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ABSTRACT

The modern industrial environment is becoming more complex and dynamic, due to customized
and shifting market demands, highly connected businesses, and frequently upgraded technologies.
In such environments, varying uncertainties and disruptions could occur and highly impact the
performance of the manufacturing factories and supply chain networks. Conventional centralized
decision-making approaches handle disruptions by re-optimizing across the entire system regard-
less of disruption type and scale, which require significant computational efforts, especially for
complex and large-scale systems. Therefore, to stay competitive, industrial enterprises need a
dynamic and flexible decision-making method that enables an agile and resilient response to unex-
pected disruptions.

Enabled by current Artificial Intelligence (AI) techniques, multi-agent control has been pro-
posed to conduct distributed decision-making to provide an agile response to disruptions. A multi-
agent system consists of various autonomous agents, which are cyber representations of their asso-
ciated physical objects and have their own knowledge and goals. Agents communicate and interact
with each other to make high-level decisions for their associated physical objects. In different in-
dustrial environments, agents could represent different system entities, such as the products and
machines in manufacturing systems, or suppliers and customers in supply chains. However, most
existing industrial multi-agent systems require prior knowledge of disruptions and predetermined
rules and strategies to generate responses, which makes it difficult to handle unexpected disrup-
tions.

Aiming to improve the agility and resiliency of industrial systems, this dissertation develops
a model-based multi-agent framework to address risk management within an agile and resilient
response to various unexpected industrial disruptions. Specifically, this dissertation focuses on the
disruptions that affect the occurrence of pre-scheduled events, such as machine breakdown and loss
of suppliers. The proposed multi-agent framework comprises model-based agents, heuristic-based
communication, and optimization-based decision-making. The model-based agent architecture en-
ables agents to update their knowledge and local environments dynamically. When agents need to
make decisions, they utilize their knowledge as heuristics to guide their communication strategies.
Then based on their knowledge and communication information, agents can identify new actions
by solving risk-aware optimizations to respond to unexpected disruptions dynamically. The pro-

x



posed framework is tested in a simulated manufacturing environment and a supply chain instance,
showcasing the improved flexibility, agility, and resiliency of the multi-agent systems.

To conclude, this dissertation pushes the fields of distributed decision-making for industrial sys-
tems closer to satisfying the requirements of modern industry: flexibility, agility, and resiliency,
especially for manufacturing systems and supply chain networks. Enterprises could apply this
framework to address a disruption quickly by computing a resilient recovery plan to minimize the
negative effects. In addition, this dissertation contributes to standardizing the design of system-
level decision-making using a multi-agent framework. The proposed methodology to design a
multi-agent framework is transferable to other complex systems, such as multi-robot systems and
autonomous vehicle teams, that consist of multiple intelligent entities.

xi



CHAPTER 1

Introduction

1.1 Motivation

The manufacturing industry has been and will continue to be an important part of the world

economy, contributing 27.59% of the global gross domestic product [1] and providing 23% of

the employment [2]. In the last decades, the industrial environment has moved towards a global

paradigm, where markets demand highly customized and varying products with short life cy-

cles [3, 4] and individual businesses are involved in a wide and complex supply chain network

with multiple relationships [5]. In such an environment, customers have more comprehensive de-

mands, including customized products, prices, and levels of service [5]. The rapidly upgraded

technologies also enable more complex products and the continuous introduction of new prod-

ucts [6]. External factors, such as social (e.g., trade regulations) and natural factors (e.g., Covid,

natural disasters), make the industrial environment more dynamic and unpredictable [7].

This dynamic and ever-changing environment brings various uncertainties and disruptions and

induces vulnerability to the manufacturing factories and supply chain networks [8]. These dis-

ruptions could occur at all stages in the product life cycle, such as material supply, production,

and customer demand, and at different scales [6, 9, 10]. A small-scale disruption example could

be a single-machine breakdown, which degrades factory throughput and requires rescheduling to

recover production [11]. On a large scale, global events, such as pandemics and wars, could hit

the worldwide supply chain network at an unprecedented speed and variety. In the past few years,
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customers struggled to purchase toilet paper and exhibited increased demand for fitness equipment

and office supplies for life at home [12]. Manufacturers needed to reconfigure their production

lines to satisfy everyday items and newly required medical equipment, such as ventilators [13].

Suppliers lost delivery channels due to travel and trade regulations. They had to discard products,

such as dumping milk, smashing eggs, and wasting raw materials that were no longer needed [14].

The time duration of the disruption and the impact are various and unpredictable. For example, the

factories near Fukushima nuclear plant may never come back to use due to the long-term effect,

while a fire in a factory could be extinguished in hours, and the production could be recovered in

days or weeks [15, 16].

To survive in such environments, enterprises have to take actions, such as reconfiguring the

production lines and certifying new suppliers, to cope with disruptions. One research area focus-

ing on disruption response is the decision-making for the rescheduling/re-planning of the system

to recover the system performance [11, 17]. Specifically, this dissertation considers the following

problem formulation: given an industrial system, existing schedules/plans, and an unexpected dis-

ruption, how can we design a decision-making strategy that enables a flexible, agile, and resilient

response to unexpected disruption in complex and uncertain industrial environments?

Existing system-level decision-making strategies for adapting to disruptions in manufacturing

systems and supply chains are primarily centralized [18, 19]. A centralized approach has a global

view of the system and generates a disruption response by utilizing all of the information in the

entire system [3, 19, 20]. For the scheduling and planning problems in manufacturing systems and

supply chains, researchers have applied different centralized decision-making strategies, such as

conventional mathematical programming [21–23] and AI-based learning approaches [24–27]. By

modeling the entire system and utilizing big data, these centralized approaches provide optimal so-

lutions based on specific objectives (e.g. cost, throughput), while they generally require significant

computational efforts to calculate [3, 19, 20]. Therefore, centralized approaches could benefit the

initial scheduling and planning problem and the response to large-scale and long-term disruptions,

such as the Fukushima nuclear accident. However, for rescheduling and re-planning after disrup-
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tions, all the information about the entire system is required to re-optimize the system in response

to the disruption [28]. The time and monetary costs may outweigh the benefits for some small-

scale and short-term disruptions. For instance, if a supplier’s factory accidentally catches fire and

stops supply for days, re-planning the entire supply chain probably needs more time and effort than

checking nearby suppliers or just waiting. In conclusion, using centralized approaches limits the

agility and responsiveness of the system to handle dynamic environments, and as the complexity

and scale of a system increase, it becomes more difficult to effectively manage the whole system

under disruptions using centralized methods [6, 29–31].

Dynamic environments impose new requirements on modern industry, namely in terms of flex-

ibility, agility, and resiliency [9, 19, 32, 33]. Building upon the literature, the following require-

ments are defined in the context of disruption response in this dissertation:

• Flexibility is the ability to respond to various disruptions dynamically;

• Agility is the ability to respond to disruptions quickly;

• Resiliency is the ability to maintain system performance against uncertainties after respond-

ing to disruptions

To stay competitive, industry enterprises need a dynamic and flexible decision-making method that

enables an agile and resilient response to unexpected disruptions in industrial environments [34–

36].

The rapid growth of AI techniques, such as machine learning, enables centralized approaches to

build prior knowledge (i.e., database) of disruptions and mitigation plans to speed up the response

or predict disruptions [37–40]. These approaches rely on an ability to predict disruption accurately

and are not flexible for handling unexpected disruptions [7]. On the other hand, AI also enables

automated reasoning and knowledge representation at the individual level in systems. Combining

the new industrial digital technologies, such as Industrial Internet of Things (IIoT) [41] and Digital

Twin (DT) technology [42], industrial systems could move towards individual intelligence [43].

Consequently, distributed decision-making approaches, where multiple entities in the system use

3



Figure 1.1: An overview of a general multi-agent framework in manufacturing systems and supply
chain networks.

communication and collaboration for system-level decision-making, have been proposed to im-

prove the flexibility and agility of industrial systems [44–47].

Multi-agent system theory has been studied to enable intelligent and distributed decision-

making in manufacturing systems [3, 30] and supply chain networks [10, 32]. Derived from the

disciplines of Distributed Artificial Intelligence (DAI) and computer science, intelligent software

agents are defined as autonomous computational entities that represent physical or logical objects

in the system, pursue their own goals, react to their environments, and communicate with other

agents [48]. A multi-agent system consists of various autonomous agents that communicate and

interact with each other to make high-level decisions for the behaviors of their associated physical

objects based on their knowledge and goals [49]. These high-level decisions of the agents drive the

performance of the physical layer [3, 32]. Depending on different industrial environments, indus-

trial agents could represent different system entities, such as the products and machines in manu-

facturing systems or suppliers and customers in supply chains, as shown in Figure 1.1. Emerging

techniques, such as cloud computing and RFID, enable agents to collect data from the physical

layers continuously, communicate with each other, and convey decisions on the fly [19, 34, 43].
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Although researchers have developed numerous multi-agent approaches for industrial systems,

most approaches either focus on initial scheduling and planning [50–53] or assume prior knowl-

edge of potential disruptions and cannot react to unexpected disruptions [37, 38]. In addition,

the design of the agents is mostly based on conceptual models [54, 55] or rule-based decision-

making [56–58]. However, these architectures are difficult to update dynamically as the environ-

ment changes and scales as the system becomes larger and more complex [6, 44]. Therefore, to

apply multi-agent approaches to large, complex, uncertain, and dynamic industrial systems in the

presence of multiple different disruptions (e.g., machine failures, material shortage, demand shift-

ing, etc.), some challenges and gaps must be addressed: 1) developing a general model-based agent

architecture that is flexible and scalable for different physical entities; 2) designing a communica-

tion strategy that enables agents to collaborate in an agile and efficient manner in the presence of

multiple different disruptions; and 3) creating models of agent decision-making with uncertainty

and risk awareness to achieve system-level resiliency.

1.2 Dissertation Overview and Contributions

The objective of this dissertation is to improve the agility and resiliency of industrial systems

in the presence of various unexpected disruptions through a distributed decision-making

strategy. To cope with the challenges and gaps listed above, this dissertation proposes a general

multi-agent framework and applies it to two different levels of industrial environments: manufac-

turing systems and supply chain networks, aiming to address different disruptions ranging from

small-scale resource breakdown to large-scale product market shifts. The proposed multi-agent

framework comprises various model-based agents, dynamic agent communication strategies, and

optimization-based decision-making.

The proposed model-based agent architecture allows agents to update their knowledge about

themselves and their local environments dynamically. When agents need to make decisions, they

retrieve information from their current knowledge base and exchange information through the
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Figure 1.2: An overview of the contributions of this dissertation: C1) a dynamic and resilient
rescheduling strategy for manufacturing systems; C2) a heuristic-guided dynamic re-planning
strategy for supply chain networks; and C3) a heterogeneous risk management mechanism for
resilient disruption response for supply chain networks.

designed communication strategy. Based on their knowledge and communication information,

the agents can dynamically identify new actions to respond to unexpected disruptions. The system

performance can be recovered agilely without prior knowledge or predetermined behaviors. In

addition, the developed decision-making algorithms incorporate the uncertainties and risks of the

agent and its surrounding environment to improve the resiliency of the systems.

The core contributions of this dissertation can be described by how the proposed framework

is applied to different industrial systems (i.e., manufacturing systems and supply chain networks),

as shown in Fig. 1.2. In this dissertation, we start with manufacturing systems since it is directly

related to the production activity and within a relatively constrained environment. Then we extend

to supply chain networks that are larger, more complex, more dynamic, and more heterogeneous

than manufacturing systems. The specific contributions are described as follows:

C1: A dynamic and resilient rescheduling strategy for manufacturing systems:

Most existing multi-agent frameworks for manufacturing systems include product agents (PAs)

and resource agents (RAs) [3, 45, 50]. A PA is responsible for fulfilling production requirements

for its associated physical product, while an RA provides high-level control for its associated re-
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source in the physical layer [50]. For the rescheduling problem, existing approaches use either

PA-RA coordination [51, 59–61] or RA-RA coordination [62–65]. However, these approaches

either cause large deviations between new and initial schedules or have limited agility due to un-

necessary coordination. In addition, these prior studies build agents in a static and deterministic

manner, which cannot support dynamic on-the-fly decision-making and the incorporation of un-

certainties and risks for the rescheduling problem.

Therefore, the first contribution (C1) of this dissertation is a dynamic and resilient reschedul-

ing strategy via capability-based clustering communication and risk assessment for internal dis-

ruptions in manufacturing systems. A simulated manufacturing system with 20 machines and 6

mobile robots to produce 100 products is implemented. Considering the machines could break

down at any time, the proposed strategy realizes an 11% improvement in throughput recovery

and reduces around 50% total breakdowns compared to the strategy without risk assessment. The

proposed multi-agent manufacturing system, rescheduling strategy, and case study validation are

presented in Chapter 2 and in [11, 66].

However, disruptions in industrial environments are often larger and more complex than re-

source disruptions in manufacturing systems. The recovery from these disruptions, such as ma-

terial supply shortages, customer demand shifts, and production line shutdowns, might be limited

or even infeasible if we only focus on individual manufacturing systems. Such disruptions require

entities from the supply chain network to join the response decision-making process. We apply the

proposed multi-agent framework to supply chain networks in response to such disruptions.

C2: A heuristic-guided dynamic re-planning strategy for supply chain networks:

Compared to manufacturing systems, supply chain networks are usually highly heterogeneous,

larger-scale, less-constrained environments. Most existing agent-based supply chain disruption

response methods are based on prior knowledge of disruptions. The disruption scenarios and re-

sponse actions are pre-defined via a stochastic programming model [67] or a Petri Nets model [68].

Researchers use past information to generate a case-based disruption response database [37].

Therefore, the disruption responses of these methods are limited to the set of pre-defined scenar-
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ios or historical cases, and it is difficult and even impossible to cope with unexpected disruptions.

In addition, existing agents are equipped with rule-based reasoning [57, 69, 70] or case-based

decision-making [29, 58, 69], which limits the agility in response to supply chain disruptions.

Therefore, the second contribution (C2) of this dissertation is a heuristic-guided dynamic re-

planning strategy that enables agent exploration and iterative communication to respond to various

supply chain disruptions. The performance is tested through a case study of an automotive cockpit

supply chain with 6 different models, 3 different plants, and 84 supplier agents at different tiers.

Considering a failure of any one of the 84 agents, in 42 cases, the distributed solution arrived at the

same (or similar) solution as the centralized (optimal) one, with only 15% of the required commu-

nication and computation. The proposed multi-agent supply chain network, re-planning strategy,

and case study validation are presented in Chapter 3 and in [17].

Though equipped with the ability to respond to a disruption, the proposed multi-agent frame-

works are designed based on deterministic characteristics. However, agent knowledge and commu-

nication information, such as production cost and delivery time, are stochastic in practice. These

uncertainties may result in negative effects (i.e., risks) on the industrial environments and should

be considered to improve the system resiliency.

C3: A heterogeneous risk management mechanism for resilient disruption response for supply

chain networks:

The performance of the disruption response obtained from deterministic decision-making can-

not be guaranteed in real-world stochastic environments. In the supply chain domain, most research

focuses on centralized risk management methods [39, 71, 72], which are difficult to scale up for

handling supply-chain issues at the national or global level. In existing multi-agent methods, un-

certainties and risks are considered to improve supply chain design [73] and address inaccurately

predicted demand [74], but have rarely been considered in the decision-making for rescheduling

and disruption recovery methods [7]. In addition, there is a high heterogeneity among different

agents regarding their sensitivity to different risks and overall risk attitudes, which could change

dynamically. However, current approaches either build a holistic risk model for the entire sys-

8



tem [39, 71, 72] or assign identical risk attitudes for all agents [75–78]. These methods do not al-

low agents to have different and/or dynamic risk models depending on the information they obtain.

Therefore, the final contribution (C3) of this dissertation is a heterogeneous risk management

mechanism for agent decision-making that improves the resiliency of the network to unexpected

disruptions. The proposed heterogeneous risk management mechanism is presented in Chapter 4.

In summary, the proposed model-based agent architecture lays a foundation for employing dy-

namic decision-making. The developed heuristic-guided agent communication strategies improve

the agility of manufacturing systems and supply chain networks. The incorporation of risk man-

agement enhances their resiliency, especially in the presence of unexpected disruptions. From an

industrial perspective, disruptions occur more frequently and unexpectedly as industrial environ-

ments become more dynamic and complex. For small-scale disruptions that either only impact a

part of the system or do not last a long time, the proposed approach can compute a good response

quickly through local negotiations. For large-scale disruptions, it may be worthwhile to re-optimize

the entire system using centralized approaches, but enterprises can still apply this work to conduct

a quick temporary recovery plan to minimize the negative effects, such as time effort and monetary

loss. In addition, this work could be integrated into a Decision Support System (DSS) to test differ-

ent scenarios that would be too complex and risky to be tested in the real world. This information

could provide insights and flexibility for practitioners to investigate the system performance with

various systematic parameters, such as disruption types, system attributes, and objectives.

From the research perspective, this dissertation provides a generalized way to design a multi-

agent system to realize distributed intelligence, including agent architecture, coordination strate-

gies and protocols, and decision-making capabilities. In addition to manufacturing systems and

supply chain networks, the proposed framework is transferable to other complex systems, such as

multi-robot systems, autonomous vehicles, and human-robot teams, that consist of multiple intel-

ligent entities.

The rest of the dissertation is structured as follows. Chapter 2 provides the multi-agent frame-

work for dynamic and resilient rescheduling in manufacturing systems and performance evaluation
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through a simulation case study. Chapter 3 presents the multi-agent framework for the heuristic-

guided dynamic re-planning in supply chain networks and performance evaluation through case

studies. Chapter 4 describes the heterogeneous risk management mechanism for resilient disrup-

tion response for supply chain networks. Chapter 5 states the conclusions and broader impacts of

this dissertation.
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CHAPTER 2

Multi-Agent Framework for Rescheduling in

Manufacturing Systems

This chapter presents an architecture for model-based resource agents and a dynamic and

resilient rescheduling strategy in a manufacturing system. The results have been published

in [11, 66]. As described in Chapter 1, a number of multi-agent architectures have been proposed

for the control of manufacturing systems. Most of the existing literature on multi-agent control

for manufacturing systems focuses on rule-based agent communication behavior and deterministic

manufacturing environment for the rescheduling problem, which limits the flexibility, agility, and

resiliency of the decision-making process. In this chapter, we focus on a rescheduling problem

in the presence of a resource breakdown in manufacturing systems. To improve the performance

requirements, we introduce an RA architecture that enables a capabilities-based clustering scheme

and a risk assessment approach for dynamic and resilient resource reallocation.

The rest of the chapter is organized as follows. A literature review and problem formulation

are presented in Section 2.1. Section 2.2 describes the proposed architecture of RAs. The agent

communication and decision-making for rescheduling are discussed in Section 2.3. Section 2.4

presents a simulation case study with the proposed RA architecture and rescheduling strategy.

Concluding remarks are presented in Section 2.5.
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2.1 Background and Overview

In this section, a literature review of the multi-agent approach for the rescheduling problem

in manufacturing systems is provided. Then an overview of the proposed formulation of the

rescheduling problem is presented.

2.1.1 Literature Review

The scheduling and rescheduling problems have been widely studied via centralized decision-

making, such as mathematical programming [79, 80] and reinforcement learning [24, 25, 27, 81,

82]. However, centralized decision-making with all the factory information might be inefficient in

quickly responding to the dynamic manufacturing environments. Therefore, multi-agent architec-

tures with distributed decision-making have been introduced in manufacturing systems to improve

flexibility and agility when solving the scheduling and rescheduling problem [3, 44, 45, 50, 59].

Most of the existing multi-agent architectures identify the roles of various manufacturing sys-

tem agents and develop their communication and decision-making requirements for the control

strategy. Product agents (PAs) and resource agents (RAs) have been described in most existing

multi-agent architectures [51]. A PA is responsible for fulfilling production requirements for

its associated physical part through interactions with other agents, while an RA provides high-

level control for its associated resource in the physical layer [50]. Through the coordination and

decision-making of PAs and RAs, flexibility and responsiveness in manufacturing systems can be

improved [3]. Figure 2.1 shows an overview of a general multi-agent manufacturing system that

includes product agents, resource agents, and the factory floor.

Some existing multi-agent architectures consist of agents who are responsible for making

scheduling decisions after collecting information from PAs and RAs. The contact agent introduced

by [59] and the rescheduling agent developed by [83] receive resource disruption information from

the disrupted RA and then start the rescheduling process with knowledge of the entire system.

However, these types of agents essentially provide centralized decision-making for scheduling,

12



Figure 2.1: An example of a multi-agent manufacturing system that comprises product agents
(PAs) and resource agents (RAs).

which has limitations in quickly responding to dynamic environments. Therefore, this chapter fo-

cuses on the distributed decision-making process via agent coordination to solve a rescheduling

problem and quickly compute a resilient new schedule.

In existing multi-agent architectures, it is commonly stated that RAs are the class of agents

that identify resource disruptions by continuously collecting data from their associated resources,

while the decision-making process for rescheduling could be triggered by a PA or an RA. In the

studies [51, 60, 61], PA triggers the rescheduling process and determines a new schedule. Once

the disrupted RA informs the PA of a need for rescheduling, the PA sends a rescheduling request

and triggers the PA-RA coordination to generate a new resource allocation schedule based on the

remaining tasks and resource capacities. In [51], the RAs receiving the PA’s request will propagate

the request to other RAs if they cannot satisfy the requirements. However, these methods do not

try to preserve the initial schedule; thus they have a high probability of causing deviations between

the new and initial schedule. In the rescheduling problem, the deviation between the new and

initial schedule is defined as scheduling robustness [84]. Thus, the methods from [51, 59, 60] have

limited scheduling robustness.

To address the limitation, determining modifications to the initial schedule should be consid-

ered. Therefore, for resource disruptions, RA coordination can be applied by using the local view

of the RAs. In [85], researchers introduce a reconfiguration agent as a mediator for RA coordina-
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tion to respond to the reconfiguration and communication requests from different RAs. For direct

RA coordination, some collaborative mechanisms are provided to enable a disrupted RA to request

all of the other RAs [62] or all RAs of the same type [63] to make reallocation decisions. How-

ever, it is not necessary for the disrupted RA to communicate with all RAs since some RAs do not

have the required capabilities to perform the affected operations of the disrupted RA. Therefore,

these methods create a significant communication load that will limit the agility of the system in

response to a disruption. To reduce agent communication, clustering approaches have been used

to provide a structured coordination process. In [64], an RA cluster is defined as a set of RAs that

collaborate to complete a sub-task. In [65], researchers define an RA cluster based on both physical

constraints and resource proximity. However, for a rescheduling problem, fixed coordination rules

and considering only nearby resources might cause resource overload or no alternative resource to

be found, which reduces throughput and resource utilization.

To cope with the problem, the disrupted RA needs to dynamically determine the agents it coor-

dinates with (i.e., RA cluster) instead of following a pre-defined rule-based coordination strategy

since the rescheduling scenarios are highly variable. The environment information, such as other

agent attributes and coordination behaviors, should be designed and included in the RAs’ knowl-

edge base. The existing studies [59, 63, 85, 86] focus on how an RA makes decisions to respond

to other agents’ requests through their proposed modularized RA architectures. In [87], a rein-

forcement learning approach is introduced to enable agents to learn the environment to solve the

scheduling problem. However, these methods do not cover how the agents can dynamically deter-

mine their coordination behaviors for the rescheduling problem.

In addition, it is important to consider the rescheduling resiliency or robustness, which refers

to the ability to recover system performance under different environmental conditions such as un-

certainties [88]. In many systems, the quality and execution of a rescheduling solution lie in the

resiliency and robustness of the new schedule. Thus, to ensure a dynamic and resilient response,

the decision-making process must incorporate uncertainty and potential risk factors into the opti-

mization. However, most scheduling/rescheduling methods with risk assessment focus on robust
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scheduling, which refers to deriving schedules that are resilient to disruptions [84]. In [88–90],

risk scenarios are incorporated into the Petri Net model or automata of the entire system and are

considered when the system generates a production schedule. In [23], researchers provide an algo-

rithm for robust scheduling considering uncertain processing times. In [91], a conceptual structure

that enables risk assessment in production scheduling is introduced. These studies primarily focus

on risk assessment in the process of generating an initial schedule and obtaining a resilient sched-

ule in the presence of disruptions. However, some disruptions will require the development of a

new schedule to meet the process throughput. Therefore, incorporating risk assessment into the

rescheduling process is an important need. However, the current studies use centralized methods

to cope with risks for the rescheduling problem [92, 93], while none of the existing distributed

rescheduling methods incorporate risks in their decision-making process.

In summary, for the rescheduling problem, existing multi-agent decision-making methods do

not currently satisfy the following needs defined to achieve agile and resilient rescheduling: (1)

minimization of changes to the original production schedule, (2) dynamic and distributed decision-

making via agent coordination, and (3) incorporation of metrics that quantify risks into distributed

rescheduling decision-making.

To address these limitations, the contributions of this section include: (1) the extension and

generalization of an RA architecture that includes a Knowledge Base, a Communication Manager,

and a Decision Manager, (2) the development of a capabilities-based clustering scheme and a

risk assessment approach for dynamic and resilient resource reallocation, and (3) an evaluation of

manufacturing system performance when implementing the proposed approach within a simulated

manufacturing facility.

2.1.2 Problem Overview and Formulation

This section provides formal definitions of the multi-agent architecture and components within

a production schedule. A resource reallocation problem in the form of a rescheduling task is also

formulated.
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Table 2.1: Nomenclature for the RA architecture

Production schedule
S Function that maps agents to the product and resource schedule
s Function that maps each agent to a sequence of events in the schedule

of the agent
Ag Function that maps events to particular agents
Ts Function that maps event sequence to the start and end times of each

event
Agents
X Set of states of a product
E Set of events representing operations that change product state
Tr State transition function representing how events drive state changes
xi = (xℓ

i , x
c
i) State of a product that describes its location and physical composition

T Cost function for performing events
At Function that maps events to resource attributes
Pq Set of production requirements for scheduled events
Cℓ Function that maps events to clustering RAs
Rescheduling process
RAd The disrupted RA
Ed Sequence of affected events in the resource schedule of RAd

sd Sequence of events that need to be replaced
xprior State before the event sequence that should be replaced (sd) in the initial

product schedule
xpost State after the event sequence that should be replaced (sd) in the initial

product schedule
snew Sequence of events that can replace the event sequence sd
H Function that calculates the earliest available time for a resource to per-

form an event
R Function that calculates the risk of a new event sequence
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2.1.2.1 Definitions

Manufacturing system – resources that are connected by material and information flow with a

control architecture to produce finished goods [44].

Resources – the entities, such as humans or equipment, that perform operations (e.g., produc-

tion, maintenance, and transportation) in a manufacturing system.

Central knowledge base – contains all the information relevant to the manufacturing system,

such as product requirements, resource capabilities, etc. It is initialized by the manufacturer.

Production goal – an objective to transform raw materials into finished products to meet cus-

tomer demands through certain resource operations.

Production schedule – a plan that specifies resources to perform operations on parts at certain

times to achieve the production goal. A detailed definition is stated in the following sections.

2.1.2.2 Agent formulation

In this dissertation, PAs and RAs are used to describe the multi-agent manufacturing system

and outline the rescheduling problem.

Product agent A PA is responsible for fulfilling the desired production requirements of its asso-

ciated physical product. The study in [50] introduces a model-based PA architecture that enables

PAs to make intelligent decisions to guide products and track the production progression through

the manufacturing system. Each PA stores the status of its associated product as a discrete state

in the set X = {x0, x1, ..., xf}, where x0 is the initial state and xf is the final state of the product

in the manufacturing system. Each state is comprised of two elements, xi = (xℓ
i , x

c
i), where xℓ

i

and xc
i denote the product’s location and physical composition, respectively. Note that precedence

constraints may exist in the physical composition states xc
i while usually not in the location states

xℓ
i . For instance, a PA state can be represented as xi = ( “at machine1”, “with a milled pocket”).
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Resource agent An RA provides high-level control for a physical resource to perform operations

on products. In this work, RAs are grouped into two RA classes: transportation and transformation

RAs, based on the operations they can perform on the products. The resource operations are

modeled as a set of discrete events, denoted by E = {e0, e1, ..., en}. An event for a transportation

RA results in a state change in the location of a product, while an event for a transformation RA

results in a change in the physical composition. More information regarding the resource agent is

discussed in Section 2.2.

2.1.2.3 Production schedule

From the definitions above, the production schedule for the manufacturing system is a collection

of schedules for all p products (or equivalently, all r resources) in the manufacturing system. The

production schedule for a PA or an RA contains different information. The set of all PAs and RAs

in the system is denoted by A = {PA0, ..., PAp, RA0, ..., RAr}, where p is the number of PAs

and r is the number of RAs in the system. The production schedule for each agent is calculated by

a function:

S : A → (s, Ag, Ts), where

s : A → e0, ..., ea : is a function that maps agents to the sequence of events scheduled to be

performed either on that product or by that resource

Ag : s×A → A : is a function that represents the relationship that describes the events, the

RAs that perform the events, and the PAs on which the events are performed

Ts : s(A)→ (R+,R+) : is a function that maps events to start and end times

For a given resource, the event sequence s(RAj) represents the events that RAj will perform,

and Ag provides the PA on which the events are performed. Ts(s(RAj)) provides the start and

end times for each event in the resource schedule. It is assumed that a resource cannot perform

multiple events at the same time, thus, there should be no intersections (and generally should exist

time gaps) between event time periods for a given resource. Therefore, one might define an idle

time interval between the end time of one event and the start time of the next event. The set of
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idle time intervals, denoted by I = {[t0, t1], [t2, t3], ...}, can be calculated for each (re)scheduling

purpose. The production goal will be achieved if the specified resources follow their designated

schedules for each product in the system.

For a specific product, the event sequence s(PAi) defines the PA state transitions from the

initial state, x0, to the final state, xf . To represent how an event represents a change in the state of a

PAi, a state transition function is defined as Tr : X ×E → X . The PA states and event sequence,

s(PAi), satisfy the transition relationship:

xf = Tr(x0, s(PAi)). (2.1)

Based on the transition relationship, the start and end times in Ts(s(PAi)) indicate the time periods

during which the product is associated with a specific state. Since the product state is always

defined, the times provided in Ts(s(PAi)) will not contain any time gaps. Hence, the end time of

one event (or state) equals the start time of the next event (or state). Note that an event type (e.g.,

milling a pocket) can occur multiple times in s(PAi), but at varying occurrence times and with

different RAs. The function Ag identifies the specific RA that is associated with a particular event

being applied to PAi. Note that every event in the schedule of a given product is also an event for

the associated resource and vice versa. However, the indices of the specific event are not the same

within the product and resource schedules.

2.1.2.4 Problem statement

Resource allocation can be formulated as a production scheduling problem [45]. When unex-

pected resource disruptions (e.g., breakdowns) occur in dynamic manufacturing systems, the initial

production schedule cannot be executed as originally planned [38]. Therefore, the products that

are impacted by this disruption may be rescheduled through the reallocation of resources [21].

This rescheduling problem is outlined as: given a manufacturing system (r resources) with a

production goal (p products to produce) and feasible initial production schedule (S), assuming
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Figure 2.2: Discrete event system representation of the problem formulation. Each affected event
edi from the affected resource is associated with a specific PA (PAdi), where the PA schedule
denotes the index as q. eq cannot be performed on the product, and thus the state transition for
PAdi from xprior to xpost cannot be achieved. The reallocation problem is to find a new event
sequence snew that can recover this transition.

a single resource breaks down (RAd), find a new feasible and resilient production schedule on-

the-fly that minimizes changes to the initial schedule S and optimizes user-defined objectives. To

formulate the problem, the following assumptions are provided:

A.1 The initial production schedule is predetermined and will achieve the production goal if

followed.

A.2 Unexpected resource disruptions are detectable by the associated RAs and result in the spe-

cific resources becoming unavailable for a certain amount of time.

A.3 The manufacturing system contains resource redundancy and is operating with available

capacity.

A.4 The rescheduling time can be neglected compared to operation time.

A.1 ensures that the manufacturing goal can be met if the rescheduling process follows the

production requirements in the initial schedule. A.2 guarantees that a disruption will be identified

by a resource if it occurs and also designates how a resource will be impacted by the disruption.
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Algorithm 1 Identify the shortest event sequence that needs to be replaced
Input: edi , RAd, s, Ag
Output: sd

// Identify the index of edi in its associated product schedule
1: PAdi ← Ag(edi , RAd)
2: j ← 0 and ej ∈ s(PAk)
3: while ej ̸= edi or Ag(ej, PAk) ̸= RAd do
4: j ← j + 1
5: q ← j
6: end while

// Find the event sequence that needs to be replaced
7: Add eq to sd

// For the events ej before eq in s(PAk)
8: j ← q − 1
9: while xℓ

j+1 = xℓ
d and j ≥ 0 do

10: Add ej to the first position of sd
11: j ← j − 1
12: end while

// For the events ej after eq in s(PAk)
13: j ← q + 1
14: while xℓ

j+1 = xℓ
d and j ≤ f − 1 do

15: Add ej to the last position of sd
16: j ← j + 1
17: end while
18: return sd

A.3 is necessary to enable agent coordination and part rerouting. A.4 simplifies the rescheduling

problem by assuming there are no changes in the manufacturing system during the decision-making

process.

Once a resource disruption occurs, the associated RA is able to identify the disruption (A.2)

and determine the events that the resource can no longer perform, denoted by Ed, which is a sub-

sequence1 of the original event sequence for resource RAd: Ed ⊆seq s(RAd). All of the events

in Ed need to be re-assigned to alternative resources, which requires resource redundancy and

available capacity (A.3).

As shown in Fig. 2.2, each event edi ∈ Ed belongs to the schedule of its associated PA, denoted

by PAdi = Ag(edi , RAd). Since RAd cannot perform edi , PAdi cannot achieve its production goal

1For simplicity, the symbol ⊆seq is used to represent the sub-sequence relationship in this dissertation.
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(i.e., state transitions in Eqn. (2.1)). The sequential events associated with edi in a given product

schedule may become unnecessary (e.g., transportation events to/from the broken machine). We

define sd as the shortest sequence that contains edi and should be replaced by a new event sequence

snew in the production schedule. To identify the sequence sd, the index of edi for the specific

product, PAdi , is denoted by q (i.e. edi = eq). Algorithm 1 determines sd by checking whether

the associated states of the sequential events are related to RAd. In this way, sd is guaranteed as

the shortest sequence that contains edi and needs to be replaced. Once sd is identified, two states

xprior and xpost are defined as the states before and after sd in the product schedule of PAdi , where

Tr(xprior, sd) = xpost.

Therefore, for each affected event edi and its associated product PAdi , the rescheduling process

aims to search for a new sub-sequence of events (snew) that includes the events that need to be

replaced, sd:

Tr(xprior, snew) = xpost (2.2)

Note that the affected event edi being performed by an alternative RA should be an element of

snew, and the new sequence should satisfy the production requirements.

Through Algorithm 1 and Eqn. (2.2), the rescheduling problem is formulated in a way that

minimizes the changes to the initial schedule. Therefore, instead of resolving a system model to

generate a fully new optimal schedule (e.g., job shop schedule, which is NP-hard), we focus on

modifying the initial schedule by locally searching for an alternative resource to replace the bro-

ken resource to recover the performance and thus minimize the impact to the initial schedule. It

requires less computational effort than re-generating the total schedule while it loses some opti-

mality. In this case, the problem in this work is polynomial-time solvable since the worst case is to

evaluate all the resources in the system for each event that needs to be replaced. This process takes

O(r ×
∑

edi∈Ed
|sdi |) computations, where r is the number of RAs in the system. A centralized

method can be applied to provide an optimal schedule based on the performance objective (e.g.,

throughput); however, this approach requires significant computation efforts to achieve centralized

optimization, making it less agile in many disruption scenarios. In this work, we propose an RA
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Figure 2.3: The internal resource agent architecture, including Knowledge Base, Communication
Manager, and Decision Manager. The communication between each component for the reschedul-
ing problem is also displayed.

communication strategy with capability heuristics to avoid the need to communicate and optimize

across all of the resources, thus reducing computational efforts. We then incorporate risk assess-

ment into the rescheduling decision-making problem to investigate how the consideration of risk

improves throughput.

2.2 Resource Agent Architecture

2.2.1 Knowledge Base

The Belief-Desire-Intention (BDI) architecture has been widely used to provide a modular

framework to design intelligent agents [94]. Following the BDI design, the model of an RA in

the authors’ previous work is contained in the beliefs segment of the architecture within this work.

In this work, we reformulate the structure and content of the belief section of the RAs as the de-
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sires and intentions are developed and integrated into the Knowledge Base. As shown in Fig. 2.3,

several aspects of the Knowledge Base are initialized before the manufacturing system begins op-

erating. We assume this initialization is completed by the manufacturers based on the customer

order, physical layer, and initial production schedule.

2.2.1.1 Intentions and Desires

Intentions Agent intentions represent the plan an agent has committed to execute. In this section,

the intentions of an RA are represented by the resource schedule S(RAj) = (s, Ag, Ts), as defined

in Section 2.1.2.

Desires Agent desires represent the goal and requirements of an agent. As shown in Fig. 2.3,

the desire of an RA is to execute the resource schedule S(RAj) without violating requirements for

production and safety.

In this section, function Pq : E×PA→ Requirements maps each scheduled event for a given

product agent to its specific production requirements (e.g., precision). The production requirements

that RAj must satisfy based on the products that will engage with the given RA are represented as

a set {Pq(ei, Ag(ei, RAj)) : ei ∈ s(RAj)}. These requirements are then split into hard and soft

requirements. Hard requirements must be followed while soft requirements can be negotiated to

meet the demand with the introduction of a penalty. For example, a hard requirement might be the

size constraint of a product that can be assigned to a resource such that the product will fit within

the workspace of the resource. A soft requirement could include the bound on the energy cost for

a given event that may need to be violated in order to meet the product due date [95].

The intentions and desires are related to the resource schedule, thus they are assigned to RAj

once the initial production schedule of the manufacturing system is determined, and will be updated

as the resource schedule changes.
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2.2.1.2 Beliefs

Building from the architecture used in previous work [11], the beliefs of an agent are comprised

of the state, capability, and environment models. These models are dynamically updated (i.e.,

extended, shrunk, and revised) as the resource and its environments change.

State model The agent state model describes how an RA monitors the status of the associated

physical resource. Researchers in [96] introduce a Finite State Machine (FSM) framework to

model the status of a manufacturing resource using several states and transitions. Similarly, the

RA state model in this section is defined as an FSM that includes Idle, Up, and Down states as well

as the transitions between these states, as shown in Fig. 2.4.

Transitions between RA states are triggered by the decision maker of the RA. As shown in

Fig. 2.3, the sensor data in the physical layer is collected by the data analyzer, which utilizes this

data to identify the current status of the physical resource. Though this work does not focus on

data-driven analysis, related work has been done to achieve state and anomaly identification [97].

Having obtained the analysis results, the decision maker checks the current state model and decides

whether an update to the state model is needed (e.g., trigger the transition to Down if the resource

is broken).

Capability model The agent capability model provides a detailed description of the operations

that a resource can perform on parts. As defined in Section 2.1.2, RAs are grouped into two RA

classes: transformation RAs and transportation RAs. The resource operations can be modeled as

discrete events that drive state changes in the parts, as shown in Fig. 2.4. Therefore, an FSM can

be used to model the capabilities of an RA [51, 98]:

Mc = (X,E, Tr, T, At):

X = {x0, ..., xn} : a set of states that can be achieved on products utilizing the resource

E = {e0, ..., em} : a set of events representing operations that change product states

Tr : X × E → X : a state transition function
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Figure 2.4: An example of the beliefs of a machine agent in a manufacturing system. The beliefs
include the state, capability, and environment models.

T : E → R+ : amount of time associated with an event

At(E,RAj) : a function that maps events and specific RAs to the physical resource attributes

associated with each event (e.g., payload limitations)

In the capabilities model, the state set X contains all changeable states for the products as-

sociated with the given resource. E and Tr follow the definition provided in Section 2.1.2. The

transition function Tr is inherited from the PAs. T represents the nominal cost (denoted as oper-

ation time) for each event to occur, assuming the cost for the same event is identical for different

products. At provides the resource attributes for each event. Note that multiple RAs in the same

class could have the same events, but the attributes might be different. The characteristics of the

attributes are described by parameters, such as speed limitation, payload, and part dimensionality.

As shown in Fig. 2.3, the capability model is initialized based on the physical manufacturing

system. Similar to the state model, as the data analyzer receives information constantly from the

resource in the physical layer, the decision maker updates the capability model if there are any

changes to the resource. The changes could be manual, such as tool replacement/removal, or

spontaneous, such as machine breakdown.
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Environment model The RA’s knowledge of other RAs in the system is captured in the environ-

ment model. The relationships to these agents are modeled as mapping functions that map events

or states to different sets of RAs, namely clustering, sequential, and collaborative RAs, as shown

in Fig. 2.4.

Clustering RAs: The clustering RAs for RAj are the set of RAs that can perform the same

events as RAj for a given subset of events Es in RAj’s capability model. Each event in the given

event subset ei ∈ Es corresponds to a unique cluster. The relationship between each event ei

and the associated clustering RAs is modeled as a cluster mapping function, which is defined as

Cℓ : Es ×RA→ 2RA, where

Cℓ(ei, RAj) = {RAk | ei ∈ ERAk
, RAk ̸= RAj} (2.3)

2RA denotes the power sets of the RAs in the manufacturing system. ERAk
represents the event set

in the capability model of RAk. Therefore, the set of Cℓ(ei, RAj) maps represents the clustering

RAs for the given event subset Es for RAj . As shown in Fig. 2.3, clustering RAs are not formed

during the initialization. When clustering RAs are needed, RAj retrieves the capabilities of other

RAs from the centralized knowledge base and checks the constraints in Eqn. (2.3) to form the

cluster map. Alternatively, RAj can also request the capability information from the RAs within

the manufacturing system to form the clusters dynamically.

Sequential RAs: The sequential RAs of RAj depend on the resource schedule and associated

product schedules. Every event in RAj’s schedule ei ∈ s(RAj) corresponds to a specific product

agent PAk = Ag(ei, RAj). In the product schedule of PAk, the RAs that perform the events

directly before and after ei are sequential RAs of RAj for this specific event. Each event ei ∈

s(RAj) corresponds to a unique set of sequential RAs. To identify the sequential RAs, the index

of event ei in the product schedule of PAk is denoted as q, which can be found following the same

process in Algorithm 1. Note that q is bounded by 0 ≤ q ≤ f − 1 since the event sequence in the

product schedule of PAk is defined as s(PAk) = e0...ef−1. Therefore, if ei is the first or last event
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in the product schedule of PAk, there is only one sequential RA for this event ei. Otherwise, there

are two sequential RAs. RAj stores the information about the sequential RAs in a map that relates

the scheduled event to specific RAs: s(RAj)→ 2RA. The set of the sequential RAs depending on

the index q defined above:

{Ag(eq+1, PAk)}, if q = 0

{Ag(eq−1, PAk)}, if q = f − 1

{Ag(eq±1, PAk)}, if 0 < q < f − 1

(2.4)

The sets of Sq(ei) represent the sequential RAs for the scheduled events of RAj . The set of

sequential RAs is formed in RAj’s Knowledge Base based on the initial production schedule.As

the system runs, the schedule of agents might need to change to adapt to disruptions, thus the

sequential RAs should be updated as the schedule changes.

Collaborative RAs: To represent the collaboration between RAs, researchers in [51] introduce

neighboring RAs, which have shared states in the capability model. In this work, collaborative RAs

of RAj are defined as the set of RAs that contain the same location states in their capability model.

Each location state xℓ
i in RAj’s capability model corresponds to a unique set of collaborative RAs.

This relationship is modeled as a mapping: X ×RA→ 2RA. Therefore, for RAj , its collaborative

RAs in terms of xℓ
i is described as:

{RAk | xℓ
i ∈ XRAk

, RAk ̸= RAj} (2.5)

where XRAk
is the state set in the capability model of RAk. Note that a transportation RA can

have both transportation and transformation collaborative RAs, while a transformation RA can

only have transportation collaborative RAs. The set of collaborative RAs is formed in RAj’s

Knowledge Base as the RA and its capability model are initialized, following the state relationship

discussed above. This set of collaborative RAs is updated as the capability model changes. For

example, if a mobile robot can no longer reach a machine at xℓ, the states related to xℓ will be
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removed from its capability model, as well as the collaborative RAs related to xℓ.

2.2.2 Decision Manager and Communication Manager

2.2.2.1 Decision Manager

The Decision Manager is responsible for the deliberation and reasoning process of an RA. Dif-

ferent decisions, such as product scheduling [50], RA response [86], etc., have been introduced in

the literature. The Decision Manager in this work makes decisions about data analysis, scheduling

management, communication, and risk assessment.

Data analyzer – a component that collects and analyzes data from the physical resource through

sensors. The data analyzer may contain different data-driven models to abstract information that

can be used by the agents from the raw data obtained from various sensors.

Risk assessor – a component that provides enhanced deliberation and reasoning processes to

the RA by evaluating the risk of decision candidates. The risk assessor may contain different

function models to analyze the risk of any decision based on the current status of the agent and the

responses received from other agents.

Decision maker – a component that makes decisions regarding the execution of the current

schedule and responds to requests from other agents based on the current status of the RA.

2.2.2.2 Communication Manager

The Communication Manager of an RA provides the interface between the RA and other agents

for exchanging information. While the communication component has been mentioned in [50, 59,

63], these methods do not specify the different types of communication between the RAs. The

Communication Manager in this work includes a request manager and a response manager.

Request Manager – a component that sends requests from the decision manager to other agents

and passes requests received from other agents to the decision maker.

Response Manager – a component that sends the response from the decision manager to other
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agents and passes responses received from other agents to the decision maker.

2.3 RA Coordination and Decision-Making

In this section, the proposed rescheduling strategy via RA coordination is described. The coor-

dination is guided by the agent environment models instead of following pre-defined rules. These

models can be easily updated and scaled for different systems, thus the agent coordination behav-

iors are flexible and adaptable. An overview of the rescheduling process is shown in Fig. 2.5. In

the agent coordination process, the constraints of the schedule are checked when agents determine

their responses, and the new event sequence is augmented by propagating requests until the state

transition is satisfied.

2.3.1 RA Coordination using Capability-based Cluster

2.3.1.1 Rescheduling request

When a resource breaks down, the associated RA, denoted by RAd, must identify the break-

down, determine events that are affected by the breakdown, and create bid requests to start the

rescheduling process.

Identify disruption and affected events A resource agent collects data continuously from the

associated physical resource through sensors attached to this resource. The data is passed into the

data analyzer within the Decision Manager of the RA. By feeding the data to the models in the

data analyzer, the data analyzer identifies the current status of the physical resource and sends this

information to the decision-maker. The decision maker then updates the knowledge base of the

RA. When a resource is broken, the RA identifies the disruption and updates the state model to

indicate a Down state.

After identifying the breakdown, the decision maker requests information about the resource

schedule S(RAd) and production requirements Pq from the Knowledge Base. The decision maker
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will then determine the sequence of events, denoted as Ed, that need to be rescheduled. Ed =

ed0ed1 ...edd is a priority event sequence, where each event corresponds to a priority value, which is

calculated based on the original start time and the priority/importance of the associated product. An

example priority mapping function could include a weighted sum of the inverse of the original start

time and due date. For this example function, the order of the affected events in the sequence Ed

will increase as the start times and/or due dates of a given product are extended. To realize dynamic

rescheduling on the fly, the proposed method reschedules the affected events in a sequential manner

following the order provided in Ed. For each affected event in Ed, RAd runs Algorithm 1 to identify

xprior and xpost. For simplicity, the following description focuses on the rescheduling process for

a single affected event edi . This process will be repeated for each additional event within Ed.

Broadcast rescheduling request After identifying and sorting the affected events, the schedul-

ing manager of RAd sends a rescheduling request to the request manager. A broadcast technique

is used for RAs to communicate information [49]. For each edi , the request manager can dynam-

ically identify the cluster RAs associated with edi via the environment model and broadcasts the

rescheduling bid request Req = (edi , Pq, xprior, xpost). Pq is the function that maps edi to the

production requirements. xprior and xpost define the states that denote where a transition must be

rebuilt, as defined in Eqn. (2.2).

As mentioned in Section 2.1.2, the sequential events of edi may become unnecessary or tran-

sition to a different sequential event depending on the RA used to replace the affected event. In

the case of a change to the sequential events, the request manager of RAd sends the event edi to

the sequential RAs in Sq(ed) and requests them to remove the sequential events for edi from their

schedule.

2.3.1.2 Resource agent coordination

Cluster search Based on the resource capabilities, only the clustering RAs of RAd with respect

to edi have access to the broadcast request. These RAs access the rescheduling request, and their
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Figure 2.5: Coordination behaviors of resource agents for rescheduling process

request managers send the request to their decision maker. Through this clustering scheme, the

agent coordination is more effective since RAd requests the agents that can perform edi instead

of requesting all the other RAs or only nearby RAs. The decision maker requests the capability

model from the Knowledge Base and conducts the following match-making steps:

• Check whether the RA still contains the affected event edi in its capability model

• Determine whether the RA’s associated resource attributes can satisfy the production require-

ments Pq(edi)

As defined in Eqn. (2.3), the first step ensures that a specific RA should be considered as a cluster-

ing RA of RAd, while the second check determines whether the resource can successfully meet the
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production requirements (e.g., meet the hard and soft constraints). The hard requirements must be

satisfied, while the soft requirements can be negotiated (e.g., relaxed) within a tolerance range with

penalties. A smaller, more focused clustering RA set is generated by the second match-making

step:

P̃q(edi , Ag(edi , RAd)) ⊆ At(edi , Cℓ(edi , RAd)) (2.6)

where At(edi , Cℓ(edi , RAd)) represents the set of resource attributes of edi in the capability models

of the clustering RAs. P̃q defines the production requirements with relaxed soft requirements. As

such, the RAs that satisfy Eqn. (2.6) form a new cluster for RAd with respect to the affected event

edi:

C̃ℓ(edi , RAd) = {RAc | RAc ∈ Cℓ(edi , RAd),

P̃q(edi , Ag(edi , RAd)) ⊆ At(edi , RAc)}
(2.7)

The RAs in the cluster C̃ℓ(edi , RAd) represent the subset of RAs that can perform edi and satisfy

the production requirements of edi .

Schedule generation Once the cluster C̃ℓ(edi , RAd) is formed, each RA in the cluster follows

the same process to generate a new schedule. For simplicity, the following description focuses on

one RAc in the cluster C̃ℓ(edi , RAd). As mentioned in Eqn. (2.2), a new event sequence, snew,

needs to be formed to achieve the transitions from xprior to xpost in terms of location and physical

composition. However, as defined in Section 2.2.1, an event can only achieve either a location or

physical composition transition. Therefore, the clustering RAs must verify whether the event edi

satisfies the production needs given in Eqn. (2.2) or if other events will be needed.

The RAs are grouped into two classes in Section 2.1.2. If RAd is a transportation RA, then

edi must be an event that drives a location change of the product and does not change the physical

composition (i.e., xc
prior = xc

post). In this case, Eqn. (2.2) is rewritten as:

Tr(xprior, edi) = xpost, with xc
prior = xc

post (2.8)
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For location events, a single clustering RA can generally replace RAd without the need for further

RA coordination to form a feasible new schedule. In this example, the new schedule snew only

contains edi .

However, in the case where RAd is a transformation RA, the sequential events associated with

edi that provide location transitions must be reassigned. Therefore, simply replacing RAd with

a clustering RA that performs edi will not fulfill the required transitions in Eqn. (2.2) and other

events must be included in snew. Using Eqn. (2.3), the clustering RA can only drive a change in

the physical composition by performing event edi:

Tr(xc
prior, edi) = xc

post (2.9)

To truly replace RAd, the transformation clustering RA will require help from transportation RAs

to move the product into and out of its location, denoted by xℓ
RAc

. Thus, transportation events

that drive location changes from xℓ
prior to xℓ

RAc
and xℓ

RAc
to xℓ

post need to be found. As shown in

Fig. 2.5, the clustering RA sends requests to its collaborative RAs. These collaborative RAs check

their capability models and search for transportation events that will satisfy the location change

requirements.

If the event does not exist, a propagation method can be used [51] to find more transportation

events to drive the location change from xℓ
prior to xℓ

RAc
or xℓ

RAc
to xℓ

post. These events should be

appended to snew to form the final schedule.

Once the event sequence snew is determined, the timing to perform these events needs to be

determined. In previous work [11], new events were assigned to the corresponding RA without

changing the existing schedule, which led to a large delay in the product cycle time. In this section,

a function H is defined to calculate the earliest available time to start an event e based on the idle

time I of the resource and the requested start time of e, denoted by t. Therefore, the function H

serves as a heuristic that minimizes the completion time of the new event. To simplify the time

propagation, the transportation is handled by adding a time interval δ between any two operations
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Figure 2.6: The Gantt charts that show the schedule of a clustering RA to illustrate how the function
H allows one event shift

in a machine schedule. To minimize the effect on other events and products, only one scheduled

operation is allowed to be shifted when adding e to a clustering RA. This constraint determines

the latest time tmax1 = t3 − δ − (t2 − t1) − δ − T (e) event e can be assigned to the current idle

time interval, as shown in the upper Gantt chart in Fig. 2.6. Note that tmax1 = ∞ if t1, t2 or t3

does not exist. If the requested time t is larger than tmax1, event e cannot be scheduled before the

event in (t1, t2). If this occurs, the clustering RA will check the next idle time interval to evaluate

if tmax2 = t5 − δ − (t4 − t3)− δ − T (e) will provide sufficient time to assign event e to this next

idle time interval, see lower Gantt chart in Fig. 2.6. Note that tmax2 =∞ if t5 does not exist. The

function H is defined as follows:

H(I, t, δ, e) =


t0 + δ, t ≤ t0 + δ ≤ tmax1,

t, t0 + δ < t ≤ tmax1,

t2 + δ, max{t, t0 + δ} > tmax1 and t2 + δ ≤ tmax2

(2.10)
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where the resource idle time set, I = {[t0, t1], [t2, t3], ...}, is obtained from the Ts(s(RAj)) in the

resource schedule, as mentioned in Sec. 2.1.2. Note that function H can be expanded if more than

one scheduled operation is allowed to be shifted.

For each new event sequence snew = e1e2...es, the post event should always start after the prior

event ends:

ts,i + T (ei) ≤ ts,j, 1 ≤ i < j ≤ s (2.11)

where ts,i and T (ei) represent the start time and time cost (e.g., cycle time) of event ei, respectively.

The start time of a later event ts,i+1 is obtained from function H with the requested start time of

ts,i + T (ei). Note that in the time interval [ts,i + T (ei), ts,j], a part remains with the current RA

that performs ei until the RA that performs the next event ej is available. The combination of the

clustering and collaborative RAs form a set of new event sequences, denoted by snew, to replace

sd in order to achieve the transition from xprior to xpost.

2.3.2 Decision-making with Risk Assessment

2.3.2.1 Risk assessment

When RAs send a response to form a new schedule, the information in the response may contain

uncertainties. In this work, we define uncertainty as information about a resource attribute or

state that may be stochastic or probabilistic rather than deterministic. These uncertainties can

be modeled by utilizing the manufacturing data. For example, a Gaussian distribution may be

used to model uncertainty in machine operation time [23]. Uncertainties introduce a potentially

costly effect during the decision-making process for the rescheduling problem. We define the

effects associated with variations in the rescheduling process, such as cycle time delay and schedule

deviation, as risks in this section.

To consider risks in the decision-making process, all new schedules should incorporate a risk

assessment process based on the set of resources chosen to replace the affected event sequence sd.

There are two key risks considered in this work:
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• R1: the risk of a new event in RAj causing operational delays for the other products associ-

ated with this resource

• R2: the risk of an added event in RAj increasing the probability of breakdown

The quantification of the two risks is discussed below through an example. Note that the definition

and quantification of risks, uncertainties, and how they are related may vary according to how a

different resource may evaluate the risks.

Risk of an added event causing operation delays for other products scheduled with RAj

Although event start and end times are provided in a new schedule (see Section 2.3.1.2), the actual

times of these events may be shifted slightly due to uncertainties in the operation times of the

events. Note that the operations before the added event are assumed to have been completed. As

shown in Fig. 2.6, if the added event (red block with dash outline) takes longer to finish, the next

event (blue block) for this resource could be impacted, which may also affect the following event

(green block). Therefore, this risk evaluates the likelihood that a posterior event will be affected.

As defined in Section 2.3.1.2, without considering uncertainties, tmax1 and tmax2 represent the

latest start times for which an event can be added into the sequence without affecting a poste-

rior event for a given resource. The start time of the added event, H(I, t, δ, e), is obtained from

Eqn. (2.10). If H(I, t, δ, e) is close to tmax1 or tmax2, the risk of causing a delay for the following

event is high. To evaluate this risk, the time deviation, denoted by ∆t, between the start time and

tmax1 or tmax2 is calculated:

∆t =


tmax1 −H(I, t, δ, e), H(I, t, δ, e) = t0 + δ

or H(I, t, δ, e) = t

tmax2 −H(I, t, δ, e), H(I, t, δ, e) = t2 + δ

(2.12)

If we assume a Gaussian or uniform distribution for the cycle times of different events, then tmax1,

tmax2, and thus ∆t are all random variables with known distributions.
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Note that ∆t is non-negative, where a larger ∆t provides better tolerance to operation time

uncertainty, which translates to a lower risk of causing delay. If there are no posterior events, then

tmax1 and tmax2 = ∞, hence ∆t = ∞, and the risk is zero. If ∆t = 0, then the new event is

scheduled to start at tmax1 or tmax2. Given the uncertainty in cycle times, this indicates a high-risk

decision. In a new event sequence, snew = e0e1...es, each event is added to the schedule of the

specified resource. We define the risk for a given resource RAj in the new schedule as follows:

Q(RAj) = 1− E
(

∆t

tmax

)
(2.13)

where E represents the expected value, and tmax = tmax1 or tmax2 depending on the conditions

in Eqn. (2.12). Note that as the difference between the maximum threshold and true start time

increases, the risk goes down. Equation (2.13) limits the value of Q(RAj) to lie between 0 and 1.

This type of risk can be calculated for each event within the new schedule snew. The total value

for Risk 1 associated with this schedule is defined as the maximum value among the resources that

perform the new schedule:

R1 = max{Q(RAj)}j∈[0,s] (2.14)

Risk of an added event in RAj increasing the probability of breakdown If a resource in

the new schedule breaks down, it will lead to more rescheduling requirements for the products

that have uncompleted scheduled operations by this resource. Therefore, risk 2 is evaluated by

determining the probability of breakdown if the resources in the new schedule are assigned new

events to perform. This risk is based on the assumption that every resource has a historical Mean

Time Between Failures (MTBF), and that the addition of a new event will introduce more wear

and tear to the resource and move the resource closer to the MTBF.

We define the probability of resource breakdown as a function that maps RAs to a value between

0 and 1: Pr : RA→ [0, 1]. This probability is given as:

Pr(RAj) =
oc
on

(2.15)
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where oc is the number of operations that the resource has performed since the last maintenance

event, and on represents the nominal number of operations that the resource generally performs

between breakdowns.

In a new event sequence, snew = e0e1...es, the breakdown of any resource in the new schedule

makes the new schedule unsuccessful. Therefore, Risk 2 is defined as the maximum probability of

the breakdown of a resource in the new schedule:

R2 = max{Pr(RAj)}j∈[0,s] (2.16)

Note that as the probability of resource breakdown increases, the risk goes up. The risk value is

between 0 and 1 since it is a probability calculated by Eqn. (2.15).

Since a system might apply different importance levels to the different risks, the overall risk

assessment value that will be incorporated into the decision-making process is a weighted sum of

the risks (R1 and R2 in this work)
∑k

i=1 wiRi(snew), where wi is the weight factor for Ri.

2.3.2.2 Decision-making

Determine the new schedule Once the risk assessment is completed, RAd is responsible for

choosing a new schedule from the set of possible event sequences Snew. Note that every event se-

quence in Snew satisfies all the constraints to achieve the production goal due to the proposed prob-

lem formulation and agent coordination. Therefore, the new schedule selection problem is reduced

to obtain the new schedule that optimizes the rescheduling objectives defined by the manufacturer.

This type of optimization can be easily solved by some classical algorithms, such as bubble sort

and divide-and-conquer. Note that this optimization provides the optimal new schedule from the

candidate solution set Snew. However, the global optimal solution may not be in the candidate

set Snew since all the candidate new schedules are formed by agent local decision-making. An
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example is given in Eqn. (2.17):

s∗new = argmin
snew∈Snew

J (snew) (2.17)

where s∗new ∈ Snew is the event sequence that provides minimal objective. The multi-objective

function J is a sum of the cost, penalty, and risk for one event sequence snew = e1e2...es, as

shown in Eqn. (2.18):

J (snew) =
s∑

i=1

αC(ei) +
s∑

i=1

βip
a
i +W

k∑
i=1

wiRi(snew) (2.18)

where C(ei) = [C1(ei) C2(ei) · · · Cn(ei)]
T captures a nominal cost function for event ei based on

n metrics and α = [α1α2 · · ·αn] describes the corresponding weights. The pre-defined cost metrics

could include operation time, finish time, energy cost, resolution, etc. If there are soft constraints

that must be negotiated, pai denotes the penalty for performing ei and βi is the corresponding

weight. The risks associated with the given sequence are evaluated in
∑k

i=1wiRi(snew) for a given

sequence. Parameter W is used to scale the risk based on the scale of the cost and penalty and what

value the decision maker places on the assessment of risk. Note that in Eqn. (2.18), the objectives,

penalties, and risks are defined by the manufacturers and the weight parameters depend on how the

manufacturers desire to balance the objectives, penalties, and risks. Future work will investigate

the sensitivity of Eqn. (2.18) to changes in these values and identify a method for optimizing under

various conditions.

As shown in Fig. 2.5, the affected resource, RAd, informs the RAs that will be associated with

the new event sequence, s∗new, through a Communication Manager. The new RAs receive the

notification and pass the information to their Knowledge Bases to update their resource schedules

and provide high-level control for their associated physical resources to perform the events.

No schedule found The result of the rescheduling problem depends on resource redundancy and

available capacity, which are the assumptions we made in Section 2.1.2. In practice, manufactur-
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ing resources are limited in a factory, therefore, the existence of a feasible new schedule is not

guaranteed. Therefore, in the proposed method, if no schedule is found within the required con-

straints (e.g., no redundant resources available), the RAd will request the central controller of the

manufacturing system or human manager to make further decisions or relax additional constraints.

As mentioned in Sec. 2.1.2, the centralized method evaluates all of the resources in the system

for each event that needs to be replaced during the rescheduling process. Therefore, the centralized

method forms the candidate solution set Snew by considering all the combinations of resources in

the system and then solves the following optimization:

min
snew∈Snew

J (snew) (2.19a)

s.t. Tr(xprior, snew) = xpost (2.19b)

ts,i + T (ei) ≤ ts,j, 1 ≤ i < j ≤ s, ei ∈ snew, (2.19c)

where these objectives and constraints are the same as those considered by the distributed method.

2.4 Case Studies

To evaluate the feasibility and performance of the proposed framework, the proposed RA ar-

chitecture and rescheduling strategy are implemented in a simulated manufacturing system. In

this section, the setup of the simulated manufacturing system and the results of the case study are

provided.

2.4.1 Case Study Set-up

In this study, we use a Repast Symphony (RepastS) platform [99] to model a multi-agent sys-

tem and simulate the behavior of the agents due to its flexibility and scalability properties. The

simulated manufacturing system represents a modified version of the Intel Mini-Fab [100], a semi-

conductor manufacturing facility. The simulated system contains two infinite-sized buffers, Entry
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Figure 2.7: A screenshot of the facility layout from the RepastS environment. The annotations
indicate the capability of each resource.

and Exit, and 20 machines that are connected via a network of 6 mobile robots, as shown in Fig. 2.7.

The annotations represent the capabilities of the machines and mobile robots. There are 6 different

processes (P1-P6) that the machines can perform, where the operation costs in ticks (RepastS unit

of time) range from 110-200. For example, the annotation for a machine indicates which processes

it can perform and whether the workstation space is large or small. The annotation for a mobile

robot represents which cells and buffers it can reach when moving the products.

Two types of products, labeled S (small) and L (large), are introduced into the system, where

each type of product has the following process requirements:

• S-product: P1→ P2→ P3→ P6

• L-product: P1→ P3→ P4→ P5

Machines labeled L can operate both L-products and S-products, while machines labeled S can

only operate on S-products. Products enter the system from the Entry buffer and leave the system
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through the Exit buffer after completing the desired processes.

2.4.2 Case Studies: Rescheduling for Machine Breakdowns

In this simulated manufacturing system, 50 L-products and 50 S-products are fed alternatively

into the system with a pre-generated initial production schedule. Products enter the facility every

30 ticks starting at tick 10. To provide an opportunity for a rescheduling event to occur, the initial

production schedule is designed with 50% resource utilization. Uncertainty in machine operation

time and the probability of machine breakdown are added to all machines in the simulated system.

The system starts operations with the probability of machine breakdown ranging from 3.3% to

10%. If a machine undergoes a breakdown, a rescheduling process will be triggered. The mean

time to repair ranges from 1000-1500 ticks for a broken machine. Note that if the breakdown occurs

when the machine is processing a product, the product will be damaged and cannot be recovered.

The rescheduling decision-making considers the completion time of snew as the objective C, and

this case study does not have soft constraints, thus α = 1 and pai = 0. We conduct two case studies

to evaluate the performance of the proposed distributed method.

2.4.2.1 Centralized versus distributed

The first case study aims to evaluate the performance trade-offs between the centralized method

and the proposed distributed method in terms of optimal cycle time and computational efforts. We

run two simulation scenarios where the system uses centralized and distributed methods respec-

tively as the rescheduling decision-making strategy. Note that risks are not included in this case

study since it does not affect these trade-offs. For each scenario, we run 5 trials to evaluate their

performance with the following metrics:

• Cycle time

• Number of agent communications

• Running time of the decision-making implementation

43



Figure 2.8: Average cycle time and standard deviation for every 10 products for 5 trials in different
scenarios.

The number of communications in the centralized method includes the request for rescheduling,

the requests to and responses from all the RAs in the system to collect information, and the noti-

fications to the agents whose production schedules need to change. Therefore, each rescheduling

process requires r ×
∑

edi∈Ed
|sdi | communications, where r is the number of RAs in the system.

In the distributed method, the number of communication includes all agent requests, responses,

and inform messages, as defined in Sec. 2.3.1.2. The communication only occurs within local

clustering RAs and their collaborative RAs (i.e., a subset of all the RAs in the system), thus the

distributed method requires less communication, as showcased in Table 2.2.

Figure 2.8 shows the product cycle time in different scenarios. The centralized method re-

optimizes the whole system to generate a new schedule with a shorter cycle time than the dis-

tributed method. However, as shown in the first part of Table 2.2, the centralized method requires

more communication and larger computational efforts to reschedule the system. In practice, more

communication potentially leads to a larger information delay, thus the centralized method lacks

the ability to respond to disruptions dynamically and quickly. Furthermore, the computational ef-
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Table 2.2: Performance evaluation of the manufacturing rescheduling process in different trials in
terms of certain metrics

Metrics Scenarios Values in 5 trials Ave. Pct.
Centralized versus distributed

# of agent communication
Centralized 1430 1155 1650 1100 1320 1331 N/A
Distributed 1053 858 1248 780 1014 991 N/A

Total running time (sec) of
rescheduling processes

Centralized 10.1 18.7 16.4 8.8 9.4 12.7 N/A
Distributed 0.22 0.18 0.34 0.49 0.33 0.31 N/A

With risk assessment versus without risk assessment

# damaged products
W/ risk assessment 3 5 3 3 5 3.8 3.8%

W/o risk assessment 9 7 8 6 5 7.0 7.0%

# broken machines
W/ risk assessment 6 7 4 5 7 5.8 29%

W/o risk assessment 11 10 10 8 9 9.6 48%

# rescheduled processes
W/ risk assessment 17 20 7 14 23 16.2 4.05%

W/o risk assessment 32 25 35 21 31 28.8 7.20%

Peak risk values
W/ risk assessment 0.26 0.26 0.27 0.26 0.27 0.27 N/A

W/o risk assessment 0.27 0.29 0.28 0.29 0.29 0.28 N/A

Average risk values
W/ risk assessment 0.23 0.22 0.21 0.22 0.22 0.22 N/A

W/o risk assessment 0.25 0.26 0.24 0.24 0.25 0.25 N/A

forts of the centralized method increase as the size and complexity of the set-up increase in scale.

In this case, the distributed method can provide advantages by using local communication to reduce

communication and computation time.

2.4.2.2 With risk assessment versus without risk assessment

To further investigate how the introduction of risk assessment affects the rescheduling decision-

making and the system performance, we run 5 trials where the system uses the distributed method

with the incorporation of risk assessment into the rescheduling decision-making process. As dis-

cussed in Sec. 2.3, the overall risk associated with a new schedule is calculated as the weighted

sum of two risk factors, w1 ∗ R1 + w2 ∗ R2. In this case study, we simulated a scenario where the

manufacturer cares more about machine breakdowns, thus we selected w1 = 0.2 and w2 = 0.8.

Note that different risks and weights can be defined and chosen, while the performance under dif-

ferent parameters can be investigated in future work. The weighting gain, W , for the total risk

value has been selected to assign value to the introduction of risk and scaled to ensure comparable
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unit values. Note that for this example, the mobile robots are assumed to be reliable and are not

considered within the risk assessment at this time.

Besides cycle time, we introduce the following metrics to evaluate the system performance with

risk assessment:

• Number of damaged products

• Number of broken machines

• Number of rescheduled processes

• Peak and average risk values of the new schedule

The results are shown in the second part of Table 2.2, which indicates that system performance

with and without risk assessment varies across the different trials. With risk assessment, the av-

erage number of damaged products is 3.8 versus an average number of 7 without risk assessment.

When combined with the results from the number of machine breakdowns (5.8 versus 9.6), these

results illustrate how the consideration of risk results in a rescheduling strategy that selects a less

risky schedule that reduces the potential for machine breakdowns and damaged products. Note

that breakdowns may occur while the machines are not processing, thus the number of broken

machines is larger than the number of damaged products.

To investigate how the rescheduling strategy impacts the potential for machine breakdown and

the trigger of a new rescheduling task, the number of rescheduled processes is also presented in

Table. 2.2. On average, when risk assessment is included, the rescheduling process is triggered

16.2 times, while it is triggered 28.8 times when risk assessment is ignored. Peak and average risk

values provide a measure of the associated risks inherent in the two strategies. Note that when

risk is included in the cost function, the decision-making strategy results in a selection process that

chooses the event sequences with lower risks (0.27 versus 0.28 peak and 0.22 versus 0.25 average

risk values).

To show how the assessment of risk affects the completion of products within the simulated

facility, the mean values and the standard deviations of the average cycle time for every 10 products
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for the 5 trials are shown in Fig. 2.8. As Fig. 2.8 shows, the first 40 products have nearly identical

cycle times. Although these products might be in the system during a later breakdown event, the

risk of machine breakdown and a rescheduling event is low during this initial period.

Interestingly, the impact of risk assessment really becomes apparent during the 61-70 part com-

pletion set. At this point in the simulation, the risk for machine breakdown is increasing as machine

usage time gets closer to the MTBF for a given resource. Once R2 begins to increase, the decision

to select the less risky event sequence results in fewer machine breakdowns, less rescheduling, and

a lower average cycle time. This trend continues, with considerable variability beginning to be

introduced into the cycle times as illustrated in Fig. 2.8.

Overall, the consideration of risk into the event sequence decision results in fewer damaged

products and broken machines, a reduction in the number of triggered rescheduling processes,

and an improvement in the system throughput as compared to the decision strategy that does

not consider risk. These results showcased that incorporating risk assessment affects the agent

decision-making in the rescheduling process. Our results indicate that the introduction of the risk

assessment value resulted in a smaller number of broken machines and damaged products, as well

as a reduction in cycle time variability.

2.4.3 Discussion and Insights

The case study has showcased the feasibility and performance of the proposed multi-agent

framework, specifically demonstrating how risk assessment affects agent decision-making. How-

ever, there are other aspects that may affect the framework performance, which will be investigated

in future work. Firstly, the framework can be easily adapted to different case study setups. As the

set-up scales down, the set of candidate solutions might shrink. Thus, there might be no big differ-

ence between centralized and distributed methods in terms of needed communications. Besides,

the risk assessment may not affect decision-making significantly since the choices are limited. On

the other hand, as the size and complexity of the set-up increase in scale, both the size and the vari-

ety of the candidate solutions might grow. Therefore, the risk assessment can make a big difference
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in the selection of the new schedule.

Based on the objectives, risks, and parameters used in the simulation, this case study simulated

a scenario where the manufacturer cares about cycle time and machine breakdown. The results

indicate that the proposed method reduced the production cycle time and machine breakdowns,

which showcased the feasibility and performance of the proposed method. Therefore, different

objectives, risks, parameters, and metrics can be used in the proposed method, while it inevitably

might change the results toward a better or worse direction. An enhanced understanding of the

sensitivity of the parameters design, such as identifying the set of conditions under which the

algorithm always outperforms other algorithms, is left for future work.

In addition, other metrics, such as makespan and machine utilization rate can also be analyzed

based on the provided results. The cycle time in Fig. 2.8 can reflect the makespan since the en-

try time of a specific product in each trial is identical. Therefore, without risk assessment, the

makespan of the schedule is larger. Note that the large makespan occurs in the case where the

system produced fewer products. As a result, the machine utilization rate when the rescheduling

does not consider risks is lower than the scenario when the risk assessment is incorporated.

2.5 Concluding Remarks

In this chapter, a model-based RA architecture that enables effective agent coordination and

dynamic decision-making is designed. The proposed RA architecture contains a Knowledge Base,

Decision Manager, and Communication Manager. Based on this architecture, a rescheduling strat-

egy is developed to incorporate risk assessment via RA coordination in the presence of resource

breakdown. The proposed work can be used to create manufacturing resource models that enable

dynamic and resilient rescheduling for manufacturing systems. Implementation of the proposed

framework in a simulation-based case study has been done to evaluate the effectiveness of the

proposed architecture. In particular, the case study demonstrates that the proposed agent-based

distributed method reduces the communications and computational efforts that are needed for
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rescheduling while losing some optimality in throughput compared to the centralized method. Ad-

ditionally, the case study illustrates the improvement in throughput when risk is considered within

the rescheduling problem. Showcased through a simulation study, the proposed work provides a

more resilient and robust rescheduling distributed decision-making strategy to recover and main-

tain throughput performance under uncertain manufacturing environments. From the managerial

perspective, manufacturers can use this work to model and monitor their factory floor as the agents

store the physical information and keep it updated. Furthermore, this framework can be used as

a decision support system since the agent decision-making ability can provide manufacturers with

several solutions to respond to disruption depending on different objectives and parameters defined

by the manufacturers.

However, it is noticed that focusing on rescheduling within the manufacturing systems may

not provide satisfying solutions for external disruptions, such as customer demand and material

shortage. In addition, the distributed approach offers more advantages of flexibility and agility

for local disruptions in larger and more complex systems since it does not require communication

and re-optimization throughout the entire system. Therefore, the following chapter will apply the

proposed multi-agent framework to supply chain networks is studied.
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CHAPTER 3

Multi-Agent Framework for Re-planning in Supply

Chain Networks

This chapter presents a model-based multi-agent framework for agile and resilient disruption

responses in supply chain networks. The related work has been published in [17] and submitted

to [101]. As described in Chapter 2, rescheduling in manufacturing systems has limited flexibility

for various disruptions in industrial environments. Therefore, enterprises should have the ability

to re-plan both production and transportation and determine decision-making strategies based on

the disruption and network attributes. However, most existing agent-based disruption reaction

strategies use rule-based reasoning and pre-define a disruption database, thus the flexibility of the

system is limited to the set of pre-defined scenarios. In this chapter, we focus on the re-planning

problem in the presence of an agent loss in supply chain networks. Following the agent architecture

described in Chapter 2, we introduce a model-based multi-agent supply chain framework that

enables agent exploration and iterative communication for a dynamic and agile disruption response.

The rest of the chapter is organized as follows. A literature review and supply chain descrip-

tion are presented in Section 3.1. Section 3.2 describes the proposed model-based multi-agent

framework for supply chains. The agent communication and decision-making for re-planning are

discussed in Section 3.3. Section 3.4 presents a comprehensive case study that investigates the

performance and network attributes. Concluding remarks are presented in Section 3.5.
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3.1 Background and Overview

In this section, a literature review of the multi-agent approach for the re-planning problem in

supply chain networks is provided. Then the proposed topological and capability descriptions for

supply chain networks are presented.

3.1.1 Literature Review

A significant effort has been made to develop disruption mitigation approaches to re-plan supply

chain productions and flows, leveraging both centralized and distributed decision-making strate-

gies. Most existing literature in this domain focuses on proactive methods for supply chain disrup-

tion mitigation, such as demand forecasting, inventory management, and stochastic optimization

methods that estimate potential disruptions in advance to enhance supply chain robustness [39, 40].

However, unexpected disruptive events, such as supplier loss, require enterprises to make quick and

effective decisions in response to the disruption. Therefore, it is important and necessary to under-

stand how the centralized and distributed approaches impact the recovery performance depending

on the attributes of the disrupted agents [5].

To address the problem, a comprehensive supply chain description is needed. In the literature,

researchers have described a supply chain as a network with vertices (e.g., supplier, customer, etc.)

and edges (e.g., transportation), along with their associated attributes and parameters (e.g., cost

and capacity) [17, 102, 103]. In this dissertation, both the vertices and edges we consider have

intelligence and thus are defined as agents. Therefore, understanding the agents and their attributes

within a supply chain network can help determine the impact of disruptions based on where dis-

ruptions occur and the critical performance metrics. From the topological perspective, existing lit-

erature has made a significant effort in conceptualizing supply chain disruptions and investigating

the effects of the overall network topology on supply chain resilience and robustness [103–106].

However, the existing studies did not discuss how the agent attributes within this network (e.g.,

capabilities, connectivity, etc) impact the mitigation performance. Furthermore, agent capability
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attributes are important for understanding the impact of the disrupted agent on supply chain dis-

ruption recovery. This specification has implications for how we determine the decision-making

approach for disruption mitigation.

In terms of decision-making approaches for supply chain management, centralized models are

widely used to provide optimal solutions based on specific objectives (e.g., product flow cost) [20].

As discussed in Chapter 1, centralized approaches require information about the entire supply

chain in order to re-optimize the system in response to a disruption [28]. As the complexity and

scale of supply chains increase, it becomes more difficult to remain agile in the presence of mul-

tiple disruptions [7] due to communication demands and computational complexities that arise in

these scenarios [29]. Therefore, to improve the flexibility and agility of supply chain networks,

researchers have proposed multi-agent systems to conduct distributed decision-making for agile

supply chain disruption mitigation [7, 32, 46, 47, 107].

In the existing literature, most agent-based disruption reaction strategies are based on pre-

defined disruption scenarios and reactive actions via a stochastic programming model [67], a Petri

Nets model [68], or a case-based disruption reaction database [37]. In many examples, the disrup-

tion reaction performance of these methods is limited to a set of pre-defined scenarios, and it can be

difficult and even impossible to cope with unexpected disruptions outside of the pre-defined set. To

address this limitation, agents need to be equipped with model-based knowledge to make decisions

dynamically. However, existing multi-agent approaches focus on either system-level architectures

or rule-based agents [32]. The works [9, 54, 55] provide general descriptions of agent attributes and

functions at a conceptual level. References [57, 69, 70] use rule-based reasoning to guide agent de-

cisions, while [29, 58, 69] introduce case-based agents that provide pre-planned decision-making

and coordinated behaviors for the agents. In these methods, relying on a rule-based strategy limits

the ability of the agents to readily adapt to unexpected supply chain disruptions. Additionally, it is

difficult to scale this rule-based approach to larger and more complex systems, with the addition

of more rules reducing the flexibility of agent behaviors. Therefore, a new distributed multi-agent

framework must be developed to improve the flexibility and agility of supply chains in response to
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disruptions.

In addition, to make a proper disruption response, it is beneficial to understand how different

approaches perform for different disruptions and interested objectives. In general, distributed ap-

proaches are efficient, agile, and flexible enough to react to disruptions quickly, while the solutions

are often locally optimal and may not always align with the global objectives or constraints [44, 80].

In supply chain literature, comparisons between distributed and centralized decision-making focus

on the initial optimization of a supply chain [108, 109] rather than the re-optimization or dynamic

response of the system after a disruption occurs. Therefore, to the best of our knowledge, no study

has carried out an evaluation of the performance of a centralized or distributed approach based on

the attributes of the disrupted supply chain agents in a complex supply chain network.

To address this limitation, the contributions of this chapter include: (1) formulations of agent’s

attributes (e.g., capability, connectivity) within the context of a supply chain network; (2) devel-

opment of a model-based multi-agent supply chain framework that enables agent exploration and

iterative communication in response to unexpected disruptions; and (3) investigation of how net-

work attributes of a disrupted agent affect supply-chain performance for centralized and distributed

approaches through a comprehensive case study.

3.1.2 Supply Chain Overview and Formulation

3.1.2.1 Overview and assumptions

Consider a supply chain network G(V , E) with V being the set of vertices, representing supply

chain entities, such as suppliers, customers, etc., and E being the set of edges, representing prod-

uct/material flows between the entities. The associated information (e.g., demand, production,

cost, and capacity) with the vertices and edges is also included [17, 103]. In this dissertation, both

vertices and edges in the supply chain network have intelligence and thus are defined as agents.

The corresponding supply chain agent network Ga(A,L) includes all the vertices in V and edges

in E in the agent set A, and the agents in A are connected by a set L of communication links.

The following agent types are considered in the network: customer, distributor, original equipment
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manufacturer (OEM), tier supplier, and transporter.

This work investigates how the network attributes of a given agent (e.g., connectivity, capabil-

ity) impact the performance of the supply chain system in response to a disruption. Supply chain

disruptions are classified into different categories, including internal and external disruptions based

on their causes, as well as supplier and customer disruptions based on their locations [39, 40]. In

this study, our primary focus is on an unexpected supplier loss, which may be triggered by natural

disasters or workforce strikes.

The response is defined as a new flow plan to minimize total cost and demand dissatisfaction.

We explore both distributed and centralized decision-making approaches to provide a comparison.

The centralized approach solves the problem from the entire supply chain network perspective:

min
y,x,I,p,β,ζ,∆

J =
∑

(i,j)∈E,k∈K

cijkyijk +
∑

i∈V,k∈K

eikpik

+
∑

i∈V,k∈K

ρdik∆
d
ik (3.1a)

s.t.
∑

j:(i,j)∈E

yijk −
∑

j:(j,i)∈E

yjik +
∑
k′∈K

rkk′pik′

− pik = xik + I0ik − Iik, ∀i ∈ V, k ∈ K (3.1b)∑
k∈K

yijk ≤ qijβij, ∀(i, j) ∈ E (3.1c)

∑
k∈K

pik ≤ p̄iζi, ∀i ∈ V (3.1d)

∆d
ik ≥ xik − dik, ∀i ∈ V, k ∈ K (3.1e)

yijk, xik, Iik,∆
d
ik ≥ 0, ζi, βij ∈ {0, 1},

∀i ∈ V, (i, j) ∈ E, k ∈ K, (3.1f)

where (3.1a) are the total costs of flow, inventory, and production, as well as penalty costs of

unsatisfied demand. Constraint in (3.1b) defines the flow balance of each product for each agent;

constraint in (3.1c) and (3.1d) limits the flow on each edge and production at each agent by its
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given capacity; constraint in (3.1e) computes the unsatisfied demands of each product at each

vertex; and constraint in (3.1f) specifies the domains of variables. Once the disruption is identified,

a centralized decision-maker will re-run the centralized model with updated network structures,

parameters, and constraints to determine the re-optimized decisions. More details can be found in

our previous work [17].

To describe the proposed distributed approach, we first make the following assumptions to

specify our scope:

A.1 Supply chain agents have self-awareness of their own attributes and can communicate and

make decisions.

A.2 The supply chain network or system contains supplier redundancy and operates within the

capacity limit of the initial plan.

A.3 Unexpected disruptions are in the form of a lost agent (e.g., the agent is unable to perform

their set tasks) within the supply chain network. This disruption can be detected by the

associated agent.

A.4 An agent retains communication capabilities even in the presence of a disruption.

A.1 defines the agents’ abilities to make individual or locally dependent decisions in response

to a disruption. A.2 ensures that a new product flow plan can be determined. A.3 guarantees

that the disruption will be identified by the agent if it occurs and also designates how the supply

chain network will be impacted by the disruption. A.4 is necessary to enable local negotiations in

response to the disruption.

To understand how disruptions affect supply chains, we provide detailed supply chain descrip-

tions at the network and agent levels. Specifically, we focus on the role of each agent in the supply

chain network from both topological and capability perspectives. Table 3.1 summarizes the nota-

tions used in this section. We also illustrate key definitions in Figure 3.1.
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Table 3.1: Nomenclature for multi-agent supply chain networks

Supply chain description
G = (V , E) supply chain network (vertices and transportation edges).
Ga = (A,L) agent network (agents and communication links).
K set of product types.
yijk units of product k transported from agent ai to aj .
f network flow state including all product flows.
m = (o, k) capability of performing operation o for product k.
Z(k) the set of needed product types to make a product k.
Agent attributes
Ci connectivity of agent ai.
Di depth of agent ai in the network.
Ri(m) capability redundancy of agent ai for capability m.
Pi production complexity of agent ai.
Agent communication and decision-making
ae disrupted (i.e., lost) agent
y0e all the initial product flows related to ae.
Adm set of demand agents
dik units of product k that agent ai needs.
∆f changes of network flow state.
Mj(k) set of agents that aj sends requests to for product k.
ȳijk maximum units of product k that agent ai determines to provide to aj .
ŷijk units of product k that agent aj determines to get from ai.
Metrics for performance evaluation
O sum of the costs for transportation and production that exceed the nominal agent

capacity.
Nc sum of modified edges (e.g. type and/or amount of production flow) and agents

(e.g. new production volume or capability).
Na sum of additional edges and agents needed for transportation and production.
M the number of agent communication exchanges used to derive a response to dis-

ruption.
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3.1.2.2 Supply chain attributes

Based on a topological description from literature [102] as well as agent attributes introduced

in [17], we describe the role of an agent in a supply chain network from topological and capability

perspectives. In the following description, we will use Wheel and Rim agents from Figure 3.1 as

examples.

Connectivity Defined as the number of in-flow and out-flow edges (i.e., transportation units) to

or from agent ai:

Ci =
∑
aj∈V

bij + bji, (3.2)

where bij = 1 if edge (i, j) is associated with material or product flow from ai into aj , and 0

otherwise. From Figure 3.1, the connectivity of the Wheel agent is given as C = 3 + 2 = 5. The

Connectivity of an agent represents the number of other agents that will be affected if this agent is

disrupted.

Depth Defined as the maximum number of edges between ai and the final layer (e.g., customer)

Di = max
aj∈Customer

d(ai, aj), (3.3)

where d(ai, aj) is the geodesic distance, defined as the minimal length of a path between two agents

ai to aj . In Figure 3.1, assuming the store represents the customer layer, the depth of the Wheel

agent is found to be 1. The Depth of an agent represents where the agent is located in the supply

chain, thus it reflects the possible ripple effect if the agent is disrupted.

Redundancy From a capability perspective, the redundancy of ai is defined as the number of

alternative agents (excluding ai) that can perform the same capability as ai in the agent network:

Ri(m) = |{aj|aj with capability m, aj ∈ A \ {ai}}|, (3.4)
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Figure 3.1: An example of a supply chain network and product structure used to illustrate the
proposed supply chain descriptions.

where m represents a specific capability of agent ai. A detailed definition of m is given in Sec-

tion 3.2.1. This attribute indicates the number of backup suppliers for a given capability. In Fig-

ure 3.1, the network contains two agents that can produce the Rim; thus, for each Rim agent, the

capability redundancy is Ri(m) = 1. The Redundancy of an agent indicates whether there are

backup agents to recover the product flows if this agent is disrupted.

Complexity Defined as the sum of final product types that require products from agent ai and

the material/component types necessary for ai’s production:

Pi = |
⋃
k∈Ki

{kf | k ∈ Z(kf ), ∀kf ∈ Kf}|+ |
⋃
k∈Ki

Z(k)|, (3.5)

where Ki represents the set of product types that ai can produce and Kf represents the set of final

product types in the supply chain. The function Z : K → 2K maps a specific product type k to

the set of components and/or materials that are needed to produce k. We denote K as the set of all

product types in the supply chain. In Figure 3.1, the production of the wheel requires a tire and a

rim, Z(Wheel) = {Tire, Rim}. It is assumed that there is only one product type that requires the

wheel. Thus, the production complexity of the wheel agent Pwheel = 1 + 2 = 3. The Complexity

of an agent represents the number of product types that will be affected if this agent is disrupted.
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Figure 3.2: The proposed multi-agent framework for supply chain disruption mitigation.

3.2 Multi-Agent Framework

In this section, we investigate a multi-agent framework to deploy distributed decision-making

for supply chain disruption mitigation. Figure 3.2 provides a high-level overview of the proposed

multi-agent supply chain framework, including a physical supply chain network, a cyber multi-

agent network, and a central database. The physical supply chain network contains the business

entities and product flows from the supply chain in the real world. The multi-agent cyber network

consists of an agent communication layer and an agent decision-making layer. Each agent is a

cyber representation of its physical counterpart and will be initialized with its own version of agent

architecture, as shown in Figure 3.3. The agents obtain information from the physical supply

chain and communicate with each other to share the information. Based on their own knowledge

and shared information, agents are able to make their own decisions, such as supplier selection,

and command the decided changes to the corresponding physical entity, as shown in Figure 3.2.

The central database stores all the information from the physical supply chain and cyber agent

networks. In this section, we provide our design of a supply chain agent architecture and describe

how agents communicate and make decisions for disruption mitigation.

The design of supply-chain agents is based on the architecture of our previous architecture

for manufacturing agents [66], which consists of three modules: a Knowledge Base, a Decision

Manager, and a Communication Manager. The Communication Manager is identical since it serves
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Figure 3.3: The proposed supply chain agent architecture.

as an interface for information exchange. However, the Knowledge Base and Decision Manager

are more agent-specific and require new formulations. Figure 3.3 depicts a detailed design of

the proposed agent architecture, including specific components in the modules and component-to-

component information exchange.

3.2.1 Knowledge base

Same as the RA in Chapter 2, the Knowledge Base of supply-chain agents is also designed

following BDI architecture. Compared to the Knowledge Base of manufacturing agents, we keep

the same type of knowledge (e.g., capabilities) included in agent beliefs, desires, and intentions for

supply-chain agents. However, the models describing the knowledge are different and have to be

re-formulated.
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3.2.1.1 Beliefs

Agent beliefs, including state, capability, and environment models, represent what the agent

knows about itself and its environment. These models are dynamically updated (i.e., extended,

shrunk, and revised) as the agent and its environment change.

Capability model This model describes the operational behaviors that an agent can perform in

the supply chain network. The capability model consists of capability knowledge and several as-

sociated mapping functions. The capability knowledge is a set of capabilities Mc = {m0,m1, ...}.

Each capability mj = (o, k) is a tuple, where o is one of the operational behaviors, including pro-

duction, inventory, or transportation, and k is a product type. Along with this high-level capability

knowledge, several mapping functions are used to describe the characteristics of a capability, such

as cost and capacity. The capability model is built when the agent is initialized based on its asso-

ciated physical entity. This information is dynamically updated as the supply chain environment

changes, such as cost increases, production line changes, etc.

Environment model An agent’s knowledge of other agents in the network is encapsulated in

the environment model. Based on the agent network Ga = (A,L), we can describe the local

communication network for a single agent ai ∈ A as Gai = (Ai,Li), where Ai ⊆ A is a subset

of agents that ai can communicate with via links in Li. These agents are grouped into several

subsets based on their relationship with agent ai and stored in the environment model, denoted as

Me = {Ui, Di, Si, ...}, where

• Ui : K → 2A: mapping from product types to upstream agents from which ai can obtain the

products

• Di : K → 2A: mapping from product types to downstream agents to which ai can provide

the products

• Si : Mc → 2A: mapping from a capability in agent ai to the agents that have the same

capability
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• Ti : K → 2A: mapping from a product type to the transportation agents that can reach agent

ai.

In this way, an agent is capable of identifying the subset of agents it needs to communicate with

and exchange information in the network. The mapping functions Ui, Di, and Ti identify the agents

that can execute a physical product flow (e.g., obtaining products from agent ai) with agent ai. The

information about the flow (e.g., product type and amount) is stored in the environment model via

other mapping functions associated with the agent sets. For example, a function Ui(K)→ K×R+

maps the upstream agent to the product type and amount of product flow with ai. The mapping Si

identifies agents that perform the same behavior as agent ai for replanning purposes.

The environment model is generated when the agent is initialized based on its associated phys-

ical entity. The agent sets and their associated information are dynamically updated if the supply

chain environment changes, such as the production capabilities of a given agent change. Note that

changes may occur during a time period t if the changes only occur in agent knowledge without

leading to changes in the network.

State model The agent dynamics are described by a flow balance of varying input and output

products. The state model describes the dynamics in terms of flow, production, and inventory

based on the flow balance equation [17]:

Ii,t+1 = Ii,t + ui,t − zi,t + hi,t(Ii,t, ui,t). (3.6)

Note that each variable in the state model is a vector indexed by the product types that agent ai

needs or produces, where

• State vector Ii,t = [Iik,t]k∈K represents the amounts of different products stored in the agent

at time t.

• Input vector ui,t =
[∑

j∈Ui(k)
yjik,t

]
k∈K

represents the product flows coming from the up-

stream nodes.
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• Output vector zi,t =
[∑

j∈Di(k)
yijk,t

]
k∈K

represents the product flows going to the down-

stream nodes.

• Production function hi,t(Ii,t, ui,t) gives the number of used components and produced prod-

ucts if the agent has production capability.

Note that the variables in (3.6) are bounded by agent-specific limits. For example, Ii,t is limited by

the inventory capacity of ai, while ui,t and zi,t are limited by transportation capacities.

3.2.1.2 Desires

Desires represent the goals and requirements of an agent. In this work, the desires include the

objective functions and the constraints for the decision-making of the agents. For example, an

agent makes decisions to select suppliers with minimal cost (objective J ) considering the limit of

the number of suppliers (constraint K).

3.2.1.3 Intentions

Intentions represent the plans an agent has committed to executing. The intentions of an agent

depend on its capabilities. For example, the intentions of a transportation agent include prod-

uct flows it has committed to transporting, while for a supplier agent, the intentions describe the

production and out-flow of products to downstream agents.

3.2.2 Decision and Communication Manager

3.2.2.1 Decision Manager

The Decision Manager of an agent consists of multiple decision-making models. Compared to

manufacturing agents, the decisions that supply-chain agents make are different. In this section,

we primarily discuss the decision-making for disruption identification, response optimization, and

supplier selection.
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Disruption Identifier Component that identifies the consequences of a disruption, such as the

lost production and flow streams.

Response Optimizer Component that determines how an agent responds to other agent requests

by solving an optimization model based on the response agent’s objectives and constraints.

Supplier Selector Component that determines how an agent selects suppliers to satisfy its de-

mand by solving an optimization model based on the selector agent’s objectives and constraints.

3.2.2.2 Communication Manager

Provides the interface for the agent to exchange information with its physical entity and other

cyber agents. In this work, components of the communication manager include an information

manager, a request manager, and a response manager.

Information Manager Collects information from and sends decisions to the agent’s associated

physical entity.

Request Manager Sends requests from the Decision Manager to other agents and passes re-

quests received from other agents to the Decision Manager.

Response Manager Sends responses from the Decision Manager to other agents and passes

responses received from other agents to the Decision Manager.

3.3 Agent Coordination and Decision-Making

In this section, we describe the proposed agent communication strategy for disruption mitiga-

tion, including three processes: disruption identification, iterative communication for supplier re-

selection, and propagated communication. Figure 3.4 shows the overall flow of the agent decision-

making and communication protocol for supplier selection. Algorithm 2 describes the detailed
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Figure 3.4: The flow chart of the proposed agent communication and decision-making process

overall decision-making processes while Algorithm 3 describes how agents iteratively communi-

cate for supplier re-selection. We assume that agents can communicate regardless of the disruption

and that communication links can be established or removed based on the decision-making strat-

egy. Agent communication follows Contract Net Protocol (CNP) [110], which aligns with the

Foundation for Intelligent Physical Agents (FIPA) standards [111].
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Algorithm 2 Distributed decision-making for disruption mitigation
Input: ae, f0,K,J
Output: fr

// Disruption and demand identification
1: y0e ← (y0ejk, y

0
iek)i,j∈V,k∈K ⊂ f0 // Identify lost flows

2: Adm ← {aj,∀j ∈ y0ejk ∈ y0e} // Identify demand agents
3: fr ← f0 \ y0e // Get remaining flows

// Agent communication
4: while Adm ̸= ∅ do

// Generate and update new product flows
5: ∆fr ← Algorithm 3
6: fr ← fr ∪∆fr

// Check flow balance and identify new demand agents
7: for y′zjk ∈ ∆fr do
8: if az needs materials/components then
9: Add az to Adm

10: end if
11: end for
12: end while
13: return fr

3.3.1 Disruption Identification

We focus on the disruption of an agent loss, which leads to losses of production and/or trans-

portation flows. By periodically obtaining data and information from the physical entities, agents

are able to detect disruptions that occur in their associated physical entities. Once a disruption

occurs, the disrupted agent, denoted by ae, checks its knowledge base to identify the lost flow y0e

related to it, as described in Algorithm 2, lines 1-3. Based on the lost flow, ae initiates communica-

tion with downstream agents, defined as demand agents Adm, to inform them of the disruption to

their incoming production flow streams. In addition, the ae will inform upstream agents that pro-

vide products to the disrupted agent that the flow streams will be disrupted and may be reassigned

to alternative agents. Since the flow streams fr are no longer balanced and meeting the requested

need, the demand agentsAdm must now find supplier agents that are capable of supplementing for

the lost production of ae.
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Algorithm 3 Supplier re-selection via agent communication

Input: Adm, y
0
e ,K,J

Output: ∆fr
// Objective: Find product flows to satisfy demand agents

1: while Adm ̸= ∅ do
// Request (all the demand agents)

2: for aj ∈ Adm do
// Identify the need of each demand agent

3: djk ← y0ejk,∀k ∈ K
// Identify agents to request

4: aj explores environments
5: Mj(k)← Environment model, ∀djk
6: aj requestsMj(k) for product need djk
7: end for

// Response (all the agents being requested)
8: for az ∈ ∪aj∈Adm

Mj(k) do
9: ȳzjk, ŷz∗k ← minJz

10: az sends response ȳzjk to aj
11: end for

// Determine product flows and check need
12: for aj ∈ Adm do
13: ŷzjk ← minJj

14: djk ← djk −
∑

az
ŷzjk

15: if djk < ϵ then
16: ∆fr appends ŷzjk
17: Adm ← Adm\ aj
18: end if
19: end for
20: end while
21: return ∆fr

3.3.2 Iterative Communication for Supplier Re-selection

Once the disrupted agent, ae, identifies the lost flow streams and informs the downstream de-

mand agents about this disruption, the demand agents must initiate communication with alternative

suppliers. The contract net protocol (CNP) segment of the communication process illustrated in

Figure 3.4 and Algorithm 3 describes the iterative communication process that consists of four key

steps in each iteration: “Identifying needs”, “Requesting help”, “Responding to the requests”, and

“Informing agents of accepted flow”. The outcome of this process is the selection of alternative
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suppliers to provide the necessary product flow that has been disrupted by the loss of an agent.

3.3.2.1 Identify needs

Based on the disrupted flow, a demand agent aj ∈ Adm identifies its current need, djk =

y0ejk,∀k ∈ K. Using its knowledge base, a demand agent then retrieves the set of objectives, Jjk,

and constraints, Kjk, (e.g., budget, delivery date) to direct the decision-making process for a new

supplier.

3.3.2.2 Request

Meanwhile, each demand agent aj retrieves the environment models in its knowledge base and

identifies the agents where it will send a request for additional flow. We define Mj(k) as a set

of agents that aj can request for product k. The demand agent aj sends out requests, denoted by

Req = (djk,Kjk), to all agents inMj(k),∀k ∈ K. Note that all of the demand agents may send

requests in parallel.

3.3.2.3 Response

Request agents (az ∈ ∪aj∈Adm
Mj(k)), those that receive the request from the demand agents,

will check their knowledge bases and determine their ability to provide the product flows (i.e.,

satisfy the requests) based on their objectives Jz and constraints Kz. They will then formulate

a response that includes available product flows, ȳz = [ȳzjk, aj ∈ Adm, k ∈ K]T, where ȳzjk

represents the maximum units of product k that az can provide to aj , and related information Fzjk

(e.g., product cost). The request agents az determine their responses by solving a local (individual
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agent) optimization model. An example is given below:

max
ȳz

Jz(ȳz) =
∑

aj∈Adm,k∈K

rzjkȳzjk (3.7a)

s.t.
∑
k∈K

ȳzjk ≤ qzj, ∀aj ∈ Adm (3.7b)

∑
aj∈Adm

∑
k∈K

ȳzjk ≤ p̄z, (3.7c)

ȳzjk ≤ djk,∀aj ∈ Adm, k ∈ K, (3.7d)

where (3.7a) maximizes agent az’s revenue, subject to the constraints of flow capacity (3.7b) and

production capacity (3.7c) from the agent itself and the constraints of from the requested de-

mands (3.7d). Note that agents can have their own specific objectives (e.g., inventory level and

revenue) and constraints. All requested agents send their responses, i.e., Res = (ȳzjk,Fzjk), back

to the demand agents.

3.3.2.4 Inform

After receiving responses from all of the requested agents, each demand agent, aj , determines

the new product flow streams ŷj = [ŷzjk, az ∈ Zj(k), k ∈ K]T by solving another optimization.

An example is shown below:

min
y′j

Jj(y
′
j,Fzjk) =

∑
az∈Zj(k),k∈K

rzjky
′
zjk +

∑
k∈K

ρdjk∆
d
jk (3.8a)

s.t. y′zjk ≤ ȳzjk, ∀z ∈Mj(k), k ∈ K, (3.8b)

∆d
jk ≥

∑
az∈Zj(k)

y′zjk − djk, ∀k ∈ K (3.8c)

other agent constraints, (3.8d)

where (3.8a) minimizes the total costs and demand dissatisfaction of the demand agent. Con-

straint (3.8b) denotes that the chosen new product flows cannot exceed the suppliers’ responses.
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Constraint (3.8c) calculates the unmet demands. Constraint (3.8d) presents other constraints for

supplier selection, such as a limited number of suppliers for the demand agent. Note that demand

agents may have their own specific objectives and constraints. Then the demand agents check

whether their decisions can satisfy their needs with an acceptable threshold. If so, the demand

agents inform the chosen agents to provide new product flows.

3.3.2.5 Iterative communication

The above request-response-inform process takes |Adm| + | ∪aj∈Adm
Mj(k)| + |Adm| com-

putations. However, if there are agents whose needs cannot be satisfied, they will explore the

environment to identify other agents that can provide the needed products (i.e., identify new sup-

pliers withinMj(k)). These agents will then repeat the request-response-inform process to deter-

mine new product flows. The iteration process will stop once the demand agents have identified

suppliers that can meet their needs or if it has been determined that there are no suitable agents

capable of providing the needs. To guarantee convergence, we set an upper bound ne for the

number of times that demand agents can explore. Therefore, the complexity of Algorithm 3 is

O(ne×max{|Adm|, | ∪aj∈Adm
Mj(k)|}). Note that |Adm| is related to the Connectivity of the dis-

rupted agent and | ∪aj∈Adm
Mj(k)| is related to the Connectivity and Complexity of the disrupted

agent. Therefore, if the disrupted agent has higher Connectivity and Complexity, the re-planning

process generally requires more computations.

3.3.3 Communication Propagation

The iterative communication process occurs between the demand agents and their immediate

supplier agents. However, this process may propagate through the entire network if the process

of meeting the demands of certain agents introduces new needs from the suppliers meeting those

demands. In this manner, the suppliers become new demand agents, resulting in a continuation of

this process, as described in Algorithm 2, lines 4-12.
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3.3.3.1 State update

Algorithm 3 identifies several new product flow streams that are necessary to satisfy the needs of

the initial demand agents. Once these flow streams are identified, the demand agents and selected

supplier agents must update their states, resulting in a change to the network flow states: fr ←

fr ∪∆f . At this point, based on the objective of Algorithm 3, it is assumed that the demand agents

have reached a balanced flow, while the selected supplier agents may need additional components

in order to meet their new flow demands.

3.3.3.2 Propagation

Since each selected supplier agent, az, commits to providing products to meet the needs of

the demand agents, this may introduce additional product/component needs from the suppliers to

ensure sufficient products to meet these new commitments. In this case, the supplier agents no

longer have balanced flow streams and must propagate demand requests in order to meet their

needs to their related supplier agents. The communication process of Algorithm 3 will now be

repeated; however, in this iteration, the selected supplier agents have become new demand agents.

The propagation process stops when all of the agents have met their additional needs (e.g., the

requests have been propagated through all upstream agents in the network). In this distributed

decision-making strategy, the propagation process may vary from one level upstream through the

entire network, depending on the production flow needs. Therefore, the number of times that

Algorithm 3 is repeated depends on the Depth of the disrupted agent (Dd). The worst case is that

the communication propagates to the most upstream agent, whose depth is Dmax = maxai∈V {Di}.

In this case, Algorithm 3 is repeated ∆D = Dmax − Dd times. Therefore, the complexity of

Algorithm 2 is O(∆D × Nmax), where Nmax represents the maximum number of computations

in the repeated Algorithm 3. Note that if the disrupted agent has higher Depth, the re-planning

process requires less computations.

Overall, the proposed model-based agent knowledge provides heuristics to guide agent com-

munication. In this way, agents are able to selectively communicate with other agents who possess
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Figure 3.5: The simplified product structure for automotive cockpit

relevant abilities to handle the disruption, thereby reducing unnecessary communication. More-

over, the integration of agent exploration and iterative communication enables agents to thoroughly

search for all potential solutions within the network. However, it is important to note that the opti-

mality of this approach depends on how much the users allow agents to explore and communicate.

There is a cost trade-off between exploration and hence increased communication requirements,

and performance.

3.4 Case Studies

3.4.1 Case Study Set-up

To conduct numerical studies to evaluate the proposed approaches, we designed an example

based on a supply chain for vehicle cockpits. In this section, we describe the supply chain instance,

introduce several disruption scenarios, and derive metrics for performance evaluation.

3.4.1.1 Supply chain instance
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Product structure We consider a vehicle cockpit supply chain, consisting of cockpit assembly

plants, their customers (i.e., vehicle assembly plants), and their suppliers for components and

materials. Here we summarize the supply chain product structure and network. Figure 3.6 shows

that in our example vehicle cockpits represent the final product and are assembled using several

manufactured components, comprised of different parts and/or materials.

In this instance, there are 3 different models of vehicles, and each model has demands for

1, 2, or 3 styles of cockpits. Between auto and cockpit assembly plants, we have the following

assumptions:

• Each auto assembly plant only makes 1 type of vehicle model;

• Each cockpit assembly plant can produce multiple styles of cockpits.

Each cockpit requires 10 components to be assembled, as shown in the green ellipse in Fig-

ure 3.5, but different styles may need different component types. Between cockpit assembly and

component suppliers, we have the following assumptions:

• The cockpits for the same auto model require the same type of cluster, substrate, glove box,

HVAC system, cross-car beam, and steering column;

• Each style of cockpit requires a unique type of infotainment system, wiring harness, and a

combination of different bezel types;

• All the cockpits use the same type of airbag.

Each component needs certain types and amounts of parts and/or materials in order to be pro-

duced. The blue ellipse in Figure 3.5 provides examples of some of the parts/materials needed for

these components. Between component suppliers and part/material suppliers, we have the follow-

ing assumptions:

• Different types of components may require different part/material types, yet they may share

the same part/material suppliers;

• The part/material suppliers represent the most upstream suppliers in this instance.
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Figure 3.6: The supply chain network instance used for case studies.

Supply chain network Based on the product structure above, we designed a supply chain net-

work with 117 supplier/customer agents and 413 transportation agents, as shown in Figure 3.6.

These agents correspond to physical elements within the supply chain and are equipped with the

proposed agent architecture to conduct communication and decision-making. The network in-

stance contains 5 customers, 3 cockpit assembly plants, 31 component suppliers, 62 part suppliers,

and 16 raw material suppliers that are connected via distinct transportation units. The 5 auto assem-

bly plants represent customers that have placed demands for different style cockpits. Each cockpit

assembly plant produces cockpits for a specific auto model type. For each type of component,

part, and material, we have multiple suppliers that have production capabilities. Each supplier or

transportation agent has its own production or transportation cost and capacity.

3.4.1.2 Benchmark and disruption scenarios

As discussed in Section 3.1, existing distributed approaches in the field of supply chain man-

agement typically rely either on pre-defined disruption scenarios or rule-based decision-making.

74



It is challenging to evaluate and compare these approaches effectively without access to their un-

derlying agent design, database, and implementation details. Additionally, these methods do not

focus on the problem of supply chain disruption response, thus comparing and assessing their

performance accurately for this problem may be hindered, potentially leading to incomplete or

misleading conclusions. Furthermore, though there are other distributed approaches utilized in

other fields, such as manufacturing rescheduling, and multi-robot control, these approaches cannot

be directly applied to the specific problems posed by supply chain disruption mitigation.

Therefore, to benchmark our distributed approach against a more common decision-making

strategy, we evaluate the performance of both a centralized and distributed decision-making ap-

proach during various disruption scenarios. With visibility of all entities and their status in the

supply chain network, the centralized model provides a highly communicative yet globally optimal

reconfiguration plan. We use the centralized model that we developed in [17] to generate optimal

initial product flows as a steady state before a disruption occurs. We apply the centralized model

developed in [17] as a generic mixed-integer linear programming (MILP) model to optimize or

re-optimize production, inventory, and transportation planning for a multi-echelon, multi-product

supply chain network. Once a disruption is identified, the model is updated by modifying the net-

work structures, parameters, and constraints. We then run the updated model to determine newly

optimized decisions about the product flow and production schedule as a response to the disruption.

Though it is not straightforward to analyze how the solver computes the solution for the central-

ized model, the input size of the centralized model is much larger than the proposed distributed

approach. The centralized model re-optimizes all the agents considering associate constraints,

while the proposed distributed approach only considers a subset of agents within the network.

The supply chain is initiated with a product flow plan derived by solving the centralized model

optimization described above. The supply chain descriptions defined in Section 3.1.2.2 can be used

to describe the role of each agent in this supply chain instance. Note that in the initial product flow

plan, not all agents will have active production or transportation roles.

To evaluate a disruption from the loss of a single agent, we design the case study with the
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following rules:

• The lost agent should have production tasks in the initial plan;

• In each scenario, only one supplier agent becomes disrupted;

• Agents can exhibit production and transportation capabilities of 30% over their initially de-

fined amount for an additional 50% unit cost.

In the pre-determined initial plan, there are 84 agents that exhibit production tasks, thus we run 84

scenarios, starting from upstream agents to downstream agents. For each scenario, we implement

the centralized and distributed decision-making approaches from Section 3.3 to generate a new

flow plan without the use of the lost agent.

The decision-making is focused on optimizing the system performance by minimizing a cost

function, J , at the network level (centralized) or local agent level (distributed):

J =
∑

(i,j)∈E,k∈K

cijkyijk +
∑

i∈V,k∈K

eikpik

+
∑

i∈V,k∈K

ρdik∆
d
ik +

∑
(i,j)∈E

ρEij∆
E
ij +

∑
i∈V

ρVi ∆
V
i ,

(3.9)

where the first two elements represent transportation and production costs when overcapacity must

be applied, and the last three represent the penalty costs for unmet demand and the addition of

new agents and edges. Note that at the local agent level, the cost function is applied across several

local agents rather than the entire network as with the centralized approach. As mentioned in

Section 3.3, an agent explores the environment to identify agents that can meet production needs

in the case of a disruption. It is assumed that agents only interact with other agents that are within

their network and therefore show up in their knowledge base. If the existing network cannot satisfy

the required demands, an agent will seek to build connections with new agents. This exploration

process will trigger a penalty if new agents are added to the existing network. The proposed cost

function is used to provide an example. Additional objectives can also be investigated within this

framework through the selection of different elements within the cost function.
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3.4.1.3 Metrics for performance evaluation

In order to evaluate the impact of an agent’s attributes within the network on the outcomes of

different decision-making strategies, we define several key performance metrics.

Overage cost We define overage cost O as the total cost for any transportation or production flow

that exceeds the original agent capacity. This metric represents additional efforts by the agents to

address the disruption.

O =
∑

(i,j)∈E,k∈K

αijcijky
o
ijk +

∑
i∈V,k∈K

βieikp
o
ik, (3.10)

where αij and βi are the multipliers for the increased cost of over-capacity flow and production;

yoijk and poik are the amount of over-capacity flow and production that are determined by the opti-

mization.

Network changes We define network changes Nc as the sum of the number of agents that

changed their existing production amount plus the number of flow channels that are changed in

terms of the type and/or amount of products.

Nc = |{ai|pi ̸= p′i,∀i ∈ V }|+ |{(i, j)|yij ̸= y′ij,∀(i, j) ∈ E}|, (3.11)

In (3.11), pi is the initial production of ai and yij is the initial flow of edge (i, j); p′i and y′ij are the

new production and flow, respectively.

Network additions We define Network additions Na as the sum of the number of new agents

and edges that are added to the network to address the disruption.

Na =
∑
i∈V

max {0, ξ′ − ξ}+
∑

(i,j)∈E

max {0, ζ ′ − ζ} (3.12)
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Here ξ and ζ indicate the usage of agents and edges in the initial plan (1 if used, 0 otherwise),

respectively, and ξ′ and ζ ′ represent the new plan. Both Nc and Na represent how the network

changes to respond to the disruption in terms of the overall production and flow in the network.

In practice, changing existing flow streams and production types or introducing new suppliers and

transportation units may require a significant amount of business effort, and may not be practical

in many instances.

Agent communication We define agent communication M as the number of communication

exchanges used to determine a response to the disruption. The communication effort M in the

centralized method includes the request for re-running the model, the requests to and responses

from all the agents in the supply chain to collect information, and the notifications to the agents

whose flow and/or production plan need to change:

M = 1 + 2|V|+Nc +Na (3.13)

In the distributed method, M includes all the agent requests, responses, and inform messages, as

defined in Section 3.3.

3.4.2 Case Studies: Re-planning for an agent loss

In this section, we present a summary of the case study results for the various scenarios and

investigate how agent attributes, within the context of a specific decision-making approach, impact

the different performance metrics. Based on these results, we provide insight for users to consider

when determining an approach to use for disruption response.

3.4.2.1 Overview of the results

In this case study we evaluated 84 disruption scenarios. Within these 84 cases, there were 11

scenarios in which at least one of the approaches was unable to find a solution that could satisfy
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Table 3.2: Metric evaluation across individual scenarios for supply chain re-planning case studies

Metrics Number of scenarios (73 in total) where
distributed approach performs better two approaches are similar

Network changes Nc 73 0
Communication M 73 0
Overage cost O 18 42
Network additions Na 0 42

all of the customer demands. In these scenarios, the network exhibited a redundancy of zero,

Ri(m) = 0, or insufficient remaining capacity to recover all the production losses of the disrupted

agent. For these cases, the centralized approach was used to meet the demand by re-optimizing

the entire supply chain network to redistribute the capacity and production capabilities. For the

remaining 73 scenarios, the distributed and centralized approaches were able to find new plans that

satisfied all the demands. Importantly, the computation time for the distributed decision-making

approach was 99% faster than the centralized approach. The obtained results in our study provide

validation for our assumption that the redundancy of the disrupted agent is indeed a necessary

condition for recovering performance in supply chain networks. The presence of redundant agents

plays a crucial role in maintaining and restoring the overall system performance in the face of

disruptions. Moreover, the proposed distributed approach demonstrates its capability to find a

solution for the loss of any arbitrary agent as long as a viable solution exists within the network.

A comparison of the performance of the supply chain reconfiguration as a function of the de-

cision strategy and performance metrics is shown in Table 3.2. Network changes and communi-

cation use are minimized by the distributed approach, while overage costs and network additions

generally result in similar performances for either the centralized or distributed approach. In the

following analysis, we focus on the 73 scenarios where the production demands are satisfied.

3.4.2.2 Performance

In this section, we investigate how agent attributes impact the performance metrics for both

centralized and distributed approaches. Note that since redundancy mainly affects demand satis-
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Figure 3.7: Number of network changes for different categorized agents based on attributes using
centralized and distributed approaches.

faction and depth only affects partial metrics, we focus on agent connectivity and complexity. To

illustrate how the attributes affect performance, we categorize the 73 agents into four categories,

which are combinations of low and high connectivity and complexity. The connectivity of the 73

agents goes from 1 to 11, and we choose 5 as the cutoff between low and high. The complexity

of the 73 agents goes from 1 to 15, and we choose 7 as the cutoff between low and high. Based

on these criteria, there are 56 agents with low connectivity and low complexity, 5 agents with low

connectivity and high complexity, 2 agents with high connectivity and low complexity, and 10

agents with high connectivity and high complexity.

Network changes As shown in Table 3.2, the distributed approach results in fewer network

changes than the centralized approach in all 73 scenarios, while the exact number of network

changes is related to the attributes of the lost agent. We categorize agents based on their connec-

tivity and complexity, and present the outcome of these categorized scenarios, as shown in Fig-

ure 3.7. For the centralized approach, agent connectivity has minimal impact on network changes;

however, if the lost agent has high production complexity, the centralized approach causes more
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network changes than the scenarios where the lost agent has low complexity. Since the centralized

approach minimizes the total objective without considering how it will change the production and

transportation of individual agents, the results show that the capability attribute (i.e., complexity)

has more effect on network changes in the centralized approach than topological attributes (i.e.,

connectivity).

For the distributed approach, we observe that agents with high connectivity in the network

(topology perspective) or high product complexity (capability perspective) result in more changes

to the network. Specifically, Figure 3.7 shows that the number of network changes increases as

either connectivity or complexity become higher. These two attributes have a similar effect on the

network changes for the distributed approach since they both determine whether the agent needs

to propagate its local negotiation to other agents, thus leading to additional network changes.

In addition, the difference in network changes between the centralized and distributed ap-

proaches becomes smaller when the disrupted agent has high connectivity and complexity. This

is because these agents may require communication across a large portion of the network, lead-

ing to additional network changes that mirror the quantification of changes from the centralized

approach.

Summary: High complexity leads to more network changes for both the centralized and dis-

tributed approaches, while high connectivity only impacts the distributed approach.

Communication As shown in Table 3.2, the distributed approach requires less communication

than the centralized approach in all 73 scenarios. Figure 3.7 shows how agent connectivity and

complexity impact communication. For the centralized approach, communication is not influenced

by the level of connectivity and complexity of the disrupted agent. As defined by (3.13), the

communication for the centralized approach is dependent on the network size |V|.

For the distributed approach, higher connectivity or complexity leads to more agent communi-

cation. Similar to the performance in network changes, communication showcases the distributed

approach to computing a new plan using local negotiation and only propagates communication as
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Figure 3.8: Number of agent communication exchanges for different categorized agents based on
attributes using centralized and distributed approaches.

needed. However, for the agents with high connectivity, the level of complexity does not impact

the communication needs for the distributed approach. This indicates that the topological attribute

connectivity has more impact on communication than production complexity since it reflects the

ripple effect that may go through the supply chain and lead to more communication.

The difference in communication between the centralized and distributed approaches also de-

creases for agents with high connectivity or complexity, since these agents may require communi-

cation through the entire network.

Summary: Connectivity and complexity do not impact communication requirements for the

centralized approach. High connectivity and complexity lead to more communication for the dis-

tributed approach.

Overage cost One might expect that a centralized approach, which optimizes flow across the

entire supply chain network, would result in lower production costs, especially when overage costs

are taken into consideration. However, Table 3.2 shows that out of the total 73 scenarios, there

were 18 scenarios where the distributed approach computed lower-cost solutions, and 42 scenarios
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Figure 3.9: Overage cost for different categorized agents based on attributes using centralized and
distributed approaches.

where the distributed approach provided plans with similar costs to the centralized approach.

To investigate these results, we present the overage costs based on different agent attributes,

as shown in Figure 3.9. For both the centralized and distributed approaches, high overage costs

come from low-complexity agents. Low complexity represents agents that require a small number

of components for production or that produce variants that have limited use in the final products.

Such an agent generally has a limited number of redundant suppliers with limited excess capacity.

This leads to high overage costs in order to meet production needs. Overage is related to capability

rather than topological attributes.

The influence of the overage cost differs depending on the decision-making strategy. The dis-

tributed approach does not provide a global view, thus this approach selects several backup suppli-

ers so that the over-capacity is low, which causes more costs through added edges. The centralized

approach has a full network-level view, and it chooses one backup supplier with over-capacity to

avoid adding additional flow channels since the centralized objective contains a large penalty for

adding new agents and edges.

Summary: Low complexity leads to higher overage costs for both centralized and distributed
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Figure 3.10: The numbers of network additions for different categorized agents based on attributes
using centralized and distributed approaches.

approaches while connectivity has no effect.

Network additions As shown in Table 3.2, the distributed approach results in similar network

additions in 42 of 73 scenarios, while the centralized approach provides fewer network additions in

the other scenarios. Figure 3.7 shows that for both the centralized and distributed approaches, the

network additions increase as connectivity and complexity increase. Though the connectivity and

complexity seem not to impact network additions significantly, it could be limited by the instance

since there are not lots of unused agents to be added as a disruption response.

In addition, the distributed approach results in more network additions than the centralized

approach when the lost agents have high complexity. As discussed above for the overage cost, the

distributed approach selects several backup suppliers to lower over-capacity productions and flows

but causes more added edges due to its local view of the network. The centralized approach utilizes

its network-level view to minimize the overall additional agents and edges.

Summary: High connectivity or high complexity can result in more network additions for both

centralized and distributed approaches.
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3.4.3 Managerial Insights

From the results above, we can derive some insight into how agent attributes impact the perfor-

mance of disruption response for centralized and distributed approaches.

3.4.3.1 Agent attributes

The results show that the centralized approach’s performance is more affected by agent com-

plexity (capability attribute) than agent connectivity (topological attribute). This conclusion val-

idates the study in [103], which states that high-connectivity agents are not necessarily critical

to disruptions. For the distributed approach, both complexity and connectivity impact the per-

formance metrics mentioned above. It can be concluded that the performance of the distributed

approach appears to be more sensitive to agent attributes than the centralized approach. There-

fore, additional agent attributes should be investigated to further analyze the performance of the

distributed approach. The conclusions from this work indicate, to some degree, that capability

attributes are important to be considered in supply chain models, no matter what decision-making

approaches to be applied.

3.4.3.2 Performance evaluations

From the performance perspective, the results above provide information for supply chain man-

agers about how agent connectivity and complexity impact a specific set of performance metrics

for both centralized and distributed approaches. However, in practice, enterprises and practitioners

usually aim for multiple objectives. Though users could define any objectives to be optimized, nu-

merical issues may occur if there are multiple objectives, e.g., hard to determine different weights.

For this case study, in the vast majority of scenarios, the distributed approach provides solutions

that have similar objective value to the centralized approach while also requiring fewer network

changes and communication. This indicates the distributed approach may provide faster solutions

that do not rely on information from the entire network at the cost of overage expenses and local

optimality. The theoretical analysis presented in Section 3.3.2 and description of the centralized
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model in Section 3.4.1 demonstrate the potential reduction in both communication and computa-

tional efforts achieved by our distributed approach. By leveraging local communication and the

model-based agent knowledge, the proposed framework reduces extensive information exchange

across the entire supply chain network, leading to more efficient decision-making. However, the

optimality of the distributed approach is contingent upon user-defined objectives and allows agent

exploration and iterative communications.

3.4.3.3 Decision-making approaches

The proposed distributed approach can serve as an alternative strategy in situations where cen-

tralized approaches face challenges, such as agile response requirements and high heterogeneity

within the supply chain network. The individual design of agents provides flexibility to man-

age the supply chain heterogeneously, and agents’ local communication enables quick responses.

However, unlike centralized approaches, the local view of agents using distributed approach may

result in the potential of losing optimality. Therefore, it is important to understand how different

agent attributes impact the effectiveness and performance of both centralized and distributed ap-

proaches. One example in the results above is that when the disrupted agent has high connectivity

and complexity, the distributed approach tends towards that of the centralized approach. In this

scenario, a large amount of communication has to be used to determine a response to the disrupted

agent. In practice, the choice of the decision-making approach largely depends on the time scale

of the disruption. If an agent is expected to be offline for a short time, the distributed approach

can give a good solution quickly, with minimal changes to the rest of the supply chain. For a long-

term disruption, it may be worthwhile to re-run the centralized model to provide a new globally

optimal plan, although a short-term modification based on the distributed approach may provide

a good temporary solution. To conclude, this work can be used to provide valuable insights for

decision-makers to choose strategies depending on disruptions to enhance supply chain resilience

and achieve better overall performance.
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3.4.3.4 Generality

Based on the complexity analysis and the tested 84 agents in the case study, these derived in-

sights can be generalized to some extent to other supply chains. However, the insights should not

be interpreted as definitive inference statements. For example, one cannot conclude that agents

with higher connectivity will always result in more network changes compared to agents with

lower connectivity. More importantly, this work presents a generalized multi-agent framework

that allows for investigating the correlations between agent attributes and performance. Users have

the flexibility to model their own supply chains, customize metrics, and test different disruption

scenarios. It is important to highlight that although our focus is on the disruption caused by the

loss of an agent, this proposed approach is also applicable to disruptions related to new customer

demand. In such cases, the customer itself becomes the disrupted agent as well as the demand

agent, triggering the proposed agent communication strategy. However, for other types of dis-

ruptions, such as lead time disruptions [112] or the introduction of new agents into the network,

the current framework would need to be extended to incorporate these features. Further research

and development would be necessary to expand the capabilities of the framework to handle such

disruptions effectively.

3.5 Concluding Remarks

In this chapter, a model-based multi-agent framework is developed and applied to supply chain

networks. The agent architecture follows the same design principles as Chapter 2 but with differ-

ent models for the Knowledge Base and Decision Manager of agents. Taking agent knowledge

as heuristics, this chapter develops a flexible and agile iterative communication strategy to re-

cover a new product flow plan without requiring prior knowledge of the potential disruptions. The

proposed framework can be used to create supply chain models that enable dynamic and agile re-

sponses to different disruptions (e.g., supplier loss and new customer demand) and allow for greater

agent flexibility and scalability to larger systems when compared to rule-based architectures.

87



In addition, we provide supply chain descriptions from a capability and topology perspective

and describe individual enterprise agents as a function of these network attributes. Based on these

descriptions, we investigate the impact of network attributes on the decision-making strategy used

to address supply chain disruptions. To conduct this performance comparison, we apply a standard

centralized modeling approach and our proposed distributed agent-based approach to a disrupted

complex supply chain network. Through the case study, we showcase the feasibility of the pro-

posed multi-agent framework and analyze the performance of the decision-making strategies with

several metrics based on the attributes of the disrupted supply chain entities in a complex sup-

ply chain network. The results illustrate the distributed approach could be used to determine a

response for small-scale disruptions, as well as provide a temporary solution for large-scale dis-

ruptions. This framework can also be used to provide information as a decision support system to

determine a decision-making strategy that optimizes user-defined performance metrics in response

to supply chain disruptions.

However, though providing flexibility and agility, this chapter does not guarantee the resiliency

of the new supply chain plan since it does not include uncertainties and risks in agent communi-

cation and decision-making. Therefore, in the next chapter, we investigate how uncertainties and

risks can be modeled and incorporated into the proposed distributed approach.
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CHAPTER 4

Heterogeneous Risk Management in Supply Chain

Networks

This chapter presents a heterogeneous risk management mechanism to incorporate uncertainties

and risks into agent communication and decision-making, aiming for a resilient disruption response

in the supply chain network toward maintaining performance against uncertainties. As described

in Chapter 3, focusing on deterministic re-planning has limited resiliency since real-world indus-

trial environments are stochastic. In the existing literature, most agent-based disruption response

strategies focus on identifying risk mitigation actions from the system level without considering

individual agent risk management [73, 74], and they do not consider the uncertainties in these ac-

tions to provide a resilient solution. These approaches have limited resiliency and also neglect the

natural heterogeneity of supply chain networks. In this chapter, we focus on resilient decision-

making for disruption responses in supply chain networks. Following the communication strategy

presented in Chapter 3, we incorporate a risk-aware stochastic optimization to improve resiliency

during a disruption response.

The rest of the chapter is organized as follows. A literature review and problem formulation are

presented in Section 4.1. Section 4.2 presents the proposed heterogeneous risk management mech-

anism and describes how it is applied to supply chain disruption response problems. Section 4.3

discusses a case study that demonstrates the ability of the proposed framework to consider hetero-

geneous risk attitudes within the decision-making strategy. Concluding remarks are presented in

Section 4.4.
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4.1 Background and Overview

4.1.1 Literature Review

As discussed in Chapter 3, in the supply chain domain, most research focuses on centralized

risk management methods to provide optimal solutions based on specific objectives (e.g., product

flow cost) [20, 71, 72]. These approaches consider holistic risk at the supply chain level in a

centralized decision model. However, modern supply chains are heterogeneous, where agents in

the supply chain network play different roles and may possess diverse objectives [32]. Therefore,

for risk management, it is important to distinguish the agents’ risk attitudes, which may change

dynamically as the supply chain environment evolves. Including this heterogeneity using a single

overall model could result in a complicated objective function and many constraints since each

agent has to be specified. There is a need for a distributed approach that is capable of addressing

this heterogeneity, especially when rapid adaption is required.

Multi-agent systems enable heterogeneity and can improve the agility of supply chain risk man-

agement [32, 46, 47]. Agents make their own decisions based on their goals and knowledge and

information obtained from other agents [7, 46]. Therefore, agents can choose different risk-based

models to solve local problems, depending on the information available to them, their different

risk attitudes, and their goals. Such flexibility allows each agent to evaluate risk differently, which

is difficult and complicated to achieve in a centralized formulation, especially for large-scale and

complex supply chains.

In the existing literature, most agent-based disruption response strategies use case-based and/or

rule-based decision-making [37, 57, 68], and thus require prior knowledge of disruptions and reac-

tive actions. These approaches focus on identifying risk mitigation actions from the system level

without considering individual agent risk management and tolerance, and they do not consider the

uncertainty in these actions to provide a resilient solution. Although some researchers derive in-

dividual agent risk models, they do not focus on the disruption response problem. For example,

in [73, 74], all of the agents have identical risk models and conduct decision-making to improve
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supply chain design and address inaccurate demand prediction. In [75–78], agents have identi-

cal risk attitudes with different parameters showing how much the models consider the risk. The

work in [113] allows different agent risk attitudes but only for customer agents. None of these

approaches make full use of the heterogeneity of multi-agent systems to support heterogeneous

and dynamic risk management.

To the best of our knowledge, no study has proposed a distributed decision-making approach

that supports dynamic and heterogeneous risk management to provide a resilient response to dis-

ruptions in supply chains. To address the gap, the main contributions of this chapter are: (1)

the development of a heterogeneous and dynamic risk management mechanism for supply-chain

agents, (2) the incorporation of risk-aware stochastic optimization for resilient decision-making

in response to supply-chain disruptions, and (3) an evaluation of the resiliency of the proposed

approach through a simulated case study.

4.1.2 Problem Overview and Formulation

In this chapter, we focus on the following problem: given a supply chain network, individual

enterprise agents, existing product flows, and a stochastic disruptive event at a supply-chain agent,

how can we model and incorporate agents’ risk attitudes and preferences into the decision-making

to improve the resiliency of the disruption response? We make the following assumptions to spec-

ify our scope:

A.1 The given supply chain starts from an original plan that is pre-determined.

A.2 An unexpected disruption increases an agent’s lead time and delays delivery. The associated

agent can detect this disruption.

A.3 The only uncertain parameters are production and lead time with known probability distri-

butions inferred from historical data.

A.1 indicates that the supply chain follows an original flow plan before the disruption occurs.

We describe the plan as all of the product flows (yijk) and arrival times (vijk) from agent ai to aj
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for product k in the network. A.2 guarantees that disruption will be identified by the agent when it

occurs and also designates how the supply chain network will be impacted by the disruption. A.3

defines the uncertainties in the supply chain and enables the quantification of risk attitudes that are

incorporated into agent decision-making.

The disruption will trigger agents to re-organize the flow plan to minimize the production and

flow costs, as well as the penalties for the risk of demand dissatisfaction regarding product amount

and delivery time due to the disruption in lead time and delays in the delivery.

min
ŷ,v̂

Cost +Hp(ŷ, v̂) +Ht(ŷ, v̂) (4.1a)

s.t. Agent constraints (4.1b)

Network constraints (4.1c)

where ŷ and v̂ represent the new flows and arrival times, and Hp(ŷ, v̂) and Ht(ŷ, v̂) compute the

penalties for the risks of unmet demand and delivery lateness for all customers, respectively. Note

that these penalties arise from the uncertainties inherent in the constraints, making the optimization

problem (4.1) a stochastic model. Some examples of the constraints can be found in Chapter 3.

Instead of resolving the centralized model, we apply the agent-based distributed approach that

is proposed in Chapter 3 to provide a new flow plan. We revise the agent optimization by incor-

porating the uncertainties of production capacity and lead time. In this case, agents have different

ways of handling uncertainties in the constraints and calculating the objective based on their own

risk attitudes. Details are discussed in Section 4.2.2.

4.2 Heterogeneous Risk Management

4.2.1 Risk Heterogeneity in Multi-agent Supply Chain

In this section, we introduce a heterogeneous risk management mechanism for supply chain

networks to guide the communication and decision-making for a disruption event. Each agent,
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Figure 4.1: Risk management mechanism with heterogeneous risk focuses and risk attitudes for
the roles of supplier agents and demand agents.

as an individual entity, considers their own risks and applies a different risk attitude depending

on their role in the supply chain network and their current status. We define two types of risk

heterogeneity in the supply chain network: agent risk focus and agent risk attitudes, as shown in

Fig. 4.1.

4.2.1.1 Heterogeneity of agent risk focus

Based on the agent communication strategy for the re-planning problem in Chapter 3, we de-

fine two roles, supplier agents and demand agents. The supplier agents receive demand requests

and provide products if they are selected. The demand agents need a certain amount of products

at a given time to guarantee their scheduled production plans. Every agent in the supply chain

network can be both a supplier agent and a demand agent in different scenarios. Therefore, agents

consider different risks when they play different roles, which results in a dynamic and typically

heterogeneous risk focus across the network.

Risks for supplier agents As mentioned in Chapter 3, when a supplier agent az receives demand

requests from multiple demand agents, it makes decisions on how it responds to these requests
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depending on an evaluation of its capabilities. The objective of decision-making optimization is to

seek maximal income and rewards while taking the risk of failing to fulfill a commitment and the

penalty associated with the failure to fulfill a commitment into consideration. Each supplier agent

maximizes the following function (additional details are included in Section 4.2.2):

Js =
∑

aj∈Adm,k∈K

rzjkȳzjk + we
s

∑
aj∈Adm

gjηj − wr
sRs (4.2)

where rzjk represents the income per unit that the supplier can earn from demand agent aj for

product k and ȳzjk is the decision variable representing the quantity that supplier az plans to commit

to demand agent aj for product k. Parameter gj indicates the rewards that supplier agents can gain

from demand agent aj if the product fulfillment is satisfied (ηj = 1). The rewards could include a

bonus or future contract if the supplier agents can satisfy all the demands. Rs evaluates the risk of

not fulfilling the response due to production and lead time uncertainties. The weights we
s and wr

s are

used to weigh the importance of rewards and risks. Note that different supplier agents could have

different weights or other objectives and risks to consider. Supplier agents should consider the risk

of unfulfilled commitment when they make decisions on their response and balance the trade-off

between risk and demand fulfillment. The details of the optimization model are in Section 4.2.2.2.

Risks for demand agents The demand agents make supplier selection decisions based on the re-

sponse they get from supplier agents. The objective of the supplier selection is to identify suppliers

that can provide the required products while minimizing the costs associated with unmet demand

and excessive time delays. A cost function describing this is shown below:

Jd = Cd + wt
d

∑
k∈K

∆t
jk + wp

d

∑
k∈K

∆p
jk (4.3)

where Cd represents the cost of obtaining products from supplier agents; ∆t
jk represents the delay

times, and ∆p
jk represents the amount of unmet demand of product k; the weights wt

d and wp
d are

used to weight the importance of unmet demand versus delay time for the specific demand agent.

94



Different demand agents can have different weights or alternative objectives and risks to consider.

Depending on the uncertainty associated with a specific supplier’s production capacity or lead time,

demand agents will evaluate the associated risks and make a selection decision depending on their

perceived risk attitude. The details of the optimization model are in Section 4.2.2.3.

4.2.1.2 Heterogeneity of agent risk attitude

In addition to the risk focus, agents may have different risk attitudes, which represent how

agents balance risks and their original performance objectives (e.g., cost, revenue) depending on

their current status. We consider states Xr = {averse, neutral} to represent the different risk

attitudes that agents could be. Specifically, an averse state indicates that agents try to make con-

servative decisions, i.e., avoid deviations between their behaviors and decisions. For agents in a

neutral state, their decision-making aims to balance their objectives and risk assessment and avoid

both conservative and risky decisions. Therefore, risk attitudes correspond to how agents mea-

sure the consequences of uncertainty, i.e., how they take into account risk and whether agents are

risk-averse or risk-neutral.

In addition, agent risk attitudes may change dynamically as agents communicate and make

decisions. For example, an agent could be risk-neutral when it supplies products but risk-averse

when it demands products. Also, a supplier agent could be risk-neutral when it has an optimistic

estimation of its production but risk-averse if not. Therefore, using this approach, this multi-agent

supply chain network allows heterogeneous and dynamically-changing risk focus, attitudes, and

tolerance for each agent. Through this proposed risk management mechanism, agents are able to

incorporate risk assessment into their decision-making to handle uncertainties. By balancing the

original objectives and risks, agents can make resilient decisions to respond to different disruptions.

4.2.2 Agent Decision-Making with Risks

In this section, we apply the proposed heterogeneous risk management mechanism to the same

agent communication and decision-making strategy proposed in Chapter 3. Since this work focuses
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Table 4.1: Nomenclature for agent decision-making.

Known Parameters
djk demand of product k at agent aj
tjk deadline for agent aj to receive product k
v′ejk new arrival time of product k flowing from agent ae to agent aj after disruption

occurs
Adm set of demand agents
Zj(k) set of supplier agents that can provide product k to agent aj
rzjk unit income that agent az receives from aj for product k
gpzj, g

t
zj rewards that agent aj provides to az if the response from az can meet the delivery

time and demand
ℓ̃ejk lead time of product k flowing from agent ae to agent aj
p̃zk estimated quantity of product k that agent az can produce
õzk estimated time that az can start to produce product k

Decision Variables
ȳuzjk, ȳ

o
zjk maximum supply of product k that agent az responds to aj within and over its pro-

duction estimations
v̄uzjk, v̄

o
zjk arrival times of ȳuzjk and ȳozjk from az to aj

ηpzjk, η
t
zjk binary variables that indicate whether the response from az can satisfy the demand

and delivery time of aj for product k
γu
zjk, γ

o
zjk binary variables that indicate whether az decides to respond ȳuzjk and ȳozjk to aj for

product k
∆p

jk,∆
t
jk units of unmet demand and delivery lateness of product k for the supplier selection

of agent aj
ŷzjk units of product k that agent aj agrees to obtain from az
λu
zjk, λ

o
zjk binary variables that indicate whether aj decides to select response from az for ȳuzjk

and ȳozjk

on introducing uncertainties and risks into agent decision-making, we provide a single iteration of

agent communication as an example. All the notations used in agent decision-making are summa-

rized in Table 4.1.

4.2.2.1 Disruption identification

In this example, we aim to handle the disruption that increases an agent’s lead time and results

in late delivery to downstream agents. We define yejk as the quantity of product k that agent ae

is scheduled to provide to agent aj , and vejk represents the arrival time associated with flow yejk.

Once the disruption occurs, the disrupted agent ae detects the disruption and realizes the arrival
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Figure 4.2: The agent communication and decision-making process with risk management for
disruption response. The agent risk focus and attitude changes for different agent roles.

times change to v′ejk > vejk. Therefore, the disrupted agent ae informs all downstream agents aj

about the new arrival time v′ejk.

4.2.2.2 Agent request and response

Request From the original plan, a downstream agent aj is scheduled to receive product k and use

it to produce product k′ starting at time ojk′ . Once agent aj receives the information about the new

arrival time, it checks whether its production is affected by the lead time disruption. If v′ejk > ojk′

(i.e., the product k is late), then aj becomes a demand agent that seeks to obtain product k from

alternative supplier agents. Otherwise, aj can accommodate the disruption and no re-planning

decisions are needed. We denote the set of all demand agents as Adm.

Each demand agent aj ∈ Adm sends a request for product k to its upstream suppliers (az ∈

Zj(k)) based on its environment knowledge. The request includes (djk, tjk), where djk = yejk

denotes the demand amount for product k, which equals the flow from disrupted agent ae, and

tjk = ojk′ is the delivery deadline, which equals the planned production start time.
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Response For each agent az that receives the request, it needs to make decisions about how it will

respond to aj . The response decisions include (ȳz, v̄z), where ȳz represents the number of products

the agent is willing to provide and v̄z represents the time at which it can deliver the products. In

this work, we allow agents to provide production quantities over their nominal production capacity,

although these production commitments generally correspond to longer lead times. Specifically,

ȳz = [ȳuzjk, ȳ
o
zjk,∀aj ∈ Adm, k ∈ K]T, where ȳuzjk and ȳozjk represents the maximum units of

product k that az can provide to aj within and over its production estimations, respectively. The

arrival times for ȳuzjk and ȳozjk are different: v̄z = [v̄uzjk, v̄
o
zjk,∀aj ∈ Adm, k ∈ K]T, where v̄uzjk

and v̄ozjk represent the arrival times of ȳuzjk and ȳozjk from az to aj , respectively. Note that az

could receive multiple requests from different demand agents and must make decisions regarding

committed quantities accordingly.

We assume az has estimations about the amount of product k it can produce, denoted by p̃zk, and

the time it can start production, denoted by õzk. Both p̃zk and õzk are random variables with known

distributions. We formulate the optimization for the response decision-making as a stochastic

programming problem, as shown in (4.4). This model maximizes the weighted sum of income and
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rewards, subtracting risks, for a response decision:

max
ȳz ,v̄z

E[
∑

aj∈Adm,k∈K

rzjk(ȳ
u
zjk + ȳozjk)− wrȳozjk

+
∑

aj∈Adm

wpgpj
∏
k∈K

ηpzjk + wtgtj
∏
k∈K

ηtzjk] (4.4a)

s.t. ȳuzjk ≤Mγu
zjk,∀aj ∈ Adm, k ∈ K, (4.4b)

ȳozjk ≤Mγo
zjk,∀aj ∈ Adm, k ∈ K, (4.4c)∑

aj∈Adm

ȳuzjk + ȳozjk ≤ p̃zk,∀k ∈ K, (4.4d)

∑
aj∈Adm

ȳuzjk ≤ Qzk,∀k ∈ K, (4.4e)

(ȳuzjk + ȳozjk − djk)η
p
zjk = 0,∀aj ∈ Adm, k ∈ K, (4.4f)

ȳuzjk + ȳozjk ≤ djk,∀aj ∈ Adm, k ∈ K, (4.4g)

v̄uzjk = (ℓ̃zjk + õzk)γ
u
zjk,∀aj ∈ Adm, k ∈ K, (4.4h)

tjk ≤ max{v̄uzjk, βzjkγ
o
zjkv̄

u
zjk}+Mηtzjk,∀aj ∈ Adm, k ∈ K, (4.4i)

ηtzjk, η
p
zjk, γ

u
zjk, γ

o
zjk ∈ {0, 1},∀aj ∈ Adm, k ∈ K, (4.4j)

In this model, the objective in the first line of (4.4a) represents the total income that the supplier

can earn if its responded flows (ȳuzjk+ȳozjk) are selected, and the risk of failing to fulfill the response,

which is quantified as the product flows that exceed its production capacity (i.e., ȳozjk). The second

half of the objective function (4.4a) indicates the reward the supplier agent will receive from the

demand agents if it can satisfy the demands and deadlines. The parameters gpj and gtj are the reward

gains that agent aj offers if all the demands and deadlines are satisfied. The binary variables ηpzjk

and ηtzjk equal to 1 if the demand and deadline of aj for product k are satisfied, 0 otherwise.

Constraints (4.4b) and (4.4c) indicate the selection of flow response. The binary variable γu
zjk

equals 1 if az decides to respond to aj to provide flow ȳuzjk, and γo
zjk equal 1 if the response

from az to aj includes a production quote that exceeds its production capacity. Constraint (4.4d)
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indicates that the estimated production is the upper bound of the response, and constraint (4.4e)

guarantees that ȳuzjk does not exceed production capacity. Constraints (4.4f) and (4.4g) indicate

whether the response can satisfy the demand. Equation (4.4h) defines the arrival time based on the

estimated production start time and lead time. Constraint (4.4i) indicates whether the products can

be delivered before the deadline. Constraint (4.4j) represents the range of all binary variables in

this model. Note that the arrival times v̄ozjk of over-capacity product (ȳozjk) cannot be smaller than

the nominal arrival time (i.e., v̄ozjk = βzjkv̄
u
zjk ≥ v̄uzjk).

To solve this stochastic optimization model, we apply the Sample Average Approximation

(SAA) approach [114], which generates a finite realization of the uncertain parameters following

a distribution. In this case, the known uncertain parameters include p̃zk, ℓ̃zjk, and õzk. We denote

ξi = [p̃zk,i, ℓ̃zjk,i, õzk,i,∀aj ∈ Adm, k ∈ K]T as a vector of the sampled realizations of all the uncer-

tain parameters. The sampling process follows the distribution of each parameter independently.

We sample Q times, thus the objective value can be calculated as:

E1≤i≤Q[Js(ȳz,i, v̄z,i)] =
1

Q

Q∑
i

Js(ȳz,i, v̄z,i) (4.5)

and the constraints become the augmentation of all Q samples. Then we determine the final re-

sponse (ȳ∗z , v̄
∗
z) as the expected value of the responses optimized from all the samples:

ȳ∗z = E1≤i≤Q[ȳz,i], v̄
∗
z = E1≤i≤Q[v̄z,i] (4.6)

Note that objective (4.5) represents the optimization for a risk-neutral agent to minimize the ex-

pected value. A risk-averse agent would be designed to consider the worst-case scenario, where

the optimization (4.4) can be formulated as min1≤i≤Q Js(ȳz, v̄z).

4.2.2.3 Decision-making for supplier selection

Supplier selection Once the demand agent aj receives all of the responses from the sup-

plier agents, it makes the decisions for selecting suppliers by solving an optimization problem.
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The decisions include the quantity of products each supplier agent can provide, denoted by

ŷj = [ŷzjk,∀az ∈ Zj(k), k ∈ K]T, where ŷzjk represents the determined number of product k

that aj plans to get from az. Though the response information (ȳ∗z , v̄
∗
z) is deterministic, we assume

aj has different levels of trust with regards to the responses it received. Trust is quantified as the

uncertainty regarding the response that demand agent aj receives from a given supplier agent. For

example, the response from supplier agent az includes discrete values for product quantity ȳ∗z and

arrival time v̄∗z ; however, the demand agent aj evaluates these variables as random variables be-

cause unexpected disturbances and variations in production and travel times exist in the real world.

We assume that these distributions follow Gaussian distributions N (ȳ∗z , σȳ
∗
z), where σ represents

the trust level and is known based on prior knowledge of the agents. Then aj evaluates the costs

to receive products from each supplier along with their uncertainties about the production and

delivery.

The optimization for the supplier selection is given as a stochastic programming problem, which

we formulate as follows:

min
ŷj

E[Cd + wt
j

∑
k∈K

∆t
jk + wp

j

∑
k∈K

∆p
jk] (4.7a)

s.t. Cd =
∑

az∈Zj(k),k∈K

mzjkŷzjk, (4.7b)

∆t
jk =

∑
az∈Zj(k)

(
λu
zjk max{(v̄uzjk)∗ − tjk, 0}+ λo

zjk max{(v̄ozjk)∗ − tjk, 0}
)
,∀k ∈ K, (4.7c)

∆p
jk = max{djk −

∑
az∈Zj(k)

ŷzjk, 0},∀k ∈ K, (4.7d)

ŷzjk ≤
(
(ȳuzjk)

∗ + (ȳozjk)
∗)λu

zjk, ∀az ∈ Zj(k), k ∈ K, (4.7e)

ŷzjk − (ȳuzjk)
∗ ≤Mλo

zjk,∀az ∈ Zj(k), k ∈ K, (4.7f)

λu
zjk, λ

o
zjk ∈ {0, 1},∀az ∈ Zj(k), k ∈ K, (4.7g)

The objective of this program is to minimize the cost (Cd) to purchase the products considering

the risk of unmet demand and delivery lateness due to uncertainties, as shown in (4.7a). Equa-
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tion (4.7b) defines the total cost to obtain flow ŷzjk from the suppliers. Equation (4.7c) defines

the total lateness of the product delivery for all the selected suppliers, and equation (4.7d) defines

the total unmet demand. Constraint (4.7e) represents that agent aj cannot select product flows

that sum to more than the suppliers’ responses. The binary variable λu
zjk equals 1 if supplier aj is

selected for product k. Constraint (4.7f) indicates whether the selected aj responds with products

that exceed its production capacity.

We use the SAA approach to solve this stochastic optimization model. In this case, the uncertain

parameters are ȳ∗zjk and v̄∗zjk. Similar to our above description, we denote ηi = [ȳ∗zjk,i, v̄
∗
zjk,i,∀az ∈

Zj(k), k ∈ K]T as a vector of the sampled realizations of the uncertain parameters, with the

sampling process following the distributions of each parameter independently. We sampleQ times,

thus the objective value can be calculated as:

E1≤i≤Q[Jd(ŷz,i)] =
1

Q

Q∑
i

Jd(ŷz,i) (4.8)

where the constraints become the augmentation of all Q samples. Then we determine the final

supplier selection ŷ∗z as the expected value of the selections optimized from all the samples:

ŷ∗z = E1≤i≤Q[ŷz,i] (4.9)

This presented optimization that minimizes expected value is designed for a risk-neutral agent.

When an agent becomes risk-averse, it tends to minimize the cost and risk in the worst-case sce-

nario, thus the optimization (4.7) can be reformulated as min1≤i≤Q Jd(ŷz).

Inform selection Once the supplier selection decisions are made, all the demand agents aj in-

form each selected supplier agent az about the new flow plan ŷzjk.
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4.2.2.4 Communication propagation

Since each selected supplier agent, az, commits to providing products to meet the needs of the

demand agents, this may introduce additional product/component needs from their suppliers to en-

sure sufficient products to meet these new commitments. In this case, these selected supplier agents

must propagate demand requests in order to meet the needs of their related supplier agents. The

propagation process stops when all of the agents have met their additional needs (e.g., the requests

have been propagated through all upstream agents in the network). The detailed communication

propagation can be found in chapter 3.

4.3 Case Study

4.3.1 Case Study Set-up

The case study in this section uses the same supply chain instance shown in Fig. 3.6 in Chapter 3

with additional time attributes. We add lead times to all of the suppliers and cockpit assemblers,

and delivery deadlines to all of the customers (i.e., auto assemblers). To generate the initial optimal

product flow plan, we revise the centralized model with the lead time feature [112] and use the

optimized solution to initialize the supply chain instance. Note that the initial plan is a deterministic

plan, which is shown in Fig. 4.3.

To illustrate the uncertainties in supply chains, we develop a discrete-event simulation frame-

work to evaluate the performance of the plans under lead time uncertainties. This out-of-sample

simulation is initialized with the flow plans from the upstream agents that only have outflows,

starting at time 0. The stochastic lead time for each outflow is sampled from a known normal

probability distribution. Then we obtain the delivery information, including quantity and arrival

time, at all the downstream agents that just received the products. Note that a downstream agent

may receive multiple types of products as components for its own production. In this case, its own

production starts when it receives all the needed components, i.e., the production time depends on
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Figure 4.3: The initial plan shown in the supply chain instance. The agents that are affected by the
tested disruption are highlighted.

the latest arrival time of needed components. Then the lead time for the downstream agent to de-

liver products to its downstream agents can be sampled. We continue this process iteratively from

upstream to downstream until the final products (i.e., cockpits) are delivered to all customers. The

simulation runs multiple times in parallel to analyze the supply chain performance under different

realizations of the lead time.

In this work, we consider a disruption that delays product delivery. The disrupted agent is

named cluster sup 3, shown as the highlighted blue circle in Fig. 4.3. This agent provides three

types of clusters, denoted by a set Kd = {cluster 1, cluster 2, cluster 3}) to its downstream

assembler agents, shown as the highlighted orange circles in Fig. 4.3. For simplicity, we denote

these downstream agents as Adm = {A1, A2, A3}, and A# represents cockpit sup #. Note that

there are three other cluster suppliers that could serve as backup agents. We denote all the cluster
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suppliers as S1, S2, S3, and S4, and S# represents cluster sup #. Once a disruption is identified,

the agent communication strategy is triggered to generate a new plan if necessary, as discussed in

Section 4.2.2. Then we run the simulation with the new plan to evaluate the performance of the

new plan generated by the proposed approach.

4.3.2 Case Study Results

4.3.2.1 Case study 1: various disruption scales

This case study aims to compare how the proposed approach performs when the disruption

impacts the agents at different levels. We consider three disruption scenarios, where the disruption

increases the lead time of agent S3 by 20%, 60%, and 100%. In each disruption scenario, we

evaluate the modified plans for instances when the three downstream agents are all risk-neutral

and all risk-averse. The out-of-sample simulation runs 300 times in parallel based on the known

distributions of the lead time of all the agents. We evaluate the performance by calculating the total

delay time for when the downstream agents receive the original production flow. The modified

local flows are represented as [ŷzjk,∀aj ∈ Adm, az ∈ Zj(k), k ∈ Kd]
T, where ŷzjk is the quantity

of product k that flows from supplier agent az to demand agent aj . In each simulation round i, we

denote the arrival time for flow ŷzjk as vzjk,i, thus the lateness of the flow is ∆zjk,i = max{vzjk,i−

tjk, 0}, where tjk is the required time for aj to receive product k. The notation Ωi represents the set

of possible values of ∆zjk,i. We evaluate the performance of the plan by showing the percentage

of the products that have the lateness ∆zjk,i for each simulation round. The product percentage

is calculated as the ratio of the total quantities in the flows that are delayed by ∆zjk,i to the total

product quantities:

∑
aj∈Adm,az∈Zj(k),k∈Kd

ŷzjk if ∆zjk,i = δi∑
aj∈Adm,az∈Zj(k),k∈Kd

ŷzjk
, ∀δi ∈ Ωi (4.10)

Therefore, we can get a distribution of these percentages in terms of 300 simulation rounds.
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Figure 4.4: The distribution of the percentage of products based on lateness under different disrup-
tion and decision-making scenarios

The results shown in Fig. 4.4 indicate that when the disruption increases more lead time, the initial

plan leads to a modified plan with more products subject to larger delays. When the proposed

re-planning approach is applied, most of the products can be delivered on time or with a small

delay. These results demonstrate the potential reduction in delays and overall costs associated

with disturbances through the application of a re-planning framework. As expected, the impact of

re-planning is more pronounced for larger disruptions.

To investigate the cost of re-planning, we check the objective values of these demand agents

that are affected by the disruption. As defined in (4.7a), each demand agent aj minimizes Jd =

Cd + wt
j

∑
k∈Kd

∆t
jk + wp

j

∑
k∈Kd

∆p
jk. Note that in this case study, all the demands are satisfied,
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Table 4.2: Objective values for different disruption and agent attitudes

Disruption 0% 20% 60% 100%
Risk-attitude / Neutral Averse Neutral Averse Neutral Averse

Product Cost (Cdm) 31,120 28,386 28,416 28,386 29,342 28,792 29,208

Lateness (Ldm) 0 1 1 6 5 8 3

Objective Value
Jdm = Cdm + wtLdm

31,120 128,386 128,416 628,386 529,342 828,792 329,208

i.e.,
∑

k∈Kd
∆p

jk = 0, thus we focus on the product cost Cd and lateness
∑

k∈Kd
∆t

jk. We calculate

the total product cost and lateness for the three demand agents:

Cdm =
∑

aj∈Adm

Cd,j, Ldm =
∑

aj∈Adm

∑
k∈Kd

∆t
jk (4.11)

In addition, the penalty weight for lateness is wt = 105 for all the demand agents, thus the total

objective can be calculated by Jdm = Cdm + wtLdm. Table 4.2 shows the objective values of the

initial plan and modified plans for the three disruption scenarios. As mentioned in Section 4.3.1,

in the initial plan, all the demand agents obtain clusters from S3. This selection is based on the

performance of the entire supply chain network, while we focus on the cost and lateness within this

subset of agents. Note that Table 4.2 presents the costs and penalties of the deterministic modified

plan. Fig. 4.4 shows the results of the simulation where the plan runs with uncertainties.

Compared to the initial plan, the modified plans have lower product costs in all scenarios.

This is because S3 has the lowest lead time and the initial plan tends to minimize the lateness

due to the high penalty for lateness, even though S3 has higher product cost. However, after the

disruption occurs, S3 cannot guarantee on-time delivery. Therefore, Table 4.2 shows that during

the re-planning process, these demand agents re-evaluate suppliers and select other suppliers that

have lower product costs since lateness is inevitable, at least for a portion of products.

The results also show that as the disruption scale increase, the lateness goes higher, which

indicates that the demand agents may still obtain products from the disrupted S3. However, when

the disruption increases the lead time by 100%, the lateness becomes smaller when the agents are

107



risk-averse. In this case, agents try to minimize the worst case (i.e., potential largest lead time),

which mostly occurs if agents choose supplier S3. Therefore, agents decide to obtain products

from other suppliers, even with the expense of higher production costs. On the other hand, when

agents are risk-neutral, they consider the expected value of multiple samples, thus they may still

select supplier S3, resulting in larger delays. When the disruption scale is smaller, the uncertainties

may not lead to a specific worst-case. Consequently, the results from risk-neutral and risk-averse

agents could be similar. Note that alternative optimization results may be achieved based on the

selection of the applied weighting factors to the cost and delay penalty.

4.3.2.2 Case study 2: heterogeneous risk attitudes

Based on the discussion in case study 1, it is interesting that when the disruption increases

the lead time for products from S3 by 60%, the results for risk-neutral and risk-averse agents are

still similar. Since case study 1 presents the total cost and lateness of all the demand agents, it

is difficult to specify how the risk attitudes impact supplier selection. Therefore, we conduct tests

involving various combinations of risk attitudes for the three demand agents at this disruption scale

to check how agents make different supplier selections. Note that the uncertainty when demand

agents make decisions comes from a certain level of trust in the responses received from suppliers.

As mentioned in Section 4.2.2.2, the demand agents treat the response as normally distributed

values, where the response is mean and the trust level affects the variation.

The results are shown in Fig. 4.5, where the widths of the flow arrows are proportional to the

quantities of products in the flow, which are labeled near the arrows. Note that in the initial plan, all

the flows to the cockpit assemblers are from S3. The results show that the demand agents choose

to obtain products mainly from other suppliers than S3, no matter what risk attitudes of the agents

are. This validates the results in Fig. 4.4, where most products are slightly delayed. In general,

risk-averse agents obtained fewer products from S3.

For product cluster 1, agent A1 decides to switch its main supplier from S3 to S1, regardless of

its risk attitude. This decision is driven by several factors. Firstly, the disruption has resulted in an
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Figure 4.5: The new flow plan for cockpit assemblers to receive clusters when they have different
risk attitudes. The numbers on the arrows represent the quantity of products in the flows, and they
are proportional to the widths of the arrows. The disruption increases 60% of the lead time for S3
(i.e., S3 in the figure).

increase in S3’s lead time, making it less favorable in terms of timely product delivery. Secondly,

S1 offers a lower cost compared to S3. Lastly, A1 has a higher level of trust in S1, meaning that

there is a lower level of uncertainty associated with sourcing from S1. Considering these factors,

S1 emerges as the preferred choice for agent A1, regardless of its risk attitude.

For product cluster 2, agent A2 decides to switch to sourcing from both S2 and S4, with a higher

volume of products from S2. This is because the nominal lead times of both S2 and S4 fulfill the

time requirement, but S2 can produce cluster 2 with a lower cost. However, the lead time of S2 is

larger than S4, which introduces a higher possibility of delay. Therefore, when A2 is risk-averse, it

chooses to increase the number of products obtained from S4.
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For product cluster 3, agent A3 decides to switch to sourcing from both S2 and S4, with a

higher volume of products from S4. In this case, S4 has both a lower cost and a lower lead time.

Therefore, S4 is a preferred supplier, especially when A3 is risk-neutral. Further, A3 holds a lower

level of trust of S4, thus it considers higher uncertainty about S4’s response. Therefore, when A3

is risk-averse and considers the worst case, it chooses to increase the number of products obtained

from S2.

4.3.3 Discussion and Insights

The case study demonstrates the feasibility and performance of the proposed risk manage-

ment mechanism. By incorporating uncertainties and risks into the agent optimization, the case

study firstly highlights the importance of re-planning in stochastic environments, particularly in

the presence of significant disruptions. Furthermore, it elucidates how different risk attitudes influ-

ence agent decision-making regarding responses to requests and supplier selection. The proposed

framework provides users flexibility to manage heterogeneous risks in their supply chains and

evaluate performance-based and self-defined metrics.

This case study can be extended from different perspectives to conduct a more comprehensive

investigation of heterogeneous risk management. Firstly, disruptions on different agents can be

tested to investigate how the attributes of the disrupted agents affect the decision-making when

agents have different risk attitudes. Secondly, while this work focuses on testing different risk

attitudes for demand agents, introducing different risk attitudes for supplier agents can contribute to

greater heterogeneity in the supply chain network. Additionally, other types of uncertainties, risks,

objectives, and weights can be considered to examine how agents strike a balance between risks and

objectives. Furthermore, the introduction of additional metrics can enhance the evaluation of the

new plans generated by agents, taking into account risk and uncertainty considerations. Expanding

the scope of analysis along these lines will enable a deeper understanding and investigation of this

heterogeneous risk management mechanism.
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4.4 Concluding Remarks

In this chapter, we provide a heterogeneous risk management framework to improve the re-

siliency of supply chain networks. The heterogeneity includes different agent risk focuses and

risk attitudes, depending on the role that agents play and their current status. This framework

allows agents to choose different risk-based models to solve their local problems based on their

own knowledge, shared information, risk attitudes, and goals to achieve. These models differ in

how agents measure the consequences of uncertainties, i.e., how they take into account risk and

whether they are risk-averse or risk-neutral. In addition, agents can update their risk focuses and

attitudes dynamically as their own attributes and/or the local environment change. Such flexibil-

ity in allowing agents to evaluate risk heterogeneously is difficult to be achieved in a centralized

approach.

More specifically, we reformulate the agent decision-making in Chapter 3 as stochastic opti-

mization problems by incorporating uncertainties and modeling the risks that agents are interested

in. Solving a stochastic optimization instead of the deterministic models, agents can balance their

objectives and risks under disruptions at different scales, thus providing a more resilient new plan

to respond to disruptions. This could further lead to the possibility of optimizing multi-objective

problems under uncertainty using distributed algorithms.

To conclude, we showcase the feasibility of the proposed heterogeneous risk management

framework and analyze how the risks affect agent decision-making through two case studies. This

heterogeneity acknowledges the reality that different suppliers may have varying risk preferences

and risk tolerance levels. By incorporating these factors into the decision-making process, the

mechanism provides a more comprehensive and realistic approach to managing risks in supply

chains. This can lead to improved decision-making, more rational supplier selection, and ulti-

mately enhanced supply chain resiliency.
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CHAPTER 5

Conclusions and Future Directions

Highly dynamic and uncertain industrial environments bring unexpected disruptions with var-

ious locations, scales, time periods, and impacts. This disruption variety may require different

decision-making strategies for enterprises to handle the disruption efficiently. In this dissertation,

we develop a distributed system-level control approach using a multi-agent framework that pro-

vides the flexibility to handle various disruptions. Showcased by the application to manufacturing

systems and supply chain networks, this approach allows users to determine disruption responses

at either the internal factory level or external supply level, depending on disruption attributes and

system attributes. In addition, the proposed design of a multi-agent framework is applicable to

other complex systems that consist of multiple intelligent entities, such as multi-robot teams. In

this chapter, we restate the main contributions, identify future research directions, and discuss

further impacts of this dissertation.

5.1 Contributions

The previous chapters highlight the contributions of this dissertation from the application

perspectives: 1) a dynamic and resilient rescheduling strategy for manufacturing systems; 2) a

heuristic-guided dynamic re-planning strategy for supply chain networks; and 3) a heterogeneous

risk management mechanism for resilient disruption response for supply chain networks. In this

section, we highlight the dissertation contributions based on the system-level control for industrial
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applications (e.g., manufacturing systems and supply chains) and describe how flexibility, agility,

and resiliency can be improved within these systems.

5.1.1 System-Level Modeling and Control

This dissertation introduces a generalized way to utilize multi-agent systems to model and rep-

resent complex industrial environments. Using the proposed design for individual agents, prac-

titioners can capture the heterogeneity of industrial systems. This heterogeneity encompasses a

wide range of aspects, including various agent types and capabilities, and distinct decision-making

processes. Additionally, the nature of individual agent design provides scalability and reusability

to accommodate various types of systems at different scales or adjust existing ones to suit evolving

industrial requirements. As a result, it empowers practitioners to conduct simulations and analysis,

thereby gaining deeper insights into the system’s overall performance and behavior.

Furthermore, this framework provides enterprises with the flexibility to perform system-level

control based on specific disruptions and individual agent attributes that best address the nuances

of a disruption. Through this agent model, various heuristics can be designed to guide agent

communication and decision-making depending on the problems. For example, users may choose

to reconfigure the factory plant to recover performance if a machine breaks down. However, if

there is a material supply shortage, they may trigger the agent decision-making from the supply

chain perspective instead of the factory.

System-level flexibility managed at a local level is difficult to achieve using conventional cen-

tralized approaches. The following sections summarize how the proposed design of a multi-agent

framework can improve flexibility, agility, and resiliency.

5.1.2 Flexibility: Model-Based Agent Architecture

This dissertation proposes a generalized model-based agent architecture that includes a Knowl-

edge Base, a Communication Manager, and a Decision Manager. The Knowledge Base consists of

agent goals, plans, as well as agent states, capabilities, and environments, which are all formulated
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as various models. These models could be different for different types of agents, such as a discrete

event system for RA’s capability model and flow dynamics for supplier agent’s state model, but

this architecture allows agents to dynamically update their intelligence depending on their status.

For example, agents can explore the systems to update their knowledge of the environment and

can change their decision-making model based on new information obtained from communication.

Therefore, this model-based architecture enables agents to react to various scenarios on the fly and

improves the system flexibility compared to existing rule-based agents. In addition, this architec-

ture is extensible to different systems and scalable to large and complex systems. The case study of

the simulated manufacturing system in Chapter 2 showcases the ability to dynamically reschedule

the resources on the fly. The case study of the supply chain instance in Chapter 3 validates the abil-

ity to apply the proposed approach to large-scale and various systems, showcasing the flexibility

and scalability of the framework toward handling a diverse set of disruptions.

5.1.3 Agility: Heuristic-Based Communication Strategy

This dissertation proposes directed agent communication strategies for solving the rescheduling

problem in manufacturing systems and the re-planning problem in supply chain networks. Instead

of allowing agents to communicate with all the other agents, the proposed strategies utilize agents’

environment knowledge as heuristics to guide agent communication as needed. For manufacturing

systems, resource agents (RAs) communicate with each other following a capability-based clus-

tering scheme to avoid unnecessary communications. In supply chain networks, agents retrieve

their knowledge about environments to identify the agents they should communicate with, such

as upstream agents or downstream agents. Therefore, this heuristic-guided communication strat-

egy enables agents to reduce unnecessary communications and thus improves the system agility

compared to existing centralized approaches and fully communicated systems. Showcased by both

case studies of a simulated manufacturing system and a supply chain network, the proposed ap-

proach enables agents to use local communication to obtain information and make nearly-optimal

decisions in most cases. In conclusion, this work makes significant strides in advancing the field of
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dynamic scheduling and real-time decision-making through the proposed communication strate-

gies.

5.1.4 Resiliency: Optimization-Based Decision-Making Model

This dissertation develops decision-making for various agents using optimization models that

incorporate uncertainties and risks. Agents are independent entities that play different roles in

the system, thus different optimization models should be applied depending on their status. This

dissertation formulates various agent decision-making as optimization models with different quan-

tified risks to cope with uncertainties in the systems. In this way, agents are able to optimize their

behaviors heterogeneously based on their own knowledge, objectives, risk attitudes, and roles to

improve the system resiliency compared to existing deterministic approaches. The resiliency per-

formance is showcased through simulated case studies. Through the simulation of a manufacturing

system and supply chain network in a stochastic setting, it is showcased that the proposed approach

enables heterogeneous risk management and provides a resilient disruption response. To conclude,

this work pushes the field of distributed stochastic optimization, as well as practical supply chain

risk management, when the network becomes complex and large.

5.2 Limitations and Future Work

This dissertation has investigated several promising research areas for the development of dis-

tributed intelligence using multi-agent approaches for manufacturing systems and supply chain

networks. The feasibility and performance are showcased by several simulated case studies. How-

ever, there are still remaining limitations and considerable unexplored questions in this field to

make it applicable to the real world. In this section, we briefly discuss four of the potential re-

search directions that can be investigated to realize real-world applications from the perspectives

of flexibility, agility, and resiliency.
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5.2.1 Flexibility: Multiple Disrupted Agents

Most large-scale disruptions impact multiple agents in supply chain networks. For example, the

COVID-19 pandemic disrupted the supply chain with customer demand shifts, factory shutdowns,

and transportation limitations. However, this dissertation focuses on the design of rescheduling

strategies and the simulated case studies that only consider the disruption of a single agent. There-

fore, how agents communicate and make decisions to recover the system performance in the pres-

ence of multiple disrupted agents should be addressed through future research efforts.

In scenarios when multiple agents are disrupted, it is important to investigate the relationships

between the disrupted agents, as well as the impact of the disruptions on connected agents in either

a competitor or collaborator position. By modeling different agent relationships, an extension to

the communication strategy in Chapter 3 is to define agent groups depending on whether they can

be considered together or have to be handled individually. Once the agent groups are formed, a

priority mechanism can be designed to provide heuristics for the communication behaviors. Addi-

tionally, to adopt this approach to the industry, both agent collaborative and individual goal-seeking

behavior should also be explored considering the complex relationships and privacy issues. This

extension would enhance the flexibility of the supply chain network to cope with various disrup-

tions and enable a more practical disruption response strategy.

5.2.2 Agility: Prediction and Learning

Learning and predictive agents have made much headway in the field of computer science but

have not been fully utilized for rescheduling and re-planning problems in industrial systems. While

the proposed framework enables reactive disruption response, learning techniques can be employed

to improve agent initialization and behaviors, such as negotiation strategy and knowledge explo-

ration. For example, the historical data could provide more insightful information to initialize

agents, such as their knowledge about themselves (e.g., risk attitudes) and environments (e.g., trust

of other agents). This learned knowledge would then equip agents with enhanced heuristics to

guide more efficient agent communication and decision-making.
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In addition, learning from big data can provide proactive and predictive information to improve

the agility of systems. For instance, machine learning could utilize the data to generate adequate

disruption scenarios as a database for quick automated disruption identification and estimation. By

combining the proposed reactive approaches in Chapter 2 and 3 with the learning-based proactive

approach, enterprises are able to build to sophisticated decision-making strategy to provide a more

agile response to disruptions.

5.2.3 Resiliency: Hybrid Decision-making

Based on the investigated trade-offs between centralized and distributed approaches in this

dissertation, pairing these two approaches to utilize the full potential of both approaches could

improve system resiliency. An initial study has been proposed in [44] that allows a centralized

controller to provide authority to agents to make decisions and also take over the control if needed.

It is important to define under what conditions which approach should be used. For example, the

distributed approach could be the optimal strategy if the disruption is on a small scale or when the

agents need to explore or identify new disruption strategies. To realize hybrid decision-making, a

comprehensive analysis to better quantify the performance of multi-agent control and centralized

approaches under different scenarios should be conducted.

This dissertation formulates agent decision-making as an integer programming optimization

problem, however, heterogeneous systems may use different techniques to solve different prob-

lems. Other problem-solving techniques, such as fuzzy logic and multi-objective optimization,

should be investigated.

5.2.4 Implementation: Existing Standard

While the proposed multi-agent framework was evaluated using simulations, there are still a

number of challenges that must be addressed in order to implement the framework on a real system.

Focusing on high-level scheduling and planning, this dissertation has not investigated low-level

control considering the models and dynamics of the physical system. This low-level information
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may affect high-level decision-making. Furthermore, practical limitations, such as data collection,

computing power, and cyber-physical communication latency, should also be considered.

In addition, agent-specific standards such as ISO/International Electrotechnical Commission

(IEC) [115] and Foundation for Intelligent Physical Agents (FIPA) [116] should be studied. In

high-level agent communication, this dissertation applies Contract Net Protocol (CNP), which

aligns with FIPA, to design agent communication. However, the impact of the physical limitations

of the information shared through communication has not been considered.

5.3 Outlook and Impact

Overall, this dissertation applies distributed decision-making strategy using a multi-agent

framework to enable intelligent industrial systems, which pushes these three research fields: smart

industry, multi-agent systems, and distributed optimization.

5.3.1 Smart Industry

From the perspective of industrial applications, this dissertation provides a new unified frame-

work to manage enterprises’ internal factories and external supply chains in a distributed way, en-

abling system-level intelligence and autonomy. Users can apply the proposed work to model and

control their manufacturing systems and supply chain network with enhanced flexibility, agility,

and resiliency in dynamic industrial environments. Specifically for disruption responses, this work

can compute a good recovery plan quickly to respond to the environments. Therefore, enterprises

may become more willing to accept customized production orders, participate in more connected

supply chain networks, and integrate new equipment and technologies. In addition, the proposed

framework can be integrated into a decision support system to conduct various simulations, which

helps enterprises analyze the system performance under different conditions that could be too com-

plex and risky to be tested in the real world.
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5.3.2 Multi-agent Systems

The multi-agent community has identified a common issue of lacking benchmarks and stan-

dardization. This dissertation provides a way to standardize the multi-agent system design for

distributed intelligence and successfully applies this approach to two different systems: manufac-

turing systems and supply chain networks. Since the baseline of the framework is not system-

specific, this framework can be extended to other complex systems, such as multi-robot teams and

autonomous vehicles, that consist of multiple intelligent and autonomous entities. For example,

for a system of multiple Autonomous Guided Vehicles (AGVs) in a warehouse, each AGV can be

designed following the proposed framework. Specifically, an AGV agent’s knowledge base could

include robot dynamics as a state model, planned movement as intentions, warehouse maps as an

environment model, etc. Based on the knowledge, agents can communicate to solve (re)planning

problems, such as task re-allocation when there are AGVs unavailable. In addition, this stan-

dardized agent framework also lays a foundation for identifying typical metrics to evaluate the

performance of distributed agent-based systems.

5.3.3 Distributed Optimization

A significant amount of traditional scheduling and planning problems are NP-hard, especially

when considering uncertainties and multiple objectives. Though this dissertation focuses on

rescheduling problems, the proposed agent communication with stochastic optimization leads to

the possibility of heuristic-guided distributed algorithms to provide a solution to these NP-hard

problems. In addition, applying this multi-agent framework may enable a more flexible decompo-

sition of the global problem. Instead of decomposing the global objective function to the sum of

several sub-functions, assigning local optimization allows agents to solve agent conflicts, as well

as model the collaborative and competitive relationship between agents.
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[94] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas, “Jack intelligent agents-summary of
an agent infrastructure,” in 5th International conference on autonomous agents, vol. 142,
2001.

[95] I. Kovalenko, E. C. Balta, D. M. Tilbury, and K. Barton, “Cooperative product agents to im-
prove manufacturing system flexibility: A model-based decision framework,” IEEE Trans-
actions on Automation Science and Engineering, vol. 20, no. 1, pp. 440–457, 2022.

[96] Y. Qamsane, E. C. Balta, J. Moyne, D. Tilbury, and K. Barton, “Dynamic rerouting of cyber-
physical production systems in response to disruptions based on sdc framework,” in 2019
American Control Conference (ACC). IEEE, 2019, pp. 3650–3657.

[97] M. Toothman, B. Braun, S. J. Bury, M. Dessauer, K. Henderson, R. Wright, D. M. Tilbury,
J. Moyne, and K. Barton, “Trend-based repair quality assessment for industrial rotating
equipment,” in 2021 American Control Conference (ACC). IEEE, 2021, pp. 502–507.

[98] E. C. Balta, I. Kovalenko, I. A. Spiegel, D. M. Tilbury, and K. Barton, “Model predictive
control of priced timed automata encoded with first-order logic,” IEEE Transactions on
Control Systems Technology, vol. 30, no. 1, pp. 352–359, 2021.

[99] C. M. Macal and M. J. North, “Introduction to agent-based modeling and simulation,” in
Proceedings of the MCS LANS Informal Seminar, 2006.

127



[100] H. J. Yoon and W. Shen, “A multiagent-based decision-making system for semiconductor
wafer fabrication with hard temporal constraints,” IEEE Transactions on Semiconductor
Manufacturing, vol. 21, no. 1, pp. 83–91, 2008.

[101] M. Bi, D. M. Tilbury, S. Shen, and K. Barton, “A distributed approach for agile
supply chain decision-making based on network attributes,” IEEE Transactions on
Automation Science and Engineering (Submitted), 2023. [Online]. Available: https:
//drive.google.com/file/d/1kiGmSjlXGwBLUiDibINqjOXXWF2ABikL/view?usp=sharing

[102] M. Parhi, S. Perera, M. Piraveenan, and D. Kasthurirathna, “Topological structure of manu-
facturing industry supply chain networks,” Complexity, 2018.

[103] Y. Kim, Y.-S. Chen, and K. Linderman, “Supply network disruption and resilience: A net-
work structural perspective,” Journal of operations Management, vol. 33, pp. 43–59, 2015.

[104] Y. Kim, T. Y. Choi, T. Yan, and K. Dooley, “Structural investigation of supply networks: A
social network analysis approach,” Journal of operations management, vol. 29, no. 3, pp.
194–211, 2011.

[105] A. Nair and J. M. Vidal, “Supply network topology and robustness against disruptions–
an investigation using multi-agent model,” International Journal of Production Research,
vol. 49, no. 5, pp. 1391–1404, 2011.

[106] P. Zhao, Z. Li, X. Han, and X. Duan, “Supply chain network resilience by considering
disruption propagation: Topological and operational perspectives,” IEEE Systems Journal,
vol. 16, no. 4, pp. 5305–5316, 2022.

[107] A. Whitbrook, Q. Meng, and P. W. Chung, “Reliable, distributed scheduling and reschedul-
ing for time-critical, multiagent systems,” IEEE Transactions on Automation Science and
Engineering, vol. 15, no. 2, pp. 732–747, 2017.

[108] K. Khalili-Damghani and P. Ghasemi, “Uncertain centralized/decentralized production-
distribution planning problem in multi-product supply chains: fuzzy mathematical opti-
mization approaches,” Industrial engineering and management systems, vol. 15, no. 2, pp.
156–172, 2016.
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