant for these other MMT systems.

2.5 Numerically Exact Evaluations of KZ Quantities

Next, we will shift our focus to discuss how quantities such as 𝛾, 𝐶, 𝑃, and the flux scaling 𝜃 can
be computed for numerical data. In this work, 𝐶, 𝜃, and 𝛾 (without subscripts) will often refer
to quantities that are measured, where as the 𝐶0, 𝛾0, and 𝜃0 will always refer to the KZ spectrum
for a given system. Given these numerical considerations, we return our focus to (2.1) evaluated
with periodic boundary conditions. The first of these quantities, 𝛾, can be computed directly from
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a numerically obtained spectrum via a least-squares approach. In order to compute 𝜃, one must
compare the numerically obtained wave action spectra to numerically computed 𝑃 for a range of
these values. The calculation of 𝑃, however, is a rich topic, with several possible approaches.
Before detailed discussion on how these quantities are computed, however, we must define how we
obtain averaged quantities.

The numerical method described by (2.15) returns 𝜓̂𝒌 (𝑡) on some interval 𝑡 ∈ [𝑡1, 𝑡2]. Because
this dissertation is interested in almost exclusively steady (or quasi-steady) field statistics, such as
wave action and mean energy flux, it is sufficient to replace the ensemble averages in section 2.3
with time averages, assuming ergodic dynamics. For statistically stationary processes (i.e., fully
developed forced-dissipated turbulence), one can choose the time window 𝑇𝑤 ≡ 𝑡2 − 𝑡1 to be orders
of magnitude greater than the kinetic time scale. For decaying turbulence, one must carefully
choose 𝑇𝑤 to average out the𝑂 (𝜀) dynamics, while preserving information on the𝑂 (𝜀2) dynamics.
In both cases, we will for the rest of this dissertation denote time averaging with an overbar, and
define wave action for numerical data to be

𝑛𝒌 ≡ 1
𝑇𝑤

𝑡2∫
𝑡1

|𝜓̂𝒌 |2𝑑𝑡 = |𝜓̂𝒌 |2. (2.51)

The numerically-obtained wave action spectrum can be angle-averaged easily, and will be
denoted as 𝑛𝑘 . In one dimension, angle-averaging numerical data is equivalent to summing over
the positive and negative wave number components, then dividing by 2. Then, we identify the
power-law inertial range interval 𝑘 ∈ 𝐼𝑅, and then fit a model 𝑛𝑘 = 𝐴𝑘𝛾 over this interval of 𝑘 in
a least squares sense, directly obtaining 𝛾. If we assume 𝜃 = 𝜃0 = 1/3, then, after computing the
mean flux 𝑃, one can obtain𝐶 = 𝐴/𝑃1/3. If several wave action spectra are obtained corresponding
to different 𝑃, is also possible to obtain a numerical 𝜃. In this dissertation, this is done simply by
evaluating the total inertial-range wave action 𝑁 =

∑
𝑘∈𝐼𝑅 𝑛𝒌 , and fitting a model 𝑁 = 𝐵𝑃

𝜃 to this
data over the measured range of 𝑃.

We are left now only with the issue of computing 𝑃 from numerical data. First, we will point
out that the WKE, taken in the 𝜀 → 0 limit, describes the flux of 𝐻2, as 𝐻4 → 0 in this limit.
Thus, the first term in (2.16) provides an expression for the linear energy spectrum. A common
way to compute mean inter-scale energy flux is to look at the total energy budget of the system. If a
spectrum is decaying under small-scale dissipation, the mean inter-scale flux can be estimated the
time rate of change of energy of the system, or by 𝑃𝑑 , the dissipation rate associated with the high-
wave number dissipation term in (2.14). This latter approach also works for a stationary system
with large-scale forcing and large-scale dissipation. The average high wave number dissipation
rate can be computed by considering the mean time rate of change of 𝐻2(𝑡) due to the dissipation
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Figure 2.1: The control volume of radius 𝑘𝑏 that defines the instantaneous outward (i.e., from large
to small scale) energy flux 𝑃(𝑡) on a 2D domain.

𝑑𝑛𝒌
𝑑𝑡

= 2𝜈𝒌𝑛𝒌 ,
𝑃 = 𝑃𝑑 =

∑︁
𝑘>𝑘𝑑

−2𝜈𝒌𝜔𝒌𝑛𝒌 , (2.52)

where a negative sign is introduced so that a positive 𝑃𝑑 corresponds to flux of energy from
large to small scales, in accordance with WTT. For (2.52) to capture only the high wave number
contributions to dissipation rate, one must ensure that 𝑘𝑑 is chosen to be high enough to exclude the
low wave number dissipation, which also is captured by the 𝜈𝒌 term, assuming either broad scale
dissipation, or that low wave number dissipation is included.

While (2.52) is an effective way to compute the mean energy flux, there exists a more direct and
dynamically insightful method for computing 𝑃. Rather than looking to dissipation rate, we instead
draw a (circular) control volume in spectral domain, as depicted for a 2D wave number domain in
Figure 2.1. This circle is of radius 𝑘𝑏, and the instantaneous energy flux through 𝑘𝑏 is given by
the time rate of change of 𝐻2 in this control volume computed directly from the nonlinear term of
(2.11). This formulation has the advantage of allowing the full (time) distribution of 𝑃(𝑡) to be
resolved, in addition to the mean flux 𝑃. A formula for 𝑃(𝑡) is given by

𝑃(𝑘𝑏, 𝑡) = −
∑︁
𝑘<𝑘𝑏

𝜔𝒌
𝑑 |𝜓̂𝒌 |2
𝑑𝑡

(𝑡) = −
∑︁
𝑘<𝑘𝑏

𝜔𝒌

(
𝑑𝜓̂𝒌

𝑑𝑡
𝜓̂∗
𝒌 + 𝜓̂𝒌

𝑑𝜓̂∗
𝒌

𝑑𝑡

)
(𝑡), (2.53)

where the derivatives in the rightmost expression can be efficiently evaluated via the pseudo-
spectral method (2.13) given only the numerical solution 𝜓̂𝒌 (𝑡). An almost identical method to that
of evaluating 𝑃(𝑘𝑏, 𝑡) can be developed for the flux of the nonlinear energy 𝐻4 (with a flux 𝑃4).
This allows for the measurement of the true “energy” flux, 𝑃(𝑘𝑏, 𝑡) + 𝑃4(𝑘𝑏, 𝑡), which is “valid”
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even when the nonlinearity is large. More on this will be presented in Chapter 5. Note that the
above expression also highlights the intimate connection between mean energy flux 𝑃 and the wave
kinetic description: the average of the second term in (2.53) is precisely the wave action evolution
that the kinetic equation seeks to describe. Thus, energy flux is a natural quantity by which to study
the WT closure, which brings us to our next topic.

2.6 An Interaction-based Flux Decomposition

In addition to the numerically efficient formulation of 𝑃(𝑡) just presented, there is a second useful
formulation of the instantaneous energy flux. To understand its usefulness, however, we require
a slight diversion. Very much along the lines of the action-angle formulation of the MMT model
(2.19), there exists an exact expression for the evolution of wave action spectrum (i.e., the ensemble
average of (2.19) without the assumption of a small parameter). In this case, the ensemble average
is interpreted in the traditional sense, as the 1st moment of the probability distribution associated
with a given observable under the Hamiltonian flow (2.5). Indeed, for wave action expressed as
𝑛𝒌 = ⟨|𝜓̂𝒌 |2⟩, one apply the product rule to 𝑑 |𝜓̂𝒌 |2

𝑑𝑡
, simplify, and average to obtain

𝑑𝑛𝒌

𝑑𝑡
= 2𝜆

∑︁
𝒌1∈Λ2

𝐿

∑︁
𝒌2∈Λ2

𝐿

∑︁
𝒌3∈Λ2

𝐿

(𝑘1𝑘2𝑘3𝑘)𝛽/4Im⟨𝜓̂1𝜓̂2𝜓̂
∗
3𝜓̂

∗
𝒌⟩𝛿𝐾 (𝒌1 + 𝒌2 − 𝒌3 − 𝒌). (2.54)

As promised in the introduction, the evolution of wave action, a second order field statistic, explicitly
depends on the evolution of 4th order statistics. In fact, the evolution of wave action spectrum is
expressed here as sum the high-order statistics associated with all valid quartets in the domain.
The evolution of these statistics depend themselves on higher order statistics: by taking the time
derivative of the 4th order statistics on the RHS of the above equation, and applying the product
rule, one can easily show that each 4th order statistic evolves according to a sum of 6th order
statistics.

The procedure detailed in Section 2.3 produces a closure to (2.54) when the kinetic limit is
taken. We are inspired to devise an evaluation of energy flux that uses this interaction form of
spectral evolution to provide a dynamical compliment to the kinematic description of finite-size
effects, allowing for a more rich understanding of wave turbulence on bounded domains and the
realization of the WT closure.

2.6.1 Frequency Mismatch Filtering

By introducing an additional Kronecker delta function that resembles the quasi-resonance condition
(1.5), we are enabled to extract from (2.54) the spectral evolution of mode 𝒌 due to interactions of
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a certain frequency mismatch Ω. We define

𝑑𝑛𝒌

𝑑𝑡

����
Ω

≡ 2𝜆
∑︁

𝒌1∈Λ2
𝐿

∑︁
𝒌2∈Λ2

𝐿

∑︁
𝒌3∈Λ2

𝐿

(𝑘1𝑘2𝑘3𝑘)𝛽/4Im
(
𝜓̂1𝜓̂2𝜓̂

∗
3𝜓̂

∗
𝒌

)
×𝛿𝐾 (𝒌1 + 𝒌2 − 𝒌3 − 𝒌)𝛿𝐾 ( |𝜔1 + 𝜔2 − 𝜔3 − 𝜔𝒌 | −Ω).

(2.55)

Explicitly, 𝑑𝑛𝒌
𝑑𝑡

���
Ω

represents the contribution of all interactions with a frequency mismatch Ω to
spectral evolution. Here, it becomes important to specify the domain dimension 𝑑 and the dispersion
relation power 𝛼. For the majority of this dissertation, 𝑑 = 2 and 𝛼 = 2. Under these conditions,
for a domain of size 2𝜋 × 2𝜋, Ω takes exclusively even integer values for every quartet described
by the wave number condition (1.3). Because we are interested in truncated (numerical) Fourier
domains, there also exists a maximum value of Ω. Thus, we can sum over all Ω to recover

𝑑𝑛𝒌

𝑑𝑡
=

Ωmax∑︁
Ω=0

𝑑𝑛𝒌

𝑑𝑡

����
Ω

. (2.56)

Hence, we refer to this filtering process as an interaction based decomposition.
We use this interaction-based decomposition of spectral evolution to define a interaction-based

flux decomposition. We define

𝑃Ω(𝑘𝑏) = −
∑︁
𝑘<𝑘𝑏

𝜔𝒌
𝑑𝑛𝒌

𝑑𝑡

����
Ω

, (2.57)

where 𝑃Ω(𝑘𝑏) also enjoys the decomposition property (2.56). In the case of 𝑑 = 1 and 𝛼 = 1/2, as
in Chapter 5, quartets in the domain take a much larger variety of values, with Ω ∉ Z generally. To
ensure the property (2.56), we instead use a finite-width Kronecker delta function, whose width is
equal to a chosen resolution of Ω. We can additionally compute the full time distribution of each
flux contribution via

𝑃Ω(𝑘𝑏, 𝑡) = −
∑︁
𝑘<𝑘𝑏

𝜔𝒌
𝑑 |𝜓̂𝒌 |2
𝑑𝑡

����
Ω

(𝑡), (2.58)

where 𝑑 |𝜓̂𝒌 |2
𝑑𝑡

���
Ω
(𝑡) can be obtained from the unaveraged form of (2.55).

The advantage of this interaction-based approach is that we can assess the role of nonlinear
broadening, quasi-resonance, and exact resonance in determining spectral evolution of wave tur-
bulence on a finite domain. This approach is much more direct than measurements of the 𝑘 − 𝜔
spectrum or of coherence, as it related directly to the nonlinear dynamics of interest without further
assumptions. Therefore, these measurements of the dynamics will provide a clear look as to the
validity of the kinematic model for understanding DWT and KWT. In fact, they also allow for a
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precise measurement of the WT closure.

2.6.2 Method for the study of the WT Closure

We will interpret the WT closure on a finite domain. Inspired by (2.31), we assume some unspecified
closure function 𝑓 (Ω), and write an expression for the summand of (2.55). This leads us to an
expression for the fourth-order statistic,

𝜆Im
(
𝜓̂1𝜓̂2𝜓̂

∗
3𝜓̂

∗
𝒌

)
= 2(𝑘1𝑘2𝑘3𝑘)𝛽/4𝑛1𝑛2𝑛3𝑛𝒌

(
1
𝑛𝒌

+ 1
𝑛3

− 1
𝑛1

− 1
𝑛2

)
𝑓 (Ω) (2.59)

Provided the RHS up to the function 𝑓 is nonzero, we can then use our DNS of the MMT model to
measure the closure for an individual quartet via

𝑓𝑄 (Ω) ≡
𝜆Im

(
𝜓̂1𝜓̂2𝜓̂

∗
3𝜓̂

∗
𝒌

)
2(𝑘1𝑘2𝑘3𝑘)𝛽/4𝑛1𝑛2𝑛3𝑛𝒌

(
1
𝑛𝒌

+ 1
𝑛3

− 1
𝑛1

− 1
𝑛2

) (2.60)

According to (2.31), 𝑓𝑄 (Ω) should take the form of a generalized delta function that only depends
on Ω and some additional parameter that determines its width. In the kinetic limit, we expect
𝑓𝑄 (Ω) to collapse to a true delta function. Because 𝑓 (Ω) has no explicit dependence on wave
number (only the frequency mismatch), we can assume that same closure function should apply
to every quartet in the domain. If this assumption is correct, then we can also measure 𝑓𝑃 (Ω),
which is determined not from a single quartet interaction, but rather all interaction contributing to
the energy cascade through wave number 𝑘𝑏 for some frequency mismatch Ω. If the assumption is
incorrect, than 𝑓𝑃 (Ω) represents the closure function averaged over all interactions that contribute
to 𝑃. This naturally takes the form

𝑓𝑃 (Ω) ≡
2𝜆

∑
𝑘<𝑘𝑏

𝜔𝒌
∑

𝒌1𝒌2𝒌3 (𝑘1𝑘2𝑘3𝑘)𝛽/4Im
(
𝜓̂1𝜓̂2𝜓̂

∗
3𝜓̂

∗
𝒌

)
𝛿𝐾 (Δ𝒌12

3𝑘 )𝛿𝐾 (Ω)

4
∑
𝑘<𝑘𝑏

∑
𝒌1𝒌2𝒌3 (𝑘1𝑘2𝑘3𝑘)𝛽/2𝑛1𝑛2𝑛3𝑛𝒌

(
1
𝑛𝒌

+ 1
𝑛3

− 1
𝑛1

− 1
𝑛2

)
𝛿𝐾 (Δ𝒌12

3𝑘 )𝛿𝐾 (Ω)
. (2.61)

Intermediate forms between (2.60) and (2.61) are also possible, where 𝑓 (Ω) is determined from a
simple sum over some number of quartets (in both the numerator and denominator). If the measured
𝑓 (Ω) represents the true generalized delta function of the WT closure, then its integration (over
only positive Ω) has

∞∫
0

𝑓 (Ω)𝑑Ω = 𝜋/2. (2.62)
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Therefore, 𝑓 (Ω) allows for the quantitative study of the WT closure as realized in Direct Numerical
Simulation (DNS) of a given wave equation evaluated on a finite domain.
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CHAPTER 3

Wave Turbulence on Rational and Irrational Tori

In this chapter, we explore wave turbulence realized on two different 2D periodic domains (tori).
The widely adopted kinematic picture of DWT outlined in Chapter 1 implies that deviation of
bounded domain dynamics from WKE predictions depends only on the nonlinearity level and wave
number discreteness. In the present work, we show that this traditional understanding overlooks
a key property - the Discrete Resonant Manifold (DRM) that survives as nonlinear broadening Γ

approaches zero, i.e., the discrete set of resonant quartets which satisfy (1.3) and (1.4) when 𝒌 is
restricted to a lattice. To illustrate this idea, we conduct controlled numerical simulations where the
effect of wave number discreteness on the dynamics can be studied separately, i.e., isolated from
the other factors such as broad-scale dissipation.

The MMT equation is simulated on both rational and irrational tori (periodic domains of rational
and irrational aspect ratios), which correspond to different DRM structures. We show remarkably
different power-law spectra on these two tori, with the rational-torus spectral slope approaching
the WTT solution with decreasing nonlinearity, in contrast to the steepened spectrum on the
irrational torus. The dynamical differences between the tori are interpreted through the different
DRM structures, over which a summation of resonant interactions critically determines the energy
cascade. It is found that the DRM approximates the continuous resonant manifold (CRM) of WTT
(i.e., the continuous set satisfying (1.3) and (1.4) with Γ = 0) only on the rational torus. This can
be tied to a recent number theoretic result [35], which rigorously equates the lattice sum over the
DRM of the rational torus to the integration over the CRM with a constant factor difference. We
conclude by outlining the implications of our findings to general physical wave contexts. This work
was published in Physical Review E in 2020 [44], and the remainder of this chapter and Appendix
B is adapted from the article. Copyright © 2020 by American Physical Society. All rights reserved.
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3.1 Model Specification and Numerical Setup

The 𝛼-parameter in our MMT equation is tuned to yield a dispersion relation 𝜔𝒌 = 𝑘2. This is
the only dispersion relation for which a rigorous interpretation of our simulation results can be
achieved, as we require the dispersion relation of the NLS. We choose 𝛽 = 4, which corresponds to
fast spectral evolution with nonlinear time scale decreasing with the increase of 𝑘 [33].

The KZ spectrum for this system is given by 𝑛𝑘 = 𝐶0𝑃
1/3𝑘−14/3, so 𝛾0 = −14/3. In order to

study the effect of DRM structure, we also consider (2.1) on rational and irrational tori T2
𝑟 and T2

𝑖𝑟
of

sizes 2𝜋 × 2𝜋/𝑞, with 𝑞 = 1 for T2
𝑟 and 𝑞2 =

√
2 for T2

𝑖𝑟
. The corresponding discrete wave numbers

are taken from the sets Z2
𝑟,𝑖𝑟

≡ Z × 𝑞Z. While any irrational number 𝑞 results in an irrational
torus, the particular value 𝑞2 =

√
2 eliminates the majority of resonant quartets that exist on T2

𝑟 by
restricting the orientation of quartets on the 𝑘-plane (see Appendix B for a detailed discussion).

We simulate (2.14) with 256 × 256 modes on both T2
𝑟 and T2

𝑖𝑟
. Multiple simulations of free-

decay turbulence are conducted, starting from isotropic Gaussian spectra 𝑛𝒌 = 𝑎0𝑒
−0.01(𝑘−10)2 with

random phases and amplitude 𝑎0 covering a broad range of nonlinearity levels. Since the integral
of total linear energy corresponding to the KZ spectrum is convergent in the limit of 𝑘 → ∞,
the (theoretical) forward cascade forms a finite-capacity spectrum [69] which is realizable in free-
decay simulations even at very large wavenumbers. To model wave dissipation, we set 𝜈𝒌 = 𝜈0𝑘

8

in (2.14). We remark that the 𝑘8 dependence is sufficient to confine the dissipation at high wave
numbers [61, 11], in contrast to some previous simulations [76] and experiments [65, 20]. The
parameter 𝜈0 takes values 𝜈𝑅 ≡ [2.50× 10−17, 2.50×10−16], for which clear power-law spectra can
be observed at all nonlinearity levels of interest. We further consider an optimal value 𝜈𝑜𝑝𝑡 (for
each nonlinearity level on each torus) that corresponds to the smallest 𝜈 in 𝜈𝑅 without resulting in
“bottleneck” energy accumulation at high wave numbers [34]. In the next section, we report results
for 𝜈𝑜𝑝𝑡 as well as uncertainty bars associated with 𝜈𝑅.

3.2 Results

In this chapter, we define the nonlinearity level of a wave field as 𝜖 ≡ 𝐻4/𝐻. In Figure 3.1, the
angle-averaged initial and fully-developed spectra 𝑛𝑘 at different values of 𝜖 obtained with 𝜈𝑜𝑝𝑡
are plotted for T2

𝑟 and T2
𝑖𝑟

. We see that the fully-developed spectra exhibit power-law forms with
inertial ranges of about 2/3∼4/3 decades depending on 𝜖 on each torus. We evaluate the spectral
slope 𝛾 over the the range of 𝑘 for which an approximate power-law form appears the longest.

Figure 3.2 plots the spectral slope 𝛾 obtained with 𝜈𝑜𝑝𝑡 as a function of 𝜖 (ranging two orders of
magnitude) on both tori. We also include the uncertainty bars computed from the range 𝜈𝑅, which
demonstrates that 𝜈𝑅 only weakly impacts the values of 𝛾 (with an order of magnitude variation of
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Figure 3.1: The initial spectra (– – –) and fully-developed power-law spectra 𝑛𝑘 (—–) calculated
with 𝜈𝑜𝑝𝑡 at different values of 𝜖 on (a) T2

𝑟 and (b) T2
𝑖𝑟

. The power-law spectra are shifted for clarity,
representing 𝜖=0.03, 0.01, 0.003, 0.001 and 0.0003 from top to bottom. The linear fit for the top
and bottom spectra are indicated (· · ·).
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Figure 3.2: Spectral slope 𝛾 computed using 𝜈𝑜𝑝𝑡 as a function of 𝜖 on T2
𝑟 (—–) and T2

𝑖𝑟
(– – –).

The uncertainties associated with 𝜈𝑅 are shown by the vertical bars. The WTT analytical solution
𝛾0 = −14/3 is indicated (· · ·). (inset) Spectral slope 𝛾 computed with 𝜈𝑜𝑝𝑡 at 𝜖 = 5.75 × 10−4 as
a function of number of modes 𝑁 on T2

𝑟 (—–) and T2
𝑖𝑟

(– – –).

𝜈, the largest uncertainty in 𝛾 is O(0.5)). At high nonlinearity levels, the values of 𝛾 on both tori
are almost identical, and about 0.5 smaller (i.e., steeper spectra) than the WTT value 𝛾0 = −14/3.
With the decrease of nonlinearity, the spectral slope 𝛾 exhibits remarkably different behaviors on
the two tori. On T2

𝑖𝑟
, 𝛾 decreases with 𝜖 , indicating steepened spectra in agreement with previous

observations in other wave systems [84, 78, 24, 42, 19]. However, on T2
𝑟 , 𝛾 approaches and remains

at 𝛾0 with the decrease of 𝜖 , a trend unexplained by the traditional kinematic model. Convergence
to the WTT spectral slope with the decrease of nonlinearity level, on the other hand, is also recently
observed for a one-dimensional MMT equation [11] (whose resonant set may be considered as a
subset of the 2D case without the depleting effect of 𝑞). To ensure the robustness of these results to
varying grid resolutions, we select two cases at relatively low nonlinearity level on T2

𝑟 and T2
𝑖𝑟

, and
check the spectral slope with increasing number of modes 𝑁 in simulations. The results plotted in
the inset of Figure 3.2 show that 𝛾 converges with the increase of 𝑁 and that the results using 2562

modes are sufficient to capture the physics of interest.
The behavior of 𝛾 cannot be interpreted by the bound wave mechanism as in some experiments

[15, 63, 9], as analysed in detail from the 𝑘-𝜔 spectrum in Appendix B. To understand the
dominating mechanism, we further investigate the energy cascade on both tori. For this, we use
the developments in section (2.5), in particular measurements of the mean flux via (2.53) and the
contributions of strictly resonant interactions via (2.57) with Ω = 0. Figure 3.3(a) shows the total
mean flux 𝑃 as a function of 𝜖 for both tori. The values of 𝑃 on T2

𝑟 are consistently larger than
those on T2

𝑖𝑟
, with a pronounced difference (about one decade) for small 𝜖 . This indicates that

the energy cascade is far more efficient on T2
𝑟 , especially at low nonlinearity. We further plot
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Figure 3.3: (a) 𝑃 and (b) 𝑃Ω=0/𝑃 as functions of 𝜖 on T2
𝑟 (—–) and T2

𝑖𝑟
(– – –). The line of 𝑃Ω=0/𝑃

(· · ·) is indicated in (b).

𝑃Ω=0/𝑃 as a function of 𝜖 in Figure 3.3(b). With the decrease of 𝜖 , it is found that 𝑃Ω=0/𝑃 on
T2
𝑟 quickly approaches unity, showing the dominance of exact resonance on the energy cascade

at low nonlinearity. The regime of 𝑃Ω=0/𝑃 ≈ 1 occurs consistently with 𝛾 ≈ 𝛾0 for nonlinearity
level 𝜖 ≲ 0.005 on T2

𝑟 . On the other hand, the ratio 𝑃Ω=0/𝑃 on T2
𝑖𝑟

increases much slower, not
exceeding 50% in the range of nonlinearities of interest. This analysis implies that the surviving
exact resonances at low nonlinearity are critical in understanding the agreement between 𝛾 and 𝛾0

on T2
𝑟 , as well as the steepened spectrum on T2

𝑖𝑟
.

3.3 Role of the DRM

In this section, we further investigate the structure of the resonant set 𝑆Ω=0, which becomes
increasingly important to the dynamics with the decrease of nonlinearity level. We define 𝑆Ω=0

to be the set of all solutions to the wave number and resonance conditions (1.3) and (1.4). In
particular, we will show that 𝜕𝑛𝒌/𝜕𝑡 |Ω=0 defined by (2.55) is related to the WTT kinetic equation,
which explains 𝛾 = 𝛾0 at low nonlinearity on T2

𝑟 .
To facilitate the description, we define the set 𝑆Ω=0 ∩ {𝒌, 𝒌1, 𝒌2, 𝒌3 ∈ T2

𝑟,𝑖𝑟
} as the discrete

resonant manifold (DRM) on T2
𝑟 and T2

𝑖𝑟
; and the set 𝑆Ω=0 ∩ {𝒌, 𝒌1, 𝒌2, 𝒌3 ∈ R2} as the continuous

resonant manifold (CRM) as in WTT. It has been rigorously proven by number theory [35] that for
the dispersion relation 𝜔 = 𝑘2, the summation in (2.55) for Ω = 0 (over the DRM) on T2

𝑟 converges
to an integral on the corresponding CRM with a factor difference in the limit of high wave numbers.
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Figure 3.4: Visualizations of (a) the CRM, (b) the DRM on T2
𝑟 and (c) the DRM on T2

𝑖𝑟
for

𝒌2 = (−36, 31𝑞) and 𝑘3𝑥 = −22.

Built on the continuous resonant equation given in [35], we can derive (see Appendix B for details)

𝜕𝑛𝒌

𝜕𝑡

����
Ω=0

∼
∫

𝒌1,𝒌2,𝒌3

𝑘𝑘1𝑘2𝑘3Im⟨𝜓̂1𝜓̂2𝜓̂
∗
3𝜓̂

∗
𝒌⟩

×𝛿(𝒌1 + 𝒌2 − 𝒌3 − 𝒌)𝛿(𝜔1 + 𝜔1 − 𝜔1 − 𝜔𝒌)𝑑𝒌1𝑑𝒌2𝑑𝒌3,

for 𝒌, 𝒌1, 𝒌2, 𝒌3 ∈ R2.

(3.1)

At low nonlinearity, 𝜕𝑛𝒌/𝜕𝑡 = 𝜕𝑛𝒌/𝜕𝑡 |Ω=0 on T2
𝑟 . We suggest that (3.1) can then be used to

derive a system similar to the WKE (2.37), under quasi-Gaussian statistics which are valid at low
nonlinearity. Under this argument, the spectral slope on T2

𝑟 yields 𝛾 = 𝛾0 as in the stationary
solution of (2.37). On the other hand, (3.1) is not satisfied for T2

𝑖𝑟
, resulting in the steepened spectra

at low nonlinearity level as previously explained in the kinematic model for DWT.
We further elaborate the structure of the DRMs on T2

𝑟 and T2
𝑖𝑟

using a numerical visualization.
To avoid viewing high-dimensional manifolds, we fix 𝒌2 = (−36, 31𝑞) and 𝑘3𝑥 = −22, such that
𝑆Ω=0 is reduced to a two-dimensional structure embedded in a higher-dimensional space. Without
loss of generality, we consider the higher-dimensional space to be {𝑘1𝑥 , 𝑘1𝑦, 𝑘3𝑦}, and plot the
reduced CRM, and DRM on T2

𝑟 and T2
𝑖𝑟

in Figure 3.4. While the DRM on T2
𝑟 resembles the CRM,

the DRM on T2
𝑖𝑟

is fundamentally different with a diminished number of resonant quartets. The
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salient contrast in these DRM structures is the inherent reason for different DWT dynamics on T2
𝑟

and T2
𝑖𝑟

. Finally, we remark that both the density and distribution of resonances on the DRM affect
the DWT dynamics. This is discussed in the contexts of other values of 𝑞 in Appendix B, alongside
a brief study on the effect of quasi-resonances under nonlinear broadening Γ.

3.4 Discussion

In general, the DRM structure relies on the physical wave properties and domain aspect ratio,
with the former including dispersion relation and number of modes involved in each interaction.
Therefore, different physical wave systems in different domains yield much richer DWT dynamics
than that predicted by kinematic model of DWT, which does not have sensitivity to these factors.
For example, capillary wave turbulence exhibits steepened spectra with the decrease of nonlinearity
level on T2

𝑟 [78], exactly opposite to MMT turbulence. This is due to the different DRM of capillary
waves, which yields an empty set on T2

𝑟 [49]. On the other hand, we speculate that it may be
possible to use some irrational aspect ratio 𝑞 to restore some exact resonances for capillary waves,
which may provide a system where the spectral slope is less sensitive to the nonlinearity level.
Experimentally, the effect of 𝑞 can be observed by varying the aspect ratio of a wave tank as
conducted in [42], although the effect of wall (instead of periodic) boundary conditions needs to
be addressed. A more effective experimental setting is wave turbulence on a fluid torus [55] which
provides naturally periodic boundary conditions. Further, given the wide applications of WTT,
more investigations are warranted for understanding the DWT dynamics from the perspective of
DRMs for different physical wave systems.

This chapter also establishes connections between pure mathematics and the physics of wave
turbulence. The number theoretic properties of the DRM, in terms of its relation to CRM by (2.54)
(for Ω = 0) and (3.1), may allow for the development of the first quantitative model of energy
flux in DWT (through a new DWT kinetic equation). To extend the DWT kinetic equation to
other physical wave systems, number theoretic problems concerning DRMs associated with other
dispersion relations must be resolved. The present work is also of interest to mathematicians in
the field of harmonic analysis, in particular for the quantification of energy cascades on tori. Our
finding of diminished energy flux for the MMT equation at low 𝜖 on T2

𝑖𝑟
is indeed consistent with

recent rigorous analyses of the NLS [93, 46]. This is particularly well demonstrated in the numerical
component to [46].
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3.5 Summary

Through simulations of the 2D MMT equation (with dispersion relation 𝜔 = 𝑘2) on rational and
irrational tori (T2

𝑟 andT2
𝑖𝑟

), we identify the critical effect of the structure of discrete resonant manifold
(DRM) on DWT. On T2

𝑟 , the DRM structure resembles the continuous resonant manifold (CRM),
with a lattice summation over the DRM converging to an integral over the CRM. The spectral slope
thus approaches 𝛾0 for low nonlinearity as predicted by the WTT kinetic equation. On T2

𝑖𝑟
, the

DRM is altered by the diminished number of resonant quartets, leading to steepened spectrum and
reduced energy cascade capacity with the decrease of nonlinearity.
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CHAPTER 4

The Properties of Energy Flux in Wave Turbulence

In this chapter, we employ the precise methods for studying the energy cascade and WT closure
developed in Section 2.5 to the study of stationary (forced-dissipated) WT in the 2D MMT model
with 𝛼 = 2 and 𝛽 = 4. These procedures are applied for fields of varying nonlinearity 𝜀, allowing
us to observe the DWT to KWT transition. In particular, we measure the full distribution of 𝑃(𝑡),
as well statistics of the flux decomposition 𝑃Ω(𝑡). We use these flux measurements to obtain
the flux scaling 𝜃 in both the DWT and KWT regimes, and relate this to the kinematic model of
DWT/KWT. The decomposition technique also enables a study the WT closure as realized on a
finite domain in the 𝜀 → 0 limit, which we explore. This work was published in the Journal of Fluid
Mechanics in 2022 [45], and the remainder of this chapter is adapted from the article. Copyright
© Alexander Hrabski and Yulin Pan, 2022. Published by Cambridge University Press. Reprinted
with permission.

4.1 Setup of Numerical Experiments

We compute the solution to (2.14) on a periodic domain of size 2𝜋 × 2𝜋 containing 512 × 512
modes. Our purpose is to generate a long stationary state so that the distributions of 𝑃 (and other
quantities discussed in §2) are sufficiently resolved. Therefore, we force the system at large scales
(in conjunction with small-scale dissipation) instead of considering free-decay turbulence. The
dissipation parameter 𝜈𝒌 in (2.14) is given by

𝜈𝒌 =


30𝑘−4 0 < 𝑘 ≤ 7
6 × 10−12(𝑘 − 100)8 𝑘 ≥ 100
0 otherwise,

(4.1)

Forcing and dissipation of this type have been demonstrated to produce results compatible with the
WTT predictions in the one-dimensional MMT model [8].
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We start the simulations from initial conditions 𝜓̂𝒌 = 𝑎0𝑒
−0.1|𝑘−10|+i𝜙𝒌 , with 𝜙𝒌 the uniformly-

distributed, decorrelated random phases, and 𝑎0 a real constant chosen to provide an energy close to
that of the expected stationary state. To obtain the scaling 𝜃 over a range of 𝑃, we run a collection of
19 simulations, differing only in forcing strength 𝜎𝐹 and initial spectral level 𝑎0. These simulations
cover a range of 𝑃 spanning several orders of magnitude, with data collected in the stationary state
for each case.

4.2 Results

Before presenting the results on energy flux, we first check the spectra at stationary states in
simulations with different forcing magnitudes. Several typical one-dimensional angle-averaged
spectra 𝑛𝑘 at different levels are shown in Figure 4.1a, where we observe power-law ranges close
to one decade for all spectra. Figure 4.1b shows the power-law exponent 𝛾 evaluated in all 19
simulations via a least-squares fit in 𝑘 ∈ [13, 60], as a function of the spectral level computed by
an integral measure of the (conservatively taken) power-law range

𝑁 =
∑︁

13<𝑘<60
𝑛𝒌 . (4.2)

We note that 𝑁 , as a measure of nonlinearity level, is monotonically related to the measure
𝜀 = 𝐻4/𝐻2 in the range of 𝑁 represented by our data, corresponding to 𝜀 ∈ [0.002, 0.03] (a range
where the linear part 𝐻2 dominates the total Hamiltonian). This definition of 𝜀 is slightly different
from the definition used in Chapter 3.

We see in Figure 4.1b that 𝛾 increases (i.e., the spectrum becomes shallower) with the decrease
of 𝑁 , reaching the WTT prediction 𝛾0 = −14/3 = −4.67 for low spectral levels (in particular,
𝛾0 = −2𝑠/3 − 𝑑 with 𝑑 = 2 the dimension and 𝑠 = 4 the degree of homogeneity of the interaction
kernel, as in [69]). This behavior of 𝛾 is consistent with our findings in Chapter 3. The deviation
of 𝛾 from 𝛾0 at high nonlinearity may result from coherent structures, as suggested by [100] and
[11] in the one-dimensional context, or some features of the 2D MMT model that are yet to be
fully understood. For waves in different physical contexts, e.g., surface gravity waves [24, 102] and
capillary waves [84, 78], the behaviors of 𝛾 are remarkably different.

We next present our full study of energy flux, with results organized into three sections. §4.2.1
discusses the distributions of 𝑃 and its associated decomposition 𝑃Ω. §4.2.2 focuses on the scaling
of spectral level with 𝑃, with the results explained by the contributions of quasi/exact resonances
to 𝑃. The study related to the closure model is then presented in §4.2.3.

44



101 102

k

10−9

10−7

10−5

10−3

10−1

n
(k
)

(a)
100

N

−5.4

−5.2

−5.0

−4.8

−4.6

γ

(b)

Figure 4.1: (a) A representative collection of fully-developed, angle-averaged wave action spectra
𝑛(𝑘). (b) Spectral slope 𝛾 as a function of 𝑁 , with WTT value 𝛾0 = −4.67 indicated (- - - -).

4.2.1 Flux Distributions and Decomposition

A typical distribution of energy flux 𝑃(𝑡), computed with 𝑘𝑏 = 30 from 216 data points over a time
window of𝑇𝑤 = 256𝑇0, is shown in Figure 4.2a (with𝑇0 = 2𝜋 the fundamental period corresponding
to the longest wave in the domain). We find that 𝑃 closely follows a Gaussian distribution, with a
standard deviation𝜎(𝑃) = 621.8 several times larger than the mean value 𝑃 = 77.02. The very large
standard deviation is consistent with previous studies in wave turbulence [32] and hydrodynamic
turbulence [4]. However, the nearly perfect Gaussian form of the distribution has not been observed
in these previous works, possibly because of differing turbulent systems and their different way of
evaluating 𝑃. The reason for the Gaussianity of 𝑃 is further explored in Chapter 5.

In addition, our method allows us to study the fully-resolved distribution of 𝑃 at any scale (i.e.,
with arbitrary 𝑘𝑏). In Figures 4.2b and 4.2c, we plot the values of 𝑃 and 𝜎(𝑃) for 𝑘𝑏 varying
in the inertial range from 20 to 90. The mean flux 𝑃 remains almost constant for all 𝑘𝑏, which
is consistent with the WTT constant flux argument in the inertial range (this is only possible by
avoiding broad-scale dissipation in simulations). The standard deviation 𝜎(𝑃) increases with 𝑘𝑏,
because more quartet interactions are included (as 𝑘 becomes denser) resulting in more fluctuations
in 𝑃(𝑡). We also include in Figures 4.2a and 4.2b the energy flux 𝑃 computed from the high-wave-
number dissipation rate (2.52) which agrees well with the majority values of 𝑃, especially for larger
𝑘𝑏 (to a relative difference within 𝑂 (1%)). Because of this, we will use 𝑃𝑑 to represent the values
of 𝑃 for all 19 simulations in the subsequent analysis, since 𝑃𝑑 yields a faster calculation due to an
easier formulation and much smaller fluctuations (requiring less data points for averaging).

We next examine the relation between 𝜎(𝑃) and nonlinearity level measured by 𝑃, with 𝜎(𝑃)
as a function of 𝑃 plotted in Figure 4.3. The result shows a power-law relation over two decades
given by 𝜎(𝑃) ∼ 𝑃

0.8±0.05. Furthermore, we include in Figure 4.3 the standard deviation of the
exact-resonant contributions to energy flux, 𝜎(𝑃Ω=0), with 𝑃Ω=0 calculated by the decomposition
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Figure 4.2: (a) The histogram of stationary time series 𝑃(𝑡) evaluated over 256𝑇0, fitted with
a Gaussian distribution of the same mean and standard deviation (——) for reference. Figure
inset: tail of the distribution in logarithmic scale. (b) the mean 𝑃 and (c) standard deviation 𝜎(𝑃)
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method presented in §2. We observe a similar power-law relation between 𝜎(𝑃Ω=0) and 𝜎(𝑃),
but with the value of 𝜎(𝑃Ω=0) 𝑂 (10) times smaller than 𝜎(𝑃) consistently for each nonlinearity
level. This indicates that the large fluctuations in 𝑃(𝑡) are mainly generated due to quasi-resonant
interactions.

A more detailed study about the contributions of exact and quasi resonances to 𝑃 and 𝜎(𝑃) can
be conducted by looking into the components of 𝑃Ω for varying values of Ω. In Figures 4.4a and
4.4b we plot 𝑃Ω and 𝜎(𝑃Ω) for Ω ∈ [0, 30] at four different levels of nonlinearity. We note that
Ω can only take even integer values for the dispersion relation 𝜔𝑘 = 𝑘2 on a periodic domain of
2𝜋 × 2𝜋. The general trends in Figure 4.4a and 4.4b show that 𝑃Ω decreases, but 𝜎(𝑃Ω) increases
with the increase of Ω. This corresponds to a physical picture that as the interactions become more
“quasi” (i.e., frequency mismatch Ω becomes larger), they contribute less to the mean flux but may
contribute more to the fluctuations of the flux. We also emphasize here that while we always have∑

Ω 𝑃Ω = 𝑃, the quantity
∑

Ω 𝜎
2(𝑃Ω) is in general not equal to 𝜎2(𝑃) because 𝑃Ω(𝑡) with different

Ω are not independent. Nevertheless, Figure 4.4b in conjunction with Figure 4.3 are sufficient to
support the dominance of quasi-resonances in generating the large fluctuations in 𝑃(𝑡).

We conclude this section by summarizing two additional important results regarding 𝑃Ω. First,
the decomposition in terms of Ω enables a direct measure of nonlinear broadening by quantitatively
considering the contribution of quasi-resonances to the total energy flux. To demonstrate this, we
define a measure of nonlinear broadening Γ ≡ min{Ω|𝑃Ω < 𝛼𝑃Ω=0}, which is plotted in 4.4c for
𝛼 = 0.1. While this choice of 𝛼 can be varied, Γ clearly quantifies the nonlinear broadening by
measuring the width of 𝑃Ω in Ω, showing that nonlinear broadening increases with 𝑃. Second,
the fluctuations seen in Figure 4.4a and 4.4b can be removed by considering the normalized flux
𝑄Ω(𝑡) = 𝑃Ω(𝑡)/NΩ. With NΩ (Figure 4.4d) counting the number of elements in

∑
𝒌∈{𝒌 |𝑘<𝑘𝑏} 𝑆Ω,𝒌 ,

𝑄Ω(𝑡) calculates the quartet-averaged flux (over quartets with frequency mismatch Ω), with both
𝑄Ω and 𝜎(𝑄Ω) behaving smoothly for the range of Ω as shown in Figure 4.4e and 4.4f.

4.2.2 Scaling of Spectral Level with Flux

To understand the scaling of spectral level with energy flux, we plot in Figure 4.5 the spectral level 𝑁
(see (4.2)) as a function of both 𝑃 and 𝑃Ω=0 representing total and exact-resonant flux respectively.
Two salient scalings are observed over the 3 decades of energy flux. At high nonlinearity level
with 𝑃 ∈ [30, 100], we find a scaling approaching 𝑁 ∼ 𝑃

1/3 (i.e., 𝜃 = 1/3 with 𝜃 the scaling
exponent defined in §2) consistent with the kinetic scaling of WTT. At low nonlinearity level with
𝑃 ∈ [0.3, 3], the scaling behaves as 𝑁 ∼ 𝑃

1/2 (i.e., 𝜃 = 1/2) consistent with the dynamic scaling
from (2.54). We next discuss the mechanisms underlying these two scalings.

For high nonlinearity, we see in Figure 4.5 that we have 𝑃 ≫ 𝑃Ω=0 consistent with observations
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Figure 4.4: (a) 𝑃Ω and (b) 𝜎(𝑃Ω) as functions of Ω, for four levels of nonlinearity with 𝑃 = 81.9
(•), 61.0 (■), 42.8 (▲), and 20.0 (▼); (c) nonlinear broadening Γ as a function of 𝑃; (d) number
of quartet interactions NΩ for different Ω; (e) and (f) are similar to (a) and (b) but plotted for
normalized flux 𝑄𝑛. The computations to generate these results are conducted for 𝑘𝑏 = 23 to
reduce the computational cost associated with the number of involved quartets.
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Figure 4.5: The scaling of inertial-range wave action 𝑁 with 𝑃 (—•—) and 𝑃Ω=0 (—▲—). The
dynamic scaling 𝜃 = 1/2 and kinetic scaling 𝜃 = 1/3 are indicated (- - - -).

in Figure 4.4a, indicating that quasi-resonances dominate the dynamics in this regime. This
suggests that the kinetic scaling, developed from the WKE in the kinetic limit (infinite domain and
small nonlinearity), is realized at relatively high nonlinearity in a finite domain as quasi-resonances
overcome the discreteness. This physical picture is consistent with the results of [1, 60, 69, 80]
which all suggest a kinetic wave turbulence regime dominated by quasi-resonance in a finite domain.
In addition, recent mathematical justifications of the WKE [22, 23, 7] show that the kinetic limit
should be taken according to particular scaling laws between the domain size and nonlinearity
level, i.e., retaining the quasi-resonances as the large box limit is taken. More specifically, the
quasi-resonances are the ones responsible for the emergence of the WKE in the large box limit [22].
However, it should be noted that these mathematical works only describe the initial evolution up
to the kinetic time scale, and are not necessarily relevant to the stationary state we study here. In
addition, the mathematical works are developed for the NLS (𝛼 = 2, 𝛽 = 0) and sometimes require
a dimension 𝑑 ≥ 3 [22].

For low nonlinearity, 𝑃 ≈ 𝑃Ω=0 (as shown in Figure 4.5) due to the elimination of quasi-resonant
contributions to 𝑃, which has been previously observed in [44]. This is because the nonlinear
broadening is not sufficient to overcome the discreteness of wavenumber in a finite domain. In
this regime, kinetic wave turbulence is not supported (due to the lack of quasi-resonances) and the
remaining exact resonances (on a discrete manifold) lead to a dynamic scaling that can be derived
from (2.54). In addition, the dispersion relation 𝜔𝑘 = 𝑘2 is important for the realization of dynamic
scaling because otherwise a frozen turbulence [84] behavior may be expected at low nonlinearity.
For 𝜔𝑘 = 𝑘2, it has been proven (in the context of the NLS) that, for 𝑁 → 0, the dynamics at high
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wavenumbers are described by a continuous resonant equation [35], i.e., the system behaves like a
system of continuous wavenumber so that an energy cascade can be expected. In other words, the
exact resonances on the discrete manifold determined by 𝜔𝑘 = 𝑘2 is sufficient to support an energy
cascade.

In retrospect to Figure 4.1(b), we finally note that the kinetic scaling regime at high nonlinearity
is associated with a spectral slope 𝛾 that is steeper than the WTT solution 𝛾0. This behavior is also
observed in simulations of the MMT equation (in 1D with a different dispersion relation) by [11].
Further investigations on this problem (as well as the result of 𝛾 = 𝛾0 in the dynamic scaling range)
are warranted. Here we simply remark that, in order for 𝛾 = 𝛾0 at high nonlinearity, one requires
the solution of the WKE (i.e., the Kolmogorov-Zakharov spectrum) to be valid, which is a much
stronger requirement than the kinetic scaling.

4.2.3 Investigation on the Closure Model

In this section, we use our numerical data to study the WTT closure model, in particular the
magnitude and functional form of 𝑓 (Ω). We perform this study for the nonlinearity levels associated
with the kinetic scaling of 𝑃, i.e., in the kinetic wave turbulence regime. The function 𝑓 (Ω) in
the WTT closure (as discussed in Chapter 2) is developed for this regime under a discrete setting
before the large box limit is taken, and it is this form that we will study with our numerical data.
Theoretically one expects 𝑓 (Ω) to take the form of either a sinc-like function [47, 69] or 𝜖/(Ω2+𝜖2)
[101], with

∫
Ω
𝑓 (Ω)𝑑Ω ∼ 𝑂 (1) since both forms are generalized delta functions. The numerical

evaluation of 𝑓 (Ω) will be performed at: (1) an individual quartet level using (2.60); (2) a family
of quartets level using (2.60) in an average manner that will be introduced shortly; and (3) an
inter-scale energy flux level using (2.61).

Figure 4.6 shows 𝑓𝑄 (Ω) evaluated for 𝑂 (50) quartets with Ω ∈ [0, 30], and with average
quantities in (2.59) evaluated over a time window 𝑇𝑤 = 256𝑇0. It is clear that no obvious functional
pattern can be found for 𝑓𝑄 (Ω) (i.e., with different values of 𝑓𝑄 (Ω) obtained for the same Ω). This
indicates that the WTT closure for fourth-order statistics cannot be used to describe the behavior
of a single quartet (regardless of its associated frequency mismatch Ω) in the chosen finite time
interval 𝑇𝑤. In other words, within 𝑇𝑤 (which is long enough to resolve low-order statistics),
the contributions of individual quartets to the energy cascade are not sufficiently resolved in our
data to observe the WTT closure model. It is not clear from the current results whether there
exist a sufficiently long time interval such that we can observe convergent behavior of fourth-order
statistics and whether the convergent behavior is described by WTT. To have a definite answer on
this question, longer simulations are needed which will be a topic of future work.

To consider the average behavior of a family of quartets, we use a similar technique to that
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of [1] to create a cluster of modes around each of the four modes of an exact resonant quartet.
Specifically, for an exact quartet (𝒌𝑒0, 𝒌𝑒1, 𝒌𝑒2, 𝒌𝑒3), we construct a family of quartets (𝒍0, 𝒍1, 𝒍2, 𝒍3)
at its vicinity by choosing all 𝒍𝑖 with | 𝒍𝑖 − 𝒌𝑒𝑖 | ≤ 4 for 𝑖 = 0, 1, 2, 3. We then evaluate 𝑓𝐹 (Ω) from
(2.59) by summing over those quartets (𝒍0, 𝒍1, 𝒍2, 𝒍3) with frequency mismatch Ω on both sides
of the equation. Under this evaluation 𝑓𝐹 (Ω) reflects the closure behavior averaged over 𝑂 (103)
quartets. Figure 4.7 shows 𝑓𝐹 (Ω) computed from three representative families of quartets, defined
via exact quartets (𝒌𝑒0, 𝒌𝑒1, 𝒌𝑒2, 𝒌𝑒3). We see that 𝑓𝐹 (Ω) is somewhat inversely proportional to Ω

superposed with many fluctuations. While the general trend of 𝑓𝐹 (Ω) seems consistent for different
families, the details (e.g, the value of 𝑓𝐹 (0) as well as the fluctuation patterns) vary considerably
across different families.

We finally examine the closure behavior considering the average over an enormous number of
quartets, chosen as all quartets contributing to the energy flux across 𝑘𝑏 = 23. Under (2.61), 𝑓𝑃 (Ω)
is computed via summation over 𝑂 (109) elements for each Ω (see Figure 4.4d). The numerically
resolved 𝑓𝑃 (Ω) is plotted in Figure 4.8 at several different nonlinearity levels. We remark that
these results are convergent in the sense that they are not sensitive to the length of the time window
𝑇𝑤 (we have checked that using 𝑇𝑤/4 as the time window leads to the same result). It is clear
that under this level of average,

∫
Ω
𝑓 (Ω)𝑑Ω ∼ 𝑂 (𝜋/2) is consistent with WTT. We do not expect∫

Ω
𝑓 (Ω)𝑑Ω to be exactly 𝜋/2 unless we can numerically reach the kinetic limit (see our evaluations

of 𝑓𝑃 (Ω) in Chapter 5). To quantify the profile of 𝑓𝑃 (Ω), we use a least-square method to fit the
data to a general functional form of 𝑓𝑃 (Ω) = 𝐶/(𝜌 +Ω𝛽), where 𝜌 is needed as a desingularisation
factor for 𝑓𝑃 (0). These fittings, as shown in Figure 4.8, agree with all data points remarkably well,
with 𝐶 = [1.06, 0.982, 0.875], 𝜌 = [6.176, 3.44, 2.26], and 𝛽 = [1.35, 1.47, 1.52] from high to
low nonlinearity level. Instead of a sinc-like function (which involves either negative values or
oscillatory behavior with neither observed), the functional form of 𝑓𝑃 (Ω) is somewhat closer to
the WTT form of 𝜖/(Ω2 + 𝜖2), but with different exponents 𝛽. This is probably why [77] find that
the WKE employing this WTT form of generalized delta function produces physically reasonable
results in terms of the spectral slope and energy flux for capillary waves.

4.3 Discussion

While this chapter sheds new light on the physics of energy flux in wave turbulence, more unan-
swered questions, especially regarding the closure model, are raised. The closure model is a subject
that has received insufficient attention from a numerical perspective, especially in terms of anal-
ysis utilizing data generated directly from the primitive dynamic equation. The few exceptions to
this [e.g. 61, 1, 92] have not considered the detailed functional form and magnitude of 𝑓 (Ω), as
studied in this work. Therefore, we consider the primary importance of this work as to provide

51



0 10 20 30

Ω

−2

0

2

4

6

8

f Q
(Ω

)

Figure 4.6: The function 𝑓𝑄 (Ω) evaluated for 𝑂 (50) selected quartets (with 3 quartets for each Ω)
with 𝑇𝑤 = 256𝑇0, for the highest nonlinearity level with 𝑃 = 81.9.
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Figure 4.7: The function 𝑓𝐹 (Ω) for three representative families of quartets defined by 𝒌𝑒0 = (−2, 8),
𝒌𝑒1 = (−10, 0), 𝒌𝑒2 = (14 + 4 𝑗 ,−8 − 4 𝑗), and 𝒌𝑒3 = (6 + 4 𝑗 ,−16 − 4 𝑗) for 𝑗 = 0 (•), 𝑗 = 1 (■), and
𝑗 = 2 (▲). The evaluation is for the highest nonlinearity case of 𝑃 = 81.9 with 𝑇𝑤 = 256𝑇0.
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Figure 4.8: The function 𝑓𝑃 (Ω) with 𝑘𝑏 = 23 and 𝑇𝑤 = 256𝑇0, for different nonlinearity levels with
𝑃 = 81.9 (•), 42.8 (■), and 28.0 (▲). Fits to the data of the form 𝑓 (Ω) = 𝐶/(𝜌 +Ω𝛽) are indicated
(- - - -).

a methodology such that many open questions in wave turbulence can be directly studied using
vast numerical data. Within the presented results, for example, the function 𝑓𝑄 (Ω) in Figure 4.6 is
still sensitive to the time window 𝑇𝑤 used for averaging for each individual quartet. It is not clear
whether a convergent behavior (close to the quartet-averaged result 𝑓𝑃 (Ω)) can be found if a time
average over an extremely long time window is performed. In addition, will the smooth behavior
associated with function 𝑄Ω be preserved in different domain geometries (e.g., an irrational torus
as in [46]) where the normalization factor NΩ substantially varies? While we did not detect such a
relationship in our study in Chapter 5, there remains much work to be done on this problem.

Questions such as these can be explored in greater detail with increasing computational re-
sources, and it is certainly not unreasonable to think about studying wave turbulence with “exascale
computing”, an area under development for hydrodynamic turbulence [e.g. 98]. For wave turbu-
lence, these resources may be better utilized in conjunction with an understanding of WTT, rather
than simply boosting the resolution of simulations. This is demonstrated by the strong results in
Chapter 5 regarding 𝑓𝑃 (Ω) on the 1D MMT model, and we envision similar, more extensive studied
may performed on the plethora of physical systems that exhibit WT.

4.4 Summary

In this chapter, we numerically study the properties of inter-scale energy flux 𝑃 for wave turbulence
in the context of the 2D MMT equation. Unlike previous evaluations of 𝑃 based on energy
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input or dissipation rate, our formulation of 𝑃 computes the exact instantaneous energy flux across
arbitrary scale 𝑘𝑏 directly from the nonlinear terms in the MMT equation, and allows a quartet-level
decomposition of 𝑃 into 𝑃Ω according to the frequency mismatchΩ of the quartets. Our results show
that the energy flux 𝑃 across any scale in the inertial range closely follows a Gaussian distribution,
with their mean value 𝑃 almost a constant for any 𝑘𝑏, and standard deviation 𝜎(𝑃) increasing with
𝑘𝑏. In addition, values of 𝜎(𝑃) are generally several orders of magnitude larger than 𝑃, mainly
due to the contributions to 𝜎(𝑃) from quasi-resonances, i.e., 𝑃Ω>0. The decomposition of 𝑃 into
𝑃Ω also allows an alternative but more direct measure of nonlinear broadening by quantitatively
considering the contribution of quasi-resonances to the mean energy flux. We further study the
scaling of spectral level 𝑁 with the energy flux and find that 𝑁 ∼ 𝑃1/3 (consistent with the kinetic
scaling) at high nonlinearity and 𝑁 ∼ 𝑃

1/2 (dynamic scaling) at low nonlinearity. The former
and latter are due to the dominance of the quasi-resonant and exact-resonant contributions to 𝑃,
respectively. Finally, our numerical study on the wave-turbulence closure model shows that the
fourth-order correlator evaluated over a finite time window is in disagreement with the description
by the theoretical closure on a single quartet level. When considering the average over all quartets
contributing to the inter-scale energy flux (over 𝑂 (109) quartets for each Ω), a more consistent
behavior to the theoretical closure is observed, but with the broadening function exhibiting 1/Ω𝛽

(with 𝛽 between 1.3 and 1.6) different from the forms derived in WTT.
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CHAPTER 5

Wave Turbulence in the Kinetic Limit

In this chapter, we evaluate the 1D MMT model with 𝛼 = 1/2 and 𝛽 = 0, the equation for which
we derived the KZ spectrum in Chapter 2. While Chapters 3 and 4 explored the transition between
the DWT and KWT regimes via novel numerical techniques, in this chapter we apply those ideas to
study wave turbulence in the kinetic limit. The goal of this study is therefore to develop and employ
precise, quantitative assessments of how well the WT closure and the KZ spectrum represent the
statistics of MMT model as we approach the kinetic limit. To do this, we set up a series of forced-
dissipated numerical experiments that form stationary wave turbulence. We choose the forcing
such that a range of nonlinearities 𝜀 are represented, and for each of these cases, we progressively
double the domain size while keeping the maximum wave number constant. As 𝜀 is made small
and 𝐿 made large, this numerically approximates the kinetic limit. We then study the spectra and
energy cascades associated with these fields, placing a particular focus on convergence of these
quantities to WTT predictions.

5.1 Setup of Numerical Experiment

We solve (2.1) on a 1D domain of length 𝐿. To create a steady forward energy cascade, we add
Gaussian forcing between for all modes 10 ≤ |𝑘 | ≤ 20. We additionally add dissipation of the form
(2.14), where

𝜈𝒌 =


3𝑘−4 0 < 𝑘 ≤ 10
1 × 10−14(𝑘 − 900)8 𝑘 ≥ 900
0 otherwise.

(5.1)

Every simulation we perform in this Chapter begins with 𝜓̂𝑘 = 0. The final nonlinearity of the field
is determined by the forcing strength 𝜎𝐹 , the standard deviation of the Gaussian forcing in (2.14),
and we simulate each field until a steady spectrum is reached, after which we collect statistics from
time data.
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To numerically approximate the kinetic limit, we choose four domain sizes of 𝐿 ∈
[2𝜋, 4𝜋, 8𝜋, 16𝜋] where the number of modes used in each of these domains is selected such
that 𝑘max = 1024 is always the maximum resolved wave number. Recall that the effect of doubling
𝐿 is to half the wave number spacing Δ𝑘 . Thus, on the largest of these domains, we simulate 3
decades of 𝑘 in the positive and negative wave number directions, with Δ𝑘 = 1/8 requiring 16385
alias free modes. For each domain size, we choose four values of forcing strength, leading to four
fields of very different nonlinear strength 𝜀 ≡ 𝐻4/𝐻2.

The parameters of these numerical simulations are chosen very carefully to ensure that, for each
forcing strength, key aspects of the dynamics remain close to constant as 𝐿 is made large, while
others are allowed to vary. This turns out to be a non-trivial task. Given the definition (2.2), the
spectral amplitude 𝜓̂𝒌 is normalized such that the length-averaged total action does not depend on
𝐿, as can be seen via Parseval’s theorem [69],

1
𝐿

𝐿∫
0

|𝜓𝒙 |2𝑑𝒙 =
∑︁
𝒌∈Λ2

𝐿

|𝜓̂𝒌 |2. (5.2)

For a fair comparison between domains of different 𝐿, we would like to keep the length-averaged
Hamiltonian density 𝐻 approximately constant as 𝐿 increases. We attempt this by keeping the
action injection rate, controlled by 𝜎𝐹 , and the dissipation rate, controlled by 𝜈𝒌 , the same across
domains of different 𝐿 at each 𝜀 of interest. After a careful scaling analysis, we determine that
this is achieved by 𝜈𝒌 remaining constant in 𝐿, while 𝜎𝐹 ∼ 1/

√
𝐿. Under this scheme, we find the

length averaged quantities of total action 𝑁 , total energy 𝐻, and the nonlinearity 𝜀 remain close
to constant as 𝐿 increases. More generally, we are interested in observing convergent behavior in
all of these quantities we increase 𝐿, to determine their limiting behavior. On the other hand, by
(5.2), a fair comparison of quantities evaluated at an individual mode must be somehow scaled
by 𝐿. Hence, we slightly modify the definition (2.51) for this chapter, to now be 𝑛𝒌 = 𝐿

2𝜋 |𝜓̂𝒌 |2.
Additionally, in this chapter, all dimensional quantities involving total action or energy, including
𝑃, will be length averaged. We proceed by discussing the wave action spectra.

5.2 Spectra

We begin by presenting the steady, directionally-averaged spectra for all 16 simulations in Figure
5.1a. From highest to lowest spectral level, an order of magnitude in nonlinearity is spanned, with
𝜀 ∈ [0.0066, 0.067]. We define 𝜀 ≡ 𝐻4/𝐻2. For the higher nonlinearity results, we see excellent
agreement in spectral form for all 𝐿, suggesting all represented domain sizes represent the large-𝐿
limiting spectral form of the KWT regime. In the weakest nonlinearity case, however, we see the
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Figure 5.1: (a) A representative collection of fully-developed, angle-averaged wave action spectra
𝑛𝑘 . (b) Spectral slope 𝛾 as a function of 𝐿.

region near the spectral peak changes substantially. These secondary peaks for 𝐿 = 2𝜋 and 𝐿 = 4𝜋
are representative of finite-size effects [102], however at larger 𝐿, these peaks disappear, suggesting
a transition from the DWT regime to the KWT regime.

The inertial range spectra at all four 𝜀 take a power-law form, each spanning at least 1 order of
magnitude. We define the inertial range to a reasonable 𝑘 ∈ [70, 700], and plot the measured 𝛾 in
Figure 5.1b. At higher nonlinearities, the spectral slope 𝛾 is mostly invariant in 𝐿, with the second
highest nonlinearity case slightly steeper than the highest. At lower nonlinearities, we observe a
relatively weak trend towards the KZ value of 𝛾0 = −1. The lowest nonlinearity, smallest 𝐿 cases
that exhibited secondary peaks also exhibit slightly steeper spectra, which are often associated with
finite-size effects (see Section 1.3.2). As 𝐿 is increased, these cases approach a shallower value
for 𝛾. We emphasize that these trends are subtle, however. Perhaps the strongest spectral feature
of the inertial range dynamics is that, as 𝜀 decreases, the width of the power-law region shrinks
substantially. Also, at low nonlinearity, we see slightly greater fluctuations around a true power-law
form near the ends of the inertial interval. We discuss some possible reasons for this later in this
chapter. Next, we present our measurements of energy flux.

5.3 Energy Flux

Figure 5.2 depicts the mean energy flux 𝑃 through 𝑘𝑏 = 300 for every simulation. Several decades
of energy flux are represented by our data, with minimal variation in 𝐿. Next, we look at the flux
distribution 𝑃(𝑘𝑏 = 300, 𝑡) and the flux of the nonlinear energy𝐻4 (given by 𝑃4), depicted in Figure
5.3a/b. Results only for the highest nonlinearity case are shown, however they are representative
of the other cases. Both 𝑃 and 𝑃4 take a Gaussian distribution whose standard deviation is much
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Figure 5.2: The mean energy flux 𝑃 through 𝑘𝑏 = 300 as a function of 𝐿, for 𝜀 = 0.067 (♦),
𝜀 = 0.030 (▲), 𝜀 = 0.014 (■), and 𝜀 = 0.0067 (•).

larger than its mean. This is an identical result to that of Chapter 4, where the 2D case with the
NLS dispersion relation was evaluated. This similarity suggests a Gaussian energy cascade is a
general feature of wave turbulence. In fact, a simple argument supports a Gaussian energy cascade:
first, consider the form of (2.53), which expresses the instantaneous inter-scale flux as a sum over a
large number of modes. If the the instantaneous time rate of change of 𝐻2 at each of these modes
is assumed to be independent, as is suggested by WTT [69, 30], then the Central Limit Theorem
(CLT) can be used to show 𝑃(𝑘𝑏, 𝑡) approaches a Gaussian distribution as the number of modes in
the domain becomes large. As 𝐿 is increased, the standard deviation of both fluxes is decreased,
as indicated in Figure 5.3c. The data shows a clear trend where 𝜎(𝑃) ∼ 1/

√
𝐿. This too can

be explained in the context of the CLT, as the variance of 𝑃(𝑘𝑏, 𝑡) is given by a large sum over
𝜎2( 𝑑 |𝜓̂𝒌 |2

𝑑𝑡
). This scales linearly with the number of modes with 𝑘 < 𝑘𝑏, which scales linearly with

𝐿. On the other hand, one can use the instantaneous form of (2.54) to show that 𝜎2( 𝑑 |𝜓̂𝒌 |2
𝑑𝑡

) ∼ 1/𝐿2,
given that |𝜓̂𝒌 | ∼ 1/

√
𝐿 by Parseval’s theorem (5.2). The end result is that 𝜎2(𝑃(𝑘𝑏, 𝑡)) ∼ 1/𝐿,

leading to the desired 𝜎(𝑃(𝑘𝑏, 𝑡)) ∼ 1/
√
𝐿. Interestingly, the flux of 𝑃4 is negative on average,

i.e., goes from the small scale to the large scale. This is better depicted in Figure 5.3d, where
the averaged 𝑃(𝑘𝑏), 𝑃4(𝑘𝑏) and their sum is shown. The slight variation in 𝑃(𝑘𝑏) throughout the
inertial range is due to uncertainty in the estimate of the mean from high-variance data. We also
note the relative difference between the mean flux of the linear energy 𝐻2 (𝑃(𝑘𝑏)) and the flux
of true energy 𝐻 (𝑃(𝑘𝑏) + 𝑃4(𝑘𝑏)) is on the order of the nonlinearity represented in this figure
(𝜀 = 0.067).

In Figure 5.4, we provide the steady time distribution of dissipation rate, defined via the
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Figure 5.3: The time-distribution, through 𝑘𝑏 = 300, of linear energy flux 𝑃 (a) and nonlinear
energy flux 𝑃4 (b) for the 𝜀 = 0.067 data for various 𝐿, with higher peak height corresponding to
larger 𝐿. Gaussian distributions of equal mean and standard deviation are marked (——). (c) The
log-log-scale standard deviation of 𝑃 (•) and 𝑃4 (■) as a function of 𝐿 with (· · · · · ·) indicating
𝜎 ∼ 1/

√
𝐿. (d) The time-averaged 𝑃 (——), 𝑃4 (- - - -), and their sum (— · —) as a function of 𝑘𝑏.
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Figure 5.4: (a) The time-distribution of linear energy dissipation rate 𝑃𝑑 for the 𝜀 = 0.067 data for
various 𝐿, with higher peak height corresponding to larger 𝐿. Log-normal distributions of equal
mean and standard deviation are marked (——). (b) The log-log-scale standard deviation of 𝑃𝑑 as
a function of 𝐿 with (· · · · · ·) indicating 𝜎 ∼ 1/
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instantaneous form of (2.52). The data exhibits the same scaling of standard deviation with
respect to 𝐿 by vary similar arguments, however the distribution is Log-normal, rather than Normal
(Gaussian). Log-normal distributions of dissipation rate in flow turbulence have received some
attention [62], however we are not aware of similar results in WT. We discuss this finding in detail
in the discussion section of this chapter.

To study the energy cascade further, we employ the decomposition technique (2.57). The
resulting decomposition of the flux through 𝑘𝑏 = 100 is depicted in Figure 5.5a. We reduce to
𝑘𝑏 = 100 to lessen the computational cost of obtaining this decomposition, which scales with
𝑘𝑏. As depicted in Figure 5.5b, this system has very few exactly resonant interactions (Ω = 0),
which differs significantly from the case of 𝑑 = 2 and 𝛼 = 2 explored in earlier chapters. In fact,
the argument regarding rectangles presented in Chapter 1 and Appendix B does not apply for this
system with 𝑑 = 1 and 𝛼 = 1/2. Instead, via arguments similar to those used in Appendix A,
one can show that the Continuous Resonant Manifold for this system seldom aligns with a rational
wave number grid. As a result of this, even when 𝜀 is very small, (effectively) the entirety of the
energy flux is carried by quasi-resonant interactions. We measure the contribution due to exactly
resonant interactions to be orders of magnitude lower than the near-resonant interactions. Further,
we see that, as expected by the kinematic model and our results in Chapter 4, nonlinear broadening
Γ grows considerably as 𝜀 is increased. Here Γ is the width (alternatively, the decay rate) of the
decomposition in Ω. While the total mean flux should stay constant through the inertial range due
to the stationary 𝑛𝑘 , it is not a priori clear that the flux decomposition should remain invariant.
We have verified that, for larger 𝑘𝑏 in the inertial range, an almost identical plot is recovered. This
fact extends to following analysis of the closure as well. We also show in Figure 5.5b that the
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Figure 5.5: (a) The Ω-decomposition of 𝑃 for all of our data, with (blue) indicating 𝐿 = 2𝜋, (red)
indicating 𝐿 = 4𝜋, (magenta) indicating 𝐿 = 8𝜋, (green) indicating 𝐿 = 16𝜋, with higher data
corresponding to higher 𝜀. (b) The number of interactions N of each Ω that contribute to 𝑃Ω for
the measurement at 𝜀 = 0.067.

number of interactions at each Ω is strongly influenced by 𝐿. Despite this, the length-averaged
mean flux carried by all interactions with a given Ω is mostly constant in 𝐿. Finally, we note
that, as the tails of these decompositions approach 0, the relative uncertainty in their measurement
increases (again, due to a highly-variable distribution), which leads to fluctuations, sometimes even
to negative values of 𝑃Ω. For this reason, we have omitted the few negative tail values for the clarity
of Figure 5.5a, as well as the coming Figure 5.6, which is directly computed from 𝑃Ω.

5.4 Closure Model Study

We now compute the closure function 𝑓𝑃 (Ω), which is presented for the largest 𝐿 case at each
nonlinearity in Figure 5.6. In this figure, the very few interactions with Ω = 0 are excluded from
the plot, as a low uncertainty measurement of 𝑓𝑃 (Ω) is not possible with our data. This is not
an issue, however, as the WT closure is said to describe the effective behavior of quasi-resonant
interactions. As observed in Chapter 4, we find that 𝑓𝑃 takes the expected form of a generalized
Delta function. We note in particular the peak measured value of 𝑓𝑃 (Ω) varies by a factor of 30
given a single order of magnitude difference in 𝜀, demonstrating expected 𝛿-concentration on the
resonant manifold as the kinetic limit is approached. Also depicted in Figure 5.6 is a fit of the
form 𝑓𝑃 (Ω) = 𝑎/(𝑎2 + Ω2), which fits the data reasonably well. We prefer a fit to this form of
generalized delta function over the more general form used in Chapter 4, as this form more directly
resembles the theoretical form obtained by Zakharov in [101]. As with our other results, we do not
see large variation in the closure function at any given 𝜀 for changes in 𝐿 (not shown here). We do,
however, detect subtle and important changes in the area under 𝑓𝑃 (Ω) across our data, which we
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Figure 5.6: The closure function 𝑓𝑃 (Ω) (——), with steeper data corresponding to smaller 𝜀. A fit
to the form 𝑎/(𝑎2 +Ω2) is at each 𝜀 is provided (- - - -).

discuss next.
According to WTT, our generalized Delta function 𝑓𝑃 (Ω) is expected to integrate to 𝜋/2 in

the kinetic limit. This is an extremely important aspect of WTT, as it effectively determines
the Kolmogorov constant and, in a very related way, quantifies the convergence of a sum over a
lattice of quasi-resonant interactions to an integral over the continuous (exactly) resonant manifold.
Therefore, we assess the relative error in the integral of 𝑓𝑃 from 𝜋/2, given by

𝜌 =

𝜋/2 −
Ωmax∫
0

𝑓𝑃 (Ω)𝑑Ω

𝜋/2
, (5.3)

where Ωmax is chosen to be sufficiently large. The result is depicted in Figure 5.7, where there is
clear convergence towards the expected value of 𝜌 in the kinetic limit. This result is in contrast to
the other results of this chapter, in which little variation is shown in 𝐿 - here, it is clear that the WT
closure, as realized on a finite domain, is quantitatively a better model for mean energy flux as 𝐿
becomes large for sufficiently small 𝜀. We expect that, in the smallest nonlinearity case, the trend
towards decreasing 𝜌 would continue on larger 𝐿. It is also interesting that, for 𝐿 = 2𝜋 with a fairly
large separation of forcing and dissipation scale, that the limiting behavior of 𝐿 is not well resolved
for any 𝜀. On the other hand, the relative error 𝜌 is never too large, indicating the WT closure is
never far from well-predicting the inter-scale flux on any of these domains.
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5.5 Discussion

With regards to the implications of this work, we start by pointing out that WT studies that vary
both 𝐿 and 𝜀 with the goal of studying the WT closure are few and far between, particularly so
for studies of stationary, out-of-equilibrium spectra. We find for all tested 𝐿 that the majority of
quantities of interest are close to their large-𝐿 limiting values. This is an encouraging result for
the application of WTT to finite-domain dynamics, particularly with regards to existing numerical
studies of the WT closure on domains of size 𝐿 = 2𝜋 with similiarly large inertial intervals to
ours. We also find that the WT closure is found to well-approximate the energy flux quantitatively
on every domain of interest, with the error tending towards zero in the kinetic limit. This is a
striking result, particularly given that this is found after integration over many times the kinetic
time scale, a regime of time scale for which the WKE is not explicitly derived. On a related note,
our new insights extend also to the form of the measured 𝑓𝑃 (Ω), which conspicuously agrees with
the derivation in [101]. We remark that that a major difference in various derivations of the WKE
is the form of the closure function 𝑓 (Ω), which shares a connection to the definition of kinetic
time scale, as shown in Chapter 2. We hope that our measurements may point the way towards a
unification of the theory in this regard, if only by providing the form of 𝑓 (Ω) in the long time limit.
This is all predicated on the fact that 𝑓 (Ω) is indeed the same for each quartet in the domain. With
enhanced computational power, this may be validated as future work using techniques similar to
ours.

The WKE closure may further be studied by comparison of our numerical results to the Kol-
mogorov constant 𝐶0, which we have derived for this system (see Chapter 2). The comparison
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of numerically obtained, finite-domain spectra and energy fluxes to the derived KZ spectrum is a
non-trivial task, however, as the comparison must be accurate to a constant in order to be meaning-
ful. This requires careful consideration of the manner in which finite-domain and infinite-domain
quantities are compared, which we leave to future work. That 𝛾 subtly approaches 𝛾0 is an encour-
aging result for observing convergence in the numerical kinetic limit. On the other hand, such a
study may also help elucidate the reason for the shrinking inertial interval as 𝜀 → 0, as it would
reveal discrepancies between the KZ spectrum, derived for an infinite inertial interval without
explicit forcing and dissipation, and the steady, out-of-equilibrium spectra obtained by DNS that
violates these assumptions. As discussed in the introduction, the breakdown of KZ spectra is often
associated with instabilities and non-locality [101]. If these mechanisms depend somehow on 𝜀, it
may help explain the trend in inertial interval size. This also remains for future work.

On the topic of flux distributions, we place our findings in the context of a growing trend towards
probabilistic approaches to WT, in which full probability distributions are described by the WT
formalism [69, 30, 12, 70], rather than only single moments. In particular, we draw attention to
the Log-normal PDF of dissipation rate observed in this work. The Log-normal distribution is
often associated with multiplicative random processes, and even multi-fractal physics [62]. Further
development of WTT along these lines may reveal undiscovered physics of dissipation in WT.
On the practical side, the arguments and observations of this work indicate that dissipation rate
variance is inversely proportional to the number of modes involved in the dissipative process. While
further study is required, this suggests broadening the dissipation range by choice of 𝜈𝒌 may reduce
variation in dissipation rate.

5.6 Summary

In this chapter, we present numerical studies of statistically steady wave turbulence with a forward
cascade of energy. By changing forcing strength to vary the nonlinearity of steady WT, and through
carefully doubling the corresponding domain sizes, we can approximate the kinetic limit of WTT.
This allows us to evaluate convergence to WTT predictions via quantitative analysis. We find that,
for all tested 𝜀 and 𝐿, our data is close representative of the large 𝐿 limit, with the exception of the
weakest nonlinearity results. For the range of parameters tested, we observe that the spectral form is
in fairly good agreement with the KZ value of 𝛾0, however the inertial interval shrinks in the small
nonlinearity limit, regardless of tested domain size. We show both the linear and nonlinear energy
flux are Gaussian in distribution, with strong fluctuations, and that dissipation rate is Log-normally
distributed. The variance of these quantities is inversely proportional to 𝐿. Further, the mean flux
of 𝐻4 is in the inverse direction. Our flux decomposition technique reveals nonlinear broadening
decreases with 𝜀. Critically, we find via a quantitative study of the closure model that the error in
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the WT closure in predicting energy flux becomes small in the numerical kinetic limit.
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CHAPTER 6

Weakly Nonlinear Breather Solutions

In this chapter, we demonstrate the existence of breather solutions to the MMT model realized in 2D
domain with periodic boundary conditions. This corresponds to a family of (non-local) derivative
Nonlinear Schroedinger equations (NLS) without potentials. Here we use a physical definition of
breather as spatial localization of energy occurring in a periodic or quasi-periodic pattern in time.
In addition to being a novel 2D breather in a continuous field, other remarkable and distinguishing
features of the breather include: (1) the breather spontaneously emerges from a stochastic wave
field after long-time evolution, not relying on specific initial conditions; (2) the breather appears
equivalently for both the focusing and defocusing cases, but exists only in the weak nonlinearity
regime. As the nonlinearity of the system increases, we find a breakdown of the breather state with
the field relaxing to the Rayleigh-Jeans spectrum. Further analysis suggests a connection of these
results with Kolmogorov-Arnold-Moser (KAM) Theory.

6.1 Setup of Numerical Experiments

We compute the unforced, undissipated, defocusing (𝜆 = 1) MMT model (2.1) with 𝛼 = 2 on a
2D domain with periodic boundary conditions, starting from an initial field 𝜓0 ≡ 𝜓(𝒙, 𝑡 = 0), with
128 × 128 modes. Higher resolution results available in Appendix C. The initial field 𝜓0 is set as
an exponential form in Fourier space as 𝜓̂0(𝒌) = 𝐴exp[−0.1|𝑘 − 𝑘 𝑝 | + 𝑖𝜃𝒌], where 𝑘 𝑝 = 4, and 𝜃𝒌
is a random phase that is decorrelated for all 𝒌 (i.e., 𝜃𝒌 for each 𝒌 can be thought of as independent,
identically-distributed random variables). In order to investigate dynamics at different nonlinearity
levels, we choose a range of 𝐴 leading to approximately 𝜀 ∈ [0.0005, 0.1] for each 𝛽 value of
interest, where 𝜀 ≡ 𝐻4/𝐻2.
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Figure 6.1: The time series of 𝐻 (dashed) and 𝐻2 (solid) for (a) 𝜀 = 0.00071 and (b) 𝜀 = 0.20,
as well as the corresponding 𝐻4 for (c) 𝜀 = 0.00071 and (d) 𝜀 = 0.20. Note that a low sampling
frequency is used to plot the figure to improve its readability, leading to aliasing. Therefore, only a
small portion of all 𝑂 (1600) peaks are visible.

6.2 Results

We start by describing a typical simulation leading to a breather state, with parameters 𝛽 = 3 and
𝐴 = 35 (corresponding to 𝜀 = 0.00071). Figures 1a and 1c show the long-time evolution of 𝐻2

and 𝐻4 from 𝑡 = 0 to 2000𝑇 𝑓 , with 𝑇 𝑓 = 2𝜋 the period of the fundamental wave mode. The total
Hamiltonian 𝐻, as shown in Figure 1a, is well conserved over 2000𝑇 𝑓 . After an initial evolution
of about 400𝑇 𝑓 with smooth profiles of 𝐻2 and 𝐻4, we observe that 𝐻4 undergoes strong periodic
jumps with corresponding dips in 𝐻2. These jumps are associated with coherent structures, which
are only present at low nonlinearity. In contrast, as demonstrated in Figures 1b and 1d, the field
evolution at a higher nonlinearity (𝜀 = 0.20) exhibits smooth profiles of 𝐻2 and 𝐻4 over the same
time interval.

The oscillations in 𝐻4 correspond to oscillations of a breather. To better visualize this breather
state, we plot in Figure 6.2 the real part of 𝜓𝒙 at different phases of its oscillations (i.e., different
stages of the oscillation pattern in 𝐻4). Fig. 6.2a shows the field right before the first jump of 𝐻4,
where a concentric wave appears and later converges into a breather peak seen in Fig. 6.2b. This
peak then collapses, with a second one emerging after about 𝑇 𝑓 /2 (according to Fig. 6.2e) at the
maximally distant location in the periodic domain, shown in 6.2c. The cycle then repeats itself with
a peak emerging in Fig. 6.2d (at the same location as in 6.2a), forming a breather solution coexisting
with a stochastic wave background. The smaller peaks of 𝐻4 seen in Fig. 6.2e correspond to groups
of secondary peaks in 𝜓𝒙 . From Figure 6.2 we see that the breather oscillates with a fundamental
period very close to 𝑇 𝑓 . Therefore, the simulation in Figure 1a/c covers 𝑂 (1600) cycles of the
breather, demonstrating a very long (perhaps infinite) time of existence.
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Figure 6.2: Contour plots of Re[𝜓𝒙] at 𝛽 = 3 for 𝜀 = 0.00071 at various stages of the cycle of the
breather (a/b/c/d), corresponding chronologically to the times marked by the blue circles in (e) the
time series of 𝐻4. Note that this plot of 𝐻4 has sufficient sampling to resolve all features.
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Figure 6.3: The quantities (a) 𝜌 and (b) 𝛾 as functions of 𝜀 for 𝛽 = 0 (orange +), 𝛽 = 1 (green
•), 𝛽 = 2 (magenta ×), 𝛽 = 3 (blue ■), and 𝛽 = 4 (red ▲). The inset of (b) shows fully-developed,
angle-averaged wave action spectra at a few nonlinearity levels (for 𝛽 = 3), with the Rayleigh-Jeans
spectral slope of 𝛾 = −2 indicated (dashed).

We next investigate the existence and intensity of the breathers for varying values of 𝛽 and 𝜖 .
To measure the relative intensity of the breather, we define the peak-to-background ratio as

𝜌 =
avgmax[|𝜓𝒙 |]

4𝜎|𝜓𝒙 |
, (6.1)

where the avgmax operator returns the average of the maximum height of primary peaks (as in Fig.
6.2b/c/d) over many cycles of the breather, and 𝜎|𝜓𝒙 | is the total standard deviation of the field |𝜓𝒙 |
over space and time. By definition (6.1), 𝜌 = 2 corresponds to the typical rogue wave criterion
used in many fields [26].

Figure 6.3a shows the value of 𝜌 obtained for 𝛽 = 0, 1, 2, 3, 4 and 𝜀 across three orders of
magnitude. In general, we see that the breather state is present for smaller 𝜀 (i.e., weak nonlinearity)
and becomes stronger when 𝛽 is closer to 3. The case with 𝛽 = 0 (corresponding to NLS) leads
to no breathers, indicating the derivative is necessary for their emergence. We note that when the
breathers are not present, the value of 𝜌 is evaluated by taking the average of the maximum of the
field |𝜓𝒙 | every 𝑇 𝑓 /2 as the numerator in (6.1).

Furthermore, we examine in Figure 6.3b the slope 𝛾 of the stationary wave action spectrum 𝑛𝒌

across all values of 𝛽 and 𝜀. The inset of Figure 6.3b shows a typical example of fully-developed,
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angle-averaged 𝑛𝑘 for 𝛽 = 2 and several values of 𝜀. We see that the Rayleigh-Jeans spectrum
with 𝛾 = −2 is only achieved at higher nonlinearity when the breather is not present. This trend is
generally true for all values of 𝛽 as shown in Figure 6.3b.

A few additional remarks are in order. First, we note that the breather also emerges for the
focusing equation (D.6) with 𝜆 = −1 under the same conditions. Second, the breather can also
be observed under a forced/dissipated system presented in Chapter 4, but with relaxation to wave
turbulence spectra at high nonlinearity. Last but not least, we have performed extensive numerical
analysis to verify that the breather we observe is not a numerical artifact. This includes the
verification of the robustness of our results under symplectic integration, higher resolution, and
different dealiasing schemes. Details of all of the above points can be found in the Appendix C.

6.3 Discussion

The breather solution in our simulation is not exactly periodic, which is evident from the slightly
varying field at each moment of the breather peak (not shown here). We are interested in whether
there exists a nearby trajectory which corresponds to a periodic breather. For this purpose, we
have employed both a traditional spectral method [36] and a very recent variational method [3] for
seeking nearby periodic solutions. As discussed in detail in Appendix D, both methods return no
nearby periodic solutions. This suggests that our breather solution may be in nature quasi-periodic
and requires new physical interpretation, which we provide below.

We start by stating that there exists an exact periodic solution to the linear system of (D.6),
i.e., 𝐻4 = 0, that closely resembles the breather we observe. What we mean precisely is that,
starting from an initial condition with a breather peak (say Figure 6.2b), the field propagated by
the linear equation returns to the same state after exactly 𝑇 𝑓 , which is consistent with the pattern
of a breather. This is because the linear system only contains integer frequencies due to the NLS
dispersion relation 𝜔 = 𝑘2, so that 𝑇 𝑓 is the period of the linear system. This fact suggests that the
breather solution to the nonlinear system arises from a deformed trajectory of the linear system.

Since visualizing the high-dimensional trajectory is very difficult, we define a projection of the
trajectory to some physically meaningful reference field [90]:

𝐼𝑛 =

�����
∫
𝜓∗
𝑅
(𝒙, 𝑡𝑛)𝜓(𝒙, 𝑡)𝑑𝒙∫

𝜓∗
𝑅
(𝒙, 𝑡𝑛)𝜓𝑅 (𝒙, 𝑡𝑛)𝑑𝒙

����� (6.2)

where 𝜓∗
𝑅
(𝒙, 𝑡𝑛) is the reference field where a breather peak is present, e.g., taken from 𝑡1 in Figure

6.2e, and 𝜓(𝒙, 𝑡) is the solution of either the linear or nonlinear system propagated from 𝜓∗
𝑅
(𝒙, 𝑡𝑛).

Figure 6.4 shows the evolution of 𝐼1 from both linear and nonlinear systems for a range of four
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Figure 6.4: 𝐼1 evaluated for the nonlinear system 𝛽 = 3 (blue) and the linear system (red) for (a)
𝜀 = 0.00071, (b) 𝜀 = 0.0084, (c) 𝜀 = 0.013, and (d) 𝜀 = 0.20.

nonlinearity levels. It is clear that the linear system evolution exhibits a period of 𝑇 𝑓 in all sub-
figures as expected. When the nonlinearity level is low, the trajectory identified by 𝐼1 shows a small
deformation from the linear trajectory, as seen in Fig. 6.4a. Such deformation is consistent with a
high-dimensional quasi-periodic trajectory that is evident from not only the gradual time shift of
the 𝐼1 peak, but also the deviation of 𝐼1 peak from 1. As nonlinearity level increases, we observe
an increased deformation of the trajectory, until the linear trajectory is entirely destroyed at high
nonlinearity in fig 6.4d. This trajectory deformation can also be observed in the (𝐼1, 𝐼2) plane in
Figure 6.5.

The trajectory deformation visualized above can be connected to Kolmogorov-Arnold-Moser
(KAM) theory. Specifically, if we consider the linear system as the base integrable system, then the
nonlinear term can be considered the perturbation added to the system to form a nearly integrable
system. Generally speaking, if the perturbation is sufficiently small, some quasi-periodic trajectories
of integrable system can be preserved with small deformation to a KAM torus [27]. In our case,
these preserved trajectories (i.e., KAM tori) would correspond to those associated with the breather
solution observed in Figure 6.2. We also note that the linear system of equation (D.6) (or more
generally the NLS) is resonant, which makes it difficult to directly apply the KAM theory. Most
mathematical work of KAM on NLS relies on some way to introduce irrational frequencies, e.g.,
by including a potential term as in [5], and only a handful of results are available for application
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Figure 6.5: The trajectory of 𝜓𝒙 projected on to 𝐼1 and 𝐼2 for several fundamental periods of 𝜓𝒙

computed via the nonlinear system 𝛽 = 3 (blue) and the linear system (red) for (a) 𝜀 = 0.00071, (b)
𝜀 = 0.0084, (c) 𝜀 = 0.013, and (d) 𝜀 = 0.20.

of KAM to NLS itself (see [40, 82]). Our results therefore suggest breather solutions supported on
quasi-periodic KAM tori when a non-local derivative is included in the NLS. The breather solution
breaks down at high nonlinearity due to the sufficiently strong perturbation to the KAM tori.

The current analysis of this breather solution clearly does not resolve all questions this chapter
raises. One issue is that finite-time numerical simulations cannot be used as the rigorous proof for
the existence of KAM tori (which must exist for infinite time). Therefore, our interpretation may
need to be understood in terms of the Nekhoroshev theorem, which states existence for finite but
very long times [27], and is known as the “physicists” KAM theorem. Another critical question is
the stochastic emergence of these stable breather solutions. One possible interpretation is that they
lie on some type of statistical “attractor” [54], such that a variety of initial conditions lead to the
breather state. In addition, while the 2D breather we find here is for a derivative NLS not specific
to a physical system, we remark that such equations are generally involved in the fields of nonlinear
water waves, optics and others. For example, the breather recently found both experimentally and
numerically in Bose-Einstein condensate [90] may bear a similar physical interpretation as we
provide here.

6.4 Summary

In this chapter, we present results regarding a novel breather which spontaneously emerges from a
2D non-local derivative NLS. We show that the breather emerges at low nonlinearity with parameter
𝛽 close to 3. A phase space analysis reveals that the trajectory associated with the breather solution
is close to that of the linear system, but with aperiodicity introduced by the nonlinearity. The
numerical findings support an explanation of the breather solution by KAM theory, in the sense
that a trajectory with the breather solution of the linear system is deformed but preserved when a
small nonlinearity is introduced.
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CHAPTER 7

Discussion

Overall, this dissertation succeeds in developing a quantitative picture of WT in finite domains via
numerical experiment. Our approach of generating high-resolution data, particularly in terms of
resolution of statistical quantities, combined with the development of precise new numerical tools
for the study of WT, reveals much about the physics of finite-size effects. In some cases, we are
able to provide a quantitative dynamical view to the kinematic picture of finite-size effects that
dominates the literature. This includes a new, interaction-based methods for the measurement of
nonlinear broadening that emerges naturally from the dynamical equations for the energy cascade,
without a priori assumptions regarding the role of nonlinear broadening in shaping the WT closure.
This natural dependency of energy flux on the WT closure motivates our method for the evaluation
of the closure function 𝑓𝑃 (Ω), which provides a precise method for studying error of the WT
closure in the DNS of bounded systems, while simultaneously shedding light on the physics WT
closure itself by providing the form of 𝑓 (Ω) measured from real data. We hope our methods are
used widely for the study of the realization of the wave turbulence closure in finite domains, as we
feel they still have much more to offer.

In other cases, we illuminate new physics, as is the case with wave turbulence on irrational
tori. To our knowledge, these are the first numerical experiments of their kind. The DWT regime
of our NLS-like model on the rational torus subverts the expectations of the traditional view of
DWT (with 𝛾=𝛾0) due to the underlying Continuous Resonant System. Work by the mathematics
and physics communities that draws connections between the Continuous Resonant System and the
Wave Kinetic Equation may pave the way towards more quantitative and precise models of the DWT
regime. We also demonstrate a novel breather solution that dominates finite domain dynamics at
low nonlinearity, with a possible connection the KAM theory. The study of the KAM theorem in
these high-dimensional systems is a relatively young field with many open questions, to which our
numerical study hopefully can provide some insights. With respect to finite-size effects, we also
provide evidence of the long hypothesized [49, 60] KAM tori that dominate stochastic dynamics in
the DWT regime.
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Our findings regarding the role of the Discrete Resonant Manifold in the DWT regime also
indicate an avenue for improvement of the kinematic model for finite-size effects. We suggest a
pseudo-quantitative extension of the kinematic model may be possible by comparing the structure
of the Continuous Resonant Manifold of a given system to the corresponding Discrete Resonant
Manifold and Discrete Quasi-resonant Manifolds of interest. Such a comparison may allow for
better estimates of the “minimum” nonlinear broadening to observe the KWT regime, particularly
over the traditional approach of making simple comparisons between frequency discreteness and
nonlinear broadening without detailed consideration of the structure of the resonant manifold. This
approach may have enhanced utility in the special case of systems where the Discrete Resonant
Manifold’s structure supports kinetic physics, as we have demonstrated.

Finally, we raise critical new questions that pave the way for an exciting future in wave turbulence
research. In particular, our kinetic limit results on the 1D MMT system suggest that the WT closure
holds for this system - in contrast to the alternative closure by MMT [61]. We suggest further study
of the closure by comparison to the KZ spectrum, which may reveal convergence to the KZ spectrum
over a finite-width inertial range. On the other hand, such a study could reveal a discrepancy that
might be linked to one of the many reasons for the breakdown of the KZ spectrum via further study
of non-locality and instability within the MMT model. Research in this direction may finally settle
the debate as to the cause of MMT’s original findings nearly three decades ago. Our study of the
Gaussian energy flux distribution and Log-normal dissipation rate fits nicely into the broader trend
of viewing WT via probabilistic formulations and higher-order statistical quantities, while raising
questions on the role of the multiplicative random processes in shaping dissipation range dynamics.
Further, recent theoretical developments [30, 23] are moving towards descriptions of WT that can
incorporate intermittency into the WT formalism, in which case precise measurements of high-
order statistics from numerical data will be key validation. We hope to have demonstrated how this
might be done in a reliable and robust way, with our flux decomposition and WT closure study as
examples. We have also demonstrated the utility in using large data sets to study WT - which also
enables data-driven modeling of the WT closure. Flow turbulence has enjoyed much success in this
direction, and the WT community would benefit from approaches that make the most of its data
sets. We present in this dissertation powerful physics-based approaches, and speculate that using
physics-informed data-driven models, perhaps inspired by the developments in this dissertation,
may lead to even further discoveries on the fundamental physics of wave turbulence.
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APPENDIX A

Numerical Method for Computing the Kolmogorov
Constant

We are interested in integrating (2.49), provided again below for convenience:

𝑆 = lim
𝑦→1

𝑑𝐼 (𝑦)
𝑑𝑦

=

1∫
0

1∫
0

1∫
0

(𝜉1𝜉2𝜉3)−1
(
1 + 𝜉2

3 − 𝜉2
1 − 𝜉2

2

)
×(𝜉3 ln 𝜉3 − 𝜉1 ln 𝜉1 − 𝜉2 ln 𝜉2)𝛿(𝜉1 + 𝜉2 − 𝜉3 − 1)𝛿(𝜉2

1 + 𝜉2
2 + 𝜉2

3 − 1)𝑑𝜉1𝑑𝜉2𝑑𝜉3,

(A.1)

As remarked in Section 2.4, the delta functions express the quartet and resonance conditions, which
represent the intersection of the plane 𝜉1 + 𝜉2 − 𝜉3 − 1 = 0 and the sphere 𝜉2

1 + 𝜉2
2 + 𝜉2

3 = 1.
While there is a temptation to take the geometric approach and simply parameterize over this
manifold to compute 𝑆 as a line integral, one must be careful to avoid parameterizations that lead
to singularities in the integrand, as we require a precise numerical evaluation. Also, just like the
WKE, the Kolmogorov constant requires notoriously precise bookkeeping to avoid missing factors.
To ensure our bookkeeping is careful, we will solve this in a more algebraic way, relying heavily
on properties of the Dirac delta function. For simplicity, we will refer the non-delta part of the
integrand by 𝑓 (𝜉1, 𝜉2, 𝜉3) so that

𝑓 (𝜉1, 𝜉2, 𝜉3) ≡ (𝜉1𝜉2𝜉3)−1
(
1 + 𝜉2

3 − 𝜉2
1 − 𝜉2

2

)
(𝜉3 ln 𝜉3 − 𝜉1 ln 𝜉1 − 𝜉2 ln 𝜉2). (A.2)

This leaves

𝑆 =

1∫
0

1∫
0

1∫
0

𝑓 (𝜉1, 𝜉2, 𝜉3)𝛿(𝜉1 + 𝜉2 − 𝜉3 − 1)𝛿(𝜉2
1 + 𝜉2

2 + 𝜉2
3 − 1)𝑑𝜉1𝑑𝜉2𝑑𝜉3. (A.3)
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The first of these delta functions is linear in 𝜉1. Making use of the property

1∫
0

𝑔(𝑥)𝛿(𝑥 − 𝑎)𝑑𝑥 = 𝑔(𝑎) for 0 ≤ 𝑎 ≤ 1, (A.4)

we can integrate over 𝜉3 to obtain

𝑆 =

∬
Δ(𝜉1,𝜉2)

𝑓 (𝜉1, 𝜉2, 𝜉1 + 𝜉2 − 1)𝛿
(
𝜉2

1 + 𝜉2
2 + (𝜉1 + 𝜉2 − 1)2 − 1

)
𝑑𝜉1𝑑𝜉2. (A.5)

Integrating over the region Δ(𝜉1, 𝜉2) ≡ {0 < 𝜉1 < 1, 0 < 𝜉2 < 1, 1 < 𝜉1 + 𝜉2 < 2} simply ensures
0 < 𝜉3 < 1. We would like to now apply (A.4) again, however in order to do this, we require
a transformation so that the argument 𝜉2

1 + 𝜉2
2 + 𝜉2

3 − 1 is of the required form. To do this, we
transform the inner integral to one with respect to 𝑑𝑢, where 𝑢 = 𝜉2

1 + 𝜉2
2 + (𝜉1 + 𝜉2 − 1)2 − 1 and

𝑑𝑢 = 2(2𝜉1 + 𝜉2 − 1)𝑑𝜉1. This leaves

𝑆 =

∬
Δ(𝑢,𝜉2)

𝑓 (𝜉1(𝑢), 𝜉2, 𝜉1(𝑢) + 𝜉2 − 1)
2(2𝜉1(𝑢) + 𝜉2 − 1) 𝛿 (𝑢) 𝑑𝑢𝑑𝜉2. (A.6)

Now, we may apply (A.4), being careful to include only the part of 𝑢(𝜉1, 𝜉2) = 0 that lies in
Δ(𝜉1, 𝜉2). After some manipulation of our definition of 𝑢 we find that, of the two branches for
which 𝑢 = 0, the one with

𝜉1 =
1 − 𝜉2 +

√︁
(1 − 𝜉2) (3𝜉2 + 1)

2
, 0 < 𝜉2 < 1 (A.7)

is in the region Δ(𝜉1, 𝜉2). After applying (A.4),

𝑆 =

1∫
0

𝑓 (𝜉1(𝜉2), 𝜉2, 𝜉3(𝜉2))
2
√︁
(1 − 𝜉2) (3𝜉2 + 1)

𝑑𝜉2. (A.8)

This form of 𝑆 is suitable for numerical integration, where the integrand as 𝜉2 → 1 (from below)
can be shown to approach zero via L’Hospital’s rule.
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APPENDIX B

Supplemental Analysis on the Discrete Resonant
Manifold

In this Appendix, we provide:

1. formulation of the continuous resonant system

2. the configurations of the resonant quartets on T2
𝑟 and T2

𝑖𝑟
, including a range of 𝑞 and their

effects on the spectral slopes

3. quantification of nonlinear frequency broadening and visualization of the discrete quasi-
resonant manifold (quasi-DRM)

B.1 Continuous Resonant System

For the nonlinear Schrödinger equation −𝑖𝜕𝑡𝜓𝑥 + Δ𝜓𝑥 = 𝜖
2 |𝜓𝑥 |2𝜓𝑥 on T2

𝐿
of size 𝐿2, a theorem is

proven in [35] that in weakly nonlinear large box limit, a continuous resonant equation holds

−𝑖 𝜕𝑎̃𝒌
𝜕𝑡

=
2𝜖2 log 𝐿
𝜁 (2)𝐿2

∫
𝑎̃𝒌1 𝑎̃𝒌2 𝑎̃

∗
𝒌3
𝛿 (𝒌1 + 𝒌2 − 𝒌3 − 𝒌) 𝛿

(
𝜔𝒌1 + 𝜔𝒌2 − 𝜔𝒌3 − 𝜔𝒌

)
𝑑𝒌1𝑑𝒌2𝑑𝒌3,

(B.1)
where 𝜁 is the Riemann zeta function, 𝑎̃𝒌 = 𝑒−𝑖𝑘

2𝑡 𝑎̂𝒌 , and 𝑎(𝒙) = 𝐿−2 ∑
𝑘∈Z2

𝐿
𝑎̂𝒌𝑒𝑥𝑝(2𝜋𝑖𝒌 · 𝒙) with

Z2
𝐿
≡ (𝐿−1Z)2 (note that this Fourier transform is different in normalization from that in Chapter

2, but is consistent with [35]).
Two important components in the derivation of (B.1) require further clarification: First, the

weak nonlinearity limit is taken to eliminate the contribution of quasi-resonant interactions, so only
resonant interactions are involved in (B.1). Note that this differs from the kinetic limit used in
WTT. This is observed in our numerical results and mathematically achieved by the normal form
transformation. Second, the large box limit is taken such that the summation over 𝑆Ω=0 can be
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considered to be like a Riemann sum which is related to the continuous integration in (B.1). For
this purpose, the key equation established through number theory reads∑︁

𝒌1,𝒌2,𝒌3∈Z2
𝐿

(𝒌1,𝒌2,𝒌3)∈𝑆Ω=0

𝑎̂𝒌1 𝑎̂𝒌2 𝑎̂
∗
𝒌3

∼ 2𝐿2 log 𝐿
𝜁 (2)

∫
𝒌1,𝒌2,𝒌3∈R2

(𝒌1,𝒌2,𝒌3)∈𝑆Ω=0

𝑎̂𝒌1 𝑎̂𝒌2 𝑎̂
∗
𝒌3
𝑑𝒌1𝑑𝒌2𝑑𝒌3. (B.2)

An alternative way to take the large box limit is to consider 𝑘 → ∞ for a given 𝐿 [35].
Therefore, equation (B.2) can be reformulated for our configuration (changing from Z2

𝐿
to Z2

𝑟 and
setting 𝑎̂𝒌 = 𝑘𝜓̂𝒌), leading to∑︁

𝒌1,𝒌2,𝒌3∈Z2
𝑟

(𝒌1,𝒌2,𝒌3)∈𝑆Ω=0

𝑘1𝑘2𝑘3𝜓̂𝒌1𝜓̂𝒌2𝜓̂
∗
𝒌3

∼
∫

𝒌1,𝒌2,𝒌3∈R2

(𝒌1,𝒌2,𝒌3)∈𝑆Ω=0

𝑘1𝑘2𝑘3𝜓̂𝒌1𝜓̂𝒌2𝜓̂
∗
𝒌3
𝑑𝒌1𝑑𝒌2𝑑𝒌3, (B.3)

where we have omitted the prefactor (the treatment of which will involve more subtlety and is not
necessary for the purpose of this work). Equation (B.3) can then be used to replace the summation
over 𝑆Ω=0 on T2

𝑟 in (2.55) with Ω = 0 into an integral. Under low nonlinearity, we arrive at

𝜕𝑛𝒌

𝜕𝑡
=
𝜕𝑛𝒌

𝜕𝑡

����
Ω=0

∼
∫

𝒌1,𝒌2,𝒌3∈R2

(𝒌1,𝒌2,𝒌3)∈𝑆Ω=0

2𝑘𝑘1𝑘2𝑘3Im⟨𝜓̂∗
𝒌𝜓̂𝒌1𝜓̂𝒌2𝜓̂

∗
𝒌3
⟩𝑑𝒌1𝑑𝒌2𝑑𝒌3, on T2

𝑟 . (B.4)

B.2 Resonant Quartets on T2
𝑟 and T2

𝑖𝑟

We consider the exact resonance condition for a quartet:

𝒌1 + 𝒌2 − 𝒌3 − 𝒌 = 0,

𝜔𝒌1 + 𝜔𝒌2 − 𝜔𝒌3 − 𝜔𝒌 = 0,
(B.5)

with dispersion relation 𝜔𝒌 = |𝒌 |2. For discrete wave number 𝒌 = (𝑛, 𝑞𝑚) with 𝑚, 𝑛 ∈ Z on T2
𝑟

(𝑞 = 1) and T2
𝑖𝑟

(𝑞2 =
√

2), the resonance condition (B.5) can be expanded as

𝑛1 + 𝑛2 − 𝑛3 − 𝑛 = 0 (B.6)

𝑚1 + 𝑚2 − 𝑚3 − 𝑚 = 0 (B.7)

𝑛2
1 + 𝑛

2
2 − 𝑛

2
3 − 𝑛

2 = −𝑞2
(
𝑚2

1 + 𝑚
2
2 − 𝑚

2
3 − 𝑚

2
)

(B.8)
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Substituting (B.6) and (B.7) into (B.8) yields

(𝑛1 − 𝑛) (𝑛2 − 𝑛) = −𝑞2(𝑚1 − 𝑚) (𝑚2 − 𝑚) (B.9)

Figure B.1: Sketches of the quadrilaterals formed by vertices 𝒌, 𝒌1, 𝒌2 and 𝒌3 on (a) T2
𝑟 and (b)

T2
𝑖𝑟

.

For T2
𝑟 (𝑞 = 1), (B.9) is reduced to (𝒌1 − 𝒌) · (𝒌2 − 𝒌) = 0, i.e., (𝒌1 − 𝒌) ⊥ (𝒌2 − 𝒌). Combined

with (B.6) and (B.7), it can be understood that the four vertices represented by 𝒌, 𝒌1, 𝒌2 and 𝒌3

form a quadrilateral with arbitrary orientations allowed on the discrete wave number grid (Figure
B.1(a)). For T2

𝑖𝑟
(𝑞2 =

√
2), (B.9) holds only if LHS=RHS=0, i.e., 𝑛 ∈ {𝑛1, 𝑛2} and 𝑚 ∈ {𝑚1, 𝑚2}.

Therefore, the four vertices 𝒌, 𝒌1, 𝒌2 and 𝒌3 form a quadrilateral with only horizontal/vertical
orientations allowed, i.e., aligned with the axes in Figure B.1(b).

We further provide a quantitative study on the effect of 𝑞 to the number of exact resonances
(i.e., the sparsity/density of resonances on the DRM). For 𝒌, 𝒌1, 𝒌2, 𝒌3 ∈ ([−𝑀, 𝑀], 𝑞[−𝑀, 𝑀])
with 𝑀 = 85, we plot in Figure B.2(a) the cardinality |𝑆Ω=0 |, i.e., number of elements in 𝑆Ω=0, for
𝑞4 ∈ {𝑛|𝑛 ∈ Z, 1 ≤ 𝑛 ≤ 16}. We see that when 𝑞2 is irrational (red points), |𝑆Ω=0 | is minimized
due to the reason associated with Figure B.1. For rational 𝑞2, |𝑆Ω=0 | is significantly larger with the
maximum attained at 𝑞 = 1 (in the test range). This can be understood in terms of the number of
solutions of (B.9) which is reduced due to the constrain in the prime factors introduced by 𝑞 ≠ 1.
Therefore, our choices of 𝑞2 =

√
2 and 𝑞 = 1 are the two extremes in terms of |𝑆Ω=0 |.

The spectral slopes for four selected values of 𝑞 are shown in Figure B.2(b). These include the
existing two cases of 𝑞2 =

√
2 and 𝑞 = 1, with additional two cases of 𝑞 =

√
2 and 𝑞 = 2. It can be

seen that the case with 𝑞2 =
√

2 leads to the largest deviation of 𝛾 to the WTT solution 𝛾0. Among
the other three values of 𝑞, 𝛾(𝑞 = 1) is closest to 𝛾0, consistent with the largest number of exact
resonances. However, 𝛾(𝑞 = 2) is slightly closer to 𝛾0 than 𝛾(𝑞 =

√
2) even though considerably

more resonances are identified for the case with 𝑞 =
√

2. This suggests that the “sparsity” of the
DRM is not the only factor to consider for the DWT dynamics, but that the distribution of the
resonances also plays a role. A criterion to measure the “closeness” of the DWT dynamics to WTT
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may be established through the continuous resonant equation, which is only proved for the 𝑞 = 1
case. The discrete wave numbers of 𝑞 = 1 align periodically with those in 𝑞 = 2, but never overlap
with those in 𝑞 =

√
2. This may lead to the spectral slope 𝛾 for 𝑞 = 2 being closer to 𝛾0 even though

fewer exact resonances are present than in the case of 𝑞 =
√

2. The argument may be generalized to
the comparison between (a) rational 𝑞 and (b) irrational 𝑞 but rational 𝑞2 in the large wave number
limit, but more theoretical and numerical studies are required.

Figure B.2: (a) |𝑆Ω=0 | computed for rational (•) and irrational (■) 𝑞2, with 𝒌2 = (−36, 31𝑞) and
𝑘3𝑥 = −22 as considered in Chapter 3. (b) Spectral slope 𝛾 computed using 𝜈𝑜𝑝𝑡 with 𝑁 = 10242

modes for rational (•) and irrational (■) 𝑞2. The WTT analytical solution 𝛾0 = −14/3 is indicated
(· · ·).

B.3 𝑘 − 𝜔 spectral analysis and quasi-DRM visualization

We plot the (angle-averaged) 𝑘 − 𝜔 spectra 𝐸 (𝑘, 𝜔) on T2
𝑟 and T2

𝑖𝑟
for 𝜖 = 3.00 × 10−2 and

𝜖 = 3.00 × 10−4 in Figure B.3. We confirm that the majority of the energy is concentrated near
the linear dispersion relation 𝜔 = 𝑘2 for all the cases. While some bound wave components exist
at higher nonlinearity level, they are insignificant for lower nonlinearity level (and similar on T2

𝑟

and T2
𝑖𝑟

). Therefore, bound waves cannot be used to interpret the spectral slope difference between
T2
𝑟 and T2

𝑖𝑟
. The nonlinear frequency broadening Γ can be estimated for all cases by taking the

width of 𝐸 (𝑘, 𝜔) around 𝜔 = 𝑘2 at 𝑘 = 25 in the inertial range (without loss of generality).
Measuring the width by covering up to the 50% of the maximum value [6], we obtain the nonlinear
frequency broadening Γ ≈ 10 and Γ ≈ 1 for higher and lower nonlinearity levels on both T2

𝑟 and
T2
𝑖𝑟

, respectively.
We define the quasi-DRM(Γ) as the set 𝑆Ω<Γ \ 𝑆Ω=0, where 𝑆Ω<Γ ≡ {(𝒌1, 𝒌2, 𝒌3) |𝒌1 + 𝒌2 − 𝒌3 −

𝒌 = 0, |𝜔𝒌1 +𝜔𝒌2 −𝜔𝒌3 −𝜔𝒌 | < Γ}. By setting 𝒌2 = (−36, 31𝑞) and 𝑘3𝑥 = −22, Figure B.4 shows
the quasi-DRM(Γ) on both T2

𝑟 and T2
𝑖𝑟

. On T2
𝑟 , we find an empty set for the lower nonlinearity level,

indicating the dominance of exact resonance, in contrast to the quasi-DRM at higher nonlinearity
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Figure B.3: 𝜔 − 𝑘 spectra on T2
𝑟 for (a) 𝜖 = 3 × 10−2 and (b) 𝜖 = 3 × 10−4, and on T2

𝑖𝑟
for (c)

𝜖 = 3 × 10−2 and (d) 𝜖 = 3 × 10−4. The dispersion relation 𝜔 = 𝑘2 is indicated (– – –).

level which provides a considerable portion of 𝑃. On T2
𝑖𝑟

, the quasi-DRM at higher nonlinearity
is significantly “denser” than that at lower nonlinearity, resulting in the variation of spectral slope
and energy cascade with 𝜖 observed in Chapter 3.
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Figure B.4: 𝑆Ω<Γ \ 𝑆Ω=0 on T2
𝑟 for (a) Γ = 10 and (b) Γ = 1, and on T2

𝑖𝑟
for (c) Γ = 10 and (d) Γ = 1.
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APPENDIX C

Supplemental Analysis on the Breather Solution

C.1 Breather solutions in other situations

In Chapter 6, we restrict our focus to a two-dimensional (2D), defocusing Majda-McLaughlin-
Tabak (MMT) model without forcing or dissipation. In this section, we show the occurrence of
the breather in additional contexts: the MMT model with a focusing nonlinearity, as well as a
defocusing forced-dissipated model.

We begin with the focusing MMT model, given by 𝜆 = −1. The parameter 𝜆 is well-known
to control the modulational instability of the Nonlinear Schrödinger Equation (NLS) as well as
the MMT model. In the context of the MMT model, the sign of 𝜆 has been shown to affect
the emergence of coherent structures in a one-dimensional MMT model with dispersion relation
𝜔 = 𝑘1/2 [87]. In our results, however, we find no significant change in the breather behavior
between the focusing/defocusing equations, suggesting (along with the fact that the breather exists
only at weak nonlinearity) that modulational instability is not responsible for our breather. In Figure
C.1a/c, we show 5 fundamental periods 𝑇 𝑓 of 𝐻 and its components 𝐻2 and 𝐻4 in a fully-developed
breather state for the focusing equation with 𝛽 = 2. These results were obtained with an identical
numerical setup to that of Chapter 6, and the presented results occur at low nonlinearity. The
pattern of the oscillating breather is also similar to that in the defocusing case.

Next, we present results obtained for the forced-dissipated system presented in Chapter 4,
however with 𝛽 = 2. For this test, we use a larger domain of 512 × 512 modes. In Figure C.1b,
𝐻 and its two components are plotted for 5𝑇 𝑓 in the breather state. In this case, we do not expect
the total Hamiltonian to be conserved, but rather to be quasi-steady for the fully developed system.
Nevertheless, the signature of the breather is clearly present. Just as in the unforced case, we find
that the wave action spectrum of the system is altered when the breather is present. In Figure C.2,
we provide the fully developed spectra of the forced-dissipated system for several different orders
of nonlinearity. When the nonlinearity is low and the breather is present, we again see departure
from a power-law spectrum, with a steeper tail region. When nonlinearity is raised, we observe the
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Figure C.1: 5𝑇 𝑓 of the time series of 𝐻 (dashed) and 𝐻2 (solid) for a fully-developed breather
solution to the (a) focusing MMT equation with 𝛽 = 3 and (b) forced-dissipated MMT equation
with 𝛽 = 2. The corresponding 𝐻4 for (c) the focusing system and (d) the forced-dissipated system
are also provided. The focusing system has 𝜀 = 0.00028 and the forced-dissipated system has
𝜀 = 0.0016.

the spectra of wave turbulence are restored (and an associated forward energy cascade develops).

C.2 secondary peaks in the breather cycle

We include in this section plots of the secondary peaks of |𝜓 | in the breather cycle, supplementing
Figure 2 in Chapter 6. We choose |𝜓 | rather than Re[𝜓] (as in Chapter 6) to better resolve the smaller
amplitudes of these secondary structures. While the largest peaks in 𝐻4 (Fig. C.3e) correspond
to single peaks in |𝜓 |, the secondary peaks in 𝐻4 correspond to grids of smaller peaks in |𝜓 | (Fig.
C.3a/b/c/d).

C.3 Numerical Validation of the Breather

In this section, we provide analyses and numerical tests that rule out the possibility that the breather
we discuss is a numerical artifact. In particular, we show that the breather solution is consistent
under

1. the change of integration scheme to a symplectic integrator.

2. the change of our dealiasing procedure.

3. an increase in the number of Fourier modes (spatial resolution).
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Figure C.2: The fully-developed, angle-averaged wave action spectra at a few nonlinearity levels of
the forced-dissipated system, with the Kolmogorov-Zakharov spectral slope of 𝛾 = −10/3 indicated
(dashed).
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Figure C.3: Contour plots of |𝜓 | at 𝛽 = 3 for 𝜀 = 0.00071 at various stages of the cycle of the
breather (a/b/c/d), corresponding chronologically to the times marked by the blue circles in (e) the
time series of 𝐻4.
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Figure C.4: The time series of (a) 𝐻 (dashed) and 𝐻2 (solid) starting from 𝑡 = 0 for the defocusing
MMT equation with 𝛽 = 3 under symplectic integration, with the corresponding time series of (c)
𝐻4. A detailed view beginning at 𝑡 = 1000𝑇 𝑓 of (b) 𝐻, 𝐻2 and (d) 𝐻4 over 5𝑇 𝑓 .

We begin with point 1. Symplectic integration of a Hamiltonian system preserves the phase
space geometry of its solution. Specifically, under Hamiltonian flow, structures such as sinks and
limit cycles are forbidden by Liouville’s theorem. When using an integrator such as an explicit
4th-order Runge-Kutta scheme (RK4), however, these structures can be erroneously introduced into
the solution, which may change the dynamics. To ensure our breather is not an artifact introduced
by non-symplectic integration, we implement a simple symplectic integrator, the implicit midpoint
method (IMP) [91], to verify that we still obtain (and preserve) the breather solution. In the
IMP method, we solve the implicit nonlinear problem via fixed-point iteration. For an identical
numerical setup to that of Chapter 6, we allow the system to freely evolve under the IMP integration
scheme. We set 𝛽 = 3 and simulate at the low nonlinearity of 𝜀 = 0.001.

We provide in Figure C.4a the evolution of 𝐻 and 𝐻2 from 𝑡 = 0, with 𝐻 very well conserved
and 𝐻2 indicating that the breather has already formed by 𝑡 = 1000𝑇 𝑓 . The corresponding plot of
𝐻4 is provided in C.4c. Just as in Chapter 6, these plots of the initial evolution have a low sampling
rate, leading to aliasing. To confirm that the breather has the same signature in 𝐻2 and 𝐻4 as in
the case of non-symplectic integration, high-sampling rate plots of 𝐻, 𝐻2 (Fig. C.4b) and 𝐻4 (Fig.
C.4d) are also provided over 5𝑇 𝑓 , showing no difference to those results of Chapter 6. Thus, the
breather is not an artifact of non-symplectic integration.

Next, we address point 2. In order to prevent the aliasing of modes due to the cubic nonlinearity of
the MMT model, a standard 1/2 dealiasing rule is applied after each product during the evaluation
of the nonlinear term. The 1/2 dealiasing rule is typically implemented via zero-padding the
truncated wave number domain: if 𝑘𝑚 is the maximum resolved wave number in our simulation
(that is oriented along the 𝑥 and 𝑦 axes), then, in each direction, zero-padding is included such that
for a computation domain of size [−2𝑘𝑚, 2𝑘𝑚]2, the non-zero (resolved) Fourier modes are only
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contained in the box [−𝑘𝑚, 𝑘𝑚]2. The zero-padding is enforced by setting all modes outside the
box [−𝑘𝑚, 𝑘𝑚]2 to zero after each product is taken.

This procedure, however, has the effect of subtly changing the evolution of the system. In order
to be assured that the breather is not an artifact of our dealiasing scheme, we first show that our
dealiasing leads to a slightly modified Hamiltonian system (analytically), then we show that the
breather is preserved in the original system without modification. We start by writing down the
truncated Hamiltonian that we aim to numerically simulate:

𝐻 =
∑︁
𝒌

|𝒌 |∞∈[−𝑘𝑚,𝑘𝑚]

𝑘2𝜓̂𝒌𝜓̂
∗
𝒌 +

1
2
𝜆

∑︁
𝒌1,𝒌2,𝒌3,𝒌
𝒌1+𝒌2=𝒌3+𝒌

|𝒌𝑖 |∞∈[−𝑘𝑚,𝑘𝑚]

(𝑘1𝑘2𝑘3𝑘4)𝛽/4𝜓̂𝒌1𝜓̂𝒌2𝜓̂
∗
𝒌3𝜓̂

∗
𝒌 , (C.1)

where the summation is over every permutation over the subscript wave numbers. When computing
the nonlinear term, we evaluate (via the Fourier transform)

(𝜓𝒙𝜓
∗
𝒙)𝜓𝒙 =

©­­­­­­«
∑︁
𝒌1,𝒌3

|𝒌𝑖 |∞∈[−𝑘𝑚,𝑘𝑚]
|𝒌1−𝒌3 |∞∈[−𝑘𝑚,𝑘𝑚]

𝜓̂𝒌1𝜓̂
∗
𝒌3𝑒

𝑖(𝒌1−𝒌3)·𝒙

ª®®®®®®¬
×

∑︁
𝒌2

|𝒌2 |∞∈[−𝑘𝑚,𝑘𝑚]

𝜓̂𝒌2𝑒
𝑖𝒌2·𝒙 (C.2)

where the derivatives have been neglected for clarity (𝛽 = 0). The second condition under the
first sum (red) is the first dealiasing step, where any product of modes that is mapped outside the
bounded computational domain is excluded from the sum. The effect of dealiasing is therefore to
remove certain interactions from the original system. It is not hard to show that including this extra
condition modifies the Hamiltonian such that

𝐻′ =
∑︁
𝒌

|𝒌 |∞∈[−𝑘𝑚,𝑘𝑚]

𝑘2𝜓̂𝒌𝜓̂
∗
𝒌 +

1
2
𝜆

∑︁
𝒌1,𝒌2,𝒌3,𝒌
𝒌1+𝒌2=𝒌3+𝒌

|𝒌𝑖 |∞∈[−𝑘𝑚,𝑘𝑚]
|𝒌1−𝒌3 |∞∈[−𝑘𝑚,𝑘𝑚]

(𝑘1𝑘2𝑘3𝑘4)𝛽/4𝜓̂𝒌1𝜓̂𝒌2𝜓̂
∗
𝒌3𝜓̂

∗
𝒌 , (C.3)

where 𝐻′ represents the effective Hamiltonian when dealiasing is used. While a second dealiasing
step is included after the second product is taken in (C.2), no additional interactions are removed
from 𝐻′ by the second dealiasing step: |𝒌1 + 𝒌2 − 𝒌3 |∞ ∈ [−𝑘𝑚, 𝑘𝑚] is accounted for by the fact
that we already require 𝒌1 + 𝒌2 − 𝒌3 = 𝒌 and |𝒌 |∞ ∈ [−𝑘𝑚, 𝑘𝑚]. We remark that it is not a priori
clear that the dealiased system is still Hamiltonian, but this fact is discovered when one attempts to
write 𝐻′.

In order to show that the system evolution according to (C.1) also leads to the breather solution,
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Figure C.5: The time series of (a) 𝐻 (dashed) and 𝐻2 (solid) starting from 𝑡 = 0 for the defocusing
MMT equation with 𝛽 = 3 using a scheme that avoids the dealiasing step, with the corresponding
time series of (c) 𝐻4. A detailed view beginning at 𝑡 = 1000𝑇 𝑓 of (b) 𝐻, 𝐻2 and (d) 𝐻4 over 5𝑇 𝑓 .

we perform a different dealiasing scheme for the simulation. Specifically, we skip the dealiasing
step in the intermediate stage of computing the cubic term, and only dealias once after cubic
multiplication is completed. Since this dealiasing step is equivalent to keeping only the Fourier
modes up to 𝑘𝑚, this strategy produces evolution consistent with the system given by 𝐻 (rather than
𝐻′). We use this scheme in an otherwise identical setup to Chapter 6, with 𝛽 = 3 and 𝜀 = 0.001,
simulating until a breather emerges.

The evolution of the Hamiltonian 𝐻 and the component 𝐻2 from 𝑡 = 0 are presented in Figure
C.5a, and the corresponding 𝐻4 in Figure C.5c. For this supplemental test we use a larger time
step that leads to larger dissipation, though the energy loss over 1000𝑇 𝑓 is still only 0.5% of the
total energy. We see that a clear peak in 𝐻4 has formed before 𝑡 = 1000𝑇 𝑓 , indicating the breather
has formed. Again, due to the low sampling rate, aliasing is present in the Figures C.5a and C.5c.
We provide detailed plots over 5𝑇 𝑓 of 𝐻, 𝐻2 in C.5b and 𝐻4 in C.5d with sufficient sampling such
that no aliasing is present. It is clear that the breather remains unchanged under our second scheme
which preserves the truncated Hamiltonian system, indicating that the breather is not an artifact of
dealiasing.

Finally, we address point 3. The forced-dissipated results shown in this Appendix are computed
on a domain with 16 times as many modes, which shows that the breather emerges and persists in
simulations with higher spatial resolution.
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APPENDIX D

Search for Nearby Periodic Solutions

In this section, we detail our search for exactly periodic solutions to the 2D, defocusing Majda-
McLaughlin-Tabak (MMT) model without forcing or dissipation. We employ two different methods:
First, a traditional method by Flach [36] used to obtain breathers in Hamiltonian lattice problems.
Second, a very recent variational method by Azimi et al. [3] for high degree-of-freedom dynamical
systems. Both methods use as an initial condition the numerically-obtained breather solution we
discuss in Chapter 6, and our objective is to find a “numerically exact”, periodic breather whose
state space trajectory is close to the near-periodic one we have observed and reported.

In the following subsections, we adapt these methods for our problem, and we present and discuss
the results of our implementations. Although these analyses are in some regards insightful, neither
of these techniques return a periodic solution that resembles the breather we have observed. While
this certainly may be due to limitations of the methods we employ, it suggests a lack of periodic
structures close to our near-periodic breather solution. We begin with the method of Flach.

D.1 Spectral Fixed-point Method

The fixed-point method by Flach exploits two different fixed-point maps to obtain breathers in a
Hamiltonian lattice. Our problem is in some sense similar, as we can interpret our problem on a
lattice of Fourier modes in wave number domain. First, we will introduce the fixed-point method
for our problem, and then we will discuss the results.

D.1.1 Adaptation of the Fixed-point Method

To implement this method, we require the MMT equation in wave number form, which is given by

𝑖
𝜕𝜓̂𝒌

𝜕𝑡
= 𝑘2𝜓̂𝒌 + 𝛾

∑︁
𝒌1,𝒌2,𝒌3

(𝑘1𝑘2𝑘3𝑘)𝛽/4𝜓̂𝒌1𝜓̂𝒌2𝜓̂
∗
𝒌3𝛿𝐾 (𝒌1 + 𝒌2 − 𝒌3 − 𝒌). (D.1)
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We introduce the parameter 𝛾 to control the size of the nonlinear term, i.e., the nonlinearity level
in Chapter 6. We now assert that 𝜓̂𝒌 (𝑡) is periodic in time, such that we can write a Fourier series
for the solution,

𝜓̂𝒌 =
∑︁
𝑛

𝐴𝒌𝑛𝑒
−𝑖Ω𝑛𝑡 . (D.2)

Here we defineΩ1 = 2𝜋/𝑇 , where we𝑇 is the prescribed period of the solution. The MMT equation
(D.6) now becomes the system of nonlinear equations

(𝑘2 −Ω𝑛)𝐴𝒌𝑛 + 𝐹𝒌𝑛 = 0, (D.3)

where 𝐹𝒌𝑛 is the full spectral form of the nonlinear term in (D.6). We now follow the arguments of
[36], and write two fixed-point iterations schemes to find solutions to (D.3):

𝐴
(𝑖+1)
𝒌𝑛

=
𝑘2

Ω𝑛

𝐴
(𝑖)
𝒌𝑛

+ 1
Ω𝑛

𝐹
(𝑖)
𝒌𝑛

(D.4)

𝐴
(𝑖+1)
𝒌𝑛

=
Ω𝑛

𝑘2 𝐴
(𝑖)
𝒌𝑛

− 1
𝑘2𝐹

(𝑖)
𝒌𝑛

(D.5)

These schemes share identical fixed points. In the small 𝐴𝒌𝑛 approximation, the eigenvalues of
(D.4) and (D.5) are given by 𝑘2/Ω𝑛 and Ω𝑛/𝑘2, respectively. These are inverse to one another,
such that if the eigenvalue of one map is greater than 1, the other is less than 1. Thus, for any
(𝒌, 𝑛), we can choose whether or not the mode shrinks or grows in size in the linear approximation.
The approach put forth in [36] is to select the fixed-point map for each (𝒌, 𝑛) that ensures only the
fundamental energy containing mode of the breather grows in the linear approximation. As the 𝐴𝒌𝑛

evolve under fixed-point iteration, the hope is that a stable fixed point is identified corresponding
to a breather with non-negligible amplitude of the energy-containing mode.

We implement the above scheme starting from an initial condition as the breather solution at
nonlinearity level 𝜀 = 0.0008 and 𝛽 = 3 obtained in Chapter 6, with the period set as 𝑇 = 2𝜋.
We find using a map with an eigenvalue greater than 1 leads to quick divergence of the energy-
containing mode upon iteration. Therefore, we also apply a modified scheme, where we choose the
map with eigenvalue less than 1 for each mode, with the result presented below.

D.1.2 Results of the Fixed-point Method

The (squared) 𝐿2 norm of the residual | |𝑅 | |22 of (D.3) is provided at each iteration up to 𝑁𝑖𝑡𝑒𝑟 = 20
for a wide variety of 𝛾 in figure D.1. It is clear that, even for the smallest 𝛾, the residual does
not drop to zero. In fact, the residue always diverges with finite number of iterations. Thus, our
adaption of Flach’s fixed-point method does not furnish the desired periodic breather solution.
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Figure D.1: The residual of (D.3) against iteration number for various choices of 𝛾.

D.2 Variational Method

In this subsection, we adapt the variational method by Azimi et al. [3] for finding periodic solutions
to nonlinear systems of high dimension. While we strongly encourage the reader to first review
their article before reading this section, we provide a short summary of their method here, with
additional details contained in our derivation.

The goal of their method is to numerically obtain periodic solutions to high degree-of-freedom
systems. This is done by finding a new dynamical system whose attractors are (potentially)
periodic solutions to the equation of interest. This new dynamical system is defined in the space of
all periodic orbits that obey the periodic boundary conditions (the “loop space”). Thus, evolution
of this new dynamical system is with respect to not the physical time (which is a dimension of the
loop space), but rather a parameter 𝜏 referred to as “fictitious time”. As this system is propagated
in 𝜏, the initial loop (a guess of a periodic solution) relaxes towards true periodic solutions to the
equation of interest. If a residual of zero is obtained, a periodic solution has been identified.

Before directly applying their method for obtaining such a system, however, we first must modify
it to accommodate the MMT equation. Due to nonlocal derivatives, it is better to consider the wave
number form of the MMT equation. In addition, 𝜓𝒙 is a complex scalar, so their method will need to
be modified to handle complex fields. These two changes are significant enough to warrant a short
discussion. Thus, we first provide a brief overview of our adaption of their variational approach
in the following subsection. Then, we present the results of our search for periodic solutions that
resemble the breather.
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D.2.1 Adaptation of the Variational Method

We begin by writing the MMT equation in wave number form, given by

𝑖
𝜕𝜓̂𝒌

𝜕𝑡
= 𝑘2𝜓̂𝒌 +

∑︁
𝒌1,𝒌2,𝒌3

(𝑘1𝑘2𝑘3𝑘)𝛽/4𝜓̂𝒌1𝜓̂𝒌2𝜓̂
∗
𝒌3𝛿𝐾 (𝒌1 + 𝒌2 − 𝒌3 − 𝒌). (D.6)

Because this is an evolution equation for the coefficients of a Fourier series, the periodic boundary
conditions imposed on our physical domain are automatically satisfied. Thus, the loop space is
simply the set of all possible sets of Fourier modes {𝜓̂𝒌} that are periodic with a period of 𝑇 . We
then can the express a loop 𝐼 in this loop space as

𝐼 =


𝜓̂𝒌 (𝑡)
𝜓̂∗
𝒌 (𝑡)
𝑇

 . (D.7)

where 𝑡 ∈ [0, 𝑇] and 𝒌 represents all resolved wave numbers in (D.6). Note that we have included
the conjugate 𝜓̂∗

𝒌 to ensure gradients with respect to 𝐼 are well defined for the complex variables
𝜓̂𝒌 [53]. Just as in [3], we make a substitution of variables such that 𝑡 = 𝑠𝑇 . Next, we require a
suitable inner product on the loop space. For this, we use the Hermitian inner product

⟨𝐼, 𝐼′⟩ =
∫ 1

0

∑︁
𝒌

(
𝜓̂∗
𝒌𝜓̂

′
𝒌 + 𝜓̂𝒌𝜓̂

∗′
𝒌

)
𝑑𝑠 + 𝑇𝑇 ′. (D.8)

For this choice of loop space and inner product, the method and conclusions of [3] hold for a
periodic complex field subject to non-local derivatives as in (D.6).

We proceed by outlining our derivation of the 𝜏-evolution equation for 𝐼. For a given initial
loop 𝐼0, we seek a derivative 𝜕𝐼

𝜕𝜏
for which the square residual norm 𝐽 (𝐼) monotonically decreases.

The square residual norm is defined by 𝐽 (𝐼) ≡ ⟨𝑅(𝐼), 𝑅(𝐼)⟩, where the MMT equation residual is
given by

𝑅(𝐼) =

𝑅1

𝑅2

𝑅3

 ≡

− 1
𝑇

𝜕𝜓̂𝒌

𝜕𝑠
− 𝑖𝑘2𝜓̂𝒌 − 𝑖

∑
(𝒌1,𝒌2,𝒌3) (𝑘1𝑘2𝑘3𝑘)𝛽/4𝜓̂𝒌1𝜓̂𝒌2𝜓̂

∗
𝒌3𝛿𝐾 (𝒌1 + 𝒌2 − 𝒌3 − 𝒌)

c.c.
0

 .
(D.9)

We now assume some 𝐺 (𝐼) to be the derivative of interest ( 𝜕𝐼
𝜕𝜏

= 𝐺 (𝐼)), and then define

L(𝐼;𝐺) = lim
ℎ→0

𝑅(𝐼 + ℎ𝐺) − 𝑅(𝐼)
ℎ

(D.10)
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as the derivative of the residual in the direction of the evolution of 𝐼. The paper [3] shows that if
𝐺 (𝐼) = −L†(𝐼; 𝑅), where L†(𝐼; 𝑅) is the adjoint operator to L(𝐼;𝐺) defined by

⟨𝐺,L†(𝐼; 𝑅)⟩ = ⟨L(𝐼;𝐺), 𝑅⟩, (D.11)

then 𝜕𝐽
𝜕𝜏

≤ 0 is guaranteed for all 𝜏. It then follows that, for this choice of 𝐺 (𝐼), any initial guess at
a periodic solution to the MMT equation 𝐼0 will evolve in 𝜏 until a minimum of 𝐽 is achieved. If
𝐽 ≠ 0, no periodic solution is contained within the basin of attraction. If 𝐽 = 0, a periodic solution
has been identified. For our system, the adjoint operator can be found according to (D.11) as

L†(𝐼; 𝑅) =



1
𝑇

𝜕𝑅1
𝜕𝑠

+ 𝑖𝑘2𝑅1 + 2𝑖𝑅1𝑘
−𝛽/2

∑︁
𝒌1

𝑘
−𝛽/2
1 𝜓̂𝒌1𝜓̂

∗
𝒌1

−𝑖𝑅∗
1𝑘

−𝛽/2
∑︁

(𝒌1,𝒌2)
(𝑘1𝑘2)−𝛽/4 𝜓̂𝒌1𝜓̂𝒌2𝛿𝐾 (𝒌1 + 𝒌2 − 2𝒌)

c.c.
2
𝑇2

∫ 1
0

∑
𝒌 Re

[
𝜕𝜓̂∗

𝜕𝑠
𝑅1

]
𝑑𝑠


. (D.12)

D.2.2 Results of the Variational Method

We now present the results of this analysis. We choose as an initial condition one full cycle of the
breather at very low nonlinearity (𝜀 = 0.0004), for which the system is very close to periodic. To
reduce stiffness of the system, we choose the 𝛽 = 1 case. A snapshot of initial condition is contained
in Figure D.2a. The system is then evolved according to the presented procedure. As expected,
the residual norm 𝐽 decreases monotonically, as depicted in Figure D.3a. We do not simulate long
enough to reach a steady value of 𝐽, as after just 𝜏 = 50 (∼ 5000 time steps) we already can see
that the loop has strongly diverged from the expected breather pattern. The corresponding snapshot
of the initial breather peak after 𝜏 = 50 is contained in Figure D.2b. Both the position, shape,
and magnitude of the resolved peak are drastically different from the exactly periodic breather we
seek. This is also depicted in a growth of 𝑇 (Fig. D.3b) beyond the expected 𝑇 ≈ 2𝜋. From the
above observations, it is clear that the variational method also does not find a nearby exact periodic
breather solution. We also note that there may be certain modifications we can make on the basis
of this method, e.g., to preserve the Hamiltonian of the solution through a Lagrangian multiplier
term, which may provide a different solution. These challenges will not be tackled in the current
work.
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Figure D.2: (a) a snapshot of the initial condition 𝐼0 in the variational method; (b) a snapshot of
the solution at 𝜏 = 50, i.e., after 5000 time steps.
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