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PREFACE

New materials are needed to unlock next generation computational capabilities that will
fuel solutions spanning all areas of science—from medicine to clean-energy. Harnessing
exotic quantum materials is among the most promising areas for progress.

The field of two dimensional (2D) materials has exploded since the discovery that
graphene—a single layer of carbon atoms—can be exfoliated to its existence. Since then,
a plethora of 2D materials has been exfoliated or synthesized, each with an exciting prop-
erties and opportunities.

In this thesis, we will explore the exotic quantum behaviors of 2D materials in using
various advanced electron microscopy techniques.

Suk Hyun Sung was born in Seoul, Republic of Korea to Ki Tae Sung and Eun Young Lee.
He was raised in the Korea until he crossed the Pacific to attend boarding schools in the
United States at the age of 13. He received Bachelor’s degree in Engineering Physics at
Cornell University. At Cornell, he joined Prof. Lena Fitting Kourkoutis’s group where he
was first introduced and became passionate to scientific research and electronmicroscopy.
He continued his passion and entered Ph. D program at the University of Michigan under
guidance of Prof. Robert Hovden. In Hovden lab, Suk Hyun was able to study materials
science and electron microscopy in theoretical, experimental and computational aspects.
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ABSTRACT

Twodimensional (2D)materials often exhibit unexpected, emergent physical properties—
often due to their confined dimensionalities and unique symmetry breaking. However,
2D materials still exist in the 3D world. They often consist of multiple atomic layers, not
perfectly flat, and interact with environment above and below. Therefore, understanding
of full 3D structure of 2D materials is paramount to harnessing the true potential of 2D
materials. In this dissertation, wewill discuss advanced electronmicroscopy techniques to
probe various 2D materials and heterostructures thereof. We engineer periodically mod-
ulated out-of-plane interaction by forming moiré patterns of 2D materials. Furthermore,
this work demonstrates 2D endotaxy of tantalum disulfides (TaS2) and endotaxial poly-
type heterostructure as a new platform to stabilize latent CDW states.

Chapter I and II motivates electron microscopy and electron diffraction for probing
atomic structure of 2D materials in real spaces. It also discusses rich information hidden
in 3D reciprocal structures of 2Dmaterials and introduces 3D electron diffraction as a plat-
form for probing 3D reciprocal structures. We use 3D electron diffraction to measure and
identify various out-of-plane information ofmultiple 2Dmaterials. Wemeasure inter- and
intra-layer spacings in 2-layer graphene, 1-layer molybdenum disulfide (MoS2), identify
exact stacking sequence of 6 and 12-layer graphenes andmeasure small lattice distortions.

In Chapter III, periodic lattice distortions (PLDs) in twisted 2D materials are dis-
cussed. Moiré pattern emerges when two layers of 2D materials are stacked with a mis-
match in crystal orientation. This results in periodically modulated out-of-plane inter-
actions which periodically distorts constituent 2D crystals. Here, we introduce torsional
PLD to describe the periodic restructuring in twisted 2D materials and extract a single
coefficient that describes the full restructuring scheme by matching experimental data to
computationally simulated data. With torsional PLD, we describe positions of >10,000
atoms in 1.1° twisted bilayer graphene using a single order parameter. Lastly, we show-
case various twisted 2D materials that exhibits torsional PLD.

x



In Chapter IV and V, we discuss charge density waves (CDWs) in 2D materials. We
introduce the novel method of endotaxial engineering that manipulates CDW phases.
Specifically, in Chapter IV, we show endotaxial polytype engineering stabilizes low tem-
perature long-range ordered CDW phase at room temperatures and enables out-of-plane
twinning in octahedrally coordinated TaS2. We provide a theoretical model explaining
twinning of CDWs as well as a computational validation. In Chapter V, we investigate the
nature of incommensurate CDWs in TaS2. We show endotaxial polytype engineering crys-
tallizes IC-CDWs intomore long-range ordered and amplitude enhanced version. We also
reveal the hexatic nature of the IC-CDWs in TaS2 by doing controlled heating experiments.

Lastly, Chapter VI summarizes result and concludes this thesis.
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Chapter I

Introduction to Electron Diffraction

”For his discovery of the diffraction of X-rays by crystals”: Max von Laue received the No-
bel Prize in 1914 [1]. Thiswas one of the earliest confirmation of atomic theory. Since then,
diffraction has always been at the forefront of structural characterization and discoveries.
In 1915, William Henry Bragg and William Lawrence Bragg was awarded for setting the
foundation for X-ray crystallography [2]. The key experimental evidence which solved
the structure of DNA was an X-ray diffraction pattern [3].

To resolve smaller features scientists turned to electrons. The wave behavior of matter
was first hypothesized by de Broglie in 1924 [4], and three years later validated by Thom-
son, Davisson, Germer with the experimental demonstration of electron diffraction [5, 6].
In 1986, Ernst Ruska received Nobel Prize ”for his fundamental work in electron optics,
and for the design of the first electron microscope” [7]. More recently, Dan Shechtman
was awarded Nobel Prize in chemistry for discovery of quasicrystal [8].

With invention of aberration corrected electronmicroscopes [9], the popularity of real
space characterizations like high-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM) is growing rapidly. Achieving atomic resolution is not only
possible but becoming a commonplace. However, real space characterization have its own
limitations and traditional diffraction techniques, such as selected area electron diffraction
(SAED), still remains powerful and sometimes is the only option. The following section
provides a light introduction to electron diffraction.
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Figure I.1: Overview of Transmission Electron Microscopy and Electron Diffraction. a) Thermofisher Spectra 300
Probe Corrected S/TEM. b) Schematic ray diagram for selected area electron diffraction

Electron Diffraction

λ =
h

p
(I.1)

Matters are also waves and electrons diffract. de Broglie’s wave-particle dual-
ity (Eq. I.1) is a fundamental concept of quantum mechanics and the tenet electron mi-
croscopy is built upon. The equation relates the wavelength of matter (λ) to Planck’s
constant (h) and the momentum (p). In transmission electron microscopy (TEM), elec-
trons are accelerated to high momentum to achieve small wavelength—critical for resolv-
ing small atomic features. At electron energy (E) of 100 keV, a typical operating energy
for TEM, electrons have relativistic wavelength of 3.7 pm. It is worth nothing that the
equation for wavelength of matter at relativistic speed is slightly modified version of de
Broglie’s original hypothesis which results in a wavelength about 10% shorter:

λ =
hc√

E(2m0c2 + E)
(I.2)

wherem0c
2 is the electron rest energy.

TEM (Fig. I.1a) is a very complex instruments. A typical TEM needs to generate and
accelerate electrons to ∼100 keV, maintain high-vacuum through-out the column, have
electromagnetic lens to sculpt the electron waves, and have detectors to collect scientific

2



data. Figure I.1b shows highly abstracted schema for selected area electron diffraction.

In conventional TEM, the incident swift electrons (ψi(r)) forms a parallel wave prop-
agating along the optic axis (ẑ): ψi(r) = exp[2πiz/λ]. If we set the origin at the specimen
height, the expression simplifies to ψi = 1.

If the specimen is weak phase object (i.e., thin specimen with light atoms), the trans-
mitted wave gains phase proportional to projected atomic potential (vz(r)), and inter-
action parameter (σe = 2πmeλ/h2, m: relativistic mass, e: electron charge): ψt(r) =

exp[iσevz(r)]. Notably, when either σe or vz(r) is small, we can Taylor expand the wave-
function:

ψt(r) ≈ exp[iσevz(r)] ≈ 1 + iσevz(r) + ... (I.3)

Experimentally, the incident wave have a finite spatial extent often chosen deliberately
with selected area (SA) aperture. Wemay simplymultiply a binary circularmask function
(mSA(r)) with cutoff radius rc:

ψt,SA(r) = ψt(r)mSA(r) (I.4)

The transmitted wave is then focused to reciprocal space using post-specimen lens
where final diffraction pattern (I(k)) is collected. Mathematically, this is equivalent mea-
suring the squared modulus of Fourier transform of the wave:

I(k) = |Ψt(k)|2 = |F [ψt(r)]|2 (I.5)
≈ |F [1 + iσevz(x, y) + ...]|2

≈ |(δ(k) + iσeF [vz(x, y)] + ...)|2

≈ δ2(k) + σ2
e |F [vz(x, y)|2)

The first term is a peak at reciprocal space origin, formed by all the unscattered electrons
(i.e., the center beam). The second term is Fourier transform of projected potential (i.e.,
the reciprocal space structure). Notably, in real experiments, the Fourier transform of the
SA aperture is convolved to Eq. I.5 and Dirac delta functions will be well-behaved. In
addition, the center beam is often blocked in order to prevent over-saturating sensitive
camera components.

The projection-slice theorem (Eq. I.6) states that a Fourier transform of projection is

3



Figure I.2: Ewald’s sphere and specimen tilt. a-green) schematic diagram of Ewald’s sphere at 0.3 keV represented
along reciprocal lattice structure of a monolayer graphene (gray). Low energy is chosen to highlight the curvature of
Ewald’s sphere. red) Tilting specimen is equivalent to rocking the Ewald’s sphere. b) Ewald’s sphere at 200 keV—a
realstic incident electron energy.

mapped to a planar slice in the reciprocal space. Mathematically:

F (k)|kz=0 = Fx,y

[ ∫ ∞

−∞
dz f(x, y, z)

]
(I.6)

Therefore, electron diffraction measures a planar slice through reciprocal space struc-
ture the atomic potential, along side a bright center beam.

I(k) = δ2(k) + σ2
eV

2(k)|kz=0 (I.7)

This approximation works well for σevz(r) ≪ 1—with high energy electron and thin spec-
imen with light elements. In order to accurately describe the diffraction of real specimens,
more complicated approximation such as Bloch wave propagation or multislice propaga-
tion is required [10].

To improve the accuracy of our analytic description of electron diffraction, we consider
Ewald’s sphere (Fig. I.2). Eq. I.7 implies that we may obtain information from arbitrar-
ily high frequency (|k| → ∞). Intuitively we should not be able to measure any features
smaller than the incident electron wave length. Electron diffraction is an elastic process;
the wave vector of scattered electron should conserve its length. The result is that elec-
tron diffraction measures reciprocal space information along a spherically curved surface,
called Ewald’s sphere (Fig. I.2a-green). An immediate consequence of the Ewald’s sphere
is that the information transfer is limited to a critical frequency, kc = 2π/λ, as expected.

4



Because of the Ewald’s sphere curvature, electron diffraction measures information
slightly above kz = 0 plane—known as the excitation error. Notably, at infinite incident
electron energy the Ewald’s sphere becomes flat and Eq. I.7 becomes accurate again. As
shown in Figure I.2b) at typical TEM operation energy, Ewald’s sphere is very flat. In
Chapter II, the excitation error in TEM is experimentally measured and discussed in more
detail.

This kinematic approximation including excitation error due to Ewald’s sphere accu-
rately describes diffraction of 2D materials much thinner than the mean free path (e.g. ≪
150 nm for 200 keV electron in Si [11]) where multiple scattering is negligible.

Because electron diffraction measures only a slice of information, Ewald’s sphere
needs to be tilted (Fig. I.2a-red) in order to collect the full 3D reciprocal space information.
This is analogous to how computed tomography (CT)measures 3D information. The next
chapter will give a comprehensive description to the 3D reciprocal space structure of 2D
materials and 3D electron diffraction will be introduced as the experimental method to
decipher complex 3D structure of 2D materials.
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Chapter II

Reciprocal Structures of 2D Materials

The characteristics of layered two-dimensional (2D) materials and heterostructures are
intimately linked with stacking order, as thickness and interlayer registry dramatically
alter the confinement and symmetry of the system. For instance, inversion symmetric
monolayer 1T-MoS2 is metallic [1] while mirror symmetric monolayer 2H-MoS2 is a direct
band gap semiconductor [2]. In several 2D systems, the intrinsic inversion asymmetry
or symmetry breaking via external perturbation bear possibilities for electronic switching
[3, 4] or valleytronic devices [5]. Recently, superconductivity was observed in bilayer
graphene when the interlayer twist is tuned to a ‘magic angle’ [6].

High-precision characterization of stacking order, interlayer spacing, twist, and
roughness is paramount to harnessing the diversity of 2D phenomena. The field of 2D
materials erupted with facile identification of single layer graphene when exfoliated onto
∼300 nm thick SiO2 substrates [7]. Since then, thickness characterization techniques
have expanded to Raman spectroscopy [8], atomic force microscopy [9], and electron mi-
croscopy [10]. Thickness alone, however, provides an incomplete picture of the atomic
structure and stacking order. Scanning transmission electron microscopy (STEM) can
image thickness with atomic resolution [11, 12], yet, this real-space projection of the spec-
imen loses out-of-plane information, poorly discerns light elements bonded to heavy ele-
ments, and requires high radiation doses. Furthermore, a fundamental trade-off between
resolution and field-of-view limits atomic resolution imaging to small regions of interest,
typically (20 nm)2. In contrast, electron diffraction remains a longstanding powerful tool
for obtaining a representative average of the atomic structure across large areas, at lower
doses, with high-throughput and high precision.

We demonstrate electron diffraction is particularly apt for probing the three-
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dimensional (3D) structure of 2Dmaterials. Contrary to the confined real-space structure,
we show 2D materials have striking, measurable features in the third dimension of recip-
rocal space that describe key structural parameters such as stacking order, twist, strain,
chemistry, and inter- or intra- layer spacing. In 2D materials, Bragg peaks extend into
near infinite rods running perpendicular to the specimen surface. Each Bragg rod oscil-
lates with intensity and phase described by the atomic arrangement within and between
each 2D layer.

Prominent distinctions arise in the reciprocal (k) space structure of 2Dmaterials: ◦ In-
plane lattice strain moves the position of Bragg rods. ◦ Rod oscillation frequencies are
inversely proportional to inter- and intra-layer spacing. ◦ Out-of-plane strain changes the
oscillation frequency. ◦ Symmetry and structure of first order rods (Γ1) reveal stacking or-
der. ◦ Second order (Γ2) facilitates thickness determination. ◦TMDchemistry changes the
amplitude of oscillations. ◦ Twisted layers are described by a superposition of diffraction
patterns for non-overlapping (incommensurate) Bragg rods. ◦ Progressive broadening of
rods is associated with out-of-plane micro-corrugation and stiffness. ◦ Curvature of the
Ewald sphere results in a small, measurable excitation error in the diffraction pattern that
breaks expected Friedel symmetry.

Combining specimen tilt and diffraction, we construct ‘diffraction tilt-patterns’ which
measure the 3D structural details of single and multilayer 2D materials. This work sub-
stantially extends previous work for few-layer graphene [13, 14] and boron nitride [15]
to transition metal dichalcogenides (TMDs) and multilayer materials. Furthermore, we
expound the foundational details required to enable a wide range 3D diffraction analysis
across all 2D materials.

Background to Diffraction of 2D Materials

We are challenged to discern the third dimension of 2D materials in real and reciprocal
space. Graphene is an archetypal 2D crystal where sp2 bonding forms a hexagonal lattice
lying within a single plane. Graphene’s real-space lattice, Vg(r) = Шa1,a2(r)δ(z)⊛

∑
j f(r−

rj), is described by two lattice vectors, a1, a2, with magnitude ag = 2.46Å, and a two atom
sublattice at rj (j ∈ 0, 1) that mimics a honeycomb. The corresponding reciprocal lattice
of graphene defines Bragg rods spaced bg = 4π

ag
√
3
= 2.949 Å−1apart and is described by :

Vg(k) = Шb1,b2(k) · Sg(k) (II.1)
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Figure II.1: 3D reciprocal structure of Single and Bilayer Graphene. 3D reciprocal space structure of a,b) single layer
graphene (SLG). Width and color of Bragg rods indicate magnitude and phase (magenta = 0, teal = π), the hexagon
marks kz = 0 plane. c) Bilayer graphene (BLG) illustrated for AA, AB, and BA registry along ẑ. d) 3D k-space structure
of AB-BLG. Sinusoidal magnitude—signature of multilayer systems— is apparent. The structure of e) AA, f) AB and
g) BA from side view are shown for both first (Γ1) and second (Γ2) order Bragg rods along with atomic stacking along
<100> direction in real-space. The barely visible decay in rod magnitude seen in SLG is due to the finite size of carbon
atoms. The rod structure of BLG’s are sinusoidal with symmetry identical to the real-space. 6-fold symmetry of SLG
and inversion symmetry of Bernal BLG is clearly shown in k-space. All structures are centered around the inversion
center in real-space to maximize interpretability.

where the complex magnitude is determined by structure factor Sg(k) =
∑

j f(k)e
−ik·rj .

For graphene, the single atomic plane, with near infinite confinement along ẑ (Fig. II.1a-
top), has a reciprocal structure with near infinite extent out-of-plane along k̂z(Fig. II.1a-
bottom). Similar elongated rel-rods arise from planar shape factors [16, 17] that have been
studied in surface layer diffraction experiments on bulk materials and thin-films [18–20].
Appendix A.1 discussesШ(k) formulation and normalization prefactor.

Therefore, 2D materials have Bragg peaks that stretch into rods. Figure II.1a,b shows
single layer graphene (SLG) in reciprocal space. Its k-lattice has 6-fold rotational symme-
try (Fig. II.1b), reflecting the real-space symmetry at the inversion center. The rod inten-
sity decays slowly from the origin due to the small but finite size of each atom (described
by atomic scattering factor f(k)). The attenuating magnitude reaches 80% by 0.038 Å−1.
Both first (Γ1) and second order (Γ2) rods are shown in Figure II.1a. For SLG, the more
distant second order Bragg rods have ∼94% of the squared magnitude of the first order
rods.

Combining specimen tilt and diffraction allows quantification of each Bragg rod’s 3D
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structure. In a ‘diffraction tilt-pattern’, diffraction peaks are quantified across specimen
tilt angles. As the specimen is tilted about an axis perpendicular to the beam direction,
the diffraction plane rotates through the reciprocal rods of the material as shown in Fig-
ure II.2a for the first order rods of bilayer graphene. Figure II.2b illustrates the resulting
tilt pattern, and the inset notes the specimen tilt axis.

Diffraction peaks both move and broaden when a 2D crystal is tilted and must be
handled during quantification. Approaching higher tilts, peaks move outward from the
axis of rotation—giving the illusion of unidirectional strain. The increasing distance be-
tween Bragg peaks reflects the apparent contraction in real-space when a tilted 2D crystal
is viewed in projection. Thus, diffraction peaks are minimally spaced apart when the 2D
crystal is perpendicular to the beam (i.e. ‘on-axis’). Also, the effective selected area in-
creases as tilt increases and a geometric factor of cos(θ)−2 must be incorporated to the
kinematic model of diffraction of large crystals.

Bragg peaks also broaden at higher tilts due to out-of-plane rippling of the material.
J.C. Meyer et al. quantified intrinsic microscopic roughing of graphene by measuring
the Bragg rod precession [21]. Any micro-corrugation in a 2D sheet has local orienta-
tion changes that tilt the Bragg rods. Because selected area electron diffraction (SAED)
measures an average of the crystal region, the superposition of tilted Bragg rods results
in broadening along k̂z. J.C. Meyer et al. measured Bragg rod broadening to quantify
roughness of graphene and showed that suspended single layer graphene had a surface
normal that varied by±5 degrees while bilayer graphene was smoother with a±1 degree
variation. Their work also highlights the importance of quantifying Bragg peaks from
integrated intensities—not peak maxima.

Bilayer Graphene

Atomically registered bilayer materials have Bragg rods that sinusoidally oscillate in com-
plex magnitude (Fig. II.1d) with periodicity (4π/λL) inversely proportional to the inter-
layer spacing, λL. The period of rod oscillation is independent of stacking order and de-
pends only on interlayer spacing. Bilayer graphene (BLG) has reciprocal structure de-
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Figure II.2: Diffraction tilt-patterns of BLG. a) 3D reciprocal rod structure of Bernal stacked bilayer graphene. The
magnitude varies sinusoidally with a periodicity inversely proportional to real-space interlayer spacing (kL = 4π

λL
).

At typical TEM operation energy (blue, 200 keV), SAED is a near planar slice through the k-space origin; red surface
exaggerates the curvature of Ewald spherewith slow electron (0.3 keV). Tilting the specimen in TEMcolumn changes the
beam’s incident angle and effectively rocks the diffraction plane with respect to the Bragg rods, accessing out-of-plane
information hidden in conventional TEM. The excitation error (s)—due to the curvature—is small but not negligible
at low tilt angles close to the k-space origin. b) Kinematic (−) and experimental (◦, ♢) tilt-patterns of BLG. The tilt-
patterns oscillates with frequency kL. Non-trivial Ewald sphere curvature separates analogous 2nd order Friedel pair
tilt-patterns (magenta(Γ2) and blue(Γ′

2)) with phase difference associated with s.

scribed by:

Vbg(r) =
[
Шa1,a2(r−∆/2)δ(z − λL/2)

+Шa1,a2(r+∆/2)δ(z + λL/2)
]

⊛
∑

i f(r− ri) (II.2)

Vbg(k) =Шb1,b2(k)
[
2 cos

(λL
2
kz +

∆

2
· k

)]
· Sg(k) (II.3)

where ∆ is the order parameter representing in-plane translation.

Changes to stacking order move Bragg rods up and down along k̂z. More specifically,
in-plane displacement of a layer,∆, adds a phase shift 1

2
∆ · k to the sinusoidal intensity of

each Bragg rod. There are three high-symmetry stacking configurations for BLG: energet-
ically stable AB or BA (called Bernal or graphitic) and unstable AA (Fig. II.1c) [22]. The
arrangement of the sinusoidal rods reflect the real-space symmetry. AA-BLG is defined
by two aligned layers (∆ = 0) with a mirror plane in-between (Fig. II.1e). The reciprocal
space structure matches the real-space 6-fold symmetry with a mirror plane at kz = 0. In
AB/BA-BLG, one layer is bond-length shifted with respect to the other along an in-plane
bond direction (∆ = a1+a2

3
) [23]. This translation breaks out-of-plane mirror symmetry

and reduces the 6-fold symmetry to 3-fold.
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Figure II.1e,f,g depicts the rod structure of AA, AB, and BA-BLG. The magnitude of
each rod is described by its width and complex phase with color; magenta and teal repre-
sent 0 and π respectively. Mirror symmetric AA-BLG has first order diffraction rods (Γ1)
centered about kz = 0 (Fig. II.1c). For AB-BLG, the in-plane translation between atomic
layers displaces Γ1 and Γ′

1 Bragg rods in opposite out-of-plane directions (±k̂z) with a π/3
phase shift (Fig. 1f, g).

Γ1 rods reveal stacking order in 2D materials. For Bernal BLG the maximum intensity
of odd order Bragg rods can only be measured by tilting the specimen (Fig. II.2a). In
the experimental tilt-pattern of AB-BLG (Fig. II.2b), the non-symmetric first order Bragg
rods are obvious. The blue Γ1 curve decreases to zero intensity at 6 degrees tilt but reaches
a maximum tilt at −12 degrees (also expected at 23 degrees). The brown Γ1 rod on the
other side of the rotation axis follows a similar opposite trend. Bragg rods more distant
from the axis of rotation oscillate more rapidly in the tilt pattern. Here the axis of rotation
passes through Γ2 as shown in Figure II.2b-inset. In real-space, the maximum intensity of
Γ1 occurs when Bernal bilayer graphene is tilted so all atoms between layers lie atop one
another when viewed along the beam direction. For AB and BA the patterns are mirrored
and maximum intensity occurs when tilting opposite directions. Brown et al. exploited
this broken symmetry using specimen tilt to quickly distinguish AB and BA domains in
bilayer graphene [13]. For AA-BLG the maximum diffraction intensity trivially occurs at
0 degree tilt.

Γ2 rods reveal the number of layers in multilayer graphene, but not stacking order. For
untilted specimens (kz ≈ 0), the intensity of the Γ2 rods in the bilayer is four times that
of monolayer graphene and will continue to scale with number of layers squared, N2, as
discussed in section II. Shown in Figure II.1e–g, the Γ2 rods are identical and indiscernible
for all three BLG stacking orders. Γ2 rod intensity has a mirror symmetric maxima at
kz = 0 that is clearly seen in the experimentally measured tilt-pattern (Fig. II.2b). The
slight deviation of Γ2 maxima from zero tilt is due to finite curvature of the Ewald sphere.

Beam Energy & the Ewald Sphere

Elastic scattering preserves kinetic energy on the proverbial Ewald sphere in reciprocal
space [24]. At finite beam energies, the diffraction pattern is described by a spherical
surface cutting through the reciprocal lattice. At typical TEM energies (60–300 keV), the
curvature of the Ewald sphere is small but not negligible. As shown in Figure II.2a, the
Ewald sphere passes through Bragg rods slightly above the kz = 0 plane (historically
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referred to as excitation error, s). Tilting the specimen is equivalent to tilting the Ewald
sphere.

Diffraction tilt-patterns come in Friedel pairs [25] comprised of a Bragg rod (at k)
and its centrosymmetric pair (at −k). For a flat Ewald sphere (infinite beam energy)
the Friedel pairs have equivalent tilt-patterns. However, with Ewald curvature the tilt
patterns for each Friedel pair bifurcate with increasing separation at lower beam voltages
(higher curvature). Figure II.2b shows the measurable curvature of the Ewald sphere
in an experimental diffraction tilt-pattern of bilayer graphene. Here, curves appear in
pairs offset by a few degrees. This is most clearly seen in Γ2 diffraction (Fig. II.2b pink,
purple) where the maximum intensity occurs at ±1.1◦. This angular distance in the split
of paired tilt-patterns directly measures the Ewald sphere curvature and excitation error
s: s = k0 −

√
k20 − k2ρ where k0 is the wavenumber of the incident electron and kρ is the in-

plane radial distance to k-space origin. For small tilt angles and Bragg peaks close to the
k-space origin this will scale approximately linearly, while for larger angles at larger radial
distances a conversion from specimen tilt to a Cartesian basis is detailed in Appendix A.2.
Here, the ±1.1◦ split in the low-angle tilt-patterns corresponds to an excitation error of
0.085 Å−1at 80 keV.

Twisted, Moiré Layers

Figure II.3: Twisted Bilayer Graphene. a) Twisted bilayer graphene with an incommensurate intralayer twist angle
(θ = 8 deg). b) Reciprocal structure of incommensurate tBLG is a simple superposition of layers.

Significant interest in twisted multilayer materials has followed the micromechan-
ical exfoliation of 2D heterojunctions [26] and discovery of superconductivity in low-
twist angle bilayer graphene [6]. The reciprocal lattice of twisted bilayers is described
by |F [Шα(r) +Шβ(r)]|2 = |Шα(k)|2 + |Шβ(k)|2 +Ш∗

α(k)Шβ(k) +Шα(k)Ш∗
β(k), for layers α
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and β. For incommensurate stacking, the cross term is zero and the diffraction pattern is
a trivial superposition of each individual layer (Fig. II.3). This allows independent char-
acterization of each incommensurate layer; however, we lose the ability to characterize
interlayer spacing. If α and β are commensurate [27], the cross term is zero where the
Bragg rods from each layer do not overlap. Only overlapping rods may interfere and si-
nusoidally oscillate. As shown by Brown et al., each twisted layer can be independently
mapped in real space with dark field TEM by placing an aperture around each distinct
Bragg peak in the diffraction plane of the TEM [13].

H. Yoo et al. recently reported at low-twist angles (< 3 deg) in bilayer graphene pe-
riodic restructuring occurs and superlattice peaks emerge [28]. Systems with periodic
lattice distortions (PLDs), either from interlayer interaction or charge order, are not so
simply described as a superposition of layers[29, 30]. In Chapter III, we will dive deep
and describe the complex periodic relaxation behavior using torsional PLDs.

2D Transition Metal Dichalcogenides

Transition metal dichalcogenides (TMDs) are comprised of three atomic planes and two
chemical species within each van derWaals (vdW) layer that add complexity to the Bragg
rod structure (Fig. II.4a,c,e-top). Six chalcogens encapsulate each metal atom geomet-
rically with two tetrahedrons. Single layer TMDs are categorized into hexagonal ‘H’ or
trigonal ‘T’ polytype phases by this local metal-chalcogen coordination complex [31]. In
theH-phase, the two tetrahedrons align along ẑ (Fig. II.4a), and in the T-phase, the two are
displaced by 30 degrees giving rise to inversion symmetry (Fig. II.4e). Although isomeric
to the 1T, the 2H phase notably breaks this inversion symmetry within a single layer but
regains it in the bilayer. Broken inversion symmetry can significantly change electronic
structure and has been associated with a metal-insulator transition in the 1T → 2H trans-
formation [1, 2] and the indirect to direct band gap transition in 2H TMDs reduced to a
single layer (1H) [2]. In several TMDs, such as TaS2 and TaSe2, the 1T phase permits room
temperature charge ordering and even superconductivity at higher pressures [32].

Diffraction combined with specimen tilt can precisely determine metal-chalcogen co-
ordination within a single vdW layer due to its sensitivity to crystal symmetry. The three
atomic planes comprising a vdW layer are described by Bragg rods oscillating with a pe-
riodicity inversely proportional to λℓ, the intralayer spacing between chalcogen-chalcogen
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Figure II.4: 3D reciprocal structure of 2D transition metal dichalcogenides and polytypes. For each TMD, the Bragg
rods (Γ0, Γ1) are shown in 3D alongside a real-space <100> projection of the crystal stacking order. Below, a sideview
of the Bragg rods (Γ0, Γ1, Γ2) quantitatively illustrates the structure in k-space. Bragg rods have thickness and color
indicating the complex magnitude and phase respectively. For single layer TMDs (a,c,e), two sinusoidal oscillations
are determined by the interlayer spacing of the 3 atomic planes. The complexity increases noticeably for 2 vdW layers
(b,d,f) which includes a beating frequency from interlayer spacing. Noticeably, H-phase MoS2 and TaSe2 have different
stable multilayer stacking, denoted 2H(b) and 2H(a), leading to drastically different Bragg rod contours.

atomic planes:

V1H(k) = Шb1,b2(k)[fm(k) + 2fc(k)e
−ik·r0 cos (kz

λℓ
2
)] (II.4)

V1T (k) = Шb1,b2(k)[fm(k) + 2fc(k) cos (k · r0 + kz
λℓ
2
)] (II.5)

where fm and fc are the atomic scattering factors of the metal and chalcogen atoms,
respectively, and r0 is the in–plane metal–chalcogen bond direction (r0 = a1+a2

3
). 1H de-

notes monolayer 2H.
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Figure II.5: K-structure of monolayer 2H-MoS2. The real and k-space structure of monolayer a) 2H-MoS2 polytype
shows mirror symmetry distinct from 1T. However, b) real-space schematic and ADF-STEM image along ẑ shows clas-
sification of 2H and 1T phase is extremely difficult becauseMo atom intensities overwhelm S atoms. c) Directly probing
the rod structure, the experimental tilt-pattern shows clear mirror symmetry and shows good agreement with the 2H
analytic model.

Figure II.4-top highlights the 3D reciprocal space structure of severalmonolayer TMDs.
The change in metal-chalcogen coordination drastically changes the Bragg rod structure
(Fig. II.4 a,c vs. e), whereas the change in chemical composition alters the contour of the
rod intensities (Fig. II.4 a vs. c). The broken inversion symmetry of the 1H structure is
represented in the complex phase of Eq. II.4 that continuously changes on the Γ1 Bragg rod
along k̂z (Fig. II.4 a,c)—this phase is not measurable from the diffraction amplitude. The
1T Γ1 rods are markedly distinct with strong asymmetric oscillation of amplitude. Similar
to graphene, we see TMDs possess Γ2 rods symmetric about kz = 0 and insensitive to
chalcogen coordination.

The experimental tilt-pattern of an exfoliated MoS2 flake shown in Figure II.5 reveals
a single layer H phase. The Γ1 and Γ3 curves (Fig. II.5c-purple,blue) are symmetric about
θ = 0 degree, which indicates a mirror plane at kz = 0. This feature clearly discerns
monolayers of the 2H and 1T polytypes (see also Appendix A.10, A.11). The kinematic
model of monolayer 2H-MoS2 closely matches the experimental result (Fig. II.5c). Al-
though monolayer 2H and 1T phases have different projected structure in real-space, the
light sulfur atoms are virtually invisible in high-angle annular dark field (HAADF) STEM
making this distinction challenging to characterize in real space (Fig. II.5b).

The intralayer spacing in a 2D TMD is precisely quantified by diffraction tilt-patterns
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for the first time. Nonlinear regression analysis of the experimental monolayer 2H-MoS2
data reveals an intralayer chalcogen-chalcogen spacing (λℓ) of 3.07 Å with a 95% confi-
dence interval of ± 0.11 Å based on a kinematic model. Multiple scattering may further
reduce precision, especially in thicker systems containing strong scatterers. Our single
layer value is comparable to the previously reported 3.01 Å for bulk 2H-MoS2 [33].

The addition of a second vdW layer opens a wider range of stacking configurations
and the Bragg rod complexity expands quickly—with 3 Fourier coefficients per vdW layer.
Most notably, bilayer gains a beat frequency described by the interlayer spacing, λL. The
interlayer beating is concisely expressed for bilayer 1T: V2T (k) = V1T (k) · 2 cos (kz λL

2
). The

rapid rod oscillation from the larger vdW gap (λL > λℓ) beats with intralayer oscillations
to create a non-uniform spacing between amplitude minima and maxima.

Additionally, multilayer TMDs have several stacking geometries both within and be-
tween their vdW layers. For instance, 2H-MoS2 and 2H-TaSe2 have distinct structures,
typically denoted as 2H(b) and 2H(a) respectively (Fig. II.4b,d). The Bragg rod structure
for single layer and bilayer T and H phases are shown in Figure II.4. Appendix A.8 pro-
vides an atlas of TMD stacking geometries and illustrates the distinct structures in k-space
that allow unique identification and quantification.

Multilayer 2D Materials

Here we use multilayer graphene to illustrate how diffraction tilt-patterns can character-
ize thicker 2D materials. In atomically registered multilayer graphene, there are three
possible sublattice positions—A,B,C—each one bond-length apart from the others (Fig.
II.6a). The two ordered stackings, hexagonally symmetric AB (Bernal) and rhombohe-
drally symmetric ABC, have been shown to have dramatically different band structures
and transport properties [34, 35]. However, thickness and stacking order determination
is particularly difficult for samplesmore than three layers thick. In bulkmaterials, the rods
give way to discrete peaks along k̂z(Appendix A.6, but at intermediate thicknesses (3–15
layers) they still contain interpretable out-of-plane structural information. Although the
possible stacking configurations grows exponentially with thickness, leveraging minimal
prior knowledge about the specimen significantly reduces the number of possibilities and
makes exact determination of structure tractable.

Here, we characterize the out-of-plane structure of mechanically exfoliated 6- and 12-
layer graphene samples. At these intermediate thicknesses, the number of graphene layers
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Figure II.6: Diffraction tilt-patterns of multilayer Bernal and rhombohedral graphene. a) real-space stacking of
Bernal (AB) and rhombohedral (ABC) graphene layers. b) Experimental diffraction tilt-patterns are plotted along with
matched kinematically modeled patterns. Top right inset labels the plotted Bragg rods and specimen tilt axis.

is redundantly described by the width of each Bragg rod along k̂z (∆kz = 2π
λLN

), the angle
which the 2nd order peak first reaches zero while tilting with an axis of rotation along Γ1

(N = 21
θ(deg)

), and the intensity of the second order Bragg Rod (I = 4 sin2 ½kzλLN
sin2 ½kzλL

). These
three relationships are derived in Appendix A.3, A.4 from analytic models of multilayer
graphene.

By measuring the relative intensity of the 1st and 2nd order Bragg peaks (|Γ1/Γ2|)
at zero tilt (kz = 0), we can determine the fraction of each sublattice in the system. For
instance, with equal number of all three sublattices’ layers (e.g. ABCABC) the first order
Bragg peaks have zero intensity; if the system has only two sublattices’ layers in equal
number (e.g. ABAB) the relative intensity is 0.25 (Appendix A.5).

Applying these rules to the tilt-pattern in Figure II.6b-top, we determined the sample
has 6 layers and an equal number of A and B sublattices. Registered 6-layer graphene
has 35 possible configurations. Eliminating the trivial duplicates and those with incorrect
sublattice proportions leaves only 7 possible stacking orders from which we matched the
correct stacking—ABABAB—by comparison with kinematically modeled tilt-patterns.

Likewise, the sample in Figure II.6b-bottom was found to be 12 layers thick with an
equal proportion of A,B, and C sublattices, allowing the stacking order to be classified as
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ABCABCABCABC; the rhombohedral ordered stacking. Fast identification of rhombohe-
dral graphene may have importance in fabrication of 2D heterostructure devices.

Summary & Conclusion

Dimensionally confined 2Dmaterials have rich 3D structure in reciprocal space described
by near-infinite Bragg rods that oscillate with complex magnitude encoding the out-of-
plane structure. Using a simple kinematic model of diffraction, combined with specimen
tilt, the structure of these Bragg rods has been mapped in detail for several 2D materials
(graphene, TMDs) across a range of stacking geometries. Using this 3D diffraction tech-
nique, we probed out-of-plane structure and symmetry to quantitatively determine criti-
cal structural parameters such as inter- & intra-layer spacings and stacking order in mul-
tilayer graphene and TMDs. For single layer MoS2 we extracted a chalcogen-chalcogen
layer spacing of 3.07 ± 0.11 Å. We accurately characterized the full interlayer stacking
order of bilayer to multilayer graphene (demonstrated up to 12 layers), as well as identi-
fiedmultilayer rhombohedral graphene. The physical and electronic properties of layered
2D materials are often dramatically susceptible to these parameters. Although efficiently
extracted with 3D diffraction, out-of-plane features are challenging or impossible to ex-
tract using real-space optical or surface measurement methods. However, our results
are obtained using a rudimentary TEM available at most institutions. With the increas-
ing complexity of multilayered materials, engineered by composition, twist, and stacking
order—the foundational details outlined in this manuscript enable rapid and / or high-
precision characterization across the complete class of 2Dmaterials. Reciprocal structures
illustrated throughout the manuscript and Appendix A provide a 2D materials atlas for
3D diffraction. Furthermore, this work directly empowers a broader range of advanced
diffraction based imaging techniques—such as dark-field TEM and 4D STEM—capable of
mapping structural order in real space.

References
1M. Acerce, D. Voiry, and M. Chhowalla, “Metallic 1T phase MoS2 nanosheets as supercapacitor
electrode materials”, Nat. Nanotechnol. 10, 313–318 (2015) 10.1038/nnano.2015.40.

2A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging
Photoluminescence in Monolayer MoS2”, Nano. Lett. 10, 1271–1275 (2010) 10.1021/nl903868w.

3E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson,
F. Guinea, A. K. Geim, and A. H. Castro Neto, “Biased bilayer graphene: semiconductor with a

19

https://doi.org/10.1038/nnano.2015.40
https://doi.org/10.1038/nnano.2015.40
https://doi.org/10.1021/nl903868w
https://doi.org/10.1021/nl903868w


gap tunable by the electric field effect”, Phys. Rev. Lett. 99, 216802 (2007) 10.1103/PhysRevLett.
99.216802.

4T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, “Controlling the electronic structure
of bilayer graphene”, Science 313, 951–954 (2006) 10.1126/science.1130681.

5J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, “Valleytronics
in 2D materials”, Nat. Rev. Mater. 1, 16055 (2016) 10.1038/natrevmats.2016.55.

6Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, “Uncon-
ventional superconductivity in magic-angle graphene superlattices”, Nature 556, 43–50 (2018)
10.1038/nature26160.

7P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K.
Geim, “Making graphene visible”, Appl. Phys. Lett. 91, 063124 (2007) 10.1063/1.2768624.

8A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang,
K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers”,
Phys. Rev. Lett. 97, 187401 (2006) 10.1103/PhysRevLett.97.187401.

9K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva,
andA. A. Firsov, “Electric field effect in atomically thin carbon films”, Science 306, 666–669 (2004)
10.1126/science.1102896.

10X. Li,W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Baner-
jee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene
films on copper foils”, Science 324, 1312–1314 (2009) 10.1126/science.1171245.

11N. Alem, Q. M. Ramasse, C. R. Seabourne, O. V. Yazyev, K. Erickson, M. C. Sarahan, C.
Kisielowski, A. J. Scott, S. G. Louie, and A. Zettl, “Subangstrom edge relaxations probed by
electron microscopy in hexagonal boron nitride”, Phys. Rev. Lett. 109, 205502 (2012) 10.1103/
PhysRevLett.109.205502.

12P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek,
S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, “Grains and
grain boundaries in single-layer graphene atomic patchwork quilts”, Nature 469, 389 (2011) 10.
1038/nature09718.

13L. Brown, R. Hovden, P. Huang, M. Wojcik, D. A. Muller, and J. Park, “Twinning and Twisting of
Tri- and Bilayer Graphene”, Nano. Lett. 12, 1609–1615 (2012) 10.1021/nl204547v.

14J. Ping and M. S. Fuhrer, “Layer number and stacking sequence imaging of few-layer graphene
by transmission electron microscopy”, Nano. Lett. 12, 4635–4641 (2012) 10.1021/nl301932v.

15C.-J. Kim, L. Brown, M.W. Graham, R. Hovden, R. W. Havener, P. L. McEuen, D. A. Muller, and J.
Park, “Stacking Order Dependent SecondHarmonic Generation and Topological Defects in h-BN
Bilayers”, Nano. Lett. 13, 5660–5665 (2013) 10.1021/nl403328s.

16A. L. G. Rees and J. A. Spink, “The shape transform in electron diffraction by small crystals”, Acta
Crystallogr. 3, 316–317 (1950) 10.1107/S0365110X50000823.

20

https://doi.org/10.1103/PhysRevLett.99.216802
https://doi.org/10.1103/PhysRevLett.99.216802
https://doi.org/10.1103/PhysRevLett.99.216802
https://doi.org/10.1126/science.1130681
https://doi.org/10.1126/science.1130681
https://doi.org/10.1038/natrevmats.2016.55
https://doi.org/10.1038/natrevmats.2016.55
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1063/1.2768624
https://doi.org/10.1063/1.2768624
https://doi.org/10.1103/PhysRevLett.97.187401
https://doi.org/10.1103/PhysRevLett.97.187401
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1171245
https://doi.org/10.1126/science.1171245
https://doi.org/10.1103/PhysRevLett.109.205502
https://doi.org/10.1103/PhysRevLett.109.205502
https://doi.org/10.1103/PhysRevLett.109.205502
https://doi.org/10.1038/nature09718
https://doi.org/10.1038/nature09718
https://doi.org/10.1038/nature09718
https://doi.org/10.1021/nl204547v
https://doi.org/10.1021/nl204547v
https://doi.org/10.1021/nl301932v
https://doi.org/10.1021/nl301932v
https://doi.org/10.1021/nl403328s
https://doi.org/10.1021/nl403328s
https://doi.org/10.1107/S0365110X50000823
https://doi.org/10.1107/S0365110X50000823
https://doi.org/10.1107/S0365110X50000823


17J. M. Cowley, A. L. G. Rees, and J. A. Spink, “The morphology of zinc oxide smoke particles”,
Proc. Phys. Soc. B 64, 638–644 (1951) 10.1088/0370-1301/64/8/303.

18M. Henzler, “Spot profile analysis (LEED) of defects at silicon surfaces”, Surf. Sci. 132, 82–91
(1983) 10.1016/0039-6028(83)90533-2.

19M. G. Lagally, D. E. Savage, and M. C. Tringides, “Diffraction from disordered surfaces: an
overview”, in Reflection high-energy electron diffraction and reflection electron imaging of surfaces,
edited by P. K. Larsen and P. J. Dobson (Springer US, Boston, MA, 1988), pp. 139–174, 10.1007/
978-1-4684-5580-9_11.

20I. K. Robinson, “Crystal truncation rods and surface roughness”, Phys. Rev. B 33, 3830–3836
(1986) 10.1103/PhysRevB.33.3830.

21J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure
of suspended graphene sheets”, Nature 446, 60–63 (2007) 10.1038/nature05545.

22A. M. Popov, I. V. Lebedeva, A. A. Knizhnik, Y. E. Lozovik, and B. V. Potapkin, “Commensurate-
incommensurate phase transition in bilayer graphene”, Phys. Rev. B 84, 045404 (2011) 10.1103/
PhysRevB.84.045404.

23J. D. Bernal, “The structure of graphite”, Proc. R. Soc. Lond. A 106, 10.1098/rspa.1924.0101
(1924) 10.1098/rspa.1924.0101.

24P. P. Ewald, “Die Berechnung optischer und elektrostatischer Gitterpotentiale”, Ann. Phys.
(Berlin) 369, 253 (1921) 10.1002/andp.19213690304.

25G. Friedel, “Sur les symétries cristallines que peut révéler la diffraction des rayons Röntgen”, C.
R. Acad. Sci. 157, 1533–1536 (1913).

26H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai,
F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S.
Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, “Strong interlayer coupling in van der
waals heterostructures built from single-layer chalcogenides”, P. Natl Acad. Sci. USA 111, 6198–
6202 (2014) 10.1073/pnas.1405435111.

27E. J. Mele, “Commensuration and interlayer coherence in twisted bilayer graphene”, Phys. Rev.
B 81, 161405(R) (2010) 10.1103/PhysRevB.81.161405.

28H. Yoo, K. Zhang, R. Engelke, P. Cazeaux, S. H. Sung, R. Hovden, A. W. Tsen, T. Taniguchi, K.
Watanabe, G.-C. Yi, M. Kim, M. Luskin, E. B. Tadmor, and P. Kim, Nat. Mater. 18, 448–453 (2019)
10.1038/s41563-019-0346-z.

29S. H. Sung, Y. M. Goh, H. Yoo, R. Engelke, H. Xie, K. Zhang, Z. Li, A. Ye, P. B. Deotare, E. B.
Tadmor, A. J. Mannix, J. Park, L. Zhao, and R. Kim P. Hovden, “Two-dimensional charge order
stabilized in clean polytype heterostructures”, Nat. Commun. 13, 7826 (2022) 10.1038/s41467-
022-35477-x.

30R. Hovden, A. W. Tsen, P. Liu, B. H. Savitzky, I. El Baggari, Y. Liu, W. Lu, Y. P. Sun, P. Kim, A. N.
Pasupathy, and L. F. Kourkoutis, “Atomic lattice disorder in charge-density-wave phases of exfo-

21

https://doi.org/10.1088/0370-1301/64/8/303
https://doi.org/10.1088/0370-1301/64/8/303
https://doi.org/10.1016/0039-6028(83)90533-2
https://doi.org/10.1016/0039-6028(83)90533-2
https://doi.org/10.1016/0039-6028(83)90533-2
https://doi.org/10.1007/978-1-4684-5580-9_11
https://doi.org/10.1007/978-1-4684-5580-9_11
https://doi.org/10.1007/978-1-4684-5580-9_11
https://doi.org/10.1103/PhysRevB.33.3830
https://doi.org/10.1103/PhysRevB.33.3830
https://doi.org/10.1103/PhysRevB.33.3830
https://doi.org/10.1038/nature05545
https://doi.org/10.1038/nature05545
https://doi.org/10.1103/PhysRevB.84.045404
https://doi.org/10.1103/PhysRevB.84.045404
https://doi.org/10.1103/PhysRevB.84.045404
https://doi.org/10.1098/rspa.1924.0101
https://doi.org/10.1098/rspa.1924.0101
https://doi.org/10.1098/rspa.1924.0101
https://doi.org/10.1002/andp.19213690304
https://doi.org/10.1002/andp.19213690304
https://doi.org/10.1002/andp.19213690304
https://gallica.bnf.fr/ark:/12148/bpt6k31103/f1533.item
https://gallica.bnf.fr/ark:/12148/bpt6k31103/f1533.item
https://doi.org/10.1073/pnas.1405435111
https://doi.org/10.1073/pnas.1405435111
https://doi.org/10.1073/pnas.1405435111
https://doi.org/10.1103/PhysRevB.81.161405
https://doi.org/10.1103/PhysRevB.81.161405
https://doi.org/10.1103/PhysRevB.81.161405
https://doi.org/10.1038/s41563-019-0346-z
https://doi.org/10.1038/s41563-019-0346-z
https://doi.org/10.1038/s41467-022-35477-x
https://doi.org/10.1038/s41467-022-35477-x
https://doi.org/10.1038/s41467-022-35477-x


liated dichalcogenides (1T-TaS2)”, Proc. Natl. Acad. Sci. 113, 11420–11424 (2016) 10.1073/pnas.
1606044113.

31J. A. Wilson and A. D. Yoffe, “The transition metal dichalcogenides discussion and interpretation
of the observed optical, electrical and structural properties”, Adv. Phys. 18, 193 (1969) 10.1080/
00018736900101307.

32B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forro, and E. Tutis, “From mott state to
superconductivity in 1T-TaS2”, Nat. Mater. 7, 960–965 (2008) 10.1038/nmat2318.

33B. Schönfeld, J. J. Huang, and S. C. Moss, “Anisotropic mean-square displacements (MSD) in
single-crystals of 2H- and 3R-MoS2”, Acta Crystallogr. Sect. B 39, 404–407 (1983) 10 . 1107 /
S0108768183002645.

34R. Xiao, F. Tasnádi, K. Koepernik, J. W. F. Venderbos, M. Richter, andM. Taut, “Density functional
investigation of rhombohedral stacks of graphene: topological surface states, nonlinear dielectric
response, and bulk limit”, Phys. Rev. B 84, 165404 (2011) 10.1103/PhysRevB.84.165404.

35W. Bao, L. Jing, J. Velasco Jr, Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S. B. Cronin, D.
Smirnov, M. Koshino, E. McCann, M. Bockrath, and C. N. Lau, “Stacking-dependent band gap
and quantum transport in trilayer graphene”, Nat. Phys. 7, 948 (2011) 10.1038/nphys2103.

22

https://doi.org/10.1073/pnas.1606044113
https://doi.org/10.1073/pnas.1606044113
https://doi.org/10.1073/pnas.1606044113
https://doi.org/10.1080/00018736900101307
https://doi.org/10.1080/00018736900101307
https://doi.org/10.1080/00018736900101307
https://doi.org/10.1038/nmat2318
https://doi.org/10.1038/nmat2318
https://doi.org/10.1107/S0108768183002645
https://doi.org/10.1107/S0108768183002645
https://doi.org/10.1107/S0108768183002645
https://doi.org/10.1103/PhysRevB.84.165404
https://doi.org/10.1103/PhysRevB.84.165404
https://doi.org/10.1038/nphys2103
https://doi.org/10.1038/nphys2103


Chapter III

Torsional Periodic Lattice Distortions
and Diffraction of Twisted 2DMaterials

Periodic lattice distortions (PLD) are at the heart of correlated electronic behavior such
as superconductivity [1], metal-insulator transitions [2], and charge density waves
(CDW) [3]. PLDs are typically intrinsic to a crystal [3, 4], Fermi-surface driven [5], ac-
companied by a CDW, and have periodicity spanning a few unit cells (∼1–2 nm). How-
ever, recently extrinsic van der Waals (vdW) driven superlattices with tunable periodic-
ity (up to a few 100 nm) were discovered in twisted bilayer graphene (TBG) [6]. TBG
has been spotlighted for extraordinary correlated electron behaviors for twist at the so-
called “magic” angle (∼1.1°) [7]. Yoo et al. showed that magic angle TBG is not a simple
superposition of two constituent layers [6], but rather a 2D crystal that periodically re-
structures at the mesoscale. Subsequent reports showed moiré superlattices of other vdW
systems with similar periodic restructuring [8–11]. Furthermore, this restructuring has
a dramatic effect on the band-structure, magnetism, and superconducting properties [6,
9, 12]. Therefore, understanding twisted 2D materials requires a full description of the
atomistic structure down to picoscale displacements. However, a systematic depiction of
restructuredmoiré superlattices is near absent and limited to descriptions of local stacking
geometry.

Here, we show the atomic structure of 2D moiré superlattices at and near the magic
angle are concisely and accurately described by a torsional PLD comprised of three trans-
verse displacement waves. In this way, the complexity of low-twist moiré crystal restruc-
turing is reduced to a single PLD order-parameter with an amplitude and wave vector.
Each layer in the bilayer system has an equal and opposite torsional PLD amplitude. From
quantitative diffraction of low twist-angle and magic angle graphene the atomic displace-
ments of the larger superlattice can be measured. In twisted bilayer graphene we report

23



Figure III.1: Periodic Restructuring of Twisted Bilayer Graphene (TBG) a) Displacement field of torsional PLD. Local
rotational fields for AA region and AB/BA regions are opposite. By including higher harmonics, PLD can exhibit any
arbitrary pattern. The moiré supercell crystal structures of c) pristine TBG and b) restructured TBG with torsional PLD
model. Red and blue overlay highlights energetically unfavorable AA stacked region, and stable AB/BA stacked region,
respectively. PLD decreases the total energy of the system by expanding AB/BA domain and decreasing AA domain.
Crystal structure of d) AB stacked and e) AA stacked bilayer graphene are shown as reference.

a torsional PLD amplitude of 7.8 ± 0.6 pm and 6.1 ± 0.4 pm for twist angle (θ) of 1.1◦

and 1.2◦ respectively. We report an upper bound for PLD amplitude of twisted bilayer
graphene to be 22.6 pm based on interlayer interaction energy. In addition, we show that
the torsional PLD amplitudes can be accurately predicted across all twist angles using an
analyticmodel of the vdW stacking and elastic energies. Lastly, we show that this torsional
PLD exists across a variety of other layered 2D materials.

Periodic Restructuring in Twisted Bilayer Graphene

Moiré patterns emerge for two rotated lattices. In TBG, two single layers of graphene
are stacked with a small interlayer twist (Fig. III.1f). The moiré of this twisted bilayer
graphene (TBG) is an alternating pattern of three high symmetry stackings (AA, AB and
BA), separated by channels of solitonic, intermediate dislocation (often described as an
energetic saddle-point) [13, 14]. In the energetically favorable AB stacking (also called
Bernal stacking) half the atoms in one layer are atop atoms in the layer below (Fig. III.1h);
BA stacking is the mirror of AB stacking. AA stacking (Fig. III.1i), where all atoms in both
layers are aligned, requires much higher energy (∼19 meV/atom [15]). Despite the com-
plex super-structure of moiré stacking, the diffraction pattern of TBG is a simple super-
position of two rotated single-layer Bragg peaks [16]—validated by quantum mechanical
scattering simulation in Figure III.5b and previously measured experimentally at higher
twist angles [17].
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In low twist-angle bilayer materials, a striking restructuring of the moiré lattice
emerges. Dark-field (DF-) TEM [6, 13] and later 4D-STEM [18, 19] revealed that this su-
perlattice corresponds to a triangular array of AB/BA domains. However, domain bound-
aries soften near or above the magic angle (θ ≈ 1◦) and a simple array of perfect AB/BA
domains fails to correctly capture the full atomistic structure of the twisted system [20,
21].

Here, we show that a PLD model provides a precise and concise description of lattice
restructuring in TBG. PLDs are sinusoidal displacements of atomic positions (r′ = r0 +

A sin (q · r0); r′, r0 are deformed and original atomic positions, q is the wavevector, andA

is the displacement vector). Both longitudinal (A ∥ q) and transverse (A ⊥ q) distortion
waves naturally emerge in various charge ordered crystals including 2D materials (e.g.
longitudinal: TaS2 [3, 22], NbSe2 [23]; or transverse: BSCMO [4], UPt2Si2 [24]).

A torsional PLD succinctly and accurately describes the relaxed structure of TBG
(Fig. III.1c). The torsional displacement field is made from three non-orthogonal, trans-
verse PLDs (Fig. III.1a):

∆n = An

3∑
i=1

Âi sin (nqi · r0 + ϕi); Âi ⊥ qi (III.1)

Here, r0 are undistorted atompositions, qi is the PLDwave vector, and Âi is the unit vector
describing transversity of PLD. The distorted lattice positions are given by: r = r0 +∆n.
Three q’s are 120◦ apart with a magnitude set by the twist angle (|q| ≈ bθ, b is reciprocal
lattice constant) to accommodate symmetry of moiré pattern (See Appendix III.A.). The
phase, ϕi, shifts or alters the relaxation patterns (Fig. III.2). For TBG, the origin is placed
at the AA center (ϕi = 0 ). Importantly, this torsional wave occurs in both layers, how-
ever, the direction of the field in each layer is reversed such that distortions are opposite.
Transverse distortions, Âi ⊥ qi, are expected when the lattice constants of both layers are
equivalent (otherwise longitudinal components, Âi ∥ qi, may be present). A single tor-
sional PLD (∆1) is typically sufficient to describe the system, however, more generally
PLDs with higher order harmonics (n > 1) are permissible and the total displacements
become sum of multiple harmonics (as discussed later).

Figure III.1a illustrates the displacement field (∆1) from a torsional PLD in one layer
of twisted bilayer graphene. The arrows show the direction and magnitude with which
atoms displace from their expected lattice sites. The torsional field is a nanoscale trigonal
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Figure III.2: Relative Phases of torsional PLD Torsional PLD behavior can be controlled by changing the phases (ϕi) of
constituent sinusoids. Here, rotational field (Ω1) with (ϕ1, ϕ2, ϕ3) = a) (0, 0, 0), b) (π/3, 0, 0), c) (π/2, 0, 0) are shown.

lattice of rotational distortions spaced 1/|q| apart. The distortion field exhibits behaviors
desired for relaxation of TBG—twisting AA regions in one direction and anti-twisting
AB/BA regions in the other. The vdW interaction between layers strives to locally twist
(anti-twist) AA (AB/BA) regions to minimize (maximize) interlayer registration and re-
duce the total interaction energy. The relaxed structure (Fig. III.1c)—obtained by apply-
ing displacements to original atomic sites (Fig. III.1d)—acts to maximize the low energy
regions with AB/BA stacking and decreases the high energy regions with AA stacking.

Torsional PLDs are immediately apparent in an electron diffraction pattern. This
atomic restructuring manifests as superlattice peaks that decorate Bragg peak pairs and
appear more pronounced around higher order Bragg peaks. The superlattice peaks rep-
resent a symmetry reduction beyond that from the global twist angle. The torsional PLD
superlattice peaks in TBG at 1.1◦ are shown (Fig. III.5a). The azimuthal intensity distribu-
tion of superlattice peaks in SAED of 1.1◦ TBG implies transversity of the distortion wave
(Â ⊥ q).
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Figure III.3: Transversity of PLD Simulated diffraction of crystal with a) no PLD, b) longitudinal PLD and c) transverse
PLD. |q| is set to be 5a0 where a0 is pristine lattice constant (a0 = 5Å, |q| = 5a0). Each PLD consists of three PLDwaves
oriented 120° apart. a) with no PLD, only the usual crystal Bragg peaks are present. b, c) superlattice peaks emerge
with PLD. PLD superlattice peaks are located αq away from Bragg peaks with intensity proportional to |Jα(k · A)|2.
Note the difference in distribution of superlattice peaks in b and c due to transversity of the PLD. d, e, f) Schematic real
space diagram of pristine, longitudinal and transverse PLD. Blue circles represents pristine lattice points and red arrows
denote resultant lattice distortion due to PLDs.

Diffraction of Moiré Materials

PLDs diffract into reciprocal space as superlattice peaks that surround each Bragg peak.
These superlattice peaks are positioned αq away from Bragg peaks (Fig. III.5i,j,k). The
superlattice peaks have intensities proportional to |Jα(k ·A)|2 where Jα is a Bessel function
of the first kind, k is the position of the superlattice peak in reciprocal space, and α is
an integer [3, 22, 25]. For typical values of k and A, the Bessel function monotonically
increases with |k| and decreases inversely with the integer α. The appearance of strong
superlattice peaks at high-order Bragg spots (i.e. at larger |k|) is a signature for periodic
lattice distortions (PLD) (Fig. III.3).

The dot product (k ·A) reveals transversity of PLDs in twisted bilayer materials. In re-
ciprocal space, the transverse PLDsmanifest as a distribution of superlattice peaks that are
stronger along the azimuthal direction (Fig. III.3c). In contrast, a longitudinal PLDwould
produce superlattice peaks that become stronger radially along Bragg vectors (Fig. III.3b).
The torsional PLD in TBG results from the superposition of three transverse PLDs.

27



Figure III.4: Quantification of Torsional PLDAmplitudeA1 (a) Relative intensities of superlattice peaks to Bragg peaks
of first order (red), second order (blue), and third order (yellow) diffraction spots characterized over a range of PLD
amplitudes. The plot reveals that 1.1° and 1.2° rTBG are relaxed by single harmonic torsional PLD with amplitude 7.8
pm and 6.1 pm, respectively.

The torsional PLD quantitatively describes experimental observations of twisted bi-
layer diffraction—superlattice peaks near higher order Bragg peaks have higher intensi-
ties, and superlattice peak intensities increase monotonically as PLD amplitude increases.
The torsional PLD in TBG is validated by quantummechanical multislice simulation. Sim-
ulated SAED patterns (Fig. III.5f,g,h) show excellent agreement with experimental data
(Fig. III.5c,d,e). More specifically, the relative superlattice to Bragg peak intensity and
distribution of simulated superlattice peaks are consistent.

The torsional PLD in TBG is primarily described by a single amplitude coefficient (A1).
We report a torsional PLD amplitude (A1) of 7.8 ± 0.6 pm for θ = 1.1◦ and 6.1 ± 0.4 pm
for 1.2◦ near the magic angle in TBG. The PLD amplitude was quantified by matching
experimental and simulated diffraction intensities (Fig. III.4). Torsional PLD amplitudes
for additional twist angles are plotted in Figure III.6a—showing a decrease in amplitude
as twist angle is increased and ultimately disappearing above 3.89◦.

Critical Twist Angles and the Low-twist Regime

Below a 3.89◦ twist angle, atomic distortions in TBG exceed a picometer (A1 > 1 pm).
The periodic relaxation of TBG results from competition between interlayer van derWaals
stacking energy benefit (VvdW ) and elastic cost of distortion (VEl) [26]. Elastic energy
cost to accommodate a torsional PLD with amplitude A1, assuming Hookean elasticity,
is 2

√
3π2GA2

1 for each layer, where G is shear modulus of graphene (9.01 eV/Å2 [20])
(Fig. III.6b, top, blue, derived in Appendix B.4). Notably, the elastic energy per supercell
is independent of the twist angle, and hence of moiré supercell size. For van der Waals
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Figure III.5: Torsional Periodic Lattice Distortion (PLD) Model a) Electron diffraction of TBG (θ = 1.1◦) displays
superlattice peak complexes in addition to two sets of Bragg peaks, marked by gray circles. b) The simulated diffraction
pattern of unrelaxed TBG only shows two sets of Bragg peaks. Multislice simulation f–h) for PLD with only single
harmonic (A1 = 6.1 pm) matches greatly with the experimental data c–e). i–k) Schematic illustration shows PLD wave
vectors (qi’s) in relation to Bragg and superlattice peaks.

interaction, VvdW , we employ Kolmogorov and Crespi’s model [27] and compute the inter-
layer energy as function of PLD amplitude. VvdW has two salient features: first, energy per
moiré supercell is proportional to the area of the cell (∝ θ−2) and second, VvdW minimum
is atA1 = Amax = 20.35 pm (Fig. III.6b, top red). Therefore, at large θwhere VEl dominates
total energy, the total energy is at minimum at small A1. In contrast, as θ decreases, A1

approaches 20 pm.

We report a upper and lower bound of the PLD amplitude,A1, to be 0 pm and 22.6 pm,
respectively. Local rotation due to the torsional PLD (Ω1 = 1

2
∇ × ∆1) near AB region is

3qA1

4
. For graphene (a = 2.46 Å), A1 of 22.6 pm will restore all local twist in each layer

(|Ω1| = θ
2
). Negative A1 amplitude is energetically unfavorable as it increases the local

twist anglewhich decreases theABdomain size. SeeAppendix B.2 for detailed discussion.

The interlayer interaction energy VvdW of TBG is excellently approximated by a
quadratic function within the geometrically-allowed region of A1 (0 ≤ θ ≤ 22.6 pm).
A non-linear least squares fit gives semi-empirical model of VvdW = 2v0

θ2
(A1 − Amax)

2

where v0 = 0.0732 eVÅ−2 and Amax = 20.35 pm. Notably, Amax corresponds to ener-
getically allowed maximum A1. The total energy of TBG with a torsional PLD is Vtot =

4
√
3π2GA2

1 +
2v0
θ2
(A1 −Amax)

2. Minimizing Vtot with respect to A1 gives a Lorentzian func-
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Figure III.6: Energy and Amplitude of PLDs in Twisted Bilayer Graphene (TBG) a) Torsional PLD model predicts
the PLD amplitude (A1) of TBG vs twist angle (θ) follows Lorentzian. Extracted torsional PLD amplitude (A1) from
experimental SAED (red circles) and computationally relaxed (red triangles) matches well with the Lorentzian model.
Scale bars are 500 nm (0.1◦) and 150 nm (1.1◦) b) Top panel: VvdW (red) and VEl (blue) of TBG with torsional PLD.
Lighter region denotes geometrically allowed PLD amplitude (0 ≤ A1 ≤22.6 pm). Note that elastic cost of torsional
PLD is twist angle independent, and VvdW is proportional to θ−2 and has minimum at A1 = 20.35 pm. Bottom panel:
total energy landscape (VvdW +VEl) of TBGwith torsional PLD. θ dependence of VvdW shifts the total energyminimum
to stronger PLD.

tion:
A1(θ) = Amax(1 +

2π2
√
3G

v0
θ2)−1 (III.2)

Eq. III.2 (Fig. III.6a, black) matches excellently with A1 extracted from experimental data
and simulations (Fig. III.6a red). The amplitude of the PLD exceeds 1 pm below 3.89◦

twist—which we define as the low-twist angle regime in TBG. Note, only at the lowest
angles below ∼ 0.5◦ do we see a slight underestimation from the Lorentzian model; sug-
gesting higher order distortions become noticeable.

Sharp PLD Boundaries at Extreme Low-Twist Angles

We report at lower twist angles (θ ≲ 0.5◦), TBG relaxes with more complexity, thus
roughly defining the extreme low-twist regime. Comparing diffraction patterns at higher
θ (e.g., 1.1◦, Fig. III.5a) and lower θ (e.g., 0.4◦, Fig. III.10a), lower twist angle SAEDpatterns

30



Figure III.7: PLDs as a Fourier Series in 2DMoiré Materials a–c) Evolution of periodic wave (∆) as higher harmonic
waves b) N=3, c) N=7) are included; ∆ is normalized displacement magnitude over one period along one direction.
Fourier coefficients (An) are tailored as exponential decay, which produces to a smooth ‘sawtooth’-like waveform. In-
cluding harmonic waves allows high frequency (i.e. sharp) features in resultant waves. d–f) Torsional PLD structure
with higher harmonic PLD included. The color denotes the amount of local rotation (ΩN) due to the PLD displacement
field (arrows). g–i) Quantum mechanical electron diffraction simulations of TBG with single harmonic torsional PLD
captures the distortions in high twist angles (i.e. near magic-angle and higher) well. j–o) Adding higher harmonics
slightly modifies the diffraction patterns and shows qualitatively better matches with low twist angle systems.

show not only stronger superlattice peaks, but also different distribution of superlattice
peaks with higher order superlattice peaks. This is attributed to the sharpening of soli-
ton boundaries between AB and BA domains. Yoo et al.’s work suggested that dislocation
boundaries become more well-defined at low twist angles using DF-TEM. Even at zero-
twist, soliton boundaries have been reported [13, 17]. In the extreme low-θ regime, shear
soliton boundaries reach a minimum width previously reported to be 6.2 ± 0.6 nm [13].
However even when soliton boundaries have minimal width, as θ decreases these bound-
aries become a smaller fractional area of the moiré supercell. Thus, at extreme low-twist
the PLD needs to be generalized to include an additional number (N) of Fourier harmon-
ics to accommodate sharper boundaries:

∆N =
N∑

n=1

∆n (III.3)

The Fourier coefficient An dictates the texture of a torsional PLD. Figure III.7d,e,f
shows evolution of a torsional PLD as higher order Fourier harmonics are included. The
arrows represent the displacement field of the torsional PLD and the colored overlay rep-
resents the local rotational field (ΩN , see Appendix B.4) in one of the layers; the opposing
layer has an equal and opposite local rotational field (−ΩN). Figure III.7d shows a tor-
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Figure III.8: Contribution of PLD Harmonics across Twist Angles a) Amplitude of nth order PLD harmonics (An)
against twist angle. PLD amplitudes are obtained byminimizing total energy (VvdW+VEl)with up to 9th order harmonic
PLD included. At higher twist angle A1 is dominant, and A2, A3, A4 exceed 1 pm at θ ≲ 0.9°, 0.45°, 0.3° respectively.
Magenta ‘A1 only’ was obtained by minimizing the total energy with A1 included. A1 traces the Lorentzian model well
at high θ and slightly deviates at θ ≲ 0.5°. b) Absolute error of Lorentzian model with respect to A1 (blue) and ‘A1 only’
(red).

sional PLD with a single coefficient. The PLD rotational field reveals most of relaxation
is facilitated through twisting circular AA regions (orange). In contrast, with higher har-
monics included (Fig. III.7e,f) triangular AB/BA regions are anti-twisted (blue) to max-
imize Bernal stacking within the system in addition to twisting AA regions. Fourier co-
efficient design produces ΩN field pattern that matches previous reported experimental
results of local twist fields [18]. Although each harmonic PLD wave contributes elastic
energy independently (see Appendix B.6), this is not true for the interlayer van der Waals
energy. In Fig. III.7e,f, An decays exponentially (An = A1e

−κ(n−1)); analogous to a smooth
‘sawtooth’-like wave in one-dimensional wave (Fig. III.7a,b,c). Notably, for a smooth—i.e.
infinitely differentiable—wave, exponential decay is the upper bound for Fourier coeffi-
cients (Paley-Wiener theorem).

The PLD amplitudes for higher harmonics (An) are calculated by minimizing the to-
tal interlayer and intralayer energies. Each higher order term becomes non-negligible in-
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Figure III.9: Exponential Decay of PLDHarmonics a) Relative amplitude of PLD harmonics to fundamental harmonic
(An/A1) plotted versus twist angle (circles) closely follows exponential decay (An = A1e

−κ(θ)·(n−1)) (line). b) Decay
parameter, κ, is linear proportional to θ. Therefore, decreasing θ slows down decay of An. Notably, exponential decay
is the upper bound for Fourier coefficients (Paley-Wiener theorem)

crementally at smaller angles. A2, A3, and A4 will exceed 1 pm at θ ≲ 0.9◦, 0.45◦, and
0.3◦ respectively (Fig. III.8). We describe the extreme low-twist regime to be when A3

becomes significant (> 1 pm), however, this demarcation is imprecise. An decays expo-
nentiallywith coefficient κ(θ) linearly proportional to the twist angle (An = A1e

−κ(θ)·(n−1)).
Thus, decreasing θ retards decay of An and higher harmonics becomes more significant
(Fig. III.9). The fundamental PLD amplitude, A1(θ), remains well described by the empir-
ical Lorentzian, Eq. III.2, even when higher-order harmonics are present. If harmonics are
ignored, the computed value of A1 will deviate by more than 1 pm at twist angles below
θ < 0.25◦ but never exceed ∼10%. Noticeably, the inclusion of higher harmonics creates
torsional PLD texture that allow enhancement ofA1 in the extreme low twist angle regime.

Multislice simulation of SAED (Fig. III.7g–o) shows that the distribution of super-
lattice peaks change with the presence of higher harmonics. n-th harmonic PLD waves
add intensity to superlattice peaks nαq away from each Bragg peak (α is the integer in
Jα). Figure III.7g–o shows simulated TBGdiffraction patternswith higher harmonics have
stronger superlattice peaks further away from the Bragg peaks. The change is subtle be-
cause higher order harmonics are exponentially weaker.

As θ nears zero, many higher harmonics (N) are needed and the Fourier basis is more
cumbersome. Instead, a hard-domain model, where the superlattice is treated as quilt of
AA, AB and BA domains with dislocation boundaries may also become suitable. In the
limit of zero angle twist, boundaries become the stacking fault boundaries reported by
Brown et al. for untwisted bilayer graphene [17].
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Figure III.10: Universal Torsional PLDRelaxation of Twisted 2DMaterials Periodic relaxation is observed universally
multiple twisted 2D systems. SAED of a) low-θ TBG, b) twisted four layer (4L) WS2 homostructure c) twisted bilayer
(2L + 2L) CrI3 d) twisted WSe2/MoSe2 heterostructure shows bright Bragg peaks with small superlattice peaks. Insets
i–iii are multislice simulated diffraction patterns with torsional PLD model. The torsional PLD model reproduces qual-
itatively accurate SAED patterns across multiple systems.

Torsional PLDs Across Many Twisted 2DMaterials

Torsional PLDs in twisted 2D materials are a universal phenomenon and not limited to
TBG [8–10, 28]. Figure III.10 shows SAED patterns that exhibit periodic relaxations of
four distinct twisted 2D systems: a) low twist angle TBG, b) 4-layer of WS2 (4L-WS2), c)
twisted double bilayer CrI3 (2L+2L CrI3), and d) twisted WSe2/MoSe2 heterostructure.

The relaxation behavior is present in layered transitionalmetal dichalcogendies (MX2)
and trihallides (MH3). Figure III.10b shows the diffraction pattern of 4-layer homostruc-
ture of WS2 with equal twist angles between layers. Surprisingly, a strong torsional PLD
is observed, despite having a large twist angle (θ ≈ 4◦) [10]. For multi-layered system,
relaxationmay not be equivalent between layers. For 4L-WS2, for example, the PLD ampli-
tudes are strongest for the inner-most layers. Here equal and opposite PLDs of the inner
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Figure III.11: Periodic relaxations in lattice mismatched twisted bilayer systems a) Schematic reciprocal lattice struc-
ture of twisted heterostructure of two lattice constant mismatched lattice. Layer 1 has smaller real space lattice constant.
Vectors connecting first order Bragg peaks (q1,2,3) defines moiré unit cell and torsional PLD wavevectors. PLD dis-
placement vectors (Ai’s) are chosen to be non-orthogonal to qi’s. b, c) PLD displacement pattern with ∠qiAi = 45°.
Layer 1 and 2 experiences expansion and compression of lattice, respectively, as well as torsional field.

two layers matches simulated diffraction patterns. (Fig. III.10b).

Figure III.10c shows 4-layers of twisted CrI3, a magnetic 2D material, but with twist
only between the middle two layers [9]. Xie et al. reported that this system shows mag-
netic behavior that cannot be explained by either 2-layer or 4-layer CrI3 system and peri-
odic relaxation must be accounted for to fully explain the materials properties. For 2L+2L
CrI3 system, the magnetic properties suggest that the outer layers distorted together with
the inner layers (i.e. each bilayer acts like amonolayer). This is also consistentwith diffrac-
tion simulations (Fig. III.10c).

Periodic reconstruction of twisted materials is not limited to homostructures.
WSe2/MoSe2 heterostructures exhibit twist angle dependent excitonic behavior [29]. In
Figure III.10d, we reveal that the heterostructure with θ ≈ 5◦ periodically relaxes, de-
spite having different lattice constants. A torsional PLD model is also applicable to such
heterostructures. Simulated diffraction patterns (Fig. III.10d i–iii) show good agreement
with the experimental diffraction pattern. It should be noted that the relaxation behav-
ior of non-graphitic systems will be different when the stacking energy landscape is dis-
tinct [21]. Any stacking energy landscape can be accommodated by assigning the appro-
priate phase to each of the three PLD waves in a torsional PLD (Fig. III.2). Furthermore,
due to lattice constant mismatch, reconstruction of heterobilayer involves compression
and expansion of constituent layers [30, 31]. Compression/expansion of heterobilayer
can be easily incorporated by including longitudinal components to Âi’s as demonstrated
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in Figure III.11.

Discussion

Twisted 2D materials are complex moiré patterns where crystals deform according to a
competition between intralayer elastic strain and interlayer van der Waals interactions. A
reduction of symmetry arises not only from the global twist between layers but also the
subsequent lattice restructuring. Thus, the twist-angle alone provides an incomplete de-
scription of the system. We show a torsional periodic lattice distortion is a precise order
parameter to describe the atomic structure of twisted materials. Torsional periodic lat-
tice distortions are comprised of three transverse PLDs that maximize the lower energy
stacked domains and minimize and form solitonic shear boundaries in between. The am-
plitude and wavevector of torsional PLDs are defined by the twist angle and, in TBG, can
be analytically and emperically predicted with picometer precision. In this sense, moiré
materials are PLD engineering at low twist angles.

Despite the real-space complexity of low-twist moiré materials, the entire structure is
sparsely described by a single value: the amplitude of the distortion wave. This choice of
basis re-frames our understanding of low-twist angle materials. In the case of twisted
bilayer graphene, the torsional PLD amplitude can be analytically calculated from the
twist angle alone. Although the amplitude of the PLD can change gradually, the over-
all symmetry reduction occurs instantaneously—therefor a continuous phase transition is
not expected. Although this work thoroughly describes TBG, it is extendable to a variety
2D materials and twist angles—each with a bespoke set of PLDs to match the interlayer
energy landscapes.
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Chapter IV

Two-dimensional Charge Order Stabilized
in Clean Polytype Heterostructures

Introduction

Charge density waves (CDW) are an emergent periodic modulation of the electron
density that permeates a crystal with strong electron-lattice coupling [1–4]. TaS2 and
TaSxSe2-x host several CDWs that spontaneously break crystal symmetries, mediatemetal–
insulator transitions, and compete with superconductivity [1, 5–7]. These quantum
states are promising candidates for novel devices [8–11], efficient ultrafast non-volatile
switching [12, 13], and suggest elusive chiral superconductivity [14, 15]. Law & Lee
recently called for pristine 2D CDW syntheses to access exotic spin-liquid states in 1T-
TaS2 [16]. Unfortunately, extrinsic and thermal disorder in free standing 2D layers de-
grades correlation-driven quantum behavior [17, 18] and clean 2D charge density waves
or superconductivity are near absent [19]. Room temperature access to spatially coherent
charge density waves (e.g. commensurate states) and clean 2D confinement could enable
a paradigm shift toward device logic and quantum computing.

Here we show the critical temperature for spatially-coherent, commensurate charge
density waves (C-CDW) in 1T-TaS2 can be raised to well above room temperature (∼150K
above the expected transition) by synthesizing clean (minimal impurities or defects) in-
terleaved 2D polytypic heterostructures. This stabilizes a collective insulating ground
state (i.e. C-CDW) not expected to exist at room temperature. We show the formation
of these spatially coherent states occurs when 2D CDWs are confined between metallic
prismatic polytypes. Metallic layers screen impurity potentials to suppress the nearly-
commensurate (NC-CDW) phase. At the same time, interleaving disables interlayer cou-
pling between CDWs to ensure an unpaired electron in each 2D supercell. This raises the
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Figure IV.1: Unit cells of previously synthesized TaS2 polytypes a) Intralayer Ta–S coordination for octahedral (left)
and prismatic (right) coordination. Gray lines indicates Ta–S bonds. b) Unit cells of TaS2 polytypes 1T, 2Ha, 3R, 4Hb
and 6R along ⟨1120⟩ [1, 20–22]. Oc layers comprise 1T in bulk, Pr layers comprise 2Ha and 3R, and 4Hb and 6R contain
alternating Oc–Pr stacking.

critical temperature of the C-CDW and forms out-of-plane twinned commensurate (tC)
CDWs as revealed by scanned nanobeam electron diffraction. These results demonstrate
polytype engineering as a route to isolating 2D collective quantum states in a well-defined
extrinsic environment with identical chemistry but distinct band structure.

Layered TaS2 polytypes (Fig. IV.1) are archetypal hosts to anomalous electronic prop-
erties associated with the formation of CDWs. The Ta coordination to six chalcogens dra-
matically changes its behavior. Prismatic coordination (Pr) found in the stable 2H poly-
type is metallic, even below the CDW onset around 90 K, and becomes superconducting
around 0.5 K (enhanced to 2.2 K when thinned [5]). Octahedral (Oc) coordination found
in the metastable 1T polytype has inversion symmetry and exhibits three distinct, salient
CDWphases: commensurate (C), nearly-commensurate (NC), and incommensurate (IC).
An intermediate triclinic phase has also been reported [23–25]. At room temperature,
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Figure IV.2: Twinned, commensurate CDW at room temperature in ultrathin TaS2 a) Schematic illustration of room-
temperature, out-of-plane twinned, commensurate CDW in 1T-TaS2. Blue and red overlays represent CDW twins within
octahedrally coordinated TaS2. Metallic prismatic polytypes isolate octahedral layers to stabilize tC-CDWs. b, c) Twin
superlattice structure illustrated for α and β C-CDW, respectively. d) Average diffraction pattern of twinned, C-CDW
state over (870 nm)2 field-of-view reveals two sets of superlattice peaks (marked with blue and red). e, f) Nanobeam
diffraction imaging from each set of superlattice peaksmaps the coexistence of both CDW twins—expected for twinning
out-of-plane. Scale bar is 300 nm.

the conductive NC-CDW is generally accepted as a C-CDW with short range order [26–
30] that permits electron transport along regions of discommensuration [31–33]. Below
∼200K, the CDWwave vector locks into∼13.9° away from the reciprocal lattice vector (Γ–
M) to become a C-CDW that achieves long-range order with a

√
13×

√
13 supercell [1, 34].

This reduction of crystal symmetry gaps the Fermi-surface and the commensurate phase
becomes Mott insulating [1, 35, 36]. Above 352 K, the CDW wave vector aligns along the
reciprocal lattice vector and becomes the disordered IC-CDW phase.

Twinned Commensurate Charge Density Waves

The tC-CDW phase reported herein has distinct out-of-plane charge order—illustrated in
Figure IV.2a (See also: Fig. S1). 2D CDWs reside within Oc-layers sparsely interleaved
between metallic Pr-layers. Each CDW is commensurate in one of two degenerate twin
states, α-C (blue) or β -C (red) (Fig. IV.2b, c). The translational symmetry is described
by in-plane CDW lattice vectors (λλλα1,λλλα2) and (λλλβ1,λλλβ2). CDWs are a prototypical mani-
festation of electron-lattice coupling, in which both the electron density and lattice posi-
tions undergo periodic modulations to reduce crystal symmetry and lower the electronic
energy [37]. The associated periodic lattice distortions (PLD) diffract incident swift elec-
trons into low-intensity superlattice peaks between Bragg peaks [38, 39]. Polytypes and
stacking order thereof manifests as changes in Bragg peak intensities where as CDWs pro-
duce distinct superlattice peaks [28, 38, 40]. Figure IV.2d shows the position averaged
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convergent beam electron diffraction pattern (0.55 mrad semi-convergence angle, 80 keV)
of the tC-CDW phase at room temperature with α, β superlattice peaks annotated (blue,
red). Regularly spaced superlattice peaks and bright first order superlattice peaks are
characteristic of C-CDWs and match the tC-CDW peaks.

Both α and β CDW states were mapped over microns of area to reveal a uniform co-
existence of both twins when viewed in projection out-of-plane (Fig. IV.2e, f). This is
evidently different from recently reported in-plane twin CDWs created by femtosecond
light pulses [41]. Mapping CDW structure required a electron microscope pixel array de-
tector (EMPAD) with 1,000,000:1 dynamic range [42] allowing Bragg beams to be imaged
while still maintaining single electron sensitivity near CDW peaks. A convergent beam
electron diffraction (CBED; 0.55 mrad convergence semi-angle, 200 keV) pattern was col-
lected at every beam position across large fields of view—an emerging technique often
called 4D-STEM. [42–44]. For 4D-STEM, a CBED pattern was recorded at each beam po-
sition using the EMPAD detector. EMPAD’s high dynamic range (1,000,000:1) and single
electron sensitivity [42] allows simultaneous recording of intense Bragg beams alongside
weak superlattice reflections. Virtual satellite dark field images were formed by integrat-
ing intensities from all satellite peaks at each scan position. In this way, the local CDW
structure was measured at∼4.6 nm resolution and across>1 µmfields of view. It demon-
strates 4D-STEM as an invaluable tool for mapping charge order in materials. Previous
approaches to mapping CDWs entailed sparse measurement from a handful of diffraction
patterns [41], small-area tracking of atomic displacements [45], or traditional dark-field
TEM techniques that result in low resolution and debilitating signal-to-noise ratios [1, 46].

Clean Polytype Heterostructures

Thermal treatment reproducibly forms the tC-CDWphase—a process summarized by the
in-situ selected area electron diffraction (SAED) in Figure IV.3a. Initially, an exfoliated
flake of 1T-TaS2 hosts NC-CDWs (Fig. IV.3a, left) at room temperature with diffuse first-
order superlattice peaks (cyan circles) and sharp second order superlattice peaks (cyan
triangle). 1T-TaS2 is heated past the reversible phase transition (TNC-IC ≈ 352 K) into the
disordered IC-CDW state, which has characteristic azimuthally diffuse superlattice spots
(Fig. IV.3a, right). Heating continues up to temperatures (∼720 K) above the polytype
transition (TOc-Pr ≈ 600 K [47]) where it remains for several minutes. Upon cooling, the
system does not return to the expected NC-CDW but instead enters a tC-CDW state with
sharp, commensurate first and second order superlattice peaks duplicated with mirror
symmetry (α, β) (Fig. IV.3a, bottom). The tC-CDW phase is stable and observable after
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Figure IV.3: Polytype isolation forms 2D CDW layers a) Pristine 1T-TaS2 at room temperature hosts NC-CDW (left).
Upon heating the NC phase gives way to IC-CDW (right) at ∼350 K; the transition is normally reversible. Strikingly,
heating above∼620 K then cooling stabilizes tC-CDW (bottom). SAED patterns were formed from a 500 nm aperture b–
e) In-situ TEM reveals layer-by-layer octahedral to prismatic polytypic transformations during heat treatment. Multiple
polytypic domains (denoted green, purple, and yellow) nucleate and grow simultaneously without interaction. Scale
bar is 350 nm. f) Schematic cross-section of TaS2 during layer-by-layer polytypic transition. g) Fast and slow transitions
occur along ⟨1010⟩ and ⟨1120⟩ directions respectively. h–i) Atomic resolution cross-sectional HAADF-STEM of h) pris-
tine and i) heat-treated TaSxSe2-x confirms polytypic transformation. After treatment, prismatic (Pr) layers encapsulate
monolayers of octahedral (Oc) layers. Scale bar is 2 nm. A selenium doped sample was imaged to enhance chalcogen
visibility.

months of dry storage (RH∼10 %) at room temperature. Synthesis was replicated ex-situ
in both high-vacuum (< 10−7 Torr) and inert argon purged gloveboxes, but amorphized
in ambient air. The tC-CDWwas equivalently synthesized for both TaS2 and TaSxSe2-x.

Heating above the polytype transition temperature (TOc-Pr) provokes layer-by-layer
transitions from Oc to Pr polytypes instead of a rapid bulk transformation. Figure IV.3b–e
shows in-situ TEM using high-frame-rate (25 fps) microscopy taken at ∼710 K. Each col-
ored overlay highlights the growth and formation of a new prismatic polytype domain.
Arrows indicate movement of Oc/Pr coordination boundary with a fast-transition up to
∼100 nm/s along ⟨1010⟩ crystal directions and a slow-transition at∼10 nm/s along ⟨1120⟩
(Fig. IV.3g).. Domains nucleate and boundaries progress independently between layers
as illustrated in Figure IV.3b–f. Cooling the sample mid-transition produces a sparsely
interleaved polytypic heterostructure.

Atomic resolution cross-section images of pristine and heat-treated samples (Fig. IV.3h
and i, respectively) measured by high-angle annular dark-field (HAADF)-STEM reveal
the interleaved polytypic heterostructure. Interleaving isolates monolayers of octahedral
(Oc) coordination that host 2D-CDWs in a clean, defect-free environment of prismatic
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(Pr) metallic layers. Although this system is best described as a sparse interleaving of Oc-
layers within many Pr-layers (Fig. IV.3i), the uncorrelated polytype stacking may permit
by chance a small (or even negligible) amount of layers which locally match a 4Hb (or
another bulk polytype) unit cell.

Themetallic ‘Pr’ layers are hypothesized to screen out-of-plane interactions and impu-
rity potentials to stabilize low-temperature commensurate CDWs at room temperature. As
a result, the NC-CDW state no longer exists and a long-range ordered tC-CDW emerges
as a stable phase up to ∼350 K. This result is radically different from previous reports
where free standing ultra-thin 1T-TaS2 degrades long-range order [48] and broadens the
NC-CDW phase by lowering TCCDW [13, 18, 49]. However, our observation of 2D com-
mensurate CDWs agrees with a theoretical prediction that commensurate CDWs aremore
stable in clean monolayer [50].

Understanding the role of disorder requires decoupling intrinsic quantum behavior
from extrinsic influences at the surfaces, especially in low dimensions where long-range
order becomes more fragile and vulnerable to impurities [17, 51, 52]. When the disor-
der strength reaches a certain threshold, the long-range C-CDW phase gives its way to a
disordered phase [17]. Here, each 2D 1T-TaS2 CDW is in its native chemical, endotaxial,
and unstrained environment. Impurity potentials that pin CDWs [53] and break spatial
coherence are mitigated by adjacent metallic Pr-layers. For C-CDWs (in 2D and above)
in the presence of sufficiently weak disorder, the charge order remains stable [52]. Ad-
ditionally, isolating monolayers of 1T-TaS2 ensures an odd number of electrons per unit
cell and elongates the Fermi surface out-of-plane—both expected to reduce the electronic
energy.

Isolation of 2D Charge Density Waves

In the tC-CDW, metallic Pr-layers decouple interlayer CDW interactions to create isolated
2D CDWs with twin degeneracy. Using a phenomenological model we illustrate a ki-
netic pathway for accessing the tC-CDW. Here, local orientation of the CDWwave vector,
θ, is an apt order parameter for describing the breaking of the mirror symmetry in the
C⇋IC transition. This provides a simple, minimal phenomenological model to qualita-
tively capture the formation of twinned CDWs but does not model all remaining compo-
nents of the complete CDWorder parameter (SeeAppendix C.1). A free energy expansion
of this order parameter combined with an XY interaction of the CDW wave vector qual-
itatively reproduces diffraction patterns for IC-CDW and α/β C-CDW. In diffraction, the
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Figure IV.4: Phenomenological model illustrates formation of commensurate CDWs with out-of-plane twin degen-
eracy a–c) The CDW wave-vector direction θ defines an order parameter with degenerate commensurate twins when
cooled from IC-CDW phase. Simulated far-field diffraction patterns for a) α-C, b) IC and c) β-C. The free energy (F)
landscape (Inset-left) governs the mean θ and the real-space distribution (Inset-right). d) Histogram of θ shows zero-
centered, wide distribution at high temperature. At low temperature, the distribution is narrow and centered at ±13.9°
for either twin. e) Map of local orientation of wave vector (θ) at IC phase. Each hexagonal cell represents θ at each Ta
site. f) At high temperature θ is mean centered and disordered, however, g) at low-temperature each 2D layer converges
into either α or β randomly when layers are decoupled. Simulated far-field diffraction patterns of multi-layer system in
high temperature (Inset-f) and low temperature (Inset-g) resembles experimentally observed SAEDs.

superlattice peak location and shape encodes the distribution of the CDW order param-
eter. Simulated diffraction patterns at high temperatures feature first-order superlattice
peaks azimuthally broadened by CDW disorder and centered along the reciprocal lattice
(Γ–M) direction (Fig. IV.4b). At low temperature, the superlattice peaks are sharpened
by long-range CDW order and located at +13.9° or −13.9° away from Γ–M (Fig. IV.4a,c).
Figure IV.4d shows distribution of θ at high (gray) and low (blue, red) temperatures.

When cooled, the system chooses α or β with equal probability. For pristine 1T-TaS2,
CDWs couple between layers, twin degeneracy is broken, and no twinning occurs [54].
However, in the absence of interlayer interaction or extrinsic perturbation, each 2D CDW
layer quenches randomly into either α or βC-CDW (Fig. IV.4g) from the high-temperature
IC-CDW phase (Fig. IV.4f)—forming the out-of-plane twinned tC-CDW phase. In pro-
jection, the model produces diffraction pattern that resembles experimental SAED of IC-
CDW and tC-CDW phases. (Fig. IV.4f,g Insets) In systems with very few CDW layers,
one stronger CDW direction can sometimes emerge (Fig. S12b, c). From our model, out-
of-plane twinning occurs for modest cooling rates but we note fast quenching predicts
in-plane twinning similar to reported ultrafast optical excitations [41].
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Optical and Electrical Characteristics of tC-CDW

Rotational-anisotropy second-harmonic generation (RA-SHG) revealed restoration of
twin degeneracy in heat-treated samples. The RA-SHG of pristine sample (Fig. IV.5b)
exhibits a hallmark of the RA-SHG pattern rotated away from the lattice vectors; breaking
mirror symmetry due to formation of a single-domain NC-CDW. In contrast, the heat-
treated sample’s RA-SHG pattern (Fig. IV.5c) is mirror-symmetric to the crystalline direc-
tions and much stronger. Together, this is a strong evidence of equally weighted degener-
ate α and β states (i.e., tC-CDW) and the emergence of Pr-layers that are mirror symmetric
and non-centrosymmetric.

Electronic measurement of the polytypic heterostructure with interleaved CDWs re-
veals a direct tC⇋IC transition at 350 K and removal of the disordered NC-CDW phase.
Figure IV.5a shows in-plane resistance vs. temperature measurements of pristine 1T
(pink) and heat-treated polytypic heterostructure (blue) are drastically different. The
heterostructure features only one metal–insulator transition at 350 K, whereas pristine 1T-
TaS2 exhibits two transitions at ∼200 K (C⇋NC) and 350 K (NC⇋IC). Resistance jumps
are a signature of emergent CDW order. At low temperature the metallic Pr-layers dom-
inate in-plane conduction since the resistance is expected to monotonically decrease as
observed in bulk material [55]. This hinders the quantification of resistance in individual
Oc-layers, however the critical temperatures remain clearly visible.

Repeated in-situ heating–cooling cycles reveal the tC⇋IC transition is reversible and
theNC-CDWphase is removed. Note that the intermediate triclinic phasewas also not ob-
served. Electronic measurements (Fig. IV.5a) match structure measurements from in-situ
SAED (Fig. IV.3a) and confirm the insulating commensurate charge order of the tC-CDW
phase. The interleaved polytype herein stabilizes coherent electronic states well above
(∼150 K) the normal critical temperature, and disordered NC-CDW phase is structurally
and electronically removed.

Discussion

In summary, we have established a pathway toward stabilizing latent CDWs with long-
range order at room temperature by reducing their dimensions to 2D using clean inter-
leaved polytypes of TaS2. The metallic layers isolate each 2D CDW to restore twin de-
generacy giving rise to an out-of-plane twinned commensurate CDW phase. 4D-STEM
proved invaluable for mapping CDWdomains across large fields-of-view (∼1 µm) to con-
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Figure IV.5: Electronic transport of tC-CDW phase transition and reversibility a) 4-point in-plane resistance mea-
surement as function of temperature for pristine bulk (pink) and heat-treated (blue) TaS2. Pristine samples show two
jumps in resistance for C⇋NC and NC⇋IC, whereas the heat treated polytypic heterostructures only feature a single,
reversible tC⇋IC transition at ∼350 K corresponding to the enhanced critical temperature for CDW commensuration
and disappearance of the NC-CDW. Metallic Pr-layers dominate the overall trend of the resistance measurement, how-
ever, the single jump above room-temperature is a distinct feature of the tC-CDW. Schematics represent a simplified
CDW structures of each phase. Inset) Optical image of the nanofabricated device. b) The RA-SHG pattern for pristine
1T samples display a mismatch between the nominal mirror direction and the crystalline direction, indicating the CDW
breaksmirror symmetry. c) After heat treatment, the RA-SHG pattern is symmetric with respect to the crystal, implying
equal weights between the α and β states. The SHG intensity also increases with mirror symmetric Pr-layers present.

firm twin structure while atomic resolution HAADF-STEM revealed the 2D CDW layers
within a metallic phase. Both structural and electronic investigations show the disordered
NC-CDW phase disappears when a 2D CDW is in a chemically and endotaxially native
clean environment. The stabilization of ordered electronic phases with 2D polytype en-
gineering has significant implications for new routes to access fragile, exotic correlated
electron states.
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Chapter V

Enhancement and Melting
of Charge Density Waves with 2D Endotaxy

Introduction

Some exotic crystals spontaneously reorganize their valence electrons into periodic struc-
tures known as charge density waves (CDWs). In essence, two crystals emerge—the un-
derlying atomic lattice and the emergent charge lattice. Just like atomic crystals, a charge
densitywave has defects: dislocations, disclinations, or elastic deformation [1–3]. Further-
more, the charge density wave can undergo phase transitions wherein the charge lattice
constant and unit cell changes shape. All of this CDW reshaping and topological breaking
occurs even when the underlying atomic lattice remains unchanged.

In low dimensions, these quantum phase transitions are promising candidates for
novel devices [4–7], efficient ultrafast non-volatile switching [8–10], and suggest elusive
chiral superconductivity [11–13]. Unfortunately, 2D CDWs are inherently unstable and
accessing low-dimensional CDWs remains a challenge [14, 15]. Even worse, at elevated
temperatureswhere devices typically operate, disruption of charge densitywaves is all but
guaranteed due to ever present disorder [16–18]. A long-range ordered incommensurate
CDW has yet to be reported.

Here we stabilize ordered incommensurate charge density waves (oIC-CDW) at el-
evated temperatures (TIC = 350 K) in two-dimensions by endotaxial synthesis of TaS2
polytype heterostructures. The estimated hundred-fold enhancement of the charge den-
sity wave has an increased coherence length comparable to the underlying atomic crystal.
The enhanced order of the oIC-CDW increases electronic resistivity. This substantial en-
hancement of charge order is achieved through encapsulation of an isolated octahedral
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TaS2 CDW layer within a matrix of prismatic TaS2 metallic layers via 2D endotaxial syn-
thesis.

Realizing the ordered incommensurate CDW reveals CDWs have hexatic structure
at high-temperature—that is, long-range translational symmetry is limited by topolog-
ical breaking of the CDW through dislocations and disclinations. We show at high-
temperatures, the CDWs in TaS2 continuously melt as additional dislocations and discli-
nations form in the charge lattice. This hexatic CDW melting process was not previously
observable since the incommensurate CDW normally emerges as a highly-disordered,
melted state. By restoring order through 2D endotaxy, we can reversibly melt and un-
melt CDWs in TaS2. Based on these results, we access new regimes of the CDW phase
diagram for octahedrally coordinated TaS2 in temperature vs disorder space. Similar ves-
tigial ordering (i.e., hexaticity) was predicted by Nie, Tarjus and Kivelson [17]; however,
with 2D endotaxy we can now tune down the disorder in the CDW phase diagram.

Figure V.1: Long-range Ordered Incommensurate Charge Density Waves. a) Schematic representation of ordered IC-
CDW. The CDW is two-dimensional with little disorder. b) Ordered IC-CDW illustrated as a crystalline charge-density
lattice. Inset) Fourier transform of the charge lattice shows well defined peaks. c) Associated periodic lattice distortions
(PLDs) move tantalum nuclei along the charge density gradient. Inset) Simulated diffraction shows sharp superlattice
peaks decorating Bragg peaks. d) Schematic representation of ordered IC-CDW in endotaxial polytype heterostruc-
ture. Mono- or few layers of endotaxially protected Oc-TaS2 hosts 2D ordered IC-CDWs. e) Schematic representation
of hexatic IC-CDW. The CDW phase is quasi-2D with non-trivial interlayer interactions, and hexatically disordered. f)
Charge density distribution is comparable to hexatically disordered crystal lattice. Inset) Structure factor reveals az-
imuthally diffused peaks—characteristics of hexatic phases. g) Associated lattice distortion of IC-CDW with (inset)
Fourier transform showing azimuthally blurred superlattice peaks while maintaining sharp Bragg peaks. h) Schematic
representation of hexatic IC-CDW in bulk 1T-TaS2 where every layer hosts disordered IC-CDW.
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The Ordered Incommensurate Charge Density Wave

The ordered incommensurate CDW (oIC) reported herein (Fig. V.1a–d) is strikingly dis-
tinct from the well-known incommensurate (IC) CDW (Fig. V.1e–h) found in 1T-TaS2 or
1T-TaSe2. Here, the oIC phase is a truly two-dimensional (2D) CDW with long-range
positional and orientational order that couples strongly with the underlying crystal lat-
tice (Fig. V.1a). The oIC-CDW, illustrated in Figure V.1b, is a crystalline charge-lattice
withwell-defined, sharp peaks in Fourier space (Fig. V.1b-inset). This CDW charge-lattice
(aCDW = 11.87 nm) exists within an underlying atomic lattice illustrated in Figure V.1c.

Electron–lattice interaction is an essential aspect of CDWs, and associated soft-phonon
modes manifest as static periodic lattice distortions (PLDs) that reduce crystal symmetry
and lower the electronic energy [19, 20]. For TaS2, the CDWpulls atoms toward the nearest
charge maximum to form periodic clusters of atoms (Fig. V.1c). Notably for incommensu-
rate charge ordering, each cluster is distinct since the atomic lattice is not commensurate
with the CDW. While these lattice distortions are small (<10 pm), selected area electron
diffraction (SAED) is sensitive to subtle picoscale distortions andhave beenpopular choice
for characterization of CDW/PLDs [21]. CDW/PLDs diffract incident swift electrons into
distinct superlattice peaks decorating each Bragg peak [2, 22–24]. In reciprocal space,
the CDW charge lattice (Fig. V.1b-inset) and the measurable atomic superlattice peaks
(Fig. V.1c-inset) have corresponding spacing, symmetry, and intensity.

Diffracted superlattice peaks provide a direct measure of the CDW lattice and contain
rich information on their order-disorder. Specifically, diffraction represents an ensemble
average of the structure over the selected area, and disorder manifests as diffused diffrac-
tion peaks [25, 26]. Disorder of CDWs smears superlattice peaks but leaves the principle
Bragg peaks unaffected (Fig. V.1g-inset). For oIC-CDWs, the charge lattice is orderedwith
limited defects, thus diffraction shows both sharp superlattice and Bragg peaks (Fig. V.1c-
inset). In contrast, the well-known IC-CDW in 1T-TaS2 possesses significant disorder of its
charge distribution. Across decades, the IC phase in 1T-TaS2 is reported with a ring-like,
azimuthally diffuse diffraction around each Bragg peak [22, 27–29], yet the origin of the
diffused superlattice peaks is hardly discussed [30, 31].

Here we present the well-known IC-CDW in bulk 1T-TaS2 as a hexatically disordered
charge lattice containing dislocations and disclinations (Fig. V.1f). In-situ SAED of 1T-
TaS2 taken at 408 K (Fig. V.2a) shows azimuthally blurred first order superlattice peaks
(marked brown). Averaging all six third order Bragg peaks (inset, Γ3) better highlights
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this point. Notably, hexatic phases are known to have six-fold rotational symmetric, az-
imuthally diffused peaks [32]. The experimental diffraction of IC-CDWs are consistent
with a hexatic charge distribution (Fig. V.1f) [26, 31–33] and corresponding azimuthally
diffuse structure factor (Fig. V.1f, g-inset). The IC-CDWs are three-dimensional (or quasi-
2D) with non-negligible out-of-plane interactions (Fig. V.1e–h).

In contrast, the oIC-CDW, shows drastically sharper and stronger superlattice peaks
measured by in-situ SAED at 408 K (Fig. V.2b). Sharpening is especially highlighted in
averaged third order Bragg peaks (Γ3). The measured superlattice peaks of oIC-CDW are
sharper both in azimuthal (by ∼60%) and radial (by ∼50%) directions when compared
to the IC-CDW. Notably, the superlattice peak widths of the oIC phase is comparable to
the peak widths of the principle Bragg peaks. Therefore, the oIC is an spatially coherent
electronic crystal over the selected area aperture size (∼850 nm).

The oIC-CDW, a 2D charge ordered state, is enhanced by at least one-hundred fold
over previously reported bulk IC-CDWs. Diffracted superlattice peaks in oIC-CDWs have
an integrated intensity over ten times stronger despite that the number of charge ordered
TaS2 layers has been reduced to less than 10%of thematerial. Thus, endotaxial engineering
improves not only the long range order but also the charge order amplitude of the IC-
CDW. The correlation of long-range order and CDW enhancement is measured directly
via hexatic CDWmelting later in this manuscript.

Endotaxial Polytype Heterostructure of TaS2

The oIC-CDW phase reported herein is stabilized by synthesizing endotaxial polytype
heterostructures of TaS2, where oIC-CDWs reside in monolayers of octahedrally coordi-
nated (Oc-) TaS2 embedded within prismatic (Pr-) TaS2 matrix and one-to-one atomic
registry (Fig. V.2e). Endotaxial polytype heterostructures are synthesized by heating 1T-
TaS2 at ∼720 K for 15–30 min in an inert environment. Notably, 1T-TaS2 is metastable
and goes through Oc-to-Pr endotaxial layer-by-layer polytype transformation upon heat-
ing (≳ 620 K). In-situ SAEDs (Fig. V.2c i–iv) were acquired at 20 seconds intervals at
408 K through the high temperature conversion process (723 K). These snapshots reveal
sharpening of superlattice peaks—a clear indicator of enhanced CDW order. Cooling the
sample midst transition stops the conversion and an interleaved polytype heterostructure
is synthesized—confirmed by cross-sectional ADF-STEM.

Figure V.2d and e show atomic resolution micrographs of bulk 1T endotaxially con-
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Figure V.2: Endotaxial Polytype Heterostructure of TaS2. a) In bulk TaS2, an IC-CDW phase emerges above 350 K,
with azimuthally diffused superlattice peaks characteristic of hexatic disorder. b) oIC-CDW in endotaxial polytype het-
erostructure has enhanced long-range order and amplitude. Superlattice peaks are well-defined, sharper and brighter.
c) Evolution of IC-CDW during the endotaxial synthesis. Atomic resolution cross-sectional HAADF-STEM of d) bulk
and e) heat-treated TaSxSe2-x confirms polytypic transformation. After treatment, Pr layers encapsulate monolayers of
Oc layers. Scale bar is 2 nm. A selenium doped sample was imaged to enhance chalcogen visibility. f) Resistivity vs
temperature measurement of bulk (brown) and thermally-treated (red) TaS2 shows a marked increase in resistivity in
IC-CDW phases. In pristine sample IC-CDW gives way to nearly commensurate (NC-) CDW around 350 K. In polytype
heterostructure, twinned commensurate (tC-) CDW emerges at a similar temperature range.

verted to a polytype heterostructure. The atomic resolution images demonstrate endo-
taxial monolayer encapsulation of Oc-TaS2 (Fig. V.2e, highlighted red) in Pr-layers. The
Pr-TaS2 (bulk: 2H, 3R) are metallic above ∼100 K. Previous work showed these metallic
layers decouple CDWs out-of-plane and raise the critical temperature for commensurate
quantum states (i.e., C-CDW) up to 150 K [34].

Surprisingly, the endotaxial polytype heterostructure stabilizes long-range order in
IC-CDWs at elevated (≳ 350 K) temperatures. The oIC-CDWphase has correlation length
comparable to the crystal lattice, quantified by comparing widths of both superlattice and
Bragg peaks from in-situ selected area electron diffraction patterns. This indicates the
CDW is spatially coherent (i.e. defect-free) within the selected area aperture (∼850 nm
diameter).

This enhancement of long-range CDW order is accompanied by a marked increase of
the in-plane resistivity of the IC phase (Fig. V.2f). Figure V.2f shows temperature vs in-
plane resistivity measurement of 1T (brown) and endotaxial (red) specimen. Resistivity
of endotaxial TaS2 is higher for IC-CDW phases (>358 K), despite having many metallic
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Figure V.3: Hexatic Melting of IC-CDWs. a) Averaged in-situ SAED patterns showing oIC-CDW superlattice peaks
in endotaxial heterostructure. i—iii) As temperature increases (408 K, 523 K, 573 K), superlattice peaks continuously
blur along azimuthal direction. b) Quantification of superlattice peak profile. b-blue) Azimuthal width of the peak
continuously increases with temperature—a key feature in hexatic melting process. b-red) Integrated superlattice peak
intensity of oIC phase monotonically decays as temperature increases despite the increase in peak width; CDW is weak-
ening. c–e) Monte Carlo simulation of 2D Lennard-Jones crystal with increasing temperatures. This represents the
charge density distribution. As temperature increases, the crystal progressively disorders with increasing numbers of
disclinations and dislocations. Insets) Structure factor of the simulated crystals. six-fold symmetry is apparent. As
temperature increases, peaks diffuse prominently along azimuthal direction.

layers introduced to the system. This implies that oIC-CDWs have a much higher resis-
tivity than hexatic-IC in 1T-TaS2.

Hexatic Melting of IC-CDW

Creating the oIC-CDW provides an ordered charge lattice that can be hexatically melted
upon further heating. Hexatic melting is a uniquely 2D process wherein a crystal melts
in two stages through the creation of dislocations and disclinations [33, 35–38]. Dur-
ing this process the reciprocal space structure continuously evolves. Initially at lower-
temperatures (c.a. 350 K), the oIC phase is an ordered charge crystal with well-defined
peaks reciprocal space (Fig. V.3c). As temperature rises, the CDW peaks continuously
blur azimuthally as the density of dislocations and disclinations increases (Fig. V.3d, e).
Azimuthal blurring of the reciprocal lattice is characteristic of hexatic phases and reflects
the loss of translational symmetrywhilemaintaining some orientational order [32]. Even-
tually, at higher temperatures (c.a. 570 K), the hexatic crystal completely dissociates into
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an amorphous liquid state with ring-like structure factor. Figure V.3c–e, are generated us-
ing a phenomological Monte Carlo simulation wherein displacement of the CDW charge
centers follow a temperature dependentMaxwell-Boltzmann probability distribution (See
Methods). Here, the incommensurate CDWhexaticallymeltswhile the underlying atomic
lattice remains unchanged—in diffraction this corresponds to a blurring of CDW super-
lattice peaks and preservation of Bragg peaks.

During the hexatic melting of oIC-CDWs, superlattice peaks increasingly blur as tem-
perature is raised—clearly visible in in-situ SAED at Fig. V.3a-i) 473 K, Fig. V.3a-ii) 523 K,
and Fig. V.3a-iii) 573 K. The blurring is anisotropic and more prominent along azimuthal
directions as expected for hexatic phases. The CDW peaks are quantified throughout
the melting process in Figure V.3b. Azimuthal peak width (Fig. V.3b, blue-triangles)
increases continuously with temperature; roughly doubling when raised from 410 K to
570 K. Around 520 K the oIC has melted into a state that resembles the well-known IC-
CDW for bulk TaS2. This CDW melting process is reversible and peaks sharpen when
temperature is decreased. Notably, Bragg peaks do not show appreciable changes indi-
cating only the electronic crystal is melting, not the TaS2 atomic crystal.

Although the CDWmelting process appears hexatic, it is distinct from familiar liquid
crystals, silica spheres, or atomic crystals wherein the amplitude of the order parameter
does not change. Here, quantitative analysis of the superlattice peak intensities (Fig. V.3a-
red) reveals the charge density wave amplitude decreases with temperature. This is ex-
pected as topological defects in CDWs (dislocations and disclinations) have locally di-
vergent strain with elastic energy cost that forces a local amplitude collapse. These local
CDW amplitude collapses have been observed at the center of topologcal defects in the 3D
CDWs of manganites [1].

The CDW Phase Diagram for Octahedral TaS2

Endotaxial synthesis of octahedrally coordinated TaS2 allows access to new phases of mat-
ter and construction of a phase diagram for CDWs using temperature (T) and disorder
(σ). The CDW phase diagram for 1T-TaS2 is shown in Figure V.4. 1T-TaS2 exists with na-
tive disorder and the ordered, commensurate phase (C-CDW, Fig. V.4g) is only observed
at low-temperatures. At room temperature, the CDW is a partially-ordered NC phase
(Fig. V.4f) that enters the hexatic IC phase upon heating (Fig. V.4e). At high-temperatures
or high-disorder, CDWs degrade or vanish. The high disorder regime was historically
achieved by substituting tantalum ions with other metal species (e.g. Ti, Nb) or by forc-
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Figure V.4: Phase Diagram of Octahedrally Coordinated TaS2. a) Schematic temperature vs disorder phase diagram
of octahedrally coordinated TaS2. As extrinsic disorder (σ) decreases, more ordered CDW phases are stabilized. At
room temperature, polytype heterostructures with low disorder stabilizes C-CDW (d) instead of NC-CDW (f), and
long-range ordered IC-CDW (c) phase instead of hexatically disordered IC-CDW (e). Furthermore, it stabilizes CDWs
(b) at higher temperatures then bulk 1T-TaS2 can (TCDW ∼= 540 K [39]). Substitutional disorder, on the other hand,
destroys long-range order and hexatic IC-CDW is stable at room temperature (h) and leads to complete destruction of
CDW eventually (i). b–i) Electron diffraction patterns showing superlattice peaks around a single Bragg peak reveals
the charge ordering states. h,i) are adapted fromWilson et al. [22].

ing intercalateswithin the van derWaals gap [22]. At room temperature, mild substitution
of titanium (1T-Ta0.7Ti0.3S2) drives the system into hexatic-IC CDW states (Fig. V.4h), and
as more titanium is substituted (1T-Ta0.3Ti0.7S2) CDW vanishes completely (Fig. V.4i).

The low disorder regime, now accessible by endotaxial engineering, provides room
temperature ordered C-CDWs and a novel ordered IC-CDW at higher temperatures. No-
tably with low-disorder, the C to IC transition is direct and the NC phase does not ap-
pear. The IC phase is ordered, but the CDW can be continuously melted into a disordered
hexatic-IC phase (as described in figure V.3). The boundaries of the CDW phase diagram
are drawn with consistency to hexatic melting of 2D collidal particles under temperature
and disorder [40] as well as nematic CDWs [17, 18, 41].

Notably, CDWs in endotaxial TaS2 are two dimensional and the oIC phase has en-
hanced order despite the 3D to 2D dimensionality reduction. In bulk 1T-TaS2 CDWs are
quasi-2D with non-negligible out-of-plane interaction (Fig. V.1h) [42–45]. Formation of
endotaxial polytype heterostructures disrupts the out-of-plane interactions and CDWs re-
side in a protected 2D environment [34]. Stabilization of an ordered IC-CDW in 2D seem-
ingly contradicts with Hohenberg-Mermin-Wagner theorem [14, 15] and Imry-Ma argu-
ment [16] which state spontaneous symmetry breaking of continuous symmetry (e.g. IC-
CDWs) is unstable at non-zero temperatures in 2D. While both principles do not prevent
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intermediate phases with short-range order (e.g., Berezinskii-Kosterlitz-Thouless (BKT)
transition [33, 46]), the 2D CDWs should be none-the-less more fragile to disorder. An
ordered IC phase can only emerge in ultra-clean environments. Here endotaxial TaS2 is
a synthesis protects CDW states by strain-free encapsulation in an chemically identical
environment of metallic layers that shield off disorder.

Conclusion

In summary, we demonstrate that endotaxial synthesis of clean interleaved polytypic het-
erostructures can stabilize fragile quantum phases such as ordered CDWs even at high
temperatures. Here, we stabilize and enhance 2D charge density waves (both long-range
order and amplitude) in an endotaxially confined monolayer of 1T-TaS2. Surprisingly, the
low-dimensional symmetry breaking of an ordered incommensurate CDW (oIC-CDW)
appears, suggesting the quantum states reside within minimal extrinsic disorder. By en-
hancing CDW order the hexatic nature of IC-CDWs are revealed. Experimental observa-
tion matches advanced simulation of electron diffraction of charge lattices to provide the
real-space evolution of 2D CDWmelting. Heating the oIC-CDW in-situ TEM above 400 K
we see a reversable hexatic melting process, in which disclinations and dislocations de-
stroy long-range translational symmetry of the CDW while maintaining its orientational
order. The CDW melts well before the underlying atomic crystal changes. In 2D, CDWs
are expected to manifest through vestigial electronic hexaticity—a weak CDW with sub-
stantial defects and short range order. The nature of vestigial phases in CDWs remains
poorly understood with little direct evidence. From these results, a CDW phase diagram
for 1T-TaS2 is created and consistent with the predicted emergence of vestigial quantum
order.
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Chapter VI

Conclusion

Summary

Chapter I provided a brief introduction to electron microscopy and electron diffraction.
Specifically, it motivated usage of high energy electron beam to achieve kinematic diffrac-
tion condition. Electron diffraction, while it is an old technique, is mature and still pow-
erful tool for materials science.

3D reciprocal structure of 2D materials were extensively discussed in Chapter II. De-
spite its name, 2Dmaterials have fascinating third dimension morphology and the out-of-
plane interaction often play a significant role in the materials property. We introduced 3D
electron diffraction, a powerful technique that captures rich out-of-plane information in
2Dmaterials. Here, we identified the exact stacking and number of layers of 1, 2, 6, and 12
layer graphene and revealedmetal–chalcogen coordination and bond length of monolayer
MoS2.

In Chapter III, we explored interlayer twist, a tunability unique to 2Dmaterials. Moiré
heterostructures periodically relaxes due to modulated out-of-plane interactions. We in-
troduced torsional PLD as the single order parameter that describes positions of >10,000
carbon atoms. Furthermore, we experimentally quantify the torsional PLD amplitude
from a single electron diffraction pattern.

In Chapter IV, we stabilize spatially-coherent, long-range ordered commensurate (C-)
CDWswell above the room temperature by engineering novel endotaxial heterostructures
of TaS2 (up to 150 K increase in the critical temperature). The stabilization of ordered
electronic phaseswith 2D endotaxy has significant implications for routes to access fragile,
exotic correlated electron states. Stabilization of 2D CDWs with endotaxial engineering
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has further implications in condensed matter physics. Low dimensional physics is hard
to experimentally study because true 2D system is rare. The endotaxial heterostructure is
a potential platform for experimental demonstration of exotic 2D physics.

In Chapter V, we took one step further with endotaxial engineering. Here, we en-
hanced long-range order and amplitude of incommensurate CDWs using 2D endotaxy.
We showed enhancement process is equivalent to crystallizing a charge lattice, and high-
lighted hexatic nature of IC-CDWphase in octahedrally coordinated TaS2. In combination
of Chapter IV and V, we produced a charge order phase diagram for TaS2 in temperature
vs. disorder space.

Future Works

Here I discuss few possible future works.

In twisted bilayer graphene, localized AA core are expected to have large interlayer
spacing and result in periodic buckling of the structure. However, torsional PLD model
in Chapter III does not account for out-of-plane components of PLDs. Such buckling will
result superlattice peaks to modulate along k̂z. Using 3D electron diffraction, introduced
in Chapter II, the out-of-plane rod structure of superlattice peaks should be captured, re-
vealing full 3D structure of twisted 2D materials.

While Chapter IV and V of this thesis contains extensive works on CDW phases of
TaS2, there are much more to be studied. Historically, there are numerous experimental
data and speculations on the room temperature nearly-commensurate (NC) phase, yet the
nature of NC-CDW is still being debated. Specifically, there is still no full explanation of
why NC-CDW diffraction pattern looks way it is. Combination of Landau theory based
model with real space inhomogeneities addedwithMonte-Carlomethodmight shed light
the perplexing structure of NC-CDW.

Lastly, endotaxial engineering have not been applied to other materials yet. There are
numerous 2D materials that exhibits polytype transformations such as MoTe2. Formation
of endotaxial heterostructures might lead to unexpected, exciting discoveries.
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Appendix A. Appendix for Chapter II

A.1. Mathematical Formulation of 2D Lattice
A 1D lattice with lattice constant a can be represented as an infinite array of Dirac delta
functions (

∑
m δ(x −ma)), or more compactly as a ‘Shah’ function (Шa(x)). The Fourier

transform of the 1D Shah function using the non-unitary, angular frequency convention
(i.e F [ ] =

∫
dx e−ikx[ ]) is:

F [Шa(x)] = Шb(k), (A.1)

where b is the reciprocal lattice constant. Note a normalization factor 2π
a
has been included

in reciprocal space Shah function,Шb(k).

Expanding the definition, the 2D Shah function with two lattice vectors, a1, a2

(Шa1,a2(rxy)) represents a 2D lattice:

Шa1,a2 =
∑
m,n

δ2(rxy − (ma1 +ma2)). (A.2)

The Fourier transform of the 2D Shah isШb1,b2(kxy). Here b1,b2 are the reciprocal lattice
vectors. This notation includes a normalization factor absorbed into the reciprocal Shah
function, where the factor depends on the dimension of the function. The normalization
factors are 2π

a
, (2π)

2

Ω
, (2π)

3

V
for the 1D, 2D and 3D cases, where a,Ω, V are the 1D, 2D, and 3D

volumes of the real-space unit cell, respectively.

However, because the lattice is defined on a 2D plane, the real-space lattice points
are infinite lines along ẑ. To properly formulate a 2D planar lattice in 3D and place it in
arbitrary z-position z0, an additional delta function is necessary: (Шa1,a2(rxy)δ(z − z0)).
Applying the 3D Fourier transform, the reciprocal structure of the 2D lattice is:

F [Шa1,a2(rxy)δ(z − z0)] = e−ikzz0Шb1,b2(kxy). (A.3)

Therefore, the 3D reciprocal lattice of a 2D crystal is a 2D array of rods with phase associ-
ated with the z position.
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A.2. Parameterizing the Ewald Sphere in Terms of Specimen Orienta-
tion

The Ewald sphere is most intuitively parameterized in terms of specimen orientation in
spherical coordinates, where ϕ is the rotation angle of the specimen about the beam axis,
and θ is the specimen tilt angle relative to the beam direction. The radius of the Ewald
sphere is the wavenumber of the electron beam (k0). A reciprocal space coordinate on
the kz = 0 plane (kx, ky, 0) will be transformed as k′x = kx − k0 sin(θ) cos(ϕ), k′y = ky −
k0 sin(θ) sin(ϕ), k′z = k0 cos(θ). Thus, in Cartesian coordinates the Ewald sphere will cut
through a reciprocal space rod at

kz = k′z −
√
k20 − k′x

2 − k′y
2 (A.4)

and the in-plane radial distance to the reciprocal space origin is given by kρ =
√
k2x + k2y

A.3. Extracting Number of Layers in Graphene from 2nd Order Rods
The three sublattices (A, B, C) of registered graphene have different phases associated
with them (ϕA = 1 + e−

2πi
3

(h+k), ϕB = e−
2πi
3

(h+k) + e−
4πi
3

(h+k), ϕC = 1 + e−
4πi
3

(h+k)), where h,
k are reciprocal lattice indices. For example, in the 2nd order rods (e.g. h = 1, k = −1),
the phase terms simply equal constants (ϕA,B,C = 2).

Placing a sublattice at a specific z = z0 adds an extra phase of e−ikzz0 . Therefore adding
N layers with equal interlayer spacing (λL) results in the typical finite size effect for a
crystal, a complexmagnitude of 2(1+e−ikzλL+e−2ikzλL + ...+e−ikzλ(N−1)), or more compactly
2
∑N−1

n=0 (e
−ikzλL)n. This geometric series can be expanded as 21−e−ikzλLN

1−e−ikzλL
. The measured

intensity is equal to the magnitude squared:

I = 4
sin2 ½kzλLN
sin2 ½kzλL

(A.5)

The numerator reaches zero at kz = 2πm
λLN

,m ∈ Z. If we choose m = 1 (the first mini-
mum), the intensity is also zero with the exception ofN = 1 (trivial SLG case). Therefore,
the first minimum of the 2nd order Bragg rods of multilayer graphene occurs at kz = 2π

λLN

When tilted along the first order peaks by an angle θ, the diffraction plane slices the 2nd
order rods at kz = bg

√
3 tan θ, where bg = 4π

ag
√
3
and ag is the lattice constant of graphene.

Substituting, we can arrive at N = ag
2λL tan θ

. Using ag = 2.46 Å, λL = 3.346Å, tan θ ≈ θ (in
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radians), we arrive at:
N ≈ 21

θ(deg)
(A.6)

A.4. Measuring Thickness in Multilayer Graphene from 2nd Order
Bragg Rods

The maxima of measured intensity (Eq. 5) is at kz = (2m+1)π
λLN

:

Im =
4

sin2 (2m+1)π
2N

(A.7)

The relative intensity these maxima depends only on the number of layers, N.

Im
Im′

=
sin2 (2m′+1)π

2N

sin2 (2m+1)π
2N

(A.8)

Looking at this ratio for (m,m′) = (1, 2), we compare the maximum between the 1st and
2nd minima, and the maximum between the 2nd and 3rd minima:

I1
I2

=
sin2 5π

2N

sin2 3π
2N

(A.9)

Comparison of this expression with experimental data determines the number of layers
in samples.

A.5. Extracting Fraction of Sublattices of Graphene
From Appendix A.3, the phase associated with each of the sub-lattices of registered
graphene are ϕA = 1+ e−

2πi
3

(h+k), ϕB = e−
2πi
3

(h+k) + e−
4πi
3

(h+k), ϕC = 1+ e−
4πi
3

(h+k). Looking
at kz = 0, there is no phase term related to the out-of-plane; real-space equivalence of
projected view.

Therefore the total added phase at kz with N total layers and NA, NB, NC layers for
each sublattice, is:

NA(1 + e−
2πi
3

(h+k)) +NB(e
− 2πi

3
(h+k) + e−

4πi
3

(h+k))

+NC(1 + e−
4πi
3

(h+k)) (A.10)
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For the 2nd order rods (h+ k = 0), the phase term reduces to 2(NA+NB +NC) = 2N ,
resulting in a magnitude squared intensity of 4N2 for the 2nd order peaks at kz = 0.

For the 1st order peaks (h+k = 1), the squared intensity reduces to phase term reduces
to N2 − 3(NANB +NANC +NBNC). Defining fractional sublattice number ni ≡ Ni/N , the
relative intensity of 1st order to 2nd order is: 1−3(NANB+NANC+NBNC)

N2 = 1−3(nAnB+nAnC+nBnC)
4

The scattering factor of the carbon atom is about 4.5 times greater at Γ1 site than at Γ2.
Taking this into account, the relative intensity is then:

I1st/2nd ≈ 1− 3(nAnB + nAnC + nBnC). (A.11)

Therefore, the rhombohedral stacking (ABCABCABC..., i.e nA = nB = nC = 1
3
) has

I1st/2nd = 0, while the Bernal stacking (ABABAB..., i.e nA = nB
1
2
, nC = 0) has I1st/2nd ≈ 0.25
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A.6. Evolution of Bragg Rods with Thickness

Figure VI.1: Evolution of Bragg Rodswith Thickness. Sideview of the Bragg rods (Γ0, Γ1, Γ2) quantitatively illustrates
the structure in k-space. With additional layers the rods converge into Bragg peaks. The thickness and color indicates
complex magnitude and phase respectively.
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A.7. Atlas of 3D Reciprocal Structure of 2D Materials

Multilayer Graphene

Figure VI.2: 3D Reciprocal Structure of Multilayer Graphene. The Bragg rods (Γ0, Γ1) are shown in 3D alongside a
real-space<100> projection of the crystal stacking order. Below, a sideview of the Bragg rods (Γ0, Γ1, Γ2) quantitatively
illustrates the structure in k-space. Bragg rods have thickness and color indicating the complex magnitude and phase
respectively.
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A.8. Atlas of 3D Reciprocal Structure of 2D Materials

Transition Metal Dichalcogenides

Figure VI.3: 3DReciprocal Structure ofmono- and bi-layer TMDs. The Bragg rods (Γ0, Γ1) are shown in 3D alongside
a real-space <100> projection of the crystal stacking order. Below, a sideview of the Bragg rods (Γ0, Γ1, Γ2) quantita-
tively illustrates the structure in k-space. Bragg rods have thickness and color indicating the complex magnitude and
phase respectively.
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A.9. Atlas of Γ1 Tilt-Patterns: Graphenes

Figure VI.4: Simulated diffraction tilt-pattern of multilayer graphene. The axis of rotation illustrated top shows the
principle axis that passes through second order Γ2 (left column) and first order Γ1 (right column) Bragg peaks. The tilt
patterns are generated for first order peaks only. The small splitting of Friedel pairs in each curve corresponds to a 200
keV electron beam voltage.
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A.10. Atlas of Γ1 Tilt-Patterns: MoS2

Figure VI.5: Simulated diffraction tilt-patterns of single and bilayerMoS2 and polytypes thereof. The axis of rotation
illustrated top shows the principle axis that passes through second order Γ2 (left column) and first order Γ1 (right column)
Bragg peaks. The tilt patterns are generated for first order peaks only. The small splitting of Friedel pairs in each curve
corresponds to a 200 keV electron beam voltage.
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A.11. Atlas of Γ1 Tilt-Patterns: Transition Metal Dichalcogenides

Figure VI.6: Simulated diffraction tilt-patterns of various MoS2, WSe2, TaS2 and polytypes thereof. The axis of
rotation illustrated top shows the principle axis that passes through second order Γ2 (left column) and first order Γ1

(right column) Bragg peaks. The tilt patterns are generated for first order peaks only. The small splitting of Friedel pairs
in each curve corresponds to a 200 keV electron beam voltage.
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Appendix B. Appendix for Chapter III

B.1. Definitions: Twisted Bilayer Graphene and its torsional PLD
Here, we define the real and reciprocal lattice constants (a; b = 4π

a
√
3
) and vectors for unre-

laxed twisted bilayer graphene with twist angle θ. The real and reciprocal lattice vectors
of constituent layers are defined:

Top Layer Bottom Layer
at
1 = a

(
cos (− θ

2
)x̂+ sin (− θ

2
)ŷ
)

ab
1 = a

(
cos ( θ

2
)x̂+ sin ( θ

2
)ŷ
)

at
2 = a

(
cos (2π

3
− θ

2
)x̂+ sin (2π

3
− θ

2
)ŷ
)

ab
2 = a

(
cos (2π

3
+ θ

2
)x̂+ sin (2π

3
+ θ

2
)ŷ
)

bt
1 = b

(
cos (π

6
− θ

2
)x̂+ sin (π

6
− θ

2
)ŷ
)

bb
1 = b

(
cos (π

6
+ θ

2
)x̂+ sin (π

6
+ θ

2
)ŷ
)

bt
2 = b

(
cos (π

2
− θ

2
)x̂+ sin (π

2
− θ

2
)ŷ
)

bb
2 = b

(
cos (π

2
+ θ

2
)x̂+ sin (π

2
+ θ

2
)ŷ
)

Two layers stacked at an angle θ form a moiré pattern with greater periodicity in real
space. The real and reciprocal lattice constants (am, q) of the moiré supercell are defined:

am = κa; q =
4π

am
√
3
=
b

κ
(B.1)

κ =
(
2 sin (

θ

2
)
)−1

κ is a geometrically defined scaling factor of the moiré lattice constant with respect
to the crystal lattice constant. The corresponding real and reciprocal lattice vectors of the
moiré (am, q) are defined to be:

Real Space Reciprocal Space
am1 = am

(
cos (π

2
)x̂+ sin (π

2
)ŷ
)

bm1 = q
(
cos (2π

3
)x̂+ sin (2π

3
)ŷ
)

am2 = am
(
cos (7π

6
)x̂+ sin (7π

6
)ŷ
)

bm2 = q
(
cos (π)x̂+ sin (π)ŷ

)
The complete torsional PLD field (∆N) is a sum over each n-th harmonic of the tor-

sional PLD (∆n) up to a total of N harmonics. Larger number (N) of Fourier harmonics
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is needed to accurately depict sharp boundaries at low twist angles.

∆N =
N∑
n

∆n (B.2)

∆n = An

(
Â100 sin (nq100 · r) + Â010 sin (nq010 · r) + Â001 sin (nq001 · r)

)
; Â ⊥ q (B.3)

Each harmonic ∆n is a linear superposition of three PLD waves, with the order of
harmonic (n) dictating the wave amplitude (An = A1e

−κn) and frequency. From the sym-
metry of real space distortion, We define one of the PLD wave vectors (q010) to be the
moiré reciprocal vector bm2 and define q100 and q001 to be ±120° away from q010. In addi-
tion, for transverse waves in a torsional PLD, displacement vectors (Â) are defined to be
perpendicular to (q):

q100 = q
(
1
2
x̂+

√
3
2
ŷ
)

Â100 = −
√
3
2
x̂+ 1

2
ŷ

q010 = −qx̂ Â010 = −ŷ

q001 = q
(
1
2
x̂−

√
3
2
ŷ
)

Â001 =
√
3
2
x̂+ 1

2
ŷ

Using the definitions above, ∆n can be expanded:

∆n = x̂
[
− An

√
3

2
(sin (nq100 · r)− sin (nq001 · r))

]
(B.4)

+ ŷ
[An

2
(sin (nq100 · r) + sin (nq001 · r)− 2 sin (nq010 · r))

]
For later conveniences, partial derivatives are calculated :

∂∆n,x

∂x
= −nqAn

√
3

4
(cos (nq100 · r)− cos (nq001 · r))

∂∆n,y

∂y
= nqAn

√
3

4
(cos (nq100 · r)− cos (nq001 · r)) = −∂∆n,x

∂x
∂∆n,x

∂y
= −3nqAn

4
(cos (nq100 · r) + cos (nq001 · r))

∂∆n,y

∂x
= nqAn

4
(cos (nq100 · r) + cos (nq001 · r) + 4 cos (nq010 · r))

B.2. Derivation: Local Rotation of Torsional PLD
To understand the resulting distortion of a displacement field (u), we calculate the tensor
gradient (∇u) to obtain the local strain (ϵ) and rotation (ω) tensors. We ignore out-of-
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plane strain and stress for this model.

∇u =

[
∂ux

∂x
∂ux

∂y
∂uy

∂x

∂uy

∂y

]
= ϵ+ ω (B.5)

where,

ϵ =

[
∂ux

∂x
1
2
(∂ux

∂y
+ ∂uy

∂x
)

1
2
(∂ux

∂y
+ ∂uy

∂x
) ∂uy

∂y

]
(B.6)

ω =

[
0 −1

2
(∂uy

∂x
− ∂ux

∂y
)

1
2
(∂uy

∂x
− ∂ux

∂y
) 0

]
(B.7)

Here, we focus on ω—also known as the infinitesimal rotational tensor—that describes
local rotation due to the displacement field u. We define the non-zero off-diagonal com-
ponent of ω as rotational field Ω that characterizes the local twist due to u. Notably, Ω is
proportional to the curl of displacement field (∇× u).

ω =

[
0 −Ω

Ω 0

]
=

[
0 −1

2
(∂uy

∂x
− ∂ux

∂y
)

1
2
(∂uy

∂x
− ∂ux

∂y
) 0

]
(B.8)

From the definitions above, the rotational field due to Torsional PLD of nth harmonic
(Ωn) is :

Ωn =
1

2
(
∂∆n,y

∂x
− ∂∆n,x

∂y
) (B.9)

=
nqAn

8

(
3(cos (nq100 · r) + cos (nq001 · r))

+ (cos (nq100 · r) + 4 cos (nq010 · r) + cos (nq001 · r))
)

=
nqAn

2

(
cos (nq100 · r) + cos (nq010 · r) + cos (nq001 · r)

)
The local rotation at AA and AB core, rAA = 0 and rAB = am√

3
x̂, are:

Ωn(rAA) =
3nqAn

2
, Ωn(rAB) =

{ 3nqAn

2
n/3 ∈ Z

−3nqAn

4
else

(B.10)

Therefore, rotation in AA core is twice stronger than and opposite to that of AB core for

81



the fundamental frequency (A1).

The total rotational field due to the PLD is trivially (ΩN =
∑N

n Ωn), as differentiation
and summation commutes. Figure XXX depicts ΩN for N=1, 3, and 7 with An = A1e

−κn.

B.3. Geometric Upper Bound for PLD Amplitude (A1)
We are interested in the PLD field near a AB core that is dominated by the fundamental
PLD harmonic (n=1). The local rotation there is:

Ω1(rAB) = −3qA1

4
(B.11)

For torsional PLD in each layer to locally restore AB cores, torsional PLD needs to locally
twist the AB cores by θ

2
:

−3qA1

4
=
θ

2
(B.12)

A1 = −4θ

6q
; q =

4π

a
√
3
(2 sin(

θ

2
)) ≈ 4πθ

a
√
3

A1 = − a

2π
√
3

This defines the upper bound for torsional PLD amplitude. Notably, the upper bound
is twist angle independent. For graphene (a = 2.46Å), A1 = 22.6 pm is the upper bound.
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B.4. Derivation: Stress, Strain and Elastic Energy of Torsional PLD
To calculate the strain tensor, (ϵ), we first consider a strain tensor from the nth harmonic
of torsional PLD (ϵn).

ϵn =

[
ϵn,xx ϵn,xy

ϵnxy ϵn,yy

]
=

[
∂∆n,x

∂x
1
2
(∂∆n,x

∂y
+ ∂∆n,y

∂x
)

1
2
(∂∆n,x

∂y
+ ∂∆n,y

∂x
) ∂∆n,y

∂y

]
(B.13)

.

ϵn,xx =
∂∆n,x

∂x
= −nqAn

√
3

4
(cos (nq100 · r)− cos (nq001 · r)) (B.14)

ϵn,yy =
∂∆n,y

∂y
= −ϵxx (B.15)

ϵn,xy =
1

2
(
∂∆n,x

∂y
+
∂∆n,y

∂x
) (B.16)

= −nqAn

4
(cos (nq100 · r) + cos (nq001 · r)− 2 cos (nq010 · r))

Total strain is

ϵ =
N∑
n

ϵn; ϵij =
N∑
n

ϵn,ij (B.17)

B.5. Stiffness Tensor, Stress and Elastic Energy
As the torsional PLD here deals with in-plane distortions, and graphene is an isotopic
material, we assumeplane stress deformationwith the stress-strain relationship as follows:σxxσyy

σxy

 =
E

1− ν2

1 ν 0

ν 1 0

0 0 1−ν
2


 ϵxx

ϵyy

2ϵxy

 (B.18)

=
2G

1− ν

1 ν 0

ν 1 0

0 0 1−ν
2


 ϵxx

ϵyy

2ϵxy



=


2G
1−ν

(ϵxx + νϵyy)
2G
1−ν

(νϵxx + ϵyy)

2Gϵxy


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E, G, ν are Young’s modulus, Shear modulus and Poisson ratio respectively. We used
the usual E = 2G(1 + ν) relationship. The local elastic energy (vEl), assuming Hookean
elasticity, is defined as:

vEl =
1

2
σxxϵxx +

1

2
σyyϵyy + σxyϵxy (B.19)

=
G

1− ν
(ϵ2xx + ϵ2yy + 2νϵxxϵyy) + 2Gϵ2xy

=
G

1− ν
((ϵxx + ϵyy)

2 − 2(1− ν)ϵxxϵyy) + 2Gϵ2xy

=
G

1− ν
(ϵxx + ϵyy)

2 + 2G(ϵ2xy − ϵxxϵyy)

= 2G(ϵ2xx + ϵ2xy) ∵ ϵxx = −ϵyy for Torsional PLD

B.6. Elastic Energy per Unit Cell
The elastic energy term (vEl) is related to the spatial derivatives of torsional PLD field
(∂∆n,i

∂i
) and describes the infinitesimal elastic energy at particular lattice positions. To ob-

tain the elastic energy per moiré unit cell (VEl), we integrate vEl over the spatial dimen-
sions of a moiré unit cell, µ.

VEl =

∫∫
µ

dydx vEl = 2G

∫∫
µ

dydx (ϵ2xx + ϵ2xy) (B.20)

= 2G

∫∫
µ

dydx [
( N∑

n

ϵn,xx
)2

+
( N∑

n

ϵn,xy
)2
]

= 2G
N∑
n

∫∫
µ

dydx
[
(ϵ2n,xx + ϵ2n,xy)

]
+ 2G

N∑
n

N∑
m ̸=n

∫∫
µ

dydx
[
(ϵn,xxϵm,xx + ϵn,xyϵm,xy)

]
Substituting values from equation (14) – (16):∫∫

µ

dydx (ϵ2n,xx + ϵ2n,xy) (B.21)

=
3n2q2A2

n

4

∫∫
µ

dydx
[
cos2 (nq010 · r) + cos (nq100 · r) cos (nq001 · r)

]
=

3n2q2A2
n

4

∫ am

0

dy

∫ am
√
3

2

0

dx
[
cos2 (nqx) +

1

2
(cos (nqx) cos (nq

√
3y))

]
=

3n2q2A2
n

4n2q2
√
3
(4πn)(πn) =

√
3n2π2A2

n
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(ϵn,xxϵm,xx + ϵn,xyϵm,xy) =
3nmq2A2

n

8

[
2 cos (nq010 · r) cos (mq010 · r) (B.22)

− cos (nq010 · r)(cos (mq100 · r) + cos (mq001 · r))
]

∫∫
µ

dydx cos (nq010 · r) cos (mq010 · r) = 0 ∵ Orthogonality (B.23)

∫∫
µ

dydx cos (nq010 · r)(cos (mq100 · r) + cos (mq001 · r)) (B.24)

=

∫ am

0

dy

∫ am
√
3

2

0

dx 2 cos (nqx) cos (
mq

2
x) cos (

mq
√
3

2
y))

v =
mq

√
3y

2

=

∫ am

0

dy 2 cos (nqx) cos (
mq

2
x)

∫ 2πm

0

dv cos (v)) = 0

Therefore, all cross-terms are zero:∫∫
µ

dydx
[
(ϵn,xxϵm,xx + ϵn,xyϵm,xy)

]
= 0 (B.25)

Finally, we calculate the total elastic energy per moirè unit cell in each layer by sum-
ming over contributions from a total of N harmonics:

VEl = 2
√
3π2G

N∑
n

n2A2
n (B.26)

As defined previously, An = A1e
−κn. Elastic energy cost of nth harmonic torsional PLD is

independent of other harmonics.
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Appendix C. Appendix for Chapter IV

C.1. Modelling the CDW twinning across the C⇋IC transition
In general, a CDW is characterized by two intertwined ingredients: (1) the ampli-
tude/phase of the CDW order parameter and (2) the length/orientation of the CDW
wavevector. The significant role of the first ingredient has been extensively studied in
literature [1–4]. For this study, we focus on the wavevector orientation (θ) and its fluctu-
ation as a minimum model to characterize the competition between the two mirror twins
observed in the experiments. This approximation correctly captures qualitative features
away from the IC-C CDW transition. Near the phase transition, where additional fluctua-
tions are no longer negligible, a more sophisticated model becomes needed.

We approximate the free energy landscape using Landau expansion:

fi(T ) = a2(T − Tc)θ
2
i + a4θ4i +

6∑
nn

cos(θnn − θi)
2 (C.1)

with f , T , Tc, a, θ denotes local free energy, temperature, transition temperature, Landau
energy coefficient, and local CDW orientation respectively. The last term is an XY nearest-
neighbor interaction that enforces smoothness; in the continuum limit, it converges to
|∇θ|2. We chose 6 nearest-neighbors to accommodate the crystal symmetry (Fig. IV.4c).
The simulation was done on hexagonal grid with 65536 sites and periodic boundary con-
dition.

The distribution of θwas calculated usingMarkov ChainMonte Carlo simulationwith
Metropolis-Hastings algorithm. Initially, a random distribution θ was generated. At each
iteration, 40% of sites were randomly selected, then randomly generated θ were accepted
or rejected based on Boltzmann statistics: exp [−∆f/kBT ]. The effect of cooling was simu-
lated in simulated annealing manner where initial T was set to 2 Tc then reduced by 0.2 Tc

every 1010 iterations (See Supplemental Figure S9 for simulation parameters).

To simulate far-field diffraction from simulated θ, each lattice position (ri) was dis-
torted with three longitudinal modulation waves with wave vector qi,1,qi,2,qi,3 along θi,
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θi + 120°, θi + 240°: r′i = ri +
∑

n=1,2,3 An sin (qi,n · ri). Far-field diffraction (I(k)) was
calculated by taking modulus squared of plane waves from each lattice sites: I(k) =

|
∑

i exp [ik · r′i]|2.
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Appendix D. On Infinite Series of Bessel functions
of the First Kind:

∑
ν JNν+p(x),

∑
ν(−1)νJNν+p(x)

D.1. Introduction
Infinite series of Bessel functions of the first kind in the form

∑
2ν J2ν(x) and

∑
3ν J3ν(x)

arise in many natural systems. They are of particular interest in condensedmatter physics
when crystals spontaneously break symmetry [5] due to correlated electron effects such
as superconductivity, charge density waves, colossal magnetoresistance, and quantum
spin liquids. Mathematically, these series can appear when sinusoids exist inside complex
exponentials—as described by the Jacobi-Anger relation [6, 7]. Early treatises on Bessel
functions byNeumann andWatson [8–10] provide analytic solutions to the alternating se-
ries

∑
ν(−1)νJ2ν(x) and

∑
ν(−1)νJ2ν+1(x) which are commonly tabulated [11–13]. How-

ever analytic expressions for
∑

ν J3ν(x),
∑

ν J3ν±1(x) or more general series
∑

ν JNν+p(x)

and
∑

ν(−1)νJNν+p(x) are not readily available. We show closed form expressions to infi-
nite series of Bessel functions of the first kind exist. The expression is evaluated by engi-
neering a Dirac comb that selects specific sequences within the Bessel series.

To illustrate, we find a closed form expression to the series:

∞∑
ν=−∞

J3ν+p(x) =
1

3

[
1 + 2 cos (

x
√
3

2
− 2πp

3
)

]

ν, p ∈ Z; x ∈ C
More generally, we find an expression to all series in the class:

∞∑
ν=−∞

JNν+p(x) =
1

N

N−1∑
q=0

eix sin (2πq/N)e−i2πpq/N

∞∑
ν=−∞

(−1)νJNν+p(x) =
1

N

N−1∑
q=0

eix sin ((2q+1)π/N)e−i(2q+1)πp/N

ν, p, q ∈ Z; N ∈ Z+; x ∈ C
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From these theorem’s, we tabulate a family of closed analytic forms to infinite series
of Bessel functions of the first kind.

D.2. Evaluation of Series:
∞∑

ν=−∞
JNν+p(x)

Theorem 1. Infinite series of Bessel functions of the first kind of the form
∑±∞

ν JNν+p(x) where
ν, p, q ∈ Z, N ∈ Z+ and x ∈ C have following closed expression:

∞∑
ν=−∞

JNν+p(x) =
1

N

N−1∑
q=0

e−i2πpq/Neix sin (2πq/N) (D.1)

Proof. Consider the following series of evenly spaced delta functions (i.e. a Dirac comb)
on an infinite series of Bessel functions:

f(k) =
∞∑

h=−∞

N−1∑
p=0

δ(k − (h+
p

N
)a)

∞∑
ν=−∞

JNν+p(kA) (D.2)

where ν, h, p ∈ Z; N ∈ Z+; k, a ∈ R; A ∈ C.

Three summations are re-grouped into two:

f(k) =
∞∑

h=−∞

∞∑
α=−∞

δ(k − (h+
α

N
)a)Jα(kA) (D.3)

The Dirac comb can be represented as a Fourier series:

∞∑
h=−∞

δ(k − ha) =
1

a

∞∑
m=−∞

e−i2πkm/a (D.4)

Note, this formal identity maybe truncated to a finite summation to guarantee conver-
gence, wherein a finite series of sinusoidal harmonics is equal to finite width Dirichlet
kernels that approaches a Dirac comb.

With (D.4), f(k) becomes:

f(k) =
1

a

∞∑
m=−∞

e−i2πkm/a

∞∑
α=−∞

Jα(kA)e
iα2πm/N (D.5)
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The summation over α appears in the Jacobi-Anger relation [6, 7, 10]:

eix sin(θ) =
∞∑

α=−∞

Jα(x)e
iαθ (D.6)

Using the Jacobi-Anger relation:

f(k) =
1

a

∞∑
m=−∞

e−i2πkm/aeikA sin(2πm/N) (D.7)

We split the summation overm intom = ..., Nn,Nn + 1, ..., Nn + (N − 1), ... :

f(k) =
1

a

∞∑
n=−∞

[
...+ e−i2πknN/a

+ e−i2πknN/ae−i2πk/aeikA sin (2π/N) + ...

+ e−i2πknN/ae−i2πk(N−1)/aeikA sin (2π(N−1)/N) + ...

]
=

1

a

∞∑
n=−∞

e−i2πknN/a

N−1∑
q=1

e−i2πkq/aeikA sin (2πq/N) (D.8)

Using (D.4) again:

f(k) =
1

N

∞∑
l=−∞

δ(k − la

N
)
1−N∑
q=0

eikA sin (2πq/N)e−i2πkq/a (D.9)

Substitute k = la
N
; l ∈ Z, as f is non-zero only where a delta function exists.

f(k) =
1

N

∞∑
l=−∞

δ(k − la

N
)
N−1∑
q=0

eikA sin (2πq/N)e−i2πql/N (D.10)

We split the summation into l = ..., Nh,Nh + 1, ..., (N + 1)h − 1... then regroup, similar
with (D.8):

f(k) =
1

N

∞∑
h=−∞

N−1∑
p=0

δ(k − (h+
p

N
)a)

N−1∑
q=0

eikA sin (2πq/N)e−i2πpq/N (D.11)
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Initial expression (D.2) must equal (D.11):

∞∑
h=−∞

N−1∑
p=0

δ(k − (h+
p

N
)a)

∞∑
ν=−∞

JNν+p(kA)

=
1

N

∞∑
h=−∞

N−1∑
p=0

δ(k − (h+
p

N
)a)

N−1∑
q=0

eikA sin (2πq/N)e−i2πpq/N (D.12)

This relation suggests only values on the Dirac comb are equivalent. However, the
variable a can take on any real value thus the expression holds for all values of kA. The
equivalent Dirac lattices on each side can be disregarded.

∴
∞∑

ν=−∞

JNν+p(x) =
1

N

N−1∑
q=0

eix sin (2πq/N)e−i2πpq/N (D.13)
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Corollary 1. From Theorem 1 we comprise a table of closed form expressions:

N p
∞∑

ν=−∞

JNν+p(x)
1

N

N−1∑
q=0

eix sin (2πq/N)e−i2πpq/N

1 0
∞∑

ν=−∞

Jν(x) 1 [10, 11, 14]

2 0

∞∑
ν=−∞

J2ν(x) 1 [10, 11]

1

∞∑
ν=−∞

J2ν+1(x) 0 [10, 11]

3 0

∞∑
ν=−∞

J3ν
1

3

[
1 + 2 cos (

x
√
3

2
)

]
1

∞∑
ν=−∞

J3ν+1
1

3

[
1 + 2 cos (

x
√
3

2
− 2π

3
)

]
2

∞∑
ν=−∞

J3ν+2
1

3

[
1 + 2 cos (

x
√
3

2
− 4π

3
)

]
4 0

∞∑
ν=−∞

J4ν cos2(
x

2
)

1

∞∑
ν=−∞

J4ν+1
1

2
sin(x)

2

∞∑
ν=−∞

J4ν+2 sin2(
x

2
)

3

∞∑
ν=−∞

J4ν+3 −1

2
sin(x)

5 0

∞∑
ν=−∞

J5ν
1

5

[
1 + 2 cos (x sin (

2π

5
)) + 2 cos (x sin (

4π

5
))

]
1

∞∑
ν=−∞

J5ν+1
1

5

[
1 + 2 cos (x sin (

2π

5
)− 2π

5
) + 2 cos (x sin (

4π

5
)− 4π

5
)

]
2

∞∑
ν=−∞

J5ν+2
1

5

[
1 + 2 cos (x sin (

2π

5
)− 4π

5
) + 2 cos (x sin (

4π

5
)− 8π

5
)

]
3

∞∑
ν=−∞

J5ν+3
1

5

[
1 + 2 cos (x sin (

2π

5
)− 6π

5
) + 2 cos (x sin (

4π

5
)− 12π

5
)

]
4

∞∑
ν=−∞

J5ν+4
1

5

[
1 + 2 cos (x sin (

2π

5
)− 8π

5
) + 2 cos (x sin (

4π

5
)− 16π

5
)

]
6 0

∞∑
ν=−∞

J6ν
1

3

[
1 + 2 cos (

x
√
3

2
)

]
1

∞∑
ν=−∞

J6ν+1
1√
3
sin (

√
3

2
)

2

∞∑
ν=−∞

J6ν+2
1

3

[
1− cos (

x
√
3

2
)

]
3

∞∑
ν=−∞

J6ν+3 0

4
∞∑

ν=−∞

J6ν+4
1

3

[
1− cos (

x
√
3

2
)

]
5

∞∑
ν=−∞

J6ν+5 − 1√
3
sin (

√
3

2
)
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D.3. Evaluation of Alternating Series:
∞∑

ν=−∞
(−1)νJNν+p(x)

Theorem 2. Infinite series of Bessel functions of the first kind of the form
∑

ν(−1)νJNν+p(x)where
ν, p, q ∈ Z, N ∈ Z+ and x ∈ C have following closed expression:

∞∑
ν=−∞

(−1)νJNν+p(x) =
1

N

N−1∑
q=0

eix sin (
(2q+1)π

N
)e−i

(2q+1)πp
N (D.14)

Proof. Consider the following Dirac comb on an infinite series of Bessel functions:

g(k) =
∞∑

h=−∞

N−1∑
p=0

δ(k − (h+
p

N
)a)

∞∑
ν=−∞

(−1)νJNν+p(kA) (D.15)

where ν, h, p ∈ Z; N ∈ Z+; k, a ∈ R; A ∈ C.

Three summations are re-grouped into two:

g(k) =
∞∑

h=−∞

∞∑
α=−∞

δ(k − (h+
α

N
)a)(−1)hJα(kA)

=
∞∑

h=−∞

∞∑
α=−∞

δ(k − (h+
α

N
)a)e−i(k− α

N
a)π

a Jα(kA)

=
∞∑

h=−∞

∞∑
α=−∞

δ(k − (h+
α

N
)a)e−iπk/aeiπα/NJα(kA) (D.16)

The Dirac comb can be represented as a Fourier series (D.4):

g(k) =
1

a

∞∑
m=−∞

∞∑
α=−∞

e−i2π(k− α
N
a)m/ae−iπk/aeiπα/NJα(kA)

=
1

a

∞∑
m=−∞

e−iπk(2m+1)/a

∞∑
α=−∞

eiαπ(2m+1)/NJα(kA) (D.17)

Using the Jacobi-Anger relation (D.6):

g(k) =
1

a

∞∑
m=−∞

e−iπk(2m+1)/aeikA sin (π(2m+1)/N) (D.18)
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We split the summation over m intom = ..., Nn,Nn + 1, ..., Nn + (N − 1), ... :

g(k) =
1

N

∞∑
n=−∞

[
...+ e−i2πknN/ae−iπk/aeikA sin ( 1π

N
)

+ e−i2πknN/ae−i3πk/aeikA sin ( 3π
N

) + ...

+ e−i2πknN/ae−i(2N−1)πk/aeikA sin (
(2N−1)π

N
) + ...

]
=

1

a

∞∑
n=−∞

e−i2πknN/a

N−1∑
q=0

e−i(2q+1)πk/aeikA sin (
(2q+1)π

N
) (D.19)

Using (D.4) again:

g(k) =
1

N

∞∑
l=−∞

δ(k − a

N
l)

N−1∑
q=0

eikA sin (
(2q+1)π

N
)e−i(2q+1)πk/a (D.20)

Substitute k = l a
N
, as f is non-zero where a delta function exists.

g(k) =
1

N

∞∑
l=−∞

δ(k − a

N
l)

N−1∑
q=0

eikA sin (
(2q+1)π

N
)e−i

(2q+1)πl
N (D.21)

We split the summation into l = ..., Nh,Nh + 1, ..., Nh + (N − 1), ... then regroup:

g(k) =
1

N

∞∑
h=−∞

N−1∑
p=0

δ(k − (h+
p

N
)a)(−1)h

N−1∑
q=0

eikA sin (
(2q+1)π

N
)e−i

(2q+1)πp
N (D.22)

Initial expression (D.15) must equal (D.22):

∞∑
h=−∞

N−1∑
p=0

δ(k − (h+
p

N
)a)

∞∑
ν=−∞

(−1)νJNν+p(kA) =

1

N

∞∑
h=−∞

N−1∑
p=0

δ(k − (h+
p

N
)a)(−1)h

N−1∑
q=0

eikA sin (
(2q+1)π

N
)e−i

(2q+1)πp
N (D.23)

The variable a can take on any real value thus the expression holds for all values of
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kA. The equivalent Dirac lattices on each side can be disregarded.

∴
∞∑

ν=−∞

(−1)νJNν+p(x) =
1

N

N−1∑
q=0

eix sin (
(2q+1)π

N
)e−i

(2q+1)πp
N (D.24)
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Corollary 2. From Theorem 2 we comprise a table of closed form expressions:

N p
∞∑

ν=−∞

(−1)νJNν+p(x)
1

N

N−1∑
q=0

eix sin (
(2q+1)π

N
)e−i

(2q+1)πp
N

1 0
∞∑

ν=−∞

(−1)νJν(x) 1 [10, 11]

2 0

∞∑
ν=−∞

(−1)νJ2ν(x) cos (x) [10]

1

∞∑
ν=−∞

(−1)νJ2ν+1(x) sin (x) [10]

3 0

∞∑
ν=−∞

(−1)νJ3ν(x)
1

3

[
1 + 2 cos (

x
√
3

2
)

]
1

∞∑
ν=−∞

(−1)νJ3ν+1(x) −1

3

[
1− 2 cos (

x
√
3

2
− π

3
)

]
2

∞∑
ν=−∞

(−1)νJ3ν+2(x)
1

3

[
1 + 2 cos (

x
√
3

2
− 2π

3
)

]
4 0

∞∑
ν=−∞

(−1)νJ4ν(x) cos (
x√
2
)

1

∞∑
ν=−∞

(−1)νJ4ν+1(x)
1√
2
sin (

x√
2
)

2

∞∑
ν=−∞

(−1)νJ4ν+2(x) 0

3

∞∑
ν=−∞

(−1)νJ4ν+3(x)
1√
2
sin (

x√
2
)

5 0

∞∑
ν=−∞

(−1)νJ5ν(x)
1

5

[
1 + 2 cos (x sin (

π

5
)) + 2 cos (x sin (

3π

5
))

]
1

∞∑
ν=−∞

(−1)νJ5ν+1(x) −1

5

[
1 + 2 cos (x sin (

π

5
) +

4π

5
) + 2 cos (x sin (

3π

5
) +

2π

5
)

]
2

∞∑
ν=−∞

(−1)νJ5ν+2(x)
1

5

[
1 + 2 cos (x sin (

π

5
) +

8π

5
) + 2 cos (x sin (

3π

5
) +

4π

5
)

]
3

∞∑
ν=−∞

(−1)νJ5ν+3(x) −1

5

[
1 + 2 cos (x sin (

π

5
) +

12π

5
) + 2 cos (x sin (

3π

5
) +

6π

5
)

]
4

∞∑
ν=−∞

(−1)νJ5ν+4(x)
1

5

[
1 + 2 cos (x sin (

π

5
) +

16π

5
) + 2 cos (x sin (

3π

5
) +

8π

5
)

]
6 0

∞∑
ν=−∞

(−1)νJ6ν(x)
1

3

[
cos (x) + 2 cos (

x

2
)

]
1

∞∑
ν=−∞

(−1)νJ6ν+1(x)
1

3

[
sin (x) + sin (

x

2
)

]
2

∞∑
ν=−∞

(−1)νJ6ν+2(x) −1

3

[
cos (x)− cos (

x

2
)

]
3

∞∑
ν=−∞

(−1)νJ6ν+3(x) −1

3

[
sin (x)− 2 sin (

x

2
)

]
4

∞∑
ν=−∞

(−1)νJ6ν+4(x)
1

3

[
cos (x)− cos (

x

2
)

]
5

∞∑
ν=−∞

(−1)νJ6ν+5(x)
1

3

[
sin (x) + sin (

x

2
)

]
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In Corollary 1 and 2, we have noted references to previous reported expressions for
N = 1, 2 that are closely related. For N = 1 the expression is given using the gener-
ating function e1/2(t−1/t)x =

∑∞
ν=−∞ Jν(x)t

ν when t = 1. For N = 2, the expressions
can be re-written such that

∑∞
ν=−∞(−1)νJ2ν(x) = J0(x) + 2

∑∞
ν=1(−1)νJ2ν(x) = cos x

and
∑∞

ν=−∞(−1)νJ2ν+1(x) =
∑∞

ν=0(−1)νJ2ν+1(x) = sin x using the identity J−ν(x) =

(−1)νJν(x).
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