
Coding Theory and Randomized Sketching for
Distributed Optimization

by

Neophytos Charalambides

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical and Computer Engineering)

in the University of Michigan
2023

Doctoral Committee:

Professor Alfred Hero, Co-Chair
Assistant Professor Mert Pilanci; Stanford University, Co-Chair
Associate Professor Mahdi Cheraghchi
Associate Professor Hessam Mahdavifar

Neophytos Charalambides

neochara@umich.edu

ORCID iD: 0000-0002-8528-1467

© Neophytos Charalambides 2023

mailto:neochara@umich.edu

ACKNOWLEDGEMENTS

It is not easy to express my gratitude towards Professors Hero and Pilanci, since

the margin on this page is ‘too narrow to contain it’, as a famous 17th century math-

ematician once said.1 I am also grateful to my committee members, Professors Cher-

aghchi and Mahdavifar for allowing me to work with them, and taking the time to

discuss various problems with me.

I am immensely thankful to my family, specially my parents, grandmother, sib-

lings, Nico and Roger. Additionally, I was fortunate to have interacted with remark-

able instructors, mentors, friends, peers and colleagues at Michigan and London; and

across the globe, all far too numerous to list. I am also thankful to all the podcast

hosts, whom I spent more hours than I should have listening to during lockdowns

(... and afterwards). Last and most importantly, I am grateful to Jesus Christ for

leading me back to Michigan, and guiding me constantly even when I am not aware

nor appreciative of it. As another well-known mathematician famously exclaimed

thirty years ago, ‘I think I’ll stop here’.

1This was shamelessly taken from another fantastic mentor I am indebted to [285].

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF APPENDICES . xi

ABSTRACT . xii

CHAPTER

I. Introduction . 1

1.1 Coded Computing . 2
1.2 Randomized Numerical Linear Algebra 4
1.3 Dissertation Layout . 7

II. Generalized Fractional Repetition Codes for Binary Coded
Computations . 12

2.1 Introduction . 12
2.2 Preliminaries . 15

2.2.1 Straggler Problem 15
2.2.2 Gradient Coding . 16
2.2.3 Notational Conventions 18

2.3 Binary Gradient Coding . 18
2.3.1 Binary GC Condition 19
2.3.2 Close to Uniform Assignment Distribution 21
2.3.3 Minimum Maximum Load of Workers in a Binary GCS 22

2.4 Proposed Binary Gradient Coding Scheme 24
2.4.1 Encoding Matrix 24
2.4.2 Repetition Assignment for Classes 0 to r − 1 25
2.4.3 Repetition Assignment for Classes r to s 26
2.4.4 Decoding Vector . 26

iii

2.4.5 Validity and Optimality of our GCS 28
2.4.6 Distribution of Assignments for n ≥ s2 30
2.4.7 Task Allocation to Heterogeneous Workers 31

2.5 Binary Coded Matrix Multiplication Schemes 33
2.5.1 CMM-1 — Outer-Product Representation 34
2.5.2 Decoding as a Streaming Process 35
2.5.3 CMM-2 — Augmentation of Submatrices 37
2.5.4 Comparison between CMM-1 and CMM-2 40

2.6 Comparison to Prior Works 41
2.6.1 Reed-Solomon Scheme and Weighted Gradient Coding 42
2.6.2 CMM MatDot Codes 43
2.6.3 CMM Polynomial Codes 43
2.6.4 Connection to Distributed Storage Systems 44
2.6.5 Connection to LDPC Codes 45

2.7 Conclusion and Future Work 45

III. Gradient Coding through Iterative Block Leverage Score Sam-
pling . 47

3.1 Introduction . 47
3.2 Notation and Background . 52

3.2.1 Least Squares Approximation 53
3.2.2 Steepest Descent . 53
3.2.3 Leverage Scores . 54
3.2.4 Subspace Embedding 55
3.2.5 Coded Computing Probabilistic Model 56

3.3 Coded Computing from RandNLA 57
3.3.1 Related Work . 58
3.3.2 Block Leverage Score Sampling 59
3.3.3 Expansion Networks 61
3.3.4 Optimal Induced Distributions 65
3.3.5 GC through Leverage Score Sampling 69
3.3.6 Convergence to x⋆ 72
3.3.7 Approximate GC from ℓ2-s.e. 72

3.4 Experiments . 74
3.5 Conclusion and Future Work 76

IV. Iterative Sketching for Secure Coded Regression 78

4.1 Introduction . 78
4.2 Coded Linear Regression . 81

4.2.1 Least Squares Approximation and Steepest Descent 81
4.2.2 The Straggler Problem and Gradient Coding 82
4.2.3 Secure Coded Computing Schemes 83
4.2.4 The ℓ2-subspace embedding Property 84

iv

4.2.5 Properties of our Approach 85
4.3 Block Subsampled Orthonormal Sketches 86

4.3.1 Distributed Steepest Descent and Iterative Sketching 86
4.3.2 Subspace Embedding of Algorithm 7 89

4.4 The Block-SRHT . 90
4.4.1 Subspace Embedding of the Block-SRHT 91
4.4.2 Recursive Kronecker Products of Orthonormal Ma-

trices . 92
4.5 Optimal Step-Size and Adaptive GC 93
4.6 Security of Orthonormal Sketches 94

4.6.1 Securing the SRHT 95
4.6.2 Exact Gradient Recovery 97

4.7 Experiments . 98
4.8 Concluding Remarks and Future Work 100

V. Securely Aggregated Coded Matrix Inversion 102

5.1 Introduction and Related Work 102
5.1.1 Overview of the Coded Matrix Inversion Method . . 104
5.1.2 Coded Federated Learning 105
5.1.3 Lagrange Interpolation and Polynomial CCMs . . . 107

5.2 Preliminary Background . 108
5.3 Balanced Reed-Solomon Codes 110

5.3.1 Balanced Reed-Solomon Codes for CC 111
5.4 Inverse Approximation Algorithm 114

5.4.1 Numerical Experiments 118
5.5 Secure Coded Matrix Inversion 119

5.5.1 Knowledge of A is necessary 121
5.5.2 Phases (a), (b) — Data Encryption and Sharing . . 123
5.5.3 Phases (c), (d) — Computations, Encoding and De-

coding . 124
5.5.4 Optimality of MDS BRS Codes 127
5.5.5 Time and Space Complexity 128
5.5.6 Comparison to Exact Matrix Inversion 130

5.6 Conclusion and Future Work 131

VI. Approximate Matrix Multiplication by Joint Leverage Score
Sampling . 133

6.1 Introduction . 133
6.2 Joint Leverage Score Multiplication 135

6.2.1 Preliminaries . 135
6.2.2 Joint Leverage Score Sampling 137
6.2.3 Spectral Characterization for AMM 139
6.2.4 Approximation Guarantee 140

v

6.3 Implications to other AMM Algorithms 145
6.3.1 CR−MM Through Approximate Joint Leverage Scores145
6.3.2 Data-Oblivious AMM through Joint Leverage Scores 147
6.3.3 Graph Spectral Sparsifiers 147

6.4 Concluding Remarks and Future Work 148

VII. Conclusion and Future Work . 149

A. Appendix to Chapter II . 156

1.1 Pseudocode of Encoding Matrices B̃C1 and B̃C2 156
1.2 Special Case of CMM-2 . 157
1.3 Numerical Example of the Proposed Encodings and Decodings 158

1.3.1 Example of Algorithm 2 160
1.3.2 Example of CMM-2, with k1 = 1 161

1.4 Proofs of Section 2.4 . 161
1.5 Numerical Experiment — Coded vs. Uncoded 165
1.6 Application of CMM to Distributed Gradient Descent for Frobe-

nius norm Minimization . 166
1.6.1 Nonnegative Matrix Factorization 168
1.6.2 Low-Rank Approximation 169

B. Appendix to Chapter III . 171

2.1 Proofs of Subsection 3.3.2 . 171
2.2 Concrete Example of Induced Sketching 176
2.3 Comparison to the block-SRHT 177
2.4 Contraction Rate of Block Leverage Score Sampling 179
2.5 Weighted Block Leverage Score Sketch 181

C. Appendix to Chapter IV . 187

3.1 Proofs of Section 4.3 . 187
3.1.1 Subsection 4.3.1 . 187
3.1.2 Subsection 4.3.2 . 191

3.2 Proofs of Section 4.4 . 195
3.2.1 The Hadamard Transform 203
3.2.2 Recursive Kronecker Products of Orthonormal Ma-

trices . 204
3.3 Proofs of Section 4.5 . 204
3.4 Proofs of Section 4.6 . 206

3.4.1 Counterexample to Perfect Secrecy of the SRHT . . 209
3.4.2 Analogy with the One-Time Pad 210

3.5 Orthonormal Encryption for Distributive Tasks 210

vi

3.5.1 Securing Linear Regression 211
3.5.2 Securing Logistic Regression 211
3.5.3 Securing Matrix Multiplication 212
3.5.4 Securing Distributive Matrix Inversion 212

D. Appendix to Chapter V . 214

4.1 Additional Material and Background 214
4.1.1 Generator Matrix Example 215

4.2 Distributed Pseudoinverse . 216
4.2.1 Pseudoinverse from Polynomial CMM 218

E. Appendix to Chapter VI — Graph Sparsification by Approx-
imate Matrix Multiplication . 220

5.1 Introduction and Related Work 220
5.1.1 Related Work . 221
5.1.2 Preliminaries . 222
5.1.3 Approximate Matrix Multiplication 223

5.2 Spectral Sparsification . 224
5.2.1 Spectral Sparsifier from CR−MM 225
5.2.2 Multiplicative Spectral Sparsifier 226
5.2.3 Comparison to the Effective Resistances Approach . 228

5.3 Experiment . 229
5.4 Future Directions . 230

BIBLIOGRAPHY . 231

vii

LIST OF FIGURES

Figure

I.1 Idea behind an error-correcting code. Alice delivers an encoded mes-
sage C(x) which is transmitted to Bob through a noisy channel. Bob
then decodes the corrupted codeword w, to recover the original mes-
sage x. 2

I.2 Idea behind a cryptographic protocol. Alice delivers an encrypted
message Enc(m) which is transmitted to Bob through an insecure
channel. Then, an eavesdropper named Eve attempts to intercept the
communication and reveal Alice’s encrypted message. Fortunately,
Eve is not able to do so; as she does not have knowledge of the
corresponding decryption function Dec(·). On the other hand, Bob
can recover the original message m, by performing the decryption:
m = Dec(Enc(m)). 3

I.3 Schematic of a matrix-matrix multiplication coded computing scheme. 4
I.4 Sketching of A, so that the ‘sketch’ SA of A is used as a surrogate. 6
I.5 Dimensionality reduction of a dataset, where N = 200 and r = 100. 7
III.1 Schematic of our approximate GC scheme, at iteration s. Each server

has an encoded block of data, of which they compute the gradient
once they receive the updated parameters x[s]. The central server
then aggregates a subset of all the gradients

{
ĝ
[s]
j

}m
j=1

, indexed by

I [s], to approximate the gradient g[s]. At each iteration we expect a
different index set I [s], which leads to iterative sketching. 50

III.2 Illustration of our GC approach, at iteration s+ 1. The blocks of A
(and b) are encoded through G and then replicated through E⊗ Iτ ,
where each block of the resulting Ψ is given to a single server. At this
iteration, servers Wr1 and WR are stragglers, and their computations
are not received. The central server determines the estimate ĝ[s], and
then shares x[s+1] with all the servers. The resulting estimate is the
gradient of the induced sketch, i.e. ĝ[s] = ∇xLS(S̃[s],A,b;x[s]). . . . 58

III.3 Depiction of an expansion network, as a bipartite graph, for m =∑K
l=1 rl. 63

III.4 residual error for varying ξs . 75
III.5 log residual error convergence . 76
III.6 log convergence with ξ⋆s . 76

viii

IV.1 Illustration of our iterative sketching based GCS, at epoch t+ 1. . . 88
IV.2 Flattening of block-scores, for A following a t-distribution. We ab-

breviate the garbled block-SRHT to ‘G-b-SRHT’. 90
IV.3 Example of how P and D modify the projection matrix Ĥ64. 96
IV.4 log residual error, for A following a t-distribution. 98
IV.5 Example where Π also acts as a preconditioner. 99
IV.6 Adaptive step-size update, for A following a t-distribution. 99
IV.7 Convergence at each step, for the iterative block-SRHT and garbled

block-SRHT, and the non-iterative garbled block-SRHT. 99
V.1 MNIST classification error, where Algorithm 8 is used in Newton’s

method. In red, we depict the error when exact inversion was used. 119
V.2 Algorithmic workflow of the CMIM, as proposed in [54]. The master

shares f(x), an encoding analogous to (5.12), along with β, {η−1j }kj=1.
The workers then recover A, compute their assigned tasks, and en-

code them according to G. Once k encodings Wι are sent back, Â−1

can be recovered. 120
V.3 Flowchart of our proposal, where k = ni = 4 for all i ∈ N4. 121
V.4 Comparison of decoding complexity, when naive matrix inversion is

used (so O(k3)) compared to the decoding step implied by Lemma
5.3.1, for n = 200 and varying s. We also provide a logarithmic scale
comparison. 126

E.1 The Petersen graph is a
√

5/2-approximation of K10 [275]. 221

E.2 Adjacency matrices of G and G̃, for r = 4000. 229
E.3 Percentage of retained edges, after sparsification. 229
E.4 Error in terms of (5.11), for varying r. 230

ix

LIST OF TABLES

Table

II.1 Comparison of the communication, computation and storage required
by the workers in each of our schemes. 40

III.1 Average log residual errors, for six instances of SD with fixed steps,
when performing Gaussian sketching with updated sketches, itera-
tive block-SRHT and iterative block leverage score sketching, and
uncoded SD. 75

V.1 Numerical experiments for Â−1. 118

V.2 Numerical experiments for Â†. 118
V.3 Communication loads and time complexities of our proposed matrix

inversion scheme. 129
A.1 Emulated AWS response times, for CMM-1 and uncoded distributed

matrix multiplication. We report the waiting times of the slowest
responsive worker we need in order to perform CMM-1; i.e. the time
of the fastest n−s+1 worker, and the slowest of the 250th workers in
the uncoded scenario. In bold, we indicate which of the two respective
times was faster. The times reported are in seconds. 166

x

LIST OF APPENDICES

N.

N.

A. Appendix to Chapter II .156

B. Appendix to Chapter III . 171

C. Appendix to Chapter IV . 187

D. Appendix to Chapter V ..214

E. Appendix to Chapter VI .220

xi

ABSTRACT

With the advent of massive datasets, distributed techniques for processing infor-

mation and carrying out computations are expected to enable exceptional possibilities

for engineering, data intensive sciences, and better decision making. Unfortunately,

distributive computation networks are prone to straggling servers. In recent years, uti-

lizing coding-theoretic techniques has proven to be a very powerful tool for recovering

either exact or approximate computations in the presence of stragglers. Furthermore,

existing algorithms for mathematical programming, which are the core component

of techniques for processing large datasets, often prove ineffective for scaling to the

extent of all available data. Over the past two decades, randomized dimensionality

reduction has proven to be a promising tool for approximate computations over large

datasets.

These two approaches to dealing with large datasets are referred to as “Coded

Computing”, and “Randomized Numerical Linear Algebra” or “Sketching”. In this

dissertation, we introduce new methods for both these areas, extend existing methods,

combine techniques from the two areas, and show how sketching algorithms can be

utilized to devise coded computing schemes. Additionally, in certain schemes, we

provide security through sketching and polynomial codes. The applications we focus

on are distributed steepest descent and stochastic steepest descent, matrix-matrix

multiplication, graph sparsification, linear regression, matrix inversion and pseudo-

inversion, which are vital components to optimization, machine learning, and arguably

all engineering disciplines.

xii

CHAPTER I

Introduction

Due to the rapid growth of information sources, today’s computing devices face

unprecedented volumes of data, and there is an inherent need for overcoming the

obstacle of computing over these datasets. In fact, it is estimated that data generation

grows four times faster than the world’s economy. This is one of the main obstacles

which many machine learning algorithms encounter today, and has been coined as

“the curse of dimensionality”. Two ways of addressing this issue is through coded

computing and randomized sketching. In this dissertation, we study both of these

approaches, in combination and separately.

Before elaborating on these two disparate approaches, we recall the pioneering

works which motivated the development of coding and information theory, and ran-

domized algorithms. Source and channel coding are the two main areas of study

in information theory ; which dates back to the works of Claude Shannon [259] and

Richard Hamming [139]. Ever since, the ideas that have been developed through

the study of codes and information have been used for space exploration, secure

and robust communications, data storage and compression, more recently in machine

learning, as well as a multitude of other important applications which have made our

daily lives significantly easier and more pleasant.

A closely related subject which we also study in this dissertation, is that of cryp-

tography, which dates back to Julius Caesar; who used a shift cipher in order to

communicate with his generals. In our context, we use techniques and ideas from

cryptography in order to securely communicate information through insecure chan-

nels, and prevent eavesdroppers and curious workers from recovering the original data.

Prior to the 20th century, cryptography was mainly concerned with lexicographic and

linguistic patterns, while now it makes extensive use of mathematical tools, including

number theory and abstract algebra [27, 82, 102, 247, 258], information theory and

statistics [260], and computational complexity [123]. More recently, with the potential

1

Figure I.1:
Idea behind an error-correcting code. Alice delivers an encoded message
C(x) which is transmitted to Bob through a noisy channel. Bob then
decodes the corrupted codeword w, to recover the original message x.

advent of quantum computers, researchers have been primarily focusing on lattice-

based [9, 229, 244] and isogeny-based [78] schemes for post-quantum cryptography.

Randomization has been used to prove difficult theorems in number theory and

combinatorics, e.g. the “probabilistic method” introduced by Paul Erdős [103, 104],

in addition to constituting the principal arguments underlying Shannon’s theory of

communication [259]. Randomness has also played a vital role in theoretical computer

science, as the simple idea of ‘randomly guessing’ is surprisingly fruitful in solving

otherwise intractable problems. Randomness essentially ensures that something is

true about the optimal solution, without knowing it. Some applications benefiting

from the use of randomness and randomized algorithms are: primality testing [209,

234], root-finding and factorization [24, 235], cryptography [61, 123], coding theory

[194, 264], quantum computing [293], computational geometry and k-means clustering

[35, 45, 67], approximation algorithms [121], as well as complexity theory [12, 13, 83,

111]. For further details and a more extensive list, please refer to [208, 210, 218].

1.1 Coded Computing

In recent years, coded computing was introduced in the seminal work of [178].

Though a very simple idea which considered matrix-vector multiplication and data

shuffling, it initiated great interest in the information theory community; as well

as in many other fields. Coded computing deals with computations over a network

comprised of a central server and a certain number of computational worker nodes

or servers, who communicate certain subtasks of the desired computation. Such

computation networks face what is known as the ‘straggler bottleneck’, where a delay

2

Figure I.2:
Idea behind a cryptographic protocol. Alice delivers an encrypted message
Enc(m) which is transmitted to Bob through an insecure channel. Then,
an eavesdropper named Eve attempts to intercept the communication and
reveal Alice’s encrypted message. Fortunately, Eve is not able to do so;
as she does not have knowledge of the corresponding decryption function
Dec(·). On the other hand, Bob can recover the original message m, by
performing the decryption: m = Dec(Enc(m)).

in the computation is caused by slow or failing compute nodes. These nodes are

referred to as stragglers, which in coded computing are associated with erasures or

non-responsive workers. The objective of coded computing is to apply an encoding to

the data or the computations, so that once a certain fraction of workers deliver their

assigned task, the central sever can apply a corresponding decoding step in order to

recover the computation; or a high-quality approximation.

An important impediment that hinders deployment of coded computing schemes,

is the ‘security bottleneck’. This is the potential vulnerability or weak point in the

system where security breaches or attacks are more likely to occur. While coded

computing itself is primarily focused on improving computational efficiency and re-

liability, security concerns remain critical. The specific security bottleneck in coded

computing can vary depending on the implementation and context. To address these

security bottlenecks, it is crucial to follow best practices in secure coding and employ

strong encryption techniques. Additionally, ongoing research and developments in se-

cure coded computing systems are necessary to address emerging security challenges.

A closely related area is that of multi-party computation [22, 60]. Coded computing

and multi-party computation serve different purposes within the domain of secure

distributed computing, and they differ in their goals and approaches. Coded com-

3

puting focuses on improving efficiency and reliability, while multi-party computation

is primarily concerned with privacy-preserving computations among multiple parties.

However, both techniques can be combined to achieve secure and efficient distributed

computations. Below, we provide a brief overview of coded computing. For additional

information, the reader can refer to [181, 216, 299] and the references therein.

Figure I.3: Schematic of a matrix-matrix multiplication coded computing scheme.

The main computations for which coded computing schemes have been developed

are polynomial evaluation, matrix-vector and matrix-matrix multiplication, and gra-

dient computation; referred to as ‘gradient coding’. In Figure I.3 we illustrate the

steps behind a matrix-matrix multiplication coded computing scheme. The central

server has two large matrices A and B, and its objective is to distributively compute

their product C = A ·B. In this example, each of the n worker nodes receive an en-

coding of (A,B) through the respective encoding function fi(·) for i ∈ {1, 2, . . . , n}.
The workers then carry out a computation on the encoding they receive, and com-

municate their computation Wi back to the central server. As long as the central

server receives a fixed fraction of {Wi}ni=1, he or she can recover the product C af-

ter applying a decoding step. In this example, the second worker is regarded as a

straggler.

1.2 Randomized Numerical Linear Algebra

A popular way of speeding up computations relating to linear algebra is by first

compressing the matrices, and this is the core idea of Randomized Numerical Linear

Algebra ; abbreviated as ‘RandNLA’. This is also referred to as ‘randomized sketching’

[238]. It is an interdisciplinary field of study that combines techniques from linear

algebra, probability, and random sampling to develop efficient and scalable algorithms

4

for solving large-scale problems in numerical linear algebra.

Solving linear algebra problems, such as matrix factorization, eigenvalue compu-

tation, or solving linear systems, can be computationally expensive. Sketching offers

a cheaper randomized approach to tackling these problems, by utilizing random-

ization and sampling techniques to approximate the solutions with high accuracy;

while significantly reducing the computational cost. The core idea behind sketch-

ing is to leverage randomization to create structured and well-conditioned matrices

that preserve important properties of the original matrices. By applying random-

ized algorithms to these structured matrices, one can obtain approximate solutions

that are statistically close to the true solutions of the original problem. Random-

ized sketching has found applications in various domains, including machine learning,

data analysis, optimization, graph theory, signal processing, and scientific computing

[92, 198, 201, 202, 213, 294]. It has proven to be particularly useful in scenarios where

traditional algorithms struggle to handle large-scale data, or where computational re-

sources are limited. By exploiting the power of randomization, RandNLA provides a

valuable toolbox for solving complex numerical problems efficiently, e.g. the libraries

“RandBLAS” and “RandLAPACK” have recently been developed and tested in both

MATLAB and Python [213].

Some of the initial ideas for RandNLA date back to the work of Johnson and

Lindenstrauss [153], who showed that for a fixed set of m points X ⊆ Rn, there

exists a projection f : Rn → Rd of the points; for d < n, which does not distort the

geometry of X, i.e. ∥f(xi) − f(xj)∥22 ≈ ∥xi − xj∥22 for all xi, xj ∈ X. This result is

referred to as the ‘JL-lemma’; has found applications in a plethora of different fields

over the past four decades, and gives rise to the notion of JL-transforms [1, 5, 7, 8, 75,

76, 110, 113, 157, 187, 188, 205, 225]; which have recently been shown to be optimal

[174]. Over the past twenty-five years, this idea has been thoroughly studied through

RandNLA in the context of specific problems; including matrix-matrix multiplication,

sparsification of graphs, least-squares regression, Newton’s method and many more.

It is also worth noting that RandNLA is closely related to the area of ‘compressed

sensing’, which considers recovery of information from a randomly compressed high

dimensional vector. The objective of compressed sensing is to recover an input vector

from corrupted random linear measurements [40, 41, 84]. Furthermore, the ‘restricted

isometry property’ (RIP) is a fundamental concept in compressed sensing, which

characterizes the behavior of a measurement or sensing matrix used in compressed

sensing scenarios. In contrast to analogous properties encountered in RandNLA (e.g.

the ‘ℓ2-subspace embedding property’), the RIP is not quantified probabilistically.

5

Matrices that satisfy the RIP often use random or structured constructions. These

matrices play a crucial role in achieving the accuracy and efficiency of compressed

sensing applications, and the RIP is a key criterion for their quality [30, 31]. For

further information on RandNLA, and algorithms not covered in this dissertation,

the reader can refer to [14, 28, 31, 80, 85, 93, 94, 115, 119, 124, 137, 199, 200, 201,

204, 213, 214, 290, 294], as well as [21, 65, 92, 143, 175, 180, 193, 198, 270, 271,

272, 273, 274, 275] for details regarding spectral sparsification of graphs and spectral

graph theory.

In Figure I.4 we illustrate a compression of matrix A ∈ RN×d using the sketching

matrix S ∈ Rr×N . This results in a compression of the N ×d matrix A into a smaller

matrix SA having only r rows. Here, we assume that N ≫ d and require N > r > d.

In this example, A is partitioned into K smaller submatrices {Ai}Ki=1, and S is a

sampling matrix (usually with replacement) that samples submatrices {Ai}Ki=1 of A

according to a judiciously determined sampling distribution; often with a rescaling of

the sampled submatrices. Explicit examples can be found in Appendix 2.2.

Figure I.4: Sketching of A, so that the ‘sketch’ SA of A is used as a surrogate.

We give an illustration of the main idea behind randomized sketching algorithms

in Figure I.5. Here, we are considering a set comprised of N points, and by randomly

sampling according to some distribution; we retain r points from the initial dataset.

Finally, the sampled points are rescaled according to the sampling distributions and

r. This procedure reduces the number of points we are considering from N to r, while

still preserving certain geometric properties of the dataset; with high probability. The

dimension of the feature space d, is not affected.

6

Figure I.5: Dimensionality reduction of a dataset, where N = 200 and r = 100.

1.3 Dissertation Layout

In this dissertation, we develop and study several techniques for both coded com-

puting and randomized sketching. The main applications we consider are matrix

multiplication, graph sparsification, ℓ2-subspace embedding, steepest descent and the

computation of gradients. We also study problems of encryption of information when

communicating data in the coded computing paradigm.

Each chapter is self-contained and has its own introduction, so that readers do not

need to go through the entire dissertation if they are only interested in one of the five

main projects comprising it, and each chapter is accompanied with its own appendix.

Worthwhile future work pertaining to the topic of each project, can be found at the

end of its dedicated chapter. Below, we list the high level goals and contributions of

each chapter. We also include work on graph sparsification by approximate matrix

multiplication in Appendix VI.

In Chapters II, III, IV and V, we propose both exact and approximate coded

computing schemes. Chapter II focuses on exact schemes through binary repetition

codes, for gradient coding and coded matrix multiplication; and Chapter V pro-

poses an approach for recovery of approximate matrix inverses and pseudoinverses.

Though the latter proposes approximate schemes, the approximations are a result of

the computations and not the coding schemes. In [51], we also showed how one of

the matrix-matrix multiplication schemes of Chapter II, can be altered for recovery

of accurate matrix inverse and pseudoinverse approximations; by leveraging the ap-

proximation algorithms of Chapter V. Furthermore, in Chapter V, the main scheme

we propose is secure against potential eavesdroppers.

7

Chapters III, IV and VI primarily focus on RandNLA, while in Chapters III and

IV we propose approximate gradient coding schemes through iterative block sketching

methods. The primary idea in these chapters is to sample blocks; or pairs of blocks

of partitions of the matrices, as in Figure I.4.

In Chapter III we propose iterative sketching by sampling according to what we

define as ‘block leverage scores ’, and in Chapter IV we sample uniformly at random

once we apply a random orthonormal matrix to the data matrix A, which “flattens”

the block leverage scores of A. Furthermore, we study the security guarantees ac-

companied by applying a random projection to the data. In Chapter VI we propose a

sampling matrix-matrix multiplication algorithm, similar to the CR−MM [88, 89, 90],

which samples according to a new notion of ‘joint leverage scores ’, and guarantees a

spectral approximation of matrix-matrix multiplication. Lastly, in Chapter VI and

Appendix E, we study how one can obtain Laplacian spectral sparsifiers through

approximate matrix-matrix multiplication.

• Chapter II — Generalized Fractional Repetition Codes for Binary

Coded Computations:

This chapter addresses the gradient coding and coded matrix multiplica-

tion problems in distributed optimization and coded computing. We present

a numerically stable binary coding method which overcomes the drawbacks of

the Fractional Repetition Coding gradient coding method proposed by Tandon

et al. [279], and can also be leveraged by coded computing networks whose

servers are of heterogeneous nature. Specifically, we propose a construction for

fractional repetition gradient coding; while ensuring that the generator matrix

remains close to perfectly balanced for any set of coded parameters, as well

as a low complexity decoding step. The proposed binary encoding avoids op-

erations over the real and complex numbers which are inherently numerically

unstable, thereby enabling numerically stable distributed encodings of the par-

tial gradients. We then make connections between gradient coding and coded

matrix multiplication. Specifically, we show that any gradient coding scheme

can be extended to coded matrix multiplication. Furthermore, we show how the

proposed binary gradient coding scheme can be used to construct two different

coded matrix multiplication schemes, each achieving different trade-offs.

– Part of this chapter was presented at the ‘2020 IEEE International Sympo-

sium on Information Theory ’ [47], and the entire chapter is under review

for publication to the ‘IEEE Transactions on Information Theory ’ [48].

8

• Chapter III — Gradient Coding through Iterative Block Leverage

Score Sampling:

We generalize the leverage score sampling sketch for ℓ2-subspace embeddings,

to accommodate sampling subsets of the transformed data, so that the sketch-

ing approach is appropriate for distributed settings. This is then used to derive

an approximate coded computing approach for first-order methods; known as

gradient coding, to accelerate linear regression in the presence of failures in dis-

tributed computational networks, i.e. stragglers. We replicate the data across

the distributed network, to attain the approximation guarantees through the

induced sampling distribution. The significance and main contribution of this

work, is that it unifies randomized numerical linear algebra with approximate

coded computing, while attaining an induced ℓ2-subspace embedding through

uniform sampling. The transition to uniform sampling is done without applying

a random projection, as in the case of the subsampled randomized Hadamard

transform. Furthermore, by incorporating this technique to coded computing,

our scheme is an iterative sketching approach to approximately solving linear

regression. We also propose weighting when sketching takes place through sam-

pling with replacement, for further compression.

– Part of this chapter was presented at the ‘2021 SIAM Conference on Ap-

plied Linear Algebra’, and the entire chapter is under review for publication

to the ‘IEEE Transactions on Information Theory ’ [56].

• Chapter IV — Iterative Sketching for Secure Coded Regression:

In this work, we propose a method for speeding up linear regression distribu-

tively, while ensuring security. We leverage randomized sketching techniques,

and improve straggler resilience in asynchronous systems. Specifically, we apply

a random orthonormal matrix and then subsample blocks, to simultaneously se-

cure the information and reduce the dimension of the regression problem. In our

setup, the transformation corresponds to an encoded encryption in an approxi-

mate gradient coding scheme, and the subsampling corresponds to the responses

of the non-straggling workers; in a centralized coded computing network. This

results in a distributive iterative sketching approach for an ℓ2-subspace embed-

ding, i.e. a new sketch is considered at each iteration. We focus on the special

case of the Subsampled Randomized Hadamard Transform, which we generalize

to block sampling; and discuss how it can be used to secure the data.

9

– Part of this chapter was presented at the ‘2022 IEEE International Sym-

posium on Information Theory ’ [49], and we plan on submitting the work

of this chapter for publication to the ‘IEEE Journal on Selected Areas in

Information Theory: Information-Theoretic Methods for Trustworthy and

Reliable Machine Learning ’ [50].

• Chapter V — Securely Aggregated Coded Matrix Inversion:

Coded computing is a method for mitigating straggling workers in a cen-

tralized computing network, by using erasure-coding techniques. Federated

learning is a decentralized model for training data distributed across client de-

vices. In this work we propose approximating the inverse of an aggregated data

matrix, where the data is generated by clients; similar to the federated learning

paradigm, while also being resilient to stragglers. To do so, we propose a coded

computing method based on gradient coding. We modify this method so that

the coordinator does not access the local data at any point; while the clients

access the aggregated matrix in order to complete their tasks. The network

we consider is not centrally administrated, and the communications which take

place are secure against potential eavesdroppers.

– Part of this chapter was presented at the ‘2023 IEEE Allerton Conference’

[54], and the entire chapter is under review for publication to the ‘IEEE

Journal on Selected Areas in Information Theory: Dimensions of Channel

Coding ’ [55].

• Chapter VI — Approximate Matrix Multiplication by Joint Leverage

Score Sampling:

A ubiquitous operation in computer science, data science and scientific com-

puting, is matrix multiplication. However, it presents a major computational

bottleneck when the matrix dimension is high, as can occur for large data size

or feature dimension. A common approach in approximating the product, is

to subsample pairs of row vectors from the two matrices, and sum the rank-1

outer-products of the sampled pairs. We propose a sampling distribution based

on the leverage scores of the two matrices, and give a characterization of our ap-

proximation in terms of the Euclidean norm, analogous to that of a ℓ2-subspace

embedding. This in turn implies a spectral guarantee for CR−MM; a similar

algorithm which samples according to the ℓ2-norms of the matrices’ row pairs.

10

We also draw connections to data-oblivious approximate matrix multiplication,

and graph sparsification.

– Part of this chapter was presented at the ‘2022 SIAM Conference on Math-

ematics of Data Science’, and we plan on submitting the work of this

chapter for publication to the ‘15th Innovations in Theoretical Computer

Science’ conference.

• Appendix E — Graph Sparsification by Approximate Matrix Multi-

plication:

Graphs arising in statistical problems, signal processing, large networks,

combinatorial optimization, and data analysis are often dense, which causes

both computational and storage bottlenecks. One way of sparsifying a weighted

graph, while sharing the same vertices as the original graph but reducing the

number of edges, is through spectral sparsification. We study this problem

through the perspective of RandNLA. Specifically, we utilize randomized ma-

trix multiplication to give a clean and simple analysis of how sampling according

to edge weights gives a spectral approximation to graph Laplacians, without re-

quiring spectral information. Through the CR−MM algorithm, we attain a

simple and computationally efficient sparsifier whose resulting Laplacian esti-

mate is unbiased and of minimum variance. Furthermore, we define a new notion

of additive spectral sparsifiers, which has not been considered in the literature.

– This appendix was presented at the ‘2023 IEEE Statistical Signal Process-

ing Workshop’ [46].

11

CHAPTER II

Generalized Fractional Repetition Codes for

Binary Coded Computations

2.1 Introduction

The curse of dimensionality has been a major impediment to solving large-scale

problems, which often require heavy computations. Recently, coding-theoretic ideas

have been adopted in order to accommodate such computational tasks in a distributed

fashion, under the assumption that straggler workers are present [178, 183, 184, 185,

203, 237, 245, 251, 267, 288, 291, 297, 302]. Stragglers are workers whose assigned

tasks may never be completed, due to delay or outage, and can significantly increase

the overall computation time. When the computational tasks are encoded, e.g. by

using linear codes, the distributed computations can be protected against erasures.

In this chapter, we first focus on the problem of exact recovery of the gradient in

a distributed computing setting. We adopt the framework of [279] where Gradient

Coding (GC)1 was proposed for recovery of the gradient when the objective loss

function is differentiable and additively separable. Gradient recovery is accomplished

by replicating the tasks in a certain way, so as to introduce the redundancy needed

to combat the effect of stragglers. The problem of exact recovery of the gradient was

studied in several prior works, e.g. [47, 134, 186, 223, 239, 279], while the numerical

stability issue was studied in [298]. There are also several works involving GC for

approximate recovery of the gradient [25, 49, 52, 58, 59, 62, 144, 155, 239, 289, 292].

Also, an idea similar to GC had appeared in [305], though not within a coding-

theoretic setting.

We propose a scheme for GC that is numerically stable, which works in fixed point

1For brevity, we refer to a gradient coding scheme as GCS, a coded matrix multiplication scheme
as CMMS; and CMMSs for plural.

12

precision. The proposed scheme avoids floating-point representations and operations,

e.g. division or multiplication of real or complex numbers. Furthermore, the encoding

matrix is binary, simplifying the encoding process. This scheme is also deterministic

and does not require generating random numbers. The method is similar in spirit to

the fractional repetition scheme introduced in [100, 279], where we also drop the strict

assumption that s+1 divides n, where n is the number of workers and s is the number

of stragglers that the scheme tolerates. The main advantage of encoding and decoding

real-valued data using binary matrices is that it does not introduce further instability,

possibly adding to the computational instability of the associated computation tasks.

Such a binary approach was considered in [149] for matrix-vector multiplication. The

fact that the encoding matrix is defined over {0, 1} allows us to view the encoding as

task assignments. This also leads to a more efficient online decoding, which avoids

searching through a polynomially large table in the number of workers n, as in the

original GCS proposed in [279]. Moreover, our encoding matrix can be understood as

a generalization of the Fractional Repetition Coding (FRC) scheme from [279] for the

case when (s + 1) ∤ n, and our decoding algorithm can be used in conjunction with

the corresponding GCS, for a low complexity online decoding without constructing a

large decoding matrix a priori.

Dropping the aforementioned assumption results in an unbalanced load assign-

ment among the workers. Under the assumption that the workers are homogeneous,

we allocate the partitions as uniform as possible. To avoid bias when considering

workers of heterogeneous nature, i.e. of different computational power, the alloca-

tion of the computational tasks should be done in such a way that all workers have

the same expected completion time; as the stragglers are assumed to be uniformly

random. We provide an analysis which determines how to appropriately allocate the

assignments, so that this objective is met. We note that similar ideas appear in

[223, 279], in the context of partial and non-persistent stragglers; respectively.

The majority of coded computing has focused on fundamental algebraic opera-

tions, such as matrix multiplication and polynomial evaluation. Directly adopting

these schemes in general optimization problems is often not possible, since the gra-

dient computation may not have any algebraic structure, or can only be evaluated

numerically [181]. In this chapter we study the other direction, i.e. how to devise

Coded Matrix Multiplication (CMM) schemes from GC. The key idea is to leverage

the additive structure underlying both problems. By a simple modification to the

encoding and decoding steps of any exact GCS, we show that the GCS can be uti-

lized for matrix multiplication. In a similar fashion, we can transform any GCS into

13

a distributive straggler robust addition scheme.

The proposed GC method can be adapted to compute matrix-matrix multiplica-

tion in the presence of stragglers; which has gained a lot of attention recently, as well

as matrix inverse approximations [51, 54]. The first CMMS was proposed in [178].

Since then, a multitude of CMMSs have been proposed [73, 74, 98, 108, 109, 179, 236,

277, 301, 303, 304], with each of them being advantageous to others in certain as-

pects. There is also a considerable amount of work on matrix-vector multiplication in

distributed computing [18, 97, 133, 149]. Furthermore, numerical stability for matrix

multiplication has been studied in [73, 74, 108, 236, 277]. Approximate coded matrix-

matrix and matrix-vector schemes have also been devised [53, 112, 151, 146, 250, 280].

We show that any GCS can be extended to a CMMS. The main idea is that the

product of two matrices is equal to the sum of the outer-products of their columns and

rows, respectively. This property has been utilized in the context of CMM [53, 98, 109]

and, to our knowledge, we are the first to connect this to GC. We present two new

CMMSs based on the proposed binary GC, each achieving different trade-offs. Since

the proposed CMMSs are derived from a GCS, they have properties that differ from

other CMM approaches, and do not satisfy the same bounds and thresholds. However,

our proposed schemes achieve the optimal trade-off between task allocations and the

number of stragglers of GC. They also preserve the desired properties possessed by

binary GC methods. For example, there is no need for complex encoding and decoding

procedures; and the proposed methods are numerically stable.

Our main contributions are the following:

• Introduction of a binary GCS — both in the encoding and decoding, that is

resilient to stragglers;

• Elimination of the restrictive assumption (s+ 1) | n in [279];

• We show that the proposed GCS achieves perfect gradient recovery;

• We derive the minimum maximum load over all workers of a binary GCS, for

any pair of parameters (s, n);

• We show how the unbalanced assignment, which arises when (s+ 1) ∤ n, can be

made optimal when the workers are homogeneous;

• As compared to the original binary scheme [279], we give a more efficient online

decoding step;

• We determine the optimal task assignment for heterogeneous workers;

• We show how any GCS can be extended to a CMMS;

• We use our binary GCS to devise two binary CMMSs;

The rest of this chapter is organized as follows. In Section 2.2 we provide a review

14

of the straggler problem in GC [279]. In Section 2.3 binary GC is introduced, and we

describe the conditions for which a close to balanced task allocation needs to meet;

when (s + 1) ∤ n. Our binary encoding and decoding procedures are discussed in

Section 2.4. In 2.4.5 we establish the optimality of our GCS, and in 2.4.7 we consider

scenarios with heterogeneous workers. The focus is then shifted towards CMM, and

in Section 2.5 we show how any GCS can be utilized to devise a CMMS. Then,

another CMMS derived from our GCS is presented in 2.5.3. In 2.5.4 we compare and

contrast our two CMMSs, and discuss where they have been utilized in other coded

computing applications. In Section 2.6 we compare our schemes to prior methods,

and draw connections with other areas in information theory. Section 2.7 concludes

the chapter.

We also provide appendices with further details on our algorithms, numerical

examples, and experimental justification. In Appendix 1.6 we present various ap-

plications in which CMM can be utilized in gradient descent iterative algorithms;

for Frobenius norm minimization problems. These demonstrate further connections

between the CMM and GC problems..

2.2 Preliminaries

2.2.1 Straggler Problem

Consider a single central server that has at its disposal a datasetD = {(xi, yi)}Ni=1 ⊊
Rp×R of N samples, where xi represents the features and yi denotes the label of the

ith sample. The central server distributes the dataset D among n workers to facilitate

computing the solution of the problem

θ⋆ = arg min
θ∈Rp

{
N∑
i=1

ℓ(xi, yi; θ) + µR(θ)

}
(2.1)

where L(D; θ) =
∑N

i=1 ℓ(xi, yi; θ) is the empirical loss; for ℓ(xi, yi; θ) a predetermined

differentiable loss-function, and µR(θ) is a regularizer. A common approach to solving

(2.1) is to employ gradient descent. Even if closed-form solutions exist for (2.1),

gradient descent is advantageous for large N .

The central server is assumed to be capable of distributing the dataset appropri-

ately, with a certain level of redundancy, in order to recover the gradient based on

the full dataset D. As a first step we partition D into k disjoint parts {Dj}kj=1 each

15

of size N/k. The gradient is the quantity

g = ∇θL(D; θ) =
k∑
j=1

∇θℓ(Dj; θ) =
k∑
j=1

gj . (2.2)

We refer to the terms gj := ∇θℓ(Dj; θ) as partial gradients. If k does not divide N , one

can add auxiliary samples (0p×1, 0) to the dataset D so that this is met. Since these

auxiliary samples would not affect the partial gradients, nor the gradient, without

loss of generality, we assume that k|N .

In a distributed computing setting each worker node completes its task by return-

ing a certain encoding of its assigned partial gradients. There can be different types

of failures that may occur during the computation or the communication process.

The worker nodes that fail to complete their tasks and return the outcome to the

central server are called stragglers. It is assumed that there are s stragglers, thus, the

central server only receives f = n − s completed tasks. Let I ⊊ Nn := {1, · · · , n}
denote the set of indices of the f workers who complete and return their tasks. In

practice, the completed tasks may be received at different times. Once any set of f

tasks is received, the central server should be able to decode the received encoded

partial gradients and recover the full gradient g.

2.2.2 Gradient Coding

Gradient coding, proposed in [279], is a procedure comprised of an encoding matrix

B ∈ Σn×k, and a decoding vector aI ∈ Σn; determined by I, for Σ the field over which

the encoding-decoding takes place. It is commonly assumed that the workers have

the same computational power, in which case the same number of tasks is assigned

to each of them. We relax this restriction in this chapter, and thus do not need to

impose the assumption (s + 1) | n from [279]. Each row of B corresponds to an

encoding vector, also regarded as a task allocation, and each column corresponds to

a data partition Dj.
Each worker node is assigned a number of partial gradients from the partition

{Dj}kj=1, indexed by Ji ⊊ Nk. The workers are tasked to compute an encoded version

of the partial gradients gj ∈ Rp corresponding to their assignments. Let

g :=

 | | |
g1 g2 . . . gk

| | |

T

∈ Rk×p (2.3)

16

denote the matrix whose rows constitute the transposes of the partial gradients. The

received encoded partial gradients will be the rows of Bg ∈ Rn×p indexed by I.

The full gradient of the objective (2.1) on D can be recovered by applying aI

which is designed to have a support that is a subset of I

gT = aTI (Bg) = 11×kg =
k∑
j=1

gTj , (2.4)

provided that the encoding matrix B satisfies

aTIB = 11×k (2.5)

for all
(
n
s

)
possible index sets I. Note that in perfectly balanced schemes, every

partition is sent to s+ 1 servers, and each server will receive at least k
n
(s+ 1) distinct

partitions. In Section 2.3, we propose a binary design of the encoding matrix B and

decoding vector aI . These may then be used for recovering the gradient g at each

iteration by the central server.

In [279], a balanced assignment is considered, which is the case where all the

workers are assigned the same number of tasks. This number is lower bounded by
k
n
(s+ 1), i.e.

∥B(i)∥0 ≥
k

n
(s+ 1) for all i ∈ Nn (2.6)

for B(i) the ith row of B. When this lower bound is met with equality, the scheme

is maximum distance separable (MDS). The restriction (s + 1) | n allows the GC

to satisfy this bound, as n
s+1

needs to be an integer. In Theorem 2.3.1, we give an

analogous lower bound for when (s+ 1) ∤ n.

In general, GC schemes require processing over s+ 1 partitions from each worker

in order to tolerate s stragglers. Since these schemes encode over partial gradients

computed from unprocessed data, they are applicable to a large class of loss functions,

as well as loss functions whose gradient can only be computed numerically, e.g. in

deep neural networks [181].

We point out that in [182] the partitions sent to each worker are pre-processed,

such that the computations at the workers are viewed as evaluating a polynomial at

distinct points. This approach is referred to as Polynomially coded regression, and

only applies to the least squares objective function. The central server computes the

gradient by interpolating this polynomial. By working on the encoded data instead,

the authors of [182] reduce the threshold on the number of workers that need to

17

respond.

2.2.3 Notational Conventions

Let v ∈ Rp and V ∈ Rp×q respectively denote an arbitrary vector and matrix of

the specified dimensions. The support of v; i.e. the index set of elements which are

nonzero, is denoted by supp(v). The number of nonzero elements in v is denoted by

nnzr(v); i.e. nnzr(v) = | supp(v)|. We define nnzr(V) analogously. The row-span of

a V is denoted by span(V).

The vector Euclidean norm of v is defined as ∥v∥2 =
√
vTv = (

∑
i v

2
i)

1/2
, the

L0 norm of v as ∥v∥0 = nnzr(v), and the matrix Frobenius norm of V as ∥V∥F =√
tr(VTV) =

(∑
i

∑
j V

2
ij

)1/2
. Also, V(i) denotes the ith row of V, V(j) denotes the

jth column of V, and the p× p identity matrix is denoted by Ip. For a row index set

I ⊆ {1, 2, . . . , p} of V, the submatrix comprised of the rows indexed by I is VI ∈
R|I|×q. We denote the set of nonnegative integers by N0 := {0, 1, 2, . . .}, the positive

integers up to n by Nn := {1, . . . , n}; the positive integers up to n and including 0 by

N0,n := {0, 1, . . . , n}, and the collection of size q subsets of Nn by Inq ; i.e. |Inq | =
(
n
q

)
.

Disjoint unions are represented by
⊔

; e.g. Z = {j : j is odd}
⊔
{j : j is even}. By ej

we denote the jth standard basis vector of Rn. The remainder function is denoted by

rem(·, ·), i.e. for positive integers a and b; rem(b, a) = b− a · ⌊ b
a
⌋.

In the context of GC, the parameter N is reserved for the number of data samples,

each consisting of p features and one label. In the context of CMM, the parameter N

denotes the common dimension of the two matrices being multiplied, i.e. the number

of columns of the first matrix and the number of rows of the second matrix. The

integer k denotes the number of partitions of the dataset in GC, and of the matrix or

matrices in CMM. With n the number of workers and s the number of stragglers, the

number of “blocks” is determined by ℓ = ⌊ n
s+1
⌋. The set of indices of the f = n − s

non-straggling workers is denoted by I, and is an element of Inf . Our encoding matrix

is denoted by B, and our decoding vector for the case where a certain I occurs is

denoted by aI . In the CMM setting, these are denoted by B̃ and ãI , respectively.

2.3 Binary Gradient Coding

In this section we motivate our approach to binary GC. The main idea behind

binary schemes is to ensure that the superposition of the corresponding encoding

vectors of a certain subset of the workers with non-overlapping assigned tasks, results

in the all ones vector. This gives us a simple condition for binary GC, which leads

18

to a special case of condition 2.5. Additionally, we derive a strict lower bound for

the total computational load of any GCS, and formalize what we mean by “close

to uniform/balanced” assignments. We incorporate these into an integer program,

which we constructively solve through our encoding in Section 2.4. We also derive

what the minimum maximum load over all workers of a binary GCS is, for any pair

of parameters (s, n).

2.3.1 Binary GC Condition

For our encoding, we have the following simple strategy in order to meet condi-

tion (2.5), for any I ∈ Inf . We divide the workers into s + 1 subsets, and arrange

the data partitions among the workers of each subset in such a way, so that their

allocated task of computing and encoding certain partial gradients (corresponding to

the arrangement); in each subset partition the entire gradient without overlap within

the partition of the workers. As soon as all workers from one of the s + 1 worker

subsets have responded, the gradient g is recoverable. In the worst case, we will have

n − s responses, as by the pigeonhole principle; at most s subsets will have exactly

one straggler, and the remaining subset will have none. From this, in the case where

the workers are partitioned into more than s + 1 subsets, the scheme could tolerate

more stragglers. By this, since we are considering a fixed s, we divide the workers

into exactly s + 1 subsets. Furthermore, the arrangement of data partitions which

takes place within each subset of workers, does not matter, as long as every data

block/partial gradient is assigned to exactly one worker, i.e. there is no overlap. In

what follows, we do not consider the degenerate case where a worker is not assigned

any partition, i.e. | supp(B(i))| ≥ 1 for all i ∈ Nn. This idea is summarized in

Proposition 2.3.1 and Corollary 2.3.1.

Proposition 2.3.1. Let B ∈ {0, 1}n×k, and partition its rows into s + 1 nonempty

subsets with index sets {Ki}si=0; i.e.
⊔s
i=0Ki = Nn. If for all i ∈ N0,s:∑

j∈Ki

B(j) = 11×k, (2.7)

then, for any I ∈ Inf , it follows that 11×k ∈ span(BI).

Proof. Fix an arbitrary I ⊊ Nn of size f = n− s. By the pigeonhole principle, since

only s indices from Nn are not included in I, we know that at least one of {Ki}si=0

is contained in I; say Kl. This implies that BKl
∈ {0, 1}|Kl|×k is a submatrix of

19

BI ∈ {0, 1}f×k. By condition (2.7), it follows that 11×k ∈ span(BKl
) ⊊ span(BI),

which completes the proof.

Corollary 2.3.1. An equivalent formulation of (2.7), is to simultaneously satisfy:

• supp(B(j))
⋂

supp(B(l)) = ∅ for all j, l ∈ Ki where j ̸= l

•
⋃
ι∈Ki

supp(B(ι)) = Nk.

Moreover, the corresponding decoding vector used to meet (2.5) when Ki ⊊ I, is

aI =
∑

j∈Ki
ej ∈ {0, 1}n.

Proof. Assume we have a binary GCS with encoding matrix B and the index set of

responsive workers I, for which Ki ⊊ I. For a contradiction, assume that for Ki we

have h ∈ supp(B(j))
⋂

supp(B(j)). It then follows that in the hth entry of
∑

j∈Ki
B(j),

we have an integer greater than 1, which violates (2.7). Furthermore, under the

assumption that
⋃
ι∈Ki

supp(B(ι)) = Nk, it is straightforward that (2.7) holds.

We now need to show that (2.7) implies the two conditions. Under the assumption

that (2.7) is true, it follows for each h ∈ Nk; there is one and only one j ∈ Ki for

which the hth entry of B(j) is equal to one. If there were H > 1 many such j’s or

none, then the hth entry of
∑

j∈Ki
B(j) would be H or 0 respectively, contradicting

(2.7).

Since we also require the decoding vector aI to be binary, we can either add

(without rescaling) or ignore the computations of the workers within the given sub-

group. Since the objective is to meet (2.5), by (2.7) we simply need to sample and

add the corresponding encoding rows of Ki. This is done by the decoding vector

aI =
∑

j∈Ki
ej.

The following lemma is a direct generalization of (2.6) from [279, Theorem 1],

which considers the balanced case. Our proposed scheme meets the lower bound with

equality, which implies a minimized total computational load across the network, i.e.

B is as sparse as possible for a GCS that is resilient to s stragglers. We attain a

minimal total load balance, while ensuring that we are as balanced as possible when

(s+ 1) ∤ n.

Lemma 2.3.1. The total computational load of any GCS that is resilient to s strag-

glers; is at least k · (s+ 1), i.e. nnzr(B) ≥ k · (s+ 1).

Proof. In order to tolerate s stragglers, each of {Dj}kj=1 needs to be allocated to at

least s+ 1 workers, thus ∥B(i)∥0 ≥ s+ 1 for each i ∈ Nk. Since we have k partitions,

it follows that the total load is at least k · (s+ 1).

20

2.3.2 Close to Uniform Assignment Distribution

A drawback of the GCS proposed in Section 2.3 is that the load assignments can

have a wide range depending on how small r is compared to s+ 1. This is due to the

lighter load assigned to the workers in the remainder block; which is of size r. The

uneven workload is the cost we pay for dropping the assumption (s + 1) | n, which

does not often hold for a pair of two arbitrary positive integers (s, n)2. It is worth

mentioning that for small s and a fixed n for which (s+ 1) ∤ n, when considering the

original FRC scheme [279], one can easily modify s′ and decrease n to n′ in order to

meet the divisibility condition (s′ + 1) | n′.
In order to have a close to close balanced GCS, we wish that the partitioning

from Proposition 2.3.1 is done so that
∣∣|Kj| − |Kl|∣∣ ≤ 1; for all j, l ∈ N0,s, and∣∣ supp(B(j′)) − supp(B(l′))

∣∣ ≤ 1 for all j′, l′ ∈ Kι; for each ι ∈ N0,s. We note that in

many applications, when a large k is considered, the difference of one between the

load of the workers within the same subset Kι, can be made insignificant. These

integer load differences can be made relatively small, if the work is divided into many

small units; e.g. by increasing k. In the context of computing gradients, this is often

the case when it is taken over a large dataset.

In order to appropriately define a close to balanced assignment, in the case where

(s+ 1) ∤ n, we use the following definition of ds(B); which gives a measure of how far

from perfectly balanced the assignments of B; in terms of the bound (2.6).

Definition 2.3.1. Define ds(B) :=
n∑
i=1

∣∣∥B(i)∥0 − k
n
(s+ 1)

∣∣ for B ∈ Zn×k. This func-

tion measures how far the task allocations
{
∥B(i)∥0

}n
i=1

are from being uniform, i.e.

∥B(i)∥0 = ⌊ k
n
(s + 1) + 1

2
⌋ for all i ∈ Nn. Furthermore, {∥B(i)∥0}ni=1 is uniform; i.e.

all elements are equal, if and only if ds(B) = 0.

The objective of our proposed approached is to then give a binary solution to the

2For fixed n and random s ∈ {0, · · · , n− 1}; we have (s+ 1) | n with probability σ0(n)−2
n , where

σ0 is the divisor function of the 0th power.

21

integer program

(IP) arg min
B∈Zn×k

{
ds(B)

}
s.t. nnzr(B) = k · (s+ 1)

s⊔
i=0

Ki = Nn :
∣∣|Kj| − |Kl|∣∣ ≤ 1, ∀j, l ∈ N0,s∣∣∥B(j)∥0 − ∥B(l)∥0
∣∣ ≤ 1, ∀j, l ∈ Ki, ∀i ∈ N0,s

∃aI w/ supp(aI) ⊆ I; ∀I ∈ Inf : aTIB = 11×k

.

whose solutions yield almost perfectly balanced GC schemes, with minimum total

computational load across the network. The first constraint corresponds to the mini-

mal total load of a GCS that is resilient to s stragglers; from Lemma 2.3.1. In order to

have approximately equal cardinality across all partitions of the workers, we impose

the second constraint. The third ensures that there is almost perfect balance among

workers within the same partition Ki; for each i ∈ N0,s. Together, the second and

third constraints ensure that the maximum load across all workers is minimized, for

the parameters n and s. The fourth constraint imposes condition (2.5), to guarantee

that B is a generator matrix of a valid GCS.

2.3.3 Minimum Maximum Load of Workers in a Binary GCS

Next, we show what the minimum maximum load over all workers of a binary

GCS is, in order to construct a valid GCS for any pair of parameters (s, n). Let

n = ℓ·(s+1)+r with ℓ = ⌊ n
s+1
⌋. Note that r ≡ n mod (s+1). Similarly, let r = t·ℓ+q;

which specifies the Euclidean division of r by l. Therefore, n = ℓ · (s+ t+ 1) + q. In

a particular case, we will also need the parameters specified by the division of n by

(ℓ + 1). Let n = λ · (ℓ + 1) + r̃ (if ℓ = s − r, then λ = s). For clarity, we assume

that n = k, though it is straightforward to adapt our proposed approach to cases

with n ̸= k. To meet this assumption we can incorporate instances of the data point

(0p×1, 0) until N ′ points total are considered; such that n|N ′, and let k = n. To

summarize, we have

n = ℓ · (s+ 1) + r 0 ≤ r < s+ 1 (2.8)

r = t · ℓ+ q 0 ≤ q < ℓ . (2.9)

n = λ · (ℓ+ 1) + r̃ 0 ≤ r̃ < ℓ+ 1 (2.10)

22

where all terms are nonnegative integers.

We have already established that in order to tolerate s stragglers; and not more

than s in the worst case, the workers need to be partitioned into s + 1 subsets. In

order for each of the subsets to have approximately the same size, for the partitioning⊔s
i=0Ki = Nn, we assign each Ki either ⌊ n

s+1
⌋ or ⌈ n

s+1
⌉ workers, i.e. |Ki| = ℓ or

|Ki| = ℓ + 1 for all i ∈ N0,s. Note that on average, in partitions comprised of

fewer workers, we need to allocate more data partitions to each worker; in order to

compensate for the fact that fewer workers are needed to collectively compute all

partial gradients {gj}kj=1. Consequently, we do not want to assign less that ℓ workers

to any partition Ki. This observation corresponds to the second constraint of (IP).

For what will follow, we set the partitions as

Ki =
{
i+ z · (s+ 1) : z ∈ Z+

}⋂
N0,n−1 (2.11)

for each i ∈ N0,s, hence |Kι| = ℓ + 1 for ι ∈ {0, 1, . . . , r − 1} and |Kj| = ℓ for

j ∈ {r, . . . , s}.3 By what was discussed above, on average; the workers corresponding

to the subsets {Kj}sj=r will be allocated greater loads. This setup leads to the following

theorem.

Theorem 2.3.1. Considering any binary GCS of n workers which tolerates s strag-

glers, the minimum maximum load of any worker is s+t+2. Specifically, given an en-

coding matrix B ∈ {0, 1}n×k, there always exists an i ∈ Nn for which ∥B(i)∥0 ≥ s+t+1

when q = 0; and ∥B(i)∥0 ≥ s+ t+ 2 when q > 0.

Proof. Consider a partition Kl, for which L = |Kl| such that L ≥ ℓ+ 1. By Corollary

2.3.1, it follows that
∑

l′∈Kl
∥B(l′)∥0 = k, and the allocation within the subset of

workers indexed by Kl can be done so that each row indexed by l′ ∈ Kl has support

of size ⌊ k
L
⌋ or ⌈ k

L
⌉ = ⌊ k

L
⌋+ 1, for which

⌊ k
L

⌋
≤
⌈ k
L

⌉
≤
⌈ k

ℓ+ 1

⌉
=
⌈ n

ℓ+ 1

⌉
≤
⌈n
ℓ

⌉
≤ s+ 2 (2.12)

i.e. ∥B(l′)∥0 ≤ s+ t+ 2 for all l′ ∈ Kl.
This shows that it suffices to consider the worker partitions of smaller sizes —

subsets {Kj}sj=r; which have cardinality |Kj| = ℓ < ℓ+ 1. Without loss of generality,

we consider the partitioning (2.11). For this partitioning, the nth worker is now

assigned the index 0, i.e. B(0) corresponds to B(n).

3These are precisely the congruence classes we will be referring to later.

23

For a contradiction, assume that ∥B(j′)∥0 ⪇ s + t + 2 for all j′ ∈ Kj, in the case

where q > 0. It then follows that∑
i′∈Kj

∥B(j′)∥0 ≤ ℓ · (s+ t+ 1) = ℓ · (s+ 1) + ℓ · t ⪇ ℓ · (s+ 1) + ℓ · t+ q = k (2.13)

where the last equality follows from (2.8), (2.9) and n = k. Since q > 0, we conclude

that
∑

i′∈Kj
∥B(j′)∥0 < k, which contradicts Corollary 2.3.1. Hence, there is at least

one j′ ∈ Kj for which ∥B(j′)∥0 ≥ s+ t+ 2.

Similarly, assume that ∥B(j′)∥0 ⪇ s+ t+ 1 for all j′ ∈ Kj, in the case where q = 0

and ℓ > 0. It then follows that∑
i′∈Kj

∥B(j′)∥0 ≤ ℓ · (s+ t) ⪇ ℓ · (s+ t) + ℓ = ℓ · (s+ 1) + ℓ · t = k (2.14)

which contradicts Corollary 2.3.1. This completes the proof.

It is worth noting that in the case where (s + 1) | n; we have r = t = q = 0, and

Theorem 2.3.1 reduces to bound (2.6) derived in [279] for perfectly balanced schemes.

2.4 Proposed Binary Gradient Coding Scheme

In this section, we present our proposed binary coding scheme, along with its

main properties. First, we present the construction of the encoding matrix B; in

Subsections 2.4.1, 2.4.2 and 2.4.3. In Subsection 2.4.4 we present an efficient online

construction of the corresponding decoding vector aI . In Subsections 2.4.5 and 2.4.6

we show that our proposed B and certain variants of it are as close to being uni-

form as possible; according (IP), and that in the regime n ≥ s2 the gap from being

perfectly balanced is negligible. Finally, in Subsection 2.4.7 we provide an analysis

which determines how to appropriately allocate the assignments when the workers are

heterogeneous, so that they have the same expected completion time — this relaxes

the cloe so uniform assignment.

2.4.1 Encoding Matrix

The idea is to work with congruence classes mod(s+ 1) on the set of the workers’

indices Nn, in such a way that the workers composing a congruence class are roughly

assigned the same number of partitions (differing by no more than one), while all

partitions appear exactly once in each class. By congruence class we simply mean

24

the set of integers j ∈ Nn which are equivalent mod (s+ 1). The classes are denoted

by {[i]s+1}si=0. One could use a random assignment once it is decided how many

partitions are allocated to each worker. However, in order to get a deterministic

encoding matrix, we assign the partitions in “blocks”, i.e. submatrices consisting of

only 1’s. With this setup, condition (2.7) becomes∑
j≡c mod (s+1)

B(j) = 11×k (2.15)

for each c ∈ N0,s. As in the proof of Theorem 2.3.1, we reassign the index of the nth

worker; so that B(0) corresponds to B(n).

In the proposed GCS, the encoding is identical for the classes C1 := {[i]s+1}r−1i=0 ,

and is also identical for the classes C2 := {[i]s+1}si=r. The objective is to design B

to be as close to a block diagonal matrix as possible, and we do so by ensuring that

the difference in the load assignments between any two servers within the same set

of classes C1 or C2; is at most one. We refer to the l disjoint sets of consecutive s+ 1

rows of B as blocks, and the submatrix comprised of the last r rows as the remainder

block. Note that in total we have ℓ + 1 blocks, including the remainder block, and

that each of the first ℓ blocks have workers with indices forming a complete residue

system. We will present the task assignments for C1 and C2 separately. A numerical

example where n = k = 11 and s = 3, is presented in Appendix 1.3.

2.4.2 Repetition Assignment for Classes 0 to r − 1

In our construction each of the first r residue classes also have an assigned row

in the remainder block, such that we could assign r partitions to the last worker of

each class in C1, and evenly assign s + 1 to all other workers corresponding to C1.

Our objective though is to distribute the k tasks among the workers corresponding

to the ℓ+ 1 blocks as evenly as possible, for the congruence classes corresponding to

C1, in such a way that homogeneous workers have similar loads. By homogeneous

we mean the workers have the same computational power, which implies that they

exhibit independent and identically distributed statistics for the computation time of

similar tasks.

Note that n = (ℓ+ 1) · s+ (ℓ+ r− s). Hence, when ℓ > s− r, we can assign s+ 1

tasks to each worker in the first ℓ + r − s blocks, and s tasks to the workers in the

remaining s+ 1− r blocks. In the case where ℓ ≤ s− r, we assign λ+ 1 tasks to the

first r̃ blocks and λ tasks to the remaining ℓ+ 1− r̃ blocks. It is worth pointing out

25

that λ = s and r̃ = 0 when ℓ = s− r, which means that every worker corresponding

to C1 is assigned λ = s tasks, as n = (ℓ+ 1) · s.
A pseudocode for this encoding process is presented in Algorithm 10, in Appendix

1.1. For coherence, we index the rows by i starting from 0, and the columns by j

starting from 1. We point out that when ℓ > s−r, we have λ = s and r̃ = ℓ+r−s > 0.

In the case where ℓ ≤ s− r, we need to invoke (2.10) which was introduced solely for

this purpose, as we need the remainder r̃ to be nonnegative. It follows that Algorithm

10 can be reduced to only include the else if statement; eliminating the conditional

clause.

2.4.3 Repetition Assignment for Classes r to s

For the workers corresponding to C2, we first check if q = 0. If this is the case, the

n partitions are evenly distributed between these workers, i.e. each worker is assigned

(s+ t+ 1) partitions; as n = ℓ · (s+ t+ 1) and here we are only considering ℓ blocks.

When 0 < q < r, we assign (s+ t+ 2) tasks to each worker of C2 in the first q blocks,

and (s + t + 1) to the workers in the remaining ℓ − q blocks. A pseudocode for the

encoding process is provided in Algorithm 11, in Appendix 1.1.

The final step is to combine the encodings of the classes C1 and C2 to get B. That

is, we combine the outcomes B̃C1 of Algorithm 10 and B̃C2 of Algorithm 11. One could

merge the two algorithms into one or run them separately, to get B = B̃C1 + B̃C2 .

The encoding matrix B is also the adjacency matrix of a bipartite graph G =

(L,R, E), where the vertices L and R correspond to the n workers and the k par-

titions, respectively. We can also vary the number of stragglers s the scheme can

tolerate for a fixed n, by trading the sparsity of B. In other words, if B is designed

to tolerate more stragglers, then more overall partial gradients need to be computed.

This results in more computations over the network, as | supp(B)| = k · (s+ 1).

2.4.4 Decoding Vector

A drawback of the binary GCS introduced in [279] is that a matrix inversion is

required to compute A ∈ R(n
f)×n; which contains the decoding vectors corresponding

to all possible index sets of responsive workers I ∈ Inf . This matrix needs to be stored

and searched through at each iteration of the gradient descent procedure. Searching

through A to find the corresponding aI is prohibitive; as it has Θ(ns) rows to look

through. We propose a more efficient online decoding algorithm in order to mitigate

this problem.

26

The construction of the decoding matrix in [279] when using regular matrix mul-

tiplication and inversion, requires O (k3(k + 2n− 2s)) operations to construction the

pseudoinverse of a submatrix of B, for each of the possible
(
n
s

)
index sets I. Fur-

thermore, at each iteration of gradient descent, the decoding step requires a search

through the rows of A. This comes at a high cost when compared to our online

algorithm, which constructs a decoding vector in O(n + s) operations, and does not

require any additional storage space.

We point out that a similar decoding approach was developed independently in

[58], which focuses on approximating the gradient rather than recovering the exact

gradient. The main idea behind the two approaches is that we look at the index set

of responsive workers, and then only consider the response of workers with mutually

exclusive assigned partitions. While the objective of the scheme in [58] is to form a

vector which is close to 11×k, we guarantee that this vector is attained once n − s

workers respond. By (2.4), we can therefore recover the exact gradient.

In the proposed binary GCS there is no rescaling of the partial gradients taking

place by encoding through B, as the coefficients are 1 or 0. As a result, the proposed

decoding reduces to simply summing a certain subset of the completed encoded tasks,

while making sure that each partial gradient is added exactly once. To this end, among

any f workers who send back their computed sum of partial gradients, we need to

have ℓ workers, ℓ = n
s+1
∈ Z+ (or ℓ + 1 where ℓ = ⌊ n

s+1
⌋, if (s + 1) ∤ n), who have no

common assigned partitions. We elaborate on this in the next paragraph.

If r = 0, the decoder traverses through the s+ 1 classes consecutively to find one

which is a complete residue system (Algorithm 1). This will be used to determine

the decoding vector aI , implied by Corollary 2.3.1. When r > 0, the decoder first

traverses through the last s+1−r congruence classes; checking only the first ℓ blocks.

If it cannot find a complete residue system corresponding to returned tasks by non-

stragglers, it proceeds to the first r classes; checking also the remainder block. This

extra step makes the scheme more efficient. In both cases, by the pigeonhole principle

we are guaranteed to have a complete residue system, provided that f completed tasks

are received.

The next step is to devise a decoding vector for each of the
(
n
s

)
different straggler

scenarios I. We associate the ith complete residue class with a decoding vector ai

defined as

ai :=
∑
j∈[i]ℓ

ej ∈ {0, 1}n, (2.16)

for i ∈ N0,ℓ−1. Also, note that ∥ai∥0 = ℓ + 1 for the decoding vectors corresponding

27

to the first r classes, and ∥ai∥0 = ℓ for the remaining classes. In both cases, ai+1 is a

cyclic shift of ai.

At each iteration the gradient is computed once f worker tasks are received. Define

the received indicator-vectors

(recI)i =

1 if i ∈ I

0 if i ̸∈ I
, (2.17)

for each possible I, where ∥recI∥0 = f and n − ∥recI∥0 = s. Thus, there is at least

one i ∈ N0,ℓ−1 for which supp(ai) ⊊ supp(recI). If there are multiple ai’s satisfying

this property, any of them can be selected. The pseudocode is presented in Algorithm

1.

Algorithm 1: Decoding Vector aI
Input: received indicator-vector recI
Output: decoding vector aI
for i = s to 0 do

if (recI)i ≡ 1 then
l← i
if supp(al) ⊆ supp(recI) then

a← al ▷ al is defined in (2.16)
break

end

end

end
return aI ← a

2.4.5 Validity and Optimality of our GCS

Now that we have presented our construction, we provide the accompanying guar-

antees in terms of validity, and optimality, which motivated our construction.

Theorem 2.4.1. The proposed encoding-decoding pair (B, aI) satisfy condition (2.5),

for any I ∈ Inf . That is, (B, aI) comprise a valid GCS which tolerates up to s

stragglers.

Proof. By our construction of B, the rows corresponding to a congruence class are

mutually exclusive and their superposition is precisely 11×k.

By the pigeonhole principle the number of completed encoded tasks that is re-

quired at the decoder to guarantee a successful recovery of the gradient, denoted by

28

ν, is equal to

ν := ℓ · r + (ℓ− 1) ·
[
(s+ 1)− r

]
+ 1

= ℓ · (s+ 1)− s+ r =
[
ℓ · (s+ 1) + r

]
− s = n− s . (2.18)

Therefore, as long as ν = n − s many workers respond, there is at least one sub-

set of them whose indices form a complete residue system mod(s + 1). Algorithm

1 determines such an index subset, and constructs a binary vector whose support

corresponds to this subset. As a result, aTIB = 11×k for any I of size n− s, and (2.4)

is satisfied.

Note that the total number of task assignments is k ·(s+1), for any pair of integers

(s, n) where 0 ≤ s < n, as expected. This is the same total load required by the MDS

based schemes. Also, our GCS meets the lower bound on total task assignments of

B implied by (2.6) and Lemma 2.3.1

nnzr(B) =
n∑
i=1

∥B(i)∥0 ≥ n · k
n

(s+ 1) = k · (s+ 1) (2.19)

with equality.

It can be observed that the runtime complexity of Algorithm 1 is O((ℓ+ 1) · (s+

1)) = O(n+s). This complexity can be slightly reduced by the following modification.

The for-loop in Algorithm 1 can be stopped early by only traversing through the

classes 0, · · · , s − 1, and assigning aI ← as if none was selected. This reduces the

runtime complexity to O((ℓ + 1) · s), hence our proposed decoder is significantly

faster than the decoding algorithm of [279]. The decoding matrix A of [279] requires(
n
s

)
applications of a pseudoinverse for its construction, which makes it impractical

for large
(
n
s

)
. Once this has been constructed, at each gradient descent iteration it

requires an additional decoding step of time complexity O(f 3).

An alternative decoding is to consider a decoding of each of C1 and C2 separately;

in a streaming fashion, and terminate whenever one of the two is completed. This

decoding procedure will be especially useful in our first CMMS. Both the CMMS and

the alternative decoding will be described in more detail in 2.5.2.

Theorem 2.4.2. The task allocation through B resulting from Algorithms 10 and 11

is a binary solution to the integer program (IP).

Theorem 2.4.2 holds for permutations of the columns of B, or a random assignment

of tasks per class; as opposed to repeating blocks — as long as all partitions are

29

present only once in a single worker of each congruence class. The decoding in either

of these cases remains the same. Furthermore, the proposed B can be viewed as an

extension of the cyclic repetition scheme introduced in [279]. An example of how the

allocations can be modified for each congruence class is given in Appendix 1.3. By

“valid permutation per congruence class”, we mean that a separate permutation is

applied to the columns of B
∣∣
[c]s+1

; the restriction of B to the rows corresponding to

[c]s+1, for each congruence class c ∈ N0,s.

For the purpose of the applications considered in this chapter, permutations of

the rows or columns of B do not affect the overall performance or guarantees of the

proposed GCS; i.e. any permutation applied to the encoding matrix of the approach

of Algorithms 10 and 11 would have the same result.4 A permutation of the rows

corresponds to permutation of the workers’ indices, and a permutation of the columns

simply means the workers are assigned different partitions, but since the same number

of partitions is allocated to each worker, their total workload remains the same.

Theorem 2.4.3. A binary encoding matrix B̄ is a valid permutation of the task

allocations per congruence class of the encoding matrix B proposed by Algorithms 10

and 11, for which Algorithm 1 produces a correct decoding vector, i.e. aTI B̄ = 11×k

for all possible I ∈ Inf , if:

1. ∥B̄(i)∥0 = ∥B(i)∥0

2. supp(B̄(i))
⋂

supp(B̄(j)) = ∅ if i ≡ j mod (s+ 1)

for i, j ∈ Nn distinct. These conditions also imply that ∥B̄(i)∥0 = s+ 1 for all i ∈ Nk.

2.4.6 Distribution of Assignments for n ≥ s2

Considering the identities (2.8), (2.9) and (2.10), note that for ℓ > r we have t = 0

and r = q. Furthermore, when ℓ = s we have n = s · (s + 1) + r ≈ s2, and in the

regime n ≥ s2, we can show that t is at most 1. Then, the gap between the heaviest

and lightest loads; respectively s+ t+ 2 and s, is at most 3.

Lemma 2.4.1. Let n = s2 +a for a ∈ N0 and s < n. Then, we have t = 1 only when

a = s− 2, s− 1 or 2s. Otherwise, t = 0.

Proof. We break up the proof into three cases:

4In the case where a permutation is applied to the rows of B, the decoding vectors defined in
(2.16) should be modified accordingly.

30

Case a ∈ {0, · · · , s− 3}: For α = s− a ∈ {3, 4, · · · , s}:

n = s · (s+ 1)− α =

ℓ︷ ︸︸ ︷
(s− 1) ·(s+ 1) +

r︷ ︸︸ ︷
(s+ 1− α), (2.20)

and ℓ > r for any α. Thus, t = 0 and r = q.

Case a ∈ {s, · · · , 2s− 1}: Let n = s2 + a = s2 + (s+ β) for β ∈ {0, · · · , s− 1}. Then

n = s · (s + 1) + β implies ℓ = s and r = β. Since r < ℓ, it follows that t = 0 and

r = q.

Case a ⪈ 2s: The final case to consider is a = 2s + γ, for γ ∈ Z+. The resulting

parameters are r = q = rem
(

rem
(
γ, s+ 1

)
− 1, s+ 1

)
, ℓ = (s2 + 2s+ γ − r)/(s+ 1)

and t = 0.

When α = 1 it follows that r = s and ℓ = s− 1, thus t = 1 and q = 1. For α = 2

we get r = ℓ = s − 1, hence t = 1 and q = 0. For both α = 1 and α = 2; t = 1 is a

consequence of r ≥ ℓ. In addition, when β = s we have r = ℓ = s; thus t = 1 and

q = 0.

2.4.7 Task Allocation to Heterogeneous Workers

We now discuss how to allocate the partitions when the workers are of hetero-

geneous nature, such that all workers have the same expected execution time. This

analysis may be needed in applications with very discrete, indivisible jobs. In cases

where the work can be divided more finely, for any given subset of workers who are to

share the total work, one can simply divide the work to be done among the workers

in proportion to their computational strengths, to equalize the expected completion

time. We present the case where we have two groups of machines, each consisting of

the same type. The analysis for more than two groups of machines can be done in a

similar fashion.

The two types of workers are denoted by Ti; with a total of τi machines, and their

expected execution for computing gj (for equipotent Dj’s) by

ti := E [time for Ti to compute gj] , (2.21)

for i ∈ {1, 2}, where t1 ⪇ t2; i.e. machines T1 are faster. Let |JTi | denote the number

31

of partitions each worker of Ti is assigned. The goal is to find |JT1| and |JT2| so that

E [T1 compute their task] = E [T2 compute their task] , (2.22)

implying t1 · |JT1 | = t2 · |JT2|. Hence |JT1| ⪈ |JT2|, as t1 ⪇ t2. Let τ1 = α
β
· τ2 for

α
β
∈ Q+ in reduced form. Since τ1 + τ2 = n, it follows that

τ1 =
α

α + β
n and τ2 =

β

α
τ1 =

β

α + β
n. (2.23)

To simplify the presentation of the task assignments, we assume (s + 1) | n. If

(s+ 1) ∤ n, one can follow a similar approach to that presented in Subsection 2.4.1 to

obtain a close to uniform task allocation; while approximately satisfying (2.22).

The main idea is to fully partition the data across the workers, such that each

congruence class is comprised of roughly α
α+β
· k
s+1

workers of type T1, and β
α+β
· k
s+1

workers of type T2. We want τ1+τ2
s+1

= n
s+1

many workers for each congruence class,

and

|JT1| ·
τ1

s+ 1
+ |JT2| ·

τ2
s+ 1

= k (2.24)

partitions to be assigned to each class. That is, the datasetD is completely distributed

across each congruence class, and our GCS is designed accordingly.

Putting everything together, the following conditions determine |JT1| and |JT2|

(i) t1 · |JT1| = t2 · |JT2 | ⇐⇒ |JT2| = t1
t2
· |JT2|

(ii) |JT1| · τ1 + |JT2| · τ2 = (s+ 1) · k

(iii) τ2 = β
α
· τ1 ⇐⇒ τ1 = α

β
· τ2.

By substituting (iii) into (ii) to solve for |JT2 |, and then plugging it into (i) to solve

for |JT1|, we get

|JT1| = (s+ 1) · k ·
(

αt2
αt2 + βt1

)
· 1

τ1
(2.25)

|JT2| = (s+ 1) · k ·
(

βt1
αt2 + βt1

)
· 1

τ2
(2.26)

which we round to get appropriate numbers of assignments.

This framework may be generalized to any number of different groups of machines.

Under the same assumptions, for T1, · · · , Tm different groups with ti ⪇ ti+1 for all

i ∈ Nm−1:

(i) t1 · |JT1 | = t2 · |JT2 | = · · · = tm · |JTm|

32

(ii) |JT1| · τ1 + |+ |JT2| · τ2 + · · ·+ |JTm| · τm = (s+ 1) · k

(iii) τ1 = α2

β2
· τ2 = · · · = αm

βm
· τm, for αi+1

βi+1
∈ Q+

need to be met. This gives us a system of 2(m− 1) + 1 = 2m− 1 equations with m

unknowns {|JTj |}mj=1, which is solvable.

2.5 Binary Coded Matrix Multiplication Schemes

Multiplication of two matrices is one of the most common operations. Coded ma-

trix multiplication is a principled framework for providing redundancy in distributed

networks, to guarantee recovery in the presence of stragglers [179]. As in GC, each

worker is requested to carry out some computation and encode it; before sending it

back to the central server. In this section we first show how any GCS can be used to

devise a CMMS, and then present two different schemes based on our binary GCS.

Like the fractional repetition scheme, our two schemes resemble replication codes.

For simplicity in presentation, throughout this section we assume that k|N .

The two CMMSs have applications beyond matrix multiplication, which we discuss

in Subsection 2.5.4. Regarding matrix multiplication, the schemes have different

trade-offs in terms of communication, storage, and computational operations, required

by each worker. Depending on the application and the resources available, one may

even be easier to implement compared to the other.

As pointed out in [182], despite recent advancements in distributed gradient com-

putations, schemes under parameters (s, n) have not been developed which have a

recovery threshold (i.e. the worst case minimum number of workers that need to

respond in order to recover the full gradient) less than f = n − s. On the other

hand, many CMMSs exhibit considerably better recovery thresholds — the optimum

asymptotic recovery threshold of µν for 1/µ and 1/ν respectively the fraction of A

and B stored by each worker; was achieved through Polynomial Codes [303].

Improving the recovery threshold comes at the cost of trading encoding and de-

coding complexities, storage, restrictions on how the matrices are partitioned, and nu-

merical stability. The two schemes we propose have a recovery threshold of f = n−s,
though do not suffer from any of the aforementioned drawbacks. For simplicity in

presentation, we assume that N = ℓ · k for ℓ ∈ Z+ and N the effective dimension;

which implies that we have a balanced assignment. When this is not the case, the

analysis carried out in 2.4.1 can be applied.

33

2.5.1 CMM-1 — Outer-Product Representation

Consider a single central server node that has at its disposal the matrices A ∈
RL×N and B ∈ RN×M , and it can distribute submatrices of A and B among n workers;

to compute their product C = AB in an accelerated manner. One way of computing

C is to leverage the fact that

C =
N∑
i=1

A(i)B(i) (2.27)

which has also been used in [109, 98]. Recall that A(i) denotes the ith column of A,

and B(i) the ith row of B, as specified in Subsection 2.2.3. This makes the process

parallelizable. To make use of this outer-product representation, we partition A and B

each into k disjoint submatrices consisting of τ = N/k columns and rows respectively,

which we denote by Ãj ∈ RL×τ and B̃j ∈ Rτ×M for j = 1, · · · , k. That is

A =
[
Ã1 · · · Ãk

]
and B =

[
B̃T

1 · · · B̃T
k

]T
. (2.28)

The central server is then capable of distributing the pairs (Ãj, B̃j) appropriately,

with a certain level of redundancy, in order to recover C

C =
k∑
j

ÃjB̃j . (2.29)

Define Xj := ÃjB̃j ∈ RL×M for all j, and the matrix

X :=
[
XT

1 | · · · | XT
k

]T
∈ RkL×M , (2.30)

similar to how g was defined (2.3) in Section 2.2. Recall that the main idea behind

GC is to construct the pair of encoding matrix B and decoding vector aI , such that

aTIB = 11×k for all
(
n
s

)
possible index sets I. A CMMS can be devised by the pair

(B, aI). The matrix product C = AB is described as:

C = (

ãT
I︷ ︸︸ ︷

aTI ⊗ IL) · ((
B̃︷ ︸︸ ︷

B⊗ IL) ·X) =

ãT
I B̃︷ ︸︸ ︷

(11×k︸︷︷︸
aT
IB

⊗IL) ·X =
k∑
j=1

Xj, (2.31)

where B̃ ∈ CnL×kL is now the encoding matrix for the CMM, and ãI ∈ CnL×L is the

decoding matrix corresponding to the non-straggler index set I. Expression (2.31) is

34

analogous to (2.4).

Theorem 2.5.1. Any GCS can be extended to a coded matrix multiplication or ad-

dition scheme.

Proof. Consider a GCS (B, aI), for which aTIB = 11×k. By (2.31) it follows that

ãTI (B̃X) =
k∑
j=1

Xj = C . (2.32)

Therefore, a CMM method (B̃, ãI) is obtained.

. For matrix addition, we simply construct X by augmenting the k equi-sized ma-

trices we want to add; instead of the products {ÃjB̃j}kj=1 in (2.30), and we obtain a

coded matrix addition scheme.

Let (B, aI) be the encoding-decoding GC pair from Section 2.3. In Theorem

2.5.1, the resulting pair (B̃, ãI) is a CMMS whose encoding matrix B̃ = B ⊗ IL

represents the partition pairs (Ãj, B̃j) as the columns of B̃; and its rows represent the

n workers. That is, the worker corresponding to the ith row of B receives the partition

pairs corresponding to Ji = supp(B(i)), and is asked to send back the summation of

the outer-products

Cj :=
∑
j∈Ji

ÃjB̃j =
∑
j∈Ji

Xj . (2.33)

The decoding matrix ãTI = aTI ⊗ IL only involves the computations of a com-

plete residue system associated with the received workers, which are determined by

supp(aI).

The communication cost per worker which along with the storage required at the

central server are the major drawbacks of this approach. Each worker will have to

send back a matrix of size L×M , and in the worst case, the central server will need to

store k ·(s+1) matrices of this size before it can recover C. The computation cost per

worker is equivalent to that of multiplying two matrices, of dimensions corresponding

to the block pairs. An alternative CMM decoding process overcomes the storage issue

at the central server, which is described next.

2.5.2 Decoding as a Streaming Process

In the case where (s + 1)|n, we can use a streaming process for the recovery of

C. In this process, we only retain a single computation corresponding to each of the

blocks of the encoding matrix B; where B is now a block diagonal matrix with ℓ = n
s+1

35

diagonal blocks of the form 1(s+1)×⌊k/ℓ⌋ or 1(s+1)×⌈k/ℓ⌉. The process terminates once a

single worker from each block has responded. The pseudocode for this procedure is

given in Algorithm 2.

Algorithm 2: Decoding in a Streaming Fashion

Input: computations Cj sequentially
Output: product C
Initialize: C = 0L×N , and R = ∅ the index set of the received workers’
blocks
while |R| < ℓ do

receive computation Cj ▷ j ∈ Nn

ℓ̂← ⌈j/(s+ 1)⌉ ▷ block index of the jth worker
if ℓ̂ /∈ R then

C ← C + Cj
R← R ∪ {ℓ̂}

end

end

The benefit of this approach, compared to the decoding ãTI = aTI ⊗ IL for aI from

Algorithm 1, is that the central server will never need to store more than double the

entries of the product C. In the case where (s + 1) ∤ n, we can do the exact same

process by simply breaking the problem into two subroutines, one dealing with the

workers whose indices correspond to the first r congruence classes mod(s + 1), and

the other with the workers corresponding to the remaining s+1−r congruence classes.

That is, we will work with BC1 for ℓ+ 1 blocks; and BC2 for ℓ blocks separately. We

carry out Algorithm 2 in parallel for the two cases, and terminate whenever one of

the two has computed C. Now, the central server will need to store a total number

of entries no more than twice the size of matrix C. This decoding procedure can be

done analogously for GCS. An example with further details is provided in 1.3.1.

Algorithm 2 takes into account which workers have responded up to a certain

instance, rather than only the total number of workers which have responded. The

recovery threshold in the worst case is n− s, matching that of our previous decoding

procedure. On average though, considering all possible index sets I of responsive

workers which correspond to a valid decoding according to Algorithm 2, less workers

than the worst case of n− s need to respond.

If (s+ 1) ∤ n, the worst case occurs when all workers corresponding to ℓ blocks of

BC1 and ℓ − 1 blocks of BC2 respond, along with only one worker from either of the

two remaining blocks. By (2.18), the total number of responsive workers is n− s. In

the best case, we need a single worker corresponding to each block of BC2 to respond,

36

i.e. ℓ = ⌊ n
s+1
⌋ responsive workers. Similarly, if (s+ 1) | n, in the best case we require

ℓ = n
s+1

workers to respond, and in the worst case n − (ℓ − 1) · (s + 1) + 1 = n − s
many workers.

2.5.3 CMM-2 — Augmentation of Submatrices

In a system where the main limitation is the communication load which can be

handled from the workers to the central server; as well as storage of the computed

task at the worker nodes, CMM-1 is not ideal, even with the more efficient decoding

process. Next, we discuss an alternative CMMS which is superior in these aspects.

In contrast to the partitioning (2.28) of CMM-1, in this scheme we partition A

along its rows and B along its columns, as was done for the Polynomial codes in [303],

i.e.

A =
[
ĀT1 · · · ĀTk1

]T
and B =

[
B̄1 · · · B̄k2

]
, (2.34)

where Āj ∈ R
L
k1
×N

and B̄j ∈ RN×M
k2 . Each worker computes the product of a subma-

trix of A with a submatrix of B, and then the central server augments the received

computations accordingly.

For coherence, we let k = k1k2 for k1, k2 ∈ Z+. To simplify the presentation of our

scheme, we consider the case where k1|L, k2|M and (s + 1) | k; i.e. S = L/k1 ∈ Z+

and T = M/k2 ∈ Z+, and similar to our GCS that n = k. The product C of the two

matrices under this partitioning is equal to

Ā1B̄1 Ā1B̄2 . . . Ā1B̄k2−1 Ā1B̄k2

Ā2B̄1
. . . Ā2B̄k2

...
. . .

...

Āk1−1B̄1
. . . Āk1−1B̄k2

1Āk1B̄11 Āk1B̄2 . . . Āk1B̄k2−1 1Āk1B̄k21

where we denote each product submatrix by C̄i,j := ĀiB̄j ∈ RS×T, and each block

row column by

C̄i =
[
C̄i,1 · · · C̄i,k2

]
∈ RS×M ; for each i ∈ Nk1 . (2.35)

The product submatrices can be ordered in terms of the indices i and j, e.g. through

the bijection ϕ : Nk1 ×Nk2 → Nk defined as ϕ : (i, j) 7→ (i− 1)k2 + j. Since k = k1k2,

each C̄i,j corresponds to one of k distinct subtasks which need to be retrieved.

37

As mentioned, the main benefit of CMM-2 when compared to CMM-1, is that

the communication load between the ith worker and the central server drops by a

factor of k/|Ji|; when considering equipotent partitions of A and of B. Therefore,

if Algorithm 1 were to be used for the decoding step, the central server would also

require much less temporary storage. The workers on the other hand, need to store

the entire matrix A.

The idea behind both the decoding Algorithms 1 and 2 work, under a slight

modification which we explain. In the proposed GCS we dealt with vector addition,

and in our first CMMS; with matrix addition. Now, we focus on submatrices of the

final product, which is common in CMM [178, 303]. Our decoding vector aI will be

the same, but the way we apply it is different. If Algorithm 1 were to be used, every

worker corresponding to the same congruence class c ∈ N0,s communicates back the

same set of computations {C̄i,j}ϕ(i,j)∈J[c]s+1
, which sets are distinct for each congruence

class. Hence, whenever a complete residue system, in terms of the workers indices,

is received, then the central server will have in its possession all the computations

{C̄i,j : i ∈ Nk1 , j ∈ Nk2}. These computations are then rearranged in order to recover

C.

If Algorithm 2 were to be used, the same idea holds. The central server waits until

at least one corresponding worker from each block, from one of the two matrices BC1 or

BC2 has responded. Formally, we want a scheme (B̃, ã[I]s+1) such that ãT[I]s+1
B̃ = Ik1M

(note that kT = k1k2 ·M/k2 = k1M) for any I ∈ Inf , where [I]s+1 is the congruence

class of the complete residue system present in I. This is analogous to the GC

condition aIB = 1k×1. To summarize, the encoding process is

B̃∈{0,1}kT(s+1)×kT︷ ︸︸ ︷(
Ik1k2 ⊗ 1(s+1)×1 ⊗ IT

)
·

C̄T∈RkT×S︷ ︸︸ ︷
C̄T

1
...

C̄T
k1

 = B̃ ·

C̄T
1,1

C̄T
1,2
...

C̄T
1,k2
...

C̄T
k1,k2

=

C̄T
1,1
...

C̄T
1,1
...

C̄T
k1,k2
...

C̄T
k1,k2

, (2.36)

where the transpose of each submatrix C̄i,j appears s + 1 times along the rows of

the encoding B̃C̄T ∈ R(s+1)k1M×S, each corresponding to one of the s + 1 potential

workers that are asked to compute C̄i,j. This encoding is analogous to the encoding

Bg in our GCS, where the partial gradients {gl}kl=1 correspond to the submatrices

38

{C̄i,j : i ∈ Nk1 , j ∈ Nk2}. Furthermore, B̃ reveals the task allocation which is applied

to the pairs {(Āi, B̄j) : i ∈ Nk1 , j ∈ Nk2}. Alternatively, the matrix B̃ is constructed

as described in Algorithm 3.

Algorithm 3: Encoding Matrix B̃ — CMM-2

Input: parameters k1, k2, s and T = M/k2 ▷ assume n = k = k1k2
Output: B̃ ∈ {0, 1}kT(s+1)×kT

Initialize: B = 0k(s+1)×k
for j = 1 to k do

B[(j − 1) · (s+ 1) + 1 : j · (s+ 1), j] = 1(s+1)×1
end

return B̃← B⊗ IT

For the decoding matrix ã[I]s+1 constructed by Algorithm 4, we use Algorithm

1 as a subroutine in order to determine which congruence class I of worker indices

forms a complete residue system, in the inner if statement. We could directly use the

indicator-vector recI , though working with aI is preferred. This also reveals how the

decoding is similar to that of our GCS. By our assumptions, B̃ and ã[I]s+1 are both of

size kT(s+1)×kT; where kT = k1M . As was previously mentioned, a rearrangement

on C̄T needs to take place to finally recover C. In the special case where k1 = 1, a

rearrangement is not necessary.

Algorithm 4: Decoding Matrix ã[I]s+1 — CMM-2

Input: decoding vector aI , by invoking Algorithm 1, and design parameters
k1, k, s and T = M/k1

Output: ã[I]s+1 ∈ {0, 1}kT(s+1)×kT

Initialize: ãI = 0k(s+1)×k
for j = 1 to s+ 1 do

if (aI)j ≡ 1 then
I ← j − 1

end

end
for j = 1 to k do

ãI [(j − 1) · (s+ 1) + (I + 1), j] = 1
end
return ã[I]s+1 ← ãI ⊗ IT

Similar to GC where aI is constructed such that aTIB = 11×k, we constructed

ã[I]s+1 to satisfy ãT[I]s+1
B̃ = Ik1M . By this, the above pair (ã[I]s+1 , B̃I) yields

ãT[I]s+1
(B̃IC̄

T) = Ik1MC̄T = C̄T , (2.37)

39

which implies that our CMM construction works as expected. In appendix 1.2 we

provide the analysis for the case where k1 = 1, as a simpler version of CMM-2. A

numerical example is depicted in Appendix 1.3.2, for parameters k1 = 1 and k2 = 8.

2.5.4 Comparison between CMM-1 and CMM-2

We present the trade-offs, in terms of communication, storage, and computational

operations required by each worker for our CMMSs in Table II.1. Each scheme may

have different uses in practice, in which one is preferable to the other. In certain

applications, one may even be easier to implement compared to the other. Also,

depending on the limitations and the parameters of the system employing the matrix-

matrix multiplications and the underlying application, a different CMMS may be

more suitable. Both CMM-1 and CMM-2 have been applied in other coded computing

schemes, in which the other cannot be utilized. The approach of CMM-1 was used for

approximate matrix-multiplication [53], and the special case of CMM-2 where k1 = 1;

for matrix inversion [51]. We briefly explain these applications, after comparing the

trade-offs of the two schemes.

Trade-Offs Between Our Two CMM Schemes

Communication Computation Storage
CMM-1 LM LMN/k · |Ji| N

k (L+M) · |Ji|
CMM-2 LM

k1k2
· |Ji| LMN

k1k2
· |Ji| N

(
L
k1

+ M
k2

)
· |Ji|

Table II.1:
Comparison of the communication, computation and storage required by
the workers in each of our schemes.

For a fair comparison between the two schemes, let us assume that the same

number of jobs |Ji| is assigned to every worker across both CMM-1 and CMM-2. In

terms of communication; if the bandwidth is limited, CMM-2 is preferred, as each

worker only needs to send a fraction of the LM matrix symbols to the central server;

since |Ji|/(k1k2) < 1. In terms of computation, the total number of floating-point

operations carried out locally by the workers, is the same in the two schemes, when the

total number of subtasks (k and k1k2 respectively) are equal. The preferred scheme

therefore depends on how parameters k1 and k2 are selected for CMM-2; relative to

k for CMM-1, and vice versa. In terms of storage, a similar comparison holds, e.g. if

we set k1 = k2 = k; the workers in both schemes require the same amount of local

storage.

40

Theorem 2.5.1 and CMM-1 were incorporated in a weighted CMM approximation

scheme [53]. The idea behind the weighting is that each outer-product matrix, which

is requested to be computed, is scaled by an integer factor corresponding to an im-

portance sampling distribution on the submatrix pairs {(Ãj, B̃j)}kj=1. The fact that

the workers in CMM-1 compute the outer-products of column-row submatrix pairs,

permits us to combine this approach with CR-multiplication; a randomized technique

which produces a low-rank approximate product of minimum variance [88, 89, 90], as

both CMM-1 and CR-multiplication leverage (2.33). This procedure resulted in an

approximate CMM with reduced storage and number of operations at the workers.

The approach of CMM-2 was used in [51], as a basis to approximate the inverse

and pseudoinverse of a matrix in the presence of stragglers. The analogy which takes

place is that instead of the products AB̄i, the workers in the matrix inversion scheme

communicate back [
B̂((s+1)i+1) · · · B̂((s+1)(i+1))

]
∈ RN×N

k , (2.38)

for i = 0, 1, · · · , k − 1 and k = N/(s + 1). Matrix B̂ is the approximation of the

inverse of A ∈ RN×N , i.e. AB̂ ≈ IN , whose columns are estimated by the workers;

who approximate the solutions to the regression problems

B̂(l) = arg min
b∈RN

{
∥Ab− el∥22

}
, (2.39)

for each of the columns of B̂ requested by them, by using an iterative method of their

choice.

2.6 Comparison to Prior Works

In this section we briefly review some related work, which we compare our schemes

to. We review a polynomial based GC, and three polynomial CMM approaches. We

compare and contrast each of the CMM approaches to one of ours (CMM-1, CMM-2,

and the special case of CMM-2 presented in Appendix 1.2), which are in fact the

closest line of work we could find to each of our proposed schemes. Generally speaking,

the communication, storage and computation required by our CMMSs is the same

with the respective one we compare it to.

The advantage of the CMM polynomial schemes we will discuss is in terms of the

recovery threshold. These schemes achieve a better threshold, as they encode linear

41

combinations of submatrices of one or both the matrices, and then carry out the

computation on the encoded submatrices, from which a fraction of all the assigned

tasks they then decode to retrieve the matrix product. As in GC, in our CMMSs we

first carry out the computations and then encode them locally at the worker nodes,

e.g. (2.32) and (2.36). Our CMMSs meet the optimal recovery threshold known

for GC, as this is met by the underlying GCS; which we proposed. However, our

schemes are superior in terms of encoding and decoding complexity. Furthermore,

since the encodings are binary matrices consisting only of 0’s and 1’s, they introduce

no numerical instability nor rounding errors.

We also draw connections with weighted GC, distributed storage systems, and

LDPC codes.

2.6.1 Reed-Solomon Scheme and Weighted Gradient Coding

First, we compare our proposed GCS with the one introduced in [134], which

provides improvements in terms of the decoding complexity to [279] and, to the best

of authors’ knowledge, is the first work to consider constructing the decoding vector

aI online; instead of the matrix comprised of all possible aI decoding vectors.

The main idea in [134] is to use balanced Reed-Solomon codes [135], which are

evaluation polynomial codes. Each column of the encoding matrix B corresponds

to a partition Di and is associated with a polynomial that evaluates to zero at the

respective workers who have not been assigned that partition part. The properties

of balanced Reed-Solomon codes imply the decomposition BI = GIT, where GI is

a Vandermonde matrix over certain roots of unity, and the entries of T corresponds

to the coefficients of polynomials; constructed such that their constant term is 1, i.e.

T(1) = 11×k. The decoding vector aTI is the first row of G−1I , for which aTIGI = eT1 .

A direct consequence of this is that aTIBI = eT1T = T(1), thus aTI (BIg) = gT .

A drawback of this construction is that it works over the complex numbers and

requires an inversion, which introduces numerical instability. Each decoding vector

aI can be computed in time O((n− s)2), while the decoding vector proposed in this

chapter is constructed in time O(n+ s).

The Reed-Solomon based scheme was also used as a basis for weighted gradient

coding [52]. The idea behind the weighting is similar to that of the weighted CMMS

[53] described in 2.5.4. In weighted GC the goal is not to recover the sum of the partial

gradients, but a weighted linear combination according to some predetermined weight

vector w ∈ Z1×k
+ . This has many applications in signal processing and statistics. Note

also that our proposed binary gradient code (B, aI) can be extended to a weighted

42

scheme (B̃, aI) by the simple modification of B:

B̃ij =

wj if Bij = 1

0 if Bij = 0
. (2.40)

2.6.2 CMM MatDot Codes

The proposed CMM-1 described in 2.5.1 is in nature, close to the “MatDot Codes”

from [98, 109], which work with the rank-τ outer-products. In the MatDot procedure,

a polynomial of the submatrices Ãi and B̃i is evaluated, i.e.

pA(x) =
k∑
j=1

Ãjx
j−1 and pB(x) =

k∑
j=1

B̃jx
k−j, (2.41)

over arbitrary distinct elements x1, · · · , xn of a finite field Fq for some q > n. The ιth

worker receives the evaluations pA(xι) and pB(xι), i.e. the evaluations of the poly-

nomials at the evaluation point corresponding to the worker; xι. Each worker is the

requested to communicate back the computation P (xi) = pA(xi)pB(xi), which is a

polynomial of degree 2(k − 2). The sum of all the outer-products is the coefficient

of xk−1 of the polynomial pA(x)pB(x). Once any 2k − 1 evaluations of the polyno-

mial P (x) on distinct points are received, polynomial interpolation of Reed-Solomon

decoding can be applied in order to retrieve the product AB [109, 98].

The MatDot procedure in [98, 109] is described for A and B both being square

matrices of sizeN×N , though there is no reason why it should not work for non-square

matrices. The overall encoding complexity for each worker if both matrices considered

are squares; is O(N2n). The overall decoding complexity per worker is O(k log2 k)

for each entry [170], thus; the overall decoding complexity is O(N2k log2 k).

The communication cost per worker of the MatDot scheme is the same as CMM-1.

A drawback is the storage required at the central server, which was overcome for our

scheme through the alternative decoding process of Algorithm 2.

2.6.3 CMM Polynomial Codes

The “Polynomial Codes” proposed in [303] follow a similar approach in terms

of computational tasks and concatenation as the proposed CMM-2, though a differ-

ent encoding and decoding procedure is considered. The Polynomial Codes CMMS

partitions both the matrices, A into k2 submatrices across its rows; and B into k2

submatrices across its columns. The encodings which take place are similar to those

43

of MatDot Codes, and the workers are requested to compute the product between an

encoding of the submatrices A and of the submatrices B. Once k1k2 workers respond,

the decoding involves the inversion of a Vandermonde matrix; which is not numeri-

cally stable, in order to retrieve the submatrices of C each of size L
k1
× M

k2
, which are

then concatenated.

A restriction of the Polynomial Codes, which cannot be altered if we want to have

a recovery threshold of k1k2, is the fact that the resulting products of the encoded

submatrices all need to have the same size, therefore requiring that k1|L and k2|M .

From the analysis we carried for homogeneous workers of our GCS, the partitions of

A and B for our CMM-2 do not all need to have the same number of columns.

An extension of the Polynomial codes in [304] does the same augmentation argu-

ment after the decoding step, though their encodings take place over submatrices of

A and B, where the partitions are carried out for both matrices across the rows and

columns.

2.6.4 Connection to Distributed Storage Systems

A central theme of this chapter was relaxing the condition that (s+1) | n, in order

to design a GCS for a pair of integers (s, n) where 0 ≤ s < n for which (s+1) ∤ n. The

main idea behind this condition is that the k partitions can be appropriately grouped

together and the workers will all get the same number of partitions. This is what is

referred to as uniform, defined in Definition 2.3.1. If ds(B) = 0, the assignment is

balanced, according to the terminology in [279]. The arithmetic is easier to work with

under this assumption, which is also why our construction results in a block diagonal

matrix B; when (s + 1) | n. This is a permutation of the rows of the fractional

repetition scheme from [279].

The aforementioned assumption prevails in the construction of distributed storage

systems as well, which use similar techniques, including replication and block coding

to provide reliability. Specifically, in the design of locally repairable codes (LRCs)

[227]. We relate these two applications; of GC and distributed storage, by indicating

how this assumption translates from LRCs to GC schemes, by discussing an analog

of [227, Remark 2] in this context. The reader is referred to [227] and the references

therein for further details on LRCs.

Remark 2.6.1. Observe that when (s+ 1) | n, we can partition the set of k disjoint

parts of D into n
s+1

disjoint (s + 1)-groups. The method used in [279] to prove the

lower bound ∥B(i)∥0 ≥ k
n
(s + 1) of [279, Theorem 1], relies on the fact that at least

44

one encoding of all of the (s + 1)-groups need be collected, in order for the scheme

to be resilient to any s stragglers. The construction of their code meets this bound

with equality, as does ours; under the given assumption. That is, the constructions

gives an achievability proof for the case of (s+ 1) | n. Furthermore, we show that the

pair-wise disjoint parts D is one of the possibly many arrangements of repair groups

that leads to optimal constructions (Theorem 2.4.2), as we can rearrange any of the

allocation of the parts among each congruence class of workers. This is done in such

a way that each partition is allocated to exactly one worker per class.

2.6.5 Connection to LDPC Codes

In terms of error-correcting codes, Theorem 2.4.3 suggests an analogy between

permutations of the task allocations per congruence class B̄ of our encoding matrix

B, and parity check matrices of LDPC codes. Specifically, B̄ matches the definition

of an irregular LDPC parity check matrix H [116, 196, 246], since along the columns

of B̄ and B we have a balanced load, and along the rows we have an unbalanced load

when (s + 1) ∤ n. That is, B̄ suggested by our construction and Theorem 2.4.3 is a

valid H, with the additional constraint that any two rows corresponding to the same

congruence class mod(s + 1) have disjoint supports. It is intriguing to see what can

be inferred from the constructions and theory of our binary encoding to that of LDPC

codes and vice versa, and if further connections can be established.

2.7 Conclusion and Future Work

In this chapter, we introduced a binary GCS for distributed optimization. The

main advantages of our code design is that (i) it provides numerically stable com-

putations of the gradient, (ii) it removes the limiting assumption (s + 1) | n, and

(iii) it has an improved and more tractable decoding stage compared to that of the

first GCS proposed in [279]. We provided an analysis of the proposed design, and

showed that it is optimal in terms of the minimizing function ds defined in Definition

2.3.1. Both homogeneous and heterogeneous workers were considered. It is worth

noting that more recent work also considers this direction [269], though their focus

is on improving the recovery threshold. We then presented two CMM approaches; as

extensions of our binary GCS.

There are several interesting directions for future work. We have seen that the

proposed schemes accommodate various matrix operations. It would be interesting

to see what other operations they can accommodate, in order to devise exact and

45

approximate straggler resilient coded computing schemes. Another direction is to

incorporate privacy and security into our schemes. A third direction, is to further

explore the connections between coded computations and codes for distributed storage

systems. Specifically, it would be worthwhile to explore the connections between the

proposed GCS, the GCS of [155], and the distributed storage systems of [100], which

we briefly described in Subsection 2.6.4.

46

CHAPTER III

Gradient Coding through Iterative Block Leverage

Score Sampling

3.1 Introduction

In this chapter we bridge two disjoint areas, to accelerate first-order methods dis-

tributively, while focusing on linear regression. Specifically, we propose a framework

in which Randomized Numerical Linear Algebra (RandNLA) sampling algorithms can

be used to devise Coded Computing (CC) schemes. We focus on the task of ℓ2-subspace

embedding (ℓ2-s.e.); through leverage score sampling, and distributed gradient com-

putation; which is referred to as gradient coding (GC).

Traditional numerical linear algebra algorithms are deterministic. For example,

inverting a full-rank matrix A ∈ RN×N requires O(N3) arithmetic operations by

performing Gaussian elimination, as does naive matrix multiplication. The fastest

known algorithm which multiplies two N × N matrices, requires O(Nω) operations;

for ω < 2.373 [11, 230]. Other important problems are computing the determinant,

singular and eigenvalue decompositions, SVD, QR and Cholesky factorizations.

Although these deterministic algorithms run in polynomial time and are numer-

ically stable, their exponents make them prohibitive for many applications in scien-

tific computing and machine learning, when N is in the order of millions or billions

[200, 202]. To circumvent this issue, one can perform these algorithms on a signifi-

cantly smaller approximation. Specifically, for a matrix S ∈ Rr×N with r ≪ N , we

apply the deterministic algorithm on the surrogate Â = SA ∈ Rr×d. The matrix S is

referred to as a “dimension-reduction” or a “sketching” matrix, and Â is a “sketch”

of A, which contains as much information about A as possible. For instance, when

multiplying A ∈ RL×N and B ∈ RN×M , we apply a carefully chosen S ∈ Rr×N on

47

each to get

L×N︷ ︸︸ ︷ A

 ·

N×M︷ ︸︸ ︷
B

≈

L×r︷ ︸︸ ︷ Â

 ·

r×M︷ ︸︸ ︷ B̂

for Â = AS⊤ and B̂ = SB. Thus, naive matrix multiplication now requires O(LMr)

operations; instead of O(LMN). Such approaches have been motivated by the

Johnson-Lindenstrauss lemma [153], and require low complexity.

A multitude of other problems, such as k-means clustering [35, 45, 67] and com-

puting the SVD of a matrix [86, 87, 89, 90], make use of this idea; in order to

accelerate computing accurate approximate solutions. We refer the reader to the fol-

lowing monographs and comprehensive surveys on the rich development of RandNLA

[93, 137, 200, 201, 214, 290, 294], an interdisciplinary field that exploits random-

ization as a computational resource; to develop improved algorithms for large-scale

linear algebra problems.

The problem of ℓ2-s.e.; a form of spectral approximation of a matrix, has been

extensively studied in RandNLA. The main techniques for constructing appropri-

ate sketching ℓ2-s.e. matrices, are performing a random projection or row-sampling.

Well-known choices of S for reducing the effective dimension N to r include: i) Gaus-

sian projection; for a matrix Θ ∼ N (0, 1) define S = 1√
r
Θ, ii) leverage score sam-

pling ; sample with replacement r rows from the matrix according to its normalized

leverage score distribution and rescale them appropriately, iii) Subsampled Hadamard

Transform (SRHT); apply a Hadamard transform and a random signature matrix to

judiciously make the leverage scores approximately uniform and then follow similar

steps to the leverage score sampling procedure.

In this chapter, we first generalize ii) to appropriately sample submatrices instead

of rows to attain a ℓ2-s.e guarantee. We refer to such approaches as block sampling.

Throughout this paper, sampling is done with replacement (w.r.). Sampling blocks

has been explored in “block-iterative methods” for solving systems of linear equations

[101, 131, 215, 240]. Our motivation in dealing with blocks rather than individual

vectors, is the availability to invoke results that can be used to characterize the

48

approximations of distributed computing networks, to speed up first-order methods,

as sampling individual rows/columns is prohibitive in real-world environments. This

in turn leads to an iterative sketching approach, which has been well studied in terms

of second-order methods [232, 173, 231]. By iterative sketching, we refer to an iterative

algorithm which uses a new sketch S[s] at each iteration. The scenario where a single

sketch S is applied before the iterative process, is referred to as the “sketch-and-solve

paradigm” [255].

Second, we propose a general framework which incorporates our sketching algo-

rithm into a CC approach. This framework accommodates a central class of sketching

algorithms, that of importance (block) sampling algorithms (e.g. CUR decomposi-

tion [221], CR-multiplication [53]). Coded computing is a novel computing paradigm

that utilizes coding theory to effectively inject and leverage data and computation re-

dundancy to mitigate errors and slow or non-responsive servers; known as stragglers,

among other fundamental bottlenecks, in large-scale distributed computing. In our

setting, the straggling effect is due to computations being communicated over erasure

channels, whose erasure probability follows a probability distribution which is central

to the CC probabilistic model. The seminal work of [178] which first introduced CC,

focused on exact matrix-vector multiplication and data shuffling. More recent works

deal with recovering good approximations, while some have utilized techniques from

RandNLA; e.g. [20, 52, 53, 127, 128, 147]. Our results are presented in terms of

the standard CC probabilistic model proposed in [178], though they extend to any

computing network comprised of a central server and computing nodes, referred to

as servers.

To mitigate stragglers, we appropriately encode and replicate the data blocks,

which leads to accurate CC estimates. In contrast to previous works which simply

replicate each computational task or data block the same number of times [305, 279,

47, 48], we replicate blocks according to their block leverage scores. Consequently, this

induces a non-uniform sampling distribution in the aforementioned CC model; which

is an approximation to the normalized block leverage scores. A drawback of using

RandNLA techniques is that exact computations are not recoverable, though our

method does not require a decoding step, a task of high complexity and a prevalent

bottleneck in CC. For more details on the various directions of CC, the reader is

referred to the monographs [181, 216].

The central idea of our approach is that non-uniform importance sampling can be

emulated, by replicating tasks across the network’s servers, who communicate through

an erasure channel. The tasks’ computation times follow a runtime distribution [178],

49

Figure III.1:
Schematic of our approximate GC scheme, at iteration s. Each server
has an encoded block of data, of which they compute the gradient once
they receive the updated parameters x[s]. The central server then aggre-
gates a subset of all the gradients

{
ĝ
[s]
j

}m
j=1

, indexed by I [s], to approxi-

mate the gradient g[s]. At each iteration we expect a different index set
I [s], which leads to iterative sketching.

which along with a prespecified gradient transmission “ending time” T , determine the

number of replications per task across the network. Though similar ideas have been

proposed [52, 53, 127, 128]; where sketching has been incorporated into CC, this is the

first time redundancy is introduced through RandNLA; as opposed to compression,

to obtain approximation guarantees. In terms of CC, though uniform replication is a

very powerful technique, it does not capture the relevance between the information of

the dataset. We capture such information through replication and rescaling according

to the block leverage scores. By then allowing uniform sampling of these blocks, we

attain a spectral approximation. In the CC setting this then corresponds to an

iterative ℓ2-s.e. sketching method. The shortcoming of this approach, which is the

cost we pay for guaranteeing a spectral approximation through uniform sampling, is

that we expect to require a large amount of servers; when the underlying sampling

distribution is non-uniform.

In Appendix 2.5 we discuss how further compression can be attained by intro-

ducing weighting, while guaranteeing the same results when first and second order

methods are used for linear regression in the sketch-and-solve paradigm (Proposition

2.5.1 and Corollary 2.5.1). We also show that in terms of the expected reduced dimen-

sion, we have minimal benefit when the block leverage scores distribution is uniform

(Theorem 2.5.1). This further justifies the fact that sharper decays in leverage scores

lead to more accurate algorithms[226].

All completed jobs that are received by the central server are aggregated to get the

50

final gradient approximation, at each iteration of the descent method being carried

out. Thus, unlike most CC schemes, ours does not store completed jobs which will

not be accounted for. Our method sacrifices accuracy for speed of computation,

and the inaccuracy is quantified in terms of the resulting ℓ2-s.e. (Theorem 3.3.1).

Specifically, the computations of the responsive servers will correspond to sampled

block computation tasks of our proposed generalization to leverage score sampling,

summarized in Algorithm 5. Approximate coded computations is a current interest in

information-theory, as it is conceivable that data dependent approximation schemes

could lead to faster inexact but accurate solutions, at a lower computational cost

[181].

To summarize, our main contributions are: 1) propose block leverage score sketch-

ing, to accommodate block sampling for ℓ2-s.e., 2) provide theoretical guarantees for

the algorithm’s performance, 3) show the significance of weighting; when our weighted

sketching algorithms are is applied in iterative first and second order methods, 4) pro-

pose expansion networks ; which use the sampling distribution to determine how to

replicate and distribute blocks in the CC framework — this unifies the disciplines of

RandNLA and CC — where replication and uniform sampling (without a random pro-

jection) result in a spectral approximation, 5) show how expansion networks are used

for approximate distributed steepest descent (SD); and approach the optimal solution

with unbiased gradient estimators in a similar manner to batch stochastic steepest

descent (SSD), 6) experimental justification on the performance of our algorithm on

artificial datasets with non-uniform induced sampling distributions.

The chapter is organized as follows. In 3.2 we present the notation which will

used, and review necessary background. In 3.3.1 we present related works, in terms

of CC. In 3.3.2 we present our sketching algorithm and its theoretical approximation

guarantees. In 3.3.3 and 3.3.4 we give a framework for which our algorithm; as

well as potentially other importance sampling algorithms, can be used to devise CC

schemes. This is where we introduce redundancy through RandNLA, which has not

been done before. In 3.3.5 we summarize our GC scheme, and in 3.3.6 we give a

brief synopsis of our main results and tie everything together. In 3.3.7 we show how

our scheme relates to approximate GC. We conclude with experimental evaluations

in 3.4 on fabricated data with highly non-uniform underlying sampling distributions,

to convey the maximum benefit of what we propose.

51

3.2 Notation and Background

We denote Nn := {1, 2, · · · , n}, and X{n} = {Xi}ni=1; where X could be replaced

by any variable. We use A,B to denote real matrices, b,x real column vectors, In

the n × n identity matrix, 0n×m and 1n×m respectively the n × m all zeros and all

ones matrices, and by ei the standard basis column vector whose dimension will be

clear from the context. The largest eigenvalue of a matrix M, is denoted by λ1(M).

By A(i) we denote the ith row of A, by A(j) its jth column, by Aij the value of A’s

entry in position (i, j), and by xi the ith element of x. The rounding function to the

nearest integer is expressed by ⌊·⌉, i.e. ⌊a⌉ = ⌊a + 1/2⌋ for a ∈ R. Disjoint unions

are represented by
⊔

; e.g. Z = {j : j is odd}
⊔
{j : j is even}, and we define

⊎
as

the addition of multisets; e.g. {1, 2, 3}
⊎
{3, 4} = {1, 2, 3, 3, 4}. The diagonal matrix

with real entries a{n} is expressed as diag
(
a{n}).

We partition vectors and matrices across their rows into K submatrices, in a way

that no submatrix differs from another by more than one row. For simplicity, we

assume that K divides the number of rows N . That is, for a ℓ2-s.e. of A ∈ RN×d

with target b ∈ RN , we assume K | N and the “size of each partition” is τ = N/K.1

We partition A,b across their rows:

A =
[
A⊤1 · · · A⊤K

]⊤
and b =

[
b⊤1 · · · b⊤K

]⊤
(3.1)

where Ai ∈ Rτ×d and bi ∈ Rτ for all i ∈ NK . Partitions, are referred to as blocks.

Throughout the paper we consider the case where N ≫ d. For A full-rank, its SVD

is A = UΣV⊤, where U ∈ RN×d is its reduced left orthonormal basis.

Matrix A represents a dataset D of N samples with d features, and b the cor-

responding labels of the data points. The partitioning (3.1) corresponds to K sub-

datasets D{K}, i.e. D =
⊔K
j=1Dj. Our results are presented in terms of an arbitrary

partition NN =
⊔K
ι=1Kι, for NN the index set of the rows of A and b. The index sub-

sets K{K} indicate which data samples are in each sub-dataset. By A(Kι), we denote

the submatrix of A comprised of the rows indexed by Kι. That is, for I(Kι) the re-

striction of IN to only include its rows corresponding to Kι, we have A(Kι) = I(Kι) ·A.

By Kiι, we indicate that the ιth block was sampled at trial i, i.e. the superscript i

indicates the sampling trial and the subscript ι ∈ NK which block was sampled at

1If K ∤ N , we appropriately append zero vectors/entries until this is met. It is not required that
all blocks have the same size, though we discuss this case to simplify the presentation. One can
easily extend our results to blocks of varying sizes, and use the analysis from [47] to determine the
optimal size of each partition.

52

that trial. Aslo, by j(i) we denote the index of the submatrix which was sampled at

the ith sampling trial, i.e. Kj(i) = Kij(i). The complement of Kι is denoted by K̄; i.e.

K̄ι = NN\Kι, for which U⊤(Kι)
U(Kι) = Id −U⊤

(K̄ι)
U(K̄ι).

Sketching matrices are represented by S and S̃[s]. The script [s] indexes an it-

eration s = 0, 1, 2, . . . which we drop when it is clear from the context. We will

be reducing dimension N to r, i.e. S ∈ Rr×N . Sampling matrices are denoted by

Ω ∈ {0, 1}r×N , and diagonal rescaling matrices by D ∈ RN×N .

Approximate block sampling distributions to Π{K} are denoted by Π̃{K}, and

the distributions induced through expansion networks by Π̄{K}. We quantify the

difference between distributions Π{K} and Π̃{K} by the distortion metric dΠ,Π̃ :=
1
K

∑K
i=1 |Πi − Π̃i|, which is the ℓ1 distortion between Π{K} and Π̃{K}, e.g. [145].

3.2.1 Least Squares Approximation

Least squares approximation is a technique to find an approximate solution to

a system of linear equations that has no exact solution, and has found applications

in many fields [96]. Consider the system Ax = b, for which we want to find an

approximation to the best-fitted

x⋆ = arg min
x∈Rd

{
Lls(A,b;x) := ∥Ax− b∥22

}
, (3.2)

which objective function Lls has gradient

g[s] = ∇xLls(A,b;x[s]) = 2A⊤(Ax[s] − b). (3.3)

We refer to the gradient of the block pair (Ai,bi) from (3.1) as the ith partial gra-

dient ; g
[s]
i = ∇xLls(Ai,bi;x

[s]). Existing exact methods find a solution vector x⋆

in O(Nd2) time, where x⋆ = A†b. In Subsection 3.3.5 we focus on approximating

the optimal solution x⋆ by using our methods, via distributive SD/SSD and itera-

tive sketching. What we present also accommodates regularizers of the form λ∥x∥22,
though to simplify our expressions, we only consider (3.2).

3.2.2 Steepest Descent

When considering a minimization problem with a convex differentiable objective

function L : Rd → R, we select an initial x[0] ∈ Rd and repeat at iteration s + 1:

x[s+1] ← x[s] − ξs · ∇xL(x[s]); for s = 0, 1, 2, . . ., until a prespecified termination

criterion is met. The parameter ξs > 0 is the corresponding step-size, which may be

53

adaptive or fixed. To guarantee convergence of Lls, one can select ξs = 2/σmax(A)2

for all iterations, though this is too conservative.

3.2.3 Leverage Scores

Many sampling algorithms select data points according to their leverage scores

[91, 195]. The leverage scores of A measure the extent to which the vectors of its

orthonormal basis U are correlated with the standard basis, and define the key struc-

tural non-uniformity that must be dealt with when developing fast randomized matrix

algorithms; as they characterize the importance of the data points. Leverage scores

defined as ℓi := ∥U(i)∥22, and are agnostic to any particular basis, as they are equal

to the diagonal entries of the projection matrix PA = AA† = UU⊤. The normalized

leverage scores of A are

πi :=
∥∥U(i)

∥∥2
2

/
∥U∥2F =

∥∥U(i)

∥∥2
2

/
d for each i ∈ NN , (3.4)

and π{N} form a sampling probability distribution; as
∑N

i=1 πi = 1 and πi ⩾ 0 for all

i. This induced distribution has proven to be useful in linear regression [91, 106, 294,

201].

The normalized block leverage scores, introduced independently in [52, 221], are

the sum of the normalized leverage scores of the subset of rows constituting the

block. Analogous to (3.4), considering the partitioning of D according to K{K}, the

normalized block leverage scores of A are defined as

Πl :=
∥∥U(Kl)

∥∥2
F

/
∥U∥2F =

∥∥U(Kl)

∥∥2
F

/
d =

∑
j∈Kl

πj for each l ∈ NK . (3.5)

A related notion is that of the Frobenius block scores, which in the case of a par-

titioning as in (3.1); are ∥Aι∥2F for each ι ∈ NK , which scores have been used for

CR-multiplication [89, 90]. In our context, the block leverage scores of A; are the

Frobenius block scores of U.

A drawback of using leverage scores, is that calculating them requires O(Nd2)

time. To alleviate this, one can instead settle for relative-error approximations which

can be approximated much faster, e.g. [91] does so in O(Nd logN) time. In particular,

we can consider approximate normalized scores Π̃{K} where Π̃i ⩾ βΠi for all i, for

some misestimation factor β ∈ (0, 1]. Since Π{K} and Π̃{K} are identical if and only

if β = 1, a higher β implies the approximate distribution is more accurate.

54

3.2.4 Subspace Embedding

Our approach to approximating (3.2), is to apply a ℓ2-s.e sketching matrix S ∈
Rr×N on A. Recall that S ∈ Rr×N is a (1±ϵ) ℓ2-subspace embedding of the column-

space of A, if

(1− ϵ)∥Ax∥22 ⩽ ∥SAx∥22 ⩽ (1 + ϵ)∥Ax∥22 (3.6)

for all x ∈ Rd, w.h.p. [294]. Notice that such an S, is also a (1±ϵ) ℓ2-s.e. of U, as

{Ax : x ∈ Rd} = {Uy : y ∈ Rd}. This implies that (3.6) is equivalent to

(1− ϵ)∥y∥22 = (1− ϵ)∥Uy∥22 ⩽ ∥SUy∥22 ⩽ (1 + ϵ)∥Uy∥22 = (1 + ϵ)∥y∥22 (3.7)

for all y ∈ Rd. The upper and lower bounds on ∥SUy∥22 respectively imply

y⊤
(
(SU)⊤SU− Id

)
y ⩽ ϵ∥y∥22 and y⊤

(
Id − (SU)⊤SU

)
y ⩽ ϵ∥y∥22

thus, a simplified condition for a ℓ2-s.e. of A is

Pr
[
∥Id −U⊤S⊤SU∥2 ⩽ ϵ

]
⩾ 1− δ (3.8)

for a small δ ⩾ 0.

For the overdetermined system Ax = b, we require r > d, and in the sketch-and-

solve paradigm the objective is to determine an x̂ which satisfies

(1− ϵ)∥Ax⋆ − b∥2 ⩽ ∥Ax̂− b∥2 ⩽ (1 + ϵ)∥Ax⋆ − b∥2, (3.9)

where x̂ is an approximate solution to the modified least squares problem

x̂ = arg min
x∈Rd

{
LS(S,A,b;x) := ∥S(Ax− b)∥22

}
. (3.10)

If (3.8) is met, we get w.h.p. the approximation characterizations:

1. ∥Ax̂− b∥2 ⩽ 1+ϵ
1−ϵ∥Ax⋆ − b∥2 ⩽ (1 +O(ϵ))∥Ax⋆ − b∥2

2. ∥A(x⋆ − x̂)∥2 ⩽ ϵ∥(IN −UU⊤)b∥2 = ϵ∥b⊥∥2

where b⊥ = b−Ax⋆ is orthogonal to the column span of A, i.e. A⊤b⊥ = 0d×1.

55

3.2.5 Coded Computing Probabilistic Model

In GC (Figure III.1), there is a central server who shares the K disjoint subsets

D{K} of D among m homogeneous2 servers, to facilitate computing the solution of

minimization problems with differentiable additively separable objective functions,

e.g. (3.2):

x⋆ = arg min
x∈Rd

{
∥Ax− b∥22 =

K∑
j=1

Lls(Dj;x)

}
.

Since the objective function Lls(A,b;x) is additively separable, it follows that g[s] =∑K
j=1 g

[s]
j . The objective function’s gradient is updated in a distributed manner;

while only requiring q servers to respond, i.e. it is robust to m− q stragglers. This is

achieved through an encoding of the computed partial gradients by the servers, and

a decoding step once q servers have sent back their encoded computation.

We consider the probabilistic computational model introduced in [178], which is

the standard CC paradigm; and is central to our framework. This model assumes

the existence of a mother runtime distribution F (t), with a corresponding probability

density function f(t). Let T0 be the time it takes a single machine to complete its

computation, and define F (t) := Pr[T0 ⩽ t]. We further assume that the runtime

distribution of the subtasks, with random amount of completion time T i, are a scaled

distribution of F (t). That is, when all servers have a computational task of size τ ,

computing a τ/N -fraction of the overall computation; follows the runtime distribution

F̃ (t) := F (tτ/N) = Pr[T i ⩽ t]. In this chapter, we view the computations as being

communicated to the central server over erasure channels, where the lth server Wl has

an erasure probability3

ϕ(t) := 1− F̃ (t) = 1− Pr
[
Wl responds by time t

]
, (3.11)

i.e. the probability that Wl is a straggler at time t is ϕ(t). All servers have the same

erasure probability, as we are assuming they are homogeneous.

In our setting, there are two hyperparameters required for determining an expan-

sion network. First, one needs to determine a time instance t ← T after which the

central server will stop receiving servers’ computations.4 This may be decided by

2This means that they have the same computational power, independent and identically dis-
tributed statistics for the computing time of similar tasks; and expected response time.

3This is also known as the survival function: ϕ(t) =
∫∞
t

(
1 − f̃(u)

)
du = 1 − F̃ (t) = Pr[T i > t],

for f̃(t) the PDF corresponding to F̃ (t). The function ϕ(t) is monotonically decreasing.
4By t← T , we mean T is a realization of the time variable t.

56

factors such as the system’s limitations, number of servers, or an upper bound on the

desired waiting time for the servers to respond. At time T , according to F̃ (t), the

central server receives roughly q(T) := ⌊F̃ (T) ·m⌋ server computations. We refer to

the prespecified time instance T after which the central server stops receiving compu-

tations; as the “ending time”. If the sketching procedure of the proposed sketching

algorithm were to be carried out by a single server, there would be no benefit in

setting T such that q(T)τ > N , as the exact calculation could have taken place in

the same amount of time. In distributed networks though there is no control over

which servers respond, and it is not a major concern if q(T)τ is slightly over N ; as

we still accelerate the computation. The trade-off between accuracy and waiting time

t is captured in Theorem 3.3.1, for q ← q(t) sampling trials. The second hyperpa-

rameter we need in order to design an expansion network, is the block size τ ; which

is determined by K the number of partitions (3.1). Together, q(T) and τ determine

the ideal number of servers needed for our framework to perfectly emulate sampling

according to the datas’ block leverage scores Π{K}.

3.3 Coded Computing from RandNLA

In this section, we first present our block leverage score sampling algorithm, which

is more practical and can be carried out more efficiently than its vector-wise coun-

terpart. Our ℓ2-s.e. result is presented in Theorem 3.3.1. By setting τ = 1 and for

β = 1, we get a known result for (exact) leverage score sampling.

In Subsection 3.3.3 we incorporate our block sampling algorithm into the CC

probabilistic model described above, in which we leverage task redundancy to mitigate

stragglers. Specifically, we show how to replicate computational tasks among the

servers, under the integer constraints imposed by the physical system and the desired

waiting time; to approximate the gradient at each iteration, in a way that emulates

the sampling procedure of the sketch presented in Algorithm 5. In Subsection 3.3.4

we further elaborate on when a perfect emulation is possible, and how emulated block

leverage score sampling can be improved when it cannot be done perfectly; through

the proposed networks. In Subsection 3.3.5 we present our GC approach, and relate

it to SD and SSD; which in turn implies convergence guarantees with appropriate

step-sizes. Furthermore, at each iteration we have a different induced sketch, hence

our procedure lies under the framework of iterative sketching. Specifically, we obtain

gradients of multiple sketches of the data
(
S̃[1]A, S̃[2]A, . . . , S̃[n]A

)
and iteratively

refine the solution, where n can be chosen logarithmic in N . A schematic of our

57

approach is provided in Figure III.2, and in Appendix 2.2 we provide a concrete

example of the induced sketching matrices resulting from the iterative process.

Figure III.2:
Illustration of our GC approach, at iteration s + 1. The blocks of A
(and b) are encoded through G and then replicated through E ⊗ Iτ ,
where each block of the resulting Ψ is given to a single server. At this
iteration, servers Wr1 and WR are stragglers, and their computations are
not received. The central server determines the estimate ĝ[s], and then
shares x[s+1] with all the servers. The resulting estimate is the gradient
of the induced sketch, i.e. ĝ[s] = ∇xLS(S̃[s],A,b;x[s]).

3.3.1 Related Work

Related works [112, 127, 128, 146] have utilized similar ideas to the GC approach

we present. The paper titled “Anytime Coding for Distributed Computation” [112]

proposes replicating subtasks according to the job, while [127] and [146] incorporate

sketching into CC. It is worth noting that even though we focus on gradient meth-

ods in this chapter; our approach also applies to second-order methods, as well as

approximate matrix products through the CR-multiplication algorithm [53, 86, 88].

We briefly discuss this in Section 3.5.

The work of [112] deals with matrix-vector multiplication. Similar to our work,

they also replicate the computational tasks a certain number of times; and stop the

process at a prespecified instance. Here, the computation Ax for A ∈ RN×N and

x ∈ RN is broken up into C different tasks; prioritizing the smaller computations.

The m servers are split up into c groups, which are asked to compute one of the tasks

yj =
(∑

i∈Jj σiuiv
⊤
i

)
x, for A =

∑N
l=1 σlulv

⊤
l the SVD representation of A. Each

58

task yj is computed by the servers of the respective group, and NN =
⊔s
j=1 Jj is a

disjoint partitioning of the rank-1 outer-products of the SVD representation. The size

of the jth task is |Jj| = pj, which in our work is determined by the normalized block

scores. The scores in our proposed schemes are motivated and justified by RandNLA,

in contrast to the selection of the sizes pj which is not discussed in [112]. Furthermore,

the scheme of [112] requires a separate maximum distance separable code for each

job yj; thus requiring multiple decodings, while we do not require a decoding step.

Another drawback of [112] is that an integer program is set up to determine the

optimal ending time, which the authors do not solve, while we determine a scheme

for any desired ending time. Lastly, we note that the ℓ2-s.e. approximation guarantee

of our method, depends on the ending time T .

In terms of sketching and RandNLA, the works of [146] and [128] utilize the

Count-Sketch [57]; which relies on hashing. In “CodedSketch” [146], Count-Sketches

are incorporated into the design of a variant of the improved “Entangled Polynomial

Code” [304], to combine approximate matrix multiplication with straggler tolerance.

The code approximates the submatrix blocks {Ci,j : (i, j) ∈ Nk1 × Nk2} of the final

product matrix C = A · B (matrix C is partitioned k1 times across its rows, and

k2 times across its columns), with an accuracy that depends on ∥Ci′,j′∥F for all

(i′, j′) ∈ Nk1×Nk2 . This prevents it from being applicable to applications that require

accuracy guarantees without oracle knowledge of the outcome of each submatrix of

the matrix product C. This approach permits each block of C to be approximately

recovered, if a subset of the servers complete their tasks.

In “OverSketch” [128], redundancy is introduced through additional Count-Sketches,

to mitigate the effect of stragglers in distributed matrix multiplication. In particular,

the count-sketches Ă = AS and B̆ = S⊤B of the two inputs A and B are computed,

and are partitioned into submatrices of size b× b. The b× b submatrices of the final

product C = A ·B are then approximately calculated, by multiplying the correspond-

ing row-block of Ă and column-block of B̆; each of which is done by one server. The

“OverSketch” idea has also been extended to distributed Newton Sketching [127] for

convex optimization problems.

3.3.2 Block Leverage Score Sampling

In the leverage score sketch [91, 106, 195, 201, 294] we sample w.r. r rows accord-

ing π{N} (3.2), and then rescale each sampled row by 1/
√
rπi. Instead, we sample w.r.

q blocks from (3.1) according to Π{K} (3.5), and rescale them by 1/
√
qΠi. The pseu-

docode of the block leverage score sketch is given in Algorithm 5, where we consider

59

an approximate distribution Π̃{K} such that Π̃i ⩾ βΠi for all i, for β ∈ (0, 1] a depen-

dent loss in accuracy [91, 95, 201]. The spectral guarantee of the sketching matrix S̃

of Algorithm 5 is presented in Theorem 3.3.1. Iterative sketching in our distributed

GC approach through Algorithm 5, corresponds to selecting a new sampling matrix

Ω̃[s] at each iteration through the servers’ responses, i.e. S̃[s] = D̃ · Ω̃[s] for each s.

Algorithm 5: Block Leverage Score Sketch

Input: A ∈ RN×d, τ = N
K

, q = r
τ
> d

τ

Output: S̃ ∈ Rr×N , Â ∈ Rr×d

Initialize: Ω = 0q×K , D = 0q×q
Compute: (approximate) distribution Π̃{K} (3.5)
for j = 1 to q do

sample w.r. ij from NK , according to Π̃{K}
Ωj,ij = 1 ▷ equivalently Ω(j) = e⊤ij
Dj,j =

√
τ

rΠ̃ij

=
√

1
qΠ̃ij

end

Ω̃← Ω⊗ Iτ
D̃← D⊗ Iτ
S̃← D̃ · Ω̃ ▷ S̃ = (D ·Ω)⊗ Iτ
Â← S̃ ·A

Theorem 3.3.1. The sketching matrix S̃ of Algorithm 5 is a (1±ϵ) ℓ2-s.e of A,

according to (3.8). Specifically, for δ > 0 and q = Θ
(
d
τ

log (2d/δ)/(βϵ2)
)
we get

Pr
[
∥Id −U⊤S̃⊤S̃U∥2 ⩽ ϵ

]
⩾ 1− δ.

Proof. The main tool is a matrix Chernoff bound [294, Fact 1]. We define random

matrices corresponding to the sampling process and bound their norm and variance,

in order to apply the aforementioned Chernoff bound. The complete proof can be

found in Appendix 2.1.

The importance of Theorem 3.3.1 extends beyond leverage score sampling. Specif-

ically, one can apply a random projection to “flatten” the block leverage scores; i.e.

they are all approximately equal, and then sample w.r. uniformly at random. This

is the main idea behind the analysis of the SRHT [5, 6]. The trade-off between such

algorithms and Algorithm 5, is computing the leverage scores explicitly vs. applying a

random projection. Such sketching approaches which do not directly utilize the data,

are referred to as “data oblivious sketches”, and are better positioned for handling

60

high velocity streams; as well as highly unstructured and arbitrarily distributed data

[211]. Multiplying the data by random matrix spreads the information in the rows of

the matrix, such that all rows are of equal importance; and the new matrix is “inco-

herent”. In Appendix 2.3, we show when Algorithm 5 and the corresponding block

sampling counterpart of the SRHT [49] achieve the same asymptotic guarantees, for

the same number of sampling trials q.

Next, we provide a sub-optimality result for non-iterative sketching of the block

leverage score sketch for ordinary least squares:

x̃ = arg min
x∈Rd

{
LS(S̃,A,b;x) := ∥S̃(Ax− b)∥22

}
. (3.12)

which follows from the results of [231]. Specifically, following the proof of [231, Theo-

rem 1]; which is based on a reduction from statistical minimax theory combined with

information-theoretic bounds and an application of Fano’s inequality, we simply need

to upper bound
∥∥E[S̃⊤(S̃S̃⊤)−1S̃]∥∥

2
.

Corollary 3.3.1. For any full-rank data matrix A ∈ RN×d with a noisy observation

model b = Ax• + w where w ∼ N (0, σ2IN), the optimal least squares solution x⋆ of

(3.2); has prediction error E
[
∥A(x•−x⋆)∥22

]
≲ σ2d

N
. On the other hand, [231, Theorem

1] implies that any estimate x̃ based on the sketched system (S̃A, S̃b) produced from

Algorithm 5 with sampling probabilities Π{K}, has a prediction error lower bound of

E
[
∥A(x• − x̃)∥22

]
≳

σ2d

min{r,N}
. (3.13)

Even though Corollary 3.3.1 considers sampling according to the exact block lever-

age scores, its proof can be modified to accommodate approximate sampling also.

Additionally, the above corollary holds for constrained least squares, though we do

not explicitly state it; as it is not a focus of the work presented in this chapter.

From (3.13), it is clear that for a smaller r with r < N ; we get a less efficient sketch

and approximation x̃, though when considering a higher r which approaches N ; we

get an improvement in the accuracy of x̃ at the cost of a higher computation and

computational load in our resulting GC scheme.

3.3.3 Expansion Networks

The framework we propose emulates the sampling w.r. procedure of Algorithm 5,

in distributed CC environments. Even though we focus on ℓ2-s.e. and descent meth-

61

ods in this chapter, the proposed framework applies to any matrix algorithm which

utilizes importance sampling with replacement. In contrast to other CC schemes

in which RandNLA was used to compress the network; e.g. [52, 53, 250], here the

networks are expanded according to Π{K} — the computations corresponding to the

blocks are replicated through the servers; proportional to Π{K}. It is unlikely that we

can exactly emulate this distribution, as the number of replications per task need to

be integers. Instead, we mimic the exact probabilities with an induced distribution

Π̄{K} through expansion networks, which are determined by F̃ (t) at a prespecified

t← T ; after which the central server stops receiving computations for that iteration.

We propose the minimization problem (3.17), whose approximate solution r̂{K}

(3.18) suggests the number of replicas ri of each block in our expansion network.

We note that (3.17) is a surrogate to the integer program (3.20), whose solution

can achieve an accurate realizable distribution Π̄{K} to Π{K} through the distributed

network, by appropriately replicating the blocks. Unfortunately, the integer program

(3.20) is not always solvable. Nonetheless, when we have an approximation to (3.17)

or (3.20), through uniform sampling we can minimize w.h.p. the ℓ2-s.e. condition for

A (3.8), up to a small error, given the integer constraints imposed by the physical

system — ri ∈ Z+ for all i and R =
∑K

l=1 rl such that R ≈ m. In the CC context,

we want m = R; i.e. the total number of replicated blocks is equal to the number of

servers. Next, we describe the desired induced distribution Π̄{K}, in order to set up

(3.17).

Assume w.l.o.g. that Πj ⩽ Πj+1 for all j ∈ NK−1, thus rj ⩽ rj+1. The sampling

distribution through the expansion network translates to

Π̄i := Pr
[
the ith block is sampled

]
= ri/R ≈ Πi (3.14)

for all i ∈ NK and R =
∑K

l=1 rl. Our objective is to determine r{K} such that Π̄i ≈ Πi

for all i. Furthermore, for an erasure probability determined by ϕ(t) at a specified

time t (3.11), the probability that the computation corresponding to the ith block is

sampled w.r. through the erasure channels at time t is

Pr
[
sample the ith block through the channels

]
= 1− ϕ(t)ρi(t), (3.15)

for some ρi(t) ∈ R>0,
5 and the network emulates the sampling distribution Π{K}

exactly when

Πi = 1− ϕ(t)ρi(t) for all i. (3.16)

5To be realizable, through replications, we need ρi(t) ∈ Z+.

62

The replications which take place can be interpreted as the task allocation through

a directed bipartite graph G = (L,R, E), where L andR correspond to the K encoded

partitions Ã{K} and m servers respectively, where deg(xi) = ri for all xi ∈ L and

deg(yj) = 1 for all yj ∈ R; with {xi, yj} ∈ E only if the jth server Wj is assigned Ãi.

Figure III.3:
Depiction of an expansion network, as a bipartite graph, for m =∑K

l=1 rl.

Our goal is to determine r{K}, which minimize the error in the emulated distri-

bution Π̄{K}. Under the assumption that we have an integer number of replicas per

block, from (3.15) and (3.16) we deduce that Πi ≈ 1− ϕ(t)ri for ri ∈ Z+, which lead

us to the minimization problem6

arg min
r{K}⊊Z+

{
∆Π,Π̄ :=

1

K

K∑
i=1

∣∣Πi −
(
1− ϕ(t)ri

)∣∣} = (3.17)

= arg

{
K∑
i=1

min
ri∈Z+

{∣∣Πi −
(
1− ϕ(t)ri

)∣∣}} .

By combining (3.14) and (3.15), we then solve for the approximate replications

r̂{K} at time t:

Π̄i ≈ Πi = 1− ϕ(t)ρi(t) =⇒ r̂i =

⌊
log(1− Πi)

log(ϕ(t))

⌉
= ⌊ρi(t)⌉ , (3.18)

which result in the induced distribution Π̄i = r̂i/R̂, for R̂ :=
∑K

l=1 r̂l. In our context,

we also require that R̂ ≈ m.

Ideally, the above procedure would result in replication numbers r̂{K} for which

R̂ = m. This though is unlikely to occur, as Π{K} and R are determined by the data,

and m is a physical limitation. There are several practical ways to work around this.

6Note that ∆Π,Π̄ ≡ dΠ,Π̃, where Π̃i = 1 − ϕ(t)ri for all i ∈ NK . For our proposed distribution

Π̄{K}, we may have dΠ,Π̄ ̸= ∆Π,Π̄.

63

One approach is to redefine r̂{K} to r̃{K} by r̃i = r̂i±αi for αi small integers such that∑K
l=1 r̃l = m and

∑K
l=1 |Πl − r̃l/m| is minimal. If m ≫ R̂ for a large enough τ , we

can set the number of replicas to be r̃i ≈
⌊
m/R̂

⌉
· r̂i. Furthermore, the block size τ

can be selected such that R̂ is approximately equal to the system’s parameter m. We

focus on the issue of having R̂ ≈ m in Subsection 3.3.4.

Lemma 3.3.1. The approximation r̂{K} according to (3.18) of the minimization prob-

lem (3.17) at time t, satisfies

∆Π,Π̄ ⩽
(

1−
√
ϕ(t)

)
·

(
K∑
l=1

ϕ(t)
min
i∈NK

{r̂i,ρi(t)}
)
.

Proof. We break the proof into the cases where we round ρi(t) to both the closest

integers above and below. In either case, we know that
(
ρi(t)− r̂i(t)

)
∈ [−1/2, 1/2],

for each i ∈ NK . Denote the respective individual summands of ∆Π,Π̄ by ∆i. In the

case where ri = ⌊ρi(t)⌋, we have ρi(t) = r̂i + η for η ∈ [0, 1/2], hence

∆i =
∣∣(1− ϕ(t)ρi(t)

)
−
(
1− ϕ(t)r̂i

)∣∣
=
∣∣ϕ(t)r̂i − ϕ(t)ρi(t)

∣∣
=
∣∣ϕ(t)r̂i − ϕ(t)ri+η

∣∣
=
∣∣ϕ(t)r̂i ·

(
1− ϕ(t)η

)∣∣
⩽
∣∣ϕ(t)r̂i ·

(
1− ϕ(t)1/2

)∣∣
= ϕ(t)r̂i ·

(
1−

√
ϕ(t)

)
.

Similarly, in the case where ri = ⌈ρi(t)⌉, we have r̂i = ρi(t) + η for η ∈ [0, 1/2];

and

∆i ⩽ ϕ(t)ρi(t) ·
(

1−
√
ϕ(t)

)
.

Considering all summands, it follows that

∆Π,Π̄ =
K∑
l=1

∆l ⩽
K∑
l=1

(
ϕ(t)

min
i∈NK

{r̂i,ρi(t)}
·
(

1−
√
ϕ(t)

))
.

We note that all terms involved in the upper bound of Lemma 3.3.1 are positive

and strictly less that one. Furthermore, for a larger t we have a smaller ϕ(t), while

64

for a smaller t we have a smaller r̂i for each i. This bound further corroborates the

importance of the hyperparameter t and the distribution F (t), in designing expansion

networks.

The replication of blocks which takes place, can be described through a corre-

sponding “expansion matrix”:

Ẽ = E⊗ Iτ =

1r1×1

1r2×1
. . .

1rK×1

⊗ Iτ ∈ {0, 1}Rτ×Kτ (3.19)

where E ∈ {0, 1}R×K is the adjacency matrix of the bipartite graph G (up to a

permutation of the rows/server indices). It follows that (Ẽ ·A, Ẽ · b) are comprised

of replicated blocks of the partitioning in (3.1), with replications according to r{K}.

For the proposed networks, the multiplicative misestimation factor in Theorem

3.3.1 is βΠ̄ = mini∈NK
{Πi/Π̄i} ⩽ 1. In the case where R̃ =

∑K
l=1 r̃l > m and

Π̃i := r̃i/R̃, Algorithm 6 takes r̃{K} as an input and determines r{K} such that R =∑K
l=1 rl = m. The updated distribution Π̄{K} where Π̄i = ri/R for each i, also has a

more accurate misestimation factor; i.e. βΠ̄ > βΠ̃. To establish sampling guarantees

in relation to dΠ,Π̄, one would need to invoke an additive approximation error to the

scores, i.e. Π̃i ⩽ Πi + ϵ for all i where ϵ ⩾ 0 is a small constant [68, 91]. In our

distributed networks, the additive error would be ϵΠ̄ = maxi∈NK
{|Πi − Π̄i|}.

3.3.4 Optimal Induced Distributions

Recall that (3.17) is a surrogate to the integer program

r⋆{K} = arg min
r1,...,rK∈Z+

R=
∑K

l=1 rl

{
dΠ,Π⋆ =

1

K

K∑
i=1

∣∣Πi −

Π⋆
i︷︸︸︷

ri/R
∣∣} (3.20)

for R ≈ m the total number of servers. Potential solutions r⋆{K} can achieve the closest

realizable distribution to Π{K} through expansion networks. Similar to ∆Π,Π̄ from

(3.17), the distortion metric dΠ,Π⋆ is a measure of closeness between the distributions

Π{K} and Π̄{K}; under the network imposed constraints. In the case where Π{K} ⊊
(0, 1)\Q+; i.e. Π{K} are not necessarily all rational, the integer constraints of the

physical network may deem exactly emulating Π{K} impossible. The integer program

(3.20) cannot be solved exactly when Π{K} ⊊ (0, 1)\Q+; as we can always get finer

65

approximations, e.g. through a continued fraction approximation. This is specific

to the ending time T when considering erasures over the communication channels

according to (3.11), which T we do not include in (3.20); in order to simplify notation.

Furthermore, (3.20) can also be considered for centralized distributed settings which

differ from the system model proposed in [178]. We note that solvers to (3.20) exist,

when R is fixed and we remove the constraint R =
∑K

l=1 rl. The proof of Corollary

3.3.2 is a constructive solution of (3.20) when Π{K} ⊊ [0, 1]∩Q+, in which case perfect

emulation is possible.

Proposition 3.3.1. A perfect emulation occurs when dΠ,Π⋆ = 0. This is possible if

and only if Πi ∈ [0, 1] ∩ Q+ for all i and the denominators of Π{K} in reduced form

are factors of R; i.e. R · Πi ∈ Z+.

Proof. If dΠ,Π⋆ = 0, then Πi = Π⋆
i for all i ∈ NK , thus Π{K} and Π⋆

{K} are the same

sampling distributions.

For the reverse direction, assume that for all i we have Πi = ai/bi for coprime

integers ai, bi ∈ Z+, and that R = µibi for some µi ∈ Z+; thus R · Πi = µiai ∈ Z+.

Let ri = µiai. It follows that Π⋆
i = ri

R
= µiai

µibi
= ai

bi
= Πi for all i, hence dΠ,Π⋆ = 0.

Now, assume for a contradiction that there is a j ∈ NK for which Πj ∈ (0, 1)\Q+.

Then, by definition, Πj cannot be expressed as a fraction rj/R for rj, R ∈ Z+, thus

dΠ,Π⋆ ⩾ |Πj − Π⋆
j | > 0.

Corollary 3.3.2. When Π{K} ⊊ [0, 1] ∩Q+, we can solve (3.20), so that dΠ,Π⋆ = 0.

Proof. From Proposition 3.3.1, the smallestR in order to attain r{K} for which dΠ,Π⋆ =

0 when considering Πi = ai/bi in reduced form, is the least common multiple R =

lcm(b1, . . . , bK). For each i ∈ NK , we then have R = µibi for µi ∈ Z+, and ri = µiai.

Hence Π⋆
i = ri

R
= µiai

µibi
= ai

bi
= Πi, for which dΠ,Π⋆ = 0.

Lemma 3.3.2. If for a set of integers r̃{K}; we have R̃ =
∑K

l=1 r̃l, m = R̃, and

Π̃i = r̃i/R̃ for all i ∈ NK, then:

1

m
· min
i∈NK

{⌊
|m · Πi − r̃i|

⌋}
⩽ dΠ,Π̃ ⩽

1

m
·max
i∈NK

{⌈
|m · Πi − r̃i|

⌉}
. (3.21)

Proof. Let d̃i = |Πi − Π̃i| = |Πi − r̃i/m| for each i, hence

r̃L :=
1

m
· min
i∈NK

{⌊
|m · Πi − r̃i|

⌋}
⩽ d̃i ⩽

1

m
·max
i∈NK

{⌈
|m · Πi − r̃i|

⌉}
=: r̃U

66

for all i ∈ NK . By rescaling the sum over all d̃{K} by 1/K, we get

r̃L =
K · r̃L
K

⩽
1

K
·
K∑
i=1

d̃i ⩽
K · r̃U
K

= r̃U

which completes the proof.

Next, we give a simple approximation to (3.20), for when we do not consider the

erasure channel characterization through (3.16); nor an ending time T . Given Π{K},

the replication numbers are r̃i = ⌊Πi/Π1⌉ and R̃ =
∑K

l=1 r̃l. Further note that for more

accurate approximations, we can select an integer ν > 1 and take r̃i = ⌊ν · Πi/Π1⌉.
From the proof of Corollary 3.3.2, it follows that if Π{K} ⊊ [0, 1] ∩Q+ and ν = µ1a1,

we get r̃i = Πi/Π1 = µiai ∈ Z+, which solves (3.16). The drawback of designing an

expansion network with this solution, is that as ν increases; R̃ also increases.

To drop the constraint R =
∑K

l=1 rl of (3.20) and the assumption that m = R,

we give a procedure in Algorithm 6 for determining r{K} from a given set r̃{K} (e.g.

those proposed in (3.18)) to get the induced distribution {Π̄i = ri/m}Ki=1; where

m =
∑K

l=1 rl. In Algorithm 6, χ = 1 and χ = 0 indicate whether R̃ > m or R̃ < m

respectively.

Remark 3.3.1. The objective of Algorithm 6 is to reduce the upper bound of (3.21)

when m < R̃, while guaranteeing that
∑K

l=1 rl = m. In practice, the more concerning

and limiting case is when m < R̃. The bottleneck of Algorithm 6 is retrieving the

index j in the while loop, which takes O(K) time. In order to reduce the number of

instances we solve (♦), we ensure that we only reduce the replica numbers r̂{K} in

the case where R > m; and increase them when R < m, by the inner if statement.

Moreover, this is carried out once before sharing the replicated blocks. The more

practical and realistic case is when R > m, as we can get a closer approximation with

a greater R; and lcm(b1, . . . , bK) will likely be large when Π{K} ⊊ [0, 1]∩Q+. We note

that the integers r̂{K} of (3.18) and their sum R̂ are a byproduct of the prespecified

ending time t← T , the mother runtime distribution F (t), and the block size τ , which

can be selected so that R̂ > m.

Proposition 3.3.2. Assume we are given r̃{K} (not necessarily according to (3.18)),

for which m < R̃ =
∑K

l=1 r̃l. Denote by Π̃{K} the corresponding sampling distribution{
Π̃i = r̃i/R̃

}K
i=1

, for which dΠ,Π̃ ⩽ ϵ̃. Then, the output r{K} of Algorithm 6 produces

an induced distribution {Π̄i = ri/m}Ki=1 which satisfies dΠ,Π̄ ⪇ dΠ,Π̃ ⩽ ϵ̃.

67

Algorithm 6: Determine r{K} from r̃{K}

Input: m, Π{K}, r̃{K}, R̃ =
∑K

i=1 r̃i
Output: replication numbers r{K}

Initialize: d̃{K} =
{
d̃i := Πi − r̃i/m

}K
i=1

, r{K} = r̃{K}, R = R̃, χ = 1, j̃ = 0

if R < m then

χ← 0 ▷ ▷ χ indicates: R̃ ⩾ m or R̃ < m

d̃{K} ←
{
−d̃i
}K
i=1

end
while R ̸= m do

j ← arg min
i∈NK

{
d̃{K}

}
(♦)

if (−1)χ+1 ·
(
Πj − 1

m
(rj + (−1)χ)

)
> 0 and j̃ ≡ j then

d̃j ← 1
end
else

rj ← rj + (−1)χ

R← R + (−1)χ

d̃j ← (−1)χ+1 · (Πj − rj/m)
end

j̃ ← j
end

Proof. The case where R̃ > m, corresponds to χ = 1, in which case we Algorithm 6

returns r{K} for which ri ⩽ r̃i for all i ∈ NK . In this case, the optimization problem

(♦) assigns to j a partition index for which Πj < rj/m.7 The if statement guarantees

that we did not produce an rj for which Πj > rj/m; when we previously previously

Πj < r̃j/R̃ (or Πj < rj/R after a reassignment of r̃j). Along with the fact that
rj−1
R−1 <

rj
R

, it follows that for the updated difference d′j:

∣∣d′j∣∣ =

∣∣∣∣Πj −
rj − 1

R− 1

∣∣∣∣ =
rj − 1

R− 1
− Πj ⪇

rj
R
− Πj =

∣∣∣Πj −
rj
R

∣∣∣ =
∣∣∣d̃j∣∣∣ ,

i.e. at each iteration of the else statement, we decrease the distortion metric, thus

dΠ,Π̄ ⪇ dΠ,Π̃ ⩽ ϵ̃.

The else statement is carried out R̃−m times, producing r{K} for which
∑K

l=1 rl =

R̃ − (R̃ − m) = m, hence the normalizing integer for the distribution Π̄{K} is R =

m.

Remark 3.3.2. To summarize, the objective is to determine replicas (3.20), in order

7Since d̃j = Πj − rj/m < 0, we have Πj < rj/m.

68

to emulate block leverage score sampling of Algorithm 5 through erasure channels;

at an ending time T . By Proposition 3.3.1, this is not always possible. Instead, we

give an estimate solution to (3.17) through r̂{K} in (3.18). To get a valid sampling

distribution in the CC framework, we normalize the replica numbers r̂{K} by their sum

R̂. Furthermore, we propose Algorithm 6 which takes estimates r̂{K} and modifies

them to return r{K} for which m =
∑K

l=1 rl, and improves the induced approximate

block leverage score distribution when R̂ > m.

3.3.5 GC through Leverage Score Sampling

Next, we derive the server computations of our GC scheme, so that the central

server retrieves the gradient of ∥S̃[s](Ax − b)∥22; for S̃[s] according to Algorithm 5

at iteration s, to iteratively approximate (3.2). Furthermore, we show that with a

diminishing step-size, our updates x[s] converge in expectation to the optimal solution

x⋆.

The blocks of our leverage score sampling procedure are those of the encoded data

Ã := G ·A and b̃ := G · b, for

G = diag
({

1
/√

qΠ̄i

}K
i=1

)
⊗ Iτ ∈ RN×N

⩾0 . (3.22)

Specifically, the encoding carried out by the central server corresponds to the rescaling

through G. We partition both Ã and b̃ across their rows analogous to (3.1):

Ã = G ·A =
[
Ã⊤1 · · · Ã⊤K

]⊤
and b̃ = G · b =

[
b̃⊤1 · · · b̃⊤K

]⊤
(3.23)

where Ãi ∈ Rτ×d and b̃i ∈ Rτ for all i ∈ NK . Furthermore, all the data across the

expansion network after the scalar encoding, is contained in aggregated ‘expanded and

encoded matrix-vector pairs ’ (Ψ, ψ⃗) := (Ẽ · Ã, Ẽ · b̃) ∈ RRτ×d × RRτ (Figure III.2).

For the encoded objective function LG(x) := ∥G(Ax− b)∥22, we have:

(i) LG(x) = x⊤
(

K∑
i=1

Ã⊤i Ãi

)
x +

(
K∑
i=1

(b̃⊤i − 2x⊤Ã⊤i)b̃i

)

(ii) ∇xLG(x) = 2
K∑
i=1

Ã⊤i

(
Ãix− b̃i

)
(iii) ∇xLG(x⋆G) = 0 =⇒ x⋆G =

(
K∑
i=1

Ã⊤i Ãi

)−1
·
(

K∑
i=1

Ã⊤i b̃i

)
.

We make use of (ii) to approximate the gradient distributively. Each server is

provided with a partition D̃j = (Ãj, b̃j), and computes the respective summand of

69

the gradient from (ii), which is the encoded partial gradient on Dj = (Aj,bj):

ĝ
[s]
i := ∇xLls(D̃i;x[s]) = ∇xLls

(
1
/√

qΠ̄i ·Ai, 1
/√

qΠ̄i · bi;x[s]
)

=
1

qΠ̄i

· g[s]i . (3.24)

Once a server computes its assigned partial gradient, it sends it back to the central

server. When the central server receives q responses, it sums them in order to obtain

the approximate gradient ĝ[s].

Denote the index multiset corresponding to the encoded pairs (Ãj, b̃j) of the re-

ceived computations at iteration s with S [s], for which |S [s]| = q. The vector param-

eter’s update is then x[s+1] = x[s] − ξs · ĝ[s], where

ĝ[s] =
∑
i∈S[s]

∇xLls(D̃j;x[s]) = 2
∑
i∈S[s]

Ã⊤i

(
Ãix

[s] − b̃i
)

(3.25)

and ξs is an appropriate step-size. In the case where q is not determined a priori or

varies at each iteration, the scaling corresponding to 1/
√
q in the encoding through G

could be done by the central server; after that iteration’s computations are aggregated.

We consider the case where q is the same for all iterations.

Next, we present the guarantees of our proposed GC scheme, which rely on Al-

gorithm 5. The procedure we outlined above along with the following results, show

how RandNLA can be utilized to devise efficient approximate GC schemes.

Remark 3.3.3. By sampling q = q(T) blocks at each iteration, and performing the

approximate gradient update (3.25), one obtains a SSD version of the encoded linear

system G · (Ax) = G ·b. This follows from the fact that different servers are expected

to respond faster at each iteration, as we assume that they are homogeneous and have

the same expected response time.

In Remark 3.3.3, the application of Ω̃[s] (in Algorithm 5) has a direct correspon-

dence to the index set I [s] of the q(T) non-stragglers of iteration s, which can be

viewed as drawing I [s] uniformly at random from {I ⊆ Nm : |I| = q(T)}. This

is what induces a first-order stochastic iterative sketching method for (3.2) through

the proposed GC scheme, and removes the bias towards the samples which would

be selected through the single Ω̃[1]; in the sketch-and-solve paradigm. Specifically,

we do not solve the modified problem (3.10) which only accounts for a reduced di-

mension determined at the beginning of the iterative process, whose approximate

solution is x⋆G ≈ (S̃A)†(S̃b),8 Instead, we consider a different reduced linear system

8Since S̃ ∈ Rr×N for r < N ; we have S̃†S̃ ̸= IN , hence (S̃A)†(S̃b) ̸= A†b.

70

S̃[s] ·
(
Ax[s]

)
= S̃[s] · b at each iteration. This further justifies the result of Corollary

3.3.1. This benefit of iterative sketching is validated numerically in Section 3.4.

Theorem 3.3.2. The proposed GC scheme based on the block leverage score sketch

results in a SSD procedure for Lls(Ψ, ψ⃗;x). Furthermore, at each iteration it produces

an unbiased estimator of (3.3), i.e. E[ĝ[s]] = g[s].

Proof. The computations of the q fastest servers indexed by I [s] (which corresponds

to Ω̃[s]), are added to produce ĝ[s], and the sampling of Algorithm 5 is according to

Π̄{K}. By Remark 3.3.3, it follows that each I [s] has equal chance of occurring, which

is precisely the stochastic step of SSD, i.e. each group of q encoded block pairs has

an equal chance of being selected.

Since the servers are homogeneous and respond independently of each other, it

follows that at iteration s; each ĝi is received with probability Π̄i. Therefore

E
[
ĝ[s]
]

= E

∑
i∈I[s]

ĝ
[s]
i

 =
∑
i∈I[s]

E
[
ĝ
[s]
i

]
=
∑
i∈I[s]

K∑
j=1

Π̄j · ĝ[s]j

= q ·
K∑
j=1

Π̄j · ĝ[s]j
♭
= q ·

K∑
j=1

Π̄j ·
1

qΠ̄j

· g[s]j =
K∑
j=1

g
[s]
j = g[s]

where in ♭ we invoked (3.24).

Lemma 3.3.3. The optimal solution of the modified least squares problem Lls(Ψ, ψ⃗;x),

is equal to the optimal solution x⋆ of (3.2).

Proof. Note that the modified objective function Lls(Ψ, ψ⃗;x) is ∥ẼG · (Ax − b)∥22.
Denote its optimal solution by x⋆ ∈ Rd. Further note that Ẽ is comprised of τ × τ
identity matrices in such a way that it is full-rank, and G corresponds to a rescaling

of these Iτ matrices, thus ẼG is also full-rank. It then follows that

x⋆ =
(
(EG) ·A

)† · ((EG) · b
)

= A† ·
(
(EG)† · (EG)

)
· b = A† · IN · b = x⋆.

The crucial aspect of our expansion network (incorporated in Theorem 3.3.2),

which allowed us to use block leverage score sampling in the proposed GC scheme,

is that uniform sampling of Lls(Ψ, ψ⃗;x[s]) is βΠ̄-approximately equivalent to block

sampling of Lls(Ã, b̃;x[s]) according to the block leverage scores of A. Since the two

objective functions are differentiable and additively separable, the resulting gradients

71

are equal, under the assumption that we use the same x[s] and sampled index set

S [s].9 As previously mentioned, the main drawback is that in certain cases we need

significantly more servers to accurately emulate Π{K}.

The significance of Theorem 3.3.2, is that our distributed approach guarantees

well-known established SD and SSD results which assume that the approximate gra-

dient is an unbiased estimator, e.g. [257, Chapter 14]. Even though we are not guar-

anteed a descent at every iteration (i.e. we could have Lls(D;x[s+1]) > Lls(D;x[s])

or ∥x[s+1] − x⋆∥22 > ∥x[s] − x⋆∥22), stochastic descent methods are more common in

practice when dealing with large datasets, as empirically they outperform regular SD.

This is also confirmed in our experiments.

3.3.6 Convergence to x⋆

Next, we give a summary of our main results thus far, and explain how to-

gether they imply convergence of our approach in expectation, to iteratively solves

Lls(Ψ, ψ⃗;x[s]). Moreover, the contraction of our method is quantified in Appendix

2.4.

Firstly, as summarized in Remark 3.3.2, we mimic block leverage score sampling

w.r. of (A,b) (from Lls(A,b;x[s])) through uniform sampling, by approximately

solving (3.17) through the implication of (3.18) (Lemma 3.3.1). This is done implic-

itly by communicating computations over erasure channels. Secondly, by Theorem

3.3.1 we know that the proposed block leverage score sketching matrices satisfy (3.8);

where the approximate sampling distribution Π̄{K} is determined through the pro-

posed expansion network associated with Π{K}. Hence, at each iteration, we approach

a solution x̂[s] of the induced sketched system S̃[s] ·
(
Ax[s]

)
= S̃[s] ·b, which S̃[s] satisfies

(3.9) with overwhelming probability. Thirdly, by Theorem 3.3.2 and Lemma 3.3.3,

with a diminishing step-size ξs, our updates x[s] converge to x⋆ in expectation, at a

rate of O(1/
√
s+ r/s) [38, 79]. A synopsis is given below:{

LS(S̃[s],A,b;x) sol’ns

satisfy (3.8) and (3.9)

}
3.3.1, 3.3.2←−−−−−−

{
Solve Lls(Ψ, ψ⃗;x

[s])
through ‘sketched-GC’

}
3.3.2, 3.3.3−−−−−−→

{
With a diminishing ξs:

limE[x[s]]→x⋆

}
.

3.3.7 Approximate GC from ℓ2-s.e.

In conventional GC, the objective is to construct an encoding matrix G ∈ Rm×K

and decoding vectors aI ∈ R1×q, such that aIG(I) = 1⃗ for any set of non-straggling

9The index set of the sampled blocks from Lls(Ψ, ψ⃗;x
[s]), corresponds to an index multiset of the

sampled blocks from Lls(Ã, b̃;x
[s]), as in the latter we are considering sampling with replacement.

72

servers I. It follows that the optimal decoding vector for a set I of size q in approxi-

mate GC [59, 155, 253] is

a⋆I = arg min
a∈R1×q

{
∥aG(I) − 1⃗∥22

}
=⇒ a⋆I = 1⃗G†(I) (3.26)

for G†(I) =
(
G⊤(I)G(I)

)−1
G⊤(I) ∈ RK×q.

Proposition 3.3.3. The error in the approximated gradient g̀[s] of an optimal ap-

proximate linear regression GC scheme (G, a⋆I), satisfies∥∥g[s] − g̀[s]∥∥
2
⩽ 2
√
K · err(G(I)) · ∥A∥2 · ∥Ax[s] − b∥2, (3.27)

for err(G(I)) :=
∥∥IK −G†(I)G(I)

∥∥
2
.

Proof. Consider the optimal decoding vector of an approximate GC scheme a⋆I (3.27).

In the case where q ⩾ K, it follows that a⋆I = 1⃗G†(I).

Let g[s] be the matrix comprised of the transposed exact partial gradients at

iteration s, i.e.

g[s] :=
(
g
[s]
1 g

[s]
2 . . . g

[s]
K

)⊤
∈ RK×d .

Then, for a GC encoding-decoding pair (G, aI) satisfying aIG(I) = 1⃗ for any I, it

follows that

aI
(
G(I)g

[s]
)

= 1⃗g[s] =
K∑
j=1

(
g
[s]
j

)⊤
=
(
g[s]
)⊤

.

Hence, the gradient can be recovered exactly. Considering an optimal approximate

scheme (G, a⋆I) which recovers the gradient estimate g̀[s] =
(
a⋆IG(I)

)
g[s], the error in

the gradient approximation is

∥∥g[s] − g̀[s]∥∥
2

=
∥∥∥(1⃗− a⋆IG(I)

)
g[s]
∥∥∥
2

=
∥∥∥1⃗(IK −G†(I)G(I)

)
g[s]
∥∥∥
2

⩽ ∥1⃗∥2 ·
∥∥∥IK −G†(I)G(I)

∥∥∥
2
·
∥∥g[s]

∥∥
2

£

⩽
√
K ·

∥∥∥IK −G†(I)G(I)

∥∥∥
2
·
∥∥g[s]∥∥

2

$

⩽ 2
√
K ·

∥∥∥IK −G†(I)G(I)

∥∥∥
2︸ ︷︷ ︸

err(G(I))

·∥A∥2 · ∥Ax[s] − b∥2

where £ follows from the facts that ∥g[s]∥2 ⩽ ∥g[s]∥2 and ∥1⃗∥2 =
√
K, and $ from

73

(3.3) and sub-multiplicativity of matrix norms.

In Theorem 3.3.3, we show the accuracy of the approximate gradient of iterative

GC approaches based on sketching techniques that satisfy the ℓ2-s.e. property ∥Id −
U⊤S⊤SU∥2 ⩽ ϵ from (3.8) (w.h.p.). This then holds true for our approach through

expansion networks, by Theorem 3.3.1 and Remark 3.3.2.

Theorem 3.3.3. Assume that the induced sketching matrix S from a GC scheme

satisfies ∥Id − U⊤S⊤SU∥2 ⩽ ϵ (w.h.p.). Then, the updated approximate gradient

estimate ĝ[s] at any iteration, satisfies (w.h.p.):

∥∥g[s] − ĝ[s]∥∥
2
⩽ 2ϵ · ∥A∥2 · ∥Ax[s] − b∥2. (3.28)

Specifically, it satisfies (3.27) with err(G(I)) = ϵ/
√
K.

Proof. Now, consider ĝ[s] the approximated gradient of our scheme for linear regres-

sion with gradient (3.3). It follows that

∥∥g[s] − ĝ[s]∥∥
2

= ∥2A⊤(Ax[s] − b)− 2A⊤(S⊤S)(Ax[s] − b)∥2
= 2∥A⊤(IN − S⊤S)(Ax[s] − b)∥2
⩽ 2∥A∥2 · ∥IN − S⊤S∥2 · ∥Ax[s] − b∥2
= 2∥A∥2 · ∥U⊤(IN − S⊤S)U∥2 · ∥Ax[s] − b∥2
= 2∥A∥2 · ∥Id −U⊤S⊤SU∥2 · ∥Ax[s] − b∥2
♭

⩽ 2ϵ · ∥A∥2 · ∥Ax[s] − b∥2

where in ♭ we make use of the assumption that S satisfies (3.8). Our approximate

GC approach therefore (w.h.p.) satisfies (3.27), with err(G(I)) = ϵ/
√
K.

3.4 Experiments

In this section, we corroborate our theoretical results, and show their benefits on

fabricated datasets. The minimum benefit of Algorithm 5 occurs when Π{K} is close

to uniform. For this reason, and the fact that our expansion approach depends on

the implicit distribution through r{K}, we construct dataset matrices whose resulting

sampling distributions and block leverage scores are non-uniform.

For the first experiment, we considered A ∈ R2000×40 following a t-distribution,

and standard Gaussian noise was added to an arbitrary vector from im(A) to define

74

b. We considered K = 100 blocks, thus τ = 20. The effective dimension N = 2000

was reduced to r = 1000, i.e. q = 20. We compared the iterative approach with

exact block leverage scores (i.e. β = 1), against analogous approaches using the

block-SRHT and Gaussian sketches, and uncoded regular SD.

In Figure III.4 we ran 600 iterations on six different instances for each approach,

and varied ξ for each experiment by logarithmic factors of ξ× = 2/σmax(A)2. The

average log residual errors log10

(
∥x⋆ls − x̂∥2

/√
N
)

are depicted in Figure III.4, and

reported in Table III.1. In Figure III.5 we observe the convergence of the differ-

ent approaches, in the case where ξ ≈ 0.42. In this case, our method (block-lvg)

outperforms the Gaussian sketching approach and regular SD. The fact that the per-

formance of the block-SRHT is similar to our proposed algorithm, reflects the result

of Proposition 2.3.1.

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
-0.02

0

0.02

0.04

0.06
Average log residual error plots, over 6 experiments

Regular SD (Uncoded)

Gaussian

block-SRHT

block-lvg

Figure III.4: residual error for varying ξs

Average log residual error log10

(
∥x⋆ls − x̂∥2

/√
N
)

log10(ξ) 0.0004 0.0042 0.0421 0.4207

Regular SD 0.0566 0.0517 0.0440 0.0078
Gaussian 0.0590 0.0538 0.0416 -0.0114
block-SRHT 0.0603 0.0550 0.0431 -0.0110
block-lvg 0.0556 0.0502 0.0380 -0.0178

Table III.1:
Average log residual errors, for six instances of SD with fixed steps, when
performing Gaussian sketching with updated sketches, iterative block-
SRHT and iterative block leverage score sketching, and uncoded SD.

75

0 100 200 300 400 500 600

iteration

1.6

1.65

1.7

1.75

Convergence vs iteration, for =0.42067

Regular SD (Uncoded)

Gaussian

block-SRHT

block-lvg

Figure III.5: log residual error convergence

We also considered the same experiment with A drawn from a t-distribution,

with and optimal step-size ξ⋆s = ⟨Ag[s],Ax[s] − b⟩
/
∥Ag[s]∥22 at each iteration. From

Figure III.6, we observe that our iterative sketching approach outperforms Gaussian

sketching with updated sketches; and iterative sketching is superior to non-iterative.

Furthermore, we validate Lemma 3.3.2 and Theorem 3.3.3, as our iterative sketching

approach and SSD have similar convergence. Furthermore, it was observed that in

some case cases when our iterative sketching method would outperform regular SD

(and SSD). We also compared our method to iterative and non-iterative approaches

according to the block leverage score sampling, block-SRHT, and Rademacher sketch-

ing methods, in which our corresponding approach again produced more accurate final

approximations.

0 10 20 30 40 50 60 70 80 90 100

iteration

1.2

1.3

1.4

1.5

1.6

1.7

Regular SD (Uncoded)

Gaussian

bl-lvg Non-It

block-leverage

Batch-SSD

Figure III.6: log convergence with ξ⋆s

3.5 Conclusion and Future Work

In this chapter, we showed how one can exploit results from RandNLA to dis-

tributed CC, in the context of GC. By taking enough samples, or equivalently; wait-

76

ing long enough, the approximation errors can be made arbitrarily small. In terms

of CC, the advantages are that encodings correspond to a scalar multiplication, and

no decoding step is required. By utilizing these techniques, we are also advantageous

over other CC approximation schemes [25, 52, 53, 58, 59, 112, 120, 144, 155, 239, 253];

by incorporating information from our dataset into our scheme.

Our methods were validated numerically through various experiments, presented

in Section 3.4. Further experiments were performed on various distributions for A,

in which similar results were obtained. We also considered the empirical distribution

from real-server completion times taken from 500 AWS-servers [19], and emulated the

proposed CC scheme. In this experiment, we obtained the expected results in terms

of ℓ2-s.e., misestimation factors βΠ,Π̄, and metrics ∆Π,Π̄, dΠ,Π̄.

Even though we focused on leverage score sampling for linear regression, other

sampling algorithms and problems could benefit by designing analogous replication

schemes. One such problem is the column subset selection problem, which can be

used to compute partial SVD, QR decompositions, as well as low-rank approximations

[201]. As for the sampling technique we studied, one can judiciously define a sampling

distribution to approximate solutions to such problems [34], which are known to be

NP-hard under the Unique Games Conjecture assumption [66].

Furthermore, existing block sampling algorithms can also benefit from the pro-

posed expansion networks, e.g. CR-multiplication [53] and CUR decomposition [221].

For instance, a coded matrix multiplication algorithm of minimum variance can been

designed, where the sampling distribution proposed in [53] is used to determine the

replication numbers of the expansion network. In terms of matrix decompositions,

the block leverage score algorithm of [221] can be used to distributively determine an

additive ϵ-error decomposition of A, in the CC setting. Another future direction is

generalizing existing tensor product and factorization algorithms to block sampling,

according to both approximate and exact sampling distributions, in order to make

them practical for distributed environments.

77

CHAPTER IV

Iterative Sketching for Secure Coded Regression

4.1 Introduction

Random projections1 are a classical way of performing dimensionality reduction,

and are widely used in algorithmic and learning contexts [93, 96, 284, 294]. Dis-

tributed computations in the presence of stragglers have gained a lot of attention in

the information theory community. Coding-theoretic approaches have been adopted

for this [43, 48, 51, 53, 55, 97, 166, 178, 179, 183, 185, 222, 224, 237, 245, 250, 251, 302],

and fall under the framework of coded computing (CC). Data security is also an in-

creasingly important issue in CC [181]. In this work, we propose methods to se-

curely speed up linear regression by simultaneously leveraging random projections

and sketching, and distributed computations. Our results are presented in terms of

the system model proposed in [178], though they extend to any centralized distributed

model, i.e. distributed systems with a central server which updates and communi-

cates the parameters to the computational worker nodes. Furthermore, the desiderata

of our approaches are to:

(I) produce straggler-resilient accurate approximations,

(II) secure the information,

(III) carry out the computations efficiently and distributively.

We focus on sketching for steepest descent (SD) in the context of solving overdeter-

mined linear systems. Part of our theoretical results are given for the sketch-and-solve

paradigm [255], which can be utilized by a single server; who can also store a com-

pressed version of the data. The application through CC results in iterative sketching

1By ‘projections’ we refer to random matrices, not idempotent matrices.

78

methods for distributively solving overdetermined linear systems. We propose apply-

ing a random orthonormal projection to the linear system before distributing the data,

and then performing SD distributively on the transformed system through approx-

imate gradient coding. Under the straggler scenario and the assumptions we make,

this results in a mini-batch stochastic steepest descent (SSD) procedure of the original

system. A special case of such a projection is the Subsampled Randomized Hadamard

Transform (SRHT) [33, 96, 282], which utilizes Kronecker products of the Hadamard

transform; and relates to the fast Johnson-Lindenstrauss transform [5, 153].

The benefit of applying an orthonormal matrix transformation is that we ro-

tate and/or reflect the data’s orthonormal basis, which cannot be reversed without

knowledge of the transformation. This is leveraged to give security guarantees, while

simultaneously ensuring that we recover well-approximated gradients, and an approx-

imate solution of the linear system. Such sketching matrices are also referred to as

randomized orthonormal systems [20]. We also discuss how one can use recursive

Kronecker products of an orthonormal matrix of dimension greater than 2 in place

of the Hadamard transform, to obtain the a more efficiency encoding and encryption

than through a random and unstructured orthonormal matrix.

In the CC paradigm, the workers are assumed to be homogeneous with the same

expected response time. In the proposed methods, we stop receiving computations

once a fixed fraction of the workers respond; producing a different induced sketch

at each iteration. A predominant task which has been studied in the CC frame-

work is the gradient computation of differentiable and additively separable objective

functions [25, 42, 47, 52, 58, 59, 62, 134, 144, 155, 223, 239, 279, 289, 292, 298].

These schemes are collectively called gradient coding (GC). We note that iterative

sketching has proven to be a powerful tool for second-order methods [173, 231],

though it has not been explored in first-order methods. Since we indirectly consider

a different underlying modified problem at each iteration, the methods we propose

are approximate GC schemes (GCSs). Related approaches have been proposed in

[25, 52, 58, 59, 62, 155, 144, 239, 289, 292]. Two important benefits of our approaches

are that we do not require a decoding step, nor an encoding step by the workers; at

each iteration, avoiding prevalent bottlenecks.

An advantage of using an updated sketch at each iteration, is that we do not have

a bias towards the samples that would be selected/returned when the sketching takes

place, which occurs in the sketch-and-solve approach. Specifically, we do not solve

a modified problem which only accounts for a reduced dimension; determined at the

beginning of the iterative process. Instead, we consider a different reduced system at

79

each iteration. This is also justified numerically.

Another benefit of our approach, is that random projections secure the information

from potential eavesdroppers, honest but curious; and colluding workers. We show

information-theoretic security for the case where a random orthonormal projection is

utilized in our sketching algorithm. Furthermore, the security of the SRHT, which is

a crucial aspect, has not been extensively studied. Unfortunately, the SRHT is inher-

ently insecure, which we show. We propose a modified projection which guarantees

computational security of the SRHT.

There are related works to what we study. The work of [20] focuses on parame-

ter averaging for variance reduction, but only mentions a security guarantee for the

Gaussian sketch, derived in [306]. Another line of work [159, 160], focuses on intro-

ducing redundancy through equiangular tight frames (ETFs), partitioning the system

into smaller linear systems, and then averaging the solutions of a fraction of them.

A drawback of using ETFs, is that most of them are over C. The authors of [263]

study privacy of random projections, though make the assumption that the projec-

tions meet the ‘ε-MI-DP constraint’. Recently, the authors of [192] considered CC

privacy guarantees through the lens of differential privacy, with a focus on matrix

multiplication. Lastly, a secure GCS is studied in [300], though it does not utilize

sketching. We also clarify that even though we guarantee cryptographic security, our

methods may still be vulnerable to various privacy attacks, e.g. membership inference

attacks [114] and model inversion attacks [262]. This is another interesting line of

work, though is not a focus of our approach.

The chapter is organized as follows. In 4.2 we review the framework and back-

ground for coded linear regression, the notions of security we will be working with,

the ℓ2-subspace embedding property, and list the main properties we seek to satisfy

through our constructions; in order to meet the aforementioned desiderata. In 4.3

we present the proposed iterative sketching algorithm, and in 4.4 the special case

where the projection is the randomized Hadamard transform; which we refer to as

the “block-SRHT”. The subspace embedding results for the general algorithm and the

block-SRHT are presented in the respective sections. We consider the case where the

central server may adaptively change the step-size of its SD procedure in 4.5, which

can be viewed as an adaptive GCS. In 4.6 we present the security guarantees of our

algorithm and the modified version of the block-SRHT. Finally, we present numerical

experiments in 4.7; and concluding remarks in 4.8.

80

4.2 Coded Linear Regression

4.2.1 Least Squares Approximation and Steepest Descent

In linear least squares approximation [96], it is desired to approximate the solution

x⋆ls = arg min
x∈Rd

{
Lls(A,b;x) := ∥Ax− b∥22

}
(4.1)

where A ∈ RN×d and b ∈ RN . This corresponds to the regression coefficients x of the

model b = Ax + ε⃗, which is determined by the dataset D = {(ai, bi)}Ni=1 ⊊ Rd × R
of N samples, where (ai, bi) represent the features and label of the ith sample, i.e.

A =
[
a1 · · · aN

]T
and b =

[
b1 · · · bN

]T
.

To simplify our presentation, we first define some notational conventions. Row

vectors of a matrix M are denoted by M(i), and column vectors by M(j). Our em-

bedding results are presented in terms of an arbitrary partition NN =
⊔K
ι=1Kι, for

NN := {1, · · · , N} the index set of M’s rows. Each Kι corresponds to a block of M.

The notation M(Kι) denotes the submatrix of M comprised of the rows indexed by Kι.
That is: M(Kι) = I(Kι)M, for I(Kι) the corresponding submatrix of IN of size |Kι|×N .

We call M(Kι) the ‘ιth block of M’. We abbreviate (1− ϵ) · ∥⃗b∥ ⩽ ∥a⃗∥ ⩽ (1 + ϵ) · ∥⃗b∥,
to ∥a⃗∥ ⩽ϵ ∥⃗b∥. Lastly, ‘←’ denotes a numerical assignment of a varying quantity, and

‘
U←’ a realization of a random variable through uniform sampling.

By Π we denote the random orthonormal matrix we apply to the data matrix A;

which is drawn uniformly at random from a finite subset ÕA of the set orthonormal

matrices ON(R), i.e. Π
U← ÕA ⊊ ON(R). By Π̂ and Π̃ we denote the special cases

where Π is a orthonormal matrix used for the block-SRHT and garbled block-SRHT

respectively.

We address the overdetermined case where N ≫ d. Existing exact methods find a

solution vector x⋆ls in O(Nd2) time, where x⋆ls = A†b. A common way to approximate

x⋆ls is through SD, which iteratively updates the gradient

g
[t]
ls := ∇xLls(A,b;x[t]) = 2AT (Ax[t] − b) (4.2)

followed by updating the parameter vector

x[t+1] ← x[t] − ξt · g[t]ls . (4.3)

In our setting, the step-size ξt > 0 is determined by the central server. The script [t]

indexes the iteration t = 0, 1, 2, . . . which we drop when clear from the context. In 4.5,

81

we derive the optimal step-size ξ⋆t for (4.2) and the modified problems we consider,

given the updated gradients and parameters of iteration t.

4.2.2 The Straggler Problem and Gradient Coding

Gradient coding is deployed in centralized computation networks, i.e. a central

server communicates x[t] to m workers; who perform computations and then com-

municate back their results. The central server distributes the dataset D among the

m workers, to facilitate the solution of optimization problems with additively sepa-

rable and differentiable objective functions. For linear regression (4.1), the data is

partitioned as

A =
[
AT

1 · · · AT
K

]T
and b =

[
bT1 · · · bTK

]T
(4.4)

where Ai ∈ Rτ×d and bi ∈ Rτ for all i, and τ = N/K. For ease of exposition, we

assume that K|N . Then we have Lls(A,b;x) =
∑K

i=1 Lls(Ai,bi;x). A regularizer

µR(x) can also be added to Lls(A,b;x) if desired.

In GC [279], the workers encode their computed partial gradients

gi := ∇xLls(Ai,bi;x)

which are then communicated to the central server. Once a certain fraction of en-

codings is received, the central server applies a decoding step to recover the gradient

g = ∇xLls(A,b;x) =
∑K

i=1 gi. This can be computationally prohibitive, and takes

place at every iteration. To the best of our knowledge, the lowest decoding complexity

is O
(
(s+ 1) · ⌈ m

s+1
⌉
)
; where s is the number of stragglers [47].

In our approach we trade time; by not requiring encoding nor decoding steps at

each iteration, with accuracy of approximating x⋆ls. Unlike conventional GCSs, in this

chapter the workers carry out the computation on the encoded data. The resulting

gradient, is that of the modified least squares problem

x̂ls = arg min
x∈Rd

{
LS[t](A,b;x) := ∥S[t](Ax− b)∥22

}
(4.5)

for S[t] ∈ Rr×N a sketching matrix, with r ≪ N and r > d. This is the core idea

behind our approximation, where we incorporate iterative sketching with orthonor-

mal matrices and random sampling; and generalizations of the SRHT for S[t], for our

approximate GCSs. The sketching approach we take is to first apply a random pro-

82

jection, which also provides security against the workers and eavesdroppers, and then

sample computations carried out on the blocks of the transformed data uniformly at

random; which corresponds to the responses of the homogeneous non-stragglers.

For q the total number of responsive workers, we can mitigate up to s = m − q
stragglers. Specifically, the number of responsive workers m − s in the CC model,

corresponds to the number of sampling trials q of our sketching algorithm, i.e. q =

m − s. At iteration t, a SD update of the modified least squares problem (4.5) is

obtained distributively. Furthermore, we assume that the data is partitioned into

as many blocks as there are workers, i.e. K = m. The stragglers are assumed to

be uniformly random and may differ at each iteration. Thus, there is a different

sketching matrix S[t] at each epoch.

In conventional GCSs the objective is to construct an encoding matrix G ∈ Rm×K

(can have m ̸= K) and decoding vectors aI ∈ R1×q, such that aIG(I) = 1⃗ for any set

of non-straggling workers I. Furthermore, it is assumed that multiple replications of

each encoded block is shared among the workers, such that m ⪈ q ⩾ K.2 From the

fact that aIG(I) = 1⃗ for any I, in approximate GC [59], the optimal decoding vector

for a set I of size q = m− s is determined by

a⋆I = arg min
a∈R1×q

{
∥aG(I) − 1⃗∥22

}
=⇒ a⋆I = 1⃗G†(I) ,

for G†(I) the pseudoinverse of G(I). The error in the approximated gradient g̀[t] of an

optimal approximate linear regression GCS (G, a⋆I), is then

∥∥g[t] − g̀[t]∥∥
2
⩽ 2
√
K · err(G(I)) · ∥A∥2 · ∥Ax[t] − b∥2 , (4.6)

for err(G(I)) :=
∥∥IK −G†(I)G(I)

∥∥
2
.

4.2.3 Secure Coded Computing Schemes

Modern cryptography is split into two main categories, information-theoretic se-

curity and computational security. The former is also referred to as Shannon secrecy,

while the latter is also referred to as asymptotic security. In this subsection, we give

the definitions which will allow us to characterize the security level of our GCSs.

2As we mention in 4.3.1, this can be done in order to mimic sampling with replacement through
the CC network. The reason we require q ⩾ K, is to define a⋆I = 1⃗G†

(I). This idea has been

extensively studied in [56].

83

Definition 4.2.1. A secure CC scheme, is the pair of encoding and decoding al-

gorithms (Enc,Dec) of the CC scheme, such that Enc(A) also guarantees a level of

security of A, and Dec recovers the hidden information; i.e. Dec(Enc(A)) = A.

In our work, Enc corresponds to a linear transformation through a randomly se-

lected orthonormal matrix Π. The orthogonal group in dimension N , is denoted by

ON(R). By encryption, we refer to this linear transformation, which is utilized in

our GCS. Furthermore, we do not require a decryption step by the central server, as

it computes an unbiased estimate of the gradient at the end of each iteration. Also,

since ΠT = Π−1, it follows that ΠT meets the requirement of Dec, so in the following

definition we refer to the encoding-decoding pair by only referencing Enc. Further-

more, Enc depends on a secret key k which is randomly generated. In our case, this

is simply Π.

Definition 4.2.2 (Ch.2 [161]). An encryption scheme Enc with message, ciphertext

and key spaces M, C and K respectively is Shannon secret w.r.t. a probability

distribution D overM, if for all m̄ ∈M and all c̄ ∈ C:

Pr
m∼D
k

U←K

[m = m̄ | Enck(m) = c̄] = Pr
m∼D

[m = m̄] . (4.7)

An equivalent condition is perfect secrecy, which states that for all m0,m1 ∈M:

Pr
k

U←K
[Enck(m0) = c̄] = Pr

k
U←K

[Enck(m1) = c̄] . (4.8)

Definition 4.2.3 (Ch.3 [161]). An encryption scheme is computationally secure

if any probabilistic polynomial-time adversary succeeds in breaking it, with at most

negligible probability. By negligible, we mean it is asymptotically smaller than any

inverse polynomial function.

4.2.4 The ℓ2-subspace embedding Property

For the analysis of the sketching matrices SΠ we propose in Algorithm 7, we

consider any orthonormal basis U ∈ RN×d of the column-space of A, i.e. im(A) =

im(U). The subscript of SΠ, indicates the dependence of the sketching matrix on Π.

Recall that the ℓ2-subspace embedding (ℓ2-s.e.) property [294, 106] states that any

y ∈ im(U) satisfies:

∥SΠy∥2 ⩽ϵ ∥y∥2 ⇐⇒ ∥Id − (SΠU)T (SΠU)∥2 ⩽ ϵ (4.9)

84

for ϵ > 0. In turn, this characterizes the approximation’s error of the solution x̂ls of

(4.5) for S← SΠ, as

∥Ax̂ls − b∥2 ⩽
1 + ϵ

1− ϵ
∥Ax⋆ls − b∥2 ⩽ (1 +O(ϵ))∥Ax⋆ls − b∥2

with high probability, and ∥A(x⋆ls − x̂ls)∥2 ⩽ ϵ∥(IN −UUT)b∥2.

4.2.5 Properties of our Approach

A key property in the construction of our sketching matrices, is to sample blocks

(i.e. submatrices) of a transformation of the data matrix, which permits us to then

perform the computations in parallel. The additional properties we seek to satisfy

with our GCSs through block sampling are the following:

(a) the underlying sketching matrix satisfies the ℓ2-s.e. property,

(b) the block leverage scores are flattened through the random projection Π,

(c) the projection is over R,

(d) the central server computes an unbiased gradient estimate at each iteration,

(e) do not require encoding/decoding at each iteration,

(f) guarantee security of the information from the workers and potential eavesdrop-

pers,

(g) Π can be applied efficiently, i.e. in O(Nd logN) operations.

The seven properties listed above, are grouped together with respect to the desider-

ata mentioned in 4.1. Specifically, desideratum (I) encompasses properties (a), (b),

(c), (d), desideratum (II) corresponds to (f), and (III) encompasses (b), (c), (e), (g).

Property (a) is motivated by the sketch-and-solve approach, though through the

iterative process, in practice we benefit by having fresh sketches. Leverage scores

define the key structural non-uniformity that must be dealt with in developing fast

randomized matrix algorithms; and are formally defined in 4.3.2. If property (b)

is met, we can then sample uniformly at random in order to guarantee (a). We

require Π to be over R, as if it were over C, the communication cost from the central

server to the workers; and the necessary storage space at the workers would double.

Additionally, performing computations over C would result in further round-off errors

and numerical instability. Properties (d) and (e) are met by requiring Π to be an

85

orthonormal matrix. By allowing the projection to be random; we can secure the

data, i.e. satisfy (f). Furthermore, the action of applying an orthonormal projection

for our encryption; is reversed through the computation of the partial gradients, hence

no decryption step is required.

By considering a larger ensemble of orthonormal projections to select from, we

can give stronger security guarantees. Specifically, by not restricting the structure of

Π, we can guarantee Shannon secrecy, though this prevents us from satisfying (g).

On the other hand, if we let Π be structured, we can satisfy (g) at the cost of only

guaranteeing computational security.

We point out that even though Gaussian and random Rademacher sketches satisfy

satisfy (a), (b), (c) and (f), they do not satisfy (d), (e) nor (g) in our CC setting.

Experimentally, we observe that our proposed sketching matrices outperform the

Gaussian and random Rademacher sketches, primarily due to the fact that (d) is

satisfied. Furthermore, for Π ∈ ON(R), our distributive procedure results in a SSD

approach.

4.3 Block Subsampled Orthonormal Sketches

Sampling blocks for sketching least squares has not been explored as extensively

as sampling rows, though there has been interest in using “block-iterative methods”

for solving systems of linear equations [101, 131, 215, 240]. Our interest in sampling

blocks, is to invoke results and techniques from randomized numerical linear algebra

(RandNLA) to CC. Specifically, we apply the transformation before partitioning the

data and sharing it between the workers, who will compute the respective partial

gradients. Then, the slowest s workers will be disregarded. The proposed sketching

matrices are summarised in Algorithm 7.

To construct the sketch Â, we first transform the orthonormal basis U by applying

Π to A. Then, we subsample q many blocks from ΠA, to reduce the dimension.

Finally, we normalize by
√
N/r to reduce the variance of the estimator Â. Analogous

steps are carried out on Πb, to construct b̂.

4.3.1 Distributed Steepest Descent and Iterative Sketching

We now discuss the workers’ computational tasks of our proposed GCS, when SD

is carried out distributively. The encoding corresponds to Ã = G ·A and b̃ = G · b
for G :=

√
N/r ·Π, which are then partitioned into K encoded block pairs (Ãi, b̃i);

similar to (4.4), and are sent to distinct workers. Specifically, Ãi = I(Ki)(GA) and

86

Algorithm 7: Subsampled Orthonormal Sketches

Input: A ∈ RN×d, b ∈ RN , x[0] ∈ Rd, τ = N
K

, q = r
τ
> d

τ

Output: approximate solution x̂ ∈ Rd to (4.1)
Randomly Select: Π ∈ ON(R), an orthonormal matrix
for t = 0, 1, 2, . . . do

Initialize: Ω = 0q×K
Select: step-size ξt > 0
for i = 1 to q do

uniformly sample with replacement ji from NK

Ωi,ji =
√
N/r =

√
K/q

end

Ω̃[t] ← Ω⊗ Iτ ▷ S
[t]
Π = Ω̃[t] ·Π

Â[t] ← Ω̃[t] · (ΠA) = S
[t]
Π ·A

b̂[t] ← Ω̃[t] · (Πb) = S
[t]
Π · b

Update: x̂[t+1] ← x̂[t] − ξt · ∇xLls
(
Â[t], b̂[t]; x̂

[t]
)

end

b̃i = I(Ki)(Gb). This differs from most GCSs, in that the encoding is usually done

locally by the workers on the computed results; at each iteration.

If each worker respectively computes ∇xLls(Ãi, b̃i;x
[t]) = 2ÃT

i (ÃT
i x

[t] − b̃i) at

iteration t, and the index set of the first q responsive workers is S [t], the aggregated

gradient

ĝ[t] = 2
∑
j∈S[t]

ÃT
j

(
Ãjx

[t] − b̃j

)
(4.10)

is equal to the gradient of LS for S ← S
[t]
Π the induced sketching matrix at that

iteration, i.e. ĝ[t] = ∇xLS
[t]
Π

(A,b;x[t]). The sampling matrix Ω̃[t] and index set S [t],

correspond to the q responsive workers. We illustrate our procedure in Figure IV.1.

In Algorithm 7, Theorems 4.3.2 and 4.4.1, we assume sampling with replacement.

In what we just described, we used one replica of each block, thus K = m. To

compensate for this, more than one replica of each block could be distributed. This

is not a major concern with uniform sampling, as the probability that the ith block

would be sampled more than once is (q − 1)/K2, which is negligible for large K.

Lemma 4.3.1. At any iteration t, with no replications of the blocks across the net-

work, the resulting sketching matrix S[t] satisfies E
[
ST[t]S[t]

]
= E

[
Ω̃T

[t]Ω̃[t]

]
= IN .

It is worth noting that by Lemma 4.3.1, S[t] in expectation satisfies the ℓ2-s.e.

87

Figure IV.1: Illustration of our iterative sketching based GCS, at epoch t+ 1.

identity (4.9) with ϵ = 0, as

E
[
UT
(
ST[t]S[t]

)
U
]

= UTE
[
ST[t]S[t]

]
U = UTU = Id .

Theorem 4.3.1. The proposed GCS results in a mini-batch stochastic steepest descent

procedure for

x̂ = arg min
x∈Rd

{
LG(A,b;x) := Lls(GA,Gb;x)

}
. (4.11)

Moreover E
[
ĝ[t]
]

= q
K
· g[t]ls .

Lemma 4.3.2. The optimal solution of the modified least squares problem LG, is

equal to the optimal solution x⋆ls of (4.1).

To prove Theorem 4.3.1, note that Ω̃[t] corresponds to a uniform random selection

of q out of K batches for each t; as in SSD, while in our procedure we consider the

partial gradients of the q fastest responses. When computing ∇xLG, the factor Π is

annihilated; and the scaling factor
√
K/q is squared.

Since E
[
ĝ[t]
]

= q
K
g
[t]
ls , the estimate ĝ[t] is unbiased after an appropriate rescal-

ing; which could be incorporated in the step-size ξt. By Theorem 4.3.1 and Lemma

4.3.2, it follows that with a diminishing step-size, our updates x̂[t] converge to x⋆ls in

expectation; at a rate of O(1/
√
t+ r/t) [38, 79].

Corollary 4.3.1. Consider the problems (4.1) and (4.11), which are respectively

solved through SD and our iterative sketching based GCS. Assume that the two ap-

proaches have the same starting point x[0] and index set S [t] at each t; and ξ̂t = K
q
ξt

the step-sizes used for our scheme. Then, in expectation, our approach through Al-

88

gorithm 7 has the same update at each step t as SD at the corresponding update, i.e

E
[
x̂[t]
]

= x[t].

By Lemma 4.3.2 and Corollary 4.3.1, the updated parameter estimates x̂[0], x̂[1], x̂[2], . . .

of Algorithm 7 approach the optimal solution x⋆ls of (4.1), by solving the modified

regression problem (4.11) through SSD. It is also worth noting that the contraction

rate of our GC approach, in expectation is equal to that of regular SD. This can be

shown through an analogous derivation of [56, Theorem 6].

In the next subsection, we present our main ℓ2-s.e. result.

4.3.2 Subspace Embedding of Algorithm 7

To give an embedding guarantee for Algorithm 7, we first show that the block

leverage scores of ΠA are “flattened”, i.e. they are all approximately equal. This

is precisely what allows us to sample blocks for the construction of SΠ; and in the

distributed approach the computations, uniformly at random. Recall that the leverage

scores of Ũ := ΠU are ℓi := ∥Ũ(i)∥22 for i ∈ NN , and the block leverage scores [52, 221]

are defined as ℓ̃ι := ∥Ũ(Kι)∥2F =
∑

j∈Kι
ℓj for all ι ∈ NK . A lot of work has been done

regarding ℓ2-s.e. by leverage score sampling [91, 93, 95, 96, 294] as an importance

sampling technique. By generalizing these to sampling blocks, one can show analogous

results (e.g. [52, 56]).

Lemma 4.3.3 suggests that the normalized block leverage scores ℓ̀i = ℓ̃i
K

of Ũ are

approximately uniform for all ι with high probability. This is the key step to proving

that each S
[t]
Π of Algorithm 7, satisfy (4.9). We illustrate the flattening of the scores

for the various random projections considered in this chapter, in Figure IV.2.

Lemma 4.3.3. For all ι ∈ NK and Kι ⊊ NN of size τ = N/K

Pr
[
ℓ̀ι <Nρ 1/K

]
= Pr

[∣∣ℓ̀ι − 1/K
∣∣ < τρ

]
> 1− δ,

for ρ ⩾
√

log(2τ/δ)/2.

Theorem 4.3.2. Fix ϵ > 0 such that ϵ≪ 1/N . By Lemma 4.3.3, we can then assume

that ℓ̀ι = 1/K for all ι ∈ NK. Then, SΠ of Algorithm 7 is a ℓ2-s.e. sketching matrix

of A, according to (4.9). Specifically, for δ > 0 and q = Θ
(
d
τ

log (2d/δ)/ϵ2
)
:

Pr
[
∥Id −UTSTΠSΠU∥2 ⩽ ϵ

]
⩾ 1− δ.

To prove Lemma 4.3.3 we use Hoeffding’s inequality to show that the individual

leverage scores are flattened, and then group them together by applying the binomial

89

approximation. This is then directly applied to a generalized version of the leverage

score sketching matrix which samples blocks instead of individual rows [56, Theorem

1], to prove Theorem 4.3.2.

0 10 20 30 40 50 60 70 80 90 100

Block index

0

0.5

1

1.5

2

S
c
o

re

No sketch

Rademacher

block-SRHT

G-b-SRHT

Orthonormal

Figure IV.2:
Flattening of block-scores, for A following a t-distribution. We abbre-
viate the garbled block-SRHT to ‘G-b-SRHT’.

We note that there is no benefit in considering an overlap across the block batches

which are sent to the workers (e.g. if a worker receives
[
ÃT
i−1 ÃT

i

]T
and another

receives
[
ÃT
i ÃT

i+1

]T
), in terms of sampling. The reason is that since the computations

are received uniformly at random, there is still the same chance that ĝi and ĝj would

be considered, for any i ̸= j.

Before moving onto the block-SRHT, we show how our scheme compares to other

approximate GCSs in terms of the approximation error (4.6), when we consider mul-

tiple replications of each encoded block being shared among the workers. The result

of Proposition 4.3.1 also applies to other sketching approaches, which satisfy (4.9).

Proposition 4.3.1. By Theorem 4.3.2, SΠ satisfies (4.9) (w.h.p.). Hence, the ap-

proximate gradients ĝ[t] of Algorithm 7 satisfy (4.6) (w.h.p.), with err(G(I)) = ϵ/
√
K.

4.4 The Block-SRHT

In this section, we focus on a special case of Π which can be utilized in Algorithm 7;

the randomized Hadamard transform. By utilizing this transform we satisfy property

(g), and also avoid the extra computational cost which is needed to generate a random

orthonormal matrix [150].

The SRHT is comprised of three matrices: Ω ∈ Rr×N a uniform sampling and

rescaling matrix of r rows, ĤN ∈ {±1/
√
N}N×N the normalized Hadamard matrix for

N = 2n, and D ∈ {0, ±1}N×N with i.i.d. diagonal Rademacher random entries; i.e.

it is a signature matrix. The main intuition of the projection is that it expresses the

original signal or feature-row in the Walsh-Hadamard basis. Furthermore, ĤN can be

90

applied efficiently due to its structure. As in the case where we transformed the left

orthonormal basis and column-space of A by multiplying its columns with a random

orthonormal matrix Π, in the new basis ĤNDU; the block leverage scores are close

to uniform. Hence, we perform uniform sampling through Ω̃ on the blocks of ĤNDA

to reduce the effective dimension N , whilst the information of A is maintained.

To exploit the SRHT in distributed GC for linear regression, we generalize it to

subsampling blocks instead of rows; of the transformed data matrix, as in Algorithm

7. We give a ℓ2-s.e. guarantee for the block-wise sampling version or SRHT, which

characterizes the approximation of our proposed GCS for linear regression.

We refer to this special case as the “block-SRHT”, for which Π̂ is taken from the

subset ĤN of ON(R)

ĤN :=
{
ĤND : D = diag(±1) ∈ {0, ±1}N×N

}
, (4.12)

where D is a random signature matrix with equiprobable entries of +1 and -1, and

ĤN for N = 2n is defined by

H2 =

(
1 1

1 −1

)
ĤN =

1√
N
·H⊗ log2(N)

2 .

Equivalently, ĤN can be defined entry-wise through the n-bit binary representation

of i,j as

Ĥij = (−1)⟨i,j⟩2/
√
N for ⟨i, j⟩2 =

(
n−1∑
l=0

il · jl

)
mod 2 .

The SRHT introduced in [96] corresponds to the case where we select τ = 1, i.e.

K = N . Henceforth, we drop the subscript N .

The main differences between the SRHT and the proposed block-SRHT SΠ̃ for

Π̃
U← ĤN , is the sampling matrix Ω̃; and that q = r/τ sampling trials take place

instead of r. The limiting computational step of applying SΠ̂ in (4.5) is the multipli-

cation by Ĥ. The recursive structure of Ĥ permits us to compute SΠ̂A inO(Nd logN)

time, through Fourier methods [220].

4.4.1 Subspace Embedding of the Block-SRHT

To show that SΠ̂ with Π̂
U← ĤN satisfies (4.9), we first present a key result, anal-

ogous to that of Lemma 4.3.3. Considering the orthonormal basis V̂ := ĤDU of the

transformed data ĤDA with individual leverage scores {ℓi}Ni=1, Lemma 4.4.1 suggests

91

that the resulting block leverage scores ℓ̃ι = ∥V̂(Kι)∥2F =
∑

j∈Kι
ℓj are approximately

uniform for all ι ∈ NK . Note that the diagonal entries of D is the only place in which

randomness takes place other than the sampling. This then allows us to prove our

ℓ2-s.e. result regarding the block-SRHT, Theorem 4.4.1.

Lemma 4.4.1. For all ι ∈ NK and Kι ⊊ NN of size τ = N/K

Pr
[
ℓ̃ι ⩽ ηd · log(Nd/δ)/K

]
> 1− τδ/2, (4.13)

for 0 < η ⩽ 2 + log(16)/ log(Nd/δ) a constant.

Theorem 4.4.1. The block-SRHT SΠ̂ is a ℓ2-s.e. of A. For δ > 0 and q =

Θ
(
d
τ

log(Nd/δ) · log(2d/δ)/ϵ2
)
:

Pr
[
∥Id −UTST

Π̂
SΠ̂U∥2 ⩽ ϵ

]
⩾ 1− δ .

Compared to Theorem 4.3.2, the above theorem has an additional logarithmic

dependence on N . This is a consequence of applying the union bound, in order to

show that the leverage scores of ĤDU are flattened (Lemma 4.6.1). In the proof

of Lemma 4.3.3, we instead applied Hoeffding’s inequality, which removes such con-

ditioning. Since Lemma 4.3.3 also holds for the block-SRHT, SΠ̂ also satisfies the

ℓ2-s.e. guarantee stated in Theorem 4.3.2.

In Subsection 4.6.1 we alter the transformation ĤD by permuting its rows. While

our ℓ2-s.e. result remains intact, under mild but necessary assumptions, this trans-

formation now also guarantees computational security.

4.4.2 Recursive Kronecker Products of Orthonormal Matrices

One could consider more general sets of matrices to sample from, while still ben-

efiting from the recursive structure leveraged in Fourier methods. For a fixed ‘base

dimension’ of k ∈ Z>2, let Πk ∈ Ok(R), and define Π = Π
⊗⌈logk(N)⌉
k . Carrying out

the multiplication ΠA now takes O(Ndk2 logkN) time.

In the case where k = 2, up to a permutation of the rows and columns; we have

O2(R) = {I2, Ĥ2}, which is limiting compared to Ok(R) for k ⩾ 3. This allows

more flexibility, as more ‘base matrices’ Πk can be considered, and the security can

therefore be improved, as now we do not rely only on applying a random permutation

to Π̂ (discussed in 4.6.1).

92

4.5 Optimal Step-Size and Adaptive GC

Recently, adaptive gradient coding (AGC) has been proposed in [42]. The objective

is to adaptively design an exact GCS without prior information about the behavior

of potential persistent stragglers, in order to gradually minimize the communication

load. This though comes at the cost of further delays due to intermediate designs of

GC encoding-decoding pairs, as well as performing the encoding and decoding steps.

Furthermore, the assumptions made in [42] are more stringent compared to the ones

we have made thus far.

In this section, we further speed up our process, by adaptively selecting a step-size

which reduces the total number of iterations required for convergence to the solutions

of problems (4.1), (4.5) and (4.11), when SD is carried out. The proposed choice

ξ⋆t for the step-size, is based on the latest gradient update of (4.1) and (4.5). To

determine ξ⋆t , we solve

ξ⋆t = arg min
ξ∈R⩾0

{
∥Ax[t+1] − b∥22

}
= arg min

ξ∈R⩾0

{
∥A(x[t] − ξ · g[t])b∥22

}
(4.14)

for each t. If ξt = 0, we have reached the global optimum.

Since (4.14) has a closed form solution, determining ξ⋆t at each iteration reduces

to matrix-vector multiplications. In the distributive setting, this will be determined

by the central server once sufficiently many workers have responded at iteration t,

who will then update x[t+1] according to (4.3).

Compared to AGC, this is a more practical model, as we do not design and deploy

multiple codes across the network. The authors of [42] minimize the communication

load of individual communication rounds. In contrast, we reduce the total number

of iterations of the SD procedure, which leads to fewer communication rounds. De-

pending on the application and threshold parameters we pick for the two respective

AGC methods, our proposed approach would most likely have a lower overall com-

munication load. This of course would also depend on the selected step-size used

in the AGC for [42], and termination criterion. Furthermore, we are also flexible in

tolerating a different number of stragglers s at each iteration, which was a motivation

for the design of AGC schemes.

Proposition 4.5.1. Given the respective gradient g[t] and update x[t] of the under-

lying objective function, the optimal step-size according to (4.14) for Lls(A,b;x[t]),

93

LG(A,b;x[t]) and LΠ(A,b;x[t]) := ∥Π(Ax− b)∥22, is:

ξ⋆t = ⟨Ag[t],Ax[t] − b⟩
/
∥Ag[t]∥22 . (4.15)

In our distributive stochastic procedure, one could select an adaptive step-size ξt+1

which minimizes L
S
[t]
Π

(A,b;x[t]); but the induced sketching matrix S
[t]
Π would need to

be explicitly determined once q workers have responded. This would result in further

computations from the central server. Instead, we propose using the step-size (4.15),

as it is optimal in expectation.

The bottleneck in using ξ⋆t , is that it can only be updated once the g̃[t] :=

∇xLΠ(A,b;x[t]) has been determined, which causes a delay in updating x̂[t+1]. Even

so, we significantly reduce the number of iterations, which is evident through our ex-

periments in Section 4.7. The overall computation of the entire network is therefore

also reduced. Furthermore, ATA and ATAb which appear in the expansion of (4.15)

can be computed beforehand, so that ATAx[t] can be calculated by the central server

while the workers are carrying out their tasks.

Corollary 4.5.1. Assume that we know the parameter update x̂[t], and the gradient

g̃[t]. Over the possible index sets S [t] at iteration t, the optimal step-size according to

arg min
ξ∈R

{
E
[∥∥S[t]

Π

(
Ax̂[t+1] − b

)∥∥2
2

]}
matches ξ⋆t of (4.15).

4.6 Security of Orthonormal Sketches

In this section, we discuss the security of the proposed orthonormal-based sketch-

ing matrices and the block-SRHT. The idea behind securing the resulting sketches is

that there is a large ensemble of orthonormal matrices Π to select from, making it

near-impossible for adversaries to discover the inverse transformation.

To give information-theoretic security guarantees, we make some mild but neces-

sary assumptions regarding Algorithm 7 and the data matrix A. The message space

M needs to be finite, which M in our case corresponds to the set of possible or-

thonormal bases of the column-space of A. This is something we do not have control

over, and it depends on the application and distribution from which we assume the

data is gathered. Therefore, we assume thatM is finite. For this reason, we consider

a finite multiplicative subgroup (ÕA, ·) of ON(R) (thus IN ∈ ÕA, and if Q ∈ ÕA

94

then QT ∈ ÕA), which contains all potential orthonormal bases of A.3 Recall that

ON(R) is a regular submanifold of GLN(R). Hence, we can define a distribution on

any subset of ON(R).

We then letM = ÕA, and assume UA the N×N orthonormal basis of A is drawn

from M w.r.t. D. For simplicity, we consider D to be the uniform distribution. A

simple method of generating a random matrix that follows the uniform distribution

on the Stiefel manifold Vn(Rn) can be found in [64, Theorem 2.2.1]. Alternatively,

one could generate a random Gaussian matrix and then perform Gram–Schmidt in

order to orthonormalize it. Furthermore, an inherent limitation of Shannon secrecy

is that |K| ⩾ |M|.

Theorem 4.6.1. In Algorithm 7, sample Π uniformly at random from ÕA. The

application of Π to A before partitioning the data, provides Shannon secrecy to A

w.r.t. D uniform, for K,M, C all equal to ÕA.

4.6.1 Securing the SRHT

Unfortunately, the guarantee of Theorem 4.6.1 does not apply to the block-SRHT,

as in this case it is restrictive to assume that UA ∈ ĤN . A simple computation on a

specific example also shows that this sketching approach does not provide Shannon

secrecy.4 For instance, if U0 = I2, U1 = Ĥ2 and the observed transformed basis C̄

has two zero entries, then

Pr
Π

U←H2

[
Π ·U1 = C̄

]
> Pr

Π
U←H2

[
Π ·U0 = C̄

]
= 0.

Furthermore, since Ĥ is a known orthonormal matrix, it is a trivial task to invert

this projection and reveal DA. This shows that the inherent security of the SRHT

is relatively weak. Proposition 4.6.1 is proven by constructing a counterexample.

Proposition 4.6.1. The SRHT does not provide Shannon secrecy.

To secure the SRHT and the block-SRHT, we randomly permute the rows of

Ĥ, before applying it to A. That is, for P ∈ SN where SN ⊊ {0, 1}N×N is the

permutation group on N × N matrices, we let H̃ := PĤ ∈ {±1/
√
N}N×N , and the

new sketching matrix is

SΠ̃ = Ω̃ · (P · Ĥ) ·D = Ω̃ · H̃ ·D = Ω̃ · Π̃, (4.16)

3In Appendix 3.4.2, we give an analogy between our approach and the OTP.
4Please check Appendix 3.4.1 for the details.

95

for which our flattening result (Corollary 4.6.1) still holds. We “garble” Ĥ so that the

projection applied to A now inherently has more randomness, and allows us to draw

from a larger ensemble. Specifically, for a fixed N , the block-SRHT has 2N options

for Π̂ = ĤD, while for Π̃ = H̃D there are 2NN ! = O
(
(2N/e)N

√
N
)

options for Π̃.

Moreover, for

H̃N :=
{
PΠ : P ∈ SN and Π ∈ ĤN

}
(4.17)

the set of all possible garbled Hadamard transforms, it follows that (H̃N , ·) is a finite

multiplicative subgroup of ON(R). Hence, we can also define a distribution on H̃N .

We also get the benefits of permuting Ĥ’s columns without explicitly applying a

second permutation, through D.

Figure IV.3: Example of how P and D modify the projection matrix Ĥ64.

By the following Corollary, we deduce that Theorem 4.4.1 also holds for the “gar-

bled block-SRHT” (an analogous result is used to prove Lemma 4.4.1). Thus, we can

apply any Π̃
U← H̃N in Algorithm 7, and get a valid sketch.

Corollary 4.6.1. For y ∈ RN a fixed (orthonormal) column vector of U, and D ∈
{0, ±1}N×N with random equi-probable diagonal entries of ±1, we have:

Pr
[
∥H̃D · y∥∞ > C

√
log(Nd/δ)/N

]
⩽

δ

2d
(4.18)

for 0 < C ⩽
√

2 + log(16)/ log(Nd/δ) a constant.

Moreover, Corollary 4.6.1 also holds true for random projections R whose entries

are rescaled Rademacher random variables, i.e. Rij = ±1/
√
N with equal probability.

The advantage of this is that we have a larger set of projections

R̃N :=
{
R ∈ {±1/

√
N}N×N : Pr[Rij = +1/

√
N] = 1/2

}

96

to draw from. This makes it even harder for an adversary to determine which pro-

jection was applied. Specifically |R̃N | = 2N
2
, which is significantly larger than |H̃N |.

Two drawbacks of applying a random Rademacher projection R is that it is much

slower than its Hadamard-based counterpart, and the resulting gradients ĝ[t] are not

unbiased.

Next, we provide a computationally secure guarantee for the garbled block-SRHT

SΠ̃ ← Ω̃Π̃. The guarantee of Theorem 4.6.2 against computationally bounded ad-

versaries, relies heavily on the assumption that strong pseudorandom permutations

(s-PRPs) and one-way functions (OWFs) exist. Through a long line of work, it was

shown that s-PRPs exist if and only if OWFs exist. Even though OWFs are minimal

cryptographic objects, it is not known whether such functions exist [161]. Proving

their existence is non-trivial, as this would then imply that P ̸= NP. In practice

however, this is not unreasonable to assume. The proof of Theorem 4.6.2 entails a

reduction to inverting the s-PRP P. In practice, block ciphers are used for s-PRPs.

Theorem 4.6.2. Assume that P is a s-PRP. Then, SΠ̃A is computationally secure

against polynomial-bounded adversaries, for SΠ̃ ← Ω̃Π̃ the garbled block-SRHT.

As discussed in 4.4, the Hadamard matrix satisfies the desired properties (b), (c),

(d), (g), while any other form of a discrete Fourier transform would violate (c). By

applying P to Ĥ, the matrix PĤ still satisfies the aforementioned properties, while

also incorporating security; i.e. property (f). It would be interesting to see if other

structured matrices exist which also satisfy (b)-(g). Similar to what we saw with the

block-SRHT, if (b) is met; then we can achieve (a) through uniform sampling.

4.6.2 Exact Gradient Recovery

In the case where the exact gradient is desired, one can use the proposed orthonor-

mal projections to encrypt the information from the workers, while requiring that the

computations from all the workers are received. From Theorems 4.6.1 and 4.6.2, we

know that under certain assumptions we can secure A.

Since the projections are orthonormal, it would follow that ĝ[t] = g
[t]
ls . Thus, as

long as all workers respond, the aggregated gradient is equal to the exact gradient.

One can utilize this idea to encrypt other distributive computations, e.g. matrix

multiplication or inversion and logistic regression, which are discussed in Appendix

3.5. This resembles a homomorphic encryption scheme, but is by no means fully-

homomorphic.

97

4.7 Experiments

We compared our proposed distributed GCSs to analogous approaches where the

projection Π is a Gaussian sketch or a Rademacher random matrix. Our approach

was found to outperform both these sketching methods in terms of convergence and

approximation error, as the resulting gradients through these alternative approaches

are not unbiased. In all experiments, the same initialization x[0] was selected for each

sketching methods.

Our approach was also compared to uncoded (regular) SD. Random matrices A ∈
R2000×40 with non-uniform block leverage scores were generated for the experiments.

Standard Gaussian noise was added to an arbitrary vector from im(A), to define b.

We considered K = 100 blocks, thus τ = 20. The effective dimension N was reduced

to r = 1000.

For the experiments in Figure IV.4 we ran 600 iterations on six different instances

for each one, and varied ξ for each experiment by logarithmic factors of the step-size

ξ× = 2/σmax(A)2. The average log residual errors log10

(
∥x⋆ls− x̂∥2

/√
N
)

are depicted

in Figure IV.4. Step-size ξ× was considered, as it guarantees descent at each iteration,

though it is too conservative.

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1
0.005

0.01

0.015

0.02

0.025
Average log residual error plots, over 6 experiments

Regular GD (Uncoded)

Batch-SSD

block-SRHT

G-b-SRHT

Orthonormal

Figure IV.4: log residual error, for A following a t-distribution.

In contrast to the Gaussian sketch, orthonormal matrices Π also act as precon-

ditioners. One example is the experiment depicted in Figure IV.5, in which the only

modification we made from the previous experiments, was our initial choice of x[0],

which was scaled by 1/N .

Next, we consider the case where ξt was updated according to (4.15). As above,

our sketching approaches outperformed the case where a Gaussian sketch was applied.

From Figure IV.6, our orthonormal sketching approach performs just as well as regular

SD for the first 30 iterations, though it slows down afterwards, and is slightly worse

than regular SD by the time 50 iterations have been completed. By the discussion

98

0 100 200 300 400 500 600

iteration

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3
Convergence per iteration

block-SRHT

G-b-SRHT

Orthonormal

Batch-SSD

Gaussian

Regular SD

Figure IV.5: Example where Π also acts as a preconditioner.

in 4.6.2, we can achieve the performance of regular SD if we wait until all workers

respond; and consider no stragglers, while our security guarantees still hold. This

is true also for the block-SRHT and garbled block-SRHT, but not for the Gaussian

sketch.

0 10 20 30 40 50 60 70 80 90 100

iteration

1.4

1.45

1.5

1.55

1.6

1.65

1.7
Gaussian

block-SRHT

G-b-SRHT

Orthonormal

Figure IV.6: Adaptive step-size update, for A following a t-distribution.

Lastly, we give an example where it is clear that iterative sketching leads to

better convergence than the sketch-and-solve approach. In the experiment depicted

in Figure IV.7, we considered three sketching approaches: the iterative block-SRHT

and garbled block-SRHT, and the non-iterative garbled block-SRHT. The step-size

was adaptive at each iteration, as was done in the experiment of Figure IV.6.

0 10 20 30 40 50 60 70 80 90 100

iteration

1.45

1.5

1.55

1.6

1.65

1.7

1.75
block-SRHT iterative

G-b-SRHT iterative

G-SRHT non-iterative

Figure IV.7:
Convergence at each step, for the iterative block-SRHT and garbled
block-SRHT, and the non-iterative garbled block-SRHT.

99

We carried out similar experiments when considering other dense and sparse ma-

trices A, with non-uniform block leverage scores. Similar results regarding our ap-

proaches were observed, as the ones provided above.

4.8 Concluding Remarks and Future Work

In this work, we proposed approximately solving a linear system by distributively

leveraging iterative sketching and performing first-order SD simultaneously. In do-

ing so, we benefit from both approximate GC and RandNLA. A difference to other

RandNLA works is that our sketching matrices sample blocks uniformly at random,

after applying a random orthonormal projection. An additional benefit is that by

considering a large ensemble of orthonormal matrices to pick from, under necessary

assumptions, we guarantee information-theoretic security while performing the dis-

tributed computations. This approach also enables us to not require encoding and

decoding steps at every iteration. We also studied the special case where the pro-

jection is the randomized Hadamard transform, and discussed its security limitation.

To overcome this, we proposed a modified “garbled block-SRHT”, which guarantees

computational security.

We note that applying orthonormal random matrices also secures coded matrix

multiplication. There is a benefit when applying a garbled Hadamard transform in

this scenario, as the complexity of multiplication resulting from the sketching is less

than that of regular multiplication. Also, if such a random projection is used before

performing CR-multiplication distributively [43, 53, 250], the approximate result will

be the same. Moreover, our dimensionality reduction algorithm can be utilized by a

single server, to store low-rank approximations of very large data matrices.

Partial stragglers, have also been of interest in the GC literature. These are

stragglers who are able to send back a portion of their requested tasks. Our work is

directly applicable, as we can consider smaller blocks, with multiple ones allocated to

each worker.

There are several interesting directions for future work. We observed experimen-

tally in Figure IV.5 that Π and ĤN may act as preconditioners for SSD. This mere

observation requires further investigation. Another direction is to see if the proposed

ideas could be applied to federated learning scenarios, in which security and privacy

are major concerns. Some of the projections we considered, rely heavily on the recur-

sive structure of Ĥ in order to satisfy (g). One thing we overlooked, is whether other

efficient multiplication algorithms (e.g. Strassen’s [276]) could be exploited, in order

100

to construct suitable projections. It would be interesting to see if other structured or

sparse matrices exist which also satisfy our desired properties (a)-(g).

There has been a lot of work regarding second-order algorithms with iterative

sketching, e.g. [173, 231]. Utilizing iterative Hessian sketching or sketched Newton’s

method in CC has been explored in a tangential work [127], though the security

aspect of these algorithms has not been extensively studied. A drawback here is that

the local computations at the workers would be much larger, though we expect the

number of iterations to be significantly reduced; for the same termination criterion

to be met, compared to first-order methods. Deeper exploration of the theoretical

guarantees of iterative sketched first-order methods, along with a comparison to their

second-order counterparts, as well as studying their effect in logistic regression and

other applications, are also of potential interest.

101

CHAPTER V

Securely Aggregated Coded Matrix Inversion

5.1 Introduction and Related Work

Inverting a matrix is one of the most important operations in numerous applica-

tions, such as, signal processing, machine learning, and scientific computing [126, 140].

A common way of inverting a matrix is to perform Gaussian elimination, which re-

quires O(N3) operations for square matrices of order N . In high-dimensional appli-

cations, this can be cumbersome. Over the past few years the machine learning (ML)

community has made much progress on federated learning (FL), focusing on iterative

methods.

The objective of FL is to leverage computation, communication and storage re-

sources to perform distributed computations for ML models, where the data of each

federated worker is never shared with the coordinator of the network; that aggregates

local computations in order to update the model parameters. In FL applications it is

important that the data is kept private and secure.

Distributed computations in the presence of stragglers (workers who fail to com-

pute their task or have longer response time than others) must account for the effect

of non-responsive workers. Coding-theoretic approaches have been adopted for this

purpose [178, 302], and fall under the framework of coded computing (CC). Other

techniques have also been utilized; to develop approximate CC schemes, e.g. equian-

gular tight frames [159] and sketching [49]. Data security is also an increasingly

important issue in CC [181]. Despite the fact that multiplication algorithms imply

inversion algorithms and vice versa, in the context of CC; matrix inversion has not

been studied as extensively as coded matrix multiplication (CMM) [303]. The main

reason for this is the fact that the latter is non-linear and non-parallelizable as an

operator. We point out that distributed inversion algorithms do exist, though these

make assumptions on the matrix, are specific for distributed and parallel computing

102

platforms, and require a matrix factorization; or heavy and multiple communication

instances between the workers and the coordinator.

In [54] a CC method1 was proposed based on gradient coding (GC) [134], which

approximates the inverse of a matrix A. In order to overcome the obstacle of non-

linearity, the columns of A−1 are approximated. When assuming infinite floating-

point precision, this CCM introduces no numerical nor approximation errors. Note

that GC and not CMM was utilized, as the latter does not require the encoding to

be done locally by the workers.

Though the two areas of FL and CC seem to be closely related, on the surface they

appear incompatible. For instance, in CC one often assumes there is a master server

that distributes the data and may perform the encoding (encoding by the master

server is done in CMM, but not in GC), while in FL the central coordinator never

has access to the distributed local training data; which are located at different client

nodes or workers.

There are a few recent works that leverage CC in order to devise secure FL meth-

ods for distributed regression and iterative optimization [81, 132, 169, 233, 256, 295].

In this work, we combine optimization and CC, using erasure coding to protect against

stragglers as in CC and locally approximating the inverse without revealing the data

to the coordinator, to design a CCM which inverts a matrix from data aggregated

through clients; and guarantees security against eavesdroppers. Our approach, is

based on the coded matrix inversion method (CMIM) we develop, which utilizes bal-

anced Reed-Solomon (BRS) codes [135, 136]. This results in an efficient decoding in

terms of the threshold number of responsive workers needed to perform an error free

computation. We show that the general class of maximum distance separable (MDS)

generator matrices could be used to generate a suitable erasure code (Theorem 5.5.1).

The focus is on BRS codes, which have the following advantages:

(i) minimum redundancy per task across the network,

(ii) they optimize communication from workers to the master,

(iii) we can efficiently decode the resulting method.

As noted in [81, 256], most CCMs are not applicable in FL. In our case, the

obstacle is that all clients need to know each others data in order to invert the

aggregated matrix, which we elaborate on in 5.5.1. For this reason, we relax the

1We abbreviate ‘coded computing method/methods’ to CCM/CCMs.

103

privacy restriction of FL and allow the clients to recover the aggregated matrix A,

which is necessary and unavoidable for matrix inversion.

Our CMIM can also be used to compute the Moore–Penrose pseudoinverse Y† of

a data matrix Y ∈ RM×N for M ≫ N , which is more general than inverting a square

matrix. By using the fact that Y† = (Y⊤Y)−1Y⊤, the bottleneck is computing the

inverse of A = Y⊤Y. In addition, two more matrix multiplications need to take

place distributively: computing A before the inversion; and Â−1Y⊤ after the inverse

has been approximated. The matrix products can be computed distributively using

various CCMs, e.g. we can use a modification of the coded FL approaches of [256]

and a CMM from [47]; both of which are based on GC. For the remainder of the

chapter, we focus on the generic problem of inverting a square matrix A.

The proposed FL approach applies to general linear regression problems. Com-

pared to traditional FL iterative approaches [167], the difference is that for Yθ = p;

with p the label vector and θ the model parameters, the pseudoinverse-regularized

regression solution is θ̂ = Ŷ†p. Unlike conventional FL methods, this regularized

regression can be computed non-iteratively. The non-iterative nature of the proposed

approach is advantageous in settings such as Kalman filtering, where the matrix in-

verse must be updated in real time as measurements come in, as well as when dealing

with time-series; and regularized regression with varying regularized coefficients.

This chapter is organized as follows. In 5.2 we recall basic facts on matrix inver-

sion, least squares approximation and finite fields. In 5.3 we review BRS codes, and

prove two key lemmas regarding their generator matrices. In 5.4 we present the ma-

trix inverse approximation algorithm we utilize in our CCM. The main contribution

is presented in 5.5. Our federated approach is split into four phases, which we group

in pairs of two. First, we discuss information sharing from the coordinator to the

workers (we consider all the clients’ servers as the network’s workers), and then infor-

mation sharing between the workers. Second, we show how our inversion algorithm

can be incorporated in linear CCMs, and describe how this fits into the relaxed FL

setting we are considering. Concluding remarks and future work are presented in 5.6.

5.1.1 Overview of the Coded Matrix Inversion Method

In CC the computational network is centralized, and is comprised of a master

server who communicates with n workers. The idea behind our approximation is

that the workers use a least squares solver to approximate multiple columns of A−1,

resulting in a set of local approximations to submatrices of Â−1, which we refer to

as blocks. We present approximation guarantees and simulation results for steepest

104

descent (SD) and conjugate gradient (CG) iterative optimization methods. By locally

approximating the columns in this way, the workers can linearly encode the blocks

of Â−1. The clients have a block of data {Aι}kι=1, which constitute the data matrix

A =
[
A1 · · · Ak

]
. To simplify our presentation, we assume that each local data block

is of the same size; i.e. Aι ∈ RN×T for T = N/k, and that client i has ni servers.

Therefore, the total number of workers is n =
∑k

j=1 nj. We assume the blocks are

of the same size, so that the encodings carried out by the clients are consistent. In

5.5, we show that this assumption is not necessary. Moreover, for the CCM, it is not

required that the number of blocks equal the number of clients. For a given natural

number γ, assume that γ divides T ; denoted γ | T (each local data block Aι is further

divided into γ sub-blocks). In the case where k ∤ N or γ ∤ T , we can pad the blocks

of Â−1 so that these assumptions are met.

A limitation of our proposed CMIM, is the fact that each worker needs to have

full knowledge of A, in order to estimate columns of A−1 through a least squares

solver. The sensitivity of Gaussian elimination and matrix inversion also require that

all clients have knowledge of each others’ data [54]. This limitation is shared by other

coded federated learning methods, e.g. CodedPaddedFL [256], and further justifies our

requirement that task allocations need to be carefully distributed across the workers,

especially in the context of FL. In contrast to CC and GC; where a master server has

access to all the data, in FL the data is inherently distributed across devices, thus GC

cannot be applied directly. We also assume that the coordinator does not intercept

the communication between the clients, otherwise she could recover the local data.

Also, we trust that the coordinator will not invert Â−1, to approximate A — this

would be computationally difficult, for N large.

Before broadcasting the data amongst themselves, the clients encode their block

Ai, which guarantees security from outside eavesdroppers. When the clients receive

the encoded data, they can decrypt and recover A. Then, their servers act as the

workers of the proposed CMIM and carry out their assigned computations, and di-

rectly communicate their computations back to the coordinator. Once the recovery

threshold (the minimum number of responses needed to recover the computation) is

met, the approximation Â−1 is recoverable.

5.1.2 Coded Federated Learning

There are few works that leverage CC to devise secure FL schemes. Most of these

works have focused on distributed regression and iterative methods, which is the

primary application for FL [81, 169, 233, 256, 295]. Below, we describe and compare

105

these approaches to our work.

The authors of [81] proposed coded federated learning, in which they utilize a

CMM scheme. Their security relies on the use of random linear codes, to define the

parity data. Computations are carried out locally on the systematic data, and only

the parity data is sent to the coordinator. The main drawback compared to our

scheme is that each worker has to generate a random encoding matrix and apply a

matrix multiplication for the encodings, while we use the same BRS generator matrix

across the network, based on GC, to linearly encode the local computations. The

drawback in our case, is that the workers need to securely share their data with each

other. This is an artifact of the operation (inversion) we are approximating, and is

inevitable in the general case where A has no structure. Under the relaxed FL setting

we are considering, where the data is gathered or generated locally and is not i.i.d.,

we cannot make any assumptions on the structure of A.

In [256], two methods were proposed. CodedPaddedFL combines one-time-padding

with GC to carry out the FL task. Some of its disadvantages are that a one-time-pad

(OTP) needs to be generated by each worker, and that the OTPs are shared with the

coordinator, which means that if she gets hold of the encrypted data, she can decrypt

it, compromising security. Furthermore, there is a heavy communication load and the

coordinator needs to store all the pads in order to recover the computed gradients.

In the proposed CMIM, the coordinator generates a set of interpolation points, and

shares them with the clients. If the coordinator can intercept the communication

between the workers, she can decrypt the encrypted data blocks. The second method

proposed in [256], CodedSecAgg, relies on Shamir’s secret sharing (SSS); which is

based on polynomial interpolation over finite fields. In contrast, our CMIM relies on

GC and Lagrange interpolation.

Lastly, we discuss the method proposed in [295], which is based on the McEliece

cryptosystem, and moderate-density parity-check codes. This scheme considers a

communication delay model which defines stragglers as the workers who respond

slower than the fastest worker, and time out after a predetermined amount of time

∆. As the iterative SD process carries on, such workers are continuously disregarded.

Due to this, there is a data sharing step at each iteration, at which the new stragglers

communicate encrypted versions of their data to the active workers. Our scheme is

non-iterative, and has a fixed recovery threshold. Unlike some of the works previ-

ously mentioned, which guarantee information-theoretic security, the McEliece based

systems and our approach have computational privacy guarantees.

106

5.1.3 Lagrange Interpolation and Polynomial CCMs

While there is extensive literature on matrix-vector and matrix-matrix multiplica-

tion, and computing the gradient in the presence of stragglers, there is limited work

on computing or approximating the inverse of a matrix [296]. The non-linearity of

matrix inversion prohibits linear or polynomial encoding of the data before the com-

putations are to be performed. Consequently, most CCMs cannot be directly utilized.

Gradient coding is the appropriate CC set up to consider [279], precisely because the

encoding takes place once the computation has been completed, in contrast to most

CMM methods where the encoding is done by the master, before the data is dis-

tributed. This helps improve the recovery threshold, which is a primary objective of

the CMM problem.

Here, we give a brief overview of the GC scheme on which our CMIM is based.

We also review “Lagrange Coded Computing” (LCC), which has relations to our ap-

proach. Then, we give a summary of our proposed CMIM. All these rely on Lagrange

interpolation over finite fields. We then mention related CMM schemes based on

Lagrange or polynomial interpolation.

Gradient codes are a class of codes designed to mitigate the effect of stragglers

in data centers, by recovering the gradient of differentiable and additively separable

objective functions in distributed first-order methods [279]. The proposed CMIM

utilizes BRS generator matrices constructed for GC [134]. The main difference from

our work is that in GC the objective is to construct an encoding matrix G ∈ Cn×k

and decoding vectors aI ∈ Ck, such that a⊤IGI = 1⃗ for any set of non-straggling

workers indexed by I. To do so, the decomposition of the BRS generator matrices

GI = HIP is exploited, where HI is a Vandermonde matrix; and the first row of P

is equal to 1⃗. Subsequently a⊤I is extracted as the first row of H−1I .

In the proposed CMIM framework, the objective is to design an encoding-decoding

pair (G̃, D̃I) for which D̃IG̃I = IN , for all I ⊊ Nn of size k. The essential reason for

requiring this condition, as opposed to that of GC, is that the empirical gradient of

a given dataset is the sum of each individual gradients, while in our scenario if the

columns of Â−1 are summed; they cannot then be recovered.

The state-of-the art CC framework is LCC, which is used to compute arbitrary

multivariate polynomials of a given dataset [302]; and has since been considered

in various settings [107, 266, 267, 278, 307]. This approach is based on Lagrange

interpolation, and it achieves the optimal trade-off between resiliency, security, and

privacy. The problem we are considering is not a multivariate polynomial in terms

of A. To securely communicate A to the workers, we encode it through Lagrange

107

interpolation. Though similar ideas appear in LCC, the purpose and application of the

interpolation is different. Furthermore, LCC is a point-based approach and requires

additional interpolation and linear combination steps after the decoding takes place,

while ours is a coefficient-based CCM [164, 165].

Recall that the workers in the CMIM must compute blocks of Â−1. Once they

complete their computations, they encode them by computing a linear combination

with coefficients determined by a sparsest-balanced MDS generator matrix. Referring

to the advantages claimed for CMIM in Section 5.1, working with MDS generator

matrices allows us to meet points (i) and (ii), while BRS generator matrices also

helps us satisfy (iii). Once the recovery threshold is met, the coordinator can recover

the approximation Â−1. The structure of sparsest-balanced generator matrices is also

leveraged to optimally allocate tasks to the workers, while linear encoding is what

allows minimal communication load from the workers to the master. Security against

eavesdroppers is guaranteed by encoding the local data through a modified Lagrange

interpolation polynomial, before it is shared by the clients. This CMIM also extends

to approximating A† [54].

Some of the earliest interpolation based CMM schemes are the Polynomial [303]

and MatDot codes [98], both of which are point-based. The construction of ‘Polyno-

mial Codes’ has since been generalized to ‘Entangled Polynomial Codes’ [304], which

define similar polynomials to ours (5.12), though their use differs. We use (5.12) to

encrypt the data block of each client; and our decryption is an evaluation at a finite

field point. For Entangled Polynomial Codes two such polynomials are defined; one

for each input matrix, and their product determines another degree R − 2 polyno-

mial which is evaluated by each worker at a different point, before proceeding to the

decoding step.

In MatDot codes [98] two polynomials are defined, one corresponding to each input,

where instead of the Lagrange polynomial in (5.12); a monic monomial is multiplied

by the partitions of the respective block submatrices. Then, analogous steps to those

of Entangled Polynomial Codes take place, in order to recover the matrix product.

5.2 Preliminary Background

The set of N × N non-singular matrices is denoted by GLN(R). Recall that

A ∈ GLN(R) has a unique inverse A−1, such that AA−1 = A−1A = IN . The

simplest way of computing A−1 is by performing Gaussian elimination on
[
A|IN

]
,

which gives
[
IN
∣∣A−1] in O(N3) operations. In Algorithm 8, we approximate A−1

108

column-by-column. We denote the ith row and column of A respectively by A(i) and

A(i). The condition number of A is κ2 = ∥A∥2∥A−1∥2. The largest, smallest and ith

singular values of A are denoted by σmax(A), σmin(A) and σi(A) respectively. For I
an index subset of the rows of a matrix M, the matrix consisting only of the rows

indexed by I, is denoted by MI . We denote the set of integers between 1 and ν by

Nν . The support of a vector v is denoted by supp(v), and the number of nonzero

elements of A by nnzr(A).

In the proposed algorithm we approximate N instances of the least squares mini-

mization problem

θ⋆ls = arg min
θ∈RM

{
∥Aθ − y∥22

}
(5.1)

for A ∈ RN×M and y ∈ RN . In many applications N ≫M , where the rows represent

the feature vectors of a dataset. This has the closed-form solution θ⋆ls = A†y.

Computing A† to solve (5.1) is intractable for largeM , as it requires computing the

inverse of A⊤A. Instead, we use gradient methods to get approximate solutions, e.g.

SD or CG, which require less operations, and can be done distributively. One could

use second-order methods; e.g. Newton–Raphson, Gauss-Newton, Quasi-Newton,

BFGS, or Krylov subspace methods instead. This would be worthwhile future work.

When considering a minimization problem with a convex differentiable objective

function ψ : Θ → R over an open convex set Θ ⊆ RM , as in (5.1), the SD procedure

selects an initial θ[0] ∈ Θ, and then updates θ according to:

θ[t+1] = θ[t] − ξt · ∇θψ(θ[t])

for t = 0, 1, 2, . . . until a termination criterion is met, for ξt the step-size. The CG

method is the most used and prominent iterative procedure for numerically solving

systems of positive-definite equations.

Our proposed coding scheme is defined over the multiplicative cyclic group (F×q , ·),
for Fq the finite field of q elements and F×q = Fq\{0Fq} its set of units. For imple-

mentation purposes, we identify F×q with its realization in C as a subgroup of the

circle group, since we assume our data is over R. All operations can therefore be

carried out over C. Specifically, we identify β as an arbitrary primitive generator of

(F×q , ·). One such case is to identify β 7→ e2πi/(q−1). Thus, for all j ∈ Nq−1; we identify

βj 7→ e2πij/(q−1).

109

5.3 Balanced Reed-Solomon Codes

A Reed-Solomon code RSq[n, k] over Fq for q > n > k, is the encoding of polyno-

mials of degree at most k − 1, for k the message length and n the code length [243].

It represents our message over the defining set of points A = {αj}nj=1 ⊂ Fq

RSq[n, k] =
{[
f(α1), f(α2), · · · , f(αn)

] ∣∣∣
f(X) ∈ Fq[X] of degree ⩽ k − 1

}
where αj = αj, for α a primitive root of Fq. Hence, each αi is distinct. A natural

interpretation of RSq[n, k] is through its encoding map. Each message (m0, ...,mk−1) ∈
Fkq is interpreted as f(x) =

∑k−1
i=0 mix

i ∈ Fq[x], and f is evaluated at each point of A.

From this, RSq[n, k] can be defined through the generator matrix

G =

1 α1 α2

1 . . . αk−11

1 α2 α2
2 . . . αk−12

...
...

...
. . .

...

1 αn α2
n . . . αk−1n

 ∈ Fn×kq ,

thus, RS codes are linear codes over Fq. Furthermore, they attain the Singleton

bound, i.e. d = n− k+ 1, where d is the code’s distance, which implies that they are

MDS.

Balanced Reed-Solomon codes [135, 136] are a family of linear MDS error-correcting

codes with generator matrices G ∈ Fn×kq that are:

• sparsest: each column has the least possible number of nonzero entries

• balanced: each row contains the same number of nonzero entries

for the given code parameters k and n. The design of these generators are suitable

for our purposes, as:

1. we have balanced loads across homogeneous workers,

2. sparse generator matrices reduce the computation tasks across the network,

3. the MDS property permits an efficient decoding step,

4. linear codes produce a compressed representation of the encoded blocks.

110

5.3.1 Balanced Reed-Solomon Codes for CC

In the proposed CMIM, we leverage BRS generator matrices to approximate A−1

distributively. For simplicity, we will consider the case where d = s + 1 = nw
k

is

a positive integer2, for n the number of workers and s the number of stragglers.

Furthermore, d is the distance of the code and ∥G(j)∥0 = d for all j ∈ Nk; ∥G(i)∥0 = w

for all i ∈ Nn, and d > w since n > k. For decoding purposes, we require that at least

k = n− s workers respond. Consequently, d = s+ 1 implies that n− d = k − 1. For

simplicity, we also assume d ⩾ n/2. In our setting, each column of G corresponds to

a computation task of computing a block of Â−1; which we will denote by Âi, and

each row corresponds to a worker.

Our choice of such a generator matrix G ∈ Fn×kq , solves

arg min
G∈Fn×k

q

{
nnzr(G)

}
s.t. ∥G(i)∥0 ⩾ w, ∀i ∈ Nn

∥G(j)∥0 ⩾ d, ∀j ∈ Nk

rank(GI) = k, ∀I : |I| = k

(5.2)

which determines an optimal task allocation among the workers of the proposed

CMIM. The first and second constraints are analogous to the bound of [279, Theorem

1], which is met with equality in “perfectly balanced GC schemes”. This theorem

states that if all rows of G have the same number of nonzeros, then ∥G(i)∥0 ⩾

k(s + 1)/n, for all i. By construction, the generator matrix G we propose, meets

the first and second constraints with equality, for all i ∈ Nn and j ∈ Nk.

Under the above assumptions, the entries of the generator matrix of a BRSq[n, k]

code meet the following:

• each column is sparsest, with exactly d nonzero entries

• each row is balanced, with w = dk
n

nonzero entries

where d equals to the number of workers who are tasked to compute each block, and

w is the number of blocks that are computed by each worker.

Each column G(j) corresponds to a polynomial pj(x), whose entries are the evalua-

tion of the polynomial we define in (5.3) at each of the points of the defining set A, i.e.

Gij = pj(αi) for (i, j) ∈ Nn×Nk. To construct the polynomials {pj(x)}kj=1, for which

2The case where nw
k ∈ Q+\Z+ is analyzed in [134], and also applies to our approach. We restrict

our discussion to the case where nw
k ∈ Z+.

111

deg(pj) ⩽ nnzr(G(j)) = n− d = k − 1, we first need to determine a sparsest and bal-

anced mask matrix M ∈ {0, 1}n×k, which is ρ-sparse for ρ = d
n
; i.e. nnzr(G) = ρnk.

We use the construction from [134], though it is fairly easy to construct more general

such matrices, by using the Gale-Ryser Theorem [77, 168]. Even though this was

not pointed out in [134], their construction of M (Algorithm 12) does not always

produce a mask matrix of the given parameters when we select d < n/2. This is why

in our work we require d ⩾ n/2. Furthermore, deterministic constructions resemble

generator matrices of cyclic codes.

For our purposes we use B = {βj}nj=1 as our defining set of points, where each

point corresponds to the worker with the same index. The objective now is to devise

the polynomials pj(x), for which pj(βi) = 0 if and only if Mij = 0. Therefore:

(I) Mij = 0 =⇒ (x− βi) | pj(x)

(II) Mij ̸= 0 =⇒ pj(βi) ∈ F×q

for all pairs (i, j).

The construction of BRSq[n, k] from [135] is based on what the authors called scaled

polynomials. Below, we summarize the polynomial construction based on Lagrange

interpolation [134]. We then prove a simple but important result that allows us to

efficiently perform the decoding step.

The univariate polynomials corresponding to each column G(j), are defined as:

pj(x) :=
∏

i:Mij=0

(
x− βi
βj − βi

)
=

k∑
ι=1

pj,ι · xι−1 ∈ Fq[x] (5.3)

which satisfy (I) and (II). By the BCH bound [207, Chapter 9], it follows that

deg(pj) ⩾ n−d = k− 1 for all j ∈ Nk. Since each pj(x) is the product of n−d mono-

mials, we conclude that the bound on the degree is satisfied and met with equality,

hence pj,ι ∈ F×q for all coefficients.

By construction, G is decomposable into a Vandermonde matrix H ∈ Bn×k and

a matrix comprised of the polynomial coefficients P ∈ (F×q)k×k [134]. Specifically,

G = HP where Hij = βj−1i = βi(j−1) and Pij = pj,i are the coefficients from (5.3).

This can be interpreted as P(j) defining the polynomial pj(x), and H(i) is comprised

of the first k positive powers of βi in ascending order, therefore

pj(βi) =
k∑
ι=1

pj,ι · βι−1i = ⟨H(i),P
(j)⟩.

112

The following lemmas will help us respectively establish in our CC setting the

efficiency of our decoding step and the optimality of the allocated tasks to the work-

ers. For Lemma 5.3.1, recall that efficient matrix multiplication algorithms have

complexity O(Nω), for ω < 2.373 the matrix multiplication exponent [11].

Lemma 5.3.1. The restriction GI ∈ Fk×kq of G to any of its k rows indexed by

I ⊊ Nn, is an invertible matrix. Moreover, its inverse can be computed online in

O(k2 + kω) operations.

Proof. The matrices H and P are of size n× k and k× k respectively. The restricted

matrix GI is then equal to HIP, where HI ∈ Fk×kq is a square Vandermonde matrix,

which is invertible in O(k2) time [26]. Specifically

HI =

1 βI1 β2

I1 . . . βk−1I1
1 βI2 β2

I2 . . . βk−1I2
...

...
...

. . .
...

1 βIk β2
Ik . . . βk−1Ik

 ∈ Fk×kq .

It follows that

det(HI) =
∏

{i<j}⊆I

(βj − βi)

which is nonzero, since β is primitive. Therefore, HI is invertible. By [135, Lemma

1] and the BCH bound, we conclude that P is also invertible. Hence, GI is invertible

for any set I.

Note that the inverse of P can be computed a priori by the master before we

deploy our CCM. Therefore, computing G−1I online with knowledge of P−1, requires

an inversion of HI which takes O(k2) operations; and then multiplying it by P−1.

Thus, it requires O(k2 + kω) operations in total.

Lemma 5.3.2. The generator matrix G ∈ Fn×kq of a BRSq[n, k] MDS code defined by

the polynomials pj(x) of (5.3), solves the optimization problem (5.2).

Proof. The first two constraints are satisfied by the construction of G, which meets

the sparsest and balanced constraints with equality; for the given parameters. The

last constraint is implied by the MDS theorem, which states that every set of k rows

of G is linearly independent.

The sparsity constraints of (5.2) imply that nnzr(G) ⩾ max{nw, kd}, and for our

parameters we have nw = kd. Both the first and second constraints are met with

113

equality for the chosen G. Moreover

nnzr(G) =
∑
j∈Nk

nnzr(G(j))

=
∑
j∈Nk

#
{
pj(βi) ̸= 0 : βi ∈ B

}
=
∑
j∈Nk

n−
{
i : Mij = 0

}
=
∑
j∈Nk

n− (n− d)

= kd

and the proof is complete.

We conclude this section by recalling how the decomposition G = HP is utilized

for GC [134]. Each column of G corresponds to a partition of the data whose partial

gradient is to be computed. The polynomials are judiciously constructed in this

scheme, such that the constant term of each polynomial is 1, thus P(1) = 1⃗. By

this, the decoding vector a⊤I is the first row of H−1I , for which a⊤IHI = e⊤1 . A direct

consequence of this is that a⊤IGI = e⊤1 P = P(1) = 1⃗, which is the objective for

constructing a GC scheme.

5.4 Inverse Approximation Algorithm

Our goal is to estimate A−1 =
[
b1 · · · bN

]
, for A a square matrix of order N . A

key property to note is

AA−1 = A
[
b1 · · · bN

]
=
[
Ab1 · · · AbN

]
= IN

which implies that Abi = ei for all i ∈ NN , where ei are the standard basis column

vectors. Assume for now that we use any black-box least squares solver to estimate

b̂i ≈ arg min
b∈RN

{
gi(b) := ∥Ab− ei∥22

}
(5.4)

which we call N times, to recover Â−1 :=
[
b̂1 · · · b̂N

]
. This approach may be viewed

as approximating

Â−1 ≈ arg min
B∈RN×N

{
∥AB− IN∥2F

}
.

114

Alternatively, one could estimate the rows of A−1. Algorithm 8 shows how this can

be performed by a single server.

Algorithm 8: Estimating A−1

Input: A ∈ GLN(R)
for i=1 to N do

approximate b̂i ≈ arg minb∈RN {∥Ab− ei∥22}
end

return Â−1 ←
[
b̂1 · · · b̂N

]
In the case where SD is used to approximate b̂i from (5.4), the overall operation

count is O(TiN2); for Ti the total number of descent iterations used. An upper

bound on the number of iterations can be determined by the underlying termination

criterion, e.g. the criterion gi(b̂
[t]) − gi(b

⋆
ls) ⩽ ϵ is guaranteed to be satisfied after

T = O(log(1/ϵ)) iterations [36]. The overall error of Â−1 may be quantified as

• errℓ2(Â
−1) := ∥Â−1 −A−1∥2

• errF (Â−1) := ∥Â−1 −A−1∥F

• errrF (Â−1) := ∥Â−1−A−1∥F
∥A−1∥F

=

(
N∑
i=1
∥Ab̂i−ei∥22

)1/2

∥A−1∥F
.

To approximate A−1 distributively, each of the n workers are asked to estimate

τ -many b̂i’s in parallel. When using SD, the worst-case runtime by the workers is

O(τTmaxN
2), for Tmax the maximum number of iterations of SD among the workers.

If CG is used, each worker needs no more than a total of Nτ CG steps to exactly

compute its task, i.e. O(τNκ2) operations; as each instance of (5.4) is expected to

converge in O(κ2) iterations, which is the worst case runtime [261, 281].

In order to bound errrF (Â−1) = ∥Â−1−A−1∥F
∥A−1∥F

, we first upper bound the numerator

and then lower bound the denominator. Since ∥A−1− Â−1∥2F =
∑N

i=1 ∥A−1ei− b̂i∥22,
bounding the numerator reduces to bounding ∥A−1ei − b̂i∥22 for all i ∈ NN . This is

straightforward

∥A−1ei − b̂i∥22
♢
⩽ 2

(
∥A−1ei∥22 + ∥b̂i∥22

)
$

⩽ 2
(
∥A−1∥22 · ∥ei∥22 + ∥b̂i∥22

)
= 2

(
1/σmin(A)2 + ∥b̂i∥22

)
(5.5)

115

where in ♢ we use the fact that ∥u − v∥22 ⩽ 2(∥u∥22 + ∥v∥22), and in $ the submulti-

plicativity of the ℓ2-norm is invoked. For the denominator, by the definition of the

Frobenius norm

∥A−1∥2F =
N∑
i=1

1

σi(A)2
⩾

N

σmax(A)2
. (5.6)

By combining (5.5) and (5.6) we get

errrF (Â−1) ⩽
√

2

(
N/σmin(A)2 +

∑N
i=1 ∥b̂i∥22

N/σmax(A)2

)1/2

=
√

2

(
κ22 +

σmax(A)2

N
·
N∑
i=1

∥b̂i∥22

)1/2

.

This is an additive error bound in terms of the problem’s condition number, which

also shows a dependency on the estimates {b̂i}Ni=1. Propositions 5.4.1 and 5.4.2 give

error bounds when using SD and CG as the subroutine of Algorithm 8 respectively.

Proposition 5.4.1. For A ∈ GLN(R), we have errF (Â−1) ⩽
ϵ
√
N/2

σmin(A)2
and errrF (Â−1) ⩽

ϵ
√
N/2

σmin(A)
, when using SD to solve (5.4) with termination criteria ∥∇gi(b[t])∥2 ⩽ ϵ for

each i.

Proof. Recall that for a strongly-convex function with strong-convexity parameter µ,

we have the following optimization gap [36, Section 9.1.2]

gi(b)− gi(b⋆ls) ⩽
1

2µ
· ∥∇gi(b)∥22 . (5.7)

For A ∈ GLN(R) in (5.4), the constant is µ = σmin(A)2. By fixing ϵ =
√

2σmin(A)2η,

we have η = 1
2
·
(

ϵ
σmin(A)

)2
. Thus, by (5.7) and our termination criterion:

∥∇gi(b)∥2 ⩽
√

2σmin(A)2η =⇒ gi(b)− gi(b⋆ls) ⩽ η ,

so when solving (5.4) we get

gi(b)− gi(b⋆ls) = gi(b)− 0 = ∥Ab̂i − ei∥22 ,

hence

∥Ab̂i − ei∥22 ⩽
1

2
·
(

ϵ

σmin(A)

)2

(5.8)

116

for all i ∈ NN . We want an upper bound for each summand ∥A−1ei − b̂i∥22 of the

numerator of errrF (Â−1)2:

∥A−1ei − b̂i∥22 = ∥A−1(ei −Ab̂i)∥22
⩽ ∥A−1∥22 · ∥ei −Ab̂i∥22
♯

⩽ ∥A−1∥22 ·
1

2
·
(

ϵ

σmin(A)

)2

(5.9)

=
ϵ2

2σmin(A)4
(5.10)

where ♯ follows from (5.8), thus errF (Â−1)2 ⩽ Nϵ2

2σmin(A)4
. Substituting (5.9) into the

definition of errrF (Â−1) gives us

errrF (Â−1)2 ⩽
∥A−1∥22
∥A−1∥2F

· N
2
·
(

ϵ

σmin(A)

)2 ‡
⩽

Nϵ2/2

σmin(A)2

where ‡ follows from the fact that ∥A−1∥22 ⩽ ∥A−1∥2F .

In the experiments of Subsection 5.4.1, we verify that Proposition 5.4.1 holds for

Gaussian random matrices. The dependence on 1/σmin(A) is an artifact of using

gradient methods to solve the underlying problems (5.4), since the error will be mul-

tiplied by ∥A−1∥22. In theory, this can be annihilated if one runs the algorithm on pA

for p ≈ 1/σmin(A), followed by multiplication of the final result by p. This is a way

of preconditioning SD. In practice, the scalar p should not be selected to be much

larger than 1/σmin(A), as it could result in Â−1 ≈ 0N×N .

Proposition 5.4.2. Assume Algorithm 8 uses CG to solve (5.4). Then, in no more

than O
(
N
√
κ2 ln(1/ϵ)

)
iterations, we have errF (Â−1) ⩽ Nϵ. Moreover, if A⊤A has

Ñ distinct eigenvalues, it converges in at most ÑN steps.

Proof. By [261, Section 10] and [38, Section 2], we know that for each subroutine (5.4)

of Algorithm 13, CG requires at most O(
√
κ2 ln(1/ϵ)) iterations in order to attain an

ϵ-optimal point, for each b̂i. Hence, considering all approximate columns {b̂i}Ni=1, we

conclude that the total error in terms of the Frobenius norm of Â−1, is at most Nϵ.

Recall that in order to solve (5.1) with the CG method in the case where A is

neither symmetric, positive-definite, nor square, we apply the CG iteration to the

normal equations

A⊤Ay = A⊤θ .

117

This follows by setting the derivative of (5.1) to zero. In our scenario, we are as-

suming that A ∈ GLN(R), hence A⊤A is full-rank and symmetric, thus CG in its

simplest form can be used to solve the minimization problems of Algorithm 8. By

[281, Theorem 38.4], it follows that each instance of (5.4) converges in at most Ñ

steps.

Even though Proposition 5.4.2 guarantees convergence in at most ÑN steps, it

does not assume finite floating-point precision. Therefore, this does not hold in prac-

tical settings. Our experiments though show that after significantly less steps, we

achieve approximations of negligible error, which is sufficient for ML and FL appli-

cations.

5.4.1 Numerical Experiments

The accuracy of the proposed algorithm was tested on randomly generated matri-

ces, using both SD and CG for the subroutine optimization problems. The depicted

results are averages of 20 runs, with termination criteria ∥∇gi(b[t])∥2 ⩽ ϵ for SD

and ∥b[t]
i − b

[t−1]
i ∥2 ⩽ ϵ for CG, for the given ϵ accuracy parameters. We considered

A ∈ R100×100. The error subscripts represent A = {ℓ2, F, rF}, N = {ℓ2, F}. We

note that significantly fewer iterations took place when CG was used for the same ϵ,

though this depends heavily on the choice of the step-size. The errors observed in

the case of CG, are due to floating-point arithmetic. Therefore, as expected; there is

a trade-off between accuracy and speed when using SD vs. CG.

Average Â−1 errors, for A ∼ 50 · N (0, 1) — SD

ϵ 10−1 10−2 10−3 10−4 10−5

errA O(10−2) O(10−5) O(10−7) O(10−9) O(10−12)

Table V.1: Numerical experiments for Â−1.

Average Â−1 errors, for A ∼ 50 · N (0, 1) — CG

ϵ 10−3 10−4 10−5 10−6 10−7

errN O(10−3) O(10−5) O(10−8) O(10−11) O(10−12)
errrF O(10−3) O(10−5) O(10−7) O(10−10) O(10−12)

Table V.2: Numerical experiments for Â†.

118

We utilized Algorithm 8 in Newton’s method, for classifying images of four and

nine from MNIST, by solving a regularized logistic regression minimization problem.

For Algorithm 8, we used CG with a fixed number of iteration per column estimation.

It is clear from Figure V.1 that we require no more than 18 iterations per column

estimate, for N = 785, to attain the optimal classification rate. With more than 18

CG iterations, the same classification rate was obtained.

14 15 16 17 18 19

CG iterations per column

0

0.05

0.1

0.2

0.3

0.4

0.45

C
la

s
s
if
ic

a
ti
o
n
 e

rr
o
r

%

Classification Error

inversion with CG

exact inversion

Figure V.1:
MNIST classification error, where Algorithm 8 is used in Newton’s
method. In red, we depict the error when exact inversion was used.

5.5 Secure Coded Matrix Inversion

In this section, we describe the proposed CMIM (also presented in [54]) which

makes Algorithm 8 resilient to stragglers, and show how it can be applied to the

relaxed FL scenario described in the introduction. The CMIM workflow is depicted

in Figure V.2.

Our scheme can be broken up in to four phases: (a) the coordinator shares elements

β,H of a finite field with all the clients, (b) the clients each generate a pseudorandom

permutation (PRP) σι, encrypt their corresponding data block Aι through a matrix

polynomial fι(x), and broadcast {fι(x), σι} to the other clients, (c) the clients recover

A, compute and encode their assigned task Wι, which is communicated to the co-

ordinator, (d) the coordinator decodes once sufficiently many workers respond. It is

also possible that β,H are determined collectively by the clients, or by a single client,

which makes the data sharing secure against a curious and dishonest coordinator.

In our proposed FL approach, we assume there is a trustworthy coordinator who

shares certain parameters to each of the k clients which constitute the network; e.g.

hospitals in a health care network, each of which are comprised of multiple servers.

What we present works for the case where the clients have local datasets of differ-

ent sizes, {Ni}ki=1. This would result in the encoding functions fι(x) having different

119

Figure V.2:
Algorithmic workflow of the CMIM, as proposed in [54]. The master
shares f(x), an encoding analogous to (5.12), along with β, {η−1j }kj=1.
The workers then recover A, compute their assigned tasks, and encode

them according to G. Once k encodings Wι are sent back, Â−1 can be
recovered.

degrees, or their matrix coefficients being of a different size. In our setting we as-

sume the workers are homogeneous, i.e. they have the same computational power.

Therefore, equal computational loads are assigned to each of them. In order to keep

the notation and size of the communication loads consistent, we assume w.l.o.g. that

Aι ∈ RN×T for all ι ∈ Nk. If this is not the case, before fι(x) are determined, the

clients could perform a data exchange phase (e.g. [295]), so that Ni = Nj for all

i ̸= j. By this, it follows that the number of blocks does not have to be equal to the

number of clients. The example we describe, is simply a motivation. A flowchart of

our approach is presented in Figure V.3.

Moreover, in the case where M > N ; for M =
∑k

i=1Ni, we can select a subset

of features and/or samples, so that the resulting data matrix we consider is square.

This can be interpreted as using the surrogate Ã = SA, where S ∈ RN×M is an

appropriate (sparse) sketching matrix for matrix inversion [125], which the workers

agree on.

First, in 5.5.1 we argue why all of A needs to be known by each of the workers, in

order to recover entries or columns of its inverse. Then, in 5.5.2 we focus on phases

(a) and (b), where we utilize Lagrange interpolation to securely share A among the

workers. We discuss the computation tasks the workers are requested to compute,

which are blocks of Â−1; and collectively correspond to the subroutine problems of

Algorithm 8. In 5.5.3 we focus on (c) and (d), where we show how the workers encode

their computations, and describe the coordinator’s decoding step. Optimality of BRS

120

Figure V.3: Flowchart of our proposal, where k = ni = 4 for all i ∈ N4.

generator matrices in terms of the encoded communication loads is established in

5.5.4.

When assuming no floating-point errors, our approach introduces no numerical nor

approximation errors. The errors are a consequence of using iterative solvers to esti-

mate (5.4), which we utilize to linearly separate the computations. Therefore, if the

workers can recover the optimal solutions to the underlying minimization problems,

our scheme would be exact.

5.5.1 Knowledge of A is necessary

A bottleneck when computing the inverse of a matrix; or estimating its columns,

is that the entire matrix needs to be known. A single change in the matrix’s entries

may result in a non-singular matrix, which conveys how sensitive Gaussian elimination

is. Such problems are extensively studied in conditioning and stability of numerical

analysis [281], and in perturbation theory. This is not a focus of our work.

121

In the case where only one column is not known, one can determine the subspace

in which the missing column lies, but without the knowledge of at least one entry

of that column, it would be impossible to recover that column. Even with such an

approach or a matrix completion algorithm, the entire A is determined before we

proceed to inverting A; or performing linear regression to approximate Ab = ei as

in (5.4).

A similar issue, relating to our FL set up, is the case where one of the blocks is

different. This could lead to drastic miscalculations. In the following example, we

consider n = k = 2 and N = 4, where the second worker sends two different blocks,

which are indicated by a different color and font:

A1 =

6 2 2 -5

0 −1 2 0

−5 6 -1 -3

5 −3 -4 3

 A2 =

6 2 −1 −3
0 −1 5 6

−5 6 3 −2
5 −3 1 6

 .

It follows that ∥A−11 ∥F ≈ 90.45, ∥A−12 ∥F ≈ 1, and ∥A−11 −A−12 ∥0 = 16; i.e. no entries

of A−11 and A−12 are equal.

Furthermore, by the data processing inequality [71, Corollary pg.35], the above

imply that no less than N2 information symbols can be known by each worker, while

hoping to approximate a column of A−1. Hence, all clients need full knowledge of

each others information, and cannot communicate less than NT symbols to each

other. This is a consequence of the fact that a dense vector is not recoverable from

underdetermined linear measurements. They can however send an encoded version

of their respective block Aι ∈ RN×T to the other clients consisting of NT symbols,

determined by a modified Lagrange polynomial, which guarantees security against

eavesdroppers.

Similar cryptographic protocols date back to the SSS algorithm [27, 258], which

is also based on RS codes (for details on recent developments and variants of SSS,

refer to [63, 268]). This idea has been extensively exploited in LCC [302], yet differs

from our approach.

122

5.5.2 Phases (a), (b) — Data Encryption and Sharing

Let k, γ ∈ Z+ be factors of N and T respectively, so that T = N
k

and Γ = T
γ

.3

The coordinator constructs a set of distinct interpolation points B = {βj}nj=1 ⊊ F×q ,

for q > n ⩾ γ.4 To construct this set, it suffices to sample β ∈ F×q ; any one of the

ϕ(q − 1) primitive roots of Fq (ϕ is Euler’s totient function), which is a generator of

the multiplicative group (F×q , ·), and define each point as βj = βj. Then, a random

multiset H =
{
ηj ∈ F×q | ∀j ∈ Nγ

}
of size γ is generated, i.e. repetitions in H are

allowed, which will be used to remove the structure of the Lagrange coefficients, as

the adversaries could exploit their structure to reveal β.

The element β and set H, are broadcasted securely to all the workers through a

public-key cryptosystem, e.g. RSA [247] or McEliece [206]. Matrices Aι are parti-

tioned into γ blocks

Aι =
[
A1
ι · · · Aγ

ι

]
where Ai

ι ∈ RN×Γ, ∀i ∈ Nγ, (5.11)

and each client generates a PRP σι ∈ Sγ. The blocks {Aι}kι=1 are encrypted locally

through the univariate polynomials

fι(x) =

γ∑
j=1

Aj
ι · ησι(j)

(∏
l ̸=j

x− βl
βj − βl

)
(5.12)

for which fι(βj) = ησι(j)A
j
ι .

The clients securely broadcast {fι(x), σι} to each other, and their servers can then

recover all Aι’s as follows:

Aι =
[
η−1σι(1)fι(β1) · · · η

−1
σι(γ)

fι(βγ)
]
∈ RN×T . (5.13)

The coefficients of fι(x) are comprised of NΓ symbols, thus, each polynomial consists

of a total of NT symbols, which is the minimum number of symbols needed to be

communicated. The PRP σι is generated locally by the clients, to ensure that each

fι(x) differs by more than just the matrix partitions.

We assume Kerckhoffs’ principle, which states that everyone has knowledge of the

system, including the messages fι(x). For the proposed CMIM, as long as {β,H}
3If γ ∤ T , append 0T×1 to the end of the first γ̃ = T (modγ) blocks which are each comprised of

Γ̃ = ⌊Tγ ⌋ columns of Aι, while the remaining γ − γ̃ blocks are comprised of Γ̃ + 1 columns. Now,

each block is of size T × (Γ̃ + 1).
4For the encodings of the Aι’s, γ points suffice, and we only need to require q > γ. We select B

of cardinality n and require q > n ⩾ γ, in order to reuse B in our CCM.

123

and σι are securely communicated, even if fι(x) is revealed, the block Aι is secure

against polynomial-bounded adversaries (this is the security level assumed by the

cryptosystems used for the communication).

Proposition 5.5.1. The encryptions of Aι through fι(x), are as secure against eaves-

droppers as the public-key cryptosystems which are used when broadcasting {β,H} and
σι. To recover Aι, an adversary needs to intercept both communications, and break

both cryptosystems.

Proof. We prove this by contradiction. Assume that an adversary was able to reverse

the encoding fι(x) of Aι. This implies that he was able to reveal β and σι(H) :=

{ησι(j)}
γ
j=1. The only way to reveal these elements, is if he was able to both intercept

and decipher the public-key cryptosystem used by the coordinator, which contradicts

the security of the cryptosystem.

In order to invert the multiplications of σι(H) for each of the evaluations of fι(x),

both H and σι need to be known. To do so, the adversary needs to intercept both

the communication between the coordinator and the clients, and the communication

between the clients, as well as breaking both the cryptosystems used to securely carry

out these communications.

5.5.3 Phases (c), (d) — Computations, Encoding and Decoding

At this stage, the workers have knowledge of everything they need in order to

recover A, before they carry out their computation tasks. By (5.13), the recovery is

straightforward.

For Algorithm 8, any CCM in which the workers compute an encoding of partitions

of the resulting computation E =
[
E1 · · · Ek

]
could be utilized. It is crucial that

the encoding takes place on the computed tasks {Ei}ki=1 in the scheme, and not

the assigned data or partitions of the matrices that are being computed over (such

CMM leverage the linearity of matrix multiplication), otherwise the algorithm could

potentially not return the correct approximation. This also means that utilizing such

encryption approaches (e.g. [302]) for guaranteeing security against the workers, is

not an option. We face these restrictions due to the fact that matrix inversion is a

non-linear operator.

The computation tasks Ei correspond to a partitioning Â−1 =
[
Â1 · · · Âk

]
, of

our approximation from Algorithm 8. We propose a linear encoding of the computed

blocks {Âi}ki=1 based on generators satisfying (5.2). Along with the proposed decoding

step, we have a MDS-based CCM for matrix inversion.

124

We consider the same parameters as in 5.5.2, in order to reuse B in the proposed

CMIM. Each Âi is comprised of T distinct but consecutive approximations of (5.4),

i.e.

Âi =
[
b̂(i−1)T+1 · · · b̂iT

]
∈ RN×T ∀i ∈ Nk,

which could also be approximated by iteratively solving

Âi ≈ arg min
B∈RN×T

{∥∥AB−
[
e(i−1)T+1 · · · eiT

]∥∥2
F

}
.

Without loss of generality, we assume that the workers use the same algorithms

and parameters for estimating the columns {b̂i}Ni=1. Therefore, workers allocated the

same tasks are expected to get equal approximations in the same amount of time.

For our CCM, we leverage BRS generator matrices for both the encoding and

decoding steps. We adapt the GC framework, so we need an analogous condition to

a⊤IGI = 1⃗ for the CMIM; in order to invoke Algorithm 8. The condition we require

is D̃IG̃I = IN , for an encoding-decoding pair (G̃, D̃I).

From our discussion on BRS codes in 5.3.1, we set G̃ = IT⊗G and D̃I = IT⊗G−1I
for any given set of k responsive workers indexed by I. The index set of blocks

requested from the ιth worker to compute is Jι := supp(G(ι)), and has cardinality w.

The workers’ encoding steps correspond to

G̃ · (Â−1)⊤ = (IT ⊗G) ·

Â⊤1

...

Â⊤k

 =

∑
j∈J1

pj(β1) · Â⊤j
...∑

j∈Jn
pj(βn) · Â⊤j

 (5.14)

which are carried out locally, once they have computed their assigned tasks. We

denote the encoding of the ιth worker by Wι ∈ CT×N , i.e. Wι =
∑

j∈Jι pj(βι) · Â
⊤
j ,

which is sent to the coordinator. The received encoded computations by any distinct

k workers indexed by I, constitute G̃I · (Â−1)⊤.

Lemma 5.3.1 implies that as long as k workers respond, the approximation Â−1 is

recoverable. Moreover, the decoding step reduces to a matrix multiplication of k × k
matrices. Applying H−1I to a square matrix can be done in O(k2 log k), through the

IFFT algorithm. The prevailing computation in our decoding, is applying P−1. The

125

decoding step is

D̃I ·
(
G̃I · (Â−1)⊤

)
=
(
IT ⊗G−1I

)
·
(
IT ⊗GI

)
· (Â−1)⊤

= (IT · IT)⊗
(
G−1I ·GI

)
· (Â−1)⊤

= IT ⊗ Ik · (Â−1)⊤

= (Â−1)⊤

and our scheme is valid.

The above CCM therefore has a linear encoding done locally by the workers (5.14),

is MDS since s = d − 1, and its decoding step reduces to computing and applying

G−1I (Lemma 5.3.1). The security of the encodings rely on the secrecy of B, which

were sent from the coordinator to the workers. For an additional security layer, the

interpolation points of B could instead be defined as βj = βπ(j), for π ∈ Sn a PRP.

In this case, π−1 would also need to be securely broadcasted.

0 1 2 3 4 5 6 7 8

10
6

0

20

40

60

80

100

120

4.5 5 5.5 6 6.5 7

0

20

40

60

80

100

120

Figure V.4:
Comparison of decoding complexity, when naive matrix inversion is used
(so O(k3)) compared to the decoding step implied by Lemma 5.3.1, for
n = 200 and varying s. We also provide a logarithmic scale comparison.

Remark 5.5.1. With the above framework, any sparsest-balanced generator MDS

matrix [77] would suffice, as long as it satisfies the MDS theorem [191]. By Lemma

5.3.1, if we set k = Ω(
√
N) (as in [303]), the decoding step could then be done in

O
(
Nω/2

)
= o
(
N1.187

)
time, which is close to linear in terms of N .

Theorem 5.5.1. Let G ∈ Fn×k be a generator matrix of any MDS code over F, for
which ∥G(j)∥0 = n − k + 1 and ∥G(i)∥0 = w for all (i, j) ∈ Nn × Nk. By utilizing

Algorithm 8, we can devise a linear MDS coded matrix inversion scheme; through the

encoding-decoding pair (G̃, D̃I).

126

Proof. The encoding coefficients applied locally by each of the n workers correspond

to a row of G. The encodings of all the workers then correspond to G̃ · (Â−1)⊤, for

G̃ = IT ⊗G, as in (5.14). Consider any set of responsive workers I of size k, whose

encodings constitute G̃I · (Â−1)⊤. By the MDS theorem, GI is invertible. Hence,

the decoding step reduces to inverting GI ; i.e. D̃I = IT ⊗ G−1I , and is performed

online.

Constructions based on cyclic MDS codes, which have been used to devise GC

schemes [239], can also be considered. These encoding matrices are not sparsest-

balanced, which makes them suitable when considering heterogeneous workers.

Proposition 5.5.2. Any cyclic [n, k] MDS code C over F ∈ {R,C} can be used to

devise a coded matrix inversion encoding-decoding pair (G̃, D̃I).

Proof. Consider a cyclic [n, n − s] MDS code C over F ∈ {R,C}. Recall that from

our assumptions, we have s = n − k. By [239, Lemma 8], there exists a codeword

g1 ∈ C of support d = s + 1, i.e. ∥g1∥0 = d. Since C is cyclic, it follows that the

cyclic shifts of g1 also lie in C. Denote the n − 1 consecutive cyclic shifts of g1 by

{gi}ni=2 ⊊ C ⊊ F1×n, which are all distinct. Define the cyclic matrix

Ḡ :=

 | | |
g⊤1 g⊤2 . . . g⊤n

| | |

 ∈ Fn×n.

Since ∥gi∥0 = d and gi is a cyclic shift of gi−1 for all i > 1, it follows that

∥Ḡ(i)∥0 = ∥Ḡ(j)∥0 = d for all i, j ∈ Nn, i.e. Ḡ is sparsest and balanced. If we erase

any s = n − k columns of Ḡ, we get G ∈ Fn×k. By erasing arbitrary columns of

Ḡ, the resulting G is not balanced, i.e. we have ∥G(i)∥0 ̸= ∥G(j)∥0 for some pairs

i, j ∈ Nn. Similar to our construction based on BRS generator matrices, we define

the encoding matrix to be G̃ = IT ⊗G. The local encodings are then analogous to

(5.14).

Consider an arbitrary set of k non-straggling workers I ⊊ Nn, and the correspond-

ing matrix GI ∈ Fk×k. By [239, Lemma 12, B4.], GI is invertible. The decoding

matrix is then D̃I = IT ⊗G−1I , and the condition D̃IG̃ = IN is met.

5.5.4 Optimality of MDS BRS Codes

Under the assumption that k = n − s, by utilizing the BRSq[n, k] generator ma-

trices, we achieved the minimum possible communication load from the workers to

127

the coordinator. From our discussion in 5.5.1, we cannot hope to receive an encoding

of less than N2/k symbols; when we require that k workers respond with the same

amount of information symbols in order to recover Â−1 ∈ RN×N , unless we make

further assumptions on the structure of A and A−1. Each encoding Wι consists of

NT = N2/k symbols, so we have achieved the lower bound on the minimum amount

of information needed to be sent to the coordinator. Moreover, Wι ∈ CT×N for

any sparsest-balance generator MDS matrix. This also holds true for other genera-

tor matrices which can be used in Theorem 5.5.1, as the encodings are linear (e.g.

Proposition 5.5.2).

We also require the workers to estimate the least possible number of columns for

the given recovery threshold k. For our choice of parameters, the bound of [279,

Theorem 1] is met with equality. That is, for all i ∈ Nn:

∥G(i)∥0 = w =
k

n
· d =

k

n
· (n− k + 1) ,

which means that for homogeneous workers, we cannot get a sparser generator matrix.

This, along with the requirement that GI should be invertible for all possible I, are

what we considered in (5.2).

5.5.5 Time and Space Complexity

Next, we discuss the complexity of our method. Communication loads and storage

are measured in symbols over R. For simplicity, we assume that the n workers are

homogeneous and the local data blocks {Aι}kι=1 are of size N×T , for T = N/k = Γγ.

To further simplify our expressions and for fair comparisons to other polynomial

codes, we set k = n = Ω(
√
N) (as in [303]).

Let ν = |Enc(β)| denote the number of symbols required for the encoding of β

through a public-key cryptosystem used to securely broadcast a symbol. Further note

that |Enc(H)| = γν and |Enc(σι)| ⩽ γν/2, when the same cryptosystem is used to

broadcast H and σι respectively. Hence, phase (a) requires a communication load of

O(νγ) symbols per client.

There are γ modified Lagrange polynomials in (5.12); each of which require

O(n − 1) operations to compute. Multiplying each polynomial with one of the γ

sub-blocks {Aj
ι}
γ
j=1, requires γ · O(NΓ) = O(NT) = O(N3/2) additional opera-

tions in total. Finally, summing over the encoded blocks requires O(NΓ(γ − 1)) =

O(N3/2) operations. Hence, the encoding through the polynomials fι(x) has complex-

ity O
(
2N3/2 + γ(n− 1)

)
= O

(√
N(N + γ)

)
for each data block, which is done locally

128

by the clients. The PRP used could be any block cipher, e.g. the Feistel cipher; which

has time complexity O(n). Therefore, phase (b) has complexity O
(√

N(N + γ + 1)
)

and the clients communicate 2NT +n = Ω
(√

N(N+1)
)

symbols to each other, which

accounts for a total communication load of (k−1) ·Ω
(√

N(N + 1)
)

= Ω(N2) symbols

per client.

At phase (c), the ιth client first recovers A by evaluating η−1σι(j)fι(βj); for each

j ∈ Nγ, which requires a total of O(γ · NΓ) = O
(
N3/2

)
operations. The complexity

of the computation tasks depends on the underlying optimization algorithm used by

the workers; and the desired level of accuracy. By Proposition 5.4.2, under the given

assumptions, when using CG we converge after Ñ iterations per column estimate, and

each iteration has complexity O(N). Therefore, the complexity of the workers’ tasks

are O(ÑNT) = O
(
ÑN3/2

)
. All in all, the computation tasks at phase (c) have total

complexity O
(
(Ñ + 1)N3/2

)
= O

(
ÑN3/2

)
per worker. Since Wι ∈ CT×N for each

ι, the communication load is 2NT = 2N2/k = Ω
(
N3/2

)
symbols. Furthermore, the

baseline to computing the A−1 is Gaussian elimination; which has complexity O(N3)

when carried out on one server, while our approach through CG has complexity

k · O
(
ÑN3/2

)
= O

(
ÑN2

)
.

By Lemma 5.3.1 and Remark 5.5.1; the decoding takes O(Nω/2) = o(N1.187) time,

which amounts to the complexity of phase (d). Since our recovery threshold is k,

phase (d) no more than k · Ω(NT) = Ω(N2) symbols need to be received and stored

by the coordinator, who finally recovers a matrix of size N ×N .

We summarize the communication loads (C.L.) and time complexity (T.C.) of

each of the four phases in Table V.3. The time complexity for phase (a) depends on

the encryption method that is used to securely communicate β,H; which we do not

study, and there is no communication taking place in phase (d). Phases (a) and (d)

correspond to the coordinator, (b) to each client, and (c) to each worker.

Communication Loads & Time Complexities

Phase (a) share β,H (b) encrypt Aι (c) CC job (d) decode

C.L. O(νγ) Ω(N2) Ω
(
N3/2

)
✗

T.C. ✗ O
(√
N(N+γ)

)
O
(
ÑN3/2

)
o
(
N1.187

)
Table V.3:

Communication loads and time complexities of our proposed matrix in-
version scheme.

A bottleneck of our approach is the workers’ storage requirement. As was discussed

in 5.5.1, the workers need to recover A, so they need to store a total of N2 symbols.

129

The central server receives a total of k completed tasks {Wi}i∈I , which constitute

to a total of 2N2 symbols. Further examining this drawback would be worthwhile

future work.

5.5.6 Comparison to Exact Matrix Inversion

We conclude this section with a discussion on the conditions under which our

CMIM will have advantages over standard matrix inversion approaches. First of

all, the main bottleneck of our approach is the fact that each worker has a storage

requirement of N2 symbols. When N is relatively small, matrix inversion can be

performed by a single server; though the time complexity is still high, in which case

our distributed approach is beneficial. In this scenario, the storage constraint is

not an issue. For N very large, our approach is still advantageous in terms of time

complexity, as a single server would need to perform the entire computation on its

own; while also storing the entire matrix. In this case, the storage requirement of our

approach is disadvantageous, since we require total storage of kN2 symbols across

the network, while matrix inversion only requires N2. This is the cost we pay for

performing our method distributively.

The second point of comparison is approximation accuracy. The accuracy of

standard finite precision matrix inversion is controlled by the number of bits of pre-

cision used by the multiplier. On the other hand, by design, our proposed algorithm

introduces an additional approximation error due to its reliance on successive ap-

proximation iterations. As we showed numerically though in Figure V.1, after a few

iterations of Algorithm 8 with CG; we can achieve the same error rate as when exact

matrix inversion is used, with a lower complexity. Furthermore, in building risk min-

imizing ML models, approximate solutions using iterative approximations are often

faster and sufficient for achieving desired performance benchmarks. Additionally, the

approximation accuracy of our proposed matrix inversion method is controllable by

adjusting the number of iterations carried out locally by the workers.

Lastly, we discuss when Algorithm 8 might have advantages over exact matrix

inversion in terms of computational complexity and waiting time. For simplicity, we

assume that exact computation of A−1 requires O(N2.373) operations. When utilizing

our algorithm with CG on a single server, we require O(ÑN2) operations to guarantee

convergence. Thus, in this case; Algorithm 8 is beneficial when Ñ < N0.373, where

Ñ is the number of distinct eigenvalues of A⊤A. When employing a distributed

implementation, in terms of the waiting time through phase (c); our approach is

beneficial when Ñ < N0.873.

130

5.6 Conclusion and Future Work

In this chapter, we addressed the problem of approximate computation of the

inverse of a matrix distributively in a relaxed FL setting, under the possible presence

of straggling workers. We provided approximation error bounds for our approach, as

well as security and recovery guarantees. We also provided numerical experiments

that validated our proposed approach.

There are several interesting future directions. One avenue to consider is incorpo-

rating fully homomorphic encryption in our phases (b),(c),(d), to obtain a FL scheme;

and prevent the requirement of clients need to recover each others’ information. An

important issue is the numerical stability of the BRS approach, so exploring other

suitable generator matrices could be beneficial; e.g. circulant permutation and rota-

tion matrices [236]. It is also worth investigating if we can reduce the communication

rounds when computing the pseudoinverse through our approach. This depends on

the CMM which is being utilized, though using different ones for each of the two

multiplications may also be beneficial. An interesting approach to also consider, is if

divide and conquer algorithms could be leveraged in CC to recover exact or approxi-

mate solutions to A−1.

In terms of coding-theory, it would be interesting to see if it is possible to reduce

the complexity of our decoding step. Specifically, could well-known RS decoding al-

gorithms such as the Berlekamp-Welch algorithm be exploited? Another direction,

is leveraging approximate CCMs. The work of [148] considers the GC problem for

approximate and exact recovery through Lagrange interpolation, for heterogeneous

workers in the presence of stragglers and adversaries. A potential scheme for ma-

trix inversion could also be developed through the methods of [148]. In terms of our

approximation algorithms, an avenue worth exploring is that of incorporating approx-

imate and/or sparse Gaussian elimination [171, 172] into our distributed CCM.

Tribute to Alex Vardy: The chapter was submitted for publication to a 2023

special issue of the IEEE Journal on Selected Areas in Information Theory, which

was dedicated to the memory of Alexander Vardy. As such, we mention how this

work relates to some of Alex Vardy’s work. Even though Alex had not worked on

CC, his contributions to RS codes are immense. A focus of this chapter was to reduce

the decoding complexity of the proposed BRS-based CCM, while in [130] it was shown

by Guruswami and Vardy that maximum-likelihood decoding of RS codes is NP-hard.

Another highly innovative work of Alex’s is [228], in which the ‘Parvaresh-Vardy

131

codes’ were introduced; and the associated list-decoding algorithm was shown to

yield an improvement over the Guruswami–Sudan algorithm. This was subsequently

improved by Guruswami and Rudra [129], whose techniques were exploited in [266]

to introduce list-decoding in CC. An expository monograph on the developments of

list-decoding can be found in [44], which I wrote as part of Mahdi’s wonderful course

on ‘Coding Theory for Theoretical Computer Science’.

132

CHAPTER VI

Approximate Matrix Multiplication by Joint

Leverage Score Sampling

6.1 Introduction

Matrix multiplication is one of the key underlying operations used in applications

and algorithms in domains such as computer science, data science, numerical anal-

ysis, machine learning, network analysis and scientific computing. Frequently, this

operation occurs thousands of times, making it a bottleneck and an impediment in

large scale computations.

Considering square matrices of order N , naive matrix multiplication requires

O(N3) operations. More elegant algorithms exist, which require O(Nω) operations,

for ω < 2.81 [70, 176, 276]. The smallest known matrix multiplication exponent

ω < 2.373, was recently achieved in [11]. A drawback of these faster algorithms

though, is that the hidden constants in their asymptotic analysis are significantly

large.

In this chapter, we propose a randomized algorithm which judiciously subsamples

pairs of rows from A and B, to approximate

L×N︷ ︸︸ ︷ A⊤

 ·

N×M︷ ︸︸ ︷
B

≈

L×r︷ ︸︸ ︷ Â⊤

 ·

r×M︷ ︸︸ ︷ B̂

133

by applying a carefully chosen sketching matrix S ∈ Rr×N with r ≪ N , on both

matrices. For our proposed S, we define a sampling distribution based on the left

leverage scores of both A and B, which we call ‘joint leverage score distribution’.

These scores reveal influential pairs of rows across the two matrices. The proposed

algorithm is similar to the CR−MM approximate matrix multiplication (AMM) al-

gorithm [46, 53, 88, 89, 90, 201, 217, 294], and is motivated by the leverage score

sampling algorithm for ℓ2-subspace embedding [52, 96, 195]. Both there algorithms

have been extensively studied in the literature of randomized numerical linear algebra

(RandNLA) [201, 294].

The benefit of sampling according to leverage scores, is that we can derive a

spectral bound on a characterization of AMM, analogous to that of a ℓ2-subspace

embedding. Such spectral guarantees have not been derived for the general case of

CR−MM, whose error is quantified in terms of the Frobenius norm. A spectral bound

for the CR−MM is only known for the case where A = B [96, 201]. It is worth noting

that leverage scores have also been used for graph sparsification algorithms [92, 273].

A seemingly unrelated object, which has many applications in data science, is the

of a graph Laplacian. Graphs are often used to model phenomena in which there is a

flow around a network with high and low pressure regions; e.g. electrical circuits, and

are prevalent in many domains of modern computer science and engineering. Due

to the large size of the networks considered, a sparser version is preferred to store

and process. This gives rise to the notion of a graph spectral sparsifier [46, 273, 275],

which requires that the Laplacian quadratic form of the sparsifier approximate that of

the original. In [46], it was shown how CR−MM can be utilized to produce minimum

variance unbiased additive and multiplicative spectral sparsifiers. Furthermore, our

AMM algorithm can be viewed as a generalization of sampling according to effective

resistances, the state-of-the approach to spectral sparsification through edge sampling

[273].

Our work on AMM is closely related to that of [69]. Specifically, they give a similar

spectral AMM characterization to ours, both of which imply the same spectral error

bound (Lemma 6.2.1). The work of Cohen et al. focuses on oblivious subspace

embeddings, and what can be implied by such embeddings if certain moment bounds

and other conditions are met. They do not give an explicit AMM algorithm, and

have a black box reliance on the subspace embedding primitive in their proofs. Similar

results and deductions have also been derived in [255]. As in [69], any AMM sketching

matrix which satisfies our condition, is a ℓ2-subspace embedding sketching matrix.

This is achieved by simply applying it to the case where B = A, in which case we

134

move from A⊤A to the least squares objective function ∥Ax−b∥22. For the algorithm

we propose; which is not data-oblivious, the resulting embedding is the leverage score

ℓ2-subspace embedding sketch [96]. It is also worth noting that tangentially related

work is that of [138], which considers spectral guarantees of the CUR decomposition.

The chapter is organized as follows. In Section 6.2 we first recall the notion

of leverage scores, and the CR−MM algorithm. Next, we describe our sampling

approach to AMM; which we call joint leverage score sampling. Then, we present

our AMM algorithm. Our spectral characterization of AMM is derived in Subsection

6.2.3. In Subsection 6.2.4 we present the theory behind our approach, and our spectral

guarantees. In Section 6.3 we discuss other extensions of our approach, which suggest

worthwhile future work. We conclude this chapter with Section 6.4.

6.2 Joint Leverage Score Multiplication

6.2.1 Preliminaries

We first recall the CR−MM approximation algorithm. Consider the two matrices

A ∈ RN×L and B ∈ RN×M , for which we want to approximate the product A⊤B. It

is known that the product may be approximated by subsampling with replacement

(w.r.) row pairs from A and B, where the sampling probabilities are proportional to

their Euclidean norms. That is, we sample with replacement r pairs (A(i),B(i))
1 for

i ∈ NN := {1, · · · , N} and r ≪ N , with probability

pi = ∥A(i)∥2 · ∥B(i)∥2
/
ϕ

for ϕ :=
∑N

j=1 ∥A(j)∥2 · ∥B(j)∥, and sum a rescaling of the samples’ outer-products:

A⊤B ≈ 1

r
·

(∑
j∈I

1

pj
A⊤(j)B(j)

)
=
∑
j∈I

A⊤(j)√
rpj
·
B(j)√
rpj

=: Y (6.1)

where I is the multiset consisting of the indices (possibly repeated) of the sampled

pairs, i.e. |I| = r. Denote the corresponding sketches of A⊤ and B in CR−MM

respectively by C ∈ RL×r and R ∈ Rr×M respectively. The approximation (6.1)

satisfies ∥A⊤B−CR∥F = O(∥A∥F∥B∥F/
√
r). Further details on this algorithm can

be found in [53, 88, 89, 90, 201, 217, 294]. We summarize what is known about the

CR−MM algorithm in Theorem 6.2.1.

1We denote the ith row of matrix M by M(i).

135

Theorem 6.2.1 ([201] Section 3.2). The estimator Y = CR from (6.1) is unbiased,

while the sampling probabilities {pi}Ni=1 minimize the variance, i.e.

{pi}Ni=1 = arg min∑N
i=1 pi=1

{
Var(Y) = E

[
∥A⊤B− CR∥2F

] }
(6.2)

and it is an ϵ-multiplicative error approximation of the matrix product, with high

probability. Specifically, for δ ⩾ 0 and r ⩾ 1
δ2ϵ2

the number of sampling trials which

take place:

Pr
[
∥A⊤B− CR∥F ⩽ ϵ · ∥A∥F∥B∥F

]
⩾ 1− δ (6.3)

for any ϵ > 0.

The special case where A = B in the CR−MM algorithm has also been studied,

as it appears in numerous applications. This restriction allows us to use statements

from random matrix theory [219], to get stronger spectral norm bounds. One such

bound is Theorem 6.2.2 [96, Theorem 4], [201, Theorem 8].

Theorem 6.2.2 ([201] Theorem 8). Let A ∈ RN×L with σmax(A) = ∥A∥2 ⩽ 1, and

approximate the product Y ≈ A⊤A using CR−MM. Let ϵ ∈ (0, 1) be an accuracy

parameter, and assume that ∥A∥2F ⩾ 1/24. If

r ⩾
96∥A∥2F

ϵ2
ln

(
96∥A∥2F
ϵ2
√
δ

)
⩾

4

ϵ2
ln

(
4

ϵ2
√
δ

)
(6.4)

for r ⩽ N , then

Pr
[
∥A⊤A− Y ∥2 ⩽ ϵ

]
⩾ 1− δ . (6.5)

The left leverage scores {ℓi}Ni=1 of M ∈ RN×d are defined as the diagonal entries of

the projection PM = MM†, i.e. ℓi = (PM)ii = ∥M(i)∥2M† . Equivalently, considering

the reduced left singular vectors matrix U ∈ RN×d of M, we have ℓi = ∥U(i)∥22.
A sampling distribution is defined over the rows of M by normalizing the scores

{ℓi}Ni=1, where each row of M has respective probability of being sampled: pi =

ℓi
/(∑N

j=1 ℓj
)

= ℓi/∥U∥2F = ℓi/d. It is a known fact that

N∑
i=1

ℓi = tr(PM) = tr(UU⊤) = rank(M) ⩽ d . (6.6)

We note that methods for approximating the leverage scores are available [91, 142,

201, 249, 273], which do not require directly computing the left orthonormal basis of

each matrix. Furthermore, any orthonormal basis of the column-space of M would

136

suffice to deduce the leverage scores. We will be working with the left singular vectors

matrix, to simplify certain expressions.

Lastly, we recall the following noncommutative Bernstein inequality, which we use

in order to prove the spectral characterization of our AMM algorithm.

Theorem 6.2.3 ([197, 241]). Let X1, · · · ,Xr be independent copies of a zero-mean

random matrix X ∈ Rd1×d2, with σ2 ⩾ max
{∥∥E[X⊤X]∥∥

2
,
∥∥E[XX⊤

]∥∥
2

}
and ∥X∥2 ⩽

γ. Then, ∀ϵ > 0:

Pr

[∥∥∥∥∥1

r

r∑
l=1

Xl

∥∥∥∥∥
2

> ϵ

]
⩽ (d1 + d2) · exp

(
−rϵ2/2
σ2 + γϵ/3

)
.

6.2.2 Joint Leverage Score Sampling

We define the joint leverage score of the pair (A(i),B(j)) as the geometric mean

of corresponding leverage scores, i.e.

Jij =

√
ℓ̄i · ℓ̃j

where ℓ̄i and ℓ̃i are respectively the ith and jth leverage score of A and B. By

UA ∈ RN×L and UB ∈ RN×M we denote the reduced left singular vectors matrices

of A and B, with respective rows {ūi}Ni=1 and {ũj}Nj=1. By the definition of leverage

scores, it follows that

ℓ̄i = ūiū
⊤
i and ℓ̃i = ũiũ

⊤
i for all i ∈ NN .

For PA = UAU
⊤
A and PB = UBU

⊤
B the respective projection matrices of A and B,

let d⃗A =
√

diag(PA) and d⃗B =
√

diag(PB) denote the vectors of the square roots of

the leverage scores of A and B, hence ∥d⃗A∥2 =
(∑N

l=1 ℓ̄l

)1/2
. Let µ :=

√
LM . By

the Cauchy–Schwarz inequality and (6.6):

τ :=
N∑
l=1

Jll = ⟨d⃗A, d⃗B⟩ ⩽ ∥d⃗A∥2 · ∥d⃗B∥2 ⩽
√
LM =⇒ τ ⩽ µ . (6.7)

In this work we sample pairs of rows of the same index, and do not consider pairs

(A(i),B(j)) for i ̸= j. Hence, we only consider the joint leverage scores {Jii}Ni=1,

which we normalize to determine the sampling probabilities

πi := Jii

/
τ . (6.8)

137

Following a similar approach to CR−MM and the leverage score sampling algo-

rithms, we construct a sketching matrix Π ∈ Rr×N to reduce the effective dimension

from N to r, and approximate the product:

A⊤B ≈ (ΠA)⊤(ΠB) =: Â⊤B̂ .

Once the sketches Â, B̂ are known, computing Â⊤B̂ requires O(LMr) operations.

The pseudocode of our approach is presented in Algorithm 9.

Note that any approximate leverage score algorithm [91, 142, 201, 249, 273] could

also be used to speed up the computation of {πi}Ni=1, as determining them exactly is

a cumbersome task. The guarantees we give will assume that the distribution used

in Algorithm 9 is approximate.

Algorithm 9: Joint Leverage Score Sampling AMM

Input: A ∈ RN×L, B ∈ RN×M , r < N
Output: Approximate product Â⊤B̂ ≈ A⊤B
Initialize: Π̂ = 0r×N
Determine: approximate distribution {π̂l}Nl=1 to (6.8)
for j = 1 to r do

sample w.r. i(j) from NN , according to {π̂l}Nl=1

Π̂j,i(j) = 1/
√
rπ̂i(j)

end

return Â⊤B̂ = (ΠA)⊤(ΠB)

Using probabilities exactly equal to {πi}Ni=1 is an overkill. Similar results hold if we

instead use approximate probabilities {π̂i}Ni=1 that are “close” in the following sense:

π̂i ⩾ βπi for all i, where β ∈ (0, 1] is a misestimation factor. This factor quantifies how

far {π̂i}Ni=1 is from {πi}Ni=1. If we sample according to the approximate distribution,

the same embedding result will follow, if we modify the sampling complexity by a

factor of 1/β, i.e. we oversample. The key point here is that it is essential not to

underestimate high joint leverage score row pairs too much. It is however acceptable

if we overestimate and thus oversample some low score pairs, as long it is not done

excessively [201]. Throughout this chapter, we will denote the resulting sketching

matrices of Algorithm 9 by Π and Π̂, when sampling takes place according to {πi}Ni=1

and {π̂i}Ni=1 respectively.

138

6.2.3 Spectral Characterization for AMM

Recall that a sketching matrix S ∈ Rr×N is a ℓ2-subspace embedding of M ∈ RN×d

for N ≫ d and N > r > d, if it satisfies

∥Id − (SU)⊤(SU)∥2 ⩽ ϵ (6.9)

for ϵ > 0, with high probability [294]. Next, we derive an analogous characterization

for AMM, in order to quantify the error of our approximation.

Considering the reduced SVDs of A and B, an AMM sketching matrix S ∈ Rr×N

ought to satisfy

A⊤ ·B = VAΣAU
⊤
A · UBΣBV

⊤
B ≈ VAΣAU

⊤
AS
⊤ · SUBΣBV

⊤
B = (SA)⊤ · (SB) .

Hence, a sufficient condition which implies U⊤AUB ≈ (SUA)⊤(SUB), is

∥U⊤AUB − (SUA)⊤(SUB)∥2 ⩽ ϵ (6.10)

for ϵ > 0 a small constant. We denote DS =
(
U⊤AUB − (SUA)⊤(SUB)

)
, and

∆A,B = A⊤B− Â⊤B̂ = VBΣA ·DS · ΣBVB . (6.11)

Lemma 6.2.1. If S satisfies (6.10), then errℓ2,SA,B := ∥∆A,B∥2 ⩽ ϵ · σ1(A)σ1(B).

Proof. This is a direct application of the Cauchy–Schwarz inequality to (6.11).

Remark 6.2.1. For A = B, the sampling probabilities {πi}Ni=1 are equal to the nor-

malized leverage scores of A, and condition (6.10) results in the ℓ2-subspace embedding

property (6.9). Furthermore, Π would be the same sketching matrix as that of the

leverage score ℓ2-subspace embedding sampling algorithm. Additionally, for A, B both

orthonormal matrices, the output of Algorithm 9 is the same as that of the CR−MM

algorithm.

Proposition 6.2.1. Any algorithm that constructs a sketching matrix S which sat-

isfies (6.10), can be used to construct a ℓ2-subspace embedding sketch of A.

Proof. Assume we have an algorithm that when given A and B, produces S which

satisfies (6.10). If it is only given A as an input, i.e. let B = A, it then constructs S

for the case where UB = UA. Thus U⊤AUB = Id, and the resulting S satisfies (6.9).

139

6.2.4 Approximation Guarantee

In this subsection, we present our theoretical result of Algorithm 9. Unlike the

guarantees of the CR−MM algorithm for A ̸= B, whose error is quantified in terms

of the Frobenius norm; the guarantee we give is in terms of the spectral norm. Specif-

ically, we show that (6.10) is achieved with a high probability.

To prove our main theorem, we first need to determine the expectation; and bound

the spectral norm and variance of appropriately defined matrix random variables.

Once these quantities are determined, we can directly apply Theorem 6.2.3.

For i(j) ∈ NN , which denotes the index of the sampled pair
(
A(i(j)),B(i(j))

)
at the

jth sampling trial of Algorithm 9, we define

Xi(j) :=

(
U⊤AUB −

ū⊤i(j)ũi(j)

π̂i(j)

)
∈ RL×M . (6.12)

The matrices
{
Xi(j)

}r
j=1

are independent copies of the matrix random variable X

we are considering, since we are sampling from with replacement. Note that the

realizations Xι of X correspond to DΠ̂ of (6.10); i.e. DS for S← Π̂, with r = 1.

Lemma 6.2.2. For Xi(j) as defined in (6.12), we have ∥Xi(j)∥2 ⩽ 1 +
√
L ·M and

E
[
Xi(j)

]
= 0M×L.

Proof. A straightforward computation gives us

E
[
Xi(j)

]
= U⊤AUB −

n∑
l=1

π̂l ·
(
ū⊤l ũl
π̂l

)
= U⊤AUB −

n∑
l=1

ū⊤l ũl = U⊤AUB − U⊤AUB

thus E
[
Xi(j)

]
= 0L×M . For the second part of the lemma, we have

∥Xi(j)∥2 ⩽ ∥U⊤AUB∥2 +
1

π̂i(j)
· ∥ū⊤i(j)ũi(j)∥2

where we observe that

∥ū⊤i(j)ũi(j)∥2 ⩽ ∥ū⊤i(j)ũi(j)∥F

=
(
tr
(
ũ⊤i(j)ūi(j)ū

⊤
i(j)ũi(j)

))1/2
=
(
tr
(
ūi(j)ū

⊤
i(j) · ũi(j)ũ⊤i(j)

))1/2
=

√
ℓ̄i(j) · ℓ̃i(j)

= Ji(j)i(j)

140

and

∥U⊤AUB∥2 ⩽ ∥UA∥2 · ∥UB∥2 ⩽ 1 .

Combining these two observations, we conclude that

∥Xi(j)∥2 ⩽ 1 +
Ji(j)i(j)

π̂i(j)
= 1 +

τ

β
⩽ 1 +

√
L ·M
β

where in the last inequality we invoked (6.7).

In order to upper bound the variance parameter of the random matrix variable

defined in (6.12), we define the matrices Φ̃ =
∑N

l=1

√
ℓ̄l/ℓ̃l ·ũ⊤l ũl and Φ̄ =

∑N
l=1

√
ℓ̃l/ℓ̄l ·

ū⊤l ūl. Furthermore, to simplify our notation, let αi =
√
ℓ̄l/ℓ̃l for all i ∈ NN . We note

that {ũi}Ni=1 and {ūi}Ni=1 are respectively linearly dependent spanning sets of both the

column and row spaces of Φ̃ and Φ̄ respectively, when N > M,L. This prohibits us

from explicitly computing the two spectral norms, though an upper bound suffices.

Lemma 6.2.3. For Xi(j) as defined in (6.12), for ι ← i(j) we have
∥∥E[X⊤ι Xι

]∥∥
2
⩽

τ
β
· λ1(Φ̃) + 1 and

∥∥E[XιX
⊤
ι

]∥∥
2
⩽ τ

β
· λ1(Φ̄) + 1.

Proof. By a straightforward computation

X⊤ι Xι =

(
U⊤AUB −

ū⊤ι ũι
π̂ι

)⊤(
U⊤AUB −

ū⊤ι ũι
π̂ι

)
= U⊤BUAU

⊤
AUB +

ũ⊤ι ūιū
⊤
ι ũι

π̂2
ι

− 2
ũ⊤ι ūι
π̂ι

U⊤AUB

where in the second equality we used the fact that

U⊤BUA
ū⊤ι ũι
π̂ι

=
ũ⊤ι ūι
π̂ι
· U⊤AUB .

141

Let Υ = U⊤BUAU
⊤
AUB, and Eι = E

[
X⊤ι Xι

]
. It follows that

Eι = Υ + E
[
ũ⊤ι ūιū

⊤
ι ũι

π̂2
ι

]
− 2 · E

[
ũ⊤ι ūι
π̂ι

]
· U⊤AUB

= Υ + E
[
ℓ̄ι
π̂2
ι

· ũ⊤ι ũι
]
− 2 ·

(
N∑
l=1

π̂l ·
ũ⊤l ūl
π̂l

)
· U⊤AUB

= Υ +

(
N∑
l=1

π̂l ·
ℓ̄l
π̂2
l

· ũ⊤l ũl

)
− 2 · U⊤BUA · U⊤AUB

= Υ +

(
N∑
l=1

ℓ̄l
π̂l
· ũ⊤l ũl

)
− 2Υ

⩽

(
N∑
l=1

τ

β
·
√
ℓ̄l/ℓ̃l · ũ⊤l ũl

)
−Υ

=
τ

β
· Φ̃−Υ .

By the triangle inequality, and the fact that ∥UA∥2 = ∥UB∥2 = 1, we conclude that

∥Eι∥2 =

∥∥∥∥ τβ · Φ̃−Υ

∥∥∥∥
2

⩽
τ

β
· ∥Φ̃∥2 + ∥Υ∥2

⩽
τ

β
· ∥Φ̃∥2 + 1

=
τ

β
· λ1(Φ̃) + 1 .

An analogous calculation yields that
∥∥E[XιX

⊤
ι

]∥∥
2
⩽ τ

β
· λ1(Φ̄) + 1.

Lemma 6.2.4. Considering any A ∈ RN×L and B ∈ RN×M , we have:

• λ1(Φ̃) ⩽ maxl∈NN
{αl} ·maxi∈NN

{ℓ̃i}, and

• λ1(Φ̄) ⩽ maxl∈NN
{1/αl} ·maxi∈NN

{ℓ̄i}.

Proof. Recall that λ1(M) = maxx∈Sn−1

{
x⊤Mx

}
, for M ∈ Rn×n and Sn−1 the n − 1

142

dimensional ℓ2-sphere, i.e Sn−1 = {x ∈ Rn : ∥x∥2 = 1}. It follows that

λ1(Φ̃) = max
x∈SM−1

{
x⊤

(
N∑
i=1

αi · ũ⊤i ũi

)
x

}

= max
x∈SM−1

{[
x⊤ 0⃗

](N∑
i=1

αi · (UB)⊤(i)(UB)(i)

)[
x

0⃗

]}

⩽ max
y∈SN−1

{
y⊤

(
N∑
i=1

αi · (UB)⊤(i)(UB)(i)

)
y

}

⩽ max
l∈NN

{αi} · max
y=
[
y⊤
1 y⊤

2

]⊤
∈SN−1

{[
y⊤1 y⊤2

](N∑
i=1

(UB)⊤(i)(UB)(i)

)[
y1

y2

]}

⩽ max
l∈NN

{αi} · max
y=
[
y⊤
1 y⊤

2

]⊤
∈SN−1

{
y⊤1

(
N∑
i=1

ũ⊤i ũi

)
y1

}

⩽ max
l∈NN

{αi} · max
y=
[
y⊤
1 y⊤

2

]⊤
∈SN−1

{
y⊤1

(
N∑
i=1

ũ⊤i ũi

)
y1

}

= max
l∈NN

{αi} · max
y=
[
y⊤
1 y⊤

2

]⊤
∈SN−1

{
⟨y1, ũi⟩2

}
= max

l∈NN

{αi} ·max
i∈NN

{ℓ̃i} ,

which proves the first claim. The bound on λ1(Φ̄) is be proven similarly.

We now have everything we need in order to prove our main result regarding

Algorithm 9. By combining Lemmas 6.2.3 and 6.2.4, we get that

σ2 = max
{
∥E[X⊤X]∥2, ∥E[XX⊤]∥2

}
⩽
τ

β
·max

{
max
l∈NN

{αl} ·max
i∈NN

{ℓ̃i},max
l∈NN

{1/αl} ·max
i∈NN

{ℓ̄i}
}

+ 1 .

To simplify our statement, we assume that

max

{
max
l∈NN

{αl} ·max
i∈NN

{ℓ̃i},max
l∈NN

{1/αl} ·max
i∈NN

{ℓ̄i}
}

⩽
µ

τ
, (6.13)

which implies that σ2 ⩽ µ/β + 1.

Theorem 6.2.4. Let L > M , δ > 0 and assume that (6.13) holds. Then, the

sketching matrix Π̂ of Algorithm 9 with samplin according to {π̂i}Ni=1; meets condition

(6.10) with probability at least (1− δ ·
√
L/M), for r = Θ(µ log(2µ/δ)/(βϵ2)).

143

Proof. Under the assumption that (6.13) holds for the pair of matrices A and B,

we know that σ2 ⩽ µ/β + 1; for all random sampling trials of Algorithm 9. The

corresponding argument DΠ̂ of (6.10) for r ⩾ 1, is equal to 1
r

∑r
l=1Xl for r realizations

of (6.12). By substituting σ and γ according to Lemma 6.2.2 in the exponent of the

bound in Theorem 6.2.3, we get

−rϵ2/2
µ/β + 1 + (µ+ 1)ϵ/3

⩽
−rϵ2/2

µ/β + β + (µ+ 1)ϵ/3

=
−rβϵ2/2

(µ+ 1)(1 + ϵ/3)

=
−Θ (µ log(2µ/δ)/(βϵ2)) βϵ2

2(1+ϵ/3)

µ+ 1

= −Θ(log(2µ/δ)) ,

thus

Pr
[
∥DΠ̂∥2 > ϵ

]
⩽ (L+M) · e−Θ(log(2µ/δ))

= 2elogL−Θ(log(2µ/δ))

= 2eΘ(log(2Lδ
µ))

= eΘ
(
log
(
δ·
√
L/M
))

= δ ·
√
L/M .

Taking the complementary event completes the proof.

As was briefly discussed in Subsection 6.2.2, the only difference in sampling ac-

cording to approximate joint leverage scores {π̂i}Ni=1 and exact scores {πi}Ni=1, is that

with the former we need to oversample by a factor of 1/β. We see this explicitly

through their guarantees in terms of the error defined in Lemma 6.2.1, provided in

Proposition 6.2.2 and Corollary 6.2.1 respectively.

Proposition 6.2.2. For ε̃, δ > 0 and r = Θ
(
µ log(2µ/δ) ·

(
σ1(A)σ1(B)/(βε̃)

)2)
, the

sketching matrix Π̂ of Algorithm 9 with sampling according to {π̂i}Ni=1, satisfies

Pr
[
errℓ2,Π̂A,B ⩽ ε̃

]
⩾ 1− δ ·

√
L/M.

Proof. Let ε̃ = ϵ·σ1(A)σ1(B). By Lemma 6.2.1 we know that errℓ2,Π̂A,B ⩽ ϵ·σ1(A)σ1(B),

so by our choice of ε̃ we have Pr
[
errℓ2,Π̂A,B ⩽ ε̃

]
= Pr [∥∆A,B∥ ⩽ ϵ]. By Theorem

6.2.4, it follows that Pr [∥∆A,B∥ ⩽ ϵ] ⩽ 1 − δ ·
√

L
M

, for r = Θ(µ log(2µ/δ)/ϵ2) =

Θ
(
µ log(2µ/δ) · (σ1(A)σ1(B)/ε̃)2

)
.

144

Corollary 6.2.1. Let ε̃, δ > 0 and r = Θ
(
µ log(2µ/δ) ·

(
σ1(A)σ1(B)/ε̃

)2)
, and con-

sider sampling according to the joint leverage score distribution {πi}Ni=1, for which

Algorithm 9 produces the sketching matrix Π. We then have

Pr
[
errℓ2,ΠA,B ⩽ ε̃

]
⩾ 1− δ ·

√
L/M.

Proof. If we sample according to the exact distribution {πi}Ni=1, it follows that β = 1.

By Proposition 6.2.2, the statement is immediate.

A drawback of the above results is that the largest singular value of both matrices

appear in the sampling complexities. Note though that if we made an analogous

assumption to Theorem 6.2.2; that ∥A∥2 ⩽ 1, this would not be a concern. Since we

are dealing with the spectral norm though, it seems inevitable that σ1(A) and σ1(B)

would not appear.

To make a fair comparison with the CR−MM guarantee of Theorem 6.2.2, let

us assume that ∥A∥2, ∥B∥2 ⩽ 1, and that the sampling complexities for the two

algorithms are the same. For Algorithm 9 we would then have r = Θ
(
µ log(2µ/δ′)/ϵ2

)
for δ′ > 0, µ = 96∥A∥F∥B∥F , and we would get the same probability of error when

the accuracy parameters are selected such that δ′ = Θ
(
ϵ2
√
δ
)
. Moreover, what we

presented holds true for the product of any pair of distinct matrices A and B, while

Theorem 6.2.2 only considers the Gram matrix of A.

6.3 Implications to other AMM Algorithms

In this section, we discuss how our approach through joint leverage scores can

be used to derive spectral guarantees for other similar AMM algorithms, and briefly

discuss how it can be utilized for spectral sparsification of ‘intersection graphs’. In

Subsection 6.3.1 we derive a guarantee for CR−MM, and in Subsection 6.3.2 we

briefly discuss how our approach can benefit by first applying a random projection

and then performing uniform random sampling on the transformed matrices’ row

pairs. In Subsection 6.3.3, we bridge a connection to graph sparsification.

6.3.1 CR−MM Through Approximate Joint Leverage Scores

A pitfall of our algorithm, is that it requires carrying out an singular value or

QR decomposition for each of the matrices A and B, in order to calculate the joint

leverage scores. We therefore need O(N2(L + M)) operations to compute {πi}Ni=1.

Instead, more efficient leverage score approximation algorithms could be used [91,

145

142, 249, 273], that do not require directly computing a left orthonormal basis of

each matrix. This is part of the reason Theorem 6.2.4 and Proposition 6.2.2 are

present in terms of an approximate distribution {π̂i}Ni=1.

The sampling procedure of the CR−MM algorithm on the other hand, can be done

efficiently with O(1) additional storage space, by the pass-efficient SELECT algorithm

[201, page 13]. In Proposition 6.3.1, we quantify the AMM spectral bound CR−MM,

by using the distribution of {pi}Ni=1 of CR−MM as a surrogate to {πi}Ni=1. In many

practical cases, we empirically observed that the two distributions were relatively

close to each other, i.e. pi ⩾ β̃πi for a small β̃ ∈ (0, 1].

Lemma 6.3.1. For all i ∈ NN , we have πi ·
(
τ
ϕ
· σmin(A) · σmin(B)

)
⩽ pi.

Proof. Recall that pi = ∥A(i)∥2 · ∥B(i)∥2
/
ϕ; for ϕ :=

∑N
j=1 ∥A(j)∥2 · ∥B(j)∥. Consider

the reduced QR factorization of A = QR, where Q ∈ RN×L matches UA, and R is an

upper triangular matrix. It follows that Q = AR−1 for R−1 also an upper triangular

matrix, and√
ℓ̄i = ∥Q(i)∥2 = ∥A(i) ·R−1∥2 ⩽ ∥A(i)∥2 · ∥R−1∥2 = ∥A(i)∥2 ·

1

σmin(A)
.

Similarly, one can show that
√
ℓ̃i ⩽ ∥B(i)∥2 · 1

σmin(B)
. By combining the two bounds,

we get

Jii·σmin(A)·σmin(B) ⩽ ∥A(i)∥2·∥B(i)∥2 = pi·ϕ =⇒ πi·
(τ
ϕ
·σmin(A)·σmin(B)

)
⩽ pi

which completes the proof.

Proposition 6.3.1. Let L > M and δ, ϵ > 0. For β =
(
(τ/ϕ) · σmin(A) · σmin(B)

)
and r = Θ(µ log(2µ/δ)/(βϵ2)), CR−MM satisfies

Pr
[
∥U⊤AUB − (Π̂UA)⊤(Π̂UB)∥2 ⩽ ϵ

]
⩾ 1−

√
L/M · δ .

Proof. This follows directly by taking β̃ =
(
(τ/ϕ) · σmin(A) · σmin(B)

)
; based on

the conclusion of Lemma 6.3.1, and using {pi}Ni=1 as an approximate distribution to

{πi}Ni=1 in Theorem 6.2.4. Furthermore, the constant β̃ lies in (0, 1], as all its terms

are positive; and {pii}Ni=1, {πi}Ni=1 are both valid sampling distributions.

146

6.3.2 Data-Oblivious AMM through Joint Leverage Scores

Recall that the ‘Subsampled Randomized Hadamard Transform’ (SRHT) [96] is

comprised of three matrices: Ω ∈ Rr×N a uniform sampling and rescaling matrix

of r rows, ĤN ∈ {±1/
√
N}N×N the normalized Hadamard matrix for N = 2n, and

D ∈ {0, ±1}N×N with i.i.d. diagonal Rademacher random entries. The structured

sketching matrix Ŝ = ΩĤND ∈ Rr×N of a matrix A ∈ RN×L, flattens the leverage

scores of A, i.e. the normalized leverage scores of Ã := ĤNDA are approximately

equal [5, 96]. Hence, once we apply the randomized transform ĤND to A, we can

sample rows of Ã uniformly at random with replacement (which is done through Ω)

without directly utilizing any information from A; to get an oblivious ℓ2-subspace

embedding of Â := ŜA.

Now, consider two distinct matrices A ∈ RN×L and B ∈ RN×M . By applying to

each of them the above randomized transform, we get Ã = ĤNDA and B̃ = ĤNDB

both of which have approximately uniform leverage scores, hence, the joint leverage

scores of the pair Ã, B̃ is also approximately uniform. From this, the conclusion of

Theorem 6.2.4 directly applies to the approximate product

A⊤ ·B ≈
(
ĤND ·A

)⊤
·
(
Ω⊤Ω

)
·
(
ĤND · B̂

)
= Â⊤ · B̂ .

Furthermore, random Gaussian and orthonormal matrices could also be considered

in place of the transform ĤND, as these also flatten the leverage scores of the matrices;

and additionally have security guarantees [49, 306]. The main drawback of these

approaches, is that they are slower than the SRHT; which can compute the sketch Â

in O(NL logN) time through Fourier methods.

6.3.3 Graph Spectral Sparsifiers

The state-of-the-art approach to spectral sparsification of a weighted graph G =

(V,E,w) is to sample edges according to effective resistances, which has connections

to leverage scores of the graph’s boundary matrix B ∈ R|E|×|V |⩾0 [92, 271, 273]. This

approach leads to a nearly-linear time algorithm that produces high-quality sparsi-

fiers, by approximating G’s Laplacian L which is defined as the outer-product of its

boundary matrix ; i.e. L = B⊤B. That is, we get a sparser graph G̃ = (V, Ẽ, w̃) with

Laplacian L̃ ≈ L.

The benefit of using the bound of Theorem 6.2.4, is that it can be applied to di-

rectly approximate the intersection of two different graphs on V ; say G1 = (V,E1, w
1)

and G2 = (V,E2, w
2), which has found applications in areas such as image segmen-

147

tation. The intersection of these two graphs is defined as H =
(
V,EH , w

H
)
, where

EH = E1 ∩ E2 and wHe =
√
w1
e · w2

e for each e ∈ EH (w.l.o.g., we assume that the

indices of the edges are the same in G1 and G2).

We can use AMM through joint leverage scores to approximate L1,2 = BT
1B2, for

B1,B2 the boundary matrices of the two graphs. The techniques of [273] on sampling

according to effective resistances do not apply, though through what was proposed in

this chapter; one can extend their work to consider ‘joint effective resistances ’ defined

across the two graphs.

The orientation of an edge e = (u, v), is represented in the incidence vector χe =

eu − ev; for ei ∈ RV the standard basis vectors. Let x̃e =
√
L†χe, for each e ∈ E.

Then, the effective resistances of e is defined as re = ∥x̃e∥22. Denote the effective

resistances of Gι and the corresponding individual leverage scores of Bι by
{
rιe
}
e∈Eι

and {ℓιe}e∈Eι respectively, for each ι ∈ {1, 2}. If now we consider the aforementioned

distinct matrices G1 and G2, we can define their ‘joint effective resistances ’ as

rHe′ =

√
ℓ1e′ · ℓ2e′√
w1
e′ · w2

e′

=
√
r1e′ · r2e′

for each of e′ ∈ EH . Further investigation of this would be worthwhile future work.

6.4 Concluding Remarks and Future Work

The main contributions of this chapter are the following. First, we connected

ideas from two distinct RandNLA algorithms to (i) define a new generalized notion

of leverage scores; which when A = B results in the leverage scores of A, and (ii)

developed an AMM algorithm for which a spectral guarantee was provided. Our

algorithm produces a low-rank approximation, which is more efficient to work with in

terms of storage and computation, in comparison to the exact matrix product. To do

so, we proposed a condition for AMM which is similar to the ℓ2-subspace embedding

property. We also gave a connection to graph sparsifiers, and presented a generalized

notion of effective resistances, which is worth investigating further. Another area

which could be benefit from joint leverage scores, is that of tensor products and

decompositions; where an analogous notion could potentially be defined. It would

be interesting to see what other optimization problems and applications can benefit

from utilizing sampling according to the joint leverage score distribution.

148

CHAPTER VII

Conclusion and Future Work

This dissertation primarily focused on randomized sketching algorithms for Eu-

clidean subspace embeddings through block sampling, and coded computing; for both

exact and approximate computations. We also considered encryption through ran-

dom projections; for iterative sketching, encryption through Lagrange interpolation

in the coded computing paradigm, and spectral sparsification of graph Laplacians.

Though the two approaches of coded computing and sketching used to accelerat-

ing computations utilize vastly different techniques, in Chapters III and IV we gave

approaches to how one can utilize sketching techniques for distributed steepest de-

scent through approximate gradient coding. These ideas could also be utilized in

distributed coded matrix multiplication. In Chapter II we focused on binary gradi-

ent coding and coded matrix multiplication, where we generalized fractional binary

repetition codes. Chapter V dealt with the problem of coded matrix inversion; which

has not been studied as extensively as other coded computations. Finally, in Chapter

VI a new approximate matrix-matrix multiplication algorithm was proposed, which

guarantees a spectral approximation of the exact product. In Appendix E we bridge

a connection between approximate matrix-matrix multiplication and spectral sparsi-

fication of graph Laplacians. Next, we summarize worthwhile future work pertaining

to each chapter.

• Chapter II — Generalized Fractional Repetition Codes for Binary

Coded Computations:

In this chapter, we introduced a binary GCS for distributed optimization.

The main advantages of our code design is that (i) it provides numerically

stable computations of the gradient, (ii) it removes the limiting assumption

(s + 1) | n, and (iii) it has an improved and more tractable decoding stage

compared to that of the first GCS proposed in [279]. We provided an analysis

149

of the proposed design, and showed that it is optimal in terms of the minimizing

function ds defined in Definition 2.3.1. Both homogeneous and heterogeneous

workers were considered. It is worth noting that more recent work also considers

this direction [269], though their focus is on improving the recovery threshold.

We then presented two CMM approaches; as extensions of our binary GCS.

There are several interesting directions for future work. We have seen that

the proposed schemes accommodate various matrix operations. It would be in-

teresting to see what other operations they can accommodate, in order to devise

exact and approximate straggler resilient coded computing schemes. Another

direction is to incorporate privacy and security into our schemes. A third di-

rection, is to further explore the connections between coded computations and

codes for distributed storage systems. Specifically, it would be worthwhile to

explore the connections between the proposed GCS, the GCS of [155], and the

distributed storage systems of [100], which we briefly described in Subsection

2.6.4.

• Chapter III — Gradient Coding through Iterative Block Leverage

Score Sampling:

In this chapter, we showed how one can exploit results from RandNLA to

distributed CC, in the context of GC. By taking enough samples, or equiva-

lently; waiting long enough, the approximation errors can be made arbitrar-

ily small. In terms of CC, the advantages are that encodings correspond to

a scalar multiplication, and no decoding step is required. By utilizing these

techniques, we are also advantageous over other CC approximation schemes

[25, 52, 53, 58, 59, 112, 120, 144, 155, 239, 253]; by incorporating information

from our dataset into our scheme.

Our methods were validated numerically through various experiments, pre-

sented in Section 3.4. Further experiments were performed on various distri-

butions for A, in which similar results were obtained. We also considered the

empirical distribution from real-server completion times taken from 500 AWS-

servers [19], and emulated the proposed CC scheme. In this experiment, we

obtained the expected results in terms of ℓ2-s.e., misestimation factors βΠ,Π̄,

and metrics ∆Π,Π̄, dΠ,Π̄.

Even though we focused on leverage score sampling for linear regression,

other sampling algorithms and problems could benefit by designing analogous

150

replication schemes. One such problem is the column subset selection prob-

lem, which can be used to compute partial SVD, QR decompositions, as well

as low-rank approximations [201]. As for the sampling technique we studied,

one can judiciously define a sampling distribution to approximate solutions to

such problems [34], which are known to be NP-hard under the Unique Games

Conjecture assumption [66].

Furthermore, existing block sampling algorithms can also benefit from the

proposed expansion networks, e.g. CR-multiplication [53] and CUR decompo-

sition [221]. For instance, a coded matrix multiplication algorithm of minimum

variance can been designed, where the sampling distribution proposed in [53] is

used to determine the replication numbers of the expansion network. In terms

of matrix decompositions, the block leverage score algorithm of [221] can be

used to distributively determine an additive ϵ-error decomposition of A, in the

CC setting. Another future direction is generalizing existing tensor product and

factorization algorithms to block sampling, according to both approximate and

exact sampling distributions, in order to make them practical for distributed

environments.

• Chapter IV — Iterative Sketching for Secure Coded Regression:

In this chapter, we proposed approximately solving a linear system by dis-

tributively leveraging iterative sketching and performing first-order SD simulta-

neously. In doing so, we benefit from both approximate GC and RandNLA. A

difference to other RandNLA works is that our sketching matrices sample blocks

uniformly at random, after applying a random orthonormal projection. An ad-

ditional benefit is that by considering a large ensemble of orthonormal matrices

to pick from, under necessary assumptions, we guarantee information-theoretic

security while performing the distributed computations. This approach also

enables us to not require encoding and decoding steps at every iteration. We

also studied the special case where the projection is the randomized Hadamard

transform, and discussed its security limitation. To overcome this, we proposed

a modified “garbled block-SRHT”, which guarantees computational security.

We note that applying orthonormal random matrices also secures coded

matrix multiplication. There is a benefit when applying a garbled Hadamard

transform in this scenario, as the complexity of multiplication resulting from the

sketching is less than that of regular multiplication. Also, if such a random pro-

jection is used before performing CR-multiplication distributively [43, 53, 250],

151

the approximate result will be the same. Moreover, our dimensionality reduction

algorithm can be utilized by a single server, to store low-rank approximations

of very large data matrices.

Partial stragglers, have also been of interest in the GC literature. These are

stragglers who are able to send back a portion of their requested tasks. Our

work is directly applicable, as we can consider smaller blocks, with multiple

ones allocated to each worker.

There are several interesting directions for future work. We observed exper-

imentally in Figure IV.5 that Π and ĤN may act as preconditioners for SSD.

This mere observation requires further investigation. Another direction is to see

if the proposed ideas could be applied to federated learning scenarios, in which

security and privacy are major concerns. Some of the projections we considered,

rely heavily on the recursive structure of Ĥ in order to satisfy (g). One thing we

overlooked, is whether other efficient multiplication algorithms (e.g. Strassen’s

[276]) could be exploited, in order to construct suitable projections. It would be

interesting to see if other structured or sparse matrices exist which also satisfy

our desired properties (a)-(g).

There has been a lot of work regarding second-order algorithms with iterative

sketching, e.g. [173, 231]. Utilizing iterative Hessian sketching or sketched

Newton’s method in CC has been explored in a tangential work [127], though

the security aspect of these algorithms has not been extensively studied. A

drawback here is that the local computations at the workers would be much

larger, though we expect the number of iterations to be significantly reduced;

for the same termination criterion to be met, compared to first-order methods.

Deeper exploration of the theoretical guarantees of iterative sketched first-order

methods, along with a comparison to their second-order counterparts, as well

as studying their effect in logistic regression and other applications, are also of

potential interest.

• Chapter V — Securely Aggregated Coded Matrix Inversion:

In this chapter, we addressed the problem of approximate computation of

the inverse of a matrix distributively in a relaxed FL setting, under the possible

presence of straggling workers. We provided approximation error bounds for

our approach, as well as security and recovery guarantees. We also provided

numerical experiments that validated our proposed approach.

152

There are several interesting future directions. One avenue to consider is

incorporating fully homomorphic encryption in our phases (b),(c),(d), to obtain

a FL scheme; and prevent the requirement of clients need to recover each others’

information. An important issue is the numerical stability of the BRS approach,

so exploring other suitable generator matrices could be beneficial; e.g. circulant

permutation and rotation matrices [236]. It is also worth investigating if we can

reduce the communication rounds when computing the pseudoinverse through

our approach. This depends on the CMM which is being utilized, though using

different ones for each of the two multiplications may also be beneficial. An

interesting approach to also consider, is if divide and conquer algorithms could

be leveraged in CC to recover exact or approximate solutions to A−1.

In terms of coding-theory, it would be interesting to see if it is possible to

reduce the complexity of our decoding step. Specifically, could well-known RS

decoding algorithms such as the Berlekamp-Welch algorithm be exploited? An-

other direction, is leveraging approximate CCMs. The work of [148] considers

the GC problem for approximate and exact recovery through Lagrange interpo-

lation, for heterogeneous workers in the presence of stragglers and adversaries.

A potential scheme for matrix inversion could also be developed through the

methods of [148]. In terms of our approximation algorithms, an avenue worth

exploring is that of incorporating approximate and/or sparse Gaussian elimina-

tion [171, 172] into our distributed CCM.

• Chapter VI — Approximate Matrix Multiplication by Joint Leverage

Score Sampling:

The main contributions of this chapter are the following. First, we connected

ideas from two distinct RandNLA algorithms to (i) define a new generalized

notion of leverage scores; which when A = B results in the leverage scores of

A, and (ii) developed an AMM algorithm for which a spectral guarantee was

provided. Our algorithm produces a low-rank approximation, which is more

efficient to work with in terms of storage and computation, in comparison to

the exact matrix product. To do so, we proposed a condition for AMM which

is similar to the ℓ2-subspace embedding property. We also gave a connection

to graph sparsifiers, and presented a generalized notion of effective resistances,

which is worth investigating further. Another area which could be benefit from

joint leverage scores, is that of tensor products and decompositions; where an

analogous notion could potentially be defined. It would be interesting to see

153

what other optimization problems and applications can benefit from utilizing

sampling according to the joint leverage score distribution.

• Appendix E — Graph Sparsification by Approximate Matrix Multi-

plication:

In this appendix, we proposed a graph sparsifier that approximates Laplacian

through the use of CR−MM; a sampling with replacement technique, adapted

from RandNLA. Applications of the proposed method to spectral clustering

through block sampling [53, 217] would be worthwhile future work. Specifically,

cliques of a given graph may be determined by approximating their Laplacians.

The proposed computationally efficient spectral approximation may permit the

identification of highly connected vertices without the need to traverse through

the entire graph.

154

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

APPENDICES

155

Appendix A

Appendix to Chapter II

1.1 Pseudocode of Encoding Matrices B̃C1
and B̃C2

In this appendix we provide the pseudocode of the encoding matrices B̃C1 and

B̃C2 described in 2.4.2 and 2.4.3, which are combined to give the encoding matrix B

of our GCS.

Algorithm 10: Encoding B̃C1 — C1 = {[i]s+1}r−1i=0

Input: number of workers n and stragglers s, where s, n ∈ Z+

Output: encoding matrix B̃C1
∈ {0, 1}n×n ▷ assume n = k

B̃C1
← 0n×n, and use the division algorithm to get the parameters:

. n = ℓ · (s+ 1) + r r = t · ℓ+ q n = λ · (ℓ+ 1) + r̃
for i = 0 to r − 1 do

if ℓ+ r > s then
for j = 1 to ℓ+ r − s do

B̃C1

[
(j − 1)(s+ 1) + i, (j − 1)(s+ 1) + 1 : j(s+ 1)

]
= 11×(s+1)

end
for j = ℓ+ r − s+ 1 to ℓ+ 1 do

B̃C1

[
(j − 1)(s+ 1) + i, (j − 1)s+ (ℓ+ r − s) + 1 : (j − 1)s+ ℓ+ r

]
= 11×s

end

end
else if ℓ+ r ≤ s then

for j = 1 to r̃ do

B̃C1

[
(j − 1)(s+ 1) + i, (j − 1)(λ+ 1) + 1 : j(λ+ 1)

]
= 11×(λ+1)

end
for j = r̃ + 1 to ℓ+ 1 do

B̃C1

[
(j − 1)(s+ 1) + i, (j − 1)λ+ r̃ + 1 : (j − 1)λ+ r̃ + λ

]
= 11×λ

end

end

end

return B̃C1

156

Algorithm 11: Encoding B̃C2 — C2 = {[i]s+1}si=r
Input: number of workers n and stragglers s, where s, n ∈ Z+

Output: encoding matrix B̃C2
∈ {0, 1}n×n ▷ assume n = k

B̃C2
← 0n×n, and use the division algorithm to get the parameters:

. n = ℓ · (s+ 1) + r r = t · ℓ+ q n = λ · (ℓ+ 1) + r̃
for i = r to s do

if q ≡ 0 then
for j = 1 to ℓ do

B̃C2

[
(j − 1)(s+ 1) + i, (j − 1)(s+ t+ 1) + 1 : j(s+ t+ 1)

]
= 11×(s+t+1)

end

end
else if q > 0 then

for j = 1 to q do

B̃C2

[
(j − 1)(s+ 1) + i, (j − 1)(s+ t+ 2) + 1 : j(s+ t+ 1)

]
= 11×(s+t+2)

end
for j = q + 1 to ℓ do

B
[
(j − 1)(s+ 1) + i, (j − 1)(s+ t+ 1) + q + 1 : j(s+ t+ 1) + q

]
= 11×(s+t+1)

end

end

end

return B̃C2

1.2 Special Case of CMM-2

In this appendix, we present a special of CMM-2; where k1 = 1 and k = k2, as this

may have certain applications where one cannot partition both matrices, e.g. [53].

Additionally, it is simpler to understand this case, and then view CMM-2 as applying

this special case of the code k1 times.

In contrast to the partitioning (2.28) of CMM-1; and the general case of CMM-2

(2.34), in this approach we partition only one of the two matrices, say B; along its

columns. Each worker computes the product of a submatrix of B with the matrix

A, and then the central server augments the received computations accordingly. The

key property that we utilize is the following:

AB = A ·
[
B̄1 · · · B̄k

]
=
[
AB̄1 · · · AB̄k

]
=
[
C̃1 · · · C̃k

]
(1.1)

where C̃j := AB̄j, for all j = 1, · · · , k. For convenience we assume that (s+1) |M , and

similar to our GCS that n = k. To further simplify our construction and description,

under the assumption that (s+ 1) |M , we can assume that the equipotent partitions

of {B̄i}ki=1 which are distributed to the workers are of size T = M/k ∈ Z+, which

implies that (s + 1) | k. All in all, each worker receives only one B̄j ∈ RN×T ; where

157

T is a multiple of (s+ 1), and C̃j ∈ RL×T . We also note that a similar multiplication

can take place if we instead partition A along its rows — this corresponds to the case

where k2 = 1 and k = k1. For completeness, we present the corresponding encoding

through matrix B̃ ∈ {0, 1}kT(s+1)×kT

B̃∈{0,1}kT(s+1)×kT︷ ︸︸ ︷(
Ik ⊗ 1(s+1)×1 ⊗ IT

)
·

C̃T

1
...

C̃T
k

 =

C̃T
1
...

C̃T
1
...

C̃T
k
...

C̃T
k

, (1.2)

where the transpose of each submatrix C̃j appears s + 1 times along the rows of

the encoding B̃CT ∈ R(s+1)M×L, each corresponding to one of the s + 1 potential

workers that are asked to compute C̃j. Lastly, in this special case of CMM-2, no

rearrangement is needed once the decoding step has been applied.

1.3 Numerical Example of the Proposed Encodings and De-

codings

In this appendix, we give examples of our encoding and decoding algorithms, to

convey the main ideas and help visualize the task allocations which take place. For

our GCS of Section 2.3, consider the case where n = k = 11 and s = 3.

By (2.8), (2.9), (2.10) we then have ℓ = 2, r = 3, t = 1, q = 1; thus ℓ > r − s, and

the task allocation for C1 is described by BC1 ∈ {0, 1}(ℓ+1)·r×n:

BC1 =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

1 1 1

1 1 1

,

158

where each congruence class is represented by a different color and font for clarity. The

zero entries are omitted. The indicated dimensions are for the case where r > 0, i.e.

the remainder block is not empty. The encoding corresponding to the congruence

classes 0 to r − 1 constructed by Algorithm 10, is obtained from BC1 by properly

appending zero vectors. Specifically, BC1 is the restriction of B̃C1 to the rows with

nonzero entries.

For the remaining congruence classes, r to s, since q = 1; we have:

BC2 =

[
1 1 1 1 1 1

1 1 1 1 1

]
,

where BC2 ∈ {0, 1}ℓ·(s+1−r)×n is the restriction of B̃C2 constructed by Algorithm 11 to

the rows with nonzero entries.

The final step is to appropriately merge the two matrices together, so that the

congruence classes are in ascending order. Considering Algorithms 10 and 11, this

corresponds to B = B̃C1 + B̃C2 . We therefore get the following encoding matrix:

B =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1

1 1 1

1 1 1

∈ {0, 1}n×n.

As discussed in Section 2.4.5, one can apply permutations to the rows and columns

of B and obtain a solution to (IP). Furthermore, one can apply a different permu-

tation on the columns for each congruence class, and still obtain a valid GCS. An

example of how the allocations can be modified for each congruence class is given

below, where the superposition of any set of row vectors of the same color result in

11×11, and all colors appear exactly once in each column:

159

B̄ =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1

1 1 1

1 1 1

.

1.3.1 Example of Algorithm 2

We now demonstrate the decoding procedure of Algorithm 2. Considering our

earlier example, we have the corresponding encoding matrices BC1 and BC2 :

BC1 =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

1 1 1

1 1 1

and

BC2 =

[
1 1 1 1 1 1

I I I I I

]
.

Here, each set of computations is represented by a different color and font, and we

require that at least one worker of each of color from one of the two encoding matrices

has responded.

In Algorithm 2 we add only the first received computation of each represented

color and font to C. In contrast to Algorithm 1 where we required all workers of a

single color to respond in order to perform the decoding step, now we require at least

one worker from each block, from either BC1 or BC2 to respond. We do this separately

160

for the subroutines corresponding to BC1 and BC2 , and terminate whenever at least

one worker from each block, from one of the two groups C1 or C2 has responded. This

is equivalent to decoding a repetition erasure code. Lastly, recall that the number of

workers per block in BC2 is s+ 1− r, which in our toy example happens to be one.

1.3.2 Example of CMM-2, with k1 = 1

An example of CMM-2 with k1 = 1 is provided to help visualize the encoding task

assignments, as well as the decoding. Let n = k2 = 8, s = 1 and M be arbitrary,

with T = M/k2 and S = L/1. Let 0T denote the T× T zero matrix. For I = 1 and

[I]s+1 = {1, 3, 5, 7}, the encoding-decoding pair is

B̃ =

IT

IT
IT

IT
IT

IT
IT

IT

, ã[I]s+1 =

0T

IT
0T

IT
0T

IT
0T

IT

where both matrices are of the same size. From this example, it is also clear that ã[I]

is in fact the restriction of B̃ to the workers corresponding to the congruence class I.

1.4 Proofs of Section 2.4

In this appendix we present proofs of Theorems 2.4.2 and 2.4.3.

Proof. [Theorem 2.4.2] To simplify the presentation of the proof, we restrict it to the

case where n = k. As was previously mentioned, to meet this assumption we can

incorporate instances of the data point (0p×1, 0) until N ′ points total are considered;

such that n|N ′, and let k = n.

Firstly, in the simplest case where (s+1)|n; we have ∥B(i)∥0 = k
n
(s+1) = k

ℓ
= s+1

for all i ∈ N0,n. This results in a block diagonal matrix B = 1(s+1)×(s+1) ⊗ Iℓ ∈
{0, 1}n×k, which is a permutation of the FRC scheme presented in [279], for which

ds(B) = 0; and | supp(B)| = ℓ · (s + 1)2 = k · (s + 1). The minimum value of the

function ds is therefore attained, while meeting all inequality constraints with an

161

upper bound of 0. By Proposition 2.3.1 and the fact that B is block diagonal with

Bij = 1 if Bij ̸= 0, the fourth constraint is also met.

For the remainder of the proof, we will consider the case where (s+1) ∤ n. We first

give an equivalent optimization problem (IP-B) to (IP) for the case where we are only

considering binary GC schemes, and show that our construction through Algorithms

10 and 11 meets the constraints of (IP-B). We then argue by contradiction, to show

that our construction is a solution to (IP-B).

By imposing the constraints that B ∈ {0, 1}n×k and aI ∈ {0, 1}n for each I ∈ Inf ,

the fourth constraint of (IP) can be replaced by (2.7) for all i ∈ N0,s, and by the fact

that

nnzr(B) =
s+1∑
ι=1

∑
j∈Kι

∥B(j)∥0 (1.3)

=
s+1∑
ι=1

∥11×k∥0 (1.4)

=
s+1∑
ι=1

k (1.5)

= k · (s+ 1) (1.6)

we can drop the first constraint of (IP). We therefore have the following binary

equivalent integer program (IP-B) of (IP):

(IP-B) arg min
B∈{0,1}n×k

{
ds(B)

}
s.t.

s⊔
i=0

Ki = N0,n−1 :
∣∣|Kj| − |Kl|∣∣ ≤ 1, ∀j, l ∈ N0,s∣∣∥B(j)∥0 − ∥B(l)∥0
∣∣ ≤ 1, ∀j, l ∈ Ki, ∀i ∈ N0,s∑

j∈Ki

B(j) = 11×k, ∀i ∈ N0,s

.

For our construction through Algorithms 10 and 11, the partitioning is in terms of

congruence classes is {[i]s+1}si=0 = C1

⊔
C2 = N0,n−1, for which

∣∣|[j]s+1| − |[l]s+1|
∣∣ = 1

if [j]s+1 and [l]s+1 are in distinct Cι’s, and
∣∣|[j]s+1| − |[l]s+1|

∣∣ = 0 if they are in the

same. Hence, the first constraint of (IP-B) is met.

Considering our partitioning of N0,n−1, the second constraint of (IP-B) can be split

into the cases:

(a)
∣∣∥B(j)∥0 − ∥B(l)∥0

∣∣ ≤ 1, for all j, l ∈ C1

162

(b)
∣∣∥B(j)∥0 − ∥B(l)∥0

∣∣ ≤ 1, for all j, l ∈ C2

where (a) and (b) correspond to Algorithms 10 and 11 respectively. By construction,

it is clear that both (a) and (b) are met. The final constraint of (IP-B) for the

partitioning through congruence classes, can be reformulated as in (2.15), which is

also met by construction; for each c ∈ N0,s.

Now, for a contradiction, assume that there is a B′ ∈ {0, 1}n×k that satisfies

the three constraints of (IP-B), for which ds(B
′) < ds(B). Denote the respective

summands by d′i :=
∣∣∥B′(i)∥0−(s+1)

∣∣ and di :=
∣∣∥B(i)∥0−(s+1)

∣∣; for each i ∈ N0,n−1.

That is, d(B′) =
∑n−1

j=0 d
′
j and d(B) =

∑n−1
j=0 dj. Since d(B′) < ds(B), it follows that

there is an i ∈ N0,n−1 for which d′i < di; i.e. di − d′i = δ for a positive integer δ.

By the first constraint of (IP-B) and (2.8), it follows that the rows of B′ are

partitioned into r groups {Kι}r−1ι=0 of size ℓ+ 1; and (s+ 1− r) groups {Kι}sι=r of size

ℓ. Without loss of generality, we assume that

• Kι = {ι+ z · (s+ 1) : z ∈ N0,ℓ}, for each ι ∈ N0,r−1

• Kι = {ι+ z · (s+ 1) : z ∈ N0,ℓ−1}, for each ι ∈ {r, r + 1, . . . , s}

i.e. {Kι}sι=0 = C1

⊔
C2; where C1 ≡

⊔r−1
ι=0 Kι and C2 ≡

⊔s
ι=rKι — this assumption

can met by a simple permutation on the rows of B′; which does not affect ds(B
′) nor

any of the constraints on (IP-B).

We first consider the case where d′i < di; for some i ∈ C1. Recall that Algorithm

10 can be reduced to only include the else if statement, as when ℓ > s− r we have

λ = s and r̃ = ℓ + r − s > 0. Thus, the two if loops are equivalent for ℓ > s− r. It

therefore suffices to only consider the else if statement of the algorithm. We know

that di =
∣∣∥B(i)∥0− (s+1)

∣∣ ∈ {|λ− (s+1)|, |λ+1− (s+1)|
}

. When λ = ∥B(i)∥0 ≤ s;

it follows that ∥B′(i)∥0 = ∥B(i)∥ − δ, and in order to meet (2.7); there is at least one

j ∈ [i]s+1 for which ∥B(j)∥0 = λ+ 1 and ∥B′(j)∥0 ≥ ∥B(j)∥0 + 1. Therefore

∣∣∥B′(j)∥0 − ∥B′(i)∥0∣∣ = ∥B′(j)∥0 − ∥B′(i)∥0 ≥ λ+ 2−
(
∥B(i)∥0 − δ

)
= δ + 2 > 1 (1.7)

which violates the second constraint of (IP-B). By a symmetric argument, one shows

a similar contradiction for when ∥B(i)∥0 = λ+ 1 ≥ s+ 1.

Next, we consider the case where d′i < di for i ∈ C2. When q = 0, we have

∥B(j)∥0 = s+ t+1 and dj = |s+ t+1− (s+1)| = t for all j ∈ [i]s+1, thus ds(B) = ℓ · t.
Note that we cannot have d′i = di − δ for δ ≥ t+ 1, as this would imply that

∣∣∥B′(i)∥−(s+1)
∣∣ =

∣∣∥B(i)∥0−(s+1)
∣∣−δ =

∣∣s+t+1−(s+1)
∣∣−δ ≤ t−(t+1) = −1 (1.8)

163

a contradiction. We therefore restrict this difference to δ ∈ {1, 2, . . . , t}, for which

it follows that ∥B′(i)∥0 = ∥B(i)∥ − δ. In order to meet (2.7), there is at least one

j ∈ [i]s+1 for which ∥B′(j)∥0 ≥ ∥B(j)∥0 + 1, thus

∣∣∥B′(j)∥0−∥B′(i)∥0∣∣ = ∥B′(j)∥0−∥B′(i)∥0 ≥ ∥B(j)∥0+1−
(
∥B(i)∥0−δ

)
= δ+1 > 1 (1.9)

which violates the second constraint of (IP-B).

Lastly, we consider the case where i ∈ C2, and q > 0. In the case where ∥B(i)∥0 =

s + t + 1, the argument is the same as above. In the case where ∥B(i)∥0 = s + t + 2

and δ = 1, by the third constraint of (IP-B) it follows that there is at least one

j ∈ [i]s+1 for which ∥B′(j)∥0 > ∥B(j)∥+ 1, implying that d(B′) ≥ d(B), contradicting

the assumption that d(B′) < d(B). Hence, for the case where ∥B(i)∥0 = s+ t+ 2, the

only differences δ we need to consider are δ ∈ {2, 3, . . . , t+ 1}. This though, reduces

to the same argument as above, which led to the contradiction in (1.9).

We therefore conclude that any B′{0, 1}n×k for which ds(B
′) < ds(B), violates at

least one constraint of (IP-B). Therefore, our construction of B through Algorithms

10 and 11 is a solution to (IP-B), the binary version of (IP).

Proof. [Theorem 2.4.3] Assume condition 1) holds. By our construction of aI , we

consider each congruence class separately. The superposition of the rows correspond-

ing to a complete residue system [i]s+1, is equal to the sum of these rows over R. We

denote this superposition for the ith congruence class by b̄[i], i.e.

b̄[i] :=

 ∑
ι∈[i]s+1

B̄(ι)

 , (1.10)

for which aTI B̄ = b̄[i] if {ι : ι ∈ [i]s+1} ⊊ I. Since the vectors are binary, the

superposition results in 11×k only when 1 appears in each position in a single row of

this congruence class. This is precisely condition 2); for B̄ satisfying 1).

Now, assume condition 2) holds. For binary rows {B̄(j)}nj=1, condition 1) ensures

that the cardinality of each of these vectors is equal to that of the corresponding row

B(j), i.e. the same number of partitions are allocated to the jth worker through both

B and B̄. Therefore, for B̄ satisfying 1), we get

b̄[i] =

 ∑
ι∈[i]s+1

B(ι)

 = k . (1.11)

164

for all i ∈ {0, · · · , s}. Under the assumption that 2) is satisfied, we have (b̄[i])l ∈ {0, 1}
for all l ∈ Nk, thus b̄[i] = 11×k. Specifically, we saw that for B̄ ∈ {0, 1}n×k satisfying

condition 2), we have b̄[i] ∈ {0, 1}1×k for all i ∈ N0,s. When condition 1) is also

satisfied, we then have b̄[i] = aTI B̄ = 11×k for i such that {ι : ι ∈ [i]s+1} ⊊ I. We

conclude that if 1) and 2) are simultaneously satisfied, the first statement holds.

Condition 2) guarantees that ∥B̄(i)∥0 ≤ s+1 for all i. Since we are applying a per-

mutation on each set of rows corresponding to a complete residue system separately,

we get that ∥B̄(i)∥0 ≥ ∥B(i)∥0, and by our construction of B, we are guaranteed that

∥B(i)∥0 = s + 1 for all i. By antisymmetry, it is clear that ∥B̄(i)∥0 = s + 1 for all i.

This completes the proof.

1.5 Numerical Experiment — Coded vs. Uncoded

In the following experiment, we justify the benefit of encoding computations in

distributed platforms. We considered the fastest 250 AWS (Amazon Web Services)

server completion times from [18] to model the delays of our experiment. Similar

experiments have been considered in other works, e.g. [279, 134, 178], though these

consider artificially delayed stragglers, with significantly smaller n and s.

We considered A ∈ RL×N and B ∈ RN×M for L = M = N = 104, which we

partition across the respective dimension N to accommodate our scheme CMM-1

with n = 250 workers; that will tolerate s stragglers. Specifically, deployed CMM-1

with blocks of size τ = N
k

= 20 for k = 500, and in the coded setting, each worker

was assigned s+1 different blocks, where s varied for different experiments. Once the

computation times were calculated, we added the delay times from the AWS server

completion times [18] mentioned above. We ordered the delay times in ascending

order, and note that there was significant difference between workers responses 184

and 185 (3.325 seconds), and workers 238 and 239 (7.1463 seconds).

In Table A.1, we report the respective response time of the slowest worker which

was needed in order to recover the matrix product (i.e. waiting time for the (n−s+1)

fastest worker; which corresponds to the recovery threshold of CMM-1), and the

slowest worker of the distributed computation when no coding was applied. It is worth

mentioning that our approach could have a greater speed up when the decoding step

of Algorithm 2 were to be used instead. In this experiment, we report the worst case

scenario of our approach. Since these trials were carried out on the same personal

laptop, we expect that the times reported in the “Uncoded” row should be the same.

They differ slightly, as the matrix product corresponding to each column, was for

165

different random matrices A and B. Our approach was beneficial in the case where

CMM-1 was deployed with s ∈ {6, 8, 10, 12, 14, 16}, which is a consequence of the

delay times of the slower servers.

Emulated AWS Recovery Times for CMM-1

s 2 4 6 8 10 12 14 16
CMM-1 21.0316 21.1006 20.8975 20.7138 20.7548 20.1759 12.9986 12.9136

Uncoded 21.0137 21.0190 21.0189 21.0288 21.0201 21.0213 21.0181 21.0290

Table A.1:
Emulated AWS response times, for CMM-1 and uncoded distributed ma-
trix multiplication. We report the waiting times of the slowest responsive
worker we need in order to perform CMM-1; i.e. the time of the fastest
n− s+ 1 worker, and the slowest of the 250th workers in the uncoded sce-
nario. In bold, we indicate which of the two respective times was faster.
The times reported are in seconds.

1.6 Application of CMM to Distributed Gradient Descent

for Frobenius norm Minimization

In this appendix we first review gradient descent, and then focus on gradient

descent for Frobenius norm minimization problems, as defined in (1.15); for the ob-

jective function LF defined in (1.13). We briefly describe the following motivating

problems which try to solve (1.15) or similar optimization problems: nonnegative ma-

trix factorization (NMF), k-SVD, low rank matrix approximation, sparse coding and

the best k-rank approximation; which relates to principal component analysis. This

is not an exhaustive list of where the objective function LF has been utilized, since

many more applications do exist.

Recall that in gradient descent, we consider a minimization problem with a convex

differentiable objective function L : C → R over an open constrained set C ⊆ Rp.

Then, given an initial θ[0] ∈ C; the following update is performed at iteration t+ 1:

θ[t+1] ← θ[t] − ξt · ∇θL(D; θ[t]), for t = 0, 1, 2, . . . (1.12)

until a specified termination criterion is met. The parameter ξt is the step-size, which

may be adaptive or fixed. Note that GC is only concerned with computing the

gradient at each step and hence, selecting an appropriate step-size was not discussed

in this chapter.

166

In the literature regarding gradient descent for coded computing thus far, only the

case where the gradient of the objective function (2.1) is a vector has been considered

or discussed. In order to tie together Sections 2.2 and 2.3 with Section 2.5, we discuss

the case where the gradient is a matrix, e.g.

LF (X,Y; Θ) := ∥XΘ−Y∥2F =
m∑
i=1

Lols(X,Y(i);Θ(i))︷ ︸︸ ︷
∥XΘ(i) −Y(i)∥22, (1.13)

for X ∈ RN×p, Θ ∈ Rp×m and Y ∈ RN×m. The gradient is

∇ΘLF (X,Y; Θ) = 2XT (XΘ−Y), (1.14)

which is computed in order to approximate the solution to

Θ⋆ = arg min
Θ∈Rp×m

{
LF (X,Y; Θ)

}
(1.15)

via gradient descent. Similar to the ordinary least squares objective function Lols,

(1.15) has the closed-form solution:

Θ⋆ = X†Y = (XTX)−1XTY, (1.16)

which is intractable for large N . In practice, it is often preferred to approximate Θ⋆.

A motivating application is if we have measurements {Y(i)}mi=1 from m different

sensors in different locations or from different sources, for the same corresponding X,

and we want to interpolate the corresponding optimal models {θi}mi=1 for each sensor

or source.

More generally, the goal of most nonlinear regression problems is to solve the

problem

min
κ∈H

{
N∑
i=1

(
κ(xi)− yi

)2}
, (1.17)

where κ comes from a hypothesis class H that fits the training data, for which one

can use the kernel trick to solve efficiently. What we present can be applied also to

regression problems of this type, as well as kernel regression problems [257].

Throughout the gradient descent process, the second summand 2XTY is constant.

Hence, at every iteration we only need to compute the matrix product X̂Θ, where X̂ =

2XTX is also a constant matrix. Then, depending on which matrix multiplication

scheme we decide to use, the workers will receive the entire matrix X̂ or a submatrix

167

of it at the beginning of the distributed computation process, and a submatrix of Θ’s

update

Θ[t+1] ← Θ[t] − ξt · ∇ΘLF (X,Y; Θ[t]) (1.18)

at each iteration. In an iterative process, it is preferred to reduce the total commu-

nication cost as much as possible. Hence, we prefer to communicate only part of Θ

when possible.

Solving for the loss function LΘ may also be viewed as solving multiple linear re-

gression problems simultaneously. This is due to its decomposition into a summation

of m separate least squares objective functions, with the same data matrix X. For

Θ(i) = θi, it follows that

Θ⋆ =

 | | |
θ⋆1 θ⋆2 . . . θ⋆m

| | |

 ∈ Rp×m, (1.19)

for θ⋆i being the minimal solution to Lols(X,Y
(i); Θ(i)), for each i ∈ Nm. To guarantee

convergence for all θi, we can fix ξt = 2/σmax(X)2 for all iterations.

We point out that the above problem could indeed be solved by using regular GC,

as we have

∥A∥2F =

∥∥∥∥[(A(1)
)T · · · (A(m)

)T]T∥∥∥∥2
2

, (1.20)

for any real-valued matrix A comprised of m columns. We also note that the least

squares regression problem in the presence of stragglers, was studied in [182].

1.6.1 Nonnegative Matrix Factorization

The NMF problem deals with decomposing a matrix A ∈ RL×M
≥0 with nonnegative

entries into two matrices U ∈ RL×N
≥0 and V ∈ RN×M

≥0 , by attempting to solve

min
U∈RL×N

≥0

V ∈RN×M
≥0

{
∥A− UV ∥2F

}
(1.21)

for U, V with the appropriate dimensions. In [177] a multiplicative update algorithm

is proposed:

V ← V · U
TA

UTUV
and U ← U · AV

T

UV V T
, (1.22)

where the division is done element-wise. Multiple multiplications are required for

these updates, and the matrices can be quite large, e.g. when dealing with recom-

168

mender systems. Multiple distributive multiplications are required at each iteration,

which makes this process a lot more cumbersome. Therefore, speeding up this pro-

cess is even more crucial. Further details on this algorithm and how to incorporate

gradient methods to solve NMF can be found in [105, 189, 190].

1.6.2 Low-Rank Approximation

Consider the problem of finding a low-rank approximation of a matrix A ∈ RL×M .

That is, for an approximation of rank k or less we want to find B = UBVB for

UB ∈ RL×k and VB ∈ Rk×M , which can be done by solving the problem

min
B∈RL×M

rank(B)≤k

{
∥A−B∥2F

}
= min

UB∈RL×k

VB∈Rk×M

{
∥A− UBVB∥2F

}
, (1.23)

where it is easier to work with B = UBVB in the case where both L and M are large,

e.g. in terms of storage and computations.

The objective function of (1.23) is bi-convex. A common alternating minimization

approach fixes one of the matrices and optimizes the other, and then alternates.

It is well known that the best k-rank approximation for many norms, including

the Euclidean and Frobenius norms, can be computed through the truncated singular

value decomposition (SVD). By the Eckart–Young theorem [99]

Ak = UΣkV
T =

k∑
i=1

σiU
(i)(V (i))T (1.24)

solves (1.23). The SVD takes O(LM · min{L,M}) time itself to compute, which is

cumbersome. To avoid computing the SVD, we can resort to approximating Ak by

solving

min
U∈RL×k

UTU=Ik

{
∥A− UUTA∥2F

}
= min

U∈RL×k

UTU=Ik

{
− tr(UTAATU)

}
(1.25)

through gradient descent, where the gradient with respect to U is −AATU . Hence, at

each iteration we distributively compute AATU [t] [156, 257]. For Û our final solution

to the above minimization problem, our k-rank approximation of A will be Û ÛTA,

which is an approximation of Ak. For U⋆ being the exact solution, we have Ak =

U⋆(U⋆)TA.

Other problems in which CMM could be utilized in distributed gradient meth-

ods are the weighted low-rank matrix approximation [17] and the k-SVD algorithm

[2]. These involve similar objective functions, whose gradients have a matrix form

169

which require at least one matrix-matrix multiplication. Thus, the process would be

accelerated if these were to be computed distributively.

170

Appendix B

Appendix to Chapter III

2.1 Proofs of Subsection 3.3.2

In this appendix, we provide the proof of Theorem 3.3.1 and Corollary 3.3.1. We

first recall the following matrix Chernoff bound [294, Fact 1], and prove Proposition

2.1.1.

Theorem 2.1.1 (Matrix Chernoff Bound, [294, Fact 1]). Let X1, · · · ,Xq be inde-

pendent copies of a symmetric random matrix X ∈ Rd×d, with E[X] = 0, ∥X∥2 ⩽ γ,

∥E[X⊤X]∥2 ⩽ σ2. Let Z = 1
q

∑q
i=1Xi. Then ∀ϵ > 0:

Pr
[
∥Z∥2 > ϵ

]
⩽ 2d · exp

(
− qϵ2

σ2 + γϵ/3

)
.

Proposition 2.1.1. The sketching matrix S̃ of Algorithm 5 with Π̃i ⩾ βΠi for all i

and β ∈ (0, 1], guarantees

Pr
[
∥Id −U⊤S̃⊤S̃U∥2 > ϵ

]
⩽ 2d · e−qϵ2Θ(β/d) (2.1)

for any ϵ > 0, and q = r/τ > d/τ .

Proof. [Proposition 2.1.1] In order to use Theorem 2.1.1, we first need to define an

appropriate symmetric random matrix X, whose realizations X{q} correspond to the

sampling procedure of Algorithm 5, and S̃⊤S̃ = 1
q

∑q
i=1 Xi. The realization of the

matrix random variable are

Xi = Id −

(
U⊤(Ki

ι)
U(Ki

ι)

Π̃ι

)
= Id −

(∑
l∈Ki

ι
U⊤(l)U(l)

Π̃ι

)

171

where Kiι indicates the ιth block of A ∈ RN×d, which was sampled at trial i. This

holds for all ι ∈ NK . The expectation of the symmetric random matrix X is

E[X]
‡
= Id −

(
K∑
j=1

Π̃j ·
U⊤(Kj)

U(Kj)

Π̃j

)

= Id −
K∑
j=1

U⊤(Kj)
U(Kj)

♯
= Id −

N∑
l=1

U⊤(l)U(l)

= Id − Id

= 0d×d

where ‡ follows from the fact that each realization Xi corresponding to each {Kij}Kj=1 of

the random matrix is sampled with probability Π̃j, and in ♯ we simplify the expression

in terms of rank-1 outer-product matrices. Furthermore, for {ℓ̃l}Nl=1 the corresponding

approximate leverage scores of A

∥Xi∥2
♮

⩽ ∥Id∥2 +
∥U⊤(Ki

ι)
U(Ki

ι)
∥2

Π̃ι

⋄
⩽ 1 +

∑
l∈Ki

ι
ℓl(∑

l∈Ki
ι
ℓ̃l

)/
d

= 1 +
d · Πι

Π̃ι

= 1 +
d

β

where in ♮ we use the triangle inequality on the definition of Xi, and in ⋄ we use it

on the sum of outer-products (the numerator of second summand).

172

We now upper bound the variance of the copies of X:

∥∥E[X⊤i Xi

]∥∥
2

=

∥∥∥∥E [(Id − (U⊤(Kι)U(Kι)

/
Π̃ι

))⊤ (
Id −

(
U⊤(Kι)U(Kι)

/
Π̃i

))]∥∥∥∥
2

=
∥∥∥Id − 2 · E

[
(U⊤(Kι)U(Kι)

/
Π̃ι

]
+ E

[(
U⊤(Kι)U(Kι)

)2 /
Π̃2
ι

]∥∥∥
2

=

∥∥∥∥2
(
Id −

=Id︷ ︸︸ ︷
E
[
(U⊤(Kι)U(Kι)

/
Π̃ι

])
− Id + E

[(
U⊤(Kι)U(Kι)

)2 /
Π̃2
ι

] ∥∥∥∥
2

=
∥∥∥E [(U⊤(Kι)U(Kι)

)2 /
Π̃2
ι

]
− Id

∥∥∥
2

=

∥∥∥∥∥
(

K∑
ι=1

Πι ·
(
U⊤(Kι)U(Kι)

)2 /
Π̃2
ι

)
− Id

∥∥∥∥∥
2

♯

⩽

∥∥∥∥∥
(

K∑
ι=1

1

β

(
U⊤(Kι)U(Kι)

)2 /
Π̃ι

)
− Id

∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
 K∑

ι=1

d

β
·

(
U⊤(Kι)

U(Kι)

)2
∥U(Kι)∥2F

− Id

∥∥∥∥∥∥∥
2

⩽

∥∥∥∥∥∥∥
 K∑

ι=1

d

β
·

(
U⊤(Kι)

U(Kι)

)2
∥U(Kι)∥22

− Id

∥∥∥∥∥∥∥
2

♭
=

∥∥∥∥∥dβ ·
(

K∑
ι=1

(
U⊤(Kι)U(Kι)

)2)− Id

∥∥∥∥∥
2

♮

⩽

∥∥∥∥∥dβ
(

K∑
ι=1

(
U⊤(Kι)U(Kι)

) (
Id −U⊤(K̄ι)

U(K̄ι)

))
− Id

∥∥∥∥∥
2

=

∥∥∥∥dβ
=Id︷ ︸︸ ︷(

K∑
ι=1

U⊤(Kι)U(Kι)

)
−d
β

(
K∑
ι=1

(
U⊤(Kι)U(Kι)

) (
U⊤(K̄ι)

U(K̄ι)

))
− Id

∥∥∥∥
2

=

∥∥∥∥(d/β − 1) · Id −
d

β

(K∑
ι=1

U⊤(Kι)

0d×d︷ ︸︸ ︷(
U(Kι)U

⊤
(K̄ι)

)
U(K̄ι)

)∥∥∥∥
2

= ∥(d/β − 1) · Id∥2
= d/β − 1

where in ♯ we used the fact Πι/Π̃ι ⩽ 1/β, in ♭ that ∥U(Kι)∥22 = 1, and in ♮ that

U⊤(Kι)
U(Kι) = Id −U⊤

(K̄ι)
U(K̄ι) for each ι.

173

According to Theorem 2.1.1, we substitute γ = 1 + d and σ2 = d/β − 1 to get

1

q

q∑
i=1

Xi =
1

q

q∑
i=1

Id −
U⊤

(Kj(i))
U(Kj(i))

Π̃j(i)

= Id −

1

q

 q∑
i=1

U⊤
(Kj(i))

U(Kj(i))

Π̃j(i)

= Id −U⊤S̃⊤S̃U

where the last equality follows from the definition of S̃. Putting everything together

into Theorem 2.1.1, we get that

Pr
[
∥Id −U⊤S̃⊤S̃U∥2 > ϵ

]
⩽ 2d · e−qϵ2Θ(β/d).

Proof. [Theorem 3.3.1] By substituting q = Θ
(
d
τ

log (2d/δ)/(βϵ2)
)

in (2.1) and taking

the complementary event, we attain the desired statement.

Before we prove Corollary 3.3.1, we introduce the notion of block α-balanced, which

is a generalization of α-balanced from [231]. The sampling distribution Π{K} is said

to be block α-balanced, if

max
i∈NK

{Πi} ⩽
α

N/τ
=

α

K
(2.2)

for some constant α independent of K and q. Furthermore, in our context, if the

individual leverage scores π{N} are α-balanced for α independent of N and r, then

the block leverage scores Π{K} are block α-balanced, as

max
i∈NK

{Πi} ⩽ τ ·max
j∈NN

{πj} ⩽ τ · α
N

=
α

N/τ
=

α

K
. (2.3)

Proof. [Corollary 3.3.1] From the proof of [231, Theorem 1], we simply need to show

that ∥∥E[S̃⊤(S̃S̃⊤)−1S̃]∥∥
2
⩽ η · r

N

for S̃ a single sketch produced in Algorithm 5, and an appropriate constant η indepen-

dent of N and r. We assume that the individual leverage scores π{N} are α-balanced,

where α is a constant independent of N and r. By (2.3), it follows that the block

leverage scores Π{K} are block α-balanced; i.e. Πi ⩽ ΠK ⩽ α
K

for all i ∈ NK−1.

174

A direct computation shows that

(
S̃S̃⊤

)−1
=
(

(D ·Ω⊗ Iτ) · (Ω⊤ ·D⊤ ⊗ Iτ)
)−1

=
((

D ·Ω ·Ω⊤ ·D⊤
)
⊗ Iτ

)−1
=
(
D ·Ω ·Ω⊤ ·D⊤

)−1 ⊗ Iτ

and consequently

S̃⊤
(
S̃S̃⊤

)−1
S̃ =

(
Ω⊤ ·D⊤ ⊗ Iτ

)
·
((

D ·Ω ·Ω⊤ ·D⊤
)−1 ⊗ Iτ

)
· (D ·Ω⊗ Iτ)

=
(
Ω⊤ ·D⊤ ·

(
D ·Ω ·Ω⊤ ·D⊤

)−1 ⊗ Iτ

)
· (D ·Ω⊗ Iτ)

=
(
Ω⊤ ·D⊤ ·

(
D ·Ω ·Ω⊤ ·D⊤

)−1 ·D ·Ω)︸ ︷︷ ︸
:=Z∈RK×K

⩾0

⊗Iτ

where Z =
∑q

ι=1 Zι, for {Zι}qι=1 rank-1 outer-product matrices of size K ×K corre-

sponding to each sampling trial, through Ω. For each sampling trial, we know that

the ith block is sampled with probability Πi. Furthermore, if the ith block is sampled

at iteration ι, it follows that

Zι = ei ·
√

1

qΠi

·

(
e⊤i ·

(√
1

qΠi

)2

· ei

)−1
·
√

1

qΠi

· e⊤i

= ei ·
√

1

qΠi

·
(√

qΠi

)2
·
√

1

qΠi

· e⊤i

= ei · e⊤i

hence

E
[
S̃⊤
(
S̃S̃⊤

)−1
S̃
]

= EΩ

[
K∑
j=1

ej · e⊤j

]
⊗ Iτ =

(
K∑
j=1

EΩ

[
ej · e⊤j

])
⊗ Iτ = Q⊗ Iτ

where Q = diag
(
{hj}qj=1

)
, for hi = 1 − (1 − Πi)

q the probability that the ith block

was sampled at least once. Since we assume that the blocks A{K} are indexed in

ascending order according their block leverage scores; i.e. Πi ⩽ Πi+1 for all i ∈ NK−1,

175

it follows that hi ⩽ hK for all i; thus

E
[
S̃⊤
(
S̃S̃⊤

)−1
S̃
]

= diag
(
{hj}qj=1

)
⊗ Iτ ⪯ hK · IN =

(
1− (1−ΠK)q

)
· IN ⪯ qΠK · IN .

Consequently, since Π{K} are block α-balanced; we have∥∥∥E [S̃⊤(S̃S̃⊤)−1S̃]∥∥∥
2
⩽ q · ΠK ⩽ α · q

K
= α · r

N
.

This completes the proof, as we can take η = α.

2.2 Concrete Example of Induced Sketching

In this appendix, we give a simple demonstration of the induced sketching ma-

trices, through our proposed GC approach. For simplicity, we will consider exact

sampling, with Π{K} = {3/20, 3/20, 4/20, 5/20, 5/20} for K = 5, an arbitrary large

block size of τ , and m = 20. The optimal replication numbers resulting from this

distribution are r⋆{K} = {3, 3, 4, 5, 5}, hence m = R. In order to obtain a reduced

dimension r which is 60% of the original N , we carry out q = 3 sampling trials at

each iteration.

Let the resulting index multisets corresponding to the encoded pairs (Ãj, b̃j) of

the first four iterations; along with the resulting estimated gradients, be:

1. S [1] = {1, 4, 5} =⇒ ĝ[1] = ∇xLS

(
S̃[1],A,b;x[1]

)
= ĝ

[1]
1 + ĝ

[1]
4 + ĝ

[1]
5

2. S [2] = {3, 5, 5} =⇒ ĝ[2] = ∇xLS

(
S̃[2],A,b;x[2]

)
= ĝ

[2]
3 + ĝ

[2]
5 + ĝ

[2]
5

3. S [3] = {2, 4, 5} =⇒ ĝ[3] = ∇xLS

(
S̃[3],A,b;x[3]

)
= ĝ

[3]
2 + ĝ

[3]
4 + ĝ

[3]
5

4. S [4] = {4, 1, 4} =⇒ ĝ[4] = ∇xLS

(
S̃[4],A,b;x[4]

)
= ĝ

[4]
4 + ĝ

[4]
1 + ĝ

[4]
4 .

Then, the corresponding induced block leverage score sketching matrices of Algorithm

5, are:

1. S̃[1] =

1/
√

3Π1 0 0 0 0

0 0 0 1/
√

3Π4 0

0 0 0 0 1/
√

3Π5

⊗ Iτ

2. S̃[2] =

0 0 1/
√

3Π3 0 0

0 0 0 0 1/
√

3Π5

0 0 0 0 1/
√

3Π5

⊗ Iτ

176

3. S̃[3] =

0 1/
√

3Π2 0 0 0

0 0 0 1/
√

3Π4 0

0 0 0 0 1/
√

3Π5

⊗ Iτ

4. S̃[4] =

 0 0 0 1/
√

3Π4 0

1/
√

3Π1 0 0 0 0

0 0 0 1/
√

3Π4 0

⊗ Iτ

each of which are of size (3τ)× (5τ).

2.3 Comparison to the block-SRHT

An alternative view point is that the matrix Ũexp := Ψ · (ΣV⊤)−1 has uniform

Frobenius block scores, which further justifies the proposed GC approach for homo-

geneous servers. This resembles the main idea behind the SRHT [5, 96] and different

variants known as block-SRHT [49, 16], where a random projection is applied to the

data matrix to “flatten” its leverage scores, i.e. make them close to uniform. These

two techniques for flattening the corresponding block scores are vastly different, and

the proximity of the corresponding block scores are measured and quantified differ-

ently. In contrast to the block-SRHT, the quality of the approximation in our case

depends on the misestimation factor βΠ̃; and is not quantified probabilistically.

We note that since Ψ has repeated blocks from the expansion, the scores we

consider in Lemma 2.3.1 are not the block leverage scores of Ψ. The Frobenius block

scores of Ũexp, are in fact the corresponding block leverage scores of Ã, which are

replicated in the expansion. Moreover, note that the closer βΠ̃ is to 1, the closer

the sampling distribution according to the Frobenius block scores of Ũexp; which

we denote by Q̃{R}, is to being exactly uniform. We denote the uniform sampling

distribution by U{R}.

Lemma 2.3.1. When Π̃{K} = Π{K}, the sampling distribution Q̃{R} is uniform.

When Π̃ι ⩾ βΠ̃Πι for βΠ̃ = mini∈NK
{Πi/Π̃i} ∈ (0, 1) and all ι ∈ NK, the result-

ing distribution Q̃{R} is approximately uniform, and satisfies dU ,Q̃ ⩽ 1
/

(RβΠ̃).

Proof. Let U =
[
U⊤1 · · · U⊤K

]⊤
denote the corresponding blocks of U according the

partitioning of D. Without loss of generality, assume that the data points within each

partition are consecutive rows of A, and Uι ∈ Rτ×d for all ι ∈ NK .

177

From (3.19) and (3.22), it follows that

Ψ = Ẽ · Ã = (E⊗ Iτ) ·
(
G ·UΣV⊤

)
= (E⊗ Iτ) ·

[
U⊤1
/√

qΠ̃1 · · · U⊤K
/√

qΠ̃K

]⊤
·ΣV⊤

=: (E⊗ Iτ) ·
[
Ũ⊤1 · · · Ũ⊤K

]⊤
·ΣV⊤

=:

Ũexp∈RRτ×d︷ ︸︸ ︷[
Ũ⊤1 · · · Ũ⊤1︸ ︷︷ ︸

r1

Ũ⊤2 · · · Ũ⊤2︸ ︷︷ ︸
r2

· · · Ũ⊤K · · · Ũ⊤K︸ ︷︷ ︸
rK

]⊤
·ΣV⊤.

Note that ŨexpΣV⊤ is not the SVD of Ψ. For the normalizing factor of q
Rd

:

Q̃ι =
q

Rd
·∥Ũ∥2F =

q

Rd
·∥Uι∥2F
qΠ̃ι

=
Πι

RΠ̃ι

⩽
1

RβΠ̃
=⇒

R∑
i=1

∣∣Q̃i−1/R
∣∣ △⩽ R

RβΠ̃
=

1

βΠ̃
,

where△ follows from the fact that
∣∣Q̃i−1/R

∣∣ ⩽ 1
/(
RβΠ̃

)
for each i ∈ NR. After nor-

malizing by 1/R according to the distortion metric, we deduce that dU ,Q̃ ⩽ 1
/(
RβΠ̃

)
.

In the case where Π̃{K} = Π{K}, we have

Q̃ι =
q

Rd
· ∥Ũι∥2F =

q

Rd
· ∥Uι∥2F
qΠι

=
Πι

RΠι

=
1

R

for all ι ∈ NK , thus Q̃{K} = U{K}.

Finally, in Proposition 2.3.1 we show when the block leverage score sampling

sketch of Algorithm 5 and the block-SRHT of [49] have the same ℓ2-s.e. guarantee.

We first recall the corresponding result to Theorem 3.3.1, of the block-SRHT.

Theorem 2.3.1 ([49, Theorem 7]). The block-SRHT SĤ is a ℓ2-s.e. of A. For δ > 0

and q = Θ
(
d
τ

log(Nd/δ) · log(2d/δ)/ϵ2
)
:

Pr
[
∥Id −U⊤S⊤

Ĥ
SĤU∥2 ⩽ ϵ

]
⩾ 1− δ .

Proposition 2.3.1. Let β = 1. For δ = eΘ(1)/(Nd), the sketches of Algorithm 5 and

the block-SRHT of [49] achieve the same asymptotic ℓ2-s.e. guarantee, for the same

number of sampling trials q.

Proof. For δ = eΘ(1)/(Nd), the two sketching methods have the same q; and both

satisfy the ℓ2-s.e. property with error probability 1− δ.

178

2.4 Contraction Rate of Block Leverage Score Sampling

In this appendix we quantify the contraction rate of our method on the error

term x[s] − x⋆, which further characterizes the convergence of SD after applying our

method. The contraction rate is compared to that of regular SD.

Recall that the contraction rate of an iterative process given by a function h(x[s]) is

the constant γ ∈ (0, 1) for which at each iteration we are guaranteed that h(x[s+1]) ⩽

γ · h(x[s]), therefore h(x[s]) ⩽ γs · h(x[0]). Let ξ be a fixed step-size, S̃[s] the induced

sketching matrix of Algorithm 5 at iteration s, and define BSD =
(
Id − 2ξ ·A⊤A

)
and

Bs =
(
Id − 2ξ ·A⊤S̃⊤[s]S̃[s]A

)
. We note that the contraction rates could be further

improved if one also incorporates an optimal step-size. It is also worth noting that

when weighting from Appendix 2.5 is introduced, we have the same contraction rate

and straggler ratio.

Lemma 2.4.1. For S̃ the sketching matrix of Algorithm 5, we have E
[
S̃⊤S̃

]
= IN .

Proof. Similar to the proof of Proposition 2.1.1, we define a symmetric random ma-

trix Y, whose realizations correspond to the sampled and rescaled submatrices of

Algorithm 5. The realizations are

Yi =
I⊤(Ki

ι)
I(Ki

ι)

qΠ̃ι

=

∑
l∈Ki

ι
ele
⊤
l

qΠ̃ι

.

After q sampling trials, we have S̃⊤S̃ =
∑q

i=1Yi. It follows that

E
[
S̃⊤S̃

]
= E

[
q∑
i=i

Yi

]

=

q∑
i=1

E [Yi]

= q ·

(
K∑
j=1

Π̃j ·
I⊤(Kj)

I(Kj)

qΠ̃j

)

=
K∑
j=1

I⊤(Kj)
I(Kj)

=
N∑
l=1

e(l)e
⊤
(l)

= IN .

179

Theorem 2.4.1. The contraction rate of our GC approach through the expected sketch

S̃[s] at each iteration, is equal to the contraction rate of regular SD. Specifically, for

es := x[s] − x⋆ the error at iteration s and γSD = λ1(BSD) the contraction rate of

regular SD, we have
∥∥E[es+1]

∥∥
2
⩽ γSD · ∥es∥2.

Proof. For a fixed step-size 2ξ, our SD parameter update at iteration s+ 1 is

x[s+1] ← x[s] − 2ξ ·A⊤S̃⊤[s]S̃[s]

(
Ax[s] − b

)
,

where for regular SD we have S̃[s] ← IN . At iteration s+1, the error es of the previous

iteration is not random, hence E[es] = es. By substituting the expression of Bs, it

follows that

es+1 = x[s+1] − x⋆

=
(
x[s] − 2ξA⊤S̃⊤[s]S̃[s]

(
Ax[s] − b

))
− x⋆

= x[s] − 2ξA⊤S̃⊤[s]S̃[s]Ax[s] + 2ξA⊤S̃⊤[s]S̃[s]b− x⋆

= Bsx
[s] −

(
x⋆ − 2ξA⊤S̃⊤[s]S̃[s]b

)
= Bsx

[s] −
(
x⋆ − 2ξA⊤S̃⊤[s]S̃[s]

(
Ax⋆ + b⊥

))
= Bs

(
x[s] − x⋆

)
− 2ξA⊤S̃⊤[s]S̃[s]b

⊥

= Bses − 2ξA⊤S̃⊤[s]S̃[s]b
⊥ (2.4)

and by Lemma 2.4.1

E
[
2ξA⊤S̃⊤[s]S̃[s]b

⊥
]

= 2ξA⊤E
[
S̃⊤[s]S̃[s]

]
b⊥ = 2ξA⊤b⊥ = 0d×1 (2.5)

as b⊥ lies in the kernel of A⊤, and

E [Bs] = Id − 2ξA⊤E
[
S̃⊤[s]S̃[s]

]
A = Id − 2ξA⊤A = BSD . (2.6)

From (2.4), (2.5) and (2.6), it follows that

E [es+1] = E [Bses]− E
[
2ξA⊤S̃⊤[s]S̃[s]b

⊥
]

= E [Bs] · es = BSD · es . (2.7)

This gives us the contraction rate of the expected sketch through Algorithm 5

∥∥E[es+1]
∥∥
2
⩽ λ1

(
E[Bs]

)
· ∥es∥2 = λ1(BSD) · ∥es∥2 =⇒ γs+1 = λ1(BSD) . (2.8)

180

By replacing Bs with BSD in (2.4) and S̃[s] ← IN , we conclude that the contraction

rate of SD is γSD = λ1(BSD).

We conclude this appendix by stating the expected ratio of dimensions r to N ,

and stragglers to servers.

Remark 2.4.1. The expected ratio of the reduced dimension r to the original dimen-

sion N is q(T)τ/N , and the expected straggler to servers ratio is (m − q)/m. Since

we stop receiving computations at a time instance T ; we expect that q ← q(T) compu-

tations are received, hence there are m − q stragglers. Thus, the straggler to servers

ratio is (m− q)/m. The expected ratio between the two dimensions is immediate from

the fact that r = qτ is the new reduced dimension, in the case where q ⩽ K.

2.5 Weighted Block Leverage Score Sketch

So far, we have considered sampling w.r. according to the normalized block lever-

age scores, to reduce the effective dimension N of A and b to r = qτ . In this appendix,

we show that by weighting the sampled blocks according to the sampling which has

taken place through Ω for the construction of the sketching matrix S̃, we can further

compress the data matrix A; and get the same results when first and second order

optimization methods are used to solve (3.10). The weighting we propose is more

beneficial with non-uniform distributions, as we expect the sampling w.r. to capture

the importance of the more influence blocks. The weighted sketching matrix S̃w we

propose, is a simple extension to S̃ of Algorithm 5. For simplicity, we do not consider

iterative sketching, though similar arguments and guarantees can be derived.

The main idea is to not keep repetitions of blocks which were sampled multiple

times, but rather weigh each block by the number of times it was sampled. By doing

so, we retain the weighted sketch S̃wA of size q̄τ × d; for q̄ the number of distinct

blocks that were sampled.1 Additionally, the gradient and Hessian of LS

(
S̃w,A,b;x

)
are respectively equal to those of LS

(
S̃,A,b;x

)
; and are unbiased estimators of the

gradient and Hessian of Lls(A,b;x).

To achieve the weighting algorithmically, we count how many times each of the

distinct q̄ blocks were sampled, and at the end of the sampling procedure we multiply

the blocks by their corresponding “weight”. We initialize a weight vector w = 01×K ,

1In practice, for highly non-uniform Π{K} we expect q̄τ ≪ r = qτ . The sketch S̃wA could

therefore be stored in much less space than S̃A, and the system of equations S̃w(A − b) = 0q̄τ×1

could have significantly fewer equations than S̃(A− b) = 0qτ×1.

181

and in the sampling procedure whenever the ith partition is drawn, we update its

corresponding weight: wi ← wi + 1. It is clear that once q trials are been carried

out, we have ∥w∥1 = q for w ∈ N1×K
0 .

Let S denote the index multiset observed after the sampling procedure of Algo-

rithm 5, and S̄ the set of indices comprising S. That is, S has cardinality q and may

have repetitions, while S̄ = NK ∩ S has cardinality q̄ = |S̄| ⩽ q with no repetitions.

We denote the ratio of the two sets by ζ := q/q̄ = ∥w∥1/∥w∥0 ⩾ 1, which indicates

how much further compression we get by utilizing the fact that blocks may be sampled

multiple times. The corresponding weighted sketching matrix S̃w of S̃ is then

S̃w =

W̄1/2∈R
q̄×q̄
⩾0︷ ︸︸ ︷

diag

({√
wj

/(
qΠj

)}
j∈S̄

)
·I(S̄) ⊗ Iτ ∈ Rq̄τ×N (2.9)

where I(S̄) ∈ {0, 1}q̄×K is the restriction of IK to the rows indexed by S̄.

For simplicity, assume that the sampling matrices which are devised for S̃ and S̃w

follow the ordering of the sampled blocks in order of the samples, i.e. if
(
Ω(i)

)
j

= 1

then
(
Ω(i+1)

)
l

= 1 for l ⩾ j; and equivalently Sl ⩽ Sl+1 and S̄l < S̄l+1 for all valid

l. We restrict the sampling matrix Ω ∈ {0, 1}q×K to its unique rows, by applying

Ω̄ ∈ {0, 1}q̄×q:

Ω̄ij =

1 for i = 1 and j = S1
1 if Sj > Sj−1 for j ∈ Nq\{1}

0 otherwise

to the left of the sampling matrix Ω of Algorithm 5, i.e. Ωw := Ω̄ · Ω ∈ {0, 1}q̄×K .

This sampling matrix then satisfies

(Ωw)ij =

1 if j = S̄j
0 otherwise

for j ∈ Nq̄ .

Let w̃ = w|S̄ ∈ Z1×q̄
+ be the restriction of w to its nonzero elements; hence ∥w̃∥1 =

∥w∥1 = |S| = q, and define the rescaling diagonal matrix W̃1/2 = diag
({√

w̃i

}q̄
i=1

)
.

We then have the following relationship

S̃w =

=W̄1/2︷ ︸︸ ︷(
W̃1/2 · Ω̄ ·D · Ω̄⊤

)
·Ωw ⊗ Iτ =

(
W̄1/2 ⊗ Iτ

)
·
(
Ωw ⊗ Iτ

)
(2.10)

182

when S̄ = NK ∩ S.

As previously noted, S̃w has ζ times less rows than S̃. Hence, the required storage

space for the sketch S̃wA drops by a multiplicatively factor of ζ, and the required

operations are reduced analogously; according to the computation. The weighted

sketching matrix S̃w has the following guarantees, which imply that the proposed

weighting will not affect first or second order iterative methods which are used to

approximate (3.10).

Proposition 2.5.1. The resulting gradient and Hessian of the modified least squares

problem (3.10) when sketching with S̃ of Algorithm 5, are respectively identical to the

resulting gradient and Hessian when sketching with S̃w presented in (2.9) and (2.10).

Proof. From Algorithm 5, the assumption on the ordering of the elements in S and

S̄, and the construction of S̃, we have

S̃⊤w · S̃w =
((

Ω⊤w · W̃⊤
1/2

)
⊗ Iτ

)
·
((

W̃1/2 ·Ωw

)
⊗ Iτ

)
=
((

Ω⊤ ·D⊤
)
⊗ Iτ

)
·
((

D ·Ω
)
⊗ Iτ

)
= S̃⊤ · S̃ .

Let T =
⊎
j∈S Kj and T̄ =

⊔
j∈S̄ Kj, thus T̄ is contained in T when both are viewed as

multisets. Considering the objective function LS(S,A,b;x) of (3.10), the equivalence

of gradients is observed through the following computation

∇xLS(S̃,A,b;x) = 2A⊤
(
S̃⊤S̃

)
(Ax− b)

= 2
∑
l∈T

A⊤(l) ·D2
ll ·
(
A(l)x− bl

)
= 2

∑
j∈T̄

w̃j ·A⊤(j) ·D2
jj ·
(
A(j)x− bj

)
= 2

∑
j∈T̄

A⊤(j) ·
(
W̃1/2

)2
jj
·
(
A(j)x− bj

)
= 2A⊤

(
S̃⊤wS̃w

)
(Ax− b)

= ∇xLS(S̃w,A,b;x) .

Recall that the Hessian of the least squares objective function (3.2) is∇2
xLls(A,b;x) =

2A⊤A. Considering the modified objective function (3.10) and our sketching matri-

183

ces, it follows that

∇2
xLS

(
S̃,A,b;x

)
= 2A⊤

(
S̃⊤S̃

)
A

= 2
∑
l∈T

A⊤(l) ·D2
ll ·A(l)

= 2
∑
j∈T̄

w̃j ·A⊤(j) ·D2
jj ·A(j)

= 2
∑
j∈T̄

A⊤(j) ·
(
W̃1/2

)2
jj
·A(j)

= 2A⊤
(
S̃⊤wS̃w

)
A

= ∇2
xLS

(
S̃w,A,b;x

)
which completes the proof.

Corollary 2.5.1. At each iteration, the gradient and Hessian of the weighted sketch

system of equations S̃w(A− b) = 0q̄τ×1, are unbiased estimators of the gradient and

Hessian of the original system (A− b) = 0N×1.

Proof. Denote the gradient and Hessian of the weighted sketch at iteration s by ĝ
[s]
w

and Ĥ
[s]
w respectively. By Proposition 2.5.1 we know that ĝ

[s]
w = ĝ[s], and by Theorem

3.3.2 that E
[
ĝ[s]
]

= g[s]. Hence E
[
ĝ
[s]
w

]
= g[s].

Following the same notation as in the proof of Theorem 3.3.2, the Hessian Ĥ [s] =

∇2
xLS

(
S̃[s],A,b;x[s]

)
is

Ĥ [s] = 2
∑
i∈I[s]

1

qΠ̃i

A⊤i Ai

thus

E
[
Ĥ [s]

]
= 2E

∑
i∈I[s]

1

qΠ̃i

A⊤i Ai

 = 2
∑
i∈I[s]

K∑
j=1

Π̃j
1

qΠ̃j

A⊤j Aj = 2q·
K∑
j=1

1

q
A⊤i Ai = 2A⊤A

which is precisely the Hessian of (3.2). By Proposition 2.5.1, it follows that E
[
Ĥ

[s]
w

]
=

2A⊤A, which completes the proof.

Geometrically, from the point of view of adding vectors, the partial gradients of

the partitions sampled will be scaled accordingly to their weights. Therefore, the

partial gradients ĝi with higher weights have a greater influence in the direction of

the resulting gradient ĝ. This was also the fundamental idea behind our sketching and

GC techniques, as the partitions sampled multiple times are of greater importance.

184

Next, we quantify the expected dimension of the weighted sketch S̃wA. This shows

the dependence on Π̃{K}, and further justifies that we attain a higher compression

factor ζ when the block leverage scores are non-uniform.

Theorem 2.5.1. The expected reduced dimension of S̃wA is
(
K−

∑K
i=1(1−Π̃i)

q
)
·τ ,

which is maximal when Π̃{K} is uniform.

Proof. It suffices to determine the expected number of distinct blocks Ai which are

sampled after q trials when carrying out Algorithm 5. The probability of not sampling

Ai at a given trial is
(
1− Π̃i

)
, hence not sampling Ai at any trial occurs with prob-

ability
(
1 − Π̃i

)q
; since the trials are identical and independent. Thus, the expected

number of distinct blocks being sampled is

E[q̄] =
K∑
i=1

1 · Pr
[
Ai was sampled at least once sampled

]
=

K∑
i=1

(
1− ·Pr

[
Ai was not sampled at any trial

])
=

K∑
i=1

(
1−

(
1− Π̃i

)q)
= K −

K∑
i=1

(
1− Π̃i

)q
.

Thus, the expected reduced dimension is τ · E[q̄].

Let Q
(
Π̃{K}

)
:=
∑K

i=1(1 − Π̃i)
q, and introduce the Lagrange multiplier λ > 0 to

the constraint R
(
Π̃{K}

)
=
(∑K

i=1 Π̃i − 1
)

, to get the Lagrange function

L
(
Π̃{K}, λ

)
:= Q

(
Π̃{K}

)
+ λ ·R

(
Π̃{K}

)
=

K∑
i=1

(
λ · Π̃i +

(
1− Π̃i

)q)− λ (2.11)

for which
∂L

(
Π̃{K}, λ

)
∂Π̃i

= λ− q(1− Π̃i)
q−1 = 0 (2.12)

=⇒ Π̃i = 1− (λ/q)1/(q−1) and λ = q(1− Π̃i)
q−1 (2.13)

for all i ∈ NK , and

∂L
(
Π̃{K}, λ

)
∂λ

=
K∑
i=1

Π̃i − 1 = 0 . (2.14)

Note that the uniform distribution U{K} =
{

Π̃i = 1/K
}K
i=1

is a solution to (2.14).

185

We will now verify that U{K} satisfies (2.12). From (2.13); for Π̃{K} ← U{K}, we have

λ = q(1− 1/K)q−1 > 0, which we substitute into (2.12):

λ− q(1− Π̃i)
q−1 = q(1− 1/K)q−1 − q(1− 1/K)q−1 = 0 . (2.15)

Hence, U{K} is the solution to both (2.12) and (2.14).

By the second derivative test; since ∂2L
(
Π̃{K}

)/
∂Π̃2

i = q(q − 1)(1 − Π̃i)
q−2 is

positive for Π̃i = 1/K, we conclude that Q
(
U{K}

)
⩽ Q

(
Π̃{K}

)
for any Π̃{K} ̸= U{K}.

This implies that E[q̄] is maximal when Π̃{K} = U{K}, and so is the expected reduced

dimension of S̃wA.

We further note that E[q̄] from the proof of Theorem 2.5.1, is trivially minimal

in the degenerate case where Π̃ι = 1 for a single ι ∈ NK , and Π̃j = 0 for every

j ∈ NK\{ι}. This occurs in the case where Aj = 0τ×d for each j, and q̄ is therefore

exactly

K −
∑
j ̸=ι

(1− Π̃j)
q = K −

∑
j ̸=ι

1q = K − (K − 1) = 1 .

186

Appendix C

Appendix to Chapter IV

3.1 Proofs of Section 4.3

3.1.1 Subsection 4.3.1

Note that in Lemma 4.3.1:

E
[
Ω̃T

[t]Ω̃[t]

]
= IN =⇒ E

[
ST[t]S[t]

]
= IN ,

as

E
[
ST[t]S[t]

]
= ΠTE

[
Ω̃T

[t]Ω̃[t]

]
Π = ΠTΠ = IN .

We provide both derivations separately in order to convey the respective importance

behind the use of the Lemma in subsequent arguments, even though the main idea is

the same. Furthermore, the proof of Theorem 4.3.1 is very similar to that of Lemma

4.3.1.

Proof. [Lemma 4.3.1] The only difference in S
[t]
Π at each iteration, is S [t] and Ω̃[t].

This corresponds to a uniform random selection of q out of K batches of the data

which determine the gradient at iteration t — all blocks are scaled by the same factor

187

√
K/q in Ω̃[t]. Let Q be the set of all subsets of NK of size q. Then

E
[
ST[t]S[t]

]
=
∑
S[t]∈Q

1(
K
q

) · (S[t] · S[t]

)
=

1(
K
q

) ∑
S[t]∈Q

∑
i∈S[t]

(√
K/q

)2
·ΠT

(Ki)
Π(Ki)

=

(
K−1
q−1

)(
K
q

) K∑
i=1

K

q
·ΠT

(Ki)
Π(Ki)

=

(
K−1
q−1

)
· K
q(

K
q

) K∑
i=1

ΠT
(Ki)

Π(Ki)

= ΠTΠ

= IN

where
(
K−1
q−1

)
is the number of sets in Q which include i, for each i ∈ NK . This

completes the first part of the proof.

Note that the sampling and rescaling matrices Ω̃[t] of Algorithm 7, may also be

expressed as

Ω̃[t] =
√
K/q ·

∑
ι∈S[t]

I(Kι) .

Further notice that Ω̃[t]’s corresponding sampling and rescaling matrix of size N×N ,

which appears in the expansion the objective function (4.5), is

Ω̃T
[t]Ω̃[t] =

(√
K/q

)2
·
∑
ι∈S[t]

(
I(Kι)

)T
I(Kι)

=
K

q
·
∑

j∈
⊔

ι∈S[t]

Kι

eje
T
j .

Let B denote the set of all possible block sampling and rescaling matrices of size

r × N , which sample q out of K blocks. For Φ ∈ B, by I(Kι) ⊆ Φ we denote the

condition that I(Kι) is a submatrix of Φ. Note that for each ι ∈ NK , there are
(
K−1
q−1

)

188

matrices in B which have I(Kι) as a submatrix. For our set up, we then have

E
[
Ω̃T

[t]Ω̃[t]

]
=
∑
Φ∈B

1(
K
q

) · (ΦTΦ
)

=

(√
K/q

)2
(
K
q

) ·
∑
Φ∈B

∑
I(Kι)⊆Φ

(
I(Kι)

)T
I(Kι)

=

(
K−1
q−1

)
· (K/q)(
K
q

) ·
∑
ι∈NK

(
I(Kι)

)T
I(Kι)

=
∑
ι∈NK

(
I(Kι)

)T
I(Kι)

=
∑
j∈NN

eTj ej

= IN

and the proof is complete.

Proof. [Theorem 4.3.1] The only difference in S
[t]
Π at each iteration, is S [t] and Ω̃[t].

This corresponds to a uniform random selection of q out of K batches of the data

which determine the gradient at iteration t — all blocks are scaled by the same factor√
K/q in Ω̃[t]. By (4.10), the gradient update is equal to that of a batch stochastic

steepest descent procedure.

We break up the proof of the second statement by first showing that E
[
ĝ[t]
]

= g̃[t];

for g̃ the gradient in the basis ΠU, and then showing that E
[
g̃[t]
]

= q
K
· g[t]ls .

Let Q be the set of all subsets of NK of size q, ĝS[t] the gradient determined by

189

the index set S [t], and g̃
[t]
i the respective partial gradients at iteration t. Then

E
[
ĝ[t]
]

=
∑
S[t]∈Q

1(
K
q

) · ĝS[t]
=

1(
K
q

) ∑
S[t]∈Q

∑
i∈S[t]

(√
K/q

)2
· g̃[t]i

=

(
K−1
q−1

)(
K
q

) K∑
i=1

K

q
· g̃[t]i

=
K∑
i=1

g̃
[t]
i

= g̃[t]

where
(
K−1
q−1

)
is the number of sets in Q which include i, for each i ∈ NK .

We denote the resulting partial gradient on the sampled index set S [t] of the

gradient on (4.1) at iteration t; i.e. g
[t]
ls , by gS[t] , and the individual partial gradients

by g
[t]
i . Using the same notation as above, we get that

E
[
g̃[t]
]

=
∑
S[t]∈Q

1(
K
q

) · gS[t]
=

1(
K
q

) ∑
S[t]∈Q

∑
i∈S[t]

g
[t]
i

=

(
K−1
q−1

)(
K
q

) K∑
i=1

g
[t]
i

=
q

K
·
K∑
i=1

g̃
[t]
i

=
q

K
· g[t]

which completes the proof.

Proof. [Lemma 4.3.2] Since Π is an orthonormal matrix, the solution of the least

squares problem with the objective LG(A,b;x) is equal to the optimal solution (4.1),

190

as

x̂ = arg min
x∈Rd
∥G(Ax− b)∥22

= arg min
x∈Rd
∥Π(Ax− b)∥22

= arg min
x∈Rd
∥Ax− b∥22

= x⋆ls .

Proof. [Corollary 4.3.1] We prove this by induction. From our assumptions we have

a fixed starting point x[0], for which x̂[0] = x[0]. Our base case is therefore E[x̂[0]] =

E[x[0]] = x[0]. For the inductive hypothesis, we assume that E[x̂[τ]] = x[τ] for τ ∈ N.

It then follows that at step τ + 1 we have

E
[
x̂[τ+1]

]
= E

[
x̂[τ] − ξ̂τ · ĝ[τ]

]
= E

[
x̂[τ]
]
− K

q
· ξτ · E

[
ĝ[τ]
]

= x[τ] − q

K
·
(
K

q
· ξτ
)
· g[τ]ls

= x[τ] − ξτ · g[τ]ls
= x[τ+1]

which completes the inductive step.

3.1.2 Subsection 4.3.2

In this appendix, we provide the proofs of Lemma 4.3.3 and Theorem 4.3.2. First,

we need to provide Lemmas 3.1.1 and 3.1.2, and Hoeffding’s inequality; which we

use to prove the latter Lemma. Throughout this subsection, by ℓi we denote the ith

leverage score of ΠA for Π a random orthonormal matrix, i.e.

ℓi = ∥Ũ(i)∥22 = ∥eTi Ũ∥22 = eTi ŨŨTei (3.1)

where Ũ = ΠU; for U the reduced left orthonormal matrix of A. By ei we denote

the ith standard basis vector of RN .

Lemma 3.1.1. For each i ∈ NN , we have E[ℓi] = d
N
.

191

Proof. By (3.1), we have

E[ℓi] = E
[
tr(eTi ŨŨTei)

]
= E

[
tr(eie

T
i · ŨŨT)

]
=

N∑
j=1

1

N
· tr(ejeTj · ŨŨT)

=
1

N
· tr

(
N∑
j=1

eje
T
j · ŨŨT

)

=
1

N
· tr
(
IN · ŨŨT

)
=

1

N
· tr
(
ŨŨT

)
=

d

N
.

Let ℓ̄i denote the ith normalized leverage score, i.e. ℓ̄i = ℓi
d

. The ιth normalized

block leverage score of A is denoted by ℓ̀ι, i.e.

ℓ̀ι =
1

d
· ∥I(Kι)Ũ∥2F =

1

d
·
(∑
j∈Kι

ℓj

)
=
∑
j∈Kι

ℓ̄j . (3.2)

To prove Lemma 4.3.3, we first recall Hoeffding’s inequality.

Theorem 3.1.1 (Hoeffding’s Inequality, [201]). Let {Xi}mi=1 be independent random

variables such that Xi ∈ [ai, bi] for all i ∈ Nm, and let X =
∑m

i=1Xi. Then

Pr
[∣∣X − E[X]

∣∣ ⩾ t
]
⩽ 2 · exp

{
−2t2∑m

j=1(ai − bi)2

}
.

Lemma 3.1.2. The normalized leverage scores {ℓ̄i}Ni=1 of ΠA satisfy

Pr
[
|ℓ̄i − 1/N | < ρ

]
> 1− 2 · e−2ρ2

for any ρ > 0.

Proof. We know that ℓi ∈ [0, d] for each i ∈ NN , thus ℓ̄i ∈ [0, 1] for each i. By Lemma

3.1.1, it follows that

E[ℓ̄i] = E[ℓi/d] =
1

d
· E[ℓi] =

1

N
.

192

Now, fix a constant ρ > 0. By applying Theorem 3.1.1 with m = 1, we get

Pr
[
|ℓ̄i − 1/N | ⩾ ρ

]
⩽ 2 · e−2ρ2

thus

Pr
[
|ℓ̄i − 1/N | < ρ

]
> 1− 2 · e−2ρ2 .

Next, we complete the proof of the “flattening Lemma of block leverage scores”

(Lemma 4.3.3).

Proof. [Lemma 4.3.3] To show that the two probability events of expression (4.13)

are equal, note that:

1. ℓ̀ι − 1
K
< N

K
ρ ⇐⇒ ℓ̀ι < (1 +Nρ) 1

K

2. 1
K
− ℓ̀ι < N

K
ρ ⇐⇒ ℓ̀ι > (1−Nρ) 1

K
.

By combining the two inequalities, we conclude that

(1−Nρ) · 1

K
< ℓ̀ι < (1 +Nρ) · 1

K
⇐⇒ ℓ̀ι <Nρ 1/K. (3.3)

By Lemma 3.1.2, it follows that

Pr
[∣∣ℓ̀ι − 1/K

∣∣ < τρ
]
> Pr

[∧
j∈Kι

{
|ℓ̄i − 1/N | < ρ

}]
>
(

1− 2 · e−2ρ2
)τ

⋊⋉
≈ 1− 2τ · e−2ρ2

where in ⋊⋉ we applied the binomial approximation. By substituting ρ ⩾
√

log(2τ/δ)/2,

we get

e−2ρ
2

⩽ e−2
log(2τ/δ)

2

= e− log(2τ/δ)

= elog(δ/2τ)

= δ/2τ,

thus 2τ ·e−2ρ2 ⩽ δ; and 1−2τ ·e−2ρ2 ⩾ 1−δ. In turn, this implies that Pr
[∣∣ℓ̀ι − 1/K

∣∣ < τρ
]
>

1− δ.

193

The proof of Theorem 4.3.2 is a direct consequence of Lemma 4.3.3 and Theorem

3.1.2. In our statement we make the assumption that ℓ̀ι = 1/K for all ι, though this

is not necessarily the case, as Lemma 4.3.3 permits a small deviation. For ρ← ϵ, we

consider ϵ≪ 1/N so that the ‘Nϵ multiplicative error’ in (3.3) is small. We note that

[56, Theorem 1] considers sampling according to approximate block leverage scores.

Theorem 3.1.2 (ℓ2-s.e. of the block leverage score sampling sketch, [56]). The

sketching matrix S̃ constructed by sampling blocks of A with replacement according

to their normalized block leverage scores {ℓ̀ι}Kι=1 and rescaling each sampled block by√
1
/(
qℓ̀ι
)
, guarantees a ℓ2-s.e. of A; as defined in (4.9). Specifically, for δ > 0 and

q = Θ(d
τ

log (2d/δ)/ϵ2):

Pr
[
∥Id −UT S̃T S̃U∥2 ⩽ ϵ

]
⩾ 1− δ.

Before we prove Proposition 4.3.1, we first derive (4.6). In [59], the optimal

decoding vector of an approximate GCS was defined as

a⋆I = arg min
a∈R1×q

{
∥aG(I) − 1⃗∥22

}
. (3.4)

In the case where q ⩾ K, it follows that a⋆I = 1⃗G†(I). The error can then be quantified

as

err(G(I)) := ∥IK −G†(I)G(I)∥2 .

The optimal decoding vector (3.4) has also been considered in other schemes, e.g.

[155, 253].

Let g[t] be the matrix comprised of the transposed exact partial gradients at

iteration t, i.e.

g[t] :=
(
g
[t]
1 g

[t]
2 . . . g

[t]
K

)T
∈ RK×d .

Then, for a GCS (G, aI) satisfying aIG(I) = 1⃗ for any I, it follows that
(
aIG(I)

)
g[t] =

1⃗g[t] =
(
g[t]
)T

. Hence, the gradient can be recovered exactly. Considering an optimal

approximate scheme (G, a⋆I) which recovers the gradient estimate g̀[t] =
(
a⋆IG(I)

)
g[s],

194

the error in the gradient approximation is

∥∥g[s] − g̀[s]∥∥
2

=
∥∥∥(1⃗− a⋆IG(I)

)
g[s]
∥∥∥
2

=
∥∥∥1⃗(IK −G†(I)G(I)

)
g[s]
∥∥∥
2

⩽ ∥1⃗∥2 ·
∥∥∥IK −G†(I)G(I)

∥∥∥
2
·
∥∥g[s]

∥∥
2

£

⩽
√
K ·

∥∥∥IK −G†(I)G(I)

∥∥∥
2
·
∥∥g[s]∥∥

2

$

⩽ 2
√
K ·

∥∥∥IK −G†(I)G(I)

∥∥∥
2︸ ︷︷ ︸

err(G(I))

·∥A∥2 · ∥Ax[s] − b∥2

where £ follows from the facts that ∥g[s]∥2 ⩽ ∥g[s]∥2 and ∥1⃗∥2 =
√
K, and $ from (4.2)

and sub-multiplicativity of matrix norms. This concludes the derivation of (4.6).

Proof. [Proposition 4.3.1] Let ĝ[t] be the approximated gradient of our scheme at

iteration t. Since we are considering linear regression, it follows that

∥∥g[t] − ĝ[t]∥∥
2

= 2∥AT (Ax[t] − b)−AT (STΠSΠ)(Ax[t] − b)∥2
= 2∥AT (IN − STΠSΠ)(Ax[t] − b)∥2
⩽ 2∥A∥2 · ∥IN − STΠSΠ∥2 · ∥Ax[t] − b∥2
= 2∥A∥2 · ∥UT (IN − STΠSΠ)U∥2 · ∥Ax[s] − b∥2
= 2∥A∥2 · ∥Id −UTSTΠSΠU∥2 · ∥Ax[s] − b∥2
♭

⩽ 2ϵ · ∥A∥2 · ∥Ax[t] − b∥2

where in ♭ we invoked the fact that SΠ satisfies (4.9). Our approximate GC approach

therefore (w.h.p.) satisfies (4.6), with err(G(I)) = ϵ/
√
K

3.2 Proofs of Section 4.4

In this appendix, we present two lemmas which we use to bound the entries of

V̂ := ĤDU, and its leverage scores ℓi := ∥V̂(i)∥22, for which
∑N

i=1 ℓi = d. Leverage

scores induce a sampling distribution which has proven to be useful in linear regression

[91, 294, 201, 290] and GC [52]. From these lemmas, we deduce that the leverage scores

of ĤDA are close to being uniform, implying that the block leverage scores [221, 52]

are also uniform, which is precisely what Lemma 3.2.3 states.

Lemma 3.2.2 is a variant of the Flattening Lemma [5, 201], a key result to

195

Hadamard based sketching algorithms, which justifies uniform sampling. In the proof,

we make use of the Azuma-Hoeffding inequality; a concentration result for the val-

ues of martingales that have bounded differences. We also recall a matrix Chernoff

bound, which we apply to prove our ℓ2-s.e. guarantees. Finally, we present proofs of

Proposition 3.2.1 and Theorems 4.3.1, 4.4.1.

Lemma 3.2.1 (Azuma-Hoeffding Inequality, [201]). For zero mean random variable

Zi (or Z0, Z1, · · · , Zm a martingale sequence of random variables), bounded above by

|Zi| ⩽ βi for all i with probability 1, we have

Pr

[∣∣ m∑
j=0

Zj
∣∣ > t

]
⩽ 2 exp

{
−t2

2 ·
(∑m

j=0 β
2
j

)} .
Theorem 3.2.1 (Matrix Chernoff Bound, [294, Fact 1]). Let X1, · · · ,Xq be inde-

pendent copies of a symmetric random matrix X ∈ Rd×d, with E[X] = 0, ∥X∥2 ⩽ γ,

∥E[XTX]∥2 ⩽ σ2. Let Z = 1
q

∑q
i=1Xi. Then, ∀ϵ > 0:

Pr
[
∥Z∥2 > ϵ

]
⩽ 2d · exp

(
− qϵ2

σ2 + γϵ/3

)
. (3.5)

Lemma 3.2.2 (Flattening Lemma). For y ∈ RN a fixed (orthonormal) column vector

of U, and D ∈ {0, ±1}N×N with random equi-probable diagonal entries of ±1, we have:

Pr
[
∥ĤD · y∥∞ > C

√
log(Nd/δ)/N

]
⩽

δ

2d
(3.6)

for 0 < C ⩽
√

2 + log(16)/ log(Nd/δ) a constant.

Proof. [Lemma 3.2.2] Fix i and define Zj = ĤijDjjyj for each j ∈ NN , which are

independent random variables. Since Djj = D⃗j are i.i.d. entries with zero mean, so

are Zj. Furthermore |Zj| ⩽ |Ĥij| · |Djj| · |yj| = |yj |√
N

, and note that

N∑
j=1

Zj = (ĤDy)i =
N∑
j=1

ĤijDjjyj = ⟨Ĥ(i) ⊙
D⃗︷ ︸︸ ︷

diag(D),y⟩

196

where ⊙ is the Hadamard product. By Lemma 3.2.1

Pr

[∣∣∣ N∑
j=1

Zj

∣∣∣ > ρ

]
⩽ 2 exp

{
−ρ2/2∑N

j=1(yj/
√
N)2

}

= 2 exp

{
−Nρ2

2 · ⟨y,y⟩

}
♭
= 2 · e−Nρ2/2 (3.7)

where ♭ follows from the fact that y is a column of U. By setting ρ = C
√

log(Nd/δ)
N

,

we get

Pr

[∣∣∣ N∑
j=1

Zj

∣∣∣ > C

√
log(Nd/δ)

N

]
⩽ 2 exp

{
−C

2 log(Nd/δ)

2

}

= 2

(
δ

Nd

)C2/2 ♮

⩽
δ

2Nd

where ♮ follows from the upper bound on C. By applying the union bound over all

i ∈ NN , we attain (3.6).

Lemma 3.2.3. For all i ∈ NN and {ei}Ni=1 the standard basis:

Pr
[√

ℓi ⩽ C
√
d log(Nd/δ)/N

]
⩾ 1− δ/2

for ℓi = ∥V̂(i)∥22 the ith leverage score of V̂ = ĤDU.

Proof. [Lemma 3.2.3] It is straightforward that the columns of V̂ form an orthonormal

basis of A, thus Lemma 3.2.2 implies that for j ∈ Nd

Pr
[
∥V̂ · ej∥∞ > C

√
log(Nd/δ)/N

]
⩽

δ

2d
.

By applying the union bound over all entries of V̂(j) = V̂ · ej

Pr

[|(ĤDU)ij |︷ ︸︸ ︷
|eTi · V̂ · ej| > C

√
log(Nd/δ)

N

]
⩽ d · δ

2d
= δ/2 . (3.8)

We manipulate the argument of the above bound to obtain

∥eTi · V̂∥2 =
(d∑
j=1

(ĤDU)2ij

)1/2
> C

√
d · log(Nd/δ)

N
,

197

which can be viewed as a scaling of the random variable entries of V̂. The probability

of the complementary event is therefore

Pr
[
∥eTi · V̂∥2 ⩽ C

√
d log(Nd/δ)/N

]
⩾ 1− δ/2

and the proof is complete.

Remark 3.2.1. The complementary probable event of (3.8) can be interpreted as

‘every entry of V̂ is small in absolute value’.

Proof. [Lemma 4.4.1] For α := ηd · log(Nd/δ)/N

Pr
[
ℓ̃ι ⩽ τ · α

]
> Pr

[
{ℓj ⩽ α : ∀j ∈ Kι}

] ♢
> (1− δ/2)τ

where η = C2 and ♢ follows from Lemma 3.2.3. By the binomial approximation, we

have (1− δ/2)τ ≈ 1− τδ/2.

Define the symmetric matrices

Xi =

(
Id −

N

τ
· V̂T

(Ki)V̂(Ki)

)
=
(
Id −K · V̂T

(Ki)V̂(Ki)

)
(3.9)

where V̂(Ki) = V̂(Kι) is the submatrix of V̂ corresponding to the ith sampling trial of

our algorithm. Let X be the matrix r.v. of which the Xi’s are independent copies.

Note that the realizations Xi of X correspond to the sampling blocks of the event in

(4.9). To apply Theorem 3.2.1, we show that the Xi’s have zero mean, and we bound

198

their ℓ2-norm and variance. Their ℓ2-norms are upper bounded by

∥Xi∥2 ⩽ ∥Id∥2 + ∥N
τ
· V̂T

(Ki)V̂(Ki)∥2

= 1 +
N

τ
· ∥V̂(Kι)∥22

⩽ 1 +
N

τ
·max
ι∈NK

{
∥I(Kι) · V̂∥22

}
⩽ 1 +

N

τ
·max
ι∈NK

{
∥I(Kι) · V̂∥2F

}
$

⩽ 1 +
N

τ
·
(
|Kι| ·max

j∈NN

{
∥eTj · V̂∥22

})
⩽ 1 +

N

τ
·
(
τ · (η · d log(Nd/δ)/N)

)
[Lemma 3.2.2]

= 1 + η · d log(Nd/δ) (3.10)

= 1 +Nα

for α = ηd · log(Nd/δ)/N where in $ we used the fact that

∥I(Kι) · V̂∥2F =
∑
j∈Kι

∥eTj · V̂∥22 ⩽ |Kι| ·max
j∈Kι

{
∥eTj · V̂∥22

}
.

From the above derivation, it follows that

∥V̂(Ki)∥22 = ∥V̂T
(Ki)V̂(Ki)∥2

⩽
τ

N
· (1 + η · d log(Nd/δ)− ∥Id∥2)

= τηd/N · log(Nd/δ)

= τα

for all ι ∈ NK . By setting τ = 1, we get an upper bound on the squared ℓ2-norm of

the rows of V̂:

∥V̂l∥22 = ∥V̂lV̂
T
l ∥2 = ∥V̂T

l V̂l∥2 ⩽ α (3.11)

where V̂l = V̂(l), for all l ∈ NN .

Next, we compute E := E[XTX + Id] and its eigenvalues. By the definition of X

199

and its realizations:

XT
i Xi =

(
Id −N/τ · V̂T

(Ki)V̂(Ki)

)T
·
(
Id −N/τ · V̂T

(Ki)V̂(Ki)

)
= Id − 2 · N

τ
· V̂T

(Ki)V̂(Ki) +

(
N

τ

)2

· V̂T
(Ki)V̂(Ki)V̂

T
(Ki)V̂(Ki)

thus E is evaluated as follows:

E[XTX + Id] = 2Id − 2 · (N/τ) · E
[
V̂T

(Ki)V̂(Ki)

]
+ (N/τ)2 · E

[
V̂T

(Ki)V̂(Ki)V̂
T
(Ki)V̂(Ki)

]
= 2Id − 2 · (N/τ) ·

(∑K
j=1K

−1 · V̂T
(Kj)

V̂(Kj)

)
+

. + (N/τ)2 ·
(∑K

j=1K
−1 · V̂T

(Kj)

(
V̂(Kj)V̂

T
(Kj)

)
V̂(Kj)

)
= 2Id − 2 ·

(∑N
l=1V̂

T
l V̂l

)
+ (N/τ) ·

(∑N
l=1V̂

T
l

(
V̂lV̂

T
l

)
V̂l

)
= K ·

(∑N
l=1⟨V̂l, V̂l⟩ · V̂T

l V̂l

)
where in the last equality we invoked

∑N
l=1 V̂

T
l V̂l = Id.

In order to bound the variance of the matrix random variable X, we bound the

largest eigenvalue of E; by comparing it to the matrix

F = Kα ·

(
N∑
l=1

V̂T
l V̂l

)
= Kα · Id

whose eigenvalue Kα is of algebraic multiplicity d. It is clear that E and F are both

real and symmetric; thus they admit an eigendecomposition of the form QΛQT . Note

200

also that for all y ∈ Rd:

yTEy = K · yT
(

N∑
l=1

V̂T
l

(
V̂lV̂

T
l

)
V̂l

)
y

♯
= K ·

N∑
l=1

⟨y, V̂l⟩2 · ∥V̂l∥22

♭

⩽ Kα ·
N∑
l=1

⟨y, V̂l⟩2 (3.13)

= Kα ·
N∑
l=1

yT V̂T
l · V̂ly

= yT

(
Kα ·

N∑
l=1

V̂T
l · V̂l

)
y

= yTFy

where in ♭ we invoked (3.11). By ♯ we conclude that yTEy ⩾ 0, thus F ⪰ E ⪰ 0.

Let wi, zi be the unit-norm eigenvectors of E,F corresponding to their respective

ith largest eigenvalue. Then

wT
i

(
QEΛEQ

T
E

)
wi = eTi ·ΛE · ei = λi =⇒

and by (3.13) we bound this as follows:

λi = wT
i Ewi ⩽ Kα ·

N∑
l=1

⟨wi, V̂l⟩2 .

Since

w1 = arg max
v∈Rd

∥v∥2=1

{
vTEv

}
=⇒ ∥E∥2 = λ1 = wT

1 Ew1 ,

and F ⪰ E ⩾ 0, it follows that

∥E∥2 = wT
1 Ew1 ⩽ wT

1 Fw1 ⩽ arg max
v∈Rd

∥v∥2=1

{
vTFv

}
= ∥F∥2 = Kα .

201

In turn, this gives us

∥E[XTX]∥2 = ∥E− Id∥2
⩽ ∥E∥2 + ∥Id∥2
⩽ ∥F∥2 + 1

= Kα + 1

⩽ ηK
d

N
log(Nd/δ) + 1

= η
d

τ
log(Nd/δ) + 1 (3.14)

hence ∥E[XTX]∥2 = O
(
d
τ

log(Nd/δ)
)
.

We now have everything we need to apply Theorem 3.2.1.

Proposition 3.2.1. The block-SRHT SΠ̂ guarantees

Pr
[
∥Id −UTST

Π̂
SΠ̂U∥2 > ϵ

]
⩽ 2d · exp

{
−ϵ2 · q

Θ
(
d
τ
· log(Nd/δ)

)}

for any ϵ > 0, and q = r/τ > d/τ .

Proof. [Proposition 3.2.1] Let {Xi}qi=1 as defined in (3.9) denote q block samples. Let

j(i) denote the index of the submatrix which was sampled at the ith random trial,

i.e. Kj(i) = Kij(i). Then

Z =
1

q

t∑
i=1

Xj(i)

=
1

q
·

q∑
i=1

(
Id −

N

τ
· V̂T

(Kj(i))
V̂(Kj(i))

)

= Id −
q∑
i=1

(√
N/r · V̂(Kj(i))

)T
·
(√

N/r · V̂(Kj(i))

)
= Id −

q∑
i=1

(√
N/r · I(Kj(i)) · V̂

)T
·
(√

N/r · I(Kj(i)) · V̂
)

= Id −
(
Ω̃ĤDU

)T
·
(
Ω̃ĤDU

)
= Id −UTST

Π̂
SΠ̂U .

We apply Lemma 3.2.1 by fixing the terms we bounded: (3.10) γ = ηd log(Nd/δ)+

1, (3.14) σ2 = η d
τ

log(Nd/δ) + 1, and fix q and ϵ. The denominator of the exponent

202

in (3.5) is then

(
ηd/τ · log(Nd/δ) + 1

)
+
(
(ηd log(Nd/δ) + 1) · ϵ/3

)
=

= ηd/τ · log(Nd/δ) ·
(
1 + ϵτ/3

)
+ (1 + ϵ/3)

= Θ

(
d

τ
log(Nd/δ)

)
and the proof is complete.

Proof. [Theorem 4.4.1] By substituting q in the bound of Proposition 3.2.1 and taking

the complementary event, we attain the statement.

3.2.1 The Hadamard Transform

Remark 3.2.2. The Hadamard matrix is a real analog of the discrete Fourier matrix,

and there exist matrix multiplications algorithms for the Hadamard transform which

resemble the FFT algorithm. Recall that the Fourier matrix represents the characters

of the cyclic group of order N . In this case, ĤN represents the characters of the group

(ZN2 ,+), where Zn2 ∼= ZN . For both of these transforms, it is precisely through this al-

gebraic structure which one can achieve a matrix-vector multiplication in O(N logN)

arithmetic operations.

Recall that the characters of a group G, form an orthonormal basis of the vector

space of functions over the Boolean hypercube, i.e. Fn = {f : {0, 1}n → R}, and

it is the Fourier basis. Furthermore, when working over groups of characteristic 2,

e.g. F2q
∼= Fq2 for q ∈ Z+, we can move everything so that the underlying field is R.

Specifically, we map the elements of the binary field to R by applying f(y) = 1− 2y.

This gives us f : {0, 1} 7→ {+1,−1} ⊆ R, and we can work with addition and

multiplication over R.

We note that there is a bijective correspondence between the characters of Zm
and the mth root of unity, which is precisely how we get an orthonormal (Fourier)

basis. In the case where m is not a power of two, we have a basis with complex

elements, which violates (c) in the list of properties we seek to satisfy. This is why

the Hadamard matrix is appropriate for our application, and why we do not consider

a general discrete Fourier transform.

203

3.2.2 Recursive Kronecker Products of Orthonormal Matrices

In this subsection, we show that multiplying a vector of length N with Π =

Π
⊗⌈logk(N)⌉
k for Πk ∈ Ok(R) and k ∈ Z>2, takes O(Nk2 logkN) elementary operations.

Therefore, multiplying A ∈ RN×d with Π takes O(Ndk2 logkN) operations. We

follow a similar analysis to that of [220, Section 6.10.2].

For C(N) the number of elementary operations involved in carrying out the above

matrix-vector multiplication, the basic recursion relationship is

C(N) = k(C/k) +NC(1) (3.15)

where C(1) = ζk2, for ζ > 0 a constant.

For p = ⌈logk(N)⌉, we have the following relationship:

T (p) =
C(N)

N
=⇒ C(N) = NT (p). (3.16)

Then, p− 1 = ⌈logk(N/k)⌉, which gives us

T (p− 1) =
C(N/k)

N/k
= k

C(N/k)

N
=⇒ NT (p− 1) = kC(N/k). (3.17)

By substituting (3.17) into (3.15), we get

C(N) = NT (p) = NT (p− 1) +NC(1),

thus T (p) = T (p − 1) + C(1), which implies that T (p) is linear. Therefore T (p) =

pC(1) = ζk2p, and from (3.16) we conclude that the total number of elementary

operations is

C(N) = NT (p) = Nζk2p = Nζk2⌈logk(N)⌉ = O(Nk2 logkN).

3.3 Proofs of Section 4.5

In this appendix, we present the proofs of Proposition 4.5.1 and Corollary 4.5.1.

Proof. [Proposition 4.5.1] Note that the optimization problem (4.14) is equivalent to

ξ⋆t = arg min
ξ∈R

{
∥Ax[t+1] − b∥22

}
. (3.18)

204

If we cannot decrease further, the optimal solution to (3.18) will be 0, and we can

never have ξt < 0, as this would imply that

∥Ax[t+1] − b∥22 = ∥A(x[t] − ξt · g[t])b∥22 > ∥Ax[t] − b∥22

which contradicts the fact that we are minimizing the objective function of (3.18).

Specifically, if ξt < 0, we get an ascent step in (4.3), and a step-size ξt = 0 achieves a

lower value. It therefore suffices to prove the given statement by solving (3.18).

We will first derive (4.15) for Lls(A,b;x[t]), and then show it is the same for the

optimization problems LΠ(A,b;x[t]) and LG(A,b;x[t]).

Recall that x[t+1] ← x[t]−ξt ·g[t]ls for the least squares objective Lls(A,b;x[t]). From

here onward, we denote the gradient update of the underlying objective function by

gt. We then reformulate the objective function of (4.14) as follows

∆t+1 := ∥Ax[t+1] − b∥22 = ∥A(x[t] − ξ · g[t])− b∥22 .

By expanding the above expression, we get

∆t+1 = ξ2·∥Agt∥22 − 2ξ ·
(
gTt A

TAx[t] − gTt ATb
)

+

+
(
∥Ax[t]∥22 − 2⟨Ax[t],b⟩+ ⟨b,b⟩

)
and by setting ∂∆t+1

∂ξ
= 0 and solving for ξ, it follows that

∂∆t+1

∂ξ
= 2ξ ·

(
gTt A

TAgt
)
− 2 ·

(
gTt A

T
)

(Ax[t] − b) = 0

=⇒ ξ⋆t =
⟨Agt,Ax[t] − b⟩
∥Agt∥22

, (3.19)

which is the updated step-size we use at the next iteration. Since ∂2∆t+1/∂ξ
2 =

2∥Agt∥22 ⩾ 0, we know that ∆t+1 is convex. Therefore, ξ⋆t derived in (3.19) is indeed

the minimizer of ∆t+1.

Now consider SD with the objective function LΠ(A,b;x[t]). The only thing that

changes in the derivation, is that now we have (À = ΠA, b̀ = Πb) instead of (A,b).

By replacing (À, b̀)← (A,b) in (3.19), it follows that

⟨Àgt, Àx[t] − b̀⟩
∥Àgt∥22

=
⟨Agt,Ax[t] − b⟩
∥Agt∥22

(3.20)

205

as ÀT À = ATA and ÀT b̀ = ATb , since Π ∈ ON(R). The step-sizes for the

corresponding iterations are therefore identical.

Moreover, the only difference between the objective functions LΠ(A,b;x[t]) and

LG(A,b;x[t]) is the factor of
√
N/r. Let Ã = GA and b̃ = Gb. Therefore, the

step-size at iteration t+ 1 when considering the objective function LG(A,b;x[t]) is

⟨Ãgt, Ãx[t] − b̃⟩
∥Ãgt∥22

=
N/r

N/r
· ⟨Àgt, Àx[t] − b̀⟩

∥Ãgt∥22
⋄
=
⟨Agt,Ax[t] − b⟩
∥Agt∥22

where ♢ follows from (3.20).

Proof. [Corollary 4.5.1] We want to show that ξ⋆t according to (4.14), is a solution to

(4.5.1). We know that the only difference in the induced sketching matrices S
[t]
Π at

each iteration are the resulting index sets S [t], and the corresponding sampling and

rescaling matrices Ω̃[t].

To prove the given statement, since S
[t]
Π = Ω̃[t]Π; and by Proposition (4.5.1) ξ⋆t is

a solution to

arg min
ξ∈R

{∥∥Π(Ax̂[t+1] − b
)∥∥2

2

}
,

it suffices to show that E
[
Ω̃T

[t]Ω̃[t]

]
= IN . This was proven in Lemma 4.3.1. Hence,

the proof is complete.

3.4 Proofs of Section 4.6

In this appendix, we present the proofs of Theorems 4.6.1 and 4.6.2, and Corollary

4.6.1. We also present a counterexample to perfect secrecy of the SRHT.

Proof. [Theorem 4.6.1] Denote the application of Π to a matrix M by EncΠ(M) =

ΠM. We will prove secrecy of this scheme, which then implies that a subsampled

version of the transformed information is also secure. Let À = EncΠ(A) and b̀ =

EncΠ(b).

The adversaries’ goal is to reveal A. To prove that EncΠ is a well-defined secu-

rity scheme, we need to show that an adversary cannot learn recover A; with only

knowledge of (À, b̀).

For a contradiction, assume an adversary is able to recover A after only observing

(À, b̀). This means that it was able to obtain Π−1, as the only way to recover A

206

from À is by inverting the transformation of Π: A = Π−1 · À. This contradicts the

fact that only (À, b̀) were observed. Thus, EncΠ is a well-defined security scheme.

It remains to prove perfect secrecy according to Definition 4.2.2. Observe that for

any Ū ∈M and Q̄ ∈ C

Pr
Π

U←K

[
EncΠ(Ū) = Q̄

]
= Pr

Π
U←K

[
Π · Ū = Q̄

]
= . (3.21)

. = Pr
Π

U←K

[
Π = Q̄ · Ū−1

] ♯
=

1

|ÕA|
=

1

|K|
(3.22)

where ♯ follows from the fact that Q̄ · Ū−1 is fixed. Hence, for any U0,U1 ∈ M and

Q̄ ∈ C we have

Pr
Π

U←K

[
EncΠ(U0) = Q̄

]
=

1

|K|
= Pr

Π
U←K

[
EncΠ(U1) = Q̄

]
as required by Definition 4.2.2. This completes the proof.

We note that through the SVD of À, the adversaries can learn the singular values

and right singular vectors of A, since

À = (Π ·UA) ·ΣA ·VT
A = UÀ ·ΣA ·VT

A . (3.23)

Recall that the singular values are unique and, for distinct positive singular values,

the corresponding left and right singular vectors are also unique up to a sign change

of both columns. We assume w.l.o.g. that VÀ = VA and UÀ = Π ·UA.

Geometrically, the encoding EncΠ changes the orthonormal basis of UA to UÀ,

by rotating it or reflecting it; when det(Π) is +1 or -1 respectively. Of course, there

are infinitely many ways to do so, which is what we are relying the security of this

approach on.

Furthermore, unless UA has some special structure (e.g., triangular, symmetric,

etc.), one cannot use an off-the-shelf factorization to reveal UA. Even though a lot

can be revealed about A, i.e. ΣA and VA, we showed that it is not possible to reveal

UA; hence nor A, without knowledge of Π.

Proof. [Corollary 4.6.1] The proof is identical to that of Lemma 3.2.2. The only

difference is that the random variable entries Z̃j = H̃ijDjjyj for j ∈ NN and the fixed

207

i now differ, though they still meet the same upper bound

|Z̃j| ⩽ |H̃ij| · |Djj| · |yj| =
|yj|√
N

.

Since (3.7) holds true, the guarantees implied by flattening lemma also do, thus the

sketching properties of the SRHT are maintained.

Remark 3.4.1. Since the Lemma 3.2.2 and Corollary 4.6.1 give the same result for

the block-SRHT and garbled block-SRHT respectively, it follows that Theorem 4.4.1

also holds for the garbled block-SRHT.

Proof. [Theorem 4.6.2] Assume w.l.o.g. that a computationally bounded adversary

observes Π̃A, for which Ãr = SΠ ·A = Ω̃ · (Π̃A) is the resulting sketch of Algorithm

7, for Π̃ ∈ H̃N . To invert the transformation of Π̃, the adversary needs knowledge of

the components of Π̃, i.e. Ĥ and P. Assume for a contradiction that there exists a

probabilistic polynomial-time algorithm which, is able to recover A from Π̃A. This

means that it has revealed P, so that it can compute

Π̃T=Π̃−1︷ ︸︸ ︷
(DĤPT) ·(PĤD) ·A = Π̃−1 · Π̃ ·A = A ,

which contradicts the assumption that the permutation P is a s-PRP. Specifically,

recovering A by observing Π̃A requires finding P in polynomial time.

Finally, we show that ĝ[t] = g
[t]
ls , which we claimed in Subsection 4.6.2. Since Π ∈

ON(R) for the suggested projections (except that random Rademacher projection),

we have ΠTΠ = IN . It then follows that

ĝ[t] = 2
K∑
j=1

ÃT
j

(
Ãjx

[t] − b̃j

)
= (ΠA)T

(
ΠAx[t] −Πb

)
= AT

(
ΠTΠ

) (
Ax[t] − b

)
= g

[t]
ls (3.24)

and this completes the derivation.

208

3.4.1 Counterexample to Perfect Secrecy of the SRHT

Here, we present an explicit example for the SRHT (which also applies to the

block-SRHT), which contradicts Definition 4.2.2. Therefore, the SRHT cannot pro-

vide perfect secrecy.

Consider the simple case where N = 2, and assume that Ĥ2 ∈ ÕA. Since (ÕA, ·)
is a multiplicative subgroup of GL2(R), we have I2 ∈ ÕA. Let U0 = I2 and U1 = Ĥ2.

For d1, d2 i.i.d. Rademacher random variables and

D =

(
d1 0

0 d2

)
,

it follows that

C0 =
(
Ĥ2D

)
·U0 = Ĥ2D =

1

2

(
d1 −d2
d1 d2

)

and

C1 =
(
Ĥ2D

)
·U1 =

1

2

(
1 −1

1 1

)(
d1 0

0 d2

)(
1 −1

1 1

)

=
1

2

(
1 −1

1 1

)(
d1 −d1
d2 d2

)

=
1

2

(
d1 − d2 −d1 − d2
d1 + d2 −d1 + d2

)
.

It is clear that C0 always has precisely two distinct entries, while C1 has three distinct

entries; with 0 appearing twice for any pair d1, d2 ∈ {±1}. Therefore, depending on

the observed transformed matrix, we can disregard one of U0 and U1 as being a

potential choice for Π.

For instance, if C̄ is the observed matrix and it has two zero entries, then

Pr
Π

U←H2

[
Π ·U1 = C̄

]
> Pr

Π
U←H2

[
Π ·U0 = C̄

]
= 0

which contradicts (4.8).

Note that even if we apply a permutation, as in the case of the garbled block-

SRHT, we still get the same conclusion. Hence, the garbled block-SRHT also does

not achieve perfect secrecy.

209

3.4.2 Analogy with the One-Time Pad

It is worth noting that the encryption resulting by the multiplication with Π;

under the assumptions made in Theorem 4.6.1, bares a strong resemblance with the

one-time pad (OTP), which is the optimum cryptosystem with theoretically perfect

secrecy. This is not surprising, as it is one of the few known perfectly secret encryption

schemes.

The main difference between the two, is that the spaces we work over are the

multiplicative group (ÕA, ·) whose identity is IN in Theorem 4.6.1, and the additive

group
(
(Z2)

ℓ,+
)

in the OTP; whose identity is the zero vector of length ℓ.

As in the OTP, we make the assumption that K,M, C are all equal to the group we

are working over; ÕA, which it is closed under multiplication. In the OTP, a message

is revealed by applying the key on the ciphertext: if c = m ⊕ k for k drawn from

K, then c ⊕ k = m. Analogously here, for Π drawn from ÕA: if C̄ = Π ·UA, then

C̄T ·Π = (UT
A ·ΠT) ·Π = UT

A. An important difference here is that the multiplication

is not commutative.

Also, for two distinct messages m0,m1 which are encrypted with the same key k

to c0, c1 respectively, it follows that c0 ⊕ c1 = m1 ⊕ m2 which reveals the XOR of

the two messages. In our case, for the bases U0,U1 encrypted to C0 = ΠU0 and

C0 = ΠU1 with the same projection matrix Π, it follows that CT
0 ·C1 = UT

0 ·U1.

3.5 Orthonormal Encryption for Distributive Tasks

In this appendix, we discuss how applying a random projection Π can be utilized

in existing CC schemes, both approximate and exact, to securely recover other matrix

operations. The main idea is that after we apply and arbitrary Π to the underlying

matrix or matrices, the analysis and corresponding conclusion of Theorem 4.6.1 still

applies. Once the information is encrypted through Π, e.g. À = ΠA, b̀ = Πb,

we then carry out the CC scheme of choice, and we will recover the same result

as if no encryption took place, without requiring an additional decryption step for

the least squares problem and matrix multiplication, and does not increasing the

system’s redundancy. The drawback of this approach is the additional encryption

step which corresponds to matrix multiplication. Fast matrix multiplication can be

used to secure the data [11, 276], which is faster than computing x⋆ls = A†x.

We show how this approach is applied to GCSs for linear and logistic regression

through SD, as well as coded matrix multiplication (CMM) schemes, and an approx-

imate matrix inversion CC scheme; which is a non-linear operation [51]. In this

210

scheme we utilize the structure of the gradient of the respective objective functions.

What was discussed above resembles Homomorphic Encryption [117, 118, 37],

which allows computations to be performed over encrypted data; and has been used

to enable privacy-preserving machine learning. Two main drawbacks of homomor-

phic encryption though is that it leads to many orders of magnitude slow down in

training, and it allows collusion between a larger number of workers [265]. Moreover,

the privacy guarantees of homomorphic encryption rely on computational assump-

tions, while our approach is information-theoretic. Furthermore, we use (random)

orthogonal matrices for encrypting the data, which has been studied in the context

of image-processing and message encryption [3, 4, 10, 163, 242, 254].

3.5.1 Securing Linear Regression

As pointed out in 4.6.2 and (3.24), for the modified objective function

LΠ(A,b;x[t]) := ∥Π(Ax− b)∥22 = ∥Àx− b̀∥22 ,

we have∇xLΠ(A,b;x[t]) = ∇xLls(A,b;x[t]) for all t, i.e. ĝ[t] = g
[t]
ls . It is clear that for

Π an orthonormal matrix, there is no need to reverse the transformation to uncover

the partial gradients.

Consider any GCS; exact or approximate, e.g. [25, 42, 47, 52, 58, 59, 62, 134,

144, 155, 223, 239, 279, 289, 292, 298]. If the workers are given partitions of (À,b̀),

they will have no knowledge of (A,b), unless they learn Π. From the conclusion

of Theorem 4.6.1, this is not a concern. The workers therefore locally recover the

partial gradients of the block pairs they were assigned, and perform the encoding of

the GCS which is being deployed, once these are encoded and communicated to the

central server. After sufficiently many encodings are received, i.e. when the threshold

recovery is met, the central server can then recover the gradient at the given iteration.

3.5.2 Securing Logistic Regression

Another widely used algorithm whose solution is accelerated though gradient

methods is logistic regression, which yields a linear classifier [212]. Applying a ran-

dom orthonormal matrix can secure the information when GCSs are used to solve

logistic regression, though at each iteration the central server will have to apply two

encryptions. At each iteration t, the workers are collectively given À = Π1 · A,

ài = Π2 ·
[
1 aTi

]T
and x̀[t] = Π2 · x[t], for Π1 ∈ ÕN(R) and Π2 ∈ Õd+1(R). The

211

gradient update to be recovered is

ĝ[t+1] = ÀT (µ− b) for µi =
(

1 + exp
(
−

⟨x[t],[1 aT
i]⟩︷ ︸︸ ︷

⟨x̀[t], ài⟩
))−1

.

Thus ĝ[t+1] = ΠT
1 · g[t+1], so we apply Π1 to recover g[t+1]. In this problem, the labels

bi ∈ {0, 1} are not hidden. This is not a concern, as nothing can be inferred from

these alone.

3.5.3 Securing Matrix Multiplication

Consider the matrices A1 ∈ RL×N and A2 ∈ RN×M whose multiplication is to be

computed by a CMM scheme. For Π ∈ ÕN(R), by carrying out the CMM scheme on

À1 = A1 ·Π and À2 = Π ·A2, we recover

À1 · À2 = A1 · (ΠTΠ) · À2 = A1 ·A2 , (3.25)

and a security guarantee analogous to Theorem 4.6.1 holds. This encryption is useful

when N ≪ L,M , as otherwise the cost of encrypting the two matrices could be higher

than that of performing the multiplication.

3.5.4 Securing Distributive Matrix Inversion

In [51] a CC scheme was used to recover an approximation of the inverse of a

matrix A ∈ RN×N , by requesting from the workers to approximate as part of their

computation a subset of the optimization problems

b̌i = arg min
b∈RN

{
∥Ab− ei∥22

}
(3.26)

for each i ∈ NN , where {ei}Ni=1 is the standard basis of RN . The solutions {b̌}Ni=1

comprise the columns of the inverse’s estimate Ǎ−1, i.e. A−1 ≈ Ǎ−1 =
[
b̌1 · · · b̌N

]
,

as

IN = AA−1 ≈ AǍ−1 = A
[
b̌1 · · · b̌N

]
=
[
Ab̌1 · · · Ab̌N

]
.

In this scheme, each worker has knowledge of the entire matrix A. In our approach,

instead of sharing A we share À := A ·ΠT , for a randomly chosen Π ∈ ÕN(R). The

workers then approximate

b̆i = arg min
b∈RN

{
∥Àb− ei∥22

}
, (3.27)

212

thus À−1 = Π · Ǎ−1 =
[
b̆1 · · · b̆N

]
.

As in the case of logistic regression, here we also need an additional decryption

step: ΠT ·(Π·Ǎ−1) = Ǎ−1 at the end of the process, to recover the approximation.

213

Appendix D

Appendix to Chapter V

4.1 Additional Material and Background

In this appendix, we include material and background which was used in our

derivations. First, we recall what an ϵ-optimal solution/point is, which was used in

the proof of Proposition 5.4.2. Next, we state the MDS theorem and the BCH Bound.

We then give a brief overview of the GC scheme from [134], to show how it differs

from our CMIM. We also explicitly give their construction of a balanced mask matrix

M ∈ {0, 1}n×k, which we use for the construction of the BRS generator matrices.

Lastly, we illustrate a simple example of the encoding matrix.

Definition 4.1.1 ([15]). A point x̄ is said to be an ϵ-optimal solution/point

to a minimization problem with objective function f(x), if for any x, it holds that

f(x) ⩾ f(x̄) − ϵ, where ϵ ⩾ 0. When ϵ = 0, an ϵ-optimal solution is an exact

minimizer.

The MDS theorem establishes the properties of MDS codes, which achieve the Sin-

gleton bound [154] and provide optimal error-correction capabilities for linear codes

over finite fields.

Theorem 4.1.1 (MDS Theorem — [191]). Let C be a linear [n, k, d] code over Fq, with
G,K the generator and parity-check matrices. Then, the following are equivalent:

1. C is a MDS code, i.e. d = n− k + 1

2. every set of n− k columns of K is linearly independent

3. every set of k columns of G is linearly independent

4. C⊥ is a MDS code.

214

The BCH bound is a theoretical limit that provides a lower bound on the mini-

mum distance of a binary cyclic code. This bound was derived independently by the

inventors of the BCH code [29, 141].

Theorem 4.1.2 (BCH Bound — [135],[207]). Let p(x) ∈ Fq[x]\{0} with t cyclically

consecutive roots, i.e. p(αj+ι) = 0 for all ι ∈ Nt. Then, at least t + 1 coefficients of

p(x) are nonzero.

Algorithm 12: MaskMatrix(n, k, d) [134]

Input: n, k, d ∈ Z+ s.t. n > d, k and w = kd
n

Output: row-balanced mask matrix M ∈ {0, 1}n×k
M← 0n×k
for j = 0 to k − 1 do

for i = 0 to d− 1 do
ι← (i+ jd+ 1) mod n
Mr,ι ← 1

end

end
return M

4.1.1 Generator Matrix Example

For an example, consider the case where n = 9, k = 6 and d = 6, thus w = kd
n

= 4.

Then, Algorithm 12 produces

M =

1 1 0 1 1 0

1 1 0 1 1 0

1 1 0 1 1 0

1 0 1 1 0 1

1 0 1 1 0 1

1 0 1 1 0 1

0 1 1 0 1 1

0 1 1 0 1 1

0 1 1 0 1 1

∈ {0, 1}9×6 .

For our CCM, this means that the ith worker computes the blocks indexed by supp(M(i)),

e.g. supp(M(1)) = {1, 2, 4, 5}. We denote the indices of the respective task allocations

by Ji = supp(M(i)). The entries of the generator matrix G are the evaluations of

215

the constructed polynomials (5.3) at each of the evaluation points B = {βi}ni=1, i.e.

Gij = pj(βi). This results in:

G =

p1(β1) p2(β1) 0 p4(β1) p5(β1) 0

p1(β2) p2(β2) 0 p4(β2) p5(β2) 0

p1(β3) p2(β3) 0 p4(β3) p5(β3) 0

p1(β4) 0 p3(β4) p4(β4) 0 p6(β4)

p1(β5) 0 p3(β5) p4(β5) 0 p6(β5)

p1(β6) 0 p3(β6) p4(β6) 0 p6(β6)

0 p2(β7) p3(β7) 0 p5(β7) p6(β7)

0 p2(β8) p3(β8) 0 p5(β8) p6(β8)

0 p2(β9) p3(β9) 0 p5(β9) p6(β9)

.

4.2 Distributed Pseudoinverse

For full-rank rectangular matrices A ∈ RN×M where N > M , one resorts to the

left Moore–Penrose pseudoinverse A† ∈ RM×N , for which A†A = IM . In Algorithm

13, we present how to approximate the left pseudoinverse of A, by using the fact

that A† = (A⊤A)−1A⊤; since A⊤A ∈ GLM(R). The right pseudoinverse A† =

A⊤(AA⊤)−1 of A ∈ RM×N where M < N , can be obtained by a modification of

Algorithm 13.

Just like the inverse, the pseudoinverse of a matrix also appears in a variety of

applications. Computing the pseudoinverse of A ∈ RN×M for N > M is even more

cumbersome, as it requires inverting the Gram matrix A⊤A. For this appendix, we

consider a full-rank matrix A.

One could naively attempt to modify Algorithm 8 in order to retrieve A† such that

A†A = IM , by approximating the rows of A†. This would not work, as the underlying

optimization problems would not be strictly convex. Instead, we use Algorithm 13 to

estimate the rows of B−1 := (A⊤A)−1, and then multiply the estimate B̂−1 by A⊤.

This gives us the approximation Â† = B̂−1 ·A⊤.

The drawback of Algorithm 13 is that it requires two additional matrix multi-

plications, A⊤A and B̂−1A⊤. We overcome this barrier by using a CMM scheme

twice, to recover Â† in a two or three-round communication CC approach. These are

discussed in below.

Bounds on errF (Â−1) and errrF (Â−1) can be established for both algorithms,

specific to the black-box least squares solver being utilized.

216

Algorithm 13: Estimating A†

Input: full-rank A ∈ RN×M where N > M
B← A⊤A
for i=1 to M do

ĉi = arg minc∈R1×M

{
gi(c) := ∥cB− e⊤i ∥22

}
b̂i ← ĉi ·A⊤

end

return Â† ←
[
b̂⊤1 · · · b̂⊤M

]⊤
▷ Â†(i) = b̂i

Corollary 4.2.1. For full-rank A ∈ RN×M with N > M , we have errF (Â†) ⩽
√
Mϵ·κ2√

2σmin(A)3
and errrF (Â†) ⩽

√
Mϵ·κ2√

2σmin(A)2
when using SD to solve the subroutine opti-

mization problems of Algorithm 13, with termination criteria ∥∇gi(c[t])∥2 ⩽ ϵ.

Proof. From (5.10), it follows that

∥B−1ei − ĉ⊤i ∥2 ⩽
ϵ/
√

2

σmin(B)2
=

ϵ/
√

2

σmin(A)4
=: δ .

The above bound implies that for each summand of the Frobenius error; ∥b̂i−A†(i)∥2 =

∥ĉiA⊤ − e⊤i · B−1A⊤∥2, we have ∥b̂i − A†(i)∥2 ⩽ δ∥A⊤∥2. Summing the right hand

side M times, we get that

errF (Â†)2 ⩽M · (δ∥A⊤∥2)2

=
Mϵ2 · σmax(A)2

2σmin(A)8

=
Mϵ2 · κ22

2σmin(A)6
.

By taking the square root, we have shown the first claim.

Since 1/σmin(A) = ∥A†∥2 ⩽ ∥A†∥F , it then follows that

errrF (Â†) =
errF (Â†)

∥A†∥F
⩽

errF (Â†)

∥A†∥2
=

√
Mϵ · κ2√

2σmin(A)2
,

which completes the proof.

217

4.2.1 Pseudoinverse from Polynomial CMM

One approach to leverage Algorithm 13 in a two-round communication scheme is

to first compute B = A⊤A through a CMM scheme, then share B with all the workers

who estimate the rows of B̂−1, and finally use another CMM to locally encode the

estimated columns with blocks of A⊤; to recover Â† = B̂−1 ·A⊤. Even though there

are only two rounds of communication, the fact that we have a local encoding by

the workers results in a higher communication load overall. An alternative approach

which circumvents this issue, uses three-rounds of communication.

For this approach, we use the polynomial CMM scheme from [303] twice, along

with our coded matrix inversion scheme. This CMM has a reduced communication

load, and minimal computation is required by the workers. To have a consistent

recovery threshold across our communication rounds, we partition A as in (5.11) into

k̄ =
√
n− s =

√
k blocks. Each block is of size N × T̄ , for T̄ = M

k
. The encodings

from [303] of the partitions {Aj}k̄j=1 for carefully selected parameters a, b ∈ Z+ and

distinct elements γi ∈ Fq, are

Ãa
i =

k∑
j=1

Ajγ
(j−1)a
i and Ãb

i =
k∑
j=1

Ajγ
(j−1)b
i

for each worker indexed by i. Thus, each encoding is comprised of N T̄ symbols.

The workers compute the product of their respective encodings (Ãa
i)
⊤ · Ãb

i . The

decoding step corresponds to an interpolation step, which is achievable when k̄2 = k

many workers respond1, which is the optimal recovery threshold for CMM. Any fast

polynomial interpolation or RS decoding algorithm can be used for this step, to recover

B.

Next, the master shares B with all the workers (from 5.5.1, this is necessary), who

are requested to estimate the column-blocks of B̂−1

B̂−1 =
[
B̄1 · · · B̄k

]
where B̄j ∈ RM×T̄ ∀j ∈ Nk (4.1)

according to Algorithm 8. We can then recover B̂−1 by our BRS based scheme, once

k workers send their encoding.

1We select k̄ =
√
k in the partitioning of A in (5.11) when deploying this CMM, to attain the

same recovery threshold as our inversion scheme.

218

For the final round, we encode B̂−1 as

B̃a
i =

k∑
j=1

B̄jγ(j−1)ai

which are sent to the respective workers. The workers already have in their possession

the encodings Ãb
i . We then carry out the polynomial CMM where each worker is

requested to send back (B̃a
i)
⊤ · Ãb

i . The master server can then recover Â†.

Theorem 4.2.1. Consider G ∈ Fn×k as in Theorem 5.5.1. By using any CMM,

we can devise a matrix pseudoinverse CCM by utilizing Algorithm 13, in two-rounds

of communication. By using polynomial CMM [303], we achieve this with a reduced

communication load and minimal computation, in three-rounds of communication.

219

Appendix E

Appendix to Chapter VI — Graph Sparsification

by Approximate Matrix Multiplication

5.1 Introduction and Related Work

Large graphs, networks and their associated Laplacian are prevalent in many

applications and domains of modern signal processing, statistics and engineering,

e.g. spectral clustering [158, 287], community detection [72] and graph learning [152].

Their size makes them hard to store and process, which is why it is preferred to instead

work with a good approximation or sketch of the graph. Algorithms for approximating

large graphs have been developed through the study of spectral graph theory, which

deals with the eigenvalues and eigenvectors of matrices naturally associated with

graphs. A standard approach is by sampling edges or vertices of these graphs, with

judiciously chosen sampling distributions.

Our main contribution, is bridging a connection between randomized numerical

linear algebra (RandNLA) and approximate matrix multiplication (MM), with Lapla-

cian spectral sparsifiers of weighted graphs G = (V,E,w). The resulting algorithm

is intuitive and simple, and has been considered in independent works. Our analysis

though is more straightforward and shorter than other analyses considering the same

and similar sparsifiers, e.g. [252]. Lastly, we introduce an alternative measure for

spectral sparsifiers, which captures additive approximation errors.

Spectral sparsifiers are of importance, as they preserve eigenvector centrality [274],

cuts in a graph [23], flows in networks modeled by graphs [122], and maintain the

structure of the original graph. By viewing the Laplacian L of G as the outer-product

of its boundary matrix B ∈ RE×V
⩾0 , we use CR matrix multiplication (CR−MM) to

approximate the Laplacian L̃ ≈ L. This turns out be equivalent to sampling and

re-weighting edges from G, with sampling probabilities proportional to the edges’

220

weights. The resulting Laplacian L̃ is an unbiased estimate of minimum variance, and

represents the sketched graph G̃ = (V, Ẽ, w̃). Unlike most other spectral sparsifiers

whose guarantees depend entirely on the number of vertices n, ours depends on the

edge weights w. We provide a concrete example in Figure E.1.

What we present also draws connections between sampling according to the Frobe-

nius norm of vectors, and leverage scores ; which has been extensively studied in the

context of linear systems and ℓ2-subspace embeddings [96, 91]. Sparsifying Lapla-

cians through sampling is the appropriate intermediate application, between MM

and subspace embeddings.

Figure E.1: The Petersen graph is a
√

5/2-approximation of K10 [275].

5.1.1 Related Work

The main idea behind the sparsifier we study is simple and intuitive. By using

a primitive which has extensively been studied; approximate multiplication, as a

surrogate to analysing the proposed spectral sparsifier, we present a simple analysis

which yields more concise statements regarding the resulting sparsifier, compared to

related work [252]; which considers Gaussian smoothing. Our guarantees differ from

previous works, and we draw connections to RandNLA.

Along similar lines, connections between effective resistances and leverage scores

have been previously established [92, 273]. Spectral sparsification has also been used

in linear algebra to obtain deterministic and randomized algorithms for low-rank ma-

trix approximations [32, 39]. In this work, we obtain results in the converse direction.

The state-of-the-art approach to spectral sparsification is to sample edges accord-

ing to effective resistances [271, 273]. This approach leads to a nearly-linear time

algorithm that produces high-quality sparsifiers of weighted graphs. A drawback of

this approach is the computational complexity of determining the resistances, which

221

requires either a spectral decomposition of L, or directly computing L†. In what we

propose, the sampling distribution is already known through w, and the sampling can

be done pass-efficiently only inquiring O(1) additional storage space [201, Algorithm

1]. This makes our method algorithmically superior to sampling according to effective

resistances, as computing them requires O(|E| · |V |2) operations.

Furthermore, through leverage scores, sampling according to the effective resis-

tances relates to the notion of an ℓ2-subspace embedding. As contrasted to the objec-

tive of [273], we use approximate multiplication; to obtain minimum variance unbiased

estimators.

5.1.2 Preliminaries

Recall that the Laplacian of G = (V,E,w) a weighted undirected graph with

|V | = n, |E| = m, weights wi,j for each edge (i, j) ∈ E is

Lij =

∑

(i,ℓ)∈E wi,j if i = j

−wi,j if i ̸= j
for i, j ∈ V. (5.1)

Equivalently, it is expressed as L = D−A, for D,A ∈ Nn×n
0 respectively the degree

and adjacency matrices of G. This can also be expressed as the Gram matrix of the

boundary matrix 1 B ∈ RE×V . Once we determine an arbitrary positive orientation

(i, j) of the edges in E, the boundary matrix associated with the orientation is defined

as

B(i,j),v =

−√wi,j if v = i
√
wi,j if v = j

0 o.w.

for (i, j) ∈ E and v ∈ V.

For an edge e = (u, v), the orientation is represented in the incidence vector

χe = eu − ev; for ei ∈ RV the standard basis vectors. We define the weighted

incidence vector as χ̃e =
√
we · χe. The Laplacian of G is then

L = BTB =
∑
e∈E

χ̃eχ̃
T
e =

∑
e∈E

we · χeχTe ∈ RV×V . (5.2)

1The transpose of the boundary matrix of G, is also known as the incidence matrix of G.

222

5.1.3 Approximate Matrix Multiplication

Consider the two matrices A ∈ RL×N and B ∈ RN×M , for which we want to

approximate the product AB. It is known that the product may be approximated

by sampling with replacement (s.w.r.) columns of A and rows of B, where the row-

column sampling probabilities are proportional to their Euclidean norms. That is,

we sample with replacement r pairs (A(i), B(i)) for i ∈ NN := {1, · · · , N} and r < N

(A(i)=ith column of A, and B(i)=i
th row of B), with probability

pi =
∥A(i)∥2 · ∥B(i)∥2∑N
l=1 ∥A(l)∥2 · ∥B(l)∥2

(5.3)

and sum a rescaling of the samples’ outer-products:

AB ≈ 1

r
·

(∑
j∈S

1

pj
A(j)B(j)

)
=
∑
j∈S

A(j)

√
rpj
·
B(j)√
rpj

=: Y (5.4)

where S is the multiset consisting of the indices (possibly repeated) of the sampled

pairs, hence |S| = r. We denote the corresponding “compressed versions” of the

input matrices by C ∈ RL×r and R ∈ Rr×M respectively. This approximation satisfies

∥AB − CR∥F = O(∥A∥F∥B∥F/
√
r). Further details on this algorithm may be found

in [88, 89, 90, 201, 294]. We have the following known results for the CR−MM

algorithm.

Theorem 5.1.1 (Section 3.2 [201]). The estimator Y = CR from (5.4) is unbiased,

while the sampling probabilities {pi}Ni=1 minimize the variance, i.e.

{pi}Ni=1 = arg min∑N
i=1 pi=1

{
Var(Y) = E

[
∥AB − CR∥2F

] }
(5.5)

and it is an ϵ-multiplicative error approximation of the matrix product, with high

probability. Specifically, for δ ⩾ 0 and r ⩾ 1
δ2ϵ2

the number of sampling trials which

take place

Pr
[
∥AB − CR∥F ⩽ ϵ · ∥A∥F∥B∥F

]
⩾ 1− δ (5.6)

for any ϵ > 0.

Theorem 5.1.2 (Theorem 8 [201]). Let A ∈ RL×N with σmax(A) = ∥A∥2 ⩽ 1, and

approximate the product Y ≈ AAT using CR−MM. Let ϵ ∈ (0, 1) be an accuracy

223

parameter, and assume that ∥A∥2F ⩾ 1/24. If

r ⩾
96∥A∥2F
ϵ2

ln

(
96∥A∥2F
ϵ2
√
δ

)
⩾

4

ϵ2
ln

(
4

ϵ2
√
δ

)
for r ⩽ N , then

Pr
[
∥AAT − Y ∥2 ⩽ ϵ

]
⩾ 1− δ. (5.7)

Below, we provide the pseudocode of the CR−MM algorithm.

Algorithm 14: CR matrix multiplication

Input: Matrices A ∈ RL×N and B ∈ RN×M

Output: Approximate product Y ≈ AB
Determine: Distribution {pi}Ni=1, according to (5.3)
Initialize: Y = 0L×M
for i ← 1 to r do

sample j ∈ NN with replacement, according to {pi}Ni=1

Y ← Y + 1
rpj
· A(j)B(j)

end

5.2 Spectral Sparsification

First, recall that an ε-spectral sparsifier for ε ∈ (0, 1) of G with Laplacian L,

is a sketched graph G̃ whose Laplacian L̃ satisfies

(1− ε)xT L̃x ⩽ xTLx ⩽ (1 + ε)xT L̃x ⇐⇒

⇐⇒ (1− ε)∥B̃x∥22 ⩽ ∥Bx∥22 ⩽ (1 + ε)∥B̃x∥22 (5.8)

for all x ∈ Rn. This implies that the approximated graph G̃ preserves the total weight

of any cut between the factors of 1±ε, hence also allowing a good approximation to its

max-flow. A natural definition to consider, is that of when the approximation error

is additive.

Definition 5.2.1. An additive ε-sparsifier of G with Laplacian L, is a sketched

graph G̃ whose Laplacian L̃ satisfies

xT
(
L̃− ε · In

)
x ⩽ xTLx ⩽ xT

(
L̃ + ε · In

)
x ⇐⇒

∣∣∣xT (L− L̃)x
∣∣∣ ⩽ ε · ∥x∥22 ,

for all x ∈ Rn.

224

We distinguish between the two types of sparsifiers, by referring to those satis-

fying (5.8) as multiplicative. It is worth pointing out that row/column sampling

algorithms whose approximations are in terms of the Frobenius norm; e.g. (5.6),

naturally yield additive sparsifiers, while those which are in terms of the Euclidean

norm; e.g. (5.7), admit multiplicative sparsifiers.

5.2.1 Spectral Sparsifier from CR−MM

We propose approximating L by using the CR−MM algorithm on BTB. Let

W = ∥B∥2F/2 =
∑

e′∈E we′ . The resulting sampling probability of e ∈ E according to

(5.3), is

pe ∝ ∥B(e)∥22 = 2we =⇒ pe = we/W . (5.9)

Thus, we are sampling edges proportionally to their weights. The resulting procedure

is presented in Algorithm 15, where at each iteration we have a rank-1 update. We

carry out a total of r sampling trials and rescale the updates, to reduce the variance

of the estimator. Moreover, for Π = diag(we/W), let xe =
√
Πχe. Then pe = ∥xe∥22.

In simple words, we carry out r sampling trials with replacement on E, and

each time e′ is sampled, its new weight is increased by W
r

. Furthermore, we note

that the sampling procedure results in a diagonal sketching matrix S, where Se,e =
e is sampled

rpe
. Hence L̃ = BTSB and B̃ =

√
SB.

Algorithm 15: CR spectral sparsifier

Input: A weighted simple undirected graph G = (V,E,w), number of
sampling trials r

Output: Laplacian L̃, of sparsified G̃ = (V, Ẽ, w̃)
Determine: Boundary matrix B ∈ RE×V of G, distribution
{pe = we/W}e∈E
Initialize: L̃ = 0V×V
for i ← 1 to r do

sample w.r. e′ ∈ E, according to {pe}e∈E
L̃← L̃ + W

rwe′
· χ̃e′χ̃Te′ = L̃ + W

r
· χe′χTe′

end

Proposition 5.2.1. Given a weighted simple undirected graph G = (V,E,w), Algo-

rithm 15 produces an additive ε-spectral sparsifier of minimum variance; for ε = 2Wϵ

and ϵ the CR accuracy parameter, with probability 1− δ and r ⩾ 1
δ2ϵ2

.

Proof. From (5.6), for ∆ := L − L̃ ⪰ 0 we have with high probability ∥∆∥F =

225

∥L− L̃∥F ⩽ ϵ∥B∥2F = 2Wϵ, and in turn:

xT (L− L̃)x
♯
= xT∆x

= ∥xT∆x∥F
⩽ ∥∆∥F · ∥x∥22
=
(
2Wϵ

)
· ∥x∥22,

which implies that

xTLx ⩽ xT
(
L̃ + In ·

(
2Wϵ

))
x.

In the case where ∆ ⪯ 0, continuing from ♯ we have

−xT∆x = ∥xT∆x∥F ⩽
(
2Wϵ

)
· ∥x∥22 =⇒ xT

(
L̃− In ·

(
2Wϵ

))
x ⩽ xTLx.

All in all we have

xT
(
L̃− In

(
2Wϵ

))
x ⩽ xTLx ⩽ xT

(
L̃+ In

(
2Wϵ

))
x

⇐⇒
∣∣∣xT (L− L̃)x

∣∣∣ ⩽ (2Wϵ
)
· ∥x∥22 , (5.10)

which is an additive ε-spectral sparsifier; for ε = 2Wϵ.

By Theorem 5.1.1, the resulting estimator is of minimum variance. If r ⩾ 1
δ2ϵ2

sampling trials are carried out, by (5.6) it follows that we attain such a sparsifier with

probability at least 1− δ.

5.2.2 Multiplicative Spectral Sparsifier

The case where A = BT in the CR−MM algorithm has also been studied as a

special case, as it appears in numerous applications. This restriction allows us to use

statements from random matrix theory [219], to get stronger spectral norm bounds,

e.g. Theorem 5.1.2 [96, Theorem 4], [201, Theorem 8].

We will use Theorem 5.1.2 to show that Algorithm 15 is also a multiplicative

spectral sparsifier. First, we recall an equivalent definition of a multiplicative ε-

spectral sparsifier, based on spectral norm.

Definition 5.2.2. For a weighted graph with Laplacian L and ε > 0, a sketched

graph G̃ of G with Laplacian L̃ and isotropic boundary matrix B̃iso := B̃L−1/2

226

for L−1/2 :=
√
L†, is a multiplicative ε-spectral sparsifier if

∥In − B̃
T

isoB̃iso∥2 = ∥L−T/2(L− L̃)L−1/2∥2 ⩽ ε . (5.11)

Proposition 5.2.2. Let G = (V,E,w) be a weighted simple undirected graph with

W =
∑

e′∈E we′ ⩾ σ2
max(B)/48, and ϵ ∈ (0, 1) an accuracy parameter.2 Algorithm 15

produces a multiplicative ε-spectral sparsifier G̃ for ε = κ2(L) · ϵ with high probability,

for r sufficiently large.3

Proof. Denote the sketch of Algorithm 15 by BTB ≈ B̃
T
B̃, and define B̄ :=

B/σmax(B); B̂ := B̃/σmax(B). Let B̄
T ← A in Theorem 5.1.2, thus B̄

T
B̄ ≈ B̂

T
B̂.

The first condition of Theorem 5.1.2 is met, as ∥B̄∥2 = ∥B∥2/σmax(B) = 1. Since

∥B̄∥2F = ∥B∥2F/σ2
max(B) = 2W/σ2

max(B), by our assumption on W it follows that

∥B̄∥2F = 2W
σ2
max(B)

⩾ 2σ2
max(B)

48σ2
max(B)

= 1/24. Hence, the condition ∥B̄∥2F ⩾ 1/24 is also met.

Let θ = σmax(L)ϵ = σ2
max(B)ϵ. From (5.7) it follows that:

Pr
[
∥L− L̃∥2 ⩽ σmax(L)ϵ

]
= Pr

[
∥BTB − B̃

T
B̃∥2

σ2
max(B)

⩽ ϵ

]
= Pr

[
∥B̄T

B̄ − B̂
T
B̂∥2 ⩽ ϵ

]
⩽ 1− δ .

We now appropriately apply L−1/2, in order to invoke (5.11):

∥In − B̃
T

isoB̃iso∥2 = ∥In −L−1/2 · (B̃T
B̃) ·L−1/2∥2

= ∥In −L−1/2 · L̃ ·L−1/2∥2
= ∥L−1/2(L− L̃)L−1/2∥2
⩽ θ · ∥L−1/2∥22

=
θ

σmin(L)

= κ2(L) · ϵ .

Therefore

Pr
[
∥In − B̃

T

isoB̃iso∥2 ⩽ κ2(L) · ϵ
]
⩾ 1− δ

2λmax(L) = σmax(L) = σ2
max(B)

3The condition number of L is denoted by κ2(L) = ∥L∥2∥L†∥2 = σmax(L)/σmin(L) [271, 286,
162]. Since the smallest singular of L for G connected is 0, by σmin(L) we denote the second smallest

singular, which is equal to 1/∥L†∥2. Also note that L−T/2 = L−1/2.

227

for r ⩾ 6γ2ϵ,B ln
(
γ2ϵ,B/

√
δ
)

, where γϵ,B = 8W
ϵ·σmax(B)

and δ ∈ (0, 1]. This completes the

proof.

We note that since the objective here is to sparsify the graph, and since we do

so by s.w.r., the condition r ⩽ N assumed in Theorem 5.1.2 can be violated, as we

will get heavier resulting edges for unstructured graphs, rather than more edges. All

guarantees will still hold true.

5.2.3 Comparison to the Effective Resistances Approach

Let x̃e = L−1/2χe, for each e ∈ E. Then, the effective resistances are defined

as re = ∥x̃e∥22. It is therefore clear that the only difference between the proposed

algorithm and that of sparsifying through effective resistances, is that the former is

rescaled according to Π rather than L†. The main benefit in our approach, is that

the sampling distribution can be determined directly through w. We note also that

{re}e∈E can be approximated in nearly-linear time [273].

The analysis of the proposed random sampling algorithm invokes Theorem 5.1.2,

whose proof relies on a Chernoff bound on sums of Hermitian matrices [219]. Use of

this bound is new in random sampling for Laplacian sparsification, and specifically

applies to our proposed spectral method using sampling with replacement. This

is to be compared with the use of other conventional Chernoff bounds [283] and

concentration of measure [248] approaches. Intriguingly, unlike [273]; our approach

does not require spectral information of L.

The benefit of using the bound of [219], is that it can be applied to directly ap-

proximate the intersection of two different graphs on V . Specifically, we use CR−MM

to approximate L1,2 = BT
1B2, for B1,B2 the boundary matrices of the two graphs.

A spectral guarantee, is not available, to our knowledge, for the case where the error

of the underlying approximate MM is in terms of the Euclidean norm. Therefore,

the techniques of [273] on sampling according to effective resistances does not ap-

ply. Definition 5.2.1 on the other hand quantifies the approximation error we get for

Laplacians of such intersection graphs.

Another benefit of our approach, is that it permits spectral sparsification of dy-

namic graphs in which edges are continuously added to G, i.e. for Gt = (V,Et, wt)

after some time we get Gt+1 = (V,Et+1, wt+1); where Et+1 = Et∪{et+1} for et+1 /∈ Et.

This can be done through the SELECT algorithm, with O(1) additional storage

space, without altering the distribution according to the weights when sampling from

Et ⊂ Et+1 [201, Lemma 1]. This is not possible when sampling according to ef-

228

fective resistances, as the addition of a single edge et+1 could drastically alter the

corresponding distribution on Et ⊂ Et+1.

5.3 Experiment

We compared s.w.r. according to {pe}e∈E (via CR−MM) which is already known

through w, and {re}e∈E (ER); which requires O(mn2) operations to calculate. Even

though our main benefit is algorithmic, empirically our approach performs just as

well; in terms of the error characterization (5.11). We considered the barbell graph

on n = 2713 vertices, and assigned weights to each of the m = 7864 edges randomly

from N100. We sparsified the graph for r = 3500 + 500ν; for each ν ∈ N13. In Figure

E.2 we present the adjacency matrices of G and G̃, to distinguish the difference of

G and G̃ for r = 4000. In Figures E.3 and E.4, we show the sparsification rate and

error for each r.

500 1000 1500 2000 2500

500

1000

1500

2000

2500
50

100

150

200

250

300

350

400

450

500 1000 1500 2000 2500

500

1000

1500

2000

2500

100

150

200

250

300

350

400

450

Figure E.2: Adjacency matrices of G and G̃, for r = 4000.

4000 5000 6000 7000 8000 9000 10000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Percentage of edges retained

Figure E.3: Percentage of retained edges, after sparsification.

229

4000 5000 6000 7000 8000 9000 10000

0.1

0.2

0.3

0.4

0.5

Error in Spectral Characterization

Figure E.4: Error in terms of (5.11), for varying r.

5.4 Future Directions

In this appendix, we proposed a graph sparsifier that approximates Laplacian

through the use of CR−MM; a sampling with replacement technique, adapted from

RandNLA. Applications of the proposed method to spectral clustering through block

sampling [53, 217] would be worthwhile future work. Specifically, cliques of a given

graph may be determined by approximating their Laplacians. The proposed com-

putationally efficient spectral approximation may permit the identification of highly

connected vertices without the need to traverse through the entire graph.

230

BIBLIOGRAPHY

231

BIBLIOGRAPHY

[1] Dimitris Achlioptas. Database-friendly Random Projections: Johnson-
Lindenstrauss with binary coins. Journal of computer and System Sciences,
66(4):671–687, 2003. 5

[2] Michal Aharon, Michael Elad, and Alfred Bruckstein. k-SVD: An Algorithm for
Designing Overcomplete Dictionaries for Sparse Representation. IEEE Trans-
actions on signal processing, 54(11):4311–4322, 2006. 169

[3] Jawad Ahmad, Muazzam A Khan, Seong Oun Hwang, and Jan Sher Khan.
A compression sensing and noise-tolerant image encryption scheme based on
chaotic maps and orthogonal matrices. Neural computing and applications,
28(1):953–967, 2017. 211

[4] Jawad Ahmad, Muazzam Ali Khan, Fawad Ahmed, and Jan Sher Khan. A novel
image encryption scheme based on orthogonal matrix, skew tent map, and xor
operation. Neural Computing and Applications, 30(12):3847–3857, 2018. 211

[5] Nir Ailon and Bernard Chazelle. Approximate Nearest Neighbors and the Fast
Johnson–Lindenstrauss Transform. In Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing, pages 557–563, 2006. 5, 60, 79, 147,
177, 195

[6] Nir Ailon and Bernard Chazelle. The Fast Johnson–Lindenstrauss Transform
and Approximate Nearest Neighbors. SIAM Journal on computing, 39(1):302–
322, 2009. 60

[7] Nir Ailon and Edo Liberty. Fast Dimension Reduction Using Rademacher Series
on Dual BCH Codes. Discrete & Computational Geometry, 42:615–630, 2009.
5

[8] Nir Ailon and Edo Liberty. An Almost Optimal Unrestricted Fast Johnson-
Lindenstrauss Transform. ACM Transactions on Algorithms (TALG), 9(3):1–
12, 2013. 5

[9] Miklós Ajtai. Generating Hard Instances of Lattice Problems. In Proceedings of
the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC
’96, page 99–108, New York, NY, USA, 1996. Association for Computing Ma-
chinery. 2

232

[10] Salamudeen Alhassan, Mohammed Muniru Iddrisu, and Mohammed Ibrahim
Daabo. Perceptual video encryption using orthogonal matrix. International
Journal of Computer Mathematics: Computer Systems Theory, 4(3-4):129–139,
2019. 211

[11] Josh Alman and Virginia Vassilevska Williams. A Refined Laser Method and
Faster Matrix Multiplication. In Proceedings of the 2021 ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 522–539. SIAM, 2021. 47, 113,
133, 210

[12] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof Verification and the Hardness of Approximation Problems. Jour-
nal of the ACM (JACM), 45(3):501–555, 1998. 2

[13] Sanjeev Arora and Shmuel Safra. Probabilistic Checking of Proofs: A New
Characterization of NP. Journal of the ACM (JACM), 45(1):70–122, 1998. 2

[14] Rosa I. Arriaga and Santosh Vempala. An algorithmic theory of learning: Ro-
bust concepts and random projection. In 40th Annual Symposium on Founda-
tions of Computer Science (Cat. No.99CB37039), pages 616–623, 1999. 6

[15] Fusheng Bai, Zhiyou Wu, and Daoli Zhu. Sequential Lagrange multiplier con-
dition for ϵ-optimal solution in convex programming. Optimization, 57(5):669–
680, 2008. 214

[16] Oleg Balabanov, Matthias Beaupère, Laura Grigori, and Victor Lederer. Block
subsampled randomized Hadamard transform for low-rank approximation on
distributed architectures. arXiv preprint arXiv:2210.11295, 2022. 177

[17] Frank Ban, David P. Woodruff, and Richard Zhang. Regularized Weighted Low
Rank Approximation. In Advances in Neural Information Processing Systems,
pages 4059–4069, 2019. 169

[18] Burak Bartan and Mert Pilanci. Polar Coded Distributed Matrix Multiplica-
tion. arXiv preprint arXiv:1901.06811, 2019. 14, 165

[19] Burak Bartan and Mert Pilanci. Straggler Resilient Serverless Computing Based
on Polar Codes. In 2019 57th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 276–283. IEEE, 2019. 77, 150

[20] Burak Bartan and Mert Pilanci. Distributed sketching for randomized op-
timization: Exact characterization, concentration, and lower bounds. IEEE
Transactions on Information Theory, 69(6):3850–3879, 2023. 49, 79, 80

[21] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-
Ramanujan Sparsifiers. In Proceedings of the forty-first annual ACM symposium
on Theory of computing, pages 255–262, 2009. 6

233

[22] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness Theo-
rems for Non-Cryptographic Fault-Tolerant Distributed Computations. In Pro-
ceedings of the 20th Annual ACM Symposium on the Theory of Computing,
1988, pages 1–10, 1988. 3

[23] András A Benczúr and David R Karger. Approximating s − t Minimum Cuts
in Õ(n2) Time. In Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing, pages 47–55, 1996. 220

[24] Elwyn R. Berlekamp. Factoring polynomials over large finite fields. In Stan-
ley R. Petrick, Jean E. Sammet, Robert G. Tobey, and Joel Moses, editors,
Proceedings of the second ACM symposium on Symbolic and algebraic manipu-
lation, SYMSAC 1971, Los Angeles, California, USA, March 23-25, 1971, page
223. ACM, 1971. 2

[25] Rawad Bitar, Mary Wootters, and Salim El Rouayheb. Stochastic Gradient
Coding for Straggler Mitigation in Distributed Learning. IEEE Journal on
Selected Areas in Information Theory, 1:277–291, 2020. 12, 77, 79, 150, 211

[26] Å. Björck and V. Pereyra. Solution of Vandermonde Systems of Equations.
Mathematics of Computation, 24:893–903, 1970. 113

[27] George R. Blakley. Safeguarding cryptographic keys. 1979 International Work-
shop on Managing Requirements Knowledge (MARK), pages 313–318, 1899. 1,
122

[28] Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundations of data
science. Cambridge University Press, 2020. 6

[29] Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On A Class of Error
Correcting Binary Group Codes. Information and Control, 3(1):68–79, 1960.
215

[30] Jean Bourgain, Stephen J. Dilworth, Kevin Ford, Sergei Konyagin, and Denka
Kutzarova. Explicit Constructions of RIP Matrices and Related Problems.
CoRR, abs/1008.4535, 2010. 6

[31] Christos Boutsidis. Topics in Matrix Sampling Algorithms. PhD thesis, Rens-
selaer Polytechnic Institute, 2011. 6

[32] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near-optimal
column-based matrix reconstruction. SIAM Journal on Computing, 43(2):687–
717, 2014. 221

[33] Christos Boutsidis and Alex Gittens. Improved matrix algorithms via the Sub-
sampled Randomized Hadamard Transform. SIAM Journal on Matrix Analysis
and Applications, 34(3):1301–1340, 2013. 79

234

[34] Christos Boutsidis, Michael W. Mahoney, and Petros Drineas. An Improved
Approximation Algorithm for the Column Subset Selection Problem. In Pro-
ceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms,
pages 968–977. SIAM, 2009. 77, 151

[35] Christos Boutsidis, Anastasios Zouzias, Michael W. Mahoney, and Petros
Drineas. Randomized Dimensionality Reduction for k-means Clustering. IEEE
Transactions on Information Theory, 61(2):1045–1062, 2014. 2, 48

[36] Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
university press, 2004. 115, 116

[37] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully
Homomorphic Encryption without Bootstrapping. ACM Transactions on Com-
putation Theory (TOCT), 6(3):1–36, 2014. 211

[38] Sébastien Bubeck. Convex Optimization: Algorithms and Complexity. Foun-
dations and Trends® in Machine Learning, 8(3-4):231–357, 2015. 72, 88, 117

[39] Martin Ayalde Camacho. Spectral Sparsification: The Barrier Method and its
Applications. Harvard College, 2014. 221

[40] Emmanuel J. Candes, Justin Romberg, and Terence Tao. Robust Uncertainty
Principles: Exact Signal Reconstruction From Highly Incomplete Frequency
Information. IEEE Transactions on Information Theory, 52(2):489–509, 2006.
5

[41] Emmanuel J. Candes and Terence Tao. Decoding by Linear Programming.
IEEE Transactions on Information Theory, 51(12):4203–4215, 2005. 5

[42] Hankun Cao, Qifa Yan, Xiaohu Tang, and Guojun Han. Adaptive Gradient
Coding. IEEE/ACM Transactions on Networking, 30(2):717–734, 2022. 79, 93,
211

[43] Wei-Ting Chang and Ravi Tandon. Random Sampling for Distributed Coded
Matrix Multiplication. In ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 8187–8191. IEEE,
2019. 78, 100, 151

[44] Neophytos Charalambides. Beyond the Guruswami-Sudan (and Parvaresh-
Vardy) Radii: Folded Reed-Solomon, Multiplicity and Derivative Codes. arXiv
preprint arXiv:2003.05400, 2020. 132

[45] Neophytos Charalambides. Dimensionality Reduction for k-means Clustering.
arXiv preprint arXiv:2007.13185, 2020. 2, 48

[46] Neophytos Charalambides and Alfred O. Hero III. Graph Sparsification by
Approximate Matrix Multiplication. In 2023 IEEE Statistical Signal Processing
Workshop (SSP), page to appear. IEEE, 2023. 11, 134

235

[47] Neophytos Charalambides, Hessam Mahdavifar, and Alfred O. Hero III. Numer-
ically Stable Binary Gradient Coding. In 2020 IEEE International Symposium
on Information Theory (ISIT), pages 2622–2627, 2020. 8, 12, 49, 52, 79, 82,
104, 211

[48] Neophytos Charalambides, Hessam Mahdavifar, and Alfred O. Hero III. Numer-
ically Stable Binary Coded Computations. arXiv preprint arXiv:2109.10484,
2021. 8, 49, 78

[49] Neophytos Charalambides, Hessam Mahdavifar, Mert Pilanci, and Alfred O.
Hero III. Orthonormal Sketches for Secure Coded Regression. In 2022 IEEE
International Symposium on Information Theory (ISIT), pages 826–831, 2022.
10, 12, 61, 102, 147, 177, 178

[50] Neophytos Charalambides, Hessam Mahdavifar, Mert Pilanci, and Alfred O.
Hero III. Iterative Sketching for Secure Coded Regression. arXiv preprint
arXiv:2308.04185, 2023. 10

[51] Neophytos Charalambides, Mert Pilanci, and Alfred O. Hero III. Strag-
gler Robust Distributed Matrix Inverse Approximation. arXiv preprint
arXiv:2003.02948, 2020. 7, 14, 40, 41, 78, 210, 212

[52] Neophytos Charalambides, Mert Pilanci, and Alfred O. Hero III. Weighted
Gradient Coding with Leverage Score Sampling. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5215–5219. IEEE, 2020. 12, 42, 49, 50, 54, 62, 77, 79, 89, 134, 150, 195,
211

[53] Neophytos Charalambides, Mert Pilanci, and Alfred O. Hero III. Approximate
Weighted CR Coded Matrix Multiplication. In ICASSP 2021 - 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5095–5099, 2021. 14, 40, 41, 42, 49, 50, 58, 62, 77, 78, 100, 134, 135, 150,
151, 154, 157, 230

[54] Neophytos Charalambides, Mert Pilanci, and Alfred O. Hero III. Secure Linear
MDS Coded Matrix Inversion. In 2022 58th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 1–8, 2022. ix, 10,
14, 103, 105, 108, 119, 120

[55] Neophytos Charalambides, Mert Pilanci, and Alfred O. Hero III. Federated
Coded Matrix Inversion. arXiv preprint arXiv:2301.03539, 2023. 10, 78

[56] Neophytos Charalambides, Mert Pilanci, and Alfred O. Hero III. Gradient
Coding through Iterative Block Leverage Score Sampling. arXiv preprint
arXiv:2308.03096, 2023. 9, 83, 89, 90, 194

[57] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding Frequent
Items in Data Streams. Theoretical Computer Science, 312(1):3–15, 2004. 59

236

[58] Zachary Charles and Dimitris Papailiopoulos. Gradient Coding Using the
Stochastic Block Model. In 2018 IEEE International Symposium on Infor-
mation Theory (ISIT), pages 1998–2002, 2018. 12, 27, 77, 79, 150, 211

[59] Zachary Charles, Dimitris Papailiopoulos, and Jordan Ellenberg. Approximate
gradient coding via sparse random graphs. arXiv preprint arXiv:1711.06771,
2017. 12, 73, 77, 79, 83, 150, 194, 211

[60] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty Uncondition-
ally Secure Protocols. In Proceedings of the 20th Annual ACM Symposium on
the Theory of Computing, 1988, pages 11–19, 1988. 3

[61] Hao Chen, Ronald Cramer, Shafi Goldwasser, Robbert De Haan, and Vinod
Vaikuntanathan. Secure Computation from Random Error Correcting Codes. In
Advances in Cryptology-EUROCRYPT 2007: 26th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Barcelona,
Spain, May 20-24, 2007. Proceedings 26, pages 291–310. Springer, 2007. 2

[62] Lingjiao Chen, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos.
Draco: Byzantine-resilient distributed training via redundant gradients. arXiv
preprint arXiv:1803.09877, 2018. 12, 79, 211

[63] Mahdi Cheraghchi. Nearly optimal robust secret sharing. Designs, Codes and
Cryptography, 87:1777–1796, 2019. 122

[64] Yasuko Chikuse. Statistics on Special Manifolds. Lecture Notes in Statistics.
Springer New York, 2012. 95

[65] Fan R.K. Chung. Spectral Graph Theory, volume 92. American Mathematical
Soc., 1997. 6

[66] Ali Civril. Column Subset Selection Problem is UG-hard. Journal of Computer
and System Sciences, 80(4):849–859, 2014. 77, 151

[67] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and
Madalina Persu. Dimensionality Reduction for k-Means Clustering and Low
Rank Approximation. In Proceedings of the forty-seventh annual ACM sympo-
sium on Theory of computing, pages 163–172, 2015. 2, 48

[68] Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard
Peng, and Aaron Sidford. Uniform Sampling for Matrix Approximation. In
Proceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, pages 181–190, 2015. 65

[69] Michael B. Cohen, Jelani Nelson, and David P. Woodruff. Optimal Approximate
Matrix Product in Terms of Stable Rank. In 43rd International Colloquium
on Automata, Languages, and Programming (ICALP 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2016. 134

237

[70] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. In Proceedings of the nineteenth annual ACM symposium on The-
ory of computing, pages 1–6, 1987. 133

[71] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley
Series in Telecommunications and Signal Processing). Wiley-Interscience, USA,
2006. 122

[72] Lorenzo Dall’Amico, Romain Couillet, and Nicolas Tremblay. Optimal Lapla-
cian Regularization for Sparse Spectral Community Detection. In ICASSP 2020
- 2020 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 3237–3241. IEEE, 2020. 220

[73] Anindya Bijoy Das and Aditya Ramamoorthy. Coded sparse matrix compu-
tation schemes that leverage partial stragglers. In 2021 IEEE International
Symposium on Information Theory (ISIT), pages 1570–1575. IEEE, 2021. 14

[74] Anindya Bijoy Das, Aditya Ramamoorthy, and Namrata Vaswani. Efficient
and Robust Distributed Matrix Computations via Convolutional Coding. IEEE
Transactions on Information Theory, 67(9):6266–6282, 2021. 14

[75] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. A Sparse John-
son–Lindenstrauss Transform. In Proceedings of the forty-second ACM sym-
posium on Theory of computing, pages 341–350, 2010. 5

[76] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of
Johnson and Lindenstrauss. Random Structures & Algorithms, 22(1):60–65,
2003. 5

[77] Son Hoang Dau, Wentu Song, Zheng Dong, and Chau Yuen. Balanced Sparsest
Generator Matrices for MDS Codes. In 2013 IEEE International Symposium
on Information Theory, pages 1889–1893, 2013. 112, 126

[78] Luca De Feo. Mathematics of Isogeny Based Cryptography. arXiv e-prints,
pages arXiv–1711, 2017. 2

[79] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal Dis-
tributed Online Prediction Using Mini-Batches. Journal of Machine Learning
Research, 13(1), 2012. 72, 88

[80] Micha l Dereziński and Michael W. Mahoney. Determinantal Point Processes in
Randomized Numerical Linear Algebra. Notices of the American Mathematical
Society, 68(1):34–45, 2021. 6

[81] Sagar Dhakal, Saurav Prakash, Yair Yona, Shilpa Talwar, and Nageen Himayat.
Coded Federated Learning. In 2019 IEEE Globecom Workshops (GC Wkshps),
pages 1–6. IEEE, 2019. 103, 105, 106

238

[82] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976. 1

[83] Irit Dinur. The PCP Theorem by Gap Amplification. Journal of the ACM
(JACM), 54(3):12–es, 2007. 2

[84] David L. Donoho. Compressed Sensing. IEEE Transactions on information
theory, 52(4):1289–1306, 2006. 5

[85] Petros Drineas. Randomized Algorithms for Matrix Operations. PhD thesis,
Yale University, 2003. 6

[86] Petros Drineas, Alan Frieze, Ravi Kannan, Santosh Vempala, and V. Vinay.
Clustering in Large Graphs and Matrices. In Proceedings of the tenth annual
ACM-SIAM symposium on Discrete algorithms, pages 291–299, 1999. 48, 58

[87] Petros Drineas, Alan Frieze, Ravi Kannan, Santosh Vempala, and V. Vinay.
Clustering Large Graphs via the Singular Value Decomposition. Machine learn-
ing, 56(1-3):9–33, 2004. 48

[88] Petros Drineas and Ravi Kannan. Fast Monte-Carlo Algorithms for Approxi-
mate Matrix Multiplication. In Proceedings of the 42nd IEEE symposium on
Foundations of Computer Science, pages 452–459, 2001. 8, 41, 58, 134, 135, 223

[89] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte Carlo
Algorithms for Matrices I: Approximating Matrix Multiplication. SIAM Journal
on Computing, 36(1):132–157, 2006. 8, 41, 48, 54, 134, 135, 223

[90] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte Carlo
Algorithms for Matrices II: Computing a Low-Rank Approximation to a Matrix.
SIAM Journal on computing, 36(1):158–183, 2006. 8, 41, 48, 54, 134, 135, 223

[91] Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P.
Woodruff. Fast Approximation of Matrix Coherence and Statistical Leverage.
Journal of Machine Learning Research, 13(Dec):3475–3506, 2012. 54, 59, 60,
65, 89, 136, 138, 145, 195, 221

[92] Petros Drineas and Michael W. Mahoney. Effective Resistances, Statisti-
cal Leverage, and Applications to Linear Equation Solving. arXiv preprint
arXiv:1005.3097, 2010. 5, 6, 134, 147, 221

[93] Petros Drineas and Michael W. Mahoney. RandNLA: Randomized Numerical
Linear Algebra. Communications of the ACM, 59(6):80–90, 2016. 6, 48, 78, 89

[94] Petros Drineas and Michael W. Mahoney. Lectures on Randomized Numerical
Linear Algebra. arXiv preprint arXiv:1712.08880, 2017. 6

239

[95] Petros Drineas, Michael W. Mahoney, and Shan Muthukrishnan. Sampling
algorithms for ℓ2 regression and applications. In Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm, pages 1127–1136, 2006.
60, 89

[96] Petros Drineas, Michael W. Mahoney, Shan Muthukrishnan, and Tamás Sarlós.
Faster Least Squares Approximation. Numerische mathematik, 117(2):219–249,
2011. 53, 78, 79, 81, 89, 91, 134, 135, 136, 147, 177, 221, 226

[97] Sanghamitra Dutta, Viveck Cadambe, and Pulkit Grover. Short-Dot: Comput-
ing Large Linear Transforms Distributedly Using Coded Short Dot Products.
In Advances In Neural Information Processing Systems, pages 2100–2108, 2016.
14, 78

[98] Sanghamitra Dutta, Mohammad Fahim, Farzin Haddadpour, Haewon Jeong,
Viveck Cadambe, and Pulkit Grover. On the Optimal Recovery Threshold
of Coded Matrix Multiplication. IEEE Transactions on Information Theory,
66(1):278–301, 2019. 14, 34, 43, 108

[99] Carl Eckart and G. Marion Young. The approximation of one matrix by another
of lower rank. Psychometrika, 1:211–218, 1936. 169

[100] Salim El Rouayheb and Kannan Ramchandran. Fractional repetition codes for
repair in distributed storage systems. In 2010 48th Annual Allerton Confer-
ence on Communication, Control, and Computing (Allerton), pages 1510–1517.
IEEE, 2010. 13, 46, 150

[101] Tommy Elfving. Block-iterative methods for consistent and inconsistent linear
equations. Numerische Mathematik, 35(1):1–12, 1980. 48, 86

[102] Taher ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985. 1

[103] Paul Erdős. Some Remarks on the Theory of Graphs. Bulletin of the American
Mathematical Society, 53(4):292–294, 1947. 2

[104] Paul Erdős and Alfred Rényi. On random graphs. Publicationes Mathematicae,
6:290297, 1959. 2

[105] N. Benjamin Erichson, Ariana Mendible, Sophie Wihlborn, and J. Nathan
Kutz. Randomized Nonnegative Matrix Factorization. arXiv preprint
arXiv:1711.02037, 2017. 169

[106] Ali Eshragh, Fred Roosta, Asef Nazari, and Michael W. Mahoney. LSAR:
Efficient Leverage Score Sampling Algorithm for the Analysis of Big Time Series
Data. Journal of Machine Learning Research, 23(22):1–36, 2022. 54, 59, 84

240

[107] Mohammad Fahim and Viveck R. Cadambe. Lagrange Coded Computing with
Sparsity Constraints. In 2019 57th Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton), pages 284–289, 2019. 107

[108] Mohammad Fahim and Viveck R Cadambe. Numerically Stable Polynomially
Coded Computing. In 2019 IEEE International Symposium on Information
Theory (ISIT), pages 3017–3021. IEEE, 2019. 14

[109] Mohammad Fahim, Haewon Jeong, Farzin Haddadpour, Sanghamitra Dutta,
Viveck Cadambe, and Pulkit Grover. On the Optimal Recovery Threshold of
Coded Matrix Multiplication. In 2017 55th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 1264–1270. IEEE,
2017. 14, 34, 43

[110] Ora Nova Fandina, Mikael Møller Høgsgaard, and Kasper Green Larsen. The
Fast Johnson-Lindenstrauss Transform Is Even Faster. In International Con-
ference on Machine Learning, pages 9689–9715. PMLR, 2023. 5

[111] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy.
Interactive Proofs and the Hardness of Approximating Cliques. Journal of the
ACM (JACM), 43(2):268–292, 1996. 2

[112] Nuwan S. Ferdinand and Stark C. Draper. Anytime coding for distributed
computation. In 2016 54th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 954–960. IEEE, 2016. 14, 58, 59, 77,
150

[113] Péter Frankl and Hiroaki Maehara. The Johnson-Lindenstrauss Lemma and
the Sphericity of Some Graphs. Journal of Combinatorial Theory, Series B,
44(3):355–362, 1988. 5

[114] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model Inversion Attacks
that Exploit Confidence Information and Basic Countermeasures. In Proceed-
ings of the 22nd ACM SIGSAC conference on computer and communications
security, pages 1322–1333, 2015. 80

[115] Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast Monte-Carlo Algo-
rithms for finding Low-Rank Approximations. Journal of the ACM (JACM),
51(6):1025–1041, 2004. 6

[116] Robert G. Gallager. Low-density parity-check codes. IRE Trans. Inf. Theory,
8(1):21–28, 1962. 45

[117] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford
University, 2009. 211

[118] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In Proceed-
ings of the forty-first annual ACM symposium on Theory of computing, pages
169–178, 2009. 211

241

[119] Alex Gittens. Topics in Randomized Numerical Linear Algebra. PhD thesis,
California Institute of Technology, 2013. 6

[120] Margalit Glasgow and Mary Wootters. Approximate Gradient Coding with
Optimal Decoding. IEEE Journal on Selected Areas in Information Theory,
2(3):855–866, 2021. 77, 150

[121] Michel X. Goemans and David P. Williamson. Improved Approximation Algo-
rithms for Maximum Cut and Satisfiability Problems Using Semidefinite Pro-
gramming. Journal of the ACM (JACM), 42(6):1115–1145, 1995. 2

[122] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-
flow problem. Journal of the ACM (JACM), 35(4):921–940, 1988. 220

[123] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. Journal of Com-
puter and System Sciences, 28:270–299, 1984. 1, 2

[124] Gene H. Golub, Michael W. Mahoney, Petros Drineas, and Lek-Heng Lim.
Bridging the Gap Between Numerical Linear Algebra, Theoretical Computer
Science, and Data Applications. SIAM News, 39(8):1–3, 2006. 6

[125] Robert M. Gower. Sketch and Project: Randomized Iterative Methods for
Linear Systems and Inverting Matrices. arXiv preprint arXiv:1612.06013, 2016.
120

[126] B. G. Greenberg and A. E. Sarhan. Matrix Inversion, Its Interest and Appli-
cation in Analysis of Data. Journal of the American Statistical Association,
54(288):755–766, 1959. 102

[127] Vipul Gupta, Swanand Kadhe, Thomas Courtade, Michael W. Mahoney, and
Kannan Ramchandran. OverSketched Newton: Fast Convex Optimization for
Serverless Systems. In 2020 IEEE International Conference on Big Data (Big
Data), pages 288–297. IEEE, 2020. 49, 50, 58, 59, 101, 152

[128] Vipul Gupta, Shusen Wang, Thomas Courtade, and Kannan Ramchandran.
OverSketch: Approximate Matrix Multiplication for the Cloud. In 2018 IEEE
International Conference on Big Data (Big Data), pages 298–304. IEEE, 2018.
49, 50, 58, 59

[129] Venkatesan Guruswami and Atri Rudra. Explicit Codes Achieving List Decod-
ing Capacity: Error-Correction With Optimal Redundancy. IEEE Transactions
on Information Theory, 54(1):135–150, 2008. 132

[130] Venkatesan Guruswami and Alexander Vardy. Maximum-Likelihood Decoding
of Reed-Solomon Codes is NP-hard. IEEE Transactions on Information Theory,
51(7):2249–2256, 2005. 131

242

[131] Martin H. Gutknecht. Block Krylov Space Methods for Linear Systems with
Multiple Right-hand Sides: An Introduction. Modern Mathematical Mod-
els,Methods and Algorithms for Real World Systems, 2006. 48, 86

[132] Sukjong Ha, Jingjing Zhang, Osvaldo Simeone, and Joonhyuk Kang. Coded
Federated Computing in Wireless Networks with Straggling Devices and Im-
perfect CSI. In 2019 IEEE International Symposium on Information Theory
(ISIT), pages 2649–2653, 2019. 103

[133] Farzin Haddadpour and Viveck R Cadambe. Codes for Distributed Finite Al-
phabet Matrix-Vector Multiplication. In 2018 IEEE International Symposium
on Information Theory (ISIT), pages 1625–1629. IEEE, 2018. 14

[134] Wael Halbawi, Navid Azizan, Fariborz Salehi, and Babak Hassibi. Improving
Distributed Gradient Descent Using Reed-Solomon Codes. In 2018 IEEE In-
ternational Symposium on Information Theory (ISIT), pages 2027–2031. IEEE,
2018. 12, 42, 79, 103, 107, 111, 112, 114, 165, 211, 214, 215

[135] Wael Halbawi, Zihan Liu, and Babak Hassibi. Balanced Reed-Solomon codes.
In 2016 IEEE International Symposium on Information Theory (ISIT), pages
935–939. IEEE, 2016. 42, 103, 110, 112, 113, 215

[136] Wael Halbawi, Zihan Liu, and Babak Hassibi. Balanced Reed-Solomon Codes
for all parameters. In 2016 IEEE Information Theory Workshop (ITW), pages
409–413. IEEE, 2016. 103, 110

[137] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure
with randomness: Probabilistic algorithms for constructing approximate matrix
decompositions. SIAM review, 53(2):217–288, 2011. 6, 48

[138] Keaton Hamm and Longxiu Huang. Perturbations of CUR Decompositions.
SIAM Journal on Matrix Analysis and Applications, 42(1):351–375, 2021. 135

[139] Richard Wesley Hamming. Error Detecting and Error Correcting Codes. The
Bell System Technical Journal, 29(2):147–160, 1950. 1

[140] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society
for Industrial and Applied Mathematics, USA, 2nd edition, 2002. 102

[141] Alexis Hocquenghem. Codes correcteurs d’erreurs. Chiffers, 2:147–156, 1959.
215

[142] James Hook. Max-plus statistical leverage scores. arXiv preprint
arXiv:1609.09519, 2016. 136, 138, 146

[143] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander Graphs and Their
Applications. Bulletin of the American Mathematical Society, 43(4):439–561,
2006. 6

243

[144] Shunsuke Horii, Takahiro Yoshida, Manabu Kobayashi, and Toshiyasu Mat-
sushima. Distributed Stochastic Gradient Descent Using LDGM Codes. arXiv
preprint arXiv:1901.04668, 2019. 12, 77, 79, 150, 211

[145] Berivan Isik, Tsachy Weissman, and Albert No. An information-theoretic justi-
fication for model pruning. In International Conference on Artificial Intelligence
and Statistics, pages 3821–3846. PMLR, 2022. 53

[146] Tayyebeh Jahani-Nezhad and Mohammad Ali Maddah-Ali. CodedSketch:
Coded Distributed Computation of Approximated Matrix Multiplication. In
2019 IEEE International Symposium on Information Theory (ISIT), pages
2489–2493. IEEE, 2019. 14, 58, 59

[147] Tayyebeh Jahani-Nezhad and Mohammad Ali Maddah-Ali. CodedSketch: A
Coding Scheme for Distributed Computation of Approximated Matrix Multi-
plication. IEEE Transactions on Information Theory, 67(6):4185–4196, 2021.
49

[148] Tayyebeh Jahani-Nezhad and Mohammad Ali Maddah-Ali. Optimal
Communication-Computation Trade-Off in Heterogeneous Gradient Coding.
IEEE Journal on Selected Areas in Information Theory, 2(3):1002–1011, 2021.
131, 153

[149] Mohammad V. Jamali, Mahdi Soleymani, and Hessam Mahdavifar. Coded
Distributed Computing: Performance Limits and Code Designs. In 2019 IEEE
Information Theory Workshop (ITW), pages 1–5, 2019. 13, 14

[150] Michael Jauch, Peter D. Hoff, and David B. Dunson. Monte Carlo simulation
on the Stiefel manifold via polar expansion. Journal of Computational and
Graphical Statistics, 30(3):622–631, 2021. 90

[151] Haewon Jeong, Ateet Devulapalli, Viveck R Cadambe, and Flavio Calmon. ε-
approximate coded matrix multiplication is nearly twice as efficient as exact
multiplication. arXiv preprint arXiv:2105.01973, 2021. 14

[152] Bo Jiang, Yiyi Yu, Hamid Krim, and Spencer L Smith. Dynamic Graph Learn-
ing Based on Graph Laplacian. In ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1090–
1094. IEEE, 2021. 220

[153] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz map-
pings into a Hilbert space. In Contemp. Math., volume 26, pages 189–206, 1984.
5, 48, 79

[154] Durga Datt Joshi. A Note on Upper Bounds for Minimum Distance Codes.
Information and Control, 3(1):289–295, 1958. 214

244

[155] Swanand Kadhe, O Ozan Koyluoglu, and Kannan Ramchandran. Gradient cod-
ing based on block designs for mitigating adversarial stragglers. arXiv preprint
arXiv:1904.13373, 2019. 12, 46, 73, 77, 79, 150, 194, 211

[156] Mohammad Mahdi Kamani, Farzin Haddadpour, Rana Forsati, and Mehrdad
Mahdavi. Efficient Fair Principal Component Analysis. arXiv preprint
arXiv:1911.04931, 2019. 169

[157] Daniel M. Kane and Jelani Nelson. Sparser Johnson-Lindenstrauss Transforms.
Journal of the ACM (JACM), 61(1):1–23, 2014. 5

[158] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On Clusterings: Good, Bad
and Spectral. Journal of the ACM (JACM), 51(3):497–515, 2004. 220

[159] Can Karakus, Yifan Sun, and Suhas Diggavi. Encoded Distributed Optimiza-
tion. In 2017 IEEE International Symposium on Information Theory (ISIT),
pages 2890–2894. IEEE, 2017. 80, 102

[160] Can Karakus, Yifan Sun, Suhas Diggavi, and Wotao Yin. Redundancy Tech-
niques for Straggler Mitigation in Distributed Optimization and Learning. Jour-
nal of Machine Learning Research, 20(72):1–47, 2019. 80

[161] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.
Chapman and Hall/CRC, 2014. 84, 97

[162] Vijay Keswani. Laplacian Solvers and Graph Sparsification. Master’s thesis,
Indian Institute of Technology Kanpur, 2016. 227

[163] Fozia Hanif Khan, Rehan Shams, Farheen Qazi, and D Agha. Hill cipher key
generation algorithm by using orthogonal matrix. Int. J. Innov. Sci. Mod. Eng,
3(3):5–7, 2015. 211

[164] Shahrzad Kiani and Stark C. Draper. Successive Approximation Coding for Dis-
tributed Matrix Multiplication. IEEE Journal on Selected Areas in Information
Theory, 3(2):286–305, 2022. 108

[165] Shahrzad Kiani and Stark C. Draper. Successive Approximation for Coded
Matrix Multiplication. In 2022 IEEE International Symposium on Information
Theory (ISIT), pages 838–843. IEEE, 2022. 108

[166] Shahrzad Kiani, Nuwan Ferdinand, and Stark C. Draper. Exploitation of Strag-
glers in Coded Computation. In 2018 IEEE International Symposium on In-
formation Theory (ISIT), pages 1988–1992. IEEE, 2018. 78

[167] Jakub Konečnỳ, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik.
Federated Optimization: Distributed Machine Learning for On-Device Intelli-
gence. arXiv preprint arXiv:1610.02527, 2016. 104

245

[168] Manfred Krause. A Simple Proof of the Gale-Ryser Theorem. The American
Mathematical Monthly, 103(4):335–337, 1996. 112

[169] Siddhartha Kumar, Reent Schlegel, Eirik Rosnes, and Alexandre Graell i
Amat. Coding for Straggler Mitigation in Federated Learning. arXiv preprint
arXiv:2109.15226, 2021. 103, 105

[170] H. T. Kung. Fast evaluation and interpolation. Carnegie Mellon University,
Tech. Rep., 1973. 43

[171] Rasmus Kyng. Approximate Gaussian Elimination. PhD thesis, Yale University,
2017. 131, 153

[172] Rasmus Kyng and Sushant Sachdeva. Approximate Gaussian Elimination for
Laplacians – Fast, Sparse, and Simple. In 2016 IEEE 57th Annual Symposium
on Foundations of Computer Science (FOCS), pages 573–582. IEEE, 2016. 131,
153

[173] Jonathan Lacotte, Sifan Liu, Edgar Dobriban, and Mert Pilanci. Optimal Iter-
ative Sketching with the Subsampled Randomized Hadamard Transform. Ad-
vances in Neural Information Processing Systems, 33, 2020. 49, 79, 101, 152

[174] Kasper Green Larsen and Jelani Nelson. Optimality of the johnson-
lindenstrauss lemma. In 2017 IEEE 58th Annual Symposium on Foundations
of Computer Science (FOCS), pages 633–638. IEEE, 2017. 5

[175] Can M. Le. Edge sampling using local network information. Journal of Machine
Learning Research, 22(88):1–29, 2021. 6

[176] François Le Gall. Powers of Tensors and Fast Matrix Multiplication. In Pro-
ceedings of the 39th international symposium on symbolic and algebraic compu-
tation, pages 296–303, 2014. 133

[177] Daniel D. Lee and H. Sebastian Seung. Algorithms for Non-negative Matrix
Factorization. In Advances in neural information processing systems, pages
556–562, 2001. 168

[178] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos,
and Kannan Ramchandran. Speeding Up Distributed Machine Learning Using
Codes. IEEE Transactions on Information Theory, 64(3):1514–1529, 2018. 2,
12, 14, 38, 49, 56, 66, 78, 102, 165

[179] Kangwook Lee, Changho Suh, and Kannan Ramchandran. High-Dimensional
Coded Matrix Multiplication. In IEEE International Symposium on Informa-
tion Theory (ISIT), pages 2418–2422. IEEE, 2017. 14, 33, 78

[180] Yin Tat Lee. Probabilistic Spectral Sparsification In Sublinear Time. arXiv
preprint arXiv:1401.0085, 2013. 6

246

[181] Songze Li and Salman Avestimehr. Coded Computing: Mitigating Funda-
mental Bottlenecks in Large-Scale Distributed Computing and Machine Learn-
ing. Foundations and Trends® in Communications and Information Theory,
17(1):1–148, 2020. 4, 13, 17, 49, 51, 78, 102

[182] Songze Li, Seyed Mohammadreza Mousavi Kalan, Qian Yu, Mahdi
Soltanolkotabi, and A. Salman Avestimehr. Polynomially Coded Regres-
sion: Optimal Straggler Mitigation via Data Encoding. arXiv preprint
arXiv:1805.09934, 2018. 17, 33, 168

[183] Songze Li, Mohammad Ali Maddah-Ali, and A. Salman Avestimehr. Coded
Distributed Computing: Straggling Servers and Multistage Dataflows. In 54th
Annual Allerton Conference, pages 164–171. IEEE, 2016. 12, 78

[184] Songze Li, Mohammad Ali Maddah-Ali, and A. Salman Avestimehr. A unified
coding framework for distributed computing with straggling servers. arXiv
preprint arXiv:1609.01690, 2016. 12

[185] Songze Li, Mohammad Ali Maddah-Ali, and A. Salman Avestimehr. Coding
for Distributed Fog Computing. IEEE Commun. Mag., 55(4):34–40, 2017. 12,
78

[186] Songze Li, Seyed Mohammadreza Mousavi Kalan, A. Salman Avestimehr, and
Mahdi Soltanolkotabi. Near-Optimal Straggler Mitigation for Distributed Gra-
dient Methods. In 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 857–866, 2018. 12

[187] Edo Liberty. Accelerated Dense Random Projections. PhD thesis, Yale Univer-
sity, 2009. 5

[188] Edo Liberty, Nir Ailon, and Amit Singer. Dense Fast Random Projections
and Lean Walsh Transforms. In Proceedings of the 11th international work-
shop, APPROX 2008, and 12th international workshop, RANDOM 2008 on
Approximation, Randomization and Combinatorial Optimization: Algorithms
and Techniques, pages 512–522, 2008. 5

[189] Chih-Jen Lin. On the Convergence of Multiplicative Update Algorithms for
Nonnegative Matrix Factorization. IEEE Transactions on Neural Networks,
18(6):1589–1596, 2007. 169

[190] Chih-Jen Lin. Projected Gradient Methods for Non-negative Matrix Factoriza-
tion. Neural computation, 19(10):2756–2779, 2007. 169

[191] San Ling and Chaoping Xing. Coding Theory: A First Course. Cambridge
University Press, 2004. 126, 214

[192] Hsuan-Po Liu, Mahdi Soleymani, and Hessam Mahdavifar. Differentially Pri-
vate Coded Computing. In IEEE International Symposium on Information
Theory (ISIT), pages 2189–2194, 2023. 80

247

[193] László Lovász. Eigenvalues of graphs. Lecture notes, 2007. 6

[194] Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, and Daniel A.
Spielman. Efficient Erasure Correcting Codes. IEEE Transactions on Informa-
tion Theory, 47(2):569, 2001. 2

[195] Ping Ma, Michael W. Mahoney, and Bin Yu. A Statistical Perspective on
Algorithmic Leveraging. The Journal of Machine Learning Research, 16(1):861–
911, 2015. 54, 59, 134

[196] David J.C. MacKay and Radford M. Neal. Near Shannon Limit Performance of
Low Density Parity Check Codes. Electronics Letters, 32(18):1645–1646, 1996.
45

[197] Malik Magdon-Ismail. Row Sampling for Matrix Algorithms via a Non-
Commutative Bernstein Bound. arXiv preprint arXiv:1008.0587, 2010. 137

[198] Michael W. Mahoney. Lecture Notes on Spectral Graph Methods. arXiv
preprint arXiv:1608.04845, 2011. 5, 6

[199] Michael W. Mahoney. Randomized algorithms for matrices and data. Founda-
tions and Trends® in Machine Learning, 3(2):123–224, 2011. 6

[200] Michael W. Mahoney. Algorithmic and Statistical Perspectives on Large-Scale
Data Analysis. Combinatorial Scientific Computing, pages 427–469, 2012. 6,
47, 48

[201] Michael W. Mahoney. Lecture Notes on Randomized Linear Algebra. arXiv
preprint arXiv:1608.04481, 2016. 5, 6, 48, 54, 59, 60, 77, 134, 135, 136, 138,
146, 151, 192, 195, 196, 222, 223, 226, 228

[202] Michael W. Mahoney, Lek-Heng Lim, and Gunnar E Carlsson. Algorithmic
and Statistical Challenges in Modern Large-Scale Data Analysis are the Focus
of MMDS 2008. ACM SIGKDD Explorations Newsletter, 10(2):57–60, 2008. 5,
47

[203] Ankur Mallick, Malhar Chaudhari, and Gauri Joshi. Rateless Codes for Near-
Perfect Load Balancing in Distributed Matrix-Vector Multiplication. arXiv
preprint arXiv:1804.10331, 2018. 12

[204] Per-Gunnar Martinsson and Joel A. Tropp. Randomized numerical linear alge-
bra: Foundations and algorithms. Acta Numerica, 29:403–572, 2020. 6

[205] Jǐŕı Matoušek. On Variants of the Johnson–Lindenstrauss Lemma. Random
Structures & Algorithms, 33(2):142–156, 2008. 5

[206] Robert J. McEliece. A Public-Key Cryptosystem Based on Algebraic Coding
Theory. DSN Progress Report., 33:114–116, 1978. 123

248

[207] Robert J. McEliece. Theory of Information and Coding. Cambridge University
Press, USA, 2nd edition, 2001. 112, 215

[208] Mitzenmacher Michael and Upfal Eli. Probability and Computing: Randomiza-
tion and Probabilistic Techniques in Algorithms and Data Analysis. Cambridge
University Press, 2017. 2

[209] Gary L. Miller. Riemann’s Hypothesis and Tests for Primality. Journal of
computer and system sciences, 13(3):300–317, 1976. 2

[210] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge
university press, 1995. 2

[211] Alexander Munteanu, Simon Omlor, and David Woodruff. Oblivious Sketch-
ing for Logistic Regression. In International Conference on Machine Learning,
pages 7861–7871. PMLR, 2021. 61

[212] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press,
2012. 211

[213] Riley Murray, James Demmel, Michael W. Mahoney, N Benjamin Erich-
son, Maksim Melnichenko, Osman Asif Malik, Laura Grigori, Piotr Luszczek,
Micha l Dereziński, Miles E Lopes, et al. Randomized Numerical Linear Al-
gebra: A Perspective on the Field With an Eye to Software. arXiv preprint
arXiv:2302.11474, 2023. 5, 6

[214] Cameron Musco and Christopher Musco. Projection-Cost-Preserving Sketches:
Proof Strategies and Constructions. arXiv preprint arXiv:2004.08434, 2020. 6,
48

[215] Deanna Needell and Joel A. Tropp. Paved with Good Intentions: Analysis of
a Randomized Block Kaczmarz Method. Linear Algebra and its Applications,
441:199–221, 2014. 48, 86

[216] Jer Shyuan Ng, Wei Yang Bryan Lim, Nguyen Cong Luong, Zehui Xiong, Alia
Asheralieva, Dusit Niyato, Cyril Leung, and Chunyan Miao. A Comprehensive
Survey on Coded Distributed Computing: Fundamentals, Challenges, and Net-
working Applications. IEEE Communications Surveys & Tutorials, 23(3):1800–
1837, 2021. 4, 49

[217] Chengmei Niu and Hanyu Li. Optimal Sampling Algorithms for Block Ma-
trix Multiplication. Journal of Computational and Applied Mathematics,
425:115063, 2023. 134, 135, 154, 230

[218] Ryan O’Donnell. Probability and Computing. http://www.cs.cmu.edu/

~odonnell/papers/probability-and-computing-lecture-notes.pdf,
2009. 2

249

http://www.cs.cmu.edu/~odonnell/papers/probability-and-computing-lecture-notes.pdf
http://www.cs.cmu.edu/~odonnell/papers/probability-and-computing-lecture-notes.pdf

[219] Roberto Oliveira. Sums of random Hermitian matrices and an inequality by
Rudelson. Electronic Communications in Probability, 15:203–212, 2010. 136,
226, 228

[220] Brad Osgood. The Fourier Transform and its Applications. Stanford University,
Lecture Notes, 2009. 91, 204

[221] Urvashi Oswal, Swayambhoo Jain, Kevin S Xu, and Brian Eriksson. Block
CUR: Decomposing Matrices Using Groups of Columns. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages
360–376. Springer, 2018. 49, 54, 77, 89, 151, 195

[222] Emre Ozfatura, Baturalp Buyukates, Deniz Gunduz, and Sennur Ulukus. Age-
Based Coded Computation for Bias Reduction in Distributed Learning. arXiv
preprint arXiv:2006.01816, 2020. 78

[223] Emre Ozfatura, Deniz Gunduz, and Sennur Ulukus. Gradient Coding with Clus-
tering and Multi-message Communication. arXiv preprint arXiv:1903.01974,
2019. 12, 13, 79, 211

[224] Emre Ozfatura, Sennur Ulukus, and Deniz Gunduz. Coded Distributed Com-
puting with Partial Recovery. arXiv preprint arXiv:2007.02191, 2020. 78

[225] Christos H. Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, and Santosh
Vempala. Latent Semantic Indexing: A Probabilistic Analysis. In Proceedings
of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, pages 159–168, 1998. 5

[226] Dimitris Papailiopoulos, Anastasios Kyrillidis, and Christos Boutsidis. Prov-
able Deterministic Leverage Score Sampling. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 997–1006, 2014. 50

[227] Dimitris S. Papailiopoulos and Alexandros G. Dimakis. Locally Repairable
Codes. IEEE Transactions on Information Theory, 60(10):5843–5855, 2014. 44

[228] Farzad Parvaresh and Alexander Vardy. Correcting Errors Beyond the
Guruswami-Sudan Radius in Polynomial Time. In 46th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS’05), pages 285–294. IEEE,
2005. 131

[229] Chris Peikert. A Decade of Lattice Cryptography. Foundations and Trends®
in Theoretical Computer Science, 10(4):283–424, 2016. 2

[230] Richard Peng and Santosh Vempala. Solving Sparse Linear Systems Faster than
Matrix Multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 504–521. SIAM, 2021. 47

250

[231] Mert Pilanci and Martin J Wainwright. Iterative Hessian Sketch: Fast and
Accurate Solution Approximation for Constrained Least-Squares. The Journal
of Machine Learning Research, 17(1):1842–1879, 2016. 49, 61, 79, 101, 152, 174

[232] Mert Pilanci and Martin J Wainwright. Newton Sketch: A Linear-time Op-
timization Algorithm with Linear-Quadratic Convergence. SIAM Journal on
Optimization, 27(1):205–245, 2017. 49

[233] Saurav Prakash, Sagar Dhakal, Mustafa Riza Akdeniz, Yair Yona, Shilpa Tal-
war, Salman Avestimehr, and Nageen Himayat. Coded Computing for Low-
Latency Federated Learning over Wireless Edge Networks. IEEE Journal on
Selected Areas in Communications, 39(1):233–250, 2020. 103, 105

[234] Michael O Rabin. Probabilistic Algorithm for Testing Primality. Journal of
number theory, 12(1):128–138, 1980. 2

[235] Michael O. Rabin. Probabilistic Algorithms in Finite Fields. SIAM Journal on
computing, 9(2):273–280, 1980. 2

[236] Aditya Ramamoorthy and Li Tang. Numerically stable coded matrix computa-
tions via circulant and rotation matrix embeddings. In 2021 IEEE International
Symposium on Information Theory (ISIT), pages 1712–1717. IEEE, 2021. 14,
131, 153

[237] Aditya Ramamoorthy, Li Tang, and Pascal O Vontobel. Universally Decod-
able Matrices for Distributed Matrix-Vector Multiplication. arXiv preprint
arXiv:1901.10674, 2019. 12, 78

[238] Garvesh Raskutti and Michael W. Mahoney. A Statistical Perspective on Ran-
domized Sketching for Ordinary Least-Squares. J. Mach. Learn. Res., 17:214:1–
214:31, 2016. 4

[239] Netanel Raviv, Itzhak Tamo, Rashish Tandon, and Alexandros G Dimakis.
Gradient Coding from Cyclic MDS Codes and Expander Graphs. IEEE Trans-
actions on Information Theory, 66(12):7475–7489, 2020. 12, 77, 79, 127, 150,
211

[240] Elizaveta Rebrova and Deanna Needell. On block Gaussian sketching for the
Kaczmarz method. Numerical Algorithms, pages 1–31, 2020. 48, 86

[241] Benjamin Recht. A Simpler Approach to Matrix Completion. Journal of Ma-
chine Learning Research, 12(12), 2011. 137

[242] K. Madhusudhan Reddy, Anirudh Itagi, Saransh Dabas, and Bonam Kamala
Prakash. Image encryption using orthogonal hill cipher algorithm. International
Journal of Engineering & Technology, 7(4.10):59–63, 2018. 211

251

[243] Irving S. Reed and Gustave Solomon. Polynomial Codes Over Certain Finite
Fields. Journal of the Society for Industrial and Applied Mathematics, 8(2):300–
304, 1960. 110

[244] Oded Regev. New Lattice-Based Cryptographic Constructions. Journal of the
ACM (JACM), 51(6):899–942, 2004. 2

[245] Amirhossein Reisizadeh, Saurav Prakash, Ramtin Pedarsani, and Amir Salman
Avestimehr. Coded Computation over Heterogeneous Clusters. In 2017 IEEE
International Symposium on Information Theory (ISIT), pages 2408–2412,
2017. 12, 78

[246] Thomas J. Richardson, Amin Shokrollahi, and Rüdiger L. Urbanke. Design
of capacity-approaching irregular low-density parity-check codes. IEEE Trans.
Inform. Theory, 47(2):619–637, 2001. 45

[247] Ron Rivest, Adi Shamir, and Leonard Adleman. A Method for Obtaining Dig-
ital Signatures and Public-Key Cryptosystems. Communications of the ACM,
21(2):120–126, 1978. 1, 123

[248] Mark Rudelson. Random Vectors in the Isotropic Position. Journal of Func-
tional Analysis, 164:60–72, 1999. 228

[249] Alessandro Rudi, Daniele Calandriello, Luigi Carratino, and Lorenzo Rosasco.
On Fast Leverage Score Sampling and Optimal Learning. In Advances in Neural
Information Processing Systems, pages 5672–5682, 2018. 136, 138, 146

[250] Michael Rudow, Neophytos Charalambides, Alfred O. Hero III, and K.V.
Rashmi. Compression-Informed Coded Computing. In 2023 IEEE Interna-
tional Symposium on Information Theory (ISIT), pages 2177–2182, 2023. 14,
62, 78, 100, 151

[251] Michael Rudow, K.V. Rashmi, and Venkatesan Guruswami. A locality-based
lens for coded computation. In 2021 IEEE International Symposium on Infor-
mation Theory (ISIT), pages 1070–1075. IEEE, 2021. 12, 78

[252] Veeru Sadhanala, Yu-Xiang Wang, and Ryan Tibshirani. Graph Sparsification
Approaches for Laplacian Smoothing. In Artificial Intelligence and Statistics,
pages 1250–1259. PMLR, 2016. 220, 221

[253] Animesh Sakorikar and Lele Wang. Soft BIBD and Product Gradient Codes.
arXiv preprint arXiv:2105.05231, 2022. 73, 77, 150, 194

[254] Yeray Cachón Santana. Orthogonal Matrix in Cryptography. arXiv preprint
arXiv:1401.5787, 2014. 211

[255] Tamás Sarlós. Improved Approximation Algorithms for Large Matrices via
Random Projections. In 2006 47th annual IEEE symposium on foundations of
computer science (FOCS’06), pages 143–152. IEEE, 2006. 49, 78, 134

252

[256] Reent Schlegel, Siddhartha Kumar, Eirik Rosnes, and Alexandre Graell i Amat.
CodedPaddedFL and CodedSecAgg: Straggler Mitigation and Secure Aggrega-
tion in Federated Learning. arXiv e-prints, pages arXiv–2112, 2021. 103, 104,
105, 106

[257] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge university press, 2014. 72, 167, 169

[258] Adi Shamir. How to Share a Secret. Communications of the ACM, 22(11):612–
613, 1979. 1, 122

[259] Claude Elwood Shannon. A Mathematical Theory of Communication. The Bell
system technical journal, 27(3):379–423, 1948. 1, 2

[260] Claude Elwood Shannon. Communication Theory of Secrecy Systems. The Bell
System Technical Journal, 28(4):656–715, 1949. 1

[261] Jonathan Richard Shewchuk. An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain. Carnegie Mellon University, Tech. Rep.,
1994. 115, 117

[262] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Mem-
bership Inference Attacks Against Machine Learning Models. In 2017 IEEE
symposium on security and privacy (SP), pages 3–18. IEEE, 2017. 80

[263] Mehrdad Showkatbakhsh, Can Karakus, and Suhas Diggavi. Privacy-Utility
Trade-off of Linear Regression under Random Projections and Additive Noise.
In 2018 IEEE International Symposium on Information Theory (ISIT), pages
186–190. IEEE, 2018. 80

[264] Michael Sipser and Daniel A. Spielman. Expander Codes. IEEE Transactions
on Information Theory, 42(6), 1996. 2

[265] Jinhyun So, Basak Guler, A. Salman Avestimehr, and Payman Mohassel. Cod-
edPrivateML: A Fast and Privacy-Preserving Framework for Distributed Ma-
chine Learning. arXiv preprint arXiv:1902.00641, 2019. 211

[266] Mahdi Soleymani, Ramy E. Ali, Hessam Mahdavifar, and A. Salman Aves-
timehr. List-Decodable Coded Computing: Breaking the Adversarial Toleration
Barrier. IEEE Journal on Selected Areas in Information Theory, 2(3):867–878,
2021. 107, 132

[267] Mahdi Soleymani, Hessam Mahdavifar, and A. Salman Avestimehr. Analog
Lagrange Coded Computing. IEEE Journal on Selected Areas in Information
Theory, 2(1):283–295, 2021. 12, 107

[268] Mahdi Soleymani, Hessam Mahdavifar, and A. Salman Avestimehr. Analog
Secret Sharing with Applications to Private Distributed Learning. IEEE Trans-
actions on Information Forensics and Security, 17:1893–1904, 2022. 122

253

[269] Kyungrak Son and Aditya Ramamoorthy. Coded matrix computation with
gradient coding. arXiv preprint arXiv:2304.13685, 2023. 45, 150

[270] Daniel A. Spielman. Spectral Graph Theory and its Applications. In 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’07),
pages 29–38, 2007. 6

[271] Daniel A. Spielman. Algorithms, Graph Theory, and Linear Equations in Lapla-
cian Matrices. In Proceedings of the International Congress of Mathematicians
2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols.
II–IV: Invited Lectures, pages 2698–2722. World Scientific, 2010. 6, 147, 221,
227

[272] Daniel A. Spielman. Spectral Graph Theory. Combinatorial scientific comput-
ing, 18:18, 2012. 6

[273] Daniel A. Spielman and Nikhil Srivastava. Graph Sparsification by Effective
Resistances. SIAM Journal on Computing, 40(6):1913–1926, 2011. 6, 134, 136,
138, 146, 147, 148, 221, 222, 228

[274] Daniel A. Spielman and Shang-Hua Teng. Nearly-Linear Time Algorithms for
Graph Partitioning, Graph Sparsification, and Solving Linear Systems. In Pro-
ceedings of the thirty-sixth annual ACM symposium on Theory of computing,
pages 81–90, 2004. 6, 220

[275] Daniel A. Spielman and Shang-Hua Teng. Spectral Sparsification of Graphs.
SIAM Journal on Computing, 40(4):981–1025, 2011. ix, 6, 134, 221

[276] Volker Strassen. Gaussian elimination is not optimal. Numerische mathematik,
13(4):354–356, 1969. 100, 133, 152, 210

[277] Adarsh M. Subramaniam, Anoosheh Heidarzadeh, and Krishna R. Narayanan.
Random Khatri-Rao-Product Codes for Numerically-Stable Distributed Matrix
Multiplication. In 2019 57th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 253–259. IEEE, 2019. 14

[278] Adarsh M. Subramaniam, Anoosheh Heidarzadeh, Asit Kumar Pradhan, and
Krishna R. Narayanan. Product Lagrange Coded Computing. In 2020 IEEE
International Symposium on Information Theory (ISIT), pages 197–202, 2020.
107

[279] Rashish Tandon, Qi Lei, Alexandros G Dimakis, and Nikos Karampatziakis.
Gradient Coding: Avoiding Stragglers in Distributed Learning. In International
Conference on Machine Learning, pages 3368–3376, 2017. 8, 12, 13, 14, 15, 16,
17, 20, 21, 24, 26, 27, 29, 30, 42, 44, 45, 49, 79, 82, 107, 111, 128, 149, 161, 165,
211

254

[280] Busra Tegin, Eduin E. Hernandez, Stefano Rini, and Tolga M. Duman. Strag-
gler Mitigation through Unequal Error Protection for Distributed Matrix Mul-
tiplication. In ICC 2021 - IEEE International Conference on Communications,
pages 1–6, 2021. 14

[281] Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50.
Siam, 1997. 115, 118, 121

[282] Joel A. Tropp. Improved analysis of the subsampled randomized Hadamard
transform. Advances in Adaptive Data Analysis, 3(01n02):115–126, 2011. 79

[283] Joel A. Tropp. User-Friendly Tail Bounds for Sums of Random Matrices. Foun-
dations of computational mathematics, 12(4):389–434, 2012. 228

[284] Santosh S Vempala. The Random Projection Method, volume 65. American
Mathematical Soc., 2005. 78

[285] Bogdan Vioreanu. Spectra of Multiplication Operators as a Numerical Tool.
PhD thesis, Yale University, 2012. ii

[286] Nisheeth K. Vishnoi. Lx = b. Foundations and Trends® in Theoretical Com-
puter Science, 8(1-2):1–141, 2013. 227

[287] Ulrike Von Luxburg. A Tutorial on Spectral Clustering. Statistics and comput-
ing, 17(4):395–416, 2007. 220

[288] Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry,
Sylvia Ratnasamy, and Scott Shenker. Low Latency via Redundancy. In Pro-
ceedings of the ninth ACM conference on Emerging networking experiments and
technologies, pages 283–294. ACM, 2013. 12

[289] Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos. ErasureHead:
Distributed Gradient Descent without Delays Using Approximate Gradient
Coding. arXiv preprint arXiv:1901.09671, 2019. 12, 79, 211

[290] Shusen Wang. A Practical Guide to Randomized Matrix Computations with
MATLAB Implementations. arXiv preprint arXiv:1505.07570, 2015. 6, 48, 195

[291] Sinong Wang, Jiashang Liu, and Ness Shroff. Coded Sparse Matrix Multipli-
cation. In International Conference on Machine Learning, pages 5152–5160.
PMLR, 2018. 12

[292] Sinong Wang, Jiashang Liu, and Ness Shroff. Fundamental Limits of Approxi-
mate Gradient Coding. Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 3(3):1–22, 2019. 12, 79, 211

[293] Stephen Jay Wiesner. Experimental test of the rotational invariance of the weak
interaction. PhD thesis, Columbia University, 1972. 2

255

[294] David P. Woodruff. Sketching as a Tool for Numerical Linear Algebra. Theo-
retical Computer Science, 10(1-2):1–157, 2014. 5, 6, 48, 54, 55, 59, 60, 78, 84,
89, 134, 135, 139, 171, 195, 196, 223

[295] Marvin Xhemrishi, Alexandre Graell i Amat, Eirik Rosnes, and Antonia
Wachter-Zeh. Computational Code-Based Privacy in Coded Federated Learn-
ing. arXiv preprint arXiv:2202.13798, 2022. 103, 105, 106, 120

[296] Yaoqing Yang, Pulkit Grover, and Soummya Kar. Coded Distributed Com-
puting for Inverse Problems. In Advances in Neural Information Processing
Systems, volume 30, pages 709–719. Curran Associates, Inc., 2017. 107

[297] Yaoqing Yang, Pulkit Grover, and Soummya Kar. Computing linear transforma-
tions with unreliable components. IEEE Trans. Inf. Theory, 63(6):3729–3756,
2017. 12

[298] Min Ye and Emmanuel Abbe. Communication-Computation Efficient Gradient
Coding. In International Conference on Machine Learning, pages 5610–5619.
PMLR, 2018. 12, 79, 211

[299] Qian Yu. Coded Computing: A Transformative Framework for Resilient, Secure,
Private, and Communication Efficient Large Scale Distributed Computing. PhD
thesis, University of Southern California, 2020. 4

[300] Qian Yu and A. Salman Avestimehr. Harmonic Coding: An Optimal Linear
Code for Privacy-Preserving Gradient-Type Computation. In 2019 IEEE In-
ternational Symposium on Information Theory (ISIT), pages 1102–1106. IEEE,
2019. 80

[301] Qian Yu and A. Salman Avestimehr. Entangled Polynomial Codes for Secure,
Private, and Batch Distributed Matrix Multiplication: Breaking the “Cubic”
Barrier. In 2020 IEEE International Symposium on Information Theory (ISIT),
pages 245–250. IEEE, 2020. 14

[302] Qian Yu, Songze Li, Netanel Raviv, Seyed Mohammadreza Mousavi Kalan,
Mahdi Soltanolkotabi, and A. Salman Avestimehr. Lagrange Coded Computing:
Optimal Design for Resiliency, Security, and Privacy. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 1215–1225. PMLR,
2019. 12, 78, 102, 107, 122, 124

[303] Qian Yu, Mohammad Maddah-Ali, and Salman Avestimehr. Polynomial Codes:
an Optimal Design for High-Dimensional Coded Matrix Multiplication. In Ad-
vances in Neural Information Processing Systems, pages 4403–4413, 2017. 14,
33, 37, 38, 43, 102, 108, 126, 128, 218, 219

[304] Qian Yu, Mohammad Ali Maddah-Ali, and A. Salman Avestimehr. Straggler
Mitigation in Distributed Matrix Multiplication: Fundamental Limits and Op-
timal Coding. IEEE Transactions on Information Theory, 66(3):1920–1933,
2020. 14, 44, 59, 108

256

[305] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion
Stoica. Improving MapReduce Performance in Heterogeneous Environments.
In USENIX Association, OSDI’08, page 29–42, 2008. 12, 49

[306] Shuheng Zhou, Larry Wasserman, and John Lafferty. Compressed Regression.
In Advances in Neural Information Processing Systems, volume 20, 2008. 80,
147

[307] Jinbao Zhu and Songze Li. Generalized Lagrange Coded Computing: A Flex-
ible Computation-Communication Tradeoff. In 2022 IEEE International Sym-
posium on Information Theory (ISIT), pages 832–837, 2022. 107

257

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	Coded Computing
	Randomized Numerical Linear Algebra
	Dissertation Layout

	Generalized Fractional Repetition Codes for Binary Coded Computations
	Introduction
	Preliminaries
	Straggler Problem
	Gradient Coding
	Notational Conventions

	Binary Gradient Coding
	Binary GC Condition
	Close to Uniform Assignment Distribution
	Minimum Maximum Load of Workers in a Binary GCS

	Proposed Binary Gradient Coding Scheme
	Encoding Matrix
	Repetition Assignment for Classes 0 to r-1
	Repetition Assignment for Classes r to s
	Decoding Vector
	Validity and Optimality of our GCS
	Distribution of Assignments for ns2
	Task Allocation to Heterogeneous Workers

	Binary Coded Matrix Multiplication Schemes
	`3́9`42`"̇613A``45`47`"603ACMM-1 — Outer-Product Representation
	Decoding as a Streaming Process
	`3́9`42`"̇613A``45`47`"603ACMM-2 — Augmentation of Submatrices
	Comparison between `3́9`42`"̇613A``45`47`"603ACMM-1 and `3́9`42`"̇613A``45`47`"603ACMM-2

	Comparison to Prior Works
	Reed-Solomon Scheme and Weighted Gradient Coding
	CMM MatDot Codes
	CMM Polynomial Codes
	Connection to Distributed Storage Systems
	Connection to LDPC Codes

	Conclusion and Future Work

	Gradient Coding through Iterative Block Leverage Score Sampling
	Introduction
	Notation and Background
	Least Squares Approximation
	Steepest Descent
	Leverage Scores
	Subspace Embedding
	Coded Computing Probabilistic Model

	Coded Computing from RandNLA
	Related Work
	Block Leverage Score Sampling
	Expansion Networks
	Optimal Induced Distributions
	GC through Leverage Score Sampling
	Convergence to x
	Approximate GC from 2-s.e.

	Experiments
	Conclusion and Future Work

	Iterative Sketching for Secure Coded Regression
	Introduction
	Coded Linear Regression
	Least Squares Approximation and Steepest Descent
	The Straggler Problem and Gradient Coding
	Secure Coded Computing Schemes
	The 2-subspace embedding Property
	Properties of our Approach

	Block Subsampled Orthonormal Sketches
	Distributed Steepest Descent and Iterative Sketching
	Subspace Embedding of Algorithm 7

	The Block-SRHT
	Subspace Embedding of the Block-SRHT
	Recursive Kronecker Products of Orthonormal Matrices

	Optimal Step-Size and Adaptive GC
	Security of Orthonormal Sketches
	Securing the SRHT
	Exact Gradient Recovery

	Experiments
	Concluding Remarks and Future Work

	Securely Aggregated Coded Matrix Inversion
	Introduction and Related Work
	Overview of the Coded Matrix Inversion Method
	Coded Federated Learning
	Lagrange Interpolation and Polynomial CCMs

	Preliminary Background
	Balanced Reed-Solomon Codes
	Balanced Reed-Solomon Codes for CC

	Inverse Approximation Algorithm
	Numerical Experiments

	Secure Coded Matrix Inversion
	Knowledge of A is necessary
	Phases (a),(b) — Data Encryption and Sharing
	Phases (c),(d) — Computations, Encoding and Decoding
	Optimality of MDS BRS Codes
	Time and Space Complexity
	Comparison to Exact Matrix Inversion

	Conclusion and Future Work

	Approximate Matrix Multiplication by Joint Leverage Score Sampling
	Introduction
	Joint Leverage Score Multiplication
	Preliminaries
	Joint Leverage Score Sampling
	Spectral Characterization for AMM
	Approximation Guarantee

	Implications to other AMM Algorithms
	CR-MM Through Approximate Joint Leverage Scores
	Data-Oblivious AMM through Joint Leverage Scores
	Graph Spectral Sparsifiers

	Concluding Remarks and Future Work

	Conclusion and Future Work
	Appendix to Chapter II
	Pseudocode of Encoding Matrices C1 and C2
	Special Case of `3́9`42`"̇613A``45`47`"603ACMM-2
	Numerical Example of the Proposed Encodings and Decodings
	Example of Algorithm 2
	Example of `3́9`42`"̇613A``45`47`"603ACMM-2, with k1=1

	Proofs of Section 2.4
	Numerical Experiment — Coded vs. Uncoded
	Application of CMM to Distributed Gradient Descent for Frobenius norm Minimization
	Nonnegative Matrix Factorization
	Low-Rank Approximation

	Appendix to Chapter III
	Proofs of Subsection 3.3.2
	Concrete Example of Induced Sketching
	Comparison to the block-SRHT
	Contraction Rate of Block Leverage Score Sampling
	Weighted Block Leverage Score Sketch

	Appendix to Chapter IV
	Proofs of Section 4.3
	Subsection 4.3.1
	Subsection 4.3.2

	Proofs of Section 4.4
	The Hadamard Transform
	Recursive Kronecker Products of Orthonormal Matrices

	Proofs of Section 4.5
	Proofs of Section 4.6
	Counterexample to Perfect Secrecy of the SRHT
	Analogy with the One-Time Pad

	Orthonormal Encryption for Distributive Tasks
	Securing Linear Regression
	Securing Logistic Regression
	Securing Matrix Multiplication
	Securing Distributive Matrix Inversion

	Appendix to Chapter V
	Additional Material and Background
	Generator Matrix Example

	Distributed Pseudoinverse
	Pseudoinverse from Polynomial CMM

	Appendix to Chapter VI — Graph Sparsification by Approximate Matrix Multiplication
	Introduction and Related Work
	Related Work
	Preliminaries
	Approximate Matrix Multiplication

	Spectral Sparsification
	Spectral Sparsifier from CR-MM
	Multiplicative Spectral Sparsifier
	Comparison to the Effective Resistances Approach

	Experiment
	Future Directions

	BIBLIOGRAPHY

