
Scalable and Predictive Model Order Reduction for Reacting Flow Systems

by

Nicholas Anthiah Wolfgang Arnold-Medabalimi

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering and Scientific Computing)

in the University of Michigan
2023

Doctoral Committee:

Professor Karthik Duraisamy, Co-Chair
Assistant Professor Cheng Huang, Co-Chair
Associate Professor Mirko Gamba
Associate Professor Eric Johnsen

Nicholas Arnold-Medabalimi

narnoldm@umich.edu

ORCID iD: 0000-0003-2810-7996

©Nicholas Arnold-Medabalimi 2023

Dedicated to my parents, who have always pushed me to improve and always been there

in times of need

ii

Acknowledgements

I have had the fortune to spend much of my young adult life at the University of Michigan.

The pursuit of self-improvement as well as contributing to scientific projects, would not

be possible without an unmeasurable level of support from many people.

Professor Karthik Duraisamy has been an incredibly understanding mentor over my

longer-than-average tenure. He has been a great support in helping me identify my

weakness as well as flexible enough to let my thesis take some interesting turns. Most

importantly, beyond his scientific insight, is his kindness and understanding of Ph.D.

students’ challenges and that no two academic journeys are the same.

Professor Cheng Huang has also been an incredible guide into the complex world of

computational combustion. He probably has the record for the most Slack messages sent,

from asking to understand some detail of the GEMS solver to discussing some exciting

ideas or asking about new simulation results. He arrived at UM at the perfect time when

I was entering my more research-focused years and supercharged the results of this thesis.

I would also like to thank Professor Mirko Gamba and Professor Eric Johnsen for

being a part of my committee and for their input to improve the final product of my time

here. Their insight has been critical in expanding my horizons as well as improving the

accessibility of my work.

As a result of my time here, I have made many friendships that I would be remiss

not to mention. I can’t emphasize enough how the casual conversation about technical

problems helped make so many research efforts click behind the scenes. I apologize for

any missing names; they know who they are.

First among equals are the amazing members of CASLAB. I arrived when the group

was still small and growing, and I have met and worked with a wonderful group of people,

iii

each with their own expertise. These include Anand, Eric, Ayoub, Shaowu, Jiayang,

Vishal, Aniruddhe, Chris, James, Bernardo, Christian, Jasmin, Sahil, Daisuke, and Niloy.

Additionally, the Post-docs and research fellows have provided valuable scientific and

practical insight. These include Asitav, Danny, Yaser, Adam, Raj, Elnaz, and Mehdi.

I want to make some specific acknowledgments. First to Anand, Helen, and Eric, who,

when I arrived unsure, helped me settle and were invaluable during my first few years

as office mates. Next up are Vishal and Ayoub. Both of them are geniuses in their own

right, but more importantly, were calming influences who understood that research is not

a linear path. I will never forget the time spent hanging out with them under planned or

unplanned circumstances. Last is Chris, whose work has been most directly tied to my

own. Combined with Cheng and Karthik, he was the most helpful resource in getting to

the bottom of the nitty-gritty details of ROMs. His attention to detail certainly made

me take a second look at things I otherwise would have missed, and I doubt I would have

graduated without his help. After the departure of some older members, he also proved

to be the best person to help wrangle people for social events. I hope the remaining

members pick up that torch to maintain the fun within CASLAB.

Within my cohort, I cannot imagine my time here without Fabian and Sam. From

grinding out prelim studies to trips to Chicago and Toronto to ritual dinners, my time

here would have been far more boring without their presence.

Within the broader aerospace community, some names come to mind, from hanging

out at lunch to coming to my board game nights, Krystal, Brittany, Miles, Logan, Rohan,

Jake, Robin, and Yuki. Outside of the department, I was fortunate to be a part of the

Rackham student government. I have met many people that have become friends even

after, including but not limited to Veronica, Lucca, Alyssa, Daniel, Vinodh, Brittany,

Raz, and Marshall.

I would be remiss not to mention a number of people that have been wonderful

supportive friends even before my departure to Michigan. These include friends from

UMD, including Platon, Andrew, Hannah, Will, Julian, Tim, David, Kevin, and many

others. Last but not least, friends from the long haul of high school, Delilah, Sylvester,

iv

and Cassie from the quartet.

Finally, I have to thank my family. My parents, John and Dagmar, have been nothing

but supportive of my pursuit of my Ph.D. They have ensured that I can focus entirely

on my research efforts, are always available to talk, and are a constant source of strength

with their presence. I also must thank the numerous other family members who have

been supportive during these challenging years and for being a rest stop on my road trips

home. Hopefully, with the conclusion of my Ph.D. studies, I can spend more time with

them.

The National Science Foundation has supported most of this work through grant

CMMI 1634709, “A Diagnostic Modeling Methodology for Dual Retrospective Cost Adap-

tive Control of Complex Systems”. This work was also supported through the US Air

Force under the Center of Excellence grant FA9550-17-1-0195, titled “Multi-Fidelity Mod-

eling of Rocket Combustor Dynamics”. Additional computational resources were pro-

vided through the Department of Defense High-Performance Computing Modernization

Project (HPC-MP).

v

Table of Contents

Dedication ii

Acknowledgements iii

List of Tables xi

List of Figures xii

Abstract xviii

Chapter 1: Background and Motivation 1

1.1 Global Energy Environment . 1

1.1.1 Power Generation . 1

1.1.2 Transportation . 4

1.2 Combustion Instability . 5

1.3 Gas Turbine Model Combustors (GTMCs) 7

1.4 Computational Modeling . 9

1.4.1 Large-Eddy Simulation (LES) . 9

1.4.2 Reduced Modeling Using Physics-based Models 10

1.4.3 Projection-based Reduced-Order Modeling (ROM) 11

1.5 Potential Use Cases for Projection ROMs 13

1.6 Current State-of-the Art and Grand Challenge 14

1.7 Thesis Goals and Contributions . 14

1.8 Thesis Outline . 16

1.9 Notation . 17

Chapter 2: Computational Methods and Theoretical Background 19

2.1 Outline . 19

vi

2.2 Projection . 20

2.2.1 Suitability of Projection . 20

2.3 Reduced-Order Modeling (ROM) . 21

2.3.1 Projection-Based ROMs . 21

2.3.2 ROM formulation . 21

2.3.3 Galerkin ROM . 24

2.3.4 Least-Squars Petrov-Galerkin . 24

2.3.5 Model-Form Preserving Least-Squares with Variable Transformation 26

2.3.6 Hyper-Reduction/Sampling . 27

2.4 General ROM framework and terminology 29

2.5 Combustion Modeling . 30

2.5.1 Vector Form . 31

2.5.2 Equations of State . 34

2.5.3 Thermodynamic Properties . 34

2.5.4 Empirical Transport Properties 35

2.6 Combustion Modeling . 36

2.6.1 Laminar Finite Rate Chemistry 36

2.7 Turbulence Modeling . 37

2.7.1 Sigma Turbulence Model . 39

2.7.2 Non-Premixed Flamelet Modeling 39

2.8 Time-Integration . 43

2.9 Summary . 44

Chapter 3: Computational Scalability 45

3.1 Outline . 45

3.2 Offline Pre-Processing . 46

3.2.1 Proper Orthogonal Decomposition 46

3.3 Computational Challenges . 48

3.3.1 Memory Problem . 49

3.3.2 I/O Problem . 49

vii

3.3.3 Objectives . 50

3.4 Software Description . 51

3.4.1 pMat . 51

3.4.2 meta . 51

3.4.3 Dataset Metadata . 53

3.5 Data Formats Supported . 54

3.6 Performance . 55

3.7 Example Usage . 56

3.7.1 Matrix Allocation . 56

3.7.2 Driver Interfaces . 57

3.8 Summary . 59

Chapter 4: Dual-Swirl Gas Turbine Combustor 60

4.1 Outline & Introduction . 60

4.2 Experimental Setup . 60

4.3 Full-Order Model . 61

4.3.1 Computational details . 63

4.3.2 Averaged Velocity Field . 65

4.3.3 Averaged Temperature and Mixture Fraction 70

4.3.4 Mixture Fraction Temperature Correlation 76

4.3.5 Unsteady PIV Comparison . 77

4.4 Dynamic Mode Decomposition . 77

4.4.1 Decomposition of high-frequency PIV measurements 82

4.5 Reduced-Order Modeling (ROM) . 83

4.5.1 Basis Generation . 83

4.5.2 Reduced-Order Modeling (ROM) Results 87

4.5.3 A priori Projection Error Quantification 88

4.5.4 Adaptive Basis . 89

Chapter 5: Adaptive Sampling: Predictive Capabilities 101

5.1 Outline . 101

viii

5.2 Review of Hyper-Reduction Methods . 102

5.3 Adaptive Sampling Method . 104

5.3.1 One-step Adaptive Basis method 104

5.3.2 Linear Solver . 107

5.4 Adaptive Sampling Method Results . 110

5.4.1 Overall Adaptive ROM workflow and pre-processing 111

5.4.2 1D Propagating Laminar Flame 113

5.4.3 2D Rocket Injector . 121

5.5 Tertiary usage of adaptive ROMs in larger frameworks 130

5.5.1 Transient Acceleration: 1D Flame 132

5.6 Summary . 133

Chapter 6: Adaptive Sampling: Computational Considerations 134

6.1 Outline . 134

6.2 Description of Integration with Solver . 134

6.3 Description of Existing Adaptive Sampling Method 136

6.3.1 Description of the Partitioning Strategy 138

6.4 Computational bottleneck: Load Balancing 140

6.5 Load Balancing Framework . 142

6.6 Implementation and Integration using PETSc 146

6.6.1 PETSc Structures . 147

6.7 Results . 150

6.7.1 1D laminar flame . 151

6.7.2 2D Rocket Injector Load Balanced Performance 153

6.7.3 Current Limitations & Proposed Improvements 156

6.8 Summary . 157

Chapter 7: Summary and Conclusions 159

7.1 Contributions . 159

7.2 The Future of ROM-based Computational Solvers 162

7.2.1 Pre-Processing . 162

ix

7.2.2 Data locality . 163

7.2.3 Sampling Redistribution . 163

7.2.4 Trajectory of ROM Solvers . 164

7.3 Avenues for future work . 165

Bibliography 167

x

List of Tables

4.1 GTMC operating conditions. 61

5.1 2D injector baseline operating conditions. 124

xi

List of Figures

1.1 Energy production and consumption projections [1]. 2

1.2 Daily power load broken down by fuel type and region [1]. 2

1.3 Components of combustion instability [2]. 6

1.4 Various GTMC designs: Meier burner [3] (Left) PRECINSTA burner

[4](Center) Arndt burner [5] (Right). 8

1.5 Heirarchy and trade-offs of various fluid flow computational methods. . . 13

2.1 Standing Wave (top) Traveling Wave (Middle) Mode Shape (Bottom). . . 22

2.2 Schematic of approximate state evaluation from basis modes. 25

2.3 DEIM solves residual at sampled points S and interpolates the unsampled

points. 28

2.4 The S-shaped curve for GRI-1.2 methane-air kinetics with Tfuel = 300 and

Tox = 300. Each point represents a single steady flamelet solution. 40

2.5 Flamelet table contour of source in progress variable ˜̇ωC(s
−1) as a function

of mixture fraction mean and progress variable for a methane-air reaction. 42

3.1 Example of organization of simulation data into a discrete matrix. The 3D

field data at the tth time instance is re-arranged into a 1D vector, which

corresponds to one column of the data matrix A. 50

3.2 pMat object containing local array and blocking information. 52

3.3 Example I/O strategy for loading snapshots into memory distributed over

four process. 54

3.4 PLATFORM I/O routine strong scaling(M=1e7 N=p*5) comparison. . . 56

xii

4.1 Burner schematic [6] (Left), stacked internal cutaway of swirler geome-

try(Center), and external iso-surface (Right). 62

4.2 Representative averaged (Top) and instantaneous (Bottom) axial velocity

fields for the flame A configuration. 62

4.3 Fuel injection detail (Left) and internal cell spacing at injector face shown

in green (Right). 64

4.4 Mesh schematic with selected slice locations (Left)and mesh mean filter

width slice (Right). 64

4.5 Time and RMS-averaged axial velocity comparisons: experimental data

superimposed on upper half of combustor with lines at axial velocity equal

to zero for the Flame A configuration. 67

4.6 Time and RMS-averaged radial velocity for the flame A configuration. . . 68

4.7 Time and RMS-averaged tangential velocity for the flame A configuration. 69

4.8 Time-averaged (left) and RMS (right) axial velocity of flame B. 71

4.9 Time-averaged (left) and RMS (right) radial velocity of flame B. 72

4.10 Time-averaged (left) and RMS (right) tangential velocity of flame B. . . 73

4.11 Time-averaged temperature and mixture fraction field for flame A. 74

4.12 Time-averaged temperature (Top) and mixture fraction field (Bottom) for

flame B. 75

4.13 Temperature vs mixture fraction scatter plots for experimental and CFD

at h = 5 mm for flame A. 78

4.14 Temperature vs mixture fraction scatter plots for experimental and CFD

at h = 5 mm. 79

4.15 Schematic of kHz PIV window with points of interest label (Top) power

spectrum of axial velocity of flame A comparison of points of interest (Bot-

tom). 80

xiii

4.16 DMD spectrum of flame A axial velocity of the PIV data (Top) compared

with interpolated CFD data for flame A with mode shapes corresponding

to PVC peak visualized for axial velocity(Middle) and transverse velocity

(Bottom). Note the experimental window is offset from the center line. . 84

4.17 3D DMD modes corresponding to PVC at 0 and .5 of total oscillation

period, the isosurface is placed at levels corresponding to 0.2 of the nor-

malized max magnitude. 85

4.18 Singular value decay residual for GTMC for various variable groupings for

a 5000 snapshot training region (top) and training region lengths (bottom). 93

4.19 Instantaneous online ROM fields at 0.5 (Top) and 1.2 (Bottom) of total

training time with Fig. 4.20and 4.21 locations highlighted. Training Win-

dow: t = 0.255− 0.26s. 94

4.20 Pressure and temperature probes within flame front for various static basis

choices. Training Window: t = 0.255− 0.26s. Probe location is probe 1 as

visualized in Fig. 4.19. 95

4.21 Pressure and temperature probes within flame front(Top) and plenum(Bottom)

for various static basis choices. Training Window: t = 0.255−0.26s. Probe

location is probe 2 as visualized in Fig. 4.19. 96

4.22 Static basis projection error for various mode counts for 5 ms training

window (left) and zoomed close to end of training (right). 97

4.23 Static basis projection error for 90 modes computed for various training

lengths. 98

4.24 Full-order model (Left) temperature field compared with a priori static ba-

sis 90 mode projection (Right) at t = .2575s (Top) and t = .261s (Bottom)

These snapshots correspond to the identified time instances in Fig. 4.20 . 99

4.25 Pressure and temperature probes within the flame front (Top) and plenum

(Bottom) for static and adaptive basis reduced-order models compared

with the full-order model focused on the predictive region. Note that the

training region of the static basis extends for t = 0.255− 0.26 s. 100

xiv

4.26 Instantaneous online temperature fields for FOM and static and adaptive

ROMs with relative field error for the adaptive ROM. 100

5.1 Visualization of the non-local time stepping. 107

5.2 Computational domain for the 1D propagating flame: full domain (Top),

zoomed in view (Bottom). 115

5.3 Representative profiles for the 1D laminar flame propagation full-order

model. 117

5.4 Representative profiles for the 1D laminar flame propagation reduced-order

model (Right). The reduced order model was trained from t = 25− 25.1 µs.118

5.5 Comparison of different sampling update frequencies at t = 30 µs. . . . 119

5.6 Comparison of different sampling update frequencies at t = 60 µs. . . . 120

5.7 L2 Error compared with full-order model (left) and achieved efficiency

(right) for various sampling update frequencies and sampling percentage. 120

5.8 Comparison of the adaptive ROM vs. Static and t = 30 µs and t = 60 µs,

The reduced order model was trained from t = 25− 25.1 µs. 122

5.9 Comparison of the adaptive ROM and FOM for a parametric case where

the forcing frequency is increased from 50kHz to 200kHz. Training Win-

dow: t = 25− 25.1µs. 123

5.10 Computational mesh for the 2D rocket injector with point monitor probe

identified with red circle. 125

5.11 2D injector FOM representative dynamics with temperature (left) and

methane mass fraction (right) at various time instances. 126

5.12 2D injector ROM temperature field (left) and error (right) for zs = 10.

Training region (t = 0.0029− 0.00291s). 127

5.13 Pressure signal comparison of FOM and ROM for various sampling adap-

tation rates with a sampling rate of 1% in the predictive region. Training

region (t = 0.0029− 0.00291s). 128

5.14 L2 error compared with the full-order model (left) and achieved efficiency

(right) for various sampling update frequencies and sampling percentages. 128

xv

5.15 2D injector static basis ROM temperature with two modes with identical

training (t = 0.0029 − 0.00291s) as adaptive ROM (left) and 50 modes

with training (t = 0.0029− 0.00325s) (right). 129

5.16 Temperature Contours of the 2D rocket injectors numerical transient from

initial conditions. 131

5.17 Example application of ROM to accelerate the initial transient of the 1D

flame problem. 133

6.1 Example representation of a four-way partition of a 2D pipe junction. . . 136

6.2 Example of the cell information needed to compute the residual of a given

cell for a 2nd order spatial scheme. 137

6.3 Example partitioning: each processor has one layer of partition overlapped

cells. 139

6.4 GEMS communication structure. 140

6.5 Baseline implementation efficiency on 2 processors (right) and 44 (left)

processors for various sampling update frequencies and sampling percentages.141

6.6 Visualization of relative processor load for 1D case 2D case on 44 processors.142

6.7 Visualization of load balanced ROM flow path. 144

6.8 Simplified schematic of various components of redistribution: full DMPlex

mesh (Top) filtered mesh (Bottom-Left) distributed mesh (Bottom-Right). 145

6.9 Schematic of DMPlex mesh. 148

6.10 Example schematic ”overlap” star forest. 149

6.11 Example schematic of the partition star forest. 150

6.12 Timing breakdown of 1D Flame Case. 153

6.13 Pressure signal comparison of FOM and ROM baseline and load balanced

implementation. Training window: t = 0.0029− 0.00291s. 154

6.14 Dynamic evolution of 2D rocket injector: Contours of temperature over-

layed with sampled ROM points colored by MPI process. 155

6.15 Visualization of the change in ownership of sampled cells on two processes

for a 2D rocket injector for a single sampling set. 156

xvi

6.16 Timing breakdown of 2D rocket injector case. 156

6.17 Visualization of the degraded time integration scheme. 158

xvii

Abstract

Accurate, efficient prediction of reacting flow systems is challenging due to stiff reaction

kinetics, significant disparity in spatiotemporal scales, and multi-physics interactions.

Predictive tools for modeling these problems involve large-scale simulations in the form

of prohibitively expensive direct numerical simulations (DNS) or slightly less expensive

large-eddy simulations (LES), which can take weeks or months to run. Industry design

cycle analysis requires rapid turnaround in minutes or hours, making them unsuitable for

practical use. A grand challenge is, therefore, to inherit the predictive capabilities of a

highly complex large-scale computation at a significantly reduced cost.

Projection-based reduced-order models - which aim for mathematically formal com-

plexity reduction without sacrificing physical fidelity - have increased in popularity over

the past two decades. These techniques have mostly been demonstrated to be successful

on relatively simple problems. This thesis aims to make strides in utilizing projection-

based reduced-order modeling on reacting flow systems, focusing on accuracy and scala-

bility.

In the application of ROMs for larger-scale problems, it becomes clear that basic linear

algebra pre-processing operations of large dense matrices present a significant hurdle. To

better enable the development of large-scale ROMs, a software tool PLATFORM (Par-

allel Linear Algebra Tool FOr Reduced Modeling), has been developed to address these

challenges. In addition to enabling the required distributed linear algebra, PLATFORM

uses efficient I/O strategies to reduce the processing time of large data sets. This tool

is ubiquitous throughout this work and critical for ROM development shown in this and

other collaborative works.

An LES study of a Gas-Turbine Model Combustor (GTMC) is conducted using a

xviii

flamelet-based turbulent combustion model for two operating conditions. These cases

are quantitatively compared with experimental data and show good agreement. These

simulations are used as a testbed for reduced-order model development. The highly

chaotic nature of the GTMC system makes static basis methods unsuitable for any truly

predictive or parametric ROM. Adaptive basis techniques are applied to mitigate this

shortcoming by updating the projection sub-space as the dynamics evolve. This update is

guided by the residual of the full order model operator, applied to the GTMC, and shown

to successfully predict future state dynamics with very few training data snapshots. The

significant reduction in offline training requirements and improved accuracy are critical

components to enable the application of these ROMs in a design environment.

Next, an adaptive sampling method is used to achieve computational efficiency in con-

junction with the predictive capability. This method is shown to maintain accuracy in

predictive tasks while significantly reducing computational costs. However, online adap-

tation imposes a significant challenge in parallel load balancing, which limits scalability.

A framework is proposed where the sampled ROM mesh points are dynamically dis-

tributed among MPI processes during runtime. This redistribution introduces a trade-off

between the cost of load balancing and the savings achieved during the sampling iter-

ation. The framework is demonstrated on reacting flow benchmarks and quantifies the

improved computational speed-up and predictive capability.

These advances in ROM methods show that the grand challenge of truly predictive

and scalable ROMs for complex problems is within reach. This work makes strides

in applying these methods to large-scale problems and addressing practical challenges

in a high-performance computing environment. Based on the achieved efficiency and

predictive capability, the author believes this work will inform and assist in developing

future production-level full and reduced-order solvers.

xix

Chapter 1

Background and Motivation

1.1 Global Energy Environment

In the last ten years, there have been strides in revolutionizing the energy sources and

systems used to power everyday life. Driven by efforts to mitigate climate change, electri-

fying traditionally chemically powered systems offers additional conveniences. Renewable

sources have made strong inroads in power grid infrastructure and transportation, where

conventional combustion systems are dominant [1].

1.1.1 Power Generation

As seen in Fig. 1.1 from the U.S. Energy Information Administration, renewable sources

compose a significant portion of energy generation compared to one decade ago. The in-

crease in this component is not expected to eliminate the role of traditional combustion-

based systems. Unlike fossil fuel-based energy systems, wind and solar (the major compo-

nents of renewable energy sources) do not provide constant baseline output. As renewable

sources increase in capacity, traditional systems will be needed to maintain grid stabil-

ity. These sources provide large power output that highly dependent on the time of day

Fig 1.2.

As a result, modern combustion power systems must operate in an increasingly dy-

namic regime as the power grid demands. This type of operation manifests a variety

of problems from a combustion dynamics perspective. Traditionally, a base-load natural

gas power plant would operate at a consistent energy output. This single design point

1

Figure 1.1: Energy production and consumption projections [1].

Figure 1.2: Daily power load broken down by fuel type and region [1].

2

significantly reduces the development cost as the combustor geometry and characteristics

can be extensively validated and problems are mitigated.

Traditional Combustion-based power generation systems can have trouble adapting

to this new energy environment. Older power generators can encounter instabilities or

perform at significantly diminished efficiencies if operated at lower energy levels. Opera-

tions at this level can dramatically reduce the life span of a system OR make the system

non-compliant with emission standards. Finally, while engineers are most concerned with

the physical design of these systems, there is an important aside from an economic point

of view. Older systems in the current power grid continuously monitor the cost of op-

eration and fuel costs vs. the value of providing power to the grid. The introduction of

renewable power sources into the grid system has made this value comparison extremely

volatile daily and even hourly. The operators of these systems will turn off the system

during unprofitable times and restart during profitable windows. These combined make

the operation of a more dynamically capable power system more desirable.

Emissions

In addition to the dynamic operation challenges, emission considerations are becoming

more substantial in combustor designs. Efficient combustion systems are pushed to op-

erate in an increasingly fuel-lean environment. This operational paradigm significantly

increases the probability of undesirable combustor pressure oscillations. These oscillations

are difficult to predict as their inherent non-linearity means that computational tools are

either incapable or extremely expensive. These combustor pressure oscillations must be

identified during the design stage of new products, as the testing and manufacturing of

new combustors can be extremely expensive. Therefore, the ultimate goal must be devel-

oping efficient computational design tools which can help identify these physical effects

early. Predicting the onset of these instabilities has proven to be an extreme challenge

over the last two decades. However, because of recent advances in computational tech-

nology, various computational tools ranging from high-fidelity simulations to significantly

reduced-fidelity models have shown promise in predicting these phenomena. In section

3

1.2, we will review the combustion instability phenomena from a physical perspective. In

section 1.4, we will review some of the different computational methods used to predict

these phenomena.

1.1.2 Transportation

Unlike power generation systems, intermediate and long-range transport aircraft and

launch vehicle energy systems are significantly more restricted to traditional chemical-

based methods. The massive energy density differential between hydrocarbons and the

current application-ready battery continues to limit the electrification of these transport

systems. The energy density of jet fuel is 45 MJ/kg compared with the 0.7 MJ/kg

lithium-ion battery. Even accounting for the not insignificant efficiency loss in combus-

tion system vs. electric motors retrofitting any existing aircraft or launch vehicle would

render it incapable of flight and take up all usable cargo space. However, these systems

are subject to the same environmental and economic desirability as stationary power

generation systems. For aircraft engines, not only are emissions tightly regulated, in-

cremental improvement is expected every generation. Unlike static systems, the weight

constraints placed on aircraft engines preclude the use of large filtering systems mak-

ing meeting emission standards more challenging. Flight systems are thus constrained

by their fundamental weight requirements, combustion chamber emission, and efficiency

characteristics. Reaching higher efficiencies and reducing fuel waste has driven them to

operate at increasingly fuel-lean regimes. These regimes put the system at greater risk

for instabilities, negatively affecting the operation and device longevity. As a result,

each new engine goes through significant testing and design stages to ensure stability,

performance, and compliance with regulations.

Ultimately, traditional combustion systems have never been more heavily constrained

and optimized. Manufacturers must go through significantly more iterations of design,

testing, and analysis for each product. With the addition of transient and multiple oper-

ating conditions, conventional testing and analysis methods have become too expensive.

As a result, new tools are desired to accelerate and assist in these developments.

4

1.2 Combustion Instability

Combustion instability (or thermoacoustic instability) has remained a significant concern

in combustion device design. Characterized by large-amplitude pressure oscillations, this

phenomenon can lead to catastrophic device failure. The primary mechanism of combus-

tion instability can be attributed to the interactions between flow dynamics, acoustics,

and chemical reactions. The observation of this phenomenon was first documented by

Mallard and Le Chatelier [7]. Lord Rayleigh [8] proposed an elegant explanation for

combustion instability based on the phase relationship between unsteady acoustics and

chemical reactions (or, more precisely, the pressure and heat release fluctuations). How-

ever, in real combustion devices, combustion instability can be influenced by many factors,

including geometric details, operating conditions, and reaction chemistry. Each of these

components introduces additional challenges in developing predictive models, even from

a high-fidelity standpoint.

General Heat Driven Instability

The general concept of the Rayleigh criteria [8] was further quantified elegantly by

Culick [9, 10]. This derivation was similarly arrived at by other studies [11]; however, the

general analogy compares the sound created by an oscillating heat source to an oscillating

piston.

The reader can conceptualize the analogy as such; Consider a mass of gas near a wall.

As the wall is instantaneously heated, the gas expands in a propagation away from the

wall. If any pressure perturbations interact with the expansion front. In the analogy, the

expansion front can be thought of as a piston head advancing in space. Thus in systems

with in-phase pressure and heat oscillations, amplification will occur. While not precisely

required, amplification is observed within a ±90◦ phase angle, with damping observed at

a greater phase angle. The Rayleigh criterion describes this phase relationship:

∫ ∫ ∫
Ω

pqdΩ > 0 (1.1)

5

Figure 1.3: Components of combustion instability [2].

For practical combustors, combustion instabilities are not so easily quantified. The

phase relationship between heat release and pressure is not analytically computable,

and the criteria can only be used to post-process experimental or computation results.

The potential fluctuations for a given combustion system are governed by the nonlinear

interactions between acoustic phenomena, hydrodynamic effects, and chemical kinetics

(Fig. 1.3). From a qualitative perspective, one can imagine a premixed combustor. As

a pressure wave interacts with the inlet, the reactants will be restricted and released at

once. This release and the subsequent reaction will generate a more significant pressure

wave propagating through the combustion chamber. Based on the combustor geometry,

these waves can interact with downstream features and constructively interfere with newly

generated perturbation, increasing the overall perturbation magnitude. If this coupled

interaction between the reaction, acoustics, and hydrodynamics continues in phase, as

described by Rayleigh, it can lead to considerable pressure oscillations, damaging and

potentially catastrophic for operations.

Combustion instability occurs when the naturally resonant characteristic time of the

flow is commensurate with the characteristic time of the combustion process. The acoustic

waves typical of the configuration are the feedback process for amplifying these instabil-

ities. These waves transmit downstream effects back upstream in a feedback process.

While acoustic perturbations are the primary feedback mechanism, entropy waves, and

6

vorticity transport can play important roles. These unsteady elements are readily re-

flected from downstream features back upstream. Ultimately the source of these unstable

feedback mechanisms is most commonly due to one or more of the following processes [12];

1. Unsteady strain rate

2. Flame/vortex interaction

3. Acoustic/flame coupling

4. Boundary interaction

5. Equivalence ratio non-uniformity

1.3 Gas Turbine Model Combustors (GTMCs)

Section 1.1 described energy and transportation-based energy systems requirements.

These considerations economically incentivize traditional gas-turbine energy systems to

have the capability to operate at specific power levels and quickly adjust output to satisfy

different power grid demands.

To accommodate these requirements, namely, improved efficiency, reduced emissions,

and operational flexibility, gas turbine combustors are increasingly designed to operate

at fuel-lean conditions, which increases susceptibility to undesirable phenomena, most

notably combustion instability. The coupling between chemical reactions and acoustic

waves can significantly affect device performance. Previous designs have leveraged phys-

ical adjustments to promote passive stability [13] and active control [14] at the design

point to dampen these harmful effects. Still, dynamic operation adds the extra challenge

of maintaining stability at multiple operating points.

As aerospace and power generation industry applications began to significantly in-

crease requirements for their gas turbine burner power and efficiency, a greater under-

standing of the underlying physics was desired. To elucidate these underlying phenomena,

laboratory-scale burners have been developed. These burners operate at kilowatt energy

densities and feature significantly simplified geometry and improved interrogation access.

7

Figure 1.4: Various GTMC designs: Meier burner [3] (Left) PRECINSTA burner [4](Center)
Arndt burner [5] (Right).

As these combustors became more widespread, there was an increased collaboration be-

tween these industrial-developed GTMCs and academic institutions. As these designs

became more friendly regarding complexity and operating cost, academic institutions

began to develop and study their examples of GTMC.

Gas turbine model combustors (GTMCs) have been developed to enhance under-

standing the underlying physics inherent to practical gas turbine systems in a laboratory

environment and act as validation cases for developing modeling capabilities. These lab-

oratory burners have spanned various geometries, injection schemes, and stabilization

strategies. A comprehensive collection of GTMC experimental configurations can be

found in Stohr et al. [15]. Of particular note is the family of burners studied at the

German Aerospace Center (Deutsches Zentrum für Luft-und Raumfaht(DLR)). These

have included the PRECCINSTA burner [4], the dual-swirl burner [3, 6, 16], and most

recently the independent dual-swirl burner [5, 17, 18].

The primary burner examined is the DLR dual-swirl burner developed by Meier et

al. [16, 3] This burner deviates from previous designs by virtue of having multiple swirlers

and a partially-premixed combustion regime. Three distinct operating conditions char-

acterize the dual swirl burner: A, B, and C. Flame A exhibited a stable V-shaped flame.

In contrast, flame B operated as an unstable flat flame with peak instability at 280-

300 Hz. Finally, flame C operated near the flammability limits with periodic blowout

8

and re-ignition observed. These conditions have been examined using stereoscopic parti-

cle image velocimetry (stereo-PIV), Raman spectroscopy, OH*/CH* chemiluminescence,

and OH/CH/CH2O planar laser-induced fluorescence (PLIF). These measurements were

used to characterize the burner’s steady and unsteady performance. Studies included

swirl number dependencies, flow structure development [19], precessing vortex core be-

havior, unsteady local mixing [20], and vortex flame interaction [15]. In addition to the

original work conducted by DLR, an identical setup was investigated by Allison et al. [21]

which focused on the behavior of the burner when operating at various equivalence ratios

and particularly with more complex fuels, most notably syngas.

Various modeling efforts have been attempted on this geometry in concert with these

experimental measurements. To the authors’ knowledge, the first attempt was the work

of Widenhorn et al. [22], which simulated the whole geometry under the flame A condi-

tions and showed reasonable average velocity field comparison. A more comprehensive

modeling effort was conducted by See and Ihme [23], who used a modified flamelet model

and showed good agreement in the flame A averaged field condition. Additional work

by Koo et al. [24] focused on accurately modeling soot formation in the system. These

works primarily focused on the turbulent combustion modeling of the stable flame A con-

figuration, focusing on flamelet model augmentation and particulate matter generation.

Recent work by Chen et al. [25, 26] comprehensively modeled both the flame A and B

conditions, focusing on the instability and validation of both the stable and unstable

flame operating conditions representing the first complete steady and unsteady modeling

of this system.

1.4 Computational Modeling

1.4.1 Large-Eddy Simulation (LES)

With recent advances in computational modeling, detailed simulations can be used to

investigate the mechanisms of combustion instability for complex geometries. Especially,

Large-Eddy Simulation (LES) have the potential to provide valuable insight into the

9

underlying unsteady dynamics. Huang et al. [27, 28] applied LES to a standard lean-

premixed (LP) combustor [29]. Since these initial investigations, LES techniques have

advanced as a modeling tool in combustion instability-prone systems. Within gas turbine-

type systems, these simulation studies have been applied to a variety of problems ranging

from laboratory combustors for both atmospheric [23] and high-pressure [30] conditions

to (albeit under-resolved) studies of large-scale practical gas turbines [31]. The success of

these methods in correctly characterizing combustion instability has varied significantly.

The key modeling assumptions and problem complexity have had the greatest impact

on modeling success. Regardless of accuracy, applying LES to these problems requires

significant computational resources, ranging from 100,000 to 100 million CPU hours.

1.4.2 Reduced Modeling Using Physics-based Models

A major constraint in the design cycle analysis of combustion systems is turnaround

time. As a result, many physics-based lower-order models have been used to reduce

computational costs significantly.

Based on the wave or Euler equations analysis, the most common family of low-fidelity

models are acoustic solvers [9]. These methods are popular due to their simplicity and

fast solution time and have significant capability in purely acoustic flows. Under ideal

conditions (simple geometries and mode shapes), the spatial and temporal modes can

be separated. The spatial modes can be solved via the Helmholtz equation, and the

temporal modes can be reduced to a set of ordinary differential equations. Using this,

dominant eigenmodes can be determined together with growth rates. However, without

the non-linear effects, these instabilities will be predicted to grow infinitely.

Regardless of the linear or non-linear analysis, a functional form relating heat addition

and pressure perturbation is required. The most common prescribed function is that of

the Crocco’s n−τ model [32]. This method relates the heat release to pressure fluctuations

via a time delay τ and an amplification factor n.

A data-driven flame transfer function (FTF) [33] method leverages experimental and

simulation data to create the required relationship. While successful, this family of meth-

10

ods requires a transfer function to be computed due to the underlying assumption of a

linear frequency domain. Thus, applications are generally restricted to combustion sys-

tems with low-amplitude perturbations, although successes have been noted in non-linear

problems [34]. The flame describing function(FDF) [35, 36, 37] approach has shown suc-

cess in extensions to large amplitude non-linear problems. However, it is recognized [38]

that to compute an accurate FTF/FDF, a wide variety of input parameters are required.

These may include parameters that are inaccessible or difficult to measure. Additionally,

detailed non-linear dynamics significant to the underlying instability, like reactant mix-

ing, cannot be accounted for. Ultimately the major concern with applying FTF/FDF

methods is that they are difficult to extend to previously unknown problems.

1.4.3 Projection-based Reduced-Order Modeling (ROM)

Though LES is becoming affordable for complex problems and can reveal details of the

underlying physics inaccessible through experiments, these techniques are still far out-

of-reach for use in many-query applications (e.g., design, optimization, and uncertainty

quantification). Therefore, it is imperative to develop reduced models that can inherit

the fidelity of the LES, while being much more efficient for many-query computations.

One class of these methods is the projection-based reduced-order model (ROM), which

attempts to develop a dynamical system with reduced dimension to represent the full-

order model (FOM) (e.g., LES). These methods have been proven effective in reducing

the flow dynamics [39, 40, 41]. However, projection-based ROMs suffer in accuracy and

stability when applied to multi-scale problems containing transport phenomena such as

convection. These shortcomings can arise from a combination of the numerical stability

of the projection (e.g., Galerkin [42]), the truncation of low-energy modes [43], and the

inefficiency of linear manifolds in representing convective phenomena [44].

Several strategies have been suggested to mitigate these challenges. Balanced proper

orthogonal decomposition has been used in linear systems to form stable ROMs [45, 46].

Attempts have also been made to improve ROM stability by examining the underlying

numerical discretization through various methods. Rowley et al. [47] ensured that the

11

computed inner product for the Galerkin projection is physically meaningful. Parish

et al. [48] used the Mori-Zwanzig formalism to develop a Petrov-Galerkin-type closure.

Ahmed et al. [49] present a comprehensive review of state of the art in closure modeling for

projection-based ROMs. It has been shown that maintaining the conservation properties

of the governing equations is critical in ROM development [50]. A method demonstrated

by Carlberg [51] generates stable non-linear ROMs by minimizing the least-squares resid-

ual of the projected solution, yielding a symmetrized and linearly stable ROM. This

popular method is referred to as the Least-Squares Petrov Galerkin (LSPG) method.

In the context of reacting flow simulations, several additional challenges arise. A

key challenge in computational combustion has been the numerical stiffness inherent

in kinetics. Spurious oscillations have been observed near the high gradient conditions

present in a flame front when modeled using ROM methods. These oscillations commonly

lead to non-physical features such as negative temperature. Physical constraints have

been applied to promote local stability with success. [52]

The model-form preserving least-squares projection with variable transformation (MP-

LVST) [53] is a ROM formulation that allows conservation to be maintained while using

alternate variables. This change of variables is beneficial in the reacting flow as using

primitive variables (pressure, temperature, velocity) allows for simplified state calcula-

tions compared with conserved forms (density, enthalpy, momentum). This transforma-

tion is combined with least squares (to improve global stability), physical constraints (to

improve local stability), and hyper-reduction methods (to achieve computational speed-

up).

These developments have significantly increased the accuracy and robustness of this

family of projection-based ROMs. However, all these techniques fundamentally operate

by projecting a high-dimensional system onto a reduced manifold. As a result, the choice

of reduced space is significant in ROM development.

The most common technique to develop the linear manifold is to use proper orthogonal

decomposition [54] based on snapshots of the full-state vector. Generally speaking, prob-

lems with a strong limit cycle coherence have succeeded compared to chaotic problems

12

Figure 1.5: Heirarchy and trade-offs of various fluid flow computational methods.

with limited magnitude coherence [55].

1.5 Potential Use Cases for Projection ROMs

Various physics-based computational tools exist for fluid simulations with the general

trend of providing more physical fidelity at the expense of computational resources

(Fig. 1.5). The highest fidelity of simulation for complex geometry is most commonly

that of Large-Eddy Simulation (LES). Exercising this level of fidelity involves significant

man- and computer- hour requirements. Significant effort must be put into properly ap-

plying modeling and numerical techniques for a new problem type or application. Mesh

generation on its own can be a month-long endeavor. All of these costs are even before

the online computing phase of a simulation. Even at this point, during the online phase,

assumptions or procedures may need to be revisited and adjusted as the simulation pro-

ceeds. Together these costs are, at minimum many months to years, depending on the

resources invested. As a result, LES is primarily used for posterior analysis in cases of

failure or for analysis of existing developed systems.

13

1.6 Current State-of-the Art and Grand Challenge

As a result of the experimental and computational efforts on reacting flows, there is a

wealth of expertise in the understanding and modeling of combustors. However, current

computational models are either highly simplified to a particular problem type (reduced

fidelity) or require many months to conduct a high-fidelity simulation for a single oper-

ating and design point. Ultimately, engineers need access to high-fidelity responses to

design changes with the computational wall time of reduced models. The inherent need

for transient and operational analysis of these devices for combustion instability-prone

problems compounds the required computations. In conjunction with the capabilities

and limitations of models, one must consider the resources needed for high-fidelity sim-

ulations in terms of access to high-performance computing resources and the expertise

and cost to operate them. Reduced-order modeling, on the other hand, has promised

significant computational speed up (10-1000 times faster) but, until recently, has been

limited to simple problems. In particular, very little work on ROMs has focused on the

practical scientific computing required to apply these methods on a larger scale. With

these in mind, the grand challenge of reduced order modeling is maintaining the fidelity

and accuracy of full-fidelity simulations while reducing the query time and resource cost

(both in the acquisition of compute resources and cost per compute hour). (Fig 1.5)

1.7 Thesis Goals and Contributions

1. Development of Reduced-Order Modeling Techniques for Combustion

Problems With the current capabilities and limitations of the current state of the

art, this thesis pursues model reduction via the development of scalable projection-

based reduced-order models (ROMs) for combustion-type problems. Historically

these methods have not been applied to fluid flows of significant complexity. This

thesis develops and exhibits these methods on combustion-type problems and makes

significant strides in three critical areas.

14

(a) Efficiency: Projection-based ROM methods provide a consistent framework

for generating a reduced set of dynamical equations. However, dimension-

reduction results in dense linear algebra and processing of the full-state oper-

ator. This fundamentally limits the computational efficiency of the reduced

model and the computers needed to solve them. This thesis describes meth-

ods for overcoming this limitation using sparse-sampling techniques, and their

performance is quantified.

(b) Prediction: For ROMs of this nature to be truly useful for engineering ap-

plications involving chaotic behavior, they must be capable of predicting flow

scenarios that they were not initially trained on. This thesis shows that using

adaptive- basis and sampling techniques significantly improves the capability

of these ROMs to be genuinely predictive for complex and chaotic problems.

(c) Scalability: There has been a minimal description of the implementation

methods needed to apply the ROM framework to problems of significant scale.

Every aspect of this thesis is built upon high-performance computing technol-

ogy and, in particular, the development of an overall software framework that

enables the use of all the aforementioned techniques for complex and large

problems.

2. Application of ROM methods to large Gas Turbine Model Combustors

(GTMC) Modeling and understanding Gas Turbine Model Combustors (GTMCs)

remains a significant challenge. Even high-fidelity large-eddy simulations (LES)

are not guaranteed to be accurate. In this thesis, a GTMC setup will be explored

from the perspective of a traditional CFD investigation. This GTMC is the well-

documented DLR Dual-Swirl Burner developed by Meier [16]. LES simulations

are performed with a flamelet progress variable approach and validated against

available experimental data. Good agreement is shown in both steady and unsteady

operations. Finally, the operational challenges of leveraging these simulations in an

engineering setting will be described. From the perspective of addressing the grand

challenge mentioned above, high-fidelity simulations form the basis for building

15

reduced-order models and performing high-dimensional simulations at a fraction of

their current computational cost.

3. Scalability of methods: PLATFORM and Load Balanced Adaptive Sam-

pling Significant challenges exist in applying these methods to larger problems.

(a) Pre-Processing: Projection-based ROM requires pre-processing that scales

aggressively with problem size to the order of 100s of Tera-bytes. The Parallel

Linear Algebra Tool FOr Reduced Modeling (PLATFORM) was developed to

facilitate this. This software was developed to assist to handle the parallel lin-

ear algebra and distributed I/O challenges associated with ROM development,

both on and offline. In addition to being a core part of the ROM framework,

distributed linear algebra enables advanced modal decomposition analysis and

generic analysis of large datasets.

(b) ROM Solver Integration: The second challenge is associated with the in-

situ sampling adaptation for ROM methods. The sampling methods used to

improve ROM efficiency yield diminishing returns due to poor load balancing.

Addressing this represents a unique challenge as it requires in-situ redistribu-

tion of non-contiguous mesh elements. The methods and software methodology

used to overcome this load imbalance and computational efficiency metrics are

described and analyzed.

Finally, recommendations are made for best practices and solver architectures that

will allow significantly easier integration of ROM solvers. This will be discussed in

the context of ROM-FOM coupling and computational frameworks and resources.

1.8 Thesis Outline

The remainder of the thesis is structured as follows:

• Chapter 2: Introduces projection-based reduced-order model (ROM). The fun-

damental derivations and equations are explained, emphasizing the application to

16

combustion problems. These derivations will span from classical Galerkin ROM to

newer formulations that will be applied. The traditional computational combus-

tion large-eddy simulation (LES) methods are described. The LES solver is used for

data generation for the ROMs explored and the solver in which the ROM methods

are implemented.

• Chapter 3: Explores the offline training requirements for the projection-based

ROMs. PLATFORM, the software developed to handle these requirements, is de-

scribed, and the distributed computing strategies used are explained.

• Chapter 4: Describes the DLR GTMC experimental setup. The LES simulation

results are compared with experimental studies and previous computational stud-

ies. Finally, the reduced-order model results are compared with the computational

results.

• Chapter 5: Introduces the adaptive sampling method. The described method is

applied to two test cases, a 1D laminar flame, and 2D rocket injector. The efficiency

and accuracy are quantified based on the ROM hyperparameters.

• Chapter 6:The load-balancing framework is introduced, and the computational

method is described. The load-balanced method is compared to the same test

problems and quantifies performance.

• Chapter 7: The results and conclusions of the previous sections are collated. These

will include the feasibility of the application of these methods to problems of this

type and scale and validation of the methods vs. experimental methods. Finally,

the requirements for industrial application for these methods are discussed.

1.9 Notation

Consistent notation is used unless otherwise stated. Scalar and scalar returning func-

tions are referred to by lowercase, italicized Latin or Greek letters (x, α). Vectors or

corresponding functional operators are denoted using bold lowercase, italicized Latin or

17

Greek letters (x, ϕ). Matricies or corresponding functional operators are denoted using

bold uppercase, italicized Latin or Greek letters (X,Φ). Matrices and vector dimensions

are noted via set definitions e.g., ∈ RN is a real vector of dimension N . “=” is used to

denote equality, while “≜” is used to denote a definition. Parenthesis “()” are used to

define function parameters, e.g., f(x), where f is a scalar function operating on scalar

x. The mathematical order of operation priority is dictated using brackets “[]”. Super-

scripts x2 are reserved for mathematical exponentiations. An exception is to note value

perturbations which are noted using a single quotation p′.

18

Chapter 2

Computational Methods and Theoretical Background

2.1 Outline

In chapter 1, a variety of computational modeling techniques aimed at reducing the com-

plexity of modeling reacting flow systems were discussed. These methods revolve around

reducing the cost and time compared to the highest fidelity simulations. Within this

dissertation, Large-Eddy Simulation (LES) is considered the highest fidelity of practical

simulation for our systems of interest and is referred to as the Full-Order Model(FOM).

It should be noted that most so-called reduced-order models described in the previous

chapter do not leverage formal dimensional reduction but rather modeling assumptions

or simplifications. Projection-based reduced-order models which leverage a mathematical

order reduction are the primary focus of this thesis and, for simplicity, will be referred to

simply as ROMs.

In this chapter, the reduced-order models developed in the thesis will be introduced.

The general formulations existing in the literature as well as relevant strategies for re-

acting flow problems will be discussed. As will be seen later the execution of these types

of ROMs requires the evaluation of more classical fluid modeling, in the form of LES.

The computational methods of the LES code used will be detailed and explained. The

focus of this chapter is on the computational equations with details of the equally critical

implementation explored in later chapters.

19

2.2 Projection

The concept of order reduction is based on a low-dimensional representation of the larger

full-order system. Consider a vector representing the state of a system.

q ∈ RM (2.1)

For a linear projection, we aim to represent the full dimensional state as a linear combi-

nation of a set of basis vectors V = [v1, ...,vk] ∈ RM×k.

q(t) ≈ q̃(t) ≜
k∑

i=1

viq̂i(t) (2.2)

The reduced state q̂ ∈ Rk is the resulting reduced or latent state vector (sometimes

referred to as modal coefficients).

The core to the ROMs pursued in this thesis is predicated on the choice of trial basis

V where k << M . This leads to a compressed representation of the state, reducing the

dimension by orders of magnitude.

2.2.1 Suitability of Projection

To give a physical intuition about linear projection and its capabilities, consider a 1D

domain with two wave types visualized in figure 2.1. The first is that of a standing wave.

This feature will oscillate in magnitude however, spatially will remain anchored in place.

As a result, if we have a mode given by that wave shape, we can describe any time

instance of the standing wave via modulating the modal coefficient a. In contrast, a trav-

eling wave cannot be easily described using several linear modes. In its most naive form,

we would require many modes that can be linearly combined to form the traveling wave

front. This fundamental requirement is why linear projection-based ROMs have been

relatively limited in their application to convective-type physics. In the context of com-

bustion instability, using this method can have strengths as the quarter wave oscillation

characteristic of combustion instability would be amenable to linear projection; however,

20

a large amount of convective hydrodynamic and acoustic properties would fundamentally

limit the method.

2.3 Reduced-Order Modeling (ROM)

2.3.1 Projection-Based ROMs

Projection-based reduced-order models (ROMs) seek a low-dimensional representation of

a dynamical system state and a projection of the governing equations onto the low-

dimensional space to reduce the computational cost of numerical solutions for high-

dimensional systems. The system state q ∈ RM can be represented as a linear com-

bination of a set of orthogonal vectors V ∈ RM×k. This approximation takes the form

q ≈ Vq̂ (2.3)

In an ideal scenario, a combination of vectors can perfectly represent the full-dimension

state (q). Realistically the combination will lead to error from the dimension reduction.

q = Vq̂+ r (2.4)

This residual can be considered information lost via the order reduction and is referred

to as the projection error. Ultimately the quality of the trial basis V sets an absolute

upper limit in terms of accuracy for any methods leveraging this form of reduced-order

modeling.

2.3.2 ROM formulation

We now describe how the general linear projection is used to create a ROM; we begin

with a general non-linear dynamical system ODE,

dq

dt
= f(q, t), q(t0) = q0, (2.5)

21

Figure 2.1: Standing Wave (top) Traveling Wave (Middle) Mode Shape (Bottom).

22

where q ∈ RM represents the system state, and f represents the non-linear function

that describes the spatially discretized terms in the original governing PDE. For realistic

systems, the dimension of this system M can be substantial (Nvars × Ncells). For work

within this thesis, we look at problems with a M of up to two hundred million. Re-

peatedly solving this system for different operating conditions is prohibitively expensive

and requires extensive computing resources. The ultimate goal of model order reduction

techniques is to reduce the dimension of equation 2.5 without significantly compromising

the accuracy of the underlying dynamics.

Starting from equation 2.3 we introduce a modified approximation,

q(t) ≈ q̃ = q+P−1Vq̂(t), (2.6)

where q ∈ RM represents a constant reference state,V ∈ RM×k is the trial basis composed

of k linearly independent vectors, P ∈ RM×M is a diagonal matrix representing the

normalization of different variables in the state q, and q̂ ∈ Rk represent the modal

coefficients describing the linear combination of the trial basis vectors describing the

approximate state of q̃ ∈ RM . The normalization matrix P is formulated to make

the state variables equivalent in contribution. Without normalization, variables such as

pressure and energy may have very high magnitudes compared to species mass fractions

and velocity.

The governing equation is first normalized and then projected onto the trial space as

VTP
dq

dt
= VTPf(q, t). (2.7)

Recognizing that P, q, and V are constant in time, and substituting Eq. 2.6, we are able

to simplify this to

V
dq̂

dt
= Pf(q̃, t) (2.8)

Here we observe that Vdq̂
dt
∈ RM and no dimension reduction has occurred. Finally,

we project the system onto a low-dimensional test space, via the test basis W ∈ RM×k.

23

Similar to the trial basis V, the test basis W is a set of k linearly independent vectors.

The resulting system takes on the form which is considered the general ROM equation,

WTV
dq̂

dt
= WTPf(q̃, t), (2.9)

where an ODE system of reduced dimension k has been achieved. This reduced system

can be advanced using standard time-integration schemes (explicit or implicit).

The choice of the bases W and V are critical in the success of the ROM, and the

selection of formulation of these bases has been the focus of a wide variety of ROM

development. Typically the trial basis V is computed utilizing the proper orthogonal

decomposition (POD) of the data-set trajectory. The computation of the trial basis and

associated challenges are discussed in chapter 3. The choice of the test basis is therefore

the critical formulation element of the developed ROM.

2.3.3 Galerkin ROM

In the situation where the trial basis equals the test basis W = V Eq. 2.9 simplifies to

dq̂

dt
= VTPf(q̃, t) (2.10)

which is referred to as a Galerkin projection.

2.3.4 Least-Squars Petrov-Galerkin

Another method seeks to formulate the test basis W so that the fully-discrete FOM

residual r is minimized, which is referred to as the least-squares Petrov-Galerkin (LSPG)

projection [51]. For a generic linear multi-step method with s steps the r is given as

rn = a0q
n +

s∑
i=1

aiq
n−i −∆tβ0f(q

n, t)

−∆t
s∑

i=1

βif(q
n−i, tn−i),

(2.11)

24

Figure 2.2: Schematic of approximate state evaluation from basis modes.

where ai and βi are dependent on the time integration scheme.

The minimization problem for solving the ROM at time instance n is posed as

q̃n = argmin
q̃n∈Range(V)

||Pr(q̃n)||22

= argmin
q̃n∈Range(V)

∥(Pr)T (Pr)∥22
(2.12)

The solution to this problem is

(Wn)TPr(q̃n) = 0, (2.13)

where

Wn =
∂Pr(q̃n)

∂q̂n
. (2.14)

For a linear multi-step method (Eq. 2.11) this results in a test basis of the form

Wn = P[I−∆tβ0
∂rn

∂q̃n
]P−1V. (2.15)

Notably, for an explicit integrator Wn = V reduces to the Galerkin projection. As a

result of the symmetrization provided by this formulation, LSPG has shown significant

improvement over the classical Galerkin projection for convective-type problems. This

method has been successfully used for a variety of non-reacting flow applications.

25

Both of these methods face challenges [55] in their application to reacting flow prob-

lems. In particular, both methods have been shown to exhibit non-physical oscillations

and generally suffer from stability problems associated with the stiffness of chemical

kinetics and the associated high gradients [55]. Further details on the stability charac-

teristics of Galerkin and LSPG methods for problems of this type can be found in Huang

et al. [53].

2.3.5 Model-Form Preserving Least-Squares with Variable Trans-

formation

A more recent variant of the LSPG method of ROM formulations is the model-form

preserving least-squares variable transformation(MP-LSVT) [53]. The MP-LSVT for-

mulation uses a combination of approaches to improve the robustness of the ROM. The

variable transformation allows for symmetrization (and hence global linear stability) while

maintaining discrete consistency and structure preservation. Local stability is enhanced

using physical limiters. MP-LSVT allows one to represent the system state as a func-

tion of primitive variables qp. An additional normalization matrix H is applied to the

primitive variables to improve the conditioning of the system further as

q̃p(t) = qp +H−1Vpq̂p(t). (2.16)

We then define a state transformation function q : qp 7→ q, which maps the primitive

variables to their corresponding conservative form. This updates Eq. 2.5 as

dq(qp)

dt
= f(q, t). (2.17)

Here we note that the evaluation of the non-linear function uses a combination of con-

servative and primitive variables but is noted just as q for convenience. This leads to a

corresponding form of the residual as

26

r(qn
p) = a0q(q

n
p) +

s∑
i=1

aiq(q
n−i
p)

−∆tβ0f(qn, t)−∆t
s∑

i=1

βif(q
n−i, tn−i).

(2.18)

when this updated residual is applied to the minimization problem from the LSPG de-

scription,

Wn
p =

∂Pr(q̃n
p)

∂q̂n
p

, (2.19)

yields the test basis,

Wn
p = P[Γn −∆tβ0J]HVp (2.20)

where J = ∂f
∂qp

, and Γ = ∂q
∂qp

.

2.3.6 Hyper-Reduction/Sampling

While the above methods have shown recent success in improving the robustness of ROM

methods for combustion-driven flows, little computational savings are achieved purely

from the projection. Examining equation 2.9, we see the non-linear function f must still

be evaluated at the full dimension. A well-studied hyper-reduction method for this family

of ROMs is the discrete empirical interpolation method (DEIM). DEIM, introduced by

Chaturantabut and Sorensen [56], introduces an approximate form of the FOM non-linear

(f) function as

f(q̃) ≈ U(STU)−1ST f , (2.21)

where S ∈ RM×s is composed of s unique unit vectors. This sampling matrix selects

a subset of points to evaluate full non-linear function. U ∈ RM×d is an orthonormal

basis. Ideally, this will be generated by a POD decomposition of snapshots of the FOM

non-linear function f . However, in our cases we use the trial basis V. The trial basis has

been shown to produce a good approximation and significantly simplify pre-processing.

Gappy-POD [57] takes a very similar form but with the relaxation of the requirement

on the number of sampled points. The formulation then takes on a similar form with

the introduction of the Moore-Penrose inverse. Applying this to the residual of the FOM

27

Figure 2.3: DEIM solves residual at sampled points S and interpolates the unsampled points.

solution (Eqn. 2.11) we get the form

f(q̃) ≈ U(STU)+ST f , (2.22)

which describes an approximate form of the full residual from a set of sampled points

defined by S. Applying the sparse reconstruction to the non-linear equation residual we

recover

q̃n
p = argmin

q̃n
p∈Range(Vp)

||U(STU)+STPf(q̃n
p)||22 (2.23)

Which results in the test basis,

Wn
p =

∂U[STU]+STPf(q̃n
p)

∂qn
r

= U[STU]+ST
∂Pf(q̃n

p)

∂qn
r

= U[STU]+STWn
p (2.24)

Ultimately this form means that instead of evaluating the full dimensionM only a subset

of points f needs to be calculated.

[STWn
p]

T
[
[STU]+

]T
[SU]+STPf(q̃n

p) = 0 (2.25)

This is the source of the majority of expected computational savings from projection-

based ROMs and is visualized in figure 2.3.

28

Initial Sparse Sampling

The initial point selection S is computed using a GappyPOD plus eigenvalue method. [58]

This form of GappyPOD was shown to perform the best for problems of this type. [52]

The method first selects d elements using a rank revealing QR decomposition of the basis

modes U. However, because for a majority of ROMs the goal is the number of modes is

relatively small, this only finds the first k of s desired sampled cells.

The remaining cells are found via an eigenvalue method. Examining the L2 norm of

the sampling error

||[STU]+||2 = σmax([S
TU]+) =

1

σmin(STU)
(2.26)

We aim to leverage the method to minimize the sampling error by consecutively choosing

a row of U (or a physical degree of freedom) which maximizes the smallest singular value

(or equivalent eigenvalue) of STU.

Later in the thesis, we will discuss in-situ resampling. This resampling means that

the initial point selection is not as critical and thus the initial point selection is chosen

randomly. This significantly eases pre-processing of larger size cases.

Finally, we note that since multiple degrees of freedom (DOF) are located at each

physical cell, once a point has been selected, it cannot be selected again. That is to say,

a call selected by its DOF will include all DOFs of its cell.

2.4 General ROM framework and terminology

Three major components can be thought of as the components that most strongly affect

a developed ROM from a formulation perspective. These are the,

1. Choice of test basis: The choice of test basis W can be set as either Galerkin

(W = V) or Petrov-Galerkin (W ̸= V).

2. Quality of trial basis projection: The trial basis is generated from training data.

The quality of this training region thus has the greatest impact on this aspect of

29

any developed ROM.

3. Type of Sampling Strategy: A variety of methods exist to choose the sampling

points for hyper reduction. These various methods, especially for statically sampled

ROMs can greatly impact ROM accuracy.

2.5 Combustion Modeling

The results presented in this thesis are obtained using the General Equations and Mesh

Solver (GEMS) [59]. GEMS is an LES code that has been modified extensively for

research studies of reduced-order models. This section will review the governing equations

of the methods and note different representations of the equations. This is especially

important in the context of ROM methods, as the contrast in dense and sparse linear-

algebra techniques means that a less intuitive representation must be used to maintain

consistency in some cases.

The continuity, conservation of momentum, and total enthalpy equations take the

form,

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (2.27)

∂ρui
∂t

+
∂ρujui
∂xj

+
∂p

∂xi
− ∂τij
∂xj

= 0, (2.28)

and

∂(ρh0 − p)
∂t

+
∂ρujh

0

∂xj
− ∂uiτij

∂xj
− ∂

∂xj

(
λ
∂T

∂xj

)
− ∂

∂xj

(
ρ

N∑
l=1

[
⟨hl⟩DlM

∂Yl
∂xj

])
= 0,

(2.29)

respectively. Here ρ, u, p, T , and h0 represent the density, velocity, pressure, tempera-

ture, and total enthalpy respectively, λ is the mixture thermal conductivity; DlM is the

diffusion coefficient of species l into the mixture M . τij is the resolved viscous stress

30

tensor assuming Newtonian fluid takes the form

τij = 2µϵij, (2.30)

where

ϵij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
− 1

3

∂uk
∂xk

δij, (2.31)

with the bulk viscosity neglected.

Finally, in addition to these equations, any number of generic transport equations can

be coupled with this generalized form

∂ρYiui
∂t

+
∂ρujYi
∂xj

− ∂

∂xj

[
ρD

∂Yi
∂xj

]
= ω̇Yi

, (2.32)

Here we represent the scalar as a mass fraction Yi of some chemical species with a source

term of ω̇Yi
representing the production or destruction of that species.

2.5.1 Vector Form

While the above notation is convenient for interpreting a given conservation variable in

a coupled computational solver context, it can be helpful to represent the system in a

coupled fashion instead of the state vector, flux, and source terms.

∂q

∂t
+∇ · [f − fvisc] = h (2.33)

q =

ρ

ρux

ρuy

ρuz

ρh0

(2.34)

31

For completeness, these inviscid (f) and viscous (fvisc) fluxes are given in as components

in the x, y, and z directions.

f = fx + fy + fz (2.35)

fvisc = fviscx + fviscy + fviscz (2.36)

fx =

ρux

ρu2x + p

ρuxuy

ρuxuz

ρuxh0

ρuxYi

fy =

ρuy

ρuxuy

ρu2y + p

ρuyuz

ρuyh0

ρuyYi

fz =

ρuz

ρuxuz

ρuyuz

ρu2z + p

ρuzh0

ρuzYi

(2.37)

32

fviscx =

0

τxx

τyx

τzx

uxτxx + uyτyx + uzτzx − qx

−ρDv,zYi

fviscy =

0

τxy

τyy

τzy

uxτxy + uyτyy + uzτzy − qy

−ρDv,yYi

fviscz =

0

τxz

τyz

τzz

uxτxz + uyτyz + uzτzz − qz

−ρDv,zYi

(2.38)

where Dv is the effective velocity of the transport scalar Y due to diffusion.

The source vector h is given by

h =

0

0

0

0

ω̇Yi

(2.39)

33

2.5.2 Equations of State

For cases where reacting flow scalars are not present, the Navier-Stokes, continuity, and

energy equations are solved together with the equation of state.

p = p(ρ, T) (2.40)

this equation of state is close with the ideal gas assumption equation of state

p(ρ, T) = ρRT (2.41)

Here R is the mixture gas constant given by R = RU

MW
, where MW is the gas’s molecular

weight and RU is the universal gas constant.

2.5.3 Thermodynamic Properties

The thermodynamic state quantities of a given mixture computed via NASA polynomials

tabulated by McBride [60]. For a given species, the enthalpy can be given by

hi
RT

= − a1
T 2

+
a2
T
lnT + a3 +

a4
2
T +

a5
3
T 2 +

a6
4
T 3 +

a7
5
T 4 +

a8
T

(2.42)

For a given mixture of n component mass fractions (Yi) the mixture thermodynamic

quantity can be defined as weighted sums:

hmixture =
n∑

i=1

Yihi (2.43)

The total enthalpy used in the energy equation is then

h0 = h+
1

2
(ujuj). (2.44)

34

2.5.4 Empirical Transport Properties

In addition to the thermodynamic properties, the molecular transport properties are

required to compute the thermal conductivity λ, viscosity µ, and species diffusivity D.

The viscosity and thermal conductivity are computed as weighted sums of the constituent

species in a manner similar to that of enthalpy.

lnµ = AlnT +
B

T
+
C

T 2
+D (2.45)

lnλ = AlnT +
B

T
+
C

T 2
+D (2.46)

The constants (A,B,C,D) are tabulated for each species.

The mass diffusivity D of an individual species i into the mixture M is given by

Curtiss and Hirshfelder [61]

Di,M =
1− xi∑
m̸=i

Xm

Di,m

(2.47)

this combines the binary diffusion coefficients between the constituent species as modeled

by the Chapman-Enskog theory [62]. The binary diffusion coefficient of species i into

species m is given by

Di,m =
0.0266

p
[
σi+σm

2

]2
Ω

√
T 3

[
1

Mi

+
1

Mm

]
(2.48)

where the collision diameters(σ) of species are given in Angstroms. The diffusion collision

integral Ω comes from Nuefeld et al. [63] as

Ω ≜
d1

exp(d2T ∗)
+

d3
exp(d4T ∗)

+
d5

exp(d6T ∗)
+

d7
exp(d8T ∗)

(2.49)

with empirical constants

[
d1 ... d8

]
. The reduced temperature T ∗ is computed as

T ∗ = T

[
kB√
ϵiϵm

]
(2.50)

35

where kB is the Boltzmann constant and ϵi is a tabulate Lennard-Jones species energy.

2.6 Combustion Modeling

A majority of the work in this thesis are focused on the effects of reacting flow in both

full- and reduced-order modeling. To achieve this two models are leveraged, finite rate

(FR) chemistry and the flamelet progress variable approach (FPVA).

2.6.1 Laminar Finite Rate Chemistry

The finite rate chemistry model introduces additional transport equations for the chemical

species needed for a defined chemical mechanism. These additional transport equations

take the form,

∂ρYi
∂t

+
∂ρujYi
∂xj

= ∇ · [ρD∇Yi] + ω̇i. (2.51)

Here ω̇ is the production or destruction of species i, and D is the diffusivity of species i

into the mixture of the n total species.

The source terms ω of each of the species are calculated using a set of elementary

chemical reactions. The set is referred to as a mechanism. For a global set of N species,

they can be represented generally as a set of L reactions,

N∑
i=1

ν ′i,jXi ⇐⇒
N∑
i=1

ν ′′j,iXj for j = 1, ..., L (2.52)

where Xi is the ith species mole fraction and ν ′i,j and ν ′′i,j represent the stoichiometric

coefficients of the i-th species in the j-th reaction.

The net production rate ω̇i as seen in equation 2.51 is then given by

ω̇i =
L∑
i=1

[
[ν ′i,j − ν ′′i,j][kf , j

N∏
j=1

[Xi]
ν′i,j − kb, j

N∏
j=1

[Xi]
ν′′i,j]
]

(2.53)

where [Xi] is the concentration of species Xi and kf and kb are the Arrhenius rates of the

species consumption/production,

36

kf = AT be
−Ea
RT , (2.54)

where A is the rate coefficient, b is the temperature dependency exponent and Ea is the

activation energy for the reaction.

The corresponding backward reaction rate can be computed using the reaction equi-

librium relation

K =
kf
fb

(2.55)

The global set of reactions and the corresponding reaction rate constants are generally

empirically generated sets from experiments and the different mechanisms used will be

described together with the problem setups.

2.7 Turbulence Modeling

Favre-averaging ϕ̃(x⃗, t) is used for velocity u, enthalpy h, total enthalpy h0, temperature

T , and the flamelet transport scalars Zm, Zv, C defined as

ϕ̃(x⃗, t) =
⟨ρ(x⃗, t)ϕ(x⃗, t)⟩
⟨ρ(x⃗, t)⟩

(2.56)

where the mean quantities ⟨ϕ⟩ are defined over a time interval ∆t by ,

⟨ϕ(x⃗, t)⟩ = 1

∆t

∫ t+∆t

t

ϕ(x⃗, t′)dt′. (2.57)

The continuity and conservation of momentum and total enthalpy equations take the

form of

∂⟨ρ⟩
∂t

+
∂⟨ρ⟩ũj
∂xj

= 0. (2.58)

∂⟨ρ⟩ũi
∂t

+
∂⟨ρ⟩ũjũi
∂xj

+
∂⟨p⟩
∂xi
−
∂
[
τ̃ij − ũ′′i u′′j

]
∂xj

= 0, (2.59)

37

∂(⟨ρ⟩h̃0 − ⟨p⟩)
∂t

+
∂⟨ρ⟩ũjh̃0
∂xj

− ∂ũiτ̃ij
∂xj

− ∂

∂xj

(
λ
∂T̃

∂xj

)
− ∂

∂xj

(
⟨ρ⟩

N∑
l=1

[
⟨hl⟩

[
DlM

∂Ỹl
∂xj
− V c

i Ỹl

]])

+
∂ũiũ′′i u

′′
j

∂xj
−
∂⟨ρ⟩ũ′′j e′′

∂xj
= 0,

(2.60)

respectively. Here V c
i is the correction velocity for diffusion; λ is the thermal conductivity;

DlM is the diffusion coefficient of species l into the mixture M . In most flamelet-based

model implementations these thermal transport quantities are calculated online based on

the species composition provided by the flamelet table. However, the GEMS implemen-

tation recalculates these based on the current state and composition. τ̃ij is the resolved

viscous stress tensor assuming Newtonian fluid takes the form

τ̃ij = 2µϵ̃ij, (2.61)

where

ϵ̃ij =
1

2

[
∂ũi
∂xj

+
∂ũj
∂xi

]
− 1

3

∂ũk
∂x̃k

δij, (2.62)

with the bulk viscosity neglected. ũ′′i u
′′
j is the large-eddy simulation(LES) mean stress

modeled using the Nicoud Sigma model [64],

ũ′′i u
′′
j = τSGS

ij − 1

3
τSGS
kk δij = 2⟨ρ⟩νtϵ̃ij, (2.63)

where the Leonard and cross-terms are neglected [65]. The enthalpy equation unresolved

term is closed using the gradient-diffusion model using the turbulent viscosity and a

turbulent Prandtl number Prt approximated as .7;

ũ′′j e
′′ =

νt
Prt

∂h̃

∂xj
(2.64)

38

2.7.1 Sigma Turbulence Model

The Sigma turbulence model [64] models the sub-grid scale turbulent viscosity as

νt = (Cσ∆)2Dσ(ũ), (2.65)

where Dσ(ũ) = σ3(σ1−σ2)(σ2−σ3)

σ2
1

. Here σi are the singular values of the resolved velocity

gradient ordered greatest to least and ∆ is the local cell size. The differential operator

defines the subgrid-scale viscosity based on the singular values of the velocity gradient

tensor (g̃ij =
∂ũi

∂x̃j
). This model has been applied to other stabilized flame cases [66, 67]

and has shown favorable comparison for the relatively small computation cost compared

to transport equation-based methods.

2.7.2 Non-Premixed Flamelet Modeling

In addition to the finite rate model, for cases more affected by turbulent combustion ef-

fects, the flamelet progress variable approach [68](FPVA) model was utilized. The FPVA

model is derived from the steady laminar flamelet model. This model treats a turbulent

flame as an ensemble of laminar flames, assuming that the temporal scales of the reaction

are significantly faster and separate from the convective diffusive processes. Under this

assumption, turbulent effects only act to deform the flame front. While this may seem an

improper assumption, it has been shown that the non-premixed flamelet is valid below

Karlovitz numbers (the ratio of chemical to turbulent time scales) of 190. [69] This up-

per bound makes the steady flamelet model quite applicable to a variety of combustion

system, particularly in the low-Mach regime.

Considering the flame front as a deformed one-dimensional flame as an alternate

coordinate system along the mixture fraction space. This transformation leads to the

unsteady flamelet equation,

ρ
∂Yi
∂t
− 1

2
ρχZ

∂2Yi
∂Z2

= ṁ (2.66)

39

Figure 2.4: The S-shaped curve for GRI-1.2 methane-air kinetics with Tfuel = 300 and Tox =
300. Each point represents a single steady flamelet solution.

where χZ is the scalar dissipation rate is given by χZ = 2DZ |∇Z|2. A set of solutions

to the steady form of this equation can then be computed for various values of scalar

dissipation for a given chemical kinetic set. The different solutions of this equation

will form the ”S-shaped curve” parameterized by the system’s scalar dissipation and

stoichiometric temperature. An example of the curve for room temperature methane-air

combustion is given in figure 2.4

Examining these solutions, we can observe that there are potentially up to three rea-

sonable solutions for a given scalar dissipation. These correspond to stable burning (upper

branch), unstable burning (middle branch), and a non-reacting state (lower branch). A

mapping from the mixture fraction to the state properties can be proposed using this

S-curve. For the original steady laminar flamelet model [70], only the upper branch was

used with a direct parameterization of the scalar dissipation. However, this assumption

using the stable burning branch of the ”S-curve” is inadequate for partially premixed

flames. The FPVA model instead adds parameterization of the progress variable (C), al-

lowing access to all three branches of the S-curve. The progress variable can be specified

40

in various ways and indicates how complete a reaction is. The progress variable should

exhibit monotonicity as the reaction progresses. Thus the most common definition is that

of C = YCO2 + YH2O + YCO + YH2 which is the form used through out this thesis.

The individual flamelets were generated using FlameMaster [71] using the GRI-12

mechanism [72]. The flamelets were organized into a table for online computation with

an adaptive mesh in the reaction zone.

The flamelet tabulation all occurs offline. In the context of the governing equations,

the FPVA model reduces the n species equations into three scalar equations representing

the Favre-filtered mean mixture fraction Zm, mixture fraction variance Z ′′2, and progress

variable C.

∂⟨ρ⟩Z̃m

∂t
+
∂⟨ρ⟩ũjZ̃m

∂xj
− ∂

∂xj
⟨ρ⟩
(
D +

νt
Sct

)∂Z̃m

∂xj
= 0 (2.67)

∂⟨ρ⟩Z̃ ′′2

∂t
+
∂⟨ρ⟩ũjZ̃ ′′2

∂xj
− ∂

∂xj

(
⟨ρ⟩
[
D +

νt
Sct

]
∂Z̃ ′′2

∂xj

)
= 2⟨ρ⟩

[νt
Sct

∂Z̃m

∂xj

∂Z̃m

∂xj︸ ︷︷ ︸
Production

−CZ
νt
∆2

Z̃ ′′2︸ ︷︷ ︸
Dissipation

]
(2.68)

∂⟨ρ⟩C̃
∂t

+
∂⟨ρ⟩ũjC̃
∂xj

− ∂

∂xj

(
⟨ρ⟩
[
D +

νt
Sct

] ∂C̃
∂xj

)
= ⟨ρ⟩˜̇ωC (2.69)

where Sct is the turbulent Schmidt number, approximated as 0.7. Traditional flamelet-

based methods interpolate all thermo-chemical and transport properties from the gener-

ated look-up table at run time as seen in figure 2.5. However, in the GEMS implemen-

tation, only the species concentrations are updated. Because of the formulation of the

energy equation in total enthalpy form, the resultant temperature and transport proper-

ties are recomputed using the species. As a result, the solved system maintains energy

conservation but requires the computation of transport and thermodynamic properties

from the local species composition and total enthalpy.

41

Figure 2.5: Flamelet table contour of source in progress variable ˜̇ωC(s
−1) as a function of

mixture fraction mean and progress variable for a methane-air reaction.

42

2.8 Time-Integration

The GEMS solver is capable of using both first and second-order accurate time derivative

approximations. These are

∂q

∂t
=

qn+1 − qn

∆t
(2.70)

and

∂q

∂t
=

3qn+1 − 4qn + qn−1

∆t
. (2.71)

The numerical scheme used for the time-integration leverages a dual-time approach [73].

This approach introduces an additional pseudo-time derivative to the coupled equation

set.

Γp
∂qp

∂τ
+
∂q

∂t
+
∂(f − fvisc)

∂xi
= h (2.72)

Because Γp
∂qp

∂τ
→ 0 as τ →∞ we can express it in terms of the primitive state without

affecting the final result.

qp =

p

u

T

Yi

(2.73)

Expressing to solution state in terms of primitive variables is helpful from a practical

perspective. For example, computing the temperature from the enthalpy requires a New-

ton solve of the NASA polynomial, whereas computing the enthalpy from temperature

is purely algebraic. This dual-timestep variable transformation is key to the model-form

preserving least-squares with variable transformation (MP-LSVT) that is described in

section 2.3.5.

43

2.9 Summary

This chapter introduces the governing equations used in the thesis. As a starting point,

the ROM equations and methods by which a ROM is constructed from a general dynamic

system. However, this type of ROM still requires the evaluation of the non-linear govern-

ing function. Therefore, this “intrusive” ROM is integrated with an existing traditional

LES solver. This FOM solver is also required to generate the training data to construct

the ROM. The traditional combustion modeling equations are therefore explored and

detailed.

44

Chapter 3

Computational Scalability

3.1 Outline

The methods described in this thesis can become computationally intractable unless

close attention is given to the details of scalable implementation. Computational Fluid

Dynamics (CFD) solvers are generally highly tuned around the sparse ODE linear sys-

tem produced by spatial numerical discretization. In contrast to that, most data-driven

methods rely on dense linear algebra leveraging the entire system state at various time

instances. The FOM and the ROM solution have significantly different areas of influence.

In a traditional CFD solver, a single mesh points state is generally only relevant to the

surrounding cells. In contrast, each mesh point has a global influence in the context of a

projection-based ROM. A scripting environment can handle both paradigms(sparse and

dense) for the early development of these methods. However, as this work focuses on the

application of these methods to large-scale systems, a significant amount of effort needs

to be spent to implement these methods efficiently.

This chapter will focus on the offline pre-processing steps needed for a projection-

based reduced order model (ROM), as well as a variety of analysis techniques used in later

chapters. To overcome these challenges, software is required to enable these computations

at scale. While the work and tools presented may seem very matter-of-fact, almost all

of the results presented later would not be possible without the development of these

tools. PLATFORM in particular, can be considered an apparatus that has enabled a wide

variety of studies. PLATFORM acts as an abstraction that hides most parallel computing

45

challenges from the user, allowing them to focus on methodological development. This

ease of use has not only enabled the work within this thesis but also studies focused on

aspects of ROM development [52, 53] not pursued in this thesis.

Finally, success in ROM development has proved to be an extremely nuanced en-

deavor. The methods used to train trial basis are extremely sensitive to centering and

normalization choices. For a large-scale case a single decomposition might take many

hours to compute the required decompositions and test the online portion. PLATFORM’s

capabilities have, in many cases, reduced this to minutes. This ability to iterate rapidly

should not be underestimated and has allowed a number of best practices in projection

ROM training to be developed by other users.

This chapter will include portions of work previously published in [74].

3.2 Offline Pre-Processing

As we apply the ROM equation

WTV
dq̂

dt
= WTPf(q̃, t). (3.1)

The creation of the trial basis V is truly data-driven as V is almost always computed via

the Proper Orthogonal Decomposition (POD) of a data matrix.

3.2.1 Proper Orthogonal Decomposition

In practice, POD is usually achieved by calculating the singular value decomposition

(SVD),

A = UΣV T , (3.2)

where U ∈ RM×min(M,N) and VT ∈ Rmin(M,N)×N are the spatial and temporal modes

respectively, with their relative weights (in descending order) described in the diagonal

matrix S ∈ Rmin(M,N). In the following psuedo-code, I/O bottlenecks are shown in red,

memory bottlenecks are shown in blue, and compute bottlenecks are shown in cyan.

46

Algorithm 1 Proper Orthogonal Decomposition

for k ← 1 to N do
A[:, k]=unroll(a⃗k)
U ,Σ,V T = SVD(A,’econ’)

end for
for k ← 1 to N do

u⃗k=reshape(U [:, k],mesh)
end for

Most scientific computing packages (MATLAB/Python) have SVD solvers which are

very efficient. However, for large data sets, problems can arise in moving the data from

its output format to its respective column and then re-associating it with the desired data

format again. For our use example, we need to take mesh-associated data files and load

them into the required matrix form. This data matrix can reach a significant size and

becomes cumbersome and intractable on a single-machine system. Even on specialized

large-memory system solutions. In short, even if you had a scripting machine capable of

holding the data matrix in memory, the amount of time needed to read and write the

data combined with the sheer size of the data matrix SVD would make it a poor solution.

Method of Snapshots

As a starting point, there are algorithmic methods we can use to somewhat mitigate

these issues. For a majority of large-scale computation analysis, the number of snapshots

(M) is expected to be much less than the degrees of freedom (N), resulting in a tall,

skinny (M >> N) snapshot matrix. We can take advantage of this using the method of

snapshots to reduce the computational load. Instead of computing the full reduced SVD

of an M × N system, we can perform an eigen-solve of a symmetrized data matrix (A)

of size N ×N , which can have significantly lower computational cost.

ATAV = ΛV . (3.3)

When using this method, the columns of V of equation 3.3 are identical to the rows of VT

in equation 3.2 when sorted in descending order based on their corresponding eigenvalues

47

(Λ). The corresponding spatial modes can then be solved using the data matrix as,

ui =
1

σi
Avi, (3.4)

where vi is the ith temporal mode and σi is the corresponding singular value.

The MOS method is shown in algorithm 2

Algorithm 2 Method of Snapshots

for i← 1 to N do
for j ← 1 to N do

ATA[i, j] = unroll(a⃗i) · unroll(a⃗j)
end for

end for
V , Σ2 = eig(ATA)
for k ← 1 to N do

U [:, k]= 1
σi
AV [:, k]

u⃗k=reshape(U [:, k],mesh)
end for

The MOS method provides computational conveniences not present in the more formal

SVD. Memory-wise, The full data matrix A does not need to be stored. Compute-wise,

the eigen-solve of an N ×N matrix is usually cheaper than an SVD of an M ×N system.

However, when M → N the benefits of this method become negligible as the eigen-

solve approaches the same complexity as the equivalent SVD while still incurring wall

time costs of I/O as information from disk is needed at every loop iteration. Overall this

method is a trade-off. For problems that are sufficiently tall and skinny (M >> N), MOS

makes POD tractable in memory at a significant increase in the disk I/O requirement. As

a result, a majority of offline ROM preparation for smaller problems is conducted using

the MOS in a scripting environment (Python, MATLAB).

3.3 Computational Challenges

The underlying challenge in applying algorithms like those presented to large problems is

composed of two competing factors. The standard SVD method reduces the overall disk

I/O requirement at the cost of memory while MOS eliminates the memory requirement

48

while significantly increasing the disk I/O requirement.

3.3.1 Memory Problem

In an accurate 3D reacting flow simulation, one can expect meshes containing millions of

elements. For a reacting flow solver, there can be upward of 8 state variables at each mesh

element. Finally, robust decompositions of anywhere from 1,000 to 10,000 snapshots can

be required. This leads to the resultant data matrix (as visualized in Fig. 3.1) being,

A =M ×N =
(DOF × # of vars) × (# of snapshots)

(O(107) × O(102)) × O(10(3−5))
. (3.5)

Assuming data are being stored in double-precision floating-point arrays, the total mem-

ory cost can range up to

A = O(10(11−13) elements) ∗ 8bytes︸ ︷︷ ︸
double precision

= O(Tbytes). (3.6)

Even with large memory nodes available on high-performance computing (HPC) systems,

scripting resources will be limited to the single node’s computing capability. Here lies

the fundamental trade-off of this problem. We need a solution that leverages available

resources to minimize wall time while processing a very large data set.

3.3.2 I/O Problem

The second major bottleneck is loading data onto a distributed system efficiently. Even

if the other challenges (computing and memory) were resolved, reading and writing data

to and from the disk would dominate the wall time. This becomes especially important

when we consider the solution to the memory problem, the distributed memory setup.

The multiple processes will need to find and load subsets of the total system, but data

reads will be non-contiguous, with multiple processes needing access to different parts of

the same file.

49

Figure 3.1: Example of organization of simulation data into a discrete matrix. The 3D field
data at the tth time instance is re-arranged into a 1D vector, which corresponds to one column
of the data matrix A.

3.3.3 Objectives

As these challenges are present across all of the preliminary ROM studies a better solution

was required. This software tool needs be able to:

1. Perform large-scale (e.g. on matrices with O(1013)) elements) distributed memory

numerical linear algebraic operations relevant to data-driven decomposition and

modeling;

2. Optimize total wall-clock time of I/O operations and data transfer;

3. Enable fast prototyping and turn-around required by large-scale engineering prob-

lems;

4. Leverage resources used to generate the target data for pre- and post-processing;

5. Include adapter functions allowing the application to a variety of data formats;

The tool is designed to interface with data formats commonly used in computa-

tional engineering and allows efficient and economical data loading compatible with the

distributed memory format required by ScaLAPACK. This allows users who use high-

performance computing (HPC) resources traditionally used for online computations and

50

leverage those same resources to accelerate large-scale linear algebra operations (e.g.

reduced-order model development, modal decomposition, and sensor placement).

This software has developed into the Parallel Linear Algebra Tool FOr Reduced Mod-

eling (PLATFORM) software. PLATFORM should be thought of as an apparatus that

has enabled a vast majority of the results presented in this thesis, in particular the ap-

plication of ROMs to large problems.

3.4 Software Description

PLATFORM consists of two major components: The first, pMat, forms a generic wrapper

abstraction of the data format required by the ScaLAPACK [75] compute routines. The

second component, meta, acts as a translator between file formats and the distributed

matrix format required by ScaLAPACK.

3.4.1 pMat

To process the data matrix in distributed memory, pMat is centered around and driven

by the available parallel linear algebra tools. Both PBLAS and ScaLAPACK operate on

a MPI process grid which defines how processors are organized into a geometric process

grid. However, the more important aspects of the pMat object are the distributed matrix

information, including its global dimensions, the local blocking factor, and other informa-

tion used in the ScaLAPACK and PBLAS routines is contained in a matrix descriptor.

This blocking structure’s distribution is visualized in figure 3.2. The construction of these

non-contiguous memory blocks is abstracted by the pMat class.

3.4.2 meta

With the memory challenges addressed by distributed memory via pMat, the other major

challenge of I/O translation from the files to the distributed matrix. Serial methods for

loading the data into memory are inadequate. As shown in the example in Fig. 3.1, we

can see that usually the dataset can be loaded as contiguous columns of the desired data

51

Figure 3.2: pMat object containing local array and blocking information.

52

matrix. When the data is stored in the distributed data matrix, it is effectively disas-

sociated from the spatial domain and physical meaning. Within the pMat abstraction,

different variables or spatial locations are simple entries in the defined matrix. meta

keeps track of any associated pMat objects origins to allow the data to be re-associated

for visualization or output after any manipulations have occurred.

I/O

The meta class is built around taking advantage of the structure of individual files gener-

ated by most simulation software. Examining the block-cyclic distribution of the matrix

in Fig. 3.2, we can see that collective commands over the entire MPI communicator are

not required. In fact, for the case of a perfect square grid of MPI process only a small

subset of processors contain the elements of a given column (or file). To take advantage

of this locality during the loading process, each “column” of processes is separated into

its own sub-communicator. The “parent” process of each sub-communicator requests the

file, and reads it into memory, and distributes it throughout the column process distri-

bution. For a set of N files, the theoretical time spent reading or writing the files will

be N√
p
where p is the total MPI rank count. As a result, an “embarrassingly parallel”

speed up of the file I/O is achieved. A schematic of this process is shown in figure 3.3.

Additionally, because a smaller subset of processors is accessing each file, the demand

placed on the cluster file system is significantly reduced.

3.4.3 Dataset Metadata

In addition to controlling data I/O, the meta class also keeps track of the details of what

data is stored in the distributed matrix. For example, if the columns of pMat are a

combination of pressure, temperature, and density values, the meta abstraction encodes

this information. When reading or writing data stored in a specialized file format, meta

will pass this information to generate or recall the structure of those file types from the

distributed data.

53

Figure 3.3: Example I/O strategy for loading snapshots into memory distributed over four
process.

3.5 Data Formats Supported

The PLATFORM framework supports a variety of different data input and output for-

mats, which include dumping the desired data matrix to a single binary file, parsing

individual snapshot files corresponding to columns of the data matrix, and a serial-based

parser that maps a specialized data format onto the standard meta wrapper. The code

is designed to handle two primary data interfacing strategies.

1. Large matrix binary file

• The individual physical snapshots are pre-processed as a full group and the

desired matrix is dumped into a single large file.

• Easy to implement, fast I/O, large single files are preferred by cluster file

systems

• Significantly increases data footprint, limited ability to modify problem-specific

data

2. Set of files

54

(a) Binary set

• Similar format to large binary file, but individual columns of the data

matrix are split by file

• Allows for faster I/O, but for extreme cases, the number of files can become

a limiting factor

(b) Format-specific

• Allows problem-specific information to be extracted from a file with the

same Pros and Cons of binary set option

3.6 Performance

It must be noted that for this framework while performance is appreciated the overall

priority is making the problem tractable in memory with an I/O strategy that does not

unduly hinder execution. However, profiling can ensure the scaling of the I/O routines

is as expected. Scaling was tested on the ERDC Onyx cluster, configured with standard

nodes consisting of two Intel Broadwell E5-2699v4 for a total of 44 physical cores per

node utilizing the Cray Aries interconnect. More importantly, each node has 121 GBytes

of physical memory for this application. Strong scaling was tested using 16 nodes and

the results are shown in Fig. 3.4. A global matrix was written and read for each test

using MPI-I/O and meta. In Fig. 3.4 we show the scaling of the different I/O methods

described above. Here we observe the rough N/
√
p scaling for the ”batch” file I/O. This is

to be expected based on the I/O strategy shown in Fig. 3.3 where the total communicator

grid is split based on the corresponding file columns. Compared to a single file MPI-IO

call, we see significant improvement in speed, particularly in reading. This is primarily

due to the batch option taking advantage of the known structure of the file set. This

allows the data read to be contiguous compared with MPI-I/O. However, it is expected

that for very large file sets (> 1e6), the number of file queries may strain a cluster file

system retrieval server. So for extreme edge cases, the MPI-IO single file system may be

required.

55

Figure 3.4: PLATFORM I/O routine strong scaling(M=1e7 N=p*5) comparison.

3.7 Example Usage

While the performance and overall structure of the PLATFORM code are essential in

enabling ROM pre-processing, it is more important to remember how the abstraction

eases use. Various examples and tutorials were developed as a part of the PLATFORM

documentation, but we highlight two here that are most relevant to the ROM workflow.

3.7.1 Matrix Allocation

Matrix allocation of a dense matrix in a distributed setting is challenging to keep track

of global indices (the rows and columns of the global matrix) and local indices (the rows

and columns of the memory allocated on the local processor). Using raw ScaLAPACK

requires significant expertise to allocate the required memory buffers and descriptors. An

example of PLATFORM matrix allocation takes the form

1 int M = 2000;

2 int N = 100;

3 // initialize distributed matrix of size MxN with double -precision

zeros

4 pMat A(M, N, 0.0);

Listing 3.1: Matrix initilization

The pMat constructor will automatically determine the appropriate matrix blocking

factor and initialize the matrix descriptor and the local memory block. These additional

56

descriptors are required in determining each processor’s local scope and parameters for

the ScaLAPACK and PBLAS driver routines as shown in Listing 3.3.

Listing 3.2: Matrix initialization standard output

5 initializing Cblacs

6 Processor Grid M(cols)=2 N(rows)=2

7 local processor row 0 and column 0

8

9 Creating Matrix

10 M=2000 N=100

11 mb|nb = 50

12 Mat is Double

13 local elements 50000 of 200000 global elements

14

15 Descriptor type: 1

16 BLACS context: 0

17 Global Rows: 2000

18 Global Cols: 100

19 Row Blocking factor: 50

20 Column Blocking factor: 50

21 Process row where first row is: 0

22 Process Col where first col is: 0

23 Leading Dimension: 1000

24 Memory usage(data only) MB = (negligible <1 MB)

3.7.2 Driver Interfaces

In addition to pMat’s responsibility for creating and maintaining the distributed arrays,

it also contains wrapper functions for ScaLAPACK routines, such as the SVD. The

corresponding ScaLAPACK driver function for double-precision real-valued numbers is

pdgesvd, shown in Listing 3.3.

1 void pdgesvd(

2 // compute singular vector flags input

3 const char * JOBU , const char *JOBVT ,

57

4 // problem Size input

5 const int *M, const int *N,

6 // A matrix input

7 const double *A, const int *IA, const int *JA, const int *DESCA ,

8 // singular value output

9 const double *S,

10 // left singular vector output

11 const double *U, const int *IU, const int *JU, const int *DESCU ,

12 // right singular vector output

13 const double *VT , const int *IVT , const int *JVT , const int *DESCVT

,

14 // workspace info

15 const double *WORK , const int *LWORK , const int *ierr);

Listing 3.3: ScaLAPACK pdgesvd C interface

These inputs can introduce additional development time for those unfamiliar with

ScaLAPACK and distributed matrices. Additionally, the SVD routine requires allocating

workspace memory based on the matrix size and distribution. In PLATFORM, most of

these parameters and prerequisites are collapsed into simple pMat driver interfaces, which

reduce end-user workload. An example case of the abstraction, applying the SVD to a

matrix, is shown in listing 3.4.

1 int M = 2000;

2 int N = 100;

3 // init MxN matrix with zeros

4 pMat A(M, N);

5

6 //load in expected data

7

8 // initialize U, VT , and S

9 pMat U(M, min(M, N));

10 pMat VT(min(M, N), N);

11 vector <double > S(min(M, N));

12 A.svd(A.M, A.N, U, VT, S);

Listing 3.4: Example driver function using pMat

58

Such abstractions reduce the requirement of a user’s knowledge of distributed memory

operations to make the framework more user-friendly and flexible to extend to any appli-

cation. Among others, the SVD (p?gesvd), general dense matrix multiplication (p?gemm),

and QR decomposition (p?geqpf) have been added to pMat. (here ? can change based on

the operation precision, double vs. float) In addition to the simple wrappers of existing

ScaLAPACK routines, drivers can be easily implemented to achieve other operations. For

example, PLATFORM can calculate the pseudoinverse, a combination of the SVD and

a sequence of outer products. This calculation is critical in a variety of model reduction

techniques.

3.8 Summary

PLATFORM was developed primarily to enable a variety of work that requires high-

memory dense linear algebra. Its applications within this thesis include:

1. The offline pre-processing steps needed for a projection-based reduced order model

(ROM) (ubiquitous across all chapters).

2. The leveraging of this pre-processor for more general data-driven analysis tools

(Primarily used for the DMD analysis in chapter 4).

3. The integration of the dense linear algebra and load balancing capabilities into a

traditional sparse CFD solver. (Discussed in detail in Chapter 6).

59

Chapter 4

Dual-Swirl Gas Turbine Combustor

4.1 Outline & Introduction

Gas turbine model combustors (GTMC) have been a mainstay in laboratory investigations

of gas turbine combustor design and representative physical phenomena. The Dual-Swirl

Gas Turbine Model Combustor (GTMC), developed by Meier et al. [16] at the German

Aerospace Center (Deutsches Zentrum für Luft-und Raumfaht(DLR)), is a particular

combustor of this type. The past and present literature of this burner was described

in the introduction. Portions of the work presented in this chapter were previously

published [76]. As described in chapter 1, the goal of projection-based ROMs is to provide

the same capability in prediction as LES-type models at a fraction of the computational

cost. In this chapter, a traditional LES study of a gas turbine model combustor (GTMC)

is conducted and used as the full-order model (FOM) to construct a projection-based

reduced-order model (ROM).

4.2 Experimental Setup

The burner configuration is shown in Fig. 4.1. The setup consists of a combustion chamber

with a square cross-section connected to a single plenum via a fixed dual swirler assembly.

Dry atmospheric air is fed to the lower cylindrical plenum. The two swirlers are fed by

this common plenum with symmetric piping to the upper swirler. The lower swirler feeds

into a central converging nozzle (diameter of 15mm at nozzle termination), while the

60

Flame A Flame B

ṁair(g/min) 1095 281
ṁfuel(g/min) 41.8 12.3
Pth(kW) 34.9 10.3
ϕglobal .65 .75

Table 4.1: GTMC operating conditions.

upper swirler feeds a co-annular diverging section (outer diameter 25mm, inner diameter

17mm at burner face). The outer annular section smoothly contours to the bottom plane

of the combustion chamber. Un-swirled methane fuel is injected between the two swirled

air streams co-axially. The fuel injection ports are formed by stacking the two swirler

plates and fed by three radial fuel lines. The central nozzle terminates 4.5 mm below the

burner face. The combustion chamber is composed of a square cross-section (85 mm2)

with chamfered post corners with a total height of 110 mm. The chamber terminates

by contracting to a cylindrical chimney (40mm diameter), opening to the laboratory

atmosphere. The walls in the experimental setup are quartz to allow for optical access

with substitute walls with mounted probes. A representative flow field is shown in Fig. 4.2.

Two steady-state operating conditions are the target of this work. These two condi-

tions, referred to as “flame A” and “flame B” respectively, are shown in table 4.1. Flame

A represents a higher flow rate stable flame, while flame B is a more unstable flame shown

to exhibit a thermoacoustic instability at 290 Hz. In the experimental literature, a third

flame C was also considered; however, this operating condition was designed as a flame

with intermittent lift-off and flashback. In the scope of this work, we focus on the flame

A and B operating conditions.

4.3 Full-Order Model

In the context of the reduced-order modeling pursued in this work, the accuracy of the

full-order model relative to experimental data is not strictly relevant. However, from a

modeling perspective, it is desirable to show that the reduced-order model in replicating

the FOM would be able to validate well against experimental data. ROMs have not been

61

Figure 4.1: Burner schematic [6] (Left), stacked internal cutaway of swirler geometry(Center),
and external iso-surface (Right).

Figure 4.2: Representative averaged (Top) and instantaneous (Bottom) axial velocity fields
for the flame A configuration.

62

pursued on problems of this scale and complexity. Performing the simulation study as it

would occur in a traditional LES sense helps identify problems arising from the scale of

the data and LES solver.

4.3.1 Computational details

The Large-Eddy Simulations (LES) were conducted using an in-house CFD code, the

General Equations and Mesh Solver (GEMS) [59]. GEMS is a message passing interface

(MPI)-based parallel, second-order accurate in time and space finite volume solver. An

implicit dual time-stepping scheme is used, with Roe fluxes [77] and the Barth-Jespersen

flux limiter [78]. The numerical robustness of the solver allows for the resolution of near-

wall flow features while using high aspect ratio grids. The simulation was conducted on

Engineer Research and Development Center (ERDC) Onyx on 2200 cores. Each Onyx

node is composed of two 22-core Intel E5-2699v4 Broadwell processors for a total of

44 cores with 128 GBytes per node running on the Cray Aries interconnect. The case

was run with a physical time-step of one microsecond. The flame A simulation was run

for a total of 200 milli-seconds of real-time, accounting for approximately two hundred

characteristic flow-through periods of the combustion chamber or 70 periods for the entire

domain. The approximate wall time per flow-through period of the combustion chamber

was two hours.

The mesh comprises a fully structured multi-block topology with 7.5 million hexahe-

dral cells. The computational domain is shown in Fig 4.4. The lowest minimum angle

of hex elements is 24 degrees, which is limited by the geometry (the angle at which the

lower swirler vanes intersect with the core nozzle). Finally, the point spacing was al-

lowed to vary to limit the lowest quality elements to areas where reactions do not occur,

such as the plenum, upper combustion chamber, and chimney. As shown by previous

works [25, 23] the modeling of both the swirling vanes and air plenum of the combus-

tor is critical for accurate prediction. Because of this, the entire combustor geometry is

modeled. The only significant geometric modeling simplification was the fuel injection

nozzle. The 72 individual fuel injector holes were approximated as a circular slot with

63

Figure 4.3: Fuel injection detail (Left) and internal cell spacing at injector face shown in green
(Right).

Figure 4.4: Mesh schematic with selected slice locations (Left)and mesh mean filter width
slice (Right).

a matching area to accommodate the structured mesh (Fig. 4.3). The air and fuel in-

flow conditions were specified to match the experimental mass flow. In systems utilizing

swirler vanes, the swirler geometry is predicted to generate nearly all of the significant

turbulence. With this consideration, both inlets were specified as uniform velocities. The

entire fuel plenum consists of 3 feed lines arranged radially (Fig. 4.1). These were not

fully meshed; the fuel boundary condition is recessed from the approximated slot. The

outflow boundary condition was specified as a constant pressure set to atmospheric con-

ditions. The wall boundaries were set to be adiabatic with an enforced no-slip condition.

64

The overall mesh topology focused on clustering cells in the lower combustion cham-

ber. The minimum mesh spacing of ∆ = 0.1 mm was constrained by the smallest fea-

ture of the system, the fuel injector, resulting in ten cells across the fuel injector ports

(Fig. 4.3). A snapshot of the resulting mesh ∆ is shown Fig. 4.4. Fine cells are clustered

in the nozzle and lower combustion chamber regions. Because of the requirements of

multi-block meshing and a desire to optimize computational cost, some locations have

relatively coarse cells. However, these are limited to the upper corners of the combustion

chamber, chimney, and lower plenum.

4.3.2 Averaged Velocity Field

The time and root mean square (RMS) averaged velocity fields are examined as an initial

comparison between the simulation and experiment. A set of unsteady time realizations,

representing 100 characteristic flow-through periods, were used to compute the cell-wise

RMS and time averages. The resulting flow-fields are displayed for axial (Fig. 4.5),

radial (Figs. 4.6), and swirl velocity (Figs. 4.7) with the corresponding experimental PIV

measurement layered on the upper half of the contour. For a quantitative comparison,

profiles are extracted for the experimental and computational data sets at various axial

heights.

Flame A (ϕ = 0.65)

The overall structure is observed in all three dimensions with two areas of discrepancy.

These variations are most observable in the axial velocity (Fig. 4.5 which has a contour

line placed at the axial stagnation velocity). The first is the modeled height of the inner

recirculating zone (IRZ), predicted at 4 mm lower than found experimentally. This height

difference can be observed qualitatively from the contour and quantitatively in the h = 1

mm profile near the center line. This underprediction is expected in swirl-stabilized flows

and is consistent with previous computational studies [25]. This characteristic is due to

inadequate wall modeling near the nozzle termination. The second deviation is the pre-

diction of the tail-like structure of the recirculation bubble. In works focused on modeling

65

a vortex breakdown structure, a significantly finer mesh resolution is required. Interest-

ingly, despite not correctly capturing the double tail structure of the recirculation bubble,

the center-line stagnation point matches the experimental observations. Examining the

extracted profiles, one can observe strong agreement in both time and RMS-averaged

quantities. Generally, because of the lower and smaller recirculation bubble, velocities

were computed as lower than experimental values in the near nozzle region and overes-

timated in the combustor’s upper region. Finally, the outer recirculation zones (ORZ),

the recirculation zone in the lower outer corners of the chamber, are predicted accurately

compared with the experimental values’ size, shape, and magnitude.

A majority of the observations in the axial velocity hold when examining the cor-

responding radial (Fig. 4.6) and tangential (Fig. 4.7) velocity fields. Both time and

RMS-averaged quantities correlate favorably with a relatively minor discrepancy in the

average radial velocity profile peak, which persists in all near-nozzle profiles. This is

expected to be due to inadequate wall spacing of the diverging nozzle section leading to

an underestimation of the radial velocity measurements due to the slightly slimmer inner

recirculation bubble.

Flame B (ϕ = 0.75)

In contrast to flame A, flame B averaged quantities significantly differ from the exper-

imental observations. Examining axial velocity, we observe similar deviations as flame

A but to a more significant degree. The outer re-circulation zones (ORZ) are still pre-

dicted quite accurately. However, the inner circulation zone (IRZ) is under-predicted

quite severely in both height from the nozzle and overall size. This is most observable in

the stagnation contour and profile comparisons in axial velocity (Fig. 4.8). Examining

the radial velocity, we see large deviations as the radial velocity is consistently under-

predicted. This consistent over-prediction of height and underprediction of the width

of the IRZ is likewise suspected to be due to inadequate wall modeling of the diverging

section. Because the mass flow and resulting velocities for flame A are up to three times

larger than flame B, it is suspected that for flame A the separation occurs relatively close

66

Figure 4.5: Time and RMS-averaged axial velocity comparisons: experimental data superim-
posed on upper half of combustor with lines at axial velocity equal to zero for the Flame A
configuration.

67

Figure 4.6: Time and RMS-averaged radial velocity for the flame A configuration.

68

Figure 4.7: Time and RMS-averaged tangential velocity for the flame A configuration.

69

to the beginning of the diverging section. However, the separation point for flame B can

be much farther down the diverging nozzle. In the predicted velocity field, the separa-

tion occurs much farther upstream than the experiment leading to the taller, slimmer

predicted IRZ. This may be compounded by combustion modeling effects that will be

discussed later.

4.3.3 Averaged Temperature and Mixture Fraction

For the dual-swirl GTMC, the two conditions, flame A and flame B represent significantly

different conditions [6]. Flame A corresponds to an acoustically broadband stable V-

shaped flame, while flame B corresponds to a self-excited thermo-acoustically unstable

case with a flat flame.

Flame A (ϕ = 0.65)

The mid-plane contours from the flame A case is shown in Fig. 4.11 along with extracted

profiles from the simulation data compared with experimental measurements. We should

note that the experimental spectroscopy values are spatially averaged, which can pro-

duce deviations compared with CFD-filtered quantities. Qualitatively, flame A shows the

characteristic V-shaped structure and compares well with the experimental profiles. A

caveat is that the height of the flame, like the IRZ, is underpredicted. This underpre-

diction can be observed in the relative overprediction in temperature near the burner

face. This under-prediction is most likely a combination of the nozzle wall modeling, adi-

abatic wall boundary conditions, and partially premixed reactions. However, the overall

characteristics of the temperature field are well captured.

Flame B (ϕ = 0.75)

For the flame B operating condition, the temperature contours (figure 4.12) show a flatter

flame compared to flame A; however, not nearly to the degree that is experimentally

observed. Examining the temperature profiles, the center-line temperature is significantly

overpredicted near the burner face by about 300 K. Additionally, the points far from the

70

Figure 4.8: Time-averaged (left) and RMS (right) axial velocity of flame B.

71

Figure 4.9: Time-averaged (left) and RMS (right) radial velocity of flame B.

72

Figure 4.10: Time-averaged (left) and RMS (right) tangential velocity of flame B.

73

Figure 4.11: Time-averaged temperature and mixture fraction field for flame A.

74

Figure 4.12: Time-averaged temperature (Top) and mixture fraction field (Bottom) for flame
B.

75

center line (20-30 mm) are significantly over-predicted near the burner face. This is

suspected to be due to the adiabatic wall conditions. Kraus et al. [18] showed that a

significant amount of heat is conducted from the burner face to the plenum oxidizer

streams. However, accurate material modeling of this effect is very challenging. This

effect is more pronounced in the flame B case, as the flat flame naturally leads to higher

temperatures near the burner face. Additionally, Chen [26] noted that modeling of the

fuel plenum pipe improved the prediction for flame B.

4.3.4 Mixture Fraction Temperature Correlation

The Flamelet Progress Variable (FPVA) model does not have additional source terms

to account for partially premixed flame conditions. Examining the correlation between

mixture fraction and temperature in the simulation vs. experimental spectroscopy mea-

surements can give quantitative insight into the consistency between the experimental

configuration and the simulation’s combustion model. This correlation for Flame A and

B is shown in figure 4.13 and figure 4.14, respectively. The LES values are Favre-filtered

values, while the experimental points are single-shot measurements. This filtering leads

to a much wider spread in the LES mixture fractions across all locations and is particu-

larly observable in 0-2 mm range. This is consistent with previous computational efforts

of this condition [25]. There are many points at low temperatures at various mixture

fractions for both flame A and B, which indicates a partially premixed flame. Despite

this, flame A shows relatively strong agreement. The higher temperature clusters (0-2

and 21-27 mm) represent the IRZ and ORZ, respectively, and are regions that are mostly

fully reacted products. Flame B, in comparison, features an ORZ region that is more

reactive, with a large temperature range, which is not captured by the LES other than

those confined to the adiabatic curve. However, as mentioned in previous sections, the

flame height in both cases is under-predicted, leading to a non-negligible error in the di-

rect comparison at h = 5 mm distributions. Despite no modeling terms for the premixed

regions of the flame, good agreement is found in flame A with some deficiencies in the

more premixed flame B. This is expected because of flame B’s lower mass flow rate; the

76

relative convection of the flow is reduced compared to the diffusive effects (identical for

both flames).

4.3.5 Unsteady PIV Comparison

While the simulation of the averaged quantities is relevant for design point characteriza-

tion, in the context of thermo-acoustic instability, it gives little insight into the underlying

mechanisms. For the DLR combustor, unsteady characterization was achieved using a

high-speed kilohertz PIV measurements. The key hydrodynamic and acoustic frequen-

cies can be isolated by taking specific points in the flow field. These measurements were

conducted at 10 kHz for Flame A. This region is shown in figure 4.15 and is centered

at the nozzle exit to examine the recirculation zones and shear layers present. These

three points of interest are the swirling JET, the inner shear layer (ISL), and the inner

recirculation zone (IRZ).

The comparison between the spectrum of the axial velocity probes of interest are

shown in Fig. 4.15. Flame A’s primary frequency is characteristic of the precessing

vortex core (PVC), an unsteady helical structure characteristic of swirling flows. This

structure is observed in the JET and ISL probes as they are far enough upstream for this

structure to develop. The IRZ probe, on the other hand, sits just above the burner’s face.

For the JET and ISL probes, the PVC frequency and amplitudes are consistent at about

1700 Hz. For the IRZ probe, however, we observe relatively broadband noise across the

frequency spectrum. Noting an earlier observation that the LES is under-predicting the

average recirculation bubbles height by about 4 mm, a second LES spectrum is added

with that offset which shows agreement much more in line with the experimental probe.

4.4 Dynamic Mode Decomposition

While single-point probes can directly compare experimental results, the nature of sim-

ulation data allows more comprehensive methods to be used. In particular, when trying

to predict the characteristic frequencies of large-scale structures, the resulting spectrum

77

Figure 4.13: Temperature vs mixture fraction scatter plots for experimental and CFD at
h = 5 mm for flame A.

78

Figure 4.14: Temperature vs mixture fraction scatter plots for experimental and CFD at
h = 5 mm.

79

Figure 4.15: Schematic of kHz PIV window with points of interest label (Top) power spectrum
of axial velocity of flame A comparison of points of interest (Bottom).

80

can be extremely sensitive to the probe location. Modal decompositions are a family of

methods that can gain additional insight by leveraging spatial data. Boxx [79] calculated

proper orthogonal decomposed(POD) modes which were able to visualize the PVC struc-

ture. It was later shown [80] that for systems exhibiting combustion instability, Dynamic

Mode Decomposition (DMD) [81, 82] can create more temporally consistent mode shapes,

which can both identify hydrodynamic and acoustic features. DMD extracts more physi-

cal representations of complex spatio-temporal structures than POD by constraining the

temporal modes to discrete frequencies. Details of this methodology for sampling choice

and formulation can be found in previous works [80, 83] but is summarized here.

This family of model decomposition methods begins by organizing the field data into

vectors of a snapshot matrix.

A =

[
a1 a2 . . . aN

]
∈ RM×N (4.1)

We define the data matrix and time advanced data matrix as,

A1 =

[
a1 a2 . . . aN−1

]
∈ RM×N−1 (4.2)

A2 =

[
a2 a3 . . . aN

]
∈ RM×N−1 (4.3)

For stability we form the similarity form of the time advancement matrix S, which

advances the data matrix A1 in time to A2

A2 = A1S, (4.4)

as

S̃ = UA2VΣ−1, (4.5)

where

A1 = UΣVT . (4.6)

In a similarity form, the eigendecomposition of S̃ approximates that of S.

81

S̃ = T̃∆̃T̃−1. (4.7)

The spatial modes (DMD modes) will be constructed as

Φ = UT̃. (4.8)

Using general decomposition form, we form the temporal modes Y as

YT−1
= VΣ−1T̃, (4.9)

The response corresponding to that mode can be computed as

Ri = ψiy
T
i . (4.10)

Applying this methodology to the simulation data, one can visualize the complex 3D

hydrodynamic features such as the PVC more effectively. Further, this analysis is more

robust to discrepancies in probe location as it is applied to the entire spatial field. In

addition to the core methodology, additional prepossessing using singular value truncation

and total-least squares (TLS) preconditioning as described by Kutz et al. [84]. This

prepossessing is significant in applying this combustor as the instability amplitudes are

extremely small (0.1% of mean pressure) and can be easily diluted by noise, especially

with the statistical limits imposed by the CFD run time.

4.4.1 Decomposition of high-frequency PIV measurements

DMD is conducted on the small high-frequency PIV measurements described earlier and

compared to the LES data set interpolated onto an identical mesh to compare the experi-

mental and computational decompositions directly. The same sampling rate and the total

number of snapshots used corresponded to the available simulation data. The resulting

spectra are shown in Fig. 4.16. Similar to the point analysis, good agreement was found

between the computation and experimental results. The PVC frequency is well identified

82

in both the interpolated LES and experimental data sets. Otherwise, the LES contains

a slightly higher energy level across the overall frequency space. This is suspected to be

due to the reflection of acoustic energy from the pressure outlet boundary condition.

Applying the same methodology to the non-interpolated 3D CFD dataset, we can

extract a 3D representation of this structure’s procession (Fig. 4.17), confirming the

existence of the PVC in the full-order model.

4.5 Reduced-Order Modeling (ROM)

At this point, we have conducted a traditional LES study of a complex combustor design

and validated the flame A case against experimental data. We now will attempt to

construct a projection-based ROM using the data generated for the flame A operating

condition.

4.5.1 Basis Generation

We now describe the procedure for generation of the desired trial basisV. For the reacting

flow problems exhibited in this work, the primitive solution vector is organized as

qp =

[
p u T Zm Z′′2 C

]T
. (4.11)

Each of the N solution snapshots gathered by evolving Eqn. 2.5 in time are stored as

columns of the complete data matrix as shown in Eq. 4.11,

Q =

[
q(t1) q(t2) . . . q(tN)

]
. (4.12)

Next, the reference state q (e.g. the initial condition snapshot q(t0) or a time-averaged

field) is subtracted from each snapshot, and the resulting matrix is normalized by the

diagonal matrix P,

Q′ = P(Q− q1T), (4.13)

83

Figure 4.16: DMD spectrum of flame A axial velocity of the PIV data (Top) compared with
interpolated CFD data for flame A with mode shapes corresponding to PVC peak visualized
for axial velocity(Middle) and transverse velocity (Bottom). Note the experimental window is
offset from the center line.

84

Figure 4.17: 3D DMD modes corresponding to PVC at 0 and .5 of total oscillation period,
the isosurface is placed at levels corresponding to 0.2 of the normalized max magnitude.

85

where 1 is a vector of 1s whose outer product with q acts to subtract the q from each

column of Q.

Choosing the normalization constants in P (or H for primitive variables) such that

the variables are scaled to similar orders of magnitude ensures that all variables are

considered equally relevant. Choices for computing these normalization constants include

the maximum absolute perturbation value and the L2 norm method described in [55].

The trial basis V is then formed using proper orthogonal decomposition (POD) ac-

cording to the minimization problem,

V = argmin
A∈RN×k;VVT=I

||Q′ −AATQ′||2. (4.14)

The solution to this problem is typically computed using the singular value decom-

position (SVD). When applied to datasets of this scale, the associated memory cost can

become extremely large, requiring specialized tools. For example, the basis generation

for this relatively small time series requires three matrices to be allocated in memory,

each of which is approximately 3 TB in size. To facilitate these prepossessing steps the

distributed memory linear algebra tool, PLATFORM, is used to generate these basis sets

for ROM usage.

The singular values quantitatively describe the cumulative energy content in the spa-

tial modes. This decay is quantified based on the residual power given by

Residual Power %(n) =

(
1−

∑i=n
i=1 σ

2
i∑

σ2
i

)
× 100%. (4.15)

However, as seen for the GTMC dataset (Fig. 4.18) there is no clear cut-off, and a

significant amount of modes is required to resolve a significant portion of the energy. By

computing individual variable PODs we can see that this is primarily driven by the low

decay in pressure. Further, decay characteristics are seen to worsen as the training region

is extended. Taken together, this presents a significant challenge for ROMs.

86

4.5.2 Reduced-Order Modeling (ROM) Results

Initially, we use an LSPG-type ROM applied to the Flame A configuration. The static

trial basis is generated over a time period of the 5ms described in the previous section

consisting of 5000 snapshots from t = 0.255 − 0.26s. This corresponds to roughly two

flow-through periods of the full computational domain, roughly three acoustic periods,

and 10 Precessing Vortex Core (PVC) hydrodynamic cycles. These LSPG ROM runs

proved to be unsuccessful as even within the training region they suffered from numerical

instability and deviated significantly from the FOM dataset (Fig. 4.20).

The LSPG ROM was unable to provide a stable model even within the training region.

Using the same trial bases we then applied the MP-LSVT method. The LSPG and MP-

LSVT ROM were both evolved using a 2nd order time implicit time integration scheme

consistent with that used for the FOM. The MP-LSVT method improves significantly in

terms of stability and is able to fully reconstruct the training region and advance beyond it

without suffering a numerical failure. The ROM performance is assessed using unsteady

field comparisons at two representative time instances as shown in Fig. 4.19. It can

immediately be observed that the overall dynamics within the basis generation region

are well-captured. However, regardless of the number of modes used (50 or 90), the

prediction shows significant deviation beyond the training region as seen in the smearing

and non-physical character of the unsteady field. This deviation is characterized by the

flow field “freezing” in place and the fine-scale features begin to smear.

In Fig. 4.20 and Fig. 4.21 the time traces of pressure and temperature are shown.

These probes correspond to the locations highlighted in Fig. 4.19. The improvement of

the MP-LSVT method over the classical LSPG method is observed within the training

region. Even with the relatively small number of modes, the method represents the

unsteady dynamics well in the training region, but errors accumulate, and a considerable

deviation develops in future state prediction (i.e. beyond the training data). Despite

this, the MP-LSVT method shows significant stability improvement over the LSPG as

we note the latter method is unable to reconstruct the training region due to numerical

87

instability.

4.5.3 A priori Projection Error Quantification

While the MP-LSVT offers improved stability, the fundamental limitation is governed

by the information lost by projecting on to the reduced basis, referred to as projection

error. This shortcoming is immediately apparent in the online ROM runs as they advance

beyond the training region The projection error outside the training region varies from

problem to problem but can be examined offline to observe the upper limit of any choice

of basis projected error. The error of the overall state can be quantified as,

Projection Error(t) =
||q−VVTq||2

||q||2
, (4.16)

with the spatial representation given as

Field Error(x, t) = |q−VVTq| (4.17)

These metrics are applied to the static basis trained over 5000 snapshots representing

5 ms. The results are shown in Fig. 4.22. The projection error within the training region

is significantly improved with increased dimension. The improvement is commensurate

with the general observations for ROMs that increasing the mode count will monotonically

increase the accuracy of the projection. Even with this improvement, outside the training

region, the error significantly increases and is insensitive to the variations in the number

of modes used. Even with significant increases in the training data, the projected error

reaches the same level as even smaller training regions. This can be visualized in the

field error (Fig. 4.24) as the maximum error in temperature is less than 100 K. However,

when projecting a snapshot beyond the training data, we see large deviations with errors

up to 1400 K. This error persists even with significant increases to the training region as

seen in Fig. 4.23. This represents a significant limitation of using a linear static basis in

a highly chaotic flow with multi-scale advective transport. Increasing the training time

will reduce the quality of the projection within the training region for a fixed mode count

88

as more and more information must be compressed into a series of linear modes.

Ultimately the projection error represents the best possible performance of a projection-

based ROM using the corresponding basis. The Kolmogorov N-width [85], describes this

worst-case error of a projection onto the best possible static linear subspace. For this flow,

the slow decay of the singular values (Fig. 4.18) signifies a slow decay of the Kolmogorov

N-width. Two significant limitations are tied to static basis ROMs:

1. To create an adequate projection basis a large FOM dataset is required;

2. The projection outside the training region can be deficient even with an extensive

training set.

The large dataset requirement is an issue from two perspectives. The requirement to

run a FOM to build a ROM that is only accurate within the training region defeats the

overall purpose of ROM development. Even with a very robust training dataset, there is

no guarantee that the projection basis will be adequate for a variety of conditions. The

proposed solution to mitigate both of these concerns is the adaptive basis method.

4.5.4 Adaptive Basis

While the MP-LSVT method improves the robustness and accuracy of the ROM within

the training region, the predictive capabilities (e.g., future-state prediction) are still re-

stricted mainly by the quality of the basis projection, as demonstrated in the previous

section.

Adaptive-basis methods (e.g. [86]) have the potential to address the challenge of the

slow decay of the Kolmogorov N-width. These methods aim to modify the linear basis

online to mitigate the projection error,

Vn
p ≜ argmin

Vn∈RM×k,q̃p∈RRangeV

∥Pr(q̃n
p)∥22 (4.18)

where r is the fully-discrete FOM equation residual defined in Eq. 2.18, q̃n
p = qp +

H−1Vn
p q̂

n
p , and q̃n−j

p = qp +H−1Vn−j
p q̂n−j

p This minimization problem is solved exactly

89

via the update

Vn
p = Vn−1

p + δ (4.19)

where the basis at time-step n−1 is adapted to n through an increment, δ ∈ RM×k given

by

δ =
[qn

p − q̃n
p](q̂

n)T

∥q̂n∥22
(4.20)

where qn ∈ RM represents the re-projected full-state information, which is evaluated

based on the FOM residual explicitly as

q(qn
p) +

l∑
j=1

αjq(q̃
n−j
p)−∆tβ0f(q̃

n
p , t

n)−

∆t
l∑

j=1

βjf(q̃
n−j
p , tn−j) = 0,

(4.21)

or implicitly

q(qn
p) +

l∑
j=1

αjq(q̃
n−j
p)−∆tβ0f(q

n
p , t

n)−

∆t
l∑

j=1

βjf(q̃
n−j
p , tn−j) = 0,

(4.22)

Here the application of q(qp) is the conversion of primitive variable state to conservative

state.

It should be noted that we adopt an alternate, and simplified formulation compared

to Peherstofer [86] by updating the basis based on the full-state information q evalu-

ated at the current time step, n, instead of collecting multiple time steps. We refer to

this formulation as the one-step adaptive-basis approach. The method of [86] requires

several matrix operations (e.g. SVD, pseudo-inverse) on the re-projected full-state infor-

mation (i.e. qn in Eq. 4.20) collected at multiple time steps during the ROM calculation.

Though these matrix operations are trivial for small-scale test problems (e.g. 1D or small-

scale 2D), they become challenging regarding implementation for the target large-scale

3D simulation in this work, especially on the CPU memory requirements to store the

information necessary for these matrix operations. Additionally, the simplified formula

90

presents a straightforward way to achieve basis adaptation without worrying about the

implementation for large-scale problems.

We now apply the methodology to the GTMC dataset. For the previous ROM cases

the predictive region begins at t = 0.26 s. An initial 20 mode basis, which will be adapted

through the run, is generated using the 20 snapshots of the FOM data t = 0.2599980−0.26

s. From a ROM pre-processing perspective, this is a significant reduction in training as

the static basis method leveraged a set of 5,000 snapshots spaced from t = 0.255−0.26 s.

The adaptive basis ROM is then run over the same predictive region as the previous static

basis ROMs for one millisecond corresponding to 2 PVC cycles. The basis is adapted at

every time step beyond the training region.

Comparisons of temperature and pressure traces are shown in Fig. 4.25 focused in the

predictive region. As noted previously, the static basis ROM degrades immediately upon

exiting the training region. In contrast, the adaptive basis ROM follows the low-frequency

behavior and replicates the high-frequency oscillation in both pressure and temperature.

We output two representative fields Fig. 4.26 at time instances noted in Fig. 4.25. The

coherent structures of the swirling flow show significant improvement with none of the

smearing behavior seen in the static basis method, representing a significant improvement

over the static basis. We additionally compare the field error using the relationship

% error =
qFOM − qROM

qFOM

× 100%. (4.23)

It should be noted that while the instantaneous fields are contours of temperature, the

error fields are shown for the full state q. We note the error is limited to regions near

the gradients of the flame. However, the maximum error does not grow significantly with

both time steps shown having a maximum magnitude of approximately 18%. This error

behaviour is expected to continue with error being limited to areas of local gradients.

This results in an offset of local mixing layer location while maintaining overall dynamic

evolution.

Overall, the one-step adaptive basis method overcomes both the Kolmogorov N-width

problem and significantly reduces the FOM data required. From an application perspec-

91

tive, the FOM run time is trivial (20 time-steps in this case), followed by switching to

the adaptive ROM. This speaks to greater practicality compared with static ROM, for

which, depending on the problem, significant resources must be spent on the FOM data

collection.

Adaptive basis significantly improves the predictive capability of the ROM as well as

the operational characteristics. The robustness of the MP-LSVT method combined with

the basis adaptation has shown good agreement with the full-order model. However, the

performance is enabled by the evaluation of the full-order model at every basis update

step. In fact, from a computational cost perspective, the adaptive basis ROM is more

expensive than if an equivalent FOM was conducted. This raises the question of what has

been achieved. The final piece that is needed to make these ROMs actually efficient com-

pared with their constituent FOMs is sampling-based hyper reduction methods. These

sampling methods and integration into the larger ROM framework will be discussed in

the following chapter. Even without the sampling the GTMC ROM is among the largest

projection-based ROMs conducted and has required significant method and operational

improvements to run.

92

Figure 4.18: Singular value decay residual for GTMC for various variable groupings for a 5000
snapshot training region (top) and training region lengths (bottom).

93

Figure 4.19: Instantaneous online ROM fields at 0.5 (Top) and 1.2 (Bottom) of total training
time with Fig. 4.20and 4.21 locations highlighted. Training Window: t = 0.255− 0.26s.

94

Figure 4.20: Pressure and temperature probes within flame front for various static basis
choices. Training Window: t = 0.255 − 0.26s. Probe location is probe 1 as visualized in
Fig. 4.19.

95

Figure 4.21: Pressure and temperature probes within flame front(Top) and plenum(Bottom)
for various static basis choices. Training Window: t = 0.255− 0.26s. Probe location is probe 2
as visualized in Fig. 4.19.

96

Figure 4.22: Static basis projection error for various mode counts for 5 ms training window
(left) and zoomed close to end of training (right).

97

Figure 4.23: Static basis projection error for 90 modes computed for various training lengths.

98

Figure 4.24: Full-order model (Left) temperature field compared with a priori static basis
90 mode projection (Right) at t = .2575s (Top) and t = .261s (Bottom) These snapshots
correspond to the identified time instances in Fig. 4.20 .

99

Figure 4.25: Pressure and temperature probes within the flame front (Top) and plenum
(Bottom) for static and adaptive basis reduced-order models compared with the full-order model
focused on the predictive region. Note that the training region of the static basis extends for
t = 0.255− 0.26 s.

’

Figure 4.26: Instantaneous online temperature fields for FOM and static and adaptive ROMs
with relative field error for the adaptive ROM.

100

Chapter 5

Adaptive Sampling: Predictive Capabilities

5.1 Outline

The previous chapter applied projection ROMs to problems of unexplored scale and com-

plexity. Unique computing challenges relevant to problem size were overcome, stability

was improved via the application of the MP-LSVT method, and predictive accuracy

was enabled with an adaptive basis method. The synthesis of these methods combined

with the scale and complexity of the problem represents another step in the application

of ROM methods to real problems. For practical use, however, it is obvious that the

missing piece, meaningful computational speed-up, is required

As discussed in the GTMC chapter, evaluating both the static and adaptive ROM

requires the evaluation of the non-linear function, which begs the question of what is

achieved by using the projection-based ROM. Until now, the discussions and results

shown for ROM-type methods do not generate any computational savings. Evaluating the

non-linear term f requires the full dimensional state. This is not a problem in projection-

based ROM development steps on linear time-invariant problems, as the operator defining

the system’s evolution can be preconditioned independently of the problem. Due to the

non-linear operator being fundamentally dependent on the current state, very little can

be done to avoid it.

This chapter will focus on the sampling required to achieve meaningful speedup and

consists of three parts.

• First, a description of the traditional usage of sampling methods for projection-

101

based ROMs is provided. The adaptive sampling method, which integrates the

general sampling method together with the adaptive basis method, is introduced;

• The adaptive sampling method’s capabilities will be presented on two sample prob-

lem types focusing on predictive accuracy and computational efficiency;

• Finally, some applications of the method to enhance existing simulation frameworks

are shown. The methods shown are meant to advocate for possible ROM use cases

in larger computational frameworks where a pure ROM may be undesirable.

This chapter will focus primarily on the method and accuracy of various applications

with the following chapter aimed at looking at the computational challenges of integrating

this method with a computational solver.

5.2 Review of Hyper-Reduction Methods

As a starting point, recall the traditional hyper-reduction methods introduced in chap-

ter 2. Fundamentally these are derived to overcome the “lifting” problem of the standard

ROM equation,

WTV
dq̂

dt
= WTPf(q̃, t). (5.1)

Even if a significant dimensional reduction is achieved via compression of the full

state q to the reduced state q̂ the full state must still be used to evaluate f at every state

spatial point. Given the evaluation of the component flux and source, terms dominate

a fluid flow solver; if the nonlinear term must always be evaluated at the full state, no

speed-up is usually be achieved.

Hyper-reduction methods eliminate this requirement by estimating the nonlinear func-

tion via a small subset of evaluated points. Mathematically this is represented via a sam-

pling matrix S wich selects degrees of freedom to evaluate. The ROM equation describing

the evolution of the reduced states for a statically hyper-reduced ROM is given by

102

q̃n
p ≜ argmin

q̃p∈Range(Vp)

||U[STU]+STPr(q̃n
p)||22 (5.2)

with a corresponding test basis of

Wn
p

∂U[STU]+STPr(q̃n
p)

∂q̂n
= U(STU)+ST

∂Pr(q̃n
p)

∂q̂n
. (5.3)

The ROM takes the form,

[STWn
p]

T
[
[STV]+

]T
[STV]+STPr(q̃) = 0, (5.4)

where the approximate state is given by q̃ = qcenter +HVn−1
p q̂. Recall that []p refers to

the primitive form of the vector [] and H is the corresponding normalization matrix for

primitive variables.

Static-sampled ROMs have seen remarkable success and have run up to 1000 times

faster with as few as 0.1% of the total mesh elements [52]. Additional computational

practicalities are also enabled in that the full state dimension can be avoided entirely

during the online computation portion. A simulation that might have required a cluster

scale system could be performed on a personal scale computer. Unfortunately, while

highly efficient, these methods have two significant drawbacks.

1. Regardless of the sampling method used, if the system dynamics diverge signifi-

cantly from the training region the sampling points chosen will be insufficient. This

type of deviation is very likely to occur in studies that vary the operating conditions

of the system;

2. The capability of the ROM to predict either in a predictive or parametric setting

is still limited by the linear static basis used in the offline step to generate the

ROM. Using a basis adaptation method with static sampling is not advisable, as

the sampled points are inherently tied to the training data.

Thus, the core concept of sampling-based methods is required to achieve computa-

tional efficiency of ROMs; Any proposed solution must work together with the adaptive

103

basis method described in the previous chapter and adapt sampling points as the prob-

lem dynamics change dynamically. The computational framework used to achieve this is

referred to as adaptive sampling.

5.3 Adaptive Sampling Method

5.3.1 One-step Adaptive Basis method

An adaptive DEIM method was first proposed by Peherstorfer [87, 86]. This method

introduced the idea of using successive low-rank updates to adapt the trial basis V. The

basis update was formulated to based on previous full-order model snapshots. More

recently, Huang et al. [88] proposed a simplified formulation compared to Peherstorfer.

Synthesizing the optimization problems from the adaptive basis (Eqn. 4.18) and hyper-

reduction (Eqn. 2.23) methods, a combined method would ideally optimize both the

sampling points and basis.

{q̃n,Vn
p ,S

n} ≜ argmin
q̃∈Rk,Vn

p∈RM×k,Sn∈RM×s

||U[(Sn)TU]+(S)TPf(qp)||22 (5.5)

The sampling matrix S ∈ RM×s is a section matrix that selects the degrees of freedom of

the full state used in the hyper-reduced ROM. The latent state q̂ and trial basis V are

likewise updated.

This least-squares problem form proves to be prohibitively expensive to solve directly.

Recall that any solution here must be repeated at every sampling update step. If the

sampling update is more expensive than the final sampled ROM, the method will be too

impractical. With this limitation, the basis and sampling points are instead updated

independently. This approach updates the reduced state q̂, the projection trial basis V,

and the selected sampling points S sequentially.

Basis Update

The adaptation of the basis V

104

Vn
p = Vn−1

p + δ, (5.6)

which is updated using the same method described in the adaptive basis method for the

GTMC

δ =
[qn

p − q̃n
p](q̂

n)T

∥q̂n∥22
, (5.7)

where q ∈ RM is the full state computed from the FOM residual. In the GTMC results

presented earlier, this adaptation occurs at every mesh point and, as a result, does not

provide computational acceleration. Thus the adaptive ROM is formulated to update the

basis at the selected sampling points during most iterations.

ST
n−1V

n
p = ST

n−1V
n−1
p + ST

n−1δ (5.8)

State Update

Combining this one-step update with the sampled ROM (Eqn. 5.4) we use the basis

update of the previous timestep to form the adaptive sampled ROM

[ST
n−1W

n
p]

T
[
[ST

n−1Vn−1]
+
]T
[ST

n−1Vn−1]
+ST

n−1Pr(q̃n) = 0, (5.9)

Where the evolution of the ROM to timestep n is defined by the updated sampling and

trial basis of the previous time step.

Coherence is a critical aspect discussed previously in the application of projection-

type ROMs to fluid flow problems. Problems that contain significant chaos, like reacting

flows, are challenging. From the perspective of representing the full state as a set of

linear vectors, it is immediately apparent that a highly chaotic flow significantly limits

the possible data compression. Additionally, hyper-reduction regions of rich local features

(such as shocks or flame fronts) are challenging as they may change the ideal sampling

locations. Huang et al. [88] proposed a method that incorporates non-local information

into the full-state estimates, which improves the accuracy of these methods for multi-scale

problems.

105

Thus we have two types of iterations. The first operates with a timestep ∆t where

the residual is evaluated only at the sampled points, and the latent and sampled states

are updated together via,

ST
n−1q(Sn−1

sampled state︷ ︸︸ ︷
ST
n−1q

n
p +S∗

n−1S
∗T
n−1q̃

n
p , t

n) +
l∑

j=1

αjS
T
n−1q(q̃

n−j
p)

−∆tβ0ST
n−1f(Sn−1

sampled state︷ ︸︸ ︷
ST
n−1q

n
p +S∗

n−1S
∗T
n−1q̃

n
p , t

n)−∆t
l∑

j=1

βjS
T
n−1f(q̃

n−j
p , tn−j) = 0.

(5.10)

Where the unsampled cell selection matrix is given by S∗ ∈ RM×M−s composed of the

points not contained in S. The second iteration operates with a timestep of zs∆t which

requires the evaluation of the full dimensional residual at every mesh point. This full-

dimensional basis update will coincide with the sampling update. The hyper-parameter of

zs directly defines the efficiency of the ROM as we aspire to evaluate the full dimensional

ROM as infrequently as possible. The formulation of this long and short timestep is

inspired by the scale separation of dynamical systems with high-frequency coherency

(hydrodynamic and flame features) contrasting with low-frequency coherent features (low-

frequency acoustics like those found in the GTMC).

ST
n−1q(Sn−1

sampled state︷ ︸︸ ︷
ST
n−1q

n
p +S∗

n−1

unsampled state︷ ︸︸ ︷
S∗T

n−1q
n
p , tn) +

l∑
j=1

αjS
T
n−1q(q̃

n−jzs
p)

−∆tzsβ0ST
n−1f(Sn−1

sampled state︷ ︸︸ ︷
ST
n−1q

n
p +S∗

n−1

unsampled state︷ ︸︸ ︷
S∗T

n−1q
n
p , tn)−∆tzs

l∑
j=1

βjS
∗T
n−jzsf(q̃

n−jzs
p , tn−jzs) = 0.

(5.11)

A schematic of how these time-steps works is provided in Fig 5.1. It is apparent how

the hyper-parameter zs interacts with the ROM method. As zs is increased, the number

of sampled iterations (Eqn. 5.10) relative to unsampled iterations (Eqn. 5.11) increases

thereby diminishing the number of times the full dimension non-linear function must

evaluate.

106

Figure 5.1: Visualization of the non-local time stepping.

Sampling Update

The sampling points S are updated via the minimization problem,

Sn ≜ argmin
Sn∈RM×s

||qn
p −Vn

p (S
T
nV

n
p)

+ST
n q̂

n
p ||22. (5.12)

Practically this is achieved by calculating the interpolation error e = qn
p−Vn

p (S
T
nV

n
p)

+ST
n q̂

n
p .

The error at each point is sorted by magnitude, and the first s points are chosen as the

new set sampling points. This point selection is quasi-optimal with regard to the upper

bound of the adaptation error. In practice, both this update and the basis adaptation

require evaluation of the full dimension residual. As a result, for all practical cases, we

adapt the basis and sampling points at the same time.

5.3.2 Linear Solver

To better illustrate how this ROM evaluation differs from a classical FOM we start with

a description of the GEMS solver when operating as a FOM solver. This is illustrated in

algorithm 3. In a finite volume solver, the state vector (pressure, velocity, temperature,

etc.) is collocated at each volume element. The evolution of the system can be defined

as

dq

dt
= f(q), (5.13)

107

The non-linear function describes how the system q evolves, which is defined by the

governing equations from chapter 2. For the full-order model, the evolution of each

element of q is defined by its local and surrounding states

This leads to the formation of a sparse linear system which describes the evolution

of M degree of freedom system. An iterative method is usually used to time march a

sparse system based on a non-linear function. The solution of the non-linear system is

approximated using a Newton method where J(q) = ∂f(q)
∂q
∈ RM×M is the Jacobian of

the nonlinear function f evaluated around the state q.

f(q+∆q) ≈ f(q) + J(q)∆q (5.14)

from an initial q the advancement of the state ∆q is solved via a linear system.

J(q)∆q = −f(q) (5.15)

The solved ∆q is used to update the current state via

q = q+∆q. (5.16)

Eqn. 5.15 and Eqn. 5.16 are iterated until the system is converged with the final state

representing the advanced systems qn+1. The previous timesteps are then updated, the

solution is advanced, and the next time-step computation begins. The overall structure

of the solver is described in algorithm 3.

With this overall solver structure in mind, we examine how adaptive sampling changes

this process. In the context of a FOM solver, each iteration and sub-iteration type

is functionally identical to the previous as far as the execution path. Every residual

calculation operates over the same degrees of freedom, and the computational complexity

is unchanged over the run-time. In contrast, the adaptive ROM uses three types of sub-

iteration with different memory access patterns. These are identified as the sampled ROM

iterations, the sampled basis update iterations, and the sampling and basis adaptation

108

Algorithm 3 FOM Solver Structure

Initialize Mesh X ∈ RN and state q ∈ RNstates collocated at each volume element
for t← t0 to tM do ▷ Physical time-step loop

for i← i0 to iM do ▷ Sub-iteration loop
for c← c0 to cN do ▷ Loop over cell volumes

R(q) = f(q, qt−1, qt−2) ▷ Calculate cell residuals
end for
∆q ← L(R(q)) ▷ Linear solve change in state from residual
q = q +∆q ▷ Update state for next sub-iteration

end for
qn+2 = qn+1 ▷ Update previous time-steps
qn+1 = qn

end for

iterations.

1. Sampled ROM iterations: During these iterations, the hyper-reduced ROM is

iterated, and the state at the sampled points (ST
n−1q̂

n) is updated. These are the

most computationally efficient sub-iterations and require no evaluation of the FOM

operator. During the initial window of reconstructive ROM, these are the only

iterations. After the initial window, these iterations typically represent half of the

total sub-iterations per full ROM iteration.

2. Sampled ROM basis adaptation: During these sub-iterations, the full state at

the sampled points ST
n−1q̂

n is updated. After the state is estimated, the basis at

these sampling points is updated using the one-step update process. ST
n−1V

n
p =

ST
n−1V

n−1
p +ST

n−1δ In short, the state and basis at the sampling points are updated

during these hybrid sampled iterations. However, these hybrid iterations are still

performed on the sampled mesh maintaining the computational savings.

3. Sampling and basis adaptation iterations: The final sub-iteration type is one

where the sampling and basis update for the full discretization is performed. This

will replace the Sampled ROM basis adaption sub-iterations on sampling update

iterations. These iterations occur at a frequency defined by the hyperparameter

zs. The ROM state is approximated at all the points. The basis is then updated

using the one-step adaptation, and the sampling points are reevaluated based on

109

their interpolation error. These iterations are the most expensive (on par with the

full-order evaluation); ideally, we aim to have as large of a zs as possible.

The overall interleaving logic of these iterations types is diagrammed in algorithm 4.

Algorithm 4 Adaptive Sampling Solver Structure

Initialize Mesh X ∈ RN and state q ∈ RNstates collocated at each volume element
Calculate initial modal coefficients from initial basis V and sampling points S
for t← t0 to tM do ▷ Physical time-step loop

for i← i0 to iM do ▷ Sub-iteration loop
for c← c0 to cN do ▷ Loop over cell volumes

if c is sampled then
R(q) = f(q, qt−1, qt−2) ▷ Calculate cell residuals if sampled

end if
end for
∆q ← L(R(q)) ▷ Linear solve change in sampled state from residual
q = q +∆q ▷ Update sampled state for next sub-iteration

end for
qn+2 = qn+1 ▷ Update previously sampled time-steps
qn+1 = qn

end for
if mod(t,zs) == 0 then ▷ Sampling and basis adaptation iterations

Approximate state at all points
Update the basis at all points
Calculate interpolation error at each point to select new sampling points

else
Approximate state at sampled points
Update the basis at sampled points

end if

5.4 Adaptive Sampling Method Results

The results and capabilities of the adaptive sampling method will now be exhibited. In

this chapter the focus is primarily placed on the predictive capability of the method.

Practically speaking the adaptive sampling method introduces a number of hyperparam-

eters that are compounded by those that are only relevant to the computer science aspect

of the work. Any concerns related to those parameters and the corresponding implemen-

tation and scalability of the method will be held until the following chapter. The following

results are executed on 2 MPI processes (two parallel memory-independent threads).

110

5.4.1 Overall Adaptive ROM workflow and pre-processing

The work flow of the adaptive sampling ROM is functionally identical to that of the

unsampled adaptive ROM presented in chapter 4. Like the unsampled adaptive ROM of

the GTMC, pre-processing requirements are significantly diminished due to the adaptive

nature of the method. As a result, the full-order model only needs to be run for a short

period to train the ROM. With the introduction of sampling compared to previous results,

an initial sampling set is required and computed offline using PLATFORM. Within static

sampling studies the choice of sampling point has a large impact on the accuracy of the

ROM. For the adaptive sampling method since the points are updated as the ROM

advances the initial choice is less critical.

The resulting ROM preparation is as follows:

• Offline

1. Save a small set of FOM state data

[
q1 ... qM

]
.

2. Calculate the centering profile q (average or initial condition) and the primitive

(H) and conservative(P) normalization constants

3. Calculate the trial basis V using the centered normalized field data using POD

4. Calculate the initial sampling points

5. Compute [STU]+ using the trial basis as the residual basis. (U = V)

• Online

1. Launch ROM using pre-computed quantities from the training region.

Similar to the GTMC results depending on the problem size and training region,

these pre-processing steps can be expensive regarding memory and are overcome using

PLATFORM.

111

Metrics and Hyper-Parameters

Before moving to the adaptive sampling exhibition, the hyper-parameters that can be

adjusted for each adaptive ROM case are considered. These parameters are part of the

online ROM execution and greatly affect the resulting ROM performance.

• k: The number of orthogonal vectors contained in the trial basis V. The truncation

of extra modes for static ROMs sets the predictive capability’s absolute upper

limit. However, with the adaptive ROMs significantly reduced training time, a

significantly higher energy content can be captured with a lower mode count than

static methods.

• s: The percentage of total points used for the hyper-reduction of the full dimension

M . As a baseline, this is usually chosen anywhere from 1 − 0.01%. A higher

sampling rate will generally correspond to a more accurate ROM at the expense of

evaluation time.

• zs: The number of iterations between each sampling update step. zs governs how

often the sampled state is used to estimate the full dimensional state, and more

importantly, from an efficiency perspective, the full dimensional FOM operator is

evaluated.

For completeness, it should be noted that two additional ROM hyperparameters exist,

the frequency of basis updates, and the number of DEIM modes. The basis is updated

at every iteration for all cases presented in this dissertation. The distinction, compared

with the unsampled adaptive basis method shown in the previous chapter, is that for the

hyper-reduced ROM, this update step has the same order of computational complexity as

the sampled ROM. This makes it anywhere from 10-1000 times faster depending on the

sampling rate and problem. Regarding the dimension of sampling modes (STU)+ ∈ Rd×s,

for all cases presented in this thesis, the number of sampling modes used is the same as

the number of trial basis vectors k.

To analyze the resulting performance of the ROMs two metrics roughly corresponding

to accuracy and efficiency are introduced. The first of these is the accuracy of the ROM

112

when compared to the FOM within the predictive region. This metric is similar to

the projection error used to analyze the quality of the projection in chapter 4 with the

distinction that it is comparing the L2 error of the ROM directly instead of the projection

of the FOM.

% Error =

[
1

MT

i=M∑
i

t=T∑
t

||q̃t
i − qt

i||2
||qt

i||2

]
× 100% (5.17)

T is the number of snapshots compared over the testing region, q̃ is the full state approxi-

mation from the reduced order model (q̃ = q+H−1Vq̂). This metric aggregates the error

between the ROM and FOM over the entire testing window. This quantifies the perfor-

mance of the ROM in terms of accuracy relative to the equivalent full-order model. The

convective type problems that are of interest to use have a variety of local features. As

these features propagate relatively small changes in convection speed between the ROM

and FOM can translate into extremely large errors. This leads to convective errors being

overemphasized relative to source terms. However, the L2 method is the most qualitative

method to evaluate the accuracy of the ROM.

To quantify the speed-up achieved by these methods, we compare directly with the

equivalent FOM.

λ =
tFOM

tROM

(5.18)

where tFOM is computational wall time of the full-order model and tROM is the equivelent

wall time of the reduced-order model. Wall time is the time, “clock on the wall,” of

execution measured from the start to termination of the “online” portion of the ROM.

For the rest of this chapter, these two metrics will express the relative success of ROMs.

Ideally, the aim is to have as large of a speed-up λ for a given error.

5.4.2 1D Propagating Laminar Flame

The first test case exhibited is that of a 1D flame. The setup has been used for ROM

performance and validation cases [55, 53]. The 1D flame is a relatively small problem

when compared to the scale and complexity of the GTMC. However, 1D propagation of

113

the high-gradient flame has been challenging for ROMs. The primary convective feature

has provided significant challenges for a static basis method. Additionally, the non-

linear term hosts the same complexity and numerical stiffness level as those seen in more

complex problems.

The computational domain of this problem consists of a straight duct 10 mm long

and discretized into 1000 elements. The domain is considered one-dimensional from a

physics perspective but is discretized as a set of two-dimensional quad (4-sided) elements

arranged in one dimension. The computational domain is visualized in Fig. 5.2.

The boundary conditions for the setup are slip walls for the upper and lower bound-

aries. The inlet and outlet are set via a specified characteristic boundary condition. A

perturbation of the acoustic characteristic is additionally imposed at the outlet to intro-

duce an oscillation as a sinusoid centered around the outlet pressure.

This perturbation is set as

pu−c = pu−c,ref [1 + A sin(2πft)] (5.19)

For the baseline case, an amplitude A = 0.1 and a frequency f = 50000 Hz. For the

reaction effects, the chemical kinetics are simplified. Instead of real species, the reactant

and product gases are treated as calorically perfect gases with identical thermodynamic

and transport properties. These values are a molecular weight of 21.32 (g/mol), cp = 1.538

kJ
kgK

,and µref = 7.35 × 10−4 kg
ms

. The reacting effects are achieved via the difference in

reference enthalpy between the product and reactant gases with a value of −10, 800 and

−7, 432 kJ
K
, respectively.

The solution is computed using the GEMS solver with second-order accurate dual

time-stepping formulation with a constant ∆t = 0.01 µs with ten inner sub-iterations.

Training

The FOM is initialized with a region of cold reactants and hot products with the interface

between them at 0.25L of the duct length at t = 0 µs. The FOM is advanced from the

starting IC to t = 25 µs. At this point, we begin the ROM training portion described

114

Figure 5.2: Computational domain for the 1D propagating flame: full domain (Top), zoomed
in view (Bottom).

above. The FOM is advanced 100 iterations leading to a training range from t = 25−25.1

µs. This training region corresponds to approximately 1/10 of the induced oscillation

frequency. The training set consisted of 10 snapshots, each 10 iterations apart.

From here, the normalization constants are computed from the recorded FOM states.

The initial condition of the training region is used to center the data, and the primitive

and normalization constants are calculated using the L2 norm method. As done previ-

ously, the velocity was normalized based on the velocity magnitude, and the species mass

fraction primitive states were normalized by 1.

The trial basis V consisted of two modes k = 2 and the initial point selection was

done using the GappyPOD+Eigenvalue method described in section 2.3.6. The set of

ROMs was initialized to run from the begining of the training period t = 25 µs to t = 60

µs. The ROMs were run with sampling rates s set to 1, 5, 10, 20, and 100 % of the

total cell count. These correlate to sampled cell counts of 10, 50, 100, 200, and 1000

of the total 1000 cell mesh. As a point of reference, an unsampled ROM would be the

equivalent of the 100% sampling rate. The number of sampled cells can vary slightly

based on the required additional flux and gradient cells added after the chosen core cells.

Finally, the adaptation frequency zs was tested for 2, 5, 10, and 20. Recall that a sampling

adaption rate (zs) of one would be the equivalent of solving the FOM, as the adaptation

115

requires evaluating the FOM operator at all mesh points. The computational efficiency is

gained via the reduction of cell evaluations. Thus, if we were unconstrained by accuracy,

we would want as small of a sampling rate (s) and as large of a sampling adaptation

frequency(zs) as possible.

Performance

To exhibit the dynamics of the flame, we visualize the evolution of the full-order model

within the testing period in Fig. 5.3. We can track the convection of the flame front as

it moves through the duct toward the outflow boundary condition. Additionally, we can

observe pressure oscillation within the duct and the interaction with the flame front as

kinks in the pressure profile.

To compare, we visualize the same time instances for the ROM (figure 5.3). The ROM

visualized is for the zs = 5 case with 1% sampled points.

This qualitative comparison shows a good agreement with the full-order model. To

more directly observe the accuracy, the various zs value profiles are plotted at t = 30 µs

and t = 60 µs in figure 5.5and 5.6 together with the FOM profile. t = 30s is 5µs from

the start of the testing period and t = 60 µs is at the end of the testing period. Here

the deviations of the ROM are more observable. As expected, as zs increases, we see a

greater deviation from the full-order model. For zs = 2, the ROM strongly agrees with

the FOM over the entire domain at both time instances. For zs = 5 the ROM shows good

agreement at t = 30µs but shows a phase shift when compared with the FOM by the end

of the testing period. This is remarkably similar to the behavior of the static ROMs on

the GTMC. However, the flame front convection is still captured quite well. For zs = 10,

there is a significant deviation in the region directly after the flame front. This error

takes the form of spurious oscillations and an offset of around 20 kPa. As the flame front

advances, these oscillations remain contained to the region directly after the flame front.

The zs = 10 case is also the only one showing significant flame front variation. At the

start of the testing region, the flame front matches for all zs values. At the end of the

training, other than zs = 10, all ROM flame fronts show good agreement. For zs = 10

116

Figure 5.3: Representative profiles for the 1D laminar flame propagation full-order model.

117

Figure 5.4: Representative profiles for the 1D laminar flame propagation reduced-order model
(Right). The reduced order model was trained from t = 25− 25.1 µs.

118

Figure 5.5: Comparison of different sampling update frequencies at t = 30 µs.

the flame front has begun to lag from the FOM solution.

So far, we have discussed the deviations of the ROM from a quantitative perspective.

Returning to the accuracy and efficiency metrics defined earlier, we now look at the

relative performances. The error and speed-up are plotted vs. sampling rate for various

zs values in figure 5.7. We observe that most of the computational efficiency is tied

to the sampling rate. This speed-up is multiplied at higher zs values as the number

of full-mesh FOM iterations is reduced. However, we observe in Fig. 5.5 and 5.6 that

at higher zs values, the accuracy of the ROM is compromised. Thus the general rule

of thumb is to improve the computational efficiency as much as possible via increasing

zs and decreasing the sampling rate but not so much as to compromise the predictive

accuracy. Like the unsampled GTMC previously discussed at a sampling rate of 100%,

unsampled, the sampled ROM is slower than the corresponding full-order model.

119

Figure 5.6: Comparison of different sampling update frequencies at t = 60 µs.

Figure 5.7: L2 Error compared with full-order model (left) and achieved efficiency (right) for
various sampling update frequencies and sampling percentage.

120

Comparison to Static Basis ROM

To further emphasize the capability of the adaptive ROM compared with the static basis,

we plot the state profiles of pressure and temperature in figure 5.8. Here, it is apparent

the static ROM cannot properly capture the dynamics, and in particular, the expected

convection of the temperature gradient is effectively stationary in the static ROM. On

the other hand, the adaptive ROM can predict the system dynamics successfully. The

adaptive basis method is critical for capturing dynamics beyond the training region for

convective problems. The static ROM in particular shows spurious oscillations both near

the flame front and near the outflow boundary condition.

Parametric Capability

To examine the predictive capability of the adaptive ROM, we initialize a ROM with a

modification to the outlet forcing frequency. Using the same training leveraged in the

previous 50kHz results, we run the ROM with a 200kHz forcing. The ROM can predict

this transient response well and captures the change in pressure wave in the domain. As a

result, this shows the significant capability of these ROMs for the many query applications

prevalent in the design environment. Considering the performance increase, we observed

in figure 5.7 5-10 times as many parametric ROM cases can be run in the same length of

time as a single full-order model.

5.4.3 2D Rocket Injector

The second baseline case we will use to evaluate the performance of the adaptive sampling

method is the 2D rocket injector. Similar to the 1D laminar flame, this case has been

used extensively in developing and quantifying ROMs [55, 88].

Problem Description

This geometry is representative of a simplified laboratory-scale rocket combustor. The

computational geometry is shown in figure 5.10. The system comprises a central oxidizer

121

Figure 5.8: Comparison of the adaptive ROM vs. Static and t = 30 µs and t = 60 µs, The
reduced order model was trained from t = 25− 25.1 µs.

122

Figure 5.9: Comparison of the adaptive ROM and FOM for a parametric case where the
forcing frequency is increased from 50kHz to 200kHz. Training Window: t = 25− 25.1µs.

123

ṁ kg/s T (K) Yi
Oxidizer 5.0 700 YO2 = 0.42, YH2O = 0.58
Fuel 0.37 300 YCH4 = 1.0

Table 5.1: 2D injector baseline operating conditions.

inlet with a coaxial fuel dump plane which terminates into a larger injector chamber.

The inflow conditions and mass flow are presented in table 5.1.

The overall conditions are characteristic of a laboratory combustor and correspond

to an adiabatic flame temperature of 2700K. The outflow is perturbed with an acoustic

oscillation of identical character to that used in the 1D laminar flame with an amplitude

of 0.1p̄ and frequency of 5000 Hz.

For the reacting physics, the finite rate chemistry model is used with a simplified

1-step methane oxygen reaction of Westbrook and Dryer [89] with a pre-exponentiated

factor reduced by order of magnitude. These correspond to A = 6.7× 1011 gmol
cm3

1−a−b
with

reaction exponents of a = 0.2 and b = 1.3.

CH4 + 2O2 → CO2 + 2H2O (5.20)

Each of the gases is considered a thermally perfect gas with their thermodynamic and

transport properties calculated via the NASA polynomial [60] and the Wilk and Mathur

transport coefficients [90, 91] as discussed in chapter 2.

The overall physical system has two primary dynamics. The first of these is reaction

physics characterized by the shear layer hosting a range of spatiotemporal scales due to

the reaction physics, eddy roll-up, and larger recirculation region near the backward-

facing step. In addition, the pressure signal forms a waveform corresponding to the

induced pressure oscillation from the outlet. In the context of a rocket injector, this

pressure oscillation is similar to the expected outflow condition from the larger rocket

combustion chamber. As a result of these interacting dynamics, the range of scales,

chemical reactions, and especially the resulting chaotic dynamics, this system makes an

excellent case study for predictive ROM development.

The full-order model was restarted from a previous FOM computation by interpolating

124

Figure 5.10: Computational mesh for the 2D rocket injector with point monitor probe iden-
tified with red circle.

the field onto a new partitioned layout of 2 processors. The computational domain

consists of 38,523 quad elements and, for a FOM solve, would nominally be partitioned

onto approximately 40 processors with O(1000) cells per process. For the baseline study,

the mesh is split among 2 processors with O(20, 000) cells per processor. For the 2D

baseline timings and efficiencies, the cases are run on a single ERDC Onyx node. Each

Onyx node comprises two 22-core Intel E5-2699v4 Broadwell processors for 44 available

cores.

The solution is advanced using the dual time-stepping formulation with a ∆t = 1 ×

10−7s for 0.0029s allowing any interpolation errors from the repartitioning to dissipate.

The training region is set from t = 0.0029 − 0.00291s, with a testing region from t =

0.0029−0.0049. A sequence of FOM snapshots of temperature and fuel mass fraction for

the testing region is shown in figure 5.11.

A similar training set is established using the same process as for the 1D benchmark

case. The FOM is run for 100 iterations saving every ten snapshots resulting in 10

snapshots at 1 × 10−6s intervals. These snapshots were then centered by the initial

condition and normalized. These ten snapshots produce 9 non-zero basis modes (due to

the initial condition centering).

For the baseline ROM we use 5 of these basis modes to construct the trial basis

V ∈ RM×k. The initial sampling points are selected with a 1% sampling rate. The FOM

and ROM are run with 10 sub-iterations per physical timestep, and half of the ROM

sub-iterations are used for basis adaptation.

125

Figure 5.11: 2D injector FOM representative dynamics with temperature (left) and methane
mass fraction (right) at various time instances.

Performance

Like the 1D case, the system evolution is compared qualitatively for a ROM with a

sampling adaptation rate zs = 10. In figure 5.12 we show the evolution of the temperature

field at the same time instances in the testing region as the FOM shown in figure 5.11

with the field error for comparison. We can observe identical dynamic features between

the FOM and the ROM, most notably the shear layer roll-up and convection downstream,

with local regions of high-temperature matching qualitatively. Examining the error fields

on initial impression, there are regions of significant error. However, most of this results

from convective features being offset spatially. This spatial offset, combined with the

sharp gradient of the reacting flow, leads to large spatial errors in these regions.

Figure 5.13 shows a probe monitor of the pressure signal for a more quantitative

comparison. The location of the probe is identified in Fig. 5.10. Here we see that the

ROM shows excellent agreement for both adaptation frequencies. In addition to the

expected oscillations from the outlet forcing, the FOM still captures non-periodic effects

126

Figure 5.12: 2D injector ROM temperature field (left) and error (right) for zs = 10. Training
region (t = 0.0029− 0.00291s).

as observed by the mean increase and decrease of the oscillations. These effects are due

to the combustion dynamics and are captured well. Finally, it must be noted that the

training region is 2% of the total test region. The information contained in the training

region is less and contains a tiny portion of even a single high-frequency cycle. This

feature makes the adaptive ROM attractive as the training requirements are very light.

We now quantify the total performance of the adaptive ROM for the hyperparameters

of the sampling rate and the sampling adaptation frequency. Figure 5.14 shows the L2

error (defined by the total field error over the training region) and the efficiency λ for the

various sampling rates at various adaptation frequencies. Here we observe that across all

zs values, the primary improvement in speed up is via the hyper reduction sampling. The

efficiency and field error increase as the number of sampling points is reduced. For both

zs = 5, 10, the field error remains less than 1% for the entire range of sampling rates. We

observe that at the higher sampling rate of 20, the error is significantly higher at almost

52%. This behavior is expected as if the sampling points are not updated frequently

127

Figure 5.13: Pressure signal comparison of FOM and ROM for various sampling adaptation
rates with a sampling rate of 1% in the predictive region. Training region (t = 0.0029−0.00291s).

Figure 5.14: L2 error compared with the full-order model (left) and achieved efficiency (right)
for various sampling update frequencies and sampling percentages.

enough, the build-up of error becomes too large for the full FOM evaluation to rectify.

As a result, for this type of adaptive ROM the key hyperparameter tuning is based on

choosing the lowest sampling rate and largest sampling update rate that allows the ROM

to remain predictive to achieve the greatest computational efficiency.

Comparison to Static Basis ROM

To show the behavior of the adaptive ROM (fig. 5.12) compared with a static basis,

we first execute a static ROM with the same training period as the adaptive ROM. In

figure 5.15, we compare a static ROM using the same training window as the baseline

128

Figure 5.15: 2D injector static basis ROM temperature with two modes with identical training
(t = 0.0029 − 0.00291s) as adaptive ROM (left) and 50 modes with training (t = 0.0029 −
0.00325s) (right).

adaptive ROM and 50 modes static basis trained from t = 0.0029 − 0.00325. Here we

observe the same behavior as in the GTMC. The static basis ROM can capture dynamics

within the training region but struggles significantly beyond this range. For the adaptive

type training, this causes the ROM to freeze effectively in place since it cannot replicate

the dynamics using 2 modes with such a small training window. For the longer training

window, similar to the GTMC, the static ROM can accurately capture the system’s

evolution until the end of the training reconstruction, where it freezes with some smearing

of fine-scale features.

For both the 1D and 2D cases, the adaptive ROM significantly improves predictive

accuracy. This is unsurprising as the basis adaptation method has already proven its

capabilities, as shown on the GTMC. The final piece, however is the application of sam-

pling to achieve computational speed-up relative to the FOM. Even with relatively high

sampling rates and sampling adaptation rates, the ROMs are able to stay reasonably

accurate and predict dynamics consistent with the FOM.

129

5.5 Tertiary usage of adaptive ROMs in larger frame-

works

Until now, the focus has been placed on the capability of the ROMs. The FOM LES

simulations have acted as the ground ”truth,” and the ROM methods are “successful”

when they can replicate the results and are practical if they also provide a meaningful

computational speed-up.

However, there are scenarios where FOMs cannot be eschewed. For example, high-

fidelity simulations often validate proposed physical models against experiments. In this

scenario, the use of projection-based ROMs would be unwise as the modeling error would

be indistinguishable from the ROM error (either projection or time integration error).

Alternatively, the use of high-fidelity simulation may be mandated by program require-

ments.

Within the work in this dissertation, high-fidelity simulations (LES) of the complex

GTMC system were conducted. After the required offline mesh generation steps were

completed, the online computation was started. The simulation was initialized using

relatively non-physical initial conditions and allowed to reach a statistically stationary

state. This initial transient contains very little useful information and in fact veils any

potential problems. In the GTMC case, these transients required equal resources as

the time period used to collect statistics. After an initial examination, it was realized

that some changes to the boundary conditions and the mesh were required. Thus the

entire transient had to be evaluated with the new setup. The transient can be somewhat

diminished by using previous calculations as the initial condition; however, depending on

the domain size and problem characteristics, these transients are still a waste of valuable

computational time. An example evolution of such “numerical” transient of this type is

shown in Fig. 5.16 for the 2D rocket injector.

Some more production-minded solvers have methods to alleviate this. The most

common is an in-situ mesh refinement. This method initializes the solver on an extremely

coarse mesh which diminishes the computational cost of this initial transient. However,

130

Figure 5.16: Temperature Contours of the 2D rocket injectors numerical transient from initial
conditions.

131

these methods are still fundamentally limited by the numerics of the physical system,

unlike projection ROMs. Additionally, it is unlikely that a coarse mesh would have

even close to the computational speed-up possible with ROM. The concept of in-situ

mesh refinement will be revisited later in the context of the computational challenges

associated with adaptive sampling.

5.5.1 Transient Acceleration: 1D Flame

A method using these adaptive ROMs to accelerate these computational transients is

easily envisioned. The potential error as a result of the sampling or projection error is

even less of a concern in these instances, so an even more computationally efficient ROM

can be constructed as long as they remain numerically stable.

To exhibit this capability we use the 1D propagating flame used previously. The

initial condition for this problem is a sharp flame front placed at 25% of the domain

length with a uniform region of pressure, velocity, temperature, and composition on

each end. The pressure oscillation is not present as it is introduced through the outlet

boundary condition as the flow develops.

We use the same procedure as the baseline predictive cases and train the initial ROM

basis on a set of snapshots produced just after the FOM initialization. The FOM solver

uses a ramping CFL number to ease any numerical instability due to the non-physical

initial conditions. We wait for this ramping to end and then take 10 snapshots over the

100 timesteps. We then initialize the ROM with a sampling rate s = 1% and a sampling

update zs = 20. Recall that the accuracy of this transient is not critical. The transient

response is plotted in Fig. 5.17 for the transient from the FOM and adaptive ROM. Given

the aggressive construction of the ROM the transient profile shows deviation from the

FOM that would be problematic from a pure prediction standpoint; however, trends in

the correct direction result in the same statistically stationary flow. For both for zs equal

to 5 and 10 the end of the transient region would be acceptable initial conditions which

were computed at 1/6th and 1/10th of the FOMs cost, respectively. These savings would

be even more significant for larger problems. However, more complex problems would

132

Figure 5.17: Example application of ROM to accelerate the initial transient of the 1D flame
problem.

presumably have much tighter robustness windows on the allowable zs value.

5.6 Summary

Adaptive ROMs are shown to be a powerful predictive tool to significantly reduce the

computational cost of modeling complex multi-scale transport problems. At a fraction

of the training requirements of classical static bases ROMs these adaptive methods are

capable of both predictive and parametric use. In addition to being a valuable stride in

the development of projection ROMs for use in predictive and parametric use.

133

Chapter 6

Adaptive Sampling: Computational Considerations

6.1 Outline

The adaptive basis method has shown a predictive capability far beyond that of static

basis methods. At the cost of periodic, full-order evaluations the basis and sampling

points are updated to allow greater stability and accuracy together with computational

efficiency.

The sampling update step in the adaptive sampling formulation requires evaluating

the FOM operator on the full mesh. This means that computationally both the sampled

and unsampled mesh must exist in memory. In the baseline implementation, these create

an additional hidden parameter in the form of the partition count. If we run on a small

number of partitions, we achieve the goal of reducing the computational requirement;

that is, a FOM that might require an HPC compute node could be downsized and run

as quickly as an adaptive ROM on a personal laptop. However, this will increase the

evaluation time of the sampling update step relative to running on the original larger

FOM processor count.

6.2 Description of Integration with Solver

In the previous chapter, we have described the algorithms and methods we wish to apply

to a reacting flow CFD solver. However, significant computational challenges must be

overcome to realize theoretical computational efficiency. This chapter will discuss the

134

computational challenge of integrating the scalable, adaptive sampling ROM method

into an existing CFD solver in conjunction with the strategies applied.

Let us first consider the computational methodology of the solver when solving the

FOM. The quantities of interest are at each discretization point for a given spatial dis-

cretization of a problem. These quantities are located on the volume ”cell” elements

for a finite-volume solver. The governing equations are applied to the mesh. This leads

to a system of ODEs that describes the evolution of the system. The resulting linear

system can then be integrated to predict the evolution of the physical system. Each

element (spatial discretization, application of governing equations, time integration) is a

significant area of study.

f(x) = fflux(q(x, x±∆x)) + fsource(q(x)) (6.1)

The changes in the state of a point are defined by the quantities of interest within

the state (usually represented as a source) and its surroundings (fluxes). This area of

influence is visualized in Fig. 6.2. As a result, the computational cost of modeling a given

physical system directly scales with the number of degrees of freedom (DOFs). These

high-dimensionality systems can emerge in two major ways. The first is a significant

number of degrees of freedom that can be present at each discrete physical point. Reacting

systems are an excellent example, as even relatively elementary reactions depend on many

chemical species. Alternatively, the system of interest may require a fine discretization to

represent the physical system properly. Turbulence modeling requires fine discretizations

to properly model the turbulent energy cascade, especially near physical walls. These

high DOF systems are extremely expensive to simulate as the required floating point

operations (FLOPs) often scale exponentially with additional degrees of freedom.

Most CFD solvers achieve scalability on high-performance computers (HPC) via do-

main decomposition. The physical mesh is decomposed into roughly equal partition

structures for a given computational domain (figure 6.1). Each partition is advanced

individually, with each processor taking on a fraction of the required DOFs. However,

to maintain the global solution a communication step between the various processors is

135

Figure 6.1: Example representation of a four-way partition of a 2D pipe junction.

required to allow information about physically local DOFs to influence each other.

6.3 Description of Existing Adaptive Sampling Method

There are two major loop structures as part of the implicit solve the time step iteration

and the sub-iterations of the linear solve using pseudo-time-stepping. The FOM algorithm

as outlined in the discussion of the adaptive sampling method (Algorithm 3). Here all

N cell elements of mesh X are iterated over to compute the corresponding residuals and

change in state q. The scaling is more apparent if we expand the residual calculation as

shown in algorithm 5.

Here it becomes more apparent how the number of computations scales with the

136

Algorithm 5 Residual Calculation

R(q) = f(q, qt−1, qt−2) ▷ Calculate cell residuals (2nd order time)
for f ← f0 to fN do ▷ Loop over Faces

flux = f(qL, qR) ▷ Compute flux face from the state of adjoining cells
flux = flux +f(qlneighbors, qrneighbors) ▷ Higher order flux
residualL = residualL − flux
residualR = residualR + flux

end for
for c← c0 to cN do ▷ Loop over Cells

residual = residual + f(qcell) ▷ Compute Source Contributions
end for

Figure 6.2: Example of the cell information needed to compute the residual of a given cell for
a 2nd order spatial scheme.

137

overall dimension of the mesh X as not only does the solver have to loop over each cell

to compute the source term, but it also must iterate over all the faces to compute the

flux contributions. In addition, we need to calculate the gradients for higher-order spatial

schemes such as the ones we will be using. The ultimate goal of model-reduction and,

more specifically, this work, hyper-reduction, is to reduce the number of evaluated cells

significantly.

6.3.1 Description of the Partitioning Strategy

For an HPC scale fluid solver, partitioning is critical. Practically speaking, the first step in

the workflow is partitioning a computational mesh composed ofN elements. In the GEMS

solver workflow, this is done using a METIS [92] based serial partitioner. The cell map is

sliced into P partitions with approximately N/P number of discretized elements on each

partition. Once this partitioned cell map is generated, the communication layout between

the adjoining partitions must be constructed. Generally, this communication layout can

be done in various ways depending on the solver stencil. A common way this is done

is via communication of an ”overlap” of cells on each partition boundary. This overlap

is visualized in figure 6.3. A spatial scheme operates gracefully using these overlapped

cells when evaluated at an owned boundary cell. Specific to our implementation of a

second-order spatial scheme, GEMS only utilizes one layer of ghost cells. The stencil

order is maintained by communicating the gradients of border cells in addition to the

state variables. This communication is shown in figure 6.4. Thus for our purposes, only

one layer of interface cells is needed. Other solvers might have different communication

paradigms.

The FOM algorithm can be expanded with realistic considerations as shown in al-

gorithm 6. Within each sub-iteration of the Newton method, the boundary fluxes and

gradients are communicated to adjacent processors as shown in blue. As a result, the con-

vergence of the local sub-iterations represents a convergence of the global linear system.

In an ideal case, this will lead to a computational speed-up of N/p as each processor has

a fraction of the degrees of freedom. In reality, the communication between partitions

138

Figure 6.3: Example partitioning: each processor has one layer of partition overlapped cells.

139

Figure 6.4: GEMS communication structure.

introduces a trade-off as increasing the number of partitions directly increases the cost

of the communications. This is generally refered to in parallel computing as “overhead”.

The source of this overhead can come from a variety of sources from both a computer sci-

ence (how the code was written) and hardware (how good is the silicon in your processor)

perspective.

6.4 Computational bottleneck: Load Balancing

Recalling the 2D baseline case, figure 6.5 shows the efficiency of the baseline ROM for 2

and 44 processors. The efficiency metric here is compared to the FOM run on 2 or 44

processors, respectively. Both show appreciable speed-up; however, it is apparent that for

lower sampling percentages, the speed-up achieved on 44 processors begins to saturate.

There are improvements in efficiency as the sampling update iteration operates at the full

dimension; however, the iterations evaluated on the sampled mesh will see diminishing

returns.

140

Algorithm 6 FOM Solver Structure with Communication

Initialize Mesh X ∈ RN and state q ∈ RNstates collocated at each volume element
for t← t0 to tM do ▷ Physical time-step loop

for i← i0 to iM do ▷ Sub-iteration loop
for c← c0 to cN do ▷ Loop over cell volumes

R(q) = f(q, qt−1, qt−2) ▷ Calculate cell residuals
end for
∆q ← L(R(q)) ▷ Linear solve change in state from residual
q = q +∆q ▷ Update state for next sub-iteration
Communicate state and gradient in partition halo

end for
qn+2 = qn+1 ▷ Update previous time-steps
qn+1 = qn

end for

Figure 6.5: Baseline implementation efficiency on 2 processors (right) and 44 (left) processors
for various sampling update frequencies and sampling percentages.

141

Figure 6.6: Visualization of relative processor load for 1D case 2D case on 44 processors.

It becomes clear that the baseline of the adaptive sampling methodology cannot scale

to larger problems in two ways. The sampling algorithms do not consider the compu-

tational load balance in their point selection. More often than not, the region with the

most sampling points is a relatively compact area in the overall computational mesh.

The partition communication pattern is not updated to account for the disjoint nature

of the sampled mesh. Mesh points that needed to communicate the full mesh partition

boundaries no longer need to communicate during the sub-iterations operating on the

sampled mesh.

The 44 processor case mean and standard deviation in the sampled mesh is shown

in figure 6.6. Only 1/4 of the processors have any meaningful computational load and

more than half have no work. Indeed under the worst-case scenarios 90% of available

computational resources will be wasted waiting for over-encumbered processors. The

computational mesh must be dynamically reallocated to the available computational re-

sources to achieve meaningful acceleration. The following sections will describe the overall

methodology and the context of the existing GEMS computational solver.

6.5 Load Balancing Framework

With the load imbalance visualized, we propose a framework to create a load-balanced

implementation of the adaptive ROM. This framework is expanded in algorithm 7 with

142

additional steps in red and visualized in figure 6.7.

Algorithm 7 GEMS Adaptive Sampling Solver Structure

Initialize Mesh X ∈ RN and state q ∈ RNstates collocated at each volume element
Generate companion DMPlex full mesh
Calculate initial modal coefficients from initial basis V and sampling points S
From initial sampling points filter and distribute sampled mesh
for t← t0 to tM do ▷ Physical time-step loop

for i← i0 to iM do ▷ Sub-iteration loop
for c← c0 to cN do ▷ Loop over cell volumes

R(q) = f(q, qt−1, qt−2) ▷ Calculate cell residuals if sampled
end for
∆q ← L(R(q)) ▷ Linear solve change in sampled state from residual
q = q +∆q ▷ Update sampled state for next sub-iteration

end for
qn+2 = qn+1 ▷ Update previous sampled time-steps
qn+1 = qn

end for
if mod(t,zs) == 0 then ▷ Sampling and basis adaptation iterations

Broadcast distributed sampled points back onto full mesh
Approximate state at all points
Update the basis at all points
Calculate interpolation error at each point to select new sampling points
From new sampling points filter and distribute sampled mesh

else
Approximate state at sampled points
Update the basis at sampled points

end if

To enable these additional steps, three core components need to be implemented.

1. Translation: With the host solver in mind, a method for converting the distributed

mesh values to a format amenable to load balancing is required. This step is needed

primarily to copy the data at the sampled points and prepare it for communication

via a message-passing interface (MPI). This translation step is also needed to copy

the distributed sampled mesh back to the original partitioned mesh for the full state

basis and sampling update.

2. Filtering: Once the data is properly formatted, the identified sampling points are

used to tag the required subset of points and deconstruct the unsampled geometric

elements. This recovers a sub-mesh that only contains those sampled points. This

mesh is still distributed according to the original partition scheme. This step is

143

Figure 6.7: Visualization of load balanced ROM flow path.

where significant memory savings are achieved. In addition to deconstructing un-

used elements, a subpoint mapping is generated, which maps the unsampled mesh

degrees of freedom to the sampled mesh. This mapping is used for data transmis-

sion between the entire mesh and sampled mesh and the transmission back to the

original full mesh for estimation and resampling.

3. Distribution: After being filtered the mesh is still hosted according to the original

partition layout. The distribution step takes those points and redistributes them

across all the available processors. After the sampled mesh has been distributed

a mapping between the filtered mesh and the new distribution is created. This

mapping is used to scatter the degrees of freedom of each cell volume to their new

host processor.

These three stages are visualized for a highly simplified mesh in figure 6.8. Here we

can see the full mesh split into two equal partitions. A subset of points is selected, most of

which fall into the lower partition. These points are filtered, and the remaining geometric

elements are deconstructed. Finally, the sampled points are redistributed between the

available processors.

144

Figure 6.8: Simplified schematic of various components of redistribution: full DMPlex mesh
(Top) filtered mesh (Bottom-Left) distributed mesh (Bottom-Right).

145

6.6 Implementation and Integration using PETSc

Fortunately, a wide array of available software can assist in our development of the

load-balancing method. Load imbalance is something of great concern to adaptive mesh

refinement (AMR) methods. In AMR methods, regions of high gradients are refined. A

load imbalance can be created as processors that have refined significantly will have many

more cells to evaluate than those that have not needed to refine or have been coarsened.

The sampled ROM effectively does the opposite with the same result. The overall load

balance is significantly compromised, with only a subset of the physical domain being

evaluated.

As discussed earlier, the GEMS workflow was built in the context of a traditional

computational fluid dynamics solver. In this scenario, the computational load does not

change during the run time, so the partitioning can be static and fully computed offline.

Directly leveraging this serial partitioner is insufficient and would require the full mesh

geometry to be accessible to all the processors. This memory requirement is untenable

and would completely offset any gains made by load balancing. As a result, the available

libraries and software packages that are capable of performing in-situ reallocation of the

mesh were inspected. Ultimately the Portable, Extensible Toolkit for Scientific Compu-

tation (PETSc) [93] was chosen. In addition to its more well-known linear and non-linear

solvers, PETSc has various tools to enable and ease distributed computing methods. In

particular, the DM mesh management system and, more specifically, the DMPlex unstruc-

tured mesh system was used. The overall methodology pursued is described in figure 6.8.

A ”companion” mesh is generated using PETSc objects during the GEMS solver initial-

ization. The PETSc sub-mesh generation and distribution routines are then called to

take the cells identified by the sampling algorithm and scatter them to all the available

processors. While developed for use in AMR methods, these routines are general enough

to be leveraged for acceleration via load balancing of the adaptive ROM.

146

6.6.1 PETSc Structures

PETSc is a highly comprehensive software package primarily used for its scalable linear

solvers. [93, 94] However, it also contains extremely powerful utilities that simplify solver

development on HPC. The following sections discuss the PETSc structures and strate-

gies for achieving the sampling load balance. A majority of the effort of this section is

associated with taking tools meant for AMR and “misusing” then in such a way that our

ROM implementation is improved.

DMPlex

The DMPlex object is the general structure used to host a distributed mesh geometry.

The DMPlex consists of a set of points on each processor. These ”points” are not physical

nodes but identifiers of physical discretization elements. These elements are what would

normally be considered mesh components. Those are cells, faces, edges, nodes in three

dimensions and cells, faces, and nodes in two dimensions. The connectivity of these

elements forms a directed acrylic graph(DAG) which allows traversal of the different

mesh elements. For example, consider a single 3D hex element. This element comprises 8

nodes, 12 edges, 6 faces, and 1 cell. A DMPlex object of this element would consist of 27

points, with point 1 corresponding to the cell, points 2-9 corresponding to the vertices, 10-

15 corresponding to the faces, and finally, 16-27 corresponding to the faces. A schematic

of this element is shown in figure 6.9. The order of points as cells, vertices, faces, and

edges is not strictly required. However, it is the default of PETSc and makes it easier

to discern a point type based on its value. In addition to this classification system, each

type of point can be accessed by its constituent points (cones) and supporting (points).

For example, in figure 6.9, the cone of cell one is composed of the six faces, and the cone

of one of the faces is composed of its constituent edges and so forth. This works the

opposite way with supports, with a face’s support being its attached cells. Finally, we

can traverse all of the connected points of a given point using its transitive closure, with

a cell transitive closure being all the faces, edges, and points that constitute it. This

allows relatively easy and intuitive traversal of mesh elements from a given point.

147

Figure 6.9: Schematic of DMPlex mesh.

The flexibility of the DMPlex object lies in how degrees of freedom (DOFs) can be

assigned to any point. This means they can be used for a finite volume type method

(with DOFs placed at cell centers and faces) or a finite element (DOFs placed at vertices).

To be clear, assigning DOFs does not allocate the memory needed to contain them but

instead informs the DMPlex where the DOFs will be located.

Vec

Accompanying the DMPlex is a Vec object storing the degrees of freedom. At any point,

a Vec object can be queried from the DMPlex. This vector will be a contiguous block

of memory containing all the DOFs corresponding to those associated with points in

the DMPlex. In the context of a fluid dynamics solver, the density, momentum, energy,

and scalar states are stored contiguously for each physical point. This is a significant

advantage over GEMS where each cell is an independent defined structure as described

above.

PetscSF

The final major component of PETSc we are leveraging to implement load balancing is

the PetscSF (star forest). This structure generically describes to the communication of

information between distributions of points. For our purposes, this is used in two ways.

148

Figure 6.10: Example schematic ”overlap” star forest.

1. The ”overlap” layers are needed to reconstitute the GEMS mesh structure. The

DMPlex objects described above can be considered independent mesh, each on a

different process. The SF for this is a companion to the DMPlex that describes

the partitioned cells. This structure is visualized in figure 6.10. This star forest

is designed to communicate the partitioned overlap cells, but for integration with

GEMS it is used to build the communication layout. In the context of the star forest,

a point is either a root or a leaf. Every point is considered to only be ”owned” on

a single processor. The point is considered the root, and all other copies are leaves

of that point.

2. The ”distribution” star forest is significantly different. This star forest is created

when PETSc redistributes an existing DMPlex object. The star forest, in this case,

describes every processor of where their point will end up if they are being rehosted

on a different processor. This is visualized in figure 6.11. In the load balancing

implementation context, we use this distributed SF to broadcast the state and

basis information to the destination processor and then copy the state and basis

information back to the original partition to execute the sampling update.

These three structures, DMPlex,Vec, and PetscSF are used to achieve the load bal-

ancing between sampling iterations.

Recalling algorithm 7 we use the PETSc objects to complete each of these steps.

At the code initialization, a ”companion” DMPlex is generated that directly maps onto

the GEMS mesh format. Once the first sampling adaptation step occurs, the sampled

cells on the FOM solver side are copied into the companion DMPlex object. At this

point, the companion mesh is identical to the full-order partitioned mesh. Following

149

Figure 6.11: Example schematic of the partition star forest.

this, the DMPlex is filtered to deconstruct unsampled elements and then distributed to

all available processors. From this point on, there is no guarantee of where any physical

point is located within the processor set. Using the distributed DMPlex we now generate

an equivalent sampled mesh format and copy the basis and state. The ROM then iterates

on this sampled mesh format until the next sampling update iteration. At this point,

the state and basis of the sampled mesh are passed back up the chain, from the sampled

mesh to the distributed DMPlex to the full DMPlex and back to the full partitioned mesh.

After this broadcast back to the full mesh the sampled mesh and corresponding DMPlex

objects are deallocated. The sampling update full FOM iteration then occurs and a new

set of sampling points is generated and the cycle repeats.

6.7 Results

Returning to the previous baseline cases with the newly established framework to examine

the achieved efficiency.

150

6.7.1 1D laminar flame

We start with the 1D laminar flame propagation case. A priori, we do not expect this

case to show significant speed-up with the addition of load balancing. The 1D case FOM

only has 1000 mesh elements and is partitioned into 2 parts. Therefore, each processor

will have negligible work or waiting time even during the adaptive ROM. Under these

circumstances, we don’t expect a significant improvement, making a poor test bed for

testing scalability. However, it makes an ideal case for verifying load-balancing imple-

mentation, particularly in verifying the intricacies of regenerating a GEMS-compatible

mesh structure.

With the framework in place, the components of the code to be timed are:

1. Calculation Time: These are local computations on the MPI processor. The

primary contributors are the evaluation of the residual, jacobian, and linear solve.

This component is where we expect to see the computational savings from load

balancing, as the cost of these operations is directly proportional to the local cell

count.

2. MPI Communications: In a MPI paradigm, communications refer to the mes-

sages sent between different processors. Referring back to figure 6.4 this is the time

spent sending and receiving adjacent partition cells’ flux and gradient components.

The act of redistributing the sampled mesh gives the partitioner the ability to cre-

ate disjoint graphs with no communication overhead. As a result, we expect to

see some improvement. However, because communications are a relatively small

portion (< 25%) of the runtime, the savings are not expected to be significant.

3. I/O: These refer to time spent writing fields or monitoring probes to disk. This can

be significant for bigger cases, but the load balancing is not expected to improve

this, and they are included for completeness.

4. Repartitioning: This timing is only relevant for the load-balanced ROM. This

includes the time spent filtering and redistributing the sampled mesh and the time

151

needed to send the states and relevant cell quantities to their new host processor.

The method’s viability is made here as any savings in the previous components may

be offset by the cost of the redistribution.

As with the baseline, the original efficiency metric used

λ =
tFOM

tROM

. (6.2)

An additional metric measuring the relative performance of the load-balanced ROM

compared to the baseline ROM is introduced

λLB,ROM =
tROM

tROMLB

, (6.3)

and overall performance of the load-balanced ROM vs. the FOM

λLB =
tFOM

tROM

× tROM

tROMLB

=
tFOM

tROMLB

(6.4)

With these timing components in mind, we examine the breakdown for the 1D laminar

flame case (figure 6.12). Starting the comparison to the FOM, both the load-balanced

ROM and FOM show significant speed up with λ = 5.8. The load-balanced ROM shows

minor improvement with a λLB,ROM = 1.02. These combine for a combined efficiency

of λLB = 6.0. The breakdown shows that the calculation and MPI cost for the load-

balanced ROM are reduced compared with the baseline ROM. However, these are almost

completely balanced by the time spent redistributing the sampled mesh.

This is not unexpected. Recall that the 1D flame case already struggles to provide a

significant computational load, as approximately 20 cells remain after sampling.

For higher values of zs (the frequency of sampling updates), the overall performance of

the load-balanced ROM improves significantly. For zs = 10 and zs = 20 a improvement of

λLB,ROM = 1.3 and λLB,ROM = 1.5 is observed, respectively. This outcome is consistent

with expectations as the primary cost associated with load balancing is the repartitioning

step. In all other components, an improvement in wall time is expected.

Finally, it should be noted that while a load balancing improvement of 1.5 over the

152

Figure 6.12: Timing breakdown of 1D Flame Case.

baseline ROM is a relatively minor improvement, it is multiplicative with the efficiency

λ. This leads to a combined efficiency over the FOM of λLB = 11.2 and λLB = 19.0

respectively.

With these observations in mind, the intent is now to apply the load-balanced ROM

to significantly larger problems where greater performance may be possible as we increase

the processor count.

6.7.2 2D Rocket Injector Load Balanced Performance

The load-balanced adaptive ROM is first compared with the baseline ROM the verify

consistency between the two implementations. The point monitor as identified in fig-

ure 5.10 is shown comparing the two implementations with a 1% sampling rate with a

sampling adaptation interval (zs) of 5. The two match exactly and are accurate within

floating point precision. A small amount of variation due to the non-associative property

of floating point addition is observed. Because the mesh points are distributed to various

processors the summation of the face fluxes is not guaranteed to be computed in the same

order.

To more clearly visualize this change of ownership, the feature outline of the full mesh

partitions is overlayed with the sampled mesh host process in figure 6.15.

Compared with the 1D example, the rocket injector has significantly more complex

153

Figure 6.13: Pressure signal comparison of FOM and ROM baseline and load balanced im-
plementation. Training window: t = 0.0029− 0.00291s.

geometry and resulting dynamics. The load balancing effect is visualized in figure 6.14.

Here temperature contours show the dynamic evolution of the flow field. Overlayed on the

whole mesh is sampled mesh colored by their host rank. This sampled mesh is observed to

change over time as expected, and additionally, we can see the various sampling ”blobs”

switch from process 0 to process 1.

With the results validated against the baseline ROM and the expected distribution be-

havior observed, the resulting performance is examined. The performances are quantified

in figure 6.16 broken down into component wall times.

First, comparing the performance of the FOM to the baseline ROM, a λ = 7.13 is

achieved for a zs = 5. However, when comparing the load-balanced ROM with the base-

line ROM, we see a λLB,ROM of 1.6. This, combined with the ROM improvement, leads

to combined observed efficiency of λLB = 11.8 when comparing the load-balanced ROM

with the FOM. We can observe that the compute portion of the wall time is significantly

reduced for the load-balanced ROM. Unusually, the relative efficiency between the base-

line and load-balanced ROM decreases with an observed λLB,ROM of 1.32 and 1.5 for a

respective zs of 10 and 20. Compared with the original FOM these efficiencies correspond

to a combined speedup λLB of 13.1 and 19.54 respectively. This is due to the relative

load balance of the sampled points before redistribution. For the current load-balanced

154

Figure 6.14: Dynamic evolution of 2D rocket injector: Contours of temperature overlayed
with sampled ROM points colored by MPI process.

155

Figure 6.15: Visualization of the change in ownership of sampled cells on two processes for a
2D rocket injector for a single sampling set.

Figure 6.16: Timing breakdown of 2D rocket injector case.

ROM implementation, the sampled cells will always be redistributed regardless of their

host processor. One would expect for the worst-case scenarios if the sampling update

produces a perfectly balanced sampling set, the load balancing would only hurt the per-

formance. The change in sampling update for zs = 10 and zs = 20 is observed to change

the initial balance of points compared with zs = 5, reducing the effectiveness of the load

balance. Ultimately, the load balancing improves wall time in every test case, even if it

does not provide a significant improvement.

6.7.3 Current Limitations & Proposed Improvements

Despite the performance considerations observed in the test cases, the load-balanced

implementation of the ROM is critical for reaching the theoretical efficiencies promised

by projection-based ROMs. The current implementation of load balancing suffers from

several deficiencies. Extending this method for extremely large 3D problems while not a

156

theoretical challenge requires a significant time investment to develop and test.

First, as a result of the GEMS solver idiosyncrasies, the memory requirement for the

solver, when operating in this way, is effectively double, with two copies of the entire mesh

and two copies of the sampled mesh being allocated at the same time. The load balancing

also continuously translates the mesh format between PETSc and the GEMS solver. A

significant overhead of the re-partitioning would be removed by having the solver operate

directly on the PETSc mesh data structure. This would also cut the memory requirement

of the method in half, which is critical for deployment on smaller personal computers.

The second major shortcoming is a deviation observed during the sampling adaptation

step. This is relatively minor in small cases but has been causing significant issues in

application to larger problems. The reason for the deviations is believed to be a result

of the load-balanced sampled mesh. The time integrator logic is visualized in figure 6.17.

If a previously unsampled cell becomes sampled during the update step during the first

ROM sub-iteration, the 2nd order time integrator will attempt to access the n-2 timestep

for that sampled cell. However, because the cell did not exist in memory during the

previous sampling cycle, the time integration cannot access it. This effect causes the first

sampled iteration after the sampling update to degrade to first-order accuracy in time.

Resolving this issue is non-trivial as it would require a priori knowledge of the sampling

update cells.

6.8 Summary

This chapter together with chapter 3 are primarily focused on the computational tractabil-

ity of projection ROM methods. While chapter 3 focused on the offline cost of ROM pre-

processing this chapter has focused on overcoming the challenges associated with adaptive

sampling methods. These methods are critical to achieving practical use in ROM but

introduce significant computation challenges. By applying tools developed for MPI scale

adaptive mesh refinement we are able to improve the efficiency of the adaptive ROMs

significantly. The gains are dependent on the sampling clustering but are generally any-

157

Figure 6.17: Visualization of the degraded time integration scheme.

where from 1.1 to 5 times faster. While this speed-up is fractional, when combined with

the inherent efficiency gains from hyper-reduction these methods are required to realize

the true potential of adaptive ROMs which can be 2 to 3 orders of magnitude faster.

158

Chapter 7

Summary and Conclusions

7.1 Contributions

This thesis investigated the development and application of projection-based reduced-

order models to multi-scale transport problems. Particular emphasis was given to the

grand challenge of providing accurate predictive fidelity at a fraction of the computa-

tional cost of full-order models. Projection-based ROMs have traditionally seen limited

application on significant scale and complexity flows. Historically, this family of ROMs

has been of limited utility in predicting convection-dominated and multi-scale problems

due to the limitations of linear projection. This thesis contribution demonstrates a sig-

nificant improvement in the predictive capabilities of ROMs for problems far beyond the

scale of those found in the literature. Here the conclusions of the various contributions

are highlighted.

Chapter 2 provides the computational basis for the contributions of this work. The

Large-Eddy Simulation (LES) methods used as the full-order model are presented. The

various turbulence and reacting flow models are discussed in detail. Following this, the

theoretical basis for projection-reduced order models is presented. Standard formulations,

most notably Galerkin and least-squares Petrov Galerkin, are discussed. The development

of the newer MP-LSVT ROM formulation is discussed to significantly improve the local

and global stability of ROMs of reacting flows. Finally, sampling methods critical to the

expected computational efficiency of ROMS are introduced.

Chapter 3 starts by describing the computational challenges in the required prepro-

159

cessing for projection-based ROMs, particularly the memory and I/O challenge for large

cases. Parallel Linear Algebra Tool FOr Reduced Modeling (PLATFORM) was developed

to address these memory and I/O challenges. PLATFORM leverages the ScaLAPACK

package with various I/O techniques to significantly speed up the required pre-processing.

Offline computations that could require days to complete are reduced to minutes. Be-

cause of the similarity in ROM preprocessing and modal decomposition techniques, the

tool provides similar efficiency gains for using general modal analysis. This efficiency is

leveraged on the large data sets of the two GTMCs studied to perform DMD analysis

and the required pre-processing for the companion ROM studies. In addition to enabling

work by various collaborators, this package has been made available to - and used by -

the ROM community in the form of an open-source repository.

Chapter 4 exhibits a large-eddy simulation (LES) of a methane-air dual-swirl gas

turbine model combustor using a flamelet-based approach. The simulation is validated

with experimental measurements. Averaged features, such as the recirculation bubble

and overall flame shape, are well captured. In addition, unsteady probe measurements

show a good correlation between unsteady effects in terms of power spectral densities.

The unsteady analysis is supplemented with dynamic mode decomposition comparison

to the experimental and computational results. The Flame A simulation, in particular,

shows a high degree of accuracy compared to experimental data and is used to develop

ROMs.

This full-order model is used as training and testing data for developing large-scale

ROMs. The MP-LSVT approach builds upon previous methods to significantly improve

the robustness of the ROM. This method improves global stability by minimizing the

discrete residual, guaranteeing symmetrization. This is augmented by using local limiters

to mitigate non-physical artifacts. These combine to significantly improve the ROMs

ability to reconstruct dynamics within the training region with L2 errors of less than

5%. However, due to the chaotic nature of turbulent combustion in the GTMC system,

a static basis approach is ill-suited for the predictive modeling of these problems. This

limitation is quantified via computation and visualization of the information lost due to

160

the static projection. Attempting to use a static basis method beyond the training region

will result in error spiking to values greater than 50 % and coherent structures becoming

non-physical.

An adaptive basis method is used, which leverages information from the full-order

model operator to update the basis and minimize this projection error. Using this method,

the ROM can predict the combustor dynamics far outside the training region and shows

improvement over static basis methods. In addition, this significantly reduces the ROM

training requirements, where the equivalent static basis ROMs require thousands of snap-

shots. This represents a reduction in training by a factor of 100-1000. This performance

comes at the cost of requiring evaluation of the FOM operator. This leads to a compu-

tational efficiency that is slower than the original FOM. Future efforts on this scale of

the problem will leverage the hyper-reduction to maintain the predictive accuracy of the

ROM while improving computational efficiency.

The major source of computational efficiency gains in projection-type ROMs is hyper-

reduction-based sampling. In chapter 5 an adaptive sampling method is presented to link

the predictive capability of adaptive basis methods with the efficiency gains of hyper-

reduction. The capabilities of this method are exhibited and quantified for a 1D laminar

flame and 2D rocket injector case. Adaptive sampling shows a high degree of accuracy

(less than 5% L2 error) and significant computational efficiency (3 - 10 times faster). In

addition to purely predictive ROM usage, parametric uses of the ROM are conducted

with significant improvement(less than 20% error) compared with static basis methods.

Finally, use of adaptive ROMs as accelerators of traditional LES workflows is exhibited.

The ROMs show the capability to accelerate numerical transients by orders of magnitude

to produce a more physical initial condition.

The computational bottleneck associated with the in-situ adaptation of sampling

points limits the ability to maintain efficiency as we increase the number of processors. In

chapter 6, an in-situ distribution methodology is developed to load balance the sampled

points across available processors to address this shortcoming. Higher levels of efficiency

are achieved by the in-situ balancing of computational load while simultaneously reducing

161

inter-process communication. This improvement comes at the cost of overhead associated

with redistributing sampled points. The improvement of this method is analyzed on the

baseline adaptive sampling cases. Overall across all cases, an improvement in efficiency is

observed, ranging from 2 times to 5 times. The implementation efficiency combines with

the overall ROM method to produce speed-up of 2 to 3 orders of magnitude relative to

the FOM. This improvement is problem dependent and directly proportional to the rel-

ative imbalance of the initially selected sampling points. Ultimately, the implementation

strategy at the HPC scale is just as critical as the ROM formulation to achieve significant

computational speedup.

This dissertation takes valuable strides in making ROMs more palatable for practical

problems. This is primarily done by synthesizing a variety of newly developed ROMmeth-

ods. The originality of the work is by taking these resulting frameworks and overcoming

a variety of computational problems associated with how the ROM methods interact

with traditional solver frameworks. Both online and offline aspects of these problems are

addressed and accelerated by as many as three orders of magnitude.

7.2 The Future of ROM-based Computational Solvers

This chapter, combined with chapter 3 places significant focus on developing and explor-

ing the scientific computing techniques needed to apply projection-based reduced-order

models to practical problems. Given the expertise gained during the development of the

ROMs, several recommendations for developing future ROM solvers for physical systems

can be made.

7.2.1 Pre-Processing

A major hurdle in this thesis was building a framework that supports taking FOM solver

outputs and processing them into ROM solver inputs. The data format, in particular,

can be extremely painful to navigate. Using a standard data format (e.g., HDF5) for in-

put and output fields is highly advised, saving significant development time and making

162

visualization of ROM quantities much easier. Leveraging in-situ processing (e.g., stream-

ingSVD) to the FOM solver significantly accelerated the development process. A mature

ROM solver should not require difficult pre-processing but instead, gracefully transition

from an initial FOM iteration to ROMs built from a few initial FOM time snapshots.

This structure would make ROM solvers functionally the same as FOM solvers from a

user standpoint.

7.2.2 Data locality

Spatially discretized codes commonly use abstraction structures that contain local vari-

ables. For example, a ”cell” object may have velocity, density, temperature, etc., as

components. This structure is common as it significantly eases the readability of code

and makes intuitive sense. FOM solvers then construct a sparse linear system from these

abstractions to advance the system. ROMs, conversely, are predicated on dense linear

algebra, and using this structure can reduce efficiency via the construction of the dense

system. Using a mesh data system like that described in Chapter 5, where discretized

data is stored contiguously, greatly alleviates computational considerations from recon-

structing linear systems. For clarity, consider the construction of the state vector. With

cell structures, we must first allocate the full vector and then copy the contents of each

cell to the vector. In contiguous data storage, the data is pre-arranged, and the cells are

identified via strides.

7.2.3 Sampling Redistribution

In this work, we used PETSc to redistribute the sampled ROM points. Fundamentally

we are using a tool designed for adaptive mesh refinement to serve our slightly different

purpose. A flaw in this is that the redistribution does not handle small voids gracefully.

If there are small gaps (1-2 cell widths) between sampling points, the partitioner cannot

distinguish if it needs to facilitate communication across these voids. A method to de-

termine this communication is required based on the sampling point, and informing the

partitioner would be quite valuable. The communication reduction of disjoint graphs is

163

not to be underestimated, especially as it scales to larger problems.

7.2.4 Trajectory of ROM Solvers

With the starting point of existing mature full-order model solvers for various physics,

we propose a trajectory for ROM usage/development.

1. ROM modules: Ultimately, projection-based ROMs still require the evaluation

of the full-order model operator (at a few sampling locations). As a result, testing

ROM solvers will be developed via modular attachment to existing physics-based

solvers. These are primarily used to evaluate ROM performance on new physics.

2. Hybrid Solvers: As discussed in this thesis, integrating the two solver paradigms

becomes critical as the focus of ROM development shifts from accuracy to efficiency.

Solvers developed with this mindset will be the first that can realize the efficiency

of ROMs while operating in a similar framework as FOMs.

• ROM methods in the context of heterogeneous architecture: Mod-

ern high-performance computing has pivoted heavily into hardware accelera-

tion capabilities. Communication on these systems is the primary bottleneck.

ROMs like those explored in this thesis can, in some ways, alleviate this, as the

disjoint graphs produced by hyper-reduction are extremely efficient. However,

ROM methods also have global coefficients accessed by all degrees of freedom,

negatively affecting computational gains. It will remain to be seen how these

factors compete.

3. ROM primary users: As these efficient ROM solvers become available, they

will likely take an important role in the design cycle. The major limiting factor

to this aspect is the uncertainty quantification of the produced results. Unlike

physics-based reduced-order models, there is limited physical intuition into the

errors that arise from ROM. A new generation of users will have to be able to

balance an understanding of the physical systems with the computational realities

164

of projection-based ROMs. The intricacies of ROM use would ideally take the

same form as current CFD engineers’ understanding of CFD solvers (e.g., spatial

discretization error, model-form deficiencies).

7.3 Avenues for future work

Data-driven reduced-order modeling of multi-scale transport problems of significant scale

is a grand challenge problem. Essential strides are made across various areas in this thesis,

but many challenges remain. Below are a variety of future avenues that the author feels

are critical in developing ROMs to reach the general user.

• FOM/ROM Combined Solver: Most ROM solvers are constructed as add-ons

to existing FOM solvers. This is understandable, as most ROMs are developed

to accurate existing FOM solvers. However, with the maturation of ROM meth-

ods, implementation is increasingly becoming the critical bottleneck. Because most

physical systems can be discretized using a sparse linear system, computational

solvers are designed around this. ROM methods require significant dense linear

algebra leading to unusual trade-offs within ROM modules built into existing FOM

solvers. A solver designed from the ground up to facilitate both FOM and ROM

paradigms would be an extremely useful tool to develop ROMs and reach the the-

oretical efficiencies promised by their formulations.

• Operational Studies of ROM solvers: The ultimate goal of ROM methods is to

allow access to the predictive capabilities of FOMs at a fraction of the computational

investment. However, ROMs can also be used as a companion to aid in FOM

analysis. An example of this is a ROM that could be used to accelerate the collection

of statistical data or perform a set of parametric studies with a FOM, then being

used to investigate those of the highest interest.

• Mesh Reliance: While providing significant online cost reduction, the ROMs

described in this thesis require the same preparation to initialize as the FOM. The

165

geometry of the problem of interest is discretized with a mesh, and ultimately, the

ROM methods are just as dependent on this initial step as the FOM. The FOM

is treated as the ground truth in this thesis, but ultimately, even a perfect ROM

would mimic any deficiencies present in the FOM. In the many-query application,

this preparation work is often automated. It would be interesting to see how these

ROMs perform on autogenerated or dynamically adapted mesh systems. This would

also make ROM methods more mature for practical use within an industry solver,

which often uses an autogenerated mesh.

166

Bibliography

[1] S. Nalley and A LaRose. Annual Energy Outlook 2022. Technical report, Energy

Information Agency, 2022.

[2] Sébastien Candel. Combustion dynamics and control: Progress and challenges.

Proceedings of the Combustion Institute, 29(1):1–28, January 2002.

[3] P. Weigand, W. Meier, X. R. Duan, R. Giezendanner-Thoben, and U. Meier. Laser

Diagnostic Study of the Mechanism of a Periodic Combustion Instability in a Gas

Turbine Model Combustor. Flow, Turbulence and Combustion, 75(1-4):275–292,

December 2005.

[4] M. Stöhr, Z. Yin, and W. Meier. Interaction between velocity fluctuations and equiv-

alence ratio fluctuations during thermoacoustic oscillations in a partially premixed

swirl combustor. Proceedings of the Combustion Institute, 36(3):3907–3915, January

2017.

[5] Christoph M. Arndt, Michael Severin, Claudiu Dem, Michael Stöhr, Adam M. Stein-

berg, and Wolfgang Meier. Experimental analysis of thermo-acoustic instabilities in

a generic gas turbine combustor by phase-correlated PIV, chemiluminescence, and

laser Raman scattering measurements. Experiments in Fluids, 56(4):69, March 2015.

[6] P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner. Investigations of

swirl flames in a gas turbine model combustor: I. Flow field, structures, temperature,

and species distributions. Combustion and Flame, 144(1):205–224, January 2006.

[7] Mallard E. Recherches Experimentales et Theoriques sur la Combustion des

Melanges Gaseux Explosifs. Ann. Mines, 8(4):274–568, 1883.

167

[8] John William Strutt Baron Rayleigh. The Theory of Sound. Macmillan & Company,

1896. Google-Books-ID: A7fvAAAAMAAJ.

[9] F. E. C. Culick. Combustion Instabilities in Propulsion Systems. In F. Culick, M. V.

Heitor, and J. H. Whitelaw, editors, Unsteady Combustion, NATO ASI Series, pages

173–241. Springer Netherlands, Dordrecht, 1996.

[10] F. E. C. Culick. A Note on Rayleigh’s Criterion. Combustion Science and Technology,

56(4-6):159–166, 1987.

[11] Boa-Teh Chu and S. J. Ying. Thermally Driven Nonlinear Oscillations in a Pipe

with Traveling Shock Waves. Physics of Fluids, 6(11):1625, 1963.

[12] Sebastien Ducruix, Thierry Schuller, Daniel Durox, and Sebastien Candel. Com-

bustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms.

Journal of Propulsion and Power, 19(5):722–734, 2003.

[13] Geo A. Richards, Douglas L. Straub, and Edward H. Robey. Passive Control of

Combustion Dynamics in Stationary Gas Turbines. Journal of Propulsion and Power,

19(5):795–810, September 2003.

[14] Dan Zhao, Zhengli Lu, He Zhao, X. Y. Li, Bing Wang, and Peijin Liu. A review of

active control approaches in stabilizing combustion systems in aerospace industry.

Progress in Aerospace Sciences, 97:35–60, February 2018.

[15] Michael Stöhr, Isaac Boxx, Campbell D. Carter, and Wolfgang Meier. Experimental

study of vortex-flame interaction in a gas turbine model combustor. Combustion

and Flame, 159(8):2636–2649, August 2012.

[16] W. Meier, X. R. Duan, and P. Weigand. Reaction zone structures and mixing

characteristics of partially premixed swirling CH4/air flames in a gas turbine model

combustor. Proceedings of the Combustion Institute, 30(1):835–842, January 2005.

[17] Christoph M. Arndt, Adam M. Steinberg, and Wolfgang Meier. Flame Extinction

and Re-Ignition in a Swirl Stabilized Prevaporized Liquid Fuel Flame Close to Lean

168

Blow-Out. In AIAA Scitech 2020 Forum, Orlando, FL, January 2020. American

Institute of Aeronautics and Astronautics.

[18] Christian Kraus, Laurent Selle, and Thierry Poinsot. Coupling heat transfer

and large eddy simulation for combustion instability prediction in a swirl burner.

Combustion and Flame, 191:239–251, May 2018.

[19] Adam M. Steinberg, Isaac Boxx, Michael Stohr, Wolfgang Meier, and Campbell D.

Carter. Effects of Flow Structure Dynamics on Thermoacoustic Instabilities in Swirl-

Stabilized Combustion. AIAA Journal, 50(4):952–967, April 2012.

[20] M. Stöhr, C. M. Arndt, and W. Meier. Transient effects of fuel–air mixing in a

partially-premixed turbulent swirl flame. Proceedings of the Combustion Institute,

35(3):3327–3335, January 2015.

[21] Patton M. Allison, James F. Driscoll, and Matthias Ihme. Acoustic characterization

of a partially-premixed gas turbine model combustor: Syngas and hydrocarbon fuel

comparisons. Proceedings of the Combustion Institute, 34(2):3145–3153, January

2013.

[22] Axel Widenhorn, Berthold Noll, and Manfred Aigner. Numerical Characterisation

of a Gas Turbine Model Combustor Applying Scale-Adaptive Simulation. In Volume

2: Combustion, Fuels and Emissions, pages 11–23, Orlando, Florida, USA, January

2009. ASMEDC.

[23] Yee Chee See and Matthias Ihme. Large eddy simulation of a partially-premixed

gas turbine model combustor. Proceedings of the Combustion Institute, 35(2):1225–

1234, January 2015.

[24] Heeseok Koo, Malik Hassanaly, Venkat Raman, Michael E. Mueller, and Klaus Pe-

ter Geigle. Large-Eddy Simulation of Soot Formation in a Model Gas Turbine Com-

bustor. Journal of Engineering for Gas Turbines and Power, 139(3):031503, March

2017.

169

[25] Zhi X. Chen, Ivan Langella, Nedunchezhian Swaminathan, Michael Stöhr, Wolfgang

Meier, and Hemanth Kolla. Large Eddy Simulation of a dual swirl gas turbine

combustor: Flame/flow structures and stabilisation under thermoacoustically stable

and unstable conditions. Combustion and Flame, 203:279–300, May 2019.

[26] Zhi X. Chen and Nedunchezhian Swaminathan. Influence of fuel plenum on ther-

moacoustic oscillations inside a swirl combustor. Fuel, 275:117868, September 2020.

[27] Ying Huang and Vigor Yang. UNSTEADY FLOW EVOLUTION AND FLAME

DYNAMICS IN A LEAN-PREMIXED SWIRL·STABILIZED COMBUSTOR. Begel

House Inc., 2003.

[28] Ying Huang and Vigor Yang. Effect of swirl on combustion dynamics in a lean-

premixed swirl-stabilized combustor. Proceedings of the Combustion Institute,

30(2):1775–1782, January 2005.

[29] J.C. Broda, S. Seo, R.J. Santoro, G. Shirhattikar, and V. Yang. An experi-

mental study of combustion dynamics of a premixed swirl injector. Symposium

(International) on Combustion, 27(2):1849–1856, January 1998.

[30] Cheng Huang, Rohan Gejji, William Anderson, Changjin Yoon, and Venkateswaran

Sankaran. Combustion Dynamics in a Single-Element Lean Direct Injection Gas

Turbine Combustor. Combustion Science and Technology, 192(12):2371–2398, De-

cember 2020.

[31] T. Poinsot. Prediction and control of combustion instabilities in real engines.

Proceedings of the Combustion Institute, 36(1):1–28, January 2017.

[32] L Crocco, J Grey, and DT Harrje. On the importance of the sensitive time lag in

longitudinal high-frequency rocket combustion instability, 1958. Issue: 12 Pages:

841–843 Publication Title: Jet Propulsion Volume: 28.

[33] T. Schuller, D. Durox, and S. Candel. A unified model for the prediction of lam-

inar flame transfer functions: comparisons between conical and V-flame dynamics.

Combustion and Flame, 134(1):21–34, July 2003.

170

[34] Gowtham Manikanta Reddy Tamanampudi, Swanand Sardeshmukh, William An-

derson, and Cheng Huang. Combustion instability modeling using multi-mode flame

transfer functions and a nonlinear Euler solver. International Journal of Spray and

Combustion Dynamics, 12:175682772095032, January 2020.

[35] Frédéric Boudy, Daniel Durox, Thierry Schuller, Grunde Jomaas, and Sébastien Can-

del. Describing Function Analysis of Limit Cycles in a Multiple Flame Combustor.

Journal of Engineering for Gas Turbines and Power, 133(6):061502, June 2011.

[36] Xingsi Han, Jingxuan Li, and Aimee S. Morgans. Prediction of combustion instability

limit cycle oscillations by combining flame describing function simulations with a

thermoacoustic network model. Combustion and Flame, 162(10):3632–3647, October

2015.

[37] Matthias Haeringer, Malte Merk, and Wolfgang Polifke. Inclusion of higher har-

monics in the flame describing function for predicting limit cycles of self-excited

combustion instabilities. Proceedings of the Combustion Institute, 37(4):5255–5262,

January 2019.

[38] F. Duchaine, F. Boudy, D. Durox, and T. Poinsot. Sensitivity analysis of transfer

functions of laminar flames. Combustion and Flame, 158(12):2384–2394, December

2011.

[39] John L. Lumley and Andrew Poje. Low-dimensional models for flows with density

fluctuations. Physics of Fluids, 9(7):2023–2031, July 1997.

[40] W. R. Graham, J. Peraire, and K. Y. Tang. Optimal control of vortex shedding using

low-order models. Part II?model-based control. International Journal for Numerical

Methods in Engineering, 44(7):973–990, March 1999.

[41] David J. Lucia and Philip S. Beran. Projection methods for reduced order models of

compressible flows. Journal of Computational Physics, 188(1):252–280, June 2003.

[42] D. Rempfer. On Low-Dimensional Galerkin Models for Fluid Flow. Theoretical and

Computational Fluid Dynamics, 14(2):75–88, June 2000.

171

[43] M. Bergmann, C. H. Bruneau, and A. Iollo. Enablers for robust POD models.

Journal of Computational Physics, 228(2):516–538, February 2009.

[44] Kookjin Lee and Kevin T. Carlberg. Model reduction of dynamical systems on non-

linear manifolds using deep convolutional autoencoders. Journal of Computational

Physics, 404:108973, March 2020.

[45] C. W. Rowley. Model reduction for fluids, using balanced proper orthogonal decom-

position. International Journal of Bifurcation and Chaos, 15(03):997–1013, March

2005.

[46] K. Willcox and J. Peraire. Balanced Model Reduction via the Proper Orthogonal

Decomposition. AIAA Journal, 40(11):2323–2330, 2002.

[47] Clarence W. Rowley, Tim Colonius, and Richard M. Murray. Model reduction

for compressible flows using POD and Galerkin projection. Physica D: Nonlinear

Phenomena, 189(1-2):115–129, February 2004.

[48] Eric J. Parish, Christopher R. Wentland, and Karthik Duraisamy. The Adjoint

Petrov–Galerkin method for non-linear model reduction. Computer Methods in

Applied Mechanics and Engineering, 365:112991, June 2020.

[49] Shady E. Ahmed, Suraj Pawar, Omer San, Adil Rasheed, Traian Iliescu, and

Bernd R. Noack. On closures for reduced order models $-$ A spectrum of first-

principle to machine-learned avenues. Physics of Fluids, 33(9):091301, September

2021. arXiv:2106.14954 [physics].

[50] Babak Maboudi Afkham, Nicolò Ripamonti, Qian Wang, and Jan S. Hesthaven. Con-

servative Model Order Reduction for Fluid Flow. In Marta D’Elia, Max Gunzburger,

and Gianluigi Rozza, editors, Quantification of Uncertainty: Improving Efficiency

and Technology, volume 137, pages 67–99. Springer International Publishing, Cham,

2020. Series Title: Lecture Notes in Computational Science and Engineering.

172

[51] Kevin Carlberg, Charbel Bou-Mosleh, and Charbel Farhat. Efficient non-linear

model reduction via a least-squares Petrov-Galerkin projection and compres-

sive tensor approximations: EFFICIENT NON-LINEAR MODEL REDUCTION.

International Journal for Numerical Methods in Engineering, 86(2):155–181, April

2011.

[52] Christopher R. Wentland, Cheng Huang, and Karthikeyan Duraisamy. Investiga-

tion of Sampling Strategies for Reduced-Order Models of Rocket Combustors. In

AIAA Scitech 2021 Forum, VIRTUAL EVENT, January 2021. American Institute

of Aeronautics and Astronautics.

[53] Cheng Huang, Christopher R. Wentland, Karthik Duraisamy, and Charles Merkle.

Model reduction for multi-scale transport problems using model-form preserving

least-squares projections with variable transformation. Journal of Computational

Physics, 448:110742, January 2022.

[54] G Berkooz, P Holmes, and J L Lumley. The Proper Orthogonal Decomposition in

the Analysis of Turbulent Flows. Annual Review of Fluid Mechanics, 25(1):539–575,

January 1993.

[55] Cheng Huang, Karthik Duraisamy, and Charles Merkle. Challenges in Reduced

Order Modeling of Reacting Flows. In 2018 Joint Propulsion Conference, Cincinnati,

Ohio, July 2018. American Institute of Aeronautics and Astronautics.

[56] Saifon Chaturantabut and Danny C. Sorensen. Nonlinear Model Reduction via Dis-

crete Empirical Interpolation. SIAM Journal on Scientific Computing, 32(5):2737–

2764, January 2010.

[57] Richard Everson and Lawrence Sirovich. Karhunen–Loeve procedure for gappy data.

JOSA A, 12(8):1657–1664, 1995. Publisher: Optica Publishing Group.

[58] Benjamin Peherstorfer, Zlatko Drmac, and Serkan Gugercin. Stability of discrete

empirical interpolation and gappy proper orthogonal decomposition with random-

173

ized and deterministic sampling points. SIAM Journal on Scientific Computing,

42(5):A2837–A2864, 2020. Publisher: SIAM.

[59] Ding Li, Sankaran Venkateswaran, Keramat Fakhari, and Charles Merkle. Conver-

gence assessment of general fluid equations on unstructured hybrid grids. In 15th

AIAA Computational Fluid Dynamics Conference, Anaheim,CA,U.S.A., June 2001.

American Institute of Aeronautics and Astronautics.

[60] Bonnie J. McBride. NASA Glenn Coefficients for Calculating Thermodynamic

Properties of Individual Species. National Aeronautics and Space Administration,

John H. Glenn Research Center at Lewis Field, 2002. Google-Books-ID: TAE-

VAQAAIAAJ.

[61] Charles F. Curtiss and Joseph O. Hirschfelder. Transport Properties of Multicom-

ponent Gas Mixtures. The Journal of Chemical Physics, 17(6):550–555, June 1949.

[62] Bruce E. Poling, J. M. Prausnitz, and John P. O’Connell. The properties of gases

and liquids. McGraw-Hill, New York, 5th ed edition, 2001.

[63] Philip D. Neufeld, A. R. Janzen, and R. A. Aziz. Empirical Equations to Calculate 16

of the Transport Collision Integrals (l, s)* for the Lennard-Jones (12–6) Potential.

The Journal of Chemical Physics, 57(3):1100–1102, August 1972.

[64] Franck Nicoud, Hubert Baya Toda, Olivier Cabrit, Sanjeeb Bose, and Jungil Lee.

Using singular values to build a subgrid-scale model for large eddy simulations.

Physics of Fluids, 23(8):085106, August 2011.

[65] G. Erlebacher, M. Y. Hussaini, C. G. Speziale, and T. A. Zang. Toward the

large-eddy simulation of compressible turbulent flows. Journal of Fluid Mechanics,

238:155–185, May 1992.

[66] Adam L. Comer, Swanand V. Sardeshmukh, Brent A. Rankin, and Matthew E.

Harvazinski. Effects of Turbulent Combustion Closure on Grid Convergence of Bluff

Body Stabilized Premixed Flame Simulations. In 2018 AIAA Aerospace Sciences

174

Meeting, Kissimmee, Florida, January 2018. American Institute of Aeronautics and

Astronautics.

[67] Adam L. Comer, Cheng Huang, Karthikeyan Duraisamy, Swanand V. Sardeshmukh,

Brent A. Rankin, Matthew E. Harvazinski, and Venke Sankaran. Sensitivity Analysis

of Bluff Body Stabilized Premixed Flame Large Eddy Simulations. In AIAA Scitech

2019 Forum, San Diego, California, January 2019. American Institute of Aeronautics

and Astronautics.

[68] Charles D. Pierce and Parviz Moin. Progress-variable approach for large-eddy simu-

lation of non-premixed turbulent combustion. Journal of Fluid Mechanics, 504:73–97,

April 2004.

[69] K. Seshadri and N. Peters. Asymptotic structure and extinction of methane-air

diffusion flames. Combustion and Flame, 73(1):23–44, July 1988.

[70] Norbert Peters. Turbulent combustion. Cambridge university press, 2000.

[71] H Pitsch. FlameMaster: A C++ computer program for 0D combustion and 1D

laminar flame calculations, 1998.

[72] M. Frenklach, H. Wang, M. Goldenberg, G. P. Smith, D. M. Golden, C. T. Bowman,

R. K. Hanson, W. C. Gardiner, and V. Lissianski. GRI-Mech: An Optimized Detailed

Chemical Reaction Mechanism for Methane Combustion. Topical Report, September

1992-August 1995. Technical Report PB96137054, SRI International, Menlo Park,

CA.; Pennsylvania State Univ., University Park.; Stanford Univ., CA.; Texas Univ.

at Austin.; Gas Research Inst., Chicago, IL., 1995.

[73] S Venkateswaran and Charles Merkle. Dual time-stepping and preconditioning for

unsteady computations. In 33rd Aerospace Sciences Meeting and Exhibit, page 78,

1995.

[74] Nicholas Arnold-Medabalimi, Christopher R. Wentland, Cheng Huang, and Karthik

Duraisamy. PLATFORM: Parallel Linear Algebra Tool FOr Reduced Modeling.

SoftwareX, 21:101313, February 2023.

175

[75] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Don-

garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Wha-

ley. ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics,

Philadelphia, PA, 1997.

[76] Nicholas Arnold-Medabalimi, Cheng Huang, and Karthik Duraisamy. Large-eddy

simulation and challenges for projection-based reduced-order modeling of a gas tur-

bine model combustor. International Journal of Spray and Combustion Dynamics,

14(1-2):153–175, March 2022.

[77] P.L Roe. Approximate Riemann solvers, parameter vectors, and difference schemes.

Journal of Computational Physics, 43(2):357–372, October 1981.

[78] Timothy Barth and Dennis Jespersen. The design and application of upwind schemes

on unstructured meshes. In 27th Aerospace sciences meeting, page 366, 1989.

[79] I. Boxx, M. Stöhr, C. Carter, and W. Meier. Temporally resolved planar measure-

ments of transient phenomena in a partially pre-mixed swirl flame in a gas turbine

model combustor. Combustion and Flame, 157(8):1510–1525, August 2010.

[80] Cheng Huang, William E. Anderson, Matthew E. Harvazinski, and Venkateswaran

Sankaran. Analysis of Self-Excited Combustion Instabilities Using Decomposition

Techniques. AIAA Journal, 54(9):2791–2807, September 2016.

[81] Peter J. Schmid. Dynamic mode decomposition of numerical and experimental data.

Journal of Fluid Mechanics, 656:5–28, August 2010.

[82] Peter J. Schmid. Application of the dynamic mode decomposition to experimental

data. Experiments in Fluids, 50(4):1123–1130, April 2011.

[83] Nicholas Arnold-Medabalimi, Cheng Huang, and Karthik Duraisamy. Data-Driven

Modal Decomposition Techniques for High-Dimensional Flow Fields. In Heinz Pitsch

and Antonio Attili, editors, Data Analysis for Direct Numerical Simulations of

Turbulent Combustion: From Equation-Based Analysis to Machine Learning, pages

135–155. Springer International Publishing, Cham, 2020.

176

[84] J. Nathan Kutz, Steven L. Brunton, Bingni W. Brunton, and Joshua L. Proctor.

Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. Society

for Industrial and Applied Mathematics, Philadelphia, PA, November 2016.

[85] WA Light. n-WIDTHS IN APPROXIMATION THEORY (Ergebnisse der Mathe-

matik und ihrer Grenzgebiete 3. Folge, Band 7), 1985.

[86] Benjamin Peherstorfer. Model Reduction for Transport-Dominated Problems via On-

line Adaptive Bases and Adaptive Sampling. SIAM Journal on Scientific Computing,

42(5):A2803–A2836, January 2020.

[87] Benjamin Peherstorfer and Karen Willcox. Online Adaptive Model Reduction for

Nonlinear Systems via Low-Rank Updates. SIAM Journal on Scientific Computing,

37(4):A2123–A2150, January 2015.

[88] Cheng Huang and Karthik Duraisamy. Predictive Reduced Order Modeling of

Chaotic Multi-scale Problems Using Adaptively Sampled Projections, February 2023.

arXiv:2301.09006 [physics].

[89] Charles K Westbrook and Frederick L Dryer. Chemical kinetic modeling of hydro-

carbon combustion. Progress in energy and combustion science, 10(1):1–57, 1984.

Publisher: Elsevier.

[90] C. R. Wilke. A Viscosity Equation for Gas Mixtures. The Journal of Chemical

Physics, 18(4):517–519, April 1950.

[91] S. Mathur, P.K. Tondon, and S.C. Saxena. Thermal conductivity of binary, ternary

and quaternary mixtures of rare gases. Molecular Physics, 12(6):569–579, January

1967.

[92] George Karypis and Vipin Kumar. METIS: A software package for partitioning

unstructured graphs, partitioning meshes, and computing fill-reducing orderings of

sparse matrices. 1997.

177

[93] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown,

Peter Brune, Kris Buschelman, Emil M. Constantinescu, Lisandro Dalcin, Alp Dener,

Victor Eijkhout, Jacob Faibussowitsch, William D. Gropp, Václav Hapla, Tobin

Isaac, Pierre Jolivet, Dmitry Karpeev, Dinesh Kaushik, Matthew G. Knepley, Fande

Kong, Scott Kruger, Dave A. May, Lois Curfman McInnes, Richard Tran Mills,

Lawrence Mitchell, Todd Munson, Jose E. Roman, Karl Rupp, Patrick Sanan, Jason

Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang, Hong Zhang, and Junchao

Zhang. PETSc Web page, 2022.

[94] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown,

Peter Brune, Kris Buschelman, Emil Constantinescu, Lisandro Dalcin, Alp Dener,

Victor Eijkhout, Jacob Faibussowitsch, William D. Gropp, Václav Hapla, Tobin

Isaac, Pierre Jolivet, Dmitry Karpeev, Dinesh Kaushik, Matthew G. Knepley, Fande

Kong, Scott Kruger, Dave A. May, Lois Curfman McInnes, Richard Tran Mills,

Lawrence Mitchell, Todd Munson, Jose E. Roman, Karl Rupp, Patrick Sanan, Jason

Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang, Hong Zhang, and Junchao

Zhang. PETSc/TAO Users Manual. Technical Report ANL-21/39 - Revision 3.18,

Argonne National Laboratory, 2022.

178

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Abstract
	Background and Motivation
	Global Energy Environment
	Power Generation
	Transportation

	Combustion Instability
	Gas Turbine Model Combustors (GTMCs)
	Computational Modeling
	Large-Eddy Simulation (LES)
	Reduced Modeling Using Physics-based Models
	Projection-based Reduced-Order Modeling (ROM)

	Potential Use Cases for Projection ROMs
	Current State-of-the Art and Grand Challenge
	Thesis Goals and Contributions
	Thesis Outline
	Notation

	Computational Methods and Theoretical Background
	Outline
	Projection
	Suitability of Projection

	Reduced-Order Modeling (ROM)
	Projection-Based ROMs
	ROM formulation
	Galerkin ROM
	Least-Squars Petrov-Galerkin
	Model-Form Preserving Least-Squares with Variable Transformation
	Hyper-Reduction/Sampling

	General ROM framework and terminology
	Combustion Modeling
	Vector Form
	Equations of State
	Thermodynamic Properties
	Empirical Transport Properties

	Combustion Modeling
	Laminar Finite Rate Chemistry

	Turbulence Modeling
	Sigma Turbulence Model
	Non-Premixed Flamelet Modeling

	Time-Integration
	Summary

	Computational Scalability
	Outline
	Offline Pre-Processing
	Proper Orthogonal Decomposition

	Computational Challenges
	Memory Problem
	I/O Problem
	Objectives

	Software Description
	pMat
	meta
	Dataset Metadata

	Data Formats Supported
	Performance
	Example Usage
	Matrix Allocation
	Driver Interfaces

	Summary

	Dual-Swirl Gas Turbine Combustor
	Outline & Introduction
	Experimental Setup
	Full-Order Model
	Computational details
	Averaged Velocity Field
	Averaged Temperature and Mixture Fraction
	Mixture Fraction Temperature Correlation
	Unsteady PIV Comparison

	Dynamic Mode Decomposition
	Decomposition of high-frequency PIV measurements

	Reduced-Order Modeling (ROM)
	Basis Generation
	Reduced-Order Modeling (ROM) Results
	A priori Projection Error Quantification
	Adaptive Basis

	Adaptive Sampling: Predictive Capabilities
	Outline
	Review of Hyper-Reduction Methods
	Adaptive Sampling Method
	One-step Adaptive Basis method
	Linear Solver

	Adaptive Sampling Method Results
	Overall Adaptive ROM workflow and pre-processing
	1D Propagating Laminar Flame
	2D Rocket Injector

	Tertiary usage of adaptive ROMs in larger frameworks
	Transient Acceleration: 1D Flame

	Summary

	Adaptive Sampling: Computational Considerations
	Outline
	Description of Integration with Solver
	Description of Existing Adaptive Sampling Method
	Description of the Partitioning Strategy

	Computational bottleneck: Load Balancing
	 Load Balancing Framework
	Implementation and Integration using PETSc
	PETSc Structures

	Results
	1D laminar flame
	2D Rocket Injector Load Balanced Performance
	Current Limitations & Proposed Improvements

	Summary

	Summary and Conclusions
	Contributions
	The Future of ROM-based Computational Solvers
	Pre-Processing
	Data locality
	Sampling Redistribution
	Trajectory of ROM Solvers

	Avenues for future work

	Bibliography

