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ABSTRACT

Fundamental physics is concerned with the problems of defining fundamental constants,

units of measurement, and searching for new forces and aspects of matter. Usually, the best

way to resolve these inquiries is to have a precise knowledge of atomic energy levels and the

transition frequencies in order for their quantum states to be manipulated. Spectroscopy is

a tool that probes these atomic energy levels by observing the atom’s response as the energy

of the applied radiation is varied. Over the past century, spectroscopy using electromagnetic

radiation has involved direct interactions with the atom’s electric and magnetic multipole

moments via the A · p term of the minimal coupling Hamiltonian. The work presented in

this thesis utilizes such interactions with laser fields and goes a step further by exploring a

novel light-matter interaction via the A2 term.

Leading problems in the field of fundamental physics include the commercialization of

optical frequency standards with short-term stabilities beating 10−11/
√
τ and the discovery

of new science arising from competitive precision measurements of the Rydberg constant

and the detection of axion dark matter. Ultracold rubidium atoms subject to periodic

optical potentials in standing waves of light known as optical lattices offer solutions to these

problems. Rubidium atoms contained in miniaturized, glass vapor cells can be probed with

a 778-nm laser in order to obtain the |5S⟩ → |5D⟩ transition frequency as a portable optical

frequency standard. Optical traps can induce shifts that compensate those incurred by the

probing lasers and confine the atoms to prevent residual Doppler effects, both of which

would otherwise hamper the clock stability. Addressing the other two problems mentioned,

circular-state Rydberg atoms that are able to be manipulated with optical lattices introduce

a platform for high-resolution spectroscopy of their electronic transitions using very weak

microwave fields. The long lifetimes of circular states, which approach 1 s, extend the

probing times for a measurement of the Rydberg constant (10−12 uncertainty) insensitive to

the proton charge radius, and the existence of microwaves generated by axion couplings to

the electromagnetic field. This dissertation explores the functionality of optical lattices as a

xxii



tool that can contribute to the advancement of these aforementioned endeavors.

In the first implementation of optical lattices for these goals, a measurement of the

Rb
∣∣5D3/2

〉
AC polarizability and photoionization cross section is performed using a cavity-

enhanced optical lattice with an ultra-deep depth on the order of ∼ 105 single-photon recoils.

The lattice wavelength is λ = 1.064 µm, which induces shifts on
∣∣5D3/2

〉
that can be char-

acterized by the measured scalar polarizability of αS
5D3/2

= −524(17) atomic units. I choose

this wavelength because it is commonly available as a narrow-linewidth, high-powered laser.

At this wavelength, photoionization induces decay of this energy level and broadening of

spectral lines as evidence of the significant measured cross section σPI = 44(1) Mb.

The secondary use of lattices as a tool for fundamental physics concerns periodically

driven ponderomotive potentials for the effort of initializing the circular states required for

a Rydberg constant measurement and dark-matter detection. Experimentally, the prin-

ciples are discussed in a newly developed lattice phase-modulation technique, where the∣∣46S1/2

〉
→
∣∣46P1/2

〉
and

∣∣48S1/2

〉
→
∣∣49S1/2

〉
transitions were spectrocscopically measured

with this driving mechanism. Additionally, the importance of cancelling stray electric and

magnetic fields for this mechanism to be efficient is also demonstrated. The applicability

of ponderomotive light-matter interactions for obtaining circular states is discussed in a

theoretical proposal of all-optical circularization techniques.
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CHAPTER I

Introduction

1.1 Standing-Waves of Light: Optical Lattices

We encounter standing waves on a daily basis. They appear in your life whenever you

listen to music and hear the perturbations they make in the air around them as sound.

Guitars, pianos, violins, cellos, etc. are all instruments that operate on a vibration in a

string that travels back and forth to make an interference pattern known as a standing

wave. The pegs that make the strings taut form a cavity for the vibration that allows

certain standing wavelengths, and consequently notes, to propagate on the string. Another

commonplace instance of standing waves is a microwave oven, which consists of a cavity that

traps electromagnetic waves with a frequency of 2.5 GHz. The resulting interference pattern

enhances the microwave power and makes spatial regions of local minima and maxima in

the electromagnetic field.

This work deals with standing waves of laser light in the visible to infrared region of

the electromagnetic spectrum. More specifically, through both theory and experiment, I

will discuss the underlying physics that takes place when matter is in the presence of this

sort of standing wave. The matter studied will be a dilute gas of alkali-metal (rubidium)

atoms at a temperature below 1 mK; in this work, each atom can more or less be considered

as an isolated particle, unless otherwise stated. A standing wave of coherent light effects

a sinusoidal potential, much like the crystalline lattice potential famously studied by Felix

Bloch [11; 12]. For this reason, the laser’s interference pattern is considered an optical lattice.

On an alkali-metal atom in its ground state, the light mainly exerts two forces: a conser-

vative, electric-dipole force and a frictional scattering force that opposes the center-of-mass

(CM) velocity, V0. The latter force is only significant when light is near the resonance of a

transition between two electronic quantum states while the former, based on the orientation

of induced electric-dipole moments on the electronic wave function by the incident field,
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dominates for light at far-off-resonant (FOR) frequencies. Optical lattices based on inter-

play between the scattering and electric-dipole forces were initially studied experimentally

in [13; 14; 15; 16]. However, in this work, these near-resonant optical lattices are only used

for cooling the atomic sample to temperatures on the order of the Doppler limit and are

not the subject of discussion for this thesis. Optical lattices around which this thesis is cen-

tered are at wavelengths of λ = 1064 nm and 532 nm, sufficiently FOR from any electronic

transition in rubidium.

FOR optical lattices can trap and control the motion of atoms quite well, isolating them

from environmental perturbations like gravity. As a result, the trapped atom’s energy levels

can be probed with external electromagnetic fields for prolonged periods of time. Knowl-

edge of these levels unravels ultra-precise measurements of fundamental constants (e.g., the

Rydberg constant [17; 18], the fine-structure constant [19], the mass of an electron [20], etc.)

used by all physicists. Atomic structure can provide definitions for units of measurement

like the second [21] , the meter [22], and a volt [23], which are frequently jotted down in lab

notebooks by all researchers. There has been a growing push to replace the classical defini-

tions of these units with ones based on quantized atomic energy levels, and, consequently,

the removal of uncertainties on fundamental constants based on quantum measurements

(e.g., Planck’s constant, fundamental charge, Boltzmann’s constant, etc.) [24]. Uncovering

new particles, seeing if their physical properties behave symmetrically with other known

matter, and learning about the forces they bring to observable matter is another hallmark

of fundamental physics. This work is focused on using optical lattices as a tool to further

the progress of specific experiments belonging to each of the three aforementioned sectors of

fundamental physics.

Specifically, the problems in fundamental physics I seek to address in this thesis using

FOR optical lattices involve a two-photon frequency standard in the infrared spectrum [25],

made possible by the interrogation of the forbidden 5S → 5D transition of Rb, and using

circular-state Rydberg atoms to search for axionic dark matter [1] and a precision mea-

surement from the Rydberg constant [26], removed from perturbations that are now under

question [27]. All of these mentioned problems have a connection in the sense that their

effects can be easily read-out by the energies of atomic states, making the use of FOR op-

tical lattices a necessity. For the case of the infrared frequency standard of Rb using the

5S → 5D clock transition, an ultra-deep, FOR lattice at the commonly available wavelength

of 1.064 µm, above the 5D photoionizaiton threshold, is used to make a measurement of

the state’s dynamic polarizability, adding to the experimental efforts in understanding its

light shifts at various wavelengths [28]. Inelastic ponderomotive interactions on Rydberg

electrons by deep 532-nm and 1.064-µm optical lattices are studied in the context of driving
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their transitions and performing high-precision spectroscopy for the purpose of initializing a

sample of circular-state Rydberg atoms used for detecting dark matter and measuring the

Rydberg constant. This thesis spends time discussing the principles of implementing deep

and periodically driven ponderomotive optical lattices through experiment [7] and simula-

tion [5; 9]. Also, methods of electromagnetic-field control for an experiment requiring a

driven ponderomotive optical lattice are demonstrated with high-precision spectroscopy of

Rydberg hyperfine structure [8].

1.2 A Portable Rubidium Optical Clock

In fundamental physics, atomic clocks seek to answer the question of how long a second

is. A second must be calibrated by the period of a system that is oscillatory with time:

a swinging pendulum and an orbiting planet suffice to yield an interval of time for wrist

watches and grandfather clocks, but are inappropriate for satellites and the experiments

performed in this thesis. Instead, they use the frequency separation between two long-lived

electronic states of an atom to define the interval of a second.

Before the development of the laser, RF and microwave radiation was used to probe

these stable atomic energy levels. The ammonia (NH3) clock was based on the absorption

of 23.870 GHz radiation by the molecule, which is the same frequency at which the nitrogen

atom in the molecule oscillates above and below the plane at which the hydrogen atoms

lie [29]. It was the first clock based on the oscillations predicted by quantum mechanics, but

had a humble systematic uncertainty around 10−8 based in part by collisional broadening

and first-order Doppler effects [29]. The molecular beam absorbed the microwaves head-on

inside a waveguide, making the microwave frequency seen in the molecule’s frame of reference

velocity dependent.

Rather than a molecule, an alkali-metal, 133Cs, was a subsequent atom to be used for a

clock transition. The hyperfine structure splitting of cesium (between F = 3 and F = 4) is

in the microwave X-band (9.19263177 GHz) [30], and the F = 4, hyperfine level decays to

F = 3 in first-order perturbation theory by means of a magnetic-dipole/electric-quadrupole

(M1/E2) transition, making the level metastable. Initial experiments of the cesium clock,

which reached a measurement uncertainty of 10−10, involved using magnetic filters to initial-

ize F,mF Cs atoms with a thermal beam in a Stern-Gerlach apparatus and passing them

through a microwave waveguide twice [21]. Considering a given mean speed of the beam, the

shape of the waveguide formed two instances of a fixed pulse area of θ = π/2, both separated

by a speed-dependent delay time T . After measuring the population that made the transition

to the other hyperfine state, a series of fringes appear as a function of microwave frequency,
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with the central fringe determining the resonant transition frequency. PID circuits, using

the clock signal, then stabilized the microwave generator’s frequency.

I want to also mention another notable atomic reference based on an M1 microwave

transition developed by Norman F. Ramsey’s group, a maser operating on the ground-

state hyperfine transition of hydrogen (|F = 1,mF = 0 >→ |F = 0,mF = 0 > at ω0 =

2π×1.420405 GHz with a width on the order of 1 Hz) [31; 32]. For the first hydrogen maser,

Stern-Gerlach selector magnets guided atoms in the mF = 0 and mF = 1 Zeeman sublevels

of F = 1 towards the aperture of a paraffin-coated bulb located inside a TE011 microwave

cavity of Q = 60000; the maser’s output power was measured to be a humble pW after being

mixed with a cesium-referenced signal generator (NC Atomichron) [31; 32].

For the cesium clock, the invention of lasers allowed optical pumping of the cesium atoms

to the magnetically-insensitive ground state, mF = 0, laser cooling, and optical fluorescence

detection of the atoms. As a result, removal of line pulling, first- and second-order Doppler

effects, and first-order Zeeman effects enhanced the clock stability to 3 × 10−13τ−1/2 (τ is

the total time the clock is averaging its frequency per time of an experimental cycle) with a

systematic lower limit at 10−15 due to density-dependent shifts and blackbody radiation [33].

A clock’s statistical fluctuation σy(τ) (a.k.a. the Allan deviation) [33] scales as the the

inverse of the transition’s quality factor Q and the inverse of the signal-to-noise ratio (SNR):

σy(τ) =
∆ω0

ω0

τ−1/2

SNR
, (1.1)

where the transition frequency ω0 and linewidth ∆ω0 both define Q as Q = ω0/∆ω0. Ideally,

this uncertainty will vanish as τ → ∞, but systematic effects usually cause it to deviate from

its linear dependence on τ−1/2 and plateau or rise as τ gets larger. The systematic shifts and

uncertainties from atom-atom interactions as well as stray DC and thermal electromagnetic

fields need to be well known and minimized in order to get long-term stability.

Alkaline-earth atoms have a unique quantum structure in their valence electrons that

allow very narrow 1S0 →3 P0 transitions to be made through state mixing of dipole-allowed

transitions by spin-orbit coupling and hyperfine mixing. These doubly forbidden transitions

are in the optical spectrum and yield quality factors on the order of 1014. When considering

the absorption of the probing laser by an ensemble of non-interacting atoms, SNR =
√
Nat,

where Nat is the number of atoms probed in a single experimental cycle. Maximizing Nat

requires probing three-dimensional arrays of atoms confined to inhibit first-order Doppler

effects; what better system is there to do this than an optical lattice? Vigorous study of the

differential polarizability in the 87Sr 5s5s1S0 → 5s5p3P0 transition has led to the discovery

of wavelength-dependent zero crossings that give rise to a magic optical lattice which leaves

4



the transition unperturbed by the second-order AC Stark effects [34]. As a result, JILA’s

SrI and SrII optical clocks of 87Sr trapped inside a λ = 813 nm lattice were able to obtain

uncertainties of 2.0×10−18 [35] and 6.4× 10−18 [36], respectively. The fractional uncertainty

in such a clock has gotten so good that gravitational redshifts within the atomic sample can

be imaged with an uncertainty of 7.6× 10−21 after 92 h of averaging time [37].

1.2.1 Rubidium 5S1/2 → 5Dj Transitions

While the electronic instrumentation and quantum-mechanical tools needed to obtain

the same accuracy as a 87Sr optical lattice clock are elegant, the strontium clock is not

yet compact enough to be sold to labs across the globe as a stable frequency reference to

which all lasers and synthesizers can be locked. Compact, commercial frequency references

that provide a stable 10 MHz signal output can be based on the 87Rb hyperfine transition,

F = 1 → F = 2, which is similar to the one in the Cs clock. These clocks consist of

isotopically pure vapor cells that are optically pumped by light from a rubidium lamp and

probed by a magnetic-dipole transition from microwaves contained within a cavity. A typical

rubidium frequency produced by Stanford Research Systems (SRS) has a specified short-term

stability of 2× 10−11τ−1/2.

Replacing the microwave transition with one that can be probed with lasers can reduce

this value and relieve the burden of having to obtain a high SNR. The most favorable optical

transition from the rubidium ground state is
∣∣5S1/2

〉
→
∣∣5D5/2

〉
, which can be probed with

two counter-propagating 778−nm laser beams [25; 28; 38; 39]. To date, the demonstrated

short-term stability is 1.8×10−13τ−1/2 [39]. Decay to the 5S1/2 results in the emission of fluo-

rescence at 5.2 µm and 420 nm, with the latter detectable by a photomultiplier tube (PMT).

The
∣∣5S1/2

〉
→
∣∣5D3/2

〉
transition is also suitable for a frequency standard. A 1556-nm laser,

located within the telecommunications C-band, can be frequency doubled to produce the

probing beams and stabilized to the atomic transition, meaning an ultra-stable C-band fre-

quency reference can be made available for applications in fiber-optic communications [40].

Fig. 1.1 shows the energy level structure relevant for a
∣∣5S1/2

〉
→ |5Dj⟩ clock.

For longer measurement times, the two-photon optical rubidium standard reaches a sys-

tematic uncertainty limited by the 778-nm field’s AC Stark shifts. Power fluctuations in the

probing laser are therefore translated into frequency jitters in the vapor-cell based clock.

Described in [28], it is therefore of interest to find an additional “mitigation” laser with an

ultra-narrow linewidth < 1 kHz, FOR from any electronic transition, having the sole purpose

of AC Stark shifting the transition back into its unperturbed frequency. Calculations in [28]

indicate that one such wavelength exists at 785 nm. With miniaturized laser cooling setups

becoming more common [41; 42], a portable clock based on slowed atoms is not unforesee-
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Figure 1.1: Relevant energy levels participating in |5S⟩ → |5D⟩ clock transitions.

able. Therefore, this additional laser can also be used to craft optical lattices and dipole

traps to confine the atoms for longer measurement times.

1.2.2 Ultra-Deep Optical Lattices for Polarizability Measurements

Precision spectroscopy of the 5D level’s AC polarizabilities at various wavelengths is

therefore of interest. A “mitigation” laser in the infrared beyond 1.251 µm induces strong

positive or negative AC Stark shifts within narrow < 10 MHz frequency windows that

correspond to resonances with Rydberg states. In this work, the polarizability at the widely

used wavelength λ = 1.064 µm is measured.

In this work, to perform the measurement of the 5D3/2 energy response to this wavelength,

an optical lattice at λ with a depth ∼105 single-photon recoils is implemented through

an optical field-enhancement cavity [43] that features a laser-cooled sample of 85Rb in its

geometric center. A large lattice depth is required to obtain enough measurements on the

line shifts so that the statistical uncertainty can be minimized.
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Two-step laser spectroscopy through the Rb D1 line to the 5D3/2 is performed on the

lattice trapped atoms in order to measure the light shifts on the transition frequencies without

having to calibrate the lattice field (two transitions measure two unknowns simultaneously:

the lattice field and AC polarizability). A similar technique was performed in [44] to measure

the AC polarizability for the 5P3/2 level of rubidium with the upper level being a Rydberg

state for which λ = 1064 nm is the tune-out wavelength along its quantization axis.

Being above the 5D ionization threshold in frequency, potential mitigation wavelengths

below 1.251 µm need to be characterized for how strongly they couple the 5D electron to a

unbound continuum state
∣∣ϵ′, l′, j′,m′

j

〉
of energy ϵ′ = W5D3/2

+ ℏωL in a process known as

photoionization (PI), as this process is responsible for a reduction in the clock’s SNR and

contributes to line broadening. Measurement of the PI cross section σ is also performed in

this work at λ = 1064 nm.

1.3 A Circular-State-Rydberg-Atom Apparatus for Fundamental

Physics

The second and third sectors of fundamental physics upon which this dissertation touches

involve the goal of obtaining high-precision spectroscopy on circular-state (CS) Rydberg

atoms [45]. A Rydberg state of an atom is one in which an electron occupies a large principal

quantum number n ≥ 20. We determine what “large” is by how well the physical properties

of the atom scale with n. For extended wave functions of the atom’s electron, quantum

theory arrives at several of its properties (e.g., size, electric-dipole moment, lifetime, energy-

level structure, electric polarizability, etc.) having a dependence on n; such properties will

be discussed in detail throughout this thesis.

In terms of quantum numbers, the circular states occupy |n, l = n− 1, |ml| = n− 1⟩.
CS atoms are an interesting platform to study fundamental physics due to their enhanced

sensitivity to background RF and magnetic fields. They are also the longest lived Rydberg

state within the n manifold. Research described in [46] has, in fact, demonstrated their

sensitivity to RF fields at the single- to few-quanta level. Their lifetimes scale as n5, chiefly

as a consequence of the limited spontaneous decay channels for the atom. Thus, high-

precision Rabi spectroscopy with interaction times on the order of ∼ 50 ms and ∼20 Hz

linewidths are conceivable with these systems.

Another favorable feature of the CS Rydberg atom is the interesting and simplistic shape

of its wave function. The wave lies primarily on a plane perpendicular to the atom’s quanti-

zation axis and forms a three-dimensional torus about the nucleus and inner-shell electrons.

This “bagel” shape arises from the angular structure of a spherical harmonic with maxi-
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mum l and |ml| both equal to n − 1. As n increases in magnitude, the inner radius of this

“bagel” wave function widens, i.e., it becomes less like a New-York-style bagel and more like

a Montreal bagel! The radial charge distribution of the electron also vanishes rapidly as r2le ,

with re being the radial distance from the atom’s center-of-mass. Therefore, in the vicinity

of the CS atom’s nucleus, there are no observable charge interactions among the protons,

inner-shell electrons, and the Rydberg electrons. This annular electron wave function makes

the CS one of the pieces of matter that most closely resemble the Bohr model of the atom.

Because the CS atom closely resembles the Bohr model and has a long lifetime sufficient

for spectroscopic probing times at the order of ∼ 50 ms, it is an attractive system for

obtaining a competitive measurement of the Rydberg constant down to a relative uncertainty

of 10−12 [26]. The Rydberg constant, R∞, is one of the most precisely known fundamental

constants, but nearly all of its measurements have been performed through spectroscopy

of low-l atomic states, where there is significant interaction of the probed electron with the

nuclear charge. It is desirable to make a measurement ofR∞ without such interactions mainly

due to the ongoing “proton radius puzzle,” [27; 17; 18; 47; 48] where over the past decade

there has been an unusual bimodal distribution of rms proton charge radius measurements,√
r2p, with the most precisely measured value from the Lamb shift of muonic hydrogen [27]

having a value below the previously accepted CODATA value [49].

Overlap of the rms proton charge radius with the electronic wave function yields a sys-

tematic effect in spectroscopic measurement, as shown below in the formula for an energy

level of hydrogen [17],

Wn,l,j = −hcR∞

n2

mp

mp +me

+
4cR∞δl,0

3n3

(
mp

mp +me

)3(
αrp
λc

)2

+∆WQED(n, l, j), (1.2)

where mp is the mass of the proton, λC = 2.42631023867(73) × 10−12 m is the Compton

wavelength [49], and ∆WQED(n, l, j) are relativistic, quantum electrodynamic (QED) cor-

rections to the energy that are minimized for high-l atomic states. The finite-proton-charge

correction arises from the second term in the above equation and can also be ignored for

high-l atomic states. High-resolution spectroscopy between a CS (labeled in this section as

state |0⟩) and another high-l Rydberg state (state |1⟩) would rely chiefly on the first term

and yield a “clean” measurement

Because they are long-lived, CSs can also partake in an experiment designed to detect

axions where long wait times for detection are required. Axions are spinless particles that are

considered to make up low-energy dark matter [50]. Their rest energy equates to photons with

energies in the ultra-low frequency to microwave portion of the electromagnetic spectrum,
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and it turns out that this rest-mass energy can be converted to photon energy through an

interesting phenomenon known as Primakoff conversion [51; 52]. In the Lagrangian L for

the axion scalar field a, there is a term [51; 52],

Laγγ = ϵ0gaγγaE ·B, (1.3)

where gaγγ is the axion-two-photon coupling strength, E is the converted electromagnetic

field, and B is an intense, DC magnetic field. The axion mass, ma, is related to the constant

gaγγ through the following relation, 0.14ma GeV−2 < gaγγ < 0.38ma GeV−2, where the lower-

and upper-bounds come from the models proposed in [53; 54] and [55; 56], respectively. Here,

the mass of the axion takes into account a lifetime-dependent scalar fa [57], in the relation,

ma = 6 µeV1012GeV/fa. (1.4)

Given an axion energy of 120 µeV, the converted microwave field would have a frequency

of ωµ/(2π) ∼ 30 GHz, near the resonance of the |0⟩ → |1⟩ transition for a n = 48 CS.

A magnetic field to convert this would need to be on the order of B ∼ 10 T, afforded by

superconducting magnets surrounding a niobium microwave cavity with Q of 1010 near the

resonance of the 30-GHz microwave field [1]. Axion densities hovering around 0.45 GeV/cm3

and the resulting gaγγ = 10−15 GeV−1 at 120 µeV [1] elicit these constraints on B and Q

from the following relation [58; 59]

Pµ = g2aγγρDMℏ3ωµB
2vQ, (1.5)

where Pµ is the microwave power of the resulting field of the converted axion, ρDM =

0.45 GeV/cm3 is the energy density of axions, and v is the cavity volume (∼ 10−4 m3).

Converted power Pµ is above the limit of noise from blackbody photons that the Rydberg

atoms would detect in the environmental conditions given above [60; 1].

For this apparatus to have a dual functionality of measuring the Rydberg constant and

detecting dark matter, the CSs need to be cold at the order of∼ 1 µK and easily transportable

with external laser fields. An optical lattice with its nodes and antinodes moving at a speed

of Vlat = 1 m/s acts as a “conveyor” belt for the atoms and can transport them long

distances, through one vacuum chamber to another, and even through a microwave cavity.

This moving optical lattice is shown in Fig. 1.2 and is realized by two ultra-stable, counter-

propagating laser beams phased locked with an offset frequency equal to Vlat/λ. For a laser

at λ = 2000 nm, this corresponds to an offset-frequency lock of 0.5 MHz between the two

beams. One does not want the optical lattice potential to over-perturb the Rydberg states
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such that the experiments contain large systematic errors, yet one also does not want effects

of gravity, which the lattice force counteracts, to contribute systematic effects as well. A

suitable solution is to have the apparatus in a microgravity environment such as the low

Earth orbit, where the lattice depth can be on the order of a single-photon recoil [26].

high-B field

ultracold 87Rb

low-loss 
coupling

RF input

high-Q, tunable
Nb cavity

circularization
with driven 

optical lattice
or electrodes

B0 E0

Rydberg-excitation
lasers

moving optical lattice

state-selective field ionization

low Earth orbit

Figure 1.2: The proposed circular-state-Rydberg-atom apparatus located in the low Earth
orbit. Optical lattices needed for transporting and circularizing the atoms (gray
rings) are shown. An additional lattice (not shown) may be used for spectro-
scopically measuring R∞. The niobium cavities may be tuned into resonance
with the Rydberg state using a protruding rod (not shown) or an adjustable
aperture. Background DC fields in the detection cavity are required to make the
hydrogenic manifold nondegenerate. Figure adapted from [1].

The proposed apparatus features a lower cooling vacuum chamber (∼ 10−9 Torr) of
87Rb atoms that brings their temperature down to 1 µK. Atoms are then loaded into the

moving optical lattice described above and transported into a “circularization” chamber,

where they are first excited into a low-l Rydberg state with resonant laser fields and then

circularized with either of the two methods from [61] or [9] (this work). The atoms can be

probed spectroscopically in this chamber for the Rydberg constant measurement [26] using

an amplitude-modulated optical lattice [62; 63] or external microwave radiation [26; 64; 8].
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For axion dark matter detection, they can be moved further upwards with the moving optical

lattice into a detection cavity that is coupled to an identical niobium cavity where the axion

is converted into a microwave. For diagnostic purposes, microwaves can be fed into the

waveguide coupling the two cavities. In order to assess if a CS made a transition into |1⟩,
a state-selective field ionization (SSFI) apparatus is placed in the final chamber [60]. The

following sub-sections briefly describe the quantum mechanics behind the two fundamental-

physics experiments with CSs.

1.3.1 Measuring the Rydberg Constant

The Rydberg constant measurement (RCM) experiment has been proposed in great detail

in [26; 6]. Two methods exist for probing the energy levels of these high-l Rydberg states.

Avoiding systematic uncertainties from first-order DC Zeeman and Stark effects requires a

wise choice of two states for which the transition frequencies have no linear dependencies on

external electric and magnetic fields. A transition can be made insensitive to background

magnetic fields in first-order perturbation theory by choosing states with the same ml and

probing them with π-polarized couplings. Certain high-angular-momentum states in the

diagonalized DC Stark Hamiltonian, which are superpositions of high-l Rydberg states have

no net electric-dipole moments and experience no level shifts proportional to E. They are the

states with equal parabolic quantum numbers n1 = n2 [60; 65] and have same expectation

values of the parity operator as the CS. For this reason, the transition must be electric-dipole-

forbidden. Chosen in [26], the states of interest are |0⟩ = |n = 51, n1 = 0, n2 = 0,ml = 50⟩
(the CS) and |1⟩ = |53, 1, 1, 50⟩ (a nearly CS), which are separated in energy by h×93.6 GHz

and shown in Fig. 1.3.

High-frequency microwaves (also known as mm-waves) in the V band and polarized along

the quantization axis can be generated from a horn antenna. The frequency of theses waves

would be centered around 46.8 GHz, and they would probe the |0⟩ → |1⟩ transition through

an electric-dipole transition in the second order. This type of transition is also called a Raman

transition [66]; first-order Doppler shifts as a consequence of this off-resonant transition

can be removed from the measurement by using 46.8 GHz, mm-waves from two counter-

aligned antennas. Exemplary cases of Doppler-free spectroscopy using counter-aligned fields

and off-resonant Raman transitions were spectroscopic studies of the hydrogen
∣∣12S1/2

〉
→∣∣22S1/2

〉
[67] and

∣∣12S1/2

〉
→
∣∣32S1/2

〉
transitions [18]. In this case, mm-waves are used

instead of laser beams, so the Doppler-free technique suffers from the imperfect directionality

of the antennas, the scattering off metal pieces of the apparatus, and a diffraction limit above

the size of the atomic sample.

One circumvents the three issues described above by replacing the mm-waves with laser
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Figure 1.3: Level structure and spectroscopic methods for a Rydberg constant measurement
(RCM). Here, |0⟩ = |n = 51, n1 = 0, n2 = 0,ml = 50⟩ and |1⟩ = |53, 1, 1, 50⟩.

fields. The counter-propagating beams create an optical lattice that varies spatially through-

out the Rydberg electron’s wave function due to the exaggerated size of the atom. If the

lattice’s intensity gradient has some periodic dependence on time with a frequency that is a

subharmonic q of 93.6 GHz, an internal-state transition of the Rydberg atom is driven. This

transition is in first-order perturbation theory and governed by the eA2/(2me) term of the

Hamiltonian, where A is the magnitude of the vector potential and and me is the electron

rest mass. As a result, one obtains a Doppler-free spectral line at the Fourier limit with

minimal inhomogeneous broadening from stray fields with the latter benefit being a conse-

quence of the high spatial selectivity the laser can provide. Techniques for periodic driving

of the lattice can come from amplitude modulation [26; 62; 63], phase modulation [9; 7], and

bichromatic lattices [9], with the latter two methods studied in this work.

The proposed CS apparatus is fully equipped to accommodate both methods of spec-

troscopy (mm-wave and laser). Both methods would contribute their own unique uncertain-

ties to the budget outlined in [26].
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1.3.2 Searching for Dark Matter

When the CS atoms are transferred through the high-Q cavity (TE121 mode) [68] in

state |0⟩ = |n = 48, n1 = 0, n2 = 0,ml = 47⟩, the axion-converted microwave at ∼ 30 GHz is

coupled to the cavity through which the CS atoms in |0⟩ pass. Considering the mode number

of the microwave photon in the Hamiltonian; the “bare” states [69; 66] to the system are a

product space between the electronic states |0⟩ or |1⟩, another high-l Rydberg state that the

∼ 30 GHz field is resonant with, and the photon states consisting of the vacuum state |0⟩
and |1⟩, the N = 1 Fock state, which signifies the presence of a microwave photon. There are

two relevant bare states for this experiment: |01⟩, the electron in the CS and the presence

of an axion microwave field, and |10⟩, the electron in the nearly CS and a vacuum state of

the ∼ 30 GHz field. Both states are separated in energy by the detuning of the generated

microwave field from the electronic resonance, as shown in the left level scheme in Fig. 1.4.

|10>

|01>
detuning of converted axion 

from atomic resonance

no coupling to atom coupling to atom

detuning of converted axion 
from atomic resonance 

|01>

|10>

|10>

|01>

axion-dark-matter search with Rydberg atoms

Figure 1.4: Detection scheme for sensing an axion-converted microwave field by varying the
Rydberg transition frequency. The dashed line on the right is the point where
the axion-converted microwave is resonant with the Rydberg-Rydberg transition.

When the atom-field interaction is included, the “bare” states no longer are diagonal

to the Hamiltonian, and the new eigenstates are “dressed” states [69; 66]. Dressed states
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are detuning-dependent superpositions of the bare eigenkets. Their energy separation varies

with detuning as shown in the right level scheme of Fig. 1.4. Using several tuning “knobs”

to tune the energy separation between the two Rydberg states into resonance with the

axion-converted microwave (e.g., an electric field E0 or the moving optical lattice intensity),

sweeping the energies over the resonance, allows an atom initially in bare state |01⟩ to

adiabatically follow into |10⟩, the nearly circular Rydberg state. Because of the internal

state’s entanglement with that of the microwave’s, detection of an atom with Rydberg state

|1⟩ verifies the existence of an axion that was converted in the left cavity of Fig. 1.2.

1.3.3 Deep, Periodically Driven Optical Lattices for Obtaining Circular States

The above apparatus for the Rydberg experiments I proposed will take a decade to

implement (to put it mildly), and it is mostly suitable for a medium-sized collaboration

among AMO and particle physicists. Many optical lattices required for this experiment were

also just discussed above. The latter part of this dissertation focuses on developing time-

modulation techniques of the optical lattices for the purpose of engineering the Rydberg

electron’s wave function into a CS from a laser-excitable, low-l Rydberg state.

Initializing a sample of CSs is not a trivial matter. Traditional laser excitation prohibits

the preparation of states with |ml| ∼ n by parity rules. The addition of an electric field,

as was done in only induces l mixing of low- and high-l states, but the quantum state is

still at a low, fixed-|ml| [70]. Proposed in [71] and demonstrated in [72; 73; 74], including

a magnetic field transverse to the electric field causes further mixing of low- and high-|ml|
states to adiabatically prepare the atoms in the CS. Other methods of circularization include

using adiabatic rapid passage [45; 75; 61] of many RF-driven transitions using radio waves

resonant with the Stark and Zeeman splittings of a hydrogenic manifold under parallel DC

electric and magnetic fields aligned along the atom’s quantization axis. Both methods require

advanced control of stray electric and magnetic fields down to the ∼ 100 µV/cm and ∼mG

levels, respectively, and long adiabatic ramping times on-the-order or above the lifetime of

a low-l state. Furthermore, adding > 1 W of RF frequencies on the order of ∼ 100 MHz

to an ultra-high-vacuum chamber’s internal electrodes elicits great difficulty in impedance

matching, avoiding cross-talk with other electronics, and adding DC offset voltages to the

RF.

Both methods are the more traditional ways of preparing CSs and can be described

theoretically with the eA·pe/me term of the minimum coupling Hamiltonian. Afforded by the

e2A2/2me part, whereA is the vector potential of a laser field in the form of an optical lattice,

the atom-field interaction from this term allows ∆l-independent transitions to be made from

one Rydberg state to another, provided that there is enough spatial variation of the laser
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intensity in the frame of the Rydberg wave function (for angular-momentum conservation)

and that the deep lattice (103 photon recoils) is varying with time at a frequency that is

a subharmonic of the atomic transition frequency (for energy conservation). For optical

lattices, angular-momentum conservation is independent of the change of l brought on by

the transition thanks to the sinusoidal matrix elements provided. In the context of a laser

beam exerting a force on a Rydberg atom, the e2A2/2me term describes ponderomotive

interactions [76; 77; 78; 79], where the electron quiver under a laser beam pushes the quasi-

free particle towards regions of intensity minima. In this work, techniques of lattice-laser

modulation are presented and different from periodically varying the standing-wave peak

intensity that was performed in [62; 63]. Ponderomotive laser spectroscopy of the Rydberg

atom through lattice shaking (phase modulation) is experimentally demonstrated in this

work for two-level systems separated in energy by ∼ h× 40-70 GHz. Its significance in the

all-optical initialization of CSs for fundamental physics is thereafter discussed theoretically

in the context of the hydrogenic manifold split up in energy by ∼ h× 100 MHz; additional

methods for obtaining CSs by periodic driving of the lattice are also presented.

1.4 Outline of Dissertation

The dissertation is outlined in the following way. Chapter II discusses light-matter

interactions, forces, and energy shifts for deeply bound atomic states (binding energy >

h × 200 THz). Chapter III discusses precision measurements of the Rb 5D3/2 polarizabil-

ity and photoionization cross section at λ = 1.064 µm obtained by laser spectroscopy of

Rb atoms in an ultra-deep optical lattice (∼ 105 photon recoils). Chapter IV introduces a

theoretical background concerning weakly bound Rydberg states and the circular state in

non-optical electromagnetic fields. Chapter V discusses the ponderomotive light force on

Rydberg atoms. Chapter VI discusses the experimental apparatus constructed for studying

Rydberg atoms in periodically driven optical lattices. Chapter VII describes a precision

measurement of the nP1/2 hyperfine structure made possible by the stray field control of

the apparatus. Chapter VIII introduces an experimental demonstration of ∆l-independent,

Rydberg-Rydberg transitions driven through optical-lattice phase modulation. Chapter IX

then proposes methods of obtaining CSs by this modulation technique, along with procedures

that use lattices created by interfering laser beams of two frequencies. Chapter X discusses

future possibilities of experiments and applications of the ideas I conveyed in this work.
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CHAPTER II

Interactions between Deeply Bound Electronic States

and Light

Every study discussed in this thesis explores the dynamics of atoms in optical fields: i.e.,

the changes optical fields incur on the internal states of the bound electrons and the forces

they apply on the center-of-mass (CM) motion. In this chapter, I will start by discussing

the theory of optical forces on CM motion and how they relate to light scattering in matter

using the context of a single, two-level atom. The first section will focus on the case when

the field is nearly resonant (NR) with an atomic transition while the second will investigate

FOR optical fields using a multi-leveled alkali atom with a single valence electron. In the

third section, I will lay out the theory of FOR optical lattices, standing waves of light that

confine and trap the atoms’ CM in the nodes and antinodes by means of the conservative

dipole force. Following this discussion, I will explain how, at some optical wavelengths, the

valence electron is ejected from the atom by the light, forming an ion and a free-electron

state (FES).

2.1 Atoms in Near-Resonant Optical Fields

In this section, I will use a two-level atom with electronic states |1⟩ and |2⟩. More in

depth discussions with similar content can be found in [66; 80]. State |1⟩ is stable and has

a negligible energy width, state |2⟩ is at an energy of ℏω0 above |1⟩ and decays back to |1⟩
at a rate of Γ. I am assuming that there is no collisional decoherence γ or inhomogeneous

broadening of energy levels in this system.

The vector potential A(r = R0+ re, t) of the optical field for a small atom in a low-lying

atomic state is

A(r = R0 + re, t) ≃ ϵ̂
E(R0)

ωL

sin (kL ·R0 − ωLt), (2.1)
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from this point onward, ϵ̂ will denote the polarization unit vector of the field, ωL, the

light field’s angular frequency, kL = ωLk̂L/c, its wave vector pointing along its propagation

direction k̂L, and E(R0), the field amplitude. The expression r = R0 + re is the atomic

electron’s position vector in the laboratory frame. This is the vector sum of the atom’s CM

position R0 and coordinate relative to the CM re. These coordinates correspond to canonical

momenta P0 and pe, respectively. I will use this convention throughout this thesis.

The total Hamiltonian Ĥ for the atom (of mass M) in the presence of this light field can

be expressed as

Ĥ =
P 2
0

2M
+ Ĥe(R0, r̂e, t), (2.2)

where the CM kinetic energy
P 2
0

2M
is treated classically here and Ĥe(R0, r̂e, t), the electron’s

Hamiltonian, must be treated quantum-mechanically. There are instances where it is appro-

priate to treat P0 and R0 as quantum operators, namely in the scenarios where the atom’s

de Broglie wavelength becomes significant and P 2
0 is small, such is the case for quantum

degenerate gases of bosonic [81; 82] and fermionic [83; 84] atoms. Another necessity of quan-

tizing the CM motion is when the system’s trajectory is highly dependent on the changing

internal state of the electron [85]. In Section 2.3, I will discuss how CM quantization is done

in the case of optical lattices.

As explained in the Appendix, the Hamiltonian for the valence electron is, in the velocity

gauge,

Ĥe(R0, r̂e, t) =
p̂2e
2me

+
e

me

A(R0 + r̂e, t) · p̂e +
e2A2(R0 + r̂e, t)

2me

+ ÛC − eϕ(R0 + r̂e), (2.3)

where, ÛC is the Coulomb interaction with the nucleus and all other electrons, in the absence

of static electric fields, the scalar potential ϕ vanishes in the velocity gauge. Using the

following gauge transformation rules (l denotes length gauge):

Al = A+∇Λ (2.4)

ϕl = ϕ− ∂Λ

∂t
(2.5)

and function Λ = −r ·A, as was done in [86] where the resulting Hamiltonian was proven

to be gauge invariant under this transformation, I arrive at

Al = −k̂L
(ϵ̂ · r)E(r)

c
cos (kL · r− ωLt) (2.6)

ϕl = −(ϵ̂ · r)E(r) cos (kL · r− ωLt). (2.7)
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Note that the A · p̂e and A2 terms of Eq. 2.3 are now suppressed by a factor of c and c2

respectively and can be neglected for a non-relativistic electron. Then, I get

Ĥe(R0, r̂e, t) =
p̂2e
2me

+ ÛC +
e

2
⟨2| ϵ̂ · r̂eE(R0 + r̂e)e

i(kL·(R0+r̂e)−ωLt) |1⟩ |2⟩ ⟨1|

+
e

2
⟨1| ϵ̂ · r̂eE(R0 + r̂e)e

−i(kL·(R0+r̂e)−ωLt) |2⟩ |1⟩ ⟨2| . (2.8)

For a small atom at an electronic energy level near its ground state, I can make the electric-

dipole approximation (EDA), where e±i(kL·(R0+r̂e) ≃ e±ikL·R0 and consequently, E(R0+ r̂e) ≃
E(R0).

To simplify the form of the Hamiltonian, it is often useful to introduce the angular Rabi

frequency Ω(in units of rad/s or 2π×Hz) given by

Ω(R0) =
eE(R0)

ℏ
⟨2| ϵ̂ · r̂e |1⟩ . (2.9)

In the field-interaction picture, the Hamiltonian ˆ̃He is, in matrix notation,

ˆ̃He =
ℏ
2

[
δL − kL ·V0 |Ω(R0)|

|Ω(R0)| −δL + kL ·V0

]
(2.10)

where δL = ωL − ω0, V0 is the CM velocity vector of the atom, and the upper-left corner of

the matrix corresponds to the |1⟩ state. Because the field is near-resonant, δL is at the order

of Γ and Ω. The interaction ℏkL ·V0 corresponds to Doppler shifts of the field’s wavelength

as seen by the moving atom. In order to learn about this near-resonant field’s effects on

the CM dynamics, one must obtain the state populations and coherences in the steady-state

regime (1/t << Γ,Ω, δL) from solving the optical Bloch equations (OBEs).

2.1.1 Optical Bloch Equations

The OBEs are a consequence of the following master equation in the field-interaction

picture:

d ˆ̃ρ(R0,V0, t)

dt
= − i

ℏ
[ ˆ̃He(R0,V0, t), ˆ̃ρ(R0,V0, t)] +

[
Γρ22 −Γρ̃12/2

−Γρ̃21/2 −Γρ22,

]
(2.11)
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where ˆ̃ρ is the density matrix operator defined as

ˆ̃ρ =

[
|c1(R0,V0, t)|2 c1(R0,V0, t)c

∗
2(R0,V0, t)e

−i[ωLt−kL·R0−η]

c2(R0,V0, t)c
∗
1(R0,V0, t)e

i[ωLt−kL·R0−η] |c2(R0,V0, t)|2

]
,

(2.12)

with ci being the CM position- and velocity-dependent probability amplitude for state i = 1

or 2 in the Schrōdinger picture. The generalized quantity η consists of the remaining phases

imparted by the laser field, which I will assume are negligible in the following discussion. In

the steady-state regime, the following OBEs are obtained,

0 = Im(ρ̃12)|Ω(R0)| − Γρ22 (2.13)

0 = i(δL − kL ·V0)ρ̃21 −
i

2
|Ω(R0)|(1− 2ρ22)− Γρ̃21/2 (2.14)

ρ11 = 1− ρ22 (2.15)

ρ̃12 = ρ̃∗21, (2.16)

which yields

ρ22(R0, V0z, t) =
Ω2(R0)/4

Γ2/4 + (δL − kLV0z)2 + Ω2(R0)/2
(2.17)

Re(ρ̃12) = Re(ρ̃21) =
Ω(R0)(δL − kLV0z)/2

Γ2/4 + (δL − kLV0z)2 + Ω2(R0)/2
(2.18)

Im(ρ̃12) = −Im(ρ̃21) =
ΓΩ(R0)/4

Γ2/4 + (δL − kLV0z)2 + Ω2(R0)/2
, (2.19)

and ρ11 = 1− ρ22 for a wave propagating along the z-axis.

When the light is near resonance with the electronic transition of the atom, the atom will

fluoresce at angular frequency ωL. What is happening here is that the incident optical field is

scattering off the atom at a random direction. The probability that this scattering event will

occur is proportional to ρ22, and the rate at which the photons of the field scatter is given

by Γsc = Γρ22. For a single scattering event, an energy ℏωL taken from the entire optical

field is dissipated into the surrounding vacuum. Therefore, the total amount of energy lost

from the field by the isotropic thermal sample of atom density N at temperature T per unit

19



length and time is given by

dw(δL)/(dtdZ0) = −NℏωL

L/2∫
−L/2

L/2∫
−L/2

∞∫
−∞

Γsc(X0, Y0, δL, V0z)f(V0z, T )dX0dY0dV0z (2.20)

f(V0z, T ) =

√
M

2πkBT
e−MV 2

0z/2kBT , (2.21)

where L here is the transverse dimension of the volume containing the atom sample. The

convolution of the Maxwell distribution f and the scattering rate yields a Voigt profile as

a function of δL. At low temperatures, the Doppler broadening of the absorption profile is

negligible, and the above integral results in a Lorentzian function of δL. However, for temper-

atures even as low as liquid nitrogen (77 K), the Doppler broadening exceeds 100 MHz and

the profile resembles a Gaussian. As an example of these features in the context of resonant

light incident on 85Rb atoms (I approximate it as a two-level atom in this example), Fig. 2.1

exhibits a plot of optical power density scattered by the atoms for common temperatures:

300 K (room-temperature), 77 K (liquid N2), 4 K (liquid He), 1 K (1-K pot), 0.1 mK (laser

cooling). Clearly, the colder and, consequently, slower the atom, the sharper and stronger

the absorption profile is.

From Eq. 2.20, one can back out an expression for the intensity lost due to the scattering

of the incident light. If we assume a very weak incident field polarized along x, the scattering

rate is

Γsc ≃ Γ
I(R0)d

2
x/2cϵ0

Γ2/4 + (δL − kLV0z)2
. (2.22)

Therefore, the intensity as a function of Z0 is the solution to the following differential equa-

tion,

dI/dZ0 = −NℏωLΓd
2
x

2cϵ0

√
M

2πkBT

∞∫
−∞

e−MV 2
0z/2kBT

Γ2/4 + (δL − kLV0z)2
dV0zI(R0) = −a(δL)I(R0),

(2.23)

where a(δL) = n′′(δL)ωL/c is the Beer’s absorption coefficient, which is proportional to

the imaginary component of the refractive index. The recoil energy this two-level atom of

mass M receives during a scattering event is two times Er = ℏ2k2L/2M . This quantity is

known as the single-photon recoil energy. In order to understand the momentum shift of the

atom under this scattering interaction, one must obtain the expectation value of the force

associated with this recoil ⟨F⟩.
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Figure 2.1: Power per unit volume dw/(dtdxdydz) in units of NℏωLΓ for 780-nm light scat-
tered by rubidium atoms as a function of detuning from the cycling transition
for the following temperatures: 300 K (red), 77 K (orange), 4 K (black), 1 K
(cyan), 0.1 mK (blue).

2.1.2 Conservative and Dissipative Optical Forces

The force ⟨F⟩ exerted on the atom by the optical field is given by

⟨F⟩ = −⟨d̂ · ϵ̂∇⃗0E(R0) cos (kL ·R0 − ωLt)⟩

= −⟨1| d̂ · ϵ̂ |2⟩
2

[
ρ̃12

(
∇⃗0E(R0) + ikLE(R0)

)
+ ρ̃21

(
∇⃗0E(R0)− ikLE(R0)

)]
= ℏΩ(R0)

[
Im(ρ̃12)kL − Re(ρ̃12)∇⃗0E(R0)/E(R0)

]
= ℏkLΓsc −

ℏΩ2(R0)(δL − kLV0z)/2

Γ2/4 + (δL − kLV0z)2 + Ω2(R0)/2

(
∇⃗0E(R0)

E(R0)

)
= Fsc + Fgrad. (2.24)

The first force term is a dissipative scattering force that induces an average momentum

change of ℏkL on the atom, as can be seen in Fig. 2.2. The second is a conservative force
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that pushes the atom towards regions of high or low field intensities depending on δL. This

force is known as the dipole force, and was the mechanism for the first experiments involving

the trapping of dielectric nanospheres in a highly-focused single beam [87]. In the case that

the applied optical field resembles a plane wave, where there is no intensity gradient, the

dipole force is negligible.

P0

P0= 0

Figure 2.2: A scattering event on an atom by a co-linear laser field. In the top figure, the
incident field causes a momentum recoil P0 in the direction of the black arrow.
The bottom figure shows the outgoing field in a random direction that is opposite
to the atom’s momentum vector. Over many scatters, the net recoil from the
outgoing field averages to zero, leaving the total change in the atom’s momentum
to be NℏkL, where N is the number of events.

In Fig. 2.3, the velocity dependence of the dissipative scattering force is displayed for

δL = −Γ/2 in a scenario where two plane-wave laser beams of the same frequency and

intensity are counter-propagating. In the limit of small |kLV0z| towards the origin of the
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plot, a linear dependence on V0z is observable. Such a dependence attests to the dissipative

nature of the scattering force, as it behaves like a frictional force with a linear dependence

on the atom’s velocity.

Figure 2.3: The dissipative scattering force on an atom as a function of Doppler shift (kLV0z).
Here, Ω = 0.25Γ and δL = −Γ/2.

An effective damping coefficient may be derived in this limit where kLV0z << Ω,Γ, δL. As

shown in Ref. [88], binomial expansion of the scattering force from two counter-propagating,

plane-wave-like laser beams with the same intensities and frequencies in the limit kLV0z << Γ

yields

Fsc = ℏkLΓ

[
Ω2(R0)/4

Γ2/4 + (δL − kLV0z)2 + Ω2(R0)/2
− Ω2(R0)/4

Γ2/4 + (δL + kLV0z)2 + Ω2(R0)/2

]
,

(2.25)
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leads to the following damping coefficient α

α = − ℏk2LΓδLΩ2

(Γ2/4 + Ω2/2 + δ2L)
2
. (2.26)

Therefore, it can be concluded that using six, intersecting laser beams with the same

frequencies and intensities, this frictional force brought on by the near-resonant scattering of

the laser fields off the atom can dampen its translational motion, cooling it to a temperature

approaching absolute zero, with limits shown below. This technique of cooling is analogous

to placing a macroscopic particle in molasses. Hence, this described system is famously

referred to as optical molasses.

2.1.3 Laser Cooling

It appears at first glance that the atom placed in the optical molasses would eventually

reach absolute zero. However, this conjecture violates many principles of thermodynamics

and statistical mechanics. In actuality, the atom in the optical molasses exhibits diffusion in

a similar manner as the Brownian motion of particles placed in a viscous fluid [89]; that is

to say, the atom will never become stationary.

From the Langevin equation [90; 91] for an atom experiencing a frictional force −αV0
and a random force F with the property ⟨F (t)⟩ = 0 over time,

Ṗ0 = −αP0/M + F (t), (2.27)

the variance in P0, σ
2
P0

can be obtained using the identity for the random force ⟨F (t)F (t′)⟩ =
2Dδ(t − t′), where D is a normalization constant known as the momentum-diffusion coeffi-

cient. Using Eq. 2.27, the following expression is obtained for σ2
P0
,

σ2
P0

=
DM

α

(
1− e−2αt/M

)
. (2.28)

At timescales on the order of a single scattering event t << M/2α much faster than the time

the system reaches equilibrium, the variance reduces to

σ2
P0

≃ 2Dt, (2.29)

whereas it reduces to

σ2
P0

= ⟨P 2
0 ⟩ ≃ DM/α, (2.30)

when t → ∞. Using the equipartition theorem in 3D (⟨P 2
0 ⟩/2M = 3kBT/2, as t → ∞, the
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lower temperature limit of the atom is derived

T =
D

3αkB
. (2.31)

In order to get a result for the coldest temperature obtained from a three-dimensional scat-

tering force, with a damping coefficient α, I will detail the causes of momentum diffusion D

from the random force F (t).

During a scattering event, the incident direction of the laser field is fixed, but the scattered

direction is random under the assumption that the atom nor incident field are polarized.

Over many events, the average momentum kick from this scattered field is zero, leaving

the net momentum kick in the propagation direction of the incident field. However, the

mean-square of the momentum, ⟨P 2
0 ⟩ is nonzero and equal to the squared momentum of

the outgoing field, ℏ2k2L. The momentum variance from this random kick is summed over

the total number of scattering events within a short time interval, Γsct. Thus, when using

Eq. 2.29, the momentum diffusion from the random recoil of the atom is

Drecoil =
ℏ2k2LΓΩ2

8(Ω2/2 + δ2L + Γ2/4)
. (2.32)

An additional mechanism for momentum diffusion arises from the uncertainty in photon

mode number, δN , from the coherent laser field incident on the atom, which leads to a

variance in the total momentum kick in the direction of the incident field. This variance can

be described by

ℏ2k2Lσ2
N = ℏ2k2L⟨N⟩, (2.33)

true for Poissonian photon statstics, which is what a coherent radiation field follows. The

average photon mode number of the light imparting this momentum kick on the atom after

a duration t is given by Γsct. Thus, the diffusion coefficient from the incident laser field is

also

Dlaser =
ℏ2k2LΓΩ2

8(Ω2/2 + δ2L + Γ2/4)
. (2.34)

If the laser field has a significant intensity gradient, an additional term calculated in [90; 69]

is added to Dlaser resulting from random fluctuations in the dipole force. However, we are

investigating the lowest temperature limit laser cooling from the scattering force can provide

in a two-level atom, so here I am assuming a plane-wave approximation to the radiation

field.

The sum of the two contributions to momentum diffusion for six incident plane waves of
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the same frequency and intensities in the limit of δL = −Γ/2 and Ω << Γ results in

D = Drecoil +Dlaser =
3ℏ2k2LΩ2

Γ
. (2.35)

In the same limit, the three-dimensional damping coefficient that the atom sees from six

intersecting plane-wave laser fields reaches its maximum value, α ≃ 2ℏk2LΩ2/Γ2, and the

lower temperature limit, known as the Doppler temperature, TD, becomes

TD =
ℏΓ
2kB

. (2.36)

For two alkali atoms commonly used in laser cooling, Rb and Na, the Doppler temperatures

are 146 µK and 235 µK, respectively [92; 93]. The first experiment of three-dimensional laser

cooling towards the Doppler temperature was performed in [94] at Bell Labs using Na and

a tunable dye laser operating at 589 nm. Surprisingly, a later experiment [13] demonstrated

that a similar apparatus could reach temperatures much lower than TD based on an improved

theoretical model [2] that derived a larger α.

2.1.4 Magneto-Optical Trap (MOT)

While the scattering force from near-resonant light works well in slowing down atoms to

temperatures prohibited by Newton’s law of cooling, inspection of Eq. 2.25 implies that the

atom will not necessarily be spatially trapped near the intersection point of all six beams from

such a force. Experiments that rely on the production of highly dense atomic samples, such

as the generation of Bose-Einstein condensates [81; 82] and Fermi degenerate gases [83; 84],

therefore cannot be performed from six intersecting, red-detuned laser beams alone; the

scattering force must exhibit a spatial dependence that allows it to act like a restoring force.

For some time, it was believed that optical fields could not confine neutral atoms under the

scattering force in all three-dimensions due to the optical Earnshaw theorem [95]; the flaw

in this belief came from the fact that atoms have several magnetic suborbitals that can be

populated depending on the presence of a magnetic field and the polarization of the incident

light. In this sub-section, I will explore the magneto-optical trap (known by all atom trappers

as a MOT), a cooling and trapping method I use in all of my experiments.

Alkali atoms, such as Rb, Cs, and Na, are not two-level systems. Magnetic-dipole inter-

actions between the valence electron’s total magnetic moment and that of the nucleus results

in a net atomic angular momentum quantized as the hyperfine quantum number F . The

ground state’s magnetic suborbitals therefore range from mF = −F to F . For the excited

state used in the MOT, the hyperfine quantum number is usually F ′ = F + 1. For the
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example in my description of the MOT, I will use the simple case of F = 0 and F ′ = 1.

This case is “simple” because there are no optical pumping effects needed to be taken into

account, as the ground state here is spinless.

The MOT requires the application of a magnetic quadrupole field Bq around the origin

of the apparatus, where the six laser beams meet. This field is generated by two parallel

loops of current in the anti-Helmholtz configuration. At the origin, the quadrupole magnetic

field is zero. Small distances from the origin yield a magnetic field directly proportional to

the CM displacement. Thus, along the z-axis,

Bq ≃ βZ0k̂, (2.37)

where β is the magnetic-field gradient, typically on the order of 10 G/cm, not strong enough

to trap atoms at thermal temperatures, but enough to give Zeeman shifts on the order of the

laser field’s detuning from resonance. The Zeeman shift ℏ∆Z(mF ,mF ′ , Z0) on the atomic

levels is

∆Z(mF ,mF ′ , Z0) = (gF ′mF ′ − gFmF )µBβZ0/ℏ, (2.38)

where mF = 0 in this case, gF ′ is the gyromagnetic ratio factor of the F ′ state, and µB =

h×1.39 MHz/G. A plot of the Zeeman shifts under Bq for states F
′ = 1 and F = 0 is shown

in Fig. 2.4(a) with the coil configuration shown in Fig. 2.4(b).

Along the z-direction there are two counter-propagating laser beams of equal intensities

and frequencies. Propagating in the direction of positive Z0, the laser beam is σ+-polarized

with respect to the Z0-axis, which allows transitions only to the mF ′ = 1 sublevel. In the

direction of negative Z0, the laser beam is σ−-polarized with respect to Z0, so a transition

to mF ′ = −1 is allowed. When a hot atom moves away from the origin and counter to the

direction of one of the beams, the Doppler shift and position-dependent Zeeman shift both

tune the energy splitting into resonance, which optimizes the scattering rate. As the atom

keeps moving in the same direction while being slowed by the beam, the Doppler shift is

reduced while the Zeeman shift is enhanced from the quadrupole field, keeping the resonance

condition met and optimizing the scattering rate. Quantitatively, this force is approximated

as

FMOT = ℏkLΓ

[
Ω2(R0)/4

Γ2/4 + (δL − kLV0z − gF ′µBβZ0/ℏ)2 + Ω2(R0)/2

− Ω2(R0)/4

Γ2/4 + (δL + kLV0z + gF ′µBβZ0/ℏ)2 + Ω2(R0)/2

]
, (2.39)

making it position-dependent, and in a limiting form, similar to a damped harmonic oscillator
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Figure 2.4: (a) Energy level structure for the MOT apparatus. For an atom in the position
shown, with a negative velocity with respect to Z0, the σ

+-polarized is tuned into
resonance while the σ− light is tuned out. This leads to a stronger net kick by the
laser field, opposing the atom’s motion and confining it near the origin. Note that
these polarizations are defined with respect to the quantization axis (z), which
defines the mF basis; thus, they are both the same polarization (LCP) in the
optical field’s frame of reference. (b) Coil, current (I), and beam configuration in
one dimension of the MOT. The blue magnetic-quadrupole-field lines are shown.

that settles near the equilibrium position (the origin) [88].

For 85Rb, the species used in this thesis, F = 3 and F ′ = 4. The σ-polarized lasers for

this alkali additionally optically pump [66; 92] the valence electron into either the mF = 3

or mF = −3 state, making the relevant transitions for photon scattering to occur between
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mF = ±3 and mF ′ = ±4. It also happens that this transition is not entirely closed. As can

be seen in Fig. 2.5, the nearby hyperfine state of the
∣∣5P3/2, F

′ = 4
〉
level is only 121 MHz

away [92]. Atoms can still be off-resonantly excited into the F ′ = 3 level and decay into

the
∣∣5S1/2, F = 2

〉
level, which cannot be accessed by the cooling laser due to the excessive

3 GHz detuning from resonance. An additional laser at a frequency resonant with the∣∣5S1/2, F = 2
〉
→
∣∣5P3/2, F

′ = 2
〉
or
∣∣5P3/2, F

′ = 3
〉
transitions is typically irradiated on the

MOT in order to pump atoms back into the F = 3 hyperfine state. This laser is referred to

as the repumper in this thesis.
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Figure 2.5: Diagram of relevant 85Rb energy levels and laser fields (at 780 nm) used in laser
cooling. Two repumping transitions are permissible to make the D2 line closed.

The first MOT was performed with Na atoms in [96]. Typical MOT densities are at
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the order of ∼ 1010 atoms/cm3, making them suitable for studying interactions involving

atomic collisions, such as the measurement of the C6 Van der Waals coefficient [97] and the

formation of Rydberg-ground and Rydberg-Rydberg molecules [98; 99]. MOTs are sometimes

not suitable for experiments involving a magnetic-field-free environment, such as the ones

I perform in Chapters VII-VIII, as it is experimentally complicated to exterminate Bq in

time for the measurements to be performed due to induced eddy currents [68]. Furthermore,

a MOT usually can only provide a sample with a minimum temperature of TD. Another

method of laser cooling, known as polarization-gradient (PG) cooling is required to achieve

temperatures lower than TD [2].

2.1.5 Polarization-Gradient (PG) Cooling

The scattering force derived earlier in this section made two approximations in the model.

First, I assumed that the atom has exactly two energy levels. Furthermore, I made the as-

sumption that the two, counter-propagating laser beams do not form an interference pattern.

These two approximations contribute to the reason why Eq. 2.26 was found to be an under-

estimate [13; 2].

The counter-propagating laser beams of opposite helicity with respect to the quantization

axis form a linear polarization rotating along the direction of the beam propagation axis

(shown in Fig. 2.6(a)) that yields empirically a stronger α than the two-level model of

Eq. 2.26 predicts when Bq = 0. Optical pumping of hyperfine magnetic suborbitals and

the rotating polarization of the laser field both create a velocity-dependent redistribution of

populations in mF . As a consequence of this imbalance of mF distribution, the scattering

force of the counter-propagating beams is unbalanced due to the differing coupling strengths

among the F,mF → F ′,mF ′ transitions [2]. It is this effect that makes the original two-level

model of the optical molasses invalid.

Mathematically, the gradient of linear polarizations resultant to the superposition of the

σ+- and σ−-polarized counter-propagating beams of equal intensity, are depicted in the laser

field as

E(Z0, t) =
−iE0√

2

[
ϵ̂x sin (kLZ0) + ϵ̂y cos (kLZ0)

]
e−iωLt + c.c., (2.40)

as was derived in [2], where ϵ̂x and ϵ̂y, are the linear polarization vectors in the laboratory

frame of reference. Larmor’s theorem dictates that this rotating polarization seen in the

rotating frame of the moving atom with velocity V0z has the same effect as a DC magnetic

field pointing along the laser propagation axis with a corresponding Zeeman interaction,

Ûr = kLV0zĴz, (2.41)
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Figure 2.6: (a) The interference pattern between counter-propagating σ+ and σ− beams
(both are LCP in the field’s reference frame) results in a rotating linear polariza-
tion along the Z0-axis in the rotating-wave approximation. (b) Clebsch-Gordan
coefficients for all couplings among mF and m′

F . Figure loosely adapted from [2].

for a stationary atom.

In this discussion, following the reasoning in [2], I will use the case of F = 1 and F ′ =

2, which has Clebsch-Gordan coefficients presented for all possible optical transitions in

Fig. 2.6(b). These factors show the relative Rabi frequencies of each transition for a given

laser field strength E0. Optical dipole shifts in the energy levels therefore vary among mF ,

ℏ∆(|mF | = 1) =
ℏΩ2

8δL
(2.42)

ℏ∆(mF = 0) =
ℏΩ2

6δL
(2.43)

at Z0 = 0, where Ω is the reduced Rabi frequency here and the atom’s quantization direction

is set to the y-axis, making the laser field π-polarized. For PG cooling, δL = −4Γ typically
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and Ω is reduced such that ∆(mF ) >> Γsc, with Γsc being the photon scattering rate

averaged over allmF [2]. Optical pumping with a π-polarized laser field induces the following

respective populations for the |mF | = 1 states and mF = 0 state: 4/17 and 9/17 [2; 66]

The effective Zeeman interaction, Ûr, mixes the mF states, since the angular momentum

operator is transverse to the quantization axis. First-order corrections are given by

|F = 1,mF = 0⟩(1) = |1, 0⟩+ 24δLkLV0z√
2Ω2

|1, 1⟩+ 24δLkLV0z√
2Ω2

|1,−1⟩ (2.44)

|F = 1,mF = 1⟩(1) = |1, 1⟩ − 24δLkLV0z√
2Ω2

|1, 0⟩ (2.45)

|F = 1,mF = −1⟩(1) = |1,−1⟩ − 24δLkLV0z√
2Ω2

|1, 0⟩ (2.46)

calculated from nondegenerate perturbation theory in the limit kLV0z << ∆(mF ). Under

this sort of weak mixing, the perturbed basis states are still nearly orthogonal and part of

a complete Hilbert space. Furthermore, the population distribution of mF states does not

deviate significantly from the unmixed case. Therefore, I can express the total quantum

state |ψ⟩ as

|ψ⟩ = cz(F = 1,mF = 0) |F = 1,mF = 0⟩z + cz(1, 1) |1, 1⟩z + cz(1,−1) |1,−1⟩z
≃
√

9/17 |F = 1,mF = 0⟩(1) +
√

4/17
[
|1, 1⟩(1) + |1,−1⟩(1)

]
, (2.47)

where cz(F,mF ) and |F,mF ⟩ are the probability amplitudes and eigenkets of the system

when taking the laser propagation axis (z-axis) as the quantization direction.

One can arrive at the velocity-dependent polarization of the atoms when choosing z as

the quantization axis,

z ⟨1, 1|1, 1⟩z −z ⟨1,−1|1,−1⟩z ≃
240δLkLV0z

17Ω2
(2.48)

which is directly proportional to the expectation value of the Ĵz operator. The right-hand

side is the expression obtained when calculating ⟨Ĵz⟩ with the basis states quantized along

the y-axis.

An atom with V0z > 0 will most likely be polarized in the mF = −1 state and receive a

stronger force from the scattering of a counter-propagating σ−-polarized photon. Thus, the

frictional force is proportional to the atomic polarization, yielding a new expression for the

damping coefficient,

α ∝ −ℏδk2LΓsc/Ω
2, (2.49)
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which, in the limit of δ >> Γ,Ω, enhances α by δ2L/Ω
2 when ignoring numerical factors. In

PG cooling, the detuning is increased more towards the red and the laser power is reduced

in order to optimize α and lower the equilibrium temperature of the atom. For 85Rb, this

reasoning, first presented in [2], works well for F = 3 and F ′ = 4. Exact values of α and

T can be obtained by solving the OBEs tailored to the hyperfine structure of the alkali

in question and utilizing Monte-Carlo wave function algorithms [100]. In most cases, PG

cooling can cool atoms to below 50 µK.

The first experiment demonstrating three-dimensional laser cooling [94] did not feature a

magnetic quadrupole field, yet only achieved temperatures at the Doppler limit. However, a

nearly identical experiment [13] reported Na cooling down to 50 µK and noticed changes in

the molasses temperatures as a function of external magnetic fields and laser polarizations.

It turns out that the ion pumps for the vacuum in [94] were providing external magnetic

fields that surprisingly heated the molasses to TD [101]. For the interference of two laser

counter-propagating laser beams of orthogonal, linear polarizations, PG cooling can also

provide temperatures below TD, as described in [2].

Laser cooling neutral atoms with optical fields slightly detuned from resonance remains

to be one of the most outstanding tools in physics, for one can enhance electromagnetic radi-

ation’s interaction time with matter and, in most cases, eliminate noticeable Doppler effects

shown in Fig. 2.1. For these reasons, laser cooling has been a critical piece of technology for

obtaining time standards with unprecedented accuracy [21; 36; 35; 37], as well as simulating

complicated problems in condensed-matter physics [102]. Furthermore, it has permitted ex-

tended coherence times for manipulating atomic qubits with optical and microwave radiation

in quantum gates [103; 104; 105].

2.2 Far-Off-Resonant Optical Fields

As δL is increased, the scattering rate is significantly lowered and the dissipative force

is reduced. At the same time, the conservative dipole force exerted on the atom can still

induce observable effects if there is an appreciable gradient in the optical field distribution.

In this regime, δL >> Ω,Γ, the FOR laser field induces AC Stark shifts in the atomic energy

level that can be derived from second-order, time-dependent perturbation theory. Complying

with physically realizable systems, I have included the multilevel structure of a typical alkali

atom in this discussion; i.e., each atomic state now has n, l, j,mj quantum numbers.

For a given atomic state of n, l, j,mj quantum numbers, the FOR laser field induces, in

its probability amplitude cn,l,j,mj
, a small perturbation in the second order of the atom-field
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potential ÛAF ,

cn,l,j,mj
= c

(0)
n,l,j,mj

− 1

ℏ2

t∫
0

dt′
t′∫

0

dt′′
[ ∑

n′,l′,j′,m′
j

⟨nljmj|U †
AF (R0, r̂e, t

′)
∣∣n′l′j′m′

j

〉
×
〈
n′l′j′m′

j

∣∣UAF (R0, r̂e, t
′′) |nljmj⟩ eiω

n′l′j′
nlj (t′′−t′)

+
∑
l′j′m′

j

p.v.

∞∫
0

dϵ′ρ(ϵ′) ⟨nljmj|U †
AF (R0, r̂e, t

′)
∣∣ϵ′l′j′m′

j

〉
×
〈
ϵ′l′j′m′

j

∣∣UAF (R0, r̂e, t
′′) |nljmj⟩ eiω

ϵ′
nlj(t

′′−t′)

]
, (2.50)

where c
(0)
n,l,j,mj

= 1, ρ(ϵ′) is the density of FESs,
∣∣ϵ′, l′j′m′

j

〉
of kinetic energy ϵ′, ωn′l′j′

nlj =

(Wn′l′j′ −Wnlj)/ℏ, ωϵ′

nlj = (ϵ′ −Wnlj)/ℏ, and

UAF (R0, r̂e, t) = −e(r̂e · ϵ̂)E(R0)/2[e
i(kL·R0−ωLt) + e−i(kL·R0−ωLt)]. (2.51)

Eq. 2.50 often is written, incorrectly, without the second term. Electric-dipole couplings to

the FESs, where the electron has a kinetic energy above the ionization threshold and is no

longer bound by the electrostatic potential of the ionic core, are possible. Because there

is no binding, the states form a continuous distribution where ρ(ϵ′) = 1 per unit energy.

Resonant couplings, in fact, are the mechanism for which photoionization (PI) of the atom

can occur (see Section 1.4) [106; 5; 3]. The energy shift ∆Wn,l,j,mj
on the atomic state is

given by iℏ
ċn,l,j,mj

cn,l,j,mj
, where, in the denominator, it is good enough to write cn,l,j,mj

= 1. One

can write a simple relation between the AC Stark shift on energy Wnlj and the optical field

strength E
∆Wn,l,j,mj

(R0) = −1

4
αn,l,j,mj

(ωL)E(R0)
2, (2.52)

where α no longer is used to represent the damping coefficient on the atom, but the polar-

izability of the atom in light of angular frequency ωL. This quantity describes how strongly

and in what direction an electric dipole moment can be induced in the neutral atom by the

laser field. It is typically written in atomic units (multiply by 4πϵ0a
3
0 to get to SI units).

Explicitly, the polarizability is obtained after Eq. 2.50 is integrated over t′ and t” and terms
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oscillating faster than the motion of the atom are neglected,

αn,l,j,mj
(ωL) =

2

ℏ

[ ∑
n′,l′,j′,m′

j

|
〈
n′, l′, j′,m′

j

∣∣ ϵ̂ · d̂ |n, l, j,mj⟩ |2
ωn′l′j′

nlj

(ωn′l′j′

nlj )2 − ω2
L

+ p.v.
∑

l′,j′,m′
j

∞∫
0

dϵ′ρ(ϵ′)|
〈
ϵ′, l′, j′,m′

j

∣∣ ϵ̂ · d̂ |n, l, j,mj⟩ |2
ωϵ′

nlj

(ωϵ′
nlj)

2 − ω2
L

]
. (2.53)

Note that αn,l,j,mj
(ωL) depends on the magnetic suborbital mj and the laser polarization

ϵ̂. This is an inconvenience when making measurements and obtaining estimates of the

polarizability because every experiment is different; i.e., the laser polarizations differ from

lab to lab and the mj distribution can vary based on optical pumping and Zeeman effects. In

order to avert inconsistencies, after some nontrivial tensor algebra [107], Eq. 2.53 is written

in terms of polarization-independent parameters αS
n,l,j(ωL), α

V
n,l,j(ωL), and α

T
n,l,j(ωL). These

are known as the scalar, vector, and tensor polarizabilities, respectively. When the laser

polarization has no circular component, which is the case in this thesis, αn,l,j,mj
(ωL) has no

dependence on αV
n,l,j(ωL), so

αn,l,j,mj
(ωL) = αS

n,l,j(ωL) +
3m2

j − j(j + 1)

j(2j − 1)
αT
n,l,j(ωL), (2.54)

and, in the F,mF basis, which is the hyperfine-structure dominated Hilbert space, one simply

swaps j for F and mj for mF in the prefactor of the second term.

When j ≥ 1, sufficiently strong AC-Stark interactions can induce a breakdown in the

hyperfine structure, and the |mF | splitting brought on by the nonzero tensor polarizability

reorders into a |mj|,mI pair state. Interestingly, you may find a parallel here with the

Zeeman and Paschen-Back regimes, where the nuclear spin I and the electron’s total angular

momentum J precess about a magnetic field at independent rates when theB-field interaction

is stronger than the hyperfine structure. This reordering was experimentally observed in [44;

108] for rubidium in the 5P3/2 state.

2.2.1 Polarizability of the 5D3/2 State in Rb: an Example

Portions of this section are based on Ref. [3].

Polarizabilities pertaining to the states involved in D1 & D2 lines in Rb are precisely

calculated and indexed by [109]. What is not as well understood, however, are the polariz-

abilities of the 5Dj states, which have metrological applications in compact, portable time

35



standards [25; 28] and the atomic redefinition of the meter [22]. Therefore, I the use the

5D3/2 level in Rb as the exemplary state when showing the estimated polarizability’s be-

havior at a variety of optical wavelengths. Common wavelengths of interest are 532 nm,

778 nm, 1064 nm, 1251 nm, and 10 µm, as they are widely used wavelengths produced by

commercially available lasers. In this work, the FOR wavelength I use for all experimental

work is 1064 nm; 10 W of narrow-linewidth (< 100 kHz) light can easily be generated by a

Fiber YAG laser.

Fig. 2.7 depicts the 5D3/2 scalar and tensor polarizabilities’ response to optical wave-

lengths from the UV regime to the NIR to mid-infrared portions. The dipersive-like features

in the curves correspond to resonant transitions of the atom’s internal state from the 5D3/2

level. Here the resonance to 5P1/2 is at 762 nm, and the transition to 5P3/2 is at 776 nm. At

1251-nm to 2 µm, there are clusters of resonances from the 5D3/2 level; these are couplings

to Rydberg nPj and nFj states all the way up to the photoionization (PI) threshold at

1251 nm. As can be seen from these dispersive-like curves, at red detunings, the polarizabil-

ity becomes positive, making the atom high-laser-field seeking; the opposite is true for the

blue-detunings. Intercepts of the horizontal axis correspond to tune-out wavelengths, where

the atom no longer feels a conservative force from the optical field.

At wavelengths below ∼ 600 nm, it can be seen that the scalar polarizability mimics the

1/ω2
L dependence of the free-electron polarizability, αe = − e2

meω2
L
, derived from the eigenvalue

of a Volkov state [110](explained in Chapter V). Expansion of the polarizability’s energy

dependence makes this behavior very apparent when ωL >> ωn′l′j′

nlj , the case in the context

of the Rb 5D3/2 state when λ << 762 nm,

ωn′l′j′

nlj

(ωn′l′j′

nlj )2 − ω2
L

= −ωn′l′j′

nlj /ω2
L

[
1 +

(ωn′l′j′

nlj )2

ω2
L

+ ...

]
. (2.55)

A detailed comparison of αe with αn,l,j,mj
is provided in [86].

In the long-wavelength limit, as can be seen in Fig. 2.8 there is one last strong resonance

to the 4F5/2 level at around 10 µm, the wavelength of a CO2 laser. When λ→ ∞, the scalar

and tensor polarizabilites approach their DC values of 18012 and -1093 respectively, at least

108 times smaller than that of a Rydberg state.

2.3 Optical Lattices

Atoms in a standing-wave laser field can be periodically trapped or antitrapped in the hills

and valleys of the sinusoidal optical potential. For the one-dimensional case, the adiabatic

36



4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0
- 1 0 0 0

0

1 0 0 0
α (

ato
mi

c u
nit

s)

 λ  ( n m )

 αS 5 D 3 / 2
 αT 5 D 3 / 2
 αe

ph
oto

ion
iza

tio
n t

hre
sh

old

5 D 3 / 2 - R y d b e r g  r e s o n a n c e s

Figure 2.7: Behavior of scalar and tensor polarizability for Rb 5D3/2 level at short wave-
lengths. Comparison with the free-electron polarizability αe is depicted. Figure
adapted from [3].

potential on the CM coordinate, R0, is given by

Uad(R0) =
U0

2
+
U0

2
cos(2kL ·R0), (2.56)

where U0 is the lattice depth, a parameter directly proportional to −αn,l,j,mj
(ωL), and U0 <

0(> 0) means the atom will be high(low)-laser-field seeking.

Uad can be thought of as a classical potential or a quantum operator. Typically, when

U0 is very low in magnitude, or the atomic ensemble’s de Broglie wavelength is significant,

R0 becomes an operator. This quantum treatment of the CM coordinate is always correct

no matter the lattice depth or the de Broglie wavelength, but the number of relevant basis

states scales as
√
u0, where u0 = U0/E2r. The parameter E2r = 2ℏ2k2L/M is the two-photon
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recoil energy (E2r = h × 8.3 kHz for 85Rb in 1064 nm). Thus, it becomes computationally

unfeasible in this regime to calculate the band structure when the classical potential is a

good enough approximation to the one where CM is quantized, as the number of eigenstates

scales as
√
U0/E2r.

For the one-dimensional case using the quantum model for a single atom or coherent

matter wave, where the lattice-propagation direction is chosen as the quantization axis (Z0),

the Hamiltonian for the CM coordinate Z0 becomes

Ĥ =
P̂ 2
0z

2M
+
U0

2
1̂+

U0

2
cos (2kLẐ0), (2.57)
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where P̂0z is the CM momentum operator along the z-axis in SI units and 1̂ is an identity

operator. It is easier to scale the parameters as

Ĥ = ĥE2r (2.58)

P̂0z = 2ℏkLp̂0z (2.59)

U0 = u0E2r (2.60)

Ẑ0 = θ̂0/(2kL). (2.61)

Now the Hamiltonian is scaled down to

ĥ = p̂20z + (u0/2)1̂+ (u0/2) cos θ̂0, (2.62)

and the eigenbasis consists of the following Fourier components that have a phase periodicity

of π,

bm,k0(θ0) = eik0θ0/2


√
π−1, m = 0

√
2π−1 sin [(m+ 1)θ0/2], odd m

√
2π−1 cos [mθ0/2], even m

(2.63)

where k0 is the quasimomentum (−1 < k0 < 1 is the first Brillouin zone), and m is the band

index. Note that this Hamiltonian parallels that of the electron in a crystalline solid, where

the wave function is perturbed by a periodic lattice of positively charged ions.

As an example, Fig. 2.9 shows the eigenvalues (a) and the probability distribution of the

CM matter wave (b) for a lattice depth of u0 = 20. The diagonalized band index is denoted

by ν, and the eigenfunctions are Bloch waves denoted by

ψν,k0(Z0) =
∞∑
ν=0

c(ν,k0)m bm,k0(Z0). (2.64)

For very deep lattices, the CM wave functions resemble simple-harmonic-oscillator (SHO)

states, and the energy band gap (known classically as the trap oscillation frequency) is

approximated by
√
u0E2r/h. In Chapter V, I will discuss how transitions can be made from

one band index to another for Rydberg atoms in a periodically driven optical lattice.

It is sometimes necessary to write the atom’s wave function with respect to a specified

well within the periodic potential. At the bottom of well i, located at Z0,i, the wave function
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Figure 2.9: Energies (a) and wave functions (b) of first three Bloch bands for u0 = 20.

now is written as a coherent superposition of Bloch functions,

ψi,k0(Z0) =
∞∑
ν=0

eik0kLZ0,iψν,k0(Z0). (2.65)

These functions are known as Wannier functions and play a role in experiments where the

exact location of the atom within the lattice matters. Note that this is just the Bloch basis

with a unitary transformation applied to each eigenstate.

2.4 Photoionization

Eq. 2.53 depends on electric-dipole couplings between the bound atomic states with the

FESs of the valence electron. Because the real principal value (p.v.) integral component is

taken, only off-resonant couplings are considered. When there is a pole due to a resonant

coupling to the FES, the imaginary part of the integral becomes nonzero and an imaginary

component of the polarizability arises proportional to the photoionization (PI) cross section

σ. In this section, I will derive an expression for the PI cross section of an atomic state in

the fine- and hyperfine-structure-free n, l,ml basis starting from Fermi’s golden rule (FGR).

I use FGR because the bound atomic state couples to a FES that is part of a continuous

distribution of states of similar electric-dipole matrix elements with the bound level.
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FGR, in the velocity-gauge, yields a PI rate to the FES |ϵ′, l′,m′
l⟩, Γ

ϵ′,l′,m′
l

n,l,ml
(ωL) given by

Γ
ϵ′,l′,m′

l
n,l,ml

(ωL) =
πe2E2(R0)

2ℏm2
eω

2
L

| ⟨ϵ′, l′,m′
l| eikL·r̂e(ϵ̂ · p̂e) |n, l,ml⟩ |2ρ(ϵ′), (2.66)

where ρ(ϵ′) is one per unit energy. The energy of the FES is

ϵ′ =
2πa0EH

αFSλ
+W, (2.67)

where, here, αFS is the fine-structure constant, EH = 27.2 eV, λ is the wavelength of the

light, and W is the energy of the bound atomic state.

Using the identity p̂e = −iℏ∇⃗e, where “e” means it operates on the valence electron’s

coordinate re relative to the CM coordinate R0. Under the E1 approximation, eikL·r̂e ≃ 1.

A generalized expression can now be made for the cross section of PI to |ϵ′, l′,m′
l⟩,

σ
ϵ′,l′,m′

l
n,l,ml

(ωL) =
πe2ℏ2

ϵ0m2
eωLc

| ⟨ϵ′, l′,m′
l| ϵ̂ · ∇⃗e |n, l,ml⟩ |2. (2.68)

When the laser polarization is ∥ to the quantization axis ze, only π transitions can be

made. The magnetic suborbital quantum number ml is therefore conserved, and

σϵ′,l′

z,n,l,ml
=

3(l2> −m2
l )

(2l> + 1)(2l> − 1)

(2l + 1)

l>
σ̄ϵ′l′

n,l , (2.69)

where l> is the larger of l and l′. The polarization-independent cross section is given by,

σ̄ϵ′l′

n,l =
πe2ℏ2

3ϵ0m2
eωLc

l>
(2l + 1)

∣∣∣∣
∞∫
0

uϵ′,l′(re)

[
u′n,l(re)∓

unl(re)

re
l>

]
dre

∣∣∣∣2, (2.70)

where ”−(+)” is for the case of l> = l′(l) and u∗,l(re) = reR∗,l(re). If the polarization is

transverse to the atom’s quantization axis,

σϵ′,l′

x,n,l,ml
=

3(l′(l′ + 1) +m2
l )

2(2l> + 1)(2l> − 1)

(2l + 1)

l>
σ̄ϵ′l′

n,l . (2.71)

PI is a useful tool for realizing experiments involving plasmas [111] and cooled and

trapped ions [112; 113]. Additionally, it is a mechanism at which astrophysical clouds of

charged particles arise [114; 115]. Measurements of PI cross sections traditionally require

quantifying the population loss from an atomic ensemble as a function of the light exposure

time [116; 117]. These experiments are extremely difficult to conduct, as they require proper
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calibration of the total atom number and the laser intensity within the interaction region

which often includes many loss factors that cannot be quantified. You certainly cannot stick

a beam profiler inside the vacuum chamber at the exact location of the atomic sample! In the

next chapter, I will outline an experiment I performed where the PI cross section of the 85Rb

5D3/2 optical-clock state was obtained at λ = 1064 nm using the centers and broadening of

spectroscopic lines.
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CHAPTER III

Measurement of the Rb 5D3/2 Polarizability and

Photoionization Cross Section in a Deep, 1064-nm

Optical Lattice

This chapter is based on Ref. [3].

3.1 Introduction: Measuring 5D Polarizabilities

Understanding how the Rb 5Dj levels respond to light is essential for the progress in

making a portable optical clock that rivals the current commercially available time standards

based on M1 transitions at microwave frequencies. Two counter-propagating optical fields

at 778 nm can drive the dipole-forbidden 5S1/2 → 5Dj transitions in the second order.

Because the beams are counter-propagating, first-order Doppler shifts can be eliminated if

the probed sample is at room temperature. However, as it was demonstrated in [25] for

j = 5/2, thermal atoms are susceptible to second-order Doppler shifts that hamper the

proposed clock accuracy on the order of ∼ 10−13/
√
τ (τ is the averaging time of the spectral

line). Furthermore, the 778 nm interrogation lasers induce AC Stark shifts on the levels that

can inhomogeneously broaden obtained spectral lines. Additional optical fields that would

tightly confine the probed atoms through the dipole force and cancel the 778-nm AC Stark

shift [28] with the appropriate detunings from an atomic resonance could eliminate these

two aforementioned uncertainties.

Miniaturized vapor cells engineered for laser cooling are becoming more available [41; 42]

for both commercial and academic purposes, making the prospect of the portable clocks

developed in [25; 28; 38; 39] with integrated optical dipole traps not too ambitious. The real

question that lingers is what trapping wavelength to choose. This is where the the importance

of accurately and precisely measured AC polarizabilities for the Rb 5Dj states comes into

play. In order for a miniaturized optical lattice clock to work properly, a wavelength has
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to be chosen such that it provides a polarizability that can cancel out AC Stark shifts at

778 nm, provide tight confinement of the probed atoms, and allow the sample to withstand

photoionization long enough to take sufficient measurements. As can be seen in Fig. 2.7,

there is a range of estimated (these are not precise calculations) polarizabilities for the 5D

states both above and below the photoionization (PI) threshold. However, polarizabilities

at only a handful of wavelengths have been verified experimentally.

In this experiment, we investigate shifts and lifetimes of the Rb 5D3/2 state in an

ultra-deep (∼ 105Er), 1064-nm optical lattice through resonant absorption spectroscopy

of two probing lasers at 795 nm and 762 nm. We choose this lattice wavelength be-

cause of its widespread commercial availability and is the high-powered laser we had on

hand. Additionally, polarizabilities at other states of Rb, α5S1/2
= 687.3(5) [118] and

α5P1/2
= −1226(18) [108] (in atomic units, i.e., units of 4πϵ0a

3
0) are known theoretically

to a very good uncertainty by way of rigorous Hartree-Fock calculations.

In order to arrive at a measurement of α5D3/2
at λ = 1064 nm, we use the 5P1/2 → 5D3/2

transition shifts from the optical lattice (field strength of E) measured by a probing 762-nm

laser beam,

∆F ′

762 = −1

4
(αS

5D3/2
− α5P1/2

)E(R0)
2, (3.1)

where F ′ denotes the hyperfine state of 5P1/2. The measurement we make here is purely the

scalar polarizability, as we estimate the tensor polarizability to induce splittings of |mj| that
are not observable under the PI broadening of the 5D3/2 level. While we know α5P1/2

to a

relative uncertainty of 0.015, E(R0)
2 requires knowledge of the atoms’ exact location within

the lattice field, which is impossible to know directly. In atomic spectroscopy, when there

are two unknown measurements, there must be two transitions probed. Thus, we must get

E(R0)
2 from another shifted transition, the 85Rb D1 line in this case. And so,

∆F ′

795 = −1

4
(α5P1/2

− α5S1/2
)E(R0)

2. (3.2)

Now we take take the ratio of Eq. 3.1 to Eq. 3.2 and arrive at

αS
5D3/2

= α5P1/2
+
d∆F ′

762

d∆F ′
795

(α5P1/2
− α5S1/2

). (3.3)

Our sample of 85Rb is continuously optically pumped into the F = 3 hyperfine ground

state with the repumping laser. Thus, there are two excitation pathways to the 5D3/2

hyperfine states F ′′ depending on what intermediate state F ′ is excited. Because of PI,

the F ′′ spectral lines are only resolvable when the optical lattice is at shallow depths, so

our measured ∆F ′
762 is insensitive to F ′′. Therefore, in this experiment, two polarizability
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Figure 3.1: Energy levels, transitions, and lattice shifts as a function of CM position Z0

along propagation axis used for the experiment described in this chapter (not to
scale). The 5D3/2 hyperfine structure is ignored. Dashed lines indicate lattice-
free energy levels. The tick mark on the Z0-axis corresponds to Z0 = 0.

measurements are made, one for each pathway through F ′. The final value of αS
5D3/2

is a

weighted average of both measurements. The field-free and lattice-perturbed energy levels

used in this measurement are shown in Fig. 3.1.

3.2 Chamber and In-Vacuum Cavity

Fig. 3.2 shows the experimental setup for laser spectroscopy of ultracold Rb in a deep,

1064-nm optical lattice. The hallmarks of the apparatus used for this experiment are a

near concentric in-vacuum cavity with a finesse of 600 at 1064 nm and two detectors: a Si

avalanche photodiode and a Rb+-collecting microchannel plate detector (MCP) which can

independently measure populations in 5P1/2 and 5D3/2, respectively. Enhancement of the

1064-nm laser field is made possible with the cavity such that lattices with 106Er depths for

Rb 5S1/2 atoms can be achieved. Cavity parameters, as well as specs of the vacuum chamber

and ion detection system with the MCP can be found in [43; 119; 120].

In the geometric center of the cavity (x = 0, y = 0, z = 0), a MOT of 85Rb or 87Rb

atoms can be prepared from three orthogonal arms of retroreflected D2 cooling lasers and

a repumping beam. Because the frequency control of our probing lasers for spectroscopy is

designed to access 85Rb transitions, we prepare a MOT of 85Rb in this experiment.

Before the 1064-nm lattice laser is injected into the cavity, it is passed through an acousto-

optic modulator (AOM) twice so that the power and frequency of the light sent into the

experiment can be controlled via the amplitude (AM) and frequency (FM) modulation of

45



AOM

EO
M

Ultra-High Vacuum

MCP
D1

E03

BB

BB

0th

-1st

-1st

-2nd

Lattice beam
(1064 nm)

λ/4

BS

Probe beams 
(795 & 762 nm)

PD1

PD2

PD3

D2

APD

795 nm

762nm

40 MHz

20 MHz

Arbitrary
Waveform
Generator

Servo

Servo

Normalization 
       Circuit

  AM
Input

  FM
Input

Ring PZT
   Input

Figure 3.2: Apparatus for the experiment described in this chapter (not drawn to scale). The
following acronyms are used: ”λ/4” quarter wave plate, ”BB” beam blocker,
”AOM” acousto-optic modulator, ”EOM” electro-optic modulator, ”D1” and
”D2” dichroic elements, ”BS” beam sampler,”MCP” micro-channel plate detec-
tor, ”PD1”,”PD2”, and ”PD3” germanium photodiodes, ”E03” infrared mirror,
”APD” avalanche photodiode. Inside the ultra-high vacuum, lenses are placed
around the cavity mirrors to enhance input coupling and output collimation.
The gold blocks represent the ring and three chip piezos used for control of the
cavity length. The orange rods are two of the six total electrodes used for pro-
pelling and steering Rb+ to the MCP, four are not shown. MOT laser beams
that cool and trap 87Rb or 85Rb in the center of the cavity are also not shown.
Figure adapted from [3].

the 40 MHz AOM driving signal, respectively. The 1064-nm light is then phase modulated

with a ∼ 20 MHz drive by means of a free-space electro-optic modulator (EOM). A germa-

nium photodiode ”PD1” samples the AM-modulated laser light and sends the detected pulse
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Figure 3.3: Fluorescence images of the MOT in the (x, y)-plane with the cavity tuned to the
(a) TEM00 mode and (b) TEM10 mode.

envelope to the C port of a normalization circuit. A second germanium photodiode ”PD2”

sends the error signal [121], demodulated by the EOM driver, to the A port. The normal-

ization circuit performs the following operation on voltages C, A, and a fixed parameter B:

Vout = AB/C. Thus, the output error signal that is split off to two servo-amplifiers does not

follow the amplitude modulation of the 1064-nm laser. A homebuilt PID circuit is used as

the servo for the fast control of the cavity-mode stabilization. Because the laser features no

transducer for tuning its frequency to compensate fast jitters hampering the stability of the

cavity mode, feedback is provided by FM-modulating the AOM driver. A locking bandwidth

of ∼ 10 kHz is achieved, which is enough to suppress the fast drifts of the cavity-mode.

Low-frequency noise and mechanical vibrations on the laser table that destabilize the cir-

culating 1064-nm mode in the chamber are suppressed by a Toptica PID110 piezo lockbox

that controls the ring piezo-electric transducer (PZT) mounted on the output cavity mirror.

Three chip piezos are used for applying a constant offset to the length of the cavity.

Once the cavity mode is stabilized, the atoms can be cooled and collected in the optical

lattice. During this time, we leave the lattice on simultaneously with the MOT beams. We

can choose different transverse electromagnetic modes of the 1064-nm light resonant with

cavity. This means the Gaussian profile of the TEM00 cavity-mode can be imprinted in

the ultracold Rb cloud through transverse compression of the atoms by the dipole force. In

Fig. 3.3(a), atoms shaped into the TEM00-mode is shown in a fluorescence image of the MOT

in a plane (x, y) transverse to the cavity axis (z). Fig. 3.3(b) shows the case for the TEM10

mode. For the experiment described in this chapter, we tune the cavity to be resonant with

the TEM00 mode.

During the cooling and trapping phase of the experimental cycle, which lasts about 10 ms,

the total intensity of the 1064-nm light circulating within the cavity is about 7 GW/m2

providing a trap depth of about 1 mK for atoms in
∣∣5S1/2, F = 3

〉
. These ground state
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Figure 3.4: Pulse envelope of the 1064-nm laser in one experimental cycle.

atoms will seek regions of high laser intensity due to the large red detuning of the 1064−nm

field from any resonance. In a classical picture, atoms inside these potential wells will roll

down and up hills of the same ”height,” or, more properly, ”potential,” like a very boring

roller coaster. Because there is no light scattering from the FOR optical lattice, one would

think they could perpetually continue on this ride. However, there is a strong, viscous force

from the 780-nm MOT beams that are now further detuned thanks to the AC Stark shifting

by the lattice light. This viscous force is analogous to the kinetic friction between the coaster

track and wheels of the train causing the atoms to eventually be too slow to climb up another

hill. The overall effect of these separate optical forces is an atom temperature slightly below

the Doppler-limit.

Once we have cooled down the atoms to ∼ 100 µK in the lattice, the 1064−nm light

within the cavity is smoothly ramped upwards to ∼ 70 GW/m2 via amplitude modulation of

the AOM driving signal. At this level, the lattice is now ultra-deep, and laser spectroscopy

with the probe beams can be performed. The pulse envelope of the lattice intensity in one

experimental cycle is detected by PD3 (see Fig. 3.2) and displayed in Fig. 3.4.

3.3 Probe Lasers

As it was explained in the introduction, in order to make a measurement of the scalar

polarizability of the Rb 5D3/2 level in an ultra-deep optical lattice at 1064 nm, we must mea-
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sure two frequency shifts: that of the D1 line and that of the
∣∣5P1/2

〉
→
∣∣5D3/2

〉
transition.

Thus, we require the simultaneous application 795- and 762-nm probe lasers that may be

continuously tuned at the order of ∼GHz.

A major systematic uncertainty that must be eliminated in the measurement of the

5D3/2 polarizability at 1064 nm is the linearity of the probe laser frequency scan. In a

previous version of this experiment [120], we applied a stack-like voltage sweep to the piezos

affixed to the intra-cavity filters of the probe lasers. The following frequency response to the

input voltage was highly nonlinear, resulting in an unreliable measurement with a relative

uncertainty greater than 0.05. For the measurement described in this chapter, we rectified

this problem by using the spectroscopic technique of phase-locked loops (PLLs).

In a PLL, the phase of the probe laser (known as the slave) is locked to that of another

tunable laser (known as the master) which is frequency stabilized to a reliable reference.

This reference may be a an ultra-low expansion (ULE) cavity, a frequency comb laser, or an

atomic/molecular transition. For this experiment, we choose the lattice-free 87Rb D1 line

(|F = 2⟩ → |F ′ = 1⟩) as our reference for the 795-nm PLL and the 87Rb
∣∣5P1/2, F

′ = 1
〉
→∣∣5D3/2, F

′′ = 2
〉
transition for the 762-nm PLL. When the slave laser’s phase is in an unlocked

state, its frequency difference between that of the master forms a beat signal that can be

mixed and with another RF signal derived from a synthesizer. After filtering, a sharp,

step-like error signal is generated with an inflection point at the frequency difference that

matches the RF frequency. A high-bandwidth ∼ 10 MHz servo amplifier uses this error

signal to control the current of the slave laser. Thus, when the slave laser is phase-locked,

we can scan the its offset from the master frequency with perfect linearity by changing the

frequency of the RF synthesizer (which has a reliable and stable absolute frequency at the

order of ∼kHz).

Fig. 3.5 depicts the optical layout for the probe lasers used in this experiment and the

masters to which they are phase locked. The currents and PZTs of the master lasers

(MOGlabs CEL) are resonantly stabilized to the 87Rb
∣∣5S1/2, F = 2

〉
→
∣∣5P1/2, F

′ = 1
〉

and
∣∣5P1/2, F

′ = 1
〉
→
∣∣5D3/2, F

′′ = 2
〉
transitions by means of saturated-absorption and

electromagnetically-induced-transparency (EIT) spectroscopy, respectively. We use solenoids

wrapped around the atomic vapor cells in order to Zeeman modulate the hyperfine transitions

at 250 kHz. This modulation is performed in order to generate error signals for peak-locking

the master lasers. Signal generators at 250 kHz along with the phase detectors and servo am-

plifiers for current and PZT control are all commercially provided in the drivers for MOGlabs

CELs. Once we have the master light frequency stabilized down to linewidths of ∼100 kHz,

we can combine them with the probe (slave) laser beams and detect the beat frequencies us-

ing high-bandwidth, “fast” photodiodes (FPD). We pick off some light from our probe lasers
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Figure 3.5: Optical layout for frequency and pulse control of the probe lasers (denoted here as
“slave” lasers) used in the experiment. Here “FPD” stands for “fast photodiode.”
Figure adapted from [3].

(AOSense-IF-ECDL-*) and fiber-couple it to be combined with the master laser beams. As

the beatnotes from both PLLs are detected and amplified, they are sent to Vescent D2-135

offset phase-locked servo (OPLS) amplifiers which serve both as RF phase detectors and

high-bandwidth PID circuits that control the probe lasers’ currents. A polarity switch on

the OPLS determines whether the RF providing the frequency offset to the probe laser is

added to or subtracted from the master laser frequency. For the 795-nm probe laser, we add

the RF frequency to that of the master. For the 762-nm probe, we subtract it. When the

probe lasers are phase-locked to the master lasers at a given RF offset frequency, they do

not deviate from this frequency difference by more than 1 Hz, evidenced by the beatnote

between the two 795-nm lasers shown in Fig. 3.6. Consequently, we can scan our probe lasers

at frequency resolutions better than ∼100 kHz.
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Figure 3.6: Beat signal (logarithmic) of 795-nm master and probe lasers phase-locked in the
frequency domain. The linewidth is below the resolution bandwidth (1 Hz) of
the spectrum analyzer used here.

In addition to having the ability to linearly scan the frequencies of our probe lasers with

resolutions below ∼ 1 MHz, we can also pulse them down to 500-ns durations. This is done

through amplitude modulation of the RF signals controlling the AOMs that the probe beams

are sent through. The pulsed probe beams are combined with the same linear polarization

on a dichroic mirror and fiber-coupled to the experiment in order to be coaligned with the

1064-nm laser that is sent to the in-vacuum cavity.

3.4 Absorption Spectroscopy of the 85Rb D1 Line in the MOT

In this section, we observe only the absorption of the 795-nm probe beam by the 85Rb

MOT with the lattice light on and off as a diagnostic for the frequency control of this laser.

We use the APD for this measurement of absorption. For this test, the probe laser intensity

at the position of the atoms is set such that there is no power broadening and that the

absorption line resembles a Lorentzian with a linewidth limited by the lifetime τ of the 5P1/2

state, 1/τ = 2π × 6 MHz when the lattice light is off.

In Fig. 3.7, we demonstrate absorption of the 795-nm probe laser by the ultracold 85Rb

with the lattice-light turned off during the interrogation time. The frequency axis depicts

the frequency difference between the probe and master laser, which is locked to the 87Rb

|F = 2⟩ → |F ′ = 1⟩ D1 transition. We define the offset frequency of 1.446 GHz as ν1, which

corresponds to the
∣∣5S1/2, F = 3

〉
→
∣∣5P1/2, F

′ = 2
〉
transition and note that the F ′ = 3

line is 362 MHz away, as expected. The change in transmitted power as a function offset

frequency is due to the probe laser’s response in power as a function of changing current.
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Figure 3.7: Avalanche photodiode (APD) detection of 795-nm laser through the MOT with
the 1064-nm optical lattice switched off during the probe pulse. Both hyperfine
F ′ absorption peaks are shown for the 5P1/2 state.

This feed-forward effect makes a negligible difference in determining the F = 3 → F ′ = 2

line center.

In Fig. 3.8(a), we zoom in on the F ′ = 2 hyperfine peak free of the optical lattice

field. For Figs. 3.8(b)-(d), we turn on the lattice at three different intra-cavity, standing-

wave intensities of 1064-nm lattice field, ISW1064. Ground state atoms trapped near the global

potential minimum of the lattice are localized near the maximum intensity of the optical

field at (X0 = 0, Y0 = 0, Z0 = 0), where the
∣∣5S1/2, F = 3

〉
→
∣∣5P1/2, F

′ = 2
〉
transition

receives the greatest AC Stark shift. These atoms are responsible for the inflection-point-

like spectral features in Figs. 3.8(b)-(d), marked by the gray dashed lines. The reason that

the blue-shifted spectral feature has this sharp drop-off near the bottom of the deepest lattice

well is because, during a frequency scan, the probe laser goes out of resonance right after

it accesses the D1 transition for the most tightly confined atoms. AC Stark shifts of this

transition ∆F ′=2
795 are denoted for these atoms in Figs. 3.8(b)-(d).

Now that we have demonstrated control of the 795-nm probe laser frequency, we can

conduct spectroscopy of the
∣∣5P1/2

〉
→
∣∣5D3/2

〉
transition by counting the ions resulting

from the decay of atoms in the 5D3/2 state. This spectroscopic measurement requires the

application of the 762-nm probe laser.
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Figure 3.8: Spectroscopy of AC Stark shifts on the D1 transition (F = 3 → F ′ = 2) by the
optical lattice for various depths. The dashed lines correspond to the shifts ∆2

795

on the atoms experiencing the deepest trapping potential within the intensity
gradient of the lattice. For each case, we also give the maximum standing wave
intensity ISW1064 provided by the lattice.

3.5 Penning-Ionization Spectroscopy of 85Rb 5P1/2 → 5D3/2 Tran-

sition

Before observing the AC Stark shifts on the
∣∣5P1/2

〉
→
∣∣5D3/2

〉
transition, we wish to

observe the 762-nm, probe-laser frequency offsets from the 762-nm master that correspond

to the lattice-free hyperfine lines. In order to measure the population in
∣∣5D3/2

〉
, we must

collect ions that form upon excitation into this state. While the optical lattice strongly

photoionizes atoms in
∣∣5D3/2

〉
, it also shifts the transition frequency, which is something

we do not want in this diagnostic of the 762-nm probe frequency control. Another form of

achieving 85Rb+, decayed from an excitation into
∣∣5D3/2

〉
, is a density-dependent interaction

known as Penning ionization.

In Penning ionization, an atom in excited state |A⟩ collides with another atom with

internal state |B⟩. If the ionization energy of the atom in |B⟩ is less than the transition

energy between state |A⟩ and the ground state, the atom in state |B⟩ is ionized (FES

|ϵ⟩)and the atom in |A⟩ is transferred to the ground state |G⟩. For our case, |A⟩ =
∣∣5P1/2

〉
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and |B⟩ =
∣∣5D3/2

〉
. Thus, the following interaction takes place [122; 123; 124]

85Rb(5D3/2) +
85 Rb(5P1/2) →85 Rb+ + e− +85 Rb(5S1/2). (3.4)

The rate of Penning ionization for atoms in state
∣∣5D3/2

〉
is given through Fermi’s golden

rule in the context of a direct dipole-dipole interaction coupling
∣∣5P1/2

〉
to
∣∣5S1/2

〉
and

∣∣5D3/2

〉
to |ϵ′⟩ or an electron exchange between the two colliding atoms. The rate is numerically

calculated and found experimentally to be

ΓPenning = 3.5× 10−14s−1m3/R3, (3.5)

where R is the average atomic spacing for all three spatial dimensions [122; 123; 124]. It is

evident that a larger atomic density yields better state readout. Therefore, we must enhance

the density of the MOT through compression by the optical lattice during the cooling and

trapping portion of the experimental cycle. Lattice depths during this stage are kept around

1 mK. We then pulse the lattice completely off when the 795-nm and 762-nm probe beams

are sent through the compressed cloud.

Fig. 3.9, we simultaneously shine the 795-nm and 762-nm probe light on the cigar-

shaped cloud compressed by the lattice. The 795-nm light is detuned -36 MHz from the∣∣5S1/2, F = 3
〉

→
∣∣5P1/2, F

′ = 2
〉
transition, while the 762-nm laser is scanned, in steps

of 500 kHz, from -300.0 MHz to -429.5 MHz with respect to the 87Rb
∣∣5P1/2, F

′ = 1
〉
→∣∣5D3/2, F

′′ = 2
〉
transition. Penning ions are collected with on the MCP and counted with

an SR400 Photon Counter. The detuning where the 85Rb
∣∣5P1/2, F

′ = 2
〉
→
∣∣5D3/2, F

′′ = 3
〉

transition occurs, with the lower transition laser on resonance, is −357.0 MHz. From this

point onward in this chapter, we denote this frequency as ν2.

The linewidths appear to be on the order of 2-3 MHz, a few factors larger than the natural

linewidth of the 5D3/2 level. We attribute the broadening to excess optical power from the

probe lasers and the background magnetic field of the MOT. However, this broadening is

negligible for measurements of the AC scalar polarizability and PI cross section in a 1064-nm

optical lattice because the PI will broaden the lines to hundreds of MHz.

3.6 Rb 5D3/2 Polarizability Measurement at λ = 1064 nm

Demonstrable frequency control of both probe lasers and the lattice-free reference frequen-

cies ν1 and ν2 have been established. In order to perform two-step resonance spectroscopy

on the atoms trapped in the optical lattice, we simultaneously scan both probe lasers while

reading out the number of 5D3/2 photoions collected by the MCP. The 795-nm probe laser
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Figure 3.9: Penning-ionization spectroscopy of the 85Rb |5P1/2, F
′ = 2 >→ |5D3/2, F

′′ >
transition. The lower-transition laser is -36 MHz detuned from the |F = 3 >→
|F ′ = 2 > transition (ν1). The dashed gray line corresponds to ν2, the |5P1/2 >
,F ′ = 2 >→ |5D3/2, F

′′ = 3 > transition when the 795-nm probe frequency is
equal to ν1.

is scanned, in steps of 30 MHz, from -0.036 GHz to 1.344 GHz with respect to ν1. At each

frequency setting ν795, the 762-nm probe laser is scanned from 0.057 GHz to -0.843 GHz with

respect to ν2 in steps of 4 MHz. For every scan, ion counts are averaged over 30 experimental

cycles.

Two spectroscopic cone-shaped signal regions on the (ν1, ν2)-planes are obtained from

the aforementioned scans, each corresponding to an excitation pathway to the 5D3/2 state

through the F ′ hyperfine sublevel of 5P1/2. The reason they are cone shaped is that the PI

rate, proportional to the intensity of the lattice field at the position of the atoms, becomes the

dominant broadening mechanism in the spectroscopic lines. Hence, at larger blue detunings

from ν1, we probe atoms in deeper lattice potentials, the
∣∣5P1/2

〉
→
∣∣5D3/2

〉
spectral line

red shifts, and a Lorentzian lineshape is observed with a width mainly dominated by PI

broadening, much fatter than those corresponding to the atoms probed in regions of low

lattice intensity. These spectroscopic features are exhibited in Fig. 3.10(a). Fig. 3.10(b)

shows the analogous numerical simulation. This figure is taken from [3].

A drop in signal strength is noticeable in the middle of the cones, as seen in Fig. 3.10(a).

This behavior is a most likely an effect of weak Frank-Condon overlap between CM wave
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Figure 3.10: In (a), we exhibit the experimental two-step resonance spectroscopy performed
by counting photoions generated upon population of

∣∣5D3/2

〉
. The slopes of

each F ′ cone are used to arrive at a dynamic scalar polarizability measurement
for
∣∣5D3/2

〉
at λ = 1064 nm. In (b), we numerically simulate our data using the

parameters αS
5D3/2

= −524, αT
5D3/2

= 0, and PI cross section σ = 40 Mb.

functions of weakly-bound Bloch bands. A semiclassical explanation, where the CM motion

is treated classically, has yet to be investigated, but could be modelled with the following

numerical methods involving the rapid switching of internal states and their lattice potentials

in future endeavours [125; 126].

Lorentzian line centers and widths of the 762-nm probe scans are obtained as fitting
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Figure 3.11: Figure taken from [3]. Here we show the linear trend of each Lorentzian line
centers for each 762-nm probe spectrum belonging to the F ′ = 3 excitation
branch as the lower-transition probe detuning from the lattice free resonance is
varied. The slope of this trend is a parameter used to get an AC polarizability
measurement of the 5D3/2 state at λ = 1064 nm. Vertical error bars correspond
to the statistical uncertainties in the fitted line centers.

parameters to data for each 795-nm probe detuning from ν1. This fitting procedure is per-

formed for each F ′ cone. Because there is a negligible uncertainty in the systematic effect of

laser frequency linearity, the reported uncertainties in our line centers are purely statistical.

Fig. 3.11 exhibits the linear trend in fitted line centers ∆F ′=3
762 as the 795-nm probe laser

is tuned, i.e., ∆F ′=3
795 is changed. A linear fit yields the slope d∆F ′=3

762 /d∆F ′=3
795 = −0.371(6).

Once this slope is included in Eq. 3.3 along with the existing theoretical polarizability esti-

mates at 1064 nm for 5S1/2 (α5S1/2
= 687.3(5)) and 5P1/2 (α5P1/2

= −1226(18)), we arrive

at a 5D3/2 scalar polarizability of -516(22) for the F ′ = 3 cone. The uncertainty in this

value is propagated from the statistical uncertainty in d∆F ′=3
762 /d∆F ′=3

795 = −0.371(6) and the

theoretical uncertainties in α5S1/2
and α5P1/2

. Similarly, we obtain αS
5D3/2

= −537(27) for

F ′ = 2. A weighted average and uncertainty is taken between the two measurements. Our

final measurement of the 5D3/2 scalar polarizability at λ = 1064 nm is −524(17).

We have made numerical estimates of both the scalar and tensor polarizabilities for 5D3/2

at λ = 1064 nm from existing calculations of Rb valence electron energies [127], using matrix

elements derived from [128; 129], and from matrix elements and valence electron energies

provided by additional sources [130; 131] when transitions to higher (n ≥ 9)Pj and (n ≥ 8)Fj

Rydberg states needed to be taken into account. Matrix elements between the 5D3/2 state
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and FESs are estimated for a set of FES energies spaced at h× 40 GHz within the range of

ϵ′ = 0 and ϵ′ ≃ 20 eV. These calculations set up the integrand of a principal value integral

with a pole at ϵ′ = 0.17 eV numerically calculated to contribute 19 and -3 to the scalar and

tensor polarizabilities, respectively. Contributions from the polarizability of the inner ion

core are included from estimates obtained in [28]. Our final estimates are αS
5D3/2

= −511

and αT
5D3/2

= 13. From the simulation in Fig. 3.10(b), we estimate that the presence of this

tensor polarizability would result in a systematic shift of < 10 in the scalar polarizability,

below our measurement’s uncertainty of 17. Therefore, in this case, it is not possible to make

a tensor polarizability measurement in the presence of a significant PI cross section, as the

broadening will mask the |mj| splittings brought on by the tensor polarizability.

3.7 Photoionization Cross Section

Not only is this experiment intended to investigate the differential light shifts a 1064-nm

laser field would place on the 5D3/2 state, but it also measures the likelihood of the atoms

photoionizing at this wavelength. At low values of |∆F ′
795| and |∆F ′

762|, atoms are located in

regions of the lattice where the 1064-nm intensity is the lowest, spectral broadening from

PI is at the same, if not lower, magnitude as other sources: Zeeman broadening from the

always-on MOT magnetic field, Doppler broadening, Penning ionization, and 1064-nm power

fluctuations. When 5S1/2 atoms located on the lowest Bloch band are probed, the 762-nm

spectrum undergoes PI broadening that supersedes the aforementioned effects. These atoms

see the peak intensity of∼70 GW/m2 and are excited to 5P1/2 when ∆F ′
795 is at a maximum. In

this intensity regime, the measured Lorentzian linewidth Γ/2π in the 762-nm probe spectrum

is thus predominantly derived from the PI-induced decay rate, ΓPI ,

ΓPI =
σI

ℏωL

, (3.6)

where I is the 1064-nm intensity and ωL is its angular frequency.

Measurements of Γ and I are collected for both excitation pathways through F ′ and all

D1 AC-Stark shifts from which a detectable spectral line is observed. We are able to make

a measurement of the lattice laser’s intensity at a given D1 detuning ∆F ′
795 using Eq. 3.2,

from which we also propagate a 6 MHz uncertainty in ∆F ′
795 as a conservative estimate. Γ

is obtained from Lorentzian linewidths fitted to our spectral data of collected Rb+ counts

versus ν762 − ν2. For every I and Γ measured, we take the ratio σ̃ = ℏωLΓ/I. Fig. 3.12(a)

exhibits the trend of σ̃ as I is increased. At CM positions of very large I, from which

the exemplary 762-nm probe spectrum used for finding fitting parameters Γ and ∆F ′
762 in

58



0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0
2 2 0

σ (
Mb

)

I  ( G W / m 2 )

4 5 ( 1 )  M b

~

( a )

0 . 0 5 - 0 . 1 5 - 0 . 3 5 - 0 . 5 5 - 0 . 7 5
0

1

2

3

4

5

6

7

8

Ion
 Co

un
ts

ν 7 6 2 −ν 2  ( G H z )

Γ  =  1 5 2 0 ( 1 9 )  M s - 1
∆ F ' = 3

762 =  - 0 . 2 2 8 ( 1 )  G H z
Γ/2π =  2 4 2 ( 3 )  M H z

( b )

Figure 3.12: Figures taken from [3]. In (a) we show the values of σ̃ we obtain for each
measured I, along with the fitted function (solid red) from which σ may be
derived. The green dashed line represents the arithmetic average in σ̃ for all
points corresponding to an I ≥ 45 GW/m2. Vertical error bars represent prop-
agated uncertainties in σ̃, derived from the natural linewidth of the D1 line and
the statistical uncertainty in measured Γ. In (b), we show a typical Lorentzian
762-nm probe spectrum at the given ∆F ′

795 = 0.984 GHz, along with fitting pa-
rameters ∆F ′

762 and Γ we get from the line center and width, respectively.

Fig. 3.12(b) is taken, σ̃ → σ and Γ → ΓPI . The uncertainty in the center and linewidth of

Fig. 3.12(b) takes into account the absence of data to the red of the line center, where the

PLL starts to come out of lock.

The points in Fig. 3.12(a) follow the given trend:

σ̃ =
√
σ2 + γ2/I2, (3.7)
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where γ corresponds to the other broadening effects previously listed. Using this fit function,

we obtain σ = 45(1) Mb. An alternative derivation of σ by taking the arithmetic mean of all

σ̃ above I = 45 GW/m2 also yields σ = 45(1) Mb. When the same two fitting procedures are

used on simulated 2D spectral maps like the one in Fig. 3.10(b) with σ as an input, we find

that these methods yield an overestimate of 1 Mb. Therefore, we arrive at a final 5D3/2 PI

cross section of 44(1) Mb. This value deviates from an estimated fine-structure-removed cross

section of 32.4 Mb, calculated from Rydberg-electron model potentials provided by [131].

Effects of atomic polarization, fine-structure, and the robustness of the model potentials at

5D are all explanations from this discrepancy that has yet to be determined.

3.8 Conclusion

In summary, we have made measurements of the 5D3/2 scalar polarizability αS
5D3/2

and

PI cross section σ at λ = 1064 nm. We obtain αS
5D3/2

= −524(17) (atomic units, i.e., 4πϵ0a
3
0)

and σ = 44(1) Mb. Our experimental scalar polarizability matches our estimates within

our uncertainty; however, the PI cross section faces a discrepancy with our estimates and

a less precise measurement obtained for 5D5/2 [117] using a trap-loss method. Effects of

fine structure on the PI cross section have yet to be determined. Empirically determined

shifts and decay-rates for the Rb 5Dj states at other optical wavelengths above, below, and

at the PI threshold are future experimental directions. Such shifts could be beneficial in

eliminating AC Stark shifts and motional decoherence, as well as providing optical trapping

in miniaturized rubidium optical frequency standards [25; 28; 38; 39].
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CHAPTER IV

Theory of Rydberg Atoms

In the last chapter, I used an ultra-deep optical lattice to make simultaneous polariz-

ability and photoionization measurements on the Rb
∣∣5D3/2

〉
state, potentially useful for

commercially available portable rubidium clocks. Measurements were done at the common

lasing wavelength of λ = 1064 nm. With that application of optical lattices for fundamen-

tal physics having been explored, I now will move on to the other applications involving

circular-state Rydberg atoms.

The secondary goal of this thesis is to exploit how Rydberg atoms behave in optical

fields in order to coherently control the parity and shape of the electronic wave function

towards circularization. Very large Rydberg atoms in the circular state are useful for preci-

sion spectroscopy and single-photon detection experiments that have been proposed in the

fundamental physics community. Atomic and molecular states with atoms at very large n

principal quantum numbers near the ionization threshold are known as Rydberg states. The

weakly bound valence electron is therefore free to orbit the inner ion core at distances on

the order of hundreds of nm to µm. As a result, there is considerable scaling with n for their

physical properties, such as lifetimes, dipole moments, polarizabilities, etc. When atoms in

Rydberg states are laser cooled to a few millionths of a degree above absolute zero, they be-

come popular systems for exploring quantum information processing [132; 133] and quantum

simulation [134; 102; 135; 136], in addition to the high-precision spectroscopy applications

discussed in this thesis [26; 137; 138; 64]. Furthermore, there has been recent fervor in using

hot Rydberg atoms at ∼300 K in a vapor cell for applications from single-photon gener-

ation [139] to electrometry [140; 141; 142; 143]. Here, I give a theoretical presentation of

Rydberg atom scaling laws and behavior in external static and RF electromagnetic fields.

In the following chapter, I will describe how they respond to optical fields, which is the

theoretical basis for the final chapters in this thesis.
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4.1 Scaling Laws

The sub-µm size of the wave function for a weakly-bound valence electron grants pre-

dictable physical behavior of Rydberg atoms that depends on the nearly-ionized electron’s

n-state. We refer to these dependencies as scaling laws. Scaling laws are a direct result of

the exaggerated extent at which the valence electron’s wave function vanishes, which, in the

quantum regime, is quantified by the expectation value of the electron’s radial coordinate

relative to the nucleus ⟨r̂e⟩. In the first section, we will review the solution of Schrödinger

equation for hydrogen and obtain the expectation value for ⟨r̂e⟩ as a function of n. Subse-

quently, we will summarize several scaling laws that have a dependence on ⟨r̂e⟩.

4.1.1 Schrödinger Equation

Hydrogen is a unique atom in the sense that one may obtain an exact, analytical formula

for its wave function and eigenenrgies. Its simplistic structure consisting of a single electron

and proton is so appealing that if the AMO community had the technological prowess to

laser cool and optically trap hydrogen, it would be the species of study in a great chunk

of the current Rydberg-atom literature. However, its small mass and deeply bound ground

state make it difficult to manipulate with laser light; thus, alkalies (Rb, Cs, Na, etc.) and

alkaline-earth metals (Sr, Yb, Ca, etc.) are used in its place. Because these atoms feature

only one or two valence electrons surrounding an inner ion core, they are systems that closely

resemble hydrogen whenever in a Rydberg state. Alkaline and alkaline-earth Rydberg atoms

are therefore hydrogen-like with small empirical corrections to their energy level structures

known as quantum defects. They are a result of the valence electron undergoing shielding of

the nuclear charge by electrons of the inner ion core and the polarization of these inner elec-

trons by the outer electron [60; 138; 64]. Hydrogen’s electron, on the other hand, undergoes

no shielding of the nuclear proton and experiences a Coulomb interaction given by,

UC(r̂e) = − e2

4πϵ0

1

r̂e
. (4.1)

Here, as a reminder r̂e is the operator corresponding to the radial position of the electron with

respect to the proton position (the atom’s center of mass (CM)). Here e = 1.602176634 ×
10−19 C (exact) is the fundamental charge and ϵ0 = 8.8541878128(13) × 10−12 F/m is the

vacuum permittivity.
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I place this potential in the Schrödinger equation for the hydrogen electron1,

−ℏ2

2me

∇2
eψe(re)−

e2

4πϵ0

1

re
ψe(re) = Wψe(re), (4.2)

where ℏ = 1.054571817... × 10−34 J·s (exact) is the reduced Planck’s constant, me =

9.1093837015(28) × 10−31 kg is the electron mass, and W is the total energy of the elec-

tron. The separation of variables method is used to solve this partial differential equation,

where ψe = R(re)Θ(θe)Φ(ϕe), and so I get

−ℏ2

2me

[
1

R

d

dre

(
r2e
dR

dre

)
+

1/Θ

r2e sin θe

d

dθe

(
sin θe

dΘ

dθe

)
+

1/Φ

r2e sin
2 θe

d2Φ

dϕ2
e

]
− e2

4πϵ0

1

re
−W = 0.

The expression (1/Φ)d
2Φ
dϕ2

e
is a constant equal to −m2

l , where ml is an integer. Thus, Φ =

eimlϕe . Then, I obtain
1/Θ

sin θe

d

dθe

(
sin θe

dΘ

dθe

)
− m2

l

sin2 θe
,

which is equal to −l(l+ 1), where l is a non-negative integer and ml must range from −l to
l for a solution of the equation to exist. The solution to

1

sin θe

d

dθe

(
sin θe

dΘ

dθe

)
+

[
l(l + 1)− m2

l

sin2 θe

]
Θ = 0,

the general Legendre equation for variable x = cos θe, is P
ml
l (cos θe), the associated Legendre

functions. Including the normalization along the solid angle from 0 to 4π, I have

Θ(θe) =
√

[(2l + 1)(l −ml)!]/[4π(l +ml)!]P
ml
l (θe).

Together, with Φ, the angular part of the hydrogen electronic wave function is given by

the spherical harmonics Y ml
l (θe, ϕe). It should be noted that here I am neglecting effects

of the electron’s spin on its orbital angular momentum, which mixes states with different

ml quantum numbers and gives rise to quantum numbers j = |l + s|, ..., |l − s| and mj =

−j, .., j. The angular part of the Schrödinger equation is insensitive to interactions with

other electrons in non-hydrogenic atoms, resulting in no change in the angular wave function

for the valence electron.

1Note that I am assuming an infinitely massive proton; otherwise, I would replace me with µ, the reduced
mass of the atom.
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The radial part of Eq. 4.2 becomes

d

dre

(
r2e
dR

dre

)
− l(l + 1)

r2e
R +

mee
2

2πϵ0ℏ2re
R +

2meW

ℏ2
R = 0.

The normalized solution for R(re) is described in [65] and given by

R(re) =

√(
2

na0

)3
(n− l − 1)!

2n(n+ 1)!
e−re/na0

(
2re
na0

)l

L2l+1
n−l−1(2re/na0), (4.3)

where

L2l+1
n−l−1(2re/na0) = (−1)2l+1

(
na0
2

)2l+1
d2l+1

dr2l+1
e

[
e2re/na0

(n+ l)!

dn+l

drn+l
e

(
e−2re/na0rn+l

e

)]
(4.4)

is an associated Lagrange function. Here, l must be non-negative and has a maximum value

of n− 1, and the eigenenergies for hydrogen are defined by

Wnl = −hcRH

n2
, (4.5)

where RH = mpR∞/(mp +me) and mp = 1.67262192369(51)× 10−27 kg is the proton mass.

For the alkali Rb, the atom used in this thesis, the quantum defects arise from the

following modification:

d

dre

(
r2e
dR

dre

)
− l(l + 1)

r2e
R +

Zmee
2

2πϵ0ℏ2re
R−

Z−1∑
i=1

mee
2R

4πϵ0ℏ2|re − ri|
+

2meW

ℏ2
R = 0, (4.6)

for a neutral atom with atomic number Z and core electrons at position ri. For Rydberg

states, a sufficient approximation of the core penetration and polarization effect was pre-

sented in [131] and is given by (in atomic units of Hartree’s EH = 27.211386 eV).

Ul(r̂e) = −[1 + (Z − 1)e−a1r̂e − r̂e(a3 + a4r̂e)e
−a2r̂e ]/r̂e −

αd

2r̂4e
[1− e−(r̂e/rc)6 ], (4.7)

where a1−6 are l-dependent constants, αd is the dipolar core polarizability, and rc is a radial

scaling factor unique to the alkali. Constants a1−6 and rc can be found in [131], while

updated measurements of the dipolar polarizabilities using nD5/2, nF, nG, nH, and nI states

are found in [144; 138], .

One must also include the spin-orbit interaction for a fine-structure state of quantum
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number j, given by

ULS(r̂e) =
[j(j + 1)− l(l + 1)− s(s+ 1)]

4m2
ec

2r̂e

∂Ul(r̂e)

∂r̂e
. (4.8)

For alkali metals, the total energies Wnlj are not exactly ∝ n−2, but instead (n∗)−2, where

n∗ = n− δlj(n) is the effective principal quantum number and δlj(n) is the quantum defect,

following the Rydberg-Ritz formula

δlj(n) = δ0,lj + δ2,lj/(n− δ0,lj)
2 + ..., (4.9)

where δ0,lj and δ2,lj are spectroscopically measured constants [10; 145; 144; 138; 64].

Including Eq. 4.7 and Eq. 4.8 in place of the Coulomb interactions of Eq. 4.6 and mod-

ifying W to include the effective principal quantum numbers and mass corrections specific

to the alkali, the radial wave function can be obtained through the Numerov method [60],

a numerical integration technique that uses n- and l-dependent inner and outer cutoffs of

the wave function along with the appropriate sloping of the function’s final lobe in order

to obtain a solution that vanishes as re → ∞.. While the resulting ⟨r̂e⟩ is ∼ (n∗)2 instead

of n2 for an alkali, for high-n Rydberg atoms, the scaling laws for the hydrogen atom may

be used. To show the effects of the quantum defects on alkali Rydberg wave functions with

an example, I plot the radial functions |reR(re)|2 of
∣∣46S1/2

〉
for rubidium and hydrogen in

Fig. 4.1.

4.1.2 Summary of Laws

4.1.2.1 Electric-Dipole Moment

In the previous section, a derivation of the scaling law for the hydrogen was provided.

When an electric field is applied to the atom, weak admixture with other stationary states of

opposite parity occurs in first-order nondegenerate perturbation theory. The perturbed wave

function then has a net electric-dipole moment characterized by −e(re)n
′l′

nl , where (re)
n′l′

nl is

known as the matrix element between eigenstates |nlml⟩ and |n′l′m′
l⟩ . For nearby Rydberg

states, the matrix element is approximately the expectation value of r̂e and therefore scales

as n2.

The dipole moment between a Rydberg state and a low-lying bound state has a less

intuitive scaling law. Here, the low-lying-state wave function is approximately a Dirac delta

function on the length scales of the Rydberg electron distribution. Therefore, when calcu-

lating (re)
n′l′

nl , the integral ends up being proportional to the Rydberg radial wave function

which has a normalization constant ∝ n−3/2. Thus, (re)
n′l′

nl ∼ n−3/2 for low n′.
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Figure 4.1: Effects of quantum defects on |reR(re)|2 for Rb in
∣∣46S1/2

〉
.

4.1.2.2 Kepler Frequency

One can think of the Kepler frequency ωK/(2π) classically as the rate at which the

Rydberg electron makes one complete revolution about the inner ion core. Quantum me-

chanically, however, it is the quotient of the energy splitting between two adjacent Rydberg

states and h. For Rydberg levels very near the ionization threshold, adjacent states approach

degeneracy as n−3 and the Kepler frequency vanishes as such. The following simple argu-

ment for a Rydberg states of hydrogen with principal quantum number n and n+∆n with

∆n << n supports this scaling law.

ωK/2π = ∆W/h = −cRH [(n+∆n)−2 − n−2] =
2cRHn∆n

n2(n+∆n)2
∼ n−3. (4.10)
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When ∆n→ n, such as the case with energy splittings between low-lying states and Rydberg

states, no scaling law exists.

4.1.2.3 Lifetime

Rydberg atoms in a system with a background of room temperature T experience radia-

tive decay from two main mechanisms: spontaneous emission and stimulated emission from

blackbody photons. The decay rates from a Rydberg state to a final state from both mecha-

nisms are added together where the stimulated decay from blackbody radiation is weighted

by the thermal photon number at the background temperature of the system T . The decay

brought on by stimulated transitions from blackbody photons can be reduced by lowering

the background temperature of the system that is radiating the photons to temperatures at

the order of ∼1-10 K.

The resulting sum ends up being proportional to the cube of the energy splitting between

the two levels and the square of the dipole moment associated with the transition. For

Rydberg states with low-l quantum numbers, the most significant decay channels are the

ones to low-n states due to the cubic dependence of the energy splittings. As mentioned in

the previous section, this splitting is roughly constant for all-n. Thus, the lifetime scales

as [(de)
n′l′

nl ]−2 ∼ (n−3/2)−2 = n3. In the case of Rydberg atoms with high orbital-angular-

momenta, as is such for a CS, selection rules restrict radiative decay to adjacent Rydberg

states with l±1. Therefore, the lifetime scaling law depends on the Rydberg electron’s Kepler

frequency. And so, the lifetime scales as (ωK/2π)
−3[(de)

n′l′

nl ]−2 ∼ n9/n4 = n5. Consequently,

the longest lived Rydberg states are CSs in a cryogenic background that shields blackbody

radiation [46; 102; 26; 133]; one can even further extend CS lifetimes via the Purcell effect,

where the density of photons resonant for an electric dipole transition is reduced by means

of manipulating the volume of the system [146].

4.1.2.4 Polarizability

For a nondegenerate system of Rydberg states, as can be found with those of lower-l

quantum numbers, one will find a the state’s binding energy exhibit a quadratic dependence

on an applied DC electric field. Through second-order perturbation theory, a state- and

field-dependent parameter known as the polarizability can be calculated. This parameter

is roughly proportional to the square of dipole moments between adjacent states and the

inverse of the Kepler frequency. Thus,

[(de)
n′l′m′

l
nlml

]2/ℏωK ∼ (n2)2/n−3 = n7. (4.11)
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However, as the electric field strength intensifies, nondegenerate perturbation theory be-

comes invalid and Schrödinger equation must be solved exactly, as will be described in the

next section.

4.1.2.5 Two-Body Interactions

Here I detail the scaling laws associated with electric-multipole interactions between two

Rydberg atoms labeled A and B with CM positions R0A and R0B respectively. Depending

on the magnitude of parameter R = R0A − R0B, the charged particles that comprise one

atom can induce level shifts in the internal Rydberg state on the other and vice versa.

The complete interaction potential between the two atoms is approximated to a maximal-

order interaction qmax by [147]

Ûint =
e2

4πϵ0

qmax∑
q=2

R−(q+1)

qmax−1∑
LA=1,LB=q−1

L<∑
M=−L<

fABMQ̂AQ̂B, (4.12)

where

fABM =
(−1)LB(LA + LB)!√

(LA +M)!(LA −M)!(LB +M)!(LB −M)!
(4.13)

Q̂A/B =

√
4π

2LA/B + 1
r̂
LA/B

eA/BY
±M
LA/B

(θ̂eA/B, ϕ̂eA/B), (4.14)

where in operator Q̂A/B, the “+” is for atom A and the “−” is for B.

The leading-order interaction is a dipole-dipole interaction, where the dipole moment

of one atom induces a dipole moment in the second atom, which provides a potential that

compels the second dipole moment to align parallel to the first. Mathematically, this is

where q = 1, LA = 1, and LB = 1, so

Ûint ≃ Ûdd = − e2

3ϵ0R3
r̂eAr̂eB

[
Y −1
1 (θ̂eA, ϕ̂eA)Y

1
1 (θ̂eB, ϕ̂eB) + Y 1

1 (θ̂eA, ϕ̂eA)Y
−1
1 (θ̂eB, ϕ̂eB)

+ 2Y 0
1 (θ̂eA, ϕ̂eA)Y

0
1 (θ̂eB, ϕ̂eB)

]
. (4.15)

Here, the quantization axis is defined as being parallel to R, the internuclear separation

vector. Note that this operator only couples adjacent angular momentum states of opposite

parity for the Rydberg electron and follows the usual electric-dipole selection rules for the

internal states’ magnetic sublevels. In a system consisting of a mixture of two adjacent
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angular momentum states of opposite parity engendered by an external electromagnetic field

making the two states nearly degenerate, the first-order, adiabatic potential on diagonalized

state |k⟩ is
∆W

(k)
ad (R) ≃ C

(k)
3 /R3, (4.16)

where C
(k)
3 ∼ n2n2 = n4 due to the two dipole moments in Ûdd.

In a system where there is no external field and the ensemble consists of a single internal

state or states that do not couple via Ûdd, the level must be solved up to the second order,

so the adiabatic state |k⟩ = |nAlAjAmjA⟩ |nBlBjBmjB⟩ undergoes a shift

∆W
(k)
ad (R) ≃

∑
n′
Al′Aj′Am′

jA

∑
n′
B l′Bj′Bm′

jB

⟨k| Ûdd(R)
∣∣n′

Al
′
Aj

′
Am

′
jA

〉 ∣∣n′
Bl

′
Bj

′
Bm

′
jB

〉
WA +WB −W ′

A −W ′
B

×
〈
n′
Al

′
Aj

′
Am

′
jA

∣∣ 〈n′
Bl

′
Bj

′
Bm

′
jB

∣∣ Ûdd(R) |k⟩ = C
(k)
6 /R6, (4.17)

where the C
(k)
6 coefficient is known as the van der Waals coefficient and describes level shifts

brought on by the temporary electric-dipole moments between the two atoms.

Upon inspection of Eq. 4.17, one can see that the scaling law here also depends on the

Kepler frequency:

C
(k)
6 ∼ n4n4/n−3 = n11. (4.18)

Higher-order multipole interactions become observable at very small internuclear distances

and can support bound states corresponding to molecular bonds between the two atoms.

These µm-long molecules are known as macrodimers and have been experimentally observed

and imaged in [148; 99]. For the experimental work in this thesis, Rydberg ensembles are

dilute enough to make even the leading-order, dipole-dipole interaction barely observable.

This is discussed in Chapter VII.

4.2 Electric Fields

A Rydberg electron placed in a static electric field with potential ϕ(R0 + r̂e) experiences

the following DC-Stark interaction

ÛS(R0, r̂e) = −eϕ(R0 + r̂e). (4.19)

The field of strength E0 can be spatially dependent within the atomic sample, as is seen in

ion microscopy apparatuses [149; 112], but the scope of this thesis is only concerned with

homogeneous fields, where ϕ(r̂e) = E0(ϵ̂ · r̂e) and ϵ̂ is the polarization of the field.
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4.2.1 Quadratic Stark Effect

For alkali atoms in low-l angular momentum states, the interaction strength of the field

typically does not dominate the splittings induced by the quantum defect and fine structure.

Therefore, the problem can be solved using non-degenerate perturbation theory to the second

order, and the state |n, l, j,mj⟩ does not mix. Because the second order is taken, the overall

Rydberg-level shift depends quadratically on the electric-field strength E0:

∆Wn,l,j,mj
= −e2

∑
n′l′j′m′

j

| ⟨nljmj| (ϵ̂ · r̂e)
∣∣n′l′j′m′

j

〉
|2E2

0

Wnljmj
−Wn′l′j′m′

j

, (4.20)

which can be simplified to

∆Wn,l,j,mj
= −1

2
αnljmj

E2
0 , (4.21)

where αnljmj
is the DC polarizability. Fig. 4.2 shows the trend in rubidium polarizabilities

as n is varied for
∣∣nS1/2

〉
and |nPj⟩, the Rydberg states relevant to the experimental work

in this thesis.

4.2.2 Parabolic Wave Functions and Linear Stark Effect

For Rydberg states that are degenerate without the application of any external forces,

such as the high-l (usually l ≥ 3) hydrogenic states all sharing the same principal quantum

number n, where quantum defects, spin-orbit, and hyperfine-coupling effects are experimen-

tally unobservable, the DC electric field induces electric-dipole shifts proportional to E0:

eE0 ⟨n, l′ = l ± 1,m′
l = ml,ms,mI | ẑe |n, l,ml,ms,mI⟩. Here we choose the polarization of

E to serve as the quantization axis. Because these dipole-interactions are stronger than

the Coulomb interactions that the Rydberg electron sees in the hydrogenic manifold, the

eigenbasis for this system no longer consists of an l quantum number.

New quantum numbers n1 and n2 must be introduced, which arise from the Schrōdinger

equation under the following change of coordinates

ξ = re + ze = re(1 + cos θe), (4.22)

η = re − ze = re(1− cos θe), (4.23)

∇2 =
4

ξ + η

∂

∂ξ

(
ξ
∂

∂ξ

)
+

4

ξ + η

∂

∂η

(
η
∂

∂η

)
+

1

ξη

(
∂2

∂ϕ2
e

)
. (4.24)

Spatially, each value of ξ and η defines a unique paraboloid about the ze-axis. Values of ξ

define surfaces opening downwards (below (x, y)-plane) at angles proportional to ξ, while η

defines paraboloids that open upwards (above (x, y)-plane). I derive the Schrōdinger equation
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Figure 4.2: DC polarizabilities for Rb-
∣∣nS1/2

〉
and -|nPj, |mj|⟩ Rydberg states as a function

of n for n = 20-80.

under this transformation that includes the DC-Stark potential eE0(ξ − η)/2, following the

reasoning of [60; 65],

−ℏ2

2me

[
4

ξ + η

∂

∂ξ

(
ξ
∂ψe

∂ξ

)
+

4

ξ + η

∂

∂η

(
η
∂ψe

∂η

)
+

1

ξη

(
∂2ψe

∂ϕ2
e

)]
− e2

2πϵ0

ψ

ξ + η
+eE0(ξ−η)ψe/2 = Wψe.

(4.25)

As was done in [60; 65], this equation can be solved using the separation of variables method,

where

ψe = u1(ξ)u2(η)e
imlϕe , (4.26)

and, consequently, I get the two ordinary differential equations, written temporarily in atomic
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units (ℏ2/me = 1, e = 1, 4πϵ0 = 1):

d

dξ

(
ξ
du1
dξ

)
− m2

l u1
ξ

+ Z1u1 − E0ξ
2u1/4 = −Wξu1/2 (4.27)

d

dη

(
η
du2
dη

)
− m2

l u2
η

+ Z2u2 + E0η
2u2/4 = −Wηu2/2, (4.28)

Z1, Z2 are the fractional charges along ξ and η, respectively, that both make up the net

charge of the nucleus (or inner-ion core for a nonhydrogenic atom). They are related to

quantum numbers n, n1, n2,ml by [60; 65]

Z1 =
1

n

(
n1 +

|ml|+ 1

2

)
(4.29)

Z2 =
1

n

(
n2 +

|ml|+ 1

2

)
, (4.30)

where n = n1+n2+ |ml|+1. The modulus brackets are in compliance with the azimuthally

symmetric geometry of the coordinates ξ and η, as well as the electric field pointing only

along ze. In the absence of the electric fields E0 = 0, for the hydrogenic manifold, the energy

eigenvalues Wn,n1,n2,|ml| from these equations are (back to SI units)

Wn,n1,n2,|ml| = −hcR∞

n2

(
m+

m+ +me

)
(4.31)

meaning the degeneracy is still not lifted. The eigenfunctions to u1 and u2 are termed as the

parabolic wave functions and have the structure

u1(ξ) ∝ ξn1+|ml|/2e−ξ/2n (4.32)

u2(η) ∝n2+|ml|/2 e−η/2n. (4.33)

Using these solutions, I can use the methods of first-order perturbation theory to evaluate the

linear Stark shifts when E0 ̸= 0 because now the electric-dipole term has nonzero expectation

values for a given basis states. Upon evaluation of eE0 ⟨n, n1, n2, |ml|| (ξ− η) |n, n1, n2, |ml|⟩,

∆W
(1)
n,n1,n2,|ml| =

3

2
ea0E0n(n1 − n2), (4.34)

where, at fields of ∼ (1/3)n−5, the Stark-shifted hydrogenic states cross those of the adjacent

n-manifold. This is known as the Iglis-Teller limit [60]. Now the Stark effect has lifted the

degeneracy of the hydrogenic manifold in a manner that scales linearly with E0. The linear

Stark shifts for these states are shown in Fig. 4.3(a).
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Figure 4.3: (a) Hydrogenic states, each representing a parabolic wave function belonging to
n = 32 as ml is varied under the presence of an electric field E0 pointed along
the quantization axis (along positive ze). The red and blue states of a given
ml are indicated by the colors. The circular state energy level is colored gold.
(b) Electron probability density of red and blue states as labeled in (a). The
Rydberg electron in the red state spends most of its time along (ze < 0) as
expected. (c)-(f) Electron-probability-density contours projected on the ye = 0-
plane with parabolic nodal traces shown in black for the labeled states in (a).

Each hydrogenic state in the parabolic basis is a coherent superposition of the states

in the spherical basis with quantum numbers n, l,ml. In the parabolic basis, the quantum

numbers have a more intuitive physical interpretation compared to l, and the wave functions

are easier to sketch. The parabolic basis provides azimuthally symmetric wave functions for

all states, allowing the functions to have the same projection along any plane that includes

the ze-axis.

For the |ml| = 0 states, the Rydberg-electron density is aligned almost entirely along the

ze-axis, as shown in Fig. 4.3(b), while the |ml| = n − 1 states completely avoid alignment

along the ze-axis, but, rather along the (xe, ye)-plane. The n1 and n2 quantum numbers

determine how many downward- and upward-facing parabolas trace out nodes in the electron

probability density. These parabolas are overlapped with the Rydberg-electron probability
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densities |ψe|2 projected on the ye = 0-plane in Figs. 4.3(c)-(f). For the circular-state in

Fig. 4.3(f), there is no node carved out by a parabola, consistent with n1 = n2 = 0.

4.2.2.1 The Circular State (CS)

CS atoms are eigenstates of the Hamiltonian in both the spherical (n, l,ml) and parabolic

(n, n1, n2,ml) basis. In the spherical basis, they have maximum l and |ml| quantum numbers,

granting them the strongest magnetic dipole moments of all states within n. For every n

manifold with a given electron spin state |ms⟩, there are exactly two CSs:

|n, l = n− 1,ml = −n+ 1⟩ |ms⟩ and |n, n− 1, n− 1⟩ |ms⟩. Because l is maximized for CSs,

the overlap of the Rydberg-electron probability distribution with the inner ion core of the

atom is minimized as the wave function scales as rle. In this section, I will describe the

properties of the CS, such as its lifetime, behavior in electric fields, and conventional methods

of their preparation.

Lifetimes

I have already shown that high-l Rydberg states have lifetimes that scale with n as n5.

These lifetimes are a reciprocal sum of all possible decay rates to adjacent dipole-allowed

states that have more negative energy eigenvalues Such rates describe sponataneous emission

transitions driven by the vacuum state |0⟩k,ϵ̂ of the electromagnetic field with polarization

state ϵ̂ and wavenumber k and thus is weighted by the density ρvac of all k, ϵ̂ that can

drive the transition. For the CS the only possible dipole-allowed transition in spontaneous

emission is the |n, n− 1, n− 1⟩ → |n− 1, n− 2, n− 2⟩ transition, meaning that the lifetime

by spontaneous emission alone is the longest of all states within the n manifold.

The spontaneous emission rate brought on by the |n, n− 1, n− 1⟩ → |n− 1, n− 2, n− 2⟩
transition can be suppressed by manipulating ρvac. If the atom in a CS is placed in a 3D

cavity of volume v that is resonant at the transition frequency ω0/2π with FWHM width

∆ω0/2π, the density of states is perturbed to ρcav = 2π/(v∆ω0) [146]. Thus the cavity

dimensions and mirror reflectivity can yield a quality factor Q = ω0/∆ω0 low enough to

suppress the density of states at this frequency and, therefore, the decay rate. This is known

as the Purcell effect.

As previously stated, incoherent blackbody radiation can also induce decay in Rydberg

states through stimulated absorption and emission into other states with more negative or

more positive energy eigenvalues. The blackbody decay rates for these transitions follow

the same structure as the spontaneous emission rate, only that rate is further weighted by

the Bose-Einsten distribution function at temperature T , which yields the spectral intensity

at frequency ω0/(2π). This intensity reduces as T → 0. Thus, the environments of CSs,

such as the cavities and vacuum chambers, must be cryogenically cooled in order to further
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the extend the lifetimes through the suppression of blackbody radiation. CSs in cryogenic

cavities engineered to inhibit spontaneous and blackbody decay reportedly can have lifetimes

at the order of ∼ 10 s. Under such an extended lifetime, if mm-wave spectroscopy probes a

Rydberg transition connected to the CS, a Fourier-limited linewidth smaller than ∼ 1 Hz can,

in principle, be achieved, allowing high-precision measurements of fundamental constants like

R∞ [26].

Electric-Fields

CSs have no permanent dipole moments under the application of E; this is intuitively

described by the azimuthally symmetric electron distribution around the positively-charged

core. Thus, all possible dipole moments cancel. Quantitatively, the first-order Stark effect

is nonexistent for n1 = n2 = 0, so

3

2
nea0E0(0− 0) = 0. (4.35)

That is not to say CS Rydberg atoms with n (|nC⟩) are impervious to electric fields. They

still have a nonzero DC polarizability given, in the parabolic basis, by [60]

αnC =
1

2
πϵ0a

3
0n

4[17n2 − 3(n1 − n2)
2 − 9m2

l + 19] = πϵ0a
3
0n

4(4n+ 5)(n+ 1). (4.36)

The second-order Stark effect in the parabolic basis arises from the even-parity couplings to

other hydrogenic states afforded by the ξ2 − η2 spatial dependence.

Initialization

To date, CSs cannot be prepared through one- to three-step laser excitation schemes

through electric-dipole transitions with the ground state. Laser excitations through this

method typically transfer ℏ of spin angular momentum to the atom, where CSs would require

≃ (n− 1)ℏ. The standard two methods of initializing a sample of CSs are the crossed-fields

(ExB) and adiabatic-rapid-passage (ARP) methods.

I will start with explaining the ARP method, as it was the first scheme used to create

a sample of CSs in [45]. The technique first requires conventional laser excitation to a low-

l,ml Rydberg state of hydrogen or an alkali that has small quantum defect (nDj or nFj

states). Excitation is performed in the presence of an electric field E oriented along the

z-axis which generates the Stark splittings of the hydrogenic manifold shown in Fig. 4.3(a).

By properly polarizing the Rydberg-excitation laser, either the red (bottom-rung) or blue

(top-rung) states in Fig. 4.3(a) for a given |ml| can be prepared from the low-n launch state.

Microwave radiation that is σ+ polarized can sequentially couple the red or blue states
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of low ml to ml = n − 1 and vice versa for couplings to the other CS at ml = −(n − 1).

The radiation must be at a frequency (ωµ/2π) resonant with the linear and quadratic Stark

shifts that the electric field E = E0k̂ induces on the transition frequencies from the ml to

ml + 1 red or blue states for the states of positive ml:

ωµ =
3

2
nea0E0/ℏ+

3

4ℏ
πϵ0a

3
0n

4

[
(n−ml − 2)2 − (n−ml − 1)2 + 6ml + 3

]
E2

0 , (4.37)

so, at a glance, the second-order Stark shift implies that every ml state requires an inde-

pendent frequency ωµ to efficiently be promoted to ml + 1 and, consequently, calls for ∼ n

independent microwave fields. It turns out that the ARP method grants the convenience of

only requiring one microwave field with a variable frequency ωµ or with a fixed frequency and

variable electric field E0 for Stark tuning the transitions. Note that without the quadratic

Stark effect, the possibility of initializing CSs with microwave fields would not be realizable

at all because the system would then resemble a simple-harmonic oscillator system that

disallows complete population transfer to any of the red or blue states of a given ml. The

microwave couplings under discussion here are denoted in Fig. 4.4 by the solid gray arrows

driving transitions among the red states of different ml quantum numbers.

Once the red or blue Rydberg state |n, n1, n2,ml⟩ is prepared, ωµ or E0 is slowly ramped

from a larger initial value to a smaller one such that the resonance condition is met for all

states through the sweep. Quantum mechanically, the microwave field is creating dressed

Rydberg states and the atom remains in a single adiabatic state |j⟩ throughout the sweep,

provided it is slow enough. The adiabatic state |j⟩ traverses n−ml−1 avoided crossings with

other adiabatic states |j′⟩ and makes a diabatic transition to those states if the adiabaticity

condition is violated. That condition for a single avoided crossing is

|ΩN,N−1|2 >>
8

π
δ̇N,N−1, (4.38)

where ΩN,N−1 is the resonant Rabi frequency that couples the diabatic states with N and

N − 1 excitations of the free microwave field and δN,N−1 is the angular frequency separating

|n, n1, n2,ml⟩ |N⟩ and |n, n′
1, n

′
2,ml + 1⟩ |N − 1⟩. A chirp of the microwave frequency or a

ramp of the electric field is what provides the time dependence on this energy spacing. In

some cases, the microwave-field intensity is also pulsed with a slowly varying envelope [75].

Obviously, when the strength of ΩN,N−1 is enhanced, faster sweeps can be prepared and

the accuracy of the adiabaticity condition given above breaks down as multiple diabatic states

are excited at a given time. When this happens, consecutive, two-level avoided crossings in

the energy structures of the adiabatic eigenstates, as found in [45], lose their visibility as
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|nC>

|n,n1=0,n2=n-1-|ml|,ml>
ml

W

E
Eµ

Figure 4.4: Microwave ARP couplings indicated by solid gray arrows coupling each red state
|n, n1 = 0, n2 = n− 1− |ml|,ml⟩ to the circular state |nC⟩. While the linearly-
polarized microwave field Eµ orthogonal to E = E0k̂ provides the desired cou-
plings fromml toml+1, “leakage” transitions can occur that reduceml as shown
by the dashed gray arrows.

the adiabatic energy spacing sufficiently isolates the dressed states as in [75; 9]. In this

regime of the microwave field strength, the purity of the field’s circular polarization becomes

more crucial. If the microwave field is at such a strength while having a σ− polarization

component, as would happen with a linearly polarized field, unwanted leakage transitions

would be driven, represented by the dashed arrows in Fig. 4.4 for the linearly polarized

microwave field Eµ depicted. To combat this, a static magnetic field B parallel to E tunes

these leakage transitions out of resonance by means of the Zeeman effect. This addition to

the ARP method was first realized in [75] for 85Rb atoms using superconducting magnets

with strengths of 18 G.

77



For low-n Rydberg atoms, the microwaves can be radiated into the vacuum chamber with

a external antenna and efficient circular polarizer under the application of a strong enough

electric fields that induces Stark splittings at the ∼ 10 GHz level. The reason that this works

only for low-n Rydberg atoms is that the Inglis-Teller limit would not be met under these field

strengths. When high-n CSs are desirable, in-vacuum RF antennas and electrodes are often

needed, as long external wavelengths would not make it through the chamber’s apertures.

So in order to make nearly perfect σ+-polarized RF fields, typically orthogonal sets of RF

and ultra-high-vacuum (UHV) compatible capacitor plates are constructed to be pumped

down and baked out in the chamber. Then the applied RF needs to be equally split with a

phase difference of π/2 and sent to the capacitors. Adding RF to the chamber then adds the

risk of ground loops and unwanted capacitive couplings to other electric-field circuits within

the chamber, which often requires breaking vacuum and redesigning the experiment; to put

it short, initializing CSs with microwaves is no easy task!

Another method for producing CSs was proposed by considering the classical trajectory

of the Rydberg electron in crossed electric E and magnetic fields B [71]. In the ExB method,

the blue or red state of the ml = 0 hydrogenic manifold is excited from the launch state in a

regime where the Stark interaction from the E-field polarized along the z-axis is significantly

stronger that the Zeeman effect from B polarized along the x-axis. The classical trajectory

for an atom in this regime is given by case (i) in Fig. 4.5, which resembles an ellipse of

eccentricity ε ≃ 1. The Runge-Lenz vector A (do not confuse this with the vector potential)

quantifies the ellipticity of the orbit and points along the semimajor axis of the elliptical

orbit in the plane of motion. The red or blue state of ml = 0 corresponds to this trajectory

(remember, these states have their electron density completely aligned along the z-axis) and

has a Runge-Lenz-vector expectation value of ≃ n−1 in atomic units, also equal to |n1−n2|
for these outer-two states. The approximation sign corresponds to the fact that there is a

small Zeeman interaction reducing ε.

When the Stark effect vanishes due to the absence of an electric field, the Zeeman inter-

action still remains and induces perfect cyclotron-like motion of the bound electron, depicted

by case (iii) in Fig. 4.5. The circularity of this orbit is quantified by its angular momentum

vector L which is parallel to B. The CS corresponds to this trajectory, where L = n − 1

atomic units and ε = 0.

In the intermediate regime (case (ii) in Fig. 4.5) denoted by case (ii) in Fig. 4.5 the

eccentricity and circularity are on-par with each other and the energy needed for electron to

“hop” onto a different trajectory around the inner-core is

ℏ
√

(3nea0E0/ℏ)2 + (eB0/2me)2(n− 1)[ε+
√
1− ε2], (4.39)
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where ε = 3nea0E0/ℏ√
(3nea0E0/ℏ)2+(eB0/2me)2

. This is exactly the energy splitting between the adiabatic

states of the hydrogenic manifold (ignoring the quadratic Stark effect) under these fields.

As mentioned before, we first excite Rydberg atoms in ml = 0 red or blue states where

the Stark interaction is much stronger than the Zeeman effect (case (i) in Fig. 4.5. Then

the electric field is adiabatically ramped to zero where the magnetic field now defines the

quantization axis and the red or blue ml = 0 state is now the CS. The adiabaticity condition

for this method, derived in [71], is

d

dt
arctan (6na0meE0/ℏB0) <<

√
(3nea0E0/ℏ)2 + (eB0/2me)2. (4.40)

This method describes a direct adiabatic evolution from the ml = 0 state to the CS,

no intermediate states are involved. The best way to interpret this method is through the

following classical reasoning. A highly elliptical orbit of the electron around the nucleus

is slowly distorted to a circular orbit without the electron hopping onto another orbital

trajectory. Analogously, it would be like slowly forcing the Earth’s orbit around the Sun to

be circular without it being kicked onto Venus’ or Mars’ orbits.

The ExB method was first applied to an experiment in [72]. In order for this method to

work, the fields must have nearly perfect orthogonality, and the electric field noise must be

suppressed at its zero level lest the atoms are transferred back into noncircular states. Also,

the quantization axis is defined by a magnetic field and not an electric field at the end of the

process. Any sort of experiment that would require spectroscopy with another noncircular

state, as in [26], would demand an electric field parallel to B in order to define and stabilize

the hydrogenic states. Thus, an electric field has to then diabatically be switched on that is

parallel to B and a diabaticity condition must be followed, as in [72]. As you can see, the

ExB method is just as complicated as the ARP method even though no microwave fields

are involved! Furthermore, both the ARP and ExB methods typically fail at n > 60 due

to the heightened sensitivity to spurious electric-field fluctuations, and modifications are

necessary [74] to initialize high-n CSs.

4.2.3 Electric-Field Ionization

Here I consider a regime where the applied electric field E significantly distorts the

Coulomb potential binding the Rydberg electron. In a classical argument for an electron of

low orbital angular momentum (OAM) and no OAM projection along the field and quan-

tization axis, the electric field E = EFI k̂ induces a saddle point in the Coulomb potential

−1/|ze| atomic units located at ze = −1/
√
EFI (here E is in atomic units of EH/ea0). An

electron classically trapped in this potential that has a total energy of W = −2
√
EFI atomic
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E

B
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(a)

(i) (ii) (iii)

|A|=(n-1) |L|=(n-1)

3nea0|E|/h>>e|B|/2me

(b)
3nea0|E|/h~e|B|/2me

Figure 4.5: Each case of (i)-(iii) represents a regime of relative interaction-strengths by the
crossed electric E and magnetic B fields. (a) Vector representations with linear
Stark and Zeeman strengths as E is varied from each case. (b) Depiction of clas-
sical Rydberg electron trajectory under these fields in the given regimes with the
tangential momentum pe, angular momentum L, Runge-Lenz vector A shown.
The magnitudes of the Runge-Lenz and angular momentum vectors are at their
maxima (n− 1 atomic units) in cases (i) and (iii) respectively. In case (ii), their
magnitudes are comparable.

units can now escape. In Fig. 4.6, I depict these distortions and saddle points. Clearly if the

electron spends more time along ze < 0, it will more easily escape. And so, the field required

to ionize the atom under this classical reasoning is, in SI units,

EFI =
W 2

4

(
EH

ea0

)
=

1

16n4

(
EH

ea0

)
. (4.41)

Because the bound electron behaves like a quantum wave, this limit breaks down in
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Figure 4.6: (a) Coulomb potential between electron and inner ion core of an arbitrary atomic
state with binding energy W . No electric field is applied. (b) Electric field EFI

perturbations of Coulomb potential, resulting in net potential energy UFI with
indicated field values in atomic units (EH/(ea0)). The field points along positive
ze. (c) Saddle-point (red point in (a)) position z̃e as a function of applied field
EFI . (d) Saddle-point potential energy ŨFI as a function of z̃e.

various cases but is overall a good approximation. For one, the classical model neglects

quantum tunneling of electrons with energies just below −2
√
EFI . I also assumed that the

Rydberg electron is localized along the z-axis, which is only true for the ml = 0 hydrogenic

states which undergo no centrifugal effects. Thus, the more perpendicular the electron’s

orbital is from ze, the larger EFI is required. Also, the further the electron is from the

ze < 0 region, as is the case for the blue states, the greater the ionizing field required,

EFI = EH/(4n
4ea0) [60; 150]. The red states of the ml = 0 manifold most closely follow the
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classical ionization limit W 2/4, which is, including the linear Stark shift, in SI units,

EFI =
1

9n4

(
EH

ea0

)
. (4.42)

4.2.3.1 Adiabatic Field Ionization

So far I have described the field ionization effects of high-l hydrogenic states, but the

experiments discussed in this thesis involve field-ionization of nS and nP Rydberg states of

rubidium, which are not degenerate with the hydrogenic manifold thanks to the considerable

quantum defects discussed earlier in this chapter [70]. Furthermore, EFI takes the form of

a time-dependent pulse with a slew rate slower than the ratio of the square of quantum-

defect coupling strength to the differential dipole moments between the hydrogenic and low-l

states [151]. For instance, EFI in my experiments is enveloped by a 1 µs-long exponential

rise function that quickly drops to zero after it reaches its plateau. Therefore, I will now

discuss how these states undergo adiabatic field ionization.

As the electric field is adiabatically ramped up with an exponential-rise dependence, the

(n+3)S and (n+3)P Rydberg states reach the Inglis-Teller limit of the electric field (δlj/3n
5

atomic units) where they merge with the n hydrogenic manifold. Instead of their energy-

levels crossing with those of the hydrogenic states, the quantum defect couplings allow them

to adiabatically follow into the middle of the hydrogenic manifold. When the electric field

reaches the classical ionization limit, the adiabatic state is degenerate and couples with a low-

n1, state from a higher n-manifold that field ionizes at this field, effecting ionization [60]. The

field required to ionize the (n+3)S and (n+3)P Rydberg states [60] is, for Rb, approximated

in SI units as

EFI ≃
EH

16ea0
(n− 1/2)−4 (4.43)

EFI ≃
EH

16ea0
(n+ 1/2 + 1/n)−4, (4.44)

respectively. Hydrogenic manifolds with which these low-l states of Rb merge are shown in

Fig. 4.7. This slow rise in EFI is beneficial in that different Rydberg states will then ionize

at different times, which can therefore allow destructive atomic-state readout using an MCP

and particle counter with gated time delays. How this method is used in my Rydberg-atom

experiments is explained in Chapter VI.
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Figure 4.7: In (a), the (n+3)P state withml = 0 becomes degenerate with hydrogenic states
at the Inglis-Teller limit. The quantum defect mixes (n+ 3)P with other states
of high-l character, where it ionizes at the classical limit, depicted by the green,
dashed curve. In (b), the inset is zoomed in, showing the avoided crossing with
a gap ∆WQD δl=1,j. In (c), the field-ionization limit is shown for red and blue
states of a fixed ml > 3, where the quantum defect provides negligible mixing of
states. (Disclaimer: All figures not drawn to scale.)

4.3 Magnetic Fields

I will now consider the paramagnetic behavior of Rydberg states in homogeneous mag-

netic fields B = B0ϵ̂, where ϵ̂ is the polarization vector of B. Weak Zeeman shifts are chosen

to be discussed more thoroughly because all experiments, both demonstrated and proposed,

consist of Rydberg atoms in magnetic fields at the mG-to-G levels. In this regime of mag-

netic field-strengths, especially for B0 << 1 G, the Zeeman splittings of |n, l, j,mj⟩ are on

the order of the Rydberg fine- or hyperfine-couplings for nS1/2 and nPj.

For the range, n = 40 − 50 in Rb, magnetic fields below 1 G are strong enough to

induce hyperfine-state mixing and decoupling for the nS1/2 and nP1/2 states. After hyperfine

decoupling, F,mF are no longer “good” quantum numbers and the |F,mF ⟩ states reorder into
|j,mj⟩ |I,mI⟩ states for a given atomic nuclear spin I. Before this reordering, the Zeeman

effect originates from the e
me

A(r̂e) · p̂e interaction, where

A =
1

2
B0

(
− r

(2)
e⊥ ϵ̂

(1)
⊥ + r

(1)
e⊥ ϵ̂

(2)
⊥
)
, (4.45)

is the vector potential with orthogonal polarization vectors ϵ̂
(1)
⊥ and ϵ̂

(2)
⊥ perpendicular to ϵ̂

and generalized Rydberg-electron coordinates r
(1)
e⊥ and r

(2)
e⊥ . The magnetic-dipole potential
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is then

ÛZ =
eB0

2me

(
− r̂

(2)
e⊥ p̂

(1)
e⊥ + r̂

(1)
e⊥ p̂

(2)
e⊥
)
=
eB0

2me

gF (ϵ̂ · F̂), (4.46)

where F̂ is the total angular-momentum operator of the Rydberg electron after diagonalizing

its Hamiltonian under the hyperfine-interaction and gF is the gyromagnetic factor. Note that

F = |I + j|, .., |I − j|, so for I = 5/2, characteristic of 85Rb, F = 2 or 3 with
∣∣nS1/2

〉
and∣∣nP1/2

〉
Rydberg states. The physics behind the energy separation between F = 2 and 3 will

be discussed in Chapter VII.

For Rydberg states in
∣∣nS1/2, F = 2

〉
and F = 3, gF is

gF=2 = gj
F (F + 1)− I(I + 1) + j(j + 1)

2F (F + 1)
= 2

2(3)− 5(7)/4 + 3/4

2(2)(3)
= −1/3 (4.47)

gF=3 = 1/3, (4.48)

respectively, and, for nP1/2 states, gF ′ = −1/9 and 1/9 for F ′ = 2 and F ′ = 3, respectively.

The magnetic field B = B0ϵ̂ is taken to be along the z-axis, or quantization axis. Then,

the diagonal Zeeman shifts ∆WZ of the Hamiltonian for |F,mF ⟩ states become

∆WZ = µBgFmFB0, (4.49)

where the off-diagonal couplings between |F,mF ⟩ and |F ± 1,mF ⟩ are determined by first

expanding |F,mF ⟩ states into the |j,mJ⟩ |I,mI⟩ basis using Clebsch-Gordan coefficients

⟨F,mF |j,mj⟩ |I,mI⟩, and writing ÛZ in terms of operators Îz and Ĵz. This ends up only

depending on the Ĵz operator because gI = 0 for 85Rb. Therefore,

ÛZ =
µB

ℏ
gjĴzB0, (4.50)

so, the off-diagonal elements become

⟨F ± 1,mF | ÛZ |F,mF ⟩ =
µB

ℏ
gjB0

∑
mj ,mI

mj ⟨F,mF |j,mj⟩ |I,mI⟩ ⟨F ± 1,mF |j,mj⟩ |I,mI⟩ ,

(4.51)

where all mI and mj must satisfy mI+mj = mF in each term. When these elements become

stronger than the hyperfine splitting, the reordering of |F,mF ⟩ states into those of themI ,mj

basis begins. At field strengths beyond this, the Zeeman shifts are

∆WZ =
µB

ℏ
(gImI + gjmj)B0, (4.52)

where, for 85Rb, gI = 0. Thus, all |I,mI⟩ level shifts are the same for a given mj, as shown
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m j '  =  + 1 / 2

ν h f s

F '  =  2
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Figure 4.8: Zeeman shifts for (a)
∣∣43S1/2, F,mF

〉
and (b)

∣∣43P1/2, F
′,mF ′

〉
states of 85Rb.

The hyperfine splittings for both states are shown, as well as the reordering of
the magnetic substates from the F,mF -basis to the mI ,mj basis as B0 increases.
In both cases, B points along the quantization axis.
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Figure 4.9: Calculated spectra of the
∣∣43S1/2, F,mF

〉
→
∣∣43P1/2, F

′,mF ′
〉
transition for sep-

arate polarization cases of the electric-dipole coupling field: (a) x-polarized and
(b) π-polarized. For the magnetic fields applied below 100 mG, reordering of the∣∣43P1/2, F

′,m′
F

〉
states occur within this range.

in Fig. 4.8.

Experimentally, these level shifts can be detected by probing electric-dipole transitions

between two different Rydberg states of different l and j quantum numbers. Cases in which

the hyperfine structure of both states is comparable to the Zeeman shifts provide a nontrivial

spectrum that is dependent on the coupling field’s polarization with respect to ϵ̂. Specif-

ically, the transition
∣∣43S1/2, F,mF

〉
→
∣∣43P1/2, F

′,mF ′
〉
is depicted in Fig. 4.9 for π- and

x-polarized electric-dipole coupling fields.
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Figure 4.10: Level shifts of
∣∣43S1/2,mI ,mj

〉
, wheremI is fixed and B0 is increased well above

1 kG. Here, the quadratic behavior at large B0 is due to diamagnetic effects.

4.3.1 Diamagnetism of Rydberg States

At even stronger fields reaching 1 T, the Â2 term of the Hamiltonian, describing diamag-

netic effects, becomes significant. The diamagnetic interaction is, for ϵ̂ = k̂

UD(r̂e) =
e2

2me

A2(r̂e) =
e2B2

0

8me

(r̂2e − ẑ2e), (4.53)

where, for
∣∣43S1/2

〉
in the mI ,mj basis, ⟨r̂2e⟩ − ⟨ẑ2e⟩ = 4.212 × 106a20. Thus, because this

potential depends on the Rydberg wave function overlap with the vector potential, both mj

states in this case see the same diamagnetic shifts, which are shown for
∣∣43S1/2

〉
in Fig. 4.10.

4.4 Microwave Spectroscopy

Electromagnetic radiation that is either absorbed or emitted by Rydberg atoms ranges

from the RF-to-THz spectrum. For instance, Rydberg states at about n = 50 will strongly

absorb millimeter-wavelength fields. These low-energy transitions are what grant Rydberg

states their long lifetimes and narrow energy widths at the order of 2π × 1 kHz. Therefore,

radiated millimeter and microwaves can interact with these states for sub-ms durations τ

before the Fourier-limit (FWHM=0.89/τ) reaches the natural linewidths Γ. And so, provided

that all systematic perturbations are accounted for, Rydberg energies can be determined

through spectroscopy with sub-kHz uncertainties. In order to prevent power-broadening

of the spectroscopic transition, the radiated power must often be kept to well below 1 nW

depending on the strengths of the first- and multi-order matrix elements of the electric-dipole
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interaction.

In a two-level Rydberg system, microwave radiation detuned δµ = (ωµ − ω0)/2π from

the resonance of the transition ω0/2π with homogeneous coupling strength Ω0 changes the

internal state from |0⟩ to |1⟩ with a probability

P0→1 =
Ω2

0

Ω2
0 + 4π2δ2µ

sin2
(τ
2

√
Ω2

0 + 4π2δ2µ
)
. (4.54)

When τ is kept fixed, P0→1 can be rearranged as

P0→1 = (Ω2
0τ

2/4) sinc2
(τ
2

√
Ω2

0 + 4π2δ2µ
)
. (4.55)

This function is sharply peaked on resonance δµ = 0 with an amplitude determined by the

pulse area (θ). In general the pulse area is the following quantity,

θ(τ) =

τ∫
0

Ω0(t)dt, (4.56)

where Ω0(t) has some pule-envelope amplitude-modulating the field. Often times, a square

pulse is used where Ω0[Θ(t)−Θ(t− τ)] (Θ(t) is the Heaviside step function). Then θ = Ω0τ .

When θ = π, population inversion occurs; when θ = 2π, the system undergoes population

inversion before returning to its initial internal state. However, |0⟩ acquires a π phase shift

even though no line appears on resonance. Rydberg microwave spectra corresponding to

three different pulse areas are depicted in Fig. 4.11(a)-(c).

In Fig. 4.11(d), τ is kept at 50 µs, δµ = 0, but Ω0 is varied. As a result P0→1 undergoes pe-

riodic oscillations known as Rabi flopping. By carefully choosing θ, the population and phase

of the initialized Rydberg state |ψ⟩ = c0(t) |0⟩ + c1(t) |1⟩ can be manipulated for internal-

state interferometry [46], quantum-state engineering [61; 152; 153], and spin manipulations

in quantum processors and simulators [133; 135].

Subsequent chapters will show, through experiment and theory, that microwave radia-

tion is not the only way to manipulate internal Rydberg states of alkali metals, and that

microwave driving of Rydberg-Rydberg transitions has major drawbacks in terms of site-

selective excitation, phase control, and frequency accessibility. A better way to probe alkali

Rydberg transitions would be to use laser light that can, in principle, be focused down to the

size a single atom and does not follow conventional ∆l selection rules. With this proposed

method, transitions between a low-l Rydberg state and the CS, separated by a few THz, can

be driven in the first order to initialize a sample of atoms in state |nC⟩ for the fundamental
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Figure 4.11: Spectroscopy by a microwave source between |0⟩ and |1⟩ Rydberg states with
pulse areas: (a) θ = π, (b) 3π/2, and (c) 2π. In (d), Rabi flopping is shown at
τ = 50 µs and δµ = 0 as Ω0 is varied.

physics applications initially proposed.
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CHAPTER V

Theory of Rydberg Atoms in Light

This chapter is primarily based on Ref. [5].

When a bound atomic electron in the Rydberg state is placed in an electromagnetic

field that oscillates at optical frequencies and has a wavelength on the order of the spa-

tial extent of the electron’s wave function, unique dynamics arise different from the more

commonly observed electric-dipole interactions that deeply-bound atomic states undergo in

optical radiation. Electric-dipole interactions between the optical field and the deeply-bound

electrons were discussed thoroughly in Chapter II, so I will only briefly discuss them here

in the context of Rydberg-atom excitation with lasers and photoionization (PI). For a sig-

nificant portion of the optical spectrum, Rydberg atoms will mainly experience conservative

ponderomotive forces, which originate from the valence electron wiggling at the frequency of

the applied light field. On the other hand, a conservative electric-multipole force acting on

the Rydberg electron is only comparable in strength to the ponderomotive force near very

narrow Rydberg-ground resonances (typically < 10 MHz) [86]. For all wavelengths within

the optical spectrum, there exist electric-dipole transitions between the Rydberg states and

FESs, which leads to PI of the Rydberg atom. All of these effects collectively acting on

Rydberg atoms are necessary to understand if deep, time-modulated optical lattices are to

be used for preparing a sample of circular states (CSs).

In this chapter, I will describe the classical and quantum origins of the ponderomotive

force acting on the Rydberg electron in the first section. Then, I describe PI effects of Ry-

dberg atoms in the following section. For the third section, I will explain ponderomotive

shifts and couplings of nS1/2 and nPj Rydberg states in a one-dimensional optical lattice; for

Section 5.4, I will explain the effects of lattice-induced fine-structure mixing for nFj Rydberg

states and the PI rates of the mixed states. In Section 5.5, I will discuss hydrogenic-state mix-

ing with |nFj⟩ in an optical lattice with a depth of ∼ 106 single-photon recoils, as well as the

mixed states’ lifetimes arising from PI. More for entertainment than pedagogical purposes,
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the last section investigates the quantum-electrodynamic description of the ponderomotive

interaction with Rydberg electrons for a static and amplitude-modulated optical lattice.

5.1 Ponderomotive Potentials

A classical model of the Rydberg atom with low-velocity center-of-mass (CM) at R0

and a localized valence-electron at relative position re is presented in Fig. 5.1. The electron

experiences an elliptical Keplerian orbit and is free to wobble under any external force with a

deviation quantified by vector ρ⃗. When the external force originates from a monochromatic

laser field far-off-resonant (FOR) from any Rydberg-ground transition and the atom, CM

motion changes at ≳ 1 µs timescales, the electron’s orbit has a period around ∼ 0.1 ns, and

the deviation, or quiver motion, has a period matching that of the laser (∼ 1 fs). Because

these timescales differ so significantly, the Born-Oppenheimer approximation (BOA) can

be applied and each vector can be adiabatically separated, i.e., the more slowly varying

positions can be treated as constants while the faster is calculated. I will start off this

section by deriving the ponderomotive potential energy Up on the Rydberg electron with a

classical model, then use a quantum one.

5.1.1 Classical Model

Under the BOA, R0 and re remain constant while ρ is rapidly changing under the influ-

ence of the laser’s electric field at R0 + re. Neglecting the part of the Lorentz force from the

laser’s magnetic field, Newton’s second law yields, in the direction of the laser’s polarization,

meρ̈ = −eE(R0 + re) cos [kL(Z0 + ze)− ωLt], (5.1)

so the kinetic momentum 1
2me

(p0 + eA)2 is then

meρ̇ =
e

ωL

E(R0 + re) sin [kL(Z0 + ze)− ωLt], (5.2)

and the kinetic energy, T (t) is the following periodic function,

T (t) =
e2|E(R0 + re)|2

2meω2
L

sin2 [kL(Z0 + ze)− ωLt]. (5.3)

On average, over many cycles of the optical period, ⟨T ⟩t is

⟨T ⟩t =
e2|E(R0 + re)|2

4meω2
L

. (5.4)
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Figure 5.1: Figure adapted from [4]. Relevant position vectors associated with the Rydberg
electron (green) in a classical model of the atom: the CM vector R0 located at
the ion-core (blue) position , the relative vector at the position of the Rydberg
electron with respect to the CM re, and the quiver vector ρ representing de-
viations from the elliptical orbit. Deviations can arrive from the laser field E
oscillating at frequency ωL/(2π).

Because the force on the quivering electron is conservative, the kinetic energy acquired on

average is equal to the potential energy associated with the ponderomotive force Up, so

Up =
e2|E(R0 + re)|2

4meω2
L

. (5.5)

The ponderomotive force is then Fp = −∇⃗Up = −1
4
αe(ωL)∇⃗|E(R0 + re)|2, where αe(ωL) =

− e2

meω2
L
is the free-electron polarizability. It is called so because the electron in this frame is

treated like a free particle positioned at R0 + re.
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5.1.2 Quantum Model

Quantum mechanically, the quasi-free electron in the time-frame of vector operator ρ̂

has properties of a plane wave that extends through all space with a well-defined canonical

momentum p̂0 conjugate to ρ̂. The Hamiltonian operator is

Ĥq(t) =
p̂20
2me

+
e

me

[A(R0 + re, t) · p̂0] +
e2

2me

|A2(Re + re, t)|, (5.6)

where A(R0 + re, t) = ϵ̂E(R0+re)
ωL

sin [kL(Z0 + ze)− ωLt], so

Ĥq(t) =
p̂20
2me

+
eE(R0 + re)

meωL

(ϵ̂ · p̂0) sin [kL(Z0 + ze)− ωLt]

+
e2|E(R0 + re)|2

2meω2
L

[
1

2
− 1

2
cos [2kL(Z0 + ze)− 2ωLt]

]
, (5.7)

Thus, the electron’s quiver motion ρ⃗ yields the following phase-modulated wave function

Ψq(ρ⃗, t) = eip0·ρ/ℏe−ip20t/(2ℏme)e
−i

e2|E(R0+re)|2

4meℏω2
L e

−i
eE(R0+re)

meℏω2
L

(ϵ̂·p̂0) cos [kL(Z0+ze)−ωLt]

× e
−i

e2|E(R0+re)|2

8meℏω3
L

sin [2kL(Z0+ze)−2ωLt]
, (5.8)

known as a Volkov state [110] with a time-averaged eigenenergy

p20
2me

+ Up(R0 + re). (5.9)

The first term is a constant offset for all Rydberg states and can be removed from the

eigenenergy. According to the BOA, the term Up(R0 + r̂e) now acts as a function of an

operator in the relative coordinate’s Schrödinger equation,

Ĥe = p̂2e/(2me)+UC(r̂e)+ULS(r̂e)+Up(R0+ r̂e)+
eE(R0 + r̂e)

meωL

sin [kL(Z0 + ẑe)− ωLt](ϵ̂ · p̂e),

(5.10)

where UC(r̂e) arises from the Coulomb interaction between the nucleus and inner-shell elec-

trons and the Rydberg electron and ULS(r̂e) accounts for spin-orbit coupling. Electric-dipole

interactions that lead to PI, optical-dipole shifts, and Rydberg-ground transitions originate

from the final term.
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Figure 5.2: Figure taken from [5]. Total shell-averaged photoionization (PI) cross sections for
Rb Rydberg states with fine-structure removed and λ = 1064 nm calculated for
every five n and increasing l. The Thomson-scattering cross section σT = 0.665 b
(explained in the penultimate section of Chapter V) is denoted by the red, dashed
line.

5.2 Photoionization of Rydberg Atoms

When the laser frequency is FOR (typically > 10 MHz) from any |n, l, j,mj⟩ Rydberg-

bound-state electric-dipole transitions, conservative light forces from the final term in Eq. 5.10

are neglected, and the real part of the state polarizability is just αe(ωL). While the real part

of the AC polarizability is just αe(ωL), there is also an imaginary part proportional to the

the PI cross section σn,l,j,mj
,

σn,l,j,mj
=
∑
l′,ml′

(σ
ϵ′,l′,ml′
∗,n,l,j,mj−1/2|c

j,mj ,s,l

↑,mj−1/2|
2 + σ

ϵ′,l′,ml′
∗,n,l,j,mj+1/2|c

j,mj ,s,l

↓,mj+1/2|
2), (5.11)

where “∗” denotes the polarization of the laser field, resulting in Eq. 2.70 for a laser prop-

agating along z and Eq. 2.69 for one along x. The quantities c
j,mj ,s,l

↑,mj−1/2 and c
j,mj ,s,l

↓,mj+1/2 are

Clebsch-Gordan coefficients. Cross sections σ
ϵ′,l′,ml′
∗,n,l,j,mj∓1/2 are proportional to σ̄ϵ′,l′

n,l , which, is

the sum over all l′ = l ± 1 allowed by electric-dipole selection rules. Quantities σ̄ϵ′,l′

n,l are

presented in Fig. 5.2 for λ = 1064 nm.

It is noteworthy that I made the electric-dipole (E1) approximation when it is not at
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all true that ⟨re⟩ << λ for Rydberg states. Against all intuition, the E1 approximation is

indeed valid for transitions between orbitals (free or bound) of the Rydberg electron when

studying electric-multipole interactions between the optical radiation and atoms. In order to

believe this with a classical example, consider the case of a free electron making a parabolic

orbit around a heavy ion. As it turns the corner at the closest distance from the ion’s

CM, optical Bremsstrahlung radiation is most likely to be emitted from the particle at a

rate proportional to the square of its Coulomb acceleration [68], which is maximum at this

turning point. This change in energy of the electron is enough for it to transition into a

bound orbital: recombination of the ion-electron pair into a bound Rydberg state occurs.

Recombination is the opposite effect of PI, so it can be concluded that the process occurs

where re → 0 and where the E1 approximation (re << λ) is valid. Experimental verification

of the E1 approximation’s reliability in studying Rydberg PI was provided in [154]. For

high-l atomic states that do not orbit close to the ion core, like the CS, PI cross sections

drop towards the Thomson scattering cross section and are immeasurable even with modern

experimental equipment.

A quantum explanation for the PI effect occurring near the ion core requires investigating

the overlap between Rydberg and FES wave functions, which was theoretically determined

to be the strongest when the kinetic energies of the two electronic states were minimal and

the Coulomb acceleration was maximal [155; 156]. Similar reasoning also explains propensity

rules , where electric-dipole matrix elements are stronger for ∆l = +1 than −1 transi-

tions [156].

In this section, I will show how much higher-order multipoles contribute to A ·pe matrix

elements in the context of bound-free transitions with Rydberg |nF ⟩ states neglecting spin-

orbit coupling. Using the n, l,ml basis for a fixed spin state of the electron, the matrix

element coupling |nF ⟩ and the FES |ϵ′, l′,ml′⟩ is, including all multipole orders for a π-
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polarized laser field in the paraxial approximation

⟨ϵ′, l′,ml′|UAF (R0 + r̂e, t) |n, l = 3,ml⟩ eiω
ϵ′l′
n,l t = −ieℏE(R0)

meωL

× ⟨ϵ′, l′,ml′| sin [kL(X0 + x̂e)− ωLt]
∂

∂ze
|n, l = 3,ml⟩ eiω

ϵ′l′
n,l t

≃ −eℏE(R0)

2meωL

eikLX0 ⟨ϵ′, l′,ml′| eikLr̂e sin θ̂e cos ϕ̂e
∂

∂ze
|n, l = 3,ml⟩

= −iml′−ml
eℏE(R0)

2meωL

eikLX0

∫
d3reψ

∗
ϵ′,l′,ml′

Jml′−ml
(kLre sin θe)e

−i(ml′−ml)ϕe
∂ψn,l,ml

∂ze

= −iml′−ml
eℏE(R0)

4meωL

eikLX0

√
2l′ + 1

2l + 1

(l′ −ml′)!

(l′ +ml′)!

(l −ml)!

(l +ml)!

×

{ ∞∫
0

un′,l′(re)[u
′
n,l(re)−

un,l(re)

re
(l + 1)]

[ π∫
0

Jml′−ml
(kLre sin θe)P

ml′
l′ (cos θe)P

ml
l+1(cos θe)

×(l−ml+1) sin θedθe

]
dre+

∞∫
0

un′,l′(re)[u
′
n,l(re)+

un,l(re)

re
l]

[ π∫
0

Jml′−ml
(kLre sin θe)P

ml′
ℓ′ (cos θe)

× Pml
l−1(cos θe)(l +ml) sin θe dθe

]
dre

}
, (5.12)

where it is assumed that ωL = ωϵ′,l′

n,l .

Under the E1 approximation kLre → 0, the matrix element becomes proportional to

δml
ml′

, and the integrals of the associated Legendre functions allow only l′ = l ± 1. For

ωL = 2πc/(532 nm), I present calculations of σ
ϵ′,l′,m′

l
z,n,l,mℓ

, where n = 15 and ϵ′ = 0.083EH .

Similar calculations in the context of |nDj⟩ PI are provided in [157; 154] Calculations of

the cross section are presented in Fig. 5.3(a) for ranges of l′ : [0, 14] and m′
l : [−l′, l′]. The

relation between the matrix element and the cross sections are

σ
ϵ′=0.083EH ,l′,m′

l
z,n=15,l=3,mℓ

=
πe2ℏ2

ϵ0m2
eωLc

|⟨ϵ′ = 0.083EH , l
′,m′

l|UAF (R0 + r̂e) |n = 15, l = 3,ml⟩|2 . (5.13)

As can be seen in the figure, at λ = 532 nm the cross sections proportional to dipole-forbidden

matrix elements are a factor of 105 smaller than the |15, l = 3,ml = 0⟩ → |0.083EH , l
′ =

4,m′
l = 0 > cross sections favored by propensity rules. The leading dipole-forbidden

transitions are |15, l = 3,ml = 0⟩ → |0.083EH , l
′ = 5,m′

l = ±1⟩, which have σ = 0.18 b

(1 b= 10−28 m2). Thus, the classical and quantum arguments of the E1 approximation’s va-

lidity for Rydberg-atom absorption and emission of radiation in the optical spectrum agree

well.
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Figure 5.3: Figure taken from [5]. |15F ⟩ PI cross sections for |15, l = 3,ml = 0 >→
|0.083EH , l

′,m′
l > ionization channels with λ = 532 nm and κ = 1 in (a). The E1

approximation is adhered to, even though the optical wavelength varies within
the Rydberg wave function. If atom’s inner ion core sees a significant spatial
variation of the ionizing radiation, which is what happens when the wavelength
is artificially reduced by a factor of κ = 1000 and spatially resembles an X-ray,
the E1 approximation fails. This failure is shown in (b), where dipole-forbidden
transitions contribute most to the overall |15Fj > PI cross section.

Artificial enhancement of the dipole-forbidden cross sections are possible by increasing kL

by a numerical factor κ = 1000 without reducing the 1/ωL prefactor. It is not possible in any

experimental setting to make X-ray wavelengths with optical frequencies. Dipole-forbidden

ionization channels that are permitted by X-rays always have their excitation rates reduced

by κ [155]. In Fig. 5.3(b), I present the now more visible dipole-forbidden cross sections with

an artificial wavelength of 0.532 nm (ωL and ϵ′ remain the same). Here, the E1 approxi-

mation is demonstrably invalid, as the previously favored transition of |15, l = 3,ml = 0⟩ →
|0.083EH , l

′ = 4,m′
l = 0⟩ now contributes a cross-section contribution of 5451 b while the

dipole-forbidden channels |15, l = 3,ml = 0⟩ → |0.083EH , l
′ = 3,m′

l = ±1⟩ provide the pri-

mary contributions of 17850 b each.

By choosing a both a dipole-allowed |15, l = 3,ml = 0⟩ → |0.083EH , l
′ = 4,m′

l = 0⟩ and
-forbidden transition |15, l = 3,ml = 0⟩ → |0.083EH , l

′ = 3,m′
l = 1⟩, radial range of the UAF

is presented for both respective channels in Fig. 5.4(a) and (b). This demonstration is done by

varying the upper constraints rmax in the radial integrals of Eq. 5.12. Fig. 5.4(a) shows that σ

begins to oscillate around the converging value of σ0 = 15220 b below 100 a0, lower than the

distance from the nucleus to the final slope of the radial wave function (∼ 400 a0). In fact, by
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Figure 5.4: Figure taken from [5]. Calculation of σ with the indicated κ for the |15, l =
3,ml = 0 >→ |0.083EH , l

′ = 4,m′
l = 0 > channel (λ = 532 nm and

σ0 = 15220 b) in (a). For (b), the same is done for the |15, l = 3,ml = 0 >→
|0.083EH , l

′ = 3,m′
l = 1 > PI channel (λ = 532 nm and σ0 = 17850 b). The pur-

pose of this calculation is to investigate the radial range of light-matter electric-
multipole interactions. Because the converging results of the PI cross sections
do not change for up to κ = 100, it is concluded that the range is less than 50a0.

increasing κ even to 100, there is no change in the converging value of σ0, suggesting that the

atom-field interaction extends to a distance of 50a0 from the CM position for λ = 532 nm. As

κ is increased to 1000, there is an evident drop in σ0 for the dipole-allowed transition while the

converging value of the dipole-forbidden cross section shown in Fig. 5.4(b) rises from << 1 b

to σ0 = 17850 b, which suggests that the potential provided by the artificial X-ray varies

substantially within the range of the atom-field interaction. The range of electric-multipole

atom-field interactions for Rydberg atoms were similarly discussed in [157; 154; 156; 158].

While electric-multipole interactions with the laser are short-range effects most evident

in regions where the Coulomb interactions are the greatest, ponderomotive interactions are

mostly visible in regions where the acceleration of the bound-electron is at a minimum and

is primarily quivering at the frequency of the field. Both effects will be discussed in the

following sections for a standing-wave laser field that provides an optical lattice having a

propagation direction serve as the quantization axis. Each section will discuss effects on

the Rydberg atom’s CM, internal state, and PI-induced decay rate. The laser field will be

presented as an ideal standing wave with intensity

I(R0 + re) = cϵ0E0(R0 + re)
2(1 + cos [2kL(Z0 + ze)]). (5.14)
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If the standing wave does not have a transverse intensity profile that varies significantly

within the Rydberg-electron wave function, E0(R0+re)
2 ≃ E0(R0)

2, which can also be safely

made under the paraxial approximation.

5.3 nS1/2 and nPj Alkali Rydberg Atoms in an Optical Lattice

This section concerns effects of nS1/2 and nPj Rydberg atoms placed inside a one-

dimensional optical lattice of wavelength λ = 1064 nm and intensity given by Eq. 5.14.

In particular, the first sub-section deals with shifts in the internal-state energies and the

couplings between two orthogonal Rydberg states. The second sub-section discusses the

classical forces on the CM vector but does not review Bloch’s theorem for atoms in optical

lattices, as it was already covered in Chapter II. The third sub-section derives expressions

for ΓPI,n,l,j,|mj | for all possible nS and nP Rydberg states, which arises from photoionization

(PI).

5.3.1 Internal-State Effects

Considering that the lattice waist is much larger than the Rydberg-atom diameter, I

discuss effects on the Rydberg electron’s internal state from the ponderomotive potential

operator

Up(R0 + r̂e) = −1

2
αe(ωL)E(R0)

2(1̂+ cos [2kL(Z0 + ẑe)])

= U0f(R0)[1̂+ cos (2kLZ0) cos (2kLẑe)− sin (2kLZ0) sin (2kLẑe)]

= U0f(R0)[1̂+
∞∑
p=0

(−1)p[cos (2kLZ0)(2kL)
2pẑ2pe /(2p)!−sin (2kLZ0)(2kL)

2p+1ẑ2p+1
e /(2p+1)!]],

(5.15)

where f(R0) is the normalized transverse profile of the lattice and the cos (2kLẑe) operator

can couple an electronic state with itself or another state with an even change in the l

quantum number with mj and ml being conserved (e.g., couplings between
∣∣nS1/2

〉
and∣∣n′S1/2

〉
or
∣∣nS1/2

〉
and |nDj⟩ ). Alternatively, sin (2kLẑe) can only couple Rydberg states

of the same mj and ml with odd changes in l (e.g., couplings between
∣∣nS1/2

〉
and |nPj⟩ or∣∣nS1/2

〉
and |nHj⟩ ).

For an atom located near the center of the lattice’s transverse Gaussian profile, f(R0) ≃ 1

and the shift on Rydberg state |n, l, j,mj⟩ with energy Wn,l,j can be calculated with first-

order nondegenerate perturbation theory. The energy shift can be calculated in this way
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because the off-diagonal couplings between orthogonal Rydberg states are usually (at least

for n < 60) much weaker than the quantum-defect or fine-structure shifts when l = 0 or 1,

even when U0 is at a depth of 105 single-photon recoils. Therefore,

∆Wn,l,j,|mj |(Z0) = U0 + U0

∞∑
p=0

(−1)p(2kL)
2p ⟨n, l, j, |mj|| ẑ2pe |n, l, j, |mj|⟩

(2p)!
cos (2kLZ0)

= U0[1 + κn,l,j,|mj | cos (2kLZ0)]. (5.16)

The diagonal matrix element κn,l,j,|mj | = ⟨n, l, j, |mj|| cos (2kLẑe) |n, l, j, |mj|⟩ depends en-

tirely, on the spatial variation of the lattice wells within the Rydberg-electron wave function.

For low-n wave functions that have their final radial lobes at distances from the nucleus

that are much smaller than the lattice constant λ/2, κn,l,j,|mj | → 1. When the wave func-

tion extends over a certain integer number of lattice constants, κn,l,j,|mj | can calculate to be

zero; these Rydberg states are referred to as tune-out states. In Rb, 65S1/2 and 74S1/2 are

tune-out states for λ = 1064 nm [44], where the shift on the internal state no longer has

a dependence on the lattice-propagation direction. Calculations of κnS1/2
for nS1/2 states

of Rb are presented in Fig. 5.5(a). As can be seen, for S-states between the two tune out

levels at n = 65 and 74, internal-state Rydberg atom energies will undergo red shifts in

regions of standing-wave intensity maxima. Beyond this, the high- and low- field seeking

behavior oscillates with n, which affirms that the wave function shape with respect to the

laser wavelength is necessary for determining Rydberg-atom light shifts, something that is

not taken into account for with deeply bound atomic states. In Fig. 5.5(b), the differences

in κn,l,j,|mj | among nS1/2, (n+ 1)S1/2, and nP1/2 Rydberg states are presented.

While nS1/2 states are spatially isotropic, the electron densities in nPj Rydberg atoms

have different angular dependencies based on on the mj quantum number. Generally, the

larger the |mj| value, the larger the κn,l,j,|mj | quantity is. This is a consequence of a weak

spatially averaged Rydberg wave function along z where the electron density is aligned

perpendicular to the quantization axis. Differences in κnS1/2
from κnP3/2,|m′

j | are apparent in

Fig. 5.5(c). Also, one can note that |∆κ| for nP3/2 is typically much larger than that of nP1/2

no matter what |mj| is chosen. There are, however, certain transitions, i.e., magic transitions,

that can be chosen so |∆κ| ≃ 0, evident in both Fig. 5.5(b) and (c). For applications

involving Rydberg-Rydberg transitions with a prolonged T ∗
2 time [26], these systems are

ideal because the differential light shifts between the two Rydberg states are minimized [63].

Thus, many coherent Rabi flops can be observed between these two magic states under the

implementation of a 1064−nm optical lattice.

The ponderomotive potential can also induce changes in the Rydberg-electron’s momen-
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tum. Quantum-mechanically, this means that there are nonzero couplings between two

different Rydberg states similar to those that can be found with homogeneous and static

electromagnetic fields. The relaxed selection rules of Eq. 5.15 allow any change in orbital

angular momentum (OAM) of the Rydberg electron but conserve the OAM’s projection along

the lattice propagation axis. Proportional to the cos (2kLZ0) term, the electronic coordinate

operators ẑe to even powers 2p result in even changes in the OAM quantum number l. To

the lowest order in ẑe, Rydberg atoms centered near intensity extrema of the standing-wave

field (cos (2kLZ0) ≃ 1) experience diamagnetic-like potentials

Up(ẑe) ≃ U0(1̂− 2k2Lẑ
2
e), (5.17)

from which an effective, static and homogneous magnetic field pointing along z can be

obtained, B0 ≃ 4kL
√
U0me/e. This interaction can couple internal states with the same l

but different n, where the electron only sees a change in its radial momentum, as is the case

with couplings between nS1/2 and (n + 1)S1/2 atoms, or ∆l = ±2, 4, 6, ... In Fig. 5.5(d), I

compute the matrix element
〈
(n+ 1)S1/2

∣∣ cos (2kLẑe) ∣∣nS1/2

〉
as a function of n, which for

Rb consists of a maximum at n = 58 when λ = 1064 nm.

Atoms located near the inflection points of the lattice intensity gradient see nearly linear

potentials resembling the DC Stark effect. For this case, sin (2kLZ0) ≃ 1 and, to the lowest

order in ẑe,

Up ≃ 2U0kLẑe (5.18)

with an effective electric field parallel to B0 and magnitude E0 ≃ 2kLU0/e. Evidently, this

potential couples states with odd changes in l such as the nS1/2 and nP1/2 Rydberg states.

The Rb matrix elements
〈
nP1/2

∣∣ sin (2kLẑe) ∣∣nS1/2

〉
also are shown in Fig. 5.5(d). They have

a peak value at n = 46.

Population transfer from one internal Rydberg state to another can only occur if the

ponderomotive interaction supplies sufficient momentum and energy to the bound electron.

For energy conservation, the strength of Up can exceed the energy splitting between the

two states ℏωn′,l′,j′,|mj′ |
n,l,j,|mj | = Wn′,l′,j′,|mj′ | − Wn,l,j,|mj | and mix |n′, l′, j′,mj′⟩ with |n, l, j,mj⟩,

as is discussed in the next two sections with fine-structure and hydrogenic-state mixing.

Thus, an atom in |n, l, j,mj⟩ is adiabatically transferred to |n′, l′, j′,mj′⟩ upon movement

along Z0. Alternatively, energy conservation can be achieved keeping Up low in strength but

yielding oscillatory behavior at the frequency of ω
n′,l′,j′,|mj′ |
n,l,j,|mj | /(2π) by modulation of the lattice

amplitude or phase. As a result, the rotating-part of the harmonic potential allows energy to

be conserved and electronic transitions to be driven between |n′, l′, j′,mj′⟩ with |n, l, j,mj⟩.
In the final section of this chapter, I investigate this method of population transfer at the
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Figure 5.5: The matrix element κnS1/2
=
〈
nS1/2

∣∣ cos (2kLẑe) ∣∣nS1/2

〉
is evaluated in (a) for

n = 10 − 95. Differences from κnS1/2
as n changes by 1, as well as differences

between
∣∣nS1/2

〉
and

∣∣nP1/2

〉
are displayed in (b). In (c), ∆κ is shown between∣∣nP3/2, |mj′ |

〉
and

∣∣nS1/2

〉
for |mj′ | = 1/2 and 3/2. Off-diagonal matrix elements

of the ponderomotive potential Up as a function of n are presented in (d).

single-photon limit in order to deliver parallels between it and elastic Thomson and inelastic

Compton scattering. Population transfer between Rydberg states with relaxed ∆l selection

rules are necessary for using optical lattices to initialize a sample of circular states (CSs)

from a laser-excitable, low-l sample.

5.3.2 Center-of-Mass Effects

The Force acting on the Rydberg-atom CM for atoms in nS1/2 and nPj is classically

determined to be

Fp = −2kLẐ0κn,l,j,|mj | sin (2kLZ0), (5.19)
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with a maximum near the inflection points of the intensity gradient. Trapped atoms ini-

tialized near this region undergo a breathing-like motion at an oscillation frequency of

kL
√

8U0/M . Near the pondeormotive-potential maxima of the lattice, atoms undergo metastable

equlibrium, where non-stationary motion induces skipping over many lattice peaks and

troughs. Stable equilibrium that confines atoms to local intensity maxima or minima (de-

pending on n) is only achieved where Up is at a local minimum.

5.3.3 Photoionization Effects

In the regime where Up is too low to conserve energy for transitions among nS1/2, nP1/2,

and nP3/2, each internal state under the ponderomotive potential remains well-defined in the

spherical basis and only is shifted in energy through non-degenerate perturbation theory.

That means each state of a given n, l, j, |mj| has its own photoionization-induced decay rate

ΓPI,n,l,j,|mj | as follows,

ΓPI,nS1/2
(Z0) =

I(Z0)σ̄n,l=0

ℏωL

(5.20)

ΓPI,nP1/2
(Z0) =

I(Z0)σ̄n,l=1

ℏωL

(5.21)

ΓPI,nP3/2,|mj |=1/2(Z0) =
I(Z0)(10σ̄n,l=1 + 9σ̄ϵ′,l′=2

n,l=1 )

20ℏωL

(5.22)

ΓPI,nP3/2,|mj |=1/2(Z0) =
I(Z0)(21σ̄n,l=1 + 9σ̄ϵ′,l′=0

n,l=1 )

20ℏωL

, (5.23)

where I(Z0) = 2I0(1 + cos (2kLZ0)), with I0 being the peak single-beam, running-wave laser

intensity. Here,

σ̄n,l =
∑
l′

σ̄ϵ′,l′

n,l , (5.24)

where each l′ is degenerate when ϵ′ = Wn,l,j + ℏωL is fixed.

Inspection of the ΓPI,nP3/2,|mj | rates reveals that a polarized Rydberg sample can lead to

a faster (|mj| = 3/2) or slower (|mj| = 1/2) PI rate than that for an average mixture of |mj|
atoms. When averaging over all mj, Γ̄PI,nP3/2

= ΓPI,nP1/2
. Also, by observation of Fig. 5.2,

Rydberg atoms in
∣∣nS1/2

〉
have much lower PI cross sections and rates than those in

∣∣nP1/2

〉
.

This is a result of Cooper minima which arise from destructive relative phases between bound

and free radial wave functions under integration for the matrix elements [106].
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5.4 nDj and nFj Alkali Rydberg Atoms in an Optical Lattice:

Fine-Structure Mixing

Alkali Rydberg atoms with internal states of
∣∣nS1/2

〉
and |nPj,mj⟩ have sizeable quan-

tum defects, and the j splitting in P-state fine structure is sizeable enough that a lattice

of 105 photon recoils does not mix adjacent states for n < 60. However, this parameter

regime fails for higher OAM states that have lower quantum defects and spin-orbit coupling

strengths. When the fine-structure splittings of a given |n, l, j,mj⟩ state become twice the

lattice depth, nondegenerate perturbation theory cannot be used to calculate the eigenvalues

and eigenenergies of the system. States of the same n, l, and |mj| but different j quantum

numbers can be coupled in the off-diagonals of the Rydberg-electron Hamiltonian. This

condition is met for |(n > 30)Dj⟩ and all |nFj⟩ Rb Rydberg states when U0 ≃ 105Er. The

∆l = 0 coupling matrix element that resides in the off-diagonals and is multiplied by a factor

of U0 cos (2kLZ0) is given by

⟨n, l, j ± 1,mj| cos (2kLẑe) |n, l, j,mj⟩ =
∑
p=0

(−1)p(2kL)
2p

(2p)!

×
(
c
j±1,mj

↑,mj−1/2c
j,mj

↑,mj−1/2 ⟨n, l,mj − 1/2| ẑ2pe |n, l,mj − 1/2⟩

+ c
j±1,mj

↓,mj+1/2c
j,mj

↓,mj+1/2 ⟨n, l,mj + 1/2| ẑ2pe |n, l,mj + 1/2⟩
)
. (5.25)

These couplings are nonzero because ⟨n, l,mj − 1/2| ẑ2pe |n, l,mj − 1/2⟩
̸= ⟨n, l,mj + 1/2| ẑ2pe |n, l,mj + 1/2⟩, which combats the orthogonality of the two fine-structure

states.

In Fig. 5.6, Eq. 5.25 is evaluated for |nDj, |mj|⟩ states in (a) and |nFj, |mj|⟩ in (b). One

thing that is consistent in both calculations is that the couplings generally get stronger as

n is increased. This observation is most likely an effect of the pronounced anisotropy of the

wave functions with respect to the lattice periodicity as the atom gets larger.

Couplings between |n, l, j,mj⟩ and |n, l, j ± 1,mj⟩ may have the strength to induce adia-

batic population transfer between the two states. For instance, the splitting between
∣∣50F5/2

〉
and

∣∣50F7/2

〉
for Rb is ∆WLS = h × 1.27 MHz, according to Fig. 5.6(c), which lists the Rb

fine-structure splittings as a function of n for D- and F -states. If U0 = h × 10 MHz, the

off-diagonal couplings between j and j±1 have maximum values greater than ∆WLS/2. The

Hamiltonian for n = 50 in this case is
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Figure 5.6: In (a), coupling strengths between two different fine-structure states of a given
|mj| by the z-propagating lattice are presented for |nDj⟩. In (b), fine-structure
couplings are presented for |nFj⟩. Fine structure splittings, primarily from LS-
couplings, are presented for |nDj⟩ and |nFj⟩ in (c).

where each element of the matrix is in units of h× MHz. No longer are the |n, l, j, |mj|⟩ basis
states for this Hamiltonian; the eigenvalues unique quantum numbers k = |mj| corresponding
to the adiabatic potentials take on the following Z0-dependent form (assuming j = |l − s|
here),

∣∣ψk=|mj |(Z0)
〉
= cn,l,j,k(Z0) |n, l, j, |mj|⟩+ cn,l,j+1,k(Z0) |n, l, j + 1, |mj|⟩ , (5.26)

where cn,l,j,k and cn,l,j+1,k depend on the following parameters: the matrix elements in

Fig. 5.6(b), U0, KL, and ∆WLS. Eigenenergies are plotted in Figs. 5.7(a)-(c) in a sys-

tem that lacks any stray or external, DC electric field E. These shifts on W50F5/2
and

W50F7/2
= W50F5/2

+∆WLS are denoted by ∆Wk and presented in units of GHz.

Fig. 5.7(a) displays the PI rates Γk for each k state in units of s−1. Expressions for these

rates are the following:

Γk(Z0) =
I(Z0)σk(Z0)

ℏωL

, (5.27)
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where

σk(Z0) =
πe2ℏ2

ϵ0m2
eωLc

∑
l′,ml′ ,ms

∣∣∣ ∑
j,ml,ms

M
ϵ′,l′,ml′ ,ms

n,l,ml,ms
cn,l,j,k(Z0) ⟨j,mj|mlms⟩

∣∣∣2
and

M
ϵ′,l′,ml′ ,ms

n,l,ml,ms
= ⟨ϵ′, l′,ml′ ,ms| ip̂x,e |n, l,ml,ms⟩ δl′,l±1δml′ ,ml±1. (5.28)

in SI units. Near the λ = 1064-nm lattice-intensity minima there are naturally no photoions

generated. At the inflection points, avoided crossings are noticeable mainly for |mj| = 5/2

which consists of the strongest off-diagonal coupling of (h × 1.66 MHz)cos (2kLZ0). Here,

|cn,l,j,k(Z0)| − |cn,l,j+1,k(Z0)| is at a minimum and the two unperturbed, fine-structure states

are maximally mixed. Thus, σk does not have the form of σx,n,l,j,|mj | or σx,n,l,j+1,|mj | but

a coherent mixture of PI cross-sections. When Z0 = 0, the |mj| levels are comfortably

nondegenerate that |ψk(0)⟩ → |n, l, j, |mj|⟩, so σk(0) ≃ σx,n,l,j,|mj |. In the previous section,

I demonstrated that the larger the |mj|, the larger the PI cross section for a given l and

j. It then is agreeable that the
∣∣50F5/2, |mj| = 5/2

〉
and

∣∣50F7/2, |mj| = 7/2
〉
have the most

substantial PI rates near 22 ks−1.

Adiabatic population transfer from
∣∣50F5/2

〉
to
∣∣50F7/2

〉
is apparent in Figs. 5.7(b) and

(c) ((c) is a close-up of (b) for |mj| = 5/2), where the expectation value of operator ĵ =

2.5
∣∣50F5/2

〉 〈
50F5/2

∣∣+ 3.5
∣∣50F7/2

〉 〈
50F7/2

∣∣ is evaluated for each k at a given Z0. These are

the colored dots labeled ⟨j⟩. Nearly perfect adiabatic transfer is possible as the atom slowly

moves from an intensity minimum to maximum in the case of |mj| = 5/2. Mild population

transfer is also observable for |mj| = 3/2, but the |mj| = 1/2 states seem to mostly retain

their j-quantum numbers without appreciable fine-structure transitions.

In Fig. 5.7(d), a field of Ez = 0.1 V/cm is applied along the direction of the lattice

propagation axis. At 10 V/m and |n = 50, l = 3⟩ in Rb, the DC Stark couplings among l,ml

and l± 1,ml have strengths of ∼ h×25 MHz, superseding spin-orbit coupling. Therefore, it

is appropriate to work in the |ml,ms⟩ basis when calculating the effects of the optical lattice.

Before the lattice perturbation is applied to the system, the second-order DC Stark effect

splits the F -state into seven sublevels: |ml = 0⟩ , ||ml| = 1, ↓⟩ , ||ml| = 1, ↑⟩ , ||ml| = 2, ↓⟩ ,
||ml| = 2, ↑⟩ , ||ml| = 3, ↓⟩, and ||ml| = 3, ↑⟩. States of different |ml| are split according to the

differences in the DC polarizability at n = 50, l = 3 while states of different ms of a given

|ml| (except ml = 0) are split by 1.27 MHz from the fine-structure. Note that the ml = 0

state does not split due to a lack of spin-orbit coupling. Because ||ml|, ↑⟩ cannot couple to

||ml|, ↓⟩ through Up(ẑe), the light-shifts on the internal electronic states can be computed

through first-order nondegenerate perturbation theory in the n, l,ml,ms basis.
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Figure 5.7: Figure taken from [5]. (a) and (b): Rb |50Fj > states in an optical lattice
with λ = 1064 nm and depth U0 = h × 10 MHz= 2410E2r. Light shifts of the
adiabatic states |ψk(Z0) > are plotted as a function of longitudinal CM positions.
In (a), the dot colors and sizes represent the PI rates; in (b), dot colors and sizes
represent the value ⟨j⟩ (see text for details). (c) A close-up view of the avoided
crossing near the lattice inflection point for |mj| = 5/2. (d) Calculated light-
shifts for the same lattice conditions when a longitudinal electric field of strength
0.1 V/cm is applied. The sizes and colors of the dots indicate PI rate.

As indicated in Fig. 5.7(d), the |ml| = 3 states experience the strongest modulation along

Z0 due to a smaller overlap of the Rydberg wave function and ponderomotive potential. On

the other hand, |ml = 0⟩ sees the most overlap as electron orbits primarily along the lattice

propagation axis. The results of these adiabatic lattice potentials imply that the application

of a longitudinal DC electric field can inhibit adiabatic fine-structure transitions of the lattice

and stabilize the purity of the Rydberg state in the spherical basis. Therefore, the PI rate

is σx,n,l,|ml|I(Z0)/(ℏωL) with a fixed cross-section along Z0. This is all true provided that it

does not have the strength mix the |nF ⟩ states with |nD⟩ and |nG⟩. Another noteworthy

feature of this system is the longitudinal shift in the lattice wells with respect to the 1064-

nm intensity minima, leading to future investigations of CM dynamics with a slowly-varying

electric field.
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5.5 Hydrogenic Rydberg States in an Optical Lattice: l-Mixing

with nFj States

I now consider the case where U0/h = 1.5 GHz with λ = 1064 nm and |50F ⟩ Rb Rydberg

atoms. This condition is achievable with two counter-propagating laser beams with waists of

w0 = 20 µm and powers of 200 W. The quantum defects at this n are δ50F5/2
= 0.016485(1)

and δ50F7/2
= 0.0165093(7) [145]. The energy spacing from |nF ⟩ to |nG⟩ is then 658 MHz [64],

and the lattice now has the strength to mix |nF ⟩ with states belonging to the hydrogenic

manifold that are all degenerate with each other.

The ponderomotive potential expressed in Eq. 5.15 induces mixing among |n, l, j,mj⟩
and |n′, l′, j′, |mj|⟩ with any ∆l and ∆j allowed. Population transfer from l = 3 all the way

to l = 49 is then permitted as the atom moves adiabatically along Z0. Eigenstates for this

system are indexed by quantum number k, where, in general,

|ψk(Z0)⟩ =
∑
n,l,j

cn,l,j,|mj |(Z0) |n, l, j, |mj|⟩ . (5.29)

In the example presented here, there is no sum over n, as it is fixed at 50, but 94 eigenstates

arise (k ∈ [0, 93]), where k = 0 mostly consists of 50F -character with ms = −1/2 and k = 93

is the adiabatic state closest to the ionization threshold when Z0 = 0.

Because PI rates generally decrease with l for l > 2, low k states that consist mainly of

|50F ⟩ must have the fastest PI rates. PI rates in this example take the following form

σk(Z0) =
πe2ℏ2

ϵ0m2
eωLc

∑
l′,ml′ ,ms

∣∣∣ ∑
l,j,ml,ms

M
ϵ′,l′,ml′ ,ms

n=50,l,ml,ms
cn=50,l,j,mj

(Z0) ⟨j,mj|mlms⟩
∣∣∣2.

In Fig. 5.8, I present the absolute energies for each |ψk(Z0)⟩ as a function of Z0 in units of

cm−1 (multiply by 100c to convert to Hz). As seen in the figure, k = 0 and k = 1 have

maximum PI rates of 1.6 Ms−1; for comparison, the natural lifetimes of Rb |50F ⟩ with a

300 K environment is on the order of 104 s−1 [3].

As mentioned in previous sections, atoms with Z0 near the inflection points have internal

eigenstates that resemble the parabolic wave functions of a fixed |ml| due to the Stark-

like interaction with an effective DC electric field of E0 ≃ 2kLU0/e [159]. When Z0 =

0, |ψk(Z0 = 0)⟩ resembles hydrogenic states mixed by a diamagnetic-like interaction with

effective field B0 ≃ 4kL
√
U0me/e [159]. An interesting energy-level structure arises in this

region. For k = 3 to k = 65, the Rydberg electron’s eigenenergy has a sub-wavelength

modulation along Z0. Its corresponding wave funciton resembles those of a vibrator state,

but when k > 65, the modulation drops below the nm-level and electronic wave functions
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resemble rotor states [160; 161; 162; 163]. Within this manifold of rotors and vibrators lies

wave functions with l = 49 character, which have very little electronic overalap with the

atom’s inner ion core. Thus, when the atom moves to the appropriate Z0, a slow envelope

of the optical lattice light may invert the entire population from l = 3 to l = 49 with the

|mj| quantum number remaining conserved.

Near the intensity maximum of Z0 = 0, the k = 0 and k = 1 states photoionize 10 times

faster than any other lattice-mixed eigenstate. Figs. 5.8(b) and (c) show that the Stark-like

eigenstates close to the inflection points photoionize more strongly than the roto-vibrational

states near the bottoms of the lattice wells. In fact Fig. 5.8(c), the drop off in Γk from the

Stark-like to diamagnetic-like regime is apparent, i.e., the rates go from Γk ∼ 130 ks−1 to

70 ks−1. This drop mirrors the jump from low-l hydrogenic-state character near the inflection

points to high-l character at the intensity maxima. Also, it can be concluded by observing

the PI rates that the rotor states consist of the most high-l character near l = 49.

In Fig. 5.8(d), a closer look at the subwavelength modulation of the force acting on the CM

along Z0 is shown. Splittings arising from the spin-orbit coupling between two configurations

of the electron’s intrinsic angular momentum further indicate that the l has a lattice-induced

dependence on Z0, for the energy gaps within every two levels are not fixed in this direction.

The potential energy structures for the CM here unravel a novel innovation for vector atom

interferometry of Rydberg atoms. In spinor atom interferometry, the atom’s CM showcases

its wavelike properties through its diffraction and phase-sensitive interference all the while

undergoing changes in the internal state (as opposed to scalar atom interferometry where

the electronic state remains fixed). An incident matter wave ψ0(R0) on this potential would

undergo diffraction at an angle 50 times greater than what would be provided by an optical

lattice because the lattice constant here is ≃ 10 nm [164]. Gravitational waves and dark-

matter forces, for instance, may impart a more clearly visible phase shift on the diffracted

matter-wave orders the more they are separated [164; 165]. Also, the rich internal-state

structure and adiabatic state transfer along Z0 of the atomic matter waves would provide

parallels with the interferometry of solid nanoparticles [166].

While the ponderomotive interaction has thus far been discussed in the context of co-

herent laser fields forming an optical lattice, it would be beneficial to explain this force at

the single-photon level using Fock states of the incident optical fields. With this description,

the effect of internal-state population transfer of the bound electron can be derived from a

system involving multiple optical wavelengths.
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Figure 5.8: Figure taken from [5]. Adiabatic eigenenergies as a function of CM position Z0

for n = 50 and mj = 1/2, λ = 1064 nm, and lattice depth 2U0 = h × 3 GHz
= 1.48× 106Er. Subfigures (b) and (c) are closeups of the boxed regions in (a).
A closeup of the boxed region in (c) is presented in (d), where the spin-orbit-
induced splittings are observable. Dot colors correspond to a bin of PI rates
Γk(Z0), indicated by the color scales provided. Dot diameters are proportional
to Γk(Z0). I enhance the diameters in (b) by a factor of 50 with respect to those
in (a) and by a factor of 10 in (c) and (d).

5.6 Quantum-Electrodynamic Description of the Ponderomotive

Interaction

In a fully quantum description of the ponderomotive force, where the electromagnetic

field is quantized along with the electron’s coordinates, the effect of a single quantum of the

electromagnetic field with polarization state α and wave number k resembles a scattering

interaction when incident on the electron. The electron can exist in quantum state |g⟩ or
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|e⟩, while the electromagnetic field of mode k, α exists as an arbitrary Fock state |N⟩k,α with

field energy (N + 1/2)ℏωk. The vector-potential operator has the form

Â(r̂, t) =
∑
k,α

√
ℏ

2ωkV
âk,αe

i(k·r̂−ωkt)ϵ̂α + h.c., (5.30)

where V is the volume of the system that manipulates the density of states in mode k, α and

âk,α is the mode’s annihilation operator. Note that r̂ is the vector operator corresponding

to the electron’s coordinate with respect to the lab frame.

The minimum coupling Hamiltonian consists of the term proportional to electromagnetic

field intensity, which is where the ponderomotive term originates. Using the quantized

radiation field, the ponderomotive potential operator is then,

∑
k,k’,α,α′

e2ℏ
4meV

[
âk,αâk′,α′
√
ωkωk′

ei[(k+k′)·r̂−(ωk+ωk′ )t]ϵ̂α · ϵ̂α′ +
â†k,αâ

†
k′,α′

√
ωkωk′

ei[−(k+k′)·r̂+(ωk+ωk′ )t]ϵ̂α · ϵ̂α′

+
â†k,αâk′,α′

√
ωkωk′

ei[(k
′−k)·r̂+(ωk−ωk′ )t]ϵ̂α · ϵ̂α′ +

âk,αâ
†
k′,α′

√
ωkωk′

ei[(k−k′)·r̂+(ωk′−ωk)t]ϵ̂α · ϵ̂α′

]
, (5.31)

where the creation and annihilation operators act on the electromagnetic field and the terms

in the potential’s phase act on |g⟩ and |e⟩. Considering only one incident mode of the

radiation field k, α and one scattered field k’, α′ out of the sum in Eq. 5.31 with initial

|N⟩k,α |M⟩k′,α′ and final |N ′⟩k,α |M ′⟩k′,α′ states of the radiation field, elastic scattering occurs

when ωk = ωk′ = ω and only the last two terms of Eq. 5.31 are nonvanishing. Here, |e⟩ = |g⟩
and two possible transitions occur

⟨g| ⟨N + 1|k,α ⟨M − 1|k′,α′ Ûp |N⟩k,α |M⟩k′,α′ |g⟩ =
e2ℏ
√

(N + 1)M

4meV ω
ϵ̂α · ϵ̂α′⟨ei(k′−k)·(R0+r̂e)⟩

(5.32)

⟨g| ⟨N − 1|k,α ⟨M + 1|k′,α′ Ûp |N⟩k,α |M⟩k′,α′ |g⟩ =
e2ℏ
√
N(M + 1)

4meV ω
ϵ̂α · ϵ̂α′⟨ei(k−k′)·(R0+r̂e)⟩

(5.33)

5.6.1 Thomson Scattering

The ponderomotive interaction is the mechanism behind elastic Thomson scattering when

there is a single photon in a given mode k, α within the volume v incident on the bound

electron in state |g⟩. If the volume is a symmetric box, then initial states |1⟩k,α |0⟩k′,α′ and

|0⟩k,α |1⟩k′,α′ are equally likely and both transitions in Eq. 5.33 have the same amplitudes for
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all scattered states k′. In this discussion, I will assume that the valence electron is nearly

detached from the ionic core and its wave function resembles the free-particle plane wave.

Fermi’s golden rule yields the rate of Thomson scattering ΓT within solid angle dΩ

dΓT =
2π

ℏ

∣∣∣∣ e2ℏ
2mevω

ϵ̂α · ϵ̂α′

∣∣∣∣2ρvac,ωk′=ωk
=

2π

ℏ

∣∣∣∣ e2ℏ
2mevω

ϵ̂α · ϵ̂α′

∣∣∣∣2 vω2dΩ

8π3c3ℏ
, (5.34)

and, dividing by photon flux c/v for the single-photon state,

dσT
dΩ

=
e4

16π2m2
ec

4
|ϵ̂α · ϵ̂α′|2. (5.35)

Integration of the polarization couplings over the solid angle Ω results in the Thomson

scattering cross section of ≃ 0.665 barns. For Rydberg atoms in the presence of a single-

quantum of optical radiation in a free-space vacuum, Thomson scattering is the lowest-order

effect acting on the valence electron.

5.6.2 Cavity-Generated Optical Lattices: Elastic Scattering

Now, I will detail the elastic scattering of a quantized radiation field with a bound

Rydberg electron in state |g⟩ = |n, l, j,mj⟩ in a volume bound by an extremely-high-Q optical

resonator of volume V that allows two counter-propagating modes of the same frequency

ω and polarization but opposite propagation directions k and −k. Thus, the quantized

radiation field is in state |N⟩k,α |N⟩−k,α and the following energy shift ∆Wn,l,j,mj
is obtained

when summing over all possible transitions of the field for the case |e⟩ = |g⟩,

∆Wn,l,j,mj
=

e2

4meω2

2ℏω
v

⟨g|N +
√
N(N + 1) cos [2k · (R0 + r̂e)] |g⟩ , (5.36)

which agrees with the result obtained using a classical radiation field. The two possible

transitions of the radiation field that were added were the scattering of a photon of mode k

into −k and the opposite event.

5.6.3 Cavity-Generated Optical Lattices: Inelastic Scattering

The cavity can also trap optical modes that are an integer number m of ∆ωFSR/(2π) =

cϵ
1/2
0 /(2ϵ1/2v1/3) away from ω where ϵ is the permittivity of the cavity medium and v is the

cavity volume. Consider the case where there are four modes (k,−k,k′,−k′) trapped with

two unique frequencies (ωk = ω, ωk′ = ω + m∆ωFSR), where m∆ωFSR = ω0, the angular

frequency spacing between |g⟩ = |n, l, j,mj⟩ and |e⟩ = |n′, l′, j′,mj′⟩. Tuning of ω0, ϵ
1/2,
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or V 1/3 can meet the resonance condition for a transition from |g⟩ to |e⟩ . All modes are

assumed to exist in the same polarization state α = 1.

Initially, the quantized radiation field is in state |N⟩k |N⟩−k |M⟩k′ |M⟩−k′ . For electronic

transition |g⟩ → |e⟩, the following changes in the radiation field are possible

|N⟩k |N⟩−k |M⟩k′ |M⟩−k′ → |N + 1⟩k |N⟩−k |M⟩k′ |M − 1⟩−k′ (5.37)

|N⟩k |N⟩−k |M⟩k′ |M⟩−k′ → |N⟩k |N + 1⟩−k |M − 1⟩k′ |M⟩−k′ . (5.38)

When evaluating the matrix element ⟨e = n′, l′, j′,mj′ | Ûp |g = n, l, j,mj⟩, the sum over these

Fock-state transitions is taken. The result is

e2ℏ
4meωv

⟨n′, l′, j′,mj′ |
√
M(N + 1)ei(k

′+k)·(R0+r̂e) |n, l, j,mj⟩

+
e2ℏ

4meωv
⟨n′, l′, j′,mj′ |

√
M(N + 1)e−i(k′+k)·(R0+r̂e) |n, l, j,mj⟩

=
e2ℏ
√
M(N + 1)

2meωv
⟨n′, l′, j′,mj′| cos [(k′ + k) · (R0 + r̂e)] |n, l, j,mj⟩

=
e2ℏ
√
M(N + 1)

2meωv
⟨n′, l′, j′,mj′| cos [(k′ + k) ·R0] cos [(k

′ + k) · r̂e]

− sin [(k′ + k) ·R0] sin [(k
′ + k) · r̂e] |n, l, j,mj⟩ . (5.39)

I have, up until now, left the Rydberg atom’s CM coordinate as a classical parameter. When

this coordinate is quantized R0 → R̂0 and the particle behavior of the inner ion core takes

on wavelike properties defined by quantum state |ν⟩i, where i = g, e. In this system of a

bichromatic optical lattice, the ν characterizes a Bloch band belonging to a specific internal

state of the Rydberg electron. For a sufficiently deep optical lattice, the energy spacing of

∆ν = 1 is proportional to the classical trap oscillation frequency of the CM. However, the

anharmonicity of the sinusoidal potential induces deviations in this energy spacing.

The operators cos [(k+ k′) · R̂0] and sin [(k′ + k) · R̂0] govern how the transition |ν⟩g →
|ν ′⟩e proceeds, where the former and latter induces ν ′ − ν = 2q and 2q + 1 changes respec-

tively for q = 0,±1, 2, .... Thus, according to the calculated matrix element, for even-integer

changes in the orbital-angular-momentum (OAM) quantum number of the internal state,

where the parity of the Rydberg-electron wave funciton remains the same from the transi-

tion, the motional quantum number must also undergo an even integer change. Its spectrum

representing the probability of |g⟩ → |e⟩ as a function of m∆ωFSR would feature a central

peak near ω0, as well as sidebands located near even-integer multiples of the classical trap

oscillation frequency. Alternatively, odd-parity transitions from |g⟩ to |e⟩ yield spectra with
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no feature near ω0 and sidebands located near odd-integer multiples of the oscillation fre-

quency. Sample spectra of even- and odd-parity transitions are featured in Fig. 5.9(a) and

(b) for the even- and odd-parity cases, respectively. Experimentally, the even-parity case

has previously been observed in [62; 63; 85] while the odd-parity had not up until this work.
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Figure 5.9: Spectrum of ponderomotive transition within optical cavity for |g⟩ → |e⟩ when
|g⟩ and |e⟩ have the same (a) and opposite (b) parities. These transitions are
experimentally realizable by amplitude modulation of the lattice. Half lattice
depth U0 = h× 2.5 MHz, temperature T = 10 µK, interaction time τ = 5 µs.

I have just described an alternate method of driving Rydberg-Rydberg transitions that

doesn’t require enhancing U0 to a level comparable to the Kepler frequency. Very shallow

lattice fields can in principle conserve energy for population transfer from one Rydberg state

to another, provided that there are multiple optical modes with a beat frequency on the

order of the transition frequency. Instead of the elastic Thomson scattering taking place

in this case, the exchange of |g⟩ to |e⟩ and k, α to k′, α′ parallels Compton scattering in

the limit of very few photons, as depicted in the seagull graph of Fig. 5.10. Note that this

interaction occurs in first-order perturbation theory.

The lattice system presented in this sub-section represents one that is amplitude mod-

ulated. In actuality there is one extra set of counter-propagating modes allowed with fre-

quencies at ω −m∆ωFSR that lead to similar matrix elements to the ones calculated. It is

noteworthy that amplitude modulation of the optical lattice inhibits the drive of odd-parity

transitions near ω0; i.e., the modulation frequency must be detuned by an odd-integer of

the trap oscillation frequency. For this prohibited ponderomotive transition to occur, the
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Figure 5.10: Seagull graph depicting low energy Compton scattering that induces both
changes in the quantum states of the Rydberg electron and radiation field.

matrix element must include an additional term proportional to sin [(k+ k′) · (R̂0 + r̂e)],

which is possible if k′ is unmatched with −k′. Under this condition, phase, not amplitude,

modulation of the optical lattice occurs, but a high-Q optical cavity would prevent such a

mismatch, as that would mean a considerable amount of light in mode k′, α′ is escaping.

Phase modulation of the optical lattice (a.k.a. “shaking”), which would allow both even-

and odd-parity transitions to be made at the Fourier-limit, would need to be performed in

free space.
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5.7 Conclusion

At this point of the discussion, I have provided a thorough description of Rydberg atoms

in electromagnetic fields and described how optical radiation can exchange energy with the

Rydberg electron through the ponderomotive interaction. This effect can either be elastic,

where the electron remains in the same quantum state |g⟩, or inelastic, where both the

optical field and Rydberg electron experience a change in field energy. In the latter case, the

Rydberg electron moves from one quantum state |g⟩ to another |e⟩, as the exaggerated size of

the wave function with respect to the optical wavelength conserves angular momentum with

relaxed selection rules. Consequently, there exists a way to optically manipulate the internal

state of the Rydberg atom completely through the ponderomotive (e2Â2/(2me)) force, free

from the use of any RF or microwave radiation. As a result, highly anisotropic Rydberg

states like the circular state, beneficial for applications in fundamental physics, can now be

initialized at the high spatial resolution of a laser field focused down to the size of a single

Rydberg atom.
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CHAPTER VI

Apparatus for Rydberg-Atom Experiments

Key properties of alkali-Rydberg-atom interactions with static and dynamic electromag-

netic fields and themselves have previously been outlined in the last two chapters. In short,

one should understand from the information provided that the valence electron’s elongated

wave functions at the order of ∼ µm enhance their sensitivity to electromagnetic fields from

the DC to optical range of the spectrum, including the thermal radiation emitted by sur-

rounding bodies at room temperature. Therefore, a proper apparatus different from the

one described in Chapter III must be constructed in order that high-resolution spectroscopy

and quantum control of the Rydberg states may be performed near the level of the natural

linewidth ∼kHz for low-l states. This system must incorporate methods of laser cooling and

trapping, high-resolution Rydberg state excitation/detection, blackbody shielding, stray-

electromagnetic-field suppression, and mm-wave spectroscopy in one setup. Much of the

work in [6] concerned the construction and design of this setup and can be read about. In

this chapter, I will briefly describe the basic elements of the experimental setup and spend

more time explaining the technical modifications that were made since [6].

In Section 1, the basic components of the chamber are described, as well as the meth-

ods needed for achieving ultra-high vacuum (UHV). In Section 2, techniques for achieving a

sample of rubidium on the order of the Doppler temperature are described. In Section 3, the

tunable diode laser system needed for exciting Rydberg states from 85Rb is explained. Sec-

tion 4 provides information regarding the adiabatic electric-field ionization needed to discern

the population within a specified state. The hallmarks of Rydberg-Rydberg spectroscopy

using radiated microwaves as a diagnostic tool are explained in Section 5. Section 6 details

how the stray DC electric and magnetic fields can be suppressed in order to minimize shifts

and broadening in the Rydberg states’ energy levels.
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6.1 Vacuum Chamber

The vacuum chamber, of which the construction was thoroughly described in [6], consists

of an in-vacuum Rb reservoir heated by means of a dimmer supplying high current through

heat tape wrapped around the reservoir and surrounding flanges. When heated ∼ 10◦C

above room temperature, the Rb vapor pressure becomes workable for sufficient loading into

a cold-atom sample. The heated alkali vapor from this reservoir, consisting of a natural mix

of Rb isotopes, passes through an opened valve and is mechanically diverted downwards to

a borosilicate vapor cell with the help of an L-shaped aluminum piece. At the foot of this

piece, a ∼ 5 mm diameter hole is drilled to allow access of the atoms upwards to the science

chamber, provided that a gate valve separating the two chambers is opened. Unique to this

experiment, a liquid-helium cryostat is in thermal contact with two copper buckets located

within the science chamber. The cylindrical cryostat has an inner- outer-layer, but much

of the work in [6] and this dissertation only uses the inner layer. Also, due to the recent

shortage and expense of liquid helium, I have thus far only cooled the in-vacuum buckets

to 77 K with liquid nitrogen, reserving the helium use for circular-state spectroscopy at the

∼Hz-linewidth level. In addition shielding a considerable amount of blackbody radiation to

prolong Rydberg lifetimes, the secondary effect of the cryostat is to keep the background

pressure of the science chamber in the range of 1-5×10−9 Torr.

Achieving such pressures for UHV requires the use of several sophisticated pumps. In-

vacuum components must first be rinsed with distilled water, then scrubbed with Micro-90,

followed by sonication in a water bath. Glass pieces need to be wiped with methanol or

acetone. Once everything is properly configured inside the chamber, it is sealed with the

appropriate gaskets and bolts tightened to their maximum torque. The following vacuum

pumps are attached: a rotary-vane roughing pump sealed to the outlet of a turbomolecular

pump and an ion pump (20 L/s). The roughing pump, which consists of a rotor transferring

the background gases of the chamber interior to the exterior, drops the chamber pressure

from 760 Torr to 10−3 Torr while the turbomolecular pump relies on collisions between a

rotating blade (∼75 krpm) and an atmospheric molecule to force the fluid out of the chamber.

Turbomolecular pumps can yield pressures down to ∼ 10−8 Torr, the sweet spot for atom

trapping, but an unfortunate effect known as outgassing elevates this figure. Adsorbed gases

on the materials inside the chamber are slowly released into the chamber atmosphere from

this effect. Materials like solder and rubber outgas excessively and prohibit the creation of an

UHV. For all of the adsorbed molecules to be outgassed and pumped out of the chamber when

the interior components are at room temperature, turbomolecular pumping for a duration of

several months is required. Speeding up this outgassing and pumping requires heating the
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entire chamber above ∼ 100◦C for two weeks. When heating, the components are wrapped

in heat tape and aluminum foil in a procedure known as a bake-out. After the bake-out, the

ion pumps can be activated to drop the chamber to a pressure of ∼ 10−9 Torr. Ion pumps

consist of free-electrons in a Penning-trap array ionizing the remaining background gases so

that they can strike a titanium cathode. Sputtered titanium coats the surface of the pump

and can then react with the other remaining background gases in the chamber to form inert

compounds. With the help of the ion pump, background pressures at the level of ∼ 10−9 Torr

permit a Rb MOT to be generated with lifetimes longer than about 1 s, of which only 15.2 ms

are used in my experiments, due to the short duration of the experimental cycle.

6.2 Laser Cooling

Laser cooling is performed on the 85Rb D2 line using a homebuilt, 780-nm external-

cavity diode laser (ECDL). The laser’s current and piezo are both stabilized on a saturated-

absorption (SA) peak detuned -92 MHz from the
∣∣5S1/2, F = 3

〉
→
∣∣5P3/2, F

′ = 4
〉
cycling

transition. This SA spectrum is provided in Fig. 6.1 and is used as the error signal input to

two homebuilt servo-amplifiers. The power output of this ECDL is no greater than 30 mW,

which is insufficient for providing radiation pressure, so the laser is first sent through a

tapered amplifier (TA) that enhances the laser power to 2 W before it is split up into

two beams (which are further split for laser cooling): one for the 2D+ MOT and one for

polarization-gradient (PG) cooling. In both the lower primary-MOT and upper science

chamber, a second ECDL tuned to the F = 2 → F ′ = 3 hyperfine transition of the D2 line

is used as a repumper that is coaligned with the cooling beams; for this laser, the intensity

is no greater than 10 mW/cm2.

6.2.1 2D+ MOT

As seen in Fig. 6.2, the atoms are initially cooled in the lower primary MOT chamber.

The racetrack coils surrounding the vapor cell, shown in Fig. 6.3, form a two-dimensional

quadrupole field Bq over the (y, z)-plane and a nullified magnetic field in the x-direction.

Four counter-propagating beams with an elliptical profile of semi-minor and -major axes of

0.5 cm and 2 cm respectively are used to generate a MOT in two dimensions. On average,

the beams have total powers of 27 mW each. These beams are always on and are split up

after being sent through an AOM that upshifts the laser frequency by 82 MHz, making the

MOT detuning from resonance ≃ −10 MHz. A cold atomic beam collimated by the radiation

pressure imposed by the cooling laser is thus generated in the lower chamber. With the aid

of a tertiary beam pair forcing the atoms upwards through the hole of the diverter piece
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Figure 6.1: Oscilloscope representation of the SA spectrum (85Rb |F = 3⟩ → |F ′⟩) of the
ECDL used for laser cooling in this apparatus. The laser is “locked” to the side
of the F ′ = 2 and F ′ = 4 crossover resonance.

into the science chamber, an appreciable sample of 85Rb is available for further cooling to

sub-Doppler temperatures. I refer to this configuration described as a 2D+ MOT, where

the “+” indicates the inclusion of a pair of slightly misaligned beams pushing the atoms

upwards [167]. When the ambient lights of the lab are off, a little pink cloud of fluorescing
85Rb is visible in this lower chamber with the aid of a cell-phone camera, as seen in Fig. 6.3.

6.2.2 PG Cooling

The second set of beams split from those of the 2D+ MOT is upshifted in frequency by

68 MHz (overall -24 MHz detuning) with a separate AOM driver, which pulses them on

for a duration of 14.2 ms. I circularly polarize these beams as well in order to achieve PG

cooling in the corkscrew configuration, described in Chapter II. Each beam has a Gaussian
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Figure 6.2: Simplified sketch of apparatus showing the complete trajectory of Rb from the
oven to the experiemnt and the laser-cooling methods. The x-direction aligns
with gravity. Note that the L-shaped diverter plate has a hole in its foot to
allow passage of the cold beam up into into the science chamber. Orientation
of each beam’s circular polarization with respect to the dotted axes is shown by
the black arrows.

waist of about 3 mm and an overall optical power of 19 mW. Noteworthy of this apparatus

is that the vertical beams of the PG cooling along the x-direction also push the cold beam of
85Rb, generated in the primary-MOT chamber, towards the science chamber. In many other

double-stage, cold-atom setups, the laser beams doing the pushing are separately aligned

from the PG-cooling beams, blue-detuned from the cycling transition, and transversely di-

verging; here I have a counter-propagating pair of red-detuned beams (slightly misaligned)

guiding the atoms upwards against gravity while cooling them near the geometric center of

the science chamber in accordance with the other four PG-cooling beams. Optical molasses,
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Figure 6.3: In (a) an image of the primary-MOT chamber is shown, which consists of a
vapor cell with enameled-copper racetrack coils generating the transverse field
gradient. The 2D+ MOT can be faintly seen here. Image (b) shows a better
view of the fluorescing cold beam generated by the 2D+ MOT, which vanishes
in (c) when Bq = 0.

formed by the PG cooling, does not require a magnetic quadrupole field Bq; thus, the atoms

are not trapped, but cooled to sub-Doppler temperatures. As evidence of the 85Rb-molasses’

cold temperature, the atoms persist in the science chamber on the order of ∼ 3 s after block-

ing the cooling light of the 2D+ MOT. You cannot see the optical molasses in the chamber

by eye, as the atomic density is too low, but a high-quality CCD camera (Cooke Corpora-

tion Pixelfly) can image it (see Fig. 6.4). Once a sample of ultracold 85Rb is prepared in its

ground-state, the valence electron can subsequently be promoted to a Rydberg state through

laser excitation.

6.3 Rydberg-State Excitation

Light originating from a separate, low-power (∼ 50µW) ECDL at 780 nm is used in combi-

nation with a higher-power (∼ 40 mW) commercial ECDL (Toptica TA-SHG 110) at 480 nm
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Figure 6.4: CCD image of optical molasses generated in the science chamber through PG
cooling.

to promote the ultracold, ground-state 85Rb atoms to
∣∣nS1/2

〉
Rydberg states, essential for

the experiments performed in Chapters VII and VIII. The transition
∣∣5S1/2

〉
→
∣∣nS1/2

〉
is

treated like a single-field coupling even though I use two lasers. A reason for this is that

the lower-transition beam is detuned δL/2π = +100-140 MHz from the cycling transition,

which greatly reduces the maximum scattering rate of Γ/2 ≃ 19 Ms−1, as well as the popu-

lation in the intermediate state. When the 480-nm laser has its frequency set so that both

beams match the energy spacing between
∣∣5S1/2

〉
and

∣∣nS1/2

〉
, the off-resonant, two-photon

transition between the two states, derived from second-order perturbation theory [168], is

characterized by the peak Rabi frequency, Ω0,

Ω0 ≃
Ω1Ω2

2δL
, (6.1)

where Ω1 is the peak Rabi frequency for the resonant transition
∣∣5S1/2, F = 3

〉
→
∣∣5P3/2, F

′ = 4
〉
and Ω2 is that for

∣∣5P3/2

〉
→
∣∣nS1/2

〉
.

Both the current and piezoelectric transducer (PZT) of the homebuilt, 780-nm ECDL

are actively compensated to stabilize the emitted laser frequency to either the F ′ = 2, 4 or

F ′ = 3, 4 crossover resonances of a saturation spectrum. With the use of two consecutive

AOM’s each upshifting the 780-nm laser by 100 MHz, the detuning δL/2π ends up being

either about 100 MHz or 140 MHz from the transition between uppermost hyperfine levels
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of
∣∣5S1/2

〉
and

∣∣5P3/2

〉
. The latter detuning is used in cases where resonant light scattering

needs to be minimized as much as possible, such as experiments involving optical lattices. If

too much scattering occurs, the atoms will be heated enough through radiation pressure to

escape the lattice wells. In Chapter II, this was not an issue because of the low-intensities

of the probe lasers and the strong trapping potential of the optical lattice; thus resonant

excitation was allowable for spectroscopy. The peak 780-nm laser power delivered to the

atoms is 50 µW at a measured-Gaussian (1/e2) waist of 31 µm; thus, using the saturation

intensity of 3.9 mW/cm2 [92], the value of Ω1/2π is 118 MHz. At a detuning of 100 MHz, the

photon scattering rate therefore is estimated to be Γsc ≃ 7 Ms−1 while a δL/2π of 140 MHz

yields a rate of about 5 Ms−1.

I use a commercial Toptica TA-SHG 110 to generate the 480-nm light needed to excite

atoms into
∣∣nS1/2

〉
Rydberg states. The laser consists of a commercial master oscillator

power amplifier (MOPA) at 960 nm (Toptica TA 100) with both low (∼ 1 mW) and high

(∼ 1 W) power outputs. This high-power output is mode-matched with a commercial ring-

cavity (Toptica SHG Pro) that further enhances the circulating field intensity of the 960-nm

light. One of the mirrors is affixed to a piezo-actuator that is stabilized to a cavity resonance

by means of the Pound-Drever-Hall (PDH) method [121]; a commercial Toptica PID 110

circuit is used to achieve this. Within the ring cavity sits a nonlinear crystal that doubles

the 960-nm light. It is critical to maintain this crystal at the temperature (18−32◦C) which

yields the most 480-nm power. Even though the 960-nm power entering the cavity is around

1 W, the naturally poor conversion efficiency of the second-harmonic generation results in

only 150-200 mW of blue light emitted from the laser.

The blue light is switched on or off for the experiment with the aid of an AOM that

shifts the frequency by 40 MHz. This 40-MHz carrier wave is pulsed using a Mini-Circuits

ZASWA-2-50DR+ switch triggered by a TTL pulse synchronized with the experimental

clock. Amplification of the switch output is performed with a ZHL-2-8-S RF power amplifier,

sending 2 W of RF power to the AOM when the switch is on. An optical fiber delivers the

first AOM-diffracted order to the experimental table, where it is expanded in the vertical

direction with a cylindrical lens telescope. At most, 38 mW of blue light makes it to the

chamber, incident at an angle 60◦ from the propagation axis of the 780-nm beam. A spherical,

achromatic lens focuses this light near the center of the chamber, which is estimated to have

an elliptical profile with a minimum semimajor waist of ∼ 500 µm and semiminor waist of

∼ 10 µm. As a result, the peak blue-beam intensity is estimated to be ≃ 4.8 × 106 W/m2

at the focal-point of the focusing lens. Walking mirrors align the semimajor axis of this

blue elliptical beam with the Rayleigh range of the 780-nm excitation laser; as a result,

a cigar-shaped cloud of Rydberg atoms is prepared within the optical molasses when the
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∣∣5S1/2

〉
→
∣∣nS1/2

〉
resonance is met.

Frequency control of the 960-nm MOPA (and therefore 480-nm light) is performed by

sending the low-power output through a Fabry-Perot interferometer and monitoring the

optical power loss with a photodiode. This photodiode signal is sent through a homebuilt

PID-circuit that controls the piezo of the MOPA’s master laser. On a cavity resonance, the

MOPA frequency is characterized by mcϵ
1/2
0 /(2ϵ1/2L), where L is the cavity length, ϵ is the

cavity medium’s permittivity, and m is the mode number. Once the MOPA is in the locked

state, its frequency may be tuned by changing ϵ and leaving all other cavity parameters

constant (temperature and length are fixed); this sort of laser tuning for spectroscopy was

developed by the Raithel Lab in [169]. By implementing a stepper motor to expand or

compress the volume, and therefore pressure, of the cavity medium, ϵ−1/2 scales linearly

with a digitally-controlled angular turn of the motor’s axle. A single digital pulse sent to the

stator electromagnets of this synchronous motor is referred to as a step. One step translates

to a 157.2-kHz change in frequency of the MOPA, as calibrated by the fine structure of

the |53Dj⟩ state in 85Rb. With such frequency control of the 480-nm laser, Rydberg-state

linewidths and shifts from external electromagnetic fields may be monitored and quantified.

6.4 Rydberg-State Detection

The apparatus described in this chapter only permits destructive detection of rubidium

Rydberg atoms using field ionization, which is described in Chapter IV. A negative high

voltage (typically −500 V to -1500 V) is generated from an SRS PS325/2500V-25W power

supply and connected to the low-level-voltage input of a DEI PVX-4150 pulse generator; a

non-ionizing low-DC (−10 V to 10 V) bias voltage, ϕz, is sent to the high-level input. This

pulse generator is gated using an inverted TTL that switches the negative high voltage on

at low level for a duration of 1 µs. The output pulse is square and therefore gives a flat

electric field value throughout its duration, which is problematic when trying to distinguish

between two Rydberg states that ionize at two different electric fields. For Rydberg atoms of

different internal states to be detected within the same ionization pulse, an adiabatic ramp

needs to be applied to the system. Passing the output of the pulse generator through a

51-Ω resistor and 1-nF-capacitance SHV cable gives the pulse an exponential rise up to its

maximum value towards the end of the sequence where it suddenly drops down to a low-DC

voltage.

Right at the output of the DEI pulse generator, its own noise combined with that of

the SRS power supply must be suppressed during the Rydberg-excitation and Rydberg-

Rydberg spectroscopy sequences of the experimental cycles in Chapters VII and VIII, lest
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Figure 6.5: In (a) a schematic of the clamp switch circuit is shown. Function of this circuit
is shown in (b), where the red curve displays the output voltage as a function of
input signal when the device is biased at ϕz. Suppression of the background-level
noise originating from the high-voltage power source in the input signal (cyan)
is evident in the output (green).

the states be broadened and shifted by unwanted DC-Stark effects. In order to preclude

this broadening and shifting, a diode-device designed by the Raithel Lab, placed directly at

the output of the pulse generator and known as a clamp switch, inhibits the electric-field

noise generated by the high-voltage power source at times when the ionization pulse is off

throughout the experiment. The clamp-switch circuit is roughly sketched out in Fig. 6.5(a)

with its functionality graphically described in (b). As can be seen by the graph, the low-DC

bias voltage I apply to the system when the pulse is off can only be sent to the experiment

and not the noise of the high-voltage or pulse generator provided that such noise is below

1 V.

The ionization field is realized in the science chamber with a pair of parallel, copper

plate electrodes. One electrode is in contact with the common ground of the experiment,

while the other is in line with the SHV cable delivering the high voltage. After the adiabatic

pulse generates 85Rb+ at different fields of the rise for different Rydberg states, the ions

will arrive at the particle detector after some time delay that is dependent on the neutral-

atom state before ionization. I provide an example of this delay in Fig. 6.6. Ions that were
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Figure 6.6: Electronic ionization signal from the detector as a function of time delay. Ions
created from neutral 49S1/2 atoms arrive at the particle detector earlier than
those of the more tightly bound state 48S1/2. This arrival time delay is used
coordinately with the counting gate to determine the absolute count rate and
relative population of 49S1/2 to 48S1/2.

previously neutral Rydberg atoms with internal states closer to the ionization threshold will

arrive at the detector earlier than those that were in more deeply bound states. Because

of this state-dependent time delay, a particle counter (SRS Model SR400) receiving the

output voltage of the detector is able to tally the number of ions within a specified gate

and therefore can discern the population within that Rydberg state before the ionization.

This counter features two such gates, so the population in two separate Rydberg states can

be simultaneously recorded. All components of the Rydberg-state-detection system of the

science chamber are featured in Fig. 6.7.

The particle detector mentioned consists of chevron microchannel plates (MCP). An

incident ion is accelerated through the MCP with the help of three electrodes: a front, middle,

and back. The potential difference between consecutive electrodes must be no greater than

∼ 1 kV lest damage may occur to the device. In this thesis, the middle is not connected

to any voltage and is left as a floating ground that is charged by the potential difference

between the front and back electrodes. I ground the back electrode while applying a voltage

of −1800 V to the front. As the accelerated ion enters the MCP, secondary emission of

electrons occurs from the collision of the ion with the walls of the angled microchannels;
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Figure 6.7: Top view of science chamber, internal copper electrodes, cryogenic copper buck-
ets, and its electronic connections are absent. The top and bottom electrodes
for the x-direction are not shown, nor are the vacuum pumps/gauges, internal
electrode holders, and the grounded shell surrounding the electrodes [6].

the emitted secondary electrons are accelerated towards the grounded back electrode and

also strike the walls, emitting more electrons. Consequently, this electron multiplication

from the MCP enhances the charge of the incident particle. The cluster of electrons exiting

the microchannels strike a phosphor screen that is typically biased at 1 kV with a fourth

electrode. Thus, the screen lights up and is visible with a CCD camera. However, the data

in my thesis require an electronic pulse corresponding to an incident ion to be counted by the

SR400. For this reason, a homebuilt bias-T circuit picks off the fast pulse of the multiplied

electrons generated by the ion that an ORTEC Model VT120 amplifies before the SR400.

Key features of the MCP are included in Fig. 6.8.
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Figure 6.8: Rough schematic of the MCP that converts a signal from a single Rb ion into
a bunch of N electrons. Its electronic pulse reaches a particle counter through
capacitive coupling in a bias tee.

6.5 Microwave Spectroscopy

As a diagnostic, Rydberg-Rydberg transitions may be driven through conventional A · p̂e

microwave couplings. When performing the microwave drives of these transitions, I start

with a stable, 10-MHz frequency reference (a portable SRS Model FS725 clock) downcon-

verted from the 87Rb |F = 1⟩ → |F = 2⟩ magnetic-dipole transition at 6.8 GHz. This refer-

ence phase locks the synthesized frequency (generated from either an HP8673D or Agilent

N5183A signal generator) to the clock transition allowing sub-Hz precision and accuracy in

the emitted frequency. Coaxial cables are fed into a variety of horn antennas depending on

the microwave band used for spectroscopy. For all experiments, radiated microwaves leave

the horn antennas polarized along the x-axis and pass through the science chamber windows

towards the cold Rydberg sample.

Coherent control of the internal Rydberg states for this apparatus via emitted microwaves

is demonstrated in the following diagnostic experiment. Here, the ground state of 85Rb is

excited to
∣∣58S1/2

〉
where a 10 µs microwave pulse drives the

∣∣58S1/2

〉
→
∣∣59S1/2

〉
transition

through an off-resonant, two-photon Raman pulse. Thus, the two-photon Rabi frequency is

proportional to the microwave power incident on the atoms. Microwave power transmitted

from the HP8673D, Pµ, is proportional to that radiating from the Pasternack PE9852/2F-

15 horn antenna, as no intermediate nonlinear devices are included in the lineup. Fig. 6.9

exhibits the Rabi flopping that occurs as the microwave intensity is increased on a logarithmic

128



- 2 0 - 1 5 - 1 0 - 5 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

0 . 3 5

Sig
na

l (a
rb.

 un
its)

H P 8 6 7 3 D  G e n e r a t o r  P o w e r  P µ ( d B m )

 5 9 S 1 / 2  p o p u l a t i o n  a t  2ωµ =  ω 0
π- p u l s e  @  - 1 7 . 4  d B m

Figure 6.9: Rabi flops for the
∣∣58S1/2

〉
→
∣∣59S1/2

〉
transition, where the pulse area is scanned

by varying Pµ.

scale. For the signal axis, I monitor the proportion of counts collected within the gate

overlapping the 59S1/2 ionization signal to the gate overlapping the signal from both Rydberg

states. At a microwave frequency setting ωµ of 2ωµ/(2π) = 38.768524 GHz, Pµ is scanned

up to 1 mW, where the fringe contrast is reduced, indicative of the transition beginning to

saturate.

When the upper-state population reaches its first local maximum at 2ωµ = ω0, the pulse

area, θ, is π. The microwave-frequency spectrum of this transition has a sinx/x-like shape,

where the central peak at ω0/2 has a Fourier-limited linewidth of 94/2 kHz and the nearest

sidebands are visible, as shown in Fig. 6.10(a) for the θ = π pulse. First-order sidebands of

the spectrum reach the strength of the central peak when Pµ is enhanced to yield θ = 3π/2 in

(b) while in (c) the central peak vanishes as θ = 2π. However, at ωµ = ω0/2, the amplitude

of
∣∣58S1/2

〉
acquires a phase shift of π.

It is noted that the observation of a Fourier-limited spectrum for an |nS⟩ → |n′S⟩ tran-
sition is possible even in the presence of uncancelled, stray electric and magnetic fields. One

reason is the following: similar gyromagnetic ratios, which are l and not n-dependent prevent

Zeeman splitting and inhomogeneous line broadening for this transition. Another reason is

that the l = 0 Rydberg states have the weakest DC polarizabilities within an n manifold,

and they do not change considerably as n is changed by one like the case shown in this

section (∆αn,l,j,|mj | < 5 kHz m2/V2) . Thus, DC Stark shifts and line broadening due to
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Figure 6.10: Two-photon microwave spectra of the
∣∣58S1/2

〉
→
∣∣59S1/2

〉
transition.

position-dependent stray fields are minimal in the spectra of Fig. 6.10.

For transitions that induce a nonzero change in orbital angular momentum, such as∣∣nS1/2

〉
→ |nPj⟩, the differences in the respective states’ gyromagnetic ratios make the

spectral lines susceptible to ∆mj-dependent splittings and inhomogeneities in the magnetic

field. Furthermore, the differences in αn,l,j,|mj | are on the order of ∼ 70 kHz m2/V2 for

n = 50-60 as |∆l| = 1, so a stray electric field that is position-dependent throughout the

sample would shift the spectral line and asymmetrically broaden it. Chapters VII and VIII

involve dipole-allowed Rydberg-Rydberg transitions as integral aspects of the experiments,

which leads to the requirement of stray electric and magnetic field cancellation in order to

achieve the narrowest linewidths.

6.6 DC Electric and Magnetic Field Control

As mentioned in the previous section, the transition
∣∣nS1/2

〉
→ |nPj⟩ is susceptible to

stray electric and magnetic fields that leak into the chamber. Stray electric fields mainly

originate from interactions of the ionized Rb atoms and the internal Cu electrodes but

also can arise from electronics and potential differences external to the science chamber.

Undesirable, stray magnetic fields will enter the chamber from ferromagnetic materials (e.g.,

ball drivers, iron stools, and toy demo magnets) lying around in the lab. Described in Ref. [6]

and depicted in Fig. 6.11, three pairs of parallel electrodes and external Helmholtz coils are

used to generate static potential differences ϕi and magnetic fields Bi along the Cartesian

axes of the apparatus i = x, y, z. The potential differences generate orthogonal homogeneous

electric fields parallel to each of the axes that can be controlled to make a field in an arbitrary

direction that cancels the stray field. Similarly this procedure can be performed for reducing
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Figure 6.11: Electronics that generate ϕi and Bi for i = x, y, z and the connections to the
science chamber (top view). The red arrows indicate the directions of the
current in the coils that generate the magnetic fields. The bottom Helmholtz
coil and Cu electrode in the x-direction is not shown.

the Zeeman effects of the stray B-fields. In this section, I will describe the procedure for

using the science chamber’s electrodes and Helmholtz coils to reduce linewidths and shifts

on
∣∣nS1/2

〉
→
∣∣nP1/2

〉
transitions brought on by these stray fields.

6.6.1 Stray Electric Fields

Two different power supplies are used to provide the potentials needed for cancelling the

stray electric fields. A Measurement Computing USB-3114 digital power source provides two

ground (GND) and two static potentials in the range [−10, 10] V to the x- and y-direction

electrode pairs. Additionally, an Agilent Model 33500B arbitrary waveform generator allows

a quasistatic electric-field to be realized in the z-direction instead of the fields flat with time
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that the USB-3114 box can only offer. Because the electrodes have a larger spacing in the

x-direction, the electric-field calibration factor is weaker. For this reason, the noise of the

Measurement Computing box’s needs not be reduced with a voltage divider. On the other

hand, the calibration factor is about four times larger in the y-direction, which requires

the noise to be reduced by a factor of ∼ 3 (3.17 to be exact) with a voltage divider. The

divider, however, limits the maximum possible value of |ϕy| to 3.15 V. In the z-direction,

the electrodes have similar calibration factor meaning the potential supplied by the Agilent

33500B must multiplied by 0.224 to minimize the noise; this voltage divider consists of two

channels that provide ϕx to the bi-directional low-pass filter and high input of the pulse

generator used for pulsed field ionization while simultaneously biasing the clamp switch the

trims the pulse generator’s noise.

The overall noise figures are found in Ref. [6], but there was a recalibration in the factor

fi since then. Calibration factor fi is defined from the relation, Ei = (ϕi−ϕi0)/fi where ϕi0 is

the potential in the i-direction that yields a minimal DC Stark shift on the Rydberg-Rydberg

spectrum. These calibration factors are found in Table 6.2.

Table 6.1:
Calibration factors for converting potential ϕi to electric-field Ei using Ei = (ϕi−
ϕi0)/fi, where ϕi0 changes on a day-to-day basis.

i fi (cm)
x -19.6(3)
y -5.63(7)
z -7.83(9)

The procedure for finding ϕi0, which changes on a day-to-day basis is detailed in the fol-

lowing. Spectroscopy is first performed on an
∣∣nS1/2

〉
→
∣∣nP1/2

〉
transition with microwaves

while varying ϕi in the i-th direction and keeping the other potentials on the orthogonal

electrodes constant at some guess value. Transition-frequency shifts in the i-th direction

therefore have the expected parabolic dependence from the DC Stark effect, as shown in

Fig. 6.12; the vertex corresponds to the voltage ϕi0 that minimizes the stray-field compo-

nent in that direction. Subsequently, the potential in the i-th direction is fixed at ϕi0 while

the stray-field component along the second axis is minimized. Iterations of this procedure

are performed until the most-blue-shifted and narrowest spectral line is achieved. For this

setup, one really only has to do this zeroing procedure every few weeks, as the interaction

region remains pretty stable as long as the laser alignment is not perturbed. Even when this

procedure needs to be performed, field zeros rarely change by more than ∼ 5 %.
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Figure 6.12: Graph (a) displays an example of electric-field zeroing in the i = z direction
for
∣∣44S1/2

〉
→
∣∣44P1/2

〉
. The vertex of the parabola is located where ϕz = ϕz0.

Graph (b) shows the differences in spectral lines as ϕz is moved from ϕz0.

6.6.2 Stray Magnetic Fields

The Helmholtz coils that give magnetic fields in arbitrary directions in order to minimize

Zeeman effects on the
∣∣nS1/2

〉
→
∣∣nP1/2

〉
are in connection with Kepco ATE power supplies.

There is one supply per coil pair, providing up to 2 A of DC current (Ii for pair i = x, y, z)

through the copper wires. The magnetic-field-to-current calibration factors ki, defined as

Bi = ki(Ii − Ii0) where Ii0 is the current yielding the narrowest linewidths, are presented in

Table 6.2 [6].

Table 6.2:
Calibration factors for converting current Ii to magnetic-field Bi using Bi = ki(Ii−
Ii0), where Ii0 changes on a day-to-day basis [6].

i ki (mG/A)
x 325.55(1)
y 353.85(1)
z 162.86(2)

Stray magnetic fields are vectorially subtracted in a similar manner as the electric-fields

are. A guess value for the zeroing currents is initially provided in the directions different from

i, while Ii is scanned and the spectral lines of the
∣∣nS1/2

〉
→
∣∣nP1/2

〉
transitions are collected.

I determine Ii0 to be the current where the Zeeman broadening is the least significant. Then,

the next direction is zeroed with iterations repeating until the Zeeman effect is minimized.

In this procedure, however, the microwave power is reduced considerably in order to resolve

the hyperfine structure of the Rydberg states. Thus, I am looking to achieve the narrowest
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peaks corresponding to possible hyperfine transitions
∣∣nS1/2, F

〉
→
∣∣nP1/2, F

′〉. An example

of this magnetic-field zeroing will be provided in the next chapter where Rydberg hyperfine

structure is introduced and measured for the
∣∣nP1/2

〉
states.

6.7 Optical Dipole Trap & Lattice

In Chapter VII, I demonstrate the feasibility and underlying physics behind laser-driven

Rydberg-Rydberg transitions via the ponderomotive interactions, which is the basis of the

ongoing effort in preparing circular Rydberg states for fundamental-physics applications

completely with optical fields. Because the strength of the ponderomotive interaction is pro-

portional to the gradient of the laser field’s intensity profile, a tightly-focused, optical lattice

of high power (∼ 1 W per beam) must be overlapped with the ultracold Rydberg sample. A

small focal-spot size (∼ 10 µm) near the interaction region has the additional advantage of

manipulating the internal states of alkali Rydberg atoms with a spatial resolution enhanced

from that of microwave radiation.

Light for the lattice originates from a Nd:YAG fiber laser that emits up to 10 W of optical

power at 1064 nm. I do not care about the absolute optical frequency for the experiment in

Chapter VII but about the overall linewidth of the laser, which is favorable (< 100 kHz) in

this case. The main beam, shown in Fig. 6.13, is split into two high-power (880-940 mW)

beams that are used to form the one-dimensional lattice inside the science chamber. A DC

phase shift of η2 = π can be applied to one of the beams in order to invert the intensity

profile of the lattice; an aspect of this apparatus that was introduced in Refs. [170; 154; 157]

for enhancing the trapping efficiency of Rydberg atoms within the lattice wells. Such a phase

shift is realized with a Conoptics M350-105-02-RP-C phase-shifter. Potential difference Vπ of

about 750 V is applied to achieve this translational lattice shift of λ/4. The two high-power

beams, denoted by optical fields E(i)
u and E(r)

u , are fiber-coupled to the science chamber,

where their transverse diameters are enlarged with telescopes that magnify the waists of

the fiber modes by a factor of 10. These beams are walked into the chamber and focused

down with achromatic lenses to a spot size of ∼ 15 µm, verifiable by the image of the focal

spot in Fig. 6.14 captured outside the chamber with a waist measured to be w0 = 15.1 µm.

The achromatic lenses focusing the high-powered lattice beams sit on translation stages that

allow longitudinal overlap of the focusing region with the cigar-shaped sample of Rydberg

atoms formed by the interacting region of the 780- and 480-nm excitation lasers.

Noticeable in Fig. 6.13 is a third beam path that is split from E(i)
u . This beam is phase-

modulated by means of an iXblue Model NIR-MPZ-LN-20 and is denoted by E(i)
m ; pondero-

motive transitions among Rydberg states of the same or opposite parity require the presence
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Figure 6.13: Schematic of 1064-nm laser optics used for creating a phase-modulated opti-
cal lattice. Abbreviations are the following: “λ/2”-half wave plate, “PBS”-
polarizing beamsplitter, “50/50”-50:50 beamsplitter, “ωm”-modulation fre-
quency, and “Vπ”-modulation depth of phase shifter. Figure adapted from [7].

of this third beam at a fixed global phase difference η0 with respect to the unmodulated

beams. Coherent addition of the unmodulated and modulated incident beams is performed

through the readout of of a Mach-Zehnder interferometer that yields fringes as a function of

the signal applied to the piezo-actuated mirror in Fig. 6.13. In order that the global phase

offset between the unmodulated and modulated beams is eliminated, the signal on the piezo

must actively align the mirror so that the photodiode reads destructive interference between

the two beams. Reliable stabilization of this mirror requires lock-in detection of the photodi-

ode with a 300 Hz local-oscillator so that a noise-filtered error signal with an inflection point

near the photodiode minimum is fed into the TOPTICA PID 110 servo-amplifier. Beam E(i)
m

is coaligned with E(i)
u and has a peak power of 12 mW. Also, the 780-nm excitation beam is

coupled to the same fiber as these incident beams, allowing close alignment to the 1064-nm

incident beams save for the chromatic aberration of ∼ 2.5 mm generated by the focusing
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lens.

Figure 6.14: Transverse profile of 1064-nm lattice at focal point of the lens.

Before an optical lattice can be made, a single-beam, free-running optical dipole trap

formed from optical field E(i)
u alone needs to be aligned with the atomic sample. Successful

overlap of this beam’s Rayleigh range with the Rydberg excitation region is the most ex-

perimentally challenging procedure in this thesis. After many months of failed attempts at

getting the tightest 1064-nm focus at the location of the Rydberg sample, I decided to use

the more easily observable AC Stark shifts realized by the off-resonant and co-propagating

780-nm beam to locate the longitudinal position of the 1064-nm focus. The beam is blue-

detuned on the order of ∼ 100 MHz and thus provides a positive energy shift on the rubidium

ground state at its most intense region, and because the electric-dipole and ponderomotive

interactions are negligible for the Rydberg state, atoms shifted by the dipole-force of the

780-nm laser are excited to Rydberg state at a red detuning of the 480-nm laser from the

field-free resonance. The focusing lens’ distance from the Rydberg excitation region, set by

the translation stage on which it sits, yields the maximum red shift on the Rydberg line

when it is at a position where the 780-nm focus is aligned with the molasses. Knowing

that the co–propagating, 1064-nm laser has a focus 2.5 mm away, maximum ponderomotive

and optical dipole shifts can be effected on the internal atomic states with a single 1064-nm

beam.

In Fig. 6.15, this scheme is put into practice by increasing the 780-nm power and setting

the 480-nm frequency to be detuned by about −20 MHz (the 780-nm beam is detuned

by +100 MHz). Rydberg counts are monitored in real-time by the particle counter while

the translation stage moves the focusing lens closer and further from the science chamber’s

geometric center. When ions are detected, I know that I excited atoms experiencing the

780-nm, AC Stark shifts and that I am in the vicinity of the 780-nm focus of the lens. In

order to pinpoint the focus, I gradually move the translation stage in steps of 0.25 mm and

scan the 480-nm laser over the Rydberg resonance; the translation-stage setting where the
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shift is ∼ 90 MHz at −2.75 mm in Fig. 6.15 is the location of the 780-nm focus. Thus, the

focusing lens is then moved outwards by 2.5 mm.
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Figure 6.15: AC Stark shifts imposed by 780-nm excitation beam on the |53Dj⟩ states when
it is detuned ∼ 100 MHz from the F = 3 → F ′ = 4 transition. The position
of the focusing lens is shown relative to its initial position and is plotted for
each Rydberg spectrum (more negative positional values correspond to the lens
moving further away from the science chamber center).

When the 780-nm power is lowered, and the detuning is increased to 140 MHz, and

the 1064-nm beam is unblocked, the single 1064-nm beam yields the optical-dipole and

ponderomotive shifts on the Rydberg state that are observable by the atomic feature blue-

detuned from the field-free,
∣∣46S1/2

〉
Rydberg resonance, as seen in Fig. 6.16. An optical

lattice is formed when the counter-propagating beam is sufficiently coupled into the fiber

of the single-beam dipole trap by means of its walking mirrors and focusing lens. Evidence

of the enhancement in electric-dipole and ponderomotive light shifts are shown in Fig. 6.16

with the second beam aligned. As explained in Chapter II, the inflection point corresponds

to the region where the atoms see the greatest optical intensity in the lattice field.
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Figure 6.16: Light shifts from the 1064-nm laser on the
∣∣5S1/2

〉
→
∣∣46S1/2
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transition as for

the case of no light (gray), the incident field only, i.e., E(r)
u = 0 (blue), and both

E(i)
u and E(r)

u present (red). The dashed line is where the 480-nm detuning is
set during the experiments of Chapter VIII. Figure taken from [7].
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CHAPTER VII

Measurement of nP1/2 Rydberg Hyperfine Structure in
85Rb

This chapter is based on Ref. [8].

7.1 Introduction

In some cases, the hyperfine sublevels of a Rydberg state can be observed in spectroscopic

data when at frequency resolutions near 1 kHz or better. Rydberg
∣∣nS1/2

〉
- and

∣∣nP1/2

〉
-states

of rubidium in particular have hyperfine structure (HFS) that can be measured in mm-wave

spectroscopy of the atomic samples. Experiments involving the Rydberg hyperfine levels for

these two series of states have the benefit of a larger Hilbert space that includes |F ⟩ basis

states, where F = |j + I|, ..., |j − I| and I is the nuclear spin. Therefore, experiments with

quantum simulators and processors can involve procedures where the Rydberg |F ⟩ state is

manipulated with external mm-waves through magnetic-dipole transitions, similar to those

in [105], in place of or in addition to manipulations on the electronic states removed from

HFS-coupling. Using such manipulations with a j = 1/2 fine-structure state, where all tensor

polarizabilities of the Rydberg electron vanish, means that the presence of any off-resonant,

stray electric field, static or oscillatory, would not hamper fidelities of the experimental

sequences. Precise knowledge of the Rb HFS for all n > 20 in
∣∣nS1/2

〉
and

∣∣nP1/2

〉
would be

necessary to engage in such experiments.

At the time of this dissertation’s completion, the rubidium nS1/2 HFS structure has been

measured in [171; 10; 6] for 85Rb and in [171; 172; 10; 173] for 87Rb. In [174; 175; 176; 177],

measurements were provided for states with (n ≤ 13)P1/2 states in 87Rb and 133Cs, which

both have sizeable hyperfine couplings compared to 85Rb. However, the nP1/2 HFS for n > 13

states of Rb has only been spectrally observed in [10] with no measurement provided due to

the low frequency resolution. Systematic uncertainties for such a measurement originated
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from Doppler broadening and limited interactions times related to the effusive beam of Rb

used as the Rydberg sample [10]. As described in the previous chapter, our apparatus pro-

vides polarization-gradient cooling of the rubidium sample that would prevent these sources

of systematic uncertainties for 85Rb; i.e., the interaction time may be extended up to 40 µs

and the Doppler broadening would be on the order of ∼Hz. Horn antennas located outside

the chamber can drive transitions from a fixed hyperfine sublevel (F = 2 or 3) of
∣∣nS1/2

〉
to both the hyperfine states (F ′ = 2 or 3) of

∣∣nP1/2

〉
with n = 42 − 46. Referencing the

mm-wave synthesizer to an atomic standard also allows the spectral resolution to be well

below 1 Hz, eliminating any systematic errors in the linearity of the frequency axis. There-

fore, with the Rydberg-atom apparatus used for the data collection in this dissertation, a

measurement of the HFS coupling constant for nP1/2 in
85Rb can be experimentally derived

with a reasonable overall uncertainty.

While this measurement does not pertain directly to achieving CS atoms with optical

lattices for applications to fundamental physics, it is a yield of electromagnetic field zeroing

procedure, which is necessary for the experiments demonstrating ponderomotive transitions

in the next chapter and the schemes outlined in the following procedure for initializing a

system of CSs. Furthermore, nPj Rydberg states play roles in the study of ultracold, long-

range molecules among Rydberg atoms and ions [178; 179; 112], ground-state atoms [180;

181], and other Rydberg atoms [182; 99; 183]. While millimeter-wave spectroscopy has yet

to be performed among the bound molecular states of multiple Rydberg atoms, in principle,

including the hyperfine substructure of one of the constituent atom’s internal state would be

helpful in accurately understanding these spectra. The HFS of nP1/2 would also be useful in

furthering the understanding of dipole-dipole interactions among Rydberg atoms [184; 185]

and Rydberg electrometry [140; 141; 142; 143; 186], the latter of which already is found to

have HFS-sensitive effects in Cs [186].

In Section 2, I explain the origins pertaining to the hyperfine-coupling interaction. Sec-

tion 3 sketches out this measurement’s spectroscopy procedure, with results provided in Sec-

tion 4. An uncertainty analysis covering statistical errors from the fits to spectra, as well as

systematics arising from stray magnetic fields and Rydberg density-dependent dipole-dipole

interactions, is found in Section 5.

7.2 Theory

Because the orbiting Rydberg electron has a net angular momentum |J| = ℏ
√
j(j + 1)

associated with its motion, the corresponding magnetic moment µe generates a magnetic

field that exerts a torque on µN , the magnetic moment of the atom’s nucleus. For a purely

140



classical and intuitive example of what is going on here, one should think of the way two

bar magnets interact when placed near each other; they will rotate in accordance to the

magnetic fields generated. (however, quantum mechanics, which dictates the case described

in this chapter, forbids a continuous rotation of the magnetic moment). Potential energy

involved with this interaction yields a majority of the level splitting found in the Rydberg

level of n, l, j quantum numbers.

For this system, the “good” quantum numbers become those belonging to the set F =

|j + I|, ..., |j− I|. With j = 1/2 and I = 5/2 in the case presented here, F = 2 or 3, and the

hyperfine coupling purely is a result of the magnetic dipole-dipole potential from the two

momenta.

When j and I are both ≥ 1, the nucleus’ residual electric quadrupole moment [68] can

interact with the Rydberg electron through a Coulomb force and break symmetries in the

splittings between adjacent F states. The next higher-order, electric-multipole moment, the

octupole moment, realizes an effect that is only nonzero for cases where j ≥ 3/2.

For the
∣∣nP1/2

〉
Rydberg states of 85Rb, the complete interaction, in atomic units, is

Ĥhfs =
Ahfs

[n− δl,j(n)]3
Î · Ĵ, (7.1)

where Ahfs is the quantity to be measured. The measurement provided in this work will be

in the SI units of GHz. Note that this operator in Eq. 7.1 only acts on the nuclear-spin and

electron-angular-momentum parts of the atomic state.

In order to understand what influences the strength of Ahfs, one must start by looking at

the classical magnetic dipole-dipole interaction treated as a quantum operator in this case,

acting on Rydberg state
∣∣nP1/2

〉
|I,mI⟩, where I = 5/2 and mI ∈ {−5/2,−3/2, ..., 5/2},

−µ0

4πr̂5e
[3(µ̂N · r̂e)(µ̂e · r̂e)− r̂2eµ̂N · µ̂e], (7.2)

where µ̂N = (µBgI/ℏ)Î and µ̂e = −(µBgJ/ℏ)Ĵ. I neglected the term proportional to δ(r̂e)

because these are not S-states. The first term in the brackets vanishes due to electric-dipole

selection rules, while the second term contributes to the evaluation of Ahfs. As a result,

Ĥhfs = −µ0µ
2
BgIgJ
4πℏ

〈
1

r̂3e

〉
n,l,j

[
1

2
(Î+Ĵ− + Î−Ĵ+) +mImj |mI ,mj⟩ ⟨mI ,mj|

]
, (7.3)

where ⟨r̂−3
e ⟩n,l,j ∝ {1/[n−δl,j(n)]3}[1−2δ2/(n−δ0)3] [187]. The latter quantity, which depends

on δ0 and δ2, induces changes below the uncertainty budget of the experiment described in

this chapter.
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Using the identity, in atomic units, Î · Ĵ = 1
2
[F (F + 1) − I(I + 1) − J(J + 1)], the

interval between the F = 2 and F = 3 states results in a HFS splitting νhfs depending on

3Ahfs/[n− δl,j(n)]
3.

7.3 Methods

I use the apparatus detailed in Chapter VI for this experiment. The rubidium atoms are

laser cooled through PGs before being laser-excited to Rydberg state
∣∣nS1/2

〉
for a duration

of 5 µs. For this experiment, where photon scattering from the 780-nm laser is not detri-

mental to the results, a detuning of ≃ 100 MHz from the D2 cycling transition suffices. A

complete timing diagram of the spectroscopy sequence is shown in Fig. 7.1(a) with a level

diagram presented in (b). Here, F and mF are the quantum numbers associated with the∣∣nS1/2

〉
Rydberg states while F ′ and mF ′ are those belonging to

∣∣nP1/2

〉
. Due to the optical

polarizations and the close proximity of the laser detuning to the uppermost hyperfine level

of the
∣∣5P3/2

〉
state, a majority of atoms are populated in F = 3 versus 2. Therefore, our

mm-wave spectroscopy only observes the nP1/2 HFS visible on this F line.

Probing the
∣∣nS1/2, F = 3

〉
→
∣∣nP1/2, F

′〉 transitions for n = 42-44 and 46 is done with

two different horn antennas that are both polarized parallel to the experiment’s x-axis. The

mm-waves are first synthesized by the Rb-standard-referenced Agilent MXG Analog Signal

Generator (Model N5183A). For the n = 42-44 spectra, the mm-waves are then doubled by

a SAGE Model SFA-192KF-S1 frequency multiplier before being radiated by a horn 40 cm

from the atoms. With the
∣∣46S1/2

〉
→
∣∣46P1/2

〉
transition, doubling is not necessary, and the

signal generator can be connected directly to a separate horn antenna located 30-cm from

the sample. Detecting the Rydberg populations in either internal state requires SSFI with

a maximum pulse height of 100-150 V/cm.

7.4 Results

For each spectrum in the n = 42-44 and 46 series, the mm-wave interrogation lasts for

a duration of τ = 40 µs, and the mm-wave power is lowered in order that the HFS peaks

may be resolved near the Fourier limit of 0.89/τ = 22 kHz, which would imply a coupling

frequency of 10 kHz and negligible AC Stark shifts from the probing field. Scans of the

mm-wave frequency are completed with a ∼ 160 kHz range around the “center-of-gravity”

transition frequency [10], i.e., the Rydberg transition with HFS removed, in steps of 2 kHz.

Measurements of the HFS in the n = 42-44 and 46 series first require an arithmetic

average of eight individual frequency scans. After averaging, a double Lorentzian function is
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Figure 7.1: Figure taken from [8]. In (a) the timing sequence is provided while (b) exhibits
the relevant levels and coupling fields involved with this experiment.

fit to the data, where the differences in the peak centers are used to find νhfs. The statistical

uncertainty associated with this parameter is determined by taking the quadrature sum of

143



- 7 5 . 0 - 5 0 . 0 - 2 5 . 0 0 . 0 2 5 . 0 5 0 . 0 7 5 . 0

0 . 2

0 . 3

Sig
na

l (a
rb.

 un
its)

4 4 P 1 / 2  H y p e r f i n e  S h i f t  ( k H z )

ν h f s  =  6 0 . 1 ( 5 )  k H z
F '  =  2

F '  =  3

Figure 7.2: Figure taken from [8]. Arithmetic average of eight individual spectroscopic
probes of the

∣∣44S1/2, F = 3
〉
→
∣∣44P1/2, F

′〉 transitions. The hyperfine splitting
νhfs is derived from the line-center fits of each hyperfine peak. Fourier sidebands
around the peaks are barely visible in this spectrum. Error bars indicate the
standard error of the mean (SEM) in the spectroscopic signal strength over the
set of eight individual scans.

the center-fit uncertainties. In Fig. 7.2, the spectrum for
∣∣44S1/2, F = 3

〉
→
∣∣44P1/2, F

′〉 is

provided with a derived νhfs of 60.1(5) kHz.

Eq. 7.1 is used to find Ahfs from νhfs for a given n spectrum. Note that this expression

depends on the Rydberg-Ritz equation [60] and the experimentally measured values δ0, δ2

for Rb P1/2 states. Quantities δ0 = 2.6548849(10) and δ2 = 0.2900(6) are taken from [10].

Uncertainties pertaining to these quantities are below the overall measurement uncertainty

in this study and are therefore ignored. By means of propagating the uncertainty, δAhfs =

Ahfsδνhfs/νhfs. In Table 7.1

7.5 Uncertainty Analysis

The uncertainty originating from the Lorentzian fitting of the averaged scans is 0.007 GHz

and is purely statistical. This means if the average were over several thousand more scans,
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Table 7.1:
Table adapted from Ref. [8]. List of HFS splittings and Ahfs. Eq. 7.1 is used
with δ0 = 2.6548849(10), δ2 = 0.2900(6) [10]. Uncertainties shown are purely
statistical. The average in Ahfs is weighted.

n νhfs (kHz) Ahfs (GHz)
42 72.7(6) 1.476(12)
43 65.3(6) 1.429(13)
44 60.1(5) 1.416(12)
46 54(1) 1.466(27)

Average Ahfs (GHz) 1.443
Statistical uncertainty (GHz) 0.007

this value would approach zero. There still exists possible systematic uncertainties originat-

ing from deficiencies in our experimental setup, mainly from stray magnetic fields leaking

into the chamber and dipole-dipole interactions between two atoms based on the average

interatomic distances R.

While background electric fields can distort each hyperfine peak due to inhomogeneous

broadening, each line undergoes the same distortion and the resulting HFS splitting is in-

sensitive to this. A lack of a DC tensor polarizability in the nP1/2 series permits this insen-

sitivity, as all |mF | and |mF ′| suborbitals undergo the same Stark shifts. Upon inspection

of Fig. 7.2, both peaks appear symmetric, implying that the inhomogeneous broadening is

negligible. In order to achieve such symmetric lines, the internal electrodes of the science

chamber compensate the stray electric fields and reduce them to a value below 50 mV/cm

when appropriate potential differences ϕx,0, ϕy,0, and ϕz,0 are applied to the copper plates.

Fig. 7.3(a) shows the behavior of the
∣∣44S1/2

〉
→
∣∣44P1/2

〉
transition as a function of ϕz.

Note here the transition is broadened enough that the HFS is not resolvable. As stated in

the previous chapter, the vertex of the parabola denotes the location of ϕz,0.

In order to show that the HFS is not affected by external electric fields, I lower the power

of the incident microwaves to resolve the HFS of
∣∣43P1/2

〉
and scan Ex about the location

of Ex = 0. As shown in Fig. 7.3(b), νhfs does not change up to |Ex| = 50 mV/cm, although

the individual lines tend to asymmetrically broaden in the same manner at this point.

Stray magnetic fields will, however, contribute a systematic uncertainty to the measure-

ment, and need to be reduced down to a total strength below 5 mG. In order to achieve

this, the external Helmholtz coils with dimensions detailed in [6] provide a controllable DC

magnetic field in all three Cartesian directions. For the y-direction, perpendicular to the

mm-wave polarization, the Zeeman effect of the HFS pertaining to
∣∣43P1/2

〉
is calculated

in Fig. 7.3(c) and experimentally shown in Fig. 7.3(d). The behavior is not intuitive, for

the F ′ = 2 peak broadens more than that of the F ′ = 3 state. This unusual structure
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Figure 7.3: Figure taken from [8]. In (a), the spectral line shift of the
∣∣44S1/2

〉
→
∣∣44P1/2

〉
transition as a result of the second-order Stark effect, is shown as ϕz is var-
ied. Here the difference in DC polarizabilities for the two states is ∆α =
9.564 kHz/(V/m)2. Map (b) shows the insensitivity of the HFS splitting as
the electric field in the x-direction, Ex, is varied. This spectrum is of the∣∣43S1/2, F = 3

〉
→
∣∣43P1/2, F

′〉 transition. A calculation of the Zeeman effect on
the

∣∣43S1/2, F = 3
〉
→
∣∣43P1/2, F

′〉 transition is shown for the case of a nonzero
magnetic field component By perpendicular to the microwave polarization (x di-
rection) is shown in (c). The experimental data corresponding to this calculation
is provided in (d).

can mostly be attributed to the reordering of states of mF and mF ′ quantum numbers into

states with mj,mI and mj′ ,mI quantum numbers as the field strength is increased. For this

measurement, the currents for all three directions are chosen such that the individual HFS

peak linewidths are made similar and minimized.

In order to quantify the uncertainty brought on by the stray magnetic fields, I follow an

analysis similar to [137], where the νhfs of n = 43 is measured for a distribution of set magnetic

fields in all directions, independently, within 10 mG from the zero field. The standard error

of the mean (SEM) is taken over this set of νhfs, which results in δνhfs = 0.6 kHz and
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Figure 7.4: Figure taken from [8]. Distribution of the 43P1/2 HFS νhfs determined from spec-
troscopic measurements at independent field Bx, By, and Bz settings from their
zero-field values. The vertical error bars indicate the spectroscopic measurement
uncertainty while the horizontal bars indicate the magnetic field noise originat-
ing from the current source.

δAhfs = 13 MHz. The distribution of measurements for n = 43 are displayed in Fig. 7.4.

Another source of systematic error is the two-body, long-range interaction between Ryd-

berg atoms separated at a distance R, given by a series expansion in Eq. 4.12. In essence, this

interaction simply arises from the long-range Coulomb forces that the constituent charged

particles experience. The leading nonzero term in this expansion is a dipole-dipole po-

tential, which contributes state-mixing and shifting in the first order when the two atoms

involved have electronic states of opposite parities. This first order effect can be approx-

imated as C3/R
3, where C3 is a dispersion coefficient that was theoretically calculated to

be 1.7 GHz µm3 in Rb for n = 43. Second-order dipole-dipole interactions, known as van

der Waals shifts, which occur when atoms of the same parity interact with each other are

estimated to yield shifts of 1 mHz, well within the uncertainty budget for this experiment.

Quantifying the systematic uncertainty from the C3/R
3 shift, experimental knowledge
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Figure 7.5: Figure taken from [8]. Here the count rate is increased by approximately a
factor of four by lengthening the Rydberg excitation pulse. Shifts originating
from dipole-dipole interactions can only have a maximum of about 1 kHz.

of R must be obtained. To do this, mm-wave scans were taken of the
∣∣44S1/2, F = 3

〉
→∣∣44P1/2, F

′〉 transition with different Rydberg sample sizes:2-4, 4-6, and 6-8 detected Rydberg

counts. An increase in Rydberg counts is achieved by prolonging the interaction times of the

Rydberg excitation lasers by 5-10 µs. As the count rate is increasing by a factor of four, the

dipole-dipole shifts are expected to increase as such. However, as observed in Fig. 7.5, there

are no noticeable shifts in the peaks by greater than 1 kHz, which implies that R ≳ 120 µm.

This 1 kHz uncertainty in νhfs results in the largest systematic uncertainty contribution of

δAhfs = 27 MHz.

Adding the three uncertainties in quadrature, the statistical (7 MHz) and two systematic

errors from stray magnetic fields (13 MHz) and dipole-dipole interactions (27 MHz), results

in a total measurement uncertainty in the 85Rb nP1/2 hyperfine coupling constant of 31 MHz.

Therefore, the final measurement result is Ahfs = 1.443(31) GHz.
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7.6 Conclusion

In summary, the cancelling of stray electromagnetic fields has allowed a precision measure-

ment of the nP1/2 hyperfine coupling constant in
85Rb. Possible applications for this measure-

ment include hyperfine Rydberg qubits [105], improved models for Rydberg molecules [178;

179; 112; 180; 181; 182; 99; 183] and Rydberg microwave-field sensors [140; 141; 142; 143; 186].
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CHAPTER VIII

Coherent Driving of nS1/2 → nP1/2 and nS1/2 → (n+ 1)S1/2

Rydberg Transitions with a Phase-Modulated Optical

Lattice

This chapter is based on Ref. [7].

In the previous chapter, I demonstrated how the stray electric and magnetic fields that

can shift and asymmetrically broaden the Rydberg levels used for fundamental physics ex-

periments can be minimized, which also led to a precise measurement of the 85Rb hyperfine

structure for Rydberg-nP1/2 atoms. This chapter discusses the method of exciting Rydberg

atoms to nearby states completely with laser fields through the ponderomotive interaction

(see Chapter V). As a means to conserve energy throughout the electronic transitions, the

laser phase is modulated in time at appropriate frequencies set by an amplified microwave

signal fed into an electro-optic fiber phase modulator, as shown in Fig. 6.13. Angular-

momentum conservation is provided by the spatial variation of the laser-field’s intensity

gradient, here in the form of a one-dimensional optical lattice, within the wave function of

the Rydberg electron. Note that all-optical probing of Rydberg transitions implies that that

the spatial region of excitation can have an upper limit dictated by the Rayleigh range of

the lattice and its transverse beam waist, which, through the arguments of classical optics, is

smaller by a factor of at-least 103 than that which would be provided by microwave radiation.

In the scope of fundamental-physics experiments, where precise knowledge of the Ry-

dberg levels minimally affected by stray perturbations, a small interaction region afforded

by the focal region of laser fields is necessary. Any spatial variation of the perturbations,

which would be more likely with a larger interaction region, would lead to inhomogeneous

broadening of the Rydberg levels and systematic uncertainties in the experiment. Interaction

regions significantly smaller than those provided by RF fields aid in the elimination of such

broadening. Thus, the CS Rydberg atom experiments discussed in the introduction would
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need to be in a sampling region provided by the laser fields that generate them through the

ponderomotive effect. Ponderomotive transitions both satisfy the spatial resolution require-

ments and the large change in orbital-angular-momentum (OAM) required for initializing a

sample of CSs in a small region.

Evidence in the ponderomotive transitions of Rydberg atoms using a laser field was

first provided in [62; 63]. There, the laser field, with a gradient also formed by a one-

dimensional optical lattice, was intensity modulated at q-order subharmonics of the Rydberg

transitions. However, the technique of amplitude modulation was prohibitive in terms of

selection rules. Only even-parity changes in the atom’s internal state were allowed by the

angular-momentum structure of the resulting coupling potential. Such transitions were of

the nS1/2 → n′S1/2 sort. If one wanted to drive odd-parity transitions, changes in the

atom’s motional state ν would be necessary via detuning the modulation frequency by odd-

integer multiples of the trap oscillation frequency [85]. In most of the likely applications of

ponderomotive laser transitions, changes in the atomic motional state ν are not ideal, as the

anharmonicity yields asymmetric broadening for every value of ∆ν, which hampers fidelity

and precision in applicable experiments. Also, changes in ν could result in unwanted heating

and motional dephasing throughout the desired protocol. Therefore, a method of recoil-free

ponderomotive manipulation of a Rydberg atom’s internal state is needed. Ponderomotive

transitions realized by phase-modulation of the optical lattice afford recoil-free, odd- and

even-parity transitions.

There is considerable interest in optical manipulation of Rydberg-Rydberg transitions

also in the subfields of quantum information [188; 133] and simulation [134; 102; 135; 136;

189]. In these applications, entrapment of the atoms by conservative optical forces are often

an experimental requirement to prolong coherence times throughout the gate sequences.

Usually, only a small portion is optically trapped with a significant amount of spectators

surrounding them; the trapped atoms, confined in a region governed by the laser focal spot,

must be the only ones participating in the gate operations. This calls for a method of

changing the Rydberg state entirely with laser fields.

Recently, isolated-core excitations (ICEs) of rare-earth and alkaline-earth Rydberg states,

performed by visible-wavelength laser fields, have allowed this sort of high-spatial selectivity

in experiments involving the control of Rydberg-Rydberg transitions. In ICEs the laser field

changes the internal state of the Rydberg atom’s ion core through an A ·pe interaction [190;

191; 192; 193; 194; 195; 196]. Not only can ICEs change the internal atomic state based on

electric-dipole selection rules, the energy levels can also be shifted through AC Stark shifts,

attracting the Rydberg atoms towards the intensity maxima of the laser fields [194; 197; 196].

However, ICEs are only experimentally viable with certain rare-earth and alkaline-earth
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atoms, where the inner ion core is able to absorb visible radiation. Alkali atoms have inner

ion cores electronically similar to noble gases, which are only sensitive to wavelengths in

the deep-UV and X-ray spectral ranges. Furthermore, the dipole-allowed changes in the

atom’s internal state through ICE usually lead to an autoionizing interaction between the

two valence electrons when the Rydberg-state OAM is low, which is sometimes unwanted.

Therefore, the method discussed in this chapter, ponderomotive optical manipulation by

laser phase-modulation, is a desirable alternative that circumvents these issues.

This chapter is outlined in the following way. In Section 1, theoretical expressions of the

ponderomotive light shift and coupling frequencies are presented, as well as a discussion of

the numerical simulation used to fit to data. Section 2 outlines the timing sequence of the

spectroscopic measurements, as well as the procedure for obtaining the unperturbed reference

frequencies ω0 of the Rydberg transitions involved. Sections 3 and 4 feature the results from

ponderomotive spectroscopy of odd-, 46S1/2 → 46P1/2, and even-parity, 48S1/2 → 49S1/2

transitions, respectively. Section 5 discusses the spectral features of the experimental data.

8.1 Theory

As a review from the concepts in Chapter V, using the same notation for the coordinates

of the atomic CM (R0) and Rydberg electron (r̂e), the total optical field E of angular

frequency ωL exerts the following ponderomotive interaction Up(R0 + r̂e, t)

Up(R0 + r̂e, t) = −1

2
αe(ωL)⟨E2(R0 + r̂e, t)⟩tq , (8.1)

where the average is taken over the quiver-time tq = 2π/ωL of the Rydberg electron in the

optical field. The total field E is the vector sum of E(i)
u , E(r)

u , and E(i)
m , where

E(i)
u (R0 + re, t) = ϵ̂(i)E (i)

u (R0) cos [kL(Z0 + ze)− ωLt+ η2(t)],

E(r)
u (R0 + re, t) = ϵ̂(r)E (r)

u (R0) cos [kL(Z0 + ze) + ωLt],

E(i)
m (R0 + re, t) = ϵ̂(i)E (i)

m (R0) cos [kL(Z0 + ze)− ωLt+ η0 + η1 cos (ωm∆s/c− ωmt) + η2(t)].

Recall from Chapter V that phase η0 is relative to the unmodulated lattice beams, η1 is

the phase amplitude of the modulation (with angular frequency ωm), and η2(t) is the phase

difference between the counter-propagating lattice beams. Also note that ∆s quantifies the

modulation signal’s path length from the position of the fiber EOM to the location of the

Rydberg atoms. It is a global phase-offset that can be ignored in the following equations.

The polarization vectors of the incident (i) and return beams (r), ϵ̂(i) and ϵ̂(r) are kept linear
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and parallel with half wave plates and a polarizing beamsplitter. The shaping and control

of each phase and field strengths for every beam are done with standard optics shown in

Fig. 6.13.

After averaging over the quiver period, the field intensity scales as

⟨E2(R0 + r̂e, t)⟩tq =
1

2
[E (i)

m ]2 +
1

2
[E (i)

u ]2 +
1

2
[E (r)

u ]2 + E (i)
m E (i)

u cos [η0 + η1 cos (ωmt)]

+ E (i)
m E (r)

u (ϵ̂(i) · ϵ̂(r)) cos [2kL(Z0 + ẑe) + η0 + η1 cos (ωmt) + η2(t)]

+ E (i)
u E (r)

u (ϵ̂(i) · ϵ̂(r)) cos [2kL(Z0 + ẑe) + η2(t)]. (8.2)

Fields E(i)
u and E(r)

u contribute a time-independent, conservative potential to the Hamilto-

nian. Phase η2(t) takes the form of a Heaviside step function with amplitude π for experi-

ments that require inversion of the lattice intensity profile; the inflection point of this step

aligns with the start of the phase-modulation sequence η1 cos (ωm∆s/c− ωmt) of duration

τ . We can thus treat this phase as time-independent. The energy shift that the last time-

independent term in Eq. 8.2 induces is calculated with first-order perturbation theory, with

an expectation value given by〈
−1

2
αe(ωL)E (i)

u E (r)
u (ϵ̂(i) · ϵ̂(r)) cos [2kL(Z0 + ẑe) + η2]

〉
= −1

2
αe(ωL)E (i)

u E (r)
u (ϵ̂(i) · ϵ̂(r))

× ⟨cos (2kLẑe)⟩ cos (2kLZ0 + η2), (8.3)

where κn,l,j = ⟨cos (2kLẑe)⟩n,l,j, particular to a Rydberg state with quantum numbers n, l,

and j. The first three terms in Eq. 8.2 induce a ponderomotive offset Uofs that is Rydberg-

state and position independent. With the energy shift computed in Eq. 8.3, the conservative,

time-independent light shift on the Rydberg atom’s internal energy as a function of Z0 is

∆W (Z0) = Uofs + U0 cos (2kLZ0 + η2), (8.4)

where

U0 = −1

2
αe(ωL)E (i)

u E (r)
u (ϵ̂(i) · ϵ̂(r))⟨cos (2kLẑe)⟩. (8.5)

is the half-modulation lattice depth.

Fields E(m)
u and E(r)

u contribute two time-dependent terms from Eq. 8.2:

E (i)
m E (i)

u cos [η0 + η1 cos (ωmt)],

E (i)
m E (r)

u (ϵ̂(i) · ϵ̂(r)) cos [2kL(Z0 + ẑe) + η0 + η1 + η1 cos (ωmt) + η2].
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While the top expression can conserve energy in a ponderomotive transition from one Ry-

dberg state to another, there is no ẑe operator that is able to compensate the change in

angular momentum. Thus, the top expression has no net effect on the Rydberg atom. The

bottom expression, which has a sinusoidal dependence on ẑe and also varies with time at the

order of the Kepler frequency, allows a coupling between two different internal states of the

Rydberg atom. From here onward, one can assume that the Mach-Zehnder interferometer

of Fig. 6.13 is locked to the peak of a fringe, ensuring that η0 = 0. Using the Jacobi-Anger

expansion [198], the ponderomotive potential brought on by the interference of the inci-

dent modulated and reflected unmodulated beams can then be written as a Z0-dependent

atom-field coupling of Rydberg states |0⟩ and |1⟩, ÛAF (Z0, t):

ÛAF (Z0, t) = −1

2
αeE (i)

m E (r)
u (ϵ̂(i) · ϵ̂(r)) cos (2kLZ0 + η2(t))

{
⟨1| cos (2kLẑe) |0⟩

×
[
J0(η1) + 2

∑
even q>0

Jq(η1) cos (qωmt)

]
+ ⟨1| sin (2kLẑe) |0⟩

[
2
∑
odd q

Jq(η1) sin (qωmt)

]}
× (|1⟩ ⟨0|+ |0⟩ ⟨1|). (8.6)

Under the rotating-wave approximation (RWA), UAF is simplified as

ÛAF (Z0, t) =
ℏ
2
Ωq,0| cos (2kLZ0)|ei(ξ−qωmt) |1⟩ ⟨0|+ h.c., (8.7)

with a q-order maximum Rabi frequency given by

Ωq,0 = −αe(ωL)

ℏ
E (i)
m E (r)

u (ϵ̂(i) · ϵ̂(r)) ⟨1| sin (2kLẑe) |0⟩ Jq(η1), (8.8)

for odd-parity transitions and

Ωq,0 = −αe(ωL)

ℏ
E (i)
m E (r)

u (ϵ̂(i) · ϵ̂(r)) ⟨1| cos (2kLẑe) |0⟩ Jq(η1), (8.9)

for transitions that maintain parity. The position-dependent phase factor ξ has a staircase-

like behavior, as shown in Fig. 8.1. Phase ξ changes in increments of π at every lattice well,

making the time-independent prefactor of the coupling ÛAF completely real. Note that if

η2 = π, the entire staircase structure of ξ shifts upwards by π. An atom barely trapped

within a lattice well (trajectory 1 in Fig. 8.1(c)) sees a net phase ∆ξ shift of ±2π throughout

its trajectory over the interaction time τ because its oscillation amplitude Z1 spills beyond

the inflection points of a local intensity minimum. A deeply trapped atom (trajectory 2

in Fig. 8.1(c)) has an oscillation amplitude Z1 that remains within 0.125λ of an antinode
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and will see no phase shift throughout its trajectory over the interaction time. A benefit of

both behaviors for trapped atoms is the removal of laser-based Doppler effects that would

normally be around in ICE transitions and conventional laser spectroscopy. This Doppler-

free feature also remains by the ponderomotive interaction if the laser beam is free-running,

something that is not possible through the A · p̂e interaction. Atoms untrapped by the

lattice (trajectory 3 in Fig. 8.1) and skipping over many wells undergo a series of π phase

shifts. Effectively, the fast-moving atoms see a phase dependence linear with their position

that contributes broad, optical Doppler shifts to the transition. These Doppler shifts will be

discussed further in Section 5.

A considerable advantage of the ponderomotive drive is the independence that the matrix

elements ⟨1| cos (2kLẑe) |0⟩ and ⟨1| cos (2kLẑe) |0⟩ have from the magnitude of order q. The

coupling remains in the first order as q is increased to arbitrary values. This aspect contrasts

with conventional A · p̂e drives in q-order perturbation theory, where the coupling strength

rapidly drops by the excessive energy detunings from intermediate states. For instance,

driving a 10-th-order Rydberg-Rydberg transition with microwave radiation at a frequency

1/10-th of the transition is not possible with commercially available power amplifiers that do

not violate FCC regulations. Energy denominators in the 10-th-order coupling potential are

to blame for this. On the other hand, the first-order behavior of the ponderomotive drive

means the Rydberg-Rydberg transition can be driven at the same microwave modulation

frequency as the previous case with reasonable powers sent into the phase-modulator to

attain the global maximum of Jq. One would only need to moderately increase the laser

power to compensate the mild drop-off in matrix elements and global maximum of Jq. With

Rydberg-atoms, this is important because massive increases in laser-power greatly enhance

the photoionization rate. Most phase modulators commercially available today limit q ≃ 10,

based on RF damage thresholds and phase sensitivities. At this case of q ≃ 10, the above

equations imply that Rydberg states with the same parity separated by sub-THz energies

(∼ 100 GHz) could be driven with only a more-commonly available microwave source at

10 GHz.

Experimental evidence of ponderomotive transitions is presented through phase-modulation

spectroscopy of both even- and odd-parity transitions; a sufficient numerical model to com-

pare with data is thus necessary. Our model is semiclassical with the Rydberg CM being

treated as a classical particle subject to Newton’s equations of motion and the electron as a

two-level (|0⟩ and |1⟩) quantum wave function undergoing position-dependent state changes

by ÛAF (Z0). A Maxwell-Boltzmann distribution is used to initialize the CM position and

velocity within the lattice for a given trajectory. An average over 1000 trajectories is used

for each simulated spectrum. After initialization for a given trajectory, ∆W (Z0) provides a
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Figure 8.1: Figure taken from [7]. Figure (a) shows potential U0 cos (2kLZ0 + η2) + Uofs

generated by the time-independent part of the lattice intensity gradient. The
size of the lattice wells are shown relative to the electron wave functions of
the Rydberg states involved. Figure (b) shows the magnitude of the coupling
potential ÛAF at a given instant in time. This harmonic potential is generated
by fields E(i)

m and E(r)
u . In (c), the ξ phase function of the coupling is a staircase

structure that changes depending on the atomic trajectories ((1,2) for trapped,
3 for untrapped). It differs from the three simultaneous and linear phases that
a higher-order Raman transition would provide, indicated by the dashed blue
lines. All figures are shown along the Z0-axis.

sinusoidal, semiclassical classical force on the CM of the Rydberg atom. By “semiclassical

force,” we mean that the populations of |0⟩ and |1⟩ weigh the state-dependent force from the
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Figure 8.2: Figure taken from [7]. Numerical simulations of
∣∣48S1/2

〉
→
∣∣49S1/2

〉
spectra as

(a) U0, (b) Ωq=4,0, and T0 are varied.

lattice at every integration timestep throughout the simulation. Within the duration τ of

the lattice phase-modulation, the simulation integrates Newton’s equations using timesteps

no greater than 10 ns. At every timestep, the arrived value of Z0 is used to find the in-

stantaneous Rabi frequency, detuning from resonance, and populations in |0⟩ and |1⟩. These
populations arise from the familiar two-level Rabi problem calculated in Chapter II, ignoring

decay.

The separation of the sidebands from the Doppler-free peak is dependent on the depth

parameter U0, as will be explained in Section 5. As shown in Fig. 8.2(a), when U0 is increased

with the peak Rabi frequency Ω0 and initial temperature T0 remaining constant, they shift

away from the central, Doppler-free peak. An appropriate spacing from the Doppler-free

peaks that matches experimental spectra is used to estimate U0 in the experiment, more

reliable than using optical power measurements and transverse beam profiling. As shown in

Fig. 8.2(b), changing the Rabi frequency modifies the signal strengths of the Doppler-shifted

peaks relative to each other and relative to the Doppler free peak. Fitting the correct signal-

strength ratios among the three peaks to the data allows an estimate of Ωq,0. Variations in

initial temperatures of the sample T0 are reflected in the linewidths and overall peak heights,

with hotter atoms compromising the visibility in the spectra. One can also make out a steep,

linear shift of the Doppler-free peak towards the field-free resonance as T0 is enhanced, as

seen in Fig. 8.2(c).

157



Figure 8.3: Timing sequence of the experiment. Figure adapted from [7].

8.2 Methods

After the laser-cooling light in the science chamber is switched off, the Rydberg-excitaion

lasers are simultaneously switched on for a duration of 4 µs. In this experiment, the

intermediate-state detuning of the 780-nm beam is set to approximately 140 MHz. However,

there is still noticeable heating from the scattering of D2 light during the excitation, as the

experimental spectra were estimated to have a sample with T0 ∼ 200 µK. The blue, 480-nm

laser is tuned to the resonance of atoms near the intensity maxima of the optical lattice,

along the dashed line of Fig. 6.16. The optional phase shift η2 = π can be applied to the

DC phase shifter before the pulsing of modulation signal η1 cos (ωmt) into the fiber EOM.

This inverts the intensity gradient, allowing the low-field-seeking Rydberg atoms to be ini-

tialized in harmonic-like lattice well near the nodes of the lattice. Immediately after the

phase-modulation is applied, the state-selective field ionization (SSFI) (explained in great

depth in Chapter VI) tallies the final internal-state populations (|0⟩ or |1⟩). Throughout the
entire spectroscopy sequence, the unmodulated beams of the 1064-nm lattice stays on at a

constant power level, unless beam E(r)
u is extinguished during the experiment. A complete

timing sequence is shown in Fig. 8.3.

Transition frequencies ω0 between states |0⟩ and |1⟩, unperturbed by light shifts from

the optical lattice, need to be measured in order to correctly quantify the effects of Doppler

shifting and state-dependent ponderomotive forces on the spectra when the 1064-nm laser

shines on the atoms. In order to do this, microwave radiation from a horn antenna can be

used to probe the two transitions studied (
∣∣46S1/2

〉
→
∣∣46P1/2

〉
and

∣∣48S1/2

〉
→
∣∣49S1/2

〉
)

when no lattice light is entering the chamber. The atom-field interaction time with the

microwave radiation here τ = 6 µs is much shorter than that in the previous chapter, so the
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Figure 8.4: Figure taken from [7]. Microwave spectra driven by radiation from an antenna
with the lattice light completely off for (a) 46S1/2 → 46P1/2 and (b) 48S1/2 →
49S1/2. Pulse duration is τ = 6 µs.

HFS of 46P1/2 cannot be observed. We use this interaction time because it is on the order of

τ for the ponderomotive driving by the modulated lattice. We deliberately chose this length

of an interaction time in order to broaden the transition and ignore mixing of the 46P1/2

hyperfine states by the ponderomotive interaction. Also, atoms probed for too long have

greater propensities to transversely fly out of the lattice and degrade the acquired signals.

Fig. 8.4 shows the conventional microwave spectra of the odd- and even-parity transitions

driven by microwave radiation. Lorentzian fits are used to find the line centers and mea-

surements of ω0 for each transition. Note again that no optical lattice light is on throughout

these diagnostic measurements.

8.3 Spectroscopy of nS1/2 → nP1/2 Rydberg Transitions

An odd-parity drive of
∣∣46S1/2

〉
→
∣∣46P1/2

〉
is performed. Rydberg atoms undergoing

the ponderomotive-optical-lattice shifts are initialized in the |0⟩ =
∣∣46S1/2

〉
state. The

modulated beam, E(i)
m , pulsed on for τ = 6 µs, is scanned in modulation frequency ωm,

from ωm/(2π) = 13.040211 GHz to 13.040633 GHz in frequency steps of 3 kHz. A first-

order drive using the q = 3 modulation harmonic, with η1 = 1.3(3)π allows the probing

of |0⟩ → |1⟩ =
∣∣46P1/2

〉
, a transition determined in the previous Section to be spaced at

ω0/(2π) = 39.121294 GHz without any perturbations. Fig. 8.5, shows evidence of this q = 3

drive when the optional η2 phase shift is not applied; i.e., the lattice is not inverted.
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Figure 8.5: Figure taken from [7]. The blue points show the relative population in |1⟩ =∣∣46P1/2

〉
with respect to |0⟩ =

∣∣46S1/2

〉
as 3ωm is scanned over ω0 in steps of

9 kHz. These data represent an average over 10 individual scans, each with
400 measurements. The gold line is the corresponding simulation fit to the data.
The “transition probability” is the absolute ratio of ions in the |1⟩ gate to the |0⟩
gate minus the arithmetic average of the same ratio for all pink data points. The
pink points are the population in |1⟩ when E(r)

u = 0, proving that an intensity
gradient is necessary to drive the transition and conserve angular momentum.
The shaded spectrum is the same antenna drive as in Fig. 8.4(a). Pulse duration
is τ = 6 µs for all spectra.

Three peaks appear, the two sidebands correspond to spectroscopic signals from the

untrapped atoms moving along trajectory 3 in Fig. 8.1(c) and trapped atoms of trajectory 1

making changes in their motional quantum number ν by ±2. The sidebands are shifted from

the central, Doppler-free peak on the order of 2kL⟨V0⟩ or 2ω1, where ⟨V0⟩ is the average CM
velocity of the Rydberg atom. Here, the central peak is red-shifted from ω0 because most

atoms spend the duration of their trajectory near the lattice antinodes [199] and the
∣∣46P1/2

〉
state experiences a shallower lattice potential than that for

∣∣46S1/2

〉
. The stronger signal

in the red-shifted side peak relative to the blue is also related to the nonmagic condition of

|0⟩ and |1⟩ at λ = 1064 nm. From the simulation, it is estimated that U0 ∼ h × 2.5 MHz

and Ω3,0 ∼ 2π × 70 kHz with T0 ∼ 200 µK. Evidence that the angular momentum must
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be conserved to make the transition by means of the lattice intensity gradient is shown by

extinguishing E(r)
u , where it is evident in Fig. 8.5 that this inhibits any population transfer

into |1⟩ (pink data).

Overlap of the three peaks is a result of inhomogeneous broadening of the Doppler-free

peak by the nonmagic condition. In a different experimental setting, this condition can be

made magic by choice of lattice wavelength, Rydberg states, and alignment angles. For this

experiment, because the lattice mode differs from that of a near-concentric cavity, optical

aberrations arising from misalignments and unwanted diffraction from the metallic vacuum

chamber accentuate the existing differential light shift by inducing asymmetric broadening

in the line. Other means of broadening, e.g., the 46P1/2 HFS, Zeeman splitting from stray

magnetic fields, and dipole-dipole shifts, in addition to the aberrations are not included in

the simulation and contribute a slight mismatch in the lineshape. However, the measured

linewidth of the central, Doppler-free peak is ∼ 200 kHz, at the same order of magnitude as

the Fourier limit. ICE transitions, which are used to optically manipulate certain alkaline-

earth atoms cannot reach spectral widths at this narrow of level.

When η2 = π, the intensity maxima of the lattice become minima. This shift in phase

occurs slightly before the rise time of the modulation signal η1 cos (ωmt) but after the optical

excitation. Rydberg atoms are collected near the intensity minima, implying that a greater

portion of all atoms will be trapped and the Doppler-free peak will be blue-shifted from

ω0 [199]. This method of trapping Rydberg atoms was first demonstrated in [170]. In Fig. 8.6,

the Doppler-free peak is shown to outmatch the shifted sidebands in signal strength. Also,

there is a clear blue-shifting in signal as expected, which proves that a majority of atoms are

in a trap of stable equilibrium. However, the central peak is broader and slightly weaker (∼ 1-

2%) than the simulation with the sidebands stronger than what was numerically calculated.

The mismatch between the experimental and theoretical curves may have to do with how

sudden, or diabatic, the inverting phase shift of η2 = π is. A slow, dragging of the lattice

along the propagation axis provides some heating to the coldest atoms trapped within the

lattice well. As described in Section 1, increases in temperature degrade the signal strength.

Also, some atoms may even be heated out of the lattice well, causing them to join the atoms

with trajectory 3 in Fig. 8.1 and partially add to the signals of the sidebands.

8.4 Spectroscopy of nS1/2 → (n+ 1)S1/2 Rydberg Transitions

For an even-parity drive of |0⟩ =
∣∣48S1/2

〉
to |1⟩ =

∣∣49S1/2

〉
, where ω0 = 2π×70.475710 GHz,

the q = 4 harmonic of a 17 GHz modulation frequency needs to be used, as the bandwidth

of the fiber phase modulator only reaches about 30 GHz. Furthermore, microwave equip-
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Figure 8.6: Figure taken from [7]. Here the same transition is driven as in Fig. 8.5 but the
lattice is shifted by η2 = π before the modulation pulse.

ment at 17 GHz is far more commercially available than that at 70 GHz, implying that this

high-order drive is necessary. Amplitude η1 must be increased to 1.7(4) × π, and the pulse

duration is increased to τ = 12 µs in hopes of achieving a narrower linewidth of the Doppler-

free peak. Fig. 8.7 shows a lattice-phase-modulation spectrum of the |0⟩ → |1⟩ transition

(where ⟨0| Π̂ |0⟩ = ⟨1| Π̂ |1⟩ here with Π̂ being the parity operator). Because η2 = 0 at all

times, atoms are initialized in |0⟩ near the local maxima of the standing-wave pattern in

concordance with the 1 MHz linewidth of the 480-nm laser, just as they were prepared in

Fig. 8.5.

The Doppler-free line in Fig. 8.7, red-shifted from ω0, has a Lorentzian structure that is

fit with the dashed, green curve. An estimated linewidth of 96 kHz is obtained, also on the

order of the Fourier limit (0.89/τ = 74 kHz). The numerical simulation fits the data with a

U0 = h× 2.5 MHz and Ω4,0 = 2π × 90 kHz.

Up until this point, I have made the assumption that the systems in this and the previous

Section consisted of two levels, |0⟩ and |1⟩, separated by energy ℏω0 and driven in the first

order by laser phase modulation at the q-harmonic of frequency ωm. While the pulse duration

τ is much less than the 300-K-blackbody-limited lifetime of 70 µs, preventing significant

decay channels to other states during the drive, one cannot consider this system two level
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Figure 8.7: Figure taken from [7]. In this even-parity drive, |0⟩ =
∣∣48S1/2

〉
and |1⟩ =∣∣49S1/2

〉
. Here, qωm is stepped by 2π × 8 kHz over ω0 = 2π × 70.475710 GHz.

Blue data are averages of 10 single ωm scans each featuring 400 measurements.
The green, dashed line is a Lorentzian fit of the central, Doppler- and recoil-free
peak with a FWHM of 96 kHz. The gold curve is the numerical simulation scaled
by 1/2 to agree with our experimental efficiency in state selectivity. Pink data
points are averaged over 6 single ωm scans of 400 measurements and correspond
to the same drive with E(r)

u blocked. The shaded spectrum is that originating
from a two-photon antenna drive with all 1064-nm light off. Optical pulse dura-
tion is τ = 12 µs; antenna-drive duration is τ = 6 µs.

if some other harmonic, q′ drives another transition from |0⟩ to |2⟩, separated by an energy

ℏω′
0 ∼ q′ωm. By the nature of phase modulation at large η1, several other harmonics q′ ̸= q

appear in the Hamiltonian, which can drive other transitions if the aforementioned resonance

condition is met.

How well the resonance condition is met is what needs to be determined by considering

the overlap of spectral lines. If there is significant overlap of both the |0⟩ → |1⟩ and |0⟩ → |2⟩
transitions, interference of the probability amplitudes would influence the observed spectra.

Parameter |δ| = |(q − q′)ωm + (ω′
0 − ω0)| quantifies the separation of the two atomic states

ponderomotive dressed-atom picture. Note that in this experiment, |qωm−ω0| → 0, making

|δ| ≃ |ω′
0 − q′ωm|. For a coupling strength Ωq′,0 on the order of 1 MHz, which is a slight
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overestimate for what has been observed in this chapter, the power-broadened width is Γ =

Ωq′,0 and Γ2/(4δ2) < 0.01 in order there is not an overlap of both peaks that exceeds 1 % in

transition probability. The condition for neglecting interference is |q′ωm−ω′
0| > 2π×5 MHz.

In the odd-parity case, ωm ∼ 13 GHz and |0⟩ =
∣∣46S1/2

〉
, so the lowest value of |q′ωm−ω′

0|
is 2π × 159 MHz, satisfying the condition. This additional coupling occurs when q′ = 9 and

ω′
0 corresponding to the

∣∣46S1/2

〉
→
∣∣47P1/2

〉
transition. For the even-parity case, where

ωm ∼ 17 GHz and |0⟩ =
∣∣48S1/2

〉
, the lowest |q′ωm − ω′

0| is 2π × 170 MHz, with q′ = 17 and

ω′
0 for the

∣∣48S1/2

〉
→
∣∣51D3/2

〉
transition. Note that the maximum q feasible by electro-

optic modulators available today is around 10 based on the crystal phase sensitivity and RF

damage thresholds. In conclusion, assuming that |0⟩ and |1⟩ are the two relevant states is

correct.

8.5 Discussion of Spectral Features

I will now present a discussion on the CM dynamics behind each spectral line obtained in

the experiment. Each discussion will explain the shifts and broadening mechanisms behind

each line using a classical model of the Rydberg’s CM coordinate with parallels to a fully-

quantized model introduced as needed.

8.5.1 Doppler-Free Features from Barely Trapped Atoms

Highly energetic atoms that oscillate in a lattice well with turning points very close to

the local potential maxima at Z0 : 0,±λ/2, λ, 3λ/2, ..., but nonetheless are still trapped, are
some of the Rydbergs initialized for the spectra in Figs. 8.5 and 8.7. Even though the 480-

nm laser has a center frequency parked near the shifts brought on by atoms located exactly

at the intensity antinodes, which are therefore not trapped and skipping over many wells,

its nonzero linewidth also excites these barely trapped atoms slightly offset from positions

Z0 : 0,±λ/2, λ, 3λ/2, ..... In Fig. 8.1(c), such a trajectory is labeled as trajectory 1.

In order to get a closer look at this sort of trapped trajectory, a simulation of its evolution

in the noninverted (η2 = 0) optical lattice for drive Fig. 8.5 is shown in Fig. 8.8. A Runge-

Kutta algorithm is used to perform the simulation for an atom with a randomly chosen initial

position and velocity. What’s notable in these trajectories is that their oscillation frequency

is slower than that of a deeply trapped atom (see trajectory 2 of Fig. 8.1(c)). The reason

for this is that the large amplitude Z1 of these oscillations, which turn near the intensity

antinodes, cause the harmonic approximation of the trap-oscillation frequencies ω1 to fail

and actually be smaller than what is estimated. Amplitude Z1 stretches beyond 0.125λ from

the intensity nodes, meaning that it sees three different values of ξ throughout its evolution
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Figure 8.8: Random trajectories of trapped atoms in an optical lattice with large amplitudes
Z1. Here η2 = 0, and the dashed lines correspond to boundaries where ξ changes
by π.

in the trap. However, the atom spends most of its time in the vicinity of the turning points

throughout the spectroscopic duration. A phase difference of 2π exists between the two

turning points, meaning that the atom sees the same coupling value ÛAF throughout the

interaction time, which removes Doppler broadening and shifting from the central peaks of

Figs. 8.5 and 8.7.

Here, I will justify why the barely trapped atom spends most of its time near the turning

points. To do this, it’s best to consider a fully quantized model of the atom’s CM coordinate.

For simplicity, a lattice with a full depth of 20E2r is observed, where Bloch bands ν = 4

and 5 correspond to the last two motional states for trapped atoms, as seen in Fig. 8.9.

Atoms with these energy eigenstates correspond to the classical trajectories discussed above

(although the lattices used in the experiment are about ∼ 103E2r in depth and ν is much

larger). When observing the CM distribution for an atom in ν = 5 with quasimomentum

parameter k0 = 0, one can see that atoms of this high energy are mostly concentrated near

the intensity antinodes. Thus, it can be concluded that the larger the amplitude of the

classical oscillation is conducive to a larger ponderomotive light shift on the internal-state

energy of the atom.

165



Figure 8.9: On the left, the band structure for an unflipped (η2 = 0) lattice is shown with
2U0 = 20E2r. CM probability distribution of an atom with quasimomentum of
zero and ν = 5 for the same lattice shown on the right.

Because |1⟩ sees a shallower lattice depth than |0⟩ in all experimental cases and the

internal energy shifts of the atoms are near a maximum for the trajectories discussed, the

effect on the transition frequency between the two quantum states is a red-shift from ω0.

These red-shifts are apparent in Figs. 8.5 and 8.7. Additionally, the unwanted effects of

inhomogeneous broadening due to mode impurities of the lattice are evident and cause

deviations from the numerical spectra, which are based on an ideal standing-wave with a

TEM00 transverse mode. These impurities are reflected in the experimental spectra because

there is a differential light shift between |1⟩ and |0⟩.
These barely trapped trajectories also contribute to signal in the sidebands. As seen in

the coupling potential with trapped trajectory Z0(t) = Z1 cos (ω1t),

ÛAF (t) =
ℏΩq,0

2
cos (2kLZ1 cos (ω1t))e

−iqωmt |1⟩ ⟨0|+ h.c., (8.10)

which, due to the Jacobi-Anger expansion, leads to three independent drives,

ÛAF (t) ≃
ℏΩq,0

2
J0(2kLZ1)e

−iqωmt |1⟩ ⟨0| − ℏΩq,0

2
J2(2kLZ1)e

−i(qωm−2ω1)t |1⟩ ⟨0|

− ℏΩq,0

2
J2(2kLZ1)e

−i(qωm+2ω1)t |1⟩ ⟨0|+ h.c.. (8.11)

The term with phase qωm − 2ω1 contributes to the blue-shifted peaks of Figs. 8.5 and 8.7,

while qωm+2ω1 contributes to the red-shifted sideband. The red-shifted sideband is stronger
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because the 2ℏω1 energy-shift on the atomic state tunes the negative light shift on the

transition frequency closer to resonance. As found in a fully quantum description of the CM

coordinate, these sidebands in the coupling potential are responsible for inducing changes in

the motional quantum number ν by ±2.

8.5.2 Doppler-Free Features from Deeply Trapped Atoms

In Fig. 8.6, η2 is shifted by π just before the modulation is applied to the lattice. This

means that atoms excited by the 480-nm laser near the intensity antinodes are suddenly

initialized near the nodes. Therefore, the trapped trajectories resemble trajectory 2 in

Fig. 8.1(c). Most atoms prepared in |0⟩ lie on a low Bloch band near ν = 0 and have

classical CM oscillations with amplitudes Z1 < 0.125λ. Because of this, the atoms see a

fixed phase ξ throughout their evolution in the trap and have Doppler-shifts depending on

their momentum completely removed in central peak of the spectrum. Furthermore, the

low motional states ν they occupy feature appreciable CM distributions near the intensity

nodes, meaning the smallest possible light shift from the lattice is applied to the internal-state

energies of |0⟩ and |1⟩.
With the same simulation, random, trapped trajectories are plotted in Fig. 8.10. The

same lattice parameters are used as inputs as those in Fig. 8.8 with the only difference being

that the shift η2 = π is applied, inverting the lattice intensity profile before the atom’s

evolution in the trap. Oscillations here occur at a faster frequency with a period around

∼ 5 µs, meaning that they converge towards the harmonic approximation ∝
√
U0. For these

low-energy oscillations, the atom spends more time near the region of stable equilibrium

and primarily sees the minimal light shifts in its internal energy that the intensity antinode

provides.

As the ponderomotive light shift brought on by the intensity antinode is the smallest in

this case of deeply trapped atoms, the minimum light shift for |1⟩ is actually larger than

that for |0⟩. Consequently, the effect on the Doppler-free transition is a blue-shift from ω0.

Because Z1 is smaller for trajectory 2 than 1, the motional shifts in ν are less significant,

causing a reduction in signal for the side peaks. Also, upon inspection of the experimental

spectrum obtained in Fig. 8.6, an observable increase in signal strength in the blue sideband

with respect to the red peak is a result of the positive increase in the transition frequency

induced by the differential light shifts. Thus, an effect opposite to that found in Fig. 8.5 is

shown as expected.
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Figure 8.10: Random trajectories of trapped atoms in an optical lattice with small ampli-
tudes Z1 < 0.125λ. Here the intensity profile is flipped (η2 = π), and the phase
ξ remains fixed.

8.5.3 Spectral Features from Untrapped Trajectories

Now I will discuss the spectra for untrapped atoms with trajectory 3 in Fig. 8.1(c) and how

they undergo optical Doppler shifts through the ponderomotive coupling ÛAF . Many often

confuse the Doppler-shifts from ponderomotive optical transitions with those from Raman

transitions. The main difference in these totally different forms of spectroscopic driving stems

from their quantum-mechanical origins. Even though they are responsible for population

transfer between E1-violating states, Raman transitions are still based on the potentials of

induced electric-dipole moments in the electronic wave function in higher-order perturbation

theory. On the other hand, ponderomotive transitions promote population transfer between

E1-violating states in first-order perturbation theory entirely by the inelastic scattering of a

photon off an electron.

In general, two laser fields with wave vectors kL and k′
L at angular frequencies ωL and ω′

L

can drive transitions between Rydberg states |0⟩ and |1⟩ of the same parity with separation

q(ω′
L − ωL), where q is a nonzero integer and 2q is the order of the transition in pertur-

bation theory. When q > 1, laser intensities need to be greatly enhanced to compensate
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the reduction in atom-field coupling strengths. Position-dependent phases accumulated by

subsequent absorption and emission can be ±q(k′L+kL)Z0 or q(k
′
L−kL)Z0 which occur at all

Z0. These phases are responsible for Doppler effects because Z0 is really a time-dependent

quantity that is tied to V0z.

Two-photon, Doppler-free spectroscopy is a specific case of a Raman transition. With

two-photon, Doppler-free Raman transitions involving two counter-propagating laser fields of

angular frequency ωL (at half of ω0) and of wave vectors kLk̂ and −kLk̂, at all positions along
Z0 excitation to |1⟩ from |0⟩ can involve subsequent, stimulated absorptions of fields kLk̂ and

−kLk̂. This is the Doppler-free case, as the laser field imparts no net CM-position-dependent

phase during the coupling of |0⟩ and |1⟩, (kL − kL)Z0 ≃ 0. The phase here is zero for all

Z0 and is represented by the dashed, blue line in Fig. 8.1(c). Additionally, the electronic

transition can conserve energy by absorbing light from the same fields (kLk̂ or −kLk̂) at any
point along Z0. Resultant continuous and position-dependent phases are 2kLZ0 and −2kLZ0

and are represented by the upward- and downward-sloping blue, dashed lines in Fig. 8.1(c).

These phase shifts are responsible for Doppler-effects in this sort of spectroscopy, which

contribute to a fat, Gaussian background added to the Doppler-free, Lorentzian peak [67].

Ponderomotive transitions have very different phase behavior in their atom field coupling

expression. In all cases, the first-order interaction imparts a phase ξ(Z0) that has the staircase

behavior shown in Fig. 8.1(c). As long as an atom has an oscillatory behavior that stays

between two adjacent local maxima of the lattice intensity gradient, the transition will

be removed from the Doppler effect. Because of this, no velocity-dependent shifting or

broadening shows up in the central spectral features near ω0. The sidebands, however,

do have a dependence on V0z; they appear shifted away from ω0 because they partially

correspond to untrapped atoms getting a sequence of π phase shifts as they move along Z0.

Effectively, the sort of atom is moving much faster than the trapped one and sees an energy

chirp ℏξ̇ = ℏ(dξ/dZ0)⟨V0z⟩, where dξ/dZ0 ∼ ±2kL and ⟨V0z⟩ is the time-averaged velocity

of the atom along Z0. Therefore, the Doppler energy shift for these untrapped, fast-moving

atoms is coincidentally similar to those of atoms undergoing two-photon Raman transitions

involving counter-propagating fields. For this experiment, the Doppler-shifted peaks with

broadening dependent on the velocity distribution of the atoms, lie on top of the signals at

±2ω1 corresponding to motional changes of ±2. Both signals make up the red- and blue-

shifted sidebands in all spectra. It is important remember, however, that the two effects are

independent and do not interfere spectroscopically.
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8.6 Conclusion

The leading benefit of this form of laser manipulation of Rydberg-Rydberg transitions

is the insensitivity to ∆l. With phase modulation of the optical lattice, the ponderomo-

tive force can induce internal-state transitions of the Rydberg atom for any value of ∆l

without making changes in the motional quantum number ν. There are several reasons

why changing ν is problematic. Firstly, these ∆ν transitions are broadband because they

require detunings from ω0 at the classical trap oscillation frequency (CTOF). For CM, mat-

ter waves with high ν quantum numbers, this detuning deviates greatly from the CTOF

based on the anharmonicity of the potential. Therefore, the transition is inhomogeneously

broadened by the distribution of ν in the sample. Furthermore, these ∆ν transitions can

sometimes overlap the broad Doppler-shifted peaks at ±2kL⟨V0⟩ based on the experimental

conditions of the system. Both mechanisms ruin the fidelity in experiments in high-precision

spectroscopy [26], quantum control [61], and quantum information [133]. Previous demon-

strations of ponderomotive transitions using amplitude-modulated lattices in [62; 63] were

limited to the even-parity case because of their resulting coupling potentials ÛAF arising

from the beam geometry of two counter-propagating modulated lasers. Because this method

of phase modulation was proven to work well with low l Rydberg atoms, I will now pro-

pose methods in the subsequent chapter implementing this technique in the initialization of

high-l, CS Rydberg atoms (∆l > 20) completely with laser fields.
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CHAPTER IX

All-Optical Circularization of Rydberg Atoms in Novel

Lattice Traps

This chapter is based on Ref. [9].

At this point, internal-state transitions of alkali Rydberg atoms using the ponderomotive

interaction have been discussed theoretically and demonstrated experimentally with phase-

and intensity-modulation of an optical-field gradient [62; 7]. The method of creating a beat

frequency between the incident and scattered field of the ponderomotive drive, as well as

the structure of the intensity gradient used, allows freedom in the type of ∆l, ∆ν, and

∆ml selection rules provided by the light shining on the Rydberg atoms. For the proposed

techniques of ponderomotive laser manipulation in this chapter, it is desired that ∆l =

∆ml → n − 1 and ∆ν = 0. Such large changes in quantum numbers are required for

initializing a system of circular-state (CS) Rydberg atoms for applications in fundamental

physics.

As described in chapter IV, lasers are unable to prepare a sample of CSs through the

A · p̂e interaction. Instead, electromagnetic couplings in the RF/microwave band must

be adiabatically ramped in intensity and frequency over the resonance condition for the

hydrogenic states shifted by parallel DC electromagnetic fields that are perpendicular to the

RF/microwave polarization. This technique is known as adiabatic rapid passage (ARP) [45;

75]. Alternative techniques use pulse and frequency shaping of the applied RF fields by

quantum optimal control (QOC) theory [200; 153], where iterations of varied experimental

parameters are performed until the maximum fidelity is reached.

RF and microwave fields are challenging to work with in an experimental setting. They

cannot be focused to sizes smaller than the atomic interaction regions implemented. Scatter-

ing off metallic experimental equipment distorts the spatial mode of the fields and modifies

the waves’ polarizations, two effects that can hamper an otherwise well controlled experi-

ment. Furthermore, enhancing the power of the radiating RF field risks the complication
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of cross-talk among other electronics in the lab, something that is not a problem when in-

creasing optical power. Replacing the RF/microwave fields with lasers to interact with the

atoms would ease up the complexity of the aforementioned circularization procedures. Ad-

ditionally, the modes provided by the laser fields would allow site-selective excitation of CSs

at the spatial size of the atom, which aids in the elimination of inhomogeneous broadening

by position-dependent perturbations.

Three novel methods of all-optical circularization through the Â2 term using dynamic

optical traps are introduced in this chapter. In the first method provided in Section 1, two

co-propagating Laguerre-Gaussian beams of opposite winding numbers 14 and −14 and a

beatnote at 4.2 THz, focused near the diffraction limit, promote |21F ⟩ Rydberg atoms of
85Rb to |32C⟩ in a single-shot drive. The experimental requirements for such an experiment

are also discussed. For the second method of obtaining |32C⟩ introduced in Section 2, two

different optical frequencies at ω′
L and ωL, where ω

′
L − ωL = 2π × 350 MHz, both form a

standing wave oriented perpendicular to the static electric and magnetic fields (known as

stabilization fields), E0 and B0, which are parallel to each other and lift the degeneracies

of the hydrogenic manifold. The procedure of ARP is simulated in this case using light-

matter interactions with the optical beat frequency and power adiabatically ramped. In

Section 3, a two-dimensional, phase-modulated optical lattice oriented perpendicular to the

stabilization fields provides a time-orbiting well for a trapped Rydberg atom that provides

the same coupling as a σ+-polarized RF field in an ARP scheme. Section 4 compares the

three different proposed schemes.

9.1 Circularization by Laguerre-Gaussian Laser Fields

Conventional laser beams, which are shaped into Hermite-Gaussian (HG) modes [201],

carry an ℏ of angular momentum in a single quantum of energy from the overall field. It

is therefore impossible to use a focused laser in the TEM00 mode to excite a ground-state

atom directly into the circular state (CS) or to excite a low-angular-momentum Rydberg

state to the CS with a single light-matter interaction. One needs to ensure that the laser

carries angular momenta on the order of ∼ nℏ for the purpose of optically circularizing

the atoms. While HG modes lack this amount of angular momentum, lasers in Laguerre-

Gaussian (LG) modes propagate like a vortex with an orbital-angular-momentum winding

integer of m [202]. This Section describes using two, co-propagating Laguerre-Gaussian

beams of opposite winding numbers |m| and −|m| to transfer a low-l Rydberg atom into

the CS through an inelastic ponderomotive interaction. When starting the circularization

sequence with |n′F ⟩ Rydberg states to generate |nC⟩, the winding number of each beam
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must have an integer-valued magnitude (n − 4)/2. Furthermore, these beams must have a

beatnote that matches the frequency spacing between |n′F ⟩ and |nC⟩.
When the two LG beams of radial index p = 0 and winding numbers −|m| (beam 1) and

|m| (beam 2) with angular frequencies ωL1 and ωL2 = ωL + ωb, respectively, are overlapped

and co-propagate, they have the following electric-field dependence in the laboratory frame

E(r, t) =
ϵ̂E1w01

2w1(z)

√
1

|m|!

[ √
2ρ

w1(z)

]|m|

L
|m|
0

[
2ρ2

w1(z)2

]
exp

[
−ρ2

w1(z)2

]
exp

[
−ikL1ρ

2

2R1(z)

]
exp[iψ1(z)]

× exp[i(|m|ϕ− kL1z) + iωL1t] +
ϵ̂E2w02

2w2(z)

√
1

|m|!

[ √
2ρ

w2(z)

]|m|

L
|m|
0

[
2ρ2

w2(z)2

]
× exp

[
−ρ2

w2(z)2

]
exp

[
−ikL2ρ

2

2R2(z)

]
exp[iψ2(z)] exp[−i(kL2z + |m|ϕ) + iωL2t] + c.c., (9.1)

where

wi(z) = w0i

√
1 + (z/zRi

)2, (9.2)

Ri(z) = z +
z2Ri

z
, (9.3)

ψi(z) = (|m|+ 1) arctan
(
z/zRi

)
, (9.4)

for 1 beams i = 1 and 2, and L
|m|
p=0 is the Laguerre polynomial. The beam waist is w0i , and

the Rayleigh length is zRi
. Cylindrical coordinates r = (ρ, ϕ, z) are most appropriate for this

sort of beam geometry. An intensity profile along the z-axis is shown in Fig. 9.1(a) using

λ1 = 536 nm, λ2 = 532 nm, and |m| = 14.

LG laser fields notably have the |m| dependent phase that changes as the azimuthal angle

is varied. When two co-propagating LG modes of opposite winding numbers are overlapped,

a rotating-wave, optical lattice is formed along the azimuthal direction. If ωb = 0, this lattice

is truly stationary, but nonzero values of the beat frequency result in a lattice rotation at

the rate ωb. When ωb is at the rate of the internal-state dynamics of the Rydberg atom, as

is the case here for circularization, the CM sees a time-averaged potential that eliminates

the modulation of the lattice.

In this method of circularization with LG beams, ωb/(2π) must be on the order of THz,

as will be explained below. Therefore, the time-averaged ponderomotive potential simply

causes a repulsive force on the atom away from the walls of the tubular trap effected by

the LG intensity profile. Fig. 9.1(b) shows the time-averaged ponderomotive potential on

the (x, y)-plane of the laboratory frame using the same optical parameters as in (a). On the

1Here, ψi denotes a Gouy phase factor for beams i = 1 and 2, and are not quantum wave functions.
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Figure 9.1: Figure taken from [9]. Laguerre-Gaussian trap for Rydberg-atom circulariza-
tion: (a) view in the (x, z)-plane where beams overlap the laser-cooled cloud,
(b) time-average of ponderomotive potential that provides radial trapping, (c)
instantaneous, azimuthal lattice potential at time t = 0 that circularizes |21F ⟩
states.

other hand, the |n′F ⟩ Rydberg electron notices the intensity gradient of the azimuthal lattice

that is rotating near the frequency separation between |n′F ⟩ and |nC⟩. An instantaneous

snapshot of this lattice potential, which also couples states |n′F ⟩ and |nC⟩, is presented in

Fig. 9.1(c).

All effects just discussed and presented below regarding the LG light-matter interactions

are afforded by the Â2 potential of the minimum coupling Hamiltonian. I want to empha-

size that my proposed method differs from previous work [203; 204] which investigated the

electric-multipole interactions of LG lasers and Rydberg states.
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9.1.1 Ponderomotive Interactions

The ponderomotive potential, Vp(R0 + r̂e), that traps the electron towards the center of

the radius circumscribed by the overlapped LG beams 1 and 2 is given by

Vp(R0 + r̂e) =
e2E2

1w
2
01

4|m|!meω2
L1
[w1(Z0 + ẑe)]2

[
2[(X0 + x̂e)

2 + (Y0 + ŷe)
2]

[w1(Z0 + ẑe)]2

]|m|

× exp

{
−2[(X0 + x̂e)

2 + (Y0 + ŷe)
2]

[w1(Z0 + ẑe)]2

}
+

e2E2
2w

2
02

4|m|!meω2
L2
[w2(Z0 + ẑe)]2

×
[
2[(X0 + x̂e)

2 + (Y0 + ŷe)
2]

[w2(Z0 + ẑe)]2

]|m|

exp

{
−2[(X0 + x̂e)

2 + (Y0 + ŷe)
2]

[w2(Z0 + ẑe)]2

}
. (9.5)

This term arises from elastic scattering of LG mode 1 into 1 and 2 into 2 through force

provided by the first-order Â2 interaction. At the single-photon level of field intensity, this

interaction is analogous to Thomson scattering but with a superposition of plane waves that

form LG modes. As a result of the elastic nature of this scattering interaction, potential

Vp(R0+ r̂e) is time-independent. Fig. 9.2 depicts the energy strength of Vp along one axis of

the z = 0-plane in the laboratory frame. In this plot, λ1 = 536 nm and λ2 = 532 nm with

E1 = 2.49 × 106 V/m and E2 = 2.50 × 106 V/m. Gaussian beam waists are w01 = 3.41 µm

and w02 = 3.39 µm.

Inelastic scattering of LG mode 2 into mode 1, reminiscent of a low-energy, non-relativistic

Compton effect, results in population transfer from state |n′F ⟩ into |nC⟩, the CS. This

potential has the harmonic dependence of an azimuthally rotating optical lattice at rate ωb

and a spatial dependence (expressed in laboratory frame coordinates r̂ = R0 + r̂e) found in

the coupling potential V̂C ,

VC(r̂, t) = 4|m| (2|m|)!
|m|!

√
4π

(4|m|+ 1)!

(
e2E1E2w01w02

2meωL1ωL2

)
r̂2|m|[w1(r̂ cos θ̂)w2(r̂ cos θ̂)]

−(|m|+1)

× exp
(
−r̂2 sin2 θ̂[w1(r̂ cos θ̂)

−2 + w2(r̂ cos θ̂)
−2]
)[
Y 2m
2|m|(θ̂, ϕ̂)S(r̂) exp(−iωbt)

+ Y −2m
2|m| (θ̂, ϕ̂)S

∗(r̂) exp(iωbt)
]
. (9.6)

The position-dependent phase of the coupling potential, S(r̂), potentially leads to inho-

mogeneous broadening and a reduction in coupling strength depending on the wavelength
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Figure 9.2: Figure taken from [9]. electron trapping potential as seen along the x-axis of
the laboratory frame for λ1 = 536 nm and λ2 = 532 nm. A ponderomotive
interaction from LG modes of m = 14 with w01 = 3.41 µm and w02 = 3.39 µm
provides this potential. The field amplitudes here are E1 = 2.49× 106 V/m and
E2 = 2.50× 106 V/m

difference of between mode 1 and 2. It can be expressed as

S(r̂) = exp

[
ir̂2 sin2 θ̂

2

(
kL2

R2(r̂ cos θ̂)
− kL1

R1(r̂ cos θ̂)

)]
exp{i[ψ1(r̂ cos θ̂)− ψ2(r̂ cos θ̂)]}

× exp
[
i(kL2 − kL1)r̂ cos θ̂

]
. (9.7)

However, the λ1 and λ2 used in this discussion makes S(r̂) = 1, so S can be ignored here.

9.1.2 Rabi Frequencies and Adiabatic Potentials

In order to achieve an observable coupling between |n′F ⟩ and |nC⟩ through the potential

V̂C , it is essential that n′ ̸= n. This restriction comes from the fact that high-l Rydberg

states have an average radius approximately equal to n2a0 while the low angular-momentum

states are twice the size for the same n. If n′ = n, the electron wave function overlap would

be too weak to give a matrix element that could provide measurable population transfer.

As a result, n′ ∼ n/
√
2. In this discussion, n = 32, n′ = 21, and ωb = 2π × 4.2 THz. The

radial wave function overlap of Ug(re) and Ue(re) for states |g⟩ = |21F ⟩ and |e⟩ = |32C⟩
respectively is shown in Fig. 9.3.
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Figure 9.3: Figure taken from [9]. Depiction of electronic wave functions |g⟩ = |21F ⟩ (blue)
and |e⟩ = |32C⟩ (red) in the radial direction.

Because ωb/(2π) = 4.2 THz, which is the energy separation between |g⟩ and |e⟩, λ1 =

536 nm and λ2 = 532 nm. Therefore, the beams will focus at slightly different waists

w01 = 3.41 µm and w02 = 3.39 µm at the position of the atoms. The matrix element

ℏΩ(R0)/2 is computed at Z0 = 0 along one dimension (X0) of the plane normal to z. The

following integral must be computed

Ω(X0) =
2

ℏ

∫
ψ∗
e(re)|VC(X0 + xe, ye, ze)|ψg(re)d

3re. (9.8)

I compute this integral along X0 using the “NIntegrate” function of Mathematica with the

quasi-Monte-Carlo method of 106 quasi-random samples. In this calculation E1 = 2.49 ×
106 V/m and E2 = 2.50× 106 V/m, which corresponds to an optical power measurement of

150.0 mW for each beam along the z-component of their Poynting vectors [202]. The results

as a function of X0 at Z0 = 0 are represented with the black curve in Fig. 9.4.

The green curve in Fig. 9.4 represents the adiabatic trapping potential Vad of the CS

along X0 that confines the atoms near the center of the tubular laser trap. If the application

of DC electric and magnetic fields along z lifts the degeneracy of the hydrogenic manifold,

I can assume that V̂p does not induce any state mixing and that ψe retains its unperturbed

spatial structure for all CM positions R0. The effects of V̂p can thus be calculated with
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Figure 9.4: Figure taken from [9]. The Rabi frequency (black) for a coupling between |21F ⟩
and |32C⟩ by V̂C . Calculated at Y0 = Z0 = 0 along X0. The adiabatic trapping
potential (green) of the CS brought on by the time-independent ponderomotive
potential V̂p. Here, w01 = 3.41 µm with E1 = 2.49 × 106 V/m and E2 = 2.50 ×
106 V/m

nondegenerate perturbation theory in the first order,

Vad(X0) =

∫
ψ∗
e(re)|Vp(X0 + xe, ye, ze)||ψe(re)d

3re. (9.9)

The diameters of the atomic states involved in this circularization technique are only

∼ 90 nm while the diameter of the radial, LG optical trap is on the order of ∼ 20 µm.

Consequently, Vad ≃ Vp for both |g⟩ and |e⟩ due to weak spatial averaging of V̂p over the

electronic wave functions.

9.1.3 Experimental Implementation

Calculating Newton’s equations to solve for R0(t) for an atom with speed V0 = 5 cm/s

and adiabatic potential Vad predicts that it will take ∼ 0.6 ms to oscillate back and forth in

this sort of radial trap with the optical parameters given above, which is about 60 times the

lifetime of the |g⟩ = |21F ⟩ state, τ21F = 11 µm. An atom that is not prepared near the rim
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of the tubular laser trap would be decayed before it is circularized. Only atoms initialized in

the vicinity of the intensity maximum of the LG beams are able to be circularized. This area

is approximated by a hollow disk of radius r0 ∼ 10 µs and infinitesimal width limited by the

lifetime and speed of the atom dr ∼ V0τ21F (total area is 2πr0dr). The fraction of atoms able

to be circularized is this area divided by πr20. Considering that the Rabi frequencies would

allow about half the atoms in this fraction to be circularized with a 4 µs pulse duration

of beam 1 λ1 = 536 nm, the overall circularization efficiency would be about 5% for this

method.

In a proposed experimental implementation of this circularization scheme, two tunable

lasers giving several 100 mW of optical power at λ1 (beam 1) and λ2 (beam 2) would be

locked to two modes of an optical frequency comb separated at 4.2 THz. Each Gaussian laser

would then diffract off a spatial light modulator (SLM) or digital micromirror device (DMD)

to yield LG lasers of large (> 10) winding numbers −|m| and |m| [205]. A microscope-

objective lens focusing the lasers to the desired waists realizes the ponderomotive laser trap,

and DC fields E0 and B0 are oriented longitudinally along the z-axis to lift the hydrogenic-

state degeneracy. After laser cooling 87Rb atoms in a gray optical molasses [206], field E2 is

adiabatically ramped to prevent atom heating by the trap.

Once the 87Rb atoms are cooled in their ground state, optical pumping would transfer the

atoms in the stretched state, F = 2,mF = 2 . Detuned (∼ 500 MHz) lasers at wavelengths

780 nm, 776 nm, and 1292 nm and large optical powers would prepare the atoms in the

|g⟩ = |21F,mj = 7/2⟩ state for a maximum duration of 1 µs using an off-resonant, three-

photon transition. Beam 1 and wavelength λ1 would then be pulsed on for a duration not

exceeding τ21F to allow circularization to occur.

9.2 Adiabatic Rapid Passage with a Ponderomotive Optical Lat-

tice

I will now consider a one-dimensional optical lattice at λ = 532 nm that provides several

simultaneous even-parity (∆n2 = −∆ml = −2) couplings among the hydrogenic red states

(n1 = 0) for the n = 32 manifold. The lattice’s propagation axis lies perpendicular to

the quantization-axis-defining stabilization fields E0 = 2.736 V/cm and B0 = 5 G, meaning

∆ml = 0 transitions are forbidden by selection rules. Two optical frequencies ωL and ω′
L with

ω′
L−ωL = 2π×350 MHz each have two beams (kL,−kL,k

′
L, and −k′

L in all) which together

make up two co-aligned, optical standing waves. The two frequencies can be derived from an

optical phase-locked loop between two separate lasers or from an acousto-optic modulator.

All four beams are equal in peak intensity I(i) = I(r) = I ′(i) = I ′(r) = I and have a
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carrier-wave optical power of 1.43 W that is focused to a waist of w0 = 10 µm. One set

of counter-propagating beams can be amplitude-modulated with a slowly-varying envelope

of structure f(t). In the case described here, f(t) = e− ln (16)t2/(2τ2), where τ is a parameter

characterizing the duration of the envelope in time. Literally it is the time where f(t) drops

to a quarter of its maximum value. Here, I will set it to τ = 25 µs in the following simulation.

9.2.1 Atom-Field Coupling

The atom-field interaction ÛAF between hydrogenic states |n, n1 = 0, n2 = n−ml − 1,ml⟩
and |n, n1 = 0, n2 = n− |ml|+ 1,ml + 2⟩ is given by

e2f(t)I

mecϵ0ω2
L

cos [(kL + k′L)X0]

× ⟨n, n1 = 0, n2 = n− |ml|+ 1,ml + 2| cos [(kL + k′L)x̂e] |n, n1 = 0, n2 = n−ml − 1,ml⟩ .
(9.10)

For a trapped atom located at the intensity node of the lattice, in the first order expansion

of the matrix element, this coupling can be approximated as a electric-quadrupole potential,

√
πe2f(t)I(kL + k′L)

2

√
30mecϵ0ω2

L

× ⟨n, n1 = 0, n2 = n− |ml|+ 1,ml + 2| r̂2eY 2
2 (θ̂e, ϕ̂e) |n, n1 = 0, n2 = n−ml − 1,ml⟩ .

(9.11)

As noted earlier, the parabolic states |n, n1, n2,ml⟩ can be written as a coherent superposition

of the hydrogenic states in the spherical basis. Explicitly, this relation is given by [60],

|n, n1, n2,ml⟩ =
n−1∑
l=0

(−1)(1−n+ml+n1−n2)/2+l
√
2l + 1

(
n−1
2

n−1
2

l
ml+n1−n2

2
ml−n1+n2

2
−ml

)
|n, l,ml⟩ ,

(9.12)

where the terms in parentheses are the Wigner-3j symbols.

For this case, the possible couplings of the 532-nm optical lattice of two frequencies ω′
L

and ωL when atoms are initialized in |n = 32, n1 = 0, n2 = 28,ml = 3⟩ is shown in Fig. 9.5,

where the solid lines are desired couplings conducive to circularization and the dashed arrows

indicate “leakage” transitions that reverse the CS production. The strong Zeeman interaction

given by the B0 = 5.0 G magnetic field in this study, shifts the “leakage” transitions out of

resonance throughout the entire ARP scheme, allowing only the bottom rung of states in
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Fig. 9.5 to be considered. A similar technique for preventing the undesired couplings was

performed in [75].

3 4 5 6 7 29 30                     31

W
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Figure 9.5: Figure taken from [9]. Hydrogenic manifold with stabilization fields E0 and B0

applied. A one-dimensional optical lattice consisting of two colors ωL and ω′
L

couples parabolic states of the same parity through the green arrows. The solid
green arrows are useful for circularization while the the dashed arrows cause
coherent population loss into the middle of the hydrogenic manifold.

The eigenenergies for the parabolic states, unperturbed by the laser field, are

W = −hc
(

m+

me +m+

)
R∞

n2
+

3

2
E0ea0n(n1 − n2) +

eℏB0

2me

(ml + gsms)

− 1

4
πϵ0a

3
0E

2
0n

4[17n2 − 3(n1 − n2)
2 − 9m2

l + 19], (9.13)

where m+ denotes the mass of the atom’s ionic core, M = m+ +me. Now, let’s assume that

the atoms are located exactly at the stable equilibrium positions of the lattice wells, i.e., the

intensity minima. The energy lost by the laser field ℏ(ω′
L − ωL) = ℏωRF,0 = h × 350 MHz

due to the exchange in mode numbers taking place during the ponderomotive interaction

can be added to the energy W . One can consider this addition of imparted energy from the

laser to the atom as the dressed-atom picture [69; 66]. Specifically, when only considering
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the n1 = 0 states in the hydrogenic manifold, non-adiabatic energy levels are

W ′ = W +
n2

2
ℏωRF (t) + U0,n2 , (9.14)

where U0,n2 is the ponderomotive shift on the Rydberg state that changes as n2 decreases.

For the ARP method of circularization, the RF beat frequency, ωRF (t), between the two

co-aligned lattices is a linear function of time with ωRF (t) = ωRF,0 +αt, where α = ∆ωRF/τ

is the chirp of the beat frequency. The simulation below has α = 2π × 56.4 kHz/µs.

Energies W ′ would be diagonal in the Hamiltonian if the previously introduced couplings

were zero. Including the nonzero atom-field couplings between states of quantum numbers

n2,ml and n2 − 2,ml +2 implies that the parabolic basis is no longer good for this Hamilto-

nian. After diagonalization, there exists an adiabatic eigenstate |j⟩ that is a time-dependent

superposition of all parabolic states. At the beginning of the ARP sequence, this adiabatic

state is the |n, 0, n− 4, 3⟩ parabolic state, which has |nF ⟩ admixture. Towards the end of

the ponderomotive laser coupling and beat-frequency sweep, the system should approach

population inversion to the |nC⟩ state, provided that no diabatic transitions occur.

Adiabatic states |j⟩, engendered by the mixing of parabolic states |i⟩ = |n, n1, n2,ml⟩
through the ponderomotive atom-field coupling, can be thought of as a unitary transforma-

tion D̂ of |i⟩. Thus, as explained in [66],

|j⟩ =
∑
i

Dij |i⟩ (9.15)

and

|i⟩ =
∑
j

D∗
ji |j⟩ , (9.16)

which, under the Schrödinger equation,∑
j

[iℏ∂t(D∗
ji |j⟩) = ĤD∗

ji |j⟩] (9.17)∑
j

[iℏḊ∗
ji |j⟩+ iℏD∗

ji∂t |j⟩ = ĤD∗
ji |j⟩] (9.18)∑

j

[iℏ ⟨j′|Dij′Ḋ
∗
ji |j⟩+ iℏ ⟨j′|Dij′D

∗
ji∂t |j⟩ = ⟨j′|Dij′ĤD

∗
jiδjj′ |j⟩]. (9.19)

Note that the diagonalized Hamiltonian DijĤD
∗
ji |j⟩ ⟨j| has no off-diagonal terms. Term

iℏ ⟨j′|Dij′Ḋ
∗
ji |j⟩ yields noticeable couplings between the adiabatic states |j⟩ and |j′⟩, pro-

vided that Dij′Ḋ
∗
ji ∼ DijĤD

∗
ji. Such non-adiabatic couplings would threaten the fidelity in

the ARP scheme for circularization, as a portion of atoms in the state |j⟩ that evolves to |nC⟩
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at the end of the sequence would be transferred to state |j′⟩. Ideally DijĤD
∗
ji >> Dij′Ḋ

∗
ji,

which, for a two-level system, is quantified by an adiabaticity parameter [207; 208],

Γ =
| ⟨i′| ÛAF |i⟩ |2

ℏ|d∆W ′(t)/dt|
, (9.20)

where ∆W ′(t)−W ′
i′(t)−W ′

i (t). If Γ ≥ 4 (a good value for Γ), then the probability of a non-

adiabatic transition from |j⟩ to |j′⟩, P (j → j′), is << 0.01, as given by the Landau-Zener

formula [207; 208],

P (j → j′) = e−2πΓ. (9.21)

Eq. 9.21 is usually only true if one is considering a two-level Hilbert space or a multi-level

basis with a sequence of two-level ARP protocols isolated in time. Using the parameters I

lay at the beginning of the section, where the maximum Rabi frequency is 2π × 1.90 MHz

for the |32, 0, 18, 13⟩ → |32, 0, 16, 15⟩ coupling, multiple parabolic states can be populated at

any given time throughout the ARP sweep, meaning the two-level Landau-Zener parameter

is not valid in this case. However, ensuring that Γ is as large as possible for any of the

couplings is good practice to minimize the non-adiabatic transitions.

9.2.2 Simulation

Now I will present the simulation of this type of ARP scheme using ponderomotive laser

couplings among the hydrogenic states to see the sort of efficiencies this method would

provide using the commonly accessible experimental parameters given at the beginning of

the section.

Numerical integration of the time-dependent Schrödinger equation, consisting of every

two of the bottom n1 = 0, red states of the n = 32 hydrogenic manifold, from ml = 3 to

ml = 31, the CS, is performed. Consideration of decay Γn,0,n2,ml
by spontaneous emission,

blackbody radiation, and photoionization is included in the diagonal terms by introduc-

ing −iΓn,0,n2,ml
cn,0,n2,ml

(t)/2 in the diagonals of the matrix. The Mathematica “NDSolve”

algorithm is used to carry out the integration. Fig. 9.6(a) shows the results of this in-

tegration while Fig. 9.6(b) shows the time-dependent energies W ′ in the adiabatic basis.

Each colored curve represents a parabolic state, with the leftmost red curve representing

population P in |32, 0, 28, 3⟩ and the rightmost green curve representing the population in

|32C⟩ = |32, 0, 0, 31⟩.
Note that there are still leftovers in the cyan curve, representing |32, 0, 2, 29⟩, implying

that the ARP efficiency (ignoring the decay), is 89%. When decay is considered, the absolute

efficiency becomes 77%. Lower-angular-momenta Rydberg states at n = 32 have lifetimes
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Figure 9.6: Figure taken from [9]. Probability P of atom starting in |32, 0, 28, 3⟩ at the
beginning of the sequence occupying each coupled parabolic state all the way to
the circular state (green curve). Each parabolic state is also characterized by
an integer number, n2/2, of inelastic photon scatters through the ponderomotive
effect. In (b), adiabatic energies of the dressed parabolic states are shown as a
function of time. The bottom adiabatic energy evolves to |32C⟩ at the end of
the sequence.

of ∼ 50 µs. Experimentally, the decay rate of the CS can be reduced through blackbody

shielding and Purcell suppression [146], extending its lifetime to at least ∼ 10 ms. Thus, one

would want to sweep ωRF (t) faster at the beginning of the ARP protocol and slower near

the end, making α time dependent. Determining the best chirp rate could be done through
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optimal-control methods [209].

I ignored the “leakage” couplings represented by the green, dashed lines in Fig. 9.5, as the

magnetic field B0 shifts theml toml−2 transitions out of resonance by 28 MHz. Additionally,

the ml-dependent second-order DC Stark shifts add to this detuning. If there was no B0

field and/or the E0 field was weak enough to make second-order DC Stark effects negligible,

these “leakage” transitions would contribute to a great deal of population loss towards the

center of the hydrogenic manifold. Engineering σ+- or σ−- polarized RF fields for the ARP

scheme was a way to circumvent this inefficiency in [61; 200; 153]. But how can couplings

reminiscent of σ+- or σ−-polarized-RF transitions be realized with a ponderomotive optical

lattice?

9.3 Atom-Field Couplings with Time-Orbiting Ponderomotive Op-

tical Lattice

The answer to the question posed in the previous section is to add a second lattice

orthogonal to both the x- and z-axis. Both lattices (1 and 2) would consist of counter-

propagating fields, E
(i)
1/2 and E

(r)
1/2, with the incident fields i being phase modulated at a

controllable RF frequency, ωRF , that is swept over the frequency spacings of the hydrogenic

states shifted by E0 or B0 (if a magnetic field is necessary). The modulation signals must

have an equal RF amplitude η1 and be out of phase by π/2. Therefore, the following fields

must make up the lattice,

E
(i)
1 (x, t) = ϵ̂(1)E (i)

1 cos [kLx− ωLt+ η1 cos (ωRF t)] (9.22)

E
(i)
2 (x, t) = ϵ̂(2)E (i)

2 cos [kLy − ωLt+ η1 sin (ωRF t)] (9.23)

E
(r)
1 (x, t) = ϵ̂(1)E (r)

1 cos (kLx+ ωLt) (9.24)

E
(r)
2 (y, t) = ϵ̂(2)E (r)

2 cos (kLy + ωLt), (9.25)

where ϵ̂(1) ⊥ ϵ̂(2) to prevent cross-talk. Recall that x = X0 + xe and y = Y0 + ye are the

coordinates in the lab-frame. When E (i)
1 = E (i)

2 = E (r)
1 = E (r)

2 = E , with E =
√

2I/(cϵ0), the

Rydberg atom trapped at the intensity minimum of the two-dimensional lattice well sees a

time-orbiting potential with a period at the order of the Kepler frequency.

On average, the orbiting potential has no net effect on the atom’s CM dynamics but

does induce dipole-allowed, odd-parity couplings between the internal hydrogenic states

|n, 0, n2,ml⟩ and |n, 0, n2 − 1,ml + 1⟩. After taking a time-average over the Kepler frequency,

the ponderomotive potential takes the form of a typical two-dimensional lattice potential that

exerts a conservative, sinusoidal force on the CM. The time-independent ponderomotive po-

185



tential is, considering the parameters mentioned above,

Up(X0+x̂e, Y0+ŷe) =
e2I

cϵ0meω2
L

[
J0(η1) cos [2kL(X0 + x̂e)]+J0(η1) cos [2kL(Y0 + ŷe)]+J

2
0 (η1)+1

]
(9.26)

This sort of system has parallels to the time-orbiting potential (TOP) trap that was used in

generating the first Bose-Einstein condensate [210; 81], where there is no risk in heating the

atom’s CM by the orbit on average.

I shall show that the two-dimensional phase-modulation presented here provides only

couplings from ml to ml +1. At X0 = Y0 = λ/4, where the atom is trapped at the potential

minimum of Ûp

UAF (λ/4 + x̂e, λ/4 + ŷe, t) = −e
2IJ1(η1)

cϵ0meω2
L

{[
sin (2kLx̂e)− i sin (2kLŷe)

]
eiωRF t

+
[
sin (2kLx̂e) + i sin (2kLŷe)

]
e−iωRF t

}
. (9.27)

Under the rotating-wave approximation (RWA), the matrix element becomes

⟨n, 0, n2 − 1,ml + 1| ÛAF |n, 0, n2,ml⟩ = −e
2IJ1(η1)

cϵ0meω2
L

∞∑
p=0

(−1)p(2kL)
2p+1

(2p+ 1)!

× ⟨n, 0, n2 − 1,ml + 1| (x̂2p+1
e + iŷ2p+1

e ) |n, 0, n2,ml⟩ ei(∆W/ℏ−ωRF )t. (9.28)

For a first-order, p = 0 approximation of this matrix element, the matrix element is propor-

tional to that of a σ+-polarized RF wave,

⟨n, 0, n2 − 1,ml + 1| ÛAF |n, 0, n2,ml⟩ ≃ −
2
√

8π/3e2IJ1(η1)kL
cϵ0meω2

L

⟨n, 0, n2 − 1,ml + 1|

× r̂eY
1
1 (θ̂e, ϕ̂e) |n, 0, n2,ml⟩ ei(∆W/ℏ−ωRF )t. (9.29)

Expressing the coupling of ml with ml + 1 in terms of a Rabi frequency
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Ωml,ml+1 =
2
ℏ | ⟨n, 0, n2 − 1,ml + 1| ÛAF |n, 0, n2,ml⟩ | results in the following approximation,

Ωml,ml+1 ≃
4
√
2e2IJ1(η1)kL
ℏcϵ0meω2

L

∑
ll′

(−1)−n−n2+l′+l ⟨n, l′| r̂e |n, l⟩ (2l + 1)(2l′ + 1)

×
( n−1

2
n−1
2

l
ml−n2

2
ml+n2

2
−ml

)(
l 1 l′

ml 1 −ml − 1

)(
l 1 l′

0 0 0

)( n−1
2

n−1
2

l′

ml−n2

2
+ 1 ml+n2

2
−ml

.

)
.

(9.30)

Comparing the approximate Rabi frequencies of the two-dimensional POL with the one-

dimensional lattice reveals that the 1D lattice scales as k2L while the 2D scales as kL. Because

the electronic wave functions are still smaller than λ, quantity kL ⟨n, l′| r̂e |n, l⟩ is less than

one. Therefore, the odd-parity, atom-field coupling should fundamentally be stronger than

the coupling for the even-parity case.

All of the above equations concerning the time-orbiting ponderomotive optical lattice

are valid as long as all intensities are equal, all polarizations of counter-propagating beams

are perfectly aligned parallel to each other and perpendicular to the orthogonal lattice, the

modulation signal is evenly split in power between both arms, and the phase difference

between the split modulation signals is π/2. Any imperfection in alignment or control of

these parameters would introduce a coupling fromml toml−1 and reverse the circularization.

The ponderomotive light shift applied to the atom’s internal state when it is located

exactly at X0 = Y0 = λ/4 differs as ml changes. The general alignment of the electron’s wave

function transverse to the quantization axis increases with ml, causing a weaker adiabatic

energy deviation from the position-independent energy offset Uoffset as the ponderomotive

potential is averaged over the electron density. This deviation is not the weakest for the CS

because the overall electron radius tends to decrease as l and ml increases. Because these

light shifts are state-dependent, they upset the efficiency of the ARP procedure.

The phase modulation of the optical lattice allows control over this state-dependent light

shift, and the differences can be minimized by reducing the J0(η1) mode of the EOM output.

All the while, η1 can be set such that J1(η1) is maximized and the Rabi frequencies Ωml,ml+1

reach the 2π × 10 MHz level.

In a comparison of the peak Rabi frequencies, Ω, and light shifts U0,n2 provided by the 1D

versus 2D, time-varying optical lattice, the n = 32 hydrogenic manifold is considered with

λ = 532 nm and I = 0.907 MW/cm2. Here J0(η1) = 0.17 and J1(η1) = 0.57. Fig. 9.7 shows

the comparison using the same optical parameters that were used in the previous section for

the one-dimensional lattice.
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Figure 9.7: Figure taken from [9]. State-dependent light shift U0,n2 for an atom located
at X0 = Y0 = λ/4 in the lattice for the two-dimensional lattice (blue) and
one-dimensional lattice (red) is shown in (a) as ml is varied. Rabi frequencies
coupling the parabolic states for ml → ml+1 transitions (blue) and ml → ml+2
transitions (red) by the two- and one-dimensional optical lattices respectively are
depicted in (b).

Note that the Rabi frequencies are considerably stronger for the two-dimensional, time-

orbiting ponderomotive optical lattice. Also note that the variations in U0,n2 are less sig-

nificant, as J0(η1) has been reduced. Both effects, coupled with the fact that “leakage”
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transitions are eliminated entirely, would result in faster and more efficient ARP. In fact, the

Rabi frequencies provided by the time-orbiting lattice could even bypass ARP altogether and

allow direct excitation to the CS through pulse engineering of the modulation signals using

a quantum-optimal-control algorithm similar to the ones done in [200; 153]. The ultimate

goal of that endeavour would be to initialize a sample of CSs within a few ns.

Even though reducing J0(η1) lowers the state-to-state light shifts on the atom by the

lattice, it greatly reduces the full-modulation lattice depth to ∼ 1 MHz or less. This is not a

problem if the Rydberg atom starts as a ground-state atom that is laser cooled to the lowest

motional state, ν = 0, of lattice and stays there as it is excited to Rydberg state. The use

of optical tweezers on the atoms would also provide greater control on the atom’s position

and motion within the lattice well, making the weak lattice depth workable.

9.4 Discussion

I will now make a comparison of the laser-based circularizaiton procedures outlined in

this chapter. All of the proposed circularization methods described in this chapter replace

the in-vacuum, near-field RF antennas used in ARP [45; 75], which suffer more from ineffi-

ciencies in field polarization and homogeneity than at optical wavelengths, with laser fields

that have cleaner spatial modes that can be focused down to the extent of the Rydberg

wave function and be more easily aligned directly onto the atom. Thus, site-selective cir-

cularization is no longer prohibited by the diffraction limit of the field’s spatial mode, and

polarization inefficiencies can be neglected through the intensity-dependent behavior of the

ponderomotive potential. Furthermore, the ease of working with laser beams outweigh the

hassle of constructing and calibrating high-current and supreconducting magnets found in

traditional circularization methods that require significant magnetic fields beyond 5 G, such

as certain ARP schemes and the crossed-fields method [75; 71; 72; 73; 74], described in

Chapter IV. The all-optical methods found in this chapter are expected to require fields no

greater than the ∼ 5 G level. Lastly, the latter two methods described involving rectilinear

one- and two-dimensional ponderomotive optical lattices offer strong atom-field couplings at

the ∼MHz level that would aid in the speed and efficiency of the ARP procedure compared

to the one performed in [45].

Lasers can now have the functionality of cooling ground-state atoms, as well as exciting

both low- and high-l Rydberg states up to the CS when considering the methods presented

in this chapter. The first-discussed method of circularization involving LG beams of opposite

winding numbers offers the advantage of generating a large-volume, low-density sample of

CSs, based on the beam parameters. These conditions would ensure that the CSs are non-
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interacting, making the system attractive for high-precision spectroscopy experiments and

tests of fundamental physics [211; 26]. Additionally, there is the advantage of this method

requiring a single, ponderomotive transition of large ∆l rather than a sequence of transitions.

A major drawback of this method is its large inefficiency of ∼ 95%, mainly due to increasing

radius of the vortex mode with increasing |m|.
A much more efficient means of optically circularizing Rydberg states is to use a one-

dimensional optical lattice of two laser frequencies ω′
L and ωL that are separated by a tunable

beat frequency ωRF (t). This frequency is resonant with the Stark and Zeeman splitting

of the hydrogenic manifold by parallel stabilization fields of strength E0 and B0 that are

perpendicular to the lattice-propagation axis. ARP can be performed by sweeping ωRF

through the this resonant frequency and adding a Gaussian envelope to one of the lattice

frequencies. With the conditions outlined in Section 2, the overall circularization efficiency

is estimated to be ∼ 89%. However, a large magnetic field at 5 G is required to tune the

ml → ml − 1 de-circularizing, leakage transitions out of resonance. As mentioned in the

paragraph above, larger magnetic fields are experimentally more of a nuisance to realize.

To combat the leakage transitions, ∆ml = +1-selection rules need to be introduced in

the system. Traditionally, this has been done by designing RF electrodes that give rise to

σ+-polarized fields. Effecting atom-field couplings with the ponderomotive interaction and

applied laser fields means that an optical lattice orthogonal to the first of equal potential

depth. Both lattices must be phase modulated at ωRF and equal modulation depths with

one of the arms having a modulation out of phase by pi/2. Effectively, the laser’s atom-field

coupling would resemble a σ+-polarized (or σ−-polarized) RF field like the ones found in [61;

152; 153]. Such a two-dimensional lattice would allow a reduction of B0 and fundamentally

have matrix elements stronger than the ones in the previous case. Presented in Fig. 9.7(b),

the lattice conditions of the 2D-potential yield larger Rabi frequencies reaching 10 MHz.

As a disadvantage for this method, any misalignment or mismatch in this time-dependent

optical field could add a π or σ− component to the atom-field coupling and de-circularize

the sample throughout the ARP sequence.

A drawback for all the schemes presented in this chapter is the requirement of an ultracold

Rydberg sample to begin with, as the atoms must be deeply trapped to prevent significant

Doppler-shifted features [85; 7]. Experiments with CSs involving thermal atomic beams

passing through superconducting, high-Q cavities [46] would find these methods largely in-

efficient.

In summary, I have presented an outline to achieve circular-state Rydberg atoms with

novel optical lattice traps that are periodically driven. One method of driving these lattices,

phase-modulation, has been experimentally demonstrated in the previous chapter through
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spectroscopy of low-angular-momentum Rydberg levels [7]. Goals for obtaining these CSs

include furthering the field of fundamental physics by making an accurate and precise mea-

surement of the Rydberg constant [211; 26] and detecting axionic dark matter with CSs

high-Q microwave cavities.
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CHAPTER X

Outlook

The bulk of this dissertation highlights the role of optical lattices for applications in

precision metrology and searches of fundamental physics. Rubidium offers a wide array of

atomic states attractive for such endeavors. This dissertation discussed two sets of states in

particular: the 5Dj levels, applicable for portable optical clocks [25; 28; 38; 39], and circular-

state Rydberg atoms, suitable for high-precision spectroscopy of the Rydberg constant [211;

26] and searches of axions, a proposed dark-matter candidate [50; 1].

Integration of an optical-lattice potential or dipole trap with rubidium atoms in the 5D

state could potentially enhance the performance by canceling the AC Stark shifts imple-

mented by the two-photon transition and confining the atoms within a potential minimum.

Accurate knowledge of the AC polarizability at various laser wavelengths for this use in the

system is thus necessary. An experiment described in this dissertation measured the 5D3/2

polarizability with a deep, 1064-nm optical lattice enhanced by a near-concentric, in-vacuum

cavity with a finesse of 600. Double-step, two-photon laser spectroscopy was performed and

obtained a measurement of αS
5D3/2

(ωL = 2πc/1.064 µm)= −524(17) atomic units with the

tensor polarizability lying within the measurement uncertainty. The rate of photoionization

of the 5D atoms, measurable by the spectral linewidths yielded an experimental cross-section

of 44(1) Mbarn. AC polarizabilities of other optical wavelengths that can be introduced to

the system in the form of lattices and dipole traps, conducive to better clock performance

than λ = 1064 nm, could also be measured with similar methods.

Circular-state (CS) Rydberg atoms live the longest of all other levels within a principal

quantum number n. Furthermore, their electronic structure is a simple torus around the

inner ion core with a vanishing probability density towards the nucleus that scales with l

as rle. Therefore, no systematic effects from the nuclear charge density affect the accuracy

of R∞. Insensitivity to the nuclear charge density is important because there has been

conflicting measurements of the proton charge radius in recent years[27; 17; 18; 47; 48] that
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have been tied to possibly inaccurate values of R∞ originating from spectroscopy of low-l

atomic states.

In the past, the long lifetimes of CSs were useful in non-destructively measuring the

time-evolution of microwave photons trapped in a resonator by reading out the phase shift

the photon imprinted on the circular electronic wave function by the AC Stark effect [46].

Because such an apparatus offers sensitivity of RF and microwave fields at the single-photon

level, it would be an ideal platform for sensing axion-converted microwaves [50].

A key procedure within these Rydberg-atom experiments is the initialization of exotic,

high-l Rydberg states that have sufficiently long lifetimes. This thesis introduces periodi-

cally driven ponderomotive optical lattices as an alternate method for Rydberg atom cir-

cularization. Experimental work here has demonstrated the feasibility of phase-modulated

optical lattices with low-angular-momentum Rydberg states, and proposed phase-modulated

and moving lattices for circularization. My dissertation argues that the spatial-selectivity,

electromagnetic mode purity, and insensitivity to orbital-angular-momentum selection rules

make periodically driven ponderomotive laser traps a tool for circular-state engineering su-

perior to some existing methods [45; 71; 75; 74].

As is typical in any scientific field, opportunities for new experiments blossom from the

conclusions of a given experiment. Since this growing tree of experiments is infinite, and the

tenure of a graduate student is finite, in the following sections, I briefly detail the possible

future trajectories for the Rb optical lattice experiments in the Raithel Lab.

10.1 Future Directions: A Lattice-Tweezer Hybrid Trap for En-

gineering Circular States

As a means of making the circularization methods discussed in Chapter IX more efficient,

optical tweezer arrays of Rydberg atoms [134; 105; 196] can restrict the CM motion by the

tweezer beam’s large trapping potential and allow freedom in atomic arrangement along the

various wells of the optical lattice.

An exciting experimental construction, shown in Fig. 10.1, is a hybrid optical trap con-

sisting of a two-dimensional tweezer array with trapping beams aligned along stabilization

fields E0 and B0. Aligned transverse to the tweezer beams and stabilization fields are two

arms of the two-dimensional, time-orbiting optical lattice. In each dimension, there are two

lattice beams: a phase-modulated laser and an unmodulated laser. The phase differences of

between the modulation signals of the beams is π/2, meaning the direction of the optical

modulation is in a circular, “stirring” motion. When this stirring occurs at a rate equal

to the DC Stark and Zeeman splittings effected by the stabilization fields, a low-l Rydberg
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state may be transferred to the circular state through the methods described in Sections 9.2

& 9.3.

E0 B0

tweezer-trapped atom

modulation direction

Figure 10.1: A hybrid trap featuring a time-orbiting optical lattice and two-dimensional
tweezer array.

This “hybrid” trap of optical tweezers and a two-dimensional optical lattice grants the

benefit of programmable initialization of atoms within the potential minimum of a specified

lattice site before the circularization sequence. As discussed in Chapter VIII, an atom pre-

pared near a potential maximum is subject to first-order Doppler shifts and makes Doppler-

free ∆ν = ±2 sidebands to the energy level more probable. With this apparatus, it can

be ensured that atoms are located exactly at the potential minima of the lattice. Also the

tweezer array would allow a proposed non-demolition readout [133] of circular states by an

ancillary atom in a low-l Rydberg state that is co-trapped along the longitudinal axis of the

tweezer beams.

Programmable arrangement of the atoms would provide control over Rydberg-Rydberg

interactions, which are undesirable for fundamental physics applications. The tweezer-

trapped circular states, engineered by the circularization scheme mentioned above, could

then be selectively loaded into the moving optical lattice that transports them through the

high-Q cavity with the axion-converted microwaves entrapped inside. Alternatively, high

precision spectroscopy with a microwave pulse applied to the circular Rydberg state would

extract the Rydberg constant. Controlled loading and arrangement of circular-states is most
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efficiently done with a single-atom optical trap.

10.2 Beyond Fundamental Physics: Quantum Processing and Sim-

ulation

The technology developed in Chapter 8 involving shaken optical lattices for Rydberg

states has far-reaching applications beyond fundamental physics. Because ∆ν = 0 for odd-

parity transitions in this means of ponderomotive laser manipulation, efficient quantum

simulators consisting of |nS⟩ and |nP ⟩ Rydberg states can now be realized [189; 135; 212].

In particular, the quantum walks described in [189] can now be simulated through site-

selective excitation of |nS⟩ or |nP ⟩ atoms trapped in tweezer arrays. The walking is based on

dipole-dipole shifts and internal-state transitions between two atoms at different lattice sites.

Lattice beams are able to be focused down to the similar waist sizes as the tweezer beams

and be co-aligned with them. Additionally, these odd-parity ponderomotive transitions can

realize the internal state couplings required for synthetic lattices [212]. In [212], a Su-

Schrieffer-Heeger (SSH) Hamiltonian [213] is created through tunable microwave couplings

among Rydberg |nS⟩ and |nP ⟩ states. The couplings create a tunneling term in the Hamilto-

nian and allows distinctive “edge” and “bulk” states to appear in spectroscopy of the lattice’s

eigenstates. The laser interaction described in Chapter VIII has the ability to replace mi-

crowaves for the couplings and can be used in sync with a spatial-dimension lattice of atoms in

tweezer arrays. Other proposals and experiments of Rydberg-atom simulators involving both

odd- and even-parity interactions would also find use with this method [134; 214; 102; 136]

The long lifetimes of circular-state Rydberg atoms offer extended coherence times for low-

error quantum computers. One- and two-qubit gates involving such atoms were proposed

in [133]. Ponderomotive transitions were proposed as means of manipulating the internal

states involved in the computation schemes for [133] with tightly focused Laguerre-Gaussian

beams of opposite winding numbers.

The experiments I just described would require no inhomogeneous broadening from dif-

ferential light shifts and near-perfect trapping efficiency. Advanced methods of laser cooling,

including Raman sideband cooling to the ν = 0 motional state [215] and gray optical mo-

lasses [216; 206] would be required to achieve a well-defined pulse area for quantum simulation

and information processing. In addition to the appropriate choices of states in the transition

(e.g.,
∣∣69S1/2

〉
→
∣∣69P1/2

〉
,
∣∣69S1/2

〉
→
∣∣70S1/2

〉
, or

∣∣85S1/2

〉
→
∣∣85P1/2

〉
), the angle between

the lattice beams, θ ̸= π, and wavelength can be adjusted to give the appropriate lattice

spacing that makes a given transition magic.

The time-orbiting ponderomotive optical lattice presented in Chapter IX is a suitable
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platform for the engineering of Rydberg-electron wave packets [217]. The ARP sequence de-

scribed in Section 9.2 does not need to end with |nC⟩. Any of the intermediate states existing

in the time frame from −τ to 0.5τ of the ARP sequence is a parabolic wave function that

is elliptical in shape. Tests of the quantum-classical correspondence principle for Keplerian

orbits would be an interesting investigative direction upon the creation of these wave pack-

ets [218]. Furthermore, observation high-l Rydberg-ground trilobite molecules [219] would

be an exciting consequence of engineering these electronic wave functions.

While ponderomotive interactions with cold Rydberg atoms have been thoroughly ob-

served in an experimental setting, as shown in this work and previous [199; 170; 154; 157;

62; 63], their compatibility with portable atomic sensors [140; 141; 143; 142] would require

evidence of ponderomotive laser couplings with a room-temperature vapor.
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APPENDIX A

The Minimal Coupling Hamiltonian

In Chapter II, I give my description of tightly-bound atoms in optical lattices starting

from the minimal coupling Hamiltonian on the valence electron. Chapter IV features some

discussion on Rydberg atoms in the presence of RF and static electromagnetic fields for which

a minimal-coupling Hamiltonian is necessary to model all resulting quantum-mechanical

phenomena. Because these sections of this thesis rely so profoundly on this operator, I

believe it is necessary to include its origins. Here I will discuss the derivation of minimal

coupling Hamiltonian Ĥ using a free electron as the exemplary particle,

Ĥ =
1

2me

[p̂+ eA(r̂; t)]2 − eϕ(r̂), (A.1)

where p̂ is the canonical momentum operator that is conjugate to the electron’s canonical

position operator r̂ in the laboratory frame. ϕ and A are the scalar and vector potentials

of the electromagnetic field, which can include a linear superposition of DC and AC E- and

B− fields.

A.1 Lagrangian Mechanics for an Electron in an Electromagnetic

Field

An electron in an electromagnetic field of potential Aµ = (ϕ,A) undergoes a Lorentz

force, classically described by

mer̈ = e∇ϕ(r) + e
∂A(r; t)

∂t
− eṙ×∇×A(r; t), (A.2)
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Eq. A.2 can be rearranged using the time-derivative-operator identity d/dt = (ṙ · ∇) + ∂/∂t

and the vector identity ṙ×∇×A = ∇(ṙ ·A)− (ṙ · ∇)A

mer̈ = e∇ϕ(r)− e∇[ṙ ·A(r; t)] + e
dA(r; t)

dt
= e∇ϕ(r)− e∇[ṙ ·A(r; t)] + e

d

dt

∂

∂ṙ
(ṙ ·A(r; t))

= e∇ϕ(r)−e∇[ṙ·A(r; t)]+e
d

dt

∂

∂ṙ
(ṙ·A(r; t))−e d

dt

∂

∂ṙ
ϕ(r) = −∇U(r; ṙ; t)+ d

dt

[
∂

∂ṙ
U(r; ṙ; t)

]
,

(A.3)

where −e d
dt

∂
∂ṙ
ϕ(r) = 0 and U(r; ṙ; t) is the velocity-dependent, generalized potential associ-

ated with the generalized force (Qx, Qy, Qz), where Qj for j = x, y, z follows

∂T

∂rj
− d

dt

(
∂T

∂ṙj

)
+Qj = 0, (A.4)

where, for the case of the electron, the kinetic energy is T = 1
2
meṙ · ṙ. The system is subject

to the Euler-Lagrange equations for a given Lagrangian L = T − U ,

∂L

∂rj
− d

dt

(
∂L

∂ṙj

)
= 0, (A.5)

true for all coordinates of r and ṙ. From Eqs. A.4 & A.5, I obtain

Qj = −∂U
∂rj

+
d

dt

(
∂U

∂ṙj

)
. (A.6)

For the Lorentz force,

U(r; ṙ; t) = −eϕ(r) + eṙ ·A(r; t), (A.7)

which results in the following Lagrangian,

L =
1

2
meṙ

2 + eϕ(r)− eṙ ·A(r; t). (A.8)

When we find the canonical momentum, p = ∂L
∂ṙ
, I arrive at

p = pkinetic − eA(r; t), (A.9)

where pkinetic = meṙ is known as the kinetic momentum of the system. Because the Hamilto-

nian is a sum of the kinetic energy due to the kinetic momentum and a velocity-independent
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potential V , we can write

H =
1

2me

[p+ eA(r; t)]2 − eϕ(r). (A.10)

In operator form, we have Eq. A.1.
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[44] Y.-J. Chen, L. F. Gonçalves, and G. Raithel, Phys. Rev. A 92, 060501(R) (2015).

203



[45] R. G. Hulet and D. Kleppner, Phys. Rev. Lett. 51, 1430 (1983).

[46] S. Haroche, Rev. Mod. Phys. 85, 1083 (2013).

[47] N. Bezginov et al., Science 365, 1007 (2019).

[48] A. Grinin et al., Science 370, 1061 (2020).

[49] E. Tiesinga, P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 93, 025010
(2021).

[50] F. Chadha-Day, J. Ellis, and D. J. E. Marsh, Science Advances 8, eabj3618 (2022).

[51] I. Ogawa, S. Matsuki, and K. Yamamoto, Phys. Rev. D 53, R1740 (1996).

[52] R. Bradley et al., Rev. Mod. Phys. 75, 777 (2003).

[53] A. R. Zhitnitskii, Sov. J. Nucl. Phys. 31 (1980).

[54] M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. B 104, 199 (1981).

[55] J. E. Kim, Phys. Rev. Lett. 43, 103 (1979).

[56] M. Shifman, A. Vainshtein, and V. Zakharov, Nucl. Phys. B 166, 493 (1980).

[57] M. S. Turner, Phys. Rep. 197, 67 (1990).

[58] L. Zhong et al., Phys. Rev. D 97, 092001 (2018).

[59] C. Boutan et al., Phys. Rev. Lett. 121, 261302 (2018).

[60] T. F. Gallagher, Rydberg Atoms, volume 3, Cambridge University Press, 2005.

[61] A. Signoles et al., Phys. Rev. Lett. 118, 253603 (2017).

[62] K. R. Moore, S. E. Anderson, and G. Raithel, Nature communications 6, 6090 (2015).

[63] K. R. Moore and G. Raithel, Phys. Rev. Lett. 115, 163003 (2015).

[64] K. Moore, A. Duspayev, R. Cardman, and G. Raithel, Physical Review A 102, 062817
(2020).

[65] H. A. Bethe and E. E. Salpeter, Quantum mechanics of one-and two-electron atoms,
Springer Science & Business Media, 2012.

[66] P. R. Berman and V. S. Malinovsky, Principles of Laser Spectroscopy and Quantum
Optics, Princeton University Press, 2010.
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