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Abstract 
 

Computational models that can predict materials’ evolution under synthesis and processing 

conditions, along with complementary experimental characterizations, are powerful tools that 

provide insights into the process designs for materials with tailored properties. This dissertation 

presents a collection of computational models and methods that enable predictions of material 

structures under different conditions and sample-temperature control during experiments. 

The first part of this dissertation describes computational models for simulating phase 

transformations, microstructure evolution, and mechanical behavior. A phase-field model that 

captures the evolution of ionic concentrations and phase fractions during solid-state metathesis 

(SSM) reactions was first presented. This model was employed to investigate the effect of 

mobilities of ions on the reaction dynamics. We identified the expressions for effective mobility 

for each type of ions and showed that the type of ions with a larger effective mobility dominates 

the diffusion and that the rate of the overall process is set by an overall characteristic mobility of 

the reaction. This phase-field model was then utilized to predict the phase evolutions during the 

FeS2 synthesis reaction. The simulation predicted nonplanar phase evolution, which was recently 

observed in the experiment via transmission electron microscopy. The model was also applied to 

study the effect of particle packing on the reaction rate, along with a lattice model. Simulations 

suggested that reactions could occur more rapidly when the sample is densified since each particle 

within the sample is more likely to have a larger number of reactive neighbors and a particle with 

more reactive neighbors tends to react faster. Two phase-field models that describe the evolution 
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of microstructure with dislocations were then discussed. A simple model assuming a uniform intra-

granular dislocation density was employed to study the macroscale translation of grains during 

non-isothermal annealing. Grain translation was observed from the simulations, which was the net 

effect of a grain with a medium dislocation density consuming an adjacent grain with a higher 

dislocation density and simultaneously being consumed by another adjacent grain with a lower 

dislocation density. An extended model that considers intra-granular dislocation densities variation 

was utilized to study the effect of cyclic heat treatment on the microstructure evolution. We showed 

that this extended model yielded results that closely resemble the experimental data and that non-

self-similar evolution leading to multi-modal grain size distribution was observed in the 

simulations after dislocations were injected into the microstructure three times. Finally, the 

relaxation of flat and buckled triangular monolayers of atoms was achieved using a phase-field-

crystal model. 

The second part of this dissertation presents heat transfer models designed to assist in 

sample-temperature control and a machine learning algorithm for parameter optimization. First, a 

heat transfer model that describes the temperature distribution within a sample in an optical 

floating zone (OFZ) experiment was discussed. The effectiveness of the machine learning 

algorithm was demonstrated by applying it to determine uncertain parameters in the heat transfer 

model for the OFZ experiment. The parameterized OFZ model accurately reproduced both steady-

state thermal profiles and time-dependent temperatures. Additionally, a coupled thermal and Joule 

heating model was implemented to predict the thermal profiles of a sample heated by a gradient 

heater designed to produce a temperature gradient within the sample. The parameterized model 

was used to study the effect of the heater geometry on the resulting thermal profiles within the 

sample. 
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Chapter 1 Introduction 

1.1 Overarching goals 

Precisely controlling the structure of materials at both atomic and microstructural scale 

during synthesis and processing is key to produce materials with desired properties. It is therefore 

necessary to investigate the effect of processing conditions on the resulting material structures. 

However, characterization of material structures under different conditions via repeated 

experiments is time consuming and is also limited by the temporal and spatial scale resolved by 

characterization tools. To facilitate the exploration of the processing parameter space, 

computational models are often employed. For example, models of phase transformation can take 

potential processing parameters as input and predict the resulting microstructure as a function of 

time. The analysis of model outputs sheds light on the material structures and consequently their 

properties for a given input condition. In this dissertation, we describe a set of computational 

models and methods to simulate the processes of phase transformations, microstructure evolution, 

as well as heat transfer during the materials synthesis and processing. We show that these model, 

after being properly parameterized against available experimental data, can be utilized to predict 

many key quantities, such as composition, phase fractions, and grain size distributions. These 

models fill the gaps in the experimental characterization and provide insights into the designs of 

synthesis and processing conditions, with the ultimate goal to enable enhanced material properties 

and performance.  

In this chapter, we describe the motivations for three critical applications of simulations in 

materials synthesis and processing, namely, solid-state metathesis (SSM) reactions (see Section 
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1.2), stored-energy-driven grain growth (see Section 1.3), and precise temperature control within 

the samples during thermal processing (see Section 1.4). Additionally, we discuss in Section 1.5 

the necessity of leveraging machine learning algorithms to automatically determine uncertain 

parameters for computational models.  

1.2 Motivation – Solid-state metathesis reactions*  

Material synthesis involves the transformation of precursor phases to target phases. It is 

necessary to control the synthesis condition, e.g., temperature and pressure, in order for the 

precursor phases to transform into the desired product phases. This is especially true when the 

target material is metastable. Solid-state metathesis (SSM) reactions (or double displacement 

reactions) are a promising route to synthesizing both stable and metastable products at lower 

temperatures than traditional solid-state routes [1,2]. In SSM reactions, cations or anions in 

precursor compounds exchange to form products and are often driven by the formation of a 

thermodynamically stable byproduct, such as an alkali salt.  

Kinetic control is utilized in SSM reactions to alter activation barriers and the reaction 

pathway. The products formed during SSM reactions can be controlled by altering the synthesis 

conditions and precursor compounds. For example, Martinolich et al. [2] showed that the SSM 

reaction between FeCl2 and Na2S2 precursors that were prepared in ambient air yielded FeS2 

without crystalline intermediates that would otherwise be formed when the precursors were 

prepared in an air-free condition. Wustrow et al. [3] showed that the required temperature for the 

SSM reaction to synthesize YMnO3 is approximately 700 °C when either CaMn2O4 or MgMn2O4 

 
* Adapted from G. Huang, D. Montiel, R. D. McAuliffe, G. M. Veith, and K. Thornton, “Phase-Field Modeling of 
Solid-State Metathesis Reactions with the Charge Neutrality Constraint,” Computational Materials Science 221, 
112080 (2023). 
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is used to react with YOCl. However, this temperature is reduced to approximately 550 °C when 

both precursor oxides react with YOCl. 

In order to elucidate the fundamental mechanisms underlying these observations and to 

identify the factors that affect the thermodynamics and kinetics, it is essential to follow the phase 

transformation as it progresses and identify which phases form. While experimental 

characterization tools, such as x-ray diffraction/reflectivity [4], transmission electron microscopy 

[5], and tomographic approaches [6,7], are becoming increasingly powerful, there is not yet a 

method that fully resolves the short temporal and small spatial scales involved in phase 

transformation processes. To fill the gaps in experimental observations and to work in concert with 

these experimental data in the effort to develop the full understanding of SSM reactions, a 

computational model that describes the evolution of the ionic concentrations as well as phase 

fractions is required. 

1.3 Motivation – Stored-energy-driven grain growth 

The physical property of a material, such as toughness [8,9], hardness [10,11], and strength 

[9,12] are strongly influenced by its microstructure. Therefore, it is critical to understand the 

mechanisms for the microstructure evolution in order to achieve desired properties in a material. 

This is especially true for polycrystalline materials since the mechanical processing or heat 

treatment of such materials could vastly alter their grain sizes, morphologies, and texture, leading 

to a change in their properties. 

In polycrystalline materials, grain boundaries exist at the interfaces of grains with different 

crystal orientations. In normal grain growth, which is driven by capillarity (or, equivalently, grain 

boundary energy), large grains progressively grow and consume their adjacent small grains that 

have more grain boundaries (and thus energy) per volume [13]. In such a case, after sufficient 
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evolution, a state of self-similar evolution can be reached in which the scaled distribution of grain 

sizes remains unchanged [14,15]. In some situations, however, a few grains grow exceptionally 

faster than others, leading to a non-self-similar grain-size distribution [14,15]. This phenomenon 

is referred to as abnormal grain growth (AGG). While abnormal grain growth is detrimental to 

materials properties in some situations [16,17], it has been found to be useful in some applications, 

such as the fabrication of Fe-Si electrical steels with low core loss [18] and superior magnetic 

properties [19] and the production of Fe-based shape memory alloys with superior pseudoelastic 

properties [20].  

Consequently, many efforts have been made to explore the methods to induce AGG in a 

polycrystalline sample. For example, AGG is reported to occur when the sample is deformed by a 

small amount and is annealed afterwards [21]. Alternatively, the sample is mechanically deformed 

to induce a plastic deformation at high temperature to generate dynamic AGG [22]. However, 

these methods require a sample of simple shape and careful operations, to avoid a sample fracture 

[23], making it difficult to scale up the production. Recently, it is reported by Omori et al. [23] that 

AGG can be triggered by cyclic heat treatment. They first annealed a Cu-17%Al-11.4 % Mn 

sample at a high temperature (at which only BCC-𝛽 phase could exist in equilibrium) and then 

repeatedly cooled and heated the sample to below and above FCC-𝛼 solvus temperature, during 

which they observed AGG. Higgins et al. [24] postulated that the stored energy introduced within 

the grains via the formation of dislocations during non-isothermal annealing provides an additional 

driving force for grain boundary migration, which promotes the grains with lower stored energy 

to consume the grains with higher stored energy, resulting in the AGG. 

To verify the hypothesis mentioned above and to provide a better understanding of how 

the combined capillary driving force and the driving force due to the stored energy affects the 
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microstructure evolution for an alloy sample undergoing non-isothermal annealing, a 

computational model that considers both driving forces is necessary.  

1.4 Motivation – Precise temperature control within the samples during thermal processing 

Temperature is arguably the most universally explored environmental variable for non-

ambient studies of materials structure during material synthesis and processing. A precise control 

of the sample temperature is necessary to induce desired phase transformation and microstructure 

evolution. Although traditional crucible-based furnaces are relatively straightforward to operate, 

they have two major drawbacks. First, a crucible could introduce impurity to the sample, which 

may degrade the material property. Second, the temperature-dependent studies using traditional 

furnaces requires the collection of data as a sample is progressively heated or cooled, either 

continuously or in discrete steps. In practice, these measurements are limited by how fast the 

temperature can be changed, the achievable temperature range, and the number of temperatures 

that can be sampled simultaneously with a single experiment (e.g., by imposing a temperature 

gradient over the sample). Many research efforts have been made to address these issues. For 

example, the optical floating zone (OFZ) furnace [25,26] avoids the contact between the sample 

and the heat source by leveraging the lights from lamps to heat a sample. The gradient heater 

approach [27] is introduced to generate variable temperatures within a sample such that 

temperature-dependent quantities can be measured concurrently across the sample, which 

significantly reduce the time needed to repeat the experiment with different temperatures.  

In order to utilize these novel furnace approaches to effectively control the sample 

temperature, it is necessary to understand how the temperature changes with time during the 

heating and cooling stages of these furnaces, as well as to elucidate the effect of the furnace 

geometry on the resulting steady-state thermal profiles. Although these measurements can be 
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performed solely in experiments, the process is time-consuming and laborious, especially when a 

time-dependent behavior of the thermal profiles at multiple positions is needed, or when a large 

number of various furnace geometries needs to be studied. A computational heat transfer model, 

when parameterized properly, can be utilized to make accurate predictions for time- and position-

dependent thermal profiles in these furnaces, providing understanding of the furnace thermal 

environments and ultimately facilitating the furnace design. 

1.5 Motivation – Parameter determination for computational models*  

Numerous computational models are continuously being developed in an effort to 

understand the physics behind the experimental observations. These models include optical [28-

30], electrical [31-33], acoustic [34-36], heat transfer [37-39] and mechanical [40-42] models. A 

computational model generally includes parameters representing material properties and 

experimental conditions. In order for a physical model to be quantitatively predictive, accurate 

values of these physical parameters are needed. This is especially true for the parameters on which 

the model predictions depend strongly. For models in which parameters are either unknown or 

uncertain, comparison with experimental results can be used to determine or refine the possible 

range of these parameters. However, to alleviate the need for manual trial-and-error tuning of 

parameters, which can be inefficient and time-consuming (especially when many parameters are 

uncertain), an algorithm that can automate the determination of the parameters that provide the 

best fit between the model predictions and experimental measurements is useful and sometimes 

necessary.  

 
* Adapted from G. Huang, M. Zhang, D. Montiel, P. Soundararajan, Y. Wang, J. J. Denney, A. A. Corrao, P. G. 
Khalifah, and K. Thornton, “Automated Extraction of Physical Parameters from Experimentally Obtained Thermal 
Profiles Using a Machine Learning Approach,” Computational Materials Science 194, 110459 (2021). 
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1.6 Dissertation outline 

This dissertation presents computational methods (e.g., phase-field models, heat transfer 

methods, and machine learning algorithms) developed or implemented for a series of applications 

involved in material synthesis and processing, such as solid-state metathesis reactions, stored-

energy-driven grain growth, and sample-temperature control during experiments. Chapter 1 and 

Chapter 2 discuss the motivation, background, and general simulation methods for this 

dissertation. Chapter 3-8 provide detailed simulation methods, results and discussions for each 

application. The simulation results are often presented along with the experimental results, which 

are performed by our experimental collaborators. These experimental data are used to provide the 

context of study, inform computational models, or conduct comparison between the simulations 

and experiments.  

Chapter 2 provides the background information for the applications discussed in this 

dissertation, such as materials synthesis, microstructure and optical floating zone experiment, and 

a general description of the computational methods employed in this dissertation, namely, phase-

field models, smoothed boundary methods, level set methods, heat transfer equations, and an 

algorithm for parameter optimization.  

Chapter 3 describes a phase-field model developed to simulate binary solid-state metathesis 

reactions. The free energy functional and governing equations employed in the phase-field model 

are first presented. Then the nondimensionalization of the phase-field equations are discussed. 

Finally, the coupling of the phase-field model with the smoothed boundary method are described.  

Chapter 4 demonstrates the effectiveness of the phase-field model discussed in Chapter 3 

for the SSM reactions and showcases three applications. First, the effect of mobilities of the ions 

on the dynamics of a binary SSM reaction is investigated. Next, a thin-film reaction for the 



 8 

synthesis of FeS2 is simulated using this phase-field model, and the agreements between the 

simulation and the experiment are discussed. Finally, the reactions occurring between NaFeO2 and 

LiBr particles, with two configurations of precursor particles, are simulated, which is combined 

with a lattice model to reveal the effect of packing density of the sample on the reaction rate. 

Chapter 5 presents a phase-field model to describe stored-energy-driven grain growth. 

First, the details of the model, including the free energy functional, governing equations, 

nondimensionalization, and initial conditions are explained. Next, the microstructure evolution for 

capillary-driven grain growth and stored-energy-driven grain growth is simulated. Finally, the 

magnitude of grain center translation and driving forces predicted in microstructure evolution are 

compared for two cases.  

Chapter 6 extends the phase-field model in Chapter 5 by considering a spatially varying 

dislocation density field. First, the updated model formulation for order parameters and dislocation 

density fields is presented. Next, a simulation initiated with experimental microstructure and 

dislocation densities is performed using the extended model, and the resulting microstructure is 

compared with the experimental measurements. Finally, a set of large-scale simulations of the 

microstructure evolution is conducted to examine the effect of cyclic heat treatment on the 

behavior of microstructure evolution. 

Chapter 7 describes the applications of parameterized heat transfer models to examine the 

thermal profiles for the samples heated in an optical floating zone furnace and a gradient heater 

furnace. First, the process of automated parameter determination for a heat transfer model of an 

optical floating zone furnace is presented. The agreements in steady-state thermal profiles and 

time-dependent temperatures between predictions and experimental observations are discussed. 

Next, the parameterization of a gradient heater model that couples both heat transfer equations and 
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Joule heating equations is described. The effect of heating-wire configurations and furnace 

geometry on the thermal profile of the sample is explored using the parameterized model.  

Chapter 8 presents a phase-field crystal model for describing two-dimensional materials. 

The stabilization of a flat and a bending monolayer of atoms in both two and three dimensions are 

discussed. 

Chapter 9 summarizes the dissertation and provides suggestions for future work. 
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Chapter 2 Background and Methods 

2.1 Material synthesis and processing 

2.1.1 Common material categories and methods for their synthesis 

Materials can be in general divided into four categories: metal, ceramic, polymer, and 

composites. Metals (or alloys) are commonly produced via mechanical alloying [43], vapor 

deposition [44], power metallurgy [45], and other metallurgical processes [46]. Ceramics can be 

synthesized using sol-gel processes [47], hydrothermal methods [48], solid-state reactions [49]. 

Polymers are produced through atom transfer radical polymerization [50], reversible addition-

fragmentation chain transfer [51], ring-opening polymerization [52], and other polymerization 

reactions [53]. Composites are made by mixing two or more materials discussed above via methods 

such as hand lay-up [54], spray-up [55], filament winding [56], pultrusion [57], and resin transfer 

molding [58]. In order to synthesize a material with a desired property, it is necessary to choose 

an appropriate method and apply proper experimental conditions, such as temperature and 

pressure. This requires a deep understanding of how different methods and conditions could affect 

the process involved in a certain synthesis process. In this thesis, we focus on discussing the 

synthesis of ceramic materials, such as a FeS2 compound, using a solid-state metathesis reaction, 

as well as the thermal processing of a Cu-17%Al-11.4%Mn alloy. A general approach for solid-

state synthesis is presented in Section 2.1.2. The solid-state metathesis reaction is discussed in 

Section 2.1.3. The methods for conducting thermal processing, including heat treatment and cyclic 

heat treatment, are discussed in Section 2.1.4 and 2.1.5, respectively.  
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2.1.2 Solid-state synthesis 

Solid-state reactions are one of the most common methods to produce inorganic materials. 

Traditional solid-state reactions typically involve grinding precursors into powders and mixing 

them at an elevated temperature, at which precursor phases turn into product phases via the 

diffusion of atoms or ions. The reaction rate, however, are often low since the reaction process is 

limited by the diffusion of the involving species. Consequently, a sufficiently high temperature 

must be applied to the precursor for the reaction to complete in a timely manner, frequently limiting 

the outcome of the reactions to those that are thermally stable. Chimie Douce (or “soft chemistry”), 

such as dehydration, dihydroxylation, and redox reactions, often require a lower temperature for 

the reactions to occur [59], and thus provides the possibility to synthesize metastable compounds 

[60]. Moreover, application of alkali chalcogenide fluxes [61-63] has also been reported to 

facilitate the synthesis of kinetically stable materials. 

2.1.3 Solid-state metathesis reactions* 

Solid-state metathesis (SSM) reactions were first investigated by Treece et al. [64], Gillan 

et al. [65], and Parkin et al. [66,67] in the 1990s. They are a promising route to synthesizing both 

stable and metastable products at lower temperatures than traditional solid-state routes [1,2]. In 

SSM reactions, cations or anions in precursor compounds exchange to form products and are often 

driven by the formation of a thermodynamically stable byproduct, such as an alkali salt. A binary 

SSM reaction is represented by 

AX + BY → AY + BX. (2.1)  

 
* Adapted from G. Huang, D. Montiel, R. D. McAuliffe, G. M. Veith, and K. Thornton, “Phase-Field Modeling of 
Solid-State Metathesis Reactions with the Charge Neutrality Constraint,” Computational Materials Science 221, 
112080 (2023). 
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Here, two cations are denoted by A and B, and two anions are denoted by X and Y. The precursor 

phases are denoted by AX and BY, and the product phases are denoted by AY and BX. In an SSM 

reaction, the bonds between AX and BY break and new bonds between AY and BX form. In Ref. 

[66], two possible mechanisms have been proposed to describe the reaction pathway in a typical 

binary SSM reaction. One mechanism is that ionic species diffuse after the original bonds between 

AX and BY break until new bonds are formed. The other mechanism is that, after the bonds break, 

the ions are reduced or oxidized to their elemental form and then recombined into products later 

due to high reaction temperature. It is worth noting that both mechanisms represent extreme cases 

[66] and the actual reaction pathway is more complex in general. 

2.1.4 Heat treatment* 

Heat treatment is a thermal process that applies to a sample that alters its microstructure 

and consequently its mechanical properties [68]. A cycle of heat treatment typically involves 

heating the sample to a predetermined heat treatment temperature with a certain rate, maintaining 

at this temperature for a controlled amount of time, and cooling with a predetermined rate. The 

heating and cooling rates, heat treatment temperature, and holding period constitute a heat 

treatment schedule, which needs to be carefully designed based on the shape, size, and other 

properties of the sample, as well as its desired properties after heating treatment. For example, a 

low heating rate is often required for large samples to prevent the development of internal stress 

that leads to material failure, due to the gradient of temperature. A more homogeneous structure 

can be formed within the sample by slow heating, which reduces the subsequent holding time. A 

 
* Adapted from  
(1) T.V. Rajan, C. P. Sharma, and A. K. Sharma, Heat Treatment: Principles and Techniques, second edition, PHI 

Learning (2012). 
(2) F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, second edition, Elsevier 

(2004).  
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high heating rate, however, is beneficial to those materials that are prone to oxidation. The heat 

treatment temperature is selected based on the targeted phases to transform into, which could be 

identified from a phase diagram. The holding duration at high temperature depends on the heat 

treatment temperature, in addition to the heating rate discussed above. It is reported [68] that a 

longer heating duration is often required for a lower heat treatment temperature because of the 

slower kinetics. Finally, the rate of cooling could affect the resulting microstructure. For example, 

slow cooling of austenitized iron-carbon alloys yields pearlite, an equilibrium microstructure 

consisting of alternating layers of ferrite and cementite, while rapid cooling yields martensite, a 

metastable microstructure [69].  

Here, we discuss two common heat treatment methods: annealing and quenching. 

Annealing frequently refers to a process in which the sample is heated to a temperature above its 

recrystallization point and is usually slowly cooled after a sufficient holding time to allow for 

recrystallization and grain growth to take place. Quenching refers to a process that involves rapidly 

cooling the sample from the heat treatment temperature to a low temperature (e.g., room 

temperature) by exposing the sample to air or water and thus avoids the undesired phase 

transformation that would otherwise occur. The sample after quenching often possesses high 

hardness but tends to be more brittle since the process of grain growth has not completed due to 

the rapid cooling.  

Heat treatment is extensively utilized in the processing of metallic and ceramic materials. 

For example, it is commonly applied along with the mechanical processes, such as forging, rolling, 

and extrusion, to produce metallic materials. These combined steps are referred to as 

thermomechanical processing. Careful control of thermal and deformation conditions is required 

during simultaneous heat treatment and mechanical processing to obtain a sample with desired 
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shape and mechanical properties[70]. Heat treatment can also be leveraged for solid-state synthesis 

of ceramic materials. Elevating the temperature provides the precursor phases with sufficient 

energy to overcome the reaction energy barrier to transform into the desired product phases, as 

well as facilitates the reactions by increasing the mobility of ionic species. 

2.1.5 Cyclic heat treatment* 

Some methods require multiple heat treatment cycles to achieve desired material 

properties. For example, precipitation hardening aims to increase the yield strength of an alloy by 

generating fine particles within the alloy to hinder the movement of dislocations. Such heat 

treatment typically involves two cycles. The first cycle is called solutionizing, during which the 

alloy is heated to a high temperature and is rapidly quenched after a certain duration of holding. 

The alloy, after quenching, is a supersaturated solid solution. The alloy is then heated to a moderate 

temperature and is hold at this temperature before being slowly cooled. This process is termed 

aging, during which fine and dispersed particles are formed [71]. In Section 2.2.2, we provide 

another example for cyclic heat treatment, which is used to induce an abnormal grain growth.  

 

2.2 Microstructure evolution 

2.2.1 Grain growth† 

In polycrystalline materials, microstructure is composed of a large number of grains that 

are separated by grain boundaries. Since these boundaries possess excess energy, their reduction 

drives larger grains to grow and smaller grains to contract and eventually disappear during 

 
* Adapted from T.V. Rajan, C. P. Sharma, and A. K. Sharma, Heat Treatment: Principles and Techniques, second 
edition, PHI Learning (2012). 
† Adapted from F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, second 
edition, Elsevier (2004). 
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annealing. This phenomenon is referred to as grain growth, or capillary-driven grain growth. The 

kinetics of grain growth was first studied by Burke et al. [72]. The driving force for a grain 

boundary to migrate, 𝑃, arising from the curvature of boundary, is given by  

𝑃 = 𝛾 I
1
𝑅!
+
1
𝑅"
J, (2.2)  

where 𝛾 is the grain boundary energy, and 𝑅! and 𝑅" are the principal radii of curvature for the 

boundary. For a grain boundary that is part of a grain of spherical shape with radius 𝑅, Equation 

(2.2) can be simplified as 

𝑃 =
2𝛾
𝑅 . 

(2.3)  

Assuming that all the grain boundaries have an identical grain boundary energy and that 𝑅 is 

proportional to the average radius, 𝑅=, of the grains, Equation (2.3) can be written as 

𝑃 =
𝑘!𝛾
𝑅=
, (2.4)  

where 𝑘! is a constant. The derivative of average radius with respect to time is proportional to the 

driving force [72]: 

𝑑𝑅=
𝑑𝑡 = 𝑘"𝑃, (2.5)  

where 𝑅= is the average grains radius at time 𝑡, and 𝑘" is a constant. Substituting Equation (2.4) 

into (2.5) yields  

𝑑𝑅=
𝑑𝑡 =

𝑘!𝑘"𝛾
𝑅=

. (2.6)  

Solving for 𝑅= in Equation (2.6) yields 

𝑅=" = 2𝑘!𝑘"𝛾𝑡 + 2𝑘., (2.7)  
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where 𝑘. is a constant, which can be determined by substituting the value 𝑅= = 𝑅=0 at the initial 

time 𝑡 = 0 into Equation (2.7). Substituting the resulting value 𝑘. = 𝑅=0"/2 into Equation (2.7) 

yields 

𝑅=" − 𝑅=0" = 2𝑘!𝑘"𝛾𝑡. (2.8)  

Applying a square root to both sides of the equation yields  

N𝑅=" − 𝑅=0" = O2𝑘!𝑘"𝛾𝑡!/". (2.9)  

When the grains grow for a sufficient time such that 𝑅= ≫ 𝑅=0, Equation (2.9) becomes [72] 

𝑅= = 𝑘5𝑡!/", (2.10)  

where 𝑘5 = O2𝑘!𝑘"𝛾. Therefore, the average grain radius is proportional to 𝑡!/" and is expected 

to increase over time. Substituting Equation (2.10) into Equation (2.4) yields  

𝑃 = 𝑘6𝑡7!/", (2.11)  

where 𝑘6 = 𝑘!𝛾/𝑘.. Equation (2.11) implies that the driving force 𝑃 is proportional to 𝑡7!/" and 

thus decreases with time.  

Hillert [15] proposed a relationship to describe the change in the radius of an individual 

grain with respect to time: 

𝑑𝑅
𝑑𝑡 = 𝑘8𝑀𝛾 I

1
𝑅=
−
1
𝑅J, 

(2.12)  

where 𝑘8 = 0.5 in 2D and 1 in 3D, and 𝑀 is the mobility of the grain boundaries. By solving this 

equation, Hillert showed that the distribution of a scaled grain radius, 𝑅S = 𝑅/𝑅=, at the steady state 

is given by [15] 

𝑓U𝑅SV = (2𝑒)9
𝛽𝑅S

U2 − 𝑅SV":9
exp I

−2𝛽
2 − 𝑅S

J, (2.13) 
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where 𝛽 = 2 in 2D and 3 in 3D. Since the predicted distribution of a scaled grain radius is 

independent of time at steady state, a self-similar evolution is expected after the grain growth 

proceeds for a sufficient period of time. 

2.2.2 Abnormal grain growth* 

In some situations, a few grains grow exceptionally faster than others, leading to a bimodal 

distribution of the grain size [14,15]. Such evolution is referred to as abnormal grain growth 

(AGG). Many studies have been conducted to identify its origin. For example, AGG was reported 

to occur within the materials with a strong texture component [73-76]. Due to the presence of the 

strong texture, most of the grain boundaries have a low misorientation and thus possess a low grain 

boundary energy, leading to a small driving force for the grain boundary migration to occur 

between these grains. A few grains, however, may contain a different texture, which results in 

high-energy grain boundaries. These boundaries tend to migrate much faster than the other ones, 

leading to AGG. Additionally, in two-phase systems, the second-phase particles are proposed to 

exert a pinning pressure on the grains in the matrix phase [77]. As a result, when the average grain 

size reaches a certain limit, which depends on the number and size of the second-phase particles, 

only those grains that are significantly larger than the average grain size can grow [15], resulting 

in the phenomena of AGG. 

Recently, Omori et al. [23] reported a cyclic heat treatment (CHT) method to obtain AGG. 

Specifically, they first annealed a Cu-Al-Mn sample at 900 °C, at which only BCC-𝛽 phase could 

exist in equilibrium. The sample is then cooled to below the FCC-𝛼 solvus temperature (726 °C), 

during which 𝛼-phase progressively precipitates within the 𝛽 matrix. The sample is then heated to 

 
* Adapted from G. Huang, Z. Croft, M. Chlupsa, A. Mensah, D. Montiel, A. J. Shahani, and K. Thornton, “Phase-
Field Modeling of Stored-Energy-Driven Grain Growth,” In preparation. 
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above 𝛼 solvus temperature, during which 𝛼 phases dissolves. The combination of cooling and 

heating constitutes a cycle of heat treatment. They repeatedly observed AGG when multiple cycles 

of heat treatment were conducted for the Cu-Al-Mn sample. Kusama et al. [78] carefully designed 

the annealing schedule for CHT and showed that large single crystals can be produced with 

induced AGG. Omori et al. [23] proposed that the subgrain structures formed within the 

preexisting grains in the process of cyclic heat treatment play an important role in driving the 

abnormal grain growth. Specifically, they postulated that the recurrent precipitation and 

dissolution of 𝛼 phases within the 𝛽 matrix during the non-isothermal annealing resulted in the 

loss of coherency of	𝛼-𝛽 interfaces, leading to the generation of dislocations within the sample 

and, as a result, the subgrain structures, which remain after precipitates dissolve. Omori et al. [79] 

and Kusama et al. [78] utilized the energy of subgrain boundaries as an estimate to quantify the 

additional driving force for AGG to occur during CHT. 

Higgins et al. [24] interpreted this additional energy as the stored energy, a common term 

used to describe the excess energy that drives recrystallization, due to the presence of dislocations 

[80]. They postulated that the stored energy introduced within the grains via the formation of 

dislocations during the process of non-isothermal annealing would give rise to a driving force for 

the grains with lower stored energy to consume the grains with higher stored energy, leading to 

the reduction of the total energy. They justified their hypothesis by performing real-time X-ray 

imaging experiments during CHT and showing that the grains in a Cu-Al-Mn sample with high 

dislocation density were consumed by those with low dislocation density. After ruling out the 

effects from the texture, particle dragging, and particle pinning, they proposed the stored energy 

due to the presence of dislocation as the primary mechanism for AGG during the CHT of the Cu-

Al-Mn system.  
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2.3 Optical floating zone experiment* 

 In an optical floating zone (OFZ) crystal growth experiment [25,26], a light source from 

one or more high power lamps or lasers is focused at the intersections between a vertical upper 

feed rod and a lower seed rod, allowing a narrow molten zone to be stabilized between these rods. 

During the growth, both rods are translated downward through the apparatus, causing continuous 

crystallization on the seed rod and the continuous replenishment of the liquid zone by melting of 

the feed rod. Although the heat is initially deposited only at the focal point of the light source (e.g., 

in the molten zone), this energy is continuously transported across the sample rods and dissipated 

via radiation, convection, and conduction. A schematic for the setup of a typical OFZ experiment 

is shown in Figure 2.1. 

 

Figure 2.1. Schematic showing a typical optical floating zone experiment. 

 
* Adapted from G. Huang, M. Zhang, D. Montiel, P. Soundararajan, Y. Wang, J. J. Denney, A. A. Corrao, P. G. 
Khalifah, and K. Thornton, “Automated Extraction of Physical Parameters from Experimentally Obtained Thermal 
Profiles Using a Machine Learning Approach,” Computational Materials Science 194, 110459 (2021). 
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The temperature variation across the sample rod can have a major effect on the outcome of 

the OFZ crystal growth process but is in general very difficult to measure experimentally. For 

many years, there were only a few publications reporting experimentally measured sample rod 

temperatures, one of which was accomplished using a thermocouple placed inside a hole drilled 

into a sample rod [81] and the rest of which used less reliable measurement technique of having 

the thermocouple external to the sample (where it is more likely to experience fluctuations due to 

convection and where its own direct light absorption can lead to incorrectly reported temperatures). 

As a consequence, a few models have been developed that consider the coupled optical and heat 

transfer physics involved. In Ref. [82], Lan et al. calculated the incident heat flux onto the sample 

using two different models: a finite-source model, where light bulbs are assumed to be of a finite 

volume, and a point-source model, where the light bulbs are assumed to be point sources. A heat 

transfer model that considers thermal conduction within the sample, energy balances at the 

interfaces between the melt and solid, convection and radiation from the sample to the ambient 

environment, and free surfaces between gas and the melt was utilized to obtain the temperature 

profiles across the sample. They compared their predictions to measured temperatures at a few 

positions along the sample and obtained a good agreement. In Ref. [83], Yan et. al. further 

examined the effect of the geometry of the lamp filament and the effect of a small variance of lamp 

power (68% – 72% of four 1500 W halogen lamps) on the temperature field of the sample. Other 

modeling studies of the optical and thermal transport phenomena in an OFZ can be found in Refs. 

[84,85]. However, none of the aforementioned studies provide a comprehensive comparison 

(temperatures at a number of positions) between model predictions and experimentally measured 

temperature profiles under different lamp power settings (0% – 100% of the maximum power), 

likely due to the difficulties in measuring the time-dependent, spatially varying temperature of the 
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sample. As a result, an extensive comparison of the simulated and experimental temperatures had 

not been performed.  

2.4 Modeling heat transfer within solids* 

To computationally model the heat transfer within solids, three heat-transfer mechanisms 

must be considered, namely, conduction, convection, and radiation. The thermal conduction is the 

process of heat transport due to temperature gradient within the bulk of objects. It is described by 

[86] 

𝜌𝐶;
𝜕𝑇
𝜕𝑡 − ∇ ⋅

(𝑘∇𝑇) = 𝑄, (2.14)  

where 𝜌 is the density, 𝐶;  is the heat capacity, 𝑇 is the temperature, 𝑡 is time,	𝑘 is the thermal 

conductivity, and 𝑄 is the power density from a source within the bulk. The first term on the left-

hand side is necessary when transient states need to be studied, while the steady state is described 

by setting the first term that is proportional to <=
<>

 to zero. 

 When the object of interest is a solid, unless the effect of gas flow surrounding the object 

significantly affects the temperature profiles within the object, the effect of convection in the 

surrounding gas is commonly included as a boundary condition for the modeled object, given by 

Newton’s law of cooling [86] 

−𝒏 ⋅ 𝒒+/? = ℎ(𝑇+@A − 𝑇), (2.15)  

where 𝒒+/? the heat flux over the surface of the object, 𝑇+@A is the ambient temperature, and ℎ is 

the heat transfer coefficient. The expression for ℎ depends on the geometry of the object, as well 

 
* Adapted from D. O'Nolan, G. Huang, G. E. Kamm, A. Grenier, C. H. Liu, P. K. Todd, A. Wustrow, G. T. Tran, D. 
Montiel, J. R. Neilson, S. J. L. Billinge, P. J. Chupas, K. S. Thornton, and K. W. Chapman, “A Thermal-Gradient 
Approach to Variable-Temperature Measurements Resolved in Space,” Journal of Applied Crystallography 53, 662 
(2020). 
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as the flow conditions (e.g., natural air convection, forced convection, orientation of the surface, 

etc.) [86].  

 There are two types of thermal radiation: surface-to-surface radiation [87,88] and surface-

to-ambient radiation. The former describes the heat transfer due to thermal radiation between the 

surface of an object and those of other objects, while the latter describes the radiation of the heat 

from the surface of an object to the surrounding gas. For the surface-to-surface radiation, we 

consider a point, P, on one of the surfaces, which we denote as the surface of interest, S. The net 

outgoing radiative heat flux, 𝐽, at this point is given by 

𝐽(𝒓B) = (1 − 𝛼)𝐺(𝒓B) + 𝜖𝑒AU𝑇(𝒓B)V, (2.16)  

where 𝒓B  indicates the position of point P, 𝛼 is the absorptivity of surface S, 𝐺 is the incident 

radiative flux onto the surface at point P, and 𝜖 accounts for the difference in material’s emissivity 

with respect to that of a black body. The first term in Equation (2.16) accounts for reflection at 

point P on S. The second term accounts for emission, where 𝑒A(𝑇) is the black body radiation 

power per unit area, given by the Stefan–Boltzmann law, 

𝑒A(𝑇) = 𝜎𝑇5, (2.17)  

where 𝜎  is the Stefan-Boltzmann constant. The spatial dependence of variables indicated in 

Equation (2.16) is omitted below for brevity. The flux, G, at point P on S is given by 

𝐺 = i
(−𝒏C ⋅ 𝒓)(𝒏 ⋅ 𝒓)

𝜋|𝒓|5 𝐽C𝑑𝑆′
DC

	+ m1 − i
(−𝒏C ⋅ 𝒓)(𝒏 ⋅ 𝒓)

𝜋|𝒓|5 𝑑𝑆′
D#

n 𝑒A(𝑇+@A). (2.18) 
 

The first term in Equation (2.18) accounts for radiation from all unobstructed surrounding surfaces, 

S’, that are facing the surface of interest, S. The second term accounts for incident ambient 

radiation. The vector, 𝒓, points from point P on S to a point P’ on S’, 𝒏 and 𝒏C are the outward 

normal vectors at P and P’, respectively, 𝑇+@A is the ambient temperature far from the apparatus, 
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and 𝐽C is the net outgoing heat flux from P’ on S’. The ambient view factor, 1 − ∫
E7𝒏#⋅𝒓I(𝒏⋅𝒓)

L|𝒓|$
𝑑𝑠′D# , 

accounts for the fraction of ambient radiation on P that is not blocked by S’. The heat flux onto the 

surface S due to surface-to-surface thermal radiation, −𝒏 ⋅ 𝒒𝒔𝒔, is given by 

−𝒏 ⋅ 𝒒𝒔𝒔 = 𝐺 − 𝐽 = 𝜖[𝐺 − 𝑒A(𝑇)]. (2.19)  

The surface-to-ambient thermal radiation is given by: 

−𝒏 ⋅ 𝒒𝒔𝒂 = 𝜖𝜎(𝑇+@A5 − 𝑇5). (2.20)  

For the work in this thesis, we solve the above equation with object geometries 

corresponding to the experiment using COMSOL Multiphysics® software [89], which is a software 

that pre-implemented the heat transfer equations discussed above. A heat transfer model might 

involve additional equations, such as heat absorption equations. The model could be coupled with 

other models, such as Joule heating, to describe more complex phenomena. Some examples are 

discussed in Chapter 7.  

2.5 Approaches for model parameter determination 

2.5.1 Two categories of methods for automated parameter determination* 

As discussed in Chapter 1 Section 1.5, a computational model requires an accurate set of 

parameters for it to be predictive. Although some of the parameters are either reported in literature 

or can be easily measured from experiments, other parameters are unknown or uncertain. There 

are two major approaches to finding the parameters through automation: interpolation methods 

and iterative methods. Interpolation methods usually employ a functional form to describe the 

relationship between a set of independent variables (in the present case, input parameters) and 

 
* Adapted from G. Huang, M. Zhang, D. Montiel, P. Soundararajan, Y. Wang, J. J. Denney, A. A. Corrao, P. G. 
Khalifah, and K. Thornton, “Automated Extraction of Physical Parameters from Experimentally Obtained Thermal 
Profiles Using a Machine Learning Approach,” Computational Materials Science 194, 110459 (2021). 
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dependent variables (e.g., the difference between simulated results and experimental 

measurements). In polynomial regression [90,91], a polynomial functional form is proposed and 

the coefficients for each term are determined by fitting the functional form to known independent 

and dependent variables. In ordinary kriging [92,93], each dependent variable of interest can be 

represented as a weighted average of known dependent variables, with the weights being assigned 

based on the distance between them in the parameter space. The optimal parameters are determined 

by solving for local minima of the functional form. The accuracy of these interpolation methods 

is highly dependent on the number of known pairs of independent and dependent variables. To 

achieve high accuracy, an exhaustive sampling of the parameter space is usually required, which 

is computationally intensive, especially when the parameter space is large and high dimensional. 

An alternative approach is the use of iterative methods, where a local or global minimum of an 

objective/cost function that is designed to represent errors between experimental measurements 

and sampling simulations is iteratively estimated. These methods usually start with assigning an 

initial range for each parameter and randomly sampling a number of vectors in the parameter space 

defined by the possible range of each parameter. The ranges of these parameters are then 

successively refined following rules specified by an algorithm in order to reduce the cost/objective 

function value. For example, in a genetic algorithm [94], the sampled vectors (named population 

in this method) with lower cost would be more likely to be selected as the parents in the current 

iteration and would be utilized to generate vectors for next iteration (or children), via crossover 

and mutation operation. In a particle swarm optimization [94-97], the position of each sampled 

vector (or particle) is updated, so as to reduce its distance from its own previous optimal position 

(defined as the one with lowest cost) and the previous global optimal position. In a general pattern 

search algorithms [97,98], such as a coordinate search algorithm [99] and a Hooke-Jeeves 
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algorithm [97,100], the parameter space is shifted based on the sampled vectors that yield the 

lowest cost in each iteration and is refined using a mesh size factor defined by the algorithm.  

 

2.5.2 A novel machine learning method to determine uncertain parameters* 

Here, we introduce a method that is similar to a general pattern search algorithm but shifts 

and refines the range of each parameter based on statistical information obtained from a number 

of sampled vectors, rather than a single vector with the lowest cost function value. Due to the fact 

that cost function could have a few local minima, the lowest cost at one point does not necessarily 

guarantee that the cost evaluated at its surrounding is lower than those evaluated at the points in 

the regions further away. In our approach, we instead evaluate the mean and standard deviation 

for sampling simulations in each iteration that yield low errors and shift and refine the parameter 

space based on them. The algorithm therefore utilizes the collective information from all the 

sampling simulations, and the parameter space is updated in a manner that the mean cost, averaged 

from all the sampled vectors, decreases rapidly, which allows for a robust optimization against 

different shapes of cost functions. In our algorithm, the parameters of interest are either unknown 

or uncertain. An uncertain parameter is a parameter for which a range of values was previously 

reported in literature; this range is selected as the initial range for the parameter. For unknown 

parameters, the initial range is estimated based on known physical constraints and prior knowledge 

of the behavior of related materials. The possible range for the uncertain and unknown parameters 

is then iteratively refined using the average value and standard deviation of the sampling 

simulations that yield a low error (we are selecting the parameter vectors that are at the 10th 

 
* Adapted from G. Huang, M. Zhang, D. Montiel, P. Soundararajan, Y. Wang, J. J. Denney, A. A. Corrao, P. G. 
Khalifah, and K. Thornton, “Automated Extraction of Physical Parameters from Experimentally Obtained Thermal 
Profiles Using a Machine Learning Approach,” Computational Materials Science 194, 110459 (2021). 
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percentile or lower in error among the samples in each iteration) until a convergence criterion is 

satisfied. The final set of the sample data is then used to determine the optimized set of parameter 

values via an interpolation method. A flowchart illustrating the algorithm steps is shown in Figure 

2.2. 

 

Figure 2.2. Flow chart showing the algorithm for extraction of physical parameters. Reproduced 
with permission [101]. Copyright 2021, Elsevier. 

A parameter vector is a vector composed of 𝑛 parameters that is sampled from a parameter 

space, 𝑿𝒊, a subspace of an 𝑛-dimensional real space, ℝQ, which can be mathematically written 

as: 

𝑿𝒊 = v𝒙 ∈ ℝQ	|	𝑙;/ ≤ 𝑥; ≤ 𝑢;/ , 𝑝 ∈ {1, … , 𝑛}�.	 (2.21)  

The lower U𝑙;/ V  and upper U𝑢;/ V  bounds on each dimension, 𝑝 , in iteration, 𝑖 , are iteratively 

updated. Hereafter, the superscript 𝑖 indicates the iteration number. In each iteration, 𝐾 vectors are 

sampled. A 𝑗th-sampled parameter vector, 𝒙𝒋𝒊, is a point in 𝑿𝒊. The objective/cost function of each 

sampled vector, 𝒙𝒋𝒊, is defined as an averaged error, 𝐸S/, between the set of values, 𝑦T/@,V, obtained 
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from the simulation with the parameter vector, 𝒙𝒋𝒊, and experimentally measured values, 𝑦W2;,V, 

using a root mean square error (RMSE): 

𝐸S/U𝒙𝒋𝒊V 	= 𝑅𝑀𝑆𝐸U𝒙𝒋𝒊V = �
1
𝑀��𝑦T/@,VU𝒙𝒋𝒊V − 𝑦W2;,V�

"
X

VY!

,	 (2.22) 

 

where 𝑦W2;,V is the 𝑘>Z experimental observation, 𝑦T/@,V is the 𝑘>Z simulated observation obtained 

using a parameter vector, respectively, and 𝑀 is the total number of observations (e.g., the number 

of discrete points at which the temperature is compared) for each simulation. The average cost, 𝐸=/, 

in each iteration is evaluated using the following formula: 

𝐸=/ =
1
𝐾�𝐸S/

[

SY!

,	 (2.23) 
 

where 𝐾 stands for the number of simulations resulting from the sampled parameters in each 

iteration. The objective of this algorithm is to iteratively reduce the average cost 𝐸=/  until the 

change of 𝐸=/ is less than a threshold from iteration 𝑖 − 1 to iteration 𝑖.  

The initial bounds 𝑙;!  and 𝑢;!  for each parameter are assigned based on either literature-

reported values or physical constraints. Then, 𝐾  parameter vectors are generated within the 

assigned ranges using Latin hypercube sampling (LHS) [102]. We utilized a built-in function in 

MATLAB® to implement the sampling of parameters in the parameter space. 

The model with each parameter vector, 𝒙𝒋𝒊 , in iteration 𝑖  is simulated, and the RMSE 

between simulated and experimental observations at 𝑀 points is computed using Equation (2.22). 

The parameter vectors that are at the 𝑟th percentile or lower in error are selected, where 𝑟 defines 

the cutoff, from which the average value 𝜇;/  and the standard deviation 𝜎;/  of each parameter is 

calculated. If 𝑟 is too large, it will result in slow convergence, while if too small it will not yield 
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statistically meaningful information and it will increase the number of the sampling calculations 

required. We found setting 𝑟 = 10 in general works well, although the optimal choice of 𝑟 could 

depend on the number of available training examples. The mean and standard deviation are then 

utilized to update the lower and upper bounds of each parameter for next iteration (𝑖 + 1) using  

𝑢;/:! = 𝜇;/ + 𝛾𝜎;/ , (2.24)  

𝑙;/:! = 𝜇;/ − 𝛾𝜎;/ , (2.25)  

where 𝛾 is an adjustable constant parameter that determines the width of parameter ranges for the 

next iteration. If the value of 𝛾 is too large, the parameters range may never converge; if the value 

is too small, the parameter space could be trapped in a local minimum and the determined 

parameter vector can be suboptimal.  

An average cost 𝐸=/ is calculated at each iteration, 𝑖. The stopping criterion is considered 

met when the change of this error, Δ𝐸/ = �U𝐸=/ − 𝐸=/7!V/𝐸=/7!� , is less than 107.	 in two 

consecutive iterations. When the stopping criterion is met, we employ a second-order polynomial 

with 𝑛 variables to fit the final dataset and consider the position of the local minimum of that 

polynomial to be the optimal value, 𝑥;∗ , for each parameter 𝑝. Specifically, the sampled vectors 

from the final dataset that consists of the 10th percentile of the final sampling calculations are 

chosen to be independent variables and their corresponding cost are selected as dependent 

variables. This percentile threshold may also depend on the specifics of the model and training 

data. We normalize the independent variables by subtracting their mean values from them and 

dividing them by their standard deviations. Specifically, a mean, 𝜇;, and standard deviation, 𝜎;, 

are calculated from all the 𝑝>Z  elements. Each element, 𝑥; , of an independent variable, 𝒙𝒋 =

(𝑥!,S , … 𝑥;,S , … , 𝑥Q,S), is normalized to 𝑥�;,S as follows: 
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𝑥�;,S = U𝑥;,S − 𝜇;V/𝜎;, (2.26)  

resulting in normalized vector 𝒙�𝒋 . The cost function of each normalized vector, is then 

approximated as a second-order polynomial with the following form: 

𝐸SU𝒙�𝒋V = ��𝑎;𝑥�;,S" + 𝑏;𝑥�;,S + � U𝑐;\𝑥�;,S𝑥�\,SV
Q

\Y;:!

� + 𝑑
Q

;Y!

, (2.27) 
 

where 𝐸SU𝒙�𝒋V  is the predicted cost for each vector, 	𝒙�𝒋 . The constants 𝑎;, 𝑏; , 𝑐;\ , and 𝑑  are 

determined via the nonlinear least-squares solver in MATLAB®. The constant 𝑎; is constrained to 

be greater than zero, which constrains 𝐸SU𝒙�𝒋V to be convex. Taking partial derivative of 𝐸SU𝒙�𝒋V with 

respect to each parameter and setting them to zero result in the following equation: 

2𝑎;𝑥�;∗ + 𝑏; +�U𝑐V;𝑥�V∗V
;7!

VY!

+ � U𝑐;\𝑥�\∗V
Q

\Y;:!

= 0, (2.28) 
 

where the superscript “*” indicates an optimal value. There are in total 𝑛 independent equations 

with 𝑛 unknown variables. Rearranging them yield the following linear system: 𝑨𝒙�∗ = −𝒃 

⎝
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⎟
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. (2.29) 

 

The optimal normalized parameter vector can then be solved using 𝒙�∗ = −𝑨7𝟏𝒃. Each element 𝑥�;∗  

of the vector is then multiplied by the previous calculated standard deviation, 𝜎;, and added to the 

mean, 𝜇;, to be transformed back to the original parameter space,  

𝑥;∗ = 𝑥�;∗𝜎; + 𝜇;, (2.30)  

resulting in the optimal parameter vector, 𝒙∗. 
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 This method is employed in Chapter 7 Section 7.2 to determine uncertain parameters for a 

heat transfer model of an optical floating zone experiment.  

2.6 Phase-field models* 

2.6.1 Overview 

Phase-field  models have been commonly applied to model temporal and spatial evolution 

of mesoscale microstructure [103-105] during processes such as solidification [106-109], grain 

growth [24,110-113], spinodal decomposition [114,115], sintering [116,117], and electrochemical 

reactions [118-121]. Continuous field variables are utilized in phase-field models to describe the 

quantities of interest for each application. As compared to sharp interface methods [122-124] in 

which the position of interfaces between different phases are explicitly tracked during the 

evolution, the phase-field model employs a diffuse interface approach [125-127], for which an 

interface is described by a smooth change of a field variable from its value in one phase to is value 

in the other phase. Phase-field models employ a free energy functional to capture the 

thermodynamics of the material system to be modeled. The microstructure evolution is obtained 

by the reduction of this free energy under the constraints that apply in each case.  

2.6.2 Field variables 

Phase-field models typically contain one or more field variables to describe the quantities 

involved in each application. There are two types of field variables: conserved or non-conserved 

field variables. A conserved field variable is employed to describe the physical quantity that 

satisfies local conservation conditions, such as concentration. On the other hand, a non-conserved 

 
* Adapted from G. Huang, D. Montiel, R. D. McAuliffe, G. M. Veith, and K. Thornton, “Phase-Field Modeling of 
Solid-State Metathesis Reactions with the Charge Neutrality Constraint,” Computational Materials Science 221, 
112080 (2023). 
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field variable, or order parameter, is utilized to describe the quantities that do not satisfy local 

conservation conditions, such as the orientation for grains.  

2.6.3 Free energy functional 

The free energy functional, ℱ , of a phase-field model is commonly constructed as an 

integral of the sum of a few free energy density terms, over the system volume, 𝑉: 

ℱ = iU𝑓 _`a + 𝑓b$(c%de& + 𝑓(cc%&%fe(`V𝑑𝑉
g

. (2.31)  

Here, 𝑓 _`a is the bulk energy density term, which encodes the thermodynamics of the material 

system. Although a realistic bulk free energy landscape measured in the experiment or calculated 

using density functional theory can be used to construct 𝑓 _`a , one can also choose to 

mathematically construct such an energy form. For example, the following form can be used to 

describe a material system with two equilibrium phases: 

𝑓 _`a = 𝑊(𝜙 − 𝜙!)"(𝜙 − 𝜙")". (2.32)  

Here, 𝜙 is the field variable, and 𝑊 is the coefficient for the bulk energy density. The function has 

two local minima at 𝜙 = 𝜙! and 𝜙 = 𝜙". When 𝜙 stands for a conserved field variable, 𝜙! and 

𝜙" are chosen to reflect the stable composition. When 𝜙 is used to describe a non-conserved order 

parameter, 𝜙!  and 𝜙"  are the values associated with each state. Additional field variables are 

necessary to model a more complex material system. For those cases, Equation (2.32) needs to be 

modified to take these additional field variables into account. In this thesis, we will present two 

examples of bulk free energy density term, one for solid-state metathesis reactions in which charge 

neutrality condition must be considered (see Chapter 3), and the other for polycrystalline 

microstructure evolution with dislocations in which stored energy must be included in the driving 

force (see Chapter 5 and Chapter 6).  
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The second term in the integral of Equation (2.31), 𝑓b$(c%de&,  is the gradient energy density 

term, which is used to penalize a large gradient in field variables. A common form used for this 

term is given by [103,126] 

𝑓b$(c%de& =
𝜅
2�

|𝛻𝜙/|"
*

/Y!

, (2.33) 
 

where 𝜅 is the gradient energy coefficient, and 𝑁 is the total number of field variables employed 

in a phase-field model. The values of 𝑊 and 𝜅 can be determined based on the value of interfacial 

energy, a material parameter, and the interfacial width, a model parameter. Since the interfaces in 

phase-field models are diffuse, the interfacial width is a model parameter. In this thesis, we define 

the width of an interface, 𝑙/Q>, to be 

𝑙/Q> = 2£
2𝜅
𝑊. (2.34) 

 

When 𝜙! and 𝜙" are taken to be 0 and 1, respectively, the equilibrium profile of 𝜙 with respect to 

the position 𝑥 is given by 

𝜙 =
1
2 ¤1 + tanh I

2(𝑥 − 𝑥0)
𝑙/Q>

J©, (2.35) 
 

where 𝑥0 is the center of the interface where 𝜙 = 0.5. The profile is shown in Figure 2.3. 
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Figure 2.3. The equilibrium profile of 𝜙, when 𝜙! = 0 and 𝜙" = 1. 

With this definition, each field variable varies from approximately 10% to 90% of their maximum 

value between 𝑥0 − 𝑙/Q>/2 and 𝑥0 + 𝑙/Q>/2. For instance, in the example for which 𝜙! and 𝜙" are 

0 and 1, respectively, 𝜙 is ~0.1 at 𝑥 = 𝑥0 − 𝑙/Q>/2,	and ~0.9 at 𝑥 = 𝑥0 + 𝑙/Q>/2.  

 Although the first two energy density terms in Equation (2.31) might suffice for some 

phase-field models, the third term, 𝑓(cc%&%fe(`, could be utilized to describe additional constraints 

or physics for a materials system. In Chapter 3 of this thesis, for example, we employ a set of 

Lagrange multipliers as this additional energy density term to impose constraints on mass 

conservation and electroneutrality during solid-state metathesis reactions. In Chapter 5 and 

Chapter 6, we utilize a stored energy term as this additional energy density term to consider the 

effect of the stored energy on microstructure evolution.  

2.6.4 Governing equations 

Two types of governing equations are commonly used to describe the evolution of field 

variables. For a conserved field variable, such as a concentration field, 𝑐(𝒓, 𝑡), the following mass 

conservation equation [103,128] is utilized to describe its evolution:  
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𝜕𝑐(𝒓, 𝑡)
𝜕𝑡 = −∇ ⋅ 𝐽. (2.36)  

Here, the flux 𝐽 is given by 

𝐽 = −𝑀∇𝜇 = −𝑀∇
𝛿ℱ
𝛿𝑐 , 

(2.37)  

where 𝜇 = hℱ
hj

 is the chemical potential, and 𝑀 is the mobility for the quantity the field variable 

describes.  

 For a non-conserved order parameter, such as a grain orientation, 𝜂 , the Allen-Cahn 

dynamics [129] is employed to describe its evolution: 

𝜕𝜂
𝜕𝑡 = −𝐿 I

𝛿𝐹
𝛿𝜂J, (2.38) 

 

where 𝐿 is the mobility parameter for the quantity the field variable describes. 

2.6.5 Linear stability analysis* 

When evolving a governing phase-field equation, the initial fluctuation in the order 

parameter may grow or decay. Linear stability analysis is commonly employed to predict whether 

a certain wavelength will grow or not, given the evolution dynamics. To demonstrate this concept, 

we show its application to the Cahn-Hilliard dynamics. Substituting a free energy functional that 

includes the bulk free energy density term and the gradient energy density term into Equation 

(2.36) yields 

𝜕𝑐(𝒓, 𝑡)
𝜕𝑡 = ∇ ⋅ ¤𝑀∇I

𝜕𝑓Ak-V
𝜕𝑐 − 𝜅∇"𝑐J©. (2.39)  

In this section, the following double-well form of 𝑓Ak-V is considered, 

𝑓Ak-V = 𝑊[𝑐(𝒓, 𝑡) − 𝑐!]"[𝑐(𝒓, 𝑡) − 𝑐"]", (2.40)  

 
* Adapted from R. W. Balluffi, S. M. Allen, and W. C. Carter, Kinetics of Materials, John Wiley & Sons (2005). 
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where 𝑊  is the coefficient for the bulk energy density, 𝑐(𝒓, 𝑡)  is the field variable for the 

concentration, and 𝑐!  and 𝑐"  are the two equilibrium concentrations. This equation can be 

linearized by setting the mobility to its characteristic value, 𝑀0, near the concentration around 

which the equation is linearized, and applying the chain rule, which leads to [130] 

𝜕𝑐(𝒓, 𝑡)
𝜕𝑡 = 𝑀0 ­

𝜕"𝑓Ak-V
𝜕𝑐" ∇"𝑐 − 𝜅∇5𝑐®. (2.41) 

 

Taking the second derivative of 𝑓Ak-V with respect to 𝑐 yields 

𝜕"𝑓Ak-V
𝜕𝑐" = 2𝑊[(𝑐 − 𝑐!)" + 4(𝑐 − 𝑐!)(𝑐 − 𝑐") + (𝑐 − 𝑐")"]. (2.42)  

When 𝑐(𝒓, 𝑡) is perturbed with a one-dimensional wave, 𝜖(𝑡)sin(𝛽𝑥), from its initial value, 𝑐0, 

the concentration field can be written as 

𝑐(𝒓, 𝑡) = 𝑐0 + 𝜖(𝑡)sin(𝛽𝑥), (2.43)  

where 𝜖(𝑡) is the time-dependent amplitude of the wave, 𝛽 = "L
l

 is the wavenumber, and 𝜆 is the 

wavelength. Substituting Equation (2.43) into Equation (2.41) and keeping only the first-order 

terms in 𝜖(𝑡) yield 

𝜕𝜖(𝑡)
𝜕𝑡 sin(𝛽𝑥) = 𝑀0[𝑘0∇"(𝜖(𝑡)sin(𝛽𝑥)) − 𝜅∇5(𝜖(𝑡)sin(𝛽𝑥))]. (2.44)  

Note that when evaluating <
%m&'()
<j%

 at 𝑐(𝒓, 𝑡) = 𝑐0 + 𝜖(𝑡)sin(𝛽𝑥), we omit the terms that involve 

𝜖(𝑡) because these terms multiplied with ∇"(𝜖(𝑡)sin(𝛽𝑥)) result in higher order terms in 𝜖(𝑡). 

Consequently, the expression of <
%m&'()
<j%

 is equal to a constant 𝑘0, given by 

𝑘0 = 2𝑊[(𝑐0 − 𝑐!)" + 4(𝑐0 − 𝑐!)(𝑐0 − 𝑐") + (𝑐0 − 𝑐")"], (2.45)  

which is less than 0 within the spinodal regime. The two terms in Equation (2.44) that involve the 

gradient operator are given by 
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∇"(𝜖(𝑡)sin(𝛽𝑥)) = −𝛽"𝜖(𝑡)sin(𝛽𝑥) (2.46)  

and 

∇5(𝜖(𝑡)sin(𝛽𝑥)) = 𝛽5𝜖(𝑡)sin(𝛽𝑥). (2.47)  

Substituting Equation (2.46) and (2.47) into Equation (2.44) yields  

𝜕𝜖(𝑡)
𝜕𝑡 = −𝑀0[𝑘0𝛽" + 𝜅𝛽5]𝜖(𝑡). (2.48)  

Solving Equation (2.48), which is now an ordinary differential equation, yields  

𝜖(𝑡) = 𝜖(0)𝑒7X*nV*9%:o9$p> = 𝜖(0)𝑒q(9)> , (2.49)  

where 𝑅(𝛽) = −𝑀0[𝑘0𝛽" + 𝜅𝛽5] is the amplification factor. The fluctuation will grow when 

𝑅(𝛽) > 0, or when 

𝛽 < 𝛽#$%& = £−
𝑘0
𝜅 , 

(2.50) 
 

where 𝛽#$%&  is the critical wavenumber below which the fluctuation grows. The maximum 

amplification factor is obtained when <q(9)
<9

= 0, or when 

𝛽'() = £−
𝑘0
2𝜅. 

(2.51) 
 

A typical curve for 𝑅(𝛽), which sets 𝑐! = 0.1, 𝑐" = 0.9, and 𝑐0 =
j+:j%
"

= 0.5,  is shown in Figure 

2.4. The amplification factor is greater than 0 when 𝛽 < 𝛽#$%& and maximized at 𝛽 = 𝛽'(). 
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Figure 2.4. Amplification factor, 𝑅(𝛽), vs. wavenumber, 𝛽. The amplification factor is greater 
than 0 when 𝛽 < 𝛽#$%& and maximized at 𝛽 = 𝛽'(). 

2.7 The smoothed boundary method 

In order to accurately describe the microstructure evolution, it is necessary to impose a 

precise boundary condition. When the modeled geometry is of irregular shape, however, it is 

challenging to apply boundary conditions on the geometry. One approach to overcome this issue 

is to employ a smoothed boundary method (SBM), which leverages a domain parameter to allow 

for imposing boundary conditions on irregular boundaries. The SBM was initially introduced by 

Refs. [131-133] to solve diffusion equations with no-flux boundary condition and was later 

extended by Yu et al. [134] to solve partial differential equations with general boundary conditions. 

This method introduces a domain parameter, 𝜓, which is 1 inside the domain, 0 outside the domain, 

and smoothly varies from 1 to 0 at the boundary of the domain.  

Although the smoothed boundary method can be applied to various partial differential 

equations [135-137], we demonstrate the derivation using the diffusion equation, which possess a 

relatively simple form, as an example to show how Neumann and Dirichlet boundary conditions 

can be imposed using the method.  

The governing equation for diffusion according to Fick’s second law is given by  



 38 

𝜕𝑐
𝜕𝑡 = −∇ ⋅ 𝐽 + 𝑆 = −∇ ⋅ (𝐷∇𝑐) + 𝑆, (2.52)  

where 𝑐  is the concentration, 𝐽 is the flux, 𝑆 is the source term, 𝐷  is the diffusion coefficient. 

Multiplying Equation (2.52) with 𝜓 yields 

𝜓
𝜕𝑐
𝜕𝑡 = 𝜓∇ ⋅

(𝐷∇𝑐) + 𝜓𝑆. (2.53)  

The first term on the right-hand side of Equation (2.53) can be mathematically manipulated using 

the generalized form of the product rule of differentiation (∇ ⋅ (𝑓𝒈) = ∇𝑓 ⋅ 𝒈 + 𝑓∇(𝒈)) as 

𝜓∇ ⋅ (𝐷∇𝑐) = ∇ ⋅ (𝜓𝐷∇𝑐) − ∇𝜓 ⋅ (𝐷∇𝑐). (2.54)  

Substituting Equation (2.54) into Equation (2.53) yields [134] 

𝜓
𝜕𝑐
𝜕𝑡 = ∇ ⋅ (𝜓𝐷∇𝑐) − ∇𝜓 ⋅ (𝐷∇𝑐) + 𝜓𝑆. (2.55)  

2.7.1 Neumann boundary condition 

The inward flux, 𝐽r, at the boundary is given by 

𝑛 ⋅ 𝐽 = −
∇𝜓
|∇𝜓|

(𝐷∇𝑐) = 𝐽r , (2.56)  

where 𝑛 = ∇t
|∇t|

 is the unit normal inward vector. Rearranging Equation (2.56) yields 

−∇𝜓(𝐷∇𝑐) = |∇𝜓|𝐽r . (2.57)  

Substituting Equation (2.57) into the second term on the right-hand side of Equation (2.55) and 

rearranging the resulting equation yield [134] 

𝜕𝑐
𝜕𝑡 =

1
𝜓
[∇ ⋅ (𝜓𝐷∇𝑐) − |∇𝜓|𝐽r + 𝜓𝑆]. (2.58) 

 

When a no-flux boundary condition is imposed (𝐽r = 0) and no additional term needs to be 

considered, Equation (2.58) reduces to the form that was presented in Refs. [131-133] 
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𝜕𝑐
𝜕𝑡 =

1
𝜓 ∇ ⋅

(𝜓𝐷∇𝑐). (2.59) 
 

2.7.2 Dirichlet boundary condition 

Multiplying Equation (2.55) with 𝜓 yields 

𝜓" 𝜕𝑐
𝜕𝑡 = 𝜓∇ ⋅ (𝜓𝐷∇𝑐) − 𝜓∇𝜓 ⋅ (𝐷∇𝑐) + 𝜓"𝑆. (2.60)  

Again, using the generalized product rule, the second term on the right-hand side of Equation 

(2.60) can also be written as 

−𝜓∇𝜓 ⋅ (𝐷∇𝑐) = −𝐷[∇𝜓 ⋅ ∇(𝜓𝑐) − 𝑐|∇𝜓|"]. (2.61)  

Substituting Equation (2.61) into Equation (2.60) and rearranging the resulting equation yield 

𝜕𝑐
𝜕𝑡 =

1
𝜓 ∇ ⋅

(𝜓𝐷∇𝑐) −
𝐷
𝜓" [∇𝜓 ⋅ ∇(𝜓𝑐) − 𝐶0|∇𝜓|

"] + 𝑆. (2.62) 
 

Here, the field 𝑐 before |∇𝜓|" is replaced by 𝐶0, the boundary value to be imposed. 

2.8 A distance function and level-set method 

Although phase-field methods eliminate the needs to explicitly track the interfaces during 

the microstructure evolution, it is still sometimes necessary to locate the interfaces, as well as to 

determine a distance function, 𝑑(𝒓), the distance from a point to its nearest interface, when 

initializing the microstructure for a phase-field model. For instance, importing a complex 

experimental microstructure, in which different phases are separated by sharp interfaces as the 

initial condition for a phase-field model, may require generating 𝑑(𝒓) based on the experimental 

microstructure, which can then be fed into a hyperbolic tangent function to generate field variable 

profiles with a diffuse interface.  

Here, we describe the level-set method [124,138-140], which takes a field with sharp 

interface between each phase and produce a distance function 𝑑(𝒓), which is 0 at the interfaces, 
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positive on one side of the interfaces, and negative on the other side. Given an initial field, 𝜙(𝒓), 

the distance function 𝑑(𝒓)  is obtained by iteratively evolving the following equation until 

convergence: 

𝜕𝜙
𝜕𝑡 = sign(𝜙)(1 − |∇𝜙|). (2.63)  

Here, sign(𝜙) is a smoothed sign function of 𝜙, which is given by 

sign(𝜙) =
𝜙

O𝜙" + 𝜖"
, (2.64) 

 

where 𝜖 is a small number employed here to avoid numerical instability for small 𝜙. In this thesis, 

the gradient of 𝜙, ∇𝜙, is numerically evaluated using a first-order upwind scheme [138,141]. For 

simplicity, we describe this scheme here in one dimension and denote 𝜙′(𝑥) as the first derivative 

of 𝜙  at position 𝑥 . We note that the same discretization scheme could be applied to all the 

dimensions when multiple dimensions are considered. First, 𝜙′(𝑥) is evaluated using both the 

forward and backward schemes, resulting in 𝜙m′(𝑥) and 𝜙A′(𝑥), respectively 

𝜙mC (𝑥) =
𝜙(𝑥 + Δ𝑥) − 𝜙(𝑥)

Δ𝑥  (2.65)  

and 

𝜙AC (𝑥) =
𝜙(𝑥) − 𝜙(𝑥 − Δ𝑥)

Δ𝑥 , (2.66)  

where Δ𝑥 is the grid spacing. When sign(𝜙) > 0, we take 

𝜙C(𝑥) = maxºmax[0, 𝜙AC (𝑥)] ,max�0, −𝜙mC (𝑥)�». (2.67)  

When sign(𝜙) < 0, we have 

𝜙C(𝑥) = maxºmax[0, −𝜙AC (𝑥)] ,max�0, 𝜙mC (𝑥)�». (2.68)  
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We define the convergence to be reached when the spatial average of the absolute value of the 

change in 𝜙 between two iterations, !
g ∫ |𝜙(𝑡 + Δ𝑡) − 𝜙(𝑡)|g 𝑑𝑉, is less than 1078.  
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Chapter 3 Phase-Field Modeling of Solid-State Metathesis Reactions with the Charge 

Neutrality Constraint 

3.1 Introduction 

As discussed in Chapter 1 Section 1.2, a computational model is required to facilitate the 

understanding of solid-state metathesis (SSM) reactions. In this chapter,* we present a phase-field 

approach to simulate the evolution of ionic concentrations and phase fractions in solid-state 

metathesis reactions. In Section 3.2, we present a phase-field model for simulating a simple SSM 

reaction in which all the ions are assumed to have an identical absolute value of charge numbers. 

In Section 3.3, we generalize the model to consider ions with different absolute value of charge 

numbers. In Section 3.4, we discuss the nondimensionalization of phase-field equations. In Section 

3.5, we describe the relationship between the diffusion coefficient and mobility of each ion in the 

proposed phase-field model. In Section 3.6, we explain how the energy scale for the proposed 

phase-field model is determined. In Section 3.7, we couple the phase-field model with the 

smoothed boundary method to extend the model to simulate the SSM reactions between particles.  

3.2 A phase-field model for a simple SSM reaction  

We begin by presenting a phase-field model that describes a special SSM reaction in which 

all the ions are assumed to have an identical absolute value of charge numbers and the 

 
* Sections 3.2 – 3.6 are adapted from G. Huang, D. Montiel, R. D. McAuliffe, G. M. Veith, and K. Thornton, “Phase-
Field Modeling of Solid-State Metathesis Reactions with the Charge Neutrality Constraint,” Computational Materials 
Science 221, 112080 (2023). Section 3.7 is adapted from G. E. Kamm, G. Huang, S. M. Vornholt, R. D. McAuliffe, 
G. M. Veith, K. S. Thornton, and K. W. Chapman, “Relative Kinetics of Solid-State Reactions: The Role of 
Architecture in Controlling Reactivity,” Journal of the American Chemical Society 144, 11975 (2022). 
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stoichiometric coefficients (i.e., the coefficients in front of the compounds to balance the reaction) 

are unity for all the phases. Such a reaction can be written as  

AX + BY → AY + BX, (3.1)  

where two cations are denoted by A and B, and two anions are denoted by X and Y. The precursor 

phases are denoted by AX and BY, and the product phases are denoted by AY and BX.  

As discussed in Chapter 2 Section 2.1.3, two pathways were proposed for a binary SSM 

reaction – one assuming that ions diffuse to form products without undergoing redox reactions and 

the other assuming that the ions are first reduced or oxidized to their elemental form before being 

recombined into products. Although the actual reaction pathway is more complex in general and 

these pathways represent extreme cases, we propose the present phase-field model based on the 

first mechanism. This model assumes a direct SSM reaction and does not consider intermediate 

compounds. Additionally, for simplicity we assume that each of the reactant phases is unstable in 

the presence of the other reactant at a sufficiently high temperature. Although a density functional 

theory calculation may be required to rigorously examine the stability of the reactants, the 

assumption is consistent with the fact of the rapid formation of salts observed in SSM reactions. 

For example, it is reported in Ref. [2] that grinding MCl2 (M = Fe, Co, Ni) and Na2S2 precursor 

particles at room temperature in air yield immediate formation of NaCl. Therefore, we employ a 

free energy landscape with two local minima at compositions corresponding to the two product 

phases. While this assumption is not necessary, it allows for a simple model that recovers expected 

behavior observed in SSM reactions. We note that intermediate species can be incorporated if we 

employ a more complex free energy functional, which will be left for future work. In addition, we 

assume that the rate of phase transformations is limited by the diffusion of ions. In other words, 

the nucleation of product phases is considered instantaneous. Furthermore, we assume that the 
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molar volume of phases is proportional to the number of their constituent ions. Thus, the molar 

volume of all the phases in Equation (3.1) is considered identical under this assumption. The phase-

field model, under the assumptions stated above, is presented below. 

3.2.1 Free energy functional 

A total free energy functional, ℱ, is constructed as the integral over the system volume of 

a bulk energy density, 𝑓 _`a, a gradient energy density, 𝑓b$(c%de&, and a term to impose constraints, 

𝑓jfeu&$(%e&:  

ℱ(𝒄) = iU𝑓 _`a + 𝑓b$(c%de& + 𝑓#feu&$(%e&V𝑑𝑉
g

, (3.2)  

where 𝒄 = [𝑐v, 𝑐r , 𝑐w , 𝑐x] is a vector in which each element 𝑐/ = 𝑐/(𝒓, 𝑡) denotes the mole fraction 

of ion	𝑖 (𝑖 ∈ {A, B, X, Y}), which depends on position, 𝒓, and time, 𝑡. The bulk energy density 

provides a thermodynamic energy landscape with two local minima (equal to zero) at compositions 

corresponding to the products. We assume that the phase transformation occurs under constant 

temperature. Therefore, the dependence of free energy on temperature is omitted in our model.  

The bulk energy density is given by 

𝑓 _`a(𝒄) = 𝑊 ½ ¾ � (𝑐/ − 𝑐/y)"
/∈{|,},~,�}

¿
y∈{|�,}~}

, (3.3) 
 

where 𝑊 is the coefficient for the bulk energy density,	𝑐/y is the equilibrium mole fraction of ion 

𝑖 in product phase 𝛼, given by 

𝑐/y = À0.5, 𝑖	in	phase	𝛼,
0, otherwise.  (3.4)  

The gradient energy density term [103,126] sets a finite width for interfaces between phases and 

is given by 
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𝑓b$(c%de&(𝛻𝒄) =
𝜅
2 � |𝛻𝑐/|"
/∈{|,},~,�}

, (3.5) 
 

where 𝜅 is the gradient energy coefficient. The values of 𝑊 and 𝜅 are uniquely determined once 

the interfacial energy and the interfacial width, a model parameter, are set. In this work, we define 

the interfacial width, 𝑙/Q>, to be  

𝑙/Q> = 2𝛿 = 2£
2𝜅
𝑊. (3.6) 

 

Mole fractions vary from approximately 10% to 90% of their maximum values across an interface 

with this definition of interfacial width. We assume that every site is occupied by an ion in the 

case of crystalline solid, and thus the sum of mole fractions of ions at each position must be equal 

to unity. Furthermore, we assume that no charge localization occurs during the reaction, i.e., the 

system is charge neutral throughout and the current density at each position is divergence free at 

all times. This assumption, along with the aforementioned assumption of redox-free reactions, give 

rise to the constraint of electroneutrality. Unlike the electrochemical model in Ref. [120] that 

utilizes the Poisson’s equation to obtain the electrostatic potential based on the local charge 

density, the models that assume electroneutrality [118,142-144] have been commonly employed 

to circumvent the requirement to resolve the thin double layer (with a typical thickness of a few 

nanometers [121]), allowing simulations of morphological evolution over a much larger length 

scale. Employing this constraint is therefore beneficial to the modeling of solid-state metathesis 

reactions, in which the precursor size varies from tens of nanometers [145] to tens of microns 

[3,146].  

We employ two Lagrange multipliers in our model to impose the two sets of constraints. 

In addition, we include a negative-mole-fraction penalty term in the free energy functional to 
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prevent mole fractions from becoming negative, which may occur due to the shape of 𝑓 _`a(𝒄). 

These constraints are encoded into a constraint term, which is given by 

𝑓!"#$%&'(#%(𝒄) = −𝛬)(𝒄) () * 𝑐*
*∈{-,/,0,1}

, − 1. − 𝛬3(𝒄)) * 𝑧*𝑐*
*∈{-,/,0,1}

, + 1 * 𝑔*(𝑐*)
*∈{-,/,0,1}

3, (3.7) 
 

where 𝑧/ is the charge number of ion 𝑖. The function 𝑔/(𝑐/) in Equation (3.7) is given by 

𝑔/(𝑐/) = À
0, 𝑐/ ≥ 0

𝜁𝑐/", 𝑐/ < 0			, (3.8)  

where 𝜁 is a tunable coefficient for the negative-mole-fraction penalty term.  

3.2.2 Governing equations 

The evolution of 𝑐/(𝒓, 𝑡) is described by a mass conservation equation [103,128]: 

𝜕𝑐/(𝒓, 𝑡)
𝜕𝑡 = −∇ ⋅ 𝐽/ , (3.9)  

where the flux is given by chemical potential gradient [128]: 

𝐽/ = −𝑀/∇𝜇/ = −𝑀/∇
𝛿ℱ
𝛿𝑐/

. (3.10)  

Here, 𝜇/ and 𝑀/ are the chemical potential and mobility of the ion 𝑖, respectively. The mobility 𝑀/  

of the ion 𝑖 is approximately related to its diffusion coefficient, 𝐷/, by  

𝑀/ ≈ 𝐷/Φ%
7!, (3.11)  

where Φ/  is an approximate conversion factor for the ion 𝑖. A derivation of Φ/  is presented in 

Section 3.5. Equation (3.11) is commonly employed in the literature [147-149] to link the mobility 

and the diffusion coefficient, which is exact when a model only involves one independent field 

variable. The applicability to this model is presented in Section 3.5. We assume that each 𝑀/ is a 

constant, rather than being a function of the concentration, in order to maintain computational 

efficiency and to provide insight into how the reaction process depend on the magnitude of the 
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mobilities. We note that it has been found that different form of mobility does not affect the 

morphological evolution [150,151]. Although it may affect the kinetics [151], quantitatively 

predicting the kinetics is not the focus of this work. Substituting Equations (3.2) - (3.8) into 

Equation (3.10) yields 

𝐽/ = −𝑀/ ¤∇ I
𝜕𝑓 _`a

𝜕𝑐/
− 𝜅𝛻"𝑐/ +

𝜕𝑔/
𝜕𝑐/

J − ∇Λ!(𝒄) − 𝑧/∇Λ"(𝒄)©. (3.12) 
 

Note that the terms involving 𝜕4!(𝒄)𝜕𝑐𝑖
 and 𝜕4"(𝒄)𝜕𝑐𝑖

 vanish when deriving Equation (3.12) due to the 

constraints on the sum of mole fractions and of electroneutrality. The derivative, <m-./0
<j1

, in 

Equation (3.12) is given by  

𝜕𝑓 _`a

𝜕𝑐/
= 𝑊

⎩
⎪
⎨

⎪
⎧

�

⎣
⎢
⎢
⎢
⎡
2(𝑐𝑖 − 𝑐𝑖𝛼) � U𝑐𝑗 − 𝑐𝑗

𝛽V
2

𝑗∈{A,B,X,Y}
𝛽∈{AY,BX},𝛽≠𝛼	 ⎦

⎥
⎥
⎥
⎤

𝛼∈{AY,BX}
⎭
⎪
⎬

⎪
⎫

. (3.13) 

 

The derivative, <�1
<j1

, in Equation (3.12) is given by 

𝜕𝑔/
𝜕𝑐/

= À 0, 𝑐/ ≥ 0
2𝜁𝑐/ , 𝑐/ < 0			. (3.14) 

 

The gradient of two Lagrange multipliers, ∇Λ! and ∇Λ" can be calculated, considering zero net 

mass flux and net charge flux: 

� 𝐽/
/∈{|,},~,�}

= � 𝑧/𝐽/
/∈{|,},~,�}

	= 0. (3.15) 
 

Substituting Equation (3.12) into Equation (3.15) yields 

𝐾!∇Λ!(𝒄) + 𝐾"∇Λ"(𝒄) − 𝐺!(𝒄) = 0 (3.16)  

and 

𝐾"∇Λ!(𝒄) + 𝐾.∇Λ"(𝒄) − 𝐺"(𝒄) = 0, (3.17)  

where 
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𝐾! = � 𝑀/
/∈{|,},~,�}

, (3.18) 
 

𝐾"	 = � 𝑧/𝑀/
/∈{|,},~,�}

, (3.19) 
 

𝐾. = � 𝑧/"𝑀/
/∈{|,},~,�}

, (3.20) 
 

𝐺!(𝒄) = � 𝑀/∇I
𝜕𝑓 _`a

𝜕𝑐/
− 𝜅𝛻2𝑐𝑖 +

𝜕𝑔𝑖
𝜕𝑐𝑖
J

/∈{|,},~,�}

, (3.21) 
 

𝐺"(𝒄) = � 𝑧/𝑀/∇I
𝜕𝑓 _`a

𝜕𝑐/
− 𝜅𝛻2𝑐𝑖 +

𝜕𝑔𝑖
𝜕𝑐𝑖
J

/∈{|,},~,�}

. (3.22) 
 

Solving for ∇Λ! and ∇Λ" from Equations (3.16) and (3.17) and expressed these gradients in terms 

of 𝐾!, 𝐾", 𝐾., 𝐺!(𝒄) and 𝐺"(𝒄), we obtain 

∇Λ!(𝒄) =
1

𝐾!𝐾. − 𝐾""
[𝐾.𝐺!(𝒄) − 𝐾"𝐺"(𝒄) ], (3.23) 

 

∇Λ"(𝒄) =
1

𝐾!𝐾. − 𝐾""
[𝐾!𝐺"(𝒄) − 𝐾"𝐺!(𝒄) ]. (3.24) 

 

Substituting the flux equation (Equation (3.12)) with the Lagrange multipliers given by Equations 

(3.23) and (3.24) into the mass conservation equation (Equation (3.9)) yields a set of four 

governing equations  

𝜕𝑐/
𝜕𝑡 = ∇ ⋅ À𝑀/ ¤∇ I

𝜕𝑓 _`a

𝜕𝑐/
− 𝜅𝛻"𝑐/ +

𝜕𝑔/
𝜕𝑐/

J − ∇Λ!(𝒄) − 𝑧/∇Λ"(𝒄)©Ø ,			for	𝑖 = 	A, B, X, Y. (3.25) 
 

One may employ these governing equations, which have the advantages of compact 

formulation and parameters and flexibility for extension. However, this set of equations requires 

solving for six field variables, which is computationally intensive. These equations can be further 

reduced to a set of two independent time-evolution equations by considering the constraints of 
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charge neutrality and on the sum of the mole fractions. Substituting Equations (3.23) and (3.24) 

into Equation (3.12) yields 

𝐽v = −
1
𝛺0
(𝛺vv𝛻ℎv + 𝛺vr𝛻ℎr + 𝛺vw𝛻ℎw + 𝛺vx𝛻ℎx), (3.26)  

𝐽r = −
1
𝛺0
(Ωrv𝛻ℎv + Ωrr𝛻ℎr + Ωrw𝛻ℎw + Ωrx𝛻ℎx) = −

𝑧w − 𝑧v
𝑧w − 𝑧r

𝐽v −
𝑧w − 𝑧x
𝑧w − 𝑧r

𝐽x , (3.27) 
 

𝐽w = −
1
𝛺0
(Ωwv𝛻ℎv + Ωwr𝛻ℎr + Ωww𝛻ℎw + Ωwx𝛻ℎx) = −

𝑧r − 𝑧v
𝑧r − 𝑧w

𝐽v −
𝑧r − 𝑧x
𝑧r − 𝑧w

𝐽x , (3.28)  

𝐽x = −
1
𝛺0
(Ωxv𝛻ℎv + Ωxr𝛻ℎr + Ωxw𝛻ℎw + Ωxx𝛻ℎx), (3.29)  

where 

ℎ/ =
𝜕𝑓 _`a

𝜕𝑐/
− 𝜅𝛻2𝑐𝑖 +

𝜕𝑔𝑖
𝜕𝑐𝑖

														for	i = A, B, X, Y, (3.30) 
 

𝛺0 =
(𝑧v − 𝑧r)"

𝑀w𝑀x
+
(𝑧v − 𝑧w)"

𝑀r𝑀x
+
(𝑧r − 𝑧w)"

𝑀v𝑀x
+
(𝑧v − 𝑧x)"

𝑀r𝑀w
+
(𝑧r − 𝑧x)"

𝑀v𝑀w
+
(𝑧w − 𝑧x)"

𝑀v𝑀r
, (3.31) 

 

Ωvv =
(𝑧r − 𝑧w)"

𝑀x
+
(𝑧r − 𝑧x)"

𝑀w
+
(𝑧w − 𝑧x)"

𝑀r
, (3.32) 

 

Ωrr =
(𝑧v − 𝑧w)"

𝑀x
+
(𝑧v − 𝑧x)"

𝑀w
+
(𝑧w − 𝑧x)"

𝑀v
, (3.33) 

 

Ωww =
(𝑧v − 𝑧r)"

𝑀x
+
(𝑧v − 𝑧x)"

𝑀r
+
(𝑧r − 𝑧x)"

𝑀v
, (3.34) 

 

Ωxx =
(𝑧v − 𝑧r)"

𝑀w
+
(𝑧v − 𝑧w)"

𝑀r
+
(𝑧r − 𝑧w)"

𝑀v
, (3.35) 

 

Ωvr = Ωrv =
(𝑧v − 𝑧w)(−𝑧r + 𝑧w)

𝑀x
+
(𝑧v − 𝑧x)(−𝑧r + 𝑧x)

𝑀w
, (3.36)  

Ωvw = Ωwv =
(𝑧v − 𝑧r)(𝑧r − 𝑧w)

𝑀x
+
(𝑧v − 𝑧x)(−𝑧w + 𝑧x)

𝑀r
, (3.37) 
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Ωvx = Ωxv =
(𝑧v − 𝑧r)(𝑧r − 𝑧x)

𝑀w
+
(𝑧v − 𝑧w)(𝑧w − 𝑧x)

𝑀r
, (3.38) 

 

Ωrw = Ωwr = −
(𝑧v − 𝑧r)(𝑧v − 𝑧w)

𝑀x
−
(𝑧r − 𝑧x)(𝑧w − 𝑧x)

𝑀v
, (3.39) 

 

Ωrx = Ωxr = −
(𝑧v − 𝑧r)(𝑧v − 𝑧x)

𝑀w
+
(𝑧r − 𝑧w)(𝑧w − 𝑧x)

𝑀v
, (3.40) 

 

Ωwx = Ωxw = −
(𝑧v − 𝑧w)(𝑧v − 𝑧x)

𝑀r
−
(𝑧r − 𝑧w)(𝑧r − 𝑧x)

𝑀v
. (3.41) 

 

Considering the constraints of electroneutrality (i.e., ∑ 𝑧V𝑐VV∈{|,},~,�} = 0) and on the sum of mole 

fractions (i.e., ∑ 𝑐VV∈{|,},~,�} = 1), the mole fractions of the ion B and X, 𝑐r  and 𝑐w , can be 

expressed in terms of 𝑐v and 𝑐x: 

𝑐r = −
𝑧w − 𝑧v
𝑧w − 𝑧r

𝑐v −
𝑧w − 𝑧x
𝑧w − 𝑧r

𝑐x +
𝑧w

𝑧w − 𝑧r
, 

(3.42) 
 

𝑐w = −
𝑧r − 𝑧v
𝑧r − 𝑧w

𝑐v −
𝑧r − 𝑧x
𝑧r − 𝑧w

𝑐x +
𝑧r

𝑧r − 𝑧w
. 

(3.43) 
 

Substituting Equation (3.42) and (3.43) into Equation (3.30) for 𝑖 = B and X yields 

ℎr = −
𝑧w − 𝑧v
𝑧w − 𝑧r

I
𝜕𝑓 _`a

𝜕𝑐v
− 𝜅𝛻"𝑐vJ −

𝑧w − 𝑧x
𝑧w − 𝑧r

I
𝜕𝑓 _`a

𝜕𝑐x
− 𝜅𝛻"𝑐xJ +

𝜕𝑔r
𝜕𝑐r

, (3.44) 
 

ℎw = −
𝑧r − 𝑧v
𝑧r − 𝑧w

I
𝜕𝑓 _`a

𝜕𝑐v
− 𝜅𝛻"𝑐vJ −

𝑧r − 𝑧x
𝑧r − 𝑧w

I
𝜕𝑓 _`a

𝜕𝑐x
− 𝜅𝛻"𝑐xJ +

𝜕𝑔w
𝜕𝑐w

. (3.45)  

Substituting Equations (3.44) and (3.45) into Equations (3.26) and (3.29) yields  

𝐽v = −
1
𝛺0
¾𝜆vv𝛻 I

𝜕𝑓 _`a

𝜕𝑐v
− 𝜅𝛻"𝑐vJ + 𝜆vx𝛻 I

𝜕𝑓 _`a

𝜕𝑐x
− 𝜅𝛻"𝑐xJ + � 𝛺v/

/∈{v,r,w,x}

𝜕𝑔/
𝜕𝑐/

¿, (3.46) 
 

𝐽x = −
1
𝛺0
¾𝜆xv𝛻 I

𝜕𝑓 _`a

𝜕𝑐v
− 𝜅𝛻"𝑐vJ + 𝜆xx𝛻 I

𝜕𝑓 _`a

𝜕𝑐x
− 𝜅𝛻"𝑐xJ + � 𝛺x/

/∈{v,r,w,x}

𝜕𝑔/
𝜕𝑐/

¿, (3.47) 
 

where 
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𝜆.. =

(𝑧/ − 𝑧0)1(−𝑧. + 𝑧2 − 𝑧/ + 𝑧0)
𝑧2 − 𝑧/
𝑀2

+
(𝑧2 − 𝑧0)1 +

(𝑧. − 𝑧/)(𝑧. − 𝑧0)(−𝑧2 + 𝑧0)
−𝑧2 + 𝑧/

𝑀/

+
𝑧.1 + 𝑧21 + 2𝑧/1 + 𝑧2(−3𝑧/ + 𝑧0) − 𝑧.(𝑧/ + 𝑧0)

𝑀0
, 

(3.48) 

 

𝜆.0 =
(𝑧. − 𝑧/ +

(𝑧. − 𝑧0)(𝑧2 − 𝑧0)
𝑧2 − 𝑧/

)(𝑧/ − 𝑧0)

𝑀2
+
(𝑧2 − 𝑧0)(𝑧. − 𝑧2 +

(𝑧/ − 𝑧0)(−𝑧. + 𝑧0)
𝑧2 − 𝑧/

)

𝑀/

+
(−𝑧. + 𝑧2)(𝑧2 − 𝑧0) + (−𝑧. + 𝑧/)(𝑧/ − 𝑧0)

𝑀0
, 

(3.49) 

 

𝜆0. = −
(𝑧. + 𝑧2 − 𝑧/ − 𝑧0)(𝑧/ − 𝑧0)

𝑀.
+

(𝑧. − 𝑧/)(𝑧/ − 𝑧0)(𝑧. − 𝑧2 + 𝑧/ − 𝑧0)
−𝑧2 + 𝑧/
𝑀2

+
(𝑧. − 𝑧2)(𝑧2 +

(−𝑧. + 𝑧/)(𝑧. − 𝑧0)
−𝑧2 + 𝑧/

− 𝑧0)

𝑀/
, 

(3.50) 

 

𝜆00 =
(𝑧2 − 𝑧/)1 + (𝑧2 − 𝑧0)1 + (𝑧/ − 𝑧0)1

𝑀.
+
(𝑧. − 𝑧/)(𝑧. − 𝑧/ +

(𝑧. − 𝑧0)(𝑧2 − 𝑧0)
𝑧2 − 𝑧/

)

𝑀2

+
(𝑧. − 𝑧2)(𝑧. − 𝑧2 +

(𝑧. − 𝑧0)(𝑧/ − 𝑧0)
−𝑧2 + 𝑧/

)

𝑀/
. 

(3.51) 

 

Substituting Equations (3.46) and (3.47) into Equation (3.9) for 𝑖 = A and Y yields the governing 

equations for 𝑐v(𝑟, 𝑡) and 𝑐x(𝑟, 𝑡)  

𝜕𝑐.(𝒓, 𝑡)
𝜕𝑡

=
1
𝛺3
∇ ⋅ B𝜆..𝛻 C

𝜕𝑓4567
𝜕𝑐.

− 𝜅𝛻1𝑐.E + 𝜆.0𝛻 C
𝜕𝑓4567
𝜕𝑐0

− 𝜅𝛻1𝑐0E + F 𝛺.8
8∈{.,2,/,0}

∇
𝜕𝑔8
𝜕𝑐8

G	, (3.52) 
 

𝜕𝑐0(𝒓, 𝑡)
𝜕𝑡

=
1
𝛺3
∇ ⋅ B𝜆0.𝛻 C

𝜕𝑓4567
𝜕𝑐.

− 𝜅𝛻1𝑐.E + 𝜆00𝛻 C
𝜕𝑓4567
𝜕𝑐0

− 𝜅𝛻1𝑐0E + F 𝛺08
8∈{.,2,/,0}

∇
𝜕𝑔8
𝜕𝑐8

G. (3.53) 
 

The remaining two mole fractions can be calculated in terms of 𝑐v and 𝑐x using Equations (3.42) 

and (3.43). It can be observed from Equations (3.52), (3.53), (3.42) and (3.43) that only the time-

evolution equations for the mole fractions of ion A and Y need to be explicitly solved, from which 

the mole fraction of ion B and X can be subsequently determined. In Equations (3.52) and (3.53), 
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the negative-mole-fraction penalty terms containing Ý𝜕𝑔𝑖
𝜕𝑐𝑖
Þ are localized and negligible in most of 

the computational domain. They can therefore be disregarded when examining the components of 

the time-evolution equations. Consequently, the time-evolution equations for the mole fractions of 

cation A and anion Y can both be considered as a function of the chemical potentials (𝜇/ =
<m-./0
<j1

−

𝜅𝛻"𝑐/) of ion A and Y. By inspection, one can identify the effective mobility matrix defined by  

𝑀Wmm =
1
Ω0
I𝜆vv 𝜆vx
𝜆xv 𝜆xx

J, (3.54) 
 

which is in general not symmetric. However, for the simple reaction in which all the ions have the 

same absolute value of charge numbers, the effective mobility matrix becomes diagonal 

𝑀Wmm(𝑧v = 𝑧r = −𝑧w = −𝑧x) = I𝑀#(&%fe 0
0 𝑀(e%fe

J, (3.55)  

where 𝑀#(&%fe =
"

X2
"+:X3

"+  can be interpreted as the effective cation mobility, and 𝑀(e%fe =

"
X4
"+:X5

"+ can be interpreted as the effective anion mobility. The same form of the harmonic mean 

was reported to describe the salt diffusivity (or ambipolar diffusivity) for a binary electrolyte [152] 

that considers the transport of a cation and an anion.  

3.2.3 Determination of phase fractions 

Since we assume a diffusion-limited regime, the formation of the product phases is 

considered instantaneous. The number of moles of the product phases, 𝑛|� and 𝑛}~, at position 𝒓 

and time 𝑡 > 0, is given by the minimum mole fraction of their constituent ions: 

𝑛|�(𝒓, 𝑡) = min(𝑐v, 𝑐x), (3.56)  

𝑛}~(𝒓, 𝑡) = min(𝑐r , 𝑐w). (3.57)  
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The remaining ions that do not contribute to the product phases determine the number of moles of 

reactant phases 𝑛|~ and 𝑛}�, which is given by 

𝑛|~(𝒓, 𝑡) = max(0, 𝑐v − 𝑐x), (3.58)  

𝑛}�(𝒓, 𝑡) = max(0, 𝑐r − 𝑐w). (3.59)  

The phase fraction, 𝜙y, of the phase 𝛼 ∈ {AX, BY, AY, BX}, is calculated by dividing the number of 

moles of phase 𝛼 by the total amount of phases: 

𝜙y =
𝑛y

∑ 𝑛99∈{|~,}�,|�,}~}
. (3.60)  

3.3 A phase-field model for a general solid-state metathesis reaction 

In general, the ions in a binary SSM reaction could have a different absolute value of charge 

numbers. A general balanced reaction formula that considers the charge number difference is given 

by 

𝑝A+X2 + 𝑞BAY� → 𝑝CA+#Y�# + 𝑞′BA#X2# . (3.61)  

Here, the number of A, B, X, Y ions in reactant phases is indicated by lowercase letters 𝑎, 𝑏, 𝑥, 𝑦 

respectively. The number of these ions in the product phases is indicated by 𝑎’, 𝑏’, 𝑥’, 𝑦’. The 

stoichiometric coefficients for A+X2 , BAY� , A+#Y�# , and BA#X2#  are denoted by 𝑝, 𝑞, 𝑝’, and 𝑞’, 

respectively. Their values are listed in Table 3.1. 

Table 3.1. Stoichiometric coefficients for a general binary SSM reaction. Reproduced with 
permission [153]. Copyright 2023, the authors. Published by Elsevier. 

 

𝑝 1 

𝑞 𝑥𝑏′
𝑥′𝑏 

𝑝′ 
𝑎
𝑎′ 

𝑞′ 
𝑥
𝑥′ 
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All equations discussed in Section 3.2 still hold, except for Equation (3.4) that describes 

the equilibrium mole fraction of ion 𝑖  in product phase 𝛼 , and Equations (3.56) - (3.59) that 

calculate phase fractions. The molar volume for the phases is no longer considered identical but 

instead assumed to be proportional to the number of constituent ions in the phases. The equilibrium 

mole fraction of ion 𝑖 in product phase 𝛼 now needs to be expressed in term of 𝑎’, 𝑏’, 𝑐’, and 𝑑’ 

and is shown in Table 3.2. 

Table 3.2. The equilibrium mole fraction of ion 𝑖 in product phase 𝛼. Reproduced with permission 
[153]. Copyright 2023, the authors. Published by Elsevier. 

  

 A+#Y�# BA#X2# 

𝐴 
𝑎′

𝑎C + 𝑦′ 
0 

𝐵 0 𝑏′
𝑏C + 𝑥′ 

𝑋 0 𝑥′
𝑏C + 𝑥′	 

𝑌 
𝑦′

𝑎C + 𝑦′ 
0 

 

 

The numbers of moles of A+X2, BAY�, A+#Y�#, and BA#X2# phases are calculated following 

the same assumptions and procedures discussed in Section 3.2.3, although the mole fraction of 

ions needs to be scaled by 𝑎’, 𝑏’, 𝑐’, and 𝑑’ to obtain the number of moles of compound phases. 

They are given by 

𝑛|6#�7#(𝒓, 𝑡) = min I
𝑐v
𝑎C ,

𝑐x
𝑦′J, (3.62)  

𝑛}&#~8#(𝒓, 𝑡) = min Ý
𝑐r
𝑏C ,

𝑐w
𝑥′Þ, (3.63)  

𝑖 
𝛼 
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𝑛|6~8(𝒓, 𝑡) = max m0,
𝑐v
𝑎 −

𝑎′
𝑎𝑦′ 𝑐xn, (3.64) 

 

𝑛}&�7(𝒓, 𝑡) = max m0,
𝑐r
𝑏 −

𝑏C

𝑏𝑥C 𝑐wn. (3.65) 
 

The phase fractions of A+X2 , BAY� , A+#Y�# , and BA#X2#  can then be calculated using Equation 

(3.60). 

3.4 Nondimensionalization of the phase-field equations 

We nondimensionalize the phase-field equations by selecting an energy scale 𝑊 and a 

length scale 𝑙0. All energies are scaled by the energy scale, and all lengths (e.g., the domain size) 

are scaled by the length scale. Unless stated otherwise, the smallest mobility among all the ions, 

given by 𝑀@/Q = min(𝑀v, 𝑀r , 𝑀w , 𝑀x), is used to scale the mobility of each ion. We put an 

asterisk (*) at the superscript of variables to indicate their dimensionless form. The dimensionless 

variables are shown in Table 3.3. We employ dimensionless variables for the simulations, but we 

note that these variables can be converted to dimensional quantities based on the chosen scale of 

energy, length, and mobility. Once these scaling quantities are chosen, setting the time scale to  

𝑡0 =
𝑙0"

𝑊𝑀@/Q
, (3.66) 

 

and applying the cancellation law, we obtain the nondimensional form of the governing equations. 
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Table 3.3. Dimensional and nondimensionalized phase-field variables for solid-state metathesis 
reactions. Reproduced with permission [153]. Copyright 2023, the authors. Published by Elsevier. 

 

Variable Nondimensionalized 
variable 

𝑊 𝑊∗ =
𝑊
𝑊 = 1 

𝜅 𝜅∗ =
𝜅
𝑊𝑙0"

 

𝜁 𝜁∗ =
𝜁
𝑊 

𝑀/ 𝑀/
∗ =

𝑀/

𝑀@/Q
 

𝒓 𝒓∗ =
𝒓
𝑙0

 

𝑡 𝑡∗ =
𝑡
𝑡0
=
𝑊𝑀@/Q

𝑙0"
𝑡 

 

3.5 The relationship between the diffusion coefficient and the mobility for an SSM reaction 

The mobility of the ionic species can be linked to the corresponding diffusion coefficient. 

Such a link is needed to identify a proper mobility scale, which is used in converting 

nondimensional quantities (e.g., dimensionless time) into the corresponding dimensional 

quantities. In this section, we present a method to convert diffusion coefficients to mobilities (to 

the order of magnitude) and provide an example for such a conversion in an SSM reaction for the 

synthesis of FeS2. For simplicity and without loss of generality, we write the diffusion equation in 

one dimension as a reduced model: 

𝜕𝑐/(𝑥, 𝑡)
𝜕𝑡 =

𝜕
𝜕𝑥 ¤𝐷/

𝜕𝑐/
𝜕𝑥

(𝑥, 𝑡)©, (3.67)  

where 𝐷/ is the diffusion coefficient of the ion 𝑖, which may depend on the composition. Here, we 

assume that the values of the off-diagonal terms of a full diffusion tensor are negligible compared 

to the values of the diagonal terms and, therefore, we omitted off-diagonal terms in Equation 
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(3.67). In our study, we describe the evolution of 𝑐/(𝑥, 𝑡) using the following mass conservation 

equation with a driving force due to the gradient in chemical potential [103,128]: 

𝜕𝑐/(𝑥, 𝑡)
𝜕𝑡 =

𝜕
𝜕𝑥 ­𝑀/

𝜕𝜇/(𝒄)
𝜕𝑥 ®, (3.68) 

 

where 𝜇/(𝒄) is the chemical potential of the ion 𝑖, and 𝑀/ is the mobility of the ion 𝑖. As discussed 

in Section 3.2, we assume that each 𝑀/ is a constant in our model, but the derivation here does not 

require such an assumption. Using the chain rule, Equation (3.68) can be written as 

𝜕𝑐/(𝑥, 𝑡)
𝜕𝑡 =

𝜕
𝜕𝑥 å𝑀/ �

𝜕𝜇/
𝜕𝑐S

𝜕𝑐S(𝑥, 𝑡)
𝜕𝑥

S∈{|,},~,�}

æ, (3.69) 
 

where A, B, X, Y stand for the four ions. The chemical potential 𝜇/ of the ion 𝑖 is given by 

𝜇/ =
𝜕𝑓 _`a

𝜕𝑐/
= 𝑊

⎩
⎪
⎨

⎪
⎧

�

⎣
⎢
⎢
⎢
⎡
2(𝑐𝑖 − 𝑐𝑖𝛼) � U𝑐𝑗 − 𝑐𝑗

𝛽V
2

𝑗∈{A,B,X,Y}
𝛽∈{AY,BX},𝛽≠𝛼	 ⎦

⎥
⎥
⎥
⎤

𝛼∈{AY,BX}
⎭
⎪
⎬

⎪
⎫

, (3.70) 

 

where 𝑓Ak-V is the bulk free energy density, which is presented in Equation (3.3). The derivative 

of the chemical potential 𝜇/ with respect to the mole fraction 𝑐S is given by 

𝜕𝜇/
𝜕𝑐S

=

⎩
⎪
⎨

⎪
⎧
2𝑊 å � � (𝑐V − 𝑐Vy)"

V∈{|,},~,�}y∈{|�,}~}

+ 4 ½ (𝑐/ − 𝑐/y)
y∈{|�,}~}

æ , 𝑗 = 𝑖

4𝑊�U𝑐/ − 𝑐/|�VU𝑐S − 𝑐S}~V + U𝑐/ − 𝑐/}~VU𝑐S − 𝑐S|�V�, 𝑗 ≠ 𝑖

 (3.71) 

 

where 𝑊 is the energy scale, and 𝑐/y is the equilibrium mole fraction of ion 𝑖 in the product phase 

𝛼. Equating Equation (3.67) with Equation (3.68) yields  

𝑀/ =
𝜕𝑐/
𝜕𝑥

∑ 𝜕𝜇/
𝜕𝑐S

𝜕𝑐S
𝜕𝑥S∈{|,},~,�}

𝐷/ = 𝐷/Φ/
7!, (3.72) 
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where <�1
<j9

 is given by Equation (3.71), and Φ/ is the ratio between 𝐷/ and 𝑀/, which varies from 

ion to ion and from reaction to reaction.  

Here, we utilize an SSM reaction for the synthesis of FeS2 as an example to show a method 

to estimate the value for Φ/. The reaction formula is given by 

Na"S" + FeCl" → 2NaCl + FeS", (3.73)  

in which Na+ and Fe2+ are the two cations and Cl- and S22- are the two anions. This reaction is 

detailed in Chapter 4 Section 4.3. Considering the constraints of electroneutrality (i.e., 

∑ 𝑧V𝑐VV∈{�(!,�d%!,�`",�%%"} = 0) and on the sum of mole fractions (i.e., ∑ 𝑐VV∈{�(!,�d%!,�`",�%%"} = 1), 

the mole fractions of the ion Fe2+ and S22-, 𝑐�W%! and 𝑐D%%", can be expressed in terms of 𝑐*+! and 

𝑐,-": 

𝑐�W%! = −
3
4 𝑐*+

! −
1
4 𝑐,-

" +
1
2, 

(3.74) 
 

𝑐D%%" = −
1
4 𝑐*+

! −
3
4 𝑐,-

" +
1
2. 

(3.75) 
 

Substituting Equations (3.74) and (3.75) into Equation (3.71) for 𝑖 = 𝑁𝑎:, we obtain the partial 

derivatives of the chemical potential of the Na+ ion with respect to the compositions: 

𝜕𝜇*+!
𝜕𝑐*+!

= 2𝑊 I
29
4 𝑐*+!

" +
13
4 𝑐,-"" +

3
2 𝑐*+

!𝑐,-" − 4𝑐*+! − 2𝑐,-" + 1J, (3.76) 
 

𝜕𝜇*+!
𝜕𝑐,-"

= 4𝑊 ¤2𝑐*+!𝑐,-" −
1
2
(𝑐*+! + 𝑐,-")©, (3.77) 

 

𝜕𝜇*+!
𝜕𝑐�W!

= 4𝑊 I−
3
2 𝑐*+!

" −
1
2 𝑐*+

!𝑐,-" +
7
8 𝑐*+

! +
1
8 𝑐,-

"J, (3.78) 
 

𝜕𝜇*+!
𝜕𝑐D%%"

= 4𝑊 I−
1
2 𝑐*+!

" −
3
2 𝑐*+

!𝑐,-" +
5
8 𝑐*+

! +
3
8 𝑐,-

"J. (3.79) 
 

Taking the partial derivative of Equations (3.74) and (3.75) with respect to 𝑥 yield 
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𝜕𝑐�W%!
𝜕𝑥 = −

3
4
𝜕𝑐*+!
𝜕𝑥 −

1
4
𝜕𝑐,-"
𝜕𝑥 , (3.80) 

 

𝜕𝑐D%%"
𝜕𝑥 = −

1
4
𝜕𝑐*+!
𝜕𝑥 −

3
4
𝜕𝑐,-"
𝜕𝑥 . (3.81) 

 

Substituting Equations (3.76) - (3.81) into Equation (3.69) for 𝑖 = 𝑁𝑎:, we obtain the governing 

equation for 𝑐*+!:  

𝜕𝑐*+!
𝜕𝑡 =

𝜕
𝜕𝑥 ¤𝑀*+!𝑊I𝑈*+!

𝜕𝑐*+!
𝜕𝑥 + 𝑉*+!

𝜕𝑐,-"
𝜕𝑥 J©, (3.82)  

where 𝑈*+! and 𝑉*+! are functions of 𝑐*+! and 𝑐,-" given by 

𝑈*+!(𝑐𝑁𝑎+ , 𝑐𝐶𝑙−) =
39
2
𝑐𝑁𝑎+
2 +

13
2
𝑐𝐶𝑙−2 + 6𝑐𝑁𝑎+𝑐𝐶𝑙− −

45
4
𝑐𝑁𝑎+ −

19
4
𝑐𝐶𝑙− + 2, (3.83) 

 

𝑉*+!(𝑐*+! , 𝑐,-") = 3𝑐*+!
" + 13𝑐*+!𝑐,-" −

19
4 𝑐*+! −

13
4 𝑐,-" . (3.84) 

 

To examine the dependence of 𝑈*+! and 𝑉*+! on the compositions, we first identify the possible 

range of the composition space by considering the fact that the mole fractions of the Na+ and Cl- 

ions are between 0 and 2/3 and that the mole fractions of the Fe2+ and S22- ions are between 0 and 

1/2 due to the constraint on charge neutrality. Since 𝑐�W%!and 𝑐D%%" can be expressed in terms of 

𝑐*+! 	 and 𝑐,-"  using Equations (3.74) and (3.75), we can formulate the constraints on the 

composition range in terms of 𝑐*+! and 𝑐,-":  

0 ≤ 𝑐*+! ≤ 2/3, (3.85) 
 

0 ≤ 𝑐,-" ≤ 2/3, (3.86)  

3𝑐*+! + 𝑐,-" − 2 ≤ 0,	 (3.87)  

𝑐*+! + 3𝑐,-" − 2 ≤ 0. (3.88)  
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The dependence of 𝑈*+!  and 𝑉*+!  on the composition is shown in Figure 3.1(a) and (b), 

respectively. We only visualize the regions that satisfy the constraints set by Equations (3.85)	

−	(3.88). 

 
Figure 3.1. The values of (a) 𝑈*+!, (b) 𝑉*+!, (c) 𝑈*+! − 𝑉*+!, and (d) 𝑈*+! + 𝑉*+! as a function 
of 𝑐*+! and 𝑐,-". The values of 𝑈*+! and 𝑉*+! at the compositions corresponding to the precursor 
and product phases are marked in (a) and (b), respectively. Only the regions that satisfy the 
constraints set by Equations (3.85)	−	(3.88) are visualized. Reproduced with permission [153]. 
Copyright 2023, the authors. Published by Elsevier. 

 It can be observed from Figure 3.1(b) that 𝑉*+! = 0  only at the compositions that 

correspond to the product phases, which indicates that the term in Equation (3.82) that involves 

<j:("
<2

 does not vanish at other compositions. In order to eliminate <j:("
<2

 from Equation (3.82), we 

examine two extremes, one corresponding to the early stage of the conversion process and the 

other during the intermediate and late stages of the process. For the early stage of the process, we 

assume that 
<j;:("
<2

≈ −
<j<6!
<2

. This relationship can be observed from simulation results, e.g., in 

Figure 6(a) of Ref. [145], which shows the simulated mole fractions of the four ions during the 

early stage of metathesis reaction for the synthesis of FeS2. We also observed from simulations 

that <j:("
<2

≈
<j<6!
<2

 after 𝑡∗ ≈ 20 (similar to Figure 6(c) of Ref. [145]) and therefore employ this 

relationship to simplify Equation (3.82) for the intermediate and late stage of the conversion 

process, during which this condition is approximately met. Equation (3.82) therefore can be written 

as 

!!"!

!#$"

!!"!

!#$"2

3.172

1.72

0

-1.830

-2.17

"!"! #!"!

!!"!

!#$"

"!"! 	− #!"!(a) (b) (c) (d)

!!"!

!#$"

"!"! + #!"!
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𝜕𝑐*+!
𝜕𝑡 = í

𝜕
𝜕𝑥 I

𝑀*+!𝑊 ¤(𝑈*+! − 𝑉*+!)
𝜕𝑐*+!
𝜕𝑥

©J , the	early	stage,

𝜕
𝜕𝑥 I𝑀*+!𝑊 ¤(𝑈*+! + 𝑉*+!)

𝜕𝑐*+!
𝜕𝑥 ©J , the	intermediate/late	stages.

 (3.89) 

 

Comparing the right-hand side of Equation (3.67) for 𝑖 = 𝑁𝑎: with that of Equation (3.89), we 

obtain 

𝑀?@# = 𝐷?@#Φ?@#
AB , (3.90)  

where the conversion factor of the Na+ ion, Φ*+!, is given by  

Φ*+! = À
𝑊(𝑈*+! − 𝑉*+!), the	early	stage,
𝑊(𝑈*+! + 𝑉*+!), the	intermediate/late	stages. (3.91)  

Since Φ*+!  depends on the composition, we examine its range and then conduct an order-of-

magnitude estimate for its value. The values of 𝑈*+! − 𝑉*+!  and 𝑈*+! + 𝑉*+!  are shown in 

Figure 3.1(c) and (d), respectively. Figure 3.1(c) shows that 𝑈*+! − 𝑉*+! ranges from 1 to 5, and 

therefore Φ*+!  ranges between 𝑊  and 5𝑊  during the early stage of the conversion process. 

Figure 3.1(d) shows that 𝑈*+! + 𝑉*+! ranges from -1 to 2. However, we note that the evolution 

during the intermediate and late stages of the simulation mainly occurs via diffusion through the 

bulk phases (akin to coarsening), with compositions near the product phase values. As defined in 

Section 3.2, mole fractions vary from approximately 10% to 90% of their maximum values across 

an interface. We therefore estimate that the bulk phases during the intermediate and late stages of 

the conversion process have a composition within 10% of the product phase compositions, i.e., 

within 0.05 of the points (0,0) or (0.5, 0.5) in Figure 3.1(d). The values of 𝑈*+! + 𝑉*+! range 

from 1.17 to 2 in these compositional ranges, boundaries of which are shown by the two red curves 

in Figure 3.1(d). Accordingly, the conversion factor Φ*+!  can be estimated to range between 

1.17𝑊 and 2𝑊 during the intermediate and late stages of the conversion process. Considering 

early, intermediate, and late stages of the conversion process, Φ*+! ranges from 𝑊 to 5𝑊. Since 



 62 

we must choose a single value of Φ*+! in order to convert diffusivity in the literature to a mobility 

value and also to obtain the characteristic time scale by which the dimensionless simulation time 

is converted to the approximate physical time, we select  

Φ*+! ≈ 2𝑊, (3.92)  

which is in the range of 𝑊 – 5𝑊 and corresponds to its value at 𝑐*+! = 𝑐,-" = 0.5. 

 Following the same derivation, the conversion factor Φ,-" of the Cl- ion can be estimated 

similarly, and due to the symmetry in the equations, the ranges are identical for the sum of the 

coefficients, 𝑈,-" + 𝑉,-"  and the difference of the coefficients, 𝑈,-" − 𝑉,-" . Thus, using the 

approximate values of Φ*+! and Φ,-", we obtain 

𝑀?@# ≈ 𝐷?@#(2𝑊)−1, (3.93)  

𝑀CD$ ≈ 𝐷CD$(2𝑊)−1. (3.94)  

3.6 Determination of the energy scale 

To relate the energy scale W with the interfacial energy 𝛾 and the interfacial width 𝑙/Q>, we 

follow the steps below. First, we calculate 𝛾 by integrating the free energy densities, according to 

Ref. [126]: 

𝛾 = i å𝑓 _`a(𝑊, 𝑐v, 𝑐r , 𝑐w , 𝑐x) +
𝜅
2 � m

𝑑𝑐S
𝑑𝑥n

S∈{|,},~,�}

"

æ
�

7�
𝑑𝑥,	 (3.95) 

 

where 𝑐v, 𝑐r, 𝑐w and 𝑐x are the mole fractions of the ion A, B, X, and Y, respectively, and 𝜅 is the 

gradient energy coefficient. In equilibrium (i.e., when the precursors are fully converted to the 

products), the mole fractions of three of the ions can be expressed as the remaining ion. Specifically, 

we denote 𝑐 = 𝑐v as the mole fraction of the ion A. The mole fractions of the other three ions, 
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𝑐r(𝑐), 𝑐w(𝑐), and 𝑐x(𝑐), can then be expressed as a function of 𝑐. Consequently, the second term 

in the integrand of Equation (3.95) can be written as 

𝜅
2 � m

𝑑𝑐S
𝑑𝑥n

S∈{|,},~,�}

"

=
𝜅
2 � m

𝑑𝑐S
𝑑𝑐 n

S∈{|,},~,�}

"

I
𝑑𝑐
𝑑𝑥J

"

=
𝜅
2𝜗 I

𝑑𝑐
𝑑𝑥J

"

,	 (3.96) 
 

where 𝜗 = 1 + ∑ Ý�j9
�j
ÞS∈{},~,�}
"
. Substituting Equation (3.96) into Equation (3.95) yields 

𝛾 = i ­𝑓 _`a(𝑊, 𝑐) +
𝜅
2 𝜗 I

𝑑𝑐
𝑑𝑥J

"

®
�

7�
𝑑𝑥,	 (3.97) 

 

To obtain a differential equation having solutions corresponding to stationary composition profiles, 

we substitute the integrand, 𝐼 = 𝑓 _`a(𝑊, 𝑐) + o
"
𝜗 Ý�j

�2
Þ
"
, into the Euler Equation [154], yielding 

𝐼 − I
𝑑𝑐
𝑑𝑥J å

𝜕𝐼

𝜕 Ý𝑑𝑐𝑑𝑥Þ
æ = Constant,	 (3.98) 

 

or 

𝑓 _`a(𝑊, 𝑐) +
𝜅
2 𝜗 I

𝑑𝑐
𝑑𝑥J

"

− 𝜅𝜗 I
𝑑𝑐
𝑑𝑥J

"

= 𝑓 _`a(𝑊, 𝑐) −
𝜅
2 𝜗 I

𝑑𝑐
𝑑𝑥J

"

= Constant.	 (3.99) 
 

The constant in the equation is zero because both 𝑓 _`a(𝑊, 𝑐) and o
"
𝜗 Ý�j

�2
Þ
"
 tend to be 0 as 𝑥 →

	±∞ (far from the interface). Therefore, Equation (3.99) becomes [126] 

𝑓 _`a(𝑊, 𝑐) =
𝜅
2 𝜗 I

𝑑𝑐
𝑑𝑥J

"

.	 (3.100) 
 

Rearranging Equation (3.100) yields [126] 

𝑑𝑥 = £
𝜗𝜅

2𝑓 _`a(𝑊, 𝑐) 𝑑𝑐. 
(3.101) 

 

Substituting the gradient energy density with the bulk energy density, Equation (3.97) becomes 
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𝛾 = 2 i 𝑓 _`a(𝑊, 𝑐)𝑑𝑥.
�

7�

 (3.102) 
 

After a change of variable using Equation (3.101), it simplifies to 

𝛾 = i O2𝜗𝜅𝑓 _`a(𝑊, 𝑐)𝑑𝑐.

j=

,>

 (3.103) 
 

where 𝑐y and 𝑐9 are the concentrations of the ion A at the two local minima of the double-well 

potential. The interfacial energy can therefore be expressed as a function of 𝑊 and 𝜅, 𝛾(𝑊, 𝜅). 

According to Equation (3.6), 𝜅  can be written in terms of 𝑊  and the interfacial width 𝑙/Q> . 

Therefore, we can relate 𝑊 to 𝜅 and 𝑙/Q>. 

Here, we utilize an SSM reaction for the synthesis of FeS2 as an example to show how the 

relationship can be obtained. The reaction formula is shown in Equation (3.73). We denote 𝑐 to be 

the mole fraction of the Na+ ion, 𝑐*+!, which is 0 in FeS2 and 0.5 in NaCl in the products. The 

equilibrium concentration profile of four ions, 𝑐�(!(= 𝑐), 𝑐�d%!, 𝑐�%%", and	𝑐�`", are given by 

𝑐 = 𝑐�(!(𝑥) =
1
4 ô1 − tanh Ý

𝑥 − 𝑥/Q>
𝛿 Þõ, (3.104)  

𝑐�d%!(𝑥) =
1
4 ô1 + tanh Ý

𝑥 − 𝑥/Q>
𝛿 Þõ, (3.105)  

𝑐�%%"(𝑥) =
1
4 ô1 + tanh Ý

𝑥 − 𝑥/Q>
𝛿 Þõ, (3.106)  

𝑐�`"(𝑥) =
1
4 ô1 − tanh Ý

𝑥 − 𝑥/Q>
𝛿 Þõ, (3.107)  

where 𝑥/Q> is the position of the interface between the two products NaCl and FeS2. We can rewrite 

Equations (3.105) – (3.107) as 

𝑐�d%!(𝑥) =
1
2 − 𝑐, 

(3.108)  
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𝑐�%%"(𝑥) =
1
2 − 𝑐, 

(3.109)  

𝑐�`"(𝑥) = 𝑐. (3.110)  

Substituting Equation (3.3) and Equation (3.108) – (3.110) into Equation (3.103) yield 

𝛾 = 4√2𝜅𝑊i ­𝑐" + I𝑐 −
1
2J

"

® 𝑑𝑐
0.6

0

=
√2𝜅𝑊
3 . (3.111) 

 

Rearranging Equation (3.6) yields  

𝜅 =
1
8 𝑙/Q>

" 𝑊. (3.112)  

Substituting Equation (3.112) into Equation (3.111) yields 

𝛾 =
1
6 𝑙/Q>𝑊. (3.113)  

By solving for 𝑊, we obtain  

𝑊 =
6𝛾
𝑙/Q>

. (3.114)  

Thus, the energy scale is the interfacial energy divided by the interfacial thickness to a constant 

factor (which must be identified through the above analysis). 

3.7 Phase-field model coupled with the smoothed boundary method 

To describe a reaction occurring between round-shaped solid particles that are surrounded 

by voids, we need to impose boundary conditions at the surfaces of the solid. We couple Equation 

(3.9) with the smoothed boundary method [134], discussed in Chapter 2 Section 2.7, to set the 

boundary condition.  

A domain parameter, 𝜓, is employed to describe the domain of interest (in this case, the 

solid particles). It is equal to 1 in the solid particles, 0 outside the particle, and smoothly varies 

from 1 to 0 across the boundary. Multiplying Equation (3.9) with 𝜓 yields 
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𝜓
𝜕𝑐/
𝜕𝑡 = 𝜓∇ ⋅ I𝑀/∇

𝛿ℱ
𝛿𝑐/

J. (3.115) 
 

Applying the following identity to the right-hand side of Equation (3.115) 

𝜓∇ ⋅ I𝑀/∇
𝛿ℱ
𝛿𝑐/

J = ∇ ⋅ I𝜓𝑀/∇
𝛿ℱ
𝛿𝑐/

J − ∇𝜓 ⋅ I𝑀/∇
𝛿ℱ
𝛿𝑐/

J, (3.116) 
 

we obtain 

𝜓
𝜕𝑐/
𝜕𝑡 = ∇ ⋅ I𝜓𝑀/∇

𝛿ℱ
𝛿𝑐/

J − ∇𝜓 ⋅ I𝑀/∇
𝛿ℱ
𝛿𝑐/

J. (3.117) 
 

The inward flux, 𝐽r, at the boundary is given by 

𝑛 ⋅ 𝐽 = −
∇𝜓
|∇𝜓| I𝑀/∇

𝛿ℱ
𝛿𝑐/

J = 𝐽r , (3.118) 
 

where 𝑛 = ∇t
|∇t|

 is the unit normal inward vector. Substituting Equation (3.118) into Equation 

(3.117) yields 

𝜕𝑐/
𝜕𝑡 =

1
𝜓 ∇ ⋅ I𝜓𝑀/∇

𝛿ℱ
𝛿𝑐/

J −
|∇𝜓|
𝜓 𝐽r . (3.119) 

 

When a no-flux boundary condition is imposed at the surface, Equation (3.119) reduces to 

𝜕𝑐/
𝜕𝑡 =

1
𝜓 ∇ ⋅ I𝜓𝑀/∇

𝛿ℱ
𝛿𝑐/

J. (3.120) 
 

3.8 Summary for the phase-field model for solid-state metathesis reaction 

In this chapter, we presented a phase-field model that describes the diffusion-limited 

metathesis reactions in ionic solids. This model tracks the mole fractions of the ionic species, from 

which the phase fractions are determined. The governing equations were derived using Lagrange 

multipliers that impose constraints not only on the sum of mole fractions but also of charge 

neutrality. We described a method to calculate mobilities of ionic species based on their diffusion 

coefficients. Moreover, we discussed how this phase-field model could be coupled with the 
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smoothed boundary method to impose boundary conditions for irregularly shaped domain 

boundaries. The applications of this phase-field model are presented in the next chapter. 

 



 68 

Chapter 4 Study of Composition and Phase Evolutions in Solid-State Metathesis Reactions 

4.1 Introduction 

In this chapter,*  we demonstrate the capability of the phase-field model presented in 

Chapter 3 by applying it to perform simulations under various scenarios. In Section 4.2, we utilize 

the model to examine the effect of mobilities on the dynamics of reactions. In Section 4.3, we 

predict the process of a thin-film reaction for the synthesis of FeS2 by tuning the mobilities of ions 

based on their diffusivities suggested by literature and experiments. In Section 4.4, we leverage 

the phase-field model and a lattice model to estimate the rate of the reactions with loosely and 

densely packed reactant particles.  

4.2 Examination of mobility effects using a simple SSM model 

4.2.1 Simulation setup for examination of mobility effects 

In this section, we utilized the SSM model that considers the ions with an identical absolute 

value of charge numbers presented in Chapter 3 Section 3.2 to study the effect of mobilities of ions 

on the dynamics of the reaction with the formula AX + BY → AY + BX. We initialize the mole 

fractions of the ions A, B, X, and Y using the following equations:  

𝑐|(𝑧; 𝑡 = 0) = 𝑐~(𝑧; 𝑡 = 0) =
1
4 ¤1 − tanh I

𝑧 − 0.5𝐿3
𝛿 J©, (4.1)  

 
* Sections 3.2 and 3.3 are adapted from G. Huang, D. Montiel, R. D. McAuliffe, G. M. Veith, and K. Thornton, “Phase-
Field Modeling of Solid-State Metathesis Reactions with the Charge Neutrality Constraint,” Computational Materials 
Science 221, 112080 (2023). Section 3.4 is adapted from G. E. Kamm, G. Huang, S. M. Vornholt, R. D. McAuliffe, 
G. M. Veith, K. S. Thornton, and K. W. Chapman, “Relative Kinetics of Solid-State Reactions: The Role of 
Architecture in Controlling Reactivity,” Journal of the American Chemical Society 144, 11975 (2022). 
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𝑐}(𝑧; 𝑡 = 0) = 𝑐�(𝑧; 𝑡 = 0) =
1
4 ¤1 + tanh I

𝑧 − 0.5𝐿3
𝛿 J©, (4.2)  

where 𝐿3 is the size of the simulation domain. The equations initialize the concentrations such that 

there are identical numbers of AX and BY reactant phases on two sides of the simulation domain, 

separated by an interface in the midpoint of the domain. For the simulations in this section, we set 

the interfacial width to be 1/50 of the domain size. The parameters used in this section and their 

values are summarized in Table 4.1. The initial mole fractions of ions and phase fractions are 

shown in Figure 4.1. 

 

Figure 4.1. Initial condition for the metathesis reaction AX + BY → AY + BX. (a) Initial mole 
fractions of ions. The legends indicate ionic species. (b) Initial phase fractions. The legends 
indicate phases. Reproduced with permission [153]. Copyright 2023, the authors. Published by 
Elsevier. 

To examine the effect of mobility of ions on the dynamics of the metathesis reaction, we 

performed simulations with three sets of mobilities, as summarized in Table 4.2. The time step 

employed in each simulation is also presented in the last column of the table. The common 

parameters for all the three simulations are summarized in Table 4.1. 
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Table 4.1. The common parameters employed in all the three simulations. Reproduced with 
permission [153]. Copyright 2023, the authors. Published by Elsevier. 

  

Parameters Variable Value 
Bulk energy 
coefficient 𝑊∗ 1 

Gradient energy 
coefficient 𝜅∗ 0.5 

Negative-mole- 
fraction penalty 
term coefficient 

𝜁∗ 100 

Domain size 𝐿3∗  100 
Grid spacing Δ𝑧∗ 0.392 
   

 

Table 4.2. The mobility of ions and time steps for three simulation cases. Reproduced with 
permission [153]. Copyright 2023, the authors. Published by Elsevier. 

  

Case 
number 

Mobility of ions Time step 
𝑀v
∗ 𝑀r

∗  𝑀w
∗  𝑀x

∗  Δ𝑡∗ 
1 1000 1000 1 1 1078 
2 1000 1 100 100 1076 
3 1000 1 10 100 5 × 1076 

  

 

4.2.2 Results and discussion for examination of mobility effects 

Figure 4.2(a) – (d) show the evolution of mole fractions for Case 1, in which the mobilities 

of cations are 1000 times higher than the anion mobilities. The legends for these four plots are 

shown in Figure 4.2(d). Figure 4.2(e) – (h) show the evolution of phase fractions, with the legends 

presented in Figure 4.2(h). We observe that the diffusion of cations is dominant throughout the 

reaction, which is expected since the mobility of the cations is 1000 times higher than that of 

anions. It is important to note that the reaction process is not limited by the diffusion of the slower 

species (i.e., two anions in this case), unlike the typical kinetic processes in which the rate limiting 

step (or the slowest process) determine the rate. This is because the faster diffusers (the two cations) 
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can exchange while the slower diffusers (the two anions) remain in place and the constraints of 

electroneutrality and on the sum of mole fraction can both be satisfied by the exchange of two 

cations. Cation A is rapidly diffusing to the right of the simulation domain, resulting in the 

formation of AY phases. Similarly, the diffusion of cation B towards the left of the simulation 

domain yields the rapid formation of BX phases. The anions have a much smaller mobility and 

therefore remain at their initial positions throughout the reaction.  

 
Figure 4.2. The evolution of (a) – (d) mole fractions of ions and (e) – (h) phase fractions in Case 
1. The legends for ions are shown in (d) and the legends for phases are shown in (h). Reproduced 
with permission [153]. Copyright 2023, the authors. Published by Elsevier. 

We then examine Case 2, in which cation A has the largest mobility of all four species 

while cation B has the smallest mobility. The evolution of mole fractions of ions and phase 

fractions for this case is shown in Figure 4.2. The diffusion of anions is dominant, even though 

cation A has a higher mobility than the anions. This behavior can be explained by the fact that the 

cations have a smaller effective mobility (~2) than that (100) of the anions, as defined in Equation 

(3.55). We can interpret the effective mobility of cations and anions the same way as the equivalent 

conductance of a pair of two resistors in series, considering the similarity between the concurrent 
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diffusion of two ions of the same type (i.e., cations or anions) in the SSM reactions and the 

transport of charges in the electrical circuit with two resistors in series. 

 
Figure 4.3. The evolution of (a) – (d) mole fractions of ions and (e) – (h) phase fractions in Case 
2. The legends for ions are shown in (d) and the legends for phases are shown in (h). Reproduced 
with permission [153]. Copyright 2023, the authors. Published by Elsevier. 
 

By adding the effective cation mobility and the effective anion mobility (see Equation 

(3.55) for the definition of the effective mobilities), we obtain a characteristic mobility, 𝑀f�d$(``,  

of the overall reaction process (hereafter referred to as the overall characteristic mobility): 

𝑀f�d$(`` = 𝑀#(&%fe +𝑀(e%fe. (4.3)  

The rationale behind this expression is that the reaction has two ‘parallel’ paths to proceed: either 

by diffusion of anions, by diffusion of cations, or by their combination. In the extreme case when 

the anions are immobile (e.g., Case 1), the overall characteristic mobility is equal to the effective 

mobility of the mobile ions (e.g., cations in Case 1). We can also interpret this overall characteristic 

mobility the same way as the equivalent conductance of a pair of two resistors in parallel. Since 

the magnitude of the diffusion flux of ions is proportional to their mobilities, we hypothesize that 

the overall characteristic mobility sets the rate of evolution. This is indeed the case in our 
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simulations. For instance, Figure 4.3(a) and (e) and Figure 4.2(a) and (e) represent a similar stage 

of the reaction based on the concentration and phase profile, but the corresponding dimensionless 

times are very different, 𝑡∗ = 0.1 for Case 1 and 𝑡∗ = 1 for Case 2. The factor of 10 difference 

between these times is consistent with the values of overall characteristic mobilities (1001 for Case 

1 and ~102 for Case 2), which implies that Case 1 would evolve ~10 times faster than Case 2 (Note 

that this scaling only applies if the effective cation mobility is sufficiently different from the 

effective anion mobility).  

It is worth noting that the non-dominant ions (cations) still diffuse in Case 2, albeit by a 

small amount (see the slight change in 𝐴: and 𝐵: concentrations in Figure 4.3(a) - (c)), while in 

Case 1 the non-dominant ions (anions in this case) do not show detectable diffusion. To understand 

the difference, we further formulate the characteristic mobility ratio, which is the ratio of effective 

mobility of the dominant ions to that of the non-dominant ions. In Case 2 this ratio is ~50:1, while 

in Case 1 the ratio is 1000:1.  

We hypothesize that a characteristic mobility ratio that is closer to unity leads to a more 

detectable diffusive transport of non-dominant ions since it indicates the effective mobilities for 

anions and cations are similar. To validate the hypothesis of the characteristic mobility ratio, we 

examine Case 3, in which the mobility of anion X is reduced by a factor of ten as compared to 

Case 2 while other mobilities are unchanged. The evolution of mole fractions of ions and the phase 

transformations are plotted in Figure 4.4. In this case, the ratio is reduced to only ~9.1:1 and, as 

expected from our hypothesis, diffusion of the non-dominant ions (i.e., cations) is more apparent, 

although the diffusion is still dominated by the anions. The diffusion of anion X towards the right 

of simulation domain results in the formation of BX phases on the right and meanwhile allows the 

same amount of anion Y diffusing to the left and forming AY phases on the left. A small amount 
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of cation B diffuses to the left and the same amount of cation A diffuses to the right. Phase 

separation occurs as the reaction progresses. As seen in Figure 4.4(c) and (g), a small amount of 

BX phases forms within the AY phase and a small amount of AY phases forms within the BX 

phase. These phases disappear as the reaction continues to progress, and a complete phase 

transformation is achieved in Figure 4.4(d) and (h).  

 
Figure 4.4. The evolution of (a) – (d) mole fractions of ions and (e) – (h) phase fractions in Case 
3. The legends for ions are shown in (d), and the legends for phases are shown in (h). Reproduced 
with permission [153]. Copyright 2023, the authors. Published by Elsevier. 
 

It should be noted that the late-stage evolution is strongly influenced by the mobility of the 

product phases, which we here assume to be the same as the reactant phases. If the mobility is 

lower in the product phase, the rate of evolution will be much slower once the product phase is 

established.  

4.2.3 Conclusion for examination of mobility effects 

In this section, we demonstrated that different sets of mobility values for ions lead to 

quantitatively and qualitatively different concentration evolution. We showed that the type of ions 
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with a larger effective mobility dominates the diffusion. Additionally, we formulated the 

characteristics mobility of the overall process and, by comparing with the simulation results, 

showed that the rate of the overall process is set by the overall characteristic mobility, while the 

ratio of the effective mobilities of cations and anions determines how the process proceeds.  

4.3 Prediction of a thin-film experiment for the synthesis of FeS2 

4.3.1 Introduction for the simulation of FeS2 synthesis 

In this section, we utilize the general SSM model discussed in Chapter 3 Section 3.3 to 

predict the composition and phase evolutions in a thin-film experiment for the synthesis of FeS2, 

which has the following reaction formula 

Na"S" + FeCl" → 2NaCl + FeS". (4.4)  

In this experiment, the two precursor compounds, Na2S2 and FeCl2, were prepared as thin films. 

The Na2S2 is deposited on a Si substrate, and FeCl2 is deposited on the Na2S2. A schematic showing 

the precursor sample is shown in Figure 4.5.  

 
Figure 4.5. A schematic of the thin-film precursor compounds and the substrate. The regions being 
simulated are bounded by a black dashed box, with periodic boundary conditions and no-flux 
boundary conditions indicated by P and NF, respectively. Only 40% of the simulated domain is 
visualized, which is bounded by an orange dashed box. Reproduced with permission [153]. 
Copyright 2023, the authors. Published by Elsevier. 
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4.3.2 Simulation method for the simulation of FeS2 synthesis 

We performed the simulation for a portion of the thin-film sample, which is indicated by a 

black dashed box in Figure 4.5. We assume that the simulated domain is repeated along the 

horizontal (𝑥) direction and we apply periodic boundary conditions for the left and right boundaries 

of the simulation domain. We assume no reaction occurs between the FeCl2 and air, as well as 

between the Na2S2 and substrat and employ no-flux boundary conditions for the top and bottom 

boundaries of the simulation domain.  

To capture the interfacial roughness between the precursor compounds, FeCl2 and Na2S2, 

we performed the simulation in two dimensions (rather than one dimension). We initialize the 

mole fraction of Na+, Fe2+, Cl-, and S22- ions by 

𝑐�(!(𝑥, 𝑧; 𝑡 = 0) =
1
3 ­1 − tanhm

𝑧 − 0.5𝐿3 + 𝜂(𝑥)
𝛿 n®, (4.5) 

 

𝑐�d%!(𝑥, 𝑧; 𝑡 = 0) =
1
6 ­1 + tanhm

𝑧 − 0.5𝐿3 + 𝜂(𝑥)
𝛿 n®, (4.6) 

 

𝑐�%%"(𝑥, 𝑧; 𝑡 = 0) =
1
6 ­1 − tanh m

𝑧 − 0.5𝐿3 + 𝜂(𝑥)
𝛿 n®, (4.7) 

 

𝑐�`"(𝑥, 𝑧; 𝑡 = 0) =
1
3 ­1 + tanhm

𝑧 − 0.5𝐿3 + 𝜂(𝑥)
𝛿 n®, (4.8) 

 

which yield an identical number of moles of Na2S2 and FeCl2 precursor phases. The thickness of 

the sample, 𝐿3, is set to 86 nm to match the sample used in the thin-film experiment discussed 

above [145]. A perturbation term 𝜂(𝑥) is used to model the roughness at the interface between the 

precursor compounds. It is given by 

𝜂(𝑥) =
𝑅
2 𝜌

(𝑥), (4.9)  
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where 𝜌(𝑥)  is a uniformly distributed random variable between -1 and 1 with no spatial 

correlation, and 𝑅 is the average interfacial roughness.  

For this simulation, the thickness of the interface, 𝑙/Q> , and the average interfacial 

roughness are estimated to be 5 nm based on the experimental observations [145]. For the 

nondimensionalization for this simulation, we select a length scale 𝑙0 = 1 nm. The relationship 

between the energy scale, 𝑊, interfacial energy, 𝛾, and 𝑙/Q> is obtained using the method discussed 

in Ref. [126], which is detailed in Chapter 3 Section 3.6. The interfacial energy is reported to be 

on the order of 0.1 J/m2 in the literature [155,156]. Accordingly, 

𝑊 =
6𝛾
𝑙/Q>

=
6	 × 	0.1	J/m"

5	nm = 1.2 × 10�J/m.	. (4.10) 
 

To simplify the model, we assume that the mobility of each ion does not depend on the phase in 

which it is diffusing and thus assign a constant to each mobility. The mobility of the Na+ and Cl- 

ions can be calculated from their respective diffusion coefficients, using Equation (3.11) with the 

estimated conversion factors Φ*+! = Φ,-" ≈ 2𝑊, as detailed in Chapter 3 Section 3.5. The self-

diffusion coefficient of Na+ at 350 °C (at which the thin-film experiment takes place) is calculated 

from the temperature-dependent function given in Refs. [157,158] to be 107!6	m"/s and the 

corresponding mobility, 𝑀*+! = 4.2 × 107"5	m6/(Js) , is determined. Similarly, the self-

diffusion coefficient of Cl- at 350 °C is calculated from the corresponding temperature-dependent 

function reported in Refs. [157,159] to be 3 × 107!�	m"/s, and 𝑀,-" = 1.2 × 107"�	m6/(Js) =

.
!0000

𝑀*+! is determined. Although the diffusion coefficients for the Fe2+ and S22- ions were not 

previously reported in the literature, we can infer their mobility values based on the observations 

from the thin-film experiment. The experiment indicates that the diffusion of the anion Cl- and S22- 

is dominant, followed by the cation Na+, and that the slowest diffuser is the cation Fe2+. The anion 
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Cl- diffuses towards the substrate while the anion S22- diffuses towards the surface. These findings 

suggest that the Fe2+ ion has the smallest mobility and the mobility of the S22- ion is between that 

of Na+ and Fe2+ ions. We found that setting the mobility of the S22- and Fe2+ ions to be 𝑀D%%" =

!
8000

𝑀*+! and 𝑀�W%! =
!

.00000
𝑀*+!, respectively, yielded a good qualitative match between the 

simulation and experiment and therefore employed these values (in their nondimensionalized 

form) for this simulation. We select the mobility of the Fe2+ ion as the mobility scale, 𝑀@/Q, and 

utilize it to nondimensionalize the mobility of each ion. We then substitute 𝑀@/Q, 𝑊, and 𝑙0 into 

the definition of 𝑡0  (Equation (3.66)) to calculate the time scale, 𝑡0 =
>
>∗
≈ 0.17 hours, which 

corresponds to a unit dimensionless time in this simulation. The dimensionless mobility values, 

along with other parameters employed in this simulation, are summarized in Table 4.3. We note 

that the selection of mobility values is not unique and there are other values that reproduces the 

qualitatively consistent results. A more rigorous parameterization via optimization algorithms [97-

101] for quantitative agreements will be left for future studies. 

4.3.3 Results and discussion for the simulation of FeS2 synthesis 

The initialized mole fractions of ions are shown on the top four rows of Figure 4.6(a). The 

corresponding phase fraction is shown on the last row of Figure 4.6(a). We present the 

visualization of 40% of the simulated region to allow all the representative stages during the 

simulation to be shown in one figure. The visualized region is indicated by the orange dashed box 

in Figure 4.5. The evolution of the mole fractions of the ions and the phase transformations are 

shown in Figure 4.6(b) – (f). The color bar shown on the right of the figures is used to indicate the 

value of mole fractions of all the four ions. The color legends indicating distinct phases are shown 

below the color bar. Each unit dimensionless time corresponds to ~0.17 hours, as discussed above.  
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Table 4.3. The length, energy, mobility scales, and dimensionless parameters employed in the 
simulation for the FeS2 synthesis. Reproduced with permission [153]. Copyright 2023, the authors. 
Published by Elsevier. 

  

Parameters Variable Value 
Length scale 𝑙0 1	nm 
Energy scale  𝑊 1.2 × 10�	J/m. 

Mobility scale 𝑀'%e 1.4 × 107"�	m6/(Js) 

Time scale 𝑡0 ≈0.17 hours 
(calculated) 

Bulk energy 
coefficient 𝑊∗ 1 

Gradient energy 
coefficient 𝜅∗ 3.125 

Coefficient of 
negative-mole-
fraction penalty 
term  

𝜁∗ 100 

Domain size 
𝐿2∗  430 
𝐿3∗  86 

Grid spacing Δ𝑥∗ = Δ𝑧∗ 0.678 
Time step Δ𝑡∗ 1 × 1076 
Mobility of Na+ 𝑀�(!

∗  3 × 106 
Mobility of Fe2+ 𝑀�d%!

∗  1 
Mobility of S22- 𝑀�%%"

∗  50 
Mobility of Cl- 𝑀�`"

∗  90 
 

 

The anion Cl- diffuses towards the substrate (below the simulation domain) and the anion S22- 

diffuses towards the surface of the thin-film sample (the top of the simulation domain), as observed 

in Figure 4.6(a) – (c). A NaCl phase rapidly forms near the substrate and FeS2 phases form near 

the surface. Some Na+ ions diffuse upwards, leading to the formation of two additional NaCl phase 

domains that are embedded within FeS2 phases and are parallel to the interface. These embedded 

NaCl phases can be clearly seen in Figure 4.6(d). The facts that Cl- and S22- rapidly diffuse toward 

the substrate and surface of the sample, respectively, that a portion of Na+ ions diffuse across the 

sample, and that Fe2+ primarily stay near the surface of the sample are consistent with those 
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observed in the thin-film experiments for the synthesis of FeS2 [145]. As the reaction continues to 

progress, the Na+ and Cl- ions in the additional phase domains diffuse toward the substrate. Due 

to the roughness of the interface, some embedded NaCl regions disappear faster than the others, 

leading to the formation of isolated NaCl domains at the top, as seen in Figure 4.6(e). These 

isolated domains disappear as the reaction continues to progress, as shown in Figure 4.6(f). 

 

Figure 4.6. The evolution of mole fractions of ions and phase fractions in the simulation for the 
synthesis of FeS2. Reproduced with permission [153]. Copyright 2023, the authors. Published by 
Elsevier. 
 

The simulation shows a complex evolution that involves nonplanar reaction fronts, which 

was not initially expected. However, a recent study performed by McAuliffe et al. [145] utilized 

TEM to image the cross sections of the thin-film sample and found that the reacted sample 

contained separate regions of NaCl and FeS2 phases within the plane, which is consistent with the 

simulation result. We note that the reactants do not completely convert into products after 17.5 

hours (~t* = 100) in the experiment, but the simulation suggests that such a conversion is completed 

after t* = 70 (see Figure 4.6(e)). The faster conversion rate in the simulation most likely stems from 

an overestimate of the rate-controlling mobility in some phases. More precise parameterization 

will be left for future work. 
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While a full investigation that explores how the dynamic behavior changes with 

thermodynamic and kinetic parameters will be left for a future study, our results do guide the future 

direction for experiments, which includes employing a thinner sample to stabilize the planarity of 

interfaces, as well as characterization of the phase morphologies in the plane of the film for thicker 

samples.  

4.3.4 Conclusion for the simulation of FeS2 synthesis 

In this section, we utilized a phase-field model that considers ions with different absolute 

charge numbers to simulate the synthesis of FeS2. When the mobilities of the ions were tuned, the 

diffusion directions of each ion during the reaction matched the observations in the experiment. 

Specifically, the Cl- and S22- ions were found to rapidly diffuse toward the substrate and surface of 

the sample, respectively, while only a small portion of Na+ ions diffused across the sample and the 

Fe2+ ions primarily stayed near the surface of the sample. The simulation yielded a nonplanar 

evolution when the surface roughness was introduced, which may lead to a formation of 

nanostructures in the film if the experiment is terminated before the equilibrium state is reached. 

The simulation could be used to control such nanostructure formation, either to suppress it or 

control the size scale of the nanostructure. 

4.4 Effect of packing density on reaction rate 

4.4.1 Introduction for the study of packing-density effect 

The effect of packing density of the precursor particles on the reaction rate for solid-state 

reactions was studied by our experimental collaborator Karena Chapman’s group in Stony Brook 

University. They studied the reaction occurring between NaFeO2 and LiBr 
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NaFeO" + LiBr → LiFeO" + NaBr. (4.11)  

The reaction completion is measured as a function of time for a densely packed precursor sample 

and a loosely packed precursor sample. Hereafter, we refer to the densely packed sample and the 

loosely packed sample as a densified sample and a undensified sample, respectively. The densified 

sample contains 85% precursor solid particles (65% of which are LiBr particles and 35% of which 

are NaFeO2 particles) and 15% pores. The undensified sample contains 25% precursor solid 

particles (65% of which are LiBr particles and 35% of which are NaFeO2 particles), 11.5% glass 

diluent, and 63.5% pores. The completion curves for two samples are shown in Figure 4.7. 

 

Figure 4.7. The reaction completion, C(t), from isothermal diffraction studies of the ion-exchange 
reaction between NaFeO2 and LiBr show fast and slow kinetic regimes. Reproduced with 
permission [146]. Copyright 2022, American Chemical Society. 

Regardless of the temperature, a higher reaction rate is observed for the densified sample. 

To explain its origin, we propose two hypotheses: (1) the precursor particles in the densified 

sample have more reactive neighbors than those in the undensified sample and (2) the particles 

surrounded by more reactive neighbors have a higher reaction rate. The two hypotheses, together, 

could explain the higher reaction rate observed for the densified sample.  
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To validate the first hypothesis, we developed a lattice model to estimate the distribution 

of the number of reactive neighbors within densified and undensified samples, as discussed in 

Section 4.4.2. For the second hypothesis, we conducted a series of phase-field simulations, as 

discussed in Section 4.4.3, to predict the reaction completion as a function of time for the precursor 

particles with different number of reactive neighbors. In Section 4.4.4, we combine the findings 

from Section 4.4.2 and Section 4.4.3 to construct two completion curves, one for the densified 

sample, and the other for the undensified sample.  

4.4.2 Estimating the distribution of the number of reactive neighbors 

We propose a lattice model to estimate the distribution of the number of reactive neighbors 

for densified and undensified samples. We assume a simple cubic lattice, in which each particle 

has at most 6 nearest neighbors (Nolan et al. reported 5.9 in Ref. [160] as the upper bound of the 

mean coordination number of randomly packed spheres).  

We assign one of four values to each point: 0 for pores, 1 for LiBr particles, 2 for NaFeO2 

particles, and 3 for SiO2 glass diluent (undensified sample only). We initialize a uniform mesh of 

1003 grid points, all with value 1. Then we iteratively assign 0 to randomly selected points, until 

the volume fraction of the solid points (either of precursor phases or SiO2 glass phase) reduces to 

a target value, i.e., 25% (precursor particles) + 11.5% (SiO2 glass) = 36.5% for the undensified 

sample and 85% for the densified sample. To ensure that no solid point is solely surrounded by 

pores, the assignment of 0 is performed only when all the solid neighbors of randomly selected 

points have at least 2 solid neighbors after the assignment. We randomly assign values 1 (LiBr 

phase), 2 (NaFeO2 phase), and 3 (SiO2 glass phase) to the solid points, based on their volume ratio 

measured in the experiments. For the undensified sample, values 1, 2, and 3 are randomly assigned 

to 44.5%, 24.0%, and 31.5% of the solid points, respectively. For the densified sample, values 1 
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and 2 are randomly assigned to 65% and 35% solid points, respectively. The resulting model 

microstructures of undensified and densified samples are shown in Figure 4.8(a) and (b), 

respectively, with one cross section being highlighted in each case. 

 

Figure 4.8. Model microstructures for (a) undensified (25% packed) and (b) densified (85% 
packed) samples. Red, blue, and gray colors are assigned to LiBr particles, NaFeO2 particles, and 
SiO2 glass diluent, respectively. One cross section is highlighted in each case. Reproduced with 
permission [146]. Copyright 2022, American Chemical Society. 

The distribution of reactive neighbors was evaluated and is shown in Figure 4.9. As may 

be expected, the densified model system had a higher average number of reactive direct neighbors 

compared to the undensified sample (2.31 cf. 0.73). In the densified system, a small fraction (8.1%) 

of particles were not in direct contact with a reactive neighbor (referred to hereafter as isolated 

particles), but 99.6% of these had a reactive next-nearest neighbor. In the undensified system, 

there was a significant fraction (43.6%) of isolated particles and only 38.2% of these had a reactive 

next-nearest neighbor. As such, 27% of all particles were 2 or more particles removed from a 

reactive neighbor; these particles are less likely to participate in the reaction. 
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Figure 4.9. The distribution of reactive interparticle contacts in the (a) densified and (b) 
undensified systems. A portion of cross section of the corresponding model microstructure is 
shown in the inset in each subfigure. Reproduced with permission [146]. Copyright 2022, 
American Chemical Society. 

4.4.3 Predicting completion for doubly, singly, and indirectly connected particles 

To predict the reaction completion as a function of time, we perform phase-field 

simulations using the model presented in Chapter 3 Section 3.7. We consider two scenarios: (1) 

the reaction between a periodic array of a LiBr particle and a NaFeO2 particle, and (2) the reaction 

between a periodic array of a triplet of LiBr particles and a triplet of NaFeO2 particles. The 

densities of LiBr and NaFeO2 particles are reported to be 3464 kg/m3 [161] and 4350 kg/m3 [162], 

respectively. The molar volumes of LiBr and NaFeO2 are therefore estimated to be 25.1 cm3/mol 

and 25.5 cm3/mol, respectively, by dividing their molar mass by their density. Since we are 

interested in a qualitative behavior and the phase-field model we employ does not allow volume 

change during the reaction, we assume an identical molar volume for all the phases and consider 

an identical amount of NaFeO2 and LiBr particles, which is reasonable given a small difference in 

their molar volumes (25.1 cm3/mol vs. 25.5 cm3/mol). 
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To set up the initial conditions, we first construct initial phase-indication fields (i.e., 1 

within the respective particle, 0 elsewhere), 𝜂�(�d�%(𝒓)  and 𝜂�%}$(𝒓) , for NaFeO"  and LiBr 

particles, respectively, and then generate their signed distance functions, 𝑑�(�d�%(𝒓) and 𝑑�%}$(𝒓), 

followed by initializing the mole fractions, 𝑐/, for all the four ions (𝑖 = Na+, FeO2-, Li+, and Br-) 

and a domain parameter field, 𝜓, as detailed below. A periodic boundary condition is imposed for 

the simulation domain. For the first scenario, we construct a simulation domain with a near 

spherical NaFeO2 particle (a sphere with spherical caps removed) placed between two LiBr 

particles (similarly missing a cap; see Figure 4.10(a) for the cross-section of the geometry). A near 

hemispherical shape is employed for each LiBr particle due to the periodic boundary condition. 

The center of the NaFeO2 particle is given by �𝑥j,�(�d�%	, 𝑦j,�(�d�%	, 𝑧j,�(�d�%�, and the centers of 

the LiBr particles on the top and bottom sides are given by �𝑥j,�%}$	, 𝑦j+,�%}$, 𝑧j,�%}$�  and 

�𝑥j,�%}$	, 𝑦j%,�%}$, 𝑧j,�%}$�, respectively. We denote the radii of NaFeO2 and LiBr particles as 𝑅;. To 

generate the initial phase indication fields, we must have mathematical criteria that indicate the 

phase at a point (𝑥, 𝑦, 𝑧). The necessary conditions for selecting the regions within the middle 

NaFeO2 particle, the top LiBr particle, and the bottom LiBr particle are given by Condition 1, 2, 

and 3, respectively, as follows: 

Condition	1:	U𝑥 − 𝑥j,�(�d�%	V
" + U𝑦 − 𝑦j,�(�d�%	V

" + U𝑧 − 𝑧j,�(�d�%V
" < 𝑅;", (4.12)  

Condition	2:	U𝑥 − 𝑥j,�%}$	V
" + U𝑦 − 𝑦j+,�%}$	V

" + U𝑧 − 𝑧j,�%}$V
" < 𝑅;", (4.13)  

Condition	3:	U𝑥 − 𝑥j,�%}$	V
" + U𝑦 − 𝑦j%,�%}$	V

" + U𝑧 − 𝑧j,�%}$V
" < 𝑅;". (4.14)  

In addition, a spherical cap needs to be removed from each particle above its contact plane with 

the other particle, considering their overlap. To do so, the contact plane between the two adjacent 
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particles is first identified, and the spherical cap beyond this plane for each particle is excluded. 

The following condition excludes these spherical caps for the middle NaFeO2 particle: 

Condition	4:	 I𝑦 >
𝑦j,�(�d�% +	𝑦j+,�%}$

2 	and	𝑦 <
𝑦j,�(�d�%:𝑦j%,�%}$

2 J. (4.15)  

Similarly, the following conditions exclude the spherical caps for the two LiBr particles on the top 

and bottom, respectively: 

Condition	5:	𝑦 <
𝑦j,�(�d�% +	𝑦j+,�%}$

2 , (4.16)  

Condition	6:	𝑦 >
𝑦j,�(�d�% +	𝑦j%,�%}$

2 . (4.17)  

Now, we have a full set of conditions that are required to indicate the phase at any point in the 

computational domain. To generate the initial phase-indication fields 𝜂�(�d�%(𝒓) and 𝜂�%}$(𝒓), we 

employ the following formula: 

𝜂�(�d�%(𝒓) = À1, if	condition	1	and	condition	4,
0, otherwise,  (4.18)  

	𝜂�%}$(𝒓) = À1, if	(condition	2	and	condition	5)	or	(condition	3	and	condition	6),
0, otherwise.  (4.19)  

We employ the level-set method discussed in Chapter 2 Section 2.8 to the 𝜂�(�d�%(𝒓) and 

𝜂�%}$(𝒓) fields to generate signed distance functions, 𝑑�(�d�%(𝒓) and 𝑑�%}$(𝒓). Specifically, the 

distance function 𝑑�  (𝛼 = NaFeO"  and LiBr) is obtained via the evolution of a dummy field, 

𝜂�y(𝒓), initialized with 𝜂�(𝒓) – 0.5, using Equation (2.63), until the spatial average of the absolute 

value of the change in 𝜂�y between two iterations, !
g ∫ |𝜂�y(𝑡 + Δ𝑡) − 𝜂�y(𝑡)|g 𝑑𝑉, is less than 1078. 

The value of 𝑑� is set by 𝜂�y after the convergence. The gradient of the field, ∇𝜂�y, is calculated 

using a first-order upwind scheme [138,141]. We apply hyperbolic tangent functions to 

𝑑�(�d�%(𝒓) and 𝑑�%}$(𝒓) to obtain the initial mole fractions of ions 𝑐/(𝒓; 𝑡 = 0): 
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𝑐�(!(𝒓; 𝑡 = 0) = 𝑐�d�%"(𝒓; 𝑡 = 0) =
1
4 ­tanhm

𝑑�(�d�%(𝒓)
𝛿	 n + 1®, (4.20) 

 

𝑐�%!(𝒓; 𝑡 = 0) = 𝑐}$"(𝒓; 𝑡 = 0) =
1
4 ­tanh m

𝑑�%}$(𝒓)
𝛿 n + 1®, (4.21) 

 

where 𝛿 = O2𝜅/𝑊 is half of the interfacial width defined in this phase-field model (where the 

full thickness is defined as the distance over which the field changes from ~10% to ~90% of the 

maximum value). The domain parameter, 𝜓(𝒓), is given by 

𝜓(𝒓) =
1
2 tanh m

𝑑�(�d�%(𝒓)
𝛿 n +

1
2 tanh m

𝑑�%}$(𝒓)
𝛿	 n + 1. (4.22) 

 

We employ a similar procedure to construct the initial fields for the second scenario, although in 

this case, the simulation domain consists of a triplet of near spherical NaFeO2 particles and a 

combination of a near spherical LiBr particle and a near hemispherical LiBr particle on both ends 

of the NaFeO2 particles (see Figure 4.10(b) for the cross-section of the geometry). The centers of 

the NaFeO2 particles are given by �𝑥j,�(�d�% , 𝑦j+,�(�d�% , 𝑧j,�(�d�%� , 

�𝑥j,�(�d�% , 𝑦j%,�(�d�% , 𝑧j,�(�d�%�, and �𝑥j,�(�d�% , 𝑦j+,�(�d�% , 𝑧j,�(�d�%�. The centers of the LiBr 

particles are given by �𝑥j,�%}$, 𝑦j+,�%}$, 𝑧j,�%}$�, �𝑥j,�%}$, 𝑦j%,�%}$, 𝑧j,�%}$�, �𝑥j,�%}$, 𝑦j@,�%}$, 𝑧j,�%}$�, 

and �𝑥j,�%}$, 𝑦j$,�%}$, 𝑧j,�%}$�. The values of the center positions, as well as the radius, for the two 

scenarios, are summarized in Table 4.4. With these initial conditions, the evolutions of the mole 

fractions are obtained using Equation (3.120). The simulation parameters are summarized in Table 

4.5. 
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Table 4.4. The centers and radii of NaFeO2 and LiBr particles for the two scenarios. The variables 
with a “*” sign at their superscript indicate that they are dimensionless variables. Reproduced with 
permission [146]. Copyright 2022, American Chemical Society. 

  

 NaFeO2 LiBr 

For both 
scenarios 

𝑥j,�(�d�%	
∗ = 𝑥j,�%}$	∗ = 𝐿2∗ /2 
𝑧j,�(�d�%	
∗ = 𝑧j,�%}$	∗ = 𝐿3∗ /2 

𝑅;∗ = 10.21 

Scenario 1 𝑦j+,�(�d�%	
∗ = 𝐿�∗ /2 

𝑦j+,�%}$	
∗ = 0 

𝑦j%,�%}$	
∗ = 𝐿�∗  

Scenario 2 

𝑦j+,�(�d�%	
∗ = 𝐿�∗ /3 

𝑦j%,�(�d�%	
∗ = 𝐿�∗ /2 

𝑦j@,�(�d�%	
∗ = 2𝐿�∗ /3 

𝑦j+,�%}$	
∗ = 0 

𝑦j%,�%}$	
∗ = 𝐿�∗ /6 

𝑦j@,�%}$	
∗ = 5𝐿�∗ /6 

𝑦j$,�%}$	
∗ = 𝐿�∗  

 

 
Table 4.5. The parameters employed in the simulations. The variables with a “*” sign at their 
superscript indicate that they are dimensionless variables. Reproduced with permission [146]. 
Copyright 2022, American Chemical Society. 

  

Parameters Variable Value 
Length scale 𝑙0 1 μm 
Bulk energy 
coefficient 𝑊∗ 1 

Gradient energy 
coefficient 𝜅∗ 0.125 

Constraint term 
coefficient 𝜁∗ 400 

Domain size 
𝐿2∗ = 𝐿3∗ = 𝐿∗ 32.2 

Scenario 1: 𝐿�∗ = 𝐿∗ 32.2 
Scenario 2: 𝐿�∗ = 3𝐿∗ 96.6 

Grid spacing Δ𝑥∗ = Δ𝑦∗ = Δ𝑧∗ 0.248 
Time step Δ𝑡∗ 1×10-5 
Mobility of Na+ 𝑀�(!

∗  2 
Mobility of 
FeO2- 𝑀�d�%"

∗  0.002 

Mobility of Li+ 𝑀�%!
∗  2 

Mobility of Br- 𝑀}$"
∗  0.002 
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Figure 4.10. Cross-sectional views of the phase evolution during the reactions with (a) a periodic 
array of a LiBr particle and a NaFeO2 particle, and (b) a periodic array of a triplet of LiBr particles 
and a triplet of NaFeO2 particles. Reproduced with permission [146]. Copyright 2022, American 
Chemical Society. 
 

The cross-sectional view of the phase evolution during the reactions for scenario 1 and 

scenario 2 are shown in Figure 4.10(a) and (b), respectively. As shown in the figures, the precursor 

particles convert completely into products by t* = 100 for the first scenario, while such completion 

is not achieved for the second scenario. To quantify the reaction progress, we define a completion 

percentage, 𝐶(𝑡) , which is the amounts of products formed divided by the total amounts of 

compounds, given by: 

𝐶(𝑡) =
∫ �𝜙�%�d�%(𝒓, 𝑡) + 𝜙�(}$(𝒓, 𝑡)�𝜓(𝒓)g 𝑑𝑉

∫ 𝜓(𝒓)𝑑𝑉g
, (4.23) 

 

where 𝜙�%�d�%(𝒓, 𝑡) and 𝜙�(}$(𝒓, 𝑡) are the phase fractions of LiFeO2 and NaBr, respectively. 

From the phase-field simulations, we can identify three types of precursor particles: a particle with 

two reactive neighbors, a particle with one reactive neighbor, and a particle with no reactive 

neighbors. These particles are marked in Figure 4.10(a) and (b). Their completion percentages are 

denoted as 𝐶", 𝐶!, and 𝐶0. As shown in Figure 4.11, the simulated reaction progress depends on 

NaFeO2
LiBr

NaBr
LiFeO2

t* = 0 t* = 10 t* = 20 t* = 30 t* = 100(a)

(b)

C2

C1
C0
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the interparticle contacts. The reaction proceeds most rapidly for the doubly connected particles, 

followed by the singly connected and indirectly connected particles.  

 

Figure 4.11. The simulated reaction progress in doubly, singly, and indirectly connected particles. 
Reproduced with permission [146]. Copyright 2022, American Chemical Society. 
 

4.4.4 Predicting completion for the densified and undensified samples 

By combining the simulated completion in particles with different connectivity, we can generate 

an expected composite reaction evolution for both densified sample and undensified sample. The 

composite reaction completion profiles are constructed based on the distribution of indirectly, 

singly, and at least doubly connected reactive particle contacts estimated from the lattice model in 

Section 4.4.2, and the completion percentages simulated in Section 4.4.3, using the following 

formula: 

𝐶#f'�fu%&d(𝑡)	 = 	𝛾	𝑝0C0(0.1𝑡)	 + 	𝑝!𝐶!(𝑡)	 + 	𝑝"𝐶"(𝑡), (4.24)  

where 𝛾 is the fraction of isolated particles that are separated from the next reactive particle by 

only one particle. We assume that particles that are more than one particle removed from a reactive 

neighbor have such low reactivity that they can be considered as inactive. Reaction in particles 

with no direct reactive neighbor is slowed by a factor of 10 to account for the reduction in kinetics 

(e.g., due to lower mobility in product phases forming between reactive particles), which was not 
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accounted for in the phase-field model. The constructed completion curves for the densified and 

undensified samples are shown in Figure 4.12. The two curves qualitatively resemble the 

experimental completion curves in Figure 4.7. The quantitative matching of the experimental and 

simulation results will be left for future study.  

 

Figure 4.12. Composite reaction profiles obtained by combining the simulated reaction progress 
and distribution of reactive interparticle contacts, incorporating a delay for reaction of indirectly 
connected particles. Reproduced with permission [146]. Copyright 2022, American Chemical 
Society. 

4.4.5 Conclusion for the study of packing-density effect 

In this section, we leveraged the combined findings from a lattice model and a phase-field 

model to study the effect of packing density of the sample on the reaction rate. The lattice model 

suggested that the densified model system had a higher average number of reactive neighbors as 

compared to the undensified sample. The phase-field model was applied to simulate the phase 

evolution for two scenarios: one with a periodic array of LiBr particle and a NaFeO2 particle, and 

the other with a periodic array of a triplet of LiBr particles and a triplet of NaFeO2 particles. The 

time-dependent completion percentages for doubly, singly, and indirectly connected particles were 

calculated from the phase-field simulations. Finally, these reaction percentages were combined 

based on the estimated distribution of reactive neighbors for densified and undensified samples 
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obtained from the lattice model to construct composite completion curves for the two samples, 

which qualitatively match the completion curves measured in the experiments. The resulting 

completion curves indicate that the reactions take place more rapidly in a densified sample because 

of the larger number of reactive neighboring particles in a denser sample. 
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Chapter 5 Phase-Field Modeling of Stored-Energy-Driven Macroscale Translation of 

Grains During Non-Isothermal Annealing 

5.1 Introduction 

As discussed in Chapter 1 Section 1.3, the microstructure evolution within a sample 

undergoing non-isothermal annealing may be driven by the stored energy arising from the 

difference in the dislocation density between grains, in addition to the capillary driving force due 

to the grain boundary energy. In this chapter, *  we present a phase-field model to simulate 

microstructure evolution that accounts for these two mechanisms. In Section 5.2, we discuss the 

key findings obtained from a cyclic heat treatment experiment performed by our experimental 

collaborator and propose a phase-field approach to simulate the microstructure evolution. In 

Section 5.3, we examine the effect of the stored energy on the behavior of microstructure evolution, 

specifically, the translation of grain centers.  

5.2 Experiments and simulation method 

5.2.1 Cyclic heat treatment experiment 

As discussed in Chapter 2 Section 2.2, abnormal grain growth has recently been identified 

during cycle heat treatment of polycrystalline alloys. Our experimental collaborators, Ashwin J. 

Shahani’s group, characterized dynamic annealing of a Cu-Al-Mn alloy sample [24] to examine 

 
* Adapted from M. J. Higgins, J. Kang, G. Huang, D. Montiel, N. Lu, H. Liu, Y. F. Shen, P. Staublin, J. S. Park, J. D. 
Almer, P. Kenesei, P. G. Sanders, R. M. Suter, K. Thornton, and A. J. Shahani, “Anomalous Strain-Energy-Driven 
Macroscale Translation of Grains During Nonisothermal Annealing,” Physical Review Materials 5, L070401 (2021). 
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the effect of cyclic heat treatment of the sample on the microstructure evolution. They conducted 

two cycles of heat treatment following the dynamic annealing schedule shown in Figure 5.1.  

 

Figure 5.1. Schematic showing the dynamic annealing schedule. Two cycles of heat treatment are 
conducted for the Cu-Al-Mn sample. The microstructure is examined at state S1 and S2 during the 
second heat cycle. Reproduced with permission [24]. Copyright 2021, American Physical Society. 
 

They examined the microstructure within the sample at state S1 and S2 during the second heat cycle. 

They found that a large grain is consumed by its neighboring small grains in the course of 

annealing from S1 to S2, by tracking and comparing the size of this grain and its surrounding grains. 

This phenomenon cannot be explained by the traditional understanding of a capillary-driven grain 

growth, in which the large grains are expected to consume small grains [13,163,164]. Additionally, 

they observed the center of this shrinking grain translating by 70 µm, which is more than half of 

the average grain radius in state S1. This notable grain translation is not expected as well due to 

considerable back pressure exerted from the adjacent grains [165-167], considering the self-similar 

nature of a capillary-driven grain growth. To explain these phenomena, we propose that the 
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formation of dislocations during non-isothermal annealing results in different dislocation densities 

for each grain, which leads to a difference in the stored energy between grains. This stored energy 

difference provides an additional driving force for the grains with low-dislocation-density grains 

to consume high-dislocation-density grains.  

To test our hypothesis and provide insights into the microstructure evolution from state S1 

to state S2, we developed a phase-field model that extends the recrystallization models employed 

by Moelans et al. [168,169] and Gentry et al. [170], which was built upon them, that account for 

the contribution of stored energy as the driving force for grain boundary migration. In particular, 

we derived a set of time-evolution equations for the order parameters that are expressed in terms 

of the gradient of a dislocation density field, rather than a set of constant dislocation density values, 

which were employed by Gentry et al. [170]. We note that, however, the time-evolution equation 

for the dislocation density field still depends on the constant dislocation density values. In this 

chapter, we assume uniform dislocation density values within each grain for simplicity since the 

focus of this chapter is to study the effect of the stored energy difference between grains on the 

microstructure evolution. A spatially varying dislocation density within the grains will be 

discussed in the next chapter. 

5.2.2 Phase-field model for microstructure evolution 

Free energy functional and governing equations 

A total free energy functional that encodes the thermodynamics of the polycrystalline 

material system is given by the volume integral of the sum of three energy density terms. 

ℱ({𝜂/}) = iU𝑓 _`a + 𝑓b$(c%de& + 𝑓u&f$dcV𝑑𝑉
g

, (5.1) 
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where {𝜂/(𝑟, 𝑡)} is a set of 𝑁 space- and time-dependent order parameters, each representing a 

grain, in a system of volume 𝑉. These order parameters indicate grains with different orientations. 

The value of an order parameter is 1 within the corresponding grain, 0 outside of the grain, and 

varies smoothly between the two values across the grain boundary. We utilize the functional form 

proposed by Moelans et al. [171] to calculate the bulk energy density, 𝑓 _`a: 

𝑓 _`a = 𝑚0 å�I−
1
2η/

" +
1
4η/

5J
*

/Y!

+ α��Uη/"ηS"V
*

S�!

*

/Y!

+
1
4æ, (5.2) 

 

where 𝑚0 is the bulk energy density coefficient, and α = 1.5 is set to ensure a symmetrical order 

parameter profile across an interface, as discussed in Ref. [171]. The gradient energy density 

[103,126], 𝑓b$(c%de&, is employed to penalize a sharp interface 

𝑓b$(c%de& =
κ
2�

|∇𝜂/|"
*

/Y!

, (5.3) 
 

where 𝜅 is the gradient energy coefficient. An approximate form of the stored energy, which 

neglects the energy of the dislocation core and assumes isotropic elasticity, is given by [80] 

𝑓T>�?W�(𝑟, 𝑡) =
1
2𝐺𝑏

"𝜌(𝑟, 𝑡), (5.4)  

where 𝐺  is the shear modulus, 𝑏  is the magnitude of the Burgers vector, and 𝜌(𝑟, 𝑡)  is the 

coarse-grained dislocation density at point 𝑟 at time 𝑡. The time-evolution of each of the order 

parameters is driven by the reduction of the free energy as described by Allen-Cahn dynamics 

[129]: 

𝜕𝜂/
𝜕𝑡 = −𝐿 I

𝛿𝐹
𝛿𝜂/

J, (5.5)  

where 𝐿 is the mobility of the order parameter. The stored energy contribution to 𝛿𝐹/𝛿𝜂/ is given 

by 
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I
𝛿𝐹
𝛿𝜂/

J
T>�?W�

=
𝜕𝑓T>�?W�
𝜕𝜂/

=
1
2𝐺𝑏

" 𝜕𝜌
𝜕𝜂/

. (5.6) 
 

We initialize 𝜌(𝑟, 𝑡) as a weighted average of the dislocation density of each grain, 𝜌/, which is 

assumed to be uniform in the bulk and constant in time [168-170]: 

𝜌({𝜂/(𝑟, 𝑡)}) =
∑ [𝜂/"(𝑟, 𝑡)𝜌/]*
/Y!

∑ 𝜂/"*
/Y! (𝑟, 𝑡)

. (5.7) 
 

This expression is used as the basis for deriving a general form of the model that does not require 

reconstruction of the dislocation density given by Equation (5.7). For a simple interface between 

two grains described by 𝜂/ and 𝜂S, the term 𝜕𝜌/𝜕𝜂/ is proportional to the difference in dislocation 

densities, i.e., 

𝜕𝜌
𝜕𝜂/

=
2𝜂/𝜂S"

U𝜂/" + 𝜂S"V
" U𝜌/ − 𝜌SV. (5.8) 

 

This expression is equivalent to that employed by Gentry et. al. [170], and it will be used to derive 

the approximate form of 𝜕𝜌/𝜕𝜂/ in terms of the gradient of 𝜌(𝑟, 𝑡). Assuming that the profiles of 

𝜂/  and 𝜂S  across the GB along the direction of the GB normal correspond to the equilibrium 

profiles for a flat interface (without the stored energy contribution), 𝜂/  can be expressed as a 

function of normal coordinate, 𝑥, in the analytical form: 

𝜂/ = 1 − 𝜂S =
1
2 −

1
2 tanh I

𝑥 − 𝑥0
√2𝑊

J, (5.9) 
 

where 𝑥0 represents the midpoint of the interface and 𝑊 = Oκ/𝑚0. The term 2√2𝑊 is a measure 

of the equilibrium width of the grain boundary. Assuming	𝜂/ + 𝜂S = 1, the derivative of 𝜌(𝑟, 𝑡) 

along the 𝑥-direction is then given by 

∂𝜌
∂𝑥 =

∂𝜌
∂𝜂/

∂𝜂/
∂𝑥 +

∂𝜌
∂𝜂S

∂𝜂S
∂𝑥 = m

∂𝜌
∂𝜂/

−
∂𝜌
∂𝜂S

n
∂𝜂/
∂𝑥 . (5.10) 
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From Equation (5.8) and the relation 𝜂/ + 𝜂S = 1, we obtain 

∂𝜌
∂𝜂/

−
∂𝜌
∂𝜂S

=
2𝜂/𝜂SU𝜌/ − 𝜌SV

U𝜂/" + 𝜂S"V
" . (5.11) 

 

Taking derivative of 𝜂/ in Equation (5.9) with respect to 𝑥 yields 

∂𝜂/
∂𝑥 = −

√2
𝑊 𝜂/(1 − 𝜂/) = −

√2
𝑊 𝜂/𝜂S . (5.12) 

 

Substituting Equations (5.11) and (5.12) into Equation (5.10) and then solving for 𝜌/ − 𝜌S  we 

obtain  

𝜌/ − 𝜌S = −
𝑊
2√2

m
𝜂/" + 𝜂S"

𝜂/𝜂S
 n
"
𝜕𝜌
𝜕𝑥. 

(5.13) 
 

Substitution of 𝜌/ − 𝜌S from Equation (5.13) into Equation (5.8) yields  

𝜕𝜌
𝜕𝜂/

= −
𝑊
√2

1
𝜂/
𝜕𝜌
𝜕𝑥. (5.14) 

 

Although the factor of 1/𝜂/ would be cancelled for the exact form of 𝜕𝜌/𝜕𝑥 with an equilibrium 

interfacial profile in equilibrium (i.e., Equation (5.9)), Equation (5.14) is unstable numerically as 

𝜂/ approaches zero (away from the grain i). For this reason, we need to employ an approximate 

form of Equation (5.8) as a function of 𝜕𝜌/𝜕𝑥. We found that the following expression  

𝜌/ − 𝜌S = −2√2𝑊
U𝜂/" + 𝜂S"V

.

𝜂/𝜂S
𝜕𝜌
𝜕𝑥, 

(5.15) 
 

Yields a good approximation for 𝜕𝜌/𝜕𝜂/  within the interfacial region in equilibrium while 

avoiding a numerically instability as 𝜂/  approaches zero. Effectively, this approximation is 

equivalent to replacing 𝜂/𝜂SU𝜂/" + 𝜂S"V	with 1/8, which is the value at the midpoint of the interface 

(where 𝜂/ = 𝜂S = 1/2). By substituting Equation (5.15) into Equation (5.8), we have 
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𝜕𝜌
𝜕𝜂/

≈ −4√2𝑊𝜂SU𝜂/" + 𝜂S"V
𝜕𝜌
𝜕𝑥, (5.16) 

 

which avoids numerical instability. Equation (5.16) can be generalized to include all grains in the 

system, resulting in 

𝜕𝜌
𝜕𝜂/

= −
4√2𝑊	𝛻𝜌 ⋅ 𝑛&/
(∑ 𝜂V"*

VY! )" �[𝜂V(𝜂/" + 𝜂V").]
*

V�/	

	, (5.17) 
 

where 𝑛&/ = −∇𝜂//|∇𝜂/|	is the outward normal vector along the interface of 𝑖-th grain. In Equation 

(5.17), the cubic term within the summation sign cancels out with the square term in the 

denominator when there are only two grains, which recovers Equation (5.16). In general, there are 

only two order parameters that are nonzero across a grain boundary away from triple junctions, 

and therefore this result applies to all grain boundaries away from triple junctions; even though 

the expression appears to be of high order, in practice, it behaves well numerically due to this 

cancellation. Equation (5.17) is combined with Equations (5.5) and (5.6) to describe the evolution 

of each 𝜂/. For the evolution of 𝜌(𝑟, 𝑡), we take the derivative of Equation (5.7) with respect to 

time and obtain 

𝜕𝜌
𝜕𝑡 =

¤∑ I2𝜂/
𝜕𝜂/
𝜕𝑡 𝜌/J

*
/Y! © (∑ 𝜂/"*

/Y! ) − ¤∑ I2𝜂/
𝜕𝜂/
𝜕𝑡 J

*
/Y! © [∑ (𝜂/"𝜌/)*

/Y! ]

[∑ 𝜂/"*
/Y! ]" . (5.18) 

 

Equations (5.5) and (5.18) together provide the set of governing equations for the order parameters 

and the dislocation density field in our model.  

Nondimensionalization and numerical solution of the phase-field equations 

The following equations [170,171] relate the phase-field model parameters to physical 

parameters: 

𝜅 =
3
4 𝛾�A𝑙�A , 

(5.19)  
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𝐿 =
4𝜇�A
3𝑙�A

, (5.20) 
 

𝑊 =
6𝛾�A
𝑙�A

, (5.21) 
 

where 𝛾�A is the grain boundary energy, 𝜇�A is the grain boundary mobility, and 𝑙�A is the grain 

boundary width of the diffuse interface. The average grain radius estimated from the experiment 

was chosen as the unit length for the phase field simulation, 𝑙0, and the grain boundary width was 

chosen as 𝑙�A = 𝑙0/10. We nondimensionalize the phase-field variables as follows: 

𝜅∗ =
𝜅

𝑚0𝑙0"
=
1
8m
𝑙�A
𝑙0
n
"

, (5.22) 
 

𝐿∗ =
𝐿
𝐿 = 1, (5.23)  

𝑚0
∗ =

𝑚0

𝑚0
= 1, (5.24)  

𝒓∗ =
𝒓
𝑙0
, (5.25)  

𝑡∗ = 𝑡𝐿𝑚0 = 𝑡 m
8𝜇�A𝛾�A
𝑙�A"

n, (5.26) 
 

𝜌∗ =
𝜌
𝜌̅, (5.27)  

𝑓T̅>�?W�∗ =
𝑓T̅>�?W�
𝑚0

= 𝑓T̅>�?W� m
𝑙�A
6𝛾�A

n = I
1
2𝐺𝑏

"𝜌̅J m
𝑙�A
6𝛾�A

n, (5.28) 
 

𝑓T>�?W�∗ =
𝑓T>�?W�
𝑚0

= I
1
2𝐺𝑏

"𝜌J m
𝑙�A
6𝛾�A

n = I
1
2𝐺𝑏

"𝜌̅J 𝜌∗ m
𝑙�A
6𝛾�A

n = 𝑓T̅>�?W�∗ ⋅ 𝜌∗. (5.29) 
 

The superscript (*) indicates the nondimensionalized variables. The parameters used in the 

simulations are summarized in Table 5.1. 
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Table 5.1. Physical and numerical parameter values used in the simulations. Reproduced with 
permission [24]. Copyright 2021, American Physical Society. 

Parameters Values employed in the model  
Grain boundary energy, 𝛾�A 0.595 J/m2 [78] 
Shear modulus, 𝐺 28.4 GPa [172] 

Magnitude of Burger’s vector, 𝑏 0.255 nm [78] 

Initial average radius of grains, 𝑙0	 128 μm 

Grain boundary width, 𝑙�A 12.8 μm 

Energy density coefficient, 𝑚0 2.79 ´ 105 J/m3 

Average dislocation density, 𝜌̅  1.25´ 1013 m-2 

Average stored energy, 𝑓T̅>�?W�∗  0.0414 

Grid spacing, Δ𝑥∗ = Δ𝑥/𝑙0	 0.025 

Time step, Δ𝑡∗ = Δ𝑡(𝐿𝑚0) 
0.01 (with stored energy term) 
0.1 (without stored energy term) 

Number of grid points along 𝑥 
and 𝑦 directions, 𝑁2 = 𝑁� 716 

 

The phase-field equations were solved numerically employing the finite difference method 

with a uniform mesh in space and the forward Euler scheme for time integration. The time step, 

Δ𝑡∗, and grid spacing, Δ𝑥∗, used in the simulation are reported along with other parameters in 

Table 5.1. The value of 𝑙�A employed in the model (Table 5.1) is much greater than the physical 

width of a typical grain boundary. However, mathematical asymptotic analyses [173,174], as well 

as numerical convergence studies [175-177], have shown that the phase field model can accurately 

simulate microstructural evolution as long as the interfacial thickness is sufficiently smaller than 

the characteristic length scale of microstructural features (e.g., the grain size in this case). In this 
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work, we ensure the accuracy of the prediction by selecting the interfacial thickness to be 1/20 of 

the initial average diameter. 

5.2.3 Initial conditions 

To generate the initial conditions for the grain growth simulations, we first placed 80 seeds 

of size (7Δ𝑥)" within which 𝜂/ is set to 1 at randomly distributed locations, with all 𝜂/ set to zero 

otherwise. For the simulation with stored energy, the dislocation density values were randomly 

assigned from a normal distribution with mean of 1.21 × 10!.m−2 and standard deviation of 

3.8 × 10!"m−2. However, some of these values were assigned to specific grains in order to promote 

regions featuring observable grain displacement (e.g., sets of three contiguous grains aligned with 

ascending dislocation density values). This choice was made because such arrangements would 

naturally occur in a randomly selected case but may be too rare to occur in an 80-grain system 

with random assignment of dislocation densities. However, we note that the grain exhibiting the 

greatest displacement in the simulation was in fact not in one of the regions where this adjustment 

was made. These seeds were then evolved via Allen-Cahn dynamics without stored energy for a 

time 𝑡∗ = 200. The time, 𝑡∗, was then reset to zero for the grain growth simulations with stored 

energy. For this second stage, the dislocation density, 𝜌(𝑟, 𝑡), was initialized using Equation (5.7).  

5.2.4 Identification of translating grains 

To identify the grains with large translation in the phase-field simulations, we examine the 

degree of overlap between the regions occupied by the grain at the initial and final states. To 

quantify this, we define the degree of overlap, 𝜒, as 

𝜒 =
𝐴f�d$`(�

minU𝐴0, 𝐴mV
, (5.30) 
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where 𝐴0  and 𝐴m  are the areas of the regions occupied by a grain before and after evolution, 

respectively, and 𝐴f�d$`(� is the area of the region overlap, calculated by 

𝐴f�d$`(� = ∫ 𝜂/(𝑡 = 0) 𝜂/(𝑡 = 𝑡m) 𝑑𝑟⃗. (5.31)  

5.3 Simulation results and discussion 

5.3.1 Microstructure evolution 

We employ the phase-field model to simulate two scenarios of grain growth: with and 

without the effect of stored energy. The system is set up to initially contain 80 grains, as shown in 

Figure 5.2(a). For the simulation with stored energy, the dislocation density values were chosen 

randomly from a normal distribution with mean of 1.21 × 10!.m−2 and standard deviation of 

3.8 × 10!"m−2 based on the experimental results from the S1 state. The intermediate and final 

states are defined to be the states that contain 77 and 69 grains, respectively. Microstructure 

evolution that considers the stored energy is shown in Figure 5.2(b) and (c). For comparison, the 

grain growth simulation result without the contribution of stored energy is presented in Figure 

5.2(d) and (e), in which the same set of colors is used to indicate different grains. Even though 

capillary-driven grain growth occurs in both cases, for the stored-energy-driven case, it can be 

observed that the grain boundary motion is primarily driven by the differences in the stored strain 

energy between neighboring grains, leading to grain boundary migration toward regions with 

lower dislocation density. A grain with a medium value of dislocation density may grow into a 

neighboring grain with higher value and at the same time be consumed by another neighboring 

grain with low value on the opposite side; the net result is a large-scale translation of the grain. 

Two examples are highlighted by the grains marked by A and B in Figure 5.2(a) and (c), whose 

positions of grain boundaries at 𝑡∗ = 0, 250, and 500 are indicated in blue, green and red, shown 
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in Figure 5.2(f). The translation of the grains is evidenced by the small degree of overlap between 

the initial and final regions. Moreover, while the small computational domain size does not permit 

a quantitative analysis, the simulation demonstrates that stored-energy-driven grain growth results 

in a grain size distribution having extreme values (Figure 5.3(a), where more small and large grains 

emerge as compared to the capillary-driven grain growth shown in Figure 5.3(b)). The stored-

energy-driven grain growth appears to be leading to a grain microstructure with a bimodal 

distribution, which is one of the classic signatures of abnormal grain growth [15,178].  

 

Figure 5.2. Phase-field simulations of grain growth. (a) Initial arrangements of the grains. (b) 
Intermediate state with 77 grains and (c) final state with 69 grains (with a stored energy term). (d) 
Intermediate state with 77 grains and (e) final state with 69 grains (without stored energy term). (f) 
Translations of grains A and B. Blue, green, and red outlines indicate the positions of GBs at time 
t* = 0, 250, and 500, respectively, of the two grains. Dislocation density shown in the figures is 
normalized with respect to the mean (1.25×1013 m−2) of the dislocation densities of the grains in 
the initial condition. Color indicates the normalized dislocation density where the stored energy is 
considered (a – c) and indicates different grains otherwise (d, e). Reproduced with permission [24]. 
Copyright 2021, American Physical Society. 
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Figure 5.3. Grain size distributions for the microstructure with 50 remaining grains for the 
simulations (a) with and (b) without the stored energy. The corresponding microstructure used for 
generating the histogram is shown as an inset. The scaled radius is calculated based on the area of 
the 2D grain, assuming a circular geometry and divided by the average radius of the specific system. 
The count was not normalized with the number of grains because of the small statistics and because 
both cases have the same number of grains. Reproduced with permission [24]. Copyright 2021, 
American Physical Society. 

5.3.2 Translation of grain centers 

To quantitatively compare the grain translation in the two cases, we compute the magnitude 

of the displacement of each grain’s center of mass as a function of time. We plot the average 

displacement of the center-of-mass positions of the grains at different time, as shown in Figure 5.4. 

The grains that disappear during the evolution are included in this average using their displacement 

at their final value. The unit length for the displacement is assumed to be 128 μm, the average 

grain radius estimated from the experiment, and 𝑡∗ is a nondimensionalized time. The time axis of 

the capillary-driven case is rescaled so that the initial slopes (the rate of change of the average 

displacement) of two curves are visually matched. Although the magnitudes of the average 

displacement of two cases are comparable at the start of the simulation, the average displacement 

in the strain-energy-driven simulation maintains a higher rate than in the capillary-driven 

simulation. The latter is driven solely by the reduction of the system’s total grain boundary energy 

(that scales as 𝑡7!/", see Chapter 2 Section 2.2.1) [72]. 



 107 

 

Figure 5.4. Average displacement of the grains’ center of mass. The time axis of the capillary-
driven case is rescaled so that two curves visually have the same initial slope. Reproduced with 
permission [24]. Copyright 2021, American Physical Society. 

5.3.3 Comparison of driving forces in stored-energy-driven grain growth 

To confirm that the driving force due to stored energy difference dominates over the 

capillary force for the simulation, we calculated and compared them in the stored-energy-driven 

grain growth simulation. The capillary pressure, 𝑃#(�%``($� , of a domain is estimated using 

[179,180] 

𝑃#(�%``($� = 𝛾𝛥𝐻, (5.32)  

where 𝛾 is the grain boundary energy (see Table 5.1), and 𝛥𝐻 is the variation of the curvature of 

grain boundaries across the system and is defined as 

𝛥𝐻 = 2𝑆� = 2�
1
𝐴i ¾+�𝐻/𝜂/(𝑟)

*

/Y!

, − 𝜇�¿

"

𝑑𝐴
�

, (5.33) 

 

where 𝐻/ is the curvature of grain i and 𝜂/(𝑟) is the corresponding order parameter, 𝑑𝐴 is the area 

element in the simulation domain Ω, 𝜇� =
!
v∫ [∑ 𝐻/𝜂/(𝑟)*

/Y! ]𝑑𝐴�  is the area-weighted average of 

the curvature and 𝑆� is the area-weighted standard deviation of the curvature. Note that, since we 
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conduct the simulations here in two-dimensions, the averaging and weighting are performed based 

on the area; for three-dimensional simulations, they should be done based on the volume. The 

curvature of grain i is estimated using the reciprocal of the equivalent radius, 𝑟/, of the grain: 

𝐻/ =
1
𝑟/
= £

𝜋
𝐴/
, (5.34) 

 

where 𝐴/ = ∫ 𝜂/(𝑟)𝑑𝑟�  is the area of grain. The pressure due to stored energy is calculated using 

𝑃T>�?W� =
1
2𝐺𝑏

"𝛥𝜌, (5.35)  

where 𝐺  and 𝑏  are the shear modulus and the magnitude of Burger’s vector (see Table 5.1), 

respectively; 𝛥𝜌 indicates the area-weighted variation of the dislocation density and is defined as 

𝛥𝜌 = 2𝑆  = 2N!
v ∫ U𝜌(𝑟) − 𝜇 V

"𝑑𝐴� , (5.36)  

where 𝜇  =
!
v ∫ 𝜌(𝑟)𝑑𝐴�  and 𝑆   are the area-weighted mean and standard deviation of the 

dislocation density over the computational domain, respectively. Again, it is weighted against the 

area since we perform two-dimensional simulations; for 3D simulations, it should be weighted 

against the volume. The resulting pressures as a function of time are shown in Figure 5.5. It can 

be observed from the figure that the driving force due to stored energy is larger than the capillary 

force for most of the simulation time, indicating that the simulation considering stored energy is 

primarily driven by the stored energy during most of the evolution simulated. The driving force 

from the stored energy reduces with time and eventually becomes comparable to the capillary 

pressure, which explains why cyclic heat treatment is necessary in driving abnormal grain growth. 

The phase field model developed herein will offer an understanding of how the stored-energy 

driving force evolves with time and how to optimize such a process to achieve polycrystalline 
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microstructures with exceptionally large grains, given the rate of dislocation formation during non-

isothermal heat treatment.  

 

Figure 5.5. Pressures due to stored energy (blue filled circle) and capillarity (red open circle) in 
stored-energy-driven grain growth. The sum of two pressures is indicated by black squares. 
Reproduced with permission [24]. Copyright 2021, American Physical Society. 

5.4 Conclusion 

In this chapter, we discussed the macroscopic translation of grain centers observed in the 

experiment and proposed that such translation occurs arising from an additional driving force due 

to the stored energy during the cyclic heat treatment of polycrystalline alloys. To verify this 

hypothesis, we developed a phase-field model to simulate two scenarios of microstructure 

evolution, one considering only the capillary driving force, and the other considering an additional 

driving force due to the stored energy. Notable grain translation was only observed in the latter 

simulation that takes stored energy into account. The grain translation was found to be the net 

result of the grains with a medium value of dislocation density consuming their neighboring grains 

with a large dislocation density and at the same time being consumed by the other neighboring 

grains with a small dislocation density. Additionally, we quantitatively compared the magnitude 

of translation of grain centers for two scenarios as a function of time and found that the stored-
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energy-driven simulation maintains a higher rate of average displacement. Moreover, we found 

that the driving force due to stored energy progressively decreased and finally became comparable 

to the capillary driving force, which implies the necessity for cyclic heat treatment to continuously 

induce abnormal grain growth. 
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Chapter 6 Phase-Field Modeling of Stored-Energy-Driven Grain Growth with Intra-

Granular Dislocation Densities Variation 

6.1 Introduction 

As discussed in Chapter 1 Section 1.3, non-isothermal annealing of an alloy could 

introduce non-uniform dislocations within its microstructure, which provides a driving force for 

grains with a lower dislocation density to consume grains with a higher dislocation density. In this 

chapter,* we extend the phase-field model discussed in Chapter 5 to allow for spatially varying 

dislocation density within each grain during microstructure evolution. In Section 6.2, we 

demonstrate how synchrotron high-energy X-ray diffraction microscopy data of a sample 

undergoing cyclic heat treatment can inform this model. In Section 6.3, we detail the model 

formulation that does not require that each grain has a uniform dislocation density. In Section 6.4, 

we present an approach to distribute multiple grains to an order parameter, which reduces the 

computational cost. In Section 6.5, we demonstrate that the proposed phase-field model yields 

results that closely resemble the experimental data, and then we apply the model to examine the 

effect of cyclic heat treatment on the microstructure evolution.  

6.2 Real-time experimental study of microstructure evolution in Cu-Al-Mn 

Ashwin J. Shahani’s group performed a cycle of heat treatment on a cylindrical 

Cu71.6Al17Mn11.4 alloy, which is processed following Refs. [23,78]. High-energy X-ray diffraction 

 
* Adapted from G. Huang, Z. Croft, M. Chlupsa, A. Mensah, D. Montiel, A. J. Shahani, and K. Thornton, “Phase-
Field Modeling of Stored-Energy-Driven Grain Growth,” In preparation.  
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microscopy (HEDM) experiments were conducted on this material at the 1-ID beamline of the 

Advanced Photon Source at Argonne National Laboratory, using a new infrared furnace described 

in Ref. [24]. The cylindrical samples were vertically mounted on the rotation stage and rotated 

about an axis parallel to gravity, which is orthogonal to the plane defined by the line focused beam. 

In a near-field geometry [181], the detector captured 720 diffraction images (0.25° intervals 

spanning 180°) for each quasi-2D “slice” of the sample, where slices were separated by 7 µm in 

the first two states and 14 µm in the third, along the axis of rotation. Data were collected at sample-

to-detector distances of 10 mm and 12 mm. The schedule for dynamic annealing is shown in Figure 

6.1.  

 

Figure 6.1. Schematic showing dynamic annealing schedule for the interrupted in-situ HEDM 
experiment.  

The first acquisition (𝑆!) was performed at room temperature before any annealing was conducted. 

The diffraction patterns from in-situ far-field HEDM were used to monitor in real time the 

microstructure evolution upon annealing, and the sample was air quenched when the FCC-α 

(second-phase particles) spot intensities stopped increasing. The second acquisition (𝑆" ) was 

performed on this particle-rich state. The annealing process was then resumed with a fast ramp up 
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to the previous temperature followed by a slower ramp towards and exceeding the FCC-α solvus 

temperature. After the FCC-α rings disappeared in the far-field HEDM images, the sample was air 

quenched. The third acquisition (𝑆.) was performed on the particle-depleted state. The set of three 

acquisitions (𝑆! → 𝑆"→𝑆.) represents one cycle of dynamic annealing. After the experiment, the 

diffraction images were reconstructed in 2D via the forward model [182,183] based HEXOMAP 

[24] and analyzed via PolyProc [184].  

 To demonstrate the integrated experimental-computational workflow, we utilize the 

microstructure and dislocation density obtained in the experiments to inform our phase-field 

model. While the simulation should ideally be done in three dimensions, in this work, we chose to 

conduct two-dimensional simulations, which are computationally efficient and sufficient for 

demonstrating the synergy. Even though it is not our primary focus, we find that simulation 

predictions match qualitatively with the experimentally observed evolution, as we discuss later.  

We employ the grain and dislocation density maps measured at a two-dimensional slice of 

the sample at states 𝑆! and 𝑆", as shown in Figure 6.2. This particular slice is selected since it 

includes an apparently confined region (i.e., the outer boundaries of this region is nearly static 

throughout the experiment) that consists of several grains in the 𝑆! state, indicated by a black 

contour in Figure 6.2(a) (𝑆!) and (b) (𝑆"), reducing the cost of the simulations while allowing for 

a comparison between experiments and simulations. Additionally, it appears that only few new 

grains emerge from state 𝑆!  to 𝑆"  (by comparing Figure 6.2(a) and (b)), indicating that the 

microstructure evolution along the dimension perpendicular to the slice plane does not greatly 

affect the microstructure evolution within this slice. By comparing Figure 6.2(c) and (d), it is clear 

that the grain 𝐺! is consuming the surrounding grains and is the only grain that remains at state 𝑆". 

The dislocation density of the confined region at 𝑆! (see Figure 6.2(e)) is relatively uniform, which 
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is expected since the sample has not been dynamically annealed at 𝑆! . As the sample is 

progressively heated from 𝑆! to 𝑆", the dislocations are formed within each grain with a different 

density, which could be attributed to the difference in the density of second-phase particles 

precipitated during the annealing. The difference in the dislocation density provides a driving force 

for the grains with a low dislocation density to consume those grains with a high dislocation 

density. Figure 6.2(f) shows the dislocation density of the confined region at state 𝑆". It can be 

observed that the dislocation density is higher within 𝐺! ’s initial region, as compared to the 

surrounding, which indicates that the dislocation density at the region traversed by the grain 

boundary is reduced.  

To examine the effect of cyclic heat treatment on the microstructure evolution, it is 

necessary to track the change of a grain size distribution over time, which requires a sufficiently 

large number of grains for meaningful statistics throughout the simulation. Since state 𝑆! contains 

a large number of grains and corresponds to the starting point of the heat treatment cycle in the 

experiment, we use the grain size distribution (see Figure 6.3(a)) in state 𝑆!  to initialize a 

microstructure for the large-scale simulations. The grain size distributions for states 𝑆" and 𝑆. are 

shown in Figure 6.3(b) and (c), respectively. Given the fact that the average grain radius for the 

entire 3D volume increases by ~40% from state 𝑆! to 𝑆. in the experiment, we set this percentage 

of increase in the average grain radius as the stopping criteria for one simulation cycle of 

microstructure evolution. 
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Figure 6.2. Grain and dislocation density maps for a selected slice of the sample, measured at state 
𝑆! (left column) and 𝑆" (right column). (a) & (b): Grain maps at state 𝑆! and 𝑆", respectively. An 
apparently confined region is indicated by a black contour. Each grain is indicated by a unique, 
random color. The same color is assigned to the same grain appearing in both states. (c) & (d): 
Magnified view of the grain map for the confined region at state 𝑆! and 𝑆", respectively. Grain 𝐺! 
consumes the surrounding grains from state 𝑆! to 𝑆", respectively. (e) & (f): Dislocation density 
within the confined region at state 𝑆!  and 𝑆" , respectively.

 

Figure 6.3. Grain size distribution for the entire volume of (a) state 𝑆!, (b) state 𝑆", and (c) state 
𝑆.. 
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6.3 Phase-field model with intra-granular dislocation densities variation 

6.3.1 Overview 

We extend the phase-field model for stored-energy-driven grain growth discussed in 

Chapter 5 in the following aspects. First, the previous model assumes that each grain possesses a 

uniform dislocation density. However, experimental data show that dislocation density is 

inhomogeneous even within an individual grain (see Figure 6.2(f)). To account for the spatial 

variation of dislocation density into the dynamics of grain growth, we introduce an individual 

dislocation density field, 𝜌/, for each grain 𝑖, which stores not only the initial dislocation density 

value for that grain but also what the dislocation density value would be if the grain boundary of 

the grain reaches that position. 

Second, in the previous model, the region traversed by a grain boundary is assumed to 

inherit the dislocation density value of the grain that grows into this region. However, the 

experiments described above showed that the region traversed by a grain boundary appears to have 

a reduced dislocation density, as discussed in Section 6.2. While the exact mechanism by which 

this reduction occurs is yet to be investigated, there are multiple mechanisms that would lead to an 

elimination of dislocations as a grain boundary migrates, including annihilation of dislocation pairs 

and absorption of dislocations onto grain boundaries [185,186]. The enhancement of the rate by 

which these processes occur (vs. recovery in the bulk, which appears to be slow on the time scale 

of the experiment) is expected from the fact that grain boundary migration requires atomic 

rearrangements and consequently changes the strain fields. Below, we derive a model for 

dislocation density evolution that accounts for such a process, which is used to define 𝜌/. 
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6.3.2 Model formulation 

Mathematically, it is reasonable to assume that the dislocation is reduced at the rate, � 
�2

, 

proportional to how many dislocations exist at the grain boundary as the grain boundary migrates: 

𝑑𝜌
𝑑𝑥 = −

𝜌
𝑙W
. (6.1) 

 

This differential equation can be solved analytically, yielding  

𝜌 = 𝜌�A exp I−
𝑥
𝑙W
J, (6.2)  

where 𝜌�A  is the dislocation density just behind the initial grain boundary, 𝑥  is the distance 

traversed by the grain boundary, and the constant 𝑙W  provides the length scale at which the 

dislocation density decays by a factor of 𝑒 in the wake of grain boundary migration. We assume 

that grain boundaries migrate in their normal direction, which is a simplifying assumption, and 

therefore the value of 𝑥 can be determined from a signed distance function using the level-set 

method discussed in Chapter 2 Section 2.8.  

We now detail how this model is implemented. In this section, we denote the grain with 

index 𝑖 as 𝐺/. For each grain 𝐺/, we employ a time- and position-dependent order parameter field 

𝜂/(𝒓, 𝑡) to track its evolution. The value of 𝜂/(𝒓, 𝑡) is 1 within the grain, 0 outside the grain, and 

varies smoothly from 1 to 0 across its interface. In this work, we omit the effect of recovery, and 

therefore the dislocation density at a certain position, 𝒓, retains its initial value until the grain 

boundary from another grain reaches this point, at which time a reduced dislocation density is 

assigned according to Equation (6.2). Since we do not allow dislocation density to evolve 

otherwise, this model introduces a discontinuity in the gradient of dislocation density; if we 

consider other mechanisms such as recovery, such a discontinuity would be smoothed. We 

precompute the reduced dislocation density for each grain at the positions outside their initial grain 
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boundary and store these values into their individual dislocation density field 𝜌/(𝒓), along with 

their initial dislocation density values internal to the grain. Specifically, 𝜌/(𝒓) is defined as 

𝜌/(𝒓) = -
𝜌0,/(𝒓), within	Grain	𝐺/ ,

maxm𝜌^(ud, 𝜌�A,/ expm−
|𝑑/(𝒓)|
𝑙W

nn , otherwise.
	 (6.3) 

 

Here, 𝜌0,/(𝒓) is the initial dislocation density within Grain 𝐺/, 𝜌�A,/ is the dislocation density just 

behind 𝐺/’s initial boundary, and 𝑑/(𝒓) is the signed distance between the point 𝒓 and the nearest 

point to the 𝐺/’s initial boundary; note that the sign is taken to be positive within the grain and 

negative outside, and therefore 𝑑/(𝒓) < 0 in Equation (6.3). The term 𝜌^(ud in Equation (6.3) is 

the baseline dislocation density, i.e., the lower bound for the dislocation density measured in the 

experiment, that remains even after a long period of annealing. In general, 𝜌�A,/  is a spatially 

varying quantity, but we here assume it to be a constant for each grain, as discussed in Section 

6.3.3. We found that simulations with 𝑙W  = 20 µm  yield results that closely resemble the 

experimental observations, and thus we employ this value throughout this work. We estimate the 

baseline dislocation density 𝜌^(ud by taking the average of the dislocation density at state 𝑆" for 

the regions outside Grain 𝐺!’s initial position (indicated in Figure 6.2(c)). While this may slightly 

overestimate the base value because it may include some enhanced dislocation density near the 

initial grain boundaries, we deemed this assumption to be reasonable given the statistical variation 

and uncertainties in the measurements. The value of 𝜌^(ud is determined to be 3 × 10!" m-2, which 

is on the same order of magnitude as dislocation densities in well-annealed metals [187].  Further 

details are provided in Section 6.3.3.  

It is necessary to note that the values of 𝜌/(𝒓) outside the boundaries of the initial grains 

should not be considered as physical values, other than the fact that it sets the value of the 

dislocation density if the grain boundary of 𝐺/ sweeps the point. Rather, at any point in time, the 
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actual dislocation density is given by constructing it from {𝜌/(𝒓)}, along with the set of order 

parameters {𝜂/(𝒓, 𝑡)}, using the following interpolation function: 

𝜌(𝒓, 𝑡) =
∑ 𝜂/"(𝒓, 𝑡)𝜌/(𝒓)*
/

∑ 𝜂/"(𝒓, 𝑡)*
/Y!

. (6.4) 
 

This formula is identical to those used in Refs. [168-170] and in Chapter 5, except for in these 

previous works, 𝜌/ was a constant associated with the 𝑖>Z grain, and therefore these models could 

not treat intra-granular inhomogeneity nor a decay in the dislocation density as the grain 

boundaries migrate.  

To facilitate the understanding of dislocation density evolution based on the above 

formulation, we provide schematics in Figure 6.4 showing the change in the dislocation density 

field as a grain 𝐺/ consumes its surrounding grains. The grains that are adjacent to 𝐺/ are omitted 

in Figure 6.4(a) for clarity. Grain 𝐺/, indicated in blue, initially possesses dislocation density 𝜌�A,/ 

at its grain boundary. As it progressively consumes its surrounding grains and reaches the point 𝐴 

at time 𝑡!, the dislocation density at point 𝐴 reduces to a value given by 𝜌�A,/ exp Ý−
|�1(v)|
-A

Þ. As it 

continues to grow, it reduces to the baseline dislocation density 𝜌^(ud, which is the lower bound 

of the dislocation density. Thus, as it reaches point 𝐵 at time 𝑡", the dislocation density at point 𝐵 

remains at 𝜌^(ud. 



 120 

 

Figure 6.4. Schematics showing the evolution of a dislocation density field at three times, as a 
grain 𝐺/ consumes its surrounding grains, assuming exponential decay of dislocation densities. (a) 
The boundaries of a growing grain 𝐺/ at three times, 𝑡0 < 𝑡! < 𝑡", which are indicated in blue, red, 
and green, respectively. The grains that are adjacent to 𝐺/ are omitted in this plot for clarity. (b) 
The dislocation density field along the line 𝐿 in (a) at the three times. Note that 𝑑/ < 0. 

The free energy functional and governing equation (i.e., Equation (5.1) – (5.4) and 

Equation (5.5), respectively) discussed in Chapter 5 are employed again for the model in this 

chapter. Substituting Equation (5.1) – (5.4) into Equation (5.5) yields 

𝜕𝜂/
𝜕𝑡 = −𝐿

⎣
⎢
⎢
⎢
⎡
𝑚0

⎝

⎜
⎛
−𝜂/ + 𝜂/. + 2𝛼𝜂/�𝜂S"

*

SY!
S�/

	

⎠

⎟
⎞
− 𝜅∇"𝜂/ + 𝐺𝑏"

𝜂/
∑ 𝜂S"*
SY!

(𝜌/(𝒓) − 𝜌)

⎦
⎥
⎥
⎥
⎤
. (6.5) 

 

Here, 𝜌/(𝒓) is no longer a constant and contains the individual dislocation density defined by 

Equation (6.3). The nondimensionalization scheme discussed in Chapter 5 Section 5.2.2 is 
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employed to convert dimensional quantities to dimensionless values using the scaling length of 40 

µm, which is on the order of the radius of a typical grain in our simulations.  

6.3.3 Methods for setting up initial conditions 

The initial condition for each simulation is composed of two parts: an initial microstructure 

described by a set of order parameters {𝜂/(𝒓, 𝑡 = 0)} , and a set of corresponding individual 

dislocation density field, {𝜌/(𝒓)}. In this work, we perform two sets of two-dimensional (2D) 

simulations. The first set of simulation directly imports a grain map from the experimental cross-

sectional data containing a relatively small number of grains, while the second set of simulations 

leverages the grain size distribution (GSD) from the experimental data to initialize a microstructure 

that contains a large number of grains.  

Initialization of order parameters 

First, the microstructure at state 𝑆! measured in the experiment is processed to produce a 

set of binary fields {𝑛/(𝒓)}. For the first set of simulation, the 2D grain map, Ω(𝒓), of the confined 

region at 𝑆!, which marks the region of each grain with a unique but consecutive integer, is used 

to initialize a set of 𝑛/(𝒓) fields according to 

𝑛/(𝒓) = À1, if	Ω(𝒓) = 𝑖,
0, otherwise.  (6.6)  

For the second set of simulations, the GSD calculated from the entire 3D volume of the 

sample at the 𝑆!  state is converted to a 2D GSD by implementing an established method in 

stereology [188,189] in a reversed manner, which is then employed to guide the construction of 

the initial microstructure. Specifically, the following procedures are implemented: 

1. The 3D GSD (𝑁.¡, the number of grains as a function of radius for a given bin size) is calculated 

based on the radii of all the grains in the 𝑆! state. Specifically, the range that encompasses all the 
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grain radii is uniformly divided into 𝑁?  equally sized intervals. The 𝑖>Z  interval is given by 

�𝑅/,`f¢d$, 𝑅/,_��d$� = [(𝑖 − 1)Δ𝑅, 𝑖Δ𝑅], where Δ𝑅  is the size of the interval in 3D radius. The 

number of grains that fall within each interval is counted.  

2. These numbers are divided by the volume of the sample, 𝑉, to obtain the number of grains per 

unit volume, 𝑁g(𝑖), for each interval 𝑖.  

3. A sectioning plane is more likely to cut through a larger 3D grain. The total number of sectioning 

planes obtained from the 3D grains falling within the 𝑖>Z interval, 𝑁v(𝑖), per unit area, is given by 

[189]: 

𝑁v(𝑖) = 2𝑁g(𝑖)𝑅/,_��d$. (6.7)  

4. The 2D radii of the 3D grains having 𝑖>Z radius range due to cross sectioning varies from 0 to 

𝑅/,_��d$. The probability, 𝑝/S, that such a radius falls within the 𝑗>Z interval can be calculated based 

on geometry by [188] 

𝑝/S = -
1

𝑅/,_��d$
IN𝑅/,_��d$" − 𝑅S,`f¢d$" −N𝑅/,_��d$" − 𝑅S,_��d$" J , 𝑅S,_��d$ ≤ 𝑅/,_��d$,

0, otherwise.
 (6.8) 

 

5. Given the fact that the sections within the 𝑗>Z interval could be obtained from the 3D grains 

within equal or larger size intervals, the total number of sections per unit area, 𝑁"¡(𝑗), with radii 

within interval 𝑗, is given by  

𝑁"¡(𝑗) =�𝑁v(𝑖)𝑝/S

*B

/£S

. (6.9) 
 

6. The values of 𝑁"¡(𝑗) is then normalized by its sum to obtain a 2D GSD, 𝑁0"¡(𝑗).  

 The 2D GSD is then used to inform the selection of 𝐾 seeds for the grains. To do so, we 

first convert 𝑁0"¡(𝑗) to a cumulative distribution function (CDF). We denote 𝑅/= to be the radius at 
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which CDF is equal to /
[

. The position of the seed, 𝑟TWW�,/, for each 𝐺/ is initialized with a random 

value, and the radius of each grain, 𝑅/B , is calculated based on the area given by the Voronoi 

tessellation of the seed locations. The resulting CDF (see the blue curve in Figure 6.5) is not 

typically close to the target CDF (see the red curve in Figure 6.5). To modify the seed locations 

such that the resulting CDF is closer to the target, 𝑟TWW�,/ is iteratively updated by  

𝑑𝑟TWW�,/
𝑑𝑡 = � (𝑅/= − 𝑅/B)𝑅/= m

1
𝑑/S.

−
2𝑅/=

𝑑/S5
n𝑑/S

*;

SY!,S�/

. (6.10) 
 

Here, 𝑗  is the index for grain 𝐺/ ’s 𝑁j  nearest grains and 𝑑/S  is the center-to-center distance 

between grain 𝑖 and 𝑗. Equation (6.10) progressively adjusts the grain seed positions to reduce the 

difference between each pair of 𝑅/= and 𝑅/B. After the algorithm is applied, a set of seed positions 

{𝑟TWW�,/} is generated, which gives rise to a set of estimated grain radii {𝑅/B} that approximately 

follows the target CDF (see the green curve in Figure 6.5). A set of binary fields {𝑛/(𝒓)} is then 

constructed from {𝑟TWW�,/}, using the method discussed in Section 6.4.  

 

Figure 6.5. Cumulative distribution function (CDF) for the grain radii. The red line indicates the 
target CDF, the blue line indicates the CDF obtained from radii estimated based on the randomly 
selected grain seed positions, and the green line indicates the CDF obtained from the radii 
estimated based on the grain seed positions after the matching algorithm is applied, which is used 
in the simulation described in Section 6.5.2. 
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The set of the binary field {𝑛/(𝒓)} is evolved via Allen-Cahn dynamics without the stored-

energy to obtain their smoothed order parameters, {𝜂/(𝒓)} , which contain complete grain 

structures with diffuse interfaces. The parameters employed for this smoothing process for the 

small- and large-scale simulations are summarized in Table 6.1 and Table 6.2, respectively. 

Table 6.1. Dimensionless parameters employed for the small-scale simulations to generate order 
parameters from binary fields. 

  

Parameters Variable Value 
Bulk energy 
coefficient 𝑚0

∗  1 

Gradient energy 
coefficient 𝜅∗ 0.00125 

Domain size 𝑙∗ 12 
Grid spacing Δ𝑥∗ = Δ𝑧∗ 0.025 
Time step Δ𝑡∗ 0.1 

 

 
Table 6.2. Dimensionless parameters employed for the large-scale simulations to generate order 
parameters from binary fields. 

  

Parameters Variable Value 
Bulk energy 
coefficient 𝑚0

∗  1 

Gradient energy 
coefficient 𝜅∗ 9.57 × 1075 

Domain size 𝑙∗ 69.43 
Grid spacing Δ𝑥∗ = Δ𝑧∗ 2.19 × 107" 
Time step Δ𝑡∗ 0.1 

 

 

Construction of individual dislocation density fields 

As seen in Equation (6.3), the initial dislocation density 𝜌0,/(𝒓) and the distance function 

𝑑/(𝒓) for each grain 𝐺/ are two required components to construct an individual dislocation density 

field 𝜌/(𝒓) . Although in reality a cycle of heat treatment involves continuous dislocation 

generation and microstructure evolution, we simplify this process in this work by injecting all the 
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generated dislocations, Δ𝜌/, once at the beginning, which is added to the baseline value before the 

microstructure evolution is simulated. A more sophisticated approach that considers the dynamic 

generation of dislocations will be left for future work. Given the experimental observations that a 

majority of the second-phase particles are found on or near the grain boundaries and the fact that 

a small grain in two dimensions has a larger grain length per area (equivalent to area per unit 

volume in three dimensions) than a large grain, we propose that the density of the second-phase 

particles is higher in a small grain. Additionally, it is reported in Ref. [24] that the relationship 

between the grain-averaged dislocation density and the density of the second-phase particles can 

be roughly described by a positive linear correlation. We therefore postulate that the value of Δ𝜌/ 

is inversely proportional to the radius, 𝑅/, of grain 𝐺/, given by the following formula: 

Δ𝜌/ =
𝑘 
𝑅/
. (6.11) 

 

The value of 𝑘  is estimated by substituting the known values of Δ𝜌! and 𝑅! for Grain 𝐺! within 

the confined region (see Figure 6.2) into Equation (6.11). The value of Δ𝜌!  is estimated by 

subtracting the baseline dislocation density from the average dislocation density of 𝐺! at 𝑆" within 

its initial position at 𝑆!. The value of 𝑅! is estimated based on 𝐺!’s area at 𝑆!, assuming a circular 

shape of the grain. The value of 𝑘  is then determined to be 8 × 10� m-1.  

 When considering multiple cycles, each cycle must be initialized based on either the initial 

state of the sample or the state from the previous cycle. Hereafter in this section, we add the cycle 

number on the superscript of the dislocation density to indicate the value at each cycle. The 

individual dislocation density at positions initially within Grain 𝐺/ for the first cycle, 𝜌0,/! (𝒓), is set 

by adding Δ𝜌/ to the baseline dislocation density 𝜌^(ud: 
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𝜌0,/! (𝒓) = Δ𝜌/ + 𝜌^(ud =
8 × 10�	m7!

𝑅/
+ 3 × 10!"	m7". (6.12) 

 

To set the individual dislocation density at positions initially outside of Grain 𝐺/ , we first apply 

the level-set method discussed in Chapter 2 Section 2.8 to obtain the distance function, 𝑑/(𝒓), 

based on the order parameter 𝜂/(𝒓). Since 𝜌0,/! (𝒓) is a constant for the first cycle, as shown in 

Equation (6.12), the individual dislocation density at the grain boundary, 𝜌�A,/! , is equal to this 

constant value given by 

𝜌�A,/! = Δ𝜌/ + 𝜌^(ud =
8 × 10�	m7!

𝑅/
+ 3 × 10!"	m7". (6.13) 

 

Equation (6.3) is then employed to generate the individual dislocation density field 𝜌/!(𝒓) for the 

first cycle.  

The value of the individual dislocation density at positions initially within 𝐺/  for the 

subsequent cycle 𝐶	(𝐶 > 1), 𝜌0,/, (𝒓), is set by adding Δ𝜌/ to its individual dislocation density at 

the previous cycle, 𝜌/,7!(𝒓) 

𝜌0,/, (𝒓) = Δ𝜌/ + 𝜌/,7!(𝒓) =
8 × 10�	m7!

𝑅/
+ 𝜌/,7!(𝒓). (6.14) 

 

We assume that after each cycle of grain growth, the value of dislocation density at the boundary 

of each remaining grain is reduced to a value that is sufficiently close to the baseline dislocation 

density. Thus, for simplicity, the individual dislocation density at the grain boundary at the cycle 

𝐶(𝐶 > 1), 𝜌�A,/, , is set again using Equation (6.13). Then, Equation (6.3) is employed to generate 

the individual dislocation density field 𝜌/,(𝒓) for the subsequent cycle (𝐶 > 1). 
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6.4 Assigning multiple grains to an order parameter 

Although the implementation is simple when an order parameter is used to track one grain, 

the computation becomes expensive when the simulation involves a large number of grains. To 

enable large-scale simulations of microstructure evolution described in Section 6.3.3 in an efficient 

manner, a capability to track multiple grains with one order parameter, which reduces the total 

number of order parameters required for the simulations, is required. However, it is necessary to 

ensure that the grains tracked by the same order parameter do not overlap during the microstructure 

evolution to avoid grain coalescence (and, for our model, that the decaying individual dislocation 

density fields do not overlap, which would introduce numerical artifact). The grain remapping 

schemes [112,190,191] have been proposed in the literature for phase-field simulations of grain 

growth, which reassigns a grain to a different order parameter when the grain is too close to another 

grain tracked by the same order parameter. However, the standard remapping scheme cannot be 

applied without modifications because of the necessity to track the decay in the dislocation density 

outside of the grains. Therefore, we take a simpler approach in which grains are placed sufficiently 

apart initially and are not dynamically remapped. 

Conceptually, we assign up to 9 grains to one order parameter to reduce the number of 

required order parameters (and thus the number of equations to be evolved). To do so, we examine 

the seed positions and assign each of the seeds to an order parameter index 𝑖, with the constraint 

that they are sufficiently distant from each other. This is accomplished by embedding a buffer zone 

between the grains assigned to the same order parameter. For each index 𝑖, we define the binary 

field 𝑛/(𝒓), containing value 1 in the circular region of radius 3Δ𝑥 centered at each of the seed 

positions assigned to order parameter index 𝑖. The detailed procedure is described below.  
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The entire simulation domain is first uniformly divided into 9 blocks (3 on each row and 3 

on each column), as shown in Figure 6.6. Each block is assigned with one of the following block 

letter A through I. Each block is further separated into nine equally sized cells, which are indicated 

by the cell number 1 – 9. Each cell within the resulting 9´9 grid can therefore be uniquely indexed 

by the combination of a block letter and a cell number. 

 

Figure 6.6. Division of the simulation domain for the assignment of order parameters.  

The following pseudo code is then employed to initialize the binary fields, 𝑛/(𝒓), that 

contains multiple grains for the large-scale simulations, along with their corresponding mask 

fields, 𝜒/(𝒓), which are used for extracting individual grains and will be detailed later, based on 

the seed positions obtained in Section 6.3.3: 

Inputs:  
(1) a 9´9 grid,  
(2) K (x,y) seeds within the grid,  
(3) the radius for each seed, seed_radius 
Outputs: N pairs of (𝑛%(r), 𝜒%(r)) 
Set the order parameter index, i, to 1 
for cell_number in [1, 2, 3, 4, 5, 6, 7, 8, 9] 
  while there is any unassigned (x,y) seeds in the cells marked with cell_number 
    Initialize a pair of (𝑛%(r),𝜒%(r)) and set them to 0 everywhere  
    Set the grain index, j, to 1  
    for block_letter in [A, B, C, D, E, F, G, H, I] 
      current_cell = grid(block_letter, cell_number) 
      if current_cell contains any unassigned (x,y) seed 
        Randomly select an unassigned (x,y) seed within current_cell 
        Assign 1 to 𝑛%(r) at a circular region centered at (x,y) with seed_radius, assuming  

a periodic boundary condition 
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        Assign j to 𝜒%(r) within the 3´3 cells centered at current_cell, assuming a periodic  
boundary condition 

        j = j + 1 
      end if 
    end for block_letter 
    i = i + 1 
  end while 
end for cell_number  

Once the set of {𝑛/(𝒓, 𝑡)} is obtained, the Allen-Cahn equation is used to obtain {𝜂/(𝒓, 𝑡)}, 

as described in Section 6.3.3. As shown in the pseudo code, we additionally construct a mask field, 

𝜒/(𝒓)	to enable efficient extraction of individual grains from the entire 𝜂/(𝒓, 𝑡) field during pre-

and post-processing. Each mask field 𝜒/(𝒓) stores the index for the grains that occupy a region 

consisting of 3 by 3 cells centered at the cell containing the seed position of the grain. In this 

manner, we allocate a sufficiently large region where the 𝑗>Z  grain tracked by the 𝑖>Z  order 

parameter, 𝐺/
S, may reside, but no other grains with the same order parameter could, throughout 

the simulation. The order parameter for Grain 𝐺/
S , 𝜂/

S(𝒓, 𝑡) , can then be obtained using the 

following formula: 

𝜂/
S(𝒓, 𝑡) = À𝜂/(𝒓, 𝑡), if	𝜒/(𝒓) = 𝑗,

0, otherwise.  (6.15)  

It is worth noting that the level-set method is directly applied to the order parameter fields 

that contain multiple grains to generate the corresponding signed distance functions. In this case, 

the value of the distance function at each position indicates the distance between this position to 

the nearest grain boundary. These distance functions are then utilized to construct a set of 

individual dislocation density fields 𝜌/(𝒓), each of which contains up to 9 individual dislocation 

density profiles. The value of 𝜌/(𝒓) at each point outside of regions initially occupied by the grains 

indicates the dislocation density value it would take if the grain boundary initially closest to the 

point reaches that point. 
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6.5 Simulation results and discussion 

6.5.1 Microstructure evolution within a confined region 

In this section, we apply the phase-field model to study the evolution of microstructure and 

dislocation density within an confined region (see Figure 6.2(c) – (f)) observed in the experiment, 

as discussed in Section 6.2. We select 4	µm as the interfacial width, which is ~1/10 of the radius 

of a typical grain in our simulations and is sufficient to resolve the grains in the confined region. 

The order parameters are initialized using the method discussed in Section 6.3.3. Since the 

boundary of the confined region is not rectangular, we utilize a dummy order parameter, which is 

not evolved throughout the microstructure evolution, to describe the area surrounding the confined 

region. The individual dislocation densities are initialized using Equation (6.3), with 𝜌0,/(𝒓) given 

by Equation (6.12) and 𝜌�A,/ given by Equation (6.13). The dimensionless parameters employed 

for the simulation are summarized in Table 6.3. 

Table 6.3. The dimensionless parameters employed in the simulation for microstructure 
evolution of the confined region. 

  

Parameters Variable Value 
Bulk energy 
coefficient 𝑚0

∗  1 

Gradient energy 
coefficient 𝜅∗ 0.00125 

Domain size 𝑙∗ 12 
Grid spacing Δ𝑥∗ = Δ𝑧∗ 0.025 
Time step Δ𝑡∗ 0.05 

 

 

The initial microstructure is shown in Figure 6.7(a). Each grain is assigned with a unique 

number from 1 – 8. The color indicates the dislocation density within the grains. As shown in 

Figure 6.7(b), Grain 2 is rapidly consumed by the Grain 3, 4, and 7. It is expected since Grain 2 

possesses a higher dislocation density and a smaller size than the surrounding grains, leading to a 
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large combined driving force due to the capillarity and the stored energy. As microstructure 

evolution continues to proceed, Grain 3, 4, 5, and 6 are continuously consumed, as shown in Figure 

6.7(c) and (d). It is worth noting that the traversed regions that are far away from the initial 

boundary of the growing grains, such as the left regions of Grain 1 and 8, have a nearly uniform 

deep blue color, implying the reduction of dislocation density to a baseline value. In addition, some 

of the grain boundaries, such as the one between Grain 1 and 8 in Figure 6.7(d), become curved 

during microstructure evolution. Such curved grains, often referred to as island grains or peninsula 

grains [192,193] have been reported in the samples that have undergone mechanical deformation 

and subsequent annealing leading to AGG. The simulation results thus indicate that such curved 

grains could also be induced by heat treatment alone without mechanical processing. Since Grain 

8 (with radius ~92 𝜇m) is slightly larger than Grain 1 (with radius ~90 𝜇m), the assigned initial 

dislocation density for Grain 8 (~1.17´1013 m-2) is lower than that for Grain 1 (~1.19´1013 m-2). 

Consequently, Grain 8 eventually consumes Grain 1, as shown in Figure 6.7(e) and (f), which does 

not agree with the experimental observation that Grain 1 consumes Grain 8, as shown in Figure 

6.2(c) and (d).  

The disagreement could arise from a few potential reasons. First, the two-dimensional 

radius was used to determine the initial dislocation density for each grain. Although Grain 1 has a 

slightly smaller two-dimensional radius than Grain 8, it is possible that Grain 1 has a larger three-

dimensional radius than Grain 8. Therefore, it is likely that Grain 1 has a lower dislocation density 

than Grain 8. Second, simulation is confined to 2D, and the evolution of a cross section within a 

3D volume may differ from that of 2D simulations. Moreover, although the density of the second-

phase particles is in general expected to be larger within a smaller grain, there may be statistical 

variations due to the stochastic nature of precipitate nucleation, growth, and subsequent dissolution 
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that produce dislocations. Finally, it has been known that grain boundary energies are anisotropic, 

depending on not only the crystalline orientations of the pair of grains but also the relative 

orientation of the grain boundary [194]. The resulting variation in grain boundary energies would 

result in different likelihood of precipitating second-phase particles on or near grain boundaries, 

leading to a spread in the density of dislocations produced by the precipitates. 

 

Figure 6.7. The evolution of microstructure and dislocation density within a confined region found 
in the experiment. A unique number from 1 to 8 is assigned to each grain. Dislocation densities of 
all the grains are initialized with Equation (6.12). The color indicates the dislocation density. A 
black box is plotted in (a) to indicate the simulation domain.  

Therefore, in reality, the dislocation density within a grain will have a statistical variation 

around the value determined by Equation (6.12). When the dislocation density of Grain 1 is 

reduced by ~16%, it was found that the stored energy difference between Grain 1 and 8 provides 

sufficient driving force and Grain 1 consumes Grain 8 at the end of the simulation. The results of 

this simulation are shown in Figure 6.8. The early evolution of the two simulations are very similar, 

as can be seen by comparing Figure 6.7(a) – (c) and Figure 6.8(a) – (c). On the other hand, during 

the later stage, Grain 1 progressively consumes Grain 8, as shown in Figure 6.8(d) and (e) and is 
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the only grain that remains at the end of the simulation, as shown in Figure 6.8(f). The high 

dislocation density at Grain 1’s initial position and the low dislocation density at the surrounding 

region closely resemble the experimental observations shown in Figure 6.2(f). Although a 

quantitative agreement is not expected because of the 2D nature of the simulations and thus is not 

a goal of this work, the similarities observed between the experimental observations and simulation 

results with a reasonable parameters/setup provides support for the proposed model. 

 

Figure 6.8. The evolution of microstructure and dislocation density within a confined region found 
in the experiment. A unique number from 1 to 8 is assigned to each grain. Dislocation densities of 
grain 2 – 8 are initialized with Equation (6.12). Grain 1’s dislocation density is reduced by ~16% 
from the value given by Equation (6.12), which resulted in a better match with the experimental 
observation. The color indicates the dislocation density. A black box is plotted in (a) to indicate 
the simulation domain. 

6.5.2 Large-scale simulations 

In this section, we perform a set of large-scale simulations to examine the effect of cyclic 

heat treatment on the microstructure evolution. To maintain computational feasibility, the smallest 

grain to resolve in the simulations is chosen to have a radius of 12	µm. This grain radius requires 

the interfacial width to be no larger than 3.5 µm such that the bulk region within the smallest grain 
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occupies at least 50% of the area, assuming circular shape of the grain. We initialize the order 

parameters using the method discussed in Sections 6.3.3 and 6.4. The individual dislocation 

densities are initialized using Equation (6.3). For this equation, the values of 𝜌0,/(𝒓) are given by 

Equation (6.12) when the dislocations are injected for the first time and are given by Equation 

(6.14) when the dislocations are injected for the second and the third times. The values of 𝜌�A,/ are 

given by Equation (6.13). The dimensionless parameters employed for the simulations are 

summarized in Table 6.4. Periodic boundary conditions are utilized throughout the simulations. 

Table 6.4. The dimensionless parameters employed in the large-scale simulations. 
  

Parameters Variable Value 
Bulk energy 
coefficient 𝑚0

∗  1 

Gradient energy 
coefficient 𝜅∗ 9.57 × 1075 

Domain size 𝑙∗ 69.43 
Grid spacing Δ𝑥∗ = Δ𝑧∗ 2.19 × 107" 
Time step (with 
stored energy) Δ𝑡T∗ 0.05 

Time step 
(without stored 
energy) 

Δ𝑡QT∗  0.1 
 

 

The initial microstructure, which contains 1778 grains, is shown in Figure 6.9(a). It can be 

observed from the figure that a number of small grains are clustered in a chain-like structure. This 

arrangement is reasonable in 2D given the facts that a large portion of small grains was observed 

in the experiment at state 𝑆! (see Figure 6.3(a)) and that these small grains would have to cluster 

in order to avoid an unphysical (non-equiaxed) grain morphology. The high dislocation density of 

these small grains yields a high stored energy as compared to their surrounding grains, and 

consequently, these grains are rapidly consumed, as shown in Figure 6.9(b). The microstructure at 

the end of the first cycle is shown in Figure 6.9(c). Most grains with high dislocation densities 
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(i.e., yellow grains) are consumed by their surrounding grains at this stage and the large grains 

next to these small grains become larger. Statistically, the unscaled GSD broadens, primarily due 

to the growth in the average grain size, as shown in Figure 6.11(a) and Figure 6.11(b). A second 

cycle is then simulated, which consists of re-injection of dislocations to the microstructure and 

subsequent microstructure evolution. The increase of dislocation densities is inversely 

proportional to the grain radius, and therefore the smaller grains are assigned with a higher increase 

in dislocation densities, as shown in Figure 6.11(d). An intermediate microstructure and the 

microstructure at the end of the second cycle are shown in Figure 6.9(e) and (f), respectively. The 

unscaled GSD continues to broaden, as shown in Figure 6.11(c). A second peak in the GSD appears 

after the third cycle, as shown in Figure 6.11(d). The comparison of scaled GSDs for each cycle is 

shown in Figure 6.12(a), in which all the radii are scaled by their average value and the probability 

is scaled to yield an area of unity under the curve. The scaled GSD continues to evolve throughout 

the three simulation cycles, exhibiting a slight broadening especially at the later cycles, and a 

bimodal distribution may start to develop at the end of the third cycle. It has been suggested that a 

bimodal grain size distribution is one of the signatures of AGG [15,178].  

To confirm that dislocation injections are necessary to yield persistent AGG, a simulation 

that omits the driving force due to the stored energy difference is performed. To allow for a direct 

comparison, an identical initial microstructure is employed, as shown in Figure 6.10(a). The 

microstructure at time 𝑡∗ = 800, 1700, and 3300 during the evolution is shown in Figure 6.10(b) 

– (d), respectively. These three times are selected because they correspond to the final times of the 

three cycles for the stored-energy-driven grain growth. In this case, the large grains progressively 

consume the smaller grains surrounding them solely due to capillarity. 
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Figure 6.9. Stored-energy-driven microstructure evolution, after the dislocations being injected 
(a) – (c) once, (d) – (f) twice, and (g) – (i) three times. Each cycle ends when the average grain 
radius increases by 40%, and the dimensionless time 𝑡∗ is labeled. The color indicates the 
dislocation density.  

To quantify the rate of the microstructure evolution and to compare such a rate between 

the simulations with and without the stored energy, we show the average grain radius as a function 

of time for the two cases in Figure 6.13. The average grain radius during the microstructure 

evolution with the stored energy for cycles 1, 2, and 3 are indicated by red, blue, and black dots, 

respectively. The average grain radius during the microstructure evolution without the stored 

energy is indicated by green dots. A much faster increase in the average radius is observed when 

the stored energy is considered, which indicates that the microstructure evolution proceeds more 
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rapidly when dislocations are injected via CHT. Additionally, at the start of each cycle, there is a 

rapid increase in the average radius, which is due to the large variation in initial dislocation 

densities. Then, the growth rate decreases as the stored-energy driving force reduces and the 

system shifts toward normal grain growth. An additional abrupt increase in the average radius in 

the midcycle in cycle 3, observed from time 𝑡∗ = 3000 to 𝑡∗ = 3100, is caused by a large number 

of grains (14 grains out of 246 grains) that disappeared between the two times. Unlike the apparent 

broadening of unscaled GSD observed in the evolution of microstructure with dislocations, the 

unscaled GSD during capillary-driven grain growth only slightly broadens (see Figure 6.11(e) – 

(g)). In addition, none of the grains is observed to grow abnormally faster than the others. 

Consequently, the unscaled GSD remains singly peaked from 𝑡∗ = 800 to 3300. The convergence 

to self-similarity is observed in scaled GSD, as shown in Figure 6.12(b). 

 

Figure 6.10. Capillary-driven microstructure evolution. Four snapshots are shown at time (a) 𝑡∗ =
0, (b) 𝑡∗ = 800, (c) 𝑡∗ = 1700, (d) 𝑡∗ = 3300.  
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Figure 6.11. Grain size distribution (GSD) during the microstructure evolution. (a) GSD at the 
initial time, (b) – (d) GSD after first, second, and third cycles with the stored energy, (e) – (g) GSD 
at 𝑡∗ = 800, 𝑡∗ = 1600, and 𝑡∗ = 3300 for a simulation without the stored energy. 

 

Figure 6.12. Scaled GSD, which plots the probability (scaled to integrate to 1) vs. radius scaled 
by the average radius (a) from the simulations with the stored energy and (b) from the simulations 
without the stored energy.  
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Figure 6.13. Dimensionless average grain radius vs. dimensionless time. The red, blue, and black 
dots indicate the average grain radius during microstructure evolution with the stored energy for 
cycle 1, 2, and 3, respectively. The green dots indicate the average grain radius during 
microstructure evolution without the stored energy.  

6.6 Conclusion 

We extended the phase-field model in Chapter 5 to simulate the evolution of microstructure 

and dislocation density within a sample undergoing cyclic heat treatment. As compared to the 

previous model, this extended model is capable of describing a spatially varying dislocation 

density and a reduction in dislocation density as grain boundaries migrate, which was observed in 

the experiments. We conducted simulations based on the assumption that the smaller grains 

(having higher grain boundary length per unit area (equivalent to area per unit volume in 3D)) 

have more second-phase particles precipitated per unit volume and thus a larger number of 

dislocations injected. The simulation predicted a microstructure that closely resembles the 

experimentally measured microstructure within a region that were confined within a nearly static 

boundary in the experimental dataset. In addition, the model was utilized to simulate three cycles 

of stored-energy-driven grain growth within a large microstructure, during which non-self-similar 

microstructure evolution was observed. In contrast, a simulation without the stored energy yielded 

a near self-similar evolution. In particular, when the stored energy was included with an 

assumption that number of dislocations injected scaled as the inverse of the grain radius, it was 
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found not only that grains grew much faster but also the larger grains preferentially grew. 

Moreover, although the rate of grain growth with stored energy is much faster at the beginning of 

each cycle as compared to that without stored energy, the former decreases at the later stage of 

each cycle as the stored-energy driving force reduces with evolution and the system shifts toward 

normal grain growth. Therefore, CHT is necessary to continuously provide stored-energy driving 

force. The simulation results thus suggest that CHT facilitates large grains to grow abnormally due 

to the stored-energy driving force. Additionally, this chapter provides an integrated experimental-

computational workflow, which utilizes the information from experiments to inform grain-growth 

models and its parameterization. While we here limited our efforts to two-dimensional simulations 

as a proof of concept, the workflow can be easily adapted to perform more time-consuming, but 

more accurate three-dimensional simulations, as well as to include additional physical 

considerations, such as the recovery. Therefore, the work provides a foundation for future 

development of simulation tools capable of quantitative predictions of microstructure evolution 

during non-isothermal heat treatment, which will ultimately facilitate the design of optimized 

processes for solid-state single-crystal growth. 
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Chapter 7 Controlling Thermal Profiles Using Parameterized Heat Transfer Models 

7.1 Introduction 

In this chapter, we present two heat transfer models that are used to predict the temperature 

profiles within two types of furnaces. We first show a heat transfer model that describes the 

temperature distribution within a sample in an optical floating zone experiment and demonstrate 

its capability to reproduce steady-state thermal profiles of the sample measured in the experiment, 

as well as in predicting time-dependent temperatures, after determining uncertain parameters of 

the model with a machine learning algorithm developed for this purpose. We then describe a 

coupled thermal and Joule heating model for a gradient heater furnace, in which the sample is 

heated by two ceramic bars with resistively heated wires around them. We demonstrate that the 

parameterized model accurately replicates the thermal profiles of a NaCl/Si sample measured in 

the experiment and is capable of predicting temperature profiles when alternative winding 

configurations of wires or different geometries of ceramic bars are employed. 

7.2 The heat transfer model for optical floating zone (OFZ) experiments* 

7.2.1 Introduction for OFZ modeling 

As mentioned in Chapter 2 Section 2.3, measuring the sample temperature in OFZ furnace 

is challenging and is an ongoing research effort. For example, a physical model of a commercial 

OFZ furnace has been designed to incorporate an optical pyrometer for measuring sample-

temperature profiles [195]. However, this approach has two key limitations. First, only surface 

temperatures can be measured, and second, the heating lamps must be turned off during the 

 
* Adapted from G. Huang, M. Zhang, D. Montiel, P. Soundararajan, Y. Wang, J. J. Denney, A. A. Corrao, P. G. 
Khalifah, and K. Thornton, “Automated Extraction of Physical Parameters from Experimentally Obtained Thermal 
Profiles Using a Machine Learning Approach,” Computational Materials Science 194, 110459 (2021).  
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measurements, which can affect the sample temperature. Our experimental collaborator Denney et 

al. [25] from Peter Khalifah’s group in Stony Brook University recently pioneered the first in situ 

synchrotron measurements of temperature profiles that enable temperature profiles in a sample rod 

heated at a point with lamps to be measured with high precision and high spatial resolution, with 

ability to resolve horizontal center-to-edge gradient in the sample rod and with the possibility for 

both steady state and dynamic measurements of temperature profiles. In these measurements, the 

position-dependent sample temperature is indirectly determined through the refinement of unit cell 

lattice parameters against synchrotron X-ray diffraction patterns, with the local temperature 

calculated from the known thermal expansion behavior of the material being studied.  

To provide a better understanding of the thermal profiles for the sample within the OFZ 

experiment as a function of time and space, we propose a heat transfer model, with uncertain 

parameters being determined to match predicted steady-state thermal profiles of the sample with 

those measured in the experiment using the machine learning algorithm discussed in Chapter 2 

Section 2.5.2. We present the convergence of the algorithm, the refinement of the possible ranges 

of uncertain parameters, as well as a fitted steady-state temperature profile and time-dependent 

temperatures obtained with optimized parameters. The resulting model, which does not explicitly 

consider the process of heat absorption but treats the heat absorbed as a fitting parameter, is 

computationally efficient and can potentially be used to provide on-demand feedback during in 

situ experiments. 

7.2.2 Heat transfer model for OFZ 

We build heat transfer models using COMSOL Multiphysics® software [89] to simulate 

the heat transfer process within a polycrystalline Al2O3 sample rod heated by two halogen lamps. 

The model considers the Al2O3 sample to be a cylinder of radius 𝑅T and length 𝐿T. In addition, this 
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model considers an aluminum metal sample holder of radius, 𝑅Z , and length, 𝐿Z in contact with 

the sample because experimental results suggest that the thermal conduction to/from the sample 

holder cannot be neglected. The geometry considered in the model is shown in Figure 7.1 and 

values of geometrical quantities are summarized in Table 7.1.  

 

Figure 7.1. Geometry of a heat transfer model for an optical floating zone experiment. The 
geometrical parameters, as well as the uncertain parameters to be determined are indicated. The 
process of heat absorption from the lamps was not directly simulated but treated via a set of 
absorbed powers as fitting parameters. Reproduced with permission [101]. Copyright 2021, 
Elsevier. 

Heat is transported across the sample and sample holder through thermal diffusion, which 

is described by Equation (2.14). For all simulations, the ambient temperature is assumed to be 

298.15 K. The absorbed radiation from two lamps is modeled as a constant power heat source 

assumed to be uniformly distributed over a cylindrical surface of area S = 47.1 mm2 located near 

the bottom end of the sample. The heat absorption equation at this region is  

−𝒏 ⋅ 𝒒T?j = 𝑞T?j 			, (7.1)  

Sample holder

Sample

Rh

Lh

Ls

Rs

dps

Lamp (not 
directly 
simulated)

Absorbed powers: 
P$, P%, P&, P' and P(

Parameters: k), ϵ)

Parameters: χ, ϵ*
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where 𝒏 is the unit outward normal vector and 𝒒T?j is the heat flux on the surface area 𝑆. Small 

variations in the alignment of the focused light from the lamps can result in changes in the heat 

source position. Therefore, the distance between the bottom of the power source and that of the 

sample, 𝑑;T, is treated as an uncertain parameter. The heat loss from the sample and the sample 

holder is considered to occur through thermal radiation (Equation (2.20)) and natural air 

convection (Equation (2.15)). For side surfaces of the sample and the sample holder, ℎ is estimated 

using an empirical relation for thin vertical cylinders [196,197]. For the top surface of the sample 

holder, ℎ is estimated using empirical relation for upward-facing horizontal plates [86,196]. For 

the bottom surfaces of the sample and sample holder, ℎ is estimated using empirical relation for 

downward-facing horizontal plates [86,196].  

7.2.3 Training and test data 

Two sets of experimentally measured temperature data were utilized for model training and 

testing. The first set of temperature data, which was used as the training data to obtain the 

optimized parameter set, was measured via a series of vertical scan experiments. In a vertical scan 

experiment, the lamps are kept on until the temperature of the sample reaches steady state. The 

temperatures of the sample along 𝑦-direction at 𝑥	 = 	0 from 𝑧 = 0 to 𝑧 = 35	mm, with a step 

size of 1 mm, are then determined using X-ray diffraction methods. A schematic indicating the 

positions at which temperatures are collected is shown in Figure 7.2(a). The experiments were 

performed five times with the lamp voltage increasing linearly from 20% to 100% of its maximum 

(resulting in lamp powers of 25.2 W, 73.0 W, 137 W, 216 W, and 300.0 W) and five corresponding 

temperature profiles were obtained [101].  

The second set of temperature data, which was used to test the parameters obtained from 

the vertical scan data, was taken from a series of time-dependent “jump” scan experiments 
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[25,101]. In a jump scan experiment, the data are collected at a single point as the sample heats 

and cools. In each scan, the lamps are switched on for a certain amount of time and then switched 

off. The temperature at a position (𝑥, 𝑧)  is measured with respect to time again employing 

diffraction methods. The procedure is used to obtain time-dependent temperature at positions A, 

B, C, and D, as shown in Figure 7.2(b). The temperature at position A was collected twice, first 

with the power of the lamps at 300.0 W and the second time at 104 W. Full power (300.0 W) was 

used for a single measurement at each other position.  

 

Figure 7.2. Schematics showing a side view of the sample and positions on the sample at which 
temperatures were determined. The temperature at each point is averaged along y-direction, which 
is perpendicular to x-z plane. (a) In the vertical scan, the temperature profile was collected from 
z=0 mm to z=35 mm, with a step size of 1 mm, all at x=0 mm (the center of the projection of the 
sample rod). (b) In jump scans, the evolving temperature was collected as the lamp was turned on 
and then off. The temperature changes were followed at points A (with heating at 300.0W and 
104W), B (at 300.0W), C (at 300.0W), D (at 300.0W), each over one heating / cooling cycle. 
Reproduced with permission [101]. Copyright 2021, Elsevier. 

For the training stage, the parameters are iteratively optimized such that the simulated 

steady-state temperature profiles become closer to those obtained experimentally. We employ the 

algorithm in Chapter 2 Section 2.5.2 to reduce RMSEs by iteratively refining the parameter space. 

The parameters that required optimization are listed in Table 7.1, where they are labeled with 
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“optimization” in the respective “source” columns. We set the number of simulations per iteration, 

𝐾, to 1000. As we will discuss in Section 7.2.4, ten parameters (𝑛 = 10) need to be determined in 

total. Therefore, we effectively take only 𝐾!/Q~2 samples along each direction in the parameter 

space at each iteration step. The model with optimized parameters is then employed to predict 

time-dependent temperatures and compared to the jump scan test data. 

7.2.4 Material properties and simulation parameters 

The density of the Al2O3 sample, 𝜌T = 2.19	 ×	10. kg/m3, was calculated using the ratio 

between the measured mass and volume of the sample. A temperature-dependent functional form 

of specific heat capacity proposed in Ref. [198] is employed to fit to experimentally obtained heat 

capacity data of Al2O3 from 273.15 K to 700 K in Ref. [199]. The resulting form of heat capacity 

𝐶;,T(𝑇) is 

𝐶;,T(𝑇[𝐾]) = 984.7 + 3.203 × 107!𝑇 −
2.707 × 10�

𝑇" . (7.2)  

The thermal conductivity of the alumina sample used in the experiment is assumed to be dependent 

on the temperature, 𝑇, as well as the porosity, 𝜙T, and the grain boundary density of the sample 

that can affect the effective thermal conductivity. An adjustable constant, 𝜒T, is used to take the 

effect of grain boundary density into account. The thermal conductivity of dense alumina (𝜙T =

0) throughout a few temperature values can be found in Ref. [200]. A second-order polynomial is 

utilized to fit to those values from 298	K to 700	K. The resulting functional form of a temperature-

dependent thermal conductivity of dense alumina, 𝑘0,T(𝑇), is 

𝑘0,T(𝑇[𝐾]) = 75.60 − 1.586 × 107!𝑇 + 9.814 × 1076𝑇". (7.3)  

The pores in the alumina sample are assumed to be spherical and their thermal conductivity is 

assumed to be zero. Designating alumina as a matrix phase and the pores as a particle phase, the 
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thermal conductivity of a porous alumina sample, 𝑘!,T(𝑇, 𝜙T), can be described by via an effective 

medium approximation, as discussed in Ref. [201]: 

𝑘!,T(𝑇[𝐾], 𝜙T) =
2(1 − 𝜙T)
2 + 𝜙T

𝑘0,T(𝑇). (7.4) 
 

The porosity is calculated using the following equation 

𝜙T = 1 −
𝜌W2;
𝜌�WQTW

, (7.5)  

where 𝜌W2; = 2.190 × 10.	kg/m. and 𝜌�WQTW = 3.970 × 10.	kg/m. [202] are the density of the 

alumina sample used in the experiment and that of a dense sample (without pores), respectively.  

To account for the fact that the grain size of the sample used in the experiment could be different 

from that in Ref. [200], we further modify the conductivity by a multiplicative adjustable 

microstructure factor, 𝜒T. The resulting effective thermal conductivity with 𝜙T = 0.448 is 

𝑘T(𝑇[𝐾], 𝜙T = 0.448,𝜒T) = 𝜒T(34.07 − 0.715 × 107!𝑇 + 4.422 × 1076𝑇"). (7.6)  

The constant 𝜒T  is an unknown parameter to be determined by the optimization algorithm. 

Considering the fact that the grain boundary density of the sample could be either larger or smaller 

than the one in Ref. [200] that is used to obtain Equation (7.6), the initial range of 𝜒T is set as from 

0.5 to 1.5. The emissivity 𝜖T is an uncertain parameter, which is presumed to range from 0.28 to 

0.48, as discussed in Ref. [203]. 

The aluminum metal sample holder is assumed to have a density of  𝜌Z =

2.70	 ×	10.	kg/m3 as reported in Ref. [204]. The same functional form proposed in Ref. [198] is 

employed to fit to heat capacity data of aluminum from 273.15 K to 700 K in Ref. [205]. The 

resulting form of heat capacity 𝐶;,Z(𝑇) is 

𝐶;,Z(𝑇[𝐾]) = 768.7 + 4.530 × 107!𝑇 −
2.335 × 106

𝑇" . (7.7)  
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A similar expression of effective thermal conductivity for the aluminum sample holder, 𝑘Z, can be 

written as 

𝑘Z(𝑇[𝐾], 𝜙Z ,𝜒Z) = 2𝜒Z
(1 − 𝜙Z)
2 + 𝜙Z

𝑘0,Z(𝑇[𝐾]), (7.8) 
 

where 𝜙Z  and 𝜒Z  are the porosity and microstructure factor of the aluminum sample holder, 

respectively. The temperature of the aluminum sample holder remains within 298.15 K and 373.15 

K based on the simulations. Due to high thermal conductivity of aluminum, it is reasonable to 

assume that the heat transport across the sample holder is fast and therefore the temperature within 

the sample holder is nearly uniform. Moreover, the thermal conductivity within this temperature 

range is not expected to vary significantly. Therefore, the thermal conductivity of the sample 

holder can be considered as a constant and found via the optimization. When testing the algorithm, 

we examined a wide range of thermal conductivities corresponding to temperatures beyond this 

temperature range due to the uncertainties in impurity and microstructure effects. We chose 240 

W/(m·K) (corresponding to well-annealed 99.99+% pure aluminum at T = 373.15 K [206]) as the 

upper bound of the thermal conductivity. The lower bound of 208 W/(m·K) (corresponding to 

well-annealed 99.99+% pure aluminum at T = 933.15 K [206]) was selected. While this 

temperature is out of the expected range of temperatures of the aluminum sample holder in the 

experiment, it was adopted since there are a number of factors that would reduce the thermal 

conductivity, including the porosity, grain boundaries, and impurities. For example, this value is 

that resulting from Equation (7.8) with porosity 𝜙Z = 0.01 and microstructure factor  𝜒Z = 0.88 

at T = 373.15 K, which is within a reasonable estimate. The aluminum sample holder is assumed 

to have a rough surface; for roughened aluminum, the emissivity 𝜖Z was reported to range from 

0.10 to 0.30 [207].  
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The power from the lamp is assumed to be uniformly deposited near the bottom tip of the 

sample rod over a cylindrical surface 3 mm in height (having a surface area of S = 47.1 mm2). The 

offset distance between the bottom tip of the sample and the bottom edge of the heated region, 

𝑑;T, is expected to be small and its initial range is therefore assigned to be from 0.01 mm to 2.0 

mm. As discussed in Section 7.2.3, five temperature profiles were obtained with five different 

nominal lamp powers. In our model, we consider the absorbed powers 𝑃!, 𝑃", 𝑃., 𝑃5, and 𝑃6, to be 

five unknown parameters. The parameters discussed above and their initially assigned ranges are 

summarized in the first and the last column of Table 7.1. 

7.2.5 Refinement of the parameter range  

The range of each parameter is gradually refined over the iterations. The average cost, 𝐸=/, 

and the change of the average cost, 𝛥𝐸/, are calculated for each iteration and plotted in Figure 

7.3(a) and (b), respectively. It can be observed from the figure that Δ𝐸/ first becomes smaller than 

the defined threshold of 10-3 for iteration 16, indicating convergence.  

 

Figure 7.3. (a) The average cost, 𝐸=/ and (b) the change of average cost, 𝛥𝐸/ in each iteration. The 
red dashed line indicates the threshold. Reproduced with permission [101]. Copyright 2021, 
Elsevier. 
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The process of range refinement of each parameter is shown in Figure 7.4. The mean value 

and the sampled range calculated from each iteration are indicated by blue circles and solid vertical 

bars, respectively. It can be observed from the plots that the uncertainty of each parameter is 

iteratively reduced until the algorithm converges. It is worth noting that that ranges of some 

parameters (such as absorbed power) decrease more in each iteration as compared to their initial 

ranges, while those of others (such as 𝑘Z and 𝜖Z) decrease less. The ratio of the next possible range 

to the current possible range of each parameter indicates the sensitivity of the cost function on the 

sampled values within the current parameter range, either because the relative range is wider than 

those of other parameters or because of the intrinsic sensitivity of the simulation results on that 

parameter.  

 

Figure 7.4. Iterative refinement of the parameters. The mean value (indicated by circles) and the 
sampled range (indicated by vertical bars) of each parameter are updated in each iteration. The 
range at iteration 0 refers to the initial range of each parameter and therefore no mean value is 
shown at iteration 0. Reproduced with permission [101]. Copyright 2021, Elsevier. 
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We utilize the interpolation method discussed in Chapter 2 Section 2.5.2 to obtain the 

optimal values for each parameter. Specifically, the following second-order polynomial is 

employed to approximate the errors, 𝐸SU𝒙�𝒋V, as a function of the normalized parameter vectors, 

𝒙�𝒋 = (𝑥!,S , … 𝑥;,S , … , 𝑥Q,S): 

𝐸SU𝒙�𝒋V = ��𝑎;𝑥�;,S" + 𝑏;𝑥�;,S + � U𝑐;\𝑥�;,S𝑥�\,SV
Q

\Y;:!

� + 𝑑
Q

;Y!

, (7.9) 
 

where the indices for each parameter vector and for each parameter are indicated by 𝑗 and 𝑝, 

respectively. The resulting fitting constants 𝑎;, 𝑏;, 𝑐;\ , and	𝑑	are summarized in Table 7.2. The 

optimized values for each parameter are summarized in the “Values employed in the model” 

column of Table 7.1. 

7.2.6 Simulated temperature profiles with optimized parameters 

The steady-state temperature profile simulated from optimized parameters is compared to 

that obtained from experiments in Figure 7.5(a). The simulated and experimental temperature 

profiles are in good agreement for all lamp powers. The RMSE between the experimental and 

simulated data is 5.7 K. The relationship between the nominal power from lamps and the absorbed 

power, determined via optimization, is plotted in Figure 7.5(b) along with a polynomial fit. The 

absorbed power, 𝑃8, resulting from the nominal power of 104 W is then estimated to be 1.58 W 

from this fit, and this value is utilized in the prediction of the time-dependent temperature response 

since the steady-state measurement had not been carried out at this specific power setting. The 

resulting times series curves simulated based only on the previously determined parameterization 

of steady state measurements (without further parameter optimization) are compared in Figure 

7.5(c) to the experimentally obtained data. The RMSE is 16.6 K, which is about 4.7 % of the ~350 
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K overall temperature range across all data sets. The agreement is in general acceptable. The 

discrepancy could readily arise from the fact that the experimentally measured temperature profiles 

at different power levels are not necessarily at the steady state, something that can easily occur 

experimentally because the sample rod temperatures are extracted from the post-experiment fitting 

of the diffraction data and are thus not known during experiments. Therefore, the parameters 

obtained from the temperature profiles with a steady-state model can be affected by systematic 

experimental errors. Moreover, the initial temperature of the sample holder is set to be room 

temperature in the simulation, but it could be higher in the experiments due to residual heat from 

previous experiments, which could partially explain a faster increase in temperature in 

experimental curves as compared to the one in simulated curves.  

From these results, we identify a few ways to reduce these experimental uncertainties in 

the future. First, an insulation can be placed between the sample and the sample holder to avoid 

significant thermal conduction between them. Second, the temperature could be measured in situ 

at a certain point or points determined by simulations to ensure either the apparatus has reached 

the room temperature or to constrain the initial condition. Additionally, simulations with an 

estimated set of physical parameters can also inform the design of experiments. Given the 

uncertainties in the experiments, we conclude that the algorithm effectively determines the values 

of each parameter within an acceptable error, and the steady-state temperature profiles effectively 

served as training data that allowed the behavior during time-series experiments to be predicted. 
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Figure 7.5. Comparison of temperatures profiles from simulations and experiments. (a) Steady-
state temperature profiles measured in experiments (solid lines) and simulated with the optimized 
parameter values (dashed lines). (b) Relationship between absorbed power (calculated from 
simulations) and the nominal lamp power, with a polynomial fit to their relationship shown as a 
dashed line. (c) Time-dependent temperatures predicted from the model (dashed blue line) using 
optimized parameter values from fitting of the steady state data, compared to experimental data 
(solid red line). Reproduced with permission [101]. Copyright 2021, Elsevier. 

Table 7.1. Parameter values used in optimized simulations compared to their initially assigned 
ranges. Reproduced with permission [101]. Copyright 2021, Elsevier. 

 

Parameters 
Values 
employed in 
the model  

Units Source Initially assigned ranges  

Al2O3 sample 
Density 𝜌T  2.19 × 103   kg / m3 Experiment -- 
Radius 𝑅T 2.50 mm Experiment -- 
Length 𝐿T 58.9 mm Experiment -- 
Heat capacity 
𝐶;,T 

See Equation 
(7.2) J / (kg · K) Literature -- 

Thermal 
conductivity 
𝑘T 

See Equation 
(7.6) W / (m · K) Literature -- 

Correction 
constant 𝜒T 

1.09 -- Optimization 0.5 – 1.5 
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Emissivity 𝜖T 0.41 -- Optimization 0.28 – 0.48 [203] 
Aluminum sample holder 
𝜌Z 2.70 × 103 [204] kg / m3 Literature -- 
𝑅Z 12.7 mm Experiment -- 
𝐿Z 76.8 mm Experiment -- 

𝐶;,Z See Equation 
(7.7) J / (kg · K) Literature -- 

𝑘Z 224 W / (m · K) Optimization 208 – 240 [206] 
𝜖Z 0.25 -- Optimization 0.10 – 0.30 [207] 
Power setting  
𝑆 47.1 mm2 Experiment -- 
𝑑;T 1.76 mm Optimization 0.01 – 2.0 
𝑃! 0.51 W Optimization 0.3 – 0.7 
𝑃" 1.22 W Optimization 0.7 – 1.6 
𝑃. 2.00 W Optimization 1.2 – 2.7 
𝑃5 2.69 W Optimization 1.5 – 4.0 
𝑃6 3.37 W Optimization 2.0 – 5.0 
𝑃8 1.58 W Fitting -- 
Algorithm parameters (hyper parameters) 
𝐾 1000 -- Designed -- 

𝛾  1.5 -- Designed -- 
𝑟  10 -- Designed -- 

 

Table 7.2. Constants determined from the polynomial fitting via Equation (7.9). Reproduced with 
permission [101]. Copyright 2021, Elsevier. 
𝑝 𝑎; 𝑏; 
1 2.01 × 1075 −2.48 × 1076 
2 1.22 × 1075 4.74 × 1075 
3 2.22 × 107!5 −3.72 × 1075 
4 8.17 × 107!5 −6.37 × 1075 
5 2.42 × 1075 −5.24 × 1075 
6 8.14 × 1076 −9.91 × 1076 
7 3.07 × 1075 1.78 × 1075 
8 2.49 × 1075 2.18 × 1078 
9 6.73 × 1076 6.64 × 1076 
10 1.39 × 1075 1.16 × 1075 
(𝑝, 𝑞) 𝑐;\ 
(1,2) 2.82 × 1075 
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(1,3) −2.93 × 1075 
(1,4) 8.92 × 1076 
(1,5) −1.52 × 1075 
(1,6) −1.61 × 1075 
(1,7) −5.82 × 1076 
(1,8) −3.23 × 1075 
(1,9) 1.31 × 1075 
(1,10) −3.14 × 1075 
(2,3) 3.57 × 1076 
(2,4) 6.38 × 1078 
(2,5) −2.88 × 1075 
(2,6) −3.84 × 1076 
(2,7) −3.42 × 1076 
(2,8) −3.86 × 1076 
(2,9) −9.89 × 1076 
(2,10) −1.76 × 1075 
(3,4) −1.90 × 1075 
(3,5) −2.19 × 1075 
(3,6) 1.42 × 1075 
(3,7) 2.03 × 1075 
(3,8) 1.50 × 1075 
(3,9) 3.45 × 1076 
(3,10) 4.57 × 1076 
(4,5) 1.71 × 1075 
(4,6) 8.95 × 1076 
(4,7) 4.92 × 1076 
(4,8) −5.22 × 1076 
(4,9) −7.22 × 1076 
(4,10) −7.08 × 1076 
(5,6) −4.70 × 1076 
(5,7) −6.50 × 1076 
(5,8) −5.80 × 1076 
(5,9) 9.76 × 1076 
(5,10) 4.87 × 1076 
(6,7) −3.80 × 1076 
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(6,8) 1.19 × 1075 
(6,9) 3.97 × 1076 
(6,10) 1.03 × 1076 
(7,8) 1.54 × 1075 
(7,9) −1.08 × 1075 
(7,10) 7.29 × 1076 
(8,9) −2.44 × 1075 
(8,10) 1.99 × 1075 
(9,10) −1.20 × 1075 
𝑑 5.70 

7.2.7 Conclusion for OFZ modeling 

The machine learning algorithm was applied to estimate the optimal parameter values for 

a heat transfer model that describes the heating of an Al2O3 rod in an optical floating zone furnace. 

Using the algorithm, relevant sample and furnace parameters for describing heat transfer in the 

system were obtained based on the steady-state temperature profile as the training data without 

human intervention except for the determination of the initial ranges of parameters. After 

parameter optimization against this data, experimental steady-state temperature profiles are 

accurately reproduced with this model. Furthermore, it is demonstrated that the same set of 

parameters can be used to accurately predict the time-dependent behavior of temperature profiles 

in the sample rod without any further parameter optimization, a result validated by experimental 

measurements.  
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7.3 Coupled heat transfer and Joule heating model for a gradient heater* 

7.3.1 Introduction for gradient-heater modeling 

As discussed in Chapter 1 Section 1.4, measuring temperature-dependent quantities of a 

sample using traditional methods is time consuming, as it requires repeated experiments conducted 

to measure the values of the quantities  at various temperatures. Our experimental collaborator, 

O’Nolan et al.[27] from Karena Chapman’s group in Stony Brook University recently proposed a 

gradient heater approach to generate variable temperature profiles within the sample and therefore 

enable the study of a temperature-dependent quantity in one experiment by measuring the quantity 

at different position of a sample. This approach is developed based on the flow-cell/furnace  design 

[208]. A sample is placed in between two heating elements. Each heating element is composed of 

a ceramic bar with heating wires wound around it. The heating wire is resistively heated as the 

current goes through it. The heat is transported via thermal conduction from the wires to the 

ceramic bar that, in turn, heats the sample by thermal radiation. A schematic showing top and side 

views of the gradient heater is provided in Figure 7.6(a) and (b). The spacing between each two 

adjacent grooves is designed to be non-uniform to induce a temperature gradient in each heating 

element, which ultimately leads to a variable temperature profile within the sample.  

 
* Adapted from D. O'Nolan, G. Huang, G. E. Kamm, A. Grenier, C. H. Liu, P. K. Todd, A. Wustrow, G. T. Tran, D. 
Montiel, J. R. Neilson, S. J. L. Billinge, P. J. Chupas, K. S. Thornton, and K. W. Chapman, “A Thermal-Gradient 
Approach to Variable-Temperature Measurements Resolved in Space,” Journal of Applied Crystallography 53, 662 
(2020). 
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Figure 7.6. (a) Top and (b) side views of the gradient heater. A sample is placed between two 
heating elements, each of which is composed of a ceramic bar with heating wires wound around 
it. Reproduced with permission [27]. Copyright 2020, International Union of Crystallography. 
 

In order to generate a target temperature gradient within the sample, it is necessary to select 

an appropriate geometric configuration of the heat element, including the groove spacing. 

Although it is possible to experimentally determine these uncertain parameters by trial and error, 

it is time consuming, especially when multiple temperature gradients are needed. To this end, we 

proposed a coupled heat transfer and Joule heating model to describe the heating transfer between 

and within heating elements and sample, as well as the resistive heating of the wires. Model 

parameterization is conducted by matching the predicted thermal profile of the sample to that of a 

NaCl/Si sample powder heated by an initial design of the gradient heater, which produces a linear 

temperature gradient within the sample. Hereafter, we refer to this furnace design as Mark 1 design. 

We then utilize this parameterized model to study the effect of wiring configuration, ceramic bar 

width, as well as the position of the sample on the resulting thermal profiles.  

7.3.2 Simulation method for gradient-heater modeling 

We implement the coupled heat transfer and Joule heating model in COMSOL 

Multiphysics® [89]. The simulation geometry consisted of NaCl/Si sample powder mixture placed 

between two heating elements, as shown in Figure 7.6(b). The thermal conduction between the 

surfaces of wires and heating elements that are in direct contact, as well as within the bulk of each 
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object, is described by Equation (2.14). For the heating elements and the sample, 𝑄 = 0. For the 

wires, 𝑄 is the power density from Joule heating, as described by [86,209] 

𝑄 = 𝒊 ⋅ 𝑬 = 𝜅|∇𝜙|", (7.10)  

where 𝒊 is the current density, 𝑬 is the electric field, 𝜅 is the electrical conductivity, and 𝜙 is the 

electric potential. Surface-to-surface thermal radiation [87,88] is considered between each pair of 

surfaces facing each other but not in direct contact. The surfaces of the heating elements and wires 

that are not facing each other or facing the sample radiate energy to the surrounding environment. 

Therefore, surface-to-ambient thermal radiation is considered for those surfaces using Equation 

(2.20). For all the surfaces of the heating elements that are in contact with the air, Newton’s law 

of cooling with constant heat transfer coefficient is applied using Equation (2.15), where ℎ is an 

uncertain parameter. 

The heat transfer mechanisms considered in the model are surface-to-surface radiation, 

conduction, and Newton’s law of cooling. For the simplicity in building the geometry, the wire is 

approximated as a square rod, rather than a cylinder. We assume that two sides of the wire are in 

perfect contact with the grooves, and thus heat conduction is applied for these boundaries. The 

remaining two sides of the wire that are not in contact with the grooves radiate heat to the heating 

elements and the sample. We assume that the quartz capillary is transparent to radiation and that 

heat conduction between the sample and the quartz capillary is poor; therefore, the capillary is 

omitted in the model. We also omit the sample holder from the simulation geometry because it is 

not in direct contact with the sample but rather it is separated from the sample by the capillary. 

7.3.3 Parameterization of the heat-transfer model 

The simulated sample temperature values are averaged along the direction of the X-ray 

beam, which is along the y-direction in Figure 7.6(b). We manually tune the uncertain parameters 
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such that the resulting simulated temperature profile matches that obtained in the experiment with 

Mark 1 furnace. The parameters are summarized in Table 7.3. The simulated temperature profile 

with optimized parameters, is shown in Figure 7.7, along with the temperatures measured in the 

experiment. As can be seen in the figure, the thermal profile predicted by the heat transfer model 

is in good agreement with the experimentally measured thermal profiles. 

 

Figure 7.7. The simulated (red) and experimental (blue) temperature profiles. The edges of the 
heating elements are indicated by the vertical dashed lines. Reproduced with permission [27]. 
Copyright 2020, International Union of Crystallography. 

7.3.4 Controlling the temperature profile 

The temperature range spanned by the gradient heater depends on the degree to which the 

wire spacing varies across the heater. A larger variation in the wire spacing corresponds to a greater 

temperature range for the same maximum temperature. Three simulations were conducted to 

examine the temperature profile when the resistive wires are configured in differently, as shown 

in Figure 7.8. The heating element for Mark 2A has a smaller variation in the wire spacing (with 

a maximum distance, D of 6.7 mm between the centers of two grooves) than that for Mark 2B (D 
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= 8.2 mm), followed by Mark 2C (D = 11.4 mm). The minimum distance between the centers of 

two grooves for the three heating elements are identical. The simulation suggests that a greater 

temperature span can be achieved with a larger variation in the wire spacing.  

 

Figure 7.8. The simulated temperature profiles of the sample between two heating elements with 
various winding configurations. Reproduced with permission [27]. Copyright 2020, International 
Union of Crystallography. 

Simulations were then undertaken to explore the impact of the ceramic bar width on the 

temperature profile. The simulated temperature profiles, as shown in Figure 7.9, suggests that a 

wider surface of ceramic bar affords a smoother, more uniform, temperature profile along the 

sample. This effect is likely due to a smoother temperature profile along the centerline of the 

surface of the ceramic bar facing the sample afforded by the greater distance from the sides of the 

ceramic bar where heat loss occurs.  
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Figure 7.9. The simulated temperature profiles of the sample between two heating elements with 
different widths of the heating elements (Mark 2C). Reproduced with permission [27]. Copyright 
2020, International Union of Crystallography. 

 
We examined the temperature profile of the sample when the sample is offset from the 

center of the gradient heater (see Figure 7.10). Offsets up to 1 mm results in negligible change in 

the temperature profile. This offset is much larger than the error in alignment permitted by the cell 

design, demonstrating that small misalignment would not alter the temperature profile of the 

sample. By contrast, temperature errors of tens of degrees were observed when the capillary is 

offset by 3 mm (i.e., within 1 mm of the edge of the ceramic bar). This reflects the benefits of the 

wide ceramic bar with a rectangular cross section for more robust temperature control.  

 
Figure 7.10. The effect of sample being offset in the y-direction (Mark 2A). Reproduced with 
permission [27]. Copyright 2020, International Union of Crystallography. 
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Table 7.3. The parameters employed in the simulation, as well as their literature values and sources 
where available, are presented. The temperatures associated with the literature values ranged from 
20°C to 1000°C, which are provided along with parameter values. Reproduced with permission 
[27]. Copyright 2020, International Union of Crystallography. 

 

Parameters 
Values 
employed in 
the model  

Units Source Range of values  

Ceramic bars  

Heat capacity 7.75 × 102 J / (kg · K) Literature* 

7.75 × 102 (@25 °C, 
Al2O3) – 1.27 × 103 
(@976.85 °C, Al2O3) 
[210] 

Thermal 
conductivity 0.55 W / (m · K) Fitting 

0.1 (@ 298.15 °C, 
Al2O3) [211] – 2.0 
(@726.85 °C, silica) [212] 

Density 1.2 × 103 kg / m3 Experiment 1.2 × 103 
Surface 
emissivity 0.3 -- Fitting 0.2 (oxidized aluminum) 

– 0.79 (silica) [213] 
Heat transfer 
coefficient 33 W / (m2 · K) Fitting 0.5 – 103 [214] 

For parameterization 
Length 38.7 mm Experiment 38.7 
Width 3.6 mm Experiment 3.6 
Depth 8.4 mm Experiment 8.4 
For Mark 2A, 2B, and 2C 
Length 53 mm -- -- 
Width 3.5 mm -- -- 
Depth 8.5 mm -- -- 
Heating wires 

Heat capacity 4.6 × 102 J / (kg · K) Literature* 
4.6 × 102 (@20 °C) – 
7.2 × 102 (@1000 °C) 
[215] 

Thermal 
conductivity 20 W / (m · K) Fitting 11 (@50 °C) – 26 

(@1000 °C) [215] 
Density 7.1 × 103 kg / m3 Literature 7.1 × 103 [215] 
Surface 
emissivity 0.7 -- Literature 0.7 [215] 

 
* The lower bound from the literature is selected. 
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Electrical 
conductivity Interpolation* S / m Literature 

6.63 × 105 (@1000 °C) 
– 6.90 × 105 (@20 °C) 
[215] 

Cross-sectional 
area 8 × 10-2 mm2 Literature 8 × 10-2 [216] 

Heat transfer 
coefficient 33 W / (m2 · K) Fitting 0.5 – 103 [214] 

Applied voltage 
(for 
parameterization) 

16 V Experiment† 16 – 19 

Applied voltage 
(for Mark 2A) 14.95 V -- -- 

Applied voltage 
(for Mark 2B) 13 V -- -- 

Applied voltage 
(for Mark 2C in 
Figure 7.10(a)) 

10.85 V -- -- 

Applied voltage 
(for Mark 2C, 
original width in 
Figure 7.10(b)) 

16 V -- -- 

Applied voltage 
(for Mark 2C, 
doubled width in 
Figure 7.10(b)) 

24 V -- -- 

Applied voltage 
(for Mark 2C, 
half width in 
Figure 7.10(b)) 

12.6 V -- -- 

NaCl/Si mixture sample powder  

Heat capacity 8.6 ´ 102 J / (kg · K) Literature* 
8.6 ´ 102 (@31.25 °C, 
NaCl) – 1.0 ´ 103 
(@499.35 °C, NaCl) [217] 

Thermal 
conductivity 0.35 W / (m · K) Fitting 

0.13 (@26.85 °C, NaCl) 
[218] – 1.56 ´ 102 
(@26.85 °C, Si) [219] 

Density 2.17 ´ 103 kg / m3 Literature* 2.17 ´ 103 (NaCl) [220] – 
2.32 ´ 103 (Si) [221] 

Surface 
emissivity 0.45 -- Fitting 

0.1 (@269.85 °C, Si) – 
0.7 (@599.85 °C, Si) 
[222,223] 

 
* The temperature-dependent electrical conductivity in our model is interpolated using piecewise cubic functions 
based on the data in the literature. 
† The lower bound from the experimental values is selected. 
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Radius 0.45 mm Experiment -- 
Distance between 
surfaces of two 
heating elements 
that face each 
other 

6.35 mm Experiment -- 

Length (for 
parameterization) 50 mm Estimated* -- 

Length (for Mark 
2A, 2B, and 2C) 60 mm -- -- 

 

7.3.5 Conclusion for gradient-heater modeling 

We presented a coupled heat transfer and Joule heating model to predict the temperature 

profiles within a sample that is heated by a recently proposed gradient heater. The model considers 

the resistive heating of the wires, the heat transfer due to thermal conduction and surface-to-surface 

radiation, as well as the heat loss due to natural air convection and surface-to-ambient radiation. 

We show that the model accurately reproduces the thermal profiles for a NaCl/Si sample heated 

by a Mark 1 furnace after parameterizing the model. Moreover, we examined the effect of winding 

configuration, ceramic bar width, and sample position on the resulting temperature profiles, using 

the parameterized model. Specifically, we found that (1) a larger variation in the wire spacing 

yields a greater temperature span, that (2) a wider surface of ceramic bar affords a smoother and 

more uniform temperature profile, and that (3) offsets of the sample from the center of the gradient 

heater up to 1 mm results in negligible change in the temperature profile. By leveraging the 

machine learning algorithm, this model can also be used to efficiently and effectively determine 

the groove spacing required to generate a targeted temperature gradient. 

 

 
* The length of the sample was measured in comparison with the heating elements; the length value does not 
influence the resulting thermal profile if it is longer than the heating elements.  
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Chapter 8 Phase-Field Crystal Modeling of Two-Dimensional Materials 

8.1 Introduction 

Due to their promising technological applications, interest in research and development of 

2D materials has grown in recent years [224-226]. Graphene-based materials are already starting 

to appear in products such as batteries, headphones, and sports equipment. While research have 

primarily focused on experimental synthesis and characterization of these materials [227-230], 

there has also been computational modeling aimed at understanding and controlling the 

mechanisms that influence the formation of defects during their synthesis [231,232]. Considering 

the typical length scales and time scales involved in this process, the phase-field crystal (PFC) 

model [233-235] is a promising alternative to traditional atomistic models for examining defect 

formation and evolution. This approach has advantages over molecular dynamics simulations, 

which is limited in both the spatial and temporal scales that can be simulated. It also presents an 

advantage over traditional phase-field models because it retains atomic features, such as crystalline 

lattices and defects. Furthermore, the PFC model allows for a systematic coarse-graining approach 

based on the so-called amplitude expansion method, enabling simulations of larger systems. 

Existing applications of PFC and amplitude expansion methods include studies of pre-melting of 

grain boundaries [236,237], dislocation dynamics [237-239], glass formation [240-242], order-

disorder phase transitions [243], and structural transformations in binary and ternary alloys [244]. 

The PFC approach has already been applied to 2D materials. Most studies so far have 

focused on graphene, the first 2D material that was successfully synthesized and is known to 

possess high tensile strength and excellent thermal and electrical conductivities [245-248]. In 
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addition, the PFC model variant required to simulate graphene is relatively simple since it involves 

only one component. Different approaches have been developed to simulate the honeycomb 

structure of graphene with the PFC and amplitude expansion models [249-252]. In Ref. [252], 

Hirvonen et al. performed a comparison of the types of defects and their energies in these models. 

They compared these results with molecular dynamics (MD) and quantum-mechanical density 

functional theory (DFT) calculations. In other studies, amplitude expansion [250,253,254] models 

have been applied to examine the patterns that arise from interactions of 2D films with a substrate. 

Other applications of the PFC and amplitude models to 2D materials can be found in Refs. [255-

260]. However, all of these models are implemented in a 2D computational domain with two 

coordinates corresponding to those in the plane of the 2D material, and three-dimensional effects 

are either ignored or accounted for in an indirect manner. For instance, in Ref. [250], interactions 

between a 2D material and the substrate are modeled via an external effective potential in the PFC 

free energy. Additionally, experimental and computational observations of out-of-plane buckling 

near defects [232,261-264] cannot be described by simulations confined in a flat 2D computational 

domain. Some PFC models [265-269] have been developed to describe particles confined in 

curved 2D domains. However, these models require simultaneously solving for the PFC order 

parameter and the phase field that describes the surface. More recently, Elder et al. introduced a 

PFC model [270] capable of describing out-of-plane deformations in single and multilayer systems 

using a single-valued field that represents local height with respect to a reference plane. This model 

has been applied to describe buckling in stacked layers of graphene and hBN [270], out-of-plane 

fluctuations in free-standing graphene [271,272] and out-of-plane deformations for hBN and 

graphene/hBN bilayers [273]. This approach, however, does not directly represent atoms in a 

three-dimensional space, which would be required for studying the mechanical behavior of 2D 
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materials with more complex structures, such as MoS2 in which the atoms are not all in the same 

plane. 

Inducing a periodic structure that is confined in the third dimension is challenging within 

the framework of existing PFC models. Atomic periodicity in traditional PFC models is achieved 

by including interaction terms in the free energy. These terms can be expressed either as a 

convolution of a two-point correlation function with the order parameter [274,275] or as an 

expansion of this convolution in powers of the gradient of the order parameter [235,249]. This type 

of free energy is traditionally formulated such that it is minimized by either a homogeneous state 

(a state in which the order parameter is constant throughout the system) or a periodic (crystalline) 

state that extends in all directions of the system, neither of which is confined within a lower-

dimensional layer. Therefore, in this chapter, we introduce a PFC free energy that includes a 

confining term in the correlation function, allowing for the description of two-dimensional 

materials in three dimensions. 

8.2 Method 

8.2.1 Free energy 

We start with the general expression for the free energy of the PFC model that includes up 

to pair-wise interactions, which is given by [235]: 

𝐹(𝑛) = i m
𝑛"

2 − 𝜂
𝑛.

6 + 𝜉
𝑛5

12n𝑑𝒓g
−
1
2i 𝑛(𝒓)i𝐶"(𝒓 − 𝒓C)𝑛(𝒓C)𝑑𝒓C𝑑𝒓,

gg
 (8.1) 

 

where 𝑛 is an order parameter defined as 𝑛 = (𝜌 − 𝜌0)/𝜌0, i.e., a density rescaled with respect to 

a reference density, 𝜌0. We take 𝜂 = 𝜉 = 1, which arises from the Taylor expansion of the free 

energy in the classical density functional theory [235]. The first integral in Equation (8.1) 

represents an ideal contribution, while the second integral represents the contribution from two-
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body interactions. The function 𝐶" is the two-point correlation function, which determines the 

crystal structure that minimizes the free energy, i.e., the equilibrium structure. Our approach is to 

design this correlation function to energetically favor confinement in one of the directions and 

periodicity in the other two directions.  

8.2.2 Two-point correlation function 

We define a two-point correlation function in reciprocal space that contains two 

contributions: (1) an isotropic contribution that sets the main interplanar spacing and, (2) an 

anisotropic contribution that energetically promotes confinement. Hereafter, we designate the z-

axis to be parallel to the direction of confinement (i.e., the z-direction). This direction is 

perpendicular to the plane in which the atomic density is confined. We define the Fourier transform 

of this two-point correlation function as 

𝐶7"(𝐤) = maxº𝐶7",;(𝐤), 𝐶7",j(𝐤)», (8.2)  

with 𝐶7",; and 𝐶7",j given by 

𝐶7",;(𝐤) = 𝐶7",;(𝑘) = 𝐴; expm−
(𝑘 − 𝑘0)"

2σ;"
n (8.3) 

 

and 

𝐶7",j(𝐤) = 𝐴j exp m−
𝑘"

2σj"
n exp m−

𝜃"

2σ¤"
n. (8.4) 

 

The term 𝐶7",;, a “periodic” contribution, is a simple Gaussian peak around the wavenumber 𝑘0, 

which energetically favors a crystal structure with main interplanar spacing 𝜆0 = 2𝜋/𝑘0. This 

form of the correlation function is utilized in the single-peaked XPFC model [275], which yields 

a triangular structure in 2D and a bcc structure in 3D. The proposed term, 𝐶7",j , a “confining” 

contribution, consists of two factors: 1) an isotropic Gaussian function centered at 𝑘 = 0, and 2) 

an angular envelope that maximizes 𝐶7",j along the z-axis. In Equations (8.3) and (8.4), 𝑘 is the 
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magnitude of the wave vector, 𝒌, 𝜃 is the smallest angle between 𝒌 and the z-axis, 𝜎; and 𝜎j are 

the widths of the periodic and confining Gaussian peaks, respectively, and 𝜎¤ is the width of the 

Gaussian function that defines the angular envelope for the confining contribution. Finally, 𝐴; and 

𝐴j are the heights of the periodic and confining Gaussian peaks, respectively. Figure 8.1(a) and 

(b) show plots of 𝐶7"(𝐤) for two- and three-dimensional systems, respectively, using the set of 

parameters defined in Table 8.1.  

 

Figure 8.1. Plots for the two-point correlation functions in reciprocal space. (a) The correlation 
function in 2D. (b) The 2D plot of the 3D correlation function on the 𝑘2 − 𝑘3  plane. The 
correlation function features cylindrical symmetry. 
 

Table 8.1. Parameters for the two-point correlation function in 2D and 3D. 

Parameter 2D 3D 

𝑘0 2𝜋 4𝜋/√3 

𝐴; 1.15 1.15 

𝜎; 3𝜋/5 6𝜋/(5√3) 

𝐴j 1.0 1.0 

𝜎j 16.0 16.0 

𝜎¤ 𝜋/3 𝜋/2 
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For all calculations, we select the lattice constant, 𝑎0, defined as the triangle edge length, 

as the unit length. With the appropriate choice of parameters, the correlation function defined by 

Eq. (8.2) energetically favors a phase that is periodic along one Cartesian direction in 2D or two 

Cartesian directions in 3D but is confined in the remaining direction. It is important to note that 

for the three-dimensional case, 𝐶7"(𝒌)  is only anisotropic in the z-direction. Therefore, no 

particular orientation in the x-y plane is energetically favored. As we show below, 𝐶7"(𝒌) yields a 

single 1D layer of atom-like bumps in a two-dimensional system and a single 2D layer in three-

dimensional system. We also show that a buckled layer can be made more stable than a flat layer 

with the appropriate choice of the initial conditions and system size in one Cartesian direction 

perpendicular to the z-direction to induce in-plane compressive stress. This buckling occurs as a 

mechanism for energy relaxation with respect to the flat state. The isotropic part of the two-point 

correlation function energetically favors an equilibrium interatomic spacing that cannot be 

satisfied whenever a flat layer is compressed, creating strain. Therefore, by buckling, the layer can 

attain interatomic spacing that is closer to the equilibrium value, thereby lowering the strain 

energy.  

 

8.2.3 Dynamics 

In this work, we refer to a state after relaxation as a stationary state because it can either 

correspond to an equilibrium state or a metastable state. To obtain the stationary state (i.e., an 

equilibrium state or a metastable state) from a given initial configuration, we evolve the system 

under globally conserved dynamics. While this dynamics will not necessarily predict the path of 

the evolution correctly, it is numerically more efficient than locally conserved dynamics and 
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captures the equilibrium state accurately. The governing equation for globally conserved dynamics 

is given by 

𝜕𝑛
𝜕𝑡 = −𝑀m

𝛿𝐹
𝛿𝑛 −

1
𝑉i

𝛿𝐹
𝛿𝑛g

𝑑𝐫n, (8.5) 
 

where  is the variational derivative of the free energy defined in Equation (8.1), given by 

δ𝐹
δ𝑛 = 𝑛 −

𝜂
2𝑛

" +
𝜉
3𝑛

. − 𝐶" ∗ 𝑛, (8.6)  

and 𝐶" ∗ 𝑛  indicates the convolution between 𝐶"  and	𝑛 . The globally conserved dynamics of 

Equation (8.5) ensures that the average order parameter, 𝑛0 , remains constant throughout the 

simulation. 

8.2.4 Initial conditions 

In this section, we discuss the choice of initial conditions for 2D and 3D simulations. The 

values of the parameters chosen for the equations describing each initial condition are summarized 

in Table 8.2. 

Table 8.2. Parameters for the initial conditions in 2D and 3D, and reference energy (last row) for 
all of the cases considered. 

Parameters 2D Unstrained 2D Compressed 3D Unstrained 3D Compressed 
𝑁2 17 17 17 17 
𝑁� N/A N/A 4 4 
Δ𝑥 0.0266 0.0256 0.05 0.05 
Δ𝑦 0.0250 0.0250 0.0495 0.0495 
Δ𝑧 N/A N/A 0.05 0.05 
𝐵/Q/> 1.7 1.7 1.7 1.7 
𝜎 1/4 1/4 1/4 1/4 
𝑛0 −0.35 −0.33 −0.39 −0.36 
𝐵y 0.7 0.1 0.7 0.1 
𝜖2 0 −3.53% 0 −4.71% 
𝐹0 9.47191 8.059327 82.7890 66.4224 

 

δF /δn
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We begin by defining 𝒓∥ as any direction parallel to the plane of confinement. We denote 

𝐿2, 𝐿�, and 𝐿3 as the system size along the x-, y-, and z-directions, respectively, and Δ𝑥, Δ𝑦, and 

Δ𝑧 as the grid spacing along the x-, y-, and z-directions, respectively. The dimensions of the 

conventional unit cell for a triangular lattice are  𝑎2 = 𝑎0 and 𝑎� = √3𝑎0. We define 𝑁2 as the 

number of units 𝑎2 along the x-direction and 𝑁� as the number of units 𝑎� along the y-direction. 

For all systems considered (in 2D and 3D), we employ the following expression to describe the 

initial (unnormalized) order parameter profile corresponding to a single layer of monoatomic 

thickness: 

𝑛/Q/>k (𝐫) = 𝐵/Q/>𝐸(𝑧)𝑃(𝐫∥), (8.7)  

where 𝐵/Q/>  is a positive constant. The term 𝐸(𝑧) is a Gaussian envelope to confine the order 

parameter along the 𝑧-direction. We define this envelope as 

𝐸(𝑧) = exp À−
1
2σ"

[𝑧 − α(𝑥)]"Ø, (8.8)  

where 𝜎 is the width of the Gaussian envelope. The function 𝛼(𝑥) is the position of the center of 

atoms. If 𝛼(𝑥) is set to a constant value, the initial layer is flat, while a nonuniform 𝛼(𝑥) yields a 

perturbation from the flat state. For all of the perturbed initial conditions, we choose a sinusoid 

along the x-direction. The wavelength of this perturbation is chosen to be 𝐿2, i.e., the system size 

in the x-direction. Thus, α(𝑥) can be written as 

α(𝑥) =
𝐿3
2 + 𝐵� 𝑠𝑖𝑛 I

2π
𝐿2
𝑥J , (8.9)  

where 𝐵� is the amplitude of the perturbation, and 𝐿3 is the system size along the z-direction. Note 

that the constant 𝐿3/2 centers the monolayer in the midpoint of the computational domain along 

the z-direction. In the cases where the system is strained along the x-direction, 𝐿2 depends on 𝑁2, 

𝑎2, and the strain, 𝜖2, in the following manner: 
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𝜖2 =
𝐿2 − 𝑁2𝑎2
𝑁2𝑎2

 (8.10)  

or 

𝐿2 = (𝜖2 + 1)𝑁2𝑎2 . (8.11)  

The term 𝑃(𝒓∥) in Equation (8.7) sets the initial atomic periodicity along 𝒓∥. For a 1D layer in a 

2D system, where 𝒓∥ = 𝑥, the periodic contribution is defined as 

𝑃(𝑥) = cos(𝑘0𝑥) =
1
2 +

1
2 cos m

2𝜋
λ;
𝑥n , (8.12) 

 

where λ; is the interplanar distance. For a 2D layer in a 3D system, where 𝒓∥ = (𝑥, 𝑦), the periodic 

contribution is chosen to represent a triangular lattice. For this lattice structure, the system 

dimensions along the x- and y-directions must satisfy Equation (8.11) and 𝐿� = 𝑁�𝑎�. We employ 

a one-mode approximation to represent the triangular lattice structure: 

𝑃(𝐫∥) =
1
3 +

2
9
[cos(𝒌𝟏 ⋅ 𝒓∥) + cos(𝒌𝟐 ⋅ 𝒓∥) + cos(𝒌𝟑 ⋅ 𝒓∥)], (8.13)  

where 𝒌𝟏 = (0,1)𝒌𝟎 , 𝒌𝟐 = Ý √.
"(ª8:!)

, − !
"
Þ𝒌𝟎 , and 𝒌𝟑 = Ý− √.

"(ª8:!)
, − !

"
Þ𝒌𝟎 . The factor 𝟏

ª8:!
 is 

employed to adjust the lattice spacing to accommodate all atoms in the compressed system. In each 

instance, the initial order parameter defined in Equation (8.7) must be normalized such that its 

average is equal to average order parameter value, 𝑛0. The normalized order parameter is thus 

calculated as 

𝑛/Q/>(𝐫) = 𝑛/Q/>k (𝐫) − ⟨𝑛/Q/>k (𝐫)⟩+ 𝑛0, (8.14)  

where the angular brackets, 〈⋯ 〉, denote spatial averaging.  

8.3 Results and discussions 

We summarize the results of the relaxation via Equation (8.5) of an initially perturbed 

planar layer of monoatomic thickness within a computational domain in two and three dimensions. 
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For each case, we examine two systems of different sizes. First, we consider a system with size 

that is selected to yield a stationary (i.e., corresponding to a local energy minimum) unstrained flat 

layer. Hereafter, we refer to a system of this type as “unstrained.” Second, we consider a system 

that is shorter in one direction (set as the x-direction) than the unstrained system. We refer to a 

system of this type as “compressed.”  

For each simulation, regardless of whether the system is unstrained or compressed, we 

found that a flat periodic state is always obtained after relaxation from unperturbed initial 

conditions (𝐵y = 0). This is due to the fact that the flat periodic state is in either metastable or 

unstable equilibrium. Thus, in order to obtain a buckled state, an out-of-plane perturbation with 

amplitude 𝐵y > 0 must be imposed as the initial condition. Whenever a buckled state is found 

after relaxation, we calculate the relative energy of this state with respect to a reference, Δ𝐹A =

𝐹A − 𝐹0. We take the reference energy, 𝐹0, to be that of a homogeneous state with a constant order 

parameter equal to 𝑛0 throughout the system. This energy depends on 𝑛0 and the system size. The 

values of 𝐹0 for all cases are reported in Table 8.2. We also evaluate the corresponding relative 

energy of the flat periodic state obtained from unperturbed initial conditions, Δ𝐹m = 𝐹m − 𝐹0 with 

respect to the same reference. The two relative energies, Δ𝐹A and Δ𝐹m, are then compared to each 

other to confirm whether the buckled periodic state (obtained from the initially perturbed layer) is 

truly energetically preferred over the flat periodic state. 

We first consider the two-dimensional relaxation of an unstrained system. The initial 

condition for this case has a relatively large sinusoidal perturbation (see Figure 8.2(a)). As shown 

in Figure 8.2(b), the state obtained after relaxation is a flat layer of atoms elongated in the z-

direction. For the stationary flat periodic state obtained after relaxation of the initial condition 

depicted in Figure 8.2(a), the calculated relative energy is Δ𝐹m ≃ 3.669 × 107". Note that the sign 
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of 𝛥𝐹 indicates the relative stability as compared to the homogeneous state. In this case, since 

𝛥𝐹m > 0, the relaxed flat periodic state is not the equilibrium state (the state with the absolute 

minimum energy) of the system; rather, the homogeneous state (in which the order parameter is 

uniform throughout the system) has a lower energy. Indeed, we have observed that the system does 

not evolve to the flat periodic state when initial conditions are not sufficiently near the flat periodic 

state. However, we have observed that the flat periodic state, although strictly not in equilibrium, 

has a high range of metastability and remains stable against relatively large perturbations.  

 

Figure 8.2. Relaxation of 2D systems into flat and buckled 1D monolayers. (a) Initial condition in 
unstrained system. (b) Stationary flat layer after relaxation. (c) Initial condition in compressed 
system. (d) Stationary buckled layer after relaxation. 
 

We then consider the relaxation of a compressed system. The initial condition, shown in 

Figure 8.2(c), was set to a similar sinusoidal perturbation as the one for the unstrained system, but 

with a smaller amplitude. In this case, the stationary state obtained after relaxation is a buckled 

layer of atoms, as shown in Figure 8.2(d). The relative energy of the stationary buckled periodic 
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state with respect to the reference, is Δ𝐹A ≃ −1.692 × 107.. The relative energy of a stationary 

flat periodic state is Δ𝐹m ≃ 2.873 × 107.. Given that 𝛥𝐹A < 𝛥𝐹m , the buckled periodic state is 

energetically preferred over the flat periodic state.   

We apply the same approach to model a 2D monolayer of atoms in a 3D computational 

domain. The procedure described above is followed to obtain stationary flat and buckled states and 

evaluate their energies. We first consider the relaxation of an unstrained system in 3D. The initial 

condition for this case has a relatively large sinusoidal perturbation. The stationary state after 

relaxation is a flat monolayer of triangular structure with elongated atoms, as shown in Figure 

8.3(a). The relative energy for the stationary flat triangular layer is 𝛥𝐹m ≃ 0.1182. As with the 

unstrained 2D case, this energy is positive, which indicates that the flat triangular layer does not 

correspond to the equilibrium state. However, we also confirmed that this state remains stable 

against small perturbations. 

 

Figure 8.3. Relaxation of 3D systems into flat and buckled 2D monolayers. (a) Stationary flat 
layer after relaxation of a perturbed unstrained system. (b) Stationary buckled layer after relaxation 
of a perturbed compressed system. 

 

The last case we consider is the relaxation of a compressed system in 3D. The initial 

condition for this case has a relatively small sinusoidal perturbation. Figure 8.3(b) shows the 
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stationary state after relaxation, which corresponds to a buckled layer of triangular structure. The 

relative energy of the stationary buckled state is 𝛥𝐹A ≃ −0.8017. The relative energy of the 

stationary flat triangular state, obtained via the relaxation of a flat initial condition is 𝛥𝐹m ≃

−0.6532, which is higher than that of the buckled state. Therefore, as with the 2D case, the buckled 

triangular state is energetically preferred over the flat triangular state.  

8.4 Preliminary work on model validation 

To examine the mechanical behavior of the monolayer (i.e., out-of-plane deformation vs. 

uniaxial compressive strain), we perform the 3D simulation using the PFC model for a set of strain 

values within the range [-0.06, 0], with a step size of 0.0025. We identify the amplitude of the 

resulting sinusoidal out-of-plane displacement as a function of the magnitude of the strain, 

following the procedures detailed below. First, we utilize the function “imregionalmax” in 

MATLAB® to determine the positions of the peak values in the order parameter. For each peak, a 

5 × 5 × 5 region is extracted to fit the order parameter values using a second-order polynomial of 

𝑥, 𝑦, and 𝑧, which is used to determine the more precise value of the peak position. We then 

average all the peak positions in the	𝑥-𝑧 plane for the peaks aligned along the 𝑦 direction. To do 

so, for the peaks that are within 0.01 from each other in the 𝑥 and 𝑧 directions, we average the 

values of 𝑥 and 𝑧 positions, which yields 𝑧 positions as a function of 𝑥. We select four points 

having the largest 𝑧  values and fit a second-order polynomial of 𝑥  to identify the largest 

displacement of the layer in the positive 𝑧  direction. Similarly, we fit four points having the 

smallest value of 𝑧 to obtain the largest displacement in the negative 𝑧 direction. Finally, the 

amplitude of the out-of-plane displacement is estimated to be a half of the difference between the 

maximum and minimum z values determined above. The amplitude as a function of the magnitude 

of the strain is shown by the black curve in Figure 8.4. It is worth noting that no apparent out-of-
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plane deformation is observed until the magnitude of the strain reaches a transition threshold at 

approximately 0.01 and that the amplitude of the displacement monotonically increases as the 

magnitude of the strain continues to increase.  

To confirm that the buckling behavior observed in Figure 8.4 is expected, rather than a 

model artifact, we utilize the plate module in COMSOL Multiphysics® software [89] to calculate 

the relationship between the amplitude of the out-of-plane displacement and the magnitude of the 

compressive strain for a thin graphene-like plate as a benchmark. The Young’s modulus and 

Poisson’ ratio are reported to be 1 TPa [276] and 0.19 [277], respectively, which are used in the 

calculation but do not affect the results presented below. To construct the domain similar to that 

of the PFC monolayer, we set the size of the thin plate in terms of the hexagonal edge length 

(equivalent to the triangle edge length in the PFC simulations and therefore denoted by 𝑎0), which 

is reported to be ~1.4 Å [278] for graphene. The length (along 𝑥), 𝐿, width (along 𝑦), 𝑊, and the 

thickness (along 𝑧), 𝑑, of the plate are set to 17𝑎0, 4√3𝑎0, and 𝑎0, respectively. The thickness 

here is taken to be the same as the hexagonal edge length for simplicity, but it should be noted that 

this value is smaller than the range for the measured thickness of graphene monolayer in literature 

[279]. The compressive strain, 𝜖2 , is imposed by fixing one side of the plate along the length 

direction and prescribing a displacement of 17𝜖2𝑎0 on the other side. The stationary structure of 

the plate is obtained by solving  

∇ ⋅ (𝐹𝑆)= + 𝑭g + 6(𝑴g × 𝒏)
𝑧
𝑑 = 0, (8.15)  

where 𝐹 is the deformation gradient, 𝑆 is the second Piola-Kirchhoff stress tensor, 𝑭g is the body 

force with respect to the undeformed volume, 𝑴g is the total reaction moment, 𝒏 is the unit normal 

vector, and 𝑧 is the local coordinate along the thickness direction. We note that the value of 𝑎0 
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does not alter the results as long as the ratio between the plate thickness and the plate length (in 

the direction of the uniaxial strain) are maintained.  

With this plate model, the amplitude of the out-of-plane displacement, scaled by the 

thickness of the plate, can be calculated as a function of the magnitude of the compressive strain, 

which is shown by the blue curve in Figure 8.4. A transition from the flat state to the buckled state 

is observed around 0.01 in the strain magnitude (between 0.01 and 0.0125). The PFC result is in 

close agreement with the plate model in term of the threshold value (around 0.01). However, the 

amplitude of the out-of-plane displacement is overestimated by the PFC model beyond the 

transition to the buckled state. This disagreement may be attributed to the fact that the PFC model 

exhibit thickening of the monolayer (each peak elongates in the out-of-plane direction), making 

the effective thickness of the monolayer to be greater than 𝑎0 (triangular edge length). However, 

in plotting Figure 8.4, we have assumed that the thickness is equal to 𝑎0. If a larger value of 𝑑	was 

employed in scaling, the result would be smaller than the values presented in Figure 8.4. Further 

investigation is required to understand the discrepancy in the amplitude of the out-of-plane 

displacement.   

 

Figure 8.4. The amplitude of the out-of-plane displacement, scaled by the plate thickness, as a 
function of the magnitude of the compressive strain. The curves in black and blue indicate the data 
obtained by the PFC model and the plate model, respectively.  
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8.5 Conclusions 

We have introduced a new phase-field crystal model capable of stabilizing single layers in 

2D and 3D. We have demonstrated how this approach can simulate layers that buckle as a 

mechanism for energy relaxation in compressed systems. Through careful parameterization and 

further refinement, this model could become a powerful tool to study other three-dimensional 

effects in 2D materials, such as buckling around defects formed at grain boundaries and effects 

associated with a 2D layer interacting with a substrate. Moreover, by adding an additional order 

parameter, the model can be readily extended to simulate binary materials, such as hBN. However, 

more work is required in order to construct a PFC model for 2D materials with quantitative 

predictability, including material-specific parameterization for various 2D materials,  
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Chapter 9 Summary and Future Work 

9.1 Summary 

In this dissertation, a set of computational models were applied to describe solid-state 

metathesis (SSM) reactions, stored-energy-driven grain growth, and heat transfer in furnaces. 

These predictive models enable a better understanding of the phase evolution during the SSM 

reactions, microstructure evolution within a polycrystalline sample undergoing cyclic heat 

treatment, as well as the thermal profiles of the sample within the furnaces, facilitating precisely 

controlled materials synthesis and processing.  

In Chapter 3, a phase-field model was developed to track the evolution of mole fractions 

and phase fractions in diffusion-limited solid-state metathesis reactions [153]. The constraints of 

mass conservation and charge neutrality was imposed by utilizing Lagrange multipliers. A method 

was presented to link the mobility of the ionic species to their corresponding diffusion coefficients 

in the SSM reactions. Additionally, the coupling of the phase-field model with the smoothed 

boundary method was discussed, which allows for the boundary condition to be imposed on an 

arbitrarily shaped boundary.  

The applications of the above-mentioned phase-field model were described in Chapter 4. 

First, the phase-field model was utilized to study the effect of mobilities of ions on the reaction 

dynamics. The simulations show that the type of ions (i.e., cations or anions) with a larger effective 

mobility dominate the diffusion process. An overall characteristic mobility was formulated, which 

was found to set the rate of the reaction process [153]. Second, the model was employed to simulate 

a thin-film reaction for the synthesis of FeS2. The nonplanar evolution reaction front observed in 
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the simulation is consistent with the experimental observations by McAuliffe et al. [145]. Next, 

the phase-field simulations were leveraged along with a lattice model to estimate the reaction rates 

for densified and undensified samples. More reactive neighbors were predicted for each particle 

in a densified sample, which resulted in a faster reaction [146].  

In Chapter 5, a phase-field model was presented to describe the microstructure evolution 

within polycrystalline samples undergoing cyclic heat treatment. This model considers both the 

capillary driving force and the driving force due to the stored energy arising from the formation of 

dislocations during non-isothermal annealing [24]. A distinct yet uniform dislocation density was 

assigned to each grain. Simulations suggest that a few grains with a medium dislocation density 

consume their adjacent grains with a higher dislocation density and at the same time are consumed 

by other adjacent grains with a lower dislocation density, leading to the phenomena of grain 

translation [24]. This observation provides an explanation for the macroscopic translation of grain 

centers observed in the experiment [24]. In addition, the driving force due to the stored energy was 

found to decrease over time, which indicates that cyclic heat treatment is necessary to induce 

continuous abnormal grain growth [24]. 

In Chapter 6, the above-mentioned phase-field model was extended to allow for describing 

a spatially varying dislocation density within each grain. The dislocation density of a grain was 

assumed to decay exponentially when it consumes neighboring grains, until a baseline dislocation 

density was reached. Two sets of simulations were conducted. In the first simulation, the initial 

microstructure and dislocation density were inferred from the experimental measurements of a 

region that was confined within a nearly static boundary in the experimental dataset [280]. The 

predicted microstructure evolution within this region was found to closely resemble the 

experimental observations. A set of large-scale simulations were then conducted to explore the 
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effect of the cyclic heat treatment on the microstructure evolution. A bimodal distribution of grain 

sizes was observed after the dislocations were injected three times into the microstructure, 

indicating that multiple cycles of heat treatment provide a few grains with sufficient driving force 

to grow abnormally [280]. 

In Chapter 7, two heat transfer models were presented. The first heat transfer model was 

implemented to the temperature distribution within a sample in an optical floating zone (OFZ) 

experiment. The model was parameterized using a machine learning algorithm for this purpose 

[101]. The parameterized OFZ model accurately reproduced the experimentally measured steady-

state thermal profiles, as well as time-dependent behavior of temperature profiles. This model 

could be employed to predict thermal profiles of a sample as a function of time and position and 

thus facilitates the understanding of the thermal environment in an OFZ experiment and ultimately 

guides the experimental design. The second heat transfer model was designed for a gradient heater, 

which produces a temperature gradient within a sample to facilitate the study of temperature-

dependent behavior. The parameterized model accurately reproduced the thermal profiles of a 

NaCl/Si sample measured in the experiment and was used to study the effect of wire 

configurations, the width of heating elements, and the sample position on the resulting thermal 

profiles.  

Chapter 8 presents a work in developing a phase-field-crystal model for two-dimensional 

materials. A two-point correlation function that induce periodic arrangements in plane and a 

confinement in the out-of-plane direction are introduced. The model was utilized to obtain both 

flat and buckled triangular monolayers of atoms. This model could be further refined to study other 

three-dimensional effects in two-dimensional materials, such as buckling that occurs around 

defects formed at grain boundaries. 
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9.2 Future work 

9.2.1 Study of complex metathesis reactions  

The phase-field model discussed in Chapter 3 and Chapter 4 makes three major 

assumptions. First, the diffusivities of the ions were assumed to be a constant, regardless of the 

phases they belong to. Their diffusivities, however, are typically smaller in product phases than in 

precursor phases, which could lead to reduction in reaction rates as the reaction proceeds. 

Therefore, it is necessary to assign each ion with a phase-dependent mobility to enable quantitative 

predictions for reaction dynamics. Second, the molar volume of each phase was assumed to be 

proportional to the number of their constituent ions. For a simple reaction in which all the phases 

have the same number of constituent ions, the molar volumes for all the phases were considered 

identical with this assumption. Although this assumption allows for a simpler model formulation 

and still yields qualitatively reasonable reaction dynamics, different phases in general do not 

possess the same molar volumes. The next step is to incorporate the molar volume difference 

between phases into the model. Third, the present model considered a free energy landscape with 

two local minima, which was sufficient to describe a reaction with two stable products. It is, 

however, unable to simulate a reaction with more products or with intermediate compounds. A 

more realistic free energy landscape, either inferred from experimental data or calculated from the 

density functional theory, could be employed to describe these complex reactions.  

9.2.2 Dislocation generation and recovery in microstructure evolution 

In Chapter 5 and Chapter 6, the density of dislocations expected to be generated during one 

cycle of heat treatment were assigned to each grain before the microstructure evolution takes place. 

There are no additional dislocations being injected during the process of the microstructure 
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evolution. However, these dislocations in reality are formed from time to time throughout the non-

isothermal annealing. Thus, a dynamic scheme that continuously injects dislocations to the 

microstructure should be incorporated into the model as the next step. In addition, the present 

model does not allow dislocation density to evolve due to recovery and other mechanisms, which 

may alter the dislocation density distribution and subsequent grain growth. The microstructure is 

progressively healed when the sample is annealed, regardless of the grain boundary migration. A 

more sophisticated phase-field model could include an additional term in the governing equation 

to describe this effect. 

9.2.3 Optical floating zone (OFZ) experiment with an enclosed gas environment 

The OFZ model presented in Chapter 7 assumes that sample is placed in open air, and 

therefore the heat loss due to convection is simplified as a boundary condition. Our experimental 

collaborator Peter G. Khalifah’s group recently examined the thermal profiles of the sample that 

was enclosed in a chamber filled with various types of gas, such as helium and argon. It is therefore 

necessary to couple computational fluid dynamics with the present model to accurately describe 

the air flow and convection within the enclosed gas.  

9.2.4 Extending the capability of the machine learning algorithm 

The machine learning algorithm presented in Chapter 2 Section 2.5.2 was demonstrated to 

be effective in automatically determining uncertain parameters for the OFZ model in Chapter 7 

Section 2.5.2. To increase the robustness of this algorithm in dealing with a cost function with 

multiple local minima, a clustering method could be first applied to separate the initial parameter 

space into several small regions such that each region only contains one minimum. Then the 

machine learning algorithm could be applied to determine the locally optimal parameter set in each 
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of these regions. Finally, the globally optimal parameter set can be obtained by selecting the 

parameter set that yields the smallest error. 

Additionally, application of this machine learning algorithm to other physical models 

discussed in this thesis could allow for a rigorous determination of the uncertain parameters in the 

models. For instance, it can be used to determine mobilities of ions in the phase-field model for 

solid-state metathesis reactions discussed in Chapter 3 and Chapter 4. In this case, the cost function 

can be defined as the difference between the predicted composition profiles and measured 

composition profiles at a few selected times. Moreover, the algorithm can be utilized to determine 

the exact values of the injected dislocation density for each grain during each cycle of non-

isothermal annealing discussed in Chapter 5 and Chapter 6. As shown in Chapter 6 Section 6.5.1, 

although in general the expression consisting of a constant divided by the grain radius provides a 

reasonably good estimate of the injected dislocation density during each annealing cycle, the 

injected value could slightly vary due to statistical variations. Optimized values could be 

determined using the machine learning algorithm by setting the cost function to calculate the 

difference between the predicted grain locations (represented by order parameters) and the 

measured grain locations (i.e., grain maps) at a few selected times. 

9.3 Conclusion 

To summarize, a set of computational models and methods were developed to simulate 

phase transformations, microstructure evolution, and relaxation of atomic structures during 

material synthesis and processing. In addition, heat transfer models were employed to assist in 

sample-temperature control during experiments, and a machine learning algorithm was developed 

to facilitate the model-parameter optimization. These models and methods, combined with 
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experiments, provide insights into the process designs for materials with tailored properties, 

enabling enhanced material properties and performance. 
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