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Abstract 

The human placenta mediates adverse perinatal outcomes and current research 

examines molecular changes in bulk placental tissue. However, bulk molecular 

measures represent a convolution of signals across cell types, obscuring biological 

mechanisms and biasing study results. 

Placental cell composition in preeclampsia is not well-understood and limits 

interpretation of bulk gene expression measures. In Chapter 2, I integrated a single-cell 

RNA-sequencing atlas of 19 fetal and 8 maternal cell types from placental villous tissue 

(n=9 biological replicates) at term (n=40,494 cells) and deconvoluted eight published 

microarray case-control studies of preeclampsia (n=173 controls, 157 cases). 

Preeclampsia was associated with excess extravillous trophoblasts (POR = 1.94, 95% 

CI [1.61, 2.34]) and fewer mesenchymal (POR = 0.79, 95% CI [0.73, 0.85]) and 

Hofbauer cells (POR = 0.67, 95% CI [0.59, 0.77]). Cellular composition mediated the 

association between preeclampsia and FLT1 (37.8%, 95% CI [27.5%, 48.8%]) 

overexpression. My findings demonstrated placental cellular composition heterogeneity 

in preeclampsia drives previously observed bulk gene expression differences. This 

novel deconvolution reference allows for cellular composition-aware investigation into 

adverse perinatal outcomes. 

To enable robust estimation of placental cell composition from bulk DNA 

methylation, in Chapter 3, I integrated a DNA methylation atlas (n=81) of 5 placental 

and 7 non-placenta cell types (p=192 fractions). Methylation was quantified via the 
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Illumina DNA methylation microarray (450k or EPIC), and common probes were quality 

filtered (n=407,628 DNA methylation sites). To identify cell type-discriminating DNA 

methylation sites, I ranked the top 50 hyper- and hypomethylated sites per cell type by 

F-test. To deconvolute bulk placental tissues, I applied robust partial correlation. 

Consistent with placental biology, bulk placental tissue (n=35) cell type proportion 

estimates (mean ± standard deviation) were predominately syncytiotrophoblast (57.8% 

± 8.3%), stromal (20.6 ± 5.9%), cytotrophoblast (11.0% ± 4.1%), endothelial (7.5% ± 

2.2%), and Hofbauer cells (1.5% ± 1.2%). This atlas can robustly estimate cell 

composition from placental DNA methylation data to detect unexpected non-placental 

cell types and improve casual inference. 

Malapropos perinatal exposure to essential and toxic metals is widespread and 

linked to adverse outcomes. Healthy placental morphology is essential to pregnancy, 

but the relationship between metals exposure and placental cell composition is poorly 

understood. In Error! Reference source not found., I analyzed data from two prospective p

regnancy cohorts: MARBLES (n=83) and EARLI (n=94). Urinary metals (p=18) 

concentrations were measured during early or late gestation. Placental DNA 

methylation was measured with EPIC or 450k microarrays. I estimated cellular 

composition via the Chapter 3 reference. Demographics-adjusted beta regression 

models tested associations between metals concentrations (p=18) during early or late 

gestation and each placental cell type proportion (p=5). Results were meta-analyzed. A 

doubling in late gestation barium concentration was associated with a 0.2% increment in 

mean Hofbauer cell proportion to 2.5% (POR = 1.08, 95% CI [1.02, 0.14], q=0.25). 

Cadmium exposure was associated with a 3.0% decrement in mean syncytiotrophoblast 
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proportion to 59.5% (POR = 0.88, 95% CI [0.78, 0.98], q=0.31). Divalent metals 

exposure may disrupt placental structure, particularly among Hofbauer cells and 

syncytiotrophoblasts. 

In conclusion, I applied state-of-the-art laboratory and bioinformatic approaches 

to develop cost-effective and scalable reference-based deconvolution methods for 

researchers to estimate cell composition in bulk placental tissue and I demonstrated the 

power of these novel approaches through applications to human populations. To 

provide valid, more causally interpretable results, future perinatal investigations should 

carefully consider placental cell composition using approaches developed in this 

dissertation. 
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Chapter 1 Introduction to Biological and Epidemiological Frameworks for Cell 

Types in Studies of Placental Gene Expression and Epigenetic Measures 

This chapter has been adapted in part from a manuscript published in Current 

Environmental Health Reports (2020) [1]. 
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Affiliations: 
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of Michigan, Ann Arbor, Michigan,  
2Department of Environmental Health Sciences, University of Michigan School of Public 
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1.1 Early development and public health 

The public health burden of adverse pregnancy outcomes is substantial. For 

example, the incidence of preterm birth ranges from 12-13% in the United States and is 

increasing [2]. The executive summary of the Placental Origins of Adverse Pregnancy 

Outcomes: Potential Molecular Targets workshop concluded that most adverse 

pregnancy outcomes are rooted in the placenta and its development [3].  Adverse 

pregnancy outcomes may even lead to chronic diseases throughout the life course of 

their offspring [4].The deployment of the Human Placenta Project by the National 

Institutes of Health prioritizes research into better understanding the important role the 

placenta may play in both perinatal and lifelong health [5]. A key gap in our knowledge 

is the molecular underpinnings of placental dysfunction. Advancements in 

understanding the molecular landscape of the placenta will lead to a better 

understanding of disease etiology and novel preventive and therapeutic interventions. 
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It is well understood that healthy placentation and placental function are essential 

to fetal development [6]. However, the developmental origins of health and disease 

hypothesis (DOHaD) posits that early-life exposures, even during gestation, affects 

biologic programming and lifelong health [7]. The placenta has emerged as a priority 

target organ in the DOHaD framework [4]. Advancements in understanding the role of 

perturbations to placental function or development during gestation, including 

environmental exposures, may explain the placenta’s role in adverse perinatal or later 

life outcomes. 

1.2 Placental structure and function 

The temporary placenta develops early in pregnancy to promote maternal uterine 

artery remodeling; mediates transport of oxygen, nutrients, and wastes [8]; secretes 

hormones to regulate pregnancy; metabolizes various macromolecules and xenobiotics; 

and serves as a selective barrier to some pathogens and xenobiotics [6]. The fetal-

maternal interface of the placenta is composed of tissue of fetal and maternal origin. 

The fetal chorionic plate includes the parenchymal villous tissue. The maternal basal 

plate (or decidua) is the site of placentation (Figure 1.1). The chorionic plate and basal 

plate circumscribe an intervillous space perfused with maternal blood. The branching, 

repeating tree-like villous tissue, called villi, protrude into the intervillous space, 

immersed in maternal blood (Figure 1.1a) [6, 8, 9]. Villi separate maternal and fetal 

blood by only three to four cell layers. Proper structural development and adequate 

functioning of placental villous tissue is critical to overall placental function. 

Several placenta-specific cell types are responsible for the unique structure and 

function of the organ. The syncytiotrophoblast is a multi-nucleated, semi-continuous 
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syncytium covering the surface of villi and some parts of the basal and fetal plates 

(Figure 1.1b). The syncytiotrophoblast fulfills most placenta-specific functions [9]. 

Beneath the syncytiotrophoblast lies a layer of proliferative cytotrophoblasts that 

syncytialize to form and restore the syncytiotrophoblast [9, 10]. Cytotrophoblasts also 

differentiate to extravillous cytotrophoblasts that are responsible for invading the 

decidua and remodeling maternal spiral arteries to support the placenta and fetus 

[8].The Hofbauer cell is the resident tissue macrophage of the placenta. In addition to 

serving immune cell functions, Hofbauer cells may be essential throughout placental 

development to promote angiogenesis [11, 12]. To gain insight into placental function, 

placenta-specific cell types should be prioritized for interrogation. 

1.3 Gene expression and cell function 

DNA contains the information for the coding of proteins and RNA molecules 

responsible for cellular function, viability, and reproduction [13]. Gene expression 

represents the phenotype the cell is actively expressing. RNA sequencing provides 

direct information about gene expression by sequencing total RNA in the cell [14] and 

hence can be applied to study the placenta. For example, changes in placental villous 

tissue gene expression in response to in utero environmental exposures have been 

studied using this approach. Decreased placental expression of BDNF and SYN1—

genes implicated in neurodevelopment—has been associated with exposure to fine 

particle air pollution [15]. However, the upstream regulation of gene expression is 

another important molecular outcome that provides insight into tissue health. 
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1.4 Epigenetics and DNA methylation 

Epigenetics refers to the programming of cellular state, memory, or fate not 

attributable to changes in DNA sequence [16, 17]. Epigenetic modifications include DNA 

methylation, histone modifications, and non-coding RNAs [18]. Epigenetics are essential 

for several aspects of human development. First, DNA methylation undergoes dynamic 

changes during embryonic development. In the preimplantation embryo, the paternal 

genome experiences rapid, widespread DNA demethylation. Meanwhile, the maternal 

genome is passively demethylated to a lesser extent through replication without DNA 

methylation maintenance [19]. Second, during the reprogramming process, DNA 

methylation is maintained at specific locations in both the paternal and maternal 

genomes, termed genomic imprinting [20]. Third, X-chromosome inactivation is a 

dosage compensation mechanism that randomly transcriptionally silences one of two X 

chromosomes in females. [21]. Fourth, as tissues differentiate during embryogenesis, 

they acquire more specialized epigenetic marks. Broad regions of the epigenome are 

often regulated in concert and we observe larger-scale tissue-specific differentially 

methylated regions [22]. Epigenetic marks help to lock tissues in their differentiation 

state and maintain tissue identity. Appropriate epigenetic regulation is essential for 

healthy development and these processes can be dysregulated by environmental 

exposures. 

DNA methylation, one of the most studied epigenetic mechanisms, describes the 

methylation of the fifth carbon of the nucleotide cytosine. The availability of DNA 

methylation microarrays have become a popular and relatively inexpensive approach to 

measure DNA methylation in large studies . DNA methylation undergoes drastic 
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reprogramming during mammalian development [23, 24] and is a key regulator of 

cellular differentiation [25]. Epigenetic dysregulation is a hallmark of multiple diseases, 

including cancer [26], neurodegeneration [27], and cardiovascular disease [28]. 

Critically, epigenetic modifications are labile to environmental influences, especially 

during gestation [29]. Understanding how environmental exposures impact epigenetic 

regulation during development likely will impact our understanding of disease etiology 

and identify novel methods for prevention and treatment [30]. 

1.5 Tissue specificity in environmental epigenetics 

Different tissues have biologically determined epigenetic differences. When 

designing an epigenetic study, a crucial step is to determine the tissue of interest. A 

given tissue may be the “target” tissue for a disease process or exposure effects, while 

another tissue may be a measurable “surrogate” tissue for monitoring biomarkers 

associated with disease or exposure. Compelling arguments can be made for selecting 

target tissues (such as brain or lung) based on their direct links to disease. However, 

the postmortem timing of acquisition for many target tissues, scarcity of exposure and 

confounder data in most tissue banks, and often modest available sample sizes present 

challenges for target tissue research [31]. Epigenetic analyses on easily collected 

surrogate tissues (such as blood or saliva) may be less connected to the disease. 

Despite this, surrogate tissue research can provide valuable contributions related to 

etiologic timing through longitudinal sampling, identification of associations with 

environmental exposures, defining early biomarkers, developing translational utility, and 

even providing mechanistic insights in some cases [31]. The field of environmental 

epigenetics is strengthened by evidence from both surrogate and target tissue studies. 
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Traditionally, studies have investigated a single tissue of interest (either 

surrogate or target) at a time. Critical investigation of multiple tissues simultaneously is 

essential to identify similarities in epigenetic profiles across normal, diseased, and 

exposed tissues. Evidence on DNA methylation correlations across normal and 

diseased tissues vary. For example, correlation in DNA methylation signatures between 

surrogate and brain tissue was limited to few informative sites that varied by brain 

region [32]. Schizophrenia-associated DNA methylation signatures identified in blood 

and brain only overlapped at 7.9% of positions [33]. To specifically interrogate the utility 

of surrogate tissues in environmental epigenetics, the Toxicant Exposures and 

Responses by Genomic and Epigenomic Regulators of Transcription (TARGET) II 

consortium is studying epigenetic effects of exposure across tissues in perinatal mouse 

models [34]. Human population studies have also identified environment-associated 

epigenetic alterations that are detectable across tissues. For example, DNA methylation 

signatures associated with smoking exposure were first identified in cord blood [35]. A 

portion of the smoking signatures were then identified in adult blood [36], and a smaller 

portion were identified in adult lung tissue [37]. Testing epigenetic signatures across 

tissue types is a powerful approach to disentangle exposure- or disease-related 

systemic and tissue-specific alterations. A high degree of overlap in epigenetic 

signatures across target and surrogate tissues due to an exposure would provide 

support for the hypothesis that surrogate tissue types can provide relevant information 

about epigenetic alterations in target tissues. Epigenetic signatures specific to an 

exposure in a target tissue may represent unique effects that are informative of tissue-
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specific regulation. Understanding the tissue specificity of environmental and disease 

epigenetics is an important and ongoing field. 

This dissertation focuses on the term placenta as the target tissue of interest 

given its centrality to perinatal outcomes. Surrogate tissues may also be considered 

when attempting to study the target tissue in which the disease process is hypothesized 

to occur. Surrogate and target tissues have complementary advantages and 

disadvantages. Disease target tissues, such as the brain, may not be limited or not 

available for a given study design, though surrogate tissues may still provide insight into 

disease etiology or onset [31]. For example, circulating RNA and extracellular vesicle in 

maternal blood have been investigated as a source of information about the health 

status of the placenta or have even been implicated as a potential causal factor in 

preeclampsia [38–40]. The placenta is the organ of pregnancy and should be 

considered a target tissue to understand adverse perinatal outcomes. When selecting a 

tissue type for study, investigators must be thoughtful about the possible utility and 

scope of inferences in that tissue. When possible, a multi-tissue approach in sampling, 

biobanking, and measurements will allow for the most robust biological interrogations. 

Single tissue studies should make comparisons to publicly available data in multiple 

tissues to extend the reach of insights. 

1.6 Cell type specificity complicates the study of gene expression and DNA 

methylation in complex tissues  

The post-delivery placenta is an ideal target tissue for study because it has a 

direct role in fetal-maternal health and affords readily available, risk-free sampling. RNA 

sequencing and DNA methylation provide insight into the functional molecular 
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consequences of exposure. However, it is difficult to draw biological inferences from 

previously published study results because these measures represent averages over 

the tissue and across all cells and cell types present. Placental cell type differentiation is 

driven by a combination of transcription factor expression, epigenetic modifications, and 

physiologic conditions. This is a directed process required for adequate placental 

function that is better understood in mice than humans [8, 25, 41–43]. Pluripotent stem 

cells differentiate to myriad cell types by selective regulation of differentiation pathways 

[24, 25]. Therefore, RNA, DNA methylation, transcription factor, and other epigenetic 

profiles differ systematically by cell type [44, 45]. Complex cell type mixtures make up 

tissues. For example, whole blood contains many cell types including T-cells, B-cells, 

granulocytes, monocytes, and natural killer cells. Thus, tissue-level measures of DNA 

methylation, such as whole blood DNA methylation, reflect averages across all cells 

present (Figure 1.2). Tissue level measurements are therefore a convolution of many 

cell and cell type-specific molecular signals [46, 47]. 

Accounting for convolution due to cell type heterogeneity is critical to identify 

underlying biological mechanisms and facilitate proper interpretation. For brevity and 

simplicity, as well as the fact that epigenetic changes carry concomitant gene 

expression changes, the remainder of this section will mostly focus on epigenetics and 

DNA methylation. However, the topics and concepts discussed are equally applicable to 

direct measures of gene expression in addition to DNA methylation measures. 

Given that tissue measures reflect DNA methylation averages across a mixture 

of cells, differences in DNA methylation by exposure or disease could have multiple 

underlying biological mechanisms. There are at least three biological scenarios that 
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lead to the same tissue-level DNA methylation signal (Figure 1.3). First, the exposure 

could have a uniform effect on DNA methylation across all cell types, leading to a 

substantial change in average DNA methylation (Figure 1.3a). For example, aging has 

a uniform direct effect on DNA methylation across cell types, termed the epigenetic 

“clock.” DNA methylation at these positions strongly correlate with age across tissues 

and cell types [48, 49].  

Alternatively, a difference in average tissue DNA methylation may be observed 

when vulnerable cell types exhibit a large shift in DNA methylation (Figure 1.3b). As an 

example, a small study of smoking and non-smoking healthy volunteers tested for 

differences in DNA methylation among sorted blood immune cell subpopulations. In 

smokers, two DNA methylation sites within the Growth Factor Independent 1 

Transcriptional Repressor (GFI1) or F2R Like Thrombin or Trypsin Receptor 3 (F2RL3) 

genes were hypomethylated in granulocytes but not in peripheral blood mononuclear 

cells. Further, two sites within the Coproporphyrinogen Oxidase (CPOX) or G Protein-

Coupled Receptor 15 (GPR15) genes were hypomethylated in peripheral blood 

mononuclear cells, including some T cell subtypes, but not in granulocytes [50]. Another 

small study of smokers and nonsmokers observed cell type-specific associations 

between smoking and DNA methylation in CD14+ monocytes, CD15+ granulocytes, 

CD19+ B cells, and CD2+ pan T cells [*30]. These results show cell types may have 

variable and specific DNA methylation susceptibility to environmental exposures.  

In a third plausible scenario, the exposure has no direct effect on DNA 

methylation in any cell type. The apparent shift in average DNA methylation is 

attributable to a difference in cell type proportions between exposed and unexposed 
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individuals (Figure 1.3c). For example, in whole blood, cigarette smoking is associated 

with DNA methylation at a locus within GPR15. When considering blood immune cells 

separately, no direct effect of cigarette smoking was observed on GPR15 methylation in 

GPR15+CD3+ T cells. Instead, smoking led to an increase in the relative proportion of 

GPR15+CD3+ T cells in whole blood [52]. Exposures can influence DNA methylation 

measures by causing a shift in cell type proportions, which can have important 

consequences in the tissue. 

Tissue-level differences in DNA methylation can be biologically attributed to 

direct DNA methylation effects across all cells, direct DNA methylation effects in 

vulnerable cell types, or shifts in cell type heterogeneity. Each scenario represents a 

unique consequence of an exposure and warrants further investigation. Because bulk 

tissue-level measures of DNA methylation fail to resolve such biologically distinct 

mechanisms, observational studies are potentially fraught with incorrect conclusions 

and misinterpretation [53]. Applying methods to account for cell type heterogeneity is 

critical to identify underlying biological mechanisms and facilitate proper interpretation. 

1.7 Methods for estimating or accounting for cell type heterogeneity 

Accounting for cell type heterogeneity in DNA methylation data allows 

investigators to distinguish shifts in cellular heterogeneity from direct effects of an 

exposure on DNA methylation, both of which offer potential insights into disease 

etiology [46]. There are five main approaches to account for cellular heterogeneity: 

cellular separation, unbiased single-cell profiling, cell counting, and cellular 

deconvolution in silico by reference-based or reference-free methods (Table 1.1). 

Studies may elect to use one or more of these methods, based on their study design, 
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timing, tissue, and sample or measure availability. The advantages and trade-offs of 

each method are described below. 

Direct physical cellular separation is a method to account for cell type 

heterogeneity in a mixed tissue that requires purifying cells or cell type subpopulations 

before measuring DNA methylation. Cell sorting technologies such as fluorescence-

activated cell sorting or magnetic-activated cell sorting allow the user to isolate cellular 

subpopulations based on various stains, morphological characteristics, or expression of 

known cell type markers [54]. A priori knowledge of the distinguishing characteristics of 

cellular subpopulations present in the tissue is required, however, and represents a key 

limitation of this approach. Cells must also be processed and separated fresh at the 

time of sample collection or stored in a way to allow cell membranes to survive freeze-

thaw. This can be achieved by using a cryopreservation blood tube or dissociation of 

solid tissues to a viable single-cell suspension, which is then cryopreserved prior to cell 

population separation and DNA methylation measurement. Investigators should be 

cautious as cell types may differentially survive processing. Following cell type 

separation, DNA methylation is measured in sorted cell types.  

Single-cell epigenetics is an emerging technology that accommodates cell type 

heterogeneity. Single-cell approaches bypass the need for a priori cell type marker 

identification and generate single-cell epigenetic measures in an unbiased manner. 

These data can be aggregated at the cell type level using unbiased clustering to 

quantify epigenetic heterogeneity within and across cell types. Single-cell DNA 

methylation approaches are being rapidly developed and there is not a current 

consensus method. Current disadvantages include limited coverage and robustness, 
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labor requirements, and cost [55]. Single-cell technologies may even allow for 

mechanistic investigation of exposures and DNA methylation within individual cells or 

cell types and subtypes of tissues, organs, and organisms [56]. Like direct cellular 

separation, initial sample processing steps apply. 

Direct cell counting methods, such as complete blood counting or 

histopathological cell counting, are used to quantify the relative abundance of cell types 

in a sample. DNA methylation measures are then made at the tissue level and 

investigators can adjust for the cell type counts in downstream analyses. This approach 

requires fresh samples or samples prepared for counting, such as fixed tissues. Direct 

cell counting allows investigators to test for exposure differences in cell type 

proportions. Unlike the previous two methods, however, cell counting offers no 

information about the direct effects of exposure on DNA methylation. Only cell type 

proportion estimates of a sample are available and can be used for adjustment or 

interpretation of a tissue DNA methylation measure. 

Indirect cellular deconvolution is a class of methods to account for cell type 

heterogeneity via in silico estimation of cell type proportions. Deconvolution refers to the 

bioinformatic process of accounting for differences in intrasample cell type 

heterogeneity in tissues [57, 58]. Given that the previous three methods require specific 

laboratory preparation and processing at the time of sample collection, bioinformatic 

deconvolution is more commonly implemented in observational studies. To leverage 

DNA methylation data generated from heterogeneous tissues, two classes of 

deconvolution methods have been developed—reference-based and reference-free. 
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Reference-based methods are supervised and rely on independently collected 

cell type-specific DNA methylation profiles to estimate cell type proportions in a tissue 

sample. Advantages of the reference-based methods include: quantification of cell type 

proportions, biologically interpretable model components, and few model assumptions 

[46, 58, 59]. Reference panels are currently available for cord blood [60–64], umbilical 

cord tissue [64], adult blood [45, 65], frontal cortex (neuron vs. non-neuron) [66], and 

broadly epithelial versus fibroblast cell types [67] (Table 1.2). Disadvantages include a 

lack of demographically diverse reference samples, a limited number of reference 

panels, an assumption about constituent cell types, and challenges in identifying 

methylation sites and regions that discriminate cell types [46, 58, 68]. Similar to direct 

cell counts, cell type proportions estimated from reference-based deconvolution can be 

used in regression models when analyzing tissue DNA methylation measures. 

Reference-based methods would be an appropriate and powerful approach to 

implement when cell type references are available for a tissue of interest. 

Reference-free methods are unsupervised methods to account for variation in 

DNA methylation data, including cell type heterogeneity. This category encompasses 

many algorithms that account for sources of variation that are unmeasured and 

unmodeled due biological sources of variation like cell type heterogeneity or 

nonbiological sources of variation, such as random noise or batch effects in an 

association study. Reference-free methods, like “surrogate variable analysis”, were 

originally developed for RNA expression deconvolution [69], and are now being applied 

in epigenome-wide association studies [58]. Advantages of unsupervised methods 

include no required a priori knowledge of tissue cell types, flexible modelling strategies, 
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and no required cell type references, allowing them to be used in any tissue. 

Disadvantages include the general inability to estimate intrasample cell type proportions 

and the large number of delicate model assumptions, including the assumption that the 

largest driver of variation is due to cell type proportion differences [58, 70, 71]. Following 

reference-free processing, depending on the specific method, investigators either 

implement exposure testing on the resulting adjusted DNA methylation matrix or they 

account for the reference-free “cell types” in regression models when analyzing tissue 

DNA methylation measures. Reference-free methods are only recommended for tissues 

lacking adequate references. 

Cell type heterogeneity must be considered and accounted for in any epigenetic 

study of bulk tissue. Direct measures of DNA methylation should be prioritized over 

indirect methods to faithfully capture the DNA methylation state of each sample without 

reliance on imperfect indirect methods that “smooth over” inter-sample differences such 

as in silico deconvolution. Of direct approaches, single-cell molecular assays show the 

greatest promise because they unbiasedly account for cell type heterogeneity with the 

greatest resolution and can later be aggregated at the cell type or sub-cell type level if 

desired. These methods, however, are not yet widely available for observational human 

studies and are still subject to dissociation bias [72]. At this time, among indirect 

deconvolution approaches, referenced-based methods should be prioritized over 

reference-free methods. Reference-based deconvolution requires fewer assumptions 

and affords greater transparency and biological interpretability. A recent comparison of 

indirect deconvolution methods in the placenta found that reference-based methods 

consistently outperformed reference-free methods [73]. However, reference-free 
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deconvolution is invaluable when reference data are unavailable or biosampling 

logistics prevent cell sorting or single-cell approaches. Further studies of deconvolution 

algorithm performance and collection of high-quality and diverse DNA methylation 

reference profiles are required to advance indirect deconvolution approaches. 

Researchers should be transparent in reporting the assumptions and selection criteria 

for any cell type heterogeneity approach used. 

1.8 Overview of recommendations 

The public health burden of adverse pregnancy outcomes is substantial and most 

adverse pregnancy outcomes are rooted in the placenta and its development. 

Epigenetic modifications and concomitant gene expression regulation are essential for 

human development and are labile to environmental influences, especially during 

gestation. Epigenetic dysregulation is a hallmark of multiple diseases. Investigators 

routinely measure gene expression or DNA methylation in readily available tissues. 

However, tissues and cell types exhibit specific epigenetic patterning and heterogeneity 

between samples complicates studies of both biomarkers. Failure to account for cell 

type heterogeneity limits identification of biological mechanisms and biases study 

results. Tissue-level molecular measures represent a convolution of signals from 

individual cell types. Tissue-specific molecular investigation is an evolving field, and the 

use of disease-affected target, surrogate, or multiple tissues has inherent trade-offs and 

affects inference. Likewise, experimental and bioinformatic approaches to 

accommodate cell composition heterogeneity have varying assumptions and inherent 

trade-offs that affect inference.  
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The relationships between exposure, disease, tissue-level gene expression or 

DNA methylation, cell type-specific gene expression or DNA methylation, and cell 

composition heterogeneity must be carefully considered in study design and analysis. 

Causal diagrams can inform study design and analytic strategies. Properly addressing 

cell composition heterogeneity limits sources of potential bias, avoids misinterpretation 

of study results, and allows investigators to distinguish shifts in cell type proportions 

from direct changes to cellular epigenetic and gene expression programming, both of 

which provide insights into disease etiology and aid development of novel methods for 

prevention and treatment. 

1.9 Current research needs 

The placenta should be prioritized as a target organ in the DOHaD framework 

and biomedical and epidemiology research more generally to understand and prevent 

early life and lifelong morbidity and mortality. Cellular heterogeneity poses a critical 

challenge in applying molecular measures such as gene expression and DNA 

methylation in bulk tissue studies. This is particularly relevant to placenta-specific cell 

types that are not fully understood and directly related to placental function. Currently, 

deconvolution references for human term, placental villous tissue are limited or 

unavailable for gene expression and DNA methylation. Accessible, scalable, and robust 

placental deconvolution references and their application to perinatal studies are needed 

to advance molecular perinatal epidemiology. 
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1.10 Brief description of the dissertation chapters 

Chapter 1 introduces the public health importance of molecular perinatal studies 

of the human placenta, the basic anatomy of the placenta, gene expression, epigenetics 

and DNA methylation, the limitations and challenges of studying molecular measures in 

complex tissues, cell composition heterogeneity as a major contributor to these 

limitations and challenges, techniques to address cellular heterogeneity in complex 

tissues, and current research needs in deploying reference-based deconvolution 

approaches to address cellular heterogeneity in the placenta. 

Chapter 2 discusses my primary research efforts to address placental cellular 

heterogeneity in transcriptomic studies of the term human placenta by developing a 

single-cell RNA-sequencing based deconvolution reference, integrated from primary 

and previously published data. I apply this reference to assess how cell composition 

may mediate preeclampsia-associated gene expression differences in a secondary 

analysis of preeclampsia case-control studies. 

Chapter 3 describes my primary research efforts to address placental cellular 

heterogeneity in epigenetic studies of the term human placenta. I developed a sorted 

cell type DNA methylation-based deconvolution reference panel that integrates primary 

and previously published cell type-specific DNA methylation profiles. 

In Chapter 4, I apply the deconvolution reference developed in Chapter 3 to 

estimate term placental cell composition in two prospective birth cohorts. I then test the 

association between prenatal exposure to 18 metals and term placental cell composition 

during early or late gestation to understand how prenatal metals exposure may affect 

fetal-maternal health. 
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In Chapter 5, I discuss the utility of cellular heterogeneity in epidemiological and 

biological frameworks, recommendations, and considerations for conducting molecular 

epidemiology studies, and the future directions and public health significance of the 

research presented in this dissertation. 

A unifying conceptual diagram of the primary research aims is presented in 

Figure 1.4. To address these challenging research gaps, this dissertation leverages 

advanced laboratory-based methods in primary tissue collection, dissociation, and cell 

type sorting, single-cell gene expression characterization, bulk gene expression and 

DNA methylation characterization. In addition, I integrate these laboratory-based 

findings with state-of-the-art computational approaches in single-cell and bulk gene 

expression analysis, DNA methylation analysis, creation and validation of molecular 

deconvolution references, application of deconvolution to epidemiologically model cell 

composition, general bioinformatics, bioinformatic data integration, meta-analysis, 

molecular epidemiology, and causal inference. Ultimately, this dissertation aims to 

provide scalable and cost-effective approaches and a template to demonstrate their 

capability to empower investigators to faithfully and carefully consider cell composition 

in perinatal epidemiology to improve casual interpretability of study results and reveal 

biological mechanisms of health and disease. 

1.11 Figures and Tables 
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Figure 1.1 Placental structure around six weeks gestation. MY: myometrium, SA: spiral arteries, DD: 
decidua; IVS:intervillous space VT: villous tree, CP: chorionic plate, UC: umbilical cord, AF: amniotic fluid, 
AV: anchoring villi, STR: stroma, FV: floating villi, EVT: extravillous trophoblast, sCTB: cytotrophoblast, 
SYN: syncytiotrophoblast [74]. 

 

Figure 1.2 Conceptual model for understanding tissue measures of DNA methylation as a mixture of 
signals from cell types. A complex tissue such as whole blood is composed of many individual cell types. 
Individual circles represent cells, colored by cell type identity. In this example, three cell types compose 
the tissue. The investigator performs a tissue-level assessment of DNA methylation that averages across 
cell types. The black bar represents the aggregate observed tissue-level mean DNA methylation signal. 
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The cell type DNA methylation profiles are not observed. The investigator may incorrectly conclude that 
each genomic locus in each cell type in the sample is uniformly methylated at 50% if they do not consider 
the cell type heterogeneity of the sample. 

 

Figure 1.3 Conceptual model for differences in tissue DNA methylation by exposure status, considering 
tissues as mixtures of cell types. Individual circles represent cells, colored by three cell type identities. 
The black bar represents the observed tissue-level mean DNA methylation signal. A-C represent distinct 
biological scenarios that could lead to the same exposure-related DNA methylation signal. A. The 
exposure uniformly increases DNA methylation in each cell type population, which increases the 
observed DNA methylation signal. B. The exposure directly increases DNA methylation in one vulnerable 
cell type. C. The exposure does not have a direct effect on DNA methylation and the observed increase in 
DNA methylation signal is completely mediated by differences in cell type proportion between the 
exposed and unexposed samples. 
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Figure 1.4 Conceptual overview of research aims. In aim 1, I characterized placental cell type-specific gene expression to deconvolute a 
secondary data analysis of preeclampsia. I then test the relationship between preeclampsia and gene expression, preeclampsia and term 
placental cell composition, and finally perform a unified mediation and interaction analysis to test whether placental cell composition mediates the 
effects of preeclampsia on gene expression. In aim 2, I characterized placental cell type-specific DNA methylation to create a deconvolution 
reference. In aim 3, I apply the deconvolution reference generated in aim 2 to test the association between early or late gestation prenatal metals 
exposure measured in urine and term placental cell composition in two prospective birth cohorts. 
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Table 1.1 Approaches to address cell type heterogeneity in DNA methylation studies. 

Approach Cellular 
Measure 

DNA 
Methylation 
Measure 

Advantages Disadvantages Examples 

Cell type sorting Direct Cell type Measures of DNA 
methylation within cell 
types  
Allows development of 
cell type-specific 
reference profiles 

Requires careful sample 
processing 
Laborious sorting 
Cell type specificity limited 
to prior knowledge 
 

Adherence 
Density 
Antibody-binding: 

• Flow Cytometry 

• Magnetic Bead 
 
Reviewed in [75]  

Single-cell 
technologies 

Direct Single-cell Measures of DNA 
methylation at single-
cell resolution  
No a priori knowledge 
of cell types required 

Requires careful sample 
processing 
Expensive 
Limited throughput 
Requires single-cell 
bioinformatics expertise 

Approaches: many, reviewed in [55] 
 
Analysis software: BEAT [76], 
methylpy [77], LIGER [78], Melissa 
[79] 

Cell counting Direct Tissue Well-studied and 
classic experimental 
techniques 

Requires careful sample 
processing 
Laborious sorting 
Subject to error 
Limited information 

Microscope counting in fresh or 
histological samples 
Complete blood counts 
Other cell count procedures 

Reference-based 
deconvolution 

Indirect Tissue Cell type proportions 
estimates 
Few and transparent 
model assumptions 
with biological 
interpretability 

Requires cell type-specific 
reference profiles 
Demographically diverse 
profiles are limited 
A priori knowledge of cell 
types required 

Houseman’s constrained projection 
[80], CIBERSORT [81], IDOL [82], 
EpiDISH [83] 

Reference-free 
deconvolution 

Indirect Tissue No a priori knowledge 
of cell types required 
No cell type-specific 
reference profiles 
required 

Cell type proportion 
estimates generally 
unavailable 
Requires delicate model 
assumptions that can lack 
biological interpretability 

SVA [69], ISVA [84], RUV [85], 
FaST-LMM-EWASher [86], 
RefFreeEWAS 1.0/2.0 [42, 86], 
ReFACTor [88], BayesCCE [89] 
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Table 1.2 Summary of cell type-specific reference panels available for reference-based indirect deconvolution. 

Tissue Sample Population 
Number 
of Cell 
Types 

Cell Types Measured Sorting Technology 
DNA Methylation 

Platform 
Reference 

Adult Blood 

6 healthy male donors, aged 25-60 7 
Neutrophils, Eosinophils 

Monocytes, B cells, 
NK cells, CD8+ T cells, CD4+ T cells 

Magnetic-activated cell 
sorting 

Illumina 450k 
microarray 

Reinius et al., 2012 
[45] 

37 healthy donors, aged 19-59 6 
Neutrophils, Monocytes, B cells, 

NK cells, CD8+ T cells, CD4+ T cells 
Magnetic-activated cell 

sorting 
Illumina EPIC 850k 

microarray 
Salas et al., 2018 

[65] 

Umbilical 
Cord Blood 

11 healthy full-term singleton 
deliveries 

6 
Granulocytes, Monocytes, B cells, 

NK cells, CD8+ T cells, CD4+ T cells 
Fluorescence-activated 

cell sorting 
Illumina 450k 

microarray 

Gervin et al., 2016 
[61] 

 

17 healthy full-term singleton 
vaginal deliveries 

7 
Granulocytes, Monocytes, B cells, 

NK cells, CD8+ T cells, CD4+ T 
cells, Nucleated Red Blood cells 

Magnetic-activated cell 
sorting 

Illumina 450k 
microarray 

Bakulski et al., 
2016 [62] 

7 elective non-laboring Caesarean-
section 

7 
Granulocytes, Monocytes, B cells, 

NK cells, CD8+ T cells, CD4+ T 
cells, Nucleated Red Blood cells 

Fluorescence-activated 
cell sorting 

Illumina 450k 
microarray 

de Goede et al., 
2016 [63] 

 

14 healthy singleton full-term 
deliveries from women aged 28-38 

6 
Granulocytes, Monocytes, B cells, 

NK cells, CD8+ T cells, CD4+ T cells 
Magnetic-activated cell 

sorting 
Illumina EPIC 850k 

microarray 
Lin et al., 2018 [64] 

Mixed from above, 34 cell type 
fractions removed or reclassified 

from Bakulski, Gervin 
7 

Granulocytes, Monocytes, B cells, 
NK cells, CD8+ T cells, CD4+ T 

cells, Nucleated Red Blood cells  
Mixed Mixed 

Gervin et al., 2019 
[**39] combines 

Gervin , Bakulski, 
de Goede, and Lin 

Umbilical 
Cord Tissue 

14 healthy singleton full-term 
deliveries from women aged 28-38 

3 Stromal, Endothelial, and Epithelial 
Magnetic-activated cell 

sorting 
Illumina EPIC 850k 

microarray 
Lin et al., 2018 [64] 
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Frontal 
Cortex 

29 post-mortem 
major depressive 

disorder cases 
and 29 matched 

controls 

2 
Neuron 

Non-neuron 
Fluorescence-activated 

cell sorting 
Illumina 450k 

microarray 
Guintivano et al., 

2013 [66] 

Broadly 
Epithelial  

ENCODE cell lines and Reinius et 
al., 2012 [45] dataset 

3 
11 Epithelial and 7 Fibroblast cell 

lines, adult blood immune cell types 
Secondary Analysis 

Illumina 450k 
microarray 

Zheng et al., 2018 
[67] 
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Chapter 2 Placental Cell Type Deconvolution Reveals that Cell Proportions Drive 

Preeclampsia Gene Expression Differences 

This chapter has been adapted from a manuscript published in Communications Biology 
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2.1 Abstract 

The placenta mediates adverse pregnancy outcomes, including preeclampsia, 

which is characterized by gestational hypertension and proteinuria. Placental cell type 

heterogeneity in preeclampsia is not well-understood and limits mechanistic 

interpretation of bulk gene expression measures. We generated single-cell RNA-

sequencing samples for integration with existing data to create the largest 

deconvolution reference of 19 fetal and 8 maternal cell types from placental villous 

tissue (n=9 biological replicates) at term (n=40,494 cells). We deconvoluted eight 
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published microarray case-control studies of preeclampsia (n=173 controls, 157 cases). 

Preeclampsia was associated with excess extravillous trophoblasts and fewer 

mesenchymal and Hofbauer cells. Adjustment for cellular composition reduced 

preeclampsia-associated differentially expressed genes (log2 fold-change cutoff=0.1, 

FDR<0.05) from 1,154 to 0, whereas downregulation of mitochondrial biogenesis, 

aerobic respiration, and ribosome biogenesis were robust to cell type adjustment, 

suggesting direct changes to these pathways. Cellular composition mediated a 

substantial proportion of the association between preeclampsia and FLT1 (37.8%, 95% 

CI [27.5%, 48.8%]), LEP (34.5%, 95% CI [26.0%, 44.9%]), and ENG (34.5%, 95% CI 

[25.0%, 45.3%]) overexpression. Our findings indicate substantial placental cellular 

heterogeneity in preeclampsia contributes to previously observed bulk gene expression 

differences. This novel deconvolution reference lays the groundwork for cellular 

heterogeneity-aware investigation into placental dysfunction and adverse birth 

outcomes. 

2.2 Introduction 

The public health burden of adverse pregnancy outcomes is substantial. An 

important example is preeclampsia, which affected 6.5% of all live births in the United 

States in 2017 and is characterized by high maternal blood pressure, proteinuria, and 

damage to other organ systems [91]. Adverse pregnancy outcomes may lead to myriad 

health complications including elevated risk of chronic diseases throughout the life 

course [4]. The placenta, a temporary organ that develops early in pregnancy, promotes 

maternal uterine artery remodeling; mediates transport of oxygen, nutrients, and waste 

[8]; secretes hormones to regulate pregnancy; metabolizes various macromolecules 
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and xenobiotics; and can serve as a selective barrier to some, but not all, pathogens 

and xenobiotics [6]. The executive summary of the Placental Origins of Adverse 

Pregnancy Outcomes: Potential Molecular Targets workshop recently concluded that 

most adverse pregnancy outcomes are rooted in placental dysfunction [3]. Despite this, 

the molecular underpinnings of placental dysfunction are poorly understood. 

 Placenta-specific cell types including cytotrophoblasts, syncytiotrophoblasts, 

extravillous trophoblasts, and placental resident macrophage Hofbauer cells are all 

essential for placental development, structure, and function [9]. Dysfunction of these 

specific cell types likely plays a role in placental pathogenesis. For example, extravillous 

trophoblasts are responsible for invading into the maternal decidua early in pregnancy 

to remodel uterine arteries and increase blood flow to the placenta [8]. Inadequate or 

inappropriate invasion of extravillous trophoblasts has previously been implicated in 

preeclampsia etiology [92–94]. Despite some knowledge of the roles of specific 

placental cell types in the development of preeclampsia, relatively little is known about 

how individual cell types contribute to placental dysfunction. 

Existing research models used to investigate the function and dysfunction of 

individual cell types are limited. Protocols to isolate primary placental cells for 

experimental research are restricted to one or few cell types [95–100]. Cell type-specific 

assays are costly and require special techniques or training resulting in small sample 

sizes and have not yet been scalable to large epidemiological studies [101–103]. 

Furthermore, placental cell lines such as BeWo, derived from choriocarcinoma [104], 

and HTR-8/SVneo, immortalized by SV40 [105], are typically derived by processes that 

alter the DNA of the cells, limiting their in vivo translatability. Consequently, the 
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characteristics of even healthy placental cell type function and especially their 

connections to adverse outcomes such as preeclampsia are incompletely understood. 

Measures of gene expression in bulk placental tissue are used to better understand 

the biological mechanisms underlying adverse pregnancy outcomes [106–108] and are 

common in epidemiological studies [109]. Gene expression profiles differ systematically 

by cell type [44, 45]. Thus, bulk placental tissue-level gene expression measurements 

represent a convolution of gene expression signals from individual cells and cell types 

[46, 47]. Deconvolution refers to the bioinformatic process of estimating the distribution 

of cell types that constitute the tissue [57, 58]. Deconvoluting tissue-level gene 

expression profiles is essential to account for effects introduced by unmodeled cell type 

proportions [110] by disentangling shifts in cell type proportions from direct changes to 

cellular gene expression [1]. Reference-based deconvolution boasts biologically 

interpretable cell type proportion estimates with few modeling assumptions but relies on 

independently collected cell type-specific gene expression profiles as inputs [1]. Prior 

placental cell type-specific gene expression measures from term villous tissue [101, 

102] had a limited number of biological replicates and included neither technical 

replicates nor benchmarking against physically isolated placental cell types. A robust, 

accessible, and publicly available gene expression deconvolution reference is currently 

unavailable for healthy placental villous tissue.  

 To advance the field of perinatal molecular epidemiology, our goal was to 

develop an accessible and robust gene expression deconvolution reference for healthy 

placental villous tissue at term. We generated single-cell RNA-sequencing data with 

technical replicates for integration with existing cell type-specific placental gene 
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expression data [101, 102]. Additionally, we benchmarked these single-cell cell type-

specific gene expression profiles against placental cell types isolated with more 

conventional fluorescence-activated cell sorting followed by bulk RNA-sequencing. 

Finally, to assess links between preeclampsia and placental cell types and their 

proportions, we applied our placenta cell type gene expression reference to deconvolute 

bulk placental tissues in a secondary data analysis of a case-control study [111] of 

preeclampsia, including a mediation analysis of the preeclampsia-associated genes 

FLT1, LEP, and ENG that quantifies the role cellular composition plays in explaining 

bulk gene expression measures. 

2.3 Methods 

2.3.1 Placental tissue collection and dissociation 

Placentas were collected shortly after delivery from healthy, full term, singleton 

uncomplicated Cesarean sections at the University of Michigan Von Voigtlander 

Women’s Hospital. Pregnant women provided written informed consent for research use 

of discarded tissues. Study protocols for discarded tissue collection and research use 

were approved by the University of Michigan Institutional Review Board 

(HUM00017941, HUM00102038). Villous placental tissue biopsies were collected and 

minced for dissociation after cutting away the basal and chorionic plates and scraping 

villous tissue from blood vessels [98]. We subjected approximately 1g minced dissected 

villous tissue to the Miltenyi Tumor Dissociation Kit on the GentleMACS Octo 

Dissociator with Heaters (Miltenyi Biotec) to yield single-cell suspensions of viable 

placental cells in 5μM StemMACS™ Y27632 (Miltenyi Biotec) in RPMI 1640 (Gibco) 

according to manufacturer’s instructions for “soft” tumor type. Red blood cells were 
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depleted using RBC lysis buffer (Biolegend) according to manufacturer’s protocol A. 

Single-cell suspensions were size-filtered at 100μm to remove undigested tissue and 

subsequently 40μm [97, 98]. To collect a syncytiotrophoblast-enriched fraction, the 

fraction between 40μm and 100μm was washed from the 40μm strainers, adapting a 

previous protocol that collected syncytiotrophoblasts throughout this size range [95]. 

Single-cell suspensions <40μm were cryogenically stored in 5μM StemMACS™ Y27632 

90% heat-inactivated fetal bovine serum (Gibco)/10% dimethyl sulfoxide (Invitrogen). 

For each placenta, additional whole villous tissue samples were stored in RNALater 

(Qiagen). 

Previously published single-cell RNA-sequencing raw data of healthy, term 

placental villous tissue samples came from the Database of Genotypes and Phenotypes 

(Pique-Regi et. al, accession number phs001886.v1.p1 [112]) SRR10166478 (Sample 

3), SRR10166481 (Sample 4), and SRR10166484 (Sample 5) [102]. The collection and 

use of human materials for the study were approved by the Institutional Review Boards 

of the Wayne State University School of Medicine. All participating women provided 

written informed consent prior to sample collection [102]. Additional previously 

published samples came the European Genome-Phenome Archive (Tsang et. al, 

accession number EGAS00001002449 [38]) (Samples 6-9) [101]. The study was 

approved by the Joint Chinese University of Hong Kong-New Territories East Cluster 

Clinical Research Ethics Committee, and informed consent was obtained after the 

nature and possible consequences of the studies were explained. Pregnant women 

were recruited from the Department of Obstetrics and Gynecology, Prince of Wales 
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Hospital, Hong Kong with informed consent; the subjects studied had consented to 

sequencing data archiving [101].  

2.3.2 Placental single-cell RNA sequencing 

Villous tissue single-cell suspensions were thawed and sorted via fluorescence-

activated cell sorting with LIVE/DEAD Near-IR stain (Invitrogen) for viability and 

forward-scatter and side-scatter profiles to eliminate cellular debris and cell doublets. 

Viability- and size-sorted single-cell suspensions were submitted to the University of 

Michigan Advanced Genomics Core for single-cell RNA sequencing. Single cells were 

barcoded, and cDNA libraries constructed on the Chromium platform (10X Genomics, 

Single Cell 3' v2 chemistry). Paired end 110 base pair reads were sequenced on 

NovaSeq 6000 (Illumina). 

2.3.3 Single-cell RNA-sequencing preprocessing  

Raw reads were processed, deconvoluted, droplet filtered, and aligned at the 

gene level with the Cell Ranger pipeline using default settings (v4.0.0, 10X Genomics) 

based on the GRCh38 GENCODEv32/Ensembl 98 reference transcriptome with STAR 

v2.5.1b [113]. Previously published single-cell RNA-sequencing raw data of healthy, 

term placental villous tissue samples from the Database of Genotypes and Phenotypes 

(Pique-Regi et. al, accession number phs001886.v1.p1) SRR10166478 (Sample 3), 

SRR10166481 (Sample 4), and SRR10166484 (Sample 5) [102] and from the European 

Genome-Phenome Archive (Tsang et. al, accession number EGAS00001002449) 

(Samples 6-9) [101] were processed identically. The freemuxlet program in the latest 

version (accessed 2021/12/05) of the ‘popscle’ package was used to assign fetal or 
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maternal origin and identify 736 mosaic doublets for removal based on single nucleotide 

polymorphisms with minor allele frequency greater than 10% from the 1000 Genomes 

Phase 3 reference panel (released 2013/05/02) [114]. Per cell quality control criteria 

were calculated using the quickQCPerCell() function (scater R package, version 1.18.6) 

with default settings [115] (Figure 2.2, Figure 2.3) and included total unique RNA 

transcripts (also called unique molecular identifiers), unique genes, and percentage of 

reads mapping to mitochondrial genes [116]. According to current recommended best 

practice, each batch was quality-controlled separately [117]. We excluded 6,497 low-

quality outlier cells defined as cells with less than 500 unique RNA molecules, less than 

200 unique genes, or that were outliers in mitochondrial gene mapping rate. 

Mitochondrial mapping outliers exceeded four median absolute deviations in samples 1 

and 2 (mitochondrial reads > 9.2%) or three median absolute deviations in samples 3, 4, 

and 5 (mitochondrial reads > 8.9%) and samples 6, 7, 8C, 8P, 9C, and 9P 

(mitochondrial reads > 9.1%). To generate normalized gene expression data for 

visualizations and analyses that required normalization, single-cell gene counts were 

library-size normalized by dividing the number of counts by the total number of counts 

expressed in that cell, multiplied by a scale factor of 10,000, and log-transformed with 

the NormalizeData() function (Seurat R package, version 4.1.1). 

2.3.4 Single-cell RNA-sequencing clustering and cluster annotation  

Maternal and fetal cells were split into separate datasets for clustering. To 

integrate data from cells across study sources and visualize clustering results with 

uniform manifold projection [118], we used the mutual nearest neighbor batch correction 

approach via FastMNN from ‘SeuratWrappers’ with default settings (R package, version 
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0.3.0) [119, 120]. Supervised iterative clustering and sub-clustering with ‘Seurat’ (R 

package, version 4.0.1) function FindClusters at different resolution parameters were 

evaluated using cluster stability via clustering trees in ‘clustree’ [121, 122]. A priori 

canonical cell type marker gene expression patterns and cluster marker genes were 

used to assign cell types to cell clusters (see results). Cells that fell outside cell type 

clusters or outlying in doublet density calculated with computeDoubletDensity were 

removed as putative doublets and doublet clusters were identified with 

findDoubletClusters for removal in ‘scDblFinder’ (R package, version 1.4.0)  [123]. 723 

maternal-maternal or fetal-fetal putative doublets were excluded after integration and 

clustering. Using the manually annotated Michigan (this study) and Pique-Regi 

(phs001886.v1.p1) cell cluster labels as the reference data, Tsang sample 

(EGAS00001002449) cells were algorithmically annotated with ‘SingleR’ (R package, 

version 1.6.1) [124] with default settings, followed by manual review. Cells with low 

prediction certainty (assignment score lower than three median absolute deviations of 

all cells assigned) were excluded as putative maternal-maternal or fetal-fetal doublets. 

Fetal sex in Michigan (this study) samples was determined with average normalized 

XIST expression; fetal sex in Pique-Regi and Tsang samples was determined by 

annotation and confirmed with average normalized XIST expression (Figure 2.4). The 

final analytic sample included 40,494 cells and 36,601 genes across nine biological 

replicates, two of which had a technical replicate (Samples 1,2) and another two 

included peripheral subsampling (Samples 8,9). 

2.3.5 Single-cell RNA-sequencing differential expression and biological pathway 

enrichment statistical analysis  
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Technical correlation was assessed by Spearman correlation after averaging the 

normalized expression for each gene by cluster and by technical replicate. Cluster 

marker genes were identified in ‘Seurat’ with the FindAllMarkers function with default 

settings on single-cell gene expression counts [116, 122]. Specifically, including both 

maternal and fetal cell types, the expression level in each cell type cluster was 

compared against the average expression of that gene across all other cell types using 

the two-tailed Wilcoxon rank sum test with significance defined at a false discovery rate-

adjusted p-value less than 0.05 and a log2 fold change cutoff of 0.25. Pairwise cluster 

markers were identified in ‘Seurat’ with the FindMarkers function with an identical 

testing regime. Overexpressed genes were ranked by decreasing log2 fold change for 

functional enrichment analysis with ‘gprofiler2’ (R package, version 0.2.0, database 

version e102_eg49_p15_7a9b4d6) using annotated genes as the universe, excluding 

electronically generated annotations, and with the g:SCS multiple testing correction 

method applying a significance threshold 0.05 [125]. 

2.3.6 In silico testing of deconvolution performance 

To test the performance and robustness of our placental single-cell RNA 

sequencing deconvolution reference, we randomly split our analytic single-cell RNA 

sequencing dataset into 50% training and 50% testing subsets with balanced cell type 

proportions [126]. We applied the test subset with the CIBERSORTx Docker container 

(accessed 2021-12-07) to create a signature gene expression matrix to test 

deconvolution performance with default settings [127]. To evaluate the reference’s 

robustness to fetal sex and ability to discriminate immune cell types of fetal versus 

maternal origin, we generated in silico pseudo-bulk test mixtures with known 
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distributions of fetal and maternal cells, as well as male and female placental cells. Test 

mixtures included all of the 50% testing data, only fetal cells from the test data, only 

maternal cells from the test data, only female fetal cells from the test data, or only male 

cells from the test data. For the female and male fetal cell test mixtures, the baseline 

distribution of maternal cells was maintained by randomly down-sampling the maternal 

cells and randomly down-sampling the male fetal cells to the number of female fetal 

cells. We used the signature matrix generated from the training data to estimate 

constituent cell type proportions in these test mixtures using CIBERSORTx with cross-

platform S-mode batch correction and 50 permutations to evaluate imputation 

goodness-of-fit. Pearson correlations and root mean square error between the test set 

predicted and actual cell type proportions in the test mixtures were used to assess 

deconvolution performance. 

2.3.7 Fluorescence-activated cell sorting of major placental cell types from villous 

tissue 

Villous tissue single-cell suspensions were quickly thawed and stained with 5 

fluorescently labeled antibodies (CD9-FITC, CD45-APC, HLA-A,B,C-PE/Cy7, CD31-

BV421, and HLA-G-PE) as well as the LIVE/DEAD Near-IR stain (Invitrogen) to isolate 

6 viable populations of placental cells by fluorescence activated cell sorting at the 

University of Michigan Flow Cytometry Core Facility. Initial flow cytometry experiments 

included fluorescence minus one, single color compensation, and isotype controls. 

Isotype controls were found to be the most conservative and were consequently 

included in all sorting experiments, as well as single-color compensation controls due to 

the large number of colors used in sorting. The six populations of cells were Hofbauer 



 36 

cells, endothelial cells, fibroblasts, leukocytes, extravillous trophoblasts, and 

cytotrophoblasts. We developed a five-marker cell surface fluorescence activated cell 

sorting (FACS) scheme to sort cytotrophoblasts (HLA A,B,C-), endothelial cells 

(CD31+), extravillous trophoblasts (HLA-G+), fibroblasts (CD9+), Hofbauer cells (CD9-), 

and leukocytes (CD45+/CD9+) from villous tissue (Figure 2.12) [96, 97, 99, 128–135]. 

Syncytiotrophoblast fragments were enriched from villous tissue digests. We isolated 

cell type fractions and whole villous tissue from four healthy term, uncomplicated 

Cesarean sections, labelled Sorted 1 (same sample source as single-cell RNA-

sequencing sample 1), Sorted 2, Sorted 3, and Sorted 4. We subjected 24 cell type 

fractions with sufficient RNA content to RNA-sequencing, including two cytotrophoblast, 

one endothelial, three extravillous trophoblast, three fibroblast, four Hofbauer cell, four 

leukocyte, and two syncytiotrophoblast fractions, and five whole tissue samples (Table 

2.3). 

Detailed antibody information: FITC, marker CD9: Mouse IgG1-kappa, clone 

HI9a (2.5 μg/mL), Biolegend #312103, lot B188319, Biolegend #312104, lot B232916; 

isotype control: clone MOPC-21 Biolegend #400107, Lot B199152 (2.5 μg/mL). APC, 

marker CD45: Mouse IgG1-kappa, clone 2D1, Biolegend #368511, Lot B215062 (0.125 

μg/mL); isotype control: clone MOPC-21, Biolegend #400121, lot B216780 (0.125 

μg/mL). PE/CY-7, marker HLA-ABC: Mouse IgG2a-kappa, clone W6/32, Biolegend 

#311429, lot B188649, Biolegend #3111430, lot B238602 (0.44 μg/mL); isotype control: 

clone MOPC-173, Biolegend #400231, lot B209000 (0.44 μg/mL);. BV421, marker 

CD31: Mouse IgG1-kappa, clone WM59, Biolegend #303123, lot B204347, Biolegend 

#303124, lot B232010 (0.625 μg/mL); isotype control: clone MOPC-21, Biolegend 
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#400157, lot B225357 (0.625 μg/mL). PE, marker HLA-G: Mouse IgG2a-kappa, clone 

87G, Biolegend #335905, lot B222326, Biolegend #335906, lot B199294 (5 μg/mL); 

isotype control clone MOPC-173, Biolegend #400211, lot B227641 (5 μg/mL). Mouse 

IgG1-kappa, clone MEM-G/9, Abcam #24384 Lot GR3176304-1 (2.5 μg/mL); isotype 

control: monoclonal, Abcam #ab81200, lot GR267131-1 (2.5 μg/mL). Validation 

information available on manufacturer's website under the catalog ID for each antibody. 

A cut-off of 0.1% events was used to set a series of gates. Cells were first gated 

on size and granularity (FSC-HxSSC-H) to eliminate debris, followed by doublet 

discrimination (FSC-HxFSC-W and SSC-HxSSC-W). Ax750 was used to sort on 

viability. Extravillous trophoblasts were isolated based on Human Leukocyte Antigen-G 

(HLA-G) expression. Cytotrophoblasts are HLA-ABC negative. HLA-ABC positive cells 

were then subjected to a CD45/CD9 gate to isolate Hofbauer cells and a heterogeneous 

population of leukocytes. Finally, CD45-/CD9- population is sorted into the endothelial 

or fibroblast bins based on CD31 expression (Figure 2.12). 

2.3.8 Bulk placental tissue and sorted placental cell type RNA extraction and 

sequencing  

Approximately 2mg of bulk RNALater-stabilized (Qiagen) bulk villous tissue was 

added to 350μL 1% β-mercaptoethanol (Sigma-Aldrich) RLT Buffer Plus (Qiagen) to 

Lysing Matrix D vials (MP Biomedicals). Samples were disrupted and homogenized on 

the MP-24 FastPrep homogenizer (MP Biomedicals) at 6m/s, setting MP24x2 for 35s. 

For the homogenized bulk villous tissue, syncytiotrophoblast-enriched fraction, and 

sorted cell types, RNA extraction was completed according to manufacturer’s 

instructions using the AllPrep DNA/RNA Mini Kit (Qiagen) and stored at -80°C. RNA 
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samples were submitted to the University of Michigan Advanced Genomics Core for 

RNA sequencing. Ribosomal RNAs were depleted with RiboGone (Takara) and libraries 

were prepared with the SMARTer Stranded RNA-Seq v2 kit (Takara). Paired- or single-

end 50 base pair reads were sequenced on the HiSeq platform (Illumina). Raw RNA 

reads were assessed for sequencing quality using ‘FastQC’ v0.11.5 [136] and ‘MultiQC’ 

v1.7 [137]. Reads were aligned to the GRCh38.p12/ GENCODEv28 reference 

transcriptome using ‘STAR’ v2.6.0c with default settings [113]. featureCounts from 

‘subread’ v1.6.1 was used to quantify and summarize gene expression with default 

settings [138]. 

2.3.9 Sorted placental cell type differential expression analysis and comparison to 

single-cell results 

For visualizations or analyses that required normalized gene counts, sorted cell 

type gene counts were library-size normalized with the median ratio method using the 

counts() function (DESeq2 R package, version 1.32.0). As recommended [139], we 

excluded genes that were not present in at least three samples and did not have an 

expression of 10 library size-normalized counts. To visualize broad cell type-specific 

gene expression patterns, we used ‘DESeq2’s (R package, version 1.32.0) plotPCA() 

function with the regularized logarithm transformation, blinded to experimental design. 

Upregulated genes in each cell type were identified using the negative binomial linear 

model two-tailed Wald test in ‘DESeq2’ (R package, version 1.32.0) adjusted for 

biological replicate using default settings with contrasts comparing the expression of a 

gene in one cell type against the average expression across all other cell types at a 

false discovery rate-adjusted p-value less than 0.05 and a log2 fold change cutoff of 1.2 
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[139]. Overexpressed genes were ranked by decreasing log-fold change for functional 

enrichment analysis with ‘gprofiler2’ (R package, version 0.2.0, database version 

e102_eg49_p15_7a9b4d6) using annotated genes as the universe, excluding 

electronically generated annotations, and with the default g:SCS multiple testing 

correction method applying significance threshold adjusted p-value of 0.05 [125]. To 

compare sorted and single-cell results, we tabulated unique overlapping differentially 

expressed genes and overrepresented pathways by cell type (Table 2.4) Peripheral 

fetal and maternal immune cell types from the single-cell RNA-sequencing data were 

collapsed to one leukocyte category, cytotrophoblast subtypes to one cytotrophoblast 

category, and mesenchymal stem cells and fibroblasts to one fibroblast category for this 

comparison. 

We used the CIBERSORTx Docker container (accessed 2021-12-07) to create a 

signature gene expression matrix for deconvolution from the counts of the single-cell 

RNA-sequencing data with the following default parameters: differential expression q-

value<0.01, no minimum gene expression cutoff, and a 300 gene feature selection floor 

and a 500 gene feature selection ceiling [127]. We used the signature matrix to estimate 

constituent cell type proportions in the 4 whole tissue (with 1 additional technical 

replicate) and 19 sorted or enriched cell type fractions using CIBERSORTx with cross-

platform S-mode batch correction and 50 permutations to evaluate imputation 

goodness-of-fit. We collapsed the high-resolution single-cell cell type cluster labels to 

the seven cell type fractions we targeted for comparison with sorted cell type results. 

2.3.10 Application: Bulk placenta gene expression dataset and CIBERSORTx 

deconvolution  
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Bulk placental tissue microarray gene expression (previously batch-corrected 

and normalized) from eight preeclampsia case-control studies was downloaded from the 

NCBI Gene Expression Omnibus (accession number GSE75010) for deconvolution 

[111]. We used the CIBERSORTx Docker container (accessed 2021-12-07) to create a 

signature gene expression matrix for deconvolution from the counts of the single-cell 

RNA-sequencing data with the following default parameters: differential expression q-

value<0.01, no minimum gene expression cutoff, and a 300 gene feature selection floor 

and a 500 gene feature selection ceiling [127]. We used the signature matrix to estimate 

constituent cell type proportions in GSE75010 using CIBERSORTx with cross-platform 

S-mode batch correction and 50 permutations to evaluate imputation goodness-of-fit. 

2.3.11 Application: Preeclampsia case-control differential cell type abundance, 

differential gene expression statistical analysis, and mediation analysis 

To test for differences in estimated cell type proportions between preeclampsia 

cases and controls, estimated cell type proportions for GSE75010 were regressed on 

preeclampsia case-control status using beta regression models adjusted for gestational 

age, sex, and study source [140] (Supplementary Data 8). Statistical significance was 

assessed using the two-tailed Wald test applying a nominal significance threshold of 

0.05. Cell types imputed at zero percent abundance across all samples were excluded. 

For modelling purposes, zero percent abundance estimates were transformed to 
1

2
/𝑛 

where n is the number of observations (n = 330) . 

Differential expression analysis was conducted in limma [141] with default linear 

models adjusted for gestational age, fetal sex, and study source with empirical Bayes 

standard error moderated t-test statistics. A cell type-adjusted model was built on the 
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base model adjusted for gestational age, fetal sex, and study source and additionally 

adjusted for the first five principal components of deconvoluted cell type proportions 

(Supplementary Data 9). Statistical significance was assessed at false discovery rate-

adjusted q-value<0.05 and a log2 fold change cutoff of 0.1. Differentially expressed 

genes were descending-ranked by value of the moderated test statistic for gene set 

enrichment analysis in desktop version GSEA 4.1.0 with the GSEAPreranked tool with 

default settings against the c5.go.bp.v7.5.1.symbols.gmt gene set database [142, 143] 

(Supplementary Data 10). Principal components analysis was performed with prcomp() 

from ‘stats-package’ (R, version 4.0.5) without scaling and with default settings. 

A unified mediation and interaction analysis [144] was conducted in ‘CMAverse’ 

(R package, version 0.1.0) [145] via the g-formula approach [146] to estimate causal 

randomized-intervention analogues of natural direct and indirect effects [147] through 

direct counterfactual imputation. The model was operationalized with preeclampsia 

status as the binary exposure, log2 transformed gene expression intensity as the 

continuous outcome, and the first five principal components of deconvoluted cell type 

proportions as continuous mediators. Baseline covariates included fetal sex and study 

source. Continuous gestational age was included as a confounder of the mediator-

outcome relationship affected by the exposure. Confidence intervals were bootstrapped 

with 1000 boots with otherwise default settings. Statistical tests were two-tailed and 

interpreted at a p-value significance threshold of 0.05. 

2.3.12 Statistics and Reproducibility 

Technical replication measured by average intra-cluster gene expression 

between technical replicates was tested via the two-tailed Spearman correlation test 
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within Samples 1 and 2 assessed across all 32,738 common genes. The number of 

cells contributing expression data for each cell type are available in Table 2.2. Single-

cell cluster marker genes were identified in ‘Seurat’ with the FindAllMarkers function 

with default settings on single-cell gene expression counts [116, 122]. Specifically, 

including cells from both maternal and fetal cell types, the expression level in each cell 

type cluster was compared against the average expression of that gene across all other 

cell types using the two-tailed Wilcoxon Rank Sum test with significance defined at a 

false discovery rate-adjusted p-value less than 0.05 and a log2 fold change cutoff of 

0.25 (n=40,494 cells). The final analytic sample included 40,494 cells and 36,601 genes 

across nine biological replicates, two of which had a technical replicate (Samples 1B 

and 2B)  and another two included peripheral subsampling (Samples 8P and 9P). 

Pairwise cluster markers were identified in ‘Seurat’ with the FindMarkers function with 

an identical testing regime (n=6,132 cells for proliferative vs. non-proliferative 

cytotrophoblasts). Overexpressed genes were ranked by decreasing log-fold change for 

functional enrichment analysis with ‘gprofiler2’ (R package, version 0.2.0, database 

version e102_eg49_p15_7a9b4d6) using annotated genes as the universe, excluding 

electronically generated annotations, and with the default g:SCS multiple testing 

correction method applying significance threshold adjusted p-value of 0.05 [125]. 

Overexpressed genes per cell type cluster are available in Supplementary Data 2 and 

ontology results in Supplementary Data 3. Overexpressed genes and related 

enrichment results comparing proliferative to non-proliferative cytotrophoblasts are 

available in Supplementary Data 1. 
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 Upregulated genes in each cell type were identified using the negative binomial 

linear model two-tailed Wald test in ‘DESeq2’ (R package, version 1.32.0) adjusted for 

biological replicate using default settings with contrasts comparing the expression of a 

gene in one cell type against the average expression across all other cell types at a 

false discovery rate-adjusted p-value less than 0.05 and a log2 fold change cutoff of 1.2 

[139] (n=19 cell type fraction samples with breakdown by cell type available in Table 

2.3). Overexpressed genes were ranked by decreasing log-fold change for functional 

enrichment analysis with ‘gprofiler2’ (R package, version 0.2.0, database version 

e102_eg49_p15_7a9b4d6) using annotated genes as the universe, excluding 

electronically generated annotations, and with the default g:SCS multiple testing 

correction method applying significance threshold adjusted p-value of 0.05 [125]. 

Differentially expressed genes per cell type available in Supplementary Data 4 and 

number of differentially expressed genes is summarized in Table 2.4. Ontology results 

are available in Supplementary Data 5. 

Bulk placental tissue microarray gene expression (previously batch-corrected 

and normalized) from eight preeclampsia case-control studies was downloaded from the 

NCBI Gene Expression Omnibus (GSE75010) for deconvolution (n=330) [111]. We 

used the CIBERSORTx Docker container (accessed 2021-12-07) to create a signature 

gene expression matrix for deconvolution from the counts of the single-cell RNA-

sequencing data with the following default parameters: differential expression q-

value<0.01, no minimum gene expression cutoff, and a 300 gene feature selection floor 

and a 500 gene feature selection ceiling [127]. We used the signature matrix to estimate 
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constituent cell type proportions in GSE75010 using CIBERSORTx with cross-platform 

S-mode batch correction and 50 permutations to evaluate imputation goodness-of-fit. 

To test for differences in estimated cell type proportions between preeclampsia 

cases and controls (n=330), estimated cell type proportions for GSE75010 were 

regressed on preeclampsia case-control status using beta regression models (n=25 cell 

type proportion outcomes) adjusted for gestational age, sex, and study source [140]. 

Cell types imputed at zero percent abundance across all samples were excluded (n=2 

excluded: fetal naïve CD4+ T cells and fetal GZMB+ Natural Killer cells). Statistical 

significance was assessed using the two-tailed Wald test applying a nominal 

significance threshold of 0.05. 

Differential expression analysis was conducted in limma [141] with default 

settings using linear models (n=14,651 genes) adjusted for gestational age, fetal sex, 

and study source (n=330). A cell type-adjusted model was built on the base model 

additionally adjusted for the first five principal components of deconvoluted cell type 

proportions. Principal components analysis was performed with prcomp from ‘stats-

package’ (R, version 4.0.5) without scaling and default settings. Statistical significance 

was assessed at false discovery rate-adjusted q-value<0.05 and a log2 fold change 

cutoff of 0.1. Differentially expressed genes were descending-ranked by the value of the 

moderated test statistic for gene set enrichment analysis in desktop version GSEA 4.1.0 

with the GSEAPreranked tool with default settings against the 

c5.go.bp.v7.5.1.symbols.gmt gene set database [142, 143].  

A unified mediation and interaction analysis [144] was conducted in ‘CMAverse’ 

(R package, version 0.1.0) [145] via the g-formula approach [146] to estimate causal 
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randomized-intervention analogues of natural direct and indirect effects [147] through 

direct counterfactual imputation. The model (n=330) was operationalized with 

preeclampsia status as the binary exposure, normalized log2 gene expression signal 

intensity as the outcome, and the first five principal components of deconvoluted cell 

type proportions as continuous mediators. Baseline covariates included fetal sex and 

categorical study source. Continuous gestational age was included as a confounder of 

the mediator-outcome relationship affected by the exposure. Confidence intervals were 

bootstrapped with 1000 boots with otherwise default settings. Statistical tests were two-

tailed and interpreted at a p-value significance threshold of 0.05. 

2.4 Results 

2.4.1 Single-cell gene expression map of healthy placental villous tissue 

 A conceptual layout of the laboratory methods and analyses contained within this 

manuscript is provided in Figure 2.1. From healthy term placental villous tissue, 9,244 

cells across a total of two biological replicates and two technical replicates were 

sequenced and analyzed (Michigan sample). These data were combined with single-cell 

RNA-sequencing data of 5,911 cells from three healthy term villous tissue samples in a 

previously published study (Pique-Regi sample) [102] and 25,339 cells from four healthy 

term villous tissue samples in another previously published study, two of which were 

subsampled with an additional peripheral placental villous tissue sample (Tsang 

sample) [101] (Table 2.1). Cells were excluded if they had low RNA content (<500 

unique RNA molecules), few genes detected (<200), or were doublets or outliers in 

mitochondrial gene expression (Figure 2.2, Figure 2.3). Fetal or maternal origin of cells 

was determined by genetic variation in sequencing data. Fetal sex was determined by 
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XIST expression (Figure 2.4). The final analytic sample included 40,494 cells and 

36,601 genes across nine biological replicates, two of which had a technical replicate 

and another two included peripheral subsampling. 

 Uniform manifold approximation and projection (UMAP) [118] was used to 

visualize sequencing results in two dimensions with mutual nearest neighbor batch 

correction [119] (Figure 2.5). Cells clustered into 19 fetal and 8 maternal cell types with 

84.4% of all cells being of fetal origin (Figure 2.5a). Cell type clustering decisions 

balanced cluster stability, resolution, and biologic plausibility with prior knowledge. If 

desired, downstream analyses could collapse cell subtypes into a single, more general 

cell type cluster. We observed placenta-specific trophoblast cell types including 

cytotrophoblasts (KRT7), proliferative cytotrophoblasts (KRT7, STMN1 and other 

proliferation-related genes) [148], extravillous trophoblasts (HLA-G) [131], and 

syncytiotrophoblasts (PSG4 and other pregnancy-specific hormone genes) (Figure 

2.6a) [149]. Proliferative cytotrophoblasts were distinguished from other 

cytotrophoblasts by overexpression of genes related to cytoplasmic translation 

(padj=8.1x10-15) and mitotic sister chromatin segregation (padj=1.5x10-12), indicative of 

their proliferative phenotype (Figure 2.7). Other fetal-specific cell types included 

mesenchymal stem cells (COL1A1lo, TAGLNlo, LUMhi), fibroblasts (COL1A1hi, TAGLNhi, 

LUMlo) [150], endothelial cells (PECAM1) [151], and Hofbauer cells (CD163) [96] 

(Figure 2.5b). 

Fetal and maternal lymphocytes, B cells, and monocytes were also captured 

(Figure 2.5b-c). We observed fetal and maternal B cells (CD79A) [152], maternal 

plasma cells (XBP1, IGHA and other immunoglobulins) [153]. We also observed fetal 
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and maternal CD14+ monocytes (CD14+/FCGR3A-), maternal CD16+ monocytes 

(CD14+/FCGR3A+) [154], and a small population of fetal plasmacytoid dendritic-like cells 

(FLT3+/ITM2C+) [155, 156]. We further observed fetal and maternal natural killer cells 

(NKG7) and fetal GZMB+ or GZMK+ natural killer cell subtypes, and fetal natural killer T 

cells (NKG7+/CD3E+/CD8A-) [157, 158]. Finally, we observed a variety of T cell 

subtypes: naïve CD4+ (CCR7, CD3E, CD4), naïve CD8+ (CCR7, CD3E, CD8A), 

memory CD4+ (S100A4, CD3E, CD4, IL2, CCR7lo), and activated CD8+ T cells (NKG7, 

CD3E, CD8A) (Figure 2.6b) [159]. 

 To identify upregulated genes in each cell type, we compared the expression of a 

gene in one cell type against that gene’s average expression in all other cell types 

(Supplementary Data 2). Consequently, the same genes could be upregulated across 

several cell types of similar lineage. FLT1 expression was highly upregulated in 

extravillous trophoblasts (log2 fold change (FC)=3.89, padj<0.001). Trophoblast cell 

types had the largest and most diverse transcriptomes, characterized by the largest 

number of unique RNA transcripts and detected genes per cell (Figure 2.8). Functional 

analysis of upregulated genes revealed cell type specific biological processes 

(Supplementary Data 3). For example, fetal extravillous trophoblasts were enriched for 

genes relevant to placental structure and function such as cell migration (padj<0.001) 

and response to oxygen levels (padj<0.001) and syncytiotrophoblasts were enriched for 

genes involved in steroid hormone biosynthetic process (padj<0.001). Technical 

replication in Michigan samples 1 and 2 appeared high in UMAP space (Figure 2.9). 

Indeed, the average intra-cluster gene expression between technical replicates had an 
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average Spearman correlation (mean ± standard deviation) of 0.94 ± 0.14 for sample 1 

and 0.88 ± 0.20 for sample 2 (p-values<0.001). 

2.4.2 Single-cell RNA sequencing deconvolution reference exhibits excellent in 

silico performance  

Based on the single cell data, we created a placental signature gene matrix that 

incorporated expression information across an algorithmically selected 5,229 signature 

genes to estimate the cellular composition of 27 fetal and maternal cell types from 

whole tissue gene expression data (Figure 2.10). To test the performance and 

robustness of this placental single-cell RNA sequencing deconvolution reference, we 

randomly split our analytic single-cell RNA sequencing dataset into 50% training and 

50% testing subsets with balanced cell type proportions [126]. The same training 

dataset was used for each comparison; test mixtures were generated from the testing 

half of the dataset. Using a signature gene expression matrix generated from the 

training data, we estimated cell type composition in in silico pseudo-bulk testing data 

mixtures of known cell type composition with varying contributions of fetal vs. maternal 

origin cells and male vs. female fetal cells (Figure 2.11). In all mixtures, the 27 

predicted and actual cell type proportions were correlated (p-value<0.001 for each test). 

In the primary deconvolution analysis of all cell types at their natural rates (n=20,242), 

estimated and actual cell type proportions had a Pearson correlation coefficient of 0.956 

(95% CI [0.904, 0.980]). The worst performance was under the unrealistic scenario that 

the mixture was composed entirely of maternal cell types (n=3,162) with a Pearson 

correlation of 0.734 (95% CI [0.491, 0.871]) between actual estimated cell type 

proportions. Our deconvolution reference was also robust to fetal sex when only male 
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fetal cells (Pearson correlation = 0.893, 95% CI [0.776, 0.950]) were included (n=8,394), 

or only female fetal cells (Pearson correlation = 0.983, 95% CI [0.964, 0.993]) 

(n=8,394). Together, these results show that our reference panel can successfully 

deconvolute placental tissues, though some maternal cell types common to both mother 

and fetus may be erroneously labelled fetal in the absence of fetal cells of those cell 

types. 

2.4.3 Fluorescence-activated cell sorting of major placental cell types yielded 

mixed cell type isolation results 

 We isolated whole bulk placental villous tissue, enriched syncytiotrophoblasts, 

and sorted five cell types (Hofbauer cells, endothelial cells, fibroblasts, leukocytes, 

extravillous trophoblasts, and cytotrophoblasts) via fluorescence-activated cell sorting 

(FACS) from four healthy term, uncomplicated Cesarean sections for bulk RNA 

sequencing, labelled Sorted 1 (same sample source as single-cell RNA sequencing 

sample 1), Sorted 2, Sorted 3, and Sorted 4 (Figure 2.12, Table 2.3). For analysis, as 

recommended [139], we excluded 19,048 genes that were not present in at least 3 

samples and an additional 865 genes that did not have a cumulative library size-

normalized count of at least 10. Principal components analysis of whole-transcriptome 

sorted-cell bulk RNA sequencing normalized counts is provided in Figure 2.13. 

To identify upregulated genes in each cell type, we compared the expression of a 

gene in one cell type against that gene’s average expression in all other cell types 

(Figure 2.14). Consequently, the same genes could be upregulated across several cell 

types of similar lineage. All 38,468 uniquely mapping genes were tested. 746 genes 

were algorithmically dropped from the syncytiotrophoblast contrast due to excessively 



 50 

low counts, low variability, or extreme outlier status. Large-scale gene expression 

differences were observed for each cell type (Supplementary Data 4). Functional 

analysis of upregulated genes revealed cell type specific biological processes 

(Supplementary Data 5). For example, syncytiotrophoblasts were enriched for genes 

relevant to placental structure and function such as angiogenesis, cell-substrate 

adhesion, and regulation of epithelial cell proliferation (padj<0.001). To compare sorted 

and single-cell differential expression and enrichment results, we tabulated the number 

of unique genes and pathways overlapping between the two analyses after collapsing 

the single-cell cell type cluster labels to the seven cell type fractions that we had 

targeted to isolate for downstream analyses (Table 2.4). On average, 15.0% of single-

cell upregulated genes and 5.9% of enriched pathways were also identified among the 

sorted cell data. On average, 17.5% of sorted cell type upregulated genes and 39.2% of 

pathways were also identified among the single-cell data. Sorted endothelial cells 

results were limited due to the limited number of biological replicates. 

We applied the single-cell deconvolution reference to estimate cell proportions in 

the 4 whole tissue (with 1 additional technical replicate) and 19 sorted or enriched cell 

type fractions. We collapsed the single-cell cell type cluster labels to the seven cell type 

fractions we targeted for isolation for downstream analyses (Supplementary Data 6 – 

Sheet 1). All deconvoluted samples exhibited high goodness-of-fit between original bulk 

mixtures and the estimated cell type proportion mixtures (p-values<0.001). Among the 

signature genes, original bulk and estimated cell type fractions had a Pearson 

correlation (mean ± standard deviation) of 0.73 ± 0.11 and root mean square error of 

0.88 ± 0.04 (Supplementary Data 6 – Sheet 2). Deconvolution results (mean ± 
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standard deviation) suggest we successfully isolated fibroblast- (n=3, 74.7% ± 0.6%) 

and leukocyte-enriched (n=4, 82.3% ± 24.8%) cell type fractions. Other cell type targets 

were less successful (range 0%-26% estimated purity). The Hofbauer cell fraction was 

predicted to be mostly leukocytes (n=4, 91.5% ± 0.5%). 

2.4.4 Cell proportion deconvolution of bulk placental tissue preeclampsia dataset  

We applied the single-cell deconvolution reference to estimate cell proportions 

from bulk placental tissue in 157 preeclampsia cases and 173 controls [111] compiled 

from eight previously published studies [111, 160–166]. Mean gestational age was 2.2 

weeks younger in cases than controls (p-value<0.001, Table 2.5). All deconvoluted 

samples exhibited high goodness-of-fit between original bulk mixtures and the 

estimated cell type proportion mixtures (p-values<0.001). Among the signature genes, 

original bulk and estimated mixtures had a Pearson correlation (mean ± standard 

deviation) of 0.70 ± 0.04 and root mean square error of 0.73 ± 0.03 (Supplementary 

Data 7). Fetal naïve CD4+ T cells and fetal GZMB+ Natural Killer cells were estimated 

to be at 0% abundance in all samples and were dropped from downstream analyses. 

Cytotrophoblasts were the most abundant (mean ± standard deviation) estimated fetal 

cell type (27.9% ± 4.3%) followed by syncytiotrophoblasts (23.4% ± 5.0%) and 

mesenchymal stem cells (10.3% ± 3.3%). The most common maternal cell types were 

naïve CD8+ T cells (2.8% ± 1.5%), plasma cells (1.4% ± 0.7%), and B cells (1.3% ± 

0.8%). A comparison of deconvoluted whole tissue cell type proportions among healthy 

individuals (Figure 2.15) between the microarray dataset GSE75010 (n=173 controls), 

our whole tissue bulk RNA-sequencing samples (Sorted samples 1-4), and the single-

cell dataset compiled here (Single-cell samples 1-9) suggests syncytiotrophoblasts and 
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endothelial cells are underrepresented in the single-cell data. This is likely due to 

dissociation bias, which has been commonly observed in single-cell assays of other 

tissues [72]. Overall, the Pearson correlation of the average deconvoluted cell type 

proportion across the 27 cell types between healthy bulk RNA-sequencing and 

microarray controls was 0.80 (95% CI: [0.60, 0.91]). 

2.4.5 Differentially abundant cell type proportions in preeclampsia cases versus 

controls 

To test for differences in cell proportions between preeclampsia cases and 

controls (Figure 2.16), we fit beta regression models for each cell type proportion 

adjusted for study source, fetal sex, and gestational age to estimate the prevalence 

odds ratio for each cell type (Supplementary Data 8). Among fetal cell types, 

extravillous trophoblasts (p<0.001), memory CD4+ T cells (p=0.007), CD8+ activated T 

cells (p=0.005), and natural killer T cells (p=0.006) were more abundant (Figure 2.17) in 

preeclampsia cases relative to controls. The unadjusted median extravillous trophoblast 

abundance was 6.4% among cases compared to 2.1% among controls. Mesenchymal 

stem cells (median percent composition in cases vs. controls, 8.8% vs. 11.0%), 

Hofbauer cells (2.7% vs. 4.4%), and fetal naive CD8+ T Cells (4.2% vs. 4.5%) were all 

less abundant among preeclampsia cases compared to controls (p<0.001). Among 

maternal cell types, maternal plasma cells (1.6% vs. 1.2%) were more abundant among 

preeclampsia cases compared to controls (p<0.001). 

2.4.6 Differential expression between preeclampsia cases and controls attenuated 

by cell type proportion adjustment 
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 To test whether microarray gene expression differences between preeclampsia 

cases and controls are partly driven by differences in cell type abundances, we fit linear 

differential gene expression models adjusted for covariates study source, fetal sex, and 

gestational age with and without adjustment for deconvoluted cell type proportions. To 

reduce the number of model covariates and account for dependence between 

deconvoluted cell type proportions, we applied principal components (PC) analysis to 

deconvoluted cell type proportions. The first five PCs accounted for 87.2% of the 

variance in deconvoluted cell type proportions and were added as additional covariates 

to form the cell type-adjusted model. Variation in PCs 1 and 2 was largely driven by 

syncytiotrophoblasts (33.8%), extravillous trophoblasts (33.5%), and cytotrophoblasts 

(15.3%) proportions and provided some separation between cases from controls 

(Figure 2.18a, c). Variation in PC3 was largely driven by cytotrophoblasts (50.1%) and 

to a lesser extent syncytiotrophoblasts (16.6%), mesenchymal stems cells (14.5%), and 

extravillous trophoblasts (13.7%) (Figure 2.18b, d). 

 In the cell type-naïve base models (n=14,651 genes, 173 controls, and 157 

cases) adjusted for study source, gestational age, and fetal sex, 550 genes were 

differentially upregulated and 604 were downregulated in preeclampsia cases versus 

controls (Figure 2.19a, Supplementary Data 9). Gene set enrichment analysis of 

biological processes identified 41 overrepresented pathways in the base model (Figure 

2.20a, Supplementary Data 10). Biological process pathways such as aerobic 

respiration (false discovery adjusted q<0.001), mitochondrial respiratory chain complex 

assembly (q<0.001), glutathione metabolism (q=0.003), and ribosome biogenesis 

(q=0.001) were overrepresented among downregulated genes. No pathways were 
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overrepresented among upregulated genes, though intermediate filament organization 

(q=0.26), keratinocyte differentiation (q=0.77), and endothelial cell development 

(q=0.42) had comparable enrichment scores. Remarkably, when the base model was 

additionally adjusted for the first five PCs of imputed cell type proportions, there were 

zero differentially expressed genes between preeclampsia cases and controls (Figure 

2.19b, Supplementary Data 9). Of the cell type-adjusted results, 19 pathways were 

overrepresented (Figure 2.20b, Supplementary Data 10). Downregulation of 

mitochondrial respiratory chain complex assembly (q<0.001), aerobic respiration 

(q=0.001), ribosome biogenesis (q=0.001) and glutathione metabolism (q=0.02) were 

overrepresented among downregulated genes. Detection of chemical stimulus involved 

in sensory perception of smell (q=0.04) and non-coding RNA processing (q=0.04) were 

also overrepresented pathways among downregulated genes. Neuroepithelial cell 

differentiation (q=0.04) was overrepresented among upregulated genes. Vascular 

endothelial growth factor receptor signaling pathway (q=0.15), of which FLT1 is a 

member, had an enrichment score of 1.77 (up from 1.34, q=0.43 in the base model) but 

did not meet the q-value cutoff. Overall, downregulation of mitochondrial biogenesis, 

aerobic respiration, and ribosome biogenesis and related pathways were robust to cell 

type proportion adjustment. 

2.4.7 Differential expression of preeclampsia-associated genes mediated by 

placental cell type proportions 

 Overexpression of FLT1 in placental tissue [167–170], detection of a soluble 

isoform of FLT1 in maternal circulation [171, 172], and fetal genetic variants near FLT1 

[173] have implicated FLT1 in preeclampsia etiology. Because we observed cell type-
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specific expression patterns of FLT1 in trophoblasts, particularly in extravillous 

trophoblasts, we hypothesized that the observed attenuation of FLT1 differential 

expression may be due in part to the differences in cell type proportions observed 

between preeclampsia cases and controls. To test this hypothesis, we applied a unified 

mediation and interaction analysis to quantify the proportion of FLT1 expression 

differences mediated by deconvoluted cell type proportions. We did not observe an 

interaction between preeclampsia status and cellular composition (overall proportion 

attributable to interaction = -5.8%, 95% CI [-17.1%, 5.0%]). We therefore dropped 

interaction parameters from the model for the final analysis. In the model without 

interaction, 37.8% (95% CI [27.5%, 48.8%]) of the 1.05 (95% CI [0.89, 1.21]) log2 signal 

intensity increase in the association between preeclampsia and FLT1 expression was 

attributable to differences in placental cell composition between preeclampsia cases 

and controls (Figure 2.21). Overexpression of LEP and ENG have also been 

associated with preeclampsia [167–170]. Mediation results were similar for LEP (total 

effect = 2.62 (95% CI [2.26, 2.97] log2 signal intensity increase; proportion mediated = 

34.5% (95% CI [26.0%, 44.9%]) and ENG (total effect = 0.93 (95% CI [0.79, 1.07] log2 

signal intensity increase; proportion mediated = 34.5% (95% CI [25.0%, 45.3%]).  

2.5 Discussion 

To create the largest, publicly available placental RNA deconvolution reference of 19 

fetal and 8 maternal cell type-specific gene expression profiles, we newly sequenced placental 

villous cells, integrated those results with data from previously published studies, and built a 

signature gene matrix for deconvolution of bulk villous tissue gene expression data. In silico 

testing of our deconvolution reference demonstrated successful and robust deconvolution. To 
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compare single-cell placental cell type expression profiles to more conventional sorting 

methods, we created a fluorescence-activated cell sorting scheme to enrich and sequence RNA 

from five important placental cell types as well as syncytiotrophoblasts. Deconvolution of sorted 

cell type fractions with the single-cell deconvolution reference suggested most conventionally 

sorted cell types are far less pure than what can be accomplished with clustering and 

aggregation of single cell results, and at much lower cell type resolution. We applied the single-

cell deconvolution reference to estimate cell type proportions in a previously published 

epidemiologic microarray study of the pregnancy complication preeclampsia, revealing placental 

cell type proportion differences between preeclampsia cases and controls at term. We then 

showed that large gene expression differences between preeclampsia cases and controls were 

markedly attenuated after adjustment for cell type proportions. Preeclampsia-associated 

pathways, including downregulation of mitochondrial biogenesis, aerobic respiration, and 

ribosome biogenesis were robust to cell type adjustment, suggesting direct changes to these 

pathways. Finally, to quantify the attenuation of differential expression of the preeclampsia 

biomarkers FLT1, LEP, and ENG, we applied mediation analysis to show cellular composition 

mediated a substantial proportion of the association between preeclampsia and FLT1, LEP, and 

ENG overexpression. Cell type proportions may be an important and often overlooked factor in 

gene expression differences in placental tissue studies. 

By integrating our new single-cell RNA-sequencing results with those from a previously 

published study, our integrated dataset, to our knowledge, is the largest and possibly only 

reference available for healthy, term placental villous tissue to date. We document term cell 

type-specific gene expression patterns for well-characterized placental cell types, including 

syncytiotrophoblasts [95], cytotrophoblasts [98], and extravillous trophoblasts [99]. In addition, 

we provide gene expression markers for relatively understudied placental cell types such as 

endothelial cells, mesenchymal stem cells, and Hofbauer cells as well as maternal peripheral 

mononuclear cells recovered from the maternal-fetal interface. Compared to the previous 
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analysis of the published samples [102] which relied on predominately sex-specific gene 

expression markers to differentiate proliferative from non-proliferative cytotrophoblasts, we show 

that functional enrichment analysis revealed broad upregulation of proliferation pathways in 

proliferative cytotrophoblasts. The low representation of some cell types such as trophoblasts in 

our single-cell RNA-sequencing results from the Michigan study suggest that these cell types 

may be especially sensitive to dissociation and disintegrate before transcript capture, commonly 

referred to as dissociation bias [72]. Michigan samples 1 and 2 also included a cryopreservation 

step like those employed in large-scale epidemiological studies that may have exacerbated 

dissociation bias [174]; this applies to both single-cell and sorted cell type experiments. Future 

studies may propose alternative approaches to perform unbiased single-cell RNA sequencing in 

placental tissues; indeed, single nucleus RNA sequencing has been used to characterize 

syncytiotrophoblast and may be more appropriate to assay such cell types sensitive to 

dissociation procedures [175]. We verified that our deconvolution reference exhibited strong 

performance even with extremely imbalanced and unlikely real-world test mixture distributions 

by fetal sex and maternal cell type representation. 

Our preeclampsia findings are consistent with prior pathophysiological understanding of 

the disorder, linking cell type proportion estimates and gene expression data in bulk tissue. 

Among preeclampsia cases, we observed an elevated proportion of extravillous trophoblasts 

and underrepresentation of stromal cell types, which may reflect an arrest in conventional 

placental cell type differentiation and maturation following insufficient uterine spiral artery 

remodeling implicated in preeclampsia [176–178]. A recent study of bulk placental gene 

expression across trimesters suggests that Hofbauer cells may more abundant in the 2nd 

trimester compared to the 3rd, possibly to support vasculogenesis, though this study involved a 

small deconvolution reference that contained a limited variety of cell types [179]. A better 

understanding of the evolution of temporal placental composition changes may yield greater 

insight into placental pathologies. In the cell type-naïve differential expression model, consistent 
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with previous findings, placentas from pregnancies with preeclampsia overexpressed FLT1, 

LEP, and ENG [167–170]. In our cell type-adjusted model, FLT1 and LEP remained only 

nominally significant whereas ENG did not meet the nominal significance threshold. Mediation 

analysis confirmed that a significant proportion of FLT1, LEP, and ENG overexpression was 

attributable to differences in the cellular composition of the placenta. These results suggest that 

placental cell type proportion differences may be an overlooked factor in explaining the well-

documented association between preeclampsia and FLT1, LEP, and ENG expression [167–

170]. Downregulation of mitochondrial biogenesis, aerobic respiration, and ribosome biogenesis 

were robust to cell type adjustment, indicating direct changes to these pathways beyond shifts 

in cell type abundance. Indeed, disruption of the mitochondrial fission-fusion cycle [180],  

malperfusion [181, 182], and inhibited protein synthesis secondary to endoplasmic reticulum 

stress [183, 184] have all previously been associated with preeclampsia. Interestingly, cell type 

adjustment increased the enrichment score results of vascular endothelial growth factor 

receptor signaling pathway, a mechanistic hypothesis in preeclampsia etiology [171, 181, 185, 

186], from 1.36 to 1.77 (q=0.43 to q=0.15). This approach may reveal the biological 

mechanisms of other diseases beyond cellular composition differences. Because oxygen 

tension is a critical factor in trophoblast differentiation, inappropriate oxygenation may partially 

explain the elevated proportion of extravillous trophoblasts, though regulators of this process 

such as HIF1A and TGFB3 [187] were not differentially expressed at the tissue level in our 

analysis. A recent single-cell RNA-sequencing case-control study of preeclampsia, however, 

identified upregulation of TGFB1 in extravillous trophoblasts, potentially indicative of altered 

trophoblast differentiation or invasion [188, 189]. A similar study revealed decreased activity of 

gene network modules regulated by transcription factors ATF3, CEBPB, and GTF2B and 

decreased expression of CEBPB and GTF2B in preeclamptic extravillous trophoblasts 

compared to controls; follow-up in vitro experiments suggested CEBPB and GTF2B knockdown 

reduced extravillous trophoblast viability and invasion [190]. Consistent with our other findings, 
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this study also observed a similar trend in cell type proportion differences and upregulation of 

FLT1 in extravillous trophoblasts and ENG in syncytiotrophoblasts between preeclampsia cases 

and controls [188]. Future work should consider and account for cell type proportions and the 

cell type-specific expression patterns of genes that regulate placental development or are 

associated with preeclampsia to better understand preeclampsia etiology. 

This study has several strengths. We profile the parenchymal healthy term villous tissue 

in the placenta and integrate our dataset with samples from previously published studies to 

generate the largest, to the best of our knowledge, cell type-specific placental villous tissue 

gene expression reference to date. Single-cell RNA-sequencing allowed us to agnostically 

capture diverse placental cell types without a priori knowledge of cell types and their 

characteristics and tabulate gene expression patterns at high resolution and specificity. Our in 

silico deconvolution tests demonstrated robust performance to even extreme distributions of 

maternal or sex of fetal cells. We demonstrate technical replication of single-cell RNA-

sequencing in placental villous tissue. We were able to apply our findings to a large target 

deconvolution dataset of preeclampsia that contained placental measures from hundreds of 

participants across eight different studies. Most importantly, we evaluate cell type proportion 

differences in an epidemiological study of placental parenchymal tissue and preeclampsia, and 

genome-wide gene expression differences accounting for cell type heterogeneity, a critical 

limitation in bulk tissue assays. 

This study also has several limitations. Although our cellular sample size comprised of 

40,494 cells is relatively large compared to previous single-cell RNA-sequencing studies of term 

placental villous tissue, this dataset still represents a limited biologic replicate sample size 

compared to epidemiologic scale studies. Our newly sequenced samples came from a 

convenience sample without available demographic information beyond uncomplicated and 

healthy Cesarean-section status. Similarly, the sample size of FACS-sorted tissues was limited, 

and some cell type fractions were excluded due to low RNA quality or exhibited poor estimated 
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purity, likely complicated by degradation of cell surface markers from apoptosis characteristic of 

development and parturition [191, 192] and sample processing. This study did not include 

placental tissues for single cell analysis from preeclamptic patients to confirm intra-cell type 

gene expression changes. Despite excellent in silico performance, we had no external gold 

standard to verify deconvolution performance. This deconvolution reference may not be 

sensitive enough to discriminate between cell subtypes such as proliferative vs. non-proliferative 

cytotrophoblasts that are clearly delineated in the single-cell analysis; in such cases, 

investigators may collapse cell type proportions counts into a single major cell type group, such 

as cytotrophoblasts. Future studies may verify whether cell type proportions estimated in 

diseased or vaginally delivered tissues are robust to a deconvolution reference generated from 

healthy villous tissue delivered via Cesarean-section. Residual confounding may remain in our 

statistical models due to the limited number of common covariates across all eight preeclampsia 

case-control studies. Due to the nature of villous tissue sampling, our study design is cross-

sectional, limiting our ability to establish temporality between exposure and outcome to rule out 

reverse causation. As with any study conditioned on live birth, selection bias may affect our 

results. However, the effects of harmful exposures that lead to selection tend to be 

underestimated in these scenarios [193, 194]. Therefore, our results likely represent a 

conservative underestimate of the effects of preeclampsia on inappropriate cell composition and 

preeclampsia status on gene expression. 

In summary, we provide a cell type-specific deconvolution reference via single-cell RNA-

sequencing in the parenchymal placental term villous tissue. We demonstrated this reference 

was robust to different distributions of maternal and fetal sex through in silico validation testing. 

Additionally, we benchmarked these single-cell cell type-specific gene expression profiles 

against placental cell types isolated with more conventional fluorescence-activated cell sorting 

followed by bulk RNA-sequencing. We applied this deconvolution reference to an epidemiologic 

preeclampsia dataset to reveal biologically relevant shifts in placental cell type proportions 
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between preeclampsia cases and controls. Once cell type proportion differences were 

accounted for, differential gene expression differences were markedly attenuated between 

preeclampsia cases and controls. Enrichment analysis revealed downregulation of 

mitochondrial biogenesis, aerobic respiration, and ribosome biogenesis were robust to cell type 

adjustment, suggesting direct changes to these pathways. A substantial proportion of the 

overexpression of the FLT1, LEP, and ENG in preeclampsia was mediated by placental cell 

composition. These results add to the growing body of literature that emphasizes the centrality 

of cell type heterogeneity in molecular measures of bulk tissues. We provide a publicly available 

placental cell type-specific gene expression reference for term placental villous tissue to 

overcome this critical limitation. 
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2.6 Figures and Tables 

Table 2.1 Summary of single-cell RNA-sequencing sample characteristics and sequencing quality metrics. This study collected Samples 1-2. 
Samples 3-5 were downloaded from Pique-Regi et al., 2019 [102]. Samples 6-9P were download from Tsang et al., 2017 [101]. For Samples 1-2, 
A/B pairs are technical replicates. For Samples 8-9, C/P pairs represent centrally (C) or peripherally (P) sampled villous tissue from the same 
placenta. 

  Pre-filtering Quality Control Metrics Post-filtering Quality Control Metrics   

Sampl
e 

Feta
l 

Sex 

Droplets 
Sequence

d 

Total 
Unique 
RNA 

Molecules 

Total 
Unique 
Genes 
Detecte

d 

Total 
Cells 

Maternal
- Fetal 

Doublet
s 

Remove
d 

Unique 
RNA 

Molecule
s 

(Median) 

Unique 
RNA 

Molecule
s (IQR) 

Unique 
Genes 
(Media

n) 

Uniqu
e 

Gene
s 

(IQR) 

Percent 
Mitochondri

a 
Gene 

Expression 
(Median) 

Percent 
Mitochondri

a Gene 
Expression 

(IQR) 

Putative 
Doublets 
Remove

d 

Cells in 
Final 

Analyti
c 

Sampl
e 

1A F 737,280 15,329,28
8 

32,738 2,573 28 4,021 2,717 1,247 442 4.1 
1.98 116 2,214 

1B F 737,280 14,777,01
0 

32,738 2,600 33 3,870 2,521 1,189 426 4.06 
1.85 134 2,280 

2A M 737,280 14,306,60
4 

32,738 2,544 25 3,988 2,448 1,171 430 2.86 
1.48 92 2,292 

2B M 737,280 14,799,59
4 

32,738 2,740 29 3,875 2,410 1,157 427 2.85 
1.56 109 2,458 

3 M 737,280 17,075,12
6 

36,601 1,907 0 3,556 6,830 1,292 1,781 2.76 
2.89 105 1,620 

4 F 737,280 28,250,43
6 

36,601 2,653 4 5,352 12,664 1,833 2,869 3.73 
3.79 119 2,081 

5 M 737,280 29,693,20
7 

36,601 2,456 1 6,544 10,889 2,186 2,569 2.25 
1.94 136 2,210 

6 M 737,280 71,470,10
3 

36,601 6,018 401 1,639 1,996 733 716 3.02 
4.2 619 3,765 

7 M 737,280 18,472,61
4 

36,601 16,96
8 

206 1,617 3,237 687 844 2.66 
2.91 3,860 10,679 

8C F 737,280 32,463,56
1 

36,601 4,918 5 1,880 1,986 793 631 3.09 
3.72 533 3,726 

8P F 737,280 62,317,58
6 

36,601 2,284 3 1,302 1,608 585 567 3.35 
4.24 219 1,651 

9C F 737,280 20,847,76
1 

36,601 3,137 0 2,173 2,242 875.5 690 1.92 
2.31 247 2,508 

9P F 737,280 64,935,82
3 

36,601 3,612 1 2,073.5 2,088 879 648 2.06 
2.97 208 3,010 
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Table 2.2 Number of cells captured by single-cell RNA sequencing in the final analytic dataset for each cell type by sample source. Overall cell 
composition by cell count provided for each cell type. Proportions represent the overall proportion of that cell type in the dataset or among cells of 
only fetal or maternal origin. The final analytic sample included 40,494 cells and 36,601 genes across nine biological replicates, two of which had a 
technical replicate (Samples 1B and 2B) and another two included peripheral subsampling (Samples 8P and 9P). 

Distribution of cell types by sample and fetal/maternal origin 

Cell Type 1A 1B 2A 2B 3 4 5 6 7 8C 8P 9C 9P Count Overall 
Proportions 

Fetal 
Origin 

Maternal 
Origin 

Fetal B Cells 109 149 195 229 38 27 15 0 35 9 1 1 1 809 2.0% 2.4% - 

Fetal CD14+ 
Monocytes 

232 187 174 197 45 23 42 1 11 3 0 1 0 916 2.3% 2.7% - 

Fetal CD8+ Activated 
T Cells 

220 205 148 162 78 76 6 0 29 1 2 0 12 939 2.3% 2.7% - 

Fetal 
Cytotrophoblasts 

3 7 0 0 350 859 841 261 374 82 203 163 359 3,502 8.6% 10.3% - 

Fetal Endothelial 
Cells 

6 11 22 15 1 4 3 1,058 180 181 84 236 137 1,938 4.8% 5.7% - 

Fetal Extravillous 
Trophoblasts 

0 0 0 0 6 222 3 234 3,336 251 97 5 2 4,156 10.3% 12.2% - 

Fetal Fibroblasts 1 0 0 3 25 17 50 335 246 179 46 75 51 1,028 2.5% 3.0% - 

Fetal GZMB+ Natural 
Killer 

10 7 7 7 48 16 6 1 9 3 1 0 4 119 0.3% 0.3% - 

Fetal GZMK+ Natural 
Killer 

7 13 7 11 106 90 10 0 4 2 0 0 0 250 0.6% 0.7% - 

Fetal Hofbauer Cells 23 27 115 136 107 114 266 240 607 932 326 49 174 3,116 7.7% 9.1% - 

Fetal Memory CD4+ T 
Cells 

26 41 42 45 68 54 28 11 8 3 1 5 0 332 0.8% 1.0% - 

Fetal Mesenchymal 
Stem Cells 

53 46 54 60 377 11 501 1,207 4,127 1,806 606 1,633 1,755 12,236 30.2% 35.8% - 

Fetal Naive CD4+ T 
Cells 

222 215 225 213 30 55 25 10 62 5 6 7 2 1,077 2.7% 3.2% - 

Fetal Naive CD8+ T 
Cells 

47 30 100 117 17 37 9 1 12 0 4 0 0 374 0.9% 1.1% - 

Fetal Natural Killer T 
Cells 

30 34 22 32 51 42 8 0 1 1 0 0 0 221 0.5% 0.6% - 

Fetal Nucleated Red 
Blood Cells 

0 0 1 1 10 3 0 2 14 1 1 1 0 34 0.1% 0.1% - 

Fetal Plasmacytoid 
Dendritic Cells 

3 1 2 7 21 12 7 11 16 4 3 10 7 104 0.3% 0.3% - 

Fetal Proliferative 
Cytotrophoblasts 

1 0 1 0 111 185 282 334 680 141 211 231 453 2,630 6.5% 7.7% - 

Fetal 
Syncytiotrophoblast 

7 18 6 3 6 73 0 34 133 3 9 54 38 384 0.9% 1.1% - 

Maternal B Cells 118 144 347 339 2 22 0 0 6 2 2 0 0 982 2.4% - 15.5% 



 64 

Maternal CD14+ 
Monocytes 

271 282 181 212 21 6 8 0 122 3 1 0 1 1,108 2.7% - 17.5% 

Maternal CD8+ 
Activated T Cells 

449 435 266 277 33 47 4 0 41 29 6 20 2 1,609 4.0% - 25.4% 

Maternal FCGR3A+ 
Monocytes 

97 114 40 48 31 9 78 25 521 67 40 11 10 1,091 2.7% - 17.2% 

Maternal Naive CD4+ 
T Cells 

52 42 56 66 11 20 8 0 31 7 1 3 1 298 0.7% - 4.7% 

Maternal Naive CD8+ 
T Cells 

74 95 181 172 8 41 5 0 11 0 0 0 0 587 1.4% - 9.3% 

Maternal Natural 
Killer Cells 

114 139 68 60 19 8 3 0 56 10 0 3 1 481 1.2% - 7.6% 

Maternal Plasma 
Cells 

39 38 32 46 0 8 2 0 7 1 0 0 0 173 0.4% - 2.7% 

Count 2,214 2,280 2,292 2,458 1,620 2,081 2,210 3,765 10,679 3,726 1,651 2,508 3,010 40,494 100.0% 34,165 6,329 
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Table 2.3 Fluorescence-activated cell sorting and RNA-sequencing quality control results. Each sample was sorted into six cell type populations 
with a matched whole tissue sample. Cell count describes the total number of FACS-sorted cells. Table columns describe total RNA given in 
nanograms with RNA integrity index score (RIN), fastQC pass/fail, and whether the sample was sequenced in the paired-end (PE) or single-end 
(SE) and included in the experiment based on RIN score and total RNA (all sequenced samples included). 
*Matched with sample 1 from the single-cell RNA-sequencing assay. 

Sample 
ID 

Cell Type Cell 
Count 

Total 
RNA 
(ng) 

RIN fastQC Sequenced 
(PE/SE) 

Sorted 1* 

Syncytiotrophoblast N/A 0.2 1 N/A Dropped 

Hofbauer 2.00E+05 4.2 5 Pass SE 

Leukocyte 1.57E+05 6.9 7.3 Pass SE 

Extravillous 
Trophoblast 

8.35E+03 1.1 6.4 Pass SE 

Cytotrophoblast 2.83E+05 1.8 8.1 Pass SE 

Fibroblast 1.55E+04 34 7.3 Pass SE 

Endothelial Cells 7.60E+03 3 2.8 N/A Dropped 

Whole Tissue N/A 108 4.9 Pass SE 

Whole Tissue N/A 209 7.8 Pass PE 

Sorted 2 

Syncytiotrophoblast N/A 0.2 1 N/A Dropped 

Hofbauer 1.57E+05 1.6 4.9 Pass SE 

Leukocyte 1.37E+05 63 8.3 Pass SE 

Extravillous 
Trophoblast 

3.60E+03 1.1 6 Pass SE 

Cytotrophoblast 8.00E+04 <0.1 <0.1 N/A Dropped 

Fibroblast 1.06E+04 35 8.1 Pass SE 

Endothelial Cells 2.30E+03 2 8.1 Pass SE 

Whole Tissue N/A 332 8.7 Pass SE 

Sorted 3 Syncytiotrophoblast N/A 255 4 Pass SE 
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Hofbauer 1.02E+05 45 9.1 Pass SE 

Leukocyte 8.30E+04 50 8.5 Pass SE 

Extravillous 
Trophoblast 

2.50E+04 7.2 2.8 Pass SE 

Cytotrophoblast 3.72E+05 3.7 2.4 N/A Dropped 

Fibroblast 3.61E+03 2.9 1.3 N/A Dropped 

Endothelial Cells 2.97E+03 
 

3 2.5 N/A Dropped 

Whole Tissue N/A 9572 5.3 Pass SE 

Sorted 4 

Syncytiotrophoblast N/A 107 6.5 Pass PE 

Hofbauer 8.40E+04 87 6.7 Pass PE 

Leukocyte 2.20E+04 0.82 7.6 Pass PE 

Extravillous 
Trophoblast 

4.50E+04 2.4 8 Pass PE 

Cytotrophoblast 2.56E+05 1.5 6.9 Pass PE 

Fibroblast 1.70E+04 1.7 7.2 Pass PE 

Endothelial Cells 1.20E+04 0.14 1 Pass Dropped 

Whole Tissue N/A 298 8.2 Pass PE 
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Table 2.4 Number of overlapping differentially upregulated genes and overrepresented biological process pathways between the single- and 
sorted cell type differential expression and enrichment testing analyses. 

Cell Type Single-cell 
Differentially 
Expressed 

Genes 

Sorted 
Differentially 

Expressed Genes 

Overlapping 
Genes 

Percentage overlap 
(single-cell 

denominator) 

Percentage 
overlap 
(sorted 

denominator) 

Cytotrophoblast* 2011 366 13 0.6% 3.6% 

Endothelial Cells 769 251 1 0.1% 0.4% 

Extravillous 
Trophoblasts 

693 1073 18 2.6% 1.7% 

Fibroblasts** 649 3883 310 47.8% 8.0% 

Hofbauer Cells 297 2210 77 25.9% 3.5% 

Leukocytes*** 3378 2262 486 14.4% 21.5% 

Syncytiotrophoblast 206 1154 28 13.6% 2.4% 

Mean:  1,143   1,600   133  15.0% 5.9% 

Cell Type Single-cell 
Overrepresented 

Pathways 

Sorted 
Overrepresented 

Pathways 

Overlapping 
Pathways 

Percentage overlap 
(single-cell 

denominator) 

Percentage 
overlap 
(sorted 

denominator) 

Cytotrophoblast* 98 32 12 12.2% 37.5% 

Endothelial Cells 243 6 0 0.0% 0.0% 

Extravillous 
Trophoblasts 

59 18 8 13.6% 44.4% 

Fibroblasts** 142 51 25 17.6% 49.0% 

Hofbauer Cells 242 343 160 66.1% 46.6% 

Leukocytes*** 1031 53 51 4.9% 96.2% 

Syncytiotrophoblast 13 233 1 7.7% 0.4% 

Mean:  261   105   37  17.5% 39.2% 

*Single-cell subtypes cytotrophoblasts and proliferative cytotrophoblasts collapsed to single category 
**Single-cell subtypes fibroblasts and mesenchymal stem cells collapsed to single category 
***Single-cell peripheral immune cell subtypes collapsed to single category 
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Table 2.5 Demographic characteristics of eight previously published bulk microarray placental gene expression case-control studies (accessed 
through GSE75010) for deconvolution application testing. 

Descriptives statistics of microarray preeclampsia case-control studies  

 Control 
(N=173) 

Preeclampsia 
(N=157) 

P-value 

Fetal Sex    

Female 78 (45.1%) 81 (51.6%) 0.28 

Male 95 (54.9%) 76 (48.4%)  

Gestational Age (wks)    

Mean (SD) 35.2 (3.97) 33.0 (3.17) <0.001 

Median [Min, Max] 37.0 [25.0, 41.0] 33.0 [25.0, 39.0]  

Study    

GSE10588 26 (15.0%) 17 (10.8%) 0.39 

GSE24129 8 (4.6%) 8 (5.1%)  

GSE25906 37 (21.4%) 23 (14.6%)  

GSE30186 6 (3.5%) 6 (3.8%)  

GSE43942 7 (4.0%) 5 (3.2%)  

GSE44711 8 (4.6%) 8 (5.1%)  

GSE4707 4 (2.3%) 10 (6.4%)  

GSE75010 77 (44.5%) 80 (51.0%)  
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Figure 2.1 Conceptual layout of the laboratory methods and analyses contained within this manuscript. Created with BioRender.com.
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9,584,640 overall 

droplets measured 

(737,280 per sample) 

53,674 cells captured 

(mean 4,128.77 per 

sample) 

Exclude 9,530,230 

empty droplets 

(mean 733,094.60 

per sample) 

Exclude 736 

fetal/maternal 

Exclude 6,497 cells 

with low unique RNA 

content or detected 

genes, or outliers in 

mitochondrial gene 

mapping (mean 

499.77 per sample) 

40,494 cells 

analyzed 

(mean 3,149.23 per 

sample) 

Figure 2.2 Placental single-cell RNA sequencing quality control 
pipeline 
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Figure 2.3 Placental single cell RNA sequencing of quality metrics by sample, visualized using violin plots. Orange cells were discarded based on 
outlier status on any of the following metrics: (a) total unique RNA transcripts (also called unique molecular identifiers) < 500, (b) number of genes 
expressed < 200, or (c) outliers in percent mitochondrial genes expressed. 
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Figure 2.4 Library size-normalized and log-transformed XIST expression in fetal origin cells by biological replicates identifies Sample 1 as female 
due to high XIST expression, Sample 2 as male, and confirms fetal sex annotation for Samples 3-9. 
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Figure 2.5 Integrated single-cell gene expression map of healthy placental villous tissue. (a) Uniform Manifold Approximation and Projection 
(UMAP) plot of all cells (n=40,494), with each cell colored by cell type cluster. (b) UMAP plot of fetal cells only (n=34,165), with each cell colored 
by cell type cluster. (c) UMAP plot of maternal cells only (n=6,329), with each cell colored by cell type cluster. 



 74 

 
Figure 2.6 Dot plots of cell type marker genes used to annotate cell clusters to cell describing average normalized gene expression types (color 
darkness) and percentage of cells in a cell type cluster expressing that gene (point size). (a) Placental tissue cell types (b) Peripheral blood cell 
types. 
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Figure 2.7 Top biological process gene ontology enrichment results with between 15 and 500 annotated genes for proliferative vs. non-proliferative 
cytotrophoblasts overexpressed differential expression results. 
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Figure 2.8 Placental single cell RNA sequencing of quality metrics by cluster, visualized using violin plots. (a) Number of genes expressed, (b) 
total unique RNA molecules, and (c) percent mitochondrial genes expressed. 
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Figure 2.9 Uniform Manifold Approximation and Projection (UMAP) plots colored by key variables. (a) Technical replication in Sample 1 with points 
colored by technical replicate. (b) Technical replication in Sample 2 with points colored by technical replicate. (c) Biological replicates identified by 
point color with collapsed technical replicates. (d) Fetal/Maternal origin assignment by point color. 
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Figure 2.10 Heatmap of signature gene expression matrix in log2-transformed library size-normalized counts (counts per million) generated and 
used to deconvolute bulk placental tissue dataset. Cell types are encoded on the y-axis and genes are located along the x-axis. Blue indicates low 
expression of a gene and red represents high expression. 

.
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Figure 2.11 In silico placental deconvolution testing. Scatter plots summarizing the performance of our single-cell deconvolution reference using 
CIBERSORTx with in silico mixtures of single-cell libraries from a 50/50 training/test split of the integrated single-cell RNA-seq dataset (n=40,494). 
The same training dataset was used for each comparison; test mixtures were generated from the testing half of the dataset. Predicted 
deconvoluted cell type proportions for each of the 27 cell types are encoded on the x-axis. Actual cell type proportions from the test dataset are 
encoded on the y-axis. Correlation coefficients and root mean square error measures are presented for each comparison. A linear line of best fit 
overlays the results. The grey shaded area represents the 95% confidence intervals around the simple linear regression estimates. (a) The test 
mixture is the test half of the single-cell dataset (n=20,242). (b) The test mixture sampled only fetal cells (n=17,080). (c) The test mixture sampled 
only maternal cells (n=3,162). (d) The test mixture sampled only female fetal cells (n=8,394). (e) The test mixture sampled only male fetal cells 
(n=8,394). 
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Figure 2.12 A representative FACS sort. Gating strategy: (a) HLA-G/PE to positively select extravillous trophoblasts; (b) HLA-ABC/PE-CY7 to 
negatively enrich for cytotrophoblasts; (c) CD9/FITC by CD45/APC to positively select for Hofbauer cells and leukocytes; (d) CD31/BV421 to 
distinguish endothelial cells from CD31- fibroblasts. 
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Figure 2.13 Principal components plot of fluorescence-activated cell sorting bulk RNA-sequencing results on sorted placenta samples. Point colors 
encode cell type. Shape denotes sample source.
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Figure 2.14 Volcano plots for fluorescence-activated-cell-sorted bulk RNA-seq differential expression in one cell type against average gene 
expression across other cell types. The y-axis encodes -log10 transformation of the false discovery-controlled q-value, with the cut-off for 
statistical significance at 0.05. The x-axis encodes log2 fold change of gene expression for the contrast of interest. The upper-right inset describes 
the number of differentially regulated genes per contrast. 37,929 genes were tested. 746 genes were dropped from the syncytiotrophoblast 
contrast by DESeq2’s default automatic filtering algorithm due to excessively low counts, low variability, or extreme outlier status. (a) 
Cytotrophoblast. (b) Endothelial cell. (c) Extravillous trophoblast. (d) Fibroblast. (e) Hofbauer cell. (f) Leukocyte. (g) Syncytiotrophoblast 

.
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Figure 2.15 Distribution of estimated cell type proportions in whole placental villous tissue from Michigan samples and GSE75010 controls 
compared to the number of single cells captured in the single-cell RNA sequencing datasets. Density distribution is colored by study source. (a) 
Fetal cell types. (b) Maternal cell types.
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Figure 2.16 Distribution of estimated cell type proportions in preeclamptic cases versus controls. Density distribution is colored by case-control 
status. (a) Fetal cell types. (b) Maternal cell types. 
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Figure 2.17 Preeclampsia case-control status and cell type proportion differential abundance analysis. Forest plot of multivariate beta regression 
models’ prevalence odds ratio estimates adjusted for study source, gestational age, and fetal sex tested for a difference in each cell type’s 
proportions in cases versus controls (n=157 cases, 173 controls). Horizontal lines indicate the range of the 95% confidence interval.
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Figure 2.18 Principal component (PC) results of estimated cell type proportions. Contribution refers to the relative proportions (expressed as a 
percentage) of the variation in a principal component attributable to an individual cell type. (a) PC1 and PC2 dimension loadings are largely driven 
by fetal syncytiotrophoblasts and fetal extravillous trophoblasts. (b)  PC1 and PC3 loadings are largely driven by fetal syncytiotrophoblasts, fetal 
extravillous trophoblasts, and fetal cytotrophoblasts. (c) Individual observations projected onto PC1xPC2, with observations colored and shape-
coded by preeclampsia case-control status. (d) Individual observations projected onto PC1xPC3, with observations colored and shape-coded by 
preeclampsia case-control status. 

.
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Figure 2.19 Preeclampsia case-control differential expression analysis. Volcano plots comparing differentially expressed genes in samples from 
153 preeclampsia cases versus 173 healthy controls across two models: (a) the base model adjusted for covariates fetal sex, study source, and 
gestational age and (b) the model adjusted for fetal sex, study source, and gestational age and additionally adjusted for the first five principal 
components of estimated cell type proportions. Dotted line represents a false discovery rate-adjusted q-value of 0.05. FLT1, LEP, and ENG are 
labelled as genes of interest in preeclampsia. 
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Figure 2.20 Preeclampsia case-control differential expression enrichment analysis. Top Gene Set Enrichment Analysis pathways from the Gene 
Ontology: Biological Processes database results for the differential expression analysis by preeclampsia case-control status. Results arranged by 
descending magnitude of the absolute value of the normalized enrichment score. Pathways colored red are significant at a false discovery rate-
adjusted (FDR) q-value of 0.05 whereas pathways in blue are statistically insignificant. (a) Top pathways from the cell type-unadjusted analysis. 
(b) Top pathways from the cell type-adjusted analysis. 



 89 

 

Figure 2.21 Placental cell composition as a mediator of FLT1 expression. Mediation of FLT1 gene expression by placental cell type composition 
(n=157 cases, 173 controls). Placental cell composition was operationalized as first five principal components of estimated cell type proportions. 
95% confidence intervals are provided after effect estimates for each model parameter. The same framework was also applied with LEP or ENG 
expression as the outcome.



 90 

Chapter 3 Placental and Immune Cell DNA Methylation Reference Panel for Bulk 

Tissue Cell Composition Estimation in Epidemiological Studies 

Authors: Campbell KA1, Colacino JA2,3, Dolinoy DC2,3, Loch-Caruso R2, Padmanabhan 
V2,3,4,6, and Bakulski KM1 

Affiliations: 
1Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48105, 
USA. 
2Environmental Health Sciences, School of Public Health, University of Michigan, Ann 
Arbor, MI 48105, USA. 
3Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 
48105, USA. 
4Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48105, USA. 
5Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48105, 
USA. 
6Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI 
48105, USA. 

3.1 Abstract 

DNA methylation perturbations in bulk placental tissue have been linked to 

adverse perinatal outcomes. To distinguish mechanistic DNA methylation changes from 

cell composition differences, robust cell type-specific placental DNA methylation profiles 

are needed. We analyzed 192 new and previously published DNA methylation profiles 

from 12 cell types, including cytotrophoblasts (n=32), endothelial cells (n=19), Hofbauer 

cells (n=26), stromal cells (n=29), syncytiotrophoblasts (n=4), six types of adult 

lymphocytes (n=36), and nucleated red blood cells (n=11), as well as 35 bulk placental 

tissue samples. Methylation was quantified via the Illumina DNA methylation microarray 

(450k or EPIC), and common probes were quality filtered (n=407,628 DNA methylation 

sites). To identify cell type-discriminating DNA methylation sites, we ranked the top 50 

hyper- and hypomethylated sites per cell type by F-test, yielding 1,101 unique sites. To 
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estimate the cell composition of bulk placental tissue, we applied the robust partial 

correlation deconvolution algorithm using these sites. Consistent with placental biology, 

bulk placental tissue cell type proportion estimates (mean ± standard deviation) from 

methylation measures were predominately syncytiotrophoblast (57.8% ± 8.3%), stromal 

(20.6% ± 5.9%), cytotrophoblast (11.0% ± 4.1%), endothelial (7.5% ± 2.2%), Hofbauer 

cells (1.5% ± 1.2%), and CD4+ T cells (0.89% ± 0.84%). Other cell types had mean 

estimates less than 0.5%. This cell type DNA methylation reference panel can robustly 

estimate cell composition from placental DNA methylation data in epidemiological 

studies to detect unexpected non-placental cell types, reveal biological mechanisms, 

and improve casual inference. Future work will present a software package for 

community use so that future studies may estimate cell composition in placental tissue 

for testing with exposure or disease. 

3.2 Introduction 

Prenatal environmental or other exposures during gestation may induce 

perturbations to placental epigenetic programming, including DNA methylation, that 

ultimately result in disease [29]. Epigenetic dysregulation is characteristic of diseases 

such as cancer [26], neurodegeneration [27], and cardiovascular disease [28]. A recent 

review identified that between 2016 and 2021, 28 studies linked air pollution, chemical, 

metals, psychosocial, and smoking exposures to the placental epigenome [195]. A 

critical limitation of these studies, however, is a failure to account for cell type 

heterogeneity [47, 195]. In fact, two studies identified an association between prenatal 

mercury exposure and DNA methylation in fetal cord blood as well as a shift in cord 

blood cell type proportions, precluding biological interpretation as to the causal factor 
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[196, 197]. Bioinformatic reference-based deconvolution has emerged as a promising 

strategy to account for cell heterogeneity in bulk tissue assays by estimating cell type 

proportions from previously collected cell type-specific molecular profiles [46, 58, 59]. 

However, placental cell type-specific DNA methylation references are limited. 

DNA methylation characterization of term placental cell types is limited [198]. 

Several studies have individually profiled DNA methylation of cytotrophoblasts and 

Hofbauer cells at term [199, 200]. One study conducted whole genome DNA 

methylation characterization of cytotrophoblasts from two term placentas [200]. DNA 

methylation from term Hofbauer cells was characterized on the Illumina Infinium Human 

Methylation27 BeadChip microarray [199]. This platform measured DNA methylation at 

~27,000 sites across the genome, which is much lower coverage than the ~850,000 

sites now available on the EPIC version of this platform. Only recently has one study 

profiled trophoblasts, stromal, endothelial cells, and Hofbauer cells from fractions of 

placental cells enriched using fluorescence-activated cell sorting, and a separate filter-

enriched syncytiotrophoblast fraction on the Illumina EPIC DNA methylation microarray 

[201]. However, maternal peripheral immune cells and the highly epigenetically distinct 

nucleated red blood cells present only in fetal cord blood may also be intermingled with 

placental cell types in villous tissue samples [60]. Indeed, a DNA methylation 

epigenome-wide association study in fetal cord blood found that nucleated red blood 

cells explained most of the association between gestational age and DNA methylation 

[202]. A robust placental deconvolution reference requires additional placental cell type-

specific DNA methylation profiles, and must account for other epigenetically distinct cell 

types present at the fetal-maternal interface. 
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This study aims to address the current limitations of existing approaches to account 

for cellular heterogeneity in DNA methylation studies of the human placenta. Here, we 

generate primary cell type-specific placental DNA methylation profiles for major 

placental cell types isolated via magnetic bead-activated cell sorting and integrate the 

results with existing placental, adult peripheral immune cell, and nucleated red blood 

DNA methylation profiles to create a unified placental DNA methylation deconvolution 

panel for reference-based deconvolution. Placental cell type-specific genome-wide DNA 

methylation panels can then be implemented in numerous existing or future studies that 

utilize placental villous tissue samples at term to improve precision, detect non-placental 

cells, reduce sources of potential bias due to cell type heterogeneity, and improve 

biological inference. 

3.3 Methods 

3.3.1 Placental tissue sample collection and dissociation 

We collected placentas shortly after delivery from healthy, full term, singleton 

uncomplicated Cesarean sections at the University of Michigan Von Voigtlander 

Women’s Hospital between February 2019 and March 2020. All study participants 

provided informed consent. This study protocol was approved by the University of 

Michigan Institutional Review Board (#HUM00017941). Villous placental tissue samples 

were collected, washed in phosphate buffered saline (PBS, Invitrogen #10010049), 

blotted dry, and minced from the maternal-facing side of placenta the after trimming 

away the basal and chorionic plates and scraping tissue from blood vessels until at least 

10g of villous tissue were collected. Approximately 200mg of villous tissue was set 

aside and snap-frozen in liquid nitrogen. 
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We subjected isolated fetal villous tissue to sequential enzymatic digestions 

followed by discontinuous density gradients using slight modifications on established 

methods to isolate cytotrophoblasts, fibroblasts, and Hofbauer cells [96, 98]. Enzymatic 

digestions were carried out in a Trypsin-DNase I solution containing 0.25% trypsin 

(Corning, #25-050-CI), 0.20% DNase I (Roche,  #10104159001), 25mm N-2-

hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES, Millipore Sigma, H4034-25G), 

2.0mM CaCl2 (Millipore Sigma, #C7902-500G), and 0.8mM MgSO4 (Millipore Sigma, 

M2643-500G) in Hanks’ balanced salt solution (HBSS, Invitrogen #14185052) at 37°C 

with shaking at 150rpm in a large shaker bath [96]. After 15 minutes, the partially 

digested villous tissue was strained through a 104μm mesh with a pestle (Millipore 

Sigma, #CD1-1KT) and rinsed with 3mL heat-inactivated fetal bovine serum (FBS, 

Corning, # MT35016CV) and 2 rounds of 10mL DF medium, consisting of 10% FBS, 1% 

antibiotic-antimycotic (Invitrogen, #15240062), in Dulbecco's Modified Eagle 

Medium/Ham's F-12 (DMEM/F12 medium, Invitrogen, #12634010) to quench 15mL of 

Trypsin-DNase I digestion solution and facilitate straining.  

The second and third digests were performed for 30 minutes each, but were 

otherwise identical to the first digestion. The supernatant from each digest was filtered 

sequentially through another 100μm filter and a 70μm filter. PBS washes were used as 

needed to facilitate straining. Adapting a previously published protocol [95], the 70μm 

filters were immediately inverted into a sterile petri dish and washed with DF medium to 

produce a syncytiotrophoblast-enriched fraction that was pooled from each of the three 

digests and cryopreserved in a cryopreservation solution containing 10% dimethyl 

sulfoxide (DMSO, Millipore Sigma #D8418) in FBS in liquid nitrogen. The supernatant 
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from the second and third digests were combined and loaded onto a 

30%/35%/45%/50% Percoll discontinuous gradient consisting of 90% Percoll (GE 

Healthcare, #17089101) mixed with 25mM HEPES in HBSS in the appropriate 

concentrations. We performed density gradient centrifugation by centrifuging the column 

at 1000rcf for 20 minutes at room temperature with no brake [96]. To create a 

cytotrophoblast-enriched fraction, we collected the cell layer between the 35% and 45% 

fraction, which was cryopreserved in 10% DMSO in FBS in liquid nitrogen [96]. 

To isolate a Hofbauer cell and fibroblast-enriched fraction, we subjected the 

tissue to a final 1mg/mL Collagenase A, 0.2mg/mL DNase I 20mL enzymatic digestion 

in an RPMI medium containing 25mM HEPES, 10% FBS, and 1% antibiotic/antimycotic 

for 1 hour at 37°C. The digestion supernatant was strained through a 104μm mesh with 

a pestle (Millipore Sigma, #CD1-1KT) and rinsed with 3mL FBS and 2 rounds of 10mL 

RPMI medium to quench 20mL of Collagenase A-DNase I digestion solution and 

facilitate straining. We performed sequential density gradient centrifugations by 

centrifuging columns at 1200rcf for 20 minutes at room temperature with no brake. We 

loaded the single cell suspension onto a 20%/40% Percoll discontinuous gradient and 

collected cells from the 20%/40% interface. We loaded these cells onto a second 

20%/25%/30%/35% discontinuous Percoll gradient. Cells were collected and pooled 

from the 20%/25%, 25%/30%, and 30%/35% interfaces. These cells were 

cryopreserved in 10% DMSO in FBS in liquid nitrogen. 

3.3.2 Magnetic activated bead cell type sorting 

Cryopreserved single cell suspensions were quickly thawed at 37°C, size-filtered 

at 30µm to eliminate debris, and resuspended in 4°C DF medium for the cytotrophoblast 
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fraction or RPMI medium for the Hofbauer cell/fibroblast fraction. Both fractions were 

subsequently resuspended in a 4°C BSA rinsing buffer, consisting of 0.5% Bovine 

Serum Albumin stock solution (Miltenyi Biotec, #130-091-376) in autoMACS washing 

solution (Miltenyi Biotec, #130-092-987). All media and cell suspensions were kept on 

ice for the remainder of the magnetic-activated sorting experiment. Following 

manufacturer’s instructions, the Miltenyi Biotec octoMACS platform (Miltenyi Biotec, 

#130-042-108) was used to magnetically sort the target placental cell types 

cytotrophoblasts, Hofbauer cells, and fibroblasts. Briefly, the cytotrophoblast fraction 

was incubated for 10min at 4°C in the dark with 1:11 REAfinity™ allophycocyanin-

conjugated anti-HLA-ABC antibody (APC-anti-HLA-ABC, Miltenyi Biotec, #130-101-467, 

lot #5191002371). The Hofbauer/fibroblast fraction was incubated for 10min at 4°C in 

the dark with 1:11 REAfinity™ allophycocyanin-conjugated anti-EGFR antibody (APC-

anti-EGFR, Miltenyi Biotec, #130-110-529, lot #5190107002). Each fraction was 

washed with BSA rinsing buffer and incubated for 15min at 4°C in the dark with 1:5 anti-

allophycocyanin MACS® MicroBeads (Miltenyi Biotec, #130-090-855, lot 

#5190809239). Each fraction was loaded onto an MS column (Miltenyi Biotec, #130-

042-201) for magnetic separation. The EGFR- Hofbauer/fibroblast fraction was washed 

and incubated for 10min at 4°C in the dark with 1:11 REAfinity™ phycoerythrin-

conjugated anti-CD10 antibody (anti-CD10-PE, Miltenyi Biotec, #130-114-5-2, lot 

#5190109168). The Hofbauer/fibroblast fraction was then washed and incubated for 

15min at 4°C in the dark with 1:5 anti-phycoerythrin MACS® MicroBeads (Miltenyi 

Biotec, #130-105-639). The Hofbauer/fibroblast fraction was loaded onto an MS column 
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for magnetic separation. The CD10- fraction is enriched for fibroblasts and the CD10+ 

fraction is enriched for Hofbauer cells [96]. 

3.3.3 DNA Extraction 

To collect whole tissue DNA samples, approximately 15mg of snap-frozen villous 

tissue was added to 180μL Buffer ATL (Qiagen, #939011) and 20μL proteinase K 

(Qiagen, #19131) to Lysing Matrix D vials (MP Biomedicals, #116913050-CF). Samples 

were homogenized on the MP-24 FastPrep homogenizer (MP Biomedicals, 

#116004500) at 6m/s, setting MP24x2 for 35s.The cryogenically stored cell type 

fractions were quickly thawed at 37°C for less than five minutes. DNA was extracted 

from each fraction using the DNeasy Blood and Tissue Kit (Qiagen, #69504, lot 

#157020715, 1630203096, 563011175) according to manufacturer’s instruction for each 

magnetically separated sample, the syncytiotrophoblast-enriched sample, and the bulk 

whole villous tissue sample after homogenization. 

3.3.4 DNA methylation measurement 

DNA was submitted to the University of Michigan Epigenomics Core for quality 

assessment and bisulfite conversion. DNA quantity was measured with the Qubit High 

Sensitivity dsDNA assay (ThermoFisher Scientific, #Q32854). DNA quality was 

assessed with the TapeStation genomic DNA kit (Agilent, #5067-5365). Samples too 

dilute to be compatible with the kit were first concentrated using AMPure Beads 

(Beckman Coulter, #A63880) and re-quantified. An aliquot of 250ng DNA from each 

sample was bisulfite converted using the EZ DNA Methylation kit (Zymo Research, 

#D5001) according to manufacturer’s instructions for Illumina DNA methylation arrays. 
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Samples were then sent to the University of Michigan Advanced Genomics Core for 

hybridization to the Infinium MethylationEPIC BeadChip v1.0 array (Illumina, #WG-317-

1003), washing, and scanning according to the manufacturer’s instructions. Samples 

were randomized across columns and rows (within plates) to reduce potential 

confounding due to batch effects. 

3.3.5 DNA methylation data preprocessing and quality control 

In addition to the data generated in this study, we also downloaded data from 

three previously published cell type-specific DNA methylation studies of the adult blood 

immune cells (GEO accession GSE110554, accessed via FlowSorted.Blood.EPIC R 

package v1.99.5 [203]) B cells, CD4+ T cells, CD8+ T cells, monocytes (Mono), natural 

killer cells (NK), and neutrophils (Neu) [65], nucleated red blood cells from umbilical 

cord blood (GEO accession, accessed via FlowSorted.CordBloodCombined.450k R 

package v1.8.0 [204]) [60], and placental cells (GEO accession GSE159526, accessed 

via ExperimentHub R package v2.0.0 [205]) [201]. Raw DNA methylation data were 

preprocessed and managed via the minfi R package v1.38.0 [206] and the ewastools R 

package v1.7 [207]. 

Datasets generated on the Illumina 450k microarray were preprocessed and 

quality controlled separately from those generated on the Illumina EPIC DNA 

methylation microarray. We preprocessed raw DNA methylation data with Noob 

background correction and dye-bias normalization. We excluded samples with low-

intensity values below 10.5 relative fluorescence units or mismatched genotype or sex 

(n=0 samples excluded). For the EPIC array samples (n=189), we excluded 1 probe 

with an average bead count less than 5, 19,760 probes with >5% failure rate for 
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detection p-value >0.01, 23,448 cross-reactive probes [208], and 17,767 sex-specific 

probes. For the 450k array samples (n=132), we excluded 20,024 probes with >5% 

failure rate for detection p-value >0.01, 14,151 cross-reactive probes [208], and 9,646 

sex-specific probes. Bead hybridization information was unavailable for the 450k 

umbilical cord samples and only the nucleated red blood cells (n=11) were retained for 

downstream analysis. Finally, to correct for type I vs. type II probe bias, we also 

performed Beta MIxture Quantile dilation normalization [209] via the ChAMP R package 

v2.22.0 [210]. All downstream DNA methylation analyses used beta values, or the 

methylation rate for a given site. 

 To make our results generalizable to the Illumina 450k array, we subset the EPIC 

array samples to only those DNA methylation sites shared across both arrays for all 

downstream analyses. To assess cell fraction purity, we assessed unsupervised DNA 

methylation profile clustering and predicted cell type lineage from an external reference 

[67]. To reduce dimensionality for unsupervised DNA methylation clustering, we 

selected the top 10% highest variance DNA methylation sites and performed principal 

components dimension reduction. To integrate data from cell fractions across study 

sources and visualize clustering results with uniform manifold projection [118], we used 

the mutual nearest neighbor batch correction approach [119] via FastMNN in the 

SeuratWrappers R package, version 0.3.0 [120]. Iterative clustering and sub-clustering 

with the Seurat R package v4.0.1 [122] function FindClusters at different resolution 

parameters were evaluated using cluster stability via clustering trees with clustree R 

package v0.4.4 [121]. We predicted the lineage composition (epithelial, immune cell, or 

stromal) of each sample with the robust partial correlation algorithm and the using the 
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centEpiFibIC.m dataset [67] implemented in EpiDISH R package v2.8.0 [83]. Samples 

that clustered inconsistently with other cell types and had less than 70% predicted 

epithelial lineage for cytotrophoblasts and syncytiotrophoblast or less than 50% 

predicted stromal or immune cell identity for other cell types were excluded from 

downstream analysis. 7 syncytiotrophoblast samples from this study and 1 

syncytiotrophoblast sample from Yuan et al. [201] were excluded on this basis. We 

visualized sample and probe inclusion using a flow chart. For all included samples, we 

used a table to describe the number and frequency of samples by study source, fetal 

sex, cell type, Illumina array type, and cell separation method. 

3.3.6 Characterization of cell type fractions with differential methylation analysis 

and biological process enrichment 

To characterize cell type fractions, we assessed cell type-specific DNA 

methylation patterns by fitting linear models adjusted for sex with empirical Bayes 

standard error moderation in the limma R package v 3.48.3 [211]. To identify cell type-

specific differentially methylated sites, we compared percent methylation values in one 

cell type against the average across other cell types. We used false discovery adjusted 

q-values to account for multiple comparisons. We visualized differences in DNA 

methylation between cell types using volcano plots of the average methylation 

difference and the -log10(q-value). To be considered biologically meaningful, we 

instituted an absolute percent methylation difference threshold cutoff of 10%. Statistical 

significance was assessed at a false discovery adjusted q-value < 0.001. We visualized 

overlap in significant sites across cell types we used an upset plot, separately for hyper- 

and hypomethylated sites in Figure 3.4.  
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To characterize the biological significance of differential methylation results, we 

performed gene ontology enrichment for the top 10,000 hyper- and hypomethylated 

sites per cell type with the missMethyl R package v1.26.1 [212]. This approach identifies 

overrepresented genes and their ontologies among differentially methylated sites while 

accounting for the number of sites tested per gene as well as probes associated with 

multiple genes. We visualized overlap in enriched gene ontologies using an upset plot in 

Figure 3.5. 

3.3.7 Creation and application of a placental DNA methylation deconvolution 

reference 

To identify cell type-discriminating DNA methylation sites, we ranked the top 50 

each of hyper- and hypomethylated sites per cell type by F-test using the minfi R 

package v1.38.0 [206]. At these probes, we visualized DNA methylation levels across 

cell types using a heat map in Figure 3.6. These cell type-discriminating DNA 

methylation sites were used as the cell type DNA methylation references for 

deconvolution of whole tissue placental villous samples present in the analyzed 

datasets. We used the robust partial correlation algorithm implemented in EpiDISH R 

package v2.8.0 [83] to perform deconvolution. We visualized estimated cell proportions 

in whole tissue using a scatter plot in Figure 3.7. For each cell type, we calculated the 

estimated proportion median and quartiles. 

3.4 Results 

3.4.1 Placental cell type-specific DNA methylation profiles 
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After quality control procedures (Figure 3.1 DNA methylation quality control 

inclusion/exclusion flow chart.Figure 3.1), we analyzed DNA methylation data across 

407,628 sites from 192 new and previously published DNA methylation profiles from 12 

cell type-specific fractions, including cytotrophoblasts (n=32), endothelial cells (n=19), 

Hofbauer cells (n=26), stromal cells (n=29), syncytiotrophoblast-enriched fractions (n=4) 

[201], six types of adult lymphocytes (n=36) [65], and nucleated red blood cells (n=11) 

[60], as well as 35 bulk placental tissue samples (Table 3.1). We analyzed the placental 

datasets with DNA methylation profiles from adult blood peripheral immune cells and 

umbilical cord nucleated red blood cells, which may also be present in placental 

samples, especially those collected in large epidemiologic or biobanking studies. We 

further subset the DNA methylation sites to only those that are shared across EPIC and 

450k platforms to make our deconvolution reference applicable to datasets generated 

from either platform. Background-corrected, probe type bias-corrected, and normalized 

DNA methylation proportions (sometimes called beta values) for each DNA methylation 

site were used for downstream analyses.   

We performed several quantitative and qualitative tests to assess cell fraction 

purity. Consistent with successful cell type isolation, unsupervised clustering revealed 

that DNA methylation samples clustered by their target cell type cell type. We excluded 

7 syncytiotrophoblast samples from this study and 1 from the Yuan et al. dataset [201] 

from the analysis. These samples clustered inconsistently with other syncytiotrophoblast 

samples and had a predicted epithelial lineage <70%. All other samples clustered 

consistently and had >70% predicted epithelial lineage for cytotrophoblasts and 

syncytiotrophoblast and greater than 50% predicted stromal, epithelial, or immune cell 
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identity for their appropriate lineages (Figure 3.2). Also consistent with successful cell 

type isolation, UMAP projection shows cell type lineages colocalize. 

3.4.2 Characterization of cell type fractions with differential methylation analysis 

and biological process enrichment 

To identify placental cell type-defining DNA methylation patterns and provide 

additional evidence of successful cell type isolation, we performed a differential 

methylation analysis. To identify cell type-specific differentially methylated sites, we 

compared percent methylation values in one cell type against the average across other 

cell types. The number of hyper- and hypomethylated sites per placental cell type 

ranged from 28,467 to 98,029 (Figure 3.3). Trophoblast subtypes had the largest 

number of differentially methylated sites. Trophoblast subtypes (cytotrophoblasts and 

syncytiotrophoblasts) also had the largest number of overlapping differentially 

methylated sites (Figure 3.4). Hofbauer cells had the largest number of unique 

differentially methylated sites. 

3.4.3 Characterization of cell type fractions biological process enrichment of 

differentially methylated sites 

The number of enriched pathways among placental cell types ranged from 411 

for Hofbauer cells to 212 for syncytiotrophoblasts. Cell type-defining biological 

processes were highlighted by enriched biological processes unique to each cell type. 

The number of biological processes unique to placental cell types ranged from 30 for 

stromal cells to 11 for syncytiotrophoblast (Error! Reference source not found.). For e

xample, enriched unique Hofbauer cell pathways included vascular process in the 
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circulatory system (padj=0.004), positive regulation of IL-10 production (padj=0.004), and 

lamellipodium organization (padj=0.004). Enriched pathways unique to endothelial cells 

included endothelium development (padj=0.007), regulation of cell junction assembly 

(padj=0.007), and basement membrane organization (padj=0.008). 

3.4.4 Placental DNA methylation deconvolution reference 

To create a deconvolution reference for placental villous tissue deconvolution, we 

ranked the top 50 hyper- and hypomethylated sites per cell type by F-test. This 

approach identifies cell type defining DNA methylation sites for application in 

deconvolution. We identified 1,101 unique cell type defining sites Figure 3.6. Using 

these sites, we used the robust partial correlation algorithm to estimate the cellular 

composition of the 35 villous whole tissue samples collected in this study and Yuan et 

al. [201] (Error! Reference source not found.). Consistent with placental biology, cell c

omposition median (25th percentile, 75th percentile) estimates were 59.2% (52.7%, 

63.1%) syncytiotrophoblast, 20.1% (16.4%, 24.0%) stromal, 10.2% (8.1%, 13.0%) 

cytotrophoblast, 7.2% (6.3%, 8.5%) endothelial, and 1.4% (0.6%, 2.1%) Hofbauer cells. 

Other cell types had median estimates of less than 1%. Only CD4+ T cells and natural 

killer cells had median estimates above 0%. 

3.5 Discussion 

To provide the most reliable, generalizable, and versatile placental DNA 

methylation deconvolution reference to date, we generated primary cell type-specific 

DNA methylation profiles for placental cell types and integrated them with previously 

published samples. We successfully generated primary cell type-specific DNA 
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methylation profiles for placental cytotrophoblasts, fibroblasts, and Hofbauer cells. We 

uniformly processed and integrated these samples with previously published DNA 

methylation profiles of placental endothelial cells, Hofbauer cells, trophoblasts, stromal 

cells, and syncytiotrophoblasts, as well as nucleated red blood cells from umbilical cord 

blood and B cells, CD4+ T cells, CD8+ T cells, monocytes, natural killer cells, and 

neutrophils from adult blood. Differential methylation and gene ontology enrichment 

analyses characterized cell type-defining DNA methylation patterns and their associated 

biological processes. Finally, we confirmed in matched villous tissue samples, that 

deconvoluted cell type proportions were consistent with expected placental biology. This 

cell type DNA methylation reference panel can robustly estimate cell composition from 

placental DNA methylation data in epidemiological studies to detect unexpected non-

placental cell types, reveal biological mechanisms, and improve casual inference. 

The application of deconvolution techniques to address cell heterogeneity in bulk 

tissue molecular assays and especially its application to the placenta and DNA 

methylation is a developing field with limited findings. Prior studies were generally 

limited to one placental cell type and assessed DNA methylation on superseded 

microarray platforms [198–200]. Yuan et al., 2021 represented the most ambitious study 

to date in developing placental cell type-specific DNA methylation profiles for a 

deconvolution application [201]. Our independently collected samples were isolated 

using complementary alternative sorting and antigen marker strategies. Nonetheless, 

unsupervised clustering resulted in cell type-specific clustering as expected and 

deconvoluted bulk tissue proportions were consistent with Yuan et al., 2021’s estimates 

[201]. Despite the alternative cell sorting strategies, cytotrophoblasts clustered with 
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trophoblasts, fibroblasts clustered with stromal cells, and Hofbauer cells clustered with 

Hofbauer cells. 

There are several strengths to this study. We generated placental cell type-

specific DNA methylation profiles using established protocols to isolate placental 

cytotrophoblasts, fibroblasts, and Hofbauer cells [96, 98]. The additional independent 

samples we collected using magnetic activated cell sorting allowed for sample 

comparisons with other placental cell types to compare within and across study to 

identify sample outliers with unsupervised clustering and improve confidence in 

reference DNA methylation profiles, including using an externa resource to predict 

lineage identity [67]. By limiting our selection of DNA methylation microarray probes 

used for deconvolution to only those shared on the 450k and EPIC array platforms, our 

results will be generalizable to data generated on either platform. The inclusion of 

nonplacental immune cells in the deconvolution panel allows for the detection of 

intermingled nonplacental cell types, providing feedback for investigators on placental 

sampling techniques and identifying potentially cryptic or unexpected cell distribution 

patterns in study samples. A similar approach has proved beneficial in using DNA 

methylation data to verify sample-of-origin single nucleotide polymorphism and sex 

checks in DNA methylation studies to detect sample swaps or contamination [207].  

There are also limitations to this study. Despite applying an existing 

syncytiotrophoblast isolation protocol [95], we were unable to characterize 

syncytiotrophoblast samples that met our strict inclusion criteria. Our ability to confirm 

deconvolution performance was hampered by a lack of a gold standard reference. This 

is an ongoing limitation in the field. In situ cell counting strategies provide little 
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information about the overall tissue and placental cell sorting techniques are laborious 

and ill-suited to isolate the syncytiotrophoblast. Further developments in single-cell 

epigenetics approaches may ameliorate this limitation. Single-nuclei methods may 

enable more specific characterization of the syncytiotrophoblast [175]. Because current 

reference-based deconvolution approaches preclude the opportunity to transparently 

account for batch or confounding effects, particularly when combining data from 

different studies, our results may be biased by such factors. However, our unsupervised 

clustering approach highlighted cell type identity as the major driver of DNA methylation 

variation. 

In conclusion, this study developed a robust and flexible DNA methylation 

reference panel for term placental bulk villous tissue. We provide newly sequenced cell 

type-specific placental DNA methylation profiles and integrated our samples with 

existing data, including non-placental cell types that may be present in bulk villous 

tissue samples. Our independent samples isolated with a complementary approach 

allowed us to verify and biologically characterize placental cell type-defining DNA 

methylation profiles. Epigenetics is a promising and increasingly investigated approach 

to link environmental exposures to biological mechanisms of placental disease and 

dysfunction. The deconvolution approach developed here advances perinatal 

epidemiology by allowing investigators to model cell composition in complex study 

questions to address critical limitations of tissue-level DNA methylation measures. 
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3.6 Figures and Tables 

 

Figure 3.1 DNA methylation quality control inclusion/exclusion flow chart. 
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Figure 3.2 Low-dimensional representation of variable DNA methylation sites across all cell type and whole tissue samples shows samples cluster 
by cell type. Abbreviations: monocytes (Mono), natural killer cells (NK), neutrophils (Neu), and nucleated red blood cells (nRBC). 
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Figure 3.3 Placental cell type differential DNA methylation. Volcano plots comparing site-specific DNA methylation levels in one cell type against 
the average across all other cell types. 
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Figure 3.4 Upset plots of differential methylation results. Abbreviations: monocytes (Mono), natural killer cells (NK), neutrophils (Neu), and 
nucleated red blood cells (nRBC). 
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Figure 3.5 Upset plot of unique enriched pathways. Abbreviations: monocytes (Mono), natural killer cells (NK), 
neutrophils (Neu), and nucleated red blood cells (nRBC). 
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Figure 3.6 Heatmap of the cell type defining probes used for deconvolution. Color gradient represents percent methylation measure. 
Abbreviations: monocytes (Mono), natural killer cells (NK), neutrophils (Neu), and nucleated red blood cells (nRBC). 
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Figure 3.7 Reference-based cell composition estimates from whole placental villous tissue samples. Abbreviations: monocytes (Mono), natural 
killer cells (NK), neutrophils (Neu), and nucleated red blood cells (nRBC).
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Table 3.1 DNA methylation samples used for development of deconvolution reference. Abbreviations: monocytes (Mono), natural killer cells (NK), 
neutrophils (Neu), and nucleated red blood cells (nRBC). 
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4.1 Abstract 

Malapropos exposure to essential and toxic metals during pregnancy and to the 

placenta is widespread and linked to adverse perinatal outcomes. Healthy placental 

morphology is essential to pregnancy, but little is known about the effects of in utero 

metals exposure on placental cell composition at term. We analyzed samples from two 

prospective pregnancy cohort studies, the Markers of Autism Risk in Babies and 

Learning Early Signs (MARBLES n=83) and Early Autism Risk Longitudinal 

Investigation (EARLI) (n=94). Urinary metals (n=18) concentrations were measured 

during early and late gestation. Placental DNA methylation at birth was measured with 
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EPIC (MARBLES) or 450k (EARLI) Illumina microarrays. We estimated placental 

cellular composition via deconvolution with the DNA methylation external reference 

developed in Chapter 3. Beta regression models tested associations between metals 

concentrations (p=18) at each time point and each placental cell type proportion (p=5), 

adjusted for sex, gestational age, maternal race/ethnicity, maternal age, and maternal 

education. Primary effect estimates were meta-analyzed across cohorts at each time 

point. Consistent with placental biology, median (Q1, Q3) cell composition in EARLI was 

63.2% (59.0%, 68.0%) syncytiotrophoblast, 17.1% (15.1%, 19.4%) stromal, 7.8% (5.9%, 

10.7%) cytotrophoblast, 5.6% (4.4%, 7.6%) endothelial, and 1.2% (0.3%, 2.3%) 

Hofbauer cells. In MARBLES, estimated cell composition was 60.1% (54.6%, 68.0%) 

syncytiotrophoblast, 18.6% (13.3%, 22.3%) stromal, 5.6% (3.0%, 9.2%) cytotrophoblast, 

5.9% (4.1%, 7.6%) endothelial, and 2.9% (2.2%, 4.4%) Hofbauer cells. On average, 

69.8% of metals concentrations were positively correlated within each cohort and 

timepoint. Early gestation zinc median concentration (Q1, Q3) was 15.9 μg/L (135.7 

μg/L, 490.4 μg/L). At the mean cytotrophoblast cell type proportion across both cohorts 

of 7.8%, a doubling in early gestation zinc concentration was associated with a 0.8% 

mean decrement in cytotrophoblasts to 7.0% (POR = 0.89, 95% CI [0.82, 0.97], 

q=0.26). Late gestation barium median concentration was 2.4 μg/L (1.2 μg/L, 4.2 μg/L). 

At the mean Hofbauer cell type proportion across both cohorts of 2.3%, a doubling in 

late gestation barium concentration was associated with a 0.2% increment in Hofbauer 

cells to 2.5% (POR = 1.08, 95% CI [1.02, 0.14], q=0.25). Late gestation nickel median 

concentration was 4.6 μg/L (2.8 μg/L, 7.0 μg/L). Similarly, a doubling in late gestation 

nickel concentration was associated with a 0.4% increment in Hofbauer cell proportion 
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to 2.7% (POR = 1.16, 95% CI [1.05, 1.27], q=0.25). Late gestation cadmium median 

concentration was 0.1 μg/L (0.0 μg/L, 0.2 μg/L). At the mean syncytiotrophoblast cell 

type proportion across both cohorts of 62.5%, exposure to cadmium concentrations 

above the limit of detection was associated with a 3.0% mean decrement in 

syncytiotrophoblasts to 59.5% (POR = 0.88, 95% CI [0.78, 0.98], q=0.31). Late 

gestation copper median concentration was 9.2 μg/L (6.0 μg/L, 13.5 μg/L). At the mean 

endothelial cell type proportion across both cohorts of 6.1%, a doubling in late gestation 

copper concentration was associated with a 0.7% increment in endothelial cells to 6.8% 

(POR = 1.11, 95% CI [1.04, 1.18], q=0.24). We provide evidence that prenatal urinary 

metals concentrations are associated with term placental cell composition, which may 

have implications for increased disease risk related to disruption of placental structure 

as well as for molecular studies of the placenta that fail to account for potential cell 

composition differences. 

4.2 Introduction 

Prenatal exposure to known developmentally toxic heavy metals such as lead, 

cadmium, and mercury is associated with adverse health effects [213]. Similarly, 

overexposure or underexposure to essential metals such as selenium and manganese 

during pregnancy have been associated with adverse reproductive health outcomes 

[214–217]. Exposure to these metals is ubiquitous worldwide and has been 

demonstrated in pregnant women [218–221]. At varying concentrations, each of these 

metals has been discovered in maternal and fetal bio-samples, including the placenta 

[218–221]. Manganese and selenium cross the placental barrier, representing direct 

exposure to the developing fetus [222–224]. Lead and certain forms of mercury also 
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readily cross the placental barrier; conversely, cadmium and inorganic mercury do not 

appear to readily cross the placental barrier but do accumulate in the placenta, even 

serving as a metals exposure sink during pregnancy [225]. The placenta is directly 

exposed to each of these metals. How or if these or other essential or toxic metals 

impact placental structure, especially prenatally, is not well understood. 

 The placenta is the hallmark organ of gestation, fulfilling many core organ 

functions for the developing fetus as well as remodeling and maintaining the fetal-

maternal environment to sustain gestation [6, 8]. Healthy placental morphology is 

essential to placental function [6, 8]. Direct toxicological data on heavy metals exposure 

in animal models and limited evidence from human studies have identified associations 

between malapropos exposure to toxic and essential metals and disrupted placental 

morphology and function [226–228]. Existing data in humans is largely limited to gross 

histopathological evaluation of the placenta and small sample sizes due to the 

challenges of assessing metals exposure and placental morphology at scale, requiring 

substantial expertise, time, and cost. Reference-based in silico deconvolution has 

emerged as a cost-effective way to quantify the cell type composition from molecular 

assays of bulk tissue samples [46, 58, 59]. The application of recently available cell 

type-specific placental DNA methylation reference profiles (Chapter 3) may elucidate 

relationships between placental cell composition and metals concentrations at scale. 

Assessing the effects of perinatal concentrations of toxic and essential metals on 

term placental cell composition could provide insight into how metals may affect 

placental structure and subsequent function. Importantly, metals could be targeted for 

remediation or mitigating therapies to reduce the harmful effects of metals exposure on 
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a public health scale. Here, in two prospective birth cohorts, we test the hypothesis that 

prenatal concentrations of essential or toxic metals as measured by maternal urinary 

metals concentrations during early or late gestation affect the abundance of cell types in 

the term placenta as estimated via the reference-based DNA methylation deconvolution 

approach developed in Chapter 3. 

4.3 Methods 

4.3.1 Study sample description  

We analyzed samples from the Markers of Autism Risk in Babies and Learning 

Early Signs (MARBLES) and the Early Autism Risk Longitudinal Investigation (EARLI) 

prospective birth cohorts. Each cohort recruits pregnant women who have already given 

birth to a proband already diagnosed with autism spectrum disorder and follows the 

participants for a postnatal 3 years. 

The Early Autism Risk Longitudinal Investigation (EARLI): EARLI [229] is a family 

history-enriched [230] prospective cohort study. Pregnant women who have had a 

previous child (proband) with an autism spectrum disorder diagnosis are recruited and 

followed until the sibling of the proband reaches three years of age, referred to as the 

sibling (n=233 mother-child dyads) between November 2009 and March 2012. Inclusion 

criteria included: have had a biological child diagnosed with autism spectrum disorder, 

competent to communicate in English (or Spanish at two sites), 18 years of age or 

older, live within two hours of a study site, and no more than 28 weeks pregnant. 

Exposure assessment was performed during prenatal care visits with sibling bio-

samples collected at delivery. EARLI study sites include Philadelphia (Drexel 

University), Baltimore (Johns Hopkins University), San Francisco/Oakland (Northern 
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California Kaiser), and Sacramento (University of California at Davis). Pregnant women 

were recruited from early intervention and special education systems and specialty 

clinics. In San Francisco/Oakland, participants were recruited from Kaiser Permanente 

enrollees. In Sacramento, participants were recruited from children receiving services 

through the California Department of Developmental Services. 

Markers of Autism Risk in Babies and Learning Early Signs (MARBLES): 

MARBLES [231] is also a family history-enriched [230] prospective cohort study. 

Pregnant women or women planning another pregnancy who have had a previous child 

(proband) with an autism spectrum disorder diagnosis are recruited and followed until 

the sibling of the proband reaches three years of age, referred to as the sibling (n=389 

women, 425 children) between December 2006 and July 2016. Pregnant women whose 

children would be related as a half-sibling or a closer relative to a proband were also 

recruited. Participants were recruited from children receiving services through the 

California Department of Developmental Services. Other inclusion criteria included 

competent to communicate in English, 18 years of age or older, and live within 2.5 

hours of the Davis/Sacramento California study area. Exposure assessment was 

performed during prenatal care visits with sibling bio-samples collected at delivery. 

4.3.2 Exposure assessment and operationalization 

Metal exposure measures in both cohort studies were collected from first void 

urine samples collected during prenatal care visits. In EARLI, urinary bio-samples were 

collected at two time points during the 1st trimester or early 2nd trimester and during the 

3rd trimester. In MARBLES, urinary bio-samples were collected at two time points during 

the 2nd and 3rd trimesters. We collapsed EARLI metals measures during 1st trimester or 
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early 2nd trimester into one timepoint called early gestation. In MARBLES, 2nd trimester 

samples were also classified as early gestation. In EARLI and MARBLES, we refer to 

3rd trimester samples as late gestation. We visualized the distributions of metals 

concentrations by time point and cohort using violin plots in Figure 4.3. 

Inductively coupled plasma mass spectrometry was used to characterize 

multiplexed metals levels across 22 metals: antimony, arsenic, barium, cadmium, 

cesium, chromium, cobalt, copper, lead, manganese, mercury, molybdenum, nickel, 

selenium, thallium, tin, tungsten, and zinc. Mass spectrometry was carried out by NSF 

International using the CDC Laboratory Procedure Manual’s Urine Multi-Element ICP-

DRC-MS #3018.3, modified to increase multiplex capacity on the Thermo Scientific 

iCAP RQ. Urine specific gravity was assayed using an ATAGO model PAL-10S 

refractometer, using water as the control sample. We accounted for urinary dilution by 

including specific gravity as a covariate in the statistical analysis . Metal concentrations 

below the limit of detection were imputed as the limit of detection divided by the square 

root of two [232]. Metal concentrations (μg/L) were log2 transformed and modelled 

continuously to account for skewed metal concentrations and provide interpretable 

effect estimates as a doubling in exposure concentration. Alternatively, metals with 

below limit of detection rates >30% were dichotomized as exposed versus unexposed 

for statistical analysis. We visualized the inclusion and operationalization of metals 

using a flow chart. 

4.3.3 Placental bio-sample collection and DNA methylation measurements 

In EARLI, full thickness tissue punches from a centrally located placental 

cotyledon and whole umbilical cord blood were collected at delivery. Forceps were used 
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to extract placental tissue from the fetal side of the placenta, which was archived 

alongside the umbilical cord blood samples at the Johns Hopkins Biological Repository 

at -80ºC. DNA was collected from placental samples via the DNeasy Tissue Kit 

(Qiagen) and quantified with a Nanodrop (ThermoFisher). Cord blood DNA was 

extracted via the DNA Midi kit (Qiagen) and quantified with a Nanodrop (ThermoFisher). 

Normalized DNA aliquots were sent to the Center for Inherited Disease Research 

(Johns Hopkins University) for bisulfite conversion and cleanup with the EZ DNA 

methylation gold kit (Zymo Research) according to manufacturer’s instructions. DNA 

methylation was assessed via the Infinium HumanMethylation450 BeadChip microarray 

(Illumina) [233]. Samples were randomly assigned across plates and methylation control 

gradient and between-plate duplicated tissue controls were used. 

In MARBLES, placental tissue was immediately collected from the fetal chorionic 

villus and frozen. Samples were stored at -80ºC in the UC Davis biorepository. Placental 

DNA was extracted with the Gentra Puregene kit (Qiagen). Placental DNA was bisulfite 

converted and cleaned via the EZ DNA methylation gold kit (Zymo Research) and sent 

to the John Hopkins SNP Center, a processing center shared with the Center for 

Inherited Disease Research (Johns Hopkins University). DNA methylation was 

measured via the Infinium HumanMethylationEPIC BeadChip microarray (Illumina). 

Samples were randomly assigned across plates and methylation control gradient and 

between-plate duplicated tissue controls were used. 

4.3.4 Placental DNA methylation preprocessing and quality control 

EARLI placenta (n=133) and cord blood samples (n=175) were run together in 

two batches on the 450k array and so were preprocessed together. We processed raw 
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Illumina image files with minfi, R package v1.30.0 in R, v3.6 [206]. We applied Noob 

background correction and dye-bias normalization [234]. Samples with discordant DNA 

methylation-predicted and actual fetal sex were excluded (placenta, n=0 excluded; cord 

blood, n=3 excluded) from downstream preprocessing steps. We excluded 661 

microarray probes with >5% failure rate for detection p-value >0.01, 29,153 cross-

reactive probes [235], and 48 Y chromosome probes. After exclusion of 5 non-singleton 

births, there were 128 EARLI placenta samples across 455,650 DNA methylation sites 

available for analysis. All downstream DNA methylation analyses used beta values, or 

the methylation rate for a given site. 

MARBLES placental samples (n=92) measured on the EPIC microarray were 

preprocessed separately from the EARLI samples. We processed raw Illumina image 

files with minfi, R package v1.30.0 in R, v3.6 [206]. We applied Noob background 

correction and dye-bias normalization [234]. No samples had discordant DNA 

methylation-predicted and actual fetal sex. We excluded 1699 microarray probes with 

>5% failure rate for detection p-value >0.01, 43,068 cross-reactive probes [236], and 84 

Y chromosome probes. We excluded 2 subsequent siblings from downstream analysis. 

90 MARBLES placenta samples across 821,008 DNA methylation sites were available 

for analysis. All downstream DNA methylation analyses used beta values, or the 

methylation rate for a given site. 

4.3.5 Outcome assessment and operationalization 

Placental cell composition was the primary outcome of interest. Cell composition 

proportions were estimated via deconvolution using the deconvolution reference 

developed in Chapter 3.4.4 via the robust partial correlation algorithm implemented in 
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EpiDISH R package, v2.8.0 [83] in R, v3.5.3. In EARLI, 1096 of 1101 deconvolution 

reference DNA methylation sites were available for analysis. In MARBLES, 1092 of 

1101 deconvolution reference DNA methylation sites were available for analysis. EARLI 

and MARBLES datasets were deconvoluted separately on this basis. Cell proportions 

were estimated for cytotrophoblasts, endothelial cells, Hofbauer cells, stromal cells, 

syncytiotrophoblasts, nucleated red blood cells, B cells, CD4+ T cells, CD8+ T cells, 

monocytes, natural killer cells, and neutrophils. We visualized the distribution of 

estimated placental cell composition by cohort using a scatter plot in Figure 4.4. 

4.3.6 Potential confounders and covariates 

Both EARLI and MARBLES collected extensive longitudinal behavioral, medical 

history, health, and sociodemographic information through maternal self-report 

questionnaires. We considered fetal sex, gestational age, maternal race/ethnicity, 

maternal age, and maternal education to be potential confounders of the relationship 

between prenatal metals concentrations and term placental cell composition. 

Gestational age was operationalized continuously in weeks, maternal race/ethnicity was 

dichotomized as white vs. non-white, maternal age was operationalized continuously in 

years, and maternal education was dichotomized as less than a bachelor’s degree vs. a 

bachelor’s degree or higher. We described the sample and time point specific 

distributions of continuous covariates using mean and standard deviation and the 

distributions of categorical variables using count and frequency in Table 4.1 via 

gtsummary R package v1.7.0 [237]. 

4.3.7 Analytic sample inclusion and exclusion criteria 
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From participants with available placental DNA methylation information, we 

excluded individuals from non-singleton births, subsequent siblings born to the same 

mother, participants missing metals concentrations, and participants missing any 

covariate information. We visualized sample inclusion using a flow chart in Figure 4.1. 

4.3.8 Statistical analysis 

All analyses were conducted in R v3.5.3 unless otherwise noted. Parametric and 

nonparametric statistical tests were used as appropriate to test differences between 

cohort sample characteristics. Chi-square tests were used to test differences between 

categorical variables. We used Spearman correlation matrices with the corrplot R 

package v0.92 [238] to test exposure-exposure and exposure-outcome bivariate 

associations within cohort samples at each time point. To test the association between 

individual cell type proportions and individual urinary metal concentrations at each time 

point, cell type-specific beta regression models (n=12 cell types) adjusted for maternal 

age (continuous), maternal education (binary), maternal race/ethnicity (binary), maternal 

urinary specific gravity (continuous), fetal gestational age (continuous), and fetal sex 

(binary) were used. The prevalence (a proportion, here) odds ratio (POR) was 

calculated by exponentiating beta regression model coefficients in the betareg R 

package v3.1-4 [239] as the primary effect measure of association. For continuous 

exposure measures (μg/L), concentrations were log2 transformed such that a 1-unit 

increase in the exposure corresponds to a doubling in metal concentration. For 

dichotomized metals measures, each observation was dichotomized as exposed if 

above limit of detection or unexposed if below the limit of detection. All statistical tests 

were interpreted, and all confidence intervals calculated, at an alpha level of 0.05 unless 
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otherwise noted. We visualized the results using forest plots separated by metal, cohort, 

and timepoint (Figure 4.7-Figure 4.11). Finally, due to the similar in cohort 

characteristic, we applied fixed effect inverse variance weighted meta-analysis across 

cohorts within gestation timepoint and assessed heterogeneity with Cochran’s Q test 

and I2 via the metagen R package v6.2-1 [240] in R v4.2.2 [241]. Meta-analyzed p-

values were corrected for multiple comparisons with Benjamini-Hochberg false 

discovery rate (FDR) adjustment [242]; top hits were considered for FDR < 0.33. If top 

hits exhibited evidence of heterogeneity via a Cochran’s Q test p-value < 0.05 and I2 > 

50%, we reran the metanalytic model as a random effects model and reported the 

result. 

4.4 Results 

4.4.1 Analytic sample description 

In EARLI, of 133 participants with placental DNA methylation measures, we 

excluded 5 with non-singleton births, 28 that had missing metals exposure information, 

and 6 missing covariate information, leaving 94 observations for analysis. All 94 had 

information exposure information captured during the 1st trimester or early 2nd trimester 

(early gestation) and 79 had exposure information captured during the 3rd trimester (late 

gestation). In MARBLES, of 92 participants with placental DNA methylation measures, 

we excluded 2 observations that represented subsequent siblings from the same family, 

7 participants with missing metals exposures, and no participants were missing 

covariate information, leaving 83 participants for analysis. Of these, 59 had exposure 

information captured in the 2nd trimester (early gestation), and 79 had exposure 

information captured during the 3rd trimester (late gestation) (Error! Reference source n
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ot found.). EARLI and MARBLES covariate characteristics were comparable across 

fetal sex, gestational age, maternal race/ethnicity, maternal age, and maternal 

education. Specific gravity metrics were lower in the MARBLES sample compared to 

the EARLI sample (Table 4.1). 

4.4.2 Exposure distribution and operationalization 

Of the 22 multiplexed urinary metals measured, we excluded 4 (Be, Pt, U, V) that 

had less than 10% of samples measured above the limit of detection. Of the remaining 

18 metals, we dichotomized 5 (Sb, Cd, Cr, Pb, W) that had more than 30% of samples 

measured below the limit of detection. Exposed status was defined as above limit of 

detection and unexposed was defined as below limit of detection. These criteria led to 

consistent cut points and exclusion results across the EARLI and MARBLES metals 

samples (Figure 4.2). The final sample included 18 metals for analysis for both cohort 

samples (Figure 4.3). In EARLI, chromium and mercury were detected at higher 

concentrations in early compared to late gestation samples whereas the opposite was 

observed with cobalt and thallium (Table 4.2). In MARBLES, barium, cobalt, and copper 

were detected at higher concentrations in late compared to early gestation samples 

(Table 4.3). 

4.4.3 Outcome assessment and operationalization 

We successfully deconvoluted placental DNA methylation measures for all 94 

EARLI and 83 MARBLES samples across 12 cell types. In EARLI, median (Q1, Q3) cell 

composition in EARLI was 63.2% (59.0%, 68.0%) syncytiotrophoblast, 17.1% (15.1%, 

19.4%) stromal, 7.8% (5.9%, 10.7%) cytotrophoblast, 5.6% (4.4%, 7.6%) endothelial, 



 129 

and 1.2% (0.3%, 2.3%) Hofbauer cells. In MARBLES, estimated cell composition was 

60.1% (54.6%, 68.0%) syncytiotrophoblast, 18.6% (13.3%, 22.3%) stromal, 5.6% (3.0%, 

9.2%) cytotrophoblast, 5.9% (4.1%, 7.6%) endothelial, and 2.9% (2.2%, 4.4%) Hofbauer 

cells.  (Figure 4.4). Deconvolution estimates were consistent with expected placental 

biology: the majority of tissue cell composition was estimated to be trophoblast and 

stromal in origin. Median composition estimates for peripheral immune and nucleated 

red blood cells were less than 1%. B cells, cytotrophoblasts, CD4+ T cells, and 

monocytes were more abundant in EARLI than MARBLES. Hofbauer cells, Natural killer 

cells, and neutrophils were more abundant in MARBLES than EARLI (Table 4.4). We 

now focus on placental cell types for the remainder of the manuscript because the non-

placental cell types examined were estimated to be of very small proportions, cohort 

sampling techniques actively avoided their collection, and they are not central to our 

hypothesis that in utero metals concentrations affects placental cell composition at term. 

4.4.4 Bivariate associations between metals concentrations and term placental 

cell type proportions 

We examined exposure-exposure and exposure-outcome bivariate associations 

within cohort samples during early gestation (Figure 4.5) and late gestation (Figure 4.6) 

using Spearman correlation matrices. Metals measures were generally positively 

correlated within cohorts during early and late gestation time points. Of 153 unique 

pairwise metals concentrations comparisons, 118 were positively and 2 negatively 

correlated in EARLI during early gestation while 109 were positively and 1 negatively 

correlated during late gestation. In MARBLES, 95 were positively and 1 negatively 
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correlated during early gestation while 105 were positively and 0 negatively correlated 

during late gestation.  

Bivariate associations between metals concentrations during early and late 

gestation and cell composition were observed in both cohorts. In EARLI, early gestation 

levels of manganese, molybdenum, and selenium and late gestation levels of cadmium, 

cesium, and chromium were inversely associated with syncytiotrophoblast proportion 

abundance. Higher early gestation mercury levels were associated with lower Hofbauer 

cell proportion abundance while late gestation cesium, nickel, and thallium levels were 

associated with higher Hofbauer cell abundance. Higher early gestation molybdenum, 

late gestation cesium, cobalt, copper, nickel, and selenium levels were associated with 

higher endothelial proportion abundance. In MARBLES, higher early gestation lead and 

tin and higher late gestation barium concentrations were associated with lower 

syncytiotrophoblast proportions abundance. Higher early gestation barium, cesium, 

copper, lead, molybdenum, nickel, selenium, and tin concentrations were associated 

with higher Hofbauer cell proportion abundance. Higher early gestation tin was also 

associated with higher stromal and endothelial proportion abundances. Higher late 

gestation barium, cobalt, lead, nickel, and zinc concentrations were associated with 

higher Hofbauer cell proportion abundance. Higher late gestation molybdenum 

concentration was associated with higher cytotrophoblast proportion abundance. Higher 

late gestation lead concentration was associated with higher stromal proportion 

abundance. Higher late gestation tin concentration was associated with higher 

endothelial proportion abundance. The less abundant non-placental cell types examined 
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had mixed associations with metals concentrations in both cohorts during early and late 

gestation. 

4.4.5 Association testing between early gestation metals concentrations and term 

placental cell type proportions 

To identify adjusted associations between early or late gestation metals 

concentrations and term placental cell type proportions, we used beta regression to 

model cell type proportions individually adjusting for the potential confounders maternal 

age, maternal education, maternal race/ethnicity, fetal gestational age, fetal sex, and 

urinary specific gravity to account for urine concentration. The primary effect estimate 

was the prevalence odds ratio (POR) associated with a doubling in metal concentration 

exposure or exposed vs. unexposed if the metal concentration was dichotomized at the 

limit of detection. 

In EARLI, of toxic metals, a doubling in early gestation barium concentration 

(POR = 1.13, 95% CI [1.03, 1.25]) and thallium level (POR = 1.18, 95% CI [1.01, 1.38] 

were associated with increased cytotrophoblast abundance (Figure 4.7). A doubling in 

barium concentration was associated with decreased Hofbauer cell abundance (POR = 

0.90, 95% CI [0.81, 0.99]. A doubling in mercury concentration was associated with 

decreased abundance of stromal cells (POR = 0.93, 95% CI [0.88, 0.99]). Of essential 

metals, copper was inversely associated with endothelial cell abundance (POR = 0.83, 

95% CI [0.72, 0.95). Manganese was inversely associated with syncytiotrophoblast 

abundance (POR = 0.93, 95% CI [0.88, 0.99]) and positively associated with stromal 

abundance (POR = 1.07, 95% CI [1.01, 1.14]). Selenium was positively associated with 

cytotrophoblast abundance (POR = 1.19, 95% CI [1.03, 1.38]). 
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In MARBLES, a doubling in tin concentration during early gestation was 

positively associated with endothelial cell abundance (POR = 1.12, 95% CI [1.03, 1.21]) 

(Figure 4.8). Also in MARBLES, a doubling in zinc concentration during early gestation 

was associated with a decrease in cytotrophoblast abundance (POR = 0.82, 95% CI 

[0.70, 0.97]) and positively associated with Hofbauer cell abundance (POR = 1.13, 95% 

CI [1.02, 1.25]). 

Finally, we meta-analyzed early gestation cell composition results across both 

cohorts for each metal (Figure 4.9). Zinc was the only top hit in the early gestation 

metals meta-analysis. Early gestation zinc median concentration (Q1, Q3) across both 

cohorts was 15.9 μg/L (135.7 μg/L, 490.4 μg/L). At the mean cytotrophoblast cell type 

proportion across both cohorts of 7.8%, a doubling in early gestation zinc concentration 

was associated with a 0.8% decrement to 7.0% (POR = 0.89, 95% CI [0.82, 0.97], 

q=0.26). There was little evidence of heterogeneity in zinc effect estimates between the 

two cohorts (p = 0.20, I2 = 38%). 

4.4.6 Association testing between late gestation metals concentrations and term 

placental cell type proportions 

In EARLI, of nonessential metals, a doubling in cesium (POR = 1.19, 95% CI 

[1.00, 1.40]) and nickel (POR = 1.17, 95% CI [1.00, 1.36]) concentration during late 

gestation was associated with an increased abundance of Hofbauer cells (Figure 4.10). 

Exposure to lead concentration above the limit of detection was associated with an 

increased abundance of endothelial cells (POR = 1.22, 95% CI [1.00, 1.49]). Higher 

cadmium concentration was associated with a decreased abundance of 

syncytiotrophoblast (POR = 0.87, 95% CI [0.76, 0.99]). Higher tungsten concentration 
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was associated with a decreased abundance of cytotrophoblasts (POR = 0.51, 95% CI 

[0.28, 0.91]). Of essential metals, a doubling in selenium concentration was associated 

with decreased stromal (POR = 0.91, 95% CI [0.83, 0.99]) and increased endothelial 

cell abundance (POR = 1.12, 95% CI [1.00, 1.25]). 

In MARBLES, of nonessential metals, a doubling in barium concentration during 

late gestation was inversely associated with syncytiotrophoblast abundance (POR = 

0.94, 95% CI [0.88, 0.98) and associated with increased Hofbauer cell (POR = 1.13, 

95% CI [1.05, 1.22]) and stromal cell abundances (POR = 1.10, 95% CI [1.01, 1.21]) 

(Figure 4.11). Higher nickel concentration was associated with higher Hofbauer cell 

abundance (POR = 1.16, 95% CI [1.02, 1.31]). Tin concentration was associated with 

higher endothelial cell abundance (POR = 1.08, 95% CI [1.02, 1.14]). Exposure to 

cadmium concentration above the limit of detection was associated with increased 

Hofbauer cell abundance (POR = 1.28, 95% CI [1.01, 1.63]). Of essential metals, a 

doubling in cobalt (POR = 1.12, 95% CI [1.00, 1.26] or zinc (POR = 1.10, 95% CI [1.00, 

1.20] concentration was associated with an increase in Hofbauer cell abundance. 

Copper was associated with increased endothelial cell abundance (POR = 1.11, 95% CI 

[1.02, 1.21]). 

Finally, we meta-analyzed late gestation cell composition results across both 

cohorts for each metal (Figure 4.12). We observed 5 top hits in the late gestation 

metals meta-analysis. Late gestation barium median concentration (Q1, Q3) across 

both cohorts was 2.4 μg/L (1.2 μg/L, 4.2 μg/L). At the mean Hofbauer cell type 

proportion across both cohorts of 2.3%, a doubling in late gestation barium 

concentration was associated with a 0.2% increment to 2.5% (POR = 1.08, 95% CI 
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[1.02, 0.14], q=0.25). Similarly, a doubling in late gestation nickel concentration was 

associated with a 0.4% increment in expected Hofbauer cell proportion to 2.7% (POR = 

1.16, 95% CI [1.05, 1.27], q=0.25). At the mean syncytiotrophoblast cell type proportion 

across both cohorts of 62.5%, exposure to cadmium concentrations above the limit of 

detection was associated with a 3.0% decrement to 59.5% (POR = 0.88, 95% CI [0.78, 

0.98], q=0.31). At the mean endothelial cell type proportion across both cohorts of 6.1%, 

a doubling in late gestation copper concentration was associated with a 0.7% increment 

to 6.8% (POR = 1.11, 95% CI [1.04, 1.18], q=0.24). At the mean cytotrophoblast cell 

type proportion across both cohorts of 7.8%, exposure to tungsten concentrations 

above the limit of detection was associated with a 2.5% decrement to 5.3% (POR =0.67, 

95% CI [0.40, 0.94], q=0.31). We did observe evidence of heterogeneity in 

tungsten/cytotrophoblast effect estimates between the two cohorts (p = 0.05, I2 = 74%) 

with the majority of the weighting coming from the EARLI cohort (74.7%). In a random 

effects meta-analysis model, exposure to tungsten concentrations above the limit of 

detection was not associated with changes in cytotrophoblast cell type proportions 

(POR =0.78, 95% CI [0.18, 1.39]). 

4.5 Discussion 

 In summary, this study investigated the relationships between in utero urinary 

metals concentrations during early or late gestation to 18 nonessential or essential 

metals and estimated term placental cell composition from DNA methylation 

microarrays in two prospective birth cohorts with meta-analysis. At the mean 

cytotrophoblast cell type proportion across both cohorts of 7.8%, a doubling in early 

gestation zinc concentration was associated with a 0.8% decrement to 7.0% (POR = 
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0.89, 95% CI [0.82, 0.97], q=0.26). At the mean Hofbauer cell type proportion across 

both cohorts of 2.3%, a doubling in late gestation barium concentration was associated 

with a 0.2% increment to 2.5% (POR = 1.08, 95% CI [1.02, 0.14], q=0.25). Similarly, a 

doubling in late gestation nickel concentration was associated with a 0.4% increment in 

expected Hofbauer cell proportion to 2.7% (POR = 1.16, 95% CI [1.05, 1.27], q=0.25). 

At the mean syncytiotrophoblast cell type proportion across both cohorts of 62.5%, 

exposure to cadmium concentrations above the limit of detection was associated with a 

3.0% decrement to 59.5% (POR = 0.88, 95% CI [0.78, 0.98], q=0.31). At the mean 

endothelial cell type proportion across both cohorts of 6.1%, a doubling in late gestation 

copper concentration was associated with a 0.7% increment to 6.8% (POR = 1.11, 95% 

CI [1.04, 1.18], q=0.24). We provide evidence that prenatal metals levels may affect 

term placental cell composition which has implications for placental function and 

disease related to placental dysfunction as well as for molecular studies of the placenta 

that fail to account for potential cell composition differences. 

 Our findings are consistent with previous direct toxicological evidence that 

prenatal exposure to cadmium affects placental morphology in animal models and 

indirect evidence through reduced neonatal development in humans indicative of 

placental dysfunction [226]. Consistent with our observation of decreased 

syncytiotrophoblast abundance with late gestation cadmium concentrations, a 2013 

study of 14 pregnant women revealed increased syncytial knotting and fibrinoid deposits 

in women with placental cadmium level ≥ 15 mg/kg, and placental cadmium levels were 

positively correlated with urinary levels [227]. Zinc was associated with placental cell 

composition in early gestation. In pregnant mice, a 26% reduction in zinc levels altered 
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placental morphogenesis leading to an 8% reduction in fetal and placental weights, 

likely by reducing arterial blood pressure [228]. Further research, particularly in human 

populations, is required to fully understand the apparent links between prenatal metals 

concentrations and placental cell composition. 

The heterogeneity in effect estimates at different gestational exposure timings 

may be due to differing windows of cell-specific biological susceptibility to in utero 

metals concentrations. Differences in cytotrophoblast abundance were only associated 

with early gestation zinc concentrations (POR = 0.89, 95% CI [0.82, 0.97], q=0.26). This 

may reflect the lasting effects of metal levels during early placental development, which 

is characterized primarily by trophoblast proliferation and differentiation [243]. Hofbauer, 

endothelial, and syncytiotrophoblast proportions were uniquely associated with late 

gestation metal levels. Hofbauer cells are thought to play a key role in placenta 

morphogenesis and homeostasis, particularly in vasculogenesis [12, 244]. A recent 

review of in vitro and animal models posited vasculogenesis as a target of teratogenic 

metal toxicity [245]. Our results particularly implicate the divalent cations barium, 

cadmium, nickel, copper, and zinc, which can be transported by divalent metal 

transporter-1 (DMT-1) [246]. Indeed, DMT-1 has been detected immunohistochemically 

in primary human placental syncytiotrophoblast, Hofbauer cells, and endothelial cells, 

representing potential direct exposure of these cell types to divalent metals in late 

gestation, all of which were associated with late gestation divalent metal concentrations 

in this analysis [247]. The same study demonstrated that DMT-1 expression and 

abundance was increased in cadmium-exposed pregnant women, highlighting metal 

response elements found in genes regulating essential and nonessential metals 
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concentrations such as the metallothioneins ZnT-1 and MTF-1 [247]. Maternal barium 

exposure has been recently linked to congenital heart defects, orofacial clefts, and 

neural tube defects [248–250]. Altered placental cell composition and morphology may 

be a consequence of or response to metals insults and may increase subsequent 

disease risk by altering placental structure and possibly function. 

There are several strengths to this investigation. This study provides a pioneering 

example of applying a scalable reference-based deconvolution to large, well-

characterized prospective birth cohort studies, leveraging existing molecular data to 

investigate novel questions about placental morphology. We ruled out excessive 

comingling of nonplacental immune cells in the EARLI and MARBLES DNA methylation 

samples by using an updated deconvolution reference panel developed in Chapter 3. 

Exposure assessment was a strength of the study, capturing specific gravity and 

multiplexed metals measures across 18 metals in both early and late gestation to allow 

for the detection of potential heterogeneous effect estimates at different gestational 

timings across many metals. 

 There are also limitations to this study. Urinary metals concentrations, in 

particular of essential metals, are reflective of metabolism in addition to exogeneous 

exposure and so must be interpreted with caution. Metal co-exposures may confound 

the association between an individual metal and cell composition outcomes. Alternative 

metals mixture modelling strategies could be employed to quantify joint mixture 

exposures with tradeoffs between model performance and interpretability of model 

results [251]. However, metals measures were positively correlated within time point 

and cohort, generally reflecting a common exposure mixture to all metals 
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simultaneously. Our statistical models did not account for potential nonlinear 

associations, which could be particularly relevant for the essential metals tested [252]. 

However, the distributions of metals observed in our study did not indicate deficiencies 

of essential metals. Our results may not be generalizable to the general population 

because both EARLI and MARBLES employ an autism spectrum disorder enriched-risk 

design. 

 This study investigated the relationship between prenatal metals concentrations 

during early or late gestation and placental cell composition at term, estimated using a 

novel reference panel to deconvolute bulk DNA methylation data. We observed 

associations between essential, nonessential, and toxic metals in early and late 

gestation and term placental cell type proportions that are essential to placental 

function. Our results demonstrate the utility of deploying scalable deconvolution 

approaches to epidemiologic samples to understand the effects of environmental 

exposures on placental morphology. Further research is required to elucidate the 

etiology of adverse perinatal outcomes downstream of disturbed placental morphology 

and concomitant dysfunction to develop new interventions and prioritize environmental 

exposures for public health prevention efforts. 
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4.6 Figures and Tables 

 

Figure 4.1 Participant inclusion/exclusion flow chart. 
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Figure 4.2 Inclusion/exclusion criteria and operationalization flow chart for prenatal urinary metals exposures. 
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Figure 4.3 Exposure distribution between Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk in Babies and Learning 
Early Signs (MARBLES) cohort samples. Metals concentrations were measured in urine bio-samples via inductively coupled mass spectrometry. 
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Figure 4.4 Deconvolution cell type proportions estimates for placental DNA methylation samples by cohort sample. Abbreviations: monocytes 
(Mono), natural killer cells (NK), neutrophils (Neu), and nucleated red blood cells (nRBC). 
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Figure 4.5 Bivariate associations with Spearman correlation plots for early pregnancy metals exposure across EARLI and MARBLES cohorts. 
Significant correlations with p-value < 0.05 denoted with asterisk. Color bar corresponds to Spearman correlation estimates. Abbreviations: 
monocytes (Mono), natural killer cells (NK), neutrophils (Neu), and nucleated red blood cells (nRBC). 
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Figure 4.6 Bivariate associations with Spearman correlation plots for late pregnancy metals exposure across EARLI and MARBLES cohorts. 
Significant correlations with p-value < 0.05 denoted with asterisk. Color bar corresponds to Spearman correlation estimates. Abbreviations: 
monocytes (Mono), natural killer cells (NK), neutrophils (Neu), and nucleated red blood cells (nRBC). 
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Figure 4.7 Forest plot of prevalence odds ratio estimates of cell composition changes in EARLI for a doubling in early gestation exposure 
concentration or exposed versus unexposed for the metals marked with an asterisk. Line segments represent 95% confidence intervals. Red color 
denotes statistical significance. Abbreviations: monocytes (Mono), natural killer cells (NK), neutrophils (Neu), and nucleated red blood cells 
(nRBC). 
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Figure 4.8 Forest plot of prevalence odds ratio estimates of cell composition changes in MARBLES for a doubling in early gestation exposure 
concentration or exposed versus unexposed for the metals marked with an asterisk. Line segments represent 95% confidence intervals. Red color 
denotes statistical significance. Abbreviations: monocytes (Mono), natural killer cells (NK), neutrophils (Neu), and nucleated red blood cells 
(nRBC). 
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Figure 4.9 Volcano plot of inverse variance weighted meta-analyze prevalence odds ratio estimates of cell composition changes for a doubling in 
early gestation exposure concentration or exposed versus unexposed for the metals marked with an asterisk. Horizontal dashed line indicates 
nominal p-value of 0.05. Vertical dashed line indicates a null effect estimate of 1. Labelled points indicate a top hit with false discovery rate-
adjusted q-value < 0.33. 
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Figure 4.10 Forest plot of prevalence odds ratio estimates of cell composition changes in EARLI for a doubling in late gestation exposure 
concentration or exposed versus unexposed for the metals marked with an asterisk. Line segments represent 95% confidence intervals. Red color 
denotes statistical significance. Abbreviations: monocytes (Mono), natural killer cells (NK), neutrophils (Neu), and nucleated red blood cells 
(nRBC). 
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Figure 4.11 Forest plot of prevalence odds ratio estimates of cell composition changes in MARBLES for a doubling in late gestation exposure 
concentration or exposed versus unexposed for the metals marked with an asterisk. Line segments represent 95% confidence intervals. Red color 
denotes statistical significance. Abbreviations: monocytes (Mono), natural killer cells (NK), neutrophils (Neu), and nucleated red blood cells 
(nRBC). 
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Figure 4.12 Volcano plot of inverse variance weighted meta-analyze prevalence odds ratio estimates of cell composition changes for a doubling in 
early gestation exposure concentration or exposed versus unexposed for the metals marked with an asterisk. Horizontal dashed line indicates 
nominal p-value of 0.05. Vertical dashed line indicates a null effect estimate of 1. Labelled points indicate a top hit with false discovery rate-
adjusted q-value < 0.33.
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Table 4.1 Sample descriptive statistics for EARLI and MARBLES samples. Statistical testing compares 
the distribution of demographic variables across cohorts. 

Characteristic EARLI, N = 941 MARBLES, N = 831 p-value2 

Child Sex   0.3 

    Female 40 (43%) 29 (35%)  

    Male 54 (57%) 54 (65%)  

Gestational Age (wks) 
39.40 (39.00, 

40.00) 

39.14 (38.86, 

39.86) 
0.3 

Maternal Age 34.0 (31.0, 37.0) 34.8 (30.8, 39.0) 0.5 

Maternal Race/ethnicity   0.5 

    White 51 (54%) 41 (49%)  

    Non-white 43 (46%) 42 (51%)  

Maternal Education   0.3 

    Less than Bachelor's 

Degree 
38 (40%) 40 (48%)  

    Bachelor's or higher 56 (60%) 43 (52%)  
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Characteristic EARLI, N = 941 MARBLES, N = 831 p-value2 

Specific Gravity 
1.016 (1.011, 

1.022) 

1.013 (1.009, 

1.018) 
0.004 

Illumina Array Type    

    450k 94 (100%) 0 (0%)  

    EPIC 0 (0%) 83 (100%)  

1 n (%); Median (IQR) 

2 Pearson's Chi-squared test; Wilcoxon rank sum test 

 

 

 

Table 4.2 Urinary metals distributions, median (Q1, Q3) for the EARLI cohort sample stratified by Early 
vs. Late Gestation timepoints. 

Metal 

EARLI (μg/L) 

p-value2 Early, N = 941 Late, N = 841 

Antimony 0.04 (0.03, 0.07) 0.05 (0.03, 0.07) >0.9 

Arsenic 7.36 (4.53, 17.99) 6.25 (3.78, 16.49) 0.3 

Barium 2.37 (1.24, 4.09) 2.75 (1.34, 4.61) 0.4 

Cadmium 0.10 (0.05, 0.21) 0.08 (0.06, 0.17) 0.3 

Cesium 3.79 (2.68, 5.66) 3.19 (2.05, 5.19) 0.066 
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Metal 

EARLI (μg/L) 

p-value2 Early, N = 941 Late, N = 841 

Chromium 0.57 (0.15, 0.84) 0.25 (0.11, 0.77) 0.045 

Cobalt 0.71 (0.42, 1.20) 1.05 (0.67, 1.64) <0.001 

Copper 8.48 (6.31, 12.18) 9.91 (6.46, 16.04) 0.082 

Lead 0.28 (0.14, 0.41) 0.24 (0.08, 0.42) 0.4 

Manganese 0.25 (0.14, 0.35) 0.23 (0.11, 0.42) >0.9 

Mercury 0.24 (0.15, 0.40) 0.16 (0.10, 0.28) <0.001 

Molybdenum 57.03 (37.54, 106.35) 49.71 (28.71, 80.05) 0.062 

Nickel 3.72 (2.01, 6.90) 4.02 (2.61, 6.14) 0.4 

Selenium 40.23 (29.14, 67.54) 37.25 (22.24, 67.28) 0.2 

Thallium 0.15 (0.10, 0.20) 0.12 (0.07, 0.17) 0.024 

Tin 0.40 (0.17, 0.81) 0.33 (0.14, 0.72) 0.2 

Tungsten 0.11 (0.06, 0.20) 0.10 (0.03, 0.16) 0.067 

Zinc 252.85 (135.49, 436.60) 290.53 (141.46, 578.01) 0.2 

1 Median (IQR) 
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Metal 

EARLI (μg/L) 

p-value2 Early, N = 941 Late, N = 841 

2 Wilcoxon rank sum test 

 

 

Table 4.3 Urinary metals distributions, median (Q1, Q3) for the MARBLES cohort sample stratified by 
Early vs. Late Gestation timepoints. 

Metal 

MARBLES (μg/L) 

p-value2 Early, N = 591 Late, N = 791 

Antimony 0.05 (0.04, 0.06) 0.06 (0.04, 0.07) 0.4 

Arsenic 5.67 (4.00, 12.81) 6.01 (3.71, 12.65) >0.9 

Barium 1.77 (0.90, 3.01) 2.73 (1.28, 5.09) 0.009 

Cadmium 0.08 (0.05, 0.12) 0.08 (0.04, 0.12) 0.3 

Cesium 4.03 (2.69, 5.61) 4.07 (2.21, 5.37) 0.6 

Chromium 0.49 (0.12, 0.66) 0.41 (0.11, 0.62) 0.4 

Cobalt 0.75 (0.52, 0.97) 1.33 (0.73, 2.03) <0.001 

Copper 6.36 (4.98, 10.32) 11.01 (6.97, 16.01) <0.001 

Lead 0.14 (0.07, 0.20) 0.14 (0.08, 0.33) 0.3 
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Metal 

MARBLES (μg/L) 

p-value2 Early, N = 591 Late, N = 791 

Manganese 0.22 (0.18, 0.29) 0.25 (0.16, 0.38) 0.4 

Mercury 0.17 (0.11, 0.33) 0.15 (0.07, 0.27) 0.2 

Molybdenum 42.66 (26.65, 72.72) 44.80 (29.48, 82.98) 0.7 

Nickel 4.41 (3.55, 6.73) 5.79 (3.94, 7.91) 0.062 

Selenium 31.74 (20.04, 52.28) 28.96 (18.14, 48.34) 0.4 

Thallium 0.10 (0.08, 0.14) 0.09 (0.06, 0.15) 0.2 

Tin 0.26 (0.18, 0.49) 0.28 (0.17, 0.62) 0.6 

Tungsten 0.14 (0.07, 0.24) 0.16 (0.07, 0.28) 0.4 

Zinc 
241.65 (125.32, 

382.00) 

295.66 (145.77, 

531.61) 
0.060 

1 Median (IQR) 

2 Wilcoxon rank sum test 
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Table 4.4 Distribution of placental cell composition deconvolution estimates, stratified by cohort. 
Abbreviations: monocytes (Mono), natural killer cells (NK), neutrophils (Neu), and nucleated red blood 
cells (nRBC). 

Cell proportion (%) EARLI, N = 941 MARBLES, N = 831 p-value2 

Bcell 0.66 (0.43, 0.90) 0.43 (0.25, 0.65) <0.001 

CD4T 0.92 (0.30, 1.82) 0.55 (0.00, 1.30) 0.010 

CD8T 0.00 (0.00, 0.02) 0.00 (0.00, 0.00) 0.2 

Cytotrophoblast 7.77 (5.90, 10.72) 5.55 (2.95, 9.22) 0.003 

Endothelial 5.59 (4.35, 7.59) 5.90 (4.13, 7.63) 0.8 

Hofbauer 1.16 (0.29, 2.32) 2.94 (2.16, 4.43) <0.001 

Mono 0.00 (0.00, 0.21) 0.00 (0.00, 0.00) 0.009 

Neu 0.00 (0.00, 0.27) 0.89 (0.41, 1.18) <0.001 

NK 0.73 (0.41, 1.11) 0.93 (0.60, 1.39) 0.011 

nRBC 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) >0.9 

Stromal 
17.06 (15.12, 

19.40) 

18.60 (13.29, 

22.25) 
0.3 
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Cell proportion (%) EARLI, N = 941 MARBLES, N = 831 p-value2 

Syncytiotrophoblast 
63.20 (58.96, 

68.00) 

60.07 (54.57, 

68.03) 
0.11 

1 Median (IQR) 

2 Wilcoxon rank sum test 
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Chapter 5 Addressing Cellular Heterogeneity in Molecular Epidemiology and 

Future Directions 

This chapter has been adapted in part from a manuscript published in Current 

Environmental Health Reports (2020) [1]. 

Authors: Kyle A. Campbell1, Justin A. Colacino2, Sung Kyun Park1,2, and Kelly M. 
Bakulski1 
Affiliations: 
1Department of Epidemiology, University of Michigan School of Public Health, University 
of Michigan, Ann Arbor, Michigan,  
2Department of Environmental Health Sciences, University of Michigan School of Public 
Health, University of Michigan, Ann Arbor, Michigan 

5.1 Brief summary of the dissertation research chapters 

In Chapter 2, I generated a cell type-specific placental deconvolution gene 

expression reference with novel and previously published single-cell RNA-sequencing 

data. data to create the largest deconvolution reference of 19 fetal and 8 maternal cell 

types from placental villous tissue (n=9 biological replicates) at term (n=40,494 cells). I 

deconvoluted eight published microarray case-control studies of preeclampsia (n=173 

controls, 157 cases). Preeclampsia was associated with excess extravillous 

trophoblasts (POR = 1.94, 95% CI [1.61, 2.34]) and fewer mesenchymal (POR = 0.79, 

95% CI [0.73, 0.85]) and Hofbauer cells (POR = 0.67, 95% CI [0.59, 0.77]). Adjustment 

for cellular composition reduced preeclampsia-associated differentially expressed genes 

(log2 fold-change cutoff=0.1, FDR<0.05) from 1,154 to 0, whereas downregulation of 

mitochondrial biogenesis, aerobic respiration, and ribosome biogenesis were robust to 

cell type adjustment, suggesting direct changes to these pathways. Cellular composition 
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mediated a substantial proportion of the association between preeclampsia and FLT1 

(37.8%, 95% CI [27.5%, 48.8%]), LEP (34.5%, 95% CI [26.0%, 44.9%]), and ENG 

(34.5%, 95% CI [25.0%, 45.3%]) overexpression. Our findings indicate substantial 

placental cellular heterogeneity in preeclampsia contributes to previously observed bulk 

gene expression differences. This novel deconvolution reference lays the groundwork 

for cellular heterogeneity-aware investigation into placental dysfunction and adverse 

birth outcomes. 

In Chapter 3, I generated a cell type-specific placental deconvolution DNA 

methylation reference with novel and previously published sorted placental cell type 

DNA methylation profiles. I analyzed 192 new and previously published DNA 

methylation profiles from 12 cell types, including cytotrophoblasts (n=32), endothelial 

cells (n=19), Hofbauer cells (n=26), stromal cells (n=29), syncytiotrophoblasts (n=4), six 

types of adult lymphocytes (n=36), and nucleated red blood cells (n=11), as well as 35 

bulk placental tissue samples. Consistent with placental biology, bulk placental tissue 

cell type proportion estimates (mean ± standard deviation) from methylation measures 

were predominately syncytiotrophoblast (57.8% ± 8.3%), stromal (20.6% ± 5.9%), 

cytotrophoblast (11.0% ± 4.1%), endothelial (7.5% ± 2.2%), Hofbauer cells (1.5% ± 

1.2%), and CD4+ T cells (0.89% ± 0.84%). Other cell types had mean estimates less 

than 0.5%. This innovative cell type DNA methylation reference panel can robustly 

estimate cell composition from placental DNA methylation data in epidemiological 

studies to detect unexpected non-placental cell types, reveal biological mechanisms, 

and improve casual inference. 
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In Chapter 4, I applied the DNA methylation deconvolution reference developed 

in Chapter 3 to test the association between prenatal urinary metals concentrations and 

placental cell composition at term in samples from two prospective pregnancy cohort 

studies, the Markers of Autism Risk in Babies and Learning Early Signs (MARBLES 

n=83) and Early Autism Risk Longitudinal Investigation (EARLI) (n=94). At the mean 

cytotrophoblast cell type proportion across both cohorts of 7.8%, a doubling in early 

gestation zinc concentration was associated with a 0.8% decrement to 7.0% (POR = 

0.89, 95% CI [0.82, 0.97], q=0.26). At the mean Hofbauer cell type proportion across 

both cohorts of 2.3%, a doubling in late gestation barium concentration was associated 

with a 0.2% increment to 2.5% (POR = 1.08, 95% CI [1.02, 0.14], q=0.25). Similarly, a 

doubling in late gestation nickel concentration was associated with a 0.4% increment in 

expected Hofbauer cell proportion to 2.7% (POR = 1.16, 95% CI [1.05, 1.27], q=0.25). 

At the mean syncytiotrophoblast cell type proportion across both cohorts of 62.5%, 

exposure to cadmium concentrations above the limit of detection was associated with a 

3.0% decrement to 59.5% (POR = 0.88, 95% CI [0.78, 0.98], q=0.31). At the mean 

endothelial cell type proportion across both cohorts of 6.1%, a doubling in late gestation 

copper concentration was associated with a 0.7% increment to 6.8% (POR = 1.11, 95% 

CI [1.04, 1.18], q=0.24). These results implicated the divalent metal cations zinc, 

cadmium, barium, and nickel which may directly interact with endothelial, Hofbauer, and 

syncytiotrophoblast cell types via divalent metal transporter proteins and affect placental 

structure. This chapter provides evidence that prenatal urinary metals concentrations 

are associated with term placental cell composition, which may have implications for 
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increased disease risk related to placental dysfunction as well as for molecular studies 

of the placenta that fail to account for potential cell composition differences. 

Overall, my literature review demonstrates that placental cell composition has 

been an overlooked factor in perinatal molecular epidemiology studies, and these 

results show how future work can unlock new biologic insights by incorporating 

placental cell composition. This dissertation not only highlights these limitations of prior 

research, with a review of the state of the literature but contextualizes prior 

insufficiencies in the context of a causal inference framework. Furthermore, I generated 

novel and integrated placenta cell type-specific single-cell gene expression and sorted 

cell type DNA methylation microarray profiles to bioinformatically estimate cell 

composition from bulk placenta samples. Estimation of cell composition from bulk 

placenta samples allows investigators to model cell composition in a carefully 

considered causal inference framework to reveal mechanistic insights and eliminate 

systematic sources of bias. Finally, I applied this deconvolution approach in causal 

inference-informed models to reveal that cell composition differences in preeclampsia 

drive previously observed gene expression differences and that prenatal metals urinary 

metals concentrations are associated with placental cell composition itself. These 

applications demonstrate the extent cell composition can drive apparent tissue-level 

gene expression differences or how cell composition can be studied as an outcome of 

environmental exposures. Future placental investigations must similarly consider cell 

composition, in a casual inference framework, as a critical factor in understanding the 

effects of environmental exposures and disease on perinatal health outcomes. The 
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deconvolution approaches developed in this dissertation and their application provide a 

template to do so. 

5.2 Utility of cellular heterogeneity in research questions and epidemiologic 

modeling 

The biomedical molecular revolution in measuring gene expression, DNA 

methylation, and other biomolecules has provided unparalleled resolution in connecting 

exposures, outcomes, and biological mechanisms. As the associated technologies have 

become more cost-effective and scalable, investigators have increasingly bio-banked, 

collected, or biopsied tissues for clinical or research purposes. However, these bulk 

molecular measures represent averages across all the different cell types contained in 

the target tissue. Epigenetic mechanisms allow each cell type to manifest a specialized, 

differentiated phenotype despite each cell in the tissue containing a nearly identical 

genome. Failure to account for the inherent heterogeneity of cell types across any given 

molecular measure obfuscates the underlying causal relationships between exposure, 

outcome, and molecular measure. Careful consideration of cell type heterogeneity in a 

causal inference framework can inform study design and interpretation of results. 

Once cell type heterogeneity has been accounted for, one can ask critical 

questions about DNA methylation, exposures, and disease, though this reasoning 

applies equally to any bulk molecular measure. The appropriate approach depends on 

the study sampling framework, timing of measures, and hypothesized relationships 

between exposures, cellular heterogeneity, DNA methylation, and disease. Causal 

diagrams [253] are frequently employed in epidemiologic studies to evaluate and 

communicate the relationships between key variables and identify appropriate 
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approaches to address bias [254]. Below, I use causal diagrams to describe five study 

hypotheses involving an exposure, a disease, tissue-level DNA methylation, and cell 

type-specific DNA methylation epigenotypes, though, again, this framing could equally 

be applied to other omics, including gene expression. These five hypotheses are well-

studied in epidemiologic frameworks: mediation, confounding, biomarker of disease, 

biomarker of exposure, and precision variables. By directly measuring epigenetics 

within sorted cell types (cell type-specific epigenotypes), researchers simplify casual 

diagrams and associated statistical models. Simpler causal diagrams require fewer 

assumptions, use simpler analytic methods, minimize sources of bias, and improve 

interpretability of study results [253, 254]. In each setting, I demonstrate that studying 

cell type-specific epigenotypes simplifies the causal diagram and reduces sources of 

potential bias. 

DNA methylation dysregulation is a candidate to mediate early-life environmental 

exposures and later life health outcomes [255, 256]. Mediation refers to the indirect 

effect an exposure has on an outcome by acting through an intervening variable [257]. 

Though perhaps the most biologically compelling, mediation studies were the among 

rarest study designs according to recent DNA methylation mediation reviews [258, 259]. 

Testing mediation requires assumptions under different analytic frameworks, but all 

models rely on faithfully capturing exposure-mediator and mediator-outcome 

relationships [260] (Figure 5.1—Tissue Epigenotype). These relationships must be 

identifiable, unconfounded, and free of bias to establish evidence of a causal 

relationship [261]. Mediation testing in epigenetic perturbations is difficult due to a lack 

of cell type-specific studies in tissues relevant to the disease process [262] and a lack of 
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observational studies that span the perinatal period until the end of life [263]. One 

example of a recent mediation-based study design was a case-control study of 

rheumatoid arthritis and genetic risk that controlled for cell type heterogeneity and 

removed DNA methylation signatures due to arthritis onset. Ten differentially methylated 

regions were identified in a mediation analysis [264]. Recently, a cell type deconvolution 

algorithm for DNA methylation demonstrated a quantitation of the mediation of 

phenotypic associations with DNA methylation by cellular heterogeneity in 23 DNA 

methylation microarray datasets across 13 studies [70]. In Chapter 2, I successfully 

applied a causal mediation framework to demonstrate cell composition changes, 

particularly an overabundance of extravillous trophoblasts, mediated a large fraction of 

the association between preeclampsia and placental gene expression. This work also 

highlights the possibility that placental cell composition may represent a response to 

exposure or disease state. For example, the elevation of extravillous trophoblasts 

observed may represent an immature development state or a compensatory attempt to 

better regulate blood supply to the placenta. In Chapter 4, I identified an association 

between prenatal urinary metals concentrations and placental cell composition, 

establishing the exposure-mediator relationship that’s essential for mediation analysis. 

The observed elevation of Hofbauer cells and endothelial cells and decreased 

abundance of syncytiotrophoblasts may similarly represent a compensatory response to 

direct divalent cation toxicity or to increase sequestration of such cations. Cell type-

specific assessment of DNA methylation avoids mediation by cell type heterogeneity 

altogether (Figure 5.1—Cell Type Epigenotypes). Well-designed DNA methylation 
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mediation studies that account for cell type heterogeneity may identify the mechanisms 

by which environmental exposures affect DNA methylation directly and disease etiology. 

Now, I focus on modeling the tissue epigenotype as the outcome to understand 

the role cellular heterogeneity plays in the relationship between exposure and tissue 

epigenotype in the mediation framework. These examples Typically, investigators do 

not adjust for a mediator as it represents a contributor to the total effect of the exposure 

on the outcome. In epigenetic studies, assessing mediation by cell type heterogeneity is 

essential to distinguish direct intranuclear changes (Figure 1.3a-b) from shifts in cell 

type heterogeneity (Figure 1.3c) [59], each of which offers insights into disease etiology 

[46]. Note that single-cell or cell type-specific assessment is required to distinguish a 

global direct effect (Figure 1.3a) from a vulnerable cell type scenario (Figure 1.3b). 

When the goal is to identify direct DNA methylation changes, cell type deconvolution 

and adjustment can block the pathway that is mediated by cell type heterogeneity. For 

example, a recent epigenome-wide meta-analysis identified associations robust to cell 

type adjustment between exposure to maternal smoking in pregnancy and over 6,000 

newborn blood DNA methylation sites (Figure 5.1—Tissue Epigenotype, boxed) [35]. 

Again, Cell type-specific assessment of DNA methylation circumvents cell type 

heterogeneity (Figure 5.1—Cell Type Epigenotypes, boxed). Researchers must take 

care in the design, analysis, and interpretation of epigenetics studies where the 

exposure is thought to affect cell type heterogeneity, prompting the consideration of a 

mediation framework. 

In a second scenario, epigenetic measures serve as exposure biomarkers. 

Because DNA methylation is labile to environmental exposures and generally stable 
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once established [265], DNA methylation can serve as a proxy measure of past 

exposures [266, 267]. Several studies have linked maternal smoking during pregnancy 

to changes in newborn or later childhood blood DNA methylation, though the potential 

health consequences of these changes beyond a biomarker is unclear [35, 268, 269]. 

The framework is identical in structure to the mediation scenario, except that the tissue 

epigenotype does not affect disease (Figure 5.1—Tissue Epigenotype). For similar 

reasons, cell type-specific epigenotypes should be prioritized over tissue epigenotypes 

whenever possible (Figure 5.1—Cell Type Epigenotypes). DNA methylation could 

reduce information bias in epidemiological studies by extending the reach of exposure 

assessment backward in time and more accurately quantifying an individual’s exposure.  

In a third scenario, cell type heterogeneity could be a confounder in the 

relationship between exposure and tissue-level DNA methylation (Figure 5.1c—Tissue 

Epigenotype). Confounding refers to a non-causal association between an exposure 

and outcome due to a shared common cause (the “confounder”) [270]. Most current 

epigenome-wide association studies implement cell type proportions as adjustment 

covariates in regression models, with the stated goal to account for potential 

confounding due to cell type heterogeneity. Cellular heterogeneity may affect the 

metabolism, storage, or cellular response to an environmental toxicant, impacting 

biomarker measured toxicant levels. For example, in five cell lines across 20 heavy 

metal toxicants, an Nrf2-dependent oxidative stress response varied by cell type [271]. 

Further, we know that cell type heterogeneity predicts tissue-level DNA methylation 

[272]. The common cause of cell type heterogeneity could therefore distort the measure 

of association between exposure and tissue-level DNA methylation. As before, 
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evaluating DNA methylation at the cell type level simplifies the causal diagram as well 

as eliminates the potential for confounding by cell type heterogeneity (Figure 5.1—Cell 

Type Epigenotypes). 

Fourth, epigenetic measures can be biomarkers of disease. The application of 

DNA methylation as a disease biomarker can reduce outcome misclassification, serve 

as a surrogate endpoint, and monitor disease progression, prognosis, and treatment 

response [273, 274]. DNA methylation is routinely employed as a disease biomarker in 

cancers and is being investigated for use in psychiatric conditions and chronic diseases 

such as cardiovascular disease [275–277]. DNA methylation of placentally derived DNA 

from maternal plasma has been used as a noninvasive biomarker of aneuploidy [278]. A 

recent meta-analysis revealed an association between neonatal blood DNA methylation 

and birthweight, although it is unclear if DNA methylation was a mediating cause of 

birthweight changes or simply a birthweight biomarker [279]. DNA methylation is an 

auspicious vehicle for the promise of precision medicine and might soon be established 

as the ‘universal’ disease biomarker, given the vast array of disease-specific DNA 

methylation profiles that are being uncovered [280]. Identification of DNA methylation 

perturbations related to negative health outcomes will likely identify at-risk individuals 

and lead to novel preventive and therapeutic strategies [259]. Notice that assessment of 

DNA methylation as a biomarker of disease is identical in diagram structure to the 

mediation scenario presented above (Figure 5.1d—Tissue Epigenotype). Therefore, 

the same recommendation for assessing cell type-specific epigenotypes can be applied 

to the use of DNA methylation as a biomarker of disease (Figure 5.1d—Cell Type 
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Epigenotypes). The use of DNA methylation as a disease biomarker still requires 

methods to account for cell type heterogeneity. 

Finally, cell type heterogeneity may be an important precision variable in 

epigenetic studies (Figure 5.1e—Tissue Epigenotype). A precision variable is a 

predictor of the outcome that is unrelated to the exposure. A precision variable 

increases statistical efficiency when adjusted for in a model [281]. Cell type proportions 

are strong predictors of DNA methylation, often accounting for the first principal 

component of variability in DNA methylation data. Tissue DNA methylation studies may 

account for cell type proportions in regression models to improve precision in estimating 

DNA methylation associations with other variables. When cell type-specific DNA 

methylation is measured, cell type heterogeneity may no longer be relevant to 

estimating the direct effect of the exposure on cellular DNA methylation (Figure 5.1e—

Cell Type Epigenotypes). However, independence between cell type heterogeneity 

and cellular DNA methylation may be an unrealistic assumption due to cell-cell 

interactions in tissues [53]. Even when cell type heterogeneity is unrelated to the 

exposure, cell type heterogeneity may be an important precision variable. The capability 

to model cell type proportions is only a first step in addressing the issue of cellular 

heterogeneity in bulk molecular measures.  

At various genomic locations, tissues, and developmental times, DNA 

methylation is a promising biomarker of exposure and disease, as well as a potential 

mediator between environmental exposure and health outcomes. Careful attention must 

be paid to the hypothesized role of cellular heterogeneity in an epidemiological research 

question and to the assumptions and analytic methods required to faithfully test the 



 169 

hypothesized relationship between exposure, bulk molecular measure, cell type 

heterogeneity, and outcome. Subject matter expertise, transparency of model 

assumptions, and appropriate methods to accommodate and evaluate potential study 

hypotheses will be required to improve causal inference and interpretability in 

environmental epigenetics. It is important that investigators clearly state hypotheses and 

analytic assumptions to generate valid, replicable, and interpretable study results. 

5.3 Limitations and future directions 

Dissociation bias, which describes the differential resilience of cell types to 

dissociation or biosample preparation procedures, has continued to pose a challenge to 

studying cellular heterogeneity in complex tissues [72]. Reference-based approaches 

require cell type-specific molecular profiles that can be derived from cell sorting or 

single-cell approaches; both approaches are affected by dissociation bias. The 

abnormal size of the multi-nucleated placental syncytiotrophoblast especially is 

unamenable to conventional cell sorting and single-cell approaches. Single-nuclei 

preparations are an alternative option to conventional single-cell assays. Single nucleus 

RNA sequencing has been used to characterize a syncytiotrophoblast cell model and 

may be more appropriate for such cell types [175]. Future studies of the human 

placenta should consider such a method to better characterize the syncytiotrophoblast 

beyond the single-cell RNA sequencing approach used here. Deconvolution estimates 

may be more accurate than cell sorting or single-cell approaches when the effect of 

dissociation bias is large. For example, in Chapter 2, fetal cytotrophoblasts, endothelial 

cells, and syncytiotrophoblast were underrepresented in raw single cell counts 

compared to deconvoluted estimates (Figure 2.15). Dissociation bias may also be 
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exacerbated by cryopreservation or similar biobanking procedures commonly employed 

in epidemiological studies and should be considered at the study design stage [174].  

Notably, when I deconvoluted RNA microarray samples (n=330) in Chapter 2, 

the median (Q1, Q3) estimated placental syncytiotrophoblast composition was 23.7% 

(20.8%, 26.7%) compared to 63.2% (59.0%, 68.0%) in DNA methylation based 

deconvolution estimates in EARLI (n=94) and 60.1% (54.6%, 68.0%) in MARBLES 

(n=83) presented in Chapter 4. This was the largest discrepancy across cell types 

assayed between the two methods. Superficially, these results suggest that a gene 

expression-based approach underestimates syncytiotrophoblast proportions or a DNA 

methylation approach overestimates syncytiotrophoblast proportions. However, this may 

be due to the differing absolute contribution of syncytiotrophoblasts to RNA or DNA 

molecules measured. Compared to cytotrophoblast nuclei, syncytiotrophoblast nuclei 

exhibit increased heterochromatin formation and transcriptional inactivity, particularly 

associated with syncytial knots [282, 283]. Transcriptionally inactive nuclei still 

contribute to the DNA methylation signal but not active gene transcription while 

transcriptionally active nuclei contribute to both the DNA methylation and gene 

expression signals, resulting in a larger relative contribution to the DNA methylation as 

compared to gene expression. The nonlinear contribution of certain cell types to 

different levels of molecular biology may underlie other complex tissues beyond the 

placenta and syncytiotrophoblasts. Future directions to address these challenges may 

involve combinations of matched gene expression and epigenomic characterization of 

placental tissue, in situ based approaches such as spatial transcriptomics or 

immunohistochemical investigations, matched samples collected from different regions 
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of the placenta, and the continued use of bulk deconvolution of whole tissues with highly 

specific single-cell references that are likely less susceptible to dissociation bias such 

as the approaches used in this investigation. 

The ability to estimate cell composition represents a critical advancement in 

addressing the challenges of cellular heterogeneity in complex tissues by providing a 

way to consider cell composition directly in epidemiologic study designs [1, 46]. 

Deconvolution represents a promising and scalable approach to meet these challenges. 

Recent statistical approaches have implemented an interaction term between a DNA 

methylation signal and deconvoluted cell type proportions to detect cell type-specific 

effects in epigenome-wide association studies without the need for single cell assays 

[284]. In 5.1, I reviewed just 5 common scenarios of modelling cell composition in 

causal inference with direct acyclic graphs. Future work will not only need to consider 

the technical and biological challenges to measuring cell composition, but also how to 

incorporate cell composition in causal inference to obtain valid causal estimates in 

epidemiological research questions. 

5.4 Strengths 

There were several  strengths to this dissertation research. Firstly, the 

deconvolution references integrated both primary and secondary datasets from multiple 

sources with leading computational approaches and advanced, complementary 

laboratory methods. When possible, I also conducted in silico deconvolution simulations 

to validate deconvolution performance. These steps provide confidence in the 

generalizability and robustness of the reference panels’ performance. Further, I verified 

that cell type and not batch effect drove the variation in molecular data. Next, both 
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deconvolution references incorporate information from unexpected or cryptic cell types 

such as comingled maternal cell types or particular cell subtypes that could be a 

previously unobserved source of bias. Finally, I explicitly considered cell composition as 

a feature of interest for use in causal inference models in the research application of 

these methodological advancements. Such an application can serve as a template to 

elevating traditional analyses that too commonly merely controlled for cell composition 

as a putative confounder without careful study design considerations. Undoubtably, 

deployment of the cost-effective and scalable research products of this dissertation will 

reduce systematic bias and improve mechanistic insight of perinatal epidemiology 

investigations.  

5.5 Public health significance 

 This dissertation features several novel developments of public health and 

scientific significance. First, I advance the goal of identifying the molecular 

underpinnings of adverse birth outcomes, which pose a serious public health threat. In 

addition, mounting evidence for the developmental origins of health and disease 

hypothesis suggests the mitigation of adverse birth outcomes may prevent numerous 

adverse sequelae.  

 Second, this research addresses cell composition not only as a source of 

systematic bias but as an outcome itself. Additionally, this work will broadly improve 

rigor and reproducibility in any field that studies placental tissue and lessons learned 

here can be applied more broadly to any bulk tissue investigation. Technological 

advancements have provided unparalleled resolution and cost savings in studying 

human health. Such advancements come with bioinformatic challenges, including bulk 
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tissue convolution. This work fills critical gaps by executing labor-intensive cell sorting 

and analysis to generate and integrate cell type-specific references that will be made 

widely available for deconvolution. This allows researchers to leverage commonly 

collected and already-collected bulk placental tissue data to improve precision, reduce 

potential sources of bias, and improve interpretability of study results. 

Third, this dissertation is highly interdisciplinary and serves as a model for 

broadly integrating epidemiological causal inference techniques into bioinformatic 

biomedical studies.  To carry execute this novel approach, I developed or integrated 

advanced methods in primary tissue collection, dissociation, and cell type sorting, 

single-cell gene expression characterization and analysis, bulk gene expression 

characterization and analysis, bulk DNA methylation characterization and analysis, 

creation and validation of gene expression and DNA methylation deconvolution 

references, application of deconvolution to epidemiologically model cell composition, 

general bioinformatics, bioinformatic data integration, meta-analysis, molecular 

epidemiology, and causal inference. 

This dissertation fills a key lacuna in applying causal inference techniques to 

various research questions and study designs in molecular epidemiology (Figure 5.1). 

In summary, I provide additional or novel cell type-specific gene expression or DNA 

methylation profiles for public use in deconvolution. In matched samples, I integrate 

complementary gene expression technologies single-cell RNA sequencing, bulk RNA 

sequencing of cell types and apply both RNA-based and DNA methylation-based cell 

type estimation. I contribute to the understanding of the molecular underpinnings of 
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preeclampsia and effects of early-life metals exposure on placental structure commonly 

experienced by humans. 

5.6 Figures and Tables 

 

Figure 5.1 Based on hypothesized relationships between exposure, disease, and DNA methylation, 
multiple study design scenarios are possible. Measures of DNA methylation can be implemented in 
directed acyclic graphs for identifying model assumptions and analytic strategies for causal inference. 
The left column represents a DNA methylation epigenotype aggregated over multiple cell types (e.g., 
tissue) and the right column represents cell type-specific epigenotypes measures. When measured on the 
cell type-specific level, the causal link between composition heterogeneity and epigenotype is broken and 
omitted from the cell type-specific diagram. A. Mediation: The exposure affects disease indirectly through 
the tissue epigenotype (direct DNA methylation effects across all cells (Figure 1.3A) or in vulnerable cell 
types (Figure 1.3B) or through cell type heterogeneity (Figure 1.3C). The exposure may also affect the 
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disease directly. We focus on modeling the tissue epigenotype as the outcome, a subset of the overall 
causal diagram (Boxed). B. Biomarker of Exposure: The exposure affects the DNA methylation 
epigenotype directly and indirectly through cell type composition heterogeneity. C. Confounding: Cell type 
composition affects the level of exposure and directly affects the epigenotype through heterogeneity. D. 
Biomarker of Disease: The disease state affects the DNA methylation epigenotype directly and indirectly 
through cell type composition heterogeneity. E. Precision Variable: Cell type composition heterogeneity is 
independent of the exposure but is a strong predictor of DNA methylation epigenotype. 
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