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ABSTRACT

This dissertation examines two problems in biostatistics. The first and second projects develop
horseshoe process regression (HPR), a Bayesian nonparametric model that uses statistical shrink-
age to capture abruptly changing associations between a continuous predictor and some outcome.
We use HPR to model women’s basal body temperature (BBT) across the menstrual cycle. In con-
trast, the third project proposes a nonparametric multiple imputation approach to estimating the
cumulative incidence, a key descriptive statistic in survival analysis.

Focusing on the first project, we state the truism: biomedical data often exhibit jumps or abrupt
changes. These sudden changes make these data challenging to model, as many methods will over-
smooth the sharp changes or overfit in response to measurement error. We develop HPR to address
this problem. We define a horseshoe process as a stochastic process in which each increment
is horseshoe-distributed. We use the horseshoe process as a nonparametric Bayesian prior for
modeling an association between an outcome and its continuous predictor. We provide guidance
and extensions to advance HPR’s use in applied practice: we introduce a Bayesian imputation
scheme to allow for interpolation at unobserved values of the predictor within the HPR; include
additional covariates via a partial linear model framework; and allow for monotonicity constraints.
We find that HPR performs well when fitting functions that have sharp changes, and we use it to
model women’s BBT over the course of the menstrual cycle.

In the second project, we focus on using HPR for one particular type of abruptly changing data:
BBT over the course of the menstrual cycle. Women’s BBT exhibits abrupt changes at the time
of ovulation and menstruation, which many methods struggle to capture. While in the first project
we demonstrated that HPR had potential for modeling BBT, in the second project we tailor HPR
for this setting. We re-implement HPR using variational inference to speed computation time,
which we show offers comparable results to those provided by Hamiltonian Monte Carlo in the
first project. We incorporate ovulation pattern into the HPR model, to provide posterior estimates
of ovulation day and its uncertainty. We consider a posterior-prior passing scheme in order to
share information across cycles. We use this BBT-specific version of HPR (HPR-BBT), to analyze
BBT data from a large cohort of British women. Overall, HPR-BBT offers sensible estimates of
ovulation day and BBT trajectory.
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And now for something completely different: the third project. We propose an alternative ap-
proach to the Aalen-Johansen estimator of the cumulative incidence. Rather than calculate the
cumulative incidence directly, we instead perform nonparametric multiple imputation to gener-
ate event times and types for censored individuals. Thus, on each imputation, all participants are
“observed” to have an event. Calculating the cumulative incidence on each imputation is then
merely estimating a proportion at each timepoint, and yields point and uncertainty estimates that
can be aggregated across imputations via Rubin’s Rules. The resulting multiple imputation es-
timator is mathematically and empirically shown to generate equivalent point estimates to the
Aalen-Johansen estimator as the number of imputations increases; in addition, the multiple im-
putation estimator offers improved options for uncertainty estimation. We discuss connections to
redistribute-to-the-right algorithms and other imputation approaches for survival analysis.
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CHAPTER 1

Introduction

As the title suggests, this dissertation studies two very different biostatistical problems. In the first
and second projects, we develop horseshoe process regression (HPR), a Bayesian nonparametric
model that uses statistical shrinkage to capture abruptly changing associations between a continu-
ous predictor and some outcome. In contrast, the third project proposes a nonparametric multiple
imputation approach to estimating the cumulative incidence function, a key descriptive statistic in
the competing risks survival analysis setting. Perhaps the only thing these two topics have in com-
mon is the word “nonparametric,” which does not so much highlight their similarity as raise the
question: what business do Bayesians have being nonparametric? Although largely unconnected,
these two topics share the goal of analyzing complex longitudinal data with a Bayesian flair and
providing statistical methodology that is prepared for the challenges of real data.

In the first and second projects, we focus on data with varying degrees of smoothness in the
association between a continuous predictor and some outcome over the domain of the association.
The data may have linear, smooth, or constant portions interspersed with jumps, spikes, drops, or
abrupt changes in concavity. One example of such data is women’s basal body temperature (BBT)
data over the menstrual cycle, which we focus on in this dissertation. BBT features a sharp jump
at the time of ovulation, followed by a sharp drop at menstruation. However, other examples of
this kind of data might include data on human gait [35] or cancer biomarker data such as prostate
specific antigen (PSA) for prostate cancer [45] or CA125 for ovarian cancer [70]. These data
are challenging to model because many existing statistical methods are intended for data with a
constant degree of smoothness across the domain: consistently smooth or consistently not smooth.
As a result, existing methods force a choice between a fit that captures the smooth portions of the
association but oversmooths the abruptly changing components (e.g. generalized linear models,
splines, Gaussian process regression), or a fit that captures the abruptly changing components but
introduces excess motion into the smooth components (e.g. the generalized lasso, the median
filter). In either case, applying these methods to data with different levels of smoothness across the
domain may yield results that fit the data poorly, have incorrect uncertainty estimates, and make it
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difficult to identify the locations of the shifts between low and high variability, which is often of
applied interest.

The use of shrinkage priors within a Bayesian nonparametric setting is one recent solution to
this problem, first explored by Faulkner and Minin (2018) [22] and Kowal et al. (2019) [48].
Suppose we have some continuous outcome yt observed at predictor value t, t = 1, . . . , n. Then
in this approach, we assume the model:

yt = ft + ϵt

f1 ∼ N(a, b2)

ft − ft−1 ∼ G, t = 2, . . . , n

ϵt|σ2 ∼ N(0, σ2), σ2 ∼ H

(1.1)

In this model, we assume that yt is normally distributed about its mean, ft. The first value of ft,
f1, has its own prior, which for simplicity we assume is a normal distribution with mean a and
variance b2. For all timepoints after t = 1, ft is a random walk in which the incremental change
over t is given by some distribution G. The choice of G will dictate the shape of ft. If we assume
that G is a normal distribution, then ft will be a Gaussian process, which provides a fairly smooth
trend.

Rather than use a normal distribution for G, Faulkner and Minin (2018) suggested the use of
Bayesian shrinkage priors, such as the double-exponential prior, the normal-gamma prior, or the
horseshoe prior [22]. These shrinkage priors put most of their mass on either very large or very
small signals, a desirable property for statistical shrinkage [12]. When G is a shrinkage prior, then
ft has an abruptly changing and dynamic shape, alternating between stretches during which ft

changes very little, and other portions when ft may make large jumps. Faulkner and Minin (2018)
found that using a horseshoe prior for G yielded particularly dynamic fits, imposing a prior that
looked somewhat like a step function (Figure 1.1) [22].

When a horseshoe distribution is used for G, Equation 1.1 becomes:

yt = ft + ϵt

f1 ∼ N(a, b2)

ft − ft−1|τ, λt ∼ N(0, τ 2λ2
t ), t = 2, . . . , n

τ ∼ C+(0, 1), λt
iid∼C+(0, 1), t = 2, . . . , n

ϵt|σ2 ∼ N(0, σ2), σ2 ∼ H

(1.2)
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Figure 1.1: Four sample draws from the prior for a random walk in which incremental change is
assumed to be horseshoe distributed.

In Equation 1.2, G is conditionally normally distributed, with a hierarchical variance term that
depends on two parameters, τ and λt, which we call the global and local shrinkage parameters,
respectively. While τ controls the overall amount of motion in ft, each increment of change,
ft − ft−1, gets its own local shrinkage parameter λt, which enables the model to capture abrupt
changes in ft.

Although these local shrinkage parameters make this type of model—which we call horseshoe
process regression (HPR)—very flexible, they also cause challenges. First, they scale with sample
size, as there are n− 1 local shrinkage parameters. This makes the model somewhat computation-
ally intensive, particularly at larger values of n. Second, the finite set of local shrinkage parameters
means that the underlying “horseshoe process” is neither infinitely divisible nor self-similar, two
desirable features for a stochastic process that ensure that the probability structure of the model
is the same regardless of the grid at which we observe it. As we discuss in Chapter 2, while it is
possible to formulate a version of HPR using subordinated Brownian motion that does not have
these limitations, mathematical and computational barriers remain high to actually implementing
that model [63]. Instead, we use the discretely-observed formulation in Equation 1.2, which relies
on a finite set of local shrinkage parameters, the size of which is dictated by the observed data.
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This approach generally yields good performance, but it causes difficulties when we want predic-
tions or interpolations from the HPR, and it complicates information-sharing on the local shrinkage
parameters in the presence of repeated measurements.

In Chapter 2, our emphasis is on making HPR more usable in practice. We clarify the for-
mulation of HPR and its connections to stochastic processes. We assess HPR’s performance for
modeling dynamically changing data and find that it offers excellent performance for step func-
tions, piecewise linear functions, and impulse functions. We consider approaches for data inter-
polation within HPR and recommend a Bayesian imputation scheme to sample local shrinkage
parameters and values of f at unobserved locations, which we find yields sensible results. We also
provide guidance on including additional linear covariates, imposing monotonicity constraints, and
on setting hyperparameters, with additional simulations and sensitivity analyses to justify our rec-
ommendations. We use HPR to model women’s BBT data taken from Weschler (2015) [80]; based
on those results, HPR has potential as a methodology for modeling BBT data.

In Chapter 3, we focus more deeply on using HPR for women’s BBT data, building on the
preliminary analysis we completed in Chapter 2. Over the course of a single menstrual cycle,
BBT has a step-function shape, with lower temperatures during the first half of the menstrual
cycle, followed by a sharp increase in temperature at the time of ovulation, with sustained high
temperatures through the second half of the menstrual cycle. With the onset of menstruation, the
BBT drops back to its lower pre-ovulation temperatures and the pattern repeats. This biphasic
BBT pattern has been the subject of great interest in the medical literature because it provides a
noninvasive method to detect ovulation [53]. Although this general pattern may hold in up to 90%
of women [73], there can be extensive individual and cycle-to-cycle variation in the sharpness of
the ovulation/menstruation BBT jump, the timing of ovulation, and the pre- and post-ovulation
BBT itself. A good statistical method for analyzing BBT needs to be able to model a variety
of BBT patterns; to allow information-sharing while accommodating variation across cycles; to
provide an estimate of when ovulation occurred based on the modeled BBT trajectory; and be
computationally speedy.

In Chapter 3, we modify the HPR model from Chapter 2 to provide these features. First, we
introduce ovulation day as a parameter in the model, which allows us to provide estimates of its
posterior distribution. Although we choose the prior for this parameter based on clinical knowl-
edge of ovulation timing specifically, this general approach could extend to other changepoint
detection settings outside of BBT data. Second, we re-implement HPR using variational inference
to hasten estimation. Variational inference aims to estimate an approximate posterior distribution
that is simpler to obtain than the true posterior [31]. The variational inference implementation
that we propose offers major computational speed gains relative to full Markov Chain Monte
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Carlo (MCMC); however, it requires careful choices of initial values and hyperparameters. Al-
though the variational inference implementation’s results are very similar to those of MCMC, they
are often slightly worse, creating a minor tradeoff between computational speed and model perfor-
mance. In most settings, we think the computational gains are worth it, but further work is needed
to evaluate this [83]. Third and finally, we propose a posterior-prior passing scheme to share in-
formation across cycles for the same woman [18]. This approach, in contrast to a more traditional
mixed model formulation [25], allows us to sidestep some of the challenges of information-sharing
in the presence of the local shrinkage parameters. Using BBT data measured in a large cohort of
British women [55, 76], we demonstrate that our ovulation-detection approach, variational infer-
ence algorithm, and posterior-prior passing scheme usually return sensible results in real data, and
that including information from previous cycles improves model convergence rates and reduces
the number of days of data needed to detect ovulation. However, more work is needed to further
fine-tune HPR for modeling BBT.

In Chapter 4, we study a different type of complex longitudinal data: censored data in the pres-
ence of competing risks. Censoring occurs when we wish to measure a time-to-event outcome
(such as time to death) but are unable to observe the event of interest. This is often caused by
study termination or participant dropout. As a result, we are left with partially missing data. We
know that the individual has survived event-free to the time of censoring, but not what happened
afterwards. When we can assume that the censoring occurred independently of the event of inter-
est, we have ample statistical methodology to analyze the resulting censored data and make full
use of the information it contains [46]. Unfortunately, we sometimes cannot assume independent
censoring. Here, we focus on one kind of dependent censoring: death from a competing event.
If we are primarily interested in death from a particular cause (such as death from cancer), then
when individuals die from another cause (such as heart attack or car accident) we are unable to
observe their time to the event of interest, because they have already died of something else. This
is censoring. However, assuming that a participant’s death from a competing event is independent
from their likelihood of dying of the event of interest is often implausible, making the indepen-
dent censoring assumption untenable. We might suspect that an individual who died of a heart
attack had a fundamentally different risk of dying of cancer than an individual who actually did
die of cancer. Death from a competing event cannot be treated as independent censoring. Thus,
the presence of competing events results in three different outcomes in our study: experiencing
the event-of-interest (fully observed), independent censoring (partially observed; caused by things
like dropout), and death from a competing event (partially observed; dependent censoring). Many
of the methods we use for independently-censored data cannot be used in this setting, as they will
return biased results [46].
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The cumulative incidence function is a key descriptive statistic in the competing events set-
ting. It is the probability of experiencing the event of interest by time t. It is usually estimated via
the Aalen-Johansen estimator [2]. Although the Aalen-Johansen estimator is the most common ap-
proach to estimate the cumulative incidence, it can be difficult to adapt to unique applied problems,
especially if variance estimates are desired. A more intuitive approach comes when we reformulate
the Aalen-Johansen estimator as a redistribute-to-the-right algorithm, as was done by Efron (1967)
[19] and Gooley et al. (1999) [33]. In a redistribute-to-the-right version of the Aalen-Johansen es-
timator, each participant in the study has equal weight: if our sample size is n, then each participant
has weight 1/n. If an individual is censored (from independent causes such as loss-to-follow-up
or study completion), then we redistribute their weight equally among the individuals who remain
alive at the time of the censoring. After redistributing the weights of the independently-censored
individuals to individuals who were not censored during study follow-up (e.g. those who died of
the event of interest or the competing event), it is straightforward to estimate the cumulative in-
cidence at time t as the sum of the redistributed weights of the individuals who died of the event
of interest by t, divided by the total sample size n. Working with this weighted proportion can be
more straightforward than working with the Aalen-Johansen estimator.

More straightforward still is to replace the reweighting with multiple imputation, an idea used
in the all-cause survival analysis setting by Taylor et al. (2002) [74]. Rather than reweighting
the sample to account for the independent censoring, we would instead generate multiple impu-
tations of an event time and type for censored individuals, so that each imputed dataset consists
only of observed or imputed times for the event of interest or the competing event. We can esti-
mate the cumulative incidence at time t on each imputed dataset as the proportion of deaths from
the event of interest by time t—no weighting required. The resulting proportion estimates and
their variances can be aggregated using Rubin’s Rules to provide final estimates of the cumulative
incidence [50].

That is the approach we take in Chapter 4, in which we propose two multiple imputation ap-
proaches to estimate the cumulative incidence function. We demonstrate mathematically that with
infinite imputations, the multiple imputation approach will return equivalent results to the Aalen-
Johansen estimator; we demonstrate empirically that even with a finite number of imputations the
multiple imputation approach will return results that are very similar to Aalen-Johansen. If we set
aside the goal of mimicking Aalen-Johansen, even at very small numbers of imputations (e.g. 5-
10) the multiple imputation approach shows good performance for estimating the true underlying
cumulative incidence. In addition, the use of a binomial proportion to estimate the cumulative in-
cidence on each imputation allows for connections to longstanding work on uncertainty estimation
for binomial proportions [3, 81], which motivates our proposal of two alternative variance estima-
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tors for the cumulative incidence function. These alternative variance estimators give improved
performance over existing options when the event rate or sample size are low.

Finally, in Chapter 5, we highlight opportunities for future work on HPR, modeling BBT, and
the use of multiple imputation estimators in survival analysis. There are a variety of directions for
further biostatistical research.
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CHAPTER 2

Modeling Data Using Horseshoe Process Regression

2.1 Introduction

Consider a longitudinal outcome, such as a man’s PSA tracked throughout treatment for prostate
cancer or a woman’s basal body temperature measured during the menstrual cycle. Common ap-
proaches to model these data might include a generalized linear model, splines, or a version of
Gaussian process regression, all of which would recover an estimate of the underlying associa-
tion between time and the outcome, provide a measure of uncertainty about that association, and
enable interpolations between observed datapoints, with varying degrees of assumptions, compu-
tational speed, smoothness, and interpretability [36]. However, the examples given above—and
many other types of biomedical and scientific data—share a common trait: the possible presence
of jumps, kinks, or steps in the association between the outcome and predictor. In the case of
PSA and prostate cancer, we might see such a jump after the removal of the prostate, when PSA
plummets, and again when radiation therapy is initiated. In between these drops, we would ob-
serve more gentle increases in PSA as the prostate cancer progresses [45]. For women’s basal body
temperature, this jump occurs at ovulation, when body temperature increases sharply in response
to progesterone release, after which point body temperature will jump or gradually decline back to
the pre-ovulation temperature by the end of the menstrual cycle [66]. The number of jumps and
their locations may not be known a priori. In the case of PSA monitoring, we would expect to
know when the patient received particular treatments, but with women’s basal body temperature, it
is less likely that we would know the location of the jump(s) without some examination of the data.
An optimal statistical method would recognize the jumps—regardless of whether their locations
are known a priori—and allow them to be sharp, but without introducing noise in the smooth parts
of the association. This is where the methods listed above struggle, failing to accommodate both
the sharp jumps and the smooth portions [49].

This chapter introduces horseshoe process regression, a method to model data featuring sharp
jumps and smooth portions when the locations of the jumps are not known a priori. To do so,
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we adapt Gaussian process regression by using a horseshoe process prior rather than a Gaussian
process prior. The horseshoe process prior accommodates large jumps and constant stretches, and
uses information from the data to place the jumps. Extensions allow for interpolations and pre-
dictions at unobserved datapoints, the inclusion of multiple predictors (both linear and nonlinear),
non-Gaussian outcomes, and monotonicity constraints. Because the model is implemented in a
fully Bayesian framework, uncertainty estimates are straightforward to calculate. We provide an
R package, HPR, which includes all of these features and other functions useful for applied prac-
tice.

Horseshoe process regression adds to the extensive literature on changepoint and step detec-
tion modeling, sometimes called mean or trend filtering. Early methods included cumulative sum
testing approaches [66] or running median filters [49]. Other common approaches include the use
of low-degree splines [49], often with some kind of penalty [20], or LASSO variants [75]. Gaus-
sian process models, modified to be autoregressive or nonstationary, are another flexible option
[68]. Many sophisticated methods have come from the econometrics literature. These include
jump diffusion models, jump processes, and stochastic volatility models [14, 47]. Although these
sophisticated approaches produce very flexible fits, they are often poorly suited to the biomedi-
cal setting: performance relies on large numbers of observations, usually equally-spaced, that are
rarely available in patient biomarker data, and as a result, overfitting and model nonconvergence
can be serious concerns in small or unequally spaced samples. There is little consideration of non-
Gaussian outcomes. In addition, because time is often the predictor of interest in these settings,
there is no allowance for observations at the same predictor value, as might be seen in the biomed-
ical setting when working with dose-toxicity data, in which the predictor is dose and multiple
patients could be assigned to receive the same dose.

Faulkner and Minin (2018) [22] were the first to recognize the potential of horseshoe processes
for nonparametric curve fitting in their exploration of Bayesian shrinkage priors for trend filtering
on kth order differences, which they call shrinkage prior Markov random fields (SPMRF). They
presented evidence that the horseshoe prior was well-suited to piecewise-constant curve estimation
within the context of Bayesian trend filtering. Similarly, Kowal et al. (2019) [48] developed
dynamic shrinkage processes for use in stochastic volatility modeling. Their model formulation
resembles ours and SPMRF, but its primary focus is on a dynamically dependent variant of the
model. In addition, it is targeted to econometric applications, which limits its use in the biomedical
setting, with difficulties with repeated or unequally spaced predictor values. We build upon both
Faulkner and Minin [22] and Kowal et al. [48] by allowing for data interpolation, additional linear
predictors, and monotonicity constraints, and the insight we offer into computational performance.
Another key building block of our work is that of Boonstra et al. [8], in their use of horseshoe
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priors for isotonic regression with categorical predictors and binary outcomes. We extend that
approach by allowing for continuous predictors through the use of a horseshoe process prior, and
we consider continuous and count outcomes in addition to binary outcomes. We also consider
data that are not monotonic. Our finished product is a versatile approach for fitting piecewise
constant and piecewise linear functions in biomedical settings, with flexible extensions to allow
for additional covariates, discrete outcomes, and monotonicity constraints.

The structure of this chapter is as follows. First, we present some technical background on
the horseshoe prior and the underlying theory of horseshoe processes. Second, we present the
model formulation for horseshoe process regression. We review the extensions to allow for data
interpolation, additional covariates, and monotonic constraints, and provide computational details.
Third, we present a simulation study to characterize horseshoe process regression’s performance.
We demonstrate the use of horseshoe process regression in a dataset of women’s basal body tem-
peratures from Weschler (2015) [80]. We conclude with a discussion of limitations and directions
for future work.

2.2 Technical Background

2.2.1 The Horseshoe Prior

Consider the classic linear regression problem in which we have observations yi and a length p

vector of predictors xi for each individual i = 1, ..., n. We might wish to fit a multivariable linear
regression of the form yi = β0+β1x1i+β2x2i+...+βpxpi+ϵi, ϵi

iid∼N(0, σ2). If p is large—possibly
even larger than n—we may suspect that many of the coefficients βj, j = 1, ..., p are close to
zero, with little effect on the outcome y. Maximum likelihood estimation of the regression is not
possible if p > n; even if p ≤ n, the estimates of the coefficients may be highly variable. Shrinkage
estimation is one approach to address this problem, in which we use a penalty or other constraint
in model estimation to shrink the coefficients closer to zero. Ideally, this shrinkage constraint will
push the coefficient estimates for predictors that have little association close to zero while leaving
untouched the coefficient estimates for predictors that have a large association with the outcome
[36].

The horseshoe prior is a popular Bayesian approach for shrinkage estimation [12]. It takes the
form p(βj|τ 2, λ2

j) ∼ N(0, τ 2λ2
j), with τ ∼ C+(0, c) and, independently, λj

iid∼C+(0, 1), where
C+(a, b) denotes a half-Cauchy distribution with location parameter a and scale parameter b. We
call τ the global shrinkage parameter, as it provides an overall measure of shrinkage on the βj’s.
If τ is large, this prior admits many large βj’s; if τ is small, the βj’s are pushed towards zero.
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However, the horseshoe prior also contains a set of local shrinkage parameters, λj, j = 1, ..., p,
one for each βj . The local shrinkage parameters allow individual βj’s to attain high values, even
if τ is small. The marginal density function of the horseshoe prior takes on a distinctive shape,
featuring an infinite spike at zero, along with moderately heavy tails. As a result, the horseshoe
distribution approaches zero faster than a normal distribution, but while admitting large values with
high probability. It has been shown that separately for each coefficient, the horseshoe favors either
total shrinkage (estimate of βj close to zero) or minimal shrinkage (leaving the estimate of βj close
to its estimate under maximum likelihood estimation) [12].

The horseshoe prior provides excellent shrinkage performance and resolves many of the com-
putational difficulties of earlier Bayesian approaches to shrinkage estimation [12, 56]. However, it
has drawbacks: the heavy tails of the half-Cauchy priors on τ, λj can cause problems with Bayesian
model convergence. Proposed solutions to these problems include the use of decentered parame-
terizations to reduce a priori parameter correlation [59]; imposing additional regularization on the
tails of the half-Cauchy priors [62]; and placing an additional hyperprior on the scale parameter c
of the prior on τ [61].

2.2.2 Horseshoe Processes

We will now switch focus to stochastic processes. Suppose y(t) is some outcome recorded at time
t. We use time for simplicity, but note that t could be any continuous predictor. In its simplest form,
a Gaussian process is defined as y(t) − y(t − s) ∼ N(0, sτ 2). A Gaussian process assumes that
incremental change over time is normally distributed. It relies on a single parameter, τ 2, which
is the variance of the process. If τ 2 is large, the process will vary substantially over time; if τ 2

is small, the process will remain fairly constant over time. The variance between measurements
increases as the elapsed time between them, s, increases.

We seek to define a horseshoe process, which takes a similar structure to a Gaussian process,
except incremental change over time will be horseshoe distributed rather than normally distributed.
Polson and Scott (2010) [63] demonstrated that all local-global shrinkage distributions based on
scale mixtures of normals (like the horseshoe) can be extended to a stochastic process within the
framework of subordinated Brownian motion. They found that a horseshoe process H(t) can
be represented as H(t) ∼ N(0, exp(M(t))) where M(t) is a Meixner process. Although this
definition of a horseshoe process is the most mathematically complete, obstacles lie in the way
of implementing it. The Meixner process has few workable computational implementations [54].
In addition, because the Meixner-subordination occurs on the log-variance scale for the horseshoe
process (rather than the variance scale), it is challenging to understand the covariance structure
and other properties of the horseshoe process [63]. In light of these challenges, we use a discrete
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formulation of the horseshoe process. For a set of timepoints tk, k = 1, ...,m, define a horseshoe
process Htk as:

Htk −Htk−1
|τ, λk ∼ N(0, τ 2λ2

k(tk − tk−1)), k = 2, ...,m

Ht1 = 0

τ ∼ C+(0, c)

λk
iid∼C+(0, 1), k = 2, ...,m

(2.1)

Under this formulation, incremental motion is horseshoe distributed, defined only at discrete
observations of continuous time. Each discrete time increment has its own local shrinkage param-
eter, λk, while the overall variance is controlled by the global shrinkage parameter, τ . Variance
between observations continues to scale with elapsed time.

This discrete definition of a stochastic process may pose theoretical challenges, e.g. what is the
value of Ht∗ for tk−1 < t∗ < tk? For a Gaussian process this is readily obtained, but because of
the local shrinkage parameters of the horseshoe process, it is more challenging. Ht∗ must have
its own local shrinkage parameter. The only way to truly resolve this difficulty is by pursuing
the Meixner-subordinated process described above, in which we have a continuously generated
stochastic process of local shrinkage parameters. However, theoretical and computational devel-
opment of that model remains intractable.

In the interim, one solution might be to define the value of the local shrinkage parameter to
be some fixed value within each increment. This approach is somewhat unsatisfactory, though,
because the carried-forward local shrinkage parameter approach blunts the horseshoe process’
most unique feature: its abrupt, dynamically changing behavior with the rapidly changing local
shrinkage parameters. Rather than define the local shrinkage parameter of Ht∗ to be some function
of the other local shrinkage parameters, we instead use the Bayesian imputation scheme described
below, and impute a value for the missing local shrinkage parameter for any unobserved values
of the horseshoe process at which predictions are desired. Therefore, the “horseshoe process” is
only defined for discrete observations—but a horseshoe process can be generated for any set of
predefined times.
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2.3 Methods

2.3.1 Model Formulation

Let yi be some outcome observed for patients i = 1, ..., n at continuous predictor value xi. Define
x,y as the corresponding length n vectors of these observations. Define t as a length m vector
containing the unique, ordered values of x. Suppose that xi = tj . Then we define a HPR model
as:

g(E(yi)) = fj = α +

j∑
k=1

hk

hk|τ, λk ∼ N(0, τ 2λ2
k(tk − tk−1)), k = 2, ...,m, h1 = 0

τ ∼ C+(0, c), λk
iid∼C+(0, 1), k = 2, ...,m

α ∼ N(a, b2)

(2.2)

In Equation 2.2, we assume that f , the appropriately-transformed mean trajectory of y with respect
to time, follows a horseshoe process, formulated as the sum of the discretely observed horseshoe
increments. This corresponds to placing a horseshoe prior on the first order differences of f and
approximates placing a horseshoe prior on the first derivative of the association. The HPR model
assumes that the functional form is like a step function. In general, the λk values will be small,
resulting in long stretches of near-constant values of f , punctuated by abrupt steps which may be
quite large when large values of λk are supported by the data. The process starts at a y-intercept
α, which has a normal prior placed on it. The g(E(yi)) formulation allows for non-Gaussian data
through the use of an appropriate transformation g. We use a logit transformation and Bernoulli
likelihood for binary outcomes and a log transformation and Poisson likelihood for count data. The
model also allows for multiple observations at the same tj value and does not require the t values
to be evenly spaced.

2.3.2 Extension 1: Interpolation and Prediction

As is often the case, there may be values of x at which we wish to obtain predictions or extrap-
olations, or to obtain a more finely-spaced grid of increments hk with which to approximate the
horseshoe process [85]. In this case, we can augment the grid t with additional gridpoints that are
not included in x so that t is the unique, ordered set of observed x values and augmentation points
xaug. Let yobs denote the observed values of y, and let fobs denote the estimates of the underlying
transformed mean of y at the observed locations. Define yaug, faug as the unobserved outcome and
transformed mean at the requested augmentation points. Let θ represent the hyperparameters of
the model, e.g. θ = {α,h,λ, τ}. Then we wish to obtain samples from the posterior distribution
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of fobs, faug,θ [31]. A common approach to do this would be to place a prior on yaug to reflect the
additional uncertainty for the imputed outcomes, e.g. yaug ∼ N(faug, σ

2) in the case of Gaussian
outcomes. However, in the case where we only care about the underlying mean trajectory faug, we
see that placing a prior on yaug is unnecessary, because it does not contribute to the posterior of
the other parameters:

P (fobs, faug,θ|yobs) ∝
∫

P (fobs, faug,yobs,yaug,θ)dyaug

=

∫
P (yobs|fobs,θ)P(yaug|faug,θ)P(fobs, faug,θ)dyaug

= P (yobs|fobs,θ)P(fobs, faug,θ)

(2.3)

Then for an unobserved element of t, we sample a corresponding value of f according to
some prior distribution for faug, without needing to specify a prior distribution for yaug. We
choose to impose the same form on faug as on fobs, e.g. an augmentation point x∗ = tj will have
fj = α +

∑j
k=1 hk with its own local shrinkage parameter λj sampled, where λj ∼ C+(0, 1).

Note that this approach assumes that faug and fobs have a similar level of abrupt change. For
example, if at the observed datapoints fobs appears relatively flat, but at the augmentation points
faug is abruptly changing, then the above augmentation approach will not be able to interpolate
those jumps in the association because there is no evidence of them in the observed data. If data
are observed at particular times/locations because they are more or less variable than at unobserved
times/locations—for example, some biomarker that is deliberately measured in response to low or
high levels of variability—then our approach will produce biased estimates of faug. However, the
estimates of fobs should be unaffected.

This approach highlights some of the limitations of working with a discrete formulation of a
horseshoe process. Every unique value of t must have its own local shrinkage parameter, whether
there is an observed outcome at that location to support its estimation or not. In a truly contin-
uous formulation of a horseshoe process, we would have posterior estimates of the parameters
of the underlying Meixner process that generated the local shrinkage parameters. Thus—in an
ideal world—we might be able to obtain the posterior distribution of λaug|λobs,yobs from the
properties of the multivariate Meixner distribution, and then use these values in combination with
properties of the multivariate normal distribution to obtain the distribution of faug|yobs, possibly
without needing to rerun MCMC sampling [65]. The proposed Bayesian imputation approach,
which samples values of λ at the augmentation points, may be more computationally burdensome,
and we might worry about instability in the presence of large numbers of augmented datapoints or
large gaps between them. The simulation study conducted below is meant to address some of these
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concerns.

2.3.3 Extension 2: Partial Linear Models

We can extend Equation 2.2 to include multiple predictors using a partial linear model framework.
Suppose we have a length p vector of covariates zi for each subject, yielding an n x p matrix Z of
covariates. If we assume that these predictors are linearly related to the outcome y, then we can
extend the model to be:

g(E(yi)) = fi = α +

j∑
k=1

hk + βzi (2.4)

β ∼ N(0,d2)

with all other priors unchanged and again assuming that xi = tj . We now include the parameters
β, a length p vector of coefficients, each of which have a normal prior with mean 0 and variance d2l ,
l = 1, ..., p. Z can contain either continuous or categorical predictors; categorical predictors would
need to be converted to a dummy parameterization. We could also consider different priors on β

such as a Cauchy prior rather than a normal prior if more regularization is desired [30]. It may also
be possible to include multiple horseshoe smoother terms in an additive formulation, although this
is not something we explore here [48].

2.3.4 Extension 3: Monotonicity Constraints

In some settings we may wish to constrain the HPR to be monotonic, i.e. for tj < tk, fj ≤ fk for
monotonic increasing. Monotonicity constraints are easily introduced via a transformation of the
first derivative to constrain it to be nonnegative (or nonpositive). We propose using the absolute
value function as our transformation [8]. Then we modify the HPR to be:

g(E(yi)) = fj = α +

j∑
k=1

|hk| (2.5)

All priors are unchanged from before; the only difference is that the horseshoe process sums the
transformed increments. As a result, the first derivative is constrained to be nonnegative, and thus
the function must be monotonic increasing. (We could similarly take −|hk| to obtain a monotonic
decreasing function.)
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2.3.5 Computation

There are several parameters and hyperparameters whose priors merit further discussion. We rec-
ommended placing a normal prior with mean a and variance b2 on α, the y-intercept of the HPR.
We recommend setting a to be ȳ, the sample mean of y and b to be 5 times sdy the sample standard
deviation of y. When linear predictors are present, unless there is subject knowledge to further
refine prior specifications, we recommend centering and scaling all continuous predictors to have
a scale of 1 for continuous outcomes and 0.5 for discrete outcomes, and then setting the prior scale
on the linear coefficients to be 5 for continuous outcomes and 2.5 for discrete outcomes [32].

The scale parameter of the global variance, c, is also important. Some may choose to place a
hyperprior on c that favors small values, such as an inverse-Gamma or a tightly-constrained half-
normal distribution. In our experience, the value of c has little effect on the resulting HPR fit
unless data are very sparse. For all models, we set it to be equal to 0.01, which we find yields good
performance. However, future work may wish to investigate this further in sparse data.

We implement all models using Hamiltonian Monte Carlo (HMC) via Stan and the cmdstanr
package in R. Rather than explore the parameter space through random steps, HMC uses Hamilto-
nian dynamics to guide movement through the parameter space [5]. As implemented in Stan, HMC
is combined with the No-U-Turn-Sampler (NUTS), which assists with HMC’s tuning and provides
additional diagnostics [38]. To interface Stan with R, we use the cmdstanr package [27].

In complex models like ours, the performance of HMC is affected by the choice of model
parameterization. Decentered parameterizations are favored, in which no priors feature other pa-
rameters, to reduce a priori dependence between parameters. Relationships between parameters
are instead obtained through transformations that are performed after parameter sampling steps
[59]. We use decentered parameterizations for all parameters in the model. Thus, the full list of
parameters and priors which we sample is:

• α ∼ N(ȳ, (5sdy)
2)

• τ = cτ1
√
τ2, where τ1 ∼ N(0, 1) and τ2 ∼ InvGamma(1

2
, 1
2
). Note that this corresponds to

τ ∼ C+(0, c).

• Independently for k = 2, ...,m, λk = λ1k

√
λ2k, where λ1k ∼ N(0, 1) and λ2k ∼

InvGamma(1
2
, 1
2
). Note that this corresponds to λk ∼ C+(0, 1).

• For k = 2, ...,m, hk = γkτλk

√
(tk − tk−1), where γk ∼ N(0, 1). Note that this corresponds

to hk|τ, λk ∼ N(0, τ 2λ2
k(tk − tk−1)).

• In the case of Gaussian outcome data: σ = σ1
√
σ2, where σ1 ∼ N(0, s2) and σ2 ∼
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InvGamma(1
2
, 1
2
). Note that this corresponds to σ ∼ C+(0, s). In the simulations below,

we use s = 5.

• In the case of linear covariates: a length p vector β ∼ N(0,d2).

After making necessary parameter transformations, we connect these parameters to the data using
an appropriate likelihood (Gaussian, Bernoulli, or Poisson).

For HMC sampling, we use 4 chains, each with a warm-up phase of 1000 samples and a sam-
pling phase of 2000 samples, without thinning. This yields a total of 8000 samples from the
posterior distribution. Despite the efforts described above to improve computational tractability,
it is still common to observe occasional HMC divergences, which usually indicate poor poste-
rior exploration. We present evidence that these sporadic divergences do not seem to harm model
performance, although high numbers of divergences should still be cause for concern [5].

All of the methods described above are implemented in the R package HPR, hosted on GitHub
[64]. The package is used to conduct the simulation studies described below and the data applica-
tion.

2.4 Simulation Study

2.4.1 Horseshoe Process Regression

We considered four true underlying associations, each of which were observed at an equally spaced
grid of n = 100 observations:

1. bigstep: f(x) = 0 ∗ I(x ≤ 2) + 6 ∗ I(2 < x ≤ 5) + 1 ∗ I(5 < x ≤ 6) + 3 ∗ I(6 < x ≤
8) + 10 ∗ I(x > 8)

2. joinpoint: f(x) = (1.5x) ∗ I(x < 2) + (16 − 5x) ∗ I(2 ≤ x < 3) + 1 ∗ I(3 ≤ x <

6) + (10− x) ∗ I(6 ≤ x < 9) + (5x− 44) ∗ (x ≥ 9)

3. impulse: f(x) = 0∗I(x = 0)+exp(−x)∗I(0 < x < 3)+1∗I(x = 3)+exp(−(x−3))∗I(3 <

x < 7) + exp(−(x− 7)) ∗ I(x = 7)

4. bounce: f(x) = |sin(x)|

I() denotes the indicator function; i.e. I(x) = 1 if condition x is true, and I(x) = 0 otherwise.
For the Gaussian outcomes, we simulated measurement error with σ = 0.5 for the bigstep and
joinpoint scenarios, σ = 0.2 for the bounce scenario, and σ = 0.1 for the impulse scenario. Plots
of the true underlying curves along with a sample dataset are given in Figure 2.1 for continuous
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outcomes. Based on the underlying model, we expected HPR to excel at the bigstep scenario.
Joinpoint and impulse both featured abrupt changes, but not of HPR’s assumed form, so it was
less clear how HPR would perform in these settings. We anticipated weak performance in the
bounce scenario, which was primarily smooth and without abrupt changes, but we included it to
provide insight into HPR’s limitations. We considered a number of comparison methods. First,
we compared to Gaussian process regression (GPR), a smooth approach which places a Gaussian
process prior on the function fit, using the R package mgcv [82]. Second, we compared to an
adaptive spline model (Adspline), which uses the set of unique x values as knot locations for a
set of P-splines, which are adaptively penalized [82]. Third, we compared to the running median
filter (MedFilt) as implemented in the package FBN, which estimates the function at x as the
median of some number of observations neighboring x. We set a window-size of 3, meaning that
the function at x is estimated as the median of y(x) and its immediate neighbors on either side
[49]. Fourth, we compared to the first-order penalized trend filter (TrendFilt) of Tibshirani et al.
from the package genlasso [75], which penalizes the first order differences of the function, and
sets the penalty parameter using generalized cross validation. Note that MedFilt and TrendFilt do
not provide uncertainty quantification and thus their performance on metrics like credible interval
coverage and width is not presented.

We assessed performance with three metrics:

1. Mean absolute difference (MAD): 1
n

∑n
i=1 |f(xi) − f̂(xi)|, where f̂(xi) is the predicted

function’s value at xi and f(xi) is the true function’s value at xi.

2. Credible/confidence interval width (Width): 1
n

∑n
i=1 f̂(xi)

0.975− f̂(xi)
0.025, where f̂(xi)

0.975

denotes the upper bound of a 95% credible/confidence interval for f̂(xi) and f̂(xi)
0.025 is the lower

bound.

3. Credible/confidence interval coverage (Coverage): 1
n

∑n
i=1 I(f̂(xi)

0.025 ≤ f(xi) ≤
f̂(xi)

0.975).

Note that these three metrics were summed across all of the observed datapoints. We present
additional results on pointwise performance in Appendix B. We assessed performance on each
metric across the 100 replicates of each of our 4 data-generating scenarios for each method. All
simulations were implemented in R, using tools from the Dynamic Statistical Comparisons (DSC)
framework [64, 28]. All code used to completely reproduce the simulations can be found on
GitHub.

Results for continuous outcomes are given in Figure 2.2. As we can see, HPR performed quite
well, with the smallest MAD of any of the comparison methods for the bigstep, impulse, and
joinpoint scenarios. As expected, for the bounce scenario, it was surpassed by the methods that are
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Figure 2.1: Point estimates and 95% credible/confidence intervals of horseshoe process regres-
sion (HPR) and comparison methods on sample datasets from four data-generating scenarios for
continuous outcomes, each with n = 100. Comparison methods are an adaptive spline model (Ad-
spline), a Gaussian process regression (GPR), a median filter (MedFilt), and a penalized trend filter
(TrendFilt).

better-suited to smooth associations, although it provided better results than the other non-smooth
methods (TrendFilt, MedFilt). Its credible interval width was slightly wider than the width of the
intervals returned by the other methods that give uncertainty estimates, with the exception of the
bigstep and impulse scenarios, for which HPR returned a substantially narrower credible interval
across the domain than the other comparison methods. Coverage was generally good, with rates
above 95% for all of the scenarios. When we examine the pointwise plots in Appendix B (Figure
B.1), we see that the pointwise performance resembled that averaged over the curve. In particular,
the comparison methods particularly struggled at the jumps in bigstep, joinpoint, and impulse, as
we expected, with bias spiking at the jump points while credible interval coverage dropped.

Additional results are given in Appendices A-C for count outcomes (Figures A.1, A.2, and B.2),
binary outcomes (Figures A.3, A.4, and B.3), and monotonicity constraints (Figures C.1, C.2, C.3).
Performance was generally similar to that of continuous data. HPR continued to offer the best
performance of all comparison methods for fitting step functions. For binary outcomes, though,
GPR offered better performance than HPR for the joinpoint scenario in terms of MAD (Figure
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Figure 2.2: Horseshoe process regression (HPR) simulation results for continuous outcomes, based
on 100 replicates on four data-generating scenarios, each with n = 100. Comparison methods are
an adaptive spline model (Adspline), a Gaussian process regression (GPR), a median filter (Med-
Filt), and the penalized trend filter (TrendFilt). The top row gives performance for mean absolute
difference (smaller is better); the second row gives performance for credible/confidence interval
width; the third row gives performance for credible/confidence interval coverage (0.95 is nominal
and given as a horizontal red dashed line). Each column is for one data-generating scenario; sam-
ple datasets for each scenario are shown in Figure 2.1. Note that interval coverage/width is not
given for MedFilt and TrendFilt because these methods do not provide uncertainty estimation.

A.4). Coverage was nominal except for the bigstep scenario, for which it was less than nominal
for binary and count outcomes—although still closer to nominal than the other comparators.
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2.4.2 Data Interpolation and Prediction

Here, we focus on our data interpolation scheme, to assess whether it performs sensibly at varying
grid densities. We only considered scenarios bigstep and bounce, and we restricted our focus to
HPR, as the data interpolation performance of the comparison methods from section 2.4.1 have
been assessed elsewhere [75, 82]. We randomly sampled 100 unevenly spaced datapoints between
0 and 10 to be our observed x locations. Then, we fit the HPR either 1) only using the observed
datapoints, 2) augmented by a grid of datapoints at every 0.5 (21 augmented datapoints), and 3)
augmented by a grid of datapoints at every 0.1 (101 augmented datapoints). Note that for some
replicates the augmented datapoints will be extrapolations, because we did not require the inclu-
sion of 0 and 10 in our randomly sampled observed data locations. We calculated the performance
metrics above separately for the observed datapoints and the augmented datapoints, to see if predic-
tions at the observed datapoints changed depending on the number of gridpoints, and if predictions
at the augmented datapoints were fairly accurate.

Results for continuous outcomes are given in Figure 2.3; results for count and binary outcomes
are given in Appendix D (Figures D.1 and D.2). Overall, we see that performance of the aug-
mentation scheme was good, with MAD holding fairly constant, as expected, across observed and
augmented datapoints regardless of grid density. MAD was slightly worse at augmented points rel-
ative to observed datapoints, and credible interval widths were wider at augmented datapoints than
at observed datapoints, as we expected. Both MAD and credible interval width appeared somewhat
improved with a larger number of augmentation points. This “improved performance” is mislead-
ing, because in the data generating schemes considered here—which do not feature an extremely
large number of abrupt changes—the probability that an augmentation point is placed at the loca-
tion of an abrupt jump is reduced in the presence of more augmentation points, artificially boosting
aggregate performance. Credible interval coverage held fairly constant across grid density, with
rates at or above 95% for all scenarios. Coverage rate was similar across observed and augmented
datapoints. Performance was generally similar for binomial and Poisson outcomes.

2.4.3 Partial Linear Models

We conducted simulations to assess the performance of the HPR partial linear model. Full simu-
lation set-up details and results are given in Appendix E. Performance of the partial linear model
was generally good. HPR offered substantially reduced MAD and credible interval width for the
latent mean Ê(yi) when the nonlinear component of the partial linear model was a step function.
When the nonlinear component was a smooth function, HPR’s performance was worse than the
comparison methods for continuous outcomes, although credible interval coverage was still very
good (Figure E.1). For binary and count outcomes, HPR consistently surpassed the comparison
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Figure 2.3: Horseshoe process regression (HPR) data augmentation simulation results for contin-
uous outcomes, based on 100 replicates on two data-generating scenarios. We compared a HPR
calculated only at n = 100 observed points to a HPR with augmentation points at a grid of every
0.5 and a HPR with augmentation points at a grid of every 0.1 (from 0 to 10). The top row gives
performance for mean absolute difference calculated at both the observed and augmented points
(smaller is better); the second row gives performance for credible interval width calculated at both
the observed and augmented points; the third row gives credible interval coverage calculated at
both the observed and augmented points (0.95 is nominal and marked as a horizontal red dashed
line). Performance at observed points and augmented points are displayed separately. Each column
is for one data-generating scenario.
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methods, even when the nonlinear component of the partial linear model was a smooth function
(Figures E.3 and E.5). The GPR particularly struggled for count outcomes (Figure E.3). Regard-
less of the form of the nonlinear component, performance for estimating the linear effects of the
partial linear model was good (Figures E.2, E.4, and E.6).

2.4.4 Computational Assessment and Sensitivity Analyses

We provide some insight into HPR’s computational performance, with results given in Appendix
F (Figures F.1, F.2, F.3). Almost all of the models fitted in the simulation studies featured at least
some HMC divergences. In most cases less than 5% of samples ended in a divergence. Max
treedepth warnings occurred rarely. R̂ diagnostics and effective sample sizes generally seemed ad-
equate [77]. Although slow compared to non-Bayesian methods, computation time was generally
quite reasonable, with most models finishing in less than 5 minutes. This can be made faster with
parallelization, which is available in our R package. Models took longer to run as the sample size
and the amount of augmentation data increased, as we would expect. For more information on
these diagnostics, please see the Stan reference manual [72].

We also explored the role of sample size and prior specification in model estimation, with
full results given in Appendix G (Figures G.1 and G.2). We focused these sensitivity analyses
on the bigstep scenario described above, because it is HPR’s recommended setting. In addition
to the sample size of n = 100 that we used above, we also considered n = 30 and n = 500.
We considered several different settings for the hyperparameters of the model (the prior mean
and variance for the y-intercept α, the prior scale c on the global shrinkage parameter τ , and the
prior scale s on the measurement error σ). Findings were generally stable across hyperparameter
values, although at smaller sample sizes (n = 30), findings were more affected by hyperparameter
choices. Poor choices for the prior variance on α—particularly setting it too small—negatively
affected model fit. The choice of c also affected findings at small sample sizes, especially for
binary outcomes. Model estimation improved with larger sample sizes, although estimation was
still adequate at the n = 30 sample size.

2.5 Application

We use HPR to fit the trajectories of women’s BBT over the menstrual cycle. BBT follows a
reliable pattern in healthy, premenopausal women who are not taking hormonal birth control. Each
menstrual cycle starts with the onset of the period, at which time BBT is low. With ovulation
(usually around day 14 of the menstrual cycle), a woman’s BBT spikes, sometimes by a full degree
Fahrenheit, and will remain high until the onset of the next period, when it will drop suddenly
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to the pre-ovulation temperature and the cycle will repeat. If the woman conceives a pregnancy
that cycle, her BBT will instead stay at the post-ovulation high temperature for the duration of her
pregnancy, sometimes even increasing in a second spike around a week after conception when the
embryo implants in the uterine lining.

Although this general pattern is consistent across healthy women (sustained low temperature,
spike at ovulation, sustained high temperature, drop with onset of period, repeat unless pregnant),
the details vary considerably between women and even within a single woman. The date of ovula-
tion may be as early as day 9 or as late as day 30, depending on factors like stress and other medical
conditions, with the full menstrual cycle length varying from 20 to 40+ days. Some women exhibit
a more gradual increase/decrease in BBT over the menstrual cycle, rather than sharp jumps and
drops. However, by tracking BBT over several menstrual cycles, patterns may emerge that sug-
gest underlying health conditions or provide guidance on how best to time sexual intercourse to
improve or reduce chances of pregnancy. When used in combination with other health and fertility
indicators, BBT plots can provide insight into women’s health.

Here, we model BBT trajectories for several women, using data abstracted from example charts
given in Toni Weschler’s Taking Charge of Your Fertility [80]. Weschler presents example plots
and gives her hypothesis for the day of ovulation for each plot, based on BBT and other predictors
(cervical mucus and position, pregnancy testing information, etc.). We use Weschler’s hypothesis
as a best guess for the correct answer, and thus explore HPR’s ability to match the results obtained
from careful examination by a trained expert. In all cases, day 1 of the menstrual cycle is the day
the period started, and the last observation corresponds to the day of the start of the next period
(except in the plots of pregnant women, which we note). We indicate Weschler’s hypothesis on
each plot. Our outcome is BBT and our predictor is day of the menstrual cycle. We fit a horseshoe
process regression (HPR), and for comparison, a Gaussian process regression (GPR), an adaptive
spline model (Adspline), a penalized first-order trend filter (TrendFilt), and a median filter with a
window size of 3 (MedFilt). Note that there is no information sharing across women; models are
refit separately for each woman’s BBT trajectory.

In Figure 2.4, we present the plots for four women who did not conceive a pregnancy that cycle.
In panel A, we see a fairly normal pattern and observe that HPR and TrendFilt both capture the
ovulation jump cleanly (although only HPR is able to provide uncertainty estimates). Note that
ovulation occurred later than we would expect, at day 24 (with increased temperatures starting
on day 25). GPR, by comparison, oscillates substantially in the pre-ovulation phase and over-
smoothes the ovulation jump, starting it almost 3 days early. Adspline manages to smooth the
pre-ovulation phase, but not the post-ovulation phase, and it also starts the ovulation jump 2 days
early. In panel B, we observe no clear pattern—this subject actually did not ovulate that cycle,
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Figure 2.4: Fitted basal body temperature (BBT) trajectory and 95% credible/confidence intervals
from a horseshoe process regression (HPR), adaptive spline model (Adspline), Gaussian process
regression (GPR), median filter (MedFilt), and penalized trend filter (TrendFilt) for four women
who did not conceive pregnancy. Observed datapoints are given as black dots, with an expert’s
guess of the ovulation time given by the vertical black dashed line. Note that there is no information
sharing across women; models are refit separately for each woman’s BBT trajectory.

which is why there is no BBT shift. HPR correctly does not detect one. In panel C, we see another
fairly typical example, this one with a slight temperature drop post-ovulation around day 24, which
occurs in some women and is normal. Of the three methods, HPR does the best job of capturing
the ovulation jump at day 16 without being overly swayed by the minor temperature dip at day
24, while the other methods oscillate heavily in response. Finally, in panel D we see a plot from a
woman with weak thermal shift, in that her BBT increases less abruptly with ovulation, making it
challenging to identify the date of ovulation. Nonetheless, HPR and TrendFilt both start the jump
at day 16, correctly identifying the date of ovulation as day 15. While MedFilt places the jump
correctly, it introduces excess motion in the pre- and post-ovulatory portions of the cycle. GPR
and Adspline over-smooth, placing the beginning of temperature increase around day 12.

In Figure 2.5, we present two plots for women who conceived that cycle. In panel A, we
see a successful pregnancy which features a second temperature shift at implantation. HPR and
TrendFilt identify ovulation at day 15, and then somewhat capture the slightly higher BBT post-

25



A B

0 10 20 30 0 10 20 30 40

97.5

98.0

98.5

99.0

97.0

97.5

98.0

98.5

99.0

Day of Menstrual Cycle

B
a

s
a

l 
B

o
d

y
 T

e
m

p
e

ra
tu

re
 (

F
a

h
re

n
h

e
it
)

Model Adspline GPR HPR MedFilt TrendFilt

Figure 2.5: Fitted basal body temperature (BBT) trajectory and 95% credible/confidence intervals
from a horseshoe process regression (HPR), adaptive spline model (Adspline), Gaussian process
regression (GPR), median filter (MedFilt), and penalized trend filter (TrendFilt) for two women
who conceived a pregnancy. Observed datapoints are given as black dots, with an expert’s guess
of the ovulation time given by the vertical black dashed line. Note that there is no information
sharing across women; models are refit separately for each woman’s BBT trajectory.

implantation, starting around day 23. GPR would completely smooth over the BBT trajectory for
the pregnancy cycle, missing the dates of ovulation and implantation entirely, while Adspline and
MedFilt overfit, making the fit difficult to interpret. In panel B, we show the plot of a pregnancy
that ended in a miscarriage. HPR identifies the ovulation jump at day 15. The sustained high tem-
peratures (lasting almost 20 days) indicate conception and implantation of an embryo. However,
the dropping temperatures from day 36 are an early warning sign, resulting in a miscarriage on day
39.

Finally, we give an example of the use of covariates in HPR. We restrict our focus to HPR
because the other comparison methods either cannot include linear covariates (MedFilt, TrendFilt)
or do not return easily interpretable nonlinear components in the presence of linear covariates
(Adspline, GPR). This woman was sick from days 8-10 of her menstrual cycle, with a high fever.
By including illness as an additional categorical linear covariate in the HPR, we can adjust away
its effect. That results in the estimated BBT trajectory given in Figure 2.6, in which ovulation
occurs on day 21, with the illness estimated to increase BBT by 2.88 (2.44, 3.27) degrees Fahren-
heit.
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Figure 2.6: Fitted basal body temperature trajectory and 95% credible/confidence intervals from
a horseshoe process regression (HPR) adjusted for the presence of fever for a woman who was
ill during days 8-10 of her menstrual cycle. Observed datapoints are given as black dots, with an
expert’s guess of the ovulation time given by the vertical black dashed line.

2.6 Discussion

We present horseshoe process regression (HPR), a method for fitting functions that feature local
changes in variability. HPR contributes to a growing literature on the use of local-global shrink-
age families within a stochastic process framework [22, 48, 63]. Here, we focus on the details of
implementation, filling in some of the gaps of an overarching theoretical framework that has not
been fully translated to applied use. We find that HPR outperforms other existing methods for fit-
ting step functions and other associations with abrupt changes, although we would not recommend
using it to fit an association that is expected to be smooth. Other methods like Gaussian process re-
gression would likely yield better results. We extend HPR to allow for additional linear covariates,
data interpolation, and monotonicity constraints. We find that our data interpolation scheme yields
good results and that HPR’s superior performance for fitting step functions persists in the pres-
ence of additional linear covariates, even when correlated with the nonlinear predictor. Together,
these extensions make HPR more usable for applied research on nonlinear associations with local
changes in variance in small samples. HPR is available as an R package on GitHub.
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Computational burden is an unresolved challenge in our implementation of HPR. We use Stan
and cmdstanr, which yields good performance in our context and gives reasonable computing times
and decent convergence diagnostics in a range of data-generating scenarios. However, computing
time becomes prohibitive at larger sample sizes and is a limitation. Future work may wish to con-
sider a Gibbs sampling type approach like that of Kowal et al. (2019) [48] or other approaches for
scalable Bayesian inference like variational Bayes [79]. Even with extensive tuning and debug-
ging, we were unable to fully eliminate HMC divergences from model implementation, a problem
that seems common to the horseshoe prior [22, 62]. We see no evidence that these sporadic HMC
divergences affect performance, although it is something of which to be aware. In general, if other
convergence diagnostics (effective samples, Gelman-Rubin convergence diagnostic, max treedepth
warnings) are acceptable, it seems mostly safe to ignore sporadic divergences occuring in < 5%
of samples. If HMC divergences are more frequent than that or combined with other evidence
of nonconvergence, we would recommend further tuning of the model or the use of a different
method. Future work may also wish to examine whether the regularized horseshoe prior within
HPR resolves some of these issues without sacrificing model performance [62].

Our data interpolation scheme motivated new questions about the theory and implementation
of horseshoe process prior models. To date, all implementations of horseshoe process prior mod-
els have chosen to use a discrete formulation, as we do here [22, 48]. Although this simplifies
mathematical derivation and computation, it requires imputation or approximations to conduct
data interpolation and augmentation. We chose to use a Bayesian imputation scheme. In an ideal
world, it would be possible to develop a horseshoe process in a truly continuous formulation and
leverage properties of the multivariate Meixner distribution to calculate predictions and interpola-
tions without needing to rerun the MCMC. However, current mathematical theory does not make
that possible. We attempted several ad hoc, stop-gap measures that allowed us to impute new pre-
dictions without rerunning the MCMC, such as imputing the local shrinkage parameter for the new
predictor as the mean of its two nearest local shrinkage parameter neighbors, and then using the
imputed local shrinkage parameter within Gaussian kriging equations to generate a prediction [65].
We did not have success with these approximations and thus chose the more statistically rigorous
Bayesian imputation approach we outline here. Future work may wish to investigate this and other
approximations for horseshoe process prediction and kriging further.

We have demonstrated the utility of HPR and shown that it is usable for a variety of real-world
data. We find that HPR is an excellent choice for data featuring local changes in variance, such as
step functions or piecewise linear functions. Future work will further elucidate HPR’s strengths and
weaknesses and provide new insights into computationally efficient and stable implementations
and its underlying theory.
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CHAPTER 3

A Variational Inference Implementation of
Horseshoe Process Regression to Model Basal Body

Temperature Data

3.1 Introduction

The menstrual cycle plays a major role in the health of women of reproductive age. In addition
to its obvious relationship to fertility, the menstrual cycle may also affect women’s body weight,
body temperature, resting heart rate, and mood [60]; metabolic rate [71]; physical performance
[37]; and susceptibility to infection [42]—to give a few examples. As awareness of the menstrual
cycle’s importance has increased, clinicians, health researchers, and women themselves have be-
come interested in monitoring biomarkers and symptoms throughout the menstrual cycle, in order
to better understand patterns and what they suggest about underlying health.

As a result, there has been a massive increase in the use of menstrual tracking technology,
with a 2019 survey finding that 1 in 3 American women have used a menstrual tracking app at
least once in their life [26]. In these apps, women can log their menstrual periods and other
biomarkers, such as weight, body temperature, cervical mucus, the results of ovulation tests, and
symptoms like nausea, abdominal cramping, or headaches. Women’s goals in using these apps
are varied. Common goals include predicting the onset of the next menstrual period, predicting
ovulation before it occurs (to conceive pregnancy), detecting ovulation after it has occurred (to
avoid pregnancy), and monitoring patterns across the menstrual cycle to promote self-awareness
and to share with health care providers [21].

In Chapter 2, we developed horseshoe process regression (HPR), a method for modeling
abruptly changing data. HPR showed potential for modeling basal body temperature (BBT), a
key biomarker of the menstrual cycle. In women of reproductive age not taking hormonal birth
control, BBT is low during the first half of the menstrual cycle, jumps sharply immediately after
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ovulation, and remains high for the second half of the menstrual cycle, dropping with the onset
of the next menstrual period. Researchers have tried to use this biphasic property of BBT to de-
tect and predict ovulation for more than a century [53]. HPR was well-suited to modeling BBT
because it was able to capture the sharp changes that BBT exhibits at the time of ovulation and
menstruation.

However, HPR was developed in the general setting of abruptly changing data, rather than
BBT specifically, and lacked features that would be necessary in the context of menstrual tracking.
Although HPR was able to capture jumps in BBT, it had no way to identify the location of jumps.
It did not make use of the wealth of prior clinical knowledge about BBT and the menstrual cycle;
nor could it share information across cycles. HPR was able to provide predictions of BBT at future
timepoints, but these predictions did not use information from previous cycles or prior information
about BBT patterns, and they only provided a predicted temperature measurement—not a predicted
day of ovulation/menstruation. Finally, the Hamiltonian Monte Carlo (HMC) approach used to
estimate HPR meant that computation time was a challenge, with even a single cycle’s worth of
data taking 10 to 20 seconds to fit.

Here, we modify HPR to provide this missing functionality. To do so, we develop a variational
inference (VI) implementation of HPR, which drastically decreases computation time [79]. We
explicitly incorporate ovulation day into the HPR model, and we tailor the priors to reflect clinical
knowledge on BBT across the menstrual cycle. Drawing on ideas from the sequential Monte Carlo
literature, we propose a posterior-prior passing scheme to share information across cycles while
keeping computation times swift [18]. With these new features in place, we demonstrate how
this BBT-specific version of HPR (HPR-BBT) can be used to detect ovulation. Taken together,
these adaptations to HPR make it a powerful approach for modeling BBT to monitor menstrual
health.

HPR adds to a rich literature on menstrual cycle prediction and modeling (which some re-
searchers date back to 20,000 BCE [9]). Despite the extensive work done in this space, HPR still
has novel strengths. Händel and Wahlström (2019) reviewed existing methods for using BBT to
identify time of ovulation [34]. Many of the approaches were heuristic in nature (e.g. ovulation
occurred on the day that was followed by 6 higher temperature measurements). Other early ap-
proaches relied on linear regression or Gaussian process regression, both of which are ill-suited to
the biphasic BBT setting and did not yield reliable results in many women.

Händel and Wahlström (2019) found that the two best-performing approaches were hidden
Markov models, followed by the cumulative sum test of Royston and Abrams (1980) [34, 66]. The
cumulative sum test is a testing procedure to identify the date of ovulation after-the-fact. Although
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it incorporates a variety of clinical knowledge on BBT and the menstrual cycle—and its review of
these topics is an invaluable resource—it has some shortcomings. It cannot be used for prediction
or to model the temperature trajectory in its entirety, which makes it difficult to use in combination
with other predictors or within a larger model. In addition, it does not provide uncertainty estimates
and cannot share information across cycles. A hidden Markov model (HMM) is more flexible and
has been used to detect and predict ovulation from BBT with good performance, as in Chen et
al. (2009) and Luo et al. (2020) [13, 53]. However, HMMs do not provide uncertainty estimates
around the temperature trajectory or day of ovulation—which we think is desirable. Furthermore,
although HMMs make it possible to share information across cycles, in the applications we have
seen [13, 53], this information-sharing requires the assumption that the pre-ovulation temperatures
are similar across cycles (and similarly for the post-ovulation temperatures). This assumption is
contradicted by the data [66], forcing users to choose between discarding previous cycles’ data or
accepting an assumption that may yield poor results for particular cycles. Finally, although some
attempt has been made to incorporate clinical knowledge into the HMM, such as making it less
likely for ovulation to occur in the first 7 days of the menstrual cycle, this incorporation has been
fairly limited in scope [53].

The structured nature of BBT across the menstrual cycle—and the amount of clinical infor-
mation we have about it—may warrant a Bayesian approach. Some work has been done in this
direction, such as by Scarpa and Dunson (2009) [69]. Although their model overcomes many of the
shortcomings of the cumulative sum test and HMMs, it places a fairly smooth prior on BBT, and
thus does not capture the BBT jump as sharply as HPR and HMMs. HPR could offer improvements
over this and other Bayesian methods as a result. Computation time is also likely a challenge for
theirs and other Bayesian methods, much as it was for HPR in Chapter 2. In this chapter, we solve
this problem using variational inference (VI). With VI, we seek a “good-enough” approximation
of the posterior distribution. Critically, this approximate posterior is easier to estimate than the
true posterior, enabling faster computation without the use of MCMC. Although the results from
VI are rarely identical to those from MCMC, they may still be very good, and the computational
speed gains may justify the slight worsening in posterior estimation—provided that consistently
decent performance of VI can be demonstrated [31, 79, 83].

HPR provides a close match to the underlying data-generating model for BBT over the men-
strual cycle. The Bayesian approach makes it straightforward to incorporate prior clinical knowl-
edge, obtain uncertainty estimates, combine the model with other covariates or larger models of the
menstrual cycle, and modify model assumptions to accommodate different women’s menstrual fea-
tures or menstrual tracking priorities. With VI, we are able to resolve the computational challenges
and thus make HPR usable in real application. We look forward to future work to further improve
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HPR for this purpose and develop other promising Bayesian methods for menstrual health.

The remainder of the paper is as follows. First, we review some necessary background on BBT
across the menstrual cycle, HPR, and VI. We then present the VI implementation of HPR and
compare its performance to HMC. We describe the modifications to HPR to explicitly address the
BBT setting and show how these are accommodated within the VI algorithm. We use the updated
HPR-BBT model to analyze BBT trajectories from a large cohort of British women, collected by
a Catholic charity between 1960-1980 [55, 76]. We close with a discussion of limitations and
directions for future work.

3.2 Background

3.2.1 Basal body temperature

As was discussed above, basal body temperature (BBT) follows a biphasic pattern over the men-
strual cycle. The start of the menstrual period is denoted as day 1 of the menstrual cycle. This
is also the start of the follicular phase, which is the pre-ovulation portion of the menstrual cycle,
characterized by lower BBT. In most women, the follicular phase is a median of 16 days long
(mode 15) [23]. The timing of ovulation is sensitive to external stressors and thus the length of
the follicular phase can vary substantially, even within the same woman. A third of women are
estimated to regularly have their follicular phase vary by more than 7 days in length (e.g. ovulation
on day 12 of one cycle and on day 20 of another cycle). However, 95% of follicular phases will be
10-22 days long [23]. The follicular phase ends with ovulation, at which point the BBT increases;
the World Health Organization has recommended a minimum difference of 0.2 degrees Celsius be-
tween the pre- and post-ovulation BBT as a threshold for ovulation [1], although in many women
it will be a 0.3-0.5 degree difference [66, 73]. It is estimated that 90% of women between the ages
of 25 and 45 will exhibit this biphasic BBT pattern in most cycles [73]. Although the difference
in pre- and post-ovulation BBT is fairly standard, the mean BBT may differ across cycles, even
within the same woman. However, within one woman, the standard deviation of BBT measure-
ments is usually similar pre- and post-ovulation and across cycles [66]. After ovulation, the luteal
phase begins and continues until the end of the menstrual cycle (with the start of the next period).
The luteal phase is a median of 13 days long (mode 13) and is less variable in length than the
follicular phase, with 95% of luteal phases lasting between 9-16 days. Less than 10% of women
will have their luteal phase length vary by more than 7 days across cycles [23]. These menstrual
cycle features are summarized in the schematic given in Figure 3.1.

Follicular phase length is the primary driver of the total length of the menstrual cycle. A

32



36.50

36.75

37.00

37.25

97.5

98.0

98.5

99.0

1 1 8

Day

T
e

m
p

e
ra

tu
re

 (
C

) T
e

m
p

e
ra

tu
re

 (F
)

Figure 3.1: Paradigmatic menstrual cycle basal body temperature (BBT) data.

woman’s age and body mass index (BMI) have both been linked with follicular phase length, while
luteal phase length is generally stable across age (and, to a lesser extent, across BMI) [11, 23].
Older women have slightly shorter follicular phases (and by extension, shorter menstrual cycles)
[11, 73]; women with higher BMI have more variable follicular phase/menstrual cycle lengths [11].
Very young (< 25 years) and older (> 45 years) women also had more variable cycle lengths with
less clear BBT shifts [73].

Follicular and luteal phase length are both of clinical interest and may affect fertility. Gen-
erally, more attention is paid to follicular phase length, which corresponds to the timing of ovu-
lation. Knowing when a woman is likely to ovulate enables her to time sexual intercourse to
maximize/minimize her chances of conceiving pregnancy. However, luteal phase length is also of
clinical interest. Women with very short luteal phases (< 10 days) may have difficulty sustaining
pregnancy, as the fertilized embryo does not have time to implant in the uterine lining, a condition
called luteal phase defect. Depending on the underlying cause of the luteal phase defect, there
may be treatments to correct it once identified [58]. A very long luteal phase for a single cycle
can be early evidence of pregnancy; if luteal phases are routinely long, that may suggest polycystic
ovarian syndrome (PCOS) or some other hormonal condition [15].
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3.2.2 Horseshoe process regression

In Chapter 2, we developed horseshoe process regression (HPR), a model for fitting abruptly
changing data. Let yi be the BBT measurement observed on day ti, i = 1, ...,m of a single
menstrual cycle. Then a HPR for these data would be:

yi = fi + ϵi

fi = α +Hi

Hi|τ, λi ∼ N(Hi−1, τ
2λ2

i (ti − ti−1)), i = 2, ...,m, H1 = 0

τ ∼ C+(0, 1/
√
sτ ), λi

iid∼C+(0, 1), i = 2, ...,m

α ∼ N(a, b2)

ϵi|σ2 ∼ N(0, σ2), σ ∼ C+(0, 1/
√
sσ)

(3.1)

This model has three main components. First, it assumes normally-distributed measurement
error, ϵi, about the estimated mean BBT trajectory, fi. This measurement error is assumed to
have constant variance over the menstrual cycle. The mean BBT trajectory fi is made up of a
y-intercept α, which gives the mean BBT on the first day of the menstrual cycle, and a nonlinear
component Hi, which dictates the shape of the mean BBT trajectory across the menstrual cycle.
Hi is a horseshoe random walk: incremental change in Hi across time is horseshoe distributed, and
thus is a mixture of near-zero change, punctuated by large, abrupt shifts [12]. The variance of each
incremental change, τ 2λ2

i (ti− ti−1), is made up of three terms. The global shrinkage parameter, τ ,
gives a measurement of the overall amount of motion of the BBT trajectory. If τ is large, we expect
BBT to exhibit a great deal of “jumpiness” across the menstrual cycle; if τ is small, we expect it
to be fairly constant. It also features a local shrinkage parameter, λi, with one local shrinkage
parameter per daily increment in BBT. Even if τ is very small, there may still be large jumps in
BBT because of a large single value of λi, if supported by data. Finally, variance increases as the
elapsed time between BBT measurements, (ti − ti−1), increases, as may happen if a woman does
not collect BBT measurements for several days.

Put together, the HPR model assumes an underlying functional form that looks like a step func-
tion, with stretches of approximately flat BBT interspersed with occasional jumps or drops. This
matches the biphasic BBT pattern that many women exhibit. However, HPR can also accommo-
date the piecewise-linear BBT trajectories that are seen in some women [69]. Considering the prior
clinical information we have on BBT over the menstrual cycle, we can make several connections
to HPR’s existing priors. First, it is likely appropriate to assume a constant σ2 over the cycle and
even across cycles, within one woman. It is also likely sensible to share information on τ 2 across
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menstrual cycles within a single woman. Separate cycles would need separate values of α, though,
as there is evidence that the baseline temperature differs from cycle to cycle, even within women.
However, assuming that the α’s from different cycles come from a common distribution seems
plausible, e.g. the distribution of a random intercept. The most delicate question is how to handle
the sequence of local shrinkage parameters, λi, i = 2, ...,m, within the BBT context. In its present
form, HPR is agnostic to the biphasic pattern we expect of BBT—it does not know that we antici-
pate a single large jump in BBT around the midpoint of the cycle, with otherwise flat temperatures.
This information would be best incorporated via the local shrinkage parameters. In addition, it is
not clear how to share information about the local shrinkage parameters across cycles. It would
not make sense to require the same λi, i = 2, ...,m across cycles, as for most women there is too
much variability in ovulation day to support such an assumption. It may not even make sense to
share the distribution of local shrinkage parameters across cycles. We consider these challenges
further below in Section 3.4.

HPR is currently estimated using Hamiltonian Monte Carlo (HMC) [72]. Although this HMC
implementation is effective, it can be time-consuming. For this reason, we propose to offer an
alternative approach to estimating HPR via variational inference.

3.2.3 Variational inference

Denote the parameters of our model as θ, with data X . Then in a Bayesian context we seek
to estimate the posterior p(θ|X), usually via Monte Chain Monte Carlo (MCMC) methods. In
contrast, variational inference (VI) seeks an approximation q(θ) to p(θ|X) that will be easier to
obtain than the full posterior. (Note that q(θ) conditions on the data X and hyperparameters, but
convention is to suppress that dependence in notation.) Here, we follow a standard approach to VI
and seek the approximate posterior that minimizes the Kullback-Leibler (KL) divergence between
the true and approximate posteriors,

∫
q(θ) ln q(θ)

p(θ|X)
dθ. Note that:

ln p(X) =

∫
q(θ) ln

p(X,θ)

q(θ)
dθ +

∫
q(θ) ln

q(θ)

p(θ|X)
dθ (3.2)

The right-most term is the KL-divergence between the approximate and true posteriors, and we
seek to minimize it. Note that it is bounded below by 0. The term on the left-hand side, ln p(X),
is constant with respect to θ. Therefore, to minimize the KL-divergence between the approximate
and true posteriors, it suffices to maximize the middle term,

∫
q(θ) ln p(X,θ)

q(θ)
dθ, which is called

the variational lower bound, variational objective, or evidence lower bound (ELBO). To reduce
the space of options for q(θ), we make the mean-field assumption: the set of parameters θ can be
separated into K subsets such that q(θ) =

∏K
k=1 q(θk), i.e. approximate posterior independence
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between θk,θj, k ̸= j. Under the mean-field assumption, it can be shown that for k = 1, ..., K, the
q(θk) that maximizes the variational objective is given by:

q(θk) ∝ expEqj ̸=k
[ln p(X,θ)] (3.3)

Therefore, we can use the joint distribution of the likelihood and priors to obtain the q-densities
q(θk), k = 1, ..., K. Note that the expectation above is with respect to the q-densities, not the priors
or true posterior. Because the q-densities are all assumed to be independent, taking this expectation
is often straightforward. If the likelihood and priors are conjugate, this will yield closed-form
q-densities that depend on the expectations of other parameters with respect to their own closed-
form q-densities. This provides the structure of an iterative algorithm in which we cycle through
the expectations to obtain a current estimate of each q-density, evaluating the variational objective
after all expectations are updated, until the variational objective reaches some level of convergence.
At this point, the final values of the expectations provide us with the closed-form versions of
the q-densities, from which we can obtain approximate posterior samples, if desired. For more
information on VI, we refer the reader to Section 13.7 of Gelman et al. (2013) [31] or Wand
(2017) [79].

3.3 Variational Inference for Horseshoe Process Regres-
sion

3.3.1 Algorithm Implementation

In order to enable conjugacy and ease of taking expectations [79], we reparametrize the HPR model
as:

yi = fi + ϵi

fi = α +Hi

Hi −Hi−1|τ 2, λ2
i ∼ N(0, τ 2λ2

i (ti − ti−1)), i = 2, ...,m

H1 = 0

α ∼ N(a, b2)

τ 2|aτ ∼ Invχ2(1, 1/aτ ), aτ ∼ Invχ2(1, sτ )

λ2
i |aλi

iid∼ Invχ2(1, 1/aλi
), aλi

∼ Invχ2(1, 1), i = 2, ...,m

ϵi|σ2 ∼ N(0, σ2), σ2|aσ ∼ Invχ2(1, 1/aσ), aσ ∼ Invχ2(1, sσ)

(3.4)
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Note that this model is equivalent to HPR as given in Equation 3.1; we have simply re-expressed
the half-Cauchy priors as the quotient of two Inverse-χ2 distributions [79], i.e.:

A2|a ∼ Invχ2(1, 1/a), a ∼ Invχ2(1, s) =⇒ A ∼ C+(0,
1√
s
) (3.5)

where the probability density function of the Inverse-χ2(κ, s) distribution is:

p(x|κ, s) = (s/2)κ/2

Γ(κ/2)
x−(κ/2+1) exp{−s

2x
}, x > 0 (3.6)

Equation 3.4 implies the following joint log-likelihood:

ln p(X,θ) = ln p(y|H , σ2, α) + ln p(H|Λ, τ 2) + ln p(α) + ln p(σ2|aσ)

+ ln p(aσ) + ln p(τ 2|aτ ) + ln p(aτ )

+
m∑
i=2

[ln p(λ2
i |aλi

) + ln p(aλi
)]

(3.7)

where H is the length m vector containing the values of Hi, i = 1, ...,m and Λ is a length m− 1

vector containing the values of λ2
i , i = 2, ...,m. We assume the following independence structure

for our variational approximation:

q(α,H , τ 2, aτ ,Λ,aλ, σ
2, aσ) = q(α)q(H)q(τ 2)q(aτ )q(σ

2)q(aσ)
m∏
i=2

q(λ2
i )q(aλi

) (3.8)

where aλ is a length m− 1 vector containing the values of aλi
, i = 2, ...,m. This assumes that all

parameters are approximately posterior independent of each other, except the values of H , which
are treated jointly. After calculating q(θk) ∝ expEqj ̸=k

[ln p(X,θ)] for each parameter block
k = 1, ..., K (derivations given in Appendix H), that yields the following set of q-densities:

• q(α) = N(α|µ =
Eσ2 [σ−2](yT 1m−EH [H]T 1m)+ a

b2

mEσ2 [σ−2]+b−2 , V = (mEσ2 [σ−2] + b−2)−1)

• q(H∗) = MVN(H∗|µ = (Eσ2 [σ−2]Im−1×m−1 + ER[R])−1Eσ2 [σ−2](y∗T −
Eα[α]1

T
m−1)

T ,Σ = (Eσ2 [σ−2]Im−1×m−1 + ER[R])−1)

• q(σ2) = Invχ2(σ2|κ = m+ 1, s = EH,α[(y − α1m −H)T (y − α1m −H)] + Eaσ [
1
aσ
])

• q(aσ) = Invχ2(aσ|κ = 2, s = Eσ2 [ 1
σ2 ] + sσ)
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• q(τ 2) = Invχ2(τ 2|κ = m, s =
∑m

i=2
EH [(Hi−Hi−1)

2]Eλ[λ
−2
i ]

δi
+ Eaτ [

1
aτ
])

• q(aτ ) = Invχ2(aτ |κ = 2, s = Eτ2 [
1
τ2
] + sτ )

• For i = 2, ...,m, q(λ2
i ) = Invχ2(λ2

i |κ = 2, s = Eτ2 [
1
τ2
]EH [(Hi−Hi−1)

2]
δi

+ Eaλi
[ 1
aλi

])

• For i = 2, ...,m, q(aλi
) = Invχ2(aλi

|κ = 2, s = Eλ2
i
[ 1
λ2
i
] + sλi

)

where H∗ is the elements of H without H1, y∗ is the elements of y except y1, and R is a first-order
differencing matrix of variance terms for H . Full derivations for the q-densities and a detailed
outline of the algorithm can be reviewed in Appendix H.

After iterating through the parameters of each q-density until the variational objective con-
verges, we have final forms for all of the expectations listed above. Then, we obtain point estimates
of f , the mean BBT trajectory, as E(α) + E(H), with variance V ar(α) + V ar(H). We could
alternatively draw B samples from q(α), q(H) and take the mean/median and desired percentiles
from the sum of the samples to provide point and uncertainty estimates of f . In our experience
these two approaches return equivalent results when the mean, 2.5th, and 97.5th percentiles are
obtained from the q-density samples, compared to E(α) + E(H) and a 95% confidence interval
constructed using V ar(α) + V ar(H).

3.3.2 Specifying Hyperparameters and Initial Values

The HPR model has a number of hyperparameters that need to be specified. The hyperparameters
are a, b (the prior mean and variance of the normal prior on α, the y-intercept of the model) and
sτ , sσ, sλi

(the prior scale parameters on the Inverse-χ2 priors on aτ , aσ, aλi
, respectively). For a

and b, we recommend setting a = ȳ1:10, the sample mean of the first ten BBT measurements, and
setting b as 5 times the standard deviation of the BBT measurements. We recommend setting all
values of sλi

= 1, which corresponds to a C+(0, 1) prior on λi, i = 2, . . . ,m. We set sτ = 10000,
which corresponds to a C+(0, 0.01) prior on τ . We recommend setting sσ = ( 1

sd(y)
)2, which

corresponds to a C+(0, sd(y)) prior on σ. All of these hyperparameter settings are based on the
recommendations given in Chapter 2. In the HMC implementation in Chapter 2, we found that
HPR was more sensitive to the choice of sτ and b than to a, sλ, and sσ. We find the same to
generally be true with the VI implementation. Although these hyperparameter recommendations
are a good place to start (and yield consistently good performance in the BBT setting), researchers
working with different data may need to further tune for their setting.

In addition, the VI implementation requires us to initialize E(H), E(α), E( 1
σ2 ), E( 1

aσ
), E( 1

τ2
),

E( 1
aτ
) and E( 1

λ2
i
), E( 1

aλi
) for i = 2, . . . ,m. For E(α), E( 1

aσ
), E( 1

aτ
) and E( 1

aλi
) there are natural

initial values given by the priors: we initialize E(α) = a, E( 1
aσ
) = 1

sσ
, E( 1

aτ
) = 1

sτ
, and E( 1

aλi
) =
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1
sλi

. For the remaining expectations, we initialize E(H) = 0⃗, which corresponds to a flat line
through the data; we initialize E( 1

σ2 ) =
1

var(y)
; we initialize E( 1

τ2
) = 1

0.01var(y)
; and we initialize

E( 1
λ2
i
) = 1

0.12
. These specifications seemed justifiable given the interpretations of these parameters

and usually yield good performance.

3.3.3 Comparison to Hamiltonian Monte Carlo

To assess the performance of our VI implementation of HPR, we compared it to the HMC imple-
mentation from Chapter 2. We considered three sample sizes, m = 28, m = 112 = 28 × 4, and
m = 420 = 28 × 15, where m corresponds to the number of measurements taken over the cycle,
e.g. once per day, four times per day, or 15 times per day. We considered four true underlying
functions, motivated by the BBT setting:

1. bigstep: f(t) = I(t ≤ 14) ∗ 36.6 + I(t > 14) ∗ 37.1

2. flat: f(t) = 36.8

3. joinpoint1: f(t) = I(t ≤ 14)∗36.6+I(14 < t ≤ 20)∗(t/12+37.1−5/3)+I(t > 20)∗37.1

4. joinpoint2: f(t) = I(t ≤ 7) ∗ (−t/20 + 36.95) + I(7 < t ≤ 14) ∗ 36.6 + I(14 < t ≤
22) ∗ (t/16 + 35.725) + I(t > 22) ∗ 37.1

For each of our 12 data-generating scenarios (3 options for number of measurements × 4 options
for function) we generated 100 sample datasets and then estimated the HPR model on each dataset
using either HMC or VI, following all hyperparameter and initial values specifications given above.
Sample datasets for the m = 28 sample size are given in Figure 3.2.

For the two estimation approaches, we compared their mean point estimates, their efficiency
(the standard deviation of the point estimates), their mean credible interval width, and their credible
interval coverage, aggregated pointwise at each timepoint across the 100 replicates of each data-
generating scenario. These results are given in Figures I.1-I.4 in Appendix I. In addition, we
present examples of the different posteriors obtained via HMC and VI in Appendix J.

Overall, VI returned fits with slightly more noise, slightly less efficiency, and slightly worse
coverage than HMC. These differences were particularly acute at t = 1, with improved perfor-
mance after t = 1. In general, differences were more substantial in the joinpoint scenarios. VI’s
credible intervals were slightly wider than HMC’s, except in the joinpoint scenarios and at t = 1

in all scenarios, for which they were narrower. Of particular note is that VI’s credible intervals did
not always narrow with sample size, as can be seen when comparing the credible interval widths in
the bigstep and joinpoint scenarios between the m = 112 and m = 420 settings. However, in most
cases, differences between HMC and VI lessened with increasing sample size. These differences
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Figure 3.2: Sample datasets for variational inference (VarInf) and Hamiltonian Monte Carlo
(HMC) comparison simulations, with m = 28. Each plot shows one sample dataset, and the
point estimates and 95% credible intervals from VarInf and HMC estimation. The true underlying
trajectory is given as a black line. Observed data are given as black dots.

in model fit were generally fairly minor (particularly after t = 1) and dwarfed by the signal in the
data, as can be seen in the sample fits given in Figure 3.2. Examining the posterior densities shown
in Appendix J, we note major discrepancies between the VI and HMC posterior densities for all
parameters except H , σ2. These discrepancies do not seem to affect model performance, but they
suggest that inference based on VI’s estimates of the hierarchical variance parameters would be
ill-advised. However, although VI returned slightly worse results than HMC, it offered markedly
faster computation times (Table 3.1). While HMC would not be computationally feasible in a
live-updating setting, VI likely would.

3.4 Horseshoe Process Regression for Basal Body Temperature
Data

Although the VI implementation described in Section 3.3 reduced the computational challenges
of using HPR to model BBT, it did not make any adjustments to HPR to better tailor it to the
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Table 3.1: Median computation times (seconds) for the variational inference (VarInf) and Hamil-
tonian Monte Carlo (HMC) implementations of a horseshoe process regression (HPR) across 100
replicates.

n = 28 n = 112 n = 420
Function VarInf HMC VarInf HMC VarInf HMC
bigstep 0.3 40.2 0.6 185.2 2.2 1201.8

flat 0.3 7.4 0.5 32 2.3 195.5
joinpoint1 0.3 34.7 0.6 153.6 2.2 906.1
joinpoint2 0.3 33.4 0.6 155.7 2.3 858.6

BBT setting. Here, we describe two such modifications: an approach for incorporating ovulation
day into the HPR model, and an ad hoc approach for sharing information on BBT trajectory and
anticipated day of ovulation across menstrual cycles.

3.4.1 Incorporating Day of Ovulation

There are a variety of options for how to incorporate ovulation day into the HPR model. Here,
we take a simple approach and add ovulation day as an explicit parameter in the model, O. The
ovulation day parameter O determine the scales of the priors on the local shrinkage parameters.
The updated model is then:

yi = fi + ϵi

fi = α +Hi

Hi −Hi−1|τ 2, λ2
i ∼ N(0, τ 2λ2

i (ti − ti−1)), i = 2, ...,m, H1 = 0

α ∼ N(a, b2)

ϵi|σ2 ∼ N(0, σ2), σ2|aσ ∼ Invχ2(1, 1/aσ), aσ ∼ Invχ2(1, sσ)

τ 2|aτ ∼ Invχ2(1, 1/aτ ), aτ ∼ Invχ2(1, sτ )

λ2
i |aλi

iid∼ Invχ2(1, 1/aλi
), i = 2, ...,m

aλi
∼ Invχ2(1, 1), i = 2, ..., O,O + 2, ...,m

aλO+1
∼ Invχ2(1, 1/4)

O ∼Multinom(Ψ)

(3.9)

Thus, we assume that all of the scales of the local shrinkage parameters are a priori distributed
according to Invχ2(1, 1), except one—the scale parameter aλO+1

, which corresponds to the scale
of the local shrinkage parameter for the jump between the day of ovulation and the following
day. That scale parameter is more tightly bound than the others, with an Invχ2(1, 1/4) prior.
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Note that this is equivalent to placing C+(0, 1) priors on all of the local shrinkage parameters
λi, i = 2, ...,m except λO+1, which has a C+(0, 2) prior. This corresponds to our prior belief that
there is a distinctly larger jump in BBT at time of ovulation, relative to the rest of the menstrual
cycle. Although a C+(0, 2) prior may not seem substantially different from a C+(0, 1) prior, in
this setting it is evidently enough of a difference to flag the day of ovulation. Making the ratio
between the scale parameters larger (e.g. a C+(0, 100) prior for day of ovulation vs. a C+(0, 1)

prior for the other days) did not affect performance; we opted to leave the ratio small.

The day of ovulation, O, must also have a prior. Here, we propose the use of a multinomial
prior with prior probability vector Ψ. The outcome in this case is which day is chosen for ovulation
out of some set of candidate days (e.g. days 8-29), each of which has prior probability dictated by
Ψ. Figure 3.3 gives our proposed choice of Ψ, distributed across days 8-29. We chose this set of
days and Ψ based on the empirical distribution of ovulation day observed in large cohort studies
[11, 23]. However, this is straightforward to modify if a multinomial distribution on a different set
of days (e.g. days 10-35 rather than 8-29) or with different prior probabilities is preferred.
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Figure 3.3: Proposed prior on day of ovulation.

Accommodating this revised model within the VI implementation is straightforward. It results
in modifications to the q-density for aλ, the creation of a new q-density for O, and slight changes
to the variational objective L. More details on these changes are given in Appendix K. All other
q-densities and initial value/hyperparameter specifications remain unchanged from what was de-
scribed in Section 3.3.

We obtain the parameters of each q-density as output after the VI algorithm has converged. That
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allows us to produce point and uncertainty estimates of the BBT trajectory, as before. In addition,
we obtain approximate posterior probabilities of ovulation occurring on each day between days 8
and 29. There are a variety of ways we could translate these probabilities into a chosen day of
ovulation. We propose to identify the first day with a posterior probability of ovulation greater
than 0.3 as the day of ovulation; if no day has posterior probability of ovulation greater than 0.3

then we will use the posterior mode as the chosen day of ovulation. For uncertainty intervals, we
sample 4000 ovulation days from a multinomial distribution with probabilities corresponding to
the approximate posterior probabilities of ovulation and then take the 2.5th and 97.5th percentiles
of these days to provide an uncertainty interval. Another good option might be to take the highest
posterior density interval, in the case of multimodal posterior probabilities. A plot of the poste-
rior probabilities of ovulation is another easily interpretable summary of when ovulation likely
occurred.

3.4.2 Posterior-Prior Passing

As was discussed in Section 3.2, there is clinical evidence to support sharing information across
cycles, within a woman. In particular, it seems sensible to share information on measurement
error, σ2; the global shrinkage parameter, τ 2; and the y-intercept, α. It would also be useful to
share information on the local shrinkage parameters, Λ, although it is less clear how to do so.
Research suggests that the day of ovulation may vary by more than 7 days from cycle to cycle
in a third of women [23], making it implausible to aggressively share information on the local
shrinkage parameters across cycles. Here, we propose to share information on the distribution of
the day of ovulation, O, across cycles.

Although it would be possible to implement HPR-BBT in a true repeated measurements fash-
ion, treating τ 2, σ2 as shared parameters across cycles and O,α as random effects coming from
some common distribution across cycles, doing so would likely slow computational times as the
number of cycles increases. In an attempt to get around this issue, we propose an ad hoc but com-
putationally efficient scheme in which the posterior distributions of α, τ 2, σ2, O from one cycle
become the prior distribution for those parameters in the next cycle. Because variational inference
returns a closed form of the posterior (which is conjugate for the prior), this posterior-prior passing
is straightforward to carry out. Put more formally, let pj(θ|·) be the prior for parameter θ in cycle
j, conditional on some hyperparameters, and define qj(θ|·) as the q-density returned for parameter
θ in cycle j, conditional on some q-density parameters. Then we propose:
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qj(α|aj, bj)→ pj+1(α|aj, 50bj)

qj(aτ |κτ,j, sτ,j)→ pj+1(aτ |κτ,j, sτ,j)

qj(aσ|κσ,j, sσ,j)→ pj+1(aσ|κσ,j, sσ,j)

qj(O|Ψj)→ pj+1(O|γj = g(Ψj,γj−1))

(3.10)

Note that κσ,j, κτ,j are the estimated degrees of freedom for the Inverse-χ2 q-densities of aσ, aτ ,
respectively, estimated for cycle j.

For the most part, we are directly passing the posterior from the previous cycle as the prior for
the next cycle, with two exceptions. First, we multiply the q-density standard deviation of α from
cycle j by 50 when passing it as the prior for cycle j+1. This is because the posterior q-density for
α is often quite narrow, which can cause computational difficulties when imposed as a prior for new
data. Second, we transform the q-density posterior probabilities of ovulation from cycle j using the
transformation g(Ψj,γj−1). This transformation is done to improve retention of information across
cycles about the distribution of day of ovulation and to smooth over multimodality. Specifically,
γk,j , the kth element of the length K vector γj is:

γk,j = g(Ψj,γj−1) =
exp{−|

∑k
l=1(Ψl,j + γl,j−1)−

∑K
l=k+1(Ψl,j + γl,j−1)|}∑K

k=1 exp{−|
∑k

l=1(Ψl,j + γl,j−1)−
∑K

l=k+1(Ψl,j + γl,j−1)|}
(3.11)

In the above expression, note that the denominator serves to normalize the probability γk,j so that
the vector γj sums to 1, i.e. the denominator is the same as the numerator, except summed from 1 to
K. Therefore, it suffices to focus on the numerator. Inside of the exponent, we have |

∑k
l=1(Ψl,j +

γl,j−1)−
∑K

l=k+1(Ψl,j+γl,j−1)|. First, note that the term Ψl,j+γl,j−1 is the sum of Ψl,j , the posterior
probability of ovulation on day l from cycle j, and γl,j−1, the probability of ovulation on day l that
was fed in as the prior for cycle j. With this sum, we forcibly incorporate information on ovulation
from previous cycles via γl,j−1, and weight that information equally to the information on ovulation
we have just obtained from the most recent cycle via Ψl,j . We then calculate |

∑k
l=1(Ψl,j+γl,j−1)−∑K

l=k+1(Ψl,j + γl,j−1)|—the absolute difference between the cumulative probability of ovulation
occurring on days less than or equal to k and the cumulative probability of ovulation occurring on
days greater than k. This serves to smooth over multimodality. The days that are closer to modes
in Ψl,j + γl,j−1 will return smaller values from this expression, while days that are further from the
modes will return larger values. This is the inverse of what we want (i.e. days that are closer to
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modes should have larger probabilities, not smaller), so we then multiply the absolute difference
by−1. Next, we exponentiate, to add smoothness. Finally, as discussed, we use the denominator to
normalize the quantities from the numerator to sum to 1 and serve as a valid probability vector. To
summarize, g(Ψj,γj−1) generally behaves sensibly and returns a set of probabilities which reflects
the information from previous cycles, with multimodality smoothed out.

3.5 Data Application

3.5.1 Data

We use the HPR-BBT model to fit BBT data collected from a large cohort of British women. These
data were gathered by the Catholic Marriage Advisory Council of England and Wales between
1955 and 1988. Women could write to the Council to obtain a free course on BBT-based natural
family planning for contraception. After completing the course, a woman would collect a cycle’s
worth of BBT data and send it to the Council for review and annotation, a process which she
would repeat until she was confident in her ability to identify her time of ovulation each cycle on
her own. Most women sent between 6-12 cycles’ worth of data, but some women sent far more.
The Council kept photocopies of all of the BBT data they received, which were subsequently
abstracted to form a data repository on BBT data across the menstrual cycle. Participants were
primarily from England and Wales, although a substantial minority were from Ireland, Scotland,
and other European countries. Participants were largely healthy and fertile. For more information
on these data, please see Miolo et al. (1993) [55] and the University of Padua Department of
Statistical Sciences Data Repository [76].

In total, the cohort consisted of BBT measurements from 36,139 cycles on 1,786 women, for a
total of 779,216 BBT measurements. Women ranged in age from 16-55 years over data collection.
We excluded cycles that were flagged by data abstractors as having inadequate measurements to
identify the temperature jump and those that were affected by illness. We also restricted the sample
to cycles whose end date could be confirmed by calendar date, to ensure that the reported end of
the cycle was the true end of the cycle. We required that the cycle include at least one BBT
measurement prior to day 9 of the cycle and in the last 8 days of the cycle. Finally, we restricted
to women with age data available who recorded at least 3 usable cycles of BBT measurements,
with the first cycle mostly complete (data collection started by day 3 and ended no more than 2
days early). More information on these sample exclusions can be reviewed in Appendix L, Figure
L.1.

This resulted in a final sample of 10,017 cycles from 869 women, for a total of 266,690 BBT
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measurements. Over the course of data collection, women ranged in age from 16 to 52, with a
median age at cycle collection of 33. The number of cycles each woman collected ranged between
3 to 90, with women collecting a median of 7 cycles of data each (IQR: 5-14). The median
cycle length was 28 days (IQR: 26-30). 65.7% of cycles had complete data; an additional 18.0%
were missing 1-3 measurements. The remaining 16.3% of cycles were missing more than 3 BBT
measurements, with a maximum of 21 missing measurements in a single cycle.

3.5.2 Individual Performance

To demonstrate HPR-BBT’s performance for producing individual estimates, we first focus on
data from a 35-year-old participant who recorded 6 cycles of usable BBT data. In Figure 3.4,
we show her estimated BBT trajectory and most likely day of ovulation from each cycle. We
compare the results from the HPR-BBT model without cross-cycle information sharing (HPR-
NoInf), the HPR-BBT model with cross-cycle posterior-prior passing (HPR-Inf), a hidden Markov
model (HMM) [78], and the cumulative sum test (CumSum) [66]. For the HMM, if multiple jumps
in BBT were identified in a single cycle, we used the first jump that occurred after day 7.

In general, we see similar results from all methods, with some slight differences. The cumula-
tive sum test (CumSum) often returned a later estimate of ovulation day than the other methods,
which was particularly apparent in Cycles 2, 4, and 6. For the most part, HPR-Inf and HPR-
NoInf returned very similar fits for the BBT trajectory for Cycles 2-6, with the most noticeable
differences in Cycle 5. However, their estimates of the ovulation day and its uncertainty did differ
occasionally, with HPR-Inf usually returning a wider uncertainty interval for ovulation day (as can
be seen in every cycle except Cycle 6). In addition, by Cycle 4 HPR-Inf developed a preference for
later ovulation (after estimating ovulation at day 17 for Cycle 3), which resulted in later estimates
of ovulation for Cycles 4 and 5 (HPR-Inf estimated ovulation to be on day 19 for Cycle 4, while
HPR-NoInf chose day 17; HPR-Inf estimated ovulation on day 14 for Cycle 5, while HPR-NoInf
chose day 13).

In Figure 3.5, we give the approximate posterior probabilities that ovulation occurred on a
given day for each cycle, and the resulting prior probabilities that were used by HPR-Inf. As was
described in Section 3.4, the transformed probabilities were much wider than the untransformed
posterior probabilities. We also note the smoothing of the multimodality seen in Cycles 2 and 4.
In Cycle 5, for which there was a great deal of uncertainty about where to place the ovulation day,
the transformed and untransformed probabilities were fairly similar, although the bimodality was
smoothed over in the transformed probabilities.

Finally, in Figure 3.6, we show how HPR-BBT performed in the presence of real-time updating,
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Figure 3.4: Estimated basal body temperature (BBT) trajectory and day of ovulation for 6 cycles
of data from a 35-year-old woman. Point estimates of the BBT trajectory are given as solid lines,
with uncertainty estimates around the trajectory given as shaded regions. Point estimates of day
of ovulation are given as vertical solid lines, with uncertainty shown as vertical dashed lines. Ob-
served data are given as black dots. We provide the results from the HPR-BBT model without
information sharing (HPR-NoInf), the HPR-BBT model with information sharing (HPR-Inf), a
hidden Markov model (HMM), and the cumulative sum test (CumSum). Note that only HPR-BBT
provides uncertainty estimates.

by refitting the model as new data became available in the cycle. We show the model refit at days
19, 20, 21, and 22 of Cycle 5.

With the data up to day 19, we see that both models were fairly agnostic about the location of
ovulation, although HPR-Inf placed more mass later in the cycle. After the adding the data from
day 20, HPR-Inf shifted in recognition of a jump, which it initially placed on day 13 with uncer-
tainty to day 14. HPR-NoInf remained agnostic. With day 21’s data, HPR-NoInf also recognized
a jump, which it initially placed on day 14 with uncertainty of days 13-15; HPR-Inf remained
unchanged from day 20. On day 22, HPR-NoInf shifted the day of ovulation to day 13, with
uncertainty still extending to day 15, while HPR-Inf remained unchanged. Overall, it took both
methods 6 days post-ovulation to produce an initial guess of ovulation for this cycle.
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Figure 3.5: Approximate posterior probabilities of ovulation for 6 cycles of data from a 35-year-old
woman estimated by the HPR-BBT model with information sharing (HPR-Inf). The approximate
posterior probabilities are given in purple, while the transformed probabilities that were passed as
the prior for the next cycle are shown in pink. The estimated day of ovulation and its 95% credible
interval are shown as vertical black lines.

3.5.3 Population Performance

To give a sense of HPR-BBT’s performance in the full cohort of 10,017 cycles from 869 women,
we ran HPR-Inf and HPR-NoInf on all 10,017 cycles. Overall, HPR-Inf converged within the
maximum number of iterations for 92.2% of cycles, while HPR-NoInf converged for 91.0% of
cycles, suggesting that drawing on information from previous cycles may be helpful for setting
priors and initial values for the VI algorithm. Among cycles that converged, HPR-Inf identified a
day with posterior probability of ovulation greater than 0.3 in 76.1% of cycles, while HPR-NoInf
did so in 81.6% of cycles. (Recall that in cycles where this threshold was not reached, the day with
the largest posterior probability of ovulation was returned as the ovulation day estimate; however,
this estimate would not be returned until cycle measurement was complete.)

When refit daily with each day’s new BBT measurement, HPR-Inf would return its final esti-
mate for day of ovulation within 3 days of its occurrence for 19.3% of cycles and within 4-7 days
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Figure 3.6: Estimated basal body temperature (BBT) trajectories and posterior probabilities of
ovulation for Cycle 5 of 6 from a 35-year-old woman, refit with 19, 20, 21, and 22 days of data
available. We provide the results from the HPR-BBT model without information sharing (HPR-
NoInf) and the HPR-BBT model with information sharing (HPR-Inf). Uncertainty estimates for
the BBT trajectory are shown as a shaded region; uncertainty for the estimated day of ovulation is
given as dashed lines. Observed data are given as black dots.

of its occurrence for an additional 47.3% of cycles. 33.4% of cycles required more than a week
after the estimated day of ovulation for ovulation to be identified. By comparison, HPR-NoInf
would return its final estimate for day of ovulation within 3 days of its occurrence for 11.5% of
cycles, within 4-7 days of occurrence for 55.5% of cycles, and more than a week after ovulation for
33.0% of cycles. This suggests that the information sharing from previous cycles enables higher
posterior ovulation probabilities with less data from the current cycle, and thus HPR-Inf can pro-
duce its day of ovulation estimate more quickly than HPR-NoInf. Among cycles that produced an
estimated day of ovulation before the cycle was complete, HPR-Inf produced an estimate that did
not change for the remainder of the cycle for 64.5% of cycles. In 25.2% of cycles the estimate
shifted once over the remainder of data collection; in 10.2% of cycles it shifted more than once.
For HPR-NoInf, its estimate did not shift in 74.5% of cycles, had one shift in 20.8% of cycles, and
had more than one shift in 4.7% of cycles.
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Finally, as a check of the accuracy of HPR-Inf and HPR-NoInf’s predictions, we consider how
the population distribution of follicular and luteal phase length estimated by HPR-Inf and HPR-
NoInf compares to results from Fehring et al. (2006) [23], who presented results from 1,060
cycles from 165 women, in which ovulation was confirmed by urinary estrogen levels. Across all
cycles, HPR-NoInf estimated the median day of ovulation to be 15 (SD = 3.16), while HPR-Inf
produced a median day of ovulation of 17 (SD = 3.43). Fehring et al. found that the median day
of ovulation was day 16 (SD = 3.4), which seems generally in agreement with our findings. HPR-
NoInf estimated the median luteal phase length to be 12 days (SD = 3.36), while HPR-Inf produced
a median luteal phase length of 11 days (SD = 3.52). These estimates are less in agreement with
Fehring et al., who found a median luteal phase length of 13 days (SD = 2.0). Taken together,
this suggests that HPR-Inf, in particular, may be estimating ovulation to occur later than it actually
does (and, by extension, a shorter luteal phase than reality)—or lingering data quality issues.

3.6 Discussion

Here, we have taken initial steps to make horseshoe process regression (HPR) more usable for mod-
eling basal body temperature (BBT) data, by implementing a variational inference (VI) approach
that speeds computation time and incorporates day of ovulation explicitly into the HPR model.
We demonstrated that our VI re-implementation of HPR provides comparable performance to the
HMC implementation from Chapter 2 in the BBT setting. We also showed that the HPR-BBT
model, modified to include ovulation day and implemented via VI, returns sensible results for
ovulation timing, compared to results from a large and well-regarded cohort study [23].

However, there is room for improvement. To provide computational gains, we pursued a fairly
standard mean-field VI approach. Although this implementation yields good performance in our
setting, there are a number of changes that might further stabilize estimation. The discrepan-
cies between the posterior distributions obtained via Hamiltonian Monte Carlo (HMC) and VI are
of particular concern (Appendix J), and resemble results found by Neville, Ormerod, and Wand
(2014) [57]. These discrepancies are likely caused by lingering posterior dependence between
the hierarchical parameters aτ ,aλ. To resolve this issue, Neville et al. (2014) recommended a
reparameterization of the horseshoe distribution that does not rely on a fully conjugate parame-
terization, instead leaving the local shrinkage parameters as half-Cauchy and using more complex
numerical approaches to obtain the q-densities [57]. This may be worthwhile to pursue in future
work. In addition, we note that since we were able to obtain a conjugate representation of the HPR
model for VI, it is likely possible to implement HPR using a Gibbs sampler. Further work is needed
to explore the performance of a Gibbs approach, but that may offer comparable computation times
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to VI while providing estimates of the true posterior, rather than an approximation.

More work remains before HPR-BBT will be truly functional for modeling BBT data. A pri-
mary challenge of the BBT setting is the complexity and messiness of the data, particularly in
the context of menstrual tracking app data. We group these challenges into two categories: is-
sues related to the study design and sampling mechanism, and contextual issues that are particular
to BBT. In the study design and sampling mechanism domain, our analysis was complicated by
missing data, which is common in the BBT setting. In particular, women often only recorded BBT
measurements for the 10 days surrounding their anticipated ovulation date, which made it difficult
for any of the methods we considered here to detect signal. It also made it difficult to confirm
the true end date of the cycle, which is important to producing correct estimates of luteal phase
length. We did what we could to verify cycle end date via calendar information, but we still saw
evidence that some of the cycles in our cleaned data may have had incorrect end dates. We also saw
evidence that some women may have been thresholding their own temperature measurements via
rounding or assigning all temperature measurements below some threshold to a “low” temperature
(and similarly for high temperatures above some threshold). This type of do-it-yourself data pre-
processing was a primary cause of model convergence issues. Finally, one major shortcoming of
the data we use here (and many large cohort studies on BBT patterns) is that our data do not have
information on the true date of ovulation, making it impossible to assess the accuracy of HPR-BBT
for detecting ovulation. We can compare to other algorithms for detecting ovulation based on BBT
(as we have done here with the cumulative sum test and hidden Markov model), but these methods
have their own shortcomings. Ideally our data would have information on the true ovulation date,
confirmed by ultrasound or hormone analysis [23].

Beyond the issues with study design and sampling mechanism, the BBT data have difficult fea-
tures that are inherent to the scientific problem. There is high variability in follicular and luteal
phase length, and a high proportion of women do not follow the paradigmatic step function BBT
trajectory. Other researchers have reduced these issues by eliminating women who show a high
degree of menstrual cycle variability (e.g. those with more than 4 days’ difference in cycle length
across cycles [53]) or by restricting to women whose cycles fall in a particular length range [44],
but these approaches exclude a large number of women whose BBT pattern is otherwise normal.
Ideally, statistical methodology would be able to meet these challenges. In this regard, HPR-BBT is
a step in the right direction, as it has a high degree of flexibility to accommodate non-paradigmatic
cycles. It provides uncertainty estimates, which helps to distinguish between easy-to-classify and
hard-to-classify cycles. In addition, its local-global shrinkage parameters provide natural quantifi-
cation of different BBT trajectory patterns (e.g. piecewise linear rather than step function, triphasic
rather than biphasic) and may be able to elucidate patterns of BBT trajectory.
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However, HPR-BBT could be further improved for this purpose. We think adding other
biomarkers and predictors beyond BBT would substantially reduce issues with unexplained vari-
ability in follicular phase length. These additional predictors are also essential to predicting time
of next ovulation, rather than merely detecting previous ovulation—a key goal of menstrual track-
ing app technology. To make HPR-BBT more flexible, we might consider a different prior for
day of ovulation that does not require specification of a finite set of days (as the multinomial
prior does), to accommodate women with unusually early or unusually late ovulation. In addition,
it may be useful to add further layers of hierarchy by placing priors on the scale parameters of
the local shrinkage parameters and on the probabilities of ovulation, instead of treating them as
fixed hyperparameters. Our current approach relies on the somewhat-arbitrary point estimate of
ovulation day as being the first day with probability of ovulation greater than 0.3. Although this
generally performs well, developing a point estimator that does not rely on a probability threshold
may further improve performance. Finally, different methods for sharing information across cy-
cles may provide better estimates. The posterior-prior passing scheme we use here offers modest
gains in performance, but a true repeated measurements formulation (with clever computational
implementation) may do even better.

Despite its challenges, BBT data are statistically fascinating and important to half the world’s
population—which makes the lack of methodology truly tailored to BBT surprising. We hope that
our foray into this complicated realm inspires further work to develop elegant, scalable Bayesian
approaches for BBT data. Of course, methodology will be (at most) half the battle: translation into
actual menstrual tracking app use is where the real conundrums and rewards likely wait.
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CHAPTER 4

A Multiple Imputation Approach for Cumulative
Incidence Estimation

4.1 Introduction

Transitioning from the previous chapters’ focus on horseshoe process regression and basal body
temperature data, we now turn our attention to competing risks in survival analysis. Competing
risks are a common challenge in applied survival analysis. For example, researchers may wish
to study the incidence or causes of cancer-specific mortality, in which death from cancer is the
primary interest. Death from other causes—such as heart attack or car accident—is of less inter-
est. These other-cause deaths complicate estimation, however, because they create a new type of
missing data: death from something else. Different from traditional censoring, in which we do
not observe the outcome of interest because of study termination, participant drop-out, or loss-to-
follow-up, censoring from competing events prevents us from observing the outcome of interest
because the participant has already died of another cause.

Statistical discussions of this competing-risks missingness sometimes veer into the philosoph-
ical (if not theological). Can individuals who have already died from one cause of death still be
considered at risk for another cause? Under what circumstances do we treat death from another
cause as censoring in the traditional sense, e.g. equivalent to study dropout and similar? Is it even
reasonable to consider the risk of death from a particular cause, as if other causes could be pre-
vented? At what point is our cause of death determined? In the competing risks setting, the choice
of estimator is intrinsically linked to these deeper questions about assumptions and interpretation.
In this paper, we aim to give insight into these decisions within the setting of cumulative incidence
estimation.

The cumulative incidence is a key descriptive statistic in the competing risks setting, and gives
the probability of dying of the event of interest prior to time t (and, implicitly, of not having died
of something else prior to that). It is usually estimated nonparametrically via the Aalen-Johansen
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estimator, which will be described further below. Here, we instead propose to estimate the cumula-
tive incidence using a multiple imputation scheme that imputes event times and types for censored
individuals. On each of these imputed datasets, we can then estimate the cumulative incidence as a
proportion. By reformulating the cumulative incidence problem as that of a proportion, it is easier
to understand the differences between death from a competing event and traditional censoring, and
developing estimators of the cumulative incidence in complex settings becomes more straightfor-
ward. In addition, the connection to proportions motivates new methods for uncertainty estimation
for the cumulative incidence, which offer improved performance in some settings.

Our imputation approach has connections to other research that proposes methodology for
or deeper understandings of cumulative incidence estimation. Efron (1967) first noted that the
Kaplan-Meier survival estimator could be reformulated as a redistribution-to-the-right algorithm
[19], which Gooley et al. (1999) subsequently demonstrated for the Aalen-Johansen estimator
[33]. Following Taylor et al. (2002), we make this redistribution-to-the-right explicit via multiple
imputation [74]. Ruan and Gray (2008) also proposed a multiple imputation approach for cumula-
tive incidence estimation, although they opted to impute censoring times for individuals who died
of a competing event—a very different approach from what we propose here [67]. We demonstrate
that despite the seeming differences between our approach and that of Ruan and Gray (2008), they
are functionally equivalent. Finally, the connections we make with binomial and multinomial dis-
tributions, and variance estimators motivated thereof, are reminiscent of work by Cox and Oakes
(1984) [17] and Betensky and Schoenfeld (2001) [6], who used the binomial and multinomial dis-
tributions to develop nonparametric variance estimators for the survival and cumulative incidence
functions, respectively. All of these approaches will be reviewed in greater depth below.

The remainder of the paper is as follows. First, we provide some necessary background on
multiple imputation estimators for the survival and cumulative incidence functions. Then, we
propose our multiple imputation approach for estimating the cumulative incidence function and its
variance. We present simulation studies to demonstrate the empirical performance of our method.
We close with a discussion of future work.

4.2 Background

4.2.1 Multiple Imputation for Survival Analysis

We will start by focusing on the simpler setting of single-cause survival analysis, i.e. no competing
risks yet. Let Ti denote the time to some outcome of interest for i = 1, ..., n subjects. Let Ci denote
the corresponding time to censoring. Then in the all-cause survival analysis setting, the observed
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data consist of Xi = min(Ti, Ci) and δi = I(Ti ≤ Ci). Let t1, t2, ..., tl be the ordered, unique
values of Xi, and let dj, j = 1, ..., l be the number of individuals who experienced the event of
interest (δi = 1) at time tj . Let yj be the number at-risk just before time tj , e.g. yj =

∑n
i=1 I(Xi ≥

tj). The survival function S(t) = Pr(T > t) is of particular interest and is usually estimated
nonparametrically with the Kaplan-Meier method [43]:

Ŝ(t) =
∏
tj≤t

(1− dj
yj
) (4.1)

Efron (1967) observed that the Kaplan-Meier estimator could be reformulated as a redistribution
to the right algorithm [19]. In the case of no censoring, each individual in the sample is allocated
a weight wi =

1
n

and we estimate Ŝ(t) = 1−
∑

i:ti≤t wi. In the presence of censoring, the weight
of a censored individual is equally re-allocated to the weights of individuals still under observation
after the time of censoring. Efron (1967) showed that this re-allocation approach is equivalent to
the Kaplan-Meier estimator. Note that this approach still assumes independent censoring.

Taylor et al. (2002) made this re-allocation of weights explicit via multiple imputation [74].
They proposed to generate M imputations of the event time for censored individuals, by either
sampling randomly from individuals still at risk, or by sampling from the survival distribution es-
timated by the Kaplan-Meier approach. These filled-in data could then be analyzed according to
Efron’s redistribution-to-the-right algorithm, generating Ŝ(t)(m) = 1−

∑
i:t

(m)
i ≤t

1
n
,m = 1, ...,M .

After analysis, the mean of the M estimates from the imputations provided the final estimate of
Ŝimp(t), while Rubin’s Rules provided variance estimates [50]. Taylor et al. demonstrated mathe-
matically that with infinite imputations, these imputation estimates were equivalent to the estimates
from the Kaplan-Meier method and, with finite imputations, empirically still very similar. In ad-
dition, the filled-in imputations could be analyzed using log-linear regression and—after pooling
across imputations—would yield estimates equivalent to those from the Cox proportional hazards
model [16]. In subsequent work, Hsu, Taylor, and Murray extended the imputation approach to
allow for covariate-dependent imputation that could address dependent-censoring [39, 41] and to
more complex all-cause survival settings [40].

4.2.2 Aalen-Johansen Estimation

In the presence of competing risks, we have an additional endpoint to consider. Let Vi be the
time to a competing event for individuals i = 1, ..., n. Then the observed data are now Xi =

min(Ti, Vi, Ci) and δi = 1 when Xi = Ti, δi = 2 when Xi = Vi, and δi = 0 when Xi = Ci.
Let t1, t2, ..., tl be the ordered, unique values of the event times, e.g. times of individuals with
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δi = 1, 2. Let dj, j = 1, ..., l be the number of events of interest (δi = 1) observed at time tj ,
and let vj be the number of competing events (δi = 2) observed at time tj . Let cj be the number
of individuals censored in the interval [tj, tj+1). In the setting of competing risks, the cumulative
incidence function F (t) = Pr(X ≤ t, δ = 1) is the most common quantity of interest, and it is
usually estimated with the Aalen-Johansen estimator [2]:

F̂ (t) =
∑
j:tj≤t

Ŝ(tj−1)
dj
yj

(4.2)

Note that Ŝ(tj−1) is the estimate of all-cause survival at time tj−1. Either the Kaplan-Meier or
Nelson-Aalen estimator for S(t) can be used; in the case of the Kaplan-Meier estimator, this would
be Ŝ(tj−1) =

∏
tk≤tj−1

(1− dk+vk
yk

).

Gooley et al. (1999) noted that the Aalen-Johansen estimator can be reformulated as a
redistribute-to-the-right algorithm in the style of Efron (1967) [19, 33]. In the case of no censoring,
the cumulative incidence is F̂ (t) =

∑
j:tj≤t

dj
n

, and thus each individual has weight 1
n

. In the case
of censoring, the weights of censored individuals are equally reallocated among individuals still at
risk at time of censoring—exactly what we propose to do here via multiple imputation.

Variance estimation for the Aalen-Johansen estimator has been the topic of some discussion
in the literature. Aalen and Johansen derived an initial variance estimator using martingale the-
ory, which is the most commonly-used variance estimator in the applied literature [2]. However,
the Aalen-Johansen variance estimator has been found to be anticonservative in small samples,
particularly at later timepoints [4, 10]. More recent work has recommended the use of the vari-
ance estimators of Gaynor et al. (1993) [29] and Betensky and Schoenfeld (2001) [6], which are
Greenwood-type estimators [4, 10].

4.2.3 Ruan and Gray Imputation

Ruan and Gray (2008) proposed a multiple imputation approach for survival analysis in the com-
peting risks setting [67]. For individuals who died of a competing event (δi = 2), they proposed
to impute a censoring time by sampling from the censoring distribution among those still at risk,
estimated using the Kaplan-Meier method. Having generated M imputations according to this
scheme, each imputation thus contained only δ = 0, 1 outcomes, which permits the use of tra-
ditional survival analysis techniques. To obtain estimates of cumulative incidence, it suffices to
calculate F̂ (t)(m) = 1 − Ŝ(t)(m) on each imputation m, where Ŝ(t)(m) is again calculated using
the Kaplan-Meier method. Relying on existing theory that the Kaplan-Meier estimator is asymp-
totically normally distributed [46], these estimates F̂ (t)(b) are aggregated at each timepoint across
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imputations using Rubin’s Rules [50]. Similar to Taylor et al. (2002) [74], modeling was a key
interest, and Ruan and Gray presented empirical evidence that the hazard ratio estimates from Cox
proportional hazards models—when fit on each imputation and subsequently pooled across impu-
tations—were equivalent to the subdistribution hazard ratio estimates obtained from Fine and Gray
regression on the original, unimputed data [24, 67].

Similar to our own goals in this paper, Ruan and Gray (2008) aimed to make competing risks
analysis—and particularly Fine and Gray regression—more easily adaptable. In this regard, they
succeeded: methodology and software offerings for all-cause survival analysis are more flexible
than in the multiple-cause setting, and Ruan and Gray’s approach permits the use of any method-
ology intended for time-to-event data with δ = 0, 1 outcomes.

Nonetheless, we have decided to pursue an alternative imputation scheme in this work, instead
imputing event times for censored individuals, rather than censoring times for individuals who died
of a competing event. We have two reasons for this. First, we find it somewhat counterintuitive
to impute a censoring time for individuals who have already died of a competing event. Second,
although the Kaplan-Meier estimator (which underlies their analysis strategy on each imputation)
is easier to work with than the Aalen-Johansen cumulative incidence estimator, we think that a
proportion (which underlies our method) is simpler still and makes further adaptation and variance
estimation more straightforward.

4.3 Methods

4.3.1 Event Time and Type Imputation

As discussed, our data consist of (X, δ), where Xi is the observed event time and δi is the event
indicator, with δi = 1 for the event of interest, δi = 2 for the competing event, and δi = 0 for
censoring, for i = 1, ..., n subjects. We propose to impute an event time and type for individuals
who were censored (δi = 0). We consider two different techniques for this imputation. Both of
these approaches assume independent censoring such that (T, V ) ⊥ C.

4.3.1.1 Risk Set Imputation (RSI)

In risk set imputation, we sample directly from individuals still at risk. In imputation m,m =

1, ...,M , we begin with t0 = 0. Returning to our notation from before, between t0 and t1, there
were c0 individuals censored, who need to have event times and types imputed. We sample with
replacement from the y1 individuals still at risk at time t1, and assign their event times/types to
the c0 censored individuals. Note that some of these c0 censored individuals may be assigned to
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individuals who are themselves censored later; in this case they will be re-imputed to still later
times as we move through time.

Figure 4.1: Schematic representation of risk set imputation to generate a single imputation, with
the final imputed result given on the far right. Note the reallocation of the censored individual who
was initially allocated to the bottom censored individual.

Having generated imputations for the c0 individuals, we then move to generate imputations for
the c1 individuals who were censored in [t1, t2), along with the c∗1 individuals who may have been
imputed to a censoring time in [t1, t2) in the c0 round of imputation. We continue like this until we
come to the cl+c∗l individuals who were either censored (or imputed to be censored) on or after the
final event time tl. These individuals are left as censored—the only censored observations remain-
ing in the dataset. We cannot impute an event time for them; therefore, we truncate the analysis
at the final event time tl and do not estimate the cumulative incidence after tl. Having generated
a single imputation m, we repeat this process until we have M imputations total. A schematic
representation of this process to generate a single imputation is given in Figure 4.1.

4.3.1.2 Kaplan-Meier Imputation (KMI)

In some settings, the risk set approach may be less desirable. For example, if we wish to carry
out the imputation conditional on covariates (as we envision for future work), we may run into
small sample sizes when trying to sample from a covariate-restricted risk set. For this reason, we
offer an approach that samples event times from the Kaplan-Meier estimate of the overall survival
distribution, and conditional on that, an event type. A schematic representation of this process is
given in Figure 4.2.

In imputation m, again starting with the c0 individuals censored in [t0, t1), we first draw an
event time from the Kaplan-Meier estimate of the all-cause survival distribution among survivors,
Pr(min(T, V ) > t|min(T, V ) > t0) = Ŝ(t)/Ŝ(t0). In some datasets, there may be censored
observations after the final event time. In this case, Ŝ(t)/Ŝ(t0) will not be a complete probability
distribution (i.e. the probabilities summed across event times will not equal 1). To address this
issue, when calculating Ŝ(t)/Ŝ(t0) we add a “shadow event time” just after the last censoring time
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Figure 4.2: Schematic representation of Kaplan-Meier imputation to generate one imputation. The
underlying imputation probabilities are given in the top row, with a sample imputed dataset shown
in the bottom row. The final imputed result is given at the far right.

to make Ŝ(t)/Ŝ(t0) into a complete probability distribution. If the shadow event time is sampled,
then the censored individual will be assigned to that time. Note, however, that the shadow event
time will not be counted towards the sample size n, and that we will truncate the analysis at the last
observed event time tl. This shadow event time serves only to make Ŝ(t)/Ŝ(t0) complete.

Having sampled an event time from Ŝ(t)/Ŝ(t0), we must now assign an event type conditional
on the sampled time. To do this, we sample an event type at random from the individuals who had
an event at the newly-imputed event time. For example, if an individual censored in [t0, t1) was
imputed to have event time t3, we would draw an event type at random from the d3+v3 individuals
who had an event at time t3 (either a competing event or the event-of-interest). We then move on
to the individuals censored in [t1, t2), then [t2, t3), and so on. In the interval [tj, tj+1), we sample
from Ŝ(t)/Ŝ(tj).

Remark. For both the risk set imputation (RSI) and Kaplan-Meier imputation (KMI) ap-
proaches it would be possible to combine the imputation procedure with a bootstrap, to reflect
the full uncertainty of the imputes and make RSI and KMI into proper imputation procedures.
This was recommended by Taylor et al. (2002) [74]. However, in our experience, the bootstrap
makes very little difference in the point and uncertainty estimates, which was also the case in Ruan
and Gray (2008) [67]. For this reason, we do not recommend the use of a bootstrapped imputation,
as it adds complexity for no clear gain.
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4.3.2 Point Estimation

After we perform the multiple imputation, we have M copies of the dataset featuring only δ = 1, 2

outcomes up to tl, the last observed event time in the data. At this point, obtaining the cumulative
incidence at time t is simple:

F̂ (t)(m) =
1

n

∑
j:tj≤t

dj + d
∗(m)
j (4.3)

where d
∗(m)
j is the number of individuals imputed to have the event-of-interest at time tj in im-

putation m. We only calculate F̂ (t)(m) up to time tl, the last observed event time in the dataset.
We take the mean across imputations at each timepoint tj, j = 0, ..., l as our point estimator:
F̂imp(tj) =

1
M

∑M
m=1 F̂ (tj)

(m). This leads to our first result:

Result 1. E[F̂imp(t)] = F̂ (t), where the expectation is taken across imputations and
F̂ (t) is the Aalen-Johansen estimator of the cumulative incidence.

A proof is given in Appendix M. Therefore, as the number of imputations increases, the imputa-
tion estimator will exactly reproduce the Aalen-Johansen estimator. Any difference between the
imputation and Aalen-Johansen point estimates are attributable to the finite number of imputa-
tions.

4.3.3 Variance Estimation, Confidence Intervals, and Credible Inter-
vals

4.3.3.1 Variance Estimation

To estimate the variance of F̂imp(t), we rely on Rubin’s Rules, which calculate the pooled variance
of an estimator across multiple imputations as the weighted sum of the variance of the estima-
tor between and within imputations. Rubin’s Rules require that the estimator to be pooled be
asymptotically normal [50]. At each timepoint and within each imputation, F̂ (t)(m) is merely a
proportion: the number of individuals who have died or have been imputed to die of the event of
interest by time t divided by the total sample size n. Then we can rely on the asymptotic normality
of the estimate of a proportion to state:

√
n[F̂ (t)(m) − F (t)(m)]

d→N(0, F (t)(m)[1− F (t)(m)]) (4.4)

This echoes the approach taken by Cox and Oakes (1984) [17] and Betensky and Schoenfeld (2001)
[6], who used likelihood theory to develop variance estimators for the Kaplan-Meier and Aalen-
Johansen estimators, respectively. In the case of the Kaplan-Meier estimator, the likelihood is that
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of a binomial distribution at each timepoint; for the Aalen-Johansen, it is a multinomial distribu-
tion. We rely on Cox and Oakes’ demonstration of the asymptotic independence of the hazards at
differing timepoints to alleviate any concerns about dependence between F̂ (tj)

(m), F̂ (tk)
(m) when

j ̸= k. Then we can apply Rubin’s Rules to obtain:

ˆV ar(F̂imp(t)) = W + (1 +
1

M
)B (4.5)

where W = 1
M

∑M
m=1

ˆV ar(F̂ (t)(m)) and B = 1
M−1

∑M
m=1(F̂ (t)(m) − F̂imp(t))

2, with
ˆV ar(F̂ (t)(m)) = 1

n
F̂ (t)(m)[1− F̂ (t)(m)].

4.3.3.2 Wald Interval

Using this pooled variance estimate, it is straightforward to obtain a Wald 95% confidence inter-

val as F̂imp(t) ± 1.96
√

ˆV ar(F̂imp(t)). However, this simple version of the Wald interval is not
guaranteed to have bounds within [0, 1]—a desirable property for the confidence interval of a prob-
ability. To correct this, we can use the standard complementary log-log transformation with the
Delta Method:

√
n[log(− log F̂ (t)(m))− log(− logF (t)(m))]

d→N

(
0,

1− F (t)(m)

F (t)(m) log(F (t)(m))2

)
(4.6)

Then we can again apply Equation 4.5, now with W = 1
M

∑M
m=1

ˆV ar(log(− log F̂ (t)(m)))

and B = 1
M−1

∑M
m=1(log(− log F̂ (t)(m)) − C)2, with C = 1

M

∑M
m=1 log(− log F̂ (t)(m)) and

ˆV ar(log(− log F̂ (t)(m))) = 1−F̂ (t)(m)

nF̂ (t)(m) log(F̂ (t)(m))2
. A 95% confidence interval for F̂imp(t) is

F̂imp(t)
exp(±1.96

√
ˆV ar(log(− log F̂imp(t)))).

This approach yields a Wald confidence interval for the cumulative incidence at each timepoint
guaranteed to fall within [0, 1]. However, the use of the Wald interval may still cause concern, as
the Wald interval’s anticonservativeness and collapsed uncertainty at p̂ = 0, 1 are well known in
the setting of confidence intervals for the binomial proportion [3]. We can take advantage of the
rich literature on interval estimation for binomial proportions to propose two alternative uncertainty
intervals for the imputation cumulative incidence estimator: a Wilson score interval and a Bayesian
beta-binomial interval. As with intervals for binomial proportions, these two intervals may offer
improved uncertainty estimates in small samples and when F̂imp(t) = 0.
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4.3.3.3 Wilson Interval

The interval of Wilson (1927) inverts a 95% score test for the proportion to obtain the confidence
interval bounds [81]:

p̂+
z2
α/2

2n
± zα/2

√
[p̂(1− p̂) + z2α/2/4n]/n

1 + z2α/2/n
(4.7)

This can be thought of as a shrinkage estimator that shrinks the estimate of p̂ closer to 1
2

[3].
Because it inverts the score test, the interval is naturally bounded in [0, 1] and it has nonzero
uncertainty at p̂ = 0, 1.

One challenge of using the Wilson interval in our setting, though, is that it does not provide
an estimate of the variance, just a confidence interval. Rubin’s Rules do not tell us how to pool
confidence intervals across imputations. Fortunately, Lott and Reiter (2020) developed the theory
needed to pool a Wilson interval across multiple imputations [52]. We implement their multiple
imputation Wilson interval to provide uncertainty intervals for the cumulative incidence at each
timepoint. Readers are referred to Lott and Reiter (2020) for full details [52].

4.3.3.4 Bayesian Interval

In addition to the Wilson interval, we also consider a Bayesian beta-binomial interval for the cu-
mulative incidence. In a Bayesian beta-binomial interval for the proportion, we assume a prior
p ∼ Beta(a, b), where a, b are hyperparameters. This yields a posterior distribution for p of
p|y ∼ Beta(a+ x, b+ n− x), where x denotes the number of successes out of n trials. In our set-
ting, we assume that F (tj)

(m) ∼ Beta(a, b) and thus F (tj)
(m)|(X, δ) ∼ Beta(a+ dj + d

∗(m)
j , b+

n − dj − d
∗(m)
j ). Because the Beta distribution is only defined on [0, 1], this interval will also

naturally be bounded by [0, 1] and will provide nonzero uncertainty when
dj+d

∗(m)
j

n
= 0, driven by

the prior and the sample size.

To pool this interval across imputations, we follow recommendations for Bayesian inference
after multiple imputation given by Zhou and Reiter (2010) [84]. On each imputation m and at each
timepoint tj , we draw S posterior samples from F (tj)

(m)|(X, δ). We then aggregate the posterior
samples across all imputations to yield a full “posterior” sample of size M×S at each timepoint tj .
We can then obtain quantities of interest from this sample, such as the 2.5th and 97.5th percentiles,
to construct a 95% credible interval of F̂imp(t).

One important consideration is the values of the hyperparameters a, b. Setting a = b = 1
2
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is the most common choice, as this is the Jeffreys prior for the beta-binomial model. However,
a = b = 1

2
is a somewhat odd choice in the setting of cumulative incidence, as it places the

bulk of its mass at F (t) = 0, 1, with less mass given to intermediate values, particularly those in
[0.25, 0.75]. When competing risks are present, though, we would rarely expect F (t) = 1 even
at the latest timepoints, and thus it seems nonsensical to place so much mass at 1. Instead, we
recommend the use of a = 0.8, b = 1.2 (Figure 4.3).
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Figure 4.3: Two priors for the beta-binomial interval for the cumulative incidence imputation
estimator.

Although still similar to a = b = 0.5, particularly with the large amount of mass placed at F (t) =

0, this modified prior puts more mass at values of F (t) < 0.75. However, if there is reason
to believe that the cumulative incidence of the event of interest will be greater than 0.75 during
study follow-up, it may be preferred to use the Jeffreys prior of a = b = 0.5, or some other
modification that is suited to the applied setting. If further modification is pursued, we would
recommend leaving a < 1, as the infinite a priori spike at F (t) = 0 seems important for inferential
performance. More information on hyperparameter choice is given in Appendix N.
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Table 4.1: Simulation parameter combinations. κ1, κ2 are the shape parameters of the Weibull haz-
ards of the event of interest and competing event, respectively; u is the upper-bound of a uniformly-
distributed censoring time; and the far-right column gives the timepoints at which performance is
evaluated.

Scenario κ1 κ2 Censoring Timepoints
A 0.5 0.5 Low: u = 10 (1, 2)
B 0.5 2 Low: u = 10 (1, 2)
C 2 0.5 Low: u = 10 (2, 4)
D 0.5 0.5 Moderate: u = 2 (0.1, 0.5)
E 0.5 2 Moderate: u = 2 (0.1, 0.5)
F 2 0.5 Moderate: u = 4.5 (0.5, 1)
G 0.5 0.5 High: u = 0.2 (0.01, 0.02)

4.3.4 Synopsis

To summarize, we present two options for performing the imputation (RSI and KMI) and three
options for obtaining uncertainty estimates (Wald interval, Wilson interval, or Bayesian interval).
As we have shown above in Result 1 (and will confirm via simulation below), the choice of impu-
tation approach has no effect on the point estimates. The variance estimators do produce different
results; we will make recommendations below. All of these approaches are implemented in the R
package mici, soon to be available on GitHub.

4.4 Simulation Study

We performed simulations to assess the performance of our imputation estimators. We modeled
our simulation design from that used by Braun and Yuan (2007) [10]. Times to the event of interest,
T , were simulated from a Weibull distributon with hazard λ1(t) = κ1ρ(ρt)

κ1−1. Two competing
events were simulated, one (V1) from an exponential distribution with mean 10 and the other (V2)
from a Weibull distribution with hazard λ2(t) = κ2ρ(ρt)

κ2−1. These two competing events were
subsequently aggregated. Censoring times C were simulated as uniform over the interval [0, u]. u
was chosen to result in either low censoring (20% censored), moderate censoring (50% censored),
or high censoring (75% censored). Our observed data were then X = min(T, V1, V2, C) with
δ = 1 if X = T , δ = 2 if X = V1 or X = V2, and δ = 0 if X = C.

In all cases, we set ρ = 0.2; we considered different combinations of values of κ1, κ2, u. The
full list of combinations is given in Table 4.1, with sample datasets shown in Figure 4.4. We
considered sample sizes of n = 25, 100, 500. In total, this yielded 7× 3 = 21 different simulation
scenarios. For each scenario we generated 1000 replicates.
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Figure 4.4: Sample datasets for the seven simulation scenarios, each generated for a sample size
of n = 100. The Aalen-Johansen cumulative incidence estimate is given as a black line, with
95% confidence interval as the gray shaded region; the true cumulative incidence is given in dark
red. Note that within each column, the only change is the rate of censoring—the true cumulative
incidence curves are identical in each column. Rows correspond to rate of censoring (top is low
censoring; middle is moderate censoring; bottom is high censoring). The timepoints at which
performance is evaluated are given as vertical dotted purple lines.

We considered four different methods for comparison:

1. Our risk set imputation estimator (RSI), as implemented in our R package mici. Note that
this approach offers three different uncertainty estimators: the Wald interval (RSI-Wald),
the Wilson interval (RSI-Wilson), and the Bayesian interval (RSI-Bayes). For the Bayesian
interval, we use our recommended prior of Beta(0.8, 1.2) on the cumulative incidence and
draw S = 1000 posterior samples on each imputation and timepoint.

2. Our Kaplan-Meier imputation estimator (KMI), as implemented in our R package mici.
Note that this approach offers three different uncertainty estimators: the Wald interval (KMI-
Wald), the Wilson interval (KMI-Wilson), and the Bayesian interval (KMI-Bayes). For the
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Bayesian interval, we use our recommended prior of Beta(0.8, 1.2) on the cumulative inci-
dence and draw S = 1000 posterior samples on each imputation and timepoint.

3. Ruan and Gray imputation (RGI), as implemented in our R package mici [67].

4. The Aalen-Johansen estimator (AalJo). Note that we consider two different uncertainty es-
timators for the Aalen-Johansen estimator: the asymptotic variance of Aalen and Johansen
as implemented in the R package cmprsk [24], which we abbreviate as AalJo-A, and the
Greenwood-type variance of Betensky and Schoenfeld (2001) [6] as implemented in the R
package etm [4], which we abbreviate as AalJo-G.

For the imputation estimators, we use M = 150 imputations in all cases. On each simu-
lated dataset, we fit all of the methods listed above and output point estimates and 95% confi-
dence/credible intervals (with complementary log-log transformations used when needed to obtain
appropriately bounded intervals). We assessed performance at two timepoints, selected to occur at
roughly the 25th and 75th percentiles for the observed times of the events of interest; these time-
points are given for each scenario in Table 4.1 and shown in Figure 4.4. At these two timepoints,
we considered the bias, efficiency, 95% interval coverage, and 95% interval width as performance
metrics. For these metrics, we use the underlying true cumulative incidence of the event of interest
as our “truth”, e.g., we calculate:

F1(t) = Pr(X ≤ t, δ = 1) =

∫ t

0

λ1(s) exp(−
∫ s

0

λ1(r) + λ2(r)dr)ds (4.8)

at the two timepoints of interest for each scenario. All simulations were performed in R [64]; code
to fully reproduce the simulations will be made available on GitHub.

4.4.1 Performance for Point Estimation

Results for point estimator performance at the n = 100 sample size are given in Figure 4.5. Results
for n = 25 and n = 500 are given in Appendix O, Figures O.1 and O.2.

As we would expect based on theory, all of the estimators produced near-identical point estimator
performance for estimating the cumulative incidence, across a range of censoring rates, event rates,
timepoints, and sample sizes. Bias and efficiency for estimating the true cumulative incidence were
equivalent across methods; both improved with increasing sample size and decreasing censoring
rates.
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Figure 4.5: Point estimator performance for imputation and Aalen-Johansen (AalJo) estimators in
seven simulation scenarios with a sample size of n = 100. The imputation estimators are Kaplan-
Meier imputation (KMI), risk set imputation (RSI), and Ruan-Gray imputation (RGI). The true
incidence is marked as a horizontal dashed line. A sample dataset for each scenario is given in
Figure 4.4.
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Table 4.2: Coverage rates for 95% uncertainty intervals from imputation and Aalen-Johansen es-
timators in Scenarios A and F. Scenario A has a low rate of censoring and similar incidence rates
for the event of interest and the competing event; Scenario F has a moderate rate of censoring and
the competing event is more common than the event of interest.

Method n = 25 n = 100 n = 500
Scenario A Time = 1 Time = 2 Time = 1 Time = 2 Time = 1 Time = 2

AalJo-A 0.94 0.95 0.96 0.96 0.95 0.95
AalJo-G 0.96 0.95 0.97 0.95 0.95 0.95

KMI-Wald 0.93 0.94 0.96 0.95 0.95 0.95
KMI-Bayes 0.95 0.95 0.97 0.95 0.95 0.96
KMI-Wilson 0.95 0.95 0.96 0.95 0.95 0.96

RSI-Wald 0.93 0.94 0.96 0.95 0.96 0.95
RSI-Bayes 0.95 0.95 0.96 0.95 0.95 0.96
RSI-Wilson 0.95 0.95 0.96 0.95 0.95 0.96

RGI 0.93 0.94 0.96 0.95 0.95 0.96
Scenario F Time = 0.5 Time = 1 Time = 0.5 Time = 1 Time = 0.5 Time = 1
AalJo-A 0.15 0.41 0.47 0.84 0.94 0.94
AalJo-G 0.15 0.38 0.47 0.84 0.94 0.95

KMI-Wald 0.15 0.41 0.47 0.84 0.94 0.94
KMI-Bayes 0.93 0.97 0.97 0.96 0.94 0.94
KMI-Wilson 0.90 0.95 0.97 0.95 0.96 0.94

RSI-Wald 0.15 0.41 0.47 0.84 0.94 0.94
RSI-Bayes 0.93 0.97 0.97 0.97 0.94 0.94
RSI-Wilson 0.90 0.95 0.97 0.95 0.96 0.95

RGI 0.15 0.41 0.47 0.84 0.94 0.94

4.4.2 Performance for Variance Estimation

Here, we focus on the results for Scenarios A and F; results for the other five scenarios were largely
similar and are not shown. Coverage rates are shown in Table 4.2; 95% uncertainty interval widths
are shown in Figure 4.6 for Scenario A and Figure 4.7 for Scenario F.

In Scenario A, in which the event rate was fairly high (about 40% at the end of follow-up) and
censoring was low, interval width was largely similar across methods. The KMI and RSI estimators
generally returned slightly narrower uncertainty intervals than the AalJo and RGI approaches.
Coverage was approximately 95% for all estimators and at all timepoints and sample sizes.

In Scenario F, in which the event rate was lower (about 15% at the end of follow-up) and cen-
soring was high, uncertainty estimation was much more challenging. Coverage rates were mostly
nominal at the largest sample size (n = 500). At smaller sample sizes and earlier timepoints, we
can see the benefits of the Bayesian and Wilson intervals’ ability to have nonzero uncertainty prior
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Figure 4.6: 95% uncertainty interval widths for imputation and Aalen-Johansen estimators in Sce-
nario A at three sample sizes: n = 25, 100, 500. Scenario A has a low rate of censoring and similar
incidence rates for the event of interest and the competing event.

to the first event time—their coverage rates at the 0.5 timepoint were consistently higher than 90%,
much better than the other methods, which were closer to 15% at n = 25 and 47% at n = 100,
in large part because of the high percentage of zero-width intervals returned by the AalJo, RGI,
and Wald intervals. This can also be seen in Figure 4.7. Overall, we would recommend the use of
either the Wilson or Bayesian intervals with either imputation approach.

4.4.3 Comment on Ruan and Gray Imputation

Our findings on the performance of Ruan and Gray’s imputation scheme for competing risks end-
points confirm the results presented in their original paper: that imputing a censoring time for
individuals who died of a competing event and then analyzing the imputed data as an all-cause
survival endpoint is equivalent to Aalen-Johansen estimation [67].

It is critical to note that the RGI approach only permits imputation of a censoring time for
individuals who died of a competing event, not a time for the event of interest. This connects
to work by Gooley et al. (1999), who presented a redistribute-to-the-right reformulation of the
Aalen-Johansen estimator [33]. In their redistribute-to-the-right formulation, they redistributed
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Figure 4.7: 95% uncertainty interval widths for imputation and Aalen-Johansen estimators in Sce-
nario F at three sample sizes: n = 25, 100, 500. Scenario F has a moderate rate of censoring and
the competing event is more common than the event of interest.

censored individuals to individuals who died of either the event of interest or a competing event,
as we do here via multiple imputation. But they also considered the effects of different kinds of
redistribution, such as redistributing individuals who died of a competing event. Gooley et al.
found that redistributing individuals who died of a competing event to both censored individuals
and individuals who died of the event of interest was equivalent to estimating the cumulative
incidence as one minus the Kaplan-Meier estimate of survival—a survival analysis mistake that
occurs frequently in the applied literature. As is well-documented, using one minus the Kaplan-
Meier estimator to estimate the cumulative incidence returns estimates that are too high, and the
sum of the cumulative incidences from each cause of death, when estimated using this approach,
will sum to more than 1.

However, Gooley et al. did not consider the correctness of redistributing individuals who died of
a competing event only to censored individuals—the approach taken by Ruan and Gray. Evidently,
based on the results here and in Ruan and Gray (2008), the problem with reallocating individuals
who died of a competing event is not reallocating at all, but rather reallocating to individuals who
died of an event of interest. Put differently, for the purposes of Aalen-Johansen estimation, individ-
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uals who died of a competing event can be viewed as censored individuals who will never have the
opportunity to have the event of interest—distinct from truly censored individuals who do retain
the opportunity to have the event of interest. Reallocating individuals who died of a competing
event to censored individuals is equivalent to reallocating censored individuals to individuals who
died of either event type—and both approaches are equivalent to Aalen-Johansen estimation.

4.4.4 Number of Imputations

A natural question for all of the imputation estimators is: how many imputations is enough? To
explore this question, we compared the results using M = 10, M = 50, and M = 150 imputa-
tions in Scenarios A and G above. Scenarios A and G have the same underlying true cumulative
incidence function, but Scenario G has a much higher rate of censoring than Scenario A. We refit
all of the imputation estimators with the different options for number of imputations. Interestingly,
for the purpose of estimating the true underlying cumulative incidence, the number of imputations
had little effect. Even with only M = 10 imputations the performance on bias, efficiency, interval
coverage, and interval width was the same as was reported above. This held true even in the pres-
ence of Scenario G’s high censoring and at all three sample sizes (n = 25, 100, 500). It was only
when the number of imputations dropped below M = 5 that performance on these metrics began
to suffer, and even then only slightly.

However, if the goal is to reproduce the results of the Aalen-Johansen cumulative incidence
estimator, then the number of imputations does matter. Figure 4.8 presents the difference between
the imputation estimators and the Aalen-Johansen estimator at varying numbers of imputations in
Scenario A. (Results for Scenario G are given in Appendix O, Figure O.3.) From this, we note that
a large number of imputations is necessary to reproduce the Aalen-Johansen cumulative incidence
point estimator—certainly more than M = 10, with M = 150 likely preferred. However, as
sample size increases, the number of imputations can be reduced, as the difference between the
imputation estimators and the Aalen-Johansen estimator decreases at larger sample sizes. One
additional factor in the decision of how many imputations to use is computational time; results on
this are also given in Appendix O.

4.5 Discussion

Here, we have reviewed existing approaches for using multiple imputation to estimate survival
and cumulative incidence probabilities, and we presented a novel approach for using multiple
imputation to estimate the cumulative incidence. We provided intuition for how the imputation ap-
proaches work, which offer their own insights, by extension, into how Aalen-Johansen estimation
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Figure 4.8: The difference between each imputation point estimator and the Aalen-Johansen point
estimator at varying sample sizes and number of imputations in Scenario A. Note that the n = 25
plots have had their y-axis truncated to improve readability—there were additional outliers that fell
outside of the range shown here.

works.

Our approach views cumulative incidence estimation as the problem of estimating a binomial
proportion in the presence of partially missing data—censoring. Using multiple imputation, we
account for censoring by imputing event times and types for censored individuals. As a result,
estimating the cumulative incidence at each time point is merely calculating the proportion of indi-
viduals who have had the event of interest by that time. This reformulation highlights connections
between existing variance estimation approaches for the cumulative incidence function—which
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rely on asymptotic approximations for either martingales or the multinomial distribution—and
similar asymptotic approximations for the variance of a binomial proportion, e.g. the Wald in-
terval. In the case of binomial proportions, the Wald interval has long been seen as undesirable
because the asymptotic approximation is poor in small samples [3]. Noting this connection en-
abled the development of two new variance estimators for the cumulative incidence function based
on the Wilson score interval and Bayesian beta-binomial interval. Both return substantially better
coverage rates in the presence of low event rates, as we would expect.

We provided mathematical and empirical evidence that the KMI, RSI, and RGI point estimators
will exactly reproduce the Aalen-Johansen point estimator as the number of imputations increases.
This may seem surprising: for the Aalen-Johansen estimator, redistributing individuals who died
of a competing risk among the censored is equivalent to redistributing censored individuals among
those who died of either event type. However, is it not clear that reproducing the Aalen-Johansen
estimator should be our benchmark: ultimately, the goal is to correctly estimate the underlying
true cumulative incidence function, which all of the imputation estimators did well, even with
small numbers of imputations.

Our new uncertainty interval estimators relied on existing theory about uncertainty intervals for
a binomial proportion and pooling uncertainty intervals across imputations. Of our two alternative
intervals (the Wilson interval or the Bayesian interval), we would likely recommend the Wilson
interval over the Bayesian interval when possible, as they perform equivalently and the Wilson
interval does not require specification of hyperparameters. We saw evidence of mild sensitivity of
the Bayesian interval to its hyperparameters. Future work may wish to explore this further. It may
also be helpful to consider the use of time-varying hyperparameters for the Bayesian interval, as we
would expect the event rate to increase over time and might like the prior to reflect that. In addition,
although we only implemented these alternative intervals for our own imputation approaches, it
may be possible to implement something similar for the RGI approach. The variance estimates for
RGI come from pooling the Greenwood variance estimator for the Kaplan-Meier survival function
across imputations. Use of a different variance estimator for the Kaplan-Meier estimator may yield
better results.

Although we regard this work as impactful and thought-provoking in its own right, we believe
that its true impact may be in the potential it offers for future work. Methodological offerings
for estimating proportions from binary data are much richer than existing options for estimating
cumulative incidence and hazard ratios for competing risks endpoints. We anticipate that our im-
putation approach in the competing risk setting can be extended to handle situations where there
are survey or propensity weights, clustering, or dependent censoring. Regression modeling of the
association between p predictors and the time to the event of interest is another interesting direc-
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tion. The RGI approach had the appealing feature that after imputation a standard Cox proportional
hazards model delivered results that would have been obtained from a Fine and Gray regression.
The KMI and RSI approaches create datasets without any censored observations, and we expect
that a broader set of regression modeling approaches could be implemented when there are no cen-
sored observations that need to be handled. Developing modeling extensions—and interpretations
for the resulting quantities—may be fruitful work. Thinking even further afield, we could also
imagine work that uses our multiple imputation approach to simplify analyses in the settings of
semi-competing risks, multi-state models, or the restricted mean survival time.
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CHAPTER 5

Closing Remarks and Directions for Future Research

In this dissertation, we have focused on two problems: modeling abruptly-changing
data—particularly basal body temperature data—using horseshoe process regression, and using
multiple imputation to estimate the cumulative incidence function. These two problems come from
very different domains of statistics, with horseshoe process regression falling squarely in the realm
of Bayesian modeling and statistical shrinkage, while our work on cumulative incidence lives in the
land of nonparametric survival analysis. Nonetheless, a pragmatic, quasi-Bayesian sensibility can
be seen in all projects, in our use of a discrete parameterization of the horseshoe process in Chapter
2 and variational inference in Chapter 3, and in our willingness to leverage multiple imputation and
shrinkage to estimate the cumulative incidence and its uncertainty in Chapter 4. No project takes
a purist approach, instead making allowances for the limitations of data, computational resources,
and mathematical tractability. The result is ground-laying work on which we would like to build
further in pursuit of more perfect solutions.

In Chapter 2, we presented a discrete formulation of horseshoe process regression (HPR) and
showed that it has good performance for modeling abruptly changing data like step functions,
piecewise linear functions, and impulse functions. We also considered how to obtain interpola-
tions and predictions in the presence of a discrete set of local shrinkage parameters, along with
partial linear modeling and modeling in the presence of monotonicity constraints. There are a va-
riety of directions in which this project could be taken. We envision HPR as the abruptly-changing
version of Gaussian process regression (GPR), and ideally it would be as easy to include a HPR
term in one’s larger model as it currently is to include a GPR smoothing term, if the applied setting
justifies it [82]. There are a number of obstacles in the way of this; most notably, HPR is not as
mathematically straightforward as GPR and does not have nice closed-form components. As a
result, it is unlikely that it can ever be implemented without MCMC or approximate estimation, as
we have done here. However, we still think further work to speed its computation (either through
variational inference or other scalable Bayesian approaches), assess its performance in additive
models with a wider range of nonlinear and linear terms, and examine its results in more diverse
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data would be worthwhile. This would also help to increase awareness of the methodology and its
potential (whatever that may be). Developing clever approaches for closed-form approximate krig-
ing or posterior prediction may be another fruitful avenue of work; we ultimately recommended
a fully Bayesian imputation scheme via MCMC in Chapter 2, but this is computationally burden-
some.

One option which may resolve many of these issues, and which we touched upon in Chapter 2, is
to pursue a more mathematically coherent formulation of HPR via subordinated Brownian motion
and Meixner processes, as was described by Polson and Scott (2010) [63]. It is possible that such
a model could yield analytical solutions or permit computational shortcuts; at minimum, it would
likely offer more sensible ways to carry out interpolation and data augmentation. We did not
pursue such an approach here because the mathematical development seemed formidable, to say
nothing of implementation. However, with more time, patience, and experience, this continuous
reformulation of HPR may be workable and could solve many of the problems described above
that are caused by the discrete formulation.

In Chapter 3, we re-implemented HPR using variational inference (VI), and adapted HPR to
detect ovulation based on women’s basal body temperature (BBT) across the menstrual cycle and
permit rudimentary information-sharing across cycles. Although these extensions were specifically
targeted to modeling BBT, they would generalize to similar settings without much difficulty. We
used this modified version of HPR, which we call HPR-BBT, to analyze data from a large cohort
of British women. In the methodological space, we have a number of unanswered questions about
the VI implementation of HPR. Although the approximate posterior we derived here performs well
in the specific setting of BBT data, more work is needed to ensure that this approximation behaves
in data other than BBT. It may be beneficial to consider more complex variational approximations
than what we used here [57]. We made the mean-field assumption that all parameters were ap-
proximately posterior independent except the horseshoe trajectory estimates themselves, which we
treated jointly. However, we saw some evidence of posterior correlation between the global shrink-
age parameter τ 2 and measurement error σ2, and it may be beneficial to model these parameters
jointly, as well. Because the model behaves fairly well in its current form, we did not attempt a
decentered parameterization of the model, although that may further improve performance [59]. In
addition, our current VI implementation does not accommodate the Bayesian imputation scheme
for data interpolation that we used in Chapter 2, and as a result, can only generate estimates at
observed datapoints. This is a shortcoming that we would like to correct in future work, along with
including the other features from Chapter 2 (additional linear predictors, monotonicity constraints)
in the VI implementation.

Our approach to changepoint detection made the unknown changepoint (in our case, day of ovu-
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lation) a parameter in the model and then placed a multinomial prior upon it. There are a number
of ways to build on this. First, in the presence of a truly continuous predictor (unlike the BBT data,
for which the predictor is discrete days) it would clearly be desirable to place a continuous prior
on the changepoint. Second, it may be beneficial to introduce additional layers of hierarchy into
the model. At present, we treat the scale parameters for the local shrinkage parameters as constant
hyperparameters, but we could instead place priors upon them, which may improve estimation.
We also treat the prior probabilities of the changepoint location (in our case, the prior probability
of ovulation occurring on a given day) as fixed hyperparameters; these, too, may benefit from hav-
ing their own prior. Third, our approach to information-sharing relies on a posterior-prior passing
scheme that is somewhat ad hoc. As we discussed in Chapter 3, a mixed effects approach may
yield better performance, especially if combined with careful computational implementation and a
clever approach to “batching in” new data as it arrives. Fourth, although we assessed HPR-BBT’s
performance for live updating as new BBT data comes in each day, we did not carry out this up-
dating in a particularly rigorous fashion, nor did we enable true posterior prediction. Further work
on these topics would be beneficial, and is closely connected to methodology for prediction in
the presence of discrete local shrinkage parameters, which we recommended as future work from
Chapter 2.

With the BBT data specifically, there are many directions for future research. We think HPR
shows great promise for quantifying different types of BBT patterns and identifying abnormal
menstrual cycles. This may give insight into hormonal patterns surrounding ovulation and their
implications for fertility. As we discussed in Chapter 3, including other menstrual cycle biomark-
ers is critical if the goal is to predict ovulation and would likely help with detecting ovulation.
Such biomarkers might include age, cervical mucus, and information on illness, drinking, calendar
season, and stress. However, we would need different data to make this possible, as our current
cohort does not have these predictors [55, 76].

In Chapter 4, we proposed a nonparametric multiple imputation approach for estimating the
cumulative incidence and demonstrated that it offered comparable performance to the traditional
Aalen-Johansen approach. We also showed how it enabled two new variance estimators, which
offer improved coverage rates when the event rate and/or sample size is low. However, we think
the true impact of this work may be in its extensions. One immediate idea is to use this multiple
imputation approach to estimate the cumulative incidence in the presence of dependent censor-
ing. If we have reason to believe that censoring may depend on covariates which we have in our
data, then for each censored individual we could calculate a similarity index between the censored
individual and all of the uncensored individuals whose follow-up exceeded theirs, conditional on
these covariates. After defining these similarity indices for all of the censored individuals, we
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could carry out the nonparametric multiple imputation approach from Chapter 4, weighted by the
similarity indices of each censored individual. In preliminary simulations, this similarity-weighted
imputation approach corrects the dependent censoring and allows us to recover the true cumulative
incidence—something the Aalen-Johansen estimator cannot do. There are existing methods for es-
timating the cumulative incidence in the presence of dependent censoring [7, 51], but the method
we propose here is more straightforward than these others and flexible to further adaptation.

Another extension would be allowing propensity weights and/or clustering in the estimation of
the cumulative incidence, which would likely be doable within our multiple imputation approach.
We hypothesize that we would need to incorporate the propensity weights and/or clustering struc-
ture in both the imputation and analysis phases. This is different from the dependent censoring
weights described above, which are only included in the imputation phase. We would carry out the
imputation with the weights and/or clustering, and then analyze each imputed dataset using exist-
ing theory on estimating a weighted and/or clustered binomial proportion. The details of variance
estimation in this setting may require careful attention.

We are particularly excited about using our multiple imputation approach within the context of
regression modeling. In the all-cause survival setting [74] or when Ruan and Gray’s alternative im-
putation approach for competing risks data [67] is used, there are natural extensions to regression
modeling. In the all-cause survival setting, the imputed datasets can be analyzed using log-linear
regression and will return estimates comparable to the Cox proportional hazards model [16, 74]; in
the Ruan and Gray (2008) setting, the imputed datasets can be analyzed using the Cox proportional
hazards model and will return estimates comparable to those of a Fine and Gray regression [24, 67].
With our multiple imputation approach, extensions to regression modeling are less obvious. It is
not clear how we would analyze each imputed dataset to identify relationships between predictors
and the time to the event of interest, and if the resulting quantities would have a meaningful in-
terpretation. We would be interested to find out. Other uses of the multiple imputation approach
might include using it to analyzing the restricted mean survival time, in the semi-competing risks
setting, or for multi-state modeling.

Finally, our multiple imputation approach sits at the border between nonparametric and
Bayesian methods for survival analysis. It might be interesting to take a more fully Bayesian ap-
proach to the imputation. This would require careful thought about prior specifications and model
implementation. Bringing the skills honed in Chapters 2 and 3 to bear on the questions created by
Chapter 4 may lead to useful work in Bayesian survival analysis. Happily, it also offers a narrow
path to connect the far-flung topics of this dissertation.
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APPENDIX A

Additional Simulations on HPR’s Performance for
Binary and Count Data

Here we explore the performance of horseshoe process regression (HPR) for binary and count
outcomes via simulation. We considered four true underlying associations, each of which were
observed at an equally spaced grid of n = 100 observations for count data and n = 150 observations
for binary data:

1. bigstep: f(x) = 0 ∗ I(x ≤ 2) + 6 ∗ I(2 < x ≤ 5) + 1 ∗ I(5 < x ≤ 6) + 3 ∗ I(6 < x ≤
8) + 10 ∗ I(x > 8) (divided by 10 for binary data).

2. bounce: f(x) = |sin(x)| (multiplied by 10 for count data).

3. impulse: f(x) = 0∗I(x = 0)+exp(−x)∗I(0 < x < 3)+1∗I(x = 3)+exp(−(x−3))∗I(3 <

x < 7) + exp(−(x− 7)) ∗ I(x = 7) (multiplied by 5 for count data).

4. joinpoint: f(x) = (1.5x) ∗ I(x < 2) + (16 − 5x) ∗ I(2 ≤ x < 3) + 1 ∗ I(3 ≤ x <

6) + (10− x) ∗ I(6 ≤ x < 9) + (5x− 44) ∗ (x ≥ 9) (divided by 6 for binary data).

I() denotes the indicator function; i.e. I(x) = 1 if condition x is true, and I(x) = 0 otherwise. We
compared HPR to Gaussian process regression (GPR) and adaptive splines (Adspline). Unlike in
Chapter 2, we did not consider the median filter (MedFilt) or trend filter (TrendFilt) because these
methods are not implemented for noncontinuous outcomes.

We assessed performance with three primary metrics:

1. Mean absolute difference (MAD): 1
n

∑n
i=1 |g−1(f(xi)) − g−1(f̂(xi))|, where g−1(f̂(xi)) is

the predicted function’s value at xi on the mean scale and g−1(f(xi)) is the true function’s value at
xi on the mean scale.

2. Credible/confidence interval width (Width): 1
n

∑n
i=1 g

−1(f̂(xi)
0.975)−g−1(f̂(xi)

0.025), where
f̂(xi)

0.975 denotes the upper bound of a 95% credible/confidence interval for f̂(xi) and f̂(xi)
0.025 is
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the lower bound. Both bounds are transformed back to the mean scale using g−1 to assess credible
interval width.

3. Credible/confidence interval coverage (Coverage): 1
n

∑n
i=1 I(g

−1(f̂(xi)
0.025) ≤

g−1(f(xi)) ≤ g−1(f̂(xi)
0.975)).

We assessed performance on each metric across the 100 replicates of each of our 3 data-
generating scenarios for each method. All code used to completely reproduce the simulations
can be found on GitHub.
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Figure A.1: Point estimates and 95% credible/confidence intervals for horseshoe process regres-
sion (HPR), adaptive splines (Adspline), and Gaussian process regression (GPR) for count data.
Each sample dataset has n = 100.
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Figure A.2: Horseshoe process regression (HPR) simulation results for count data, based on 100
replicates on four data-generating scenarios, each with n = 100. Comparison methods were adap-
tive splines (Adspline) and Gaussian process regression (GPR). The top row gives performance
for mean absolute difference (smaller is better); the second row gives performance for credi-
ble/confidence interval width; the third row gives performance for credible/confidence interval
coverage (0.95 is nominal and given as a red line). Each column is for one data-generating sce-
nario; sample datasets are given in Figure A.1.
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Figure A.3: Point estimates and 95% credible/confidence intervals for horseshoe process regres-
sion (HPR), adaptive splines (Adspline), and Gaussian process regression (GPR) for binary out-
comes. Each sample dataset has n = 150.
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Figure A.4: Horseshoe process regression (HPR) simulation results for binary outcomes, based
on 100 replicates on four data-generating scenarios, each with n = 150. Comparison methods
were Gaussian process regression (GPR) and adaptive splines (Adspline). The top row gives per-
formance for mean absolute difference (smaller is better); the second row gives performance for
credible/confidence interval width; the third row gives performance for credible/confidence inter-
val coverage (0.95 is nominal and given as a red line). Each column is for one data-generating
scenario; sample datasets are given in Figure A.3.
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Several findings are worthy of further note. First, Adspline had a great deal of trouble for count
outcomes in the bigstep scenario, with extremely large credible intervals and highly erratic fits
(Figures A.1 and A.2). It does not seem suited to this setting. GPR and HPR returned more sensible
fits, with HPR excelling in the bigstep scenario. However, all methods struggled to maintain
nominal credible interval coverage in the bigstep scenario; HPR was closest to nominal of the
comparison methods (Figures A.2 and A.4). For binary outcomes, there was evidence that HPR
was overshrinking, particularly in the impulse and joinpoint scenarios (Figure A.3). This might be
improved with a higher value of c, the scale on the prior of τ .
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APPENDIX B

Additional Simulations on HPR’s Pointwise
Performance

In addition to the aggregate outcomes presented in Section 2.4.1 and in Appendix A, we also
considered pointwise performance (not summed across all observed datapoints):

1. Pointwise bias: f(xi)− f̂(xi).

2. Pointwise credible/confidence interval width: f̂(xi)
0.975 − f̂(xi)

0.025.

3. Pointwise credible/confidence interval coverage: I(f̂(xi)
0.025 ≤ f(xi) ≤ f̂(xi)

0.975).

Results are given in Figures B.1-B.3. Pointwise performance was generally similar to aggregate
performance. All methods showed the worst performance at the location of the abrupt jumps,
with increased mean absolute difference and decreased coverage. Although HPR also showed this
worsened performance, it did better at capturing the jumps than the other comparison methods. In
the case of binary outcomes, HPR was likely to return flat-line fits, again suggesting that a larger
value of c, the prior scale on τ , may be advisable for binary outcomes (Figure B.3).
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Figure B.1: Pointwise simulation results for continuous outcomes, based on 100 replicates on
four data-generating scenarios, each with n = 100. Comparison methods were adaptive splines
(Adspline), Gaussian process regression (GPR), median filter (MedFilt), and the penalized trend
filter (TrendFilt). The top row gives a sample dataset and the true trajectory. The second row gives
performance for mean bias, averaged over the 100 replicates at each point (smaller is better); the
third row gives credible interval width, averaged over the 100 replicates at each point; the fourth
row gives performance for credible interval coverage at each point (0.95 is nominal and given as a
red line). Each column is for one data-generating scenario.
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Figure B.2: Pointwise simulation results for count data, based on 100 replicates on four data-
generating scenarios, each with n = 100. Comparison methods were adaptive splines (Adspline)
and Gaussian process regression (GPR). The top row gives a sample dataset and the true trajectory.
The second row gives performance for mean bias, averaged over the 100 replicates at each point
(smaller is better); the third row gives credible interval width, averaged over the 100 replicates at
each point; the fourth row gives performance for credible interval coverage at each point (0.95 is
nominal and given as a red line). Each column is for one data-generating scenario.
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Figure B.3: Pointwise simulation results for binary outcomes, based on 100 replicates on four data-
generating scenarios, each with n = 150. Comparison methods were adaptive splines (Adspline)
and Gaussian process regression (GPR). The top row gives a sample dataset and the true trajectory.
The second row gives performance for mean bias, averaged over the 100 replicates at each point
(smaller is better); the third row gives credible interval width, averaged over the 100 replicates at
each point; the fourth row gives performance for credible interval coverage at each point (0.95 is
nominal and given as a red line). Each column is for one data-generating scenario.
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APPENDIX C

Different Types of Monotonic-Constrained HPR

We proposed using the absolute value function to constrain the association between x and y to be
monotonic. To do so, we modify our horseshoe process regression (HPR) to be:

g(E(yi)) = fj = α +

j∑
k=1

|hk| (C.1)

Although we chose to use the absolute value, note that many other functions could be used to
impose a monotonicity constraint—any function that transforms from the reals to the positive reals
would be able to achieve this goal. We also considered using the exp function in lieu of the
absolute value function. We present simulation results here to justify the choice of absolute value
function.

We generated 100 evenly spaced predictors values between 0 and 10. Then, we considered two
monotonic data-generating scenarios:

1. bigstep: f(x) = 0 ∗ I(x ≤ 2) + 6 ∗ I(2 < x ≤ 5) + 10 ∗ I(5 < x ≤ 6) + 12 ∗ I(6 < x ≤
8) + 20 ∗ I(x > 8).

2. smooth: f(x) = log( x/11+0.01
1−(x/11+0.01)

).

We simulated Gaussian noise around each true curve with standard deviation of 1 for the big-
step scenario and standard deviation of 0.5 for the smooth scenario. Then, we compared the un-
constrained HPR to a HPR constrained using the absolute value function (HPR abs) and a HPR
constrained using exponentiation (HPR exp). We considered both estimation performance and
computational metrics.
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Figure C.1: Point estimates and 95% credible/confidence intervals for a HPR with no constraint
(HPR), a constrained HPR via absolute value (HPR abs), and a constrained HPR via exponentia-
tion (HPR exp) for continuous outcomes. Each sample dataset has n = 100.
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Figure C.2: Simulation results for a horseshoe process regression (HPR) constrained to be mono-
tonic increasing, based on 100 replicates on two data-generating scenarios, each with n = 100.
Comparison methods were a HPR with no constraint (HPR), a constrained HPR via absolute value
(HPR abs), and a constrained HPR via exponentiation (HPR exp). The top row gives performance
for mean absolute difference (smaller is better); the second row gives performance for credible
interval width; the third row gives performance for credible interval coverage (0.95 is nominal and
given as a red line). Each column is for one data-generating scenario; sample datasets can be seen
in Figure C.1.
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Figure C.3: Computational performance of a horseshoe process regression (HPR) constrained to
be monotonic increasing using either no constraint (HPR), absolute value (HPR abs), or exponen-
tiation (HPR exp) based on 100 replicates in two data-generating scenarios for Gaussian outcomes.
Smaller is better for all metrics except Min. Bulk. Eff. Samples and Min. Tail. Eff. Samples (the
minimum effective sample size in the bulk and tails of the posterior, respectively). Each column is
for one data-generating scenario.

92



Results are given in Figures C.1, C.2, and C.3. From these, we see that estimation performance of
the absolute-value constrained HPR was superior in terms of mean absolute difference and credible
interval width, although coverage was slightly lower than nominal for the bigstep scenario. How-
ever, the computational performance is the real justification for using the absolute value transfor-
mation—the exponentiation constraint returned a substantially higher proportion of divergences,
max tree-depth warnings, and other nonconvergence signals—in addition to being substantially
slower.
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APPENDIX D

Additional Simulations on HPR Data Augmentation
for Binary and Count Outcomes

Here, we explored the performance of our data augmentation scheme for binary and count out-
comes. We only considered scenarios bigstep and bounce (described in Appendix A). We ran-
domly sampled 100 unevenly spaced datapoints between 0 and 10 to be our observed x locations
(150 datapoints for binary data). Then, we fit the HPR either 1) only using the observed datapoints,
2) augmented by a grid of datapoints at every 0.5 (roughly 20 augmented datapoints), and 3) aug-
mented by a grid of datapoints at every 0.1 (roughly 100 augmented datapoints). We calculated the
performance metrics described above separately for the observed datapoints and the augmented
datapoints, to see if predictions at the observed datapoints changed depending on the number of
gridpoints, and if predictions at the augmented datapoints were fairly accurate.
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Figure D.1: Horseshoe process regression (HPR) data augmentation simulation results for count
outcomes, based on 100 replicates on two data-generating scenarios. We compared a HPR calcu-
lated only at n = 100 observed points to a HPR with augmentation points at a grid of every 0.5
and a HPR with augmentation points at a grid of every 0.1 (from 0 to 10). The top row gives
performance for mean absolute difference calculated at both the observed and augmented points
(smaller is better); the second row gives performance for credible interval width calculated at both
the observed and augmented points; the third row gives credible interval coverage calculated at
both the observed and augmented points (0.95 is nominal and marked as a red line). Performance
at observed points and augmented points are displayed separately. Each column is for one data-
generating scenario.

95



bigstep bounce

Obs. Obs. + Aug 0.5 Obs. + Aug 0.1 Obs. Obs. + Aug 0.5 Obs. + Aug 0.1

0.10

0.14

0.18

0.04

0.08

0.12

M
e

a
n

 A
b

s
o

lu
te

 D
if
fe

re
n

c
e

Obs. Obs. + Aug 0.5 Obs. + Aug 0.1 Obs. Obs. + Aug 0.5 Obs. + Aug 0.1

0.45

0.50

0.55

0.60

0.65

0.30

0.35

0.40

0.45

C
re

d
ib

le
 I

n
te

rv
a

l 
W

id
th

Obs. Obs. + Aug 0.5 Obs. + Aug 0.1 Obs. Obs. + Aug 0.5 Obs. + Aug 0.1

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

C
re

d
ib

le
 I

n
te

rv
a

l 
C

o
ve

ra
g

e

Augmented Points Observed Points

Figure D.2: Horseshoe process regression (HPR) data augmentation simulation results for binary
outcomes, based on 100 replicates on two data-generating scenarios. We compared a HPR calcu-
lated only at n = 150 observed points to a HPR with augmentation points at a grid of every 0.5
and a HPR with augmentation points at a grid of every 0.1 (from 0 to 10). The top row gives
performance for mean absolute difference calculated at both the observed and augmented points
(smaller is better); the second row gives performance for credible interval width calculated at both
the observed and augmented points; the third row gives credible interval coverage calculated at
both the observed and augmented points (0.95 is nominal and marked as a red line). Performance
at observed points and augmented points are displayed separately. Each column is for one data-
generating scenario.
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Results of the augmentation scheme for binary and count outcomes largely resembled the perfor-
mance for continuous outcomes presented in Section 2.4.2. Performance at observed datapoints did
not change with varying numbers of augmentation datapoints. However, aggregate performance
at augmentation datapoints improved with increased grid density, with reduced mean absolute
difference and narrower credible intervals. This “improved performance” is somewhat mislead-
ing, because in the data generating schemes considered here—which do not feature an extremely
large number of abrupt changes—the augmentation scheme will do better with more augmentation
points as a matter of probability. With more augmentation points, the probability that an augmen-
tation point is placed at the location of an abrupt jump is reduced, artificially boosting aggregate
performance. In general, the model fit estimated at an augmentation point was an interpolation
of the two nearest observed datapoints, with credible intervals that reflected the increased uncer-
tainty.
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APPENDIX E

Simulation Results for HPR Partial Linear Model

We assessed the performance of our horseshoe process regression (HPR) partial linear model. We
simulated five covariates. The first three of these covariates were simulated from a multivariate
normal distribution with mean vector (67, 0, 130) and standard deviation vector (7, 1, 20) with
correlation of 0.35:

 X1

X∗
2

X3

 ∼MVN

( 67

0

130

 ,

 72 7 ∗ 1 ∗ 0.35 7 ∗ 20 ∗ 0.35
7 ∗ 1 ∗ 0.35 12 1 ∗ 20 ∗ 0.35
7 ∗ 20 ∗ 0.35 1 ∗ 20 ∗ 0.35 202

)

The second of these covariates was made into a binary variable by splitting it at 24: X2 = I(X∗
2 >

24).

The remaining 2 covariates were simulated independently from a multivariate normal distribu-
tion with mean vector (80, 45), standard deviation vector (20, 12), and correlation of 0.2:

(
X4

X5

)
∼MVN

((
80

45

)
,

(
202 20 ∗ 12 ∗ 0.2

20 ∗ 12 ∗ 0.2 122

))

For continuous outcomes, the first 4 of these covariates were assumed to have a linear relation-
ship with the outcome y, with coefficient vector (β1, β2, β3, β4) = (0, 5, 0.05, 0.1). We considered
two different functional forms for the fifth covariate:

1. bigstep: f(x5) = 0 ∗ I(x5 < 35)+ 5 ∗ I(35 ≤ x5 < 55)+ 6 ∗ I(55 ≤ x5 < 65)+ 8 ∗ I(65 ≤
x5 < 80) + 10 ∗ I(x5 ≥ 80)

2. smooth: f(x5) =
x2
5

100

Thus E(y) = 0 ∗X1 + 5 ∗X2 + 0.05 ∗X3 + 0.1 ∗X4 + f(X5). We then generated observations
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for 100 subjects, and simulated Gaussian error with σ = 0.5.

For count data, the first 4 of these covariates were assumed to have a linear relationship with the
outcome log(E(y)), with coefficient vector (β1, β2, β3, β4) = (0, 0.08, 0.01, 0.01). We considered
two different functional forms for the fifth covariate:

1. bigstep: f(x5) = 0∗I(x5 < 35)+0.5∗I(35 ≤ x5 < 55)+0.8∗I(55 ≤ x5 < 65)+1∗I(65 ≤
x5 < 80) + 1.3 ∗ I(x5 ≥ 80)

2. smooth: f(x5) = |sin(x5)|

Thus log(E(y)) = 0 ∗ X1 + 0.08 ∗ X2 + 0.01 ∗ X3 + 0.01 ∗ X4 + f(X5). We simulated 100
datapoints as described above, calculated log(E(y)), transformed to the E(y) scale, and randomly
sampled 100 observed outcomes from a Poisson distribution.

For binary data, we used coefficient vector (β1, β2, β3, β4) = (0,−0.5,−0.05, 0.1) for the linear
relationship with outcome log(E(y)/(1 − E(y))). We considered two different functional forms
for the fifth covariate:

1. bigstep: f(x5) = −5∗I(x5 < 35)+0∗I(35 ≤ x5 < 55)+1∗I(55 ≤ x5 < 65)+5∗I(65 ≤
x5 < 80) + 10 ∗ I(x5 ≥ 80)

2. smooth: f(x5) = sin(x5)

Thus log(E(y)/(1−E(y))) = 0∗X1−0.5∗X2−0.05∗X3+0.1∗X4+f(X5). We simulated 150
datapoints as described above, calculated log(E(y)/(1 − E(y))), transformed to the E(y) scale,
and randomly sampled 150 observed outcomes from a Bernoulli distribution.

We compared HPR to Gaussian process regression (GPR) and an adaptive spline model
(Adspline). We did not consider the median filter (MedFilt) or trend filter (TrendFilt) because
these methods are not implemented for additional linear covariates. We assessed performance
using the mean absolute difference between true E(y) and estimated Ê(y), averaged over all data-
points, and width and coverage of the 95% credible intervals of E(y) averaged over all datapoints.
We also considered bias and coverage for the coefficients for the linear predictors.
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Figure E.1: Performance of a horseshoe process regression (HPR) partial linear model for esti-
mating continuous outcomes, based on 100 replicates on two data-generating scenarios with n =
100. Comparison methods were Gaussian process regression (GPR) and adaptive splines (Ad-
spline). The top row gives performance for mean absolute difference between the true outcome
E(y) and estimated outcome Ê(y) (smaller is better); the second row gives 95% credible interval
width around Ê(y); the third row gives performance for credible interval coverage of E(y) (0.95
is nominal and marked as a red line). Each column is for one data-generating scenario.
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Figure E.2: Performance of a horseshoe process regression (HPR) Gaussian partial linear model
for fitting four linear predictors, based on 100 replicates of two data-generating scenarios for the
nonlinear predictor with n = 100. Comparison methods were Gaussian process regression (GPR)
and adaptive splines (Adspline). The first four rows give the estimates of each of the coefficients,
with the correct value given as a red line; the fifth row gives performance for credible interval
coverage for all four coefficients (0.95 is nominal and marked as a red line). Each column is for
one data-generating scenario.
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Figure E.3: Performance of a horseshoe process regression (HPR) partial linear model for esti-
mating count outcomes, based on 100 replicates on two data-generating scenarios with n = 100.
Comparison methods were Gaussian process regression (GPR) and adaptive splines (Adspline).
The top row gives performance for mean absolute difference between the true outcome E(yi) and
estimated outcome Ê(yi) (smaller is better) averaged over 100 datapoints; the second row gives
performance for credible interval width averaged over 100 datapoints; the third row gives coverage
of E(yi), averaged over 100 datapoints (0.95 is nominal and marked as a red line). Each column is
for one data-generating scenario. Note that the y-axis for credible interval width is truncated due
to one extremely wide credible interval for HPR in the bigstep scenario.
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Figure E.4: Performance of a horseshoe process regression (HPR) Poisson partial linear model
for fitting four linear predictors, based on 100 replicates on two data-generating scenarios for the
nonlinear predictor with n = 100. Comparison methods were Gaussian process regression (GPR)
and adaptive splines (Adspline). The first four rows give the estimates of each of the exponentiated
coefficients, with the correct value given as a red line; the fifth row gives performance for credible
interval coverage for all four exponentiated linear predictors (0.95 is nominal and marked as a red
line). Each column is for one data-generating scenario.
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Figure E.5: Performance of a horseshoe process regression (HPR) partial linear model for esti-
mating binary outcomes, based on 100 replicates on two data-generating scenarios with n = 150.
Comparison methods were Gaussian process regression (GPR) and adaptive splines (Adspline).
The top row gives performance for mean absolute difference between the true outcome E(yi) and
estimated outcome Ê(yi) (smaller is better) averaged over 150 datapoints; the second row gives
performance for credible interval width averaged over the 150 datapoints; the third row gives cov-
erage of E(yi), averaged over the 150 datapoints (0.95 is nominal and marked as a red line). Each
column is for one data-generating scenario.
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Figure E.6: Performance of a horseshoe process regression (HPR) Bernoulli partial linear model
for fitting four linear predictors, based on 100 replicates on two data-generating scenarios for the
nonlinear predictor with n = 150. Comparison methods were Gaussian process regression (GPR)
and adaptive splines (Adspline). The first four rows give the estimates of each of the exponentiated
coefficients, with the correct value given as a red line; the fifth row gives performance for credible
interval coverage for all four exponentiated linear predictors (0.95 is nominal and marked as a red
line). Each column is for one data-generating scenario.
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Performance of the partial linear model was generally good. HPR offered substantially reduced
mean absolute difference and credible interval width for the latent mean Ê(yi) when f(X5) was a
step function. When f(X5) was a smooth function, its performance was worse than the comparison
methods for continuous outcomes (Figure E.1), although credible interval coverage was still very
good. For binary and count outcomes, HPR consistently surpassed the comparison methods, even
when f(X5) was a smooth function (Figures E.3 and E.5). The GPR particularly struggled for
count outcomes. Regardless of the form of f(X5), performance for estimating the linear effects
(β1, β2, β3, β4) was good (Figures E.2, E.4, E.6).
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APPENDIX F

HPR Computational Assessment

When conducting Bayesian modeling, it is important to assess model convergence and computa-
tional performance. We considered 6 computational metrics:

1. Proportion of MCMC samples that ended in a Hamiltonian Monte Carlo (HMC) divergence:
This diagnostic is unique to Bayesian models fit using HMC. A divergence suggests that posterior
sampling for that MCMC sample went “off the rails” and may be unreliable. In general, even
a single divergence is cause for concern; however, as we discuss, in the case of HPR we think
that small numbers of divergences (<5%) may be unavoidable and do not negatively affect model
performance. We would like this metric to be close to 0.

2. Proportion of MCMC samples that ended in a max treedepth warning: This diagnostic is
also unique to Stan models and indicates whether the No-U-Turn-Sampler (NUTS) was frequently
taking the maximum number of steps in Hamiltonian space without hitting a U-turn, suggesting
that the step size was too small. In some cases this is indicative of model nonconvergence/poor
posterior exploration. It often corresponds to slower computational times. We would like this
metric to be close to 0.

3. Proportion of parameters with R̂ > 1.1: This diagnostic compares between- and within-chain
estimates of each parameter of the model (all HPR models are fit with 4 chains). Larger values of
R̂ suggest that the chains have not mixed well and that posterior estimates may be unstable. Ideally
R̂ < 1.05 or R̂ < 1.1; we used 1.1 here, and considered what proportion of the model’s parameters
have R̂ > 1.1. We used the R̂ proposed by Vehtari et al. (2021) [77]. We would like this metric to
be close to 0.

4. Minimum bulk effective sample size: This diagnostic uses rank-normalized draws to estimate
the effective sample size in the bulk of the posterior, as described in Vehtari et al. (2021) [77]. It
is calculated for each parameter; here, we present the minimum sample size across all parameters.
We would like this metric to be large, and ideally larger than 400.
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5. Minimum tail effective sample size: This diagnostic uses rank-normalized draws to estimate
the effective sample size in the tails of the posterior, as described in Vehtari et al. (2021) [77]. It
is calculated for each parameter; here, we present the minimum sample size across all parameters.
We would like this metric to be large, and ideally larger than 400.

6. Computational time: This metric tells how long it took the model to fit, in seconds. We
would like this metric to be small.

For more information on these diagnostics, please see the Stan reference manual [72].

Computational results for the basic HPR simulations are given in Figure F.1. Results for the data
interpolation simulations are given in Figure F.2. Results for the partial linear model simulations
are given in Figure F.3. Almost all of the models fitted in the simulation studies featured at least
some HMC divergences. In most cases less than 5% of samples ended in a divergence. Max
treedepth warnings occurred rarely. R̂ diagnostics and effective sample sizes generally seemed
adequate. Although slow compared to non-Bayesian methods, computation time was generally
quite reasonable, with most models finishing in less than 5 minutes.
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Figure F.1: Computational performance of a horseshoe process regression (HPR), based on 100
replicates in four data-generating scenarios, for continuous, binary, and count outcomes. Smaller
is better for all metrics except Min. Bulk. Eff. Samples and Min. Tail. Eff. Samples (the minimum
effective sample size in the bulk and tails of the posterior, respectively). Each column is for one
data-generating scenario.

109



bigstep bounce

0.0

0.1

0.2

0.3

0.00

0.05

0.10

0.15

0.20

0.25
P

ro
p

o
rt

io
n

 o
f 

S
a

m
p

le
s
 

w
it
h

 D
iv

e
rg

e
n

c
e

s

Obs. Obs. + Aug 0.5 Obs. + Aug 0.1

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.25

0.50

0.75

1.00

P
ro

p
o

rt
io

n
 o

f 
S

a
m

p
le

s
 

H
it
 M

a
x
. 

T
re

e
d

e
p

th

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

p
o

rt
io

n
 o

f 
P

a
ra

m
e

te
rs

 
w

it
h

 R
h

a
t 

>
 1

.1

0

1000

2000

3000

4000

5000

0

2000

4000

6000

M
in

. 
B

u
lk

 
E

ff
. 

S
a

m
p

le
s

0

2000

4000

6000

0

2000

4000

M
in

. 
T
a

il 
E

ff
. 

S
a

m
p

le
s

B
in

o
m

ia
l

G
a

u
s
s
ia

n

P
o

is
s
o

n

B
in

o
m

ia
l

G
a

u
s
s
ia

n

P
o

is
s
o

n

250

500

750

1000

400

800

1200

1600

C
o

m
p

u
ti
n

g
 T

im
e

 
(s

e
c
o

n
d

s
)

Figure F.2: Computational performance of a horseshoe process regression (HPR) in the presence
of data interpolation, based on 100 replicates in two data-generating scenarios, for continuous,
binary, and count outcomes. Smaller is better for all metrics except Min. Bulk. Eff. Samples and
Min. Tail. Eff. Samples (the minimum effective sample size in the bulk and tails of the posterior,
respectively). Each column is for one data-generating scenario.

110



bigstep smooth

0.0

0.1

0.2

0.0

0.1

0.2

P
ro

p
o

rt
io

n
 o

f 
S

a
m

p
le

s
 

w
it
h

 D
iv

e
rg

e
n

c
e

s

0.00

0.25

0.50

0.75

1.00

0.00000

0.00004

0.00008

0.00012

P
ro

p
o

rt
io

n
 o

f 
S

a
m

p
le

s
 

H
it
 M

a
x
. 

T
re

e
d

e
p

th

0.00

0.25

0.50

0.75

0.0

0.1

0.2

0.3

0.4

P
ro

p
o

rt
io

n
 o

f 
P

a
ra

m
e

te
rs

 
w

it
h

 R
h

a
t 

>
 1

.1

0

2000

4000

6000

0

1000

2000

3000

4000

5000

M
in

. 
B

u
lk

 
E

ff
. 

S
a

m
p

le
s

0

2000

4000

6000

0

1000

2000

3000

4000

5000

M
in

. 
T
a

il 
E

ff
. 

S
a

m
p

le
s

B
in

o
m

ia
l 
P

L
M

G
a

u
s
s
ia

n
 P

L
M

P
o

is
s
o

n
 P

L
M

B
in

o
m

ia
l 
P

L
M

G
a

u
s
s
ia

n
 P

L
M

P
o

is
s
o

n
 P

L
M

0

300

600

900

0

200

400

C
o

m
p

u
ti
n

g
 T

im
e

 
(s

e
c
o

n
d

s
)

Figure F.3: Computational performance of a horseshoe process regression (HPR) partial linear
model, based on 100 replicates in two data-generating scenarios, for continuous, binary, and count
outcomes. Smaller is better for all metrics except Min. Bulk. Eff. Samples and Min. Tail. Eff.
Samples (the minimum effective sample size in the bulk and tails of the posterior, respectively).
Each column is for one data-generating scenario.
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APPENDIX G

Sensitivity Analyses for HPR

We also explored the role of sample size and prior specification in model estimation. We focused
these sensitivity analyses on the bigstep scenario described above, because it is horseshoe process
regression (HPR)’s recommended setting. In addition to the sample size of n = 100 that we used
above, we also considered n = 30 and n = 500. We considered several different settings for the
hyperparameters of the model:

• The prior mean on the y-intercept α: We recommend setting this hyperparameter to be the
sample mean of the data (using appropriate transformations for binary and count outcomes).
In the sensitivity analyses below, we compare this approach to 1) setting the prior mean
to be the true value of α (alpha mean = 0) or 2) setting the prior mean to be much larger
(alpha mean = 10).

• The prior standard deviation on the y-intercept α: We recommend setting this hyperparam-
eter to be the sample standard deviation of the data (using appropriate transformations for
binary and count outcomes). In the sensitivity analyses below, we compare this approach
to 1) setting the prior standard deviation to be too small (alpha sd = 0.05) or 2) too large
(alpha sd = 50).

• The prior scale c for the global shrinkage parameter τ : We recommend using a value of
c = 0.01 for this hyperparameter, although in some cases different values may be more
suitable. We compare this approach to 1) c = 1 and c = 0.0001.

• The prior scale s for the measurement error σ, in the case of continuous outcomes: We
recommend setting s to be 10 times the sample standard deviation of the data (we used s = 5

in these simulations). We compare this approach to 1) setting s to be too small s = 0.05 or
2) setting it to be the true value s = 0.5.

At each sample size, we generate 100 datasets from the bigstep scenario as described in Section
2.4.1 and in Appendix A. We then run a HPR using all of the recommended hyperparameter set-
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tings except the one we are examining (e.g. we would change the value of c but leave the priors on
α, σ according to our recommendations). Performance on the metrics of mean absolute difference,
credible interval coverage, and credible interval width were compared across hyperparameter set-
tings. We also considered the difference in point estimates and credible interval width between the
recommended and alternative settings on each sample dataset.

Results are shown in Figures G.1 and G.2. Performance was generally stable across hyper-
parameter values, although at smaller sample sizes (n = 30), findings were more affected by
hyperparameter choices. Poor choices for the prior variance on α—particularly setting it too
small—negatively affected model fit. The choice of c also affected findings at small sample sizes,
particularly for binary outcomes. Model estimation improved with larger sample sizes, although
estimation was still adequate at the n = 30 sample size.
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Figure G.1: Sensitivity analyses for the role of hyperparameters and sample size in horseshoe
process regression (HPR), based on 100 replicates of the bigstep data generating scenario at three
sample sizes (n = 30, n = 100, n = 500). The top row gives performance for mean absolute
difference (smaller is better); the second row gives performance for credible interval coverage
(0.95 is nominal); the third row gives performance for credible/confidence interval width. Each
column is for one type of outcome (binary, continuous, and count). Median performance under
our recommended hyperparameter settings is given as a horizontal line, with color corresponding
to sample size.
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Figure G.2: Sensitivity analyses for the role of hyperparameters and sample size in horseshoe pro-
cess regression (HPR), based on 100 replicates of the bigstep data generating scenario at three
sample sizes (n = 30, n = 100, n = 500). The top row gives the difference in point estimates
between each alternative hyperparameter choice and our default recommendations, aggregated
across timepoints (a difference of 0 is ideal). The second row gives the difference in credible
interval width between each alternative hyperparameter choice and our default recommendations,
aggregated across timepoints (a difference of 0 is ideal).
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APPENDIX H

Variational Inference for HPR

Let yi be the basal body temperature (BBT) measurement observed on day ti, i = 1, ...,m of a
single menstrual cycle. The model is:

yi = fi + ϵi

fi = α +Hi

Hi −Hi−1|τ 2, λ2
i ∼ N(0, τ 2λ2

i (ti − ti−1)), i = 2, ...,m

H1 = 0

α ∼ N(a, b2)

τ 2|aτ ∼ Invχ2(1, 1/aτ ), aτ ∼ Invχ2(κτ , sτ )

λ2
i |aλi

iid∼ Invχ2(1, 1/aλi
), aλi

∼ Invχ2(κλi
, sλi

), i = 2, ...,m

ϵi|σ2 ∼ N(0, σ2)

σ2|aσ ∼ Invχ2(1, 1/aσ), aσ ∼ Invχ2(κσ, sσ)

(H.1)

Note that in Chapter 3, we have κτ , κσ, κλi
, sλi

= 1; here, we allow those hyperparameters to take
on different values for flexibility. In general, we will set them to be 1.

For ease of notation, define y as the length m vector containing yi, i = 1, ...,m and t as the
length m vector containing ti, i = 1, ...,m. Let Λ be the length m− 1 vector containing the values
of λ2

i , i = 2, ...,m; let λ be the length m − 1 vector containing the values of λi, i = 2, ...,m.
Let aλ,κλ, sλ be the length m − 1 vectors containing the values of aλi

, κλi
, sλi

, i = 2, ...,m,
respectively. Define H as the length m vector containing the values of Hi, i = 1, ...,m.

In this model, a, b2, κτ , sτ ,κλ, sλ, κσ, sσ are hyperparameters that must be specified. Our pa-
rameters are θ = (α,H , τ 2, τ,Λ,aλ, σ

2, aσ). Our data are X = (y, t).

We seek a variational approximation q(θ) to the posterior distribution p(θ|X). To limit the
space of options for q(θ), we make the following mean field assumption:
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q(α,H , τ 2, aτ ,Λ,aλ, σ
2, aσ) = q(α)q(H)q(τ 2)q(aτ )q(σ

2)q(aσ)
m∏
i=2

q(λ2
i )q(aλi

) (H.2)

In words, we assume that all parameters are approximately posterior independent of each other,
except the values of H , which are treated jointly.

Under this mean-field assumption, each q-density (e.g. q(θ1) = q(α), q(θ2) = q(H), etc.) is
given by:

q(θk) ∝ expEqj ̸=k
[ln p(X,θ)] (H.3)

for k = 1, ..., 8. Note that the joint log-likelihood of our model is:

ln p(X,θ) = ln p(y|H , σ2, α) + ln p(H|Λ, τ 2) + ln p(α) + ln p(σ2|aσ)

+ ln p(aσ) + ln p(τ 2|aτ ) + ln p(aτ )

+
m∑
i=2

[ln p(λ2
i |aλi

) + ln p(aλi
)]

(H.4)
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H.0.1 Finding q(α)

We will start by finding the q-density of α. We write the log of the joint-likelihood, restricting our
attention to the terms that contain α:

ln p(y|H , α, σ2) + ln p(α)

Then the q-density is:

q(α) ∝ exp

{
−m
2

ln(2π)− m

2
Eσ2 [lnσ2]− 1

2
Eσ2 [σ−2]EH [(y − α1m −H)T (y − α1m −H)]

− 1

2
ln(2π)− 1

2
ln(b2)− 1

2b2
(α− a)2

}

∝ exp

{
− 1

2
Eσ2 [σ−2]EH [(y − α1m −H)T (y − α1m −H)]− 1

2b2
(α− a)2

}

∝ exp

{
− 1

2
Eσ2 [σ−2](mα2 − 2αyT1m + 2αEH [H ]T1m)−

1

2b2
(α2 − 2aα)

}

∝ exp

{
− 1

2

(
α2(mEσ2 [σ−2] + b−2)− 2α(Eσ2 [σ−2](yT1m − EH [H ]T1m) +

a

b2
)
)}

Completing the square:

q(α) ∝ exp

{
− 1

2

(
(mEσ2 [σ−2] + b−2)(α−

Eσ2 [σ−2](yT1m − EH [H ]T1m) +
a
b2

mEσ2 [σ−2] + b−2
)2
)}

(H.5)

This is a normal kernel with µ =
Eσ2 [σ−2](yT 1m−EH [H]T 1m)+ a

b2

mEσ2 [σ−2]+b−2 and variance (mEσ2 [σ−2] +

b−2)−1.
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H.0.2 Finding q(H)

Define H∗ as the length m− 1 vector containing the values of Hi, i = 2, ...,m, i.e. the vector H
without H1 = 0, a constant. Then:

q(H∗) ∝ exp(E−H∗ [ln p(y|H , σ2, α) + ln p(H∗|Λ, τ 2)])

The likelihood p(y|H , σ2, α) is y ∼ N(α +H , σ2In×n). The prior on H∗ is more complicated
because the prior is placed on its first order differences. Let δi = ti − ti−1. This implies:

p(H∗|Λ, τ 2) = (2πτ 2)
−(m−1)

2

m∏
i=2

(λ2
i δi)

−1/2 exp(
−1
2τ 2

m∑
i=2

(Hi −Hi−1)
2

λ2
i δi

) (H.6)

Let R be an m− 1×m− 1 matrix of the form:

R =



ω2
2 + ω2

3 −ω2
3

−ω2
3 ω2

3 + ω2
4 −ω2

4

. . . . . . . . .

ω2
m−1 + ω2

m −ω2
m

−ω2
m ω2

m


where ω2

i = 1
τ2λ2

i δi
.

Then we can rewrite the above prior as:

p(H∗|Λ, τ 2) = (2πτ 2)
−(m−1)

2 (
m∏
i=2

λiδi)
−1/2 exp(

−1
2
H∗TRH∗) (H.7)

Let y∗ refer to the elements of y except y1. Then we have:

q(H∗) ∝ exp

{
−(2m− 1)

2
ln(2π)− m

2
Eσ2 [lnσ2]− 1

2
Eσ2 [σ−2]Eα[(y

∗ − α1m−1 −H∗)T

(y∗ − α1m−1 −H∗)]− m− 1

2
Eτ2 [ln τ

2]− 1

2

m∑
i=2

Eλi
[lnλ2

i ]−
1

2

m∑
i=2

ln δi

− 1

2
(H∗TER[R]H∗)

}
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We drop all terms without H∗:

q(H∗) ∝ exp

{
− 1

2
Eσ2 [σ−2]Eα[(y

∗ − α1m−1 −H∗)T (y∗ − α1m−1 −H∗)]− 1

2
(H∗TER[R]H∗)

}

Doing some more algebraic manipulation to clarify the multivariate Gaussian kernel:

q(H∗) ∝ exp

{
− 1

2
Eσ2 [σ−2]Eα[y

∗Ty∗ − αy∗T1m−1 − y∗TH∗ − α1T
m−1y

∗ +mα2

+ α1T
m−1H

∗ −H∗Ty∗ + αH∗T1m−1 +H∗TH∗]− 1

2
(H∗TER[R]H∗)

}

∝ exp

{
− 1

2
Eσ2 [σ−2](−2y∗TH∗ + 2Eα[α]1

T
m−1H

∗ +H∗TH∗)− 1

2
(H∗TER[R]H∗)

}

∝ exp

{
− 1

2
Eσ2 [σ−2](−2y∗T + 2Eα[α]1

T
m−1)H

∗ − 1

2
(Eσ2 [σ−2]H∗TH∗ +H∗TER[R]H∗)

}

∝ exp

{
− 1

2
(−2Eσ2 [σ−2](y∗T − Eα[α]1

T
m−1)H

∗ +H∗T (Eσ2 [σ−2]Im−1×m−1 + ER[R])H∗)

}

Recall the formula for completing the square with matrices:

xTMx− 2bTx = (x−M−1b)TM (x−M−1b)− bTM−1b

Recognizing M = Eσ2 [σ−2]Im−1×m−1 + ER[R] and b = Eσ2 [σ−2](y∗T − Eα[α]1
T
m−1)

T , we can
finally see that:

q(H∗) = MVN(H∗|µ = (Eσ2 [σ−2]Im−1×m−1 + ER[R])−1Eσ2 [σ−2](y∗T − Eα[α]1
T
m−1)

T ,

Σ = (Eσ2 [σ−2]Im−1×m−1 + ER[R])−1)
(H.8)
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H.0.3 Finding q(σ2)

We write the log of the joint-likelihood, restricting our attention to the terms that contain σ2:

ln p(y|H , α, σ2) + ln p(σ2|aσ)

Then the q-density is:

q(σ2) ∝ exp

{
−m
2

ln(2π)− m

2
lnσ2 − 1

2σ2
EH,α[(y − α1m −H)T (y − α1m −H)] +

1

2
ln

1

2

− 1

2
Eaσ [ln aσ]− ln Γ(1/2)− 3

2
lnσ2 − 1

2aσσ2

}

∝ exp

{
− m

2
lnσ2 − 1

2σ2
EH,α[(y − α1m −H)T (y − α1m −H)]− 3

2
lnσ2 − 1

2σ2
Eaσ [

1

aσ
]

}
∝ (σ2)

−m−3
2 exp

{
− 1

2σ2

(
EH,α[(y − α1m −H)T (y − α1m −H)] + Eaσ [

1

aσ
]
)}

We recognize this as the kernel of an Inverse-χ2 distribution with shape parameter κ = m+ 1 and
scale parameter s = EH,α[(y − α1m −H)T (y − α1m −H)] + Eaσ [

1
aσ
].
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H.0.4 Finding q(τ 2)

We write the log of the joint-likelihood, restricting our attention to the terms that contain τ 2:

ln p(H|τ 2,Λ2) + ln p(τ 2|aτ )

Then the q-density is:

q(τ 2) ∝ exp

{
− (m− 1)

2
ln 2π − (m− 1)

2
ln τ 2 − 1

2

m∑
i=2

Eλ[lnλ
2
i δi]−

1

2τ 2

m∑
i=2

EH [(Hi −Hi−1)
2]Eλ[λ

−2
i ]

δi

+
1

2
ln

1

2
− 1

2
Eaτ [ln aτ ]− ln Γ(1/2)− 3

2
ln τ 2 − 1

2
Eaτ [

1

aτ
]
1

τ 2

}

∝ exp

{
− (m− 1)

2
ln τ 2 − 1

2τ 2

m∑
i=2

EH [(Hi −Hi−1)
2]Eλ[λ

−2
i ]

δi
− 3

2
ln τ 2 − 1

2
Eaτ [

1

aτ
]
1

τ 2

}

∝ (τ 2)−
(m+2)

2 exp

{
− 1

2τ 2

( m∑
i=2

EH [(Hi −Hi−1)
2]Eλ[λ

−2
i ]

δi
+ Eaτ [

1

aτ
]
)}

We recognize this as the kernel of an Inverse-χ2 distribution with shape parameter κ = m and
scale parameter s =

∑m
i=2

EH [(Hi−Hi−1)
2]Eλ[λ

−2
i ]

δi
+ Eaτ [

1
aτ
].
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H.0.5 Finding q(Λ)

We write the log of the joint-likelihood, restricting our attention to the terms that contain Λ:

ln p(H|τ 2,Λ) +
m∑
i=2

[ln p(λ2
i |aλi

)

Then the q-density is:

q(Λ) ∝ exp

{
− (m− 1)

2
ln 2π − (m− 1)

2
Eτ [ln τ

2]− 1

2

m∑
i=2

lnλ2
i −

1

2

m∑
i=2

ln δi

− 1

2
Eτ [

1

τ 2
]

m∑
i=2

EH [(Hi −Hi−1)
2]

λ2
i δi

+
m− 1

2
ln

1

2
− 1

2

m∑
i=2

Eaλi
[ln aλi

]

− (m− 1) ln Γ(1/2)− 3

2

m∑
i=2

lnλ2
i −

1

2
Eaλi

[
1

aλi

]
1

λ2
i

}

∝ exp

{
− 1

2

m∑
i=2

lnλ2
i −

1

2
Eτ [

1

τ 2
]

m∑
i=2

EH [(Hi −Hi−1)
2]

λ2
i δi

− 3

2

m∑
i=2

lnλ2
i −

1

2
Eaλi

[
1

aλi

]
1

λ2
i

}

Considering only a single λi, we obtain:

q(λ2
i ) ∝ exp

{
− 1

2
lnλ2

i −
1

2
Eτ [

1

τ 2
]
EH [(Hi −Hi−1)

2]

λ2
i δi

− 3

2
lnλ2

i −
1

2
Eaλi

[
1

aλi

]
1

λ2
i

}

= (λ2
i )

−2 exp
{
− 1

2λ2
i

(
Eτ2 [

1

τ 2
]
EH [(Hi −Hi−1)

2]

δi
+ Eaλi

[
1

aλi

]
)}

We recognize this as the kernel of an Inverse-χ2 distribution with shape parameter κ = 2 and
scale parameter s = Eτ2 [

1
τ2
]EH [(Hi−Hi−1)

2]
δi

+ Eaλi
[ 1
aλi

]. This q-density will be the same for all
λi, i = 2, ...,m; multiplying them provides q(Λ).

123



H.0.6 Finding q(aσ), q(aτ), q(aλ)

We will start with q(aσ). We write the log of the joint-likelihood, restricting our attention to the
terms that contain aσ:

ln p(σ2|aσ) + ln p(aσ)

Then the q-density is:

q(aσ) ∝ exp

{
1

2
ln

1

2
− 1

2
ln aσ − ln Γ(1/2)− 3

2
Eσ2 [lnσ2]− 1

2aσ
Eσ2 [

1

σ2
] +

κσ

2
ln

sσ
2

− ln Γ(
κσ

2
)− (

κσ

2
+ 1) ln aσ −

sσ
2aσ

}

∝ exp

{
− 1

2
ln aσ −

1

2aσ
Eσ2 [

1

σ2
]− (

κσ

2
+ 1) ln aσ −

sσ
2aσ

}
∝ a

−κσ+3
2

σ exp
{
− 1

2aσ

(
Eσ2 [

1

σ2
] + sσ

)}

We recognize this as the kernel of an Inverse-χ2 distribution with shape parameter κ = κσ +1 and
scale parameter s = Eσ2 [ 1

σ2 ] + sσ. The derivations for q(aτ ) and q(aλ) are identical and are thus
omitted. q(aτ ) is an Inverse-χ2 distribution with shape parameter κ = κτ + 1 and scale parameter
s = Eτ2 [

1
τ2
] + sτ , while q(aλi

) is an Inverse-χ2 distribution with shape parameter κ = κλi
+ 1 and

scale parameter s = Eλ[
1
λ2
i
] + sλi

.
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H.0.7 Complete list of q-densities

Summarizing the above, our complete list of q-densities is:

1. q(α) = N(α|µ =
Eσ2 [σ−2](yT 1m−EH [H]T 1m)+ a

b2

mEσ2 [σ−2]+b−2 , V = (mEσ2 [σ−2] + b−2)−1)

2. q(H∗) = MVN(H∗|µ = (Eσ2 [σ−2]Im−1×m−1 + ER[R])−1Eσ2 [σ−2](y∗T −
Eα[α]1

T
m−1)

T ,Σ = (Eσ2 [σ−2]Im−1×m−1 + ER[R])−1)

3. q(σ2) = Invχ2(σ2|κ = m+ 1, s = EH,α[(y − α1m −H)T (y − α1m −H)] + Eaσ [
1
aσ
])

4. q(aσ) = Invχ2(aσ|κ = κσ + 1, s = Eσ2 [ 1
σ2 ] + sσ)

5. q(τ 2) = Invχ2(τ 2|κ = m, s =
∑m

i=2
EH [(Hi−Hi−1)

2]Eλ[λ
−2
i ]

δi
+ Eaτ [

1
aτ
])

6. q(aτ ) = Invχ2(aτ |κ = κτ + 1, s = Eτ2 [
1
τ2
] + sτ )

7. For i = 2, ...,m, q(λ2
i ) = Invχ2(λ2

i |κ = 2, s = Eτ2 [
1
τ2
]EH [(Hi−Hi−1)

2]
δi

+ Eaλi
[ 1
aλi

])

8. For i = 2, ...,m, q(aλi
) = Invχ2(aλi

|κ = κλi
+ 1, s = Eλ2

i
[ 1
λ2
i
] + sλi

)
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H.0.8 Evaluating the variational objective

Recall that L = Eq[ln p(X,θ)]−
∑K

k=1 Eqk [ln q(θk)]. This is:

L = −1

2
Eσ2 [σ−2]Eα,H [(y − α1n −H)T (y − α1n −H)]

− 1

2
(EH [H

∗TER[R]H∗])− 1

2b2
Eα[(α− a)2]

− 1

2
Eaσ [

1

aσ
](Eσ2 [

1

σ2
] + sσ)−

1

2
Eaτ [

1

aτ
](Eτ2 [

1

τ 2h
] + sτ )−

1

2

n∑
i=2

Eaλ [
1

aλi

](Eλ[
1

λ2
i

] + sλi
)

− 1

2
ln(nEσ2 [

1

σ2
] +

1

b2
)− 1

2
ln |Eσ2 [

1

σ2
]In−1×n−1 + ER[R]|

− n

2
ln

1

2

(
Eaτ [

1

aτ
] +

n∑
i=2

EH [(Hi −Hi−1)
2]Eλ[1/λ

2
i ]1/δi

)
− (κτ + 1)

2
ln(

1

2
(sτ + Eτ2h

[
1

τ 2h
]))−

n∑
i=2

ln
1

2

(
Eaλi

[
1

aλi

] +
EH [(Hi −Hi−1)

2]

δi
Eτ2h

[
1

τ 2h
]
)

−
n∑

i=2

(κλi
+ 1)

2
ln

1

2
(sλi

+ Eλ[
1

λ2
i

])− (κσ + 1)

2
ln

1

2
(sσ + Eσ2 [

1

σ2
])

− n+ 1

2
ln

1

2

(
Eaσ [

1

aσ
] + Eα,H [(y − α1n −H)T (y − α1n −H)]

)
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H.0.9 Algorithm structure

This yields the algorithm:

Algorithm 1 Variational inference algorithm for horseshoe process regression.
Inputs:

X = (y, t)
Initialize:

E(α)0 ← ȳ, E(H)0 ← 0⃗
E( 1

σ2 )0 ← 1
var(y)

, E( 1
aσ
)0 ← 1

E( 1
τ2
)0 ← 100

var(y)
, E( 1

aτ
)0 ← 1

E( 1
λ2
i
)0 ← 100, E( 1

aλi
)0 ← 1, i = 2, . . . ,m

j ← 1

while j ≤ 1000 &
|Lj−Lj−1|

|Lj | > 0.0001 do
E(H)j ← (E( 1

σ2 )j−1Im−1×m−1 + E[R]j−1)
−1E( 1

σ2 )j−1(y
∗T − E(α)j−11

T
m−1)

T

E(α)j ← [E( 1
σ2 )j−1(y

T1m − E(H)Tj 1m) +
a
b2
][mE( 1

σ2 )j−1 + b−2]−1

E( 1
aσ
)j ← (κσ + 1)/(E( 1

σ2 )j−1 + sσ)

E( 1
σ2 )j ← (m+ 1)(E[(y − α1m −H)T (y − α1m −H)]j + E( 1

aσ
)j)

E( 1
aτ
)j ← (κτ + 1)/(E( 1

τ2
)j−1 + sτ )

E( 1
τ2
)j ← m/(

∑m
i=2

E[(Hi−Hi−1)
2]jE( 1

λ2
i

)j−1

δi
+ E( 1

aτ
)j)

E( 1
aλi

)j ← (κλi
+ 1)/(E( 1

λ2
i
)j−1 + sλi

), i = 2, . . . ,m

E( 1
λ2
i
)j ← 2/( 1

δi
E( 1

τ2
)jE[(Hi −Hi−1)

2]j + E( 1
aλi

)j), i = 2, . . . ,m

Lj ← L[E(H)j, E(α)j, E( 1
aσ
)j, E( 1

σ2 )j, E( 1
aτ
)j, E( 1

τ2
)j, E( 1

aλ2
)j, . . . , E( 1

aλm
)j,

E( 1
λ2
2
)j, . . . , E( 1

λ2
m
)j]

j ← j + 1
end while

127



APPENDIX I

Simulation Results Comparing Variational Inference
and Hamiltonian Monte Carlo

As discussed in Section 3.3, we compared the variational inference (VI) and Hamiltonian Monte
Carlo (HMC) implementations. We considered three sample sizes (m = 28, m = 112 = 28 × 4,
m = 420 = 28 × 15) and four true underlying functions, motivated by the BBT setting. These
functions were:

1. bigstep: f(t) = I(t ≤ 14) ∗ 36.6 + I(t > 14) ∗ 37.1

2. flat: f(t) = 36.8

3. joinpoint1: f(t) = I(t ≤ 14)∗36.6+I(14 < t ≤ 20)∗(t/12+37.1−5/3)+I(t > 20)∗37.1

4. joinpoint2: f(t) = I(t ≤ 7) ∗ (−t/20 + 36.95) + I(7 < t ≤ 14) ∗ 36.6 + I(14 < t ≤
22) ∗ (t/16 + 35.725) + I(t > 22) ∗ 37.1

For each of our 12 data-generating scenarios (3 sample sizes × 4 functions) we generated 100
sample datasets and then estimated the HPR model on each dataset using either HMC or VI. For the
two estimation approaches, we compared their mean point estimates, their efficiency (the standard
deviation of the point estimates), their mean credible interval width, and their credible interval
coverage, aggregated pointwise at each timepoint across the 100 replicates of each data-generating
scenario. These results are given in Figures I.1-I.4.
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Figure I.1: Mean of the Hamiltonian Monte Carlo (HMC) and variational inference (VarInf) point
estimators for horseshoe process regression at each timepoint, aggregated across 100 replicates.
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Figure I.2: Standard deviation of the Hamiltonian Monte Carlo (HMC) and variational inference
(VarInf) point estimators for horseshoe process regression at each timepoint, aggregated across 100
replicates.
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Figure I.3: Coverage of the Hamiltonian Monte Carlo (HMC) and variational inference (VarInf)
95% credible intervals for horseshoe process regression at each timepoint, aggregated across 100
replicates.
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Figure I.4: Width of the Hamiltonian Monte Carlo (HMC) and variational inference (VarInf) 95%
credible intervals for horseshoe process regression at each timepoint, aggregated across 100 repli-
cates.
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APPENDIX J

Variational Inference and Hamiltonian Monte Carlo
Posterior Comparison

In Figure J.1, we show the posterior densities of α, σ2, τ 2 obtained via either Hamiltonian Monte
Carlo (HMC) or variational inference (VI). We show a single simulated dataset from each of our
4 data-generating scenarios (a step function, “bigstep”; a flat line, “flat”; and two piecewise linear
functions, which we denote “joinpoint1” and “joinpoint2”) with a sample size of n = 112. As we
can see, there are major discrepancies between the posteriors obtained via HMC and VI. These
differences are fairly minor for σ2, but they are severe for τ 2 and, to a lesser extent, α. Although
these differences in the posteriors do not seem to affect the estimates of the temperature trajectory
itself (as was shown in Appendix I), they do limit our ability to consider posterior summaries of
the parameters themselves.
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Figure J.1: Comparison of posterior densities obtained from variational inference (VarInf) and
Hamiltonian Monte Carlo (HMC) algorithms.Posteriors are shown for three parameters (α, σ2, τ 2;
the columns) in a single replicate of simulated data from four data-generating scenarios (the rows)
with sample size n = 112.
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APPENDIX K

Variational Inference for HPR-BBT

Let yi be the basal body temperature (BBT) measurement observed on day ti, i = 1, ...,m of a
single menstrual cycle. The updated model is:

yi = fi + ϵi

fi = α +Hi

Hi −Hi−1|τ 2, λ2
i ∼ N(0, τ 2λ2

i (ti − ti−1)), i = 2, ...,m, H1 = 0

α ∼ N(a, b2)

τ 2|aτ ∼ Invχ2(1, 1/aτ ), aτ ∼ Invχ2(κτ , sτ )

λ2
i |aλi

iid∼ Invχ2(1, 1/aλi
)

aλi
|O ∼ Invχ2(1, 1), i = 2, ..., O,O + 2, ...,m

aλO+1
|O ∼ Invχ2(1,

1

4
)

ϵi|σ2 ∼ N(0, σ2), σ2|aσ ∼ Invχ2(1, 1/aσ), aσ ∼ Invχ2(κσ, sσ)

O ∼Multinom(Ψ)

(K.1)

In this model, a, b2, κτ , sτ , κσ, sσ,Ψ are hyperparameters that must be specified. Our parameters
are θ = (α,H , τ 2, τ,Λ,aλ, σ

2, aσ, O). Our data are X = (y, t). The joint log-likelihood of our
model is:

ln p(X,θ) = ln p(y|H , σ2, α) + ln p(H|Λ, τ 2) + ln p(α) + ln p(σ2|aσ)

+ ln p(aσ) + ln p(τ 2|aτ ) + ln p(aτ )

+
m∑
i=2

[ln p(λ2
i |aλi

) + ln p(aλi
|O)] + ln p(O)

(K.2)
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We make the following mean field assumption:

q(α,H , τ 2, aτ ,Λ,aλ, σ
2, aσ, O) = q(α)q(H)q(τ 2)q(aτ )q(σ

2)q(aσ)
m∏
i=2

q(λ2
i )q(aλi

)q(O) (K.3)

Reviewing the updated likelihood and mean-field assumption, it is clear that the addition of O,
the ovulation day parameter, to the model will only affect the q-densities of q(aλ) and q(O). This
will also cause changes to the variational objective, L. However, all other parameters’ q-densities
will be unchanged from Appendix H above.

K.1 Finding q(O)

We write the log of the joint-likelihood, restricting our attention to O:

m∑
i=2

ln p(aλi
|O) + ln p(O)

Then the q-density is:

q(O) ∝ exp

{
m∑
i=2

I(i ̸= O + 1)
[
− 3

2
Eaλi

[ln aλi
]− 1

2
Eaλi

[
1

aλi

]
]

+ I(i = O + 1)
[
− 3

2
Eaλi

[ln aλi
]− 1

8
Eaλi

[
1

aλi

]
]
+ lnΨO

}

∝ ΨO exp

{
−

m∑
i=2

Eaλi
[
1

aλi

]
(1
2
I(i ̸= O + 1) +

1

8
I(i = O + 1)

)}

We recognize this as the kernel of a multinomial distribution in which the probability that O = o

is given by Ψo exp
{
−
∑m

i=2 Eaλi
[ 1
aλi

]
(

1
2
I(i ̸= o + 1) + 1

8
I(i = o + 1)

)}
, with all probabilities

subsequently normalized to sum to 1.
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K.2 Modified q(aλi)

We write the log of the joint-likelihood, restricting our attention to aλi
:

ln p(λ2
i |aλi

) + ln p(aλi
|O)

Then the q-density is:

q(aλi
) ∝ exp

{
1

2
ln

1

2aλi

− ln Γ(
1

2
)− 3

2
Eλ[lnλ

2
i ]−

1

2aλi

Eλ[
1

λ2
i

]

+ EO[I(i ̸= O + 1)]
[1
2
ln

1

2
− ln Γ(

1

2
)− 3

2
ln aλi

− 1

2aλi

]
+ EO[I(i = O + 1)]

[1
2
ln

1

8
− ln Γ(

1

2
)− 3

2
ln aλi

− 1

8aλi

]}

∝ exp

{
− 1

2
ln aλi

− 1

2aλi

Eλ[
1

λ2
i

] + Pr(O ≥ i, O ≤ i− 2)
[
− 3

2
ln aλi

− 1

2aλi

]
+ Pr(O = i− 1)

[
− 3

2
ln aλi

− 1

8aλi

]}

∝ a−2
λi

exp

{
−1
2aλi

[Eλ(
1

λ2
i

) + Pr(O ≥ i, O ≤ i− 2) +
1

4
Pr(O = i− 1)]

}

We recognize this as the kernel of an Inverse-χ2 distribution with shape parameter κ = 2 and scale
parameter s = Eλ(

1
λ2
i
) + Pr(O ≥ i, O ≤ i− 2) + 1

4
Pr(O = i− 1).
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K.3 Modified variational objective

Under this new model, the variational objective is largely the same as before, with some modi-
fications to incorporate O and the changes to aλ. The updated L is (with the main modification
marked in red):

L = −1

2
Eσ2 [σ−2]Eα,H [(y − α1n −H)T (y − α1n −H)]

− 1

2
(EH [H

∗TER[R]H∗])− 1

2b2
Eα[(α− a)2]

− 1

2
Eaσ [

1

aσ
](Eσ2 [

1

σ2
] + sσ)−

1

2
Eaτ [

1

aτ
](Eτ2 [

1

τ 2h
] + sτ )−

1

2

n∑
i=2

Eaλ [
1

aλi

]Eλ[
1

λ2
i

]

− 1

2
ln(nEσ2 [

1

σ2
] +

1

b2
)− 1

2
ln |Eσ2 [

1

σ2
]In−1×n−1 + ER[R]|

− n

2
ln

1

2

(
Eaτ [

1

aτ
] +

n∑
i=2

EH [(Hi −Hi−1)
2]Eλ[1/λ

2
i ]1/δi

)
− (κτ + 1)

2
ln(

1

2
(sτ + Eτ2h

[
1

τ 2h
]))−

n∑
i=2

ln
1

2

(
Eaλi

[
1

aλi

] +
EH [(Hi −Hi−1)

2]

δi
Eτ2h

[
1

τ 2h
]
)

− (κσ + 1)

2
ln

1

2
(sσ + Eσ2 [

1

σ2
])− n+ 1

2
ln

1

2

(
Eaσ [

1

aσ
] + Eα,H [(y − α1n −H)T (y − α1n −H)]

)
−

m∑
i=2

ln
1

2

[
Eλ(

1

λ2
i

) + Pr(O ≥ i, O ≤ i− 2) +
1

4
Pr(O = i− 1)

]
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K.4 Modified algorithm structure

The modified algorithm is (with modifications marked in red):

Algorithm 2 Variational inference algorithm for HPR for BBT (HPR-BBT).
Inputs:

X = (y, t)
Initialize:

E(α)0 ← ȳ1:10, E(H)0 ← 0⃗
E( 1

σ2 )0 ← 1
var(y)

, E( 1
aσ
)0 ← 1

E( 1
τ2
)0 ← 100

var(y)
, E( 1

aτ
)0 ← 1

E( 1
λ2
i
)0 ← 100, E( 1

aλi
)0 ← 1, i = 2, . . . ,m

j ← 1

while j ≤ 1000 &
|Lj−Lj−1|

|Lj | > 0.0001 do
E(H)j ← (E( 1

σ2 )j−1Im−1×m−1 + E[R]j−1)
−1E( 1

σ2 )j−1(y
∗T − E(α)j−11

T
m−1)

T

E(α)j ← [E( 1
σ2 )j−1(y

T1m − E(H)Tj 1m) +
a
b2
][mE( 1

σ2 )j−1 + b−2]−1

E( 1
aσ
)j ← (κσ + 1)/(E( 1

σ2 )j−1 + sσ)

E( 1
σ2 )j ← (m+ 1)(E[(y − α1m −H)T (y − α1m −H)]j + E( 1

aσ
)j)

E( 1
aτ
)j ← (κτ + 1)/(E( 1

τ2
)j−1 + sτ )

E( 1
τ2
)j ← m/(

∑m
i=2

E[(Hi−Hi−1)
2]jE( 1

λ2
i

)j−1

δi
+ E( 1

aτ
)j)

Pr(O = o)j ← Ψo exp{−
∑m

i=2E[ 1
aλi

](1
2
I(i ̸= o+ 1) + 1

8
I(i = o+ 1))}

E( 1
aλi

)j ← 2/E( 1
λ2
i
) + Pr(O ≥ i, O ≤ i− 2) + 1

4
Pr(O = i− 1), i = 2, . . . ,m

E( 1
λ2
i
)j ← 2/( 1

δi
E( 1

τ2
)jE[(Hi −Hi−1)

2]j + E( 1
aλi

)j), i = 2, . . . ,m

Lj ← L[E(H)j, E(α)j, E( 1
aσ
)j, E( 1

σ2 )j, E( 1
aτ
)j, E( 1

τ2
)j, E( 1

aλ2
)j, . . . , E( 1

aλm
)j,

E( 1
λ2
2
)j, . . . , E( 1

λ2
m
)j, P r(O)j]

j ← j + 1
end while
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APPENDIX L

More Information on Data Analysis

Figure L.1: Sample exclusions to move from a starting sample of 779,216 basal body temperature
(BBT) measurements to a final sample of 266,690 BBT measurements.
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APPENDIX M

Proof of Unbiasedness of Kaplan-Meier and Risk Set
Imputation Estimators

We will now show that our two imputation estimators are unbiased for traditional cumulative inci-
dence estimation.

First, a review of the notation: Let Ti denote the time to some outcome of interest for i = 1, ..., n

subjects. Let Ci denote the corresponding time to censoring. Let Vi be the time to a competing
event for individuals i = 1, ..., n. Then the observed data are Xi = min(Ti, Vi, Ci) with δi = 1

when Xi = Ti, δi = 2 when Xi = Vi, and δi = 0 when Xi = Ci. Let t1, t2, ..., tl be the ordered,
unique values of the event times, e.g. times of individuals with δi = 1, 2. Let dj, j = 1, ..., l be the
number of events of interest (δi = 1) observed at time tj , and let vj be the number of competing
events (δi = 2) observed at time tj . Let cj be the number of individuals censored in the interval
[tj, tj+1). Let yj be the number at-risk just before time tj , e.g. yj =

∑n
i=1 I(Xi ≥ tj).

Then we wish to show:
E[F̂imp(t)] = F̂ (t) (M.1)

where F̂imp(t) is our imputation estimator of the cumulative incidence function, F̂ (t) is the Aalen-
Johansen estimator of the cumulative incidence, and the expectation is taken over the imputations.
We will start with F̂imp(t) standing in for the estimator from our Kaplan-Meier imputation (KMI)
approach, based on M imputations.
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Note that:

E[F̂imp(t)] = E[
1

M

M∑
m=1

F̂
(m)
imp (t)]

= E[F̂
(m)
imp (t)]

= E[
1

n

∑
ti≤t

di + d
∗(m)
i ]

=
1

n

∑
ti≤t

di + E[d
∗(m)
i ]

(M.2)

Based on our imputation scheme, the expected value of d∗(m)
i is

di[S(ti−1)− S(ti)]

di + vi

i−1∑
j=0

cj
S(tj)

(M.3)

where di
di+vi

is Pr(δ|X), while
∑i−1

j=0
cj

S(tj)
counts the number of individuals censored before time

ti, scaling their contribution by the number of individuals still alive at the time of censoring.
[S(ti−1)− S(ti)] gives the probability of being imputed to event time ti.

Therefore, to demonstrate that our imputation estimator is unbiased, we must show:

F̂ (t) = E[F̂imp(t)] =
1

n

∑
ti≤t

di +
di[S(ti−1)− S(ti)]

di + vi

i−1∑
j=0

cj
S(tj)

(M.4)

We will focus on the term within the sum. Leveraging the recursive property of the Kaplan-
Meier estimator, we note that:

di +
di[S(ti−1)− S(ti)]

di + vi

i−1∑
j=0

cj
S(tj)

= di +
diS(ti−1)[1− (1− di+vi

yi
)]

di + vi

i−1∑
j=0

cj
S(tj)

= di +
diS(ti−1)

yi

i−1∑
j=0

cj
S(tj)

(M.5)

We pull out the term diS(ti−1)
yi

, i.e. the summand for the Aalen-Johansen estimator. This
yields:

diS(ti−1)

yi

[ yi
S(ti−1)

+
i−1∑
j=0

cj
S(tj)

]
(M.6)
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Reviewing our work, we now have:

E[F̂imp(t)] =
1

n

∑
ti≤t

diS(ti−1)

yi

[ yi
S(ti−1)

+
i−1∑
j=0

cj
S(tj)

]
(M.7)

Studying this, we see that this will collapse to the Aalen-Johansen estimator if we can show
that

[
yi

S(ti−1)
+
∑i−1

j=0
cj

S(tj)

]
= n. Let us examine this bracketed term further. First, note that

yi = yi−1 − di−1 − vi−1 − ci−1. So cj = yj − dj − vj − yj+1. Plugging this in, we have:

yi
S(ti−1)

+
i−1∑
j=0

cj
S(tj)

=
yi

S(ti−1)
+

i−1∑
j=0

yj − dj − vj − yj+1

S(tj)

=
yi

S(ti−1)
−

i−1∑
j=0

yj+1

S(tj)
+

i−1∑
j=0

yj − dj − vj
S(tj)

= −
i−2∑
j=0

yj+1

S(tj)
+

i−1∑
j=0

yj − dj − vj
S(tj)

(M.8)

Note that S(tj) =
∏j

k=1(1−
dk+vk
yk

) =
∏j

k=1(
yk−dk−vk

yk
). Plugging this in, we have:

−
i−2∑
j=0

yj+1

S(tj)
+

i−1∑
j=0

yj − dj − vj
S(tj)

= −
i−2∑
j=0

yj+1

j∏
k=1

(
yk

yk − dk − vk
) +

i−1∑
j=0

(yj − dj − vj)

j∏
k=1

(
yk

yk − dk − vk
)

= −
i−2∑
j=0

yj+1

j∏
k=1

(
yk

yk − dk − vk
) +

i−1∑
j=0

yj

j−1∏
k=1

(
yk

yk − dk − vk
)

(M.9)

Doing some re-indexing, we have:

−
i−1∑
j=1

yj

j−1∏
k=1

(
yk

yk − dk − vk
) +

i−1∑
j=0

yj

j−1∏
k=1

(
yk

yk − dk − vk
) = y0S(t0) = n (M.10)

143



So, to finish, we have:

E[F̂imp(t)] =
1

n

∑
ti≤t

diS(ti−1)

yi

[ yi
S(ti−1)

+
i−1∑
j=0

cj
S(tj)

]
=

1

n

∑
ti≤t

ndiS(ti−1)

yi

=
∑
ti≤t

diS(ti−1)

yi

= F̂ (t)

(M.11)

which completes the proof of the unbiasedness of the Kaplan-Meier imputation scheme. We note
that this provides an alternative to the proof presented in Taylor et al. (2002) when vj is set to 0

[74].

To show the unbiasedness of the risk set imputation estimator (RSI), it suffices to show its equiv-
alence to the Kaplan-Meier imputation estimator. Recall that the expected value of the Kaplan-
Meier imputation estimator is:

E[F̂imp(t)] =
1

n

∑
ti≤t

di +
di[S(ti−1)− S(ti)]

di + vi

i−1∑
j=0

cj
S(tj)

(M.12)

The only part of this expectation that differs between the risk set imputation estimator and
Kaplan-Meier imputation estimator is [S(ti−1) − S(ti)]. Whereas the Kaplan-Meier imputation
scheme uses the survival probabilites to allocate censored individuals directly to event times, the
risk-set imputation estimator works indirectly. Censored individuals can be allocated to other
censored individuals and then reallocated until they ultimately arrive at an individual who had an
event. As discussed in Efron (1967), though, the risk set imputation estimator’s redistribute-to-the-
right approach is equivalent to the Kaplan-Meier estimator in the setting of all-cause survival [19].
Thus the two estimators are the same. Therefore, both the risk set imputation estimator and the
Kaplan-Meier imputation estimator will return equivalent results to the Aalen-Johansen cumulative
incidence estimator as the number of imputations increases.
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APPENDIX N

Sensitivity Analyses for the Hyperparameter of the
Bayesian Interval

As was discussed in Section 4.3.3.4, the choice of prior for the Bayesian beta-binomial interval
does play a small role in the interval’s performance. Here, we present sensitivity analyses moti-
vating our recommendation of a Beta(0.8, 1.2) prior on the cumulative incidence at each time-
point.

Following the simulation design described in Section 4.4, we present results here from Sce-
narios A and F. Recall that Scenario A had largely equal event rates with low censoring, while in
Scenario F the competing event was more common and censoring was higher. We also examined
performance in the other five scenarios (B-E, G) but the results were similar to what we present
here and are thus omitted for the sake of brevity.

On each simulated dataset, we compared the performance of three different priors on the cumu-
lative incidence at each time point:

1. Beta(0.5, 0.5): the Jeffreys prior for a beta-binomial interval.

2. Beta(0.8, 1.2): similar to the Jeffreys prior, but with more mass on the range [0, 0.75] and
less in (0.75, 1]. We think this is likely sensible in the competing risks setting.

3. A data driven approach: Beta(a, b) in which the first shape parameter a was set to be two
times the observed prevalence of the event of interest at the end of follow-up (omitting censored
individuals). We bounded this to be between 0.5 and 1. In our existing notation, this would be
a = min(1,max(0.5, 2dl

dl+vl
)), recalling that dl is the number of individuals who died of the event

of interest by the last observed time tl and vl is the number of individuals who died of the competing
event by the last observed time tl. The second shape parameter b was set to be two minus the first
shape parameter, e.g. b = 2−min(1,max(0.5, 2dl

dl+vl
)).

Results for interval width are given in Figures N.1 and N.2. Results for interval coverage are

145



given in Table N.1. From this, we note that in general the prior has minimal effect, particularly
at larger sample sizes. However, in some settings it does play a role. The Beta(0.5, 0.5) prior
returned a slightly wider interval than the other two priors except when the event rate was low,
in which case its interval was narrower. The Beta(0.8, 1.2) prior did the exact opposite. Inter-
val coverage was generally good, although in Scenario F, n = 25 and n = 100, we note that
the Beta(0.5, 0.5) and data-driven priors struggled, with excessive conservatism in the n = 25

columns and anti-conservatism in the T = 1, n = 100 column.

n = 25 n = 100 n = 500
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Figure N.1: 95% uncertainty interval widths for the Kaplan-Meier imputation (KMI) and risk set
imputation (RSI) Bayesian intervals under three different priors in Scenario A at three sample
sizes: n = 25, 100, 500.

146



n = 25 n = 100 n = 500

0.5 1 0.5 1 0.5 1

0.01

0.02

0.03

0.04

0.05

0.10

0.10

0.15

0.20

0.25

0.30

0.35

Time

In
te

rv
a
l 
W

id
th

KMI−Beta(0.5, 0.5)

KMI−Beta(0.8, 1.2)

KMI−Data Driven

RSI−Beta(0.5, 0.5)

RSI−Beta(0.8, 1.2)

RSI−Data Driven

Figure N.2: 95% uncertainty interval widths for the Kaplan-Meier imputation (KMI) and risk set
imputation (RSI) Bayesian intervals under three different priors in Scenario F at three sample sizes:
n = 25, 100, 500.
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Table N.1: Coverage rates for 95% uncertainty intervals for the Kaplan-Meier imputation (KMI)
and risk set imputation (RSI) Bayesian intervals under three different priors in Scenarios A and
F. Scenario A has a low rate of censoring and similar incidence rates for the event of interest and
the competing event; Scenario F has a moderate rate of censoring and the competing event is more
common than the event of interest.

Method n = 25 n = 100 n = 500
Scenario A Time = 1 Time = 2 Time = 1 Time = 2 Time = 1 Time = 2

KMI-Beta(0.5, 0.5) 0.92 0.94 0.97 0.95 0.95 0.95
KMI-Beta(0.8, 1.2) 0.95 0.95 0.97 0.95 0.95 0.96
KMI-Data Driven 0.92 0.92 0.96 0.94 0.95 0.95
RSI-Beta(0.5, 0.5) 0.92 0.94 0.96 0.95 0.95 0.95
RSI-Beta(0.8, 1.2) 0.95 0.95 0.96 0.95 0.95 0.96
RSI-Data Driven 0.92 0.93 0.96 0.95 0.95 0.96

Scenario F Time = 0.5 Time = 1 Time = 0.5 Time = 1 Time = 0.5 Time = 1
KMI-Beta(0.5, 0.5) 0.99 0.98 0.97 0.84 0.94 0.93
KMI-Beta(0.8, 1.2) 0.93 0.97 0.97 0.96 0.94 0.94
KMI-Data Driven 0.99 0.98 0.97 0.84 0.94 0.93
RSI-Beta(0.5, 0.5) 0.99 0.98 0.97 0.84 0.94 0.94
RSI-Beta(0.8, 1.2) 0.93 0.97 0.97 0.97 0.94 0.94
RSI-Data Driven 0.99 0.98 0.97 0.84 0.94 0.94
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APPENDIX O

Additional Simulation Results for Multiple
Imputation Cumulative Incidence Estimator

Figures O.1 and O.2 give the performance of the point estimators at sample sizes of n = 25 and
n = 500, respectively. Results for n = 100 were presented in Section 4.4. Generally, results were
similar across sample sizes. Performance of all estimators was worse in the n = 25 sample size
and better at n = 500, as we would expect.

149



G

D E F

A B C

0.01 0.02

0.1 0.5 0.1 0.5 0.5 1

1 2 1 2 2 4

0.0

0.2

0.4

0.6

0.00

0.05

0.10

0.15

0.20

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.2

0.4

0.6

0.0

0.2

0.4

0.0

0.1

0.2

0.3

Time

In
c
id

e
n

c
e

Method AalJo KMI RGI RSI

Figure O.1: Point estimator performance for imputation and Aalen-Johansen (AalJo) estimators in
seven simulation scenarios with a sample size of n = 25. The imputation estimators are Kaplan-
Meier imputation (KMI), risk set imputation (RSI), and Ruan-Gray imputation (RGI). The true
incidence is marked as a horizontal dashed line. A sample dataset for each scenario is given in
Figure 4.4.
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Figure O.2: Point estimator performance for imputation and Aalen-Johansen (AalJo) estimators in
seven simulation scenarios with a sample size of n = 500. The imputation estimators are Kaplan-
Meier imputation (KMI), risk set imputation (RSI), and Ruan-Gray imputation (RGI). The true
incidence is marked as a horizontal dashed line. A sample dataset for each scenario is given in
Figure 4.4.
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Figure O.3 gives the effect of number of imputations in Scenario G, to complement the results
given for Scenario A in Section 4.4. Scenario G has more censoring than Scenario A, which is
part of why the number of outliers in performance has increased (particularly at n = 25 and with
smaller numbers of imputations). Still, we see that with M = 150 imputations, performance is
generally similar between the imputation estimators and Aalen-Johansen at larger sample sizes
(n = 100, 500) even in the presence of high rates of censoring. For small sample sizes and high
rates of censoring it may be advisable to use even more imputations, such as M = 300.
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Figure O.3: The difference between each imputation point estimator and the Aalen-Johansen point
estimator at varying sample sizes and number of imputations in Scenario G. Note that the n = 25
plots have had their y-axis truncated to improve readability—there were additional outliers that fell
outside of the range shown here.
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We also considered the computational time of the imputation approaches, and how they are
affected by the number of imputations. These results are given in Figure O.4.
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Figure O.4: Computing time for the imputation estimators. The top row presents results for Sce-
nario A, which had low censoring; the bottom row presents results for Scenario G, which had high
censoring. Two outliers with computation time of about 60 seconds from the RGI approach were
omitted from this plot for readability.

Although increasing the number of imputations did increase computational time, overall the
methods still ran quite quickly, even at large sample sizes and with large numbers of imputations.
We also note that of the three imputation approaches, RGI is the fastest computationally, followed
by KMI, with RSI as the slowest. However, this may be caused by the data-generating mechanisms
we consider here—none of the simulated datasets feature extremely high rates of the competing
event, which is where RGI is most likely to struggle. Regardless, the differences in computing time
between the three approaches were still very modest, and we do not think computing time would
be a barrier for any of the approaches.
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[34] P Händel and J Wahlström. Digital contraceptives based on basal body temperature measure-
ments. Biomedical Signal Processing and Control, 52:141–151, 2019.

[35] EJ Harris, IH Khoo, and E Demircan. A survey of human gait-based artificial intelligence
applications. Frontiers in Robotics and AI, 8:749274, 2021.

[36] T Hastie, R Tibshirani, and J Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, 2017.

[37] AL Hirschberg. Challenging aspects of research on the influence of the menstrual cycle and
oral contraceptives on physical performance. Sports Medicine, 52:1453–1456, 2022.

[38] MD Hoffman and A Gelman. The No-U-Turn sampler: adaptively setting path lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15:1593–1623, 2014.

[39] CH Hsu and JMG Taylor. Nonparametric comparison of two survival functions with depen-
dent censoring via nonparametric multiple imputation. Statistics in Medicine, 28:462–475,
2009.

[40] CH Hsu, JMG Taylor, and C Hu. Analysis of accelerated failure time data with depen-
dent censoring using auxiliary variables via nonparametric multiple imputation. Statistics in
Medicine, 34(19):2768–2780, 2015.

[41] CH Hsu, JMG Taylor, S Murray, and D Commenges. Survival analysis using auxiliary vari-
ables via non-parametric multiple imputation. Statistics in Medicine, 25:3503–3517, 2006.

156

https://stephenslab.github.io/dsc-wiki/first_course/Intro_DSC.html
https://stephenslab.github.io/dsc-wiki/first_course/Intro_DSC.html


[42] SM Hughes, CN Levy, R Katz, EM Lokken, MN Anahtar, M Barousse Hall, F Bradley,
PE Castle, V Cortez, GF Doncel, R Fichorova, PL Fidel, KR Fowke, SC Francis, M Ghosh,
LY Hwang, M Jais, V Jespers, V Joag, R Kaul, J Kyongo, T Lahey, H Li, and J Makinde.
Changes in concentrations of cervicovaginal immune mediators across the menstrual cycle:
a systematic review and meta-analysis of individual patient data. BMC Medicine, 20(353),
2022.

[43] EL Kaplan and P Meier. Nonparametric estimation from incomplete observations. Journal
of the American Statistical Association, 53:457–481, 1958.

[44] A Kawamori, K Fukaya, M Kitazawa, and M Ishiguro. A self-excited threshold autore-
gressive state-space model for menstrual cycles: forecasting menstruation and identifying
within-cycle stages based on basal body temperature. Statistics in Medicine, 38:2157–2170,
2019.

[45] JS Kim, JG Ryu, JW Kim, EC Hwang, SI Jung, TW Kang, D Kwon, and K Park. Prostate-
specific antigen fluctuation: what does it mean in diagnosis of prostate cancer? International
Brazilian Journal of Urology, 41(2):258–264, 2015.

[46] JP Klein and ML Moeschberger. Survival Analysis: Techniques for Censored and Truncated
Data. Springer, 2nd edition, 2003.

[47] M Kostrzewski. The Bayesian methods of jump detection: The example of gas and EUA
contract prices. Polska Akademia Nauk, 11:107–131, 2019.

[48] DR Kowal, DS Matteson, and D Ruppert. Dynamic shrinkage processes. Journal of the Royal
Statistical Society, Series B, 81(4):781–804, 2019.

[49] MA Little and NS Jones. Generalized methods and solvers for noise removal from piece-
wise constant signals. I. Background theory. The Royal Society Proceedings: Mathematical,
Physical and Engineering Sciences, 467(2135):3088–3114, 2011.

[50] RJA Little and DB Rubin. Statistical Analysis with Missing Data. Wiley, 3rd edition, 2019.

[51] JJ Lok, S Yang, B Sharkey, and MD Hughes. Estimation of the cumulative incidence function
under multiple dependent and independent censoring mechanisms. Lifetime Data Analysis,
24:201–223, 2018.

[52] A Lott and JP Reiter. Wilson confidence intervals for binomial proportions with multiple
imputation for missing data. The American Statistician, 74(2):109–115, 2020.

[53] L Luo, X She, J Cao, Y Zhang, Y Li, and PXK Song. Detection and prediction of ovulation
from body temperature mreasured by an in-ear wearable thermometer. IEEE Transactions on
Biomedical Engineering, 67(2):512–522, 2020.

[54] E Mazzola and P Muliere. Reviewing alternative characterizations of Meixner processes.
Probability Surveys, 8:127–154, 2011.

157



[55] L Miolo, B Colombo, and J Marshall. A data base for biometrics research on changes in
basal body temperature in the menstrual cycle. Statistica, 53(4):563–572, 1993.

[56] TJ Mitchell and JT Beauchamp. Bayesian variable selection in linear regression. Journal of
the American Statistical Association, 83(404):1023–1032, 1988.

[57] SE Neville, JT Ormerod, and MP Wand. Mean field variational Bayes for continuous sparse
signal shrinkage: pitfalls and remedies. Electronic Journal of Statistics, 8:1113–1151, 2014.

[58] The Practice Committee of the American Society for Reproductive Medicine. The clinical
relevance of luteal phase deficiency: a committee opinion. Fertility and Sterility, 98(5):1112–
1117, 2012.

[59] O Papaspiliopoulos, GO Roberts, and M Sköld. Non-centered parameterisations for hierar-
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