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ABSTRACT

The human microbiome plays an important role in maintaining health. Changes in the
taxonomic and functional composition of the gut microbiota have been implicated in numer-
ous diseases including colorectal cancer, Clostridioides difficile infection (CDI), and others.
Thus, the gut microbiome is a promising source of biomarkers for disease diagnosis and
prediction. Machine learning (ML) approaches can leverage large datasets to gain insights
into associations between the microbiota and disease. Here, we present a new algorithm that
improves microbiome analysis for ML applications, apply ML to predict severity of CDI, and
introduce resources that empower data scientists to go from the basics of coding to applying
ML for reproducible research.

Assigning amplicon sequences to operational taxonomic units (OTUs) is an important
step in characterizing microbial communities across large datasets. However, a gap in exist-
ing OTU assignment methods inhibited the ability of researchers to incorporate new samples
to previously clustered datasets, such as when deploying ML models. To provide an efficient
method to fit sequences to existing OTUs while maintaining high OTU quality, we devel-
oped the OptiFit algorithm, an improved implementation of reference-based clustering. Our
benchmarks revealed that OptiFit produces similar quality OTUs as a gold standard method
yet at faster speeds. Thus, OptiFit provides a suitable option for users requiring consistent
and high quality OTU assignments for ML applications and beyond.

CDI can lead to severe complications including death, with half a million cases annually
in the United States. The composition of the gut microbiome plays an important role in
determining colonization resistance and clearance upon exposure to C. difficile. We investi-
gated whether ML models trained on OTUs from stool samples on the day of CDI diagnosis
could predict which cases led to severe outcomes. We trained models to predict CDI severity
for four different severity definitions. The models performed best when predicting prag-
matic severity, a composite definition of complications due to any cause or confirmed as
CDI-attributable via chart review when possible. Our results suggest that while chart re-
view is valuable to verify the cause of complications, including as many samples as possible
is indispensable for training performant models on imbalanced datasets. We evaluated the
potential clinical value of these models and found similar performance compared to prior

x



models based on electronic health records, although further work is needed to determine the
feasibility of deploying such models in clinical practice. These results represent a step toward
the goal of deploying ML to inform clinical decisions and ultimately improve CDI outcomes.

Bioinformatics is a kind of data science, an interdisciplinary field integrating computer
science, statistics, and domain knowledge. Novice researchers frequently have domain knowl-
edge, but lack other skills necessary to apply data science to their datasets while adhering
to best practices in reproducibility. We developed three resources to help democratize data
science: a curriculum teaching the basics of Python for data science to young students, a
curriculum teaching programming skills for reproducible research, and an R package imple-
menting an ML framework to help novices apply ML responsibly while being customizable
for advanced users. These contributions cover a breadth of audience skill levels to help fill
gaps in existing resources for data science. In summary, this dissertation advances bioin-
formatics for microbiome research from the start of data analysis through application, and
ultimately toward enabling others to reproduce and extend our work.

xi



CHAPTER 1

Introduction

1.1 Microbial communities in human health
Microbial communities are assemblages of microorganisms – archaea, bacteria, fungi, protists,
and viruses – that inhabit a local environment [1]. A microbiome consists of the microbial
community in its environment together with the molecules they produce such as nucleic
acids, proteins, lipids, metabolites, and more [2]. Microbiomes are thus tightly associated
with the local environment they occupy such as waterways, soil layers, ocean floors, plants,
insects, and animals. The human body hosts microbes that inhabit the skin, mouth, gut,
vagina, airway, and other body regions [3]. The living members of a microbiome or referred
to as the microbiota, and they interact with each other cooperatively and competitively [4]
and can influence the health of the host directly or indirectly [5]. The composition of a
microbiome can be characterized according to the taxonomy of its microbiota, the functions
they carry out, and the metabolites they produce.

High throughput sequencing and other ’omics techniques can be used to characterize the
metagenomes, metatranscriptomes, metaproteomes, and meta-metabolomes of microbiomes
and describe how they change over time, in response to changing environments, or between
healthy and diseased states of the host. A benefit of ’omics techniques is they do not
require microbes to be cultured in a laboratory, making it possible to observe genes, gene
products, and metabolites from microbes missed by culturing techniques and even discover
new species [6]. These large, multivariate datasets present a challenge for bioinformatic
analysis, as greater computational resources and more sophisticated statistical techniques are
required to process and analyze big data [3]. An older but still widely-used method to profile
the taxonomic composition of microbial communities is amplicon sequencing. In amplicon
sequencing, a region of a marker gene is selected depending on which domain of microbial life
is being targeted, and the DNA sequences matching that region are amplified and sequenced
[7, 8]. Relative to shotgun metagenomics, amplicon sequencing significantly reduces the
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costs and computational resources needed to characterize the taxonomic composition of
microbiomes. Amplicon sequence data can typically be identified at the genus level, while
shotgun metagenomics data provide a finer taxonomic resolution at the species or strain
level [9]. When researchers need to extract sequences from many samples and only require
taxonomic resolution at the genus level, amplicon sequencing is a practical choice.

1.1.1 Clostridioides difficile infection

The healthy gut microbiome is resistant to colonization and infection from pathogens due
to competition from beneficial microbes. Medications such as antibiotics, proton-pump in-
hibitors, and osmotic laxatives can disrupt the taxonomic and functional composition of
the gut microbiome, thereby allowing pathogens to gain a foothold [10, 11]. C. difficile is
classically considered a hospital-acquired pathogen that infects patients who are taking an-
tibiotics for other illnesses, and especially in elderly patients as the immune system weakens
with age. However, community-acquired C. difficile infection (CDI) is increasing, even in
patients with no recent history of antibiotic use [12]. One mechanism through which the
healthy gut community protects against CDI is bile acid metabolism, which can inhibit the
growth and alter toxin production of C. difficile [13, 14, 15]. Mouse studies have shown that
the initial taxonomic composition of the gut microbiome can influence C. difficile clearance,
host moribundity, and cecal tissue damage in infected mice [16, 17, 18]. Differences between
resilient versus susceptible microbiomes could be used as biomarkers to identify patients at
risk of being infected or developing severe complications.

Clinical outcomes of CDI can be severe, as a small portion of patients experience compli-
cations requiring ICU admission due to CDI such as ileus, toxic megacolon, or death in 8-9%
of cases [19, 20]. Colectomy is used as a last-resort treatment to prevent death when other
treatments fail, and the mortality rate in patients who undergo colectomy for CDI is approx-
imately 35% [21]. CDI is of particular cause for concern due to the risk of recurrence, where
a patient experiences another CDI within 2-8 weeks of a prior CDI [22]. It is thought that
the antibiotics prescribed to treat CDI may also prevent the microbiome from recovering,
thereby perpetuating a cycle of perturbance and C. difficile proliferation. Adjuvant therapies
such as bezlotoxumab and fecal microbiota transplant have recently been introduced to help
break the cycle of recurrence by targeting the toxins produced by C. difficile or restoring the
microbiota to a healthy state, but they are not yet used widely and typically only in patients
experiencing a first or second recurrence [23]. Furthermore, vancomycin is commonly used
to treat first cases of CDI, but vancomycin-resistant Enterococcus is becoming more com-
mon and enterococci have been shown to exacerbate the pathogenesis of C. difficile [24, 25].
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There is a great need for improved therapies to prevent recurrent and severe CDI, as well as
for tools to predict which patients are at risk so that clinicians can adjust treatment plans
to prevent adverse outcomes from occurring.

1.2 Machine learning for science and health care
Machine learning techniques applied to large datasets have transformed the quantitative
sciences towards a data-driven paradigm. Supervised ML approaches can be used to classify
samples or make predictions, and researchers often claim that the good discriminative perfor-
mance of a model supports the veracity of an underlying scientific claim [26]. Alternatively,
ML can be used pragmatically in fields like medicine in order to aid in diagnosing diseases or
to make predictions about disease outcomes, with the goal of improving health care. Models
based on clinical laboratory tests and electronic health record (EHR) data and have been
trained to predict deterioration in COVID-19 patients [27], identify patients at risk of being
infected with C. difficile in ICU wards [28], and predict outcomes in CDI patients [29]. ML
models trained on microbiota have been used to improve detection of colorectal cancer [30],
distinguish CDI patients from diarrheal controls [31], and identify which members of the
microbiota contribute most to the performance of these models [32].

While ML techniques hold great promise to improve health care, caution must be taken
to train, test, validate, and deploy ML models responsibly. Pervasive pitfalls have been
identified in studies applying ML; these include data leakage between the training and
test/validation set, failing to set a random seed, biased training data, inappropriate choice
of performance metric, not reporting variation in performance, and neglecting to document
methods in sufficient detail [26, 32]. Errors in ML can invalidate the conclusions of a study
and erode trust in the scientific endeavor. Even worse, errors can be dangerous when ML
is applied to health care, as diagnoses and prognoses assisted by ML can directly affect pa-
tients [33]. Before a model can ever be deployed in clinical practice, it must be rigorously
evaluated to ensure it avoids these errors, and ultimately that it will improve rather than
worsen patient outcomes [34]. ML practitioners must take care to avoid technical pitfalls
and engage with experts from interdisciplinary fields to ensure their models will be useful
and beneficial for clinical practice.

1.3 Democratizing reproducible data science
Data science is an interdisciplinary field that integrates computer science, statistics, and
expertise from a problem domain. When the problem domain is biology, the field could
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be referred to as biological data science, computational biology, or bioinformatics, although
there is no consensus definition for any of these terms. As costs decrease for generating
large datasets such as those from high-throughput sequencing experiments, there is an ever-
growing need for data science practitioners with the skills and knowledge to process the
data, make inferences, and communicate their findings. Democratizing data science means
making the theory, methods, and tools, more accessible by creating educational resources,
user-friendly software tools, or even simply making data publicly available. Accessibility is
important for filling the growing demand for skilled data scientists across sectors as well as
to improve diversity in the field [35, 36, 37, 38]. Non-profit organizations have been founded
to help address the diversity gap in computer science, data science, and other STEM fields
including Girls Who Code, Women in Science and Engineering, Association for Women in
Science, Society for Advancement of Chicanos and Native Americans in Science, and many
others.

An important attribute of any scientific finding is reproducibility, where others can repeat
the same methods on the original dataset to obtain the same result [39]. Reproducibility does
not guarantee correctness, replicability, nor generalizability, but it is a minimal achievable
standard that helps others evaluate scientific claims [40]. A finding could be entirely unrepro-
ducible, where the data are not shared and the analysis methods are not described in suffi-
cient detail. Achieving perfect reproduciblity is unlikely as eventually link rot, software bugs,
and shuttering of organizations can occur, but “good enough” practices are attainable [41].
Aside from enabling others to validate or build upon one’s work, reproducible practices make
researchers more productive both collaboratively and individually [41]. As a reproducibility
crisis has been identified in virtually all scientific fields including microbiology, bioinfor-
matics, and ML for health research, promoting and encouraging reproducible practices is
important to re-establish trust and trustworthiness in scientific findings [42, 39, 26, 43].
However, many early-career researchers lack the quantitative and computational skills and
self-confidence necessary to perform reproducible computational science, in some cases due
to prior demotivating experiences [44]. Toward the goal of disseminating reproducible re-
search practices, Software Carpentry, Data Carpentry, and Library Carpentry (together
under the umbrella term “The Carpentries”) have developed extensive educational materi-
als and taught them in hands-on workshops worldwide to researchers, scientists, librarians,
and other data wranglers [45]. A particularly important contribution of The Carpentries
is the instructor training course which promotes evidence-based pedagogical practices that
motivate and empower learners, such as instruction via participatory live-coding [46, 47].
Improving access to educational resources for best practices in coding and data science will
equip budding scientists with the skills necessary to conduct and communicate their work

4



reproducibly.

1.4 Dissertation outline and contributions
In the preambles of Chapters 2 through 4, I note my specific contributions to the work
described in each chapter. Chapter 2 presents OptiFit, a new OTU clustering algorithm
that enables researchers to fit new data to existing de novo OTUs while maintaining OTU
quality. Chapter 3 presents findings from training ML models to predict the severity of CDI
from OTUs and comparing model performance to prior approaches. Chapter 4 introduces
two curricula and one software package which help democratize data science for a range
of audiences. In Chapter 5, I discuss the impacts of the findings presented in Chapters 2
through 4 and propose future work to build upon this dissertation.

1.5 Datasets used in this dissertation
In Chapter 2, we re-used previously published 16S rRNA gene amplicon sequence data ex-
tracted from four different communities: soil, marine, mouse gut, and human gut. Using
multiple datasets from disparate sources allowed us to demonstrate the suitability of Opti-
Fit for microbiome researchers and microbial ecologists with diverse scientific interests. In
Chapter 3, we used a dataset of 16S rRNA gene amplicon sequences extracted from 1,277
stool samples collected on the day of diagnosis from CDI patients at the University of Michi-
gan. White blood cell counts and creatinine levels were also collected on the day of diagnosis
in order to calculate IDSA severity scores. The occurrence of ICU admission, colectomy, or
death within 30 days was recorded and in some cases, physicians conducted chart review to
determine whether the complication was attributable to the CDI. In Chapter 4, we used re-
sults from surveys of learners who participated in the Girls Who Code club and Carpentries
workshop where we piloted our new curricula, which allowed us to measure the success of
our teaching approaches. The data are described in further detail in each of their respective
chapters.

5



CHAPTER 2

OptiFit: an Improved Method for Fitting
Amplicon Sequences to Existing OTUs

2.1 Preamble
This chapter introduces a novel algorithm, OptiFit, for performing reference-based clustering
of amplicon sequences into Operational Taxonomic Units. We showed that OptiFit produces
OTUs at a similar quality as other clustering methods while enabling new sequences to be
clustered to existing de novo OTUs, which was not previously possible. OptiFit can be used
with OTU-based machine learning models to make predictions on new data, which we later
demonstrated in a follow-up analysis [48].

I performed all of the analysis and created the figures for this chapter. Other co-authors
conceived of and implemented the OptiFit algorithm and contributed analysis code. This
paper was originally published in 2022 in mSphere with the following co-authors: Kelly L.
Sovacool, Sarah L. Westcott, M. Brodie Mumphrey, Gabrielle A. Doston, and Patrick D.
Schloss [49].

2.1.1 Importance

Advancements in DNA sequencing technology have allowed researchers to affordably gen-
erate millions of sequence reads from microorganisms in diverse environments. Efficient
and robust software tools are needed to assign microbial sequences into taxonomic groups
for characterization and comparison of communities. The OptiClust algorithm produces
high quality groups by comparing sequences to each other, but the assignments can change
when new sequences are added to a dataset, making it difficult to compare different studies.
Other approaches assign sequences to groups by comparing them to sequences in a reference
database to produce consistent assignments, but the quality of the groups produced is re-
duced compared to OptiClust. We developed OptiFit, a new reference-based algorithm that
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produces consistent yet high quality assignments like OptiClust. OptiFit allows researchers
to compare microbial communities across different studies or add new data to existing studies
without sacrificing the quality of the group assignments.

2.2 Introduction
Amplicon sequencing is a mainstay of microbial ecology. Researchers can affordably generate
millions of sequences to characterize the composition of hundreds of samples from microbial
communities without the need for culturing. In many analysis pipelines, 16S rRNA gene
sequences are assigned to operational taxonomic units (OTUs) to facilitate comparison of
taxonomic composition between communities to avoid the need for taxonomic classification.
A distance threshold of 3% (or sequence similarity of 97%) is commonly used to cluster se-
quences into OTUs based on pairwise comparisons of the sequences within the dataset. The
method chosen for clustering affects the quality of OTU assignments and thus may impact
downstream analyses of community composition [50, 51]. OTU quality can be conceptual-
ized as how well the OTU assignments match the definition set by the distance threshold,
i.e. whether sequence pairs that are at least as similar as the distance threshold are assigned
to the same OTU and sequence pairs that are more dissimilar than the distance threshold
are assigned to different OTUs.

There are two main categories of OTU clustering algorithms: de novo and reference-
based. OptiClust is a de novo clustering algorithm which uses the distance score between all
pairs of sequences in the dataset to cluster them into OTUs by maximizing the Matthews
Correlation Coefficient (MCC) [50]. This approach takes into account the distances between
all pairs of sequences when assigning query sequences to OTUs, in contrast to other de
novo methods such as the greedy clustering algorithms implemented in USEARCH and
VSEARCH [52, 53]. In methods employing greedy clustering algorithms, only the distance
between each sequence and a representative centroid sequence in the OTU is considered while
clustering. As a result, distances between pairs of sequences in the same OTU are frequently
larger than the specified threshold, i.e. they are false positives. In contrast, the OptiClust
algorithm takes into account the distance between all pairs of sequences when considering
how to cluster sequences into OTUs and is thus less willing to take on false positives.

A limitation of de novo clustering is that different OTU assignments will be produced
when new sequences are added to a dataset, making it difficult to use de novo clustering
to compare OTUs between different studies. Furthermore, since de novo clustering requires
calculating and comparing distances between all sequences in a dataset, the execution time
can be slow and memory requirements can be prohibitive for very large datasets. Reference
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clustering attempts to overcome the limitations of de novo clustering methods by using
a representative set of sequences from a database, with each reference sequence seeding
an OTU. Commonly, the Greengenes set of representative full length sequences clustered
at 97% similarity is used as the reference with VSEARCH [53, 54]. Query sequences are
then clustered into OTUs based on their similarity to the reference sequences. Any query
sequences that are not within the distance threshold to any of the reference sequences are
either thrown out (closed reference clustering) or clustered de novo to create additional OTUs
(open reference clustering). While reference-based clustering is generally fast, it is limited
by the diversity of the reference database. Novel sequences in the sample will be lost in
closed reference mode if they are not represented by a similar sequence in the database. We
previously found that the OptiClust de novo clustering algorithm created the highest quality
OTU assignments of all clustering methods [50].

To overcome the limitations of current reference-based and de novo clustering algorithms
while maintaining OTU quality, we developed OptiFit, a reference-based clustering algo-
rithm. While other tools represent reference OTUs with a single sequence, OptiFit uses all
sequences in existing OTUs as the reference and fits new sequences to those reference OTUs.
In contrast to other tools, OptiFit considers all pairwise distance scores between reference
and query sequences when assigning sequences to OTUs in order to produce OTUs of the
highest possible quality. Here, we tested the OptiFit algorithm with the reference as a public
database (e.g. Greengenes) or de novo OTUs generated using a reference set from the full
dataset and compared the performance to existing tools. To evaluate the OptiFit algorithm
and compare to existing methods, we used four published datasets isolated from soil [55],
marine [56], mouse gut [57], and human gut [30] samples. OptiFit is available within the
mothur software program.

2.3 Results

2.3.1 The OptiFit algorithm

OptiFit leverages the method employed by OptiClust of iteratively assigning sequences to
OTUs to produce the highest quality OTUs possible, and extends this method for reference-
based clustering. OptiClust first seeds each sequence into its own OTU as a singleton. Then
for each sequence, OptiClust considers whether the sequence should move to a different OTU
or remain in its current OTU, choosing the option that results in a better MCC score [50].
The MCC uses all values from a confusion matrix and ranges from negative one to one, with
a score of one occurring when all sequence pairs are true positives and true negatives, a score
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of negative one occurring when all pairs are false positives and false negatives, and a score of
zero when there are equal numbers of true and false assignments (i.e. no better than random
guessing). Sequence pairs that are similar to each other (i.e. within the distance threshold)
are counted as true positives if they are clustered into the same OTU, and false negatives
if they are not in the the same OTU. Sequence pairs that are not similar to each other are
true negatives if they are not clustered into the same OTU, and false positives if they are in
the same OTU. Thus, a pair of sequences is considered correctly assigned when their OTU
assignment matches the OTU definition set by the distance threshold. OptiClust iterations
continue until the MCC stabilizes or until a maximum number of iterations is reached. This
process produces de novo OTU assignments with the most optimal MCC given the input
sequences.

OptiFit begins where OptiClust ends, starting with a list of reference OTUs and their
sequences, a list of query sequences to cluster to the reference OTUs, and the sequence
pairs that are within the distance threshold (e.g. 0.03) (Figure 2.1). Initially, all query
sequences are placed into separate OTUs. Then, the algorithm iteratively reassigns the
query sequences to the reference OTUs to optimize the MCC. Alternatively, a sequence will
remain unassigned if the MCC value is maximized when the sequence is a singleton rather
than clustered into a reference OTU. All query and reference sequence pairs are considered
when calculating the MCC. This process is repeated until the MCC changes by no more than
0.0001 (default) or until a maximum number of iterations is reached (default: 100). In the
closed reference mode, any query sequences that cannot be clustered into reference OTUs
are discarded, and the results only contain OTUs that exist in the original reference. In the
open reference mode, unassigned query sequences are clustered de novo using OptiClust to
generate new OTUs. The final MCC is reported with the best OTU assignments. There are
two strategies for generating OTUs with OptiFit: 1) cluster the query sequences to reference
OTUs generated by de novo clustering an independent database, or 2) split the dataset into a
reference and query fraction, cluster the reference sequences de novo, then cluster the query
sequences to the reference OTUs.

2.3.2 Reference clustering with public databases

To test how OptiFit performs for reference-based clustering, we clustered each dataset to
three databases of reference OTUs: the Greengenes database v13_8_99 [58], the SILVA
non-redundant database v132 [59], and the Ribosomal Database Project (RDP) v16 [60].
Reference OTUs for each database were created by performing de novo clustering with
OptiClust at a distance threshold of 3% using the V4 region of each sequence (see Figure 2.2).
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Figure 2.1: The OptiFit algorithm

Here we present a toy example of the OptiFit algorithm fitting query sequences to existing OTUs, given the
list of all sequence pairs that are within the distance threshold of 3%. Previously, 50 reference sequences
were clustered de novo with OptiClust (see the OptiClust supplemental text [50]). Reference sequences
A through Q (colored ) were within the distance threshold to at least one other reference sequence; the
remaining reference sequences formed additional singleton OTUs (not shown). The goal of OptiFit is to
assign the query sequences W through Z (colored ) to the reference OTUs. Here, there are 50 reference
sequences and 4 query sequences which make 1,431 sequence pairs, of which 23 pairs are within the 3%
distance threshold. Initially (step 1), OptiFit places each query sequence in its own OTU, resulting in 14
true positives, 9 false negatives, 0 false positives, and 1,408 true negatives for an MCC score of 0.78. Then,
for each query sequence (), OptiFit determines what the new MCC score would be if that sequence were
moved to one of the OTUs containing at least one other similar sequence (steps 2-4). The sequence is then
moved to the OTU which would result in the best MCC score. OptiFit stops iterating over sequences once
the MCC score stabilizes. In this example, only one iteration over each sequence was needed. Note that
sequence Z was dissimilar from all other sequences and thus it remained a singleton. The final MCC score
is 0.91 with 20 true positives, 3 false negatives, 1 false positive, and 1407 true negatives.
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After trimming to the V4 region, the databases contained 174,979, 16,192, and 173,648
unique sequences and produced de novo MCC scores of 0.72, 0.74, and 0.73 for Greengenes,
RDP, and SILVA, respectively. Clustering query sequences with OptiFit to Greengenes and
SILVA in closed reference mode performed similarly, with median MCC scores of 0.85 and
0.77 respectively, while the median MCC was 0.35 when clustering to RDP (Figure 2.3;
“db: Greengenes”, “db: SILVA”, and “db: RDP”). For comparison, clustering datasets with
OptiClust produced an average MCC score of 0.86 (Figure 2.3; “de novo”). This gap in
OTU quality mostly disappeared when clustering in open reference mode, which produced
median MCCs of 0.86 with Greengenes, 0.86 with SILVA, and 0.86 with the RDP. Thus,
open reference OptiFit produced OTUs of very similar quality as de novo clustering with
OptiClust, and closed reference OptiFit followed closely behind as long as a suitable reference
database was chosen.

Since closed reference clustering does not cluster query sequences that could not be clus-
tered into reference OTUs, an additional measure of clustering performance to consider is
the fraction of query sequences that were able to be clustered. On average, more sequences
were clustered with Greengenes as the reference (59%) than with SILVA (50%) or with the
RDP (9.7%) (Figure 2.3). This mirrored the result reported above that Greengenes pro-
duced better OTUs in terms of MCC score than either SILVA or RDP. Note that de novo
and open reference clustering methods always cluster 100% of sequences into OTUs. The
database chosen affects the final closed reference OTU assignments considerably in terms of
both MCC score and fraction of query sequences that could be clustered into the reference
OTUs.

Despite the drawbacks, closed reference methods have been used when fast execution
speed is required, such as when using very large datasets [61]. To compare performance
in terms of speed, we repeated each OptiFit and OptiClust run 100 times and measured
the execution time. Across all dataset and database combinations, closed reference OptiFit
outperformed both OptiClust and open reference OptiFit (Figure 2.3). For example, with
the human dataset fit to SILVA reference OTUs, the average run times in seconds were
406.8 for closed reference OptiFit, 455.3 for de novo clustering the dataset, and 559.4 for
open reference OptiFit. Thus, the OptiFit algorithm continues the precedent that closed
reference clustering sacrifices OTU quality for execution speed.

To compare to the reference clustering methods used by QIIME2, we clustered each
dataset with VSEARCH against the Greengenes database of OTUs previously clustered at
97% sequence similarity. Each reference OTU from the Greengenes 97% database contains
one reference sequence, and VSEARCH maps sequences to the reference based on each in-
dividual query sequence’s similarity to the single reference sequence. In contrast, OptiFit
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Figure 2.2: The OptiFit benchmarking workflow

Reference sequences from Greengenes, the RDP, and SILVA were downloaded, preprocessed with mothur
by trimming to the V4 region, and clustered de novo with OptiClust for 100 repetitions. Datasets from
human, marine, mouse, and soil microbiomes were downloaded, preprocessed with mothur by aligning to
the SILVA V4 reference alignment, then clustered de novo with OptiClust for 100 repetitions. Individual
datasets were fit to reference databases with OptiFit; OptiFit was repeated 100 times for each dataset and
database combination. Datasets were also randomly split into a reference and query fraction, and the query
sequences were fit to the reference sequences with OptiFit for 100 repetitions. The final MCC score was
reported for all OptiClust and OptiFit repetitions.
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Figure 2.3: OptiFit results with databases as references

The median MCC score, fraction of query sequences that mapped in closed-reference clustering, and runtime
in seconds from repeating each clustering method 100 times. Each dataset underwent three clustering
strategies; 1) de novo clustering the whole dataset using OptiClust, 2) splitting the dataset with 50% of the
sequences as a reference set and the other 50% as a query set, clustering the references using OptiClust,
then clustering the query sequences to the reference OTUs with OptiFit, and 3) clustering the dataset to a
reference database (Greengenes, SILVA, or RDP). Reference-based clustering was repeated with open and
closed mode. For additional comparison, VSEARCH was used for de novo and reference-based clustering
against the Greengenes database.
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accepts reference OTUs which each may contain multiple sequences, and the sequence sim-
ilarity between all query and reference sequences is considered when assigning sequences
to OTUs. In closed reference mode, OptiFit produced 27.2% higher quality OTUs than
VSEARCH in terms of MCC score, but VSEARCH was able to cluster 24.9% more query
sequences than OptiFit to the Greengenes reference database (Figure 2.3). This is because
VSEARCH only considers the distances between each query sequence to the single reference
sequence, while OptiFit considers the distances between all pairs of reference and query se-
quences in an OTU. When open reference clustering, OptiFit produced higher quality OTUs
than VSEARCH against the Greengenes database, with median MCC scores of 0.86 and 0.56,
respectively. In terms of run time, OptiFit outperformed VSEARCH in both closed and open
reference mode by 53.6% and 44.0% on average, respectively. Thus, the more stringent OTU
definition employed by OptiFit, which prefers the query sequence to be similar to all other
sequences in the OTU rather than to only one sequence, resulted in fewer sequences being
clustered to reference OTUs than when using VSEARCH, but caused OptiFit to outperform
VSEARCH in terms of both OTU quality and execution time.

2.3.3 Reference clustering with split datasets

When performing reference clustering against public databases, the database chosen greatly
affects the quality of OTUs produced. OTU quality may be poor when the reference database
consists of sequences that are too unrelated to the samples of interest, such as when samples
contain novel populations. While de novo clustering overcomes the quality limitations of
reference clustering to databases, OTU assignments are not consistent when new sequences
are added. Researchers may wish to cluster new sequences to existing OTUs or to compare
OTUs across studies. To determine how well OptiFit performs for clustering new sequences
to existing OTUs, we employed a split dataset strategy, where each dataset was randomly
split into a reference fraction and a query fraction. Reference sequences were clustered de
novo with OptiClust, then query sequences were clustered to the de novo OTUs with OptiFit.

First, we tested whether OptiFit performed as well as de novo clustering when using
the split dataset strategy with half of the sequences selected for the reference by a simple
random sample (a 50% split) (Figure 2.3; “self-split”). OTU quality was similar to that
from OptiClust regardless of mode (0.031% difference in median MCC). In closed reference
mode, OptiFit was able to cluster 84.9% of query sequences to reference OTUs with the split
strategy, a great improvement over the average 59% of sequences clustered to the Greengenes
database. In terms of run time, closed and open reference OptiFit performed faster than
OptiClust on whole datasets by 39.6% and 36.8%, respectively. Random access memory
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(RAM) usage was similar, with OptiFit requiring slightly more RAM in gigabytes than
OptiClust. Open and closed reference OptiFit required 1.8% and 1.2% more RAM than
OptiClust, respectively (data not shown). The split dataset strategy also performed 6.7%
faster than the database strategy in closed reference mode and 65.5% faster in open reference
mode. Thus, reference clustering with the split dataset strategy creates as high quality OTUs
as de novo clustering yet at a faster run time, and fits far more query sequences than the
database strategy.

While we initially tested this strategy using a 50% split of the data into reference and
query fractions, we next investigated whether there was an optimal reference fraction size.
To identify the best reference size, reference sets with 10% to 90% of the sequences were
created, with the remaining sequences used for the query (Figure 2.4). OTU quality was
remarkably consistent across reference fraction sizes. For example, splitting the human
dataset 100 times yielded a coefficient of variation (i.e. the standard deviation divided by
the mean) of 0.0018 for the MCC score across all fractions. Run time generally decreased
as the reference fraction increased; for the human dataset, the median run time was 364.0
seconds with 10% of sequences in the reference and 290.8 seconds with 90% of sequences in
the reference. The RAM usage was virtually the same across reference fraction sizes, with a
coefficient of variation of 0.00089 for the human dataset (data not shown). In closed reference
mode, the fraction of sequences that mapped increased as the reference size increased; for the
human dataset, the median fraction mapped was 0.85 with 10% of sequences in the reference
and 0.95 with 90% of sequences in the reference. These trends held for the other datasets
as well. Thus, the reference fraction did not affect OTU quality in terms of MCC score nor
the memory usage, but did affect the run time and the fraction of sequences that mapped
during the closed reference clustering.

After testing the split strategy using a simple random sample to select the reference se-
quences, we then investigated other methods of splitting the data. We tested three methods
for selecting the fraction of sequences to be used as the reference at a size of 50%: a simple
random sample, weighting sequences by relative abundance, and weighting by similarity to
other sequences in the dataset (Figure 2.4). OTU quality in terms of MCC was similar across
all three sampling methods (median MCC of 0.86). In closed-reference clustering mode, the
fraction of sequences that mapped were similar for simple and abundance-weighted sampling
(median fraction mapped of 0.85 and 0.84, respectively), but worse for similarity-weighted
sampling (median fraction mapped of 0.56). While simple and abundance-weighted sam-
pling produced better quality OTUs than similarity-weighted sampling, OptiFit performed
faster on similarity-weighted samples with a median runtime of 103.9 seconds compared to
135.4 and 134.8 seconds for simple and abundance-weighted sampling, respectively. Thus,
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Figure 2.4: OptiFit results with datasets as self-references

The median MCC score, fraction of query sequences that mapped in closed-reference clustering, and runtime
in seconds from repeating each clustering method 100 times. Each dataset was split into a reference and query
fraction. Reference sequences were selected via a simple random sample, weighting sequences by relative
abundance, or weighting by similarity to other sequences in the dataset. With the simple random sample
method, dataset splitting was repeated with reference fractions ranging from 10% to 90% of the dataset and
for 100 random seeds. De novo clustering each dataset with OptiClust is also shown for comparison.
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employing more complicated sampling strategies such as abundance-weighted and similarity-
weighted sampling did not confer any advantages over selecting the reference via a simple
random sample, and in fact decreased OTU quality in the case of similarity-weighted sam-
pling.

2.4 Discussion
We developed a new algorithm for clustering sequences to existing OTUs and have demon-
strated its suitability for reference-based clustering. OptiFit makes the iterative method
employed by OptiClust available for tasks where reference-based clustering is required. We
have shown that OTU quality is similar between OptiClust and OptiFit in open reference
mode, regardless of strategy employed. Open reference OptiFit performs slower than Opti-
Clust due to the additional de novo clustering step, so users may prefer OptiClust for tasks
that do not require reference OTUs.

When clustering to public databases, OTU quality dropped in closed reference mode to
different degrees depending on the database and dataset source, and no more than half of
query sequences were able to be clustered into OTUs across any dataset/database combi-
nation. This may reflect limitations of reference databases, which are unlikely to contain
sequences from novel microbes. This drop in quality was most notable with the RDP ref-
erence, which contained only 16,192 sequences compared to 173,648 sequences in SILVA
and 174,979 in Greengenes. Note that Greengenes has not been updated since 2013 at the
time of this writing, while SILVA and the RDP are updated regularly. We recommend that
users who require an independent reference database opt for large databases with regular
updates and good coverage of microbial diversity for their environment. Since OptiClust still
performs faster than open reference OptiFit and creates higher quality OTUs than closed
reference OptiFit with the database strategy, we recommend using OptiClust rather than
clustering to a database whenever consistent OTUs are not required.

The OptiClust and OptiFit algorithms produced higher quality OTUs than VSEARCH in
open reference, closed reference, or de novo modes. However, VSEARCH was able to cluster
more sequences to OTUs than OptiFit in closed reference mode. While both OptiFit and
VSEARCH use a distance or similarity threshold for determining how to cluster sequences
into OTUs, VSEARCH is more permissive than OptiFit regardless of mode. The OptiFit
and OptiClust algorithms use all of the sequences to define an OTU, preferring that all
pairs of sequences (including reference and query sequences) in an OTU are within the
distance threshold in order to maximize the MCC. In contrast, VSEARCH only requires
each query sequence to be similar to the single centroid sequence that seeded the OTU, thus
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allowing pairs of query sequences to be less similar to each other than the threshold specified.
Because of this, VSEARCH sacrifices OTU quality by allowing more dissimilar sequences to
be clustered into the same OTUs.

When clustering with the split dataset strategy, OTU quality was remarkably similar when
reference sequences were selected by a simple random sample or weighted by abundance, but
quality was slightly worse when sequences were weighted by similarity. We recommend using
a simple random sample since the more sophisticated reference selection methods do not offer
any benefit. The similarity in OTU quality between OptiClust and OptiFit with this strategy
demonstrates the suitability of using OptiFit to cluster sequences to existing OTUs, such as
when comparing OTUs across studies. However, when consistent OTUs are not required,
we recommend using OptiClust for de novo clustering over the split strategy with OptiFit
since OptiClust is simpler to execute but performs similarly in terms of both run time and
OTU quality.

Unlike existing reference-based methods that cluster query sequences to a single centroid
sequence in each reference OTU, OptiFit considers all sequences in each reference OTU when
clustering query sequences, resulting in OTUs of a similar high quality as those produced
by the de novo OptiClust algorithm. Potential applications include clustering sequences
to reference databases, comparing taxonomic composition of microbiomes across different
studies, or using OTU-based machine learning models to make predictions on new data.
OptiFit fills the missing option for clustering query sequences to existing OTUs that does
not sacrifice OTU quality for consistency of OTU assignments.

2.5 Materials and Methods

2.5.1 Data processing steps

We downloaded 16S rRNA gene amplicon sequences from four published datasets isolated
from soil [55], marine [56], mouse gut [57], and human gut [30] samples. These datasets
contain sequences from the V4 region of the 16S rRNA gene and represent a selection of the
broad types of natural communities that microbial ecologists study. We processed the raw
sequences using mothur according to the Schloss Lab MiSeq SOP [62] and accompanying
study by Kozich et al. [63]. These steps included trimming and filtering for quality, aligning
to the SILVA reference alignment [59], discarding sequences that aligned outside the V4
region, removing chimeric reads with UCHIME [64], and calculating distances between all
pairs of sequences within each dataset prior to clustering.
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2.5.2 Reference database clustering

To generate reference OTUs from public databases, we downloaded sequences from the
Greengenes database (v13_8_99) [58], SILVA non-redundant database (v132) [59], and the
Ribosomal Database Project (v16) [60]. These sequences were processed using the same
steps outlined above followed by clustering sequences into de novo OTUs with OptiClust.
Processed reads from each of the four datasets were clustered with OptiFit to the refer-
ence OTUs generated from each of the three databases. When reference clustering with
VSEARCH, processed datasets were clustered directly to the unprocessed Greengenes 97%
OTU reference alignment, since this method is how VSEARCH is typically used by the
QIIME2 software for reference-based clustering [54], [65].

2.5.3 Split dataset clustering

For each dataset, half of the sequences were selected to be clustered de novo into reference
OTUs with OptiClust. We used three methods for selecting the subset of sequences to be
used as the reference: a simple random sample, weighting sequences by relative abundance,
and weighting by similarity to other sequences in the dataset. Dataset splitting was repeated
with 100 random seeds. With the simple random sampling method, dataset splitting was
also repeated with reference fractions ranging from 10% to 90% of the dataset. For each
dataset split, the remaining query sequences were clustered into the reference OTUs with
OptiFit.

2.5.4 Benchmarking

OptiClust and OptiFit randomize the order of query sequences prior to clustering and employ
a random number generator to break ties when OTU assignments are of equal quality. As a
result, they produce slightly different OTU assignments when repeated with different random
seeds. To capture any variation in OTU quality or execution time, clustering was repeated
with 100 random seeds for each combination of parameters and input datasets. We used
the benchmark feature provided by Snakemake to measure the run time of every clustering
job. We calculated the MCC on each set of OTUs to quantify the quality of clustering, as
described by Westcott et al. [50].

2.5.5 Data and code availability

We implemented the analysis workflow in Snakemake [66] and wrote scripts in R [67], Python
[68], and GNU bash [69]. Software used includes mothur v1.47.0 [70], VSEARCH v2.15.2
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[53], the tidyverse metapackage [71], R Markdown [72], ggraph [73], ggtext [74], numpy [75],
the SRA toolkit [76], and conda. The complete workflow and supporting files required to
reproduce this manuscript are available at https://github.com/SchlossLab/Sovacool_
OptiFit_mSphere_2022.
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CHAPTER 3

Predicting Severity of C. difficile Infections
from the Taxonomic Composition of the Gut

Microbiome

3.1 Preamble
This chapter aims to predict CDI severity from the taxonomic composition of the gut mi-
crobiome. We trained models on OTU relative abundances to predict four different severity
definitions, identified features of the microbiota that may prevent or promote severity, and
assessed the potential clinical value of micriobiome-based prediction models.

I performed all of the analysis and created the figures and tables for this chapter. Other
co-authors helped to conceive of the study, processed samples, and assisted in training ML
models. This chapter will be submitted to a peer-reviewed journal with the following co-
authors: Kelly L. Sovacool, Sarah E. Tomkovich, Megan L. Coden, Jenna Wiens, Vincent
B. Young, Krishna Rao, and Patrick D. Schloss.

3.2 Introduction
Clostridoides difficile infection (CDI) is the most common nosocomial infection in the United
States, and community-acquired cases are on the rise [77, 12]. The classic CDI case typically
occurs soon after antibiotic use, which perturbs the protective gut microbiota and allows C.
difficile to proliferate [22]. Non-antibiotic medications including proton-pump inhibitors and
osmotic laxatives have also been associated with increased CDI susceptibilty and inhibited
clearance [10, 11]. Diarrhea is the primary symptom, with some patients developing colitis,
toxic megacolon, or requiring intensive care with an in-hospital mortality rate of approx-
imately 8-9% [19, 20]. Furthermore, 5-20% of initial cases reoccur within 2-8 weeks, and
recurrent cases are associated with increased morbidity and mortality risk [78, 22]. Patient
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risk factors for CDI-related morbidity and mortality include age greater than 65 years, his-
tory of recurrent CDI, and co-morbid chronic illnesses [79]. CDI remains a significant burden
on the US health care system with approximately 500,000 cases annually [80, 81].

There is a need for robust, accurate methods to identify patients at risk of severe CDI
outcomes. When paired with treatment options that may reduce risk of severity, prediction
models can guide clinician decision-making to improve patient outcomes while minimizing
harms and costs from unnecessary treatment. Clinicians could choose more aggressive treat-
ment options for patients predicted as being at high risk for severity, while using less costly
or less invasive treatments for low-risk patients. Numerous scoring systems for predicting
severe CDI outcomes based on patient clinical factors have been developed, but none have
generalized to external datasets nor are any in use in routine clinical practice [82, 83]. Rather
than relying on limited sets of human-curated variables, machine learning (ML) is a promis-
ing approach that allows for use of thousands of features to classify samples and predict
outcomes. Indeed, ML models trained on entire electronic health record (EHR) data have
demonstrated improved performance over curated models [84, 85]. However, EHR-based ML
models also suffer from generalizability issues as EHR standards and structures vary widely
across hospital systems, making it difficult to integrate disparate EHR data and deploy
models in different hospitals [86].

Aside from patient factors encoded in EHRs, the state of the patient gut microbiome is
a promising factor to predict severity, as the host microbiota can play either a protective or
harmful role in C. difficile colonization, infection, and clearance. Mouse studies have found
that the initial taxonomic composition of the gut microbiome predicts differences in clear-
ance, moribundity, and cecal tissue damage in mice infected with CDI [16, 18]. Identifying
features of the human gut microbiota that promote or prevent severe infections can guide
further experiments to elucidate microbial mechanisms of CDI severity, and incorporating
these features into CDI severity models may improve model performance to help guide clini-
cal treatment decisions. Furthermore, ML models trained on microbiome data may be more
generalizable across disparate datasets compared to EHR data as long as the same metage-
nomic or marker gene sequencing protocol is used across datasets [87]. While the variables
encoded in EHRs vary across hospitals depending on individual hospital practices and the
EHR software vendor used, the definition of a microbial marker gene is universal.

We set out to investigate whether ML models trained on the taxonomic composition
of the gut microbiome can predict CDI severity in a human cohort, whether the severity
definition employed affects model performance, and whether there is potential clinical value
in deploying OTU-based models. Stool samples from 1,277 CDI patients were collected
on the day of diagnosis and 16S rRNA gene amplicon sequencing was performed, followed
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by clustering sequences into Operational Taxonomic Units (OTUs). We then trained ML
models to classify or predict each of four severity definitions from OTU relative abundances,
identified which microbial features contributed most to model performance, and conducted
a proof-of-concept analysis of the potential clinical value of these OTU-based models and
compared these to prior EHR-based models.

3.3 Results

3.3.1 CDI severity

There is not currently a consensus definition of CDI severity. Some scoring systems leverage
clinical data available during the course of CDI, while others focus on adverse outcomes of
CDI at 30 days after diagnosis [79, 29]. We explored four different ways to define CDI cases
as severe or not (Figure 3.1). The Infectious Diseases Society of America (IDSA) definition
of severe CDI is based on laboratory values collected on the day of diagnosis, with a case
being severe if serum creatinine level is greater than or equal to 1.5mg/dL and the white
blood cell count is greater than or equal to 15k/µL [88]. Although data for the IDSA score is
straightforward to collect, it is known to be a poor predictor of adverse outcomes [89]. The
remaining definitions we employed focus on the occurrence of adverse outcomes, which may
be more clinically relevant. The “attributable” severity definition is based on disease-related
complications defined by the Centers for Disease Control and Prevention, where an adverse
event of ICU admission, colectomy, or death occurs within 30 days of CDI diagnosis, and
the adverse event is determined to be attributable to the CDI by physician chart review [90].
However, physician chart review is time-consuming and has not been completed for all cases
(n=46 out of 86 cases with an adverse outcome), so we defined “all-cause” severity where
a case is severe if an adverse event occurs within 30 days of the diagnosis regardless of the
cause of the adverse event. Finally, we defined a “pragmatic” severity definition that makes
use of the attributable definition when available and uses the all-cause definition when chart
review has not been completed, allowing us to use as many samples as we have available
while taking physicians’ expert opinions into account where possible (Figure 3.1 B). We
trained ML models to classify (in the case of the IDSA definition) or predict (in the case of
the three other definitions) severity and determined how well OTU-based models perform
for each definition.
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Figure 3.1: CDI severity definitions.

A) Decision flow chart to define CDI cases as severe according to the Infectious Diseases Society of America
(IDSA) based on lab values, the occurrence of an adverse outcome due to any cause (All-cause), and the oc-
currence of disease-related complications confirmed as attributable to CDI with chart review (Attributable).
B) The proportion of severe CDI cases labelled according to each definition. An additional ‘Pragmatic’
severity definition uses the Attributable definition when possible, and falls back to the All-cause definition
when chart review is not available. See Table 3.1 for sample counts and proportions of severe cases across
severity definitions.
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Table 3.1: Sample counts and proportion of severe cases. Each severity definition has a
different number of patient samples available, as well as a different proportion of cases labelled as
severe.

(a) Full datasets

Severity n % severe
All-cause 1,218 7.1
Attributable 1,178 2.2
IDSA 1,072 34.2
Pragmatic 1,218 5.4

(b) Intersection of samples with all labels available

Severity n % severe
All-cause 993 4.6
Attributable 993 2.6
IDSA 993 32.7
Pragmatic 993 2.6

3.3.2 Model performance

We first set out to train the best models possible for each severity definition. Not all sam-
ples have outcomes available for all four severity definitions due to missing data for some
patient lab values and incomplete chart review (Figure 3.1 B), thus each severity definition
had a different number of samples when using as many samples as possible (Table 3.1 A).
We referred to these as the full datasets. Random forest models were trained on 100 splits
of the datasets into training and test sets, and performance was evaluated on the held-out
test set using the area under the receiver-operator characteristic curve (AUROC). Since the
severity outcomes were highly imbalanced with different proportions of severe samples be-
tween definitions, we also calculated the balanced precision and the area under the balanced
precision-recall curve (AUBPRC) as first proposed by Wu et al. to describe the precision
that would be expected if the outcomes were balanced [91].

After training on the full datasets, the performance as measured by the AUROCs of the
training set cross-validation folds were similar to those of the held-out test sets, indicating
that the models are neither overfit nor underfit (Figure 3.2 A). As measured by AUROC on
the held-out test sets, models predicting pragmatic severity performed best with a median
AUROC of 0.69, and this was significantly different from that of the other definitions on
the full datasets (P < 0.05). Models predicting IDSA, all-cause, and attributable severity
performed similarly with median test set AUROCs of 0.61, 0.63, and 0.61 respectively. The
test set AUROCs were not significantly different (P > 0.05) for attributable and IDSA
nor for attributable and all-cause, but the IDSA and all-cause AUROCs were significantly
different from each other (P < 0.05). We plotted the receiver-operator characteristic curve
and found that the pragmatic severity models outperformed the others at all specificity values
(Figure 3.2 B). For comparison, a prior study with a different dataset trained a logistic
regression model on electronic health record data extracted on the day of CDI diagnosis
to predict attributable severity, yielding an AUROC of 0.69 [85]. While our attributable

25



severity model did not meet this performance, the pragmatic severity model performed just
as well as the EHR-based model in terms of AUROC.

Since the data are highly imbalanced with only a small proportion of CDI cases having
a severe outcome, evaluating the trade-off between precision and recall is more informative
than the receiver-operator characteristic because precision and recall do not consider true
negatives, which may overinflate the AUROC. However, unlike for AUROC, the baseline for
the area under the precision-recall curve depends on the proportion of positive outcomes
(i.e. severe cases) in the data, which vary across these severity definitions. To allow compar-
ison of precision across datasets with different proportions of positives, Wu et al. introduced
the concept of balanced precision, a transformation of precision based on Bayes’ theorem
that represents the precision that would have been expected if the proportion of positives
were balanced at 0.5 [91]. Reporting the area under the balanced precision-recall curve
(AUBPRC) allows us to compare the trade-off between precision and recall for our different
severity defintions. The test set median AUBPRCs from the full datasets followed a similar
pattern as the test set AUROCs with 0.60 for IDSA severity, 0.67 for all-cause severity,
0.66 for attributable severity, and 0.75 for pragmatic severity. The AUBPRCs were signif-
icantly different from each other (P < 0.05) for each pair of severity definitions except for
attributable versus all-cause. We plotted the balanced precision-recall curve and found that
the IDSA definition outperformed all other models at very low recall values, but the others
outperform IDSA at all other points of the curve (Figure 3.2 C). The 95% confidence in-
tervals overlapped the baseline AUROC and AUBPRC for the attributable severity models,
while all others did not overlap the baseline.

While it is advantageous to use as much data as available to train the best models possible,
comparing performances of models trained on different subsets of the data is not entirely
fair. To enable fair comparisons of the model performances across different severity def-
initions, we also selected the intersection of samples (n=993) that had labels for all four
severity definitions and repeated the model training and evaluation process on this intersec-
tion dataset. The attributable definition is exactly the same as the pragmatic definition for
the intersection dataset, as we defined pragmatic severity to use the attributable definition
when available. The performance results on the intersection dataset are shown in the right
facets of each panel of Figure 3.2.

As with the full datasets, the AUROCs of the training sets and test sets were similar within
each severity definition. The median test set AUROCs were 0.60 for IDSA severity, 0.55 for
all-cause severity, 0.59 and for attributable severity. The AUROCs on the intersection dataset
were significantly different for all-cause versus attributable and all-cause versus IDSA severity
(P < 0.05), but not for IDSA versus attributable severity (P > 0.05). The median test set
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Figure 3.2: Performance of ML models.

In the left facets, models were trained on the full datasets, with different numbers of samples available
for each severity definition. In the right facets, models were trained on the same dataset consisting of the
intersection of samples with labels available for all definitions. Note that the intersection dataset has exactly
the same labels for attributable and pragmatic severity, thus these have identical performance. A) Area
under the receiver-operator characteristic curve (AUROC) for the test sets and cross-validation folds of the
training sets, and the area under the balanced precision-recall curve (AUBPRC) for the test sets. Each
point is annotated with the median performance across 100 train/test splits with tails as the 95% CI. B)
Receiver-operator characteristic curves for the test sets. Mean specificity is reported at each sensitivity value,
with ribbons as the 95% CI. C) Balanced precision-recall curves for the test sets. Mean balanced precision is
reported at each recall (sensitivity) value, with ribbons as the 95% CI. Original unbalanced precision-recall
curves are shown in Supplementary Figure 3.5.
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AUBPRCs were 0.59 for IDSA severity, 0.55 for all-cause severity, 0.58 and for attributable
severity. Just as with the AUROCs, the AUBPRCs were significantly different for all-cause
versus attributable and all-cause versus IDSA severity (P < 0.05), but not for IDSA versus
attributable severity (P > 0.05). For all severity definitions, performance dropped between
the full dataset and the intersection dataset since fewer samples are available, but this effect
is least dramatic for IDSA severity as the full and intersection datasets are more similar
for this definition (Table 3.1 B). The 95% confidence interval overlaps with the baseline for
both AUROC and AUBPRC for all definitions on the intersection dataset except for IDSA
severity.

3.3.3 Feature importance

We performed permutation feature importance to determine which OTUs contributed the
most to model performance. An OTU was considered important if performance decreased
when it was permuted in at least 75% of the train/test splits, with greater differences in
AUROC meaning greater importance. We plotted mean decrease in AUROC alongside log10-
transformed mean relative abundances for the top OTUs (Figure 3.3). Enterococcus was the
most important OTU, being significantly important for all models except for attributable
severity on the full dataset. Staphylococcus was important for the pragmatic and all-cause
definitions on the full datasets, but not for models trained on the intersection dataset. Lac-
tobacillus was important only for the all-cause definition on the intersection dataset. All
remaining OTUs had differences in AUROC < 0.02 and were only significantly important in
one or two of the models at most. All of the significantly importance OTUs had an increased
mean relative abundance in severe cases relative to not severe cases.

3.3.4 Estimating clinical value

Even if a model performs well, it may not be useful in a clinical setting unless it can guide
clinicians to choose between treatment options. At this time, we are not aware of any direct
evidence that a particular treatment reduces the risk of severe CDI outcomes. However, with
some assumptions we offer a proof-of-concept analysis of the potential clinical value of OTU-
based severity prediction models when paired with treatments that may reduce severity.
When considering the suitability of a model for deployment in clinical settings, the number
needed to screen (NNS) is a highly relevant metric representing how many patients must
be predicted as severe by the model to identify one true positive. NNS is calculated as the
reciprocal of precision (Equation 3.1) [92]. Similarly, the number needed to treat (NNT) is
the number of true positive patients that must be treated by an intervention in order for one
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Figure 3.3: Most important OTUs for model performance.

A) Feature importance via permutation test. For each OTU, the order of samples was randomized in the
test set 100 times and the AUROC was re-calculated to estimate the permutation performance. OTUs with
a greater difference in AUROC (actual performance minus permutation performance) are more important.
Mean difference in AUROC and the 75% confidence interval (CI) is reported for each OTU that had a mean
difference ≥ 0.01 for at least one severity definition, with starred OTUs being significant for the 75% CI.
Notably, the OTU most likely corresponding to C. difficile was not important (see Supplementary Figure 3.6).
Left: models were trained on the full datasets, with different numbers of samples available for each severity
definition. Right: models were trained on the intersection of samples with all labels available for each
definition. Note that Attributable and Pragmatic severity are exactly the same for the intersection dataset.
Pseudomonas (OTU 120) is not shown for IDSA severity in the full datasets nor in the intersection dataset
because it was removed during pre-processing due to having near-zero variance. B) Log10-transformed mean
relative abundances of the most important OTUs on the full datasets, grouped by severity (shape). The
vertical dashed line is the limit of detection.
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patient to benefit from the treatment. NNT is calculated as the reciprocal of the absolute
risk reduction (ARR) from randomized controlled trials (Equation 3.2 and Equation 3.3)
[93, 94, 95]. Multiplying NNS by NNT yields the number needed to benefit (NNB): the
number of patients predicted to have a severe outcome who then benefit from the treatment
(Equation 3.4) [96]. Thus the NNB pairs model performance with treatment effectiveness
to estimate the benefit of using predictive models in clinical practice. Lower values of NNS,
NNT, and NNB are better, with the minimum value being 1, as fewer patients must be
screened and treated in order to benefit a single patient.

NNS =
1

Precision
(3.1)

ARR = Control Event Rate− Experimental Event Rate (3.2)

NNT =
1

ARR
(3.3)

NNB = NNS ×NNT (3.4)

Current clinical guidelines specify vancomycin and fidaxomicin as the standard antibiotics
to treat CDI, with a preference for fidaxomicin due to its higher rate of sustained resolution
of CDI and lower rate of recurrence [97]. The NNTs of fidaxomicin for sustained resolution
and prevention of recurrence are each estimated to be 10 [98, 99]. However, fidaxomicin
is considerably more expensive than vancomycin. If fidaxomicin were shown to reduce the
risk of severe CDI outcomes, it could be preferentially prescribed to patients predicted to be
at risk, while prescribing vancomycin to low-risk patients. If we assume that the superior
efficacy of fidaxomicin for sustained resolution and reduced recurrence also translates to
reducing the risk of severe outcomes, we can pair the NNT of fidaxomicin with the NNS of
OTU-based prediction models to estimate the NNB.

To calculate a clinically-relevant NNS for these models, we computed the NNS across de-
cision thresholds and risk percentiles for each prediction model trained on the full datasets
(Figure 3.4). We excluded the IDSA severity models as the IDSA severity scores were calcu-
lated on the day of diagnosis, thus they are classification rather than prediction problems.
Furthermore, IDSA severity scores do not correlate well with disease-related adverse events
which are a more salient outcome to prevent. We report the median NNS for each decision
threshold and risk percentile from 0 to 1 (Figure 3.4). The decision threshold is the risk level
at which patients are predicted to have a severe outcome. For example, a decision threshold
of 0.20 means that patients with at least a 20% risk of severity are predicted to have a severe
outcome by the model. The decision threshold at a given risk percentile is different for each
model, with the 95th percentile of risk corresponding to the decision threshold where 5% of
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Figure 3.4: Model performance in terms of the number needed to screen across decision thresholds
and risk percentiles.
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The number needed to screen (NNS) represents how many patients must be predicted as severe by the model
to identify one true positive (Equation 3.1). NNS ranges from 1 to infinity, with 1 being perfect. A) The
median NNS was computed for each decision threshold from 0 to 1, incremented by 0.05. A decision threshold
of 0.20 means that patients with at least a 20% risk of severity are predicted as severe. The points mark
the decision threshold at the 95th percentile of risk for each severity prediction model, which corresponds to
5% of cases predicted to have a severe outcome. B) The median NNS is shown across risk percentiles. The
vertical dashed line marks the 95th percentile of risk.
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patients are predicted to have a severe outcome.
We further focused on the 95th percentile of risk in order to compare our models to EHR-

based models from prior studies that reported model precision at this risk threshold. Among
the models predicting severe outcomes, those trained on the full datasets performed best
with an NNS of 5 for the all-cause definition, 12 for the attributable definition, and 5.5 for
the pragmatic definition at the 95th percentile of risk (Figure 3.4). Multiplying the NNS of
the OTU-based models by the estimated NNT of 10 for fidaxomicin yields NNB values of
50 for all-cause severity, 120 for attributable severity, and 55 for pragmatic severity. Thus,
in a hypothetical scenario where these assumptions about fidaxomicin hold true, at best 50
and at worst 120 patients would need to be predicted to experience a severe outcome and be
treated with fidaxomicin in order for one patient to benefit, with the all-cause severity models
yielding the best performance. For comparison, prior studies predicted CDI-attributable
severity using electronic health record data extracted two days after diagnosis and from a
smaller set of manually curated variables, achieving precision values of 0.42 (NNS = 2.4) for
the EHR model and 0.17 (NNS = 6.0) for the curated model at the 95th percentile of risk
[85, 84]. Pairing the prior EHR-based model with fidaxomicin would yield an NNB of 24.
Thus the all-cause and pragmatic OTU-based models outperformed the curated model but
not the EHR-based model, although the EHR data were extracted two days after diagnosis
while OTUs in this study are from stool samples collected on the day of diagnosis. These
estimates represent a proof-of-concept demonstration of the potential value and trade-offs
of deploying severity prediction models trained on microbial factors versus EHRs to guide
clinicians’ treatment decisions.

3.4 Discussion
We trained ML models based on gut microbial communities on the day of CDI diagnosis to
predict CDI severity according to four different severity definitions. The purpose of the full
datasets was to train the best models possible given the constraints, while using the inter-
section dataset allows for comparing severity definitions. We found that models predicting
pragmatic severity with as much data as available performed best, while models classifying
IDSA severity outperformed the all-cause and attributable definitions only with the inter-
section. Performance dropped substantially when reducing to the intersection dataset for all
definitions, likely due to the particularly imbalanced nature of the all-cause and attributable
definitions. These results demonstrate the importance of using as many samples as possible
when data are sparse and the outcome is low prevalence, as well as the need to incorporate
physician’s expertise when possible.
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Permutation feature importance revealed patterns of important bacteria that concord
with the literature. Enrichment of Enterococcus and Lactobacillus in C. difficile infection
and severity have been well-documented in prior studies, thus their importance and increase
in abundance for severe cases is not surprising [31, 100, 101, 18]. For many of the top OTUs,
there is a wide range in importance. Notably, the OTU represented by Pseudomonas had
wide variance in importance for the full dataset in models predicting attributable sever-
ity, with the maximum point more important than any other OTU yet a minimum below
zero. However, for the intersection dataset, this OTU was removed due to having near-zero
variance. The presence of Pseudomonas was thus informative in a small number of patient
samples, but not in others, and these samples were lost in the intersection dataset. Overall
the abundance data are patchy, as these patients were likely all taking antibiotics for un-
related infections prior to CDI onset. A limitation of permutation importance is that the
contribution of each feature is considered in isolation, but members of microbial communi-
ties interact and compete with each other, thus these complicated relationships are not well
captured by permutation importance.

The full pragmatic severity model performed just as well as a prior EHR-based model
trained on the day of diagnosis, demonstrating the potential utility of OTU-based models.
In terms of the number needed to screen, the OTU-based pragmatic and all-cause severity
models outperformed a prior model of manually curated clinical variables, but not a model
trained on EHR data extracted two days after diagnosis. The attributable definition had the
worst NNS of all models, despite its clinical relevance. Obtaining EHR data for the dataset
in this study would allow a more direct comparison of the performance of models trained on
OTUs, EHRs, or both, as well as extracting EHR data on the day of diagnosis rather than
two days after.

However, it is not enough for models to perform well to justify deploying them in a clinical
setting; benefit over current practices must be shown [34]. Although no known treatment
options have been shown to reduce the risk of severe CDI outcomes, fidaxomicin is promising
due to its improved time to resolution and reduced recurrence. Despite its increased cost,
fidaxomicin is also attractive as a preferential antibiotic option as vancomycin-resistant En-
terococcus is on the rise and enterococci are known to worsen CDI [24, 25]. We extended our
analysis of clinical value to incorporate the number needed to treat for fidaxomicin alongside
the predictive models in order to calculate the number needed to benefit. The NNB contex-
tualizes model performance within clinical reality, as it combines both model performance
and treatment effectiveness [96]. A more robust analysis of clinical value would further con-
sider the cost of treatment options versus the savings of averting severe outcomes across a
range of decision thresholds, as economic disparities are a major barrier to treatment in the
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US [97]. Cost-benefit analyses based on clinical trial data have reported that fidaxomicin
may be as cost-effective as vancomycin as a treatment for initial CDI cases, largely due
to the reduced risk of recurrence [102, 103]. While our analysis of clinical value is only a
proof-of-concept, if evidence emerges that new or existing treatments significantly reduce
the risk of severe CDI, our results can be incorporated into future considerations of whether
to build severity prediction models and what features should be incorporated. In practice,
EHR-based models are less costly to deploy than OTU-based models and do not require ad-
ditional clinical sample collection. However, EHR systems notoriously lack interoperability
across hospitals, which inhibits the ability of EHR-based models to generalize to datasets
from different hospitals. OTU-based models may be more generalizable across disparate hos-
pital systems than EHR-based models as long as the same sample collection and sequencing
protocol is used. Amplicon sequencing is not typically performed for CDI patients, however,
routinely profiling the microbial communities of CDI patients could be justified if models
that incorporate microbial features were shown to improve patient outcomes.

In all, we found that our models to predict severity from features of the gut microbiome
performed moderately well. Our approach enabled us to identify bacteria that contributed
to model performance and evaluate how well the state of the gut microbiome can predict
several different definitions of CDI severity. Further work is needed to determine whether
the performance of OTU-based models is sufficient to justify their deployment in clinical
settings, especially as compared to EHR-based models. If and when new evidence emerges
of improved treatments to prevent severe CDI outcomes, deploying performant and robust
models for clinicians to tailor treatment options may improve patient outcomes and reduce
the burden of severe CDI.

3.5 Materials and Methods

3.5.1 Sample collection

This study was approved by the University of Michigan Institutional Review Board. Sam-
ples were collected from patients diagnosed with CDI by the University of Michigan Health
System from January 2016 through December 2017. Stool samples that had unformed stool
consistency were tested for C. difficile by the clinical microbiology lab with a two-step al-
gorithm that included detection of C. difficile glutamate dehydrogenase and toxins A and
B by enzyme immunoassay with reflex to PCR for the tcdB gene when results were dis-
cordant. 1,517 stool samples were collected from patients diagnosed with a CDI. Leftover
stool samples that were sent to the clinical microbiology lab were collected and split into
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different aliquots. For 16S sequencing, the aliquot of stool was re-suspended in DNA genotek
stabilization buffer and then stored in the -80°C freezer.

3.5.2 16S rRNA gene amplicon sequencing

Samples stored in DNA genotek buffer were thawed from the -80°C, vortexed, and then
transferred to a 96-well bead beating plate for DNA extractions. DNA was extracted using
the DNeasy Powersoil HTP 96 kit (Qiagen) and an EpMotion 5075 automated pipetting
system (Eppendorf). The V4 region of the 16S rRNA gene was amplified with the Ac-
cuPrime Pfx DNA polymerase (Thermo Fisher Scientific) using custom barcoded primers,
as previously described [63]. Each library preparation plate for sequencing contained a neg-
ative control (water) and mock community control (ZymoBIOMICS microbial community
DNA standards). The PCR amplicons were normalized (SequalPrep normalization plate kit
from Thermo Fisher Scientific), pooled and quantified (KAPA library quantification kit from
KAPA Biosystems), and sequenced with the MiSeq system (Illumina).

All sequences were processed with mothur (v1.46) using the MiSeq SOP protocol [70,
63]. Paired sequencing reads were combined and aligned with the SILVA (v132) reference
database [59] and taxonomy was assigned with a modified version of the Ribosomal Database
Project reference sequences (v16) [60]. Sequences were clustered into de novo OTUs with the
OptiClust algorithm in mothur [50], resulting in 9,939 OTUs. Samples were then subsampled
to 5,000 sequences per sample. Only the first CDI sample per patient was used for subsequent
ML analyses such that no patient is represented more than once, resulting in a dataset of
1,277 samples.

3.5.3 Defining CDI severity

We chose to explore four different ways to define CDI cases as severe or not (Figure 3.1).

• IDSA: A case is severe if serum creatinine level is greater than or equal to 1.5mg/dL

and the white blood cell count is greater than or equal to 15k/µL on the day of
diagnosis [88].

• All-cause: A case is severe if ICU admission, colectomy, or death occurred within 30
days of CDI diagnosis, regardless of the cause of the adverse event.

• Attributable: A case is severe if an adverse event of ICU admission, colectomy, or
death occurred within 30 days of CDI diagnosis, and the adverse event was determined
to be attributable to the CDI by two physicians who reviewed the medical chart [90].

• Pragmatic: A case’s severity is determined by the attributable definition if it is
available, otherwise it is determiend by the all-cause definition.
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3.5.4 Model training

Random forest models were used to examine whether OTU data collected on the day of
diagnosis could classify CDI cases as severe according to each severity definition. We used
the mikropml R package v1.5.0 [104] implemented in a custom version of the mikropml
Snakemake workflow [105] for all steps of the machine learning analysis. We have full datasets
which use all samples available for each severity definition, and an intersection dataset which
consists of only the samples that have all four definitions labelled. The intersection dataset
is the most fair for comparing model performance across definitions, while the full dataset
allows us to use as much data as possible for model training and evaluation. Datasets
were pre-processed with the default options in mikropml to remove features with near-zero
variance and scale continuous features from -1 to 1. During pre-processing, 9,757 to 9,760
features were removed due to having near-zero variance, resulting in datasets having 179 to
182 features depending on the severity definition. No features had missing values and no
features were perfectly correlated. We randomly split the data into an 80% training and 20%
test set and repeated this 100 times, followed by training models with 5-fold cross-validation.

3.5.5 Model evaluation

Model performance was calculated on the held-out test sets using the area under the receiver-
operator characteristic curve (AUROC) and the area under the balanced precision-recall
curve (AUBPRC). Statistical significance for differences in performance across severity defi-
nitions was determined via permutation tests at an alpha level of 0.05. Permutation feature
importance was then performed to determine which OTUs contributed most to model per-
formance. We reported OTUs with a significant permutation test at an alpha level of 0.05
in at least 75 of the 100 train/test splits for any severity definition.

Since the severity labels are imbalanced with different frequencies of severity for each def-
inition, we calculated balanced precision, the precision expected if the labels were balanced.
The balanced precision and the area under the balanced precision-recall curve (AUBPRC)
were calculated with Equations 1 and 7 from Wu et al. [91].

3.5.6 Number needed to benefit

For the severity prediction models (which excludes the IDSA definition), we set out to
estimate the potential benefit of deploying models in clinical settings. We determined the
decision threshold at the 95th percentile of risk for each model, which corresponds to 5%
of cases being predicted by the model to experience a severe outcome. At this threshold
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we computed the number needed to screen (NNS), which is the reciprocal of precision and
represents the number of cases that must be predicted as severe to identify one true positive
(Equation 3.1) [92]. The number needed to treat (NNT) is the number of true positive
patients that must be treated by an intervention in order for one patient to benefit, and
is calculated from the reciprocal of absolute risk reduction in randomized controlled trials
(Equation 3.3 and Equation 3.2) [93, 94, 95]. Multiplying the NNS of a model by the NNT
of a treatment yields the number needed to benefit (NNB) - the number of patients that
must be predicted to have a severe outcome and undergo a treatment to benefit from it
(Equation 3.4) [96]. NNB encapsulates the benefit of pairing a predictive model with a
treatment in a clinical setting, with lower NNB numbers being better.

3.5.7 Code availability

The complete workflow, code, and supporting files required to reproduce this manuscript
with accompanying figures is available on GitHub (https://github.com/SchlossLab/
severe-CDI) and archived in Zenodo [106].

The workflow was defined with Snakemake [66] and dependencies were managed with
conda environments. Scripts were written in R [67], Python [68], and GNU bash. Additional
software and packages used in the creation of this manuscript include cowplot [107], ggtext
[74], ggsankey [108], schtools [109], the tidyverse metapackage [71], Quarto, and vegan [110].

3.5.8 Data availability

The 16S rRNA sequencing data have been deposited in the National Center for Biotechnology
Information Sequence Read Archive (BioProject Accession no. PRJNA729511).

3.6 Acknowledgements
We thank the patients for donating stool samples and the research team members who
collected, stored, and processed the samples.
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3.7 Supplement

Figure 3.5: Precision-recall curves.

The original precision-recall curves for each model. The horizontal line is the baseline precision, i.e. the
proportion of severe cases in the dataset for each severity definition. Since each definition has a different
baseline precision, the PRCs cannot be compared directly without balancing the precision (see Figure 3.2).
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Figure 3.6: C. difficile relative abundance and feature importance.

Of the 45 OTUs belonging to the Peptostreptococcaceae family, only one (OTU 25) had abundance values
above the limit of detection. Left: log10-transformed relative abundance of OTU 25 in the full datasets.
The dashed line is the limit of detection. Right: Permutation feature importance as measured by AUROC
for OTU 25. The point is the mean difference in AUROC and the tails are the 75% confidence interval. The
dotted line is a feature importance of zero, meaning the feature is not important.
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CHAPTER 4

Democratizing Data Science With Open
Curricula and User-Friendly Software Tools

4.1 Preamble
In this chapter, we contributed to the democratization of data science for three key au-
diences: 1) high school students who wish to learn how to code for a potential career in
data science, 2) academics who wish to learn how to code for reproducible research, and
3) scientists who wish to apply machine learning methods toward their areas of study. We
developed a curriculum to teach the basics of Python for data science via a Girls Who Code
club, a curriculum to teach introductory programming for reproducible research via Software
Carpentry workshops, and an R package that implements current best practices in machine
learning for novice practitioners. These free and open source contributions make data sci-
ence education more accessible to a range of audiences and promote responsible use of data
science methods.

4.2 Teaching Python for Data Science: Collaborative
development of a modular and interactive curricu-
lum

This paper was originally published in 2021 in the Journal of Open Source Education with
the following co-authors: Marlena Duda*, Kelly L. Sovacool*, Negar Farzaneh, Vy Kim
Nguyen, Sarah E. Haynes, Hayley Falk, Katherine L. Furman, Logan A. Walker, Rucheng
Diao, Morgan Oneka, Audrey C. Drotos, Alana Woloshin, Gabrielle A. Dotson, April Kriebel,
Lucy Meng, Stephanie N. Thiede, Zena Lapp, and Brooke N. Wolford [111].

*Indicates co-first author
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4.2.1 Summary

We are bioinformatics trainees at the University of Michigan who started a local chapter of
Girls Who Code to provide a fun and supportive environment for high school women to learn
the power of coding. Our goal was to cover basic coding topics and data science concepts
through live coding and hands-on practice. However, we could not find a resource that
exactly met our needs. Therefore, over the past three years, we have developed a curriculum
and instructional format using Jupyter notebooks to effectively teach introductory Python
for data science. This method, inspired by The Carpentries organization, uses bite-sized
lessons followed by independent practice time to reinforce coding concepts, and culminates
in a data science capstone project using real-world data. We believe our open curriculum is
a valuable resource to the wider education community and hope that educators will use and
improve our lessons, practice problems, and teaching best practices. Anyone can contribute
to our Open Educational Resources on GitHub.

4.2.2 Statement of Need

As women bioinformatics trainees at the University of Michigan (U-M), we experience the
gender gap in our field first-hand. During the 1974-1975 academic year, women achieved
18.9% of total Bachelor’s degrees in computer and information sciences in the US [112]. By
1983-1984 this peaked at 37.1%, but fell to 17.6% by 2010-2011. We also see this national
trend in the training of the next generation of Bioinformaticians at Michigan Medicine.
Since accepting its first students in 2001, the U-M Bioinformatics Graduate Program has
graduated 66 male and 22 female doctorates as of 2019. This disparity begins at the ap-
plicant level; during 2016-2019 the average percentage of females applying directly to the
Bioinformatics PhD program was 35.2%, and the average percentage of female applicants
listing Bioinformatics as first or second choice in the Program in Biomedical Sciences, U-M’s
biomedical PhD umbrella program was 41%.

Previous research on women’s educational experiences in science, technology, engineering,
and mathematics (STEM) have produced various explanations for persistent gender dispari-
ties [113]. One explanation is that women often experience stereotype threats that negatively
influence their math and science performance and deter them from pursuing STEM as a ca-
reer [114]. The majority of our organization’s founding graduate students (all women) began
coding in our undergraduate careers or later. We wanted to provide a safe environment for
local high school women to develop confidence in themselves and their computational skills
before college, and be exposed to successful women role models in STEM to counter negative
stereotypes.
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Girls Who Code, a national organization whose mission is to close the gender gap in tech-
nology [115], was founded in 2012. Because of our personal experiences and the paucity of
women in our field [112, 116], we began a Girls Who Code student organization at the Uni-
versity of Michigan in 2017. For the past four academic years we have registered annually as
a recognized Girls Who Code Club because the national organization provides name recog-
nition, curriculum resources, guidance for a Capstone Impact Project, and a framework for
launching a coding club. Participants in the Club attend weekly meetings at the University
of Michigan (when the club is run in person rather than virtually), and are thus largely high
school women from the Ann Arbor area. In 2019 we launched our own summer program, the
Data Science Summer Experience. When held in person, the Summer Experience is hosted
in Detroit to provide the opportunity for high school women outside of Ann Arbor to learn
coding skills in an inclusive environment.

The national Girls Who Code organization provides a curriculum that teaches website and
application development through programming languages like HTML and Java; however, our
biomedical science graduate students generally have limited experience with these languages
and with web development. In contrast, many of us have extensive experience performing
data science using the Python programming language. Data Scientist was rated the #1 job
in America by Glassdoor in 2016-2019, #3 in 2020, and #2 in 2021 [117]. Furthermore,
Python is the most popular programming language according to the PYPL PopularitY of
Programming Language Index [118]. Therefore, we believe career exploration in data science
using the Python programming language will optimally prepare our learners for careers that
provide financial stability and upward economic mobility. By leveraging the data science
expertise of our Club facilitators (hereafter termed instructors), we created a specialized
curriculum focused on computational data science in the Python programming language.

Girls Who Code encourages participants to learn programming skills while working on an
Impact Project website or application throughout the Club [119]. We created an open source
Data Science curriculum that teaches the requisite Python and statistics skills to complete a
Capstone Project, where learners explore, analyze, and present a data set of their choosing.
Using this curriculum, we employ participatory live coding, where learners type and run
code along with the instructor in real time. Using paired activities, our curriculum follows
the “I do, we do, you do” didactic paradigm [120]. We provide open source resources for
both in-person and virtual versions of our curriculum, including videos corresponding to
each lesson. While we developed this curriculum for our Girls Who Code Club and Summer
Experience, we believe that it can be widely used for teaching introductory coding for data
science.
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4.2.3 Collaborative Curriculum Development

We assembled a team of volunteers involved in our club to develop a custom curriculum to
teach introductory Python for data science. We chose the content based on what our learners
would need to learn to complete a small data analysis project and communicate their findings
to their peers. We divided the content by topic into Jupyter notebooks for each lesson, with
each lesson taking approximately 15-20 minutes to teach via live coding. Every lesson has
a corresponding practice notebook with additional exercises on the same content taught in
the lesson, but using different data or variables. We used a similar development workflow
as the U-M Carpentries curriculum [121]. Briefly, we hosted the curriculum notebooks in
a public GitHub repository to facilitate collaborative development and peer review using
pull requests. In the initial curriculum drafting phase, developers were assigned lesson and
practice notebooks to write. Once the draft of a lesson was completed, the writer opened
a pull request and asked for review from a different developer. The reviewer then provided
feedback and approved the pull request to be merged into the main branch after the writer
made any requested changes. This way, more than one person viewed each notebook before
it could be incorporated into the public curriculum, which reduced mistakes and ensured
higher quality content. While teaching from the curriculum at the first Data Science Sum-
mer Experience, instructors took notes on their experience and made revisions afterward.
Maintainers continue to monitor the repository and resolve issues as they arise.

Following the onset of the COVID-19 pandemic, we quickly pivoted our club to a virtual
format. In preparation for the 2020 Summer Experience, we switched to a flipped classroom
style following feedback from our club participants that it was too difficult to follow along
live coding via Zoom (see Instructional Design).

4.2.4 Curriculum

Our curriculum was designed for high school students with no prior coding experience who are
interested in learning Python programming for data science. However, this course material
would be useful for anyone interested in teaching or learning basic programming for data
analysis.

4.2.4.1 Learning Objectives

The learning objectives of this curriculum are:

1. Write code in Python with correct syntax and following best practices.
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Figure 4.1: Lesson modules. All Jupyter notebooks are available on GitHub (https://github.
com/GWC-DCMB/curriculum-notebooks).

2. Implement fundamental programming concepts when presented with a programmatic
problem set.

3. Apply data analysis to real world data to answer scientific questions.
4. Create informative summary statistics and data visualizations in Python.

These skills provide a solid foundation for basic data analysis in Python. Participation
in our program exposes learners to the many ways coding and data science can be impactful
across many disciplines.

4.2.4.2 Course Content

Our curriculum design consists of 27 lessons broken up into 5 modules that cover Jupyter
notebook setup, Python coding fundamentals, use of essential data science packages including
pandas and numpy, basic statistical analyses, and plotting using seaborn and matplotlib
(Figure 4.1) [75, 122, 123]. Each lesson consists of a lesson notebook and a practice notebook
containing similar exercises for the learner to complete on their own following the lesson.

Each lesson builds on those before it, beginning with relevant content reminders from
the previous lessons and ending with a concise summary of the skills presented within. As
they progress through the curriculum, the learners begin simultaneously working on a data
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science project using a real world dataset of their choosing. While more time is dedicated
to lessons early in the program, the formal curriculum tapers off until the learners are solely
applying their skills to the data science project. Through this Capstone Project, learners
gain practical experience with each skill as they learn it in the lessons; including importing
and cleaning data, data visualization, and basic statistical analyses.

4.2.5 Instructional Design

We modeled our instructional design in the style of Software Carpentry [45].

1. Each lesson begins with a recapping of the relevant core skills presented in the previous
lessons.

2. All lessons are designed to be taught via 15-minute live-coding sessions. This method
is used by The Carpentries and is demonstrated to be an effective method that engages
learners [45, 124] since learners must actively engage with the material and deal with
errors and bugs as they arise.

3. Each lesson ends with a summary of core skills presented within the material.
4. Each short lesson is also accompanied by a subsequent 10-minute independent practice,

providing further opportunity for practical experience implementing the coding skill
at hand and testing learners’ understanding of the content.

To better facilitate virtual instruction during the COVID-19 pandemic, we switched to
a flipped classroom. Prior to meeting, learners watch videos of instructors explaining the
material through “live” coding and code along in the lesson notebook with while watching
the video. Each video shows the Jupyter notebook alongside the instructor themselves
teaching. Learners then complete a practice notebook corresponding to the lesson. During
the virtual meeting time, instructors answer questions and review the core concepts in the
practice exercises. This virtual format is especially beneficial because it 1) allows learners to
learn at their own pace, and 2) enables dissemination of our curriculum to a wider audience
interested in learning introductory Python programming for data science.

For both in-person and virtual instruction, once learners have completed the Fundamen-
tals module and reach the Data Science Essentials module they begin simultaneous work
on their data science projects. Projects are completed in a pair programming style, where
partners take turns assuming the “driver” (i.e. the typer) and “navigator” (i.e. the helper)
roles [125]. Switching off in this way helps both partners assume equal responsibility for
the project workload, but more importantly it enables improved knowledge transfer through
peer-to-peer learning. The culmination of the project is a presentation to peers, instruc-
tors, and family members. Through this process learners gain hands-on experience coding,
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cleaning data, performing statistical analyses, creating informative data visualizations, and
communicating their results to others.

In addition to our coding curriculum, another key component of our programming is
hosting women guest speakers from diverse fields across academia and industry. Our guest
speakers come to discuss the journey they have taken to their career paths as well as how they
utilize programming and data science in their jobs. These varied perspectives are extremely
valuable to our learners as they provide several practical examples of programming careers
in the real world, and expose them to successful women in STEM.

4.2.5.1 Experience of Use

We have used this curriculum to teach the Data Science Summer Experience and Girls Who
Code Club in person in 2019 and virtually in 2020-2021. For both in-person and virtual
instances, we had several instructors present at each session to answer questions and help
learners debug. Furthermore, one or two instructors were assigned to each project group
to help learners define data analysis questions, develop and execute a data analysis plan,
visualize and communicate their findings, and troubleshoot coding problems. Projects have
ranged from investigating exoplanets to studying the genomics of psoriasis.

We credit the success of our curriculum not only to the skill of the instructors, but also
to the way we organized and executed the lessons and project:

1. The instructors and learners used Google Colaboratory (Colab) to write and execute
code in Jupyter notebooks. We chose this option because learners do not have to install
any programs to use Google Colab and can easily open and edit the Jupyter notebooks
from GitHub. When meeting in person, most learners use Google Chromebooks which
have limited programming capabilities, but easy use of a web browser.

2. Assigning instructors to groups allowed learners to build a more personal connection
with their instructors, making them feel more comfortable asking questions.

3. Group projects were performed using pair programming to allow learners to collaborate
and learn from each other.

4. We used the “sticky note” system from The Carpentries by which learners can ask
for help by putting up a colored sticky note (or a Zoom emoji in the case of virtual
meetings) [126].

5. We exposed the learners to different aspects of data science by bringing in women
guest speakers from academics and industry. This allowed them to better put what
they were learning into context, think about how they might use the skills they were
learning in potential future careers, and exposed them to successful women in STEM.
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Figure 4.2: Post-survey responses. Learners were asked if they felt that their skills in Python
programming, problem solving, critical thinking, and collaboration had improved.

Learner experiences We surveyed learners anonymously after each Club and Summer
Experience and found that most felt that their skills in Python programming, problem
solving, critical thinking, and collaboration had improved (Figure 4.2). Furthermore, on a
10 question skills assessment during the 2019-2020 instance of the Club, the average increase
in correct answers between the first meeting and the last meeting was 4.2 with a standard
deviation of 2.8 (N=5 respondents). We also surveyed Club and Summer Experience alumni
and found that 75% (N=20) want to pursue a STEM career. 62% (N=21) are still coding.
On a 5-point scale from ‘Strongly Disagree’ to ‘Strongly Agree,’ the average answer for ‘My
participation in GWC impacted my career aspirations’ is 4 (s.d.=0.9), with 4.5 (s.d.=0.6)
for ‘Participating in GWC made me feel more confident in analyzing data’ and 3.9 (s.d.=1)
for ‘Participating in GWC made me more confident in myself.’

Overwhelmingly, learners’ favorite parts of the program are the guest speakers and the
project. These aspects of our curriculum expose them to new fields and allow them to apply
their newfound coding skills to asking an interesting question. A 2021 Club learner shared,
“I plan to go to college for Computer Science and get a robotics minor when my college
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offers it. GWC has inspired me to consider pursuing a Masters or PhD in CS as well as take
some electives in Data Science.” Five of our 86 alumni have gone on to perform research
with U-M faculty members, with one presenting her work at an international conference. In
fact, about a third of participants claim that they are now more interested in pursuing a
career in computer or data science compared to before their Girls Who Code experience.
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4.3.1 Summary

Inspired by well-established material and pedagogy provided by The Carpentries [45], we
developed a two-day workshop curriculum that teaches introductory R programming for
managing, analyzing, plotting and reporting data using packages from the tidyverse [71],
the Unix shell, version control with git, and GitHub. While the official Software Carpentry
curriculum is comprehensive, we found that it contains too much content for a two-day
workshop. We also felt that the independent nature of the lessons left learners confused
about how to integrate the newly acquired programming skills in their own work. Thus,
we developed a new curriculum that aims to teach novices how to implement reproducible
research principles in their own data analysis. The curriculum integrates live coding lessons
with individual-level and group-based practice exercises, and also serves as a succinct resource
that learners can reference both during and after the workshop. Moreover, it lowers the
entry barrier for new instructors as they do not have to develop their own teaching materials
or sift through extensive content. We developed this curriculum during a two-day sprint,
successfully used it to host a two-day virtual workshop with almost 40 participants, and
updated the material based on instructor and learner feedback. We hope that our new
curriculum will prove useful to future instructors interested in teaching workshops with
similar learning objectives.

4.3.2 Statement of Need

For the past five years, the University of Michigan instance of The Carpentries has taught
workshops using versions of curriculum originally created by The Carpentries organization.
In that time, our instructors found several advantages and disadvantages to using the orig-
inal Software Carpentry curriculum. Some of the advantages were that any programming
language lesson (e.g., R or Python) could be paired with lessons on the Unix shell and ver-
sion control, lessons had been refined by many contributors over the years and taught at
workshops around the world, and the instructional design demonstrated good pedagogy for
teaching novice data science practitioners. However, The Carpentries materials have evolved
from lesson plans to reference materials, and thus there was too much content for the time
available during a two-day workshop. As a result, workshops taught with this material were
inconsistent depending on who was teaching, and new instructors faced an overwhelming
amount of work to prepare for their first workshop. Furthermore, the modular nature of the
curriculum meant that each lesson was independent from the others, so it was not apparent
to learners how all of the skills could be integrated for the purpose of a reproducible research
project.
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Figure 4.3: Curriculum development framework

Given these constraints, we sought to create a new curriculum that would allow us to
teach computational skills in an integrated manner, demonstrate the reproducible research
workflows we use in our own work, deliver an appropriate and consistent amount of content,
and reduce the burden for new instructors to get involved, all while maintaining the same
inclusive pedagogy that has been refined by The Carpentries organization.

4.3.3 Collaborative Curriculum Development

We drew on the expertise of The Carpentries community at the University of Michigan
to develop a custom curriculum that would meet our goals (Figure 4.3). To start, we
organized a two-day sprint, where members of our community worked collaboratively to
create an initial draft of the content. During the sprint, we met virtually to discuss our
goals, then broke up into teams to work on individual lessons before coming back to-
gether to review our progress. We hosted the curriculum in a public GitHub repository
(https://github.com/umcarpentries/intro-curriculum-r) to facilitate collaborative work and
peer review using issues, branches, and pull requests. Under this model, a team member
created or edited content in a new branch to resolve an issue, then created a pull request
and asked for review from another team member, who finally merged the changes into the
default branch. GitHub pages automatically uses the default branch to build a website that
allows us to host the polished curriculum (https://umcarpentries.org/intro-curriculum-r/).
Our collaborative model ensured that at least two pairs of eyes viewed any changes before
they could be included in the curriculum. This strategy helped us reduce mistakes and create
better quality content.

Following the sprint, contributors finalized edits and continued to review each others’ pull
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Figure 4.4: Curriculum overview

requests to complete the alpha version of our curriculum. Next, we hosted a workshop for
instructors to pilot the curriculum. We collected feedback from the learners and instructors at
the end of the pilot workshop and then held a smaller half-day sprint to revise the curriculum
based on the feedback. Currently, our community members are continuously able to create
issues, make edits, and review pull requests to keep refining the curriculum for future use.
We are planning more workshops with new instructors who were not involved in the original
curriculum development to gather their feedback.

4.3.4 Curriculum

Our curriculum is tailored to people with no prior coding experience who want to learn how to
use R programming for data analysis, visualization and the reporting of results (Figure 4.4).
Not only do we aim to teach our learners the basics of performing empirical data analysis,
we also seek to provide a rigorous framework for adhering to reproducible research principles
that enable researchers to easily share their empirical work with others.

4.3.4.1 Learning Objectives

The key learning objectives for our curriculum are:

1. Create clear and informative data visualizations in R, starting with messy data.
2. Perform version control using the Unix shell and git.
3. Create reproducible reports using R Markdown.
4. Share code with others on GitHub.

We believe these skills provide learners with a solid foundation from which they can teach
themselves any additional coding skills for future use.
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4.3.4.2 Course Content

Our curriculum consists of nine modules that cover software setup, data analysis and visu-
alization in R, version control, sharing code, and writing reproducible reports (see below for
more details). The R programming lessons take a “tidyverse first” approach [127] to effec-
tively and efficiently teach learners powerful tools for plotting and data analysis. We also set
an overall goal for the workshop to make the content substantively interesting and relatable
to a wide audience regardless of their original academic discipline or professional practice.
Specifically, we task our learners with producing a fictitious report to the United Nations
that examines the relationship between gross domestic product (GDP), life expectancy, and
CO2 emissions. The nine curriculum modules are:

0. Setup
1. Welcome
2. R for plotting (uses the tidyverse R packages [71])
3. The Unix shell
4. Git and GitHub
5. R for data analysis (uses the tidyverse R packages [71])
6. Writing reports in R Markdown (uses the rmarkdown R package [72])
7. Group practice exercises
8. Where to go from here

Each lesson builds on the previous ones. The Unix shell, git, and GitHub are introduced
using the files generated in the R for plotting lesson. The lesson content for subsequent
modules is then intermittently committed and pushed to GitHub. The ‘Writing reports in R
Markdown’ lesson combines all of the skills learned previously to produce a report that one
could share with the United Nations. Next, learners put everything they have learned into
practice by forming small groups and working on practice problems that cover the entire
course content (“Integrating it all together: Paired exercise”). The workshop completes
with a short module recapping everything that the curriculum covered as well as offering
suggestions on how learners can continue to get help and keep learning once the workshop
ends.

4.3.4.3 Instructional Design

Our modules and teaching suggestions are developed in the style of Software Carpentry:

1. Each module contains learning objectives at the beginning of each lesson and a sum-
mary of key points at the end.
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2. The five core modules (2 to 6) are designed to be taught via live coding of the content
to learners. This is a central feature of Carpentries lessons, and we believe it is a great
way to learn how to program. It requires learners to follow along and encounter errors
that they must debug along the way, fostering additional questions about the course
content. It also leads to instructors making mistakes and then demonstrating how to
deal with them in an ad hoc and iterative manner.

3. We incorporate formative assessments in the form of short practice exercises through-
out each lesson such that learners can practice what they have learned, while instructors
can gauge learner understanding of the material.

4. We use the “sticky note” system for formative assessment, where learners indicate their
progress on exercises and request help by using different colored sticky notes [126, 128].
At virtual workshops, we use Zoom reaction icons as virtual sticky notes, with the red
X reaction to ask for help and the green checkmark to indicate that an exercise was
successfully completed.

5. We have several helpers attend each workshop to address learner questions and tech-
nical issues.

We also incorporated a few additional key components into the curriculum:

1. Each lesson built off of previous lessons, with the goal of creating a final report that
can be shared with others.

2. We structured the curriculum such that it could be taught through an in-person or
virtual workshop. Virtual workshops are sometimes necessary, as during the COVID-
19 pandemic, but are also useful to allow people from a variety of geographic locations
to instruct and attend.

3. We not only required learners to install all software before the workshop (as The Car-
pentries also requires), but also asked them to run an example script that tests whether
everything is installed correctly. To attend the workshop, learners were required to
send screenshots of the script output to the workshop lead in advance. We withheld
the login details for the workshop until we received the screenshot. This ensured that
any installation issues could be addressed before the workshop began.

4. An extensive small group practice module towards the end of the workshop allowed
learners to more independently practice the skills they have learned.

5. The workshop concluded with a recap of what was covered and resources available for
learners to continue learning and getting help as their skills develop.
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Figure 4.5: Pre- and post-workshop survey results

4.3.4.4 Pilot Workshop

We piloted our curriculum during a virtual two-day Software Carpentry workshop. In line
with The Carpentries recommendations [129], we had four instructors and six helpers at the
workshop to assist with learner questions and technical issues. We had thirty-nine learners
of various skill levels from several different countries, all of whom provided very positive
reviews of the workshop. To assess the effectiveness of the workshop, learners were asked to
complete a pre- and post-workshop survey administered by the Carpentries. By the end of
the workshop, learners on average felt more confident writing programs, using programming
to work with data, overcoming problems while programming, and searching for answers to
technical questions online (n = 14 survey respondents; see Figure 4.5). All attendees who
filled out the post-workshop survey (n = 19) would recommend the workshop to others.

Virtual Workshop Reflection We credit the success of our first virtual workshop in
large part due to the curriculum structure and content, as well as the instructors and helpers
involved. However, we also believe that the following helped make the workshop as smooth
as possible:

1. We suggested that learners have Zoom and RStudio (or the Unix shell) open side-by-
side on their computer to minimize toggling between different windows [130].

2. We used Slack for communication among instructors and helpers, as well as between
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helpers and learners. Learners asked questions in a group Slack channel where helpers
could respond. This allowed us to address the vast majority of learner questions and
bugs quickly, clearly, and efficiently without disrupting the lesson or moving the learner
to a Zoom breakout room. Furthermore, Slack worked much better than the Zoom chat
as questions could be answered in threads, were preserved and visible to all learners
regardless of whether they were connected to Zoom at the time, and didn’t get lost as
easily.

3. Whenever a learner needed more help than was possible on Slack, a helper and the
learner entered a Zoom breakout room together to troubleshoot. However, we tried to
minimize this option as much as possible to prevent the learner from missing content
covered in the main room.
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4.4 mikropml: User-Friendly R Package for Super-
vised Machine Learning Pipelines

This paper was originally published in 2021 in the Journal of Open Source Software with the
following co-authors: Begüm D. Topçuoğlu*, Zena Lapp*, Kelly L. Sovacool*, Evan Snitkin,
Jenna Wiens, and Patrick D. Schloss [104].

*Indicates co-first author

4.4.1 Summary

Machine learning (ML) for classification and prediction based on a set of features is used to
make decisions in healthcare, economics, criminal justice and more. However, implement-
ing an ML pipeline including preprocessing, model selection, and evaluation can be time-
consuming, confusing, and difficult. Here, we present mikropml (pronounced “meek-ROPE
em el”), an easy-to-use R package that implements ML pipelines using regression, support
vector machines, decision trees, random forest, or gradient-boosted trees. The package is
available on GitHub, CRAN, and conda.

4.4.2 Statement of need

Most applications of machine learning (ML) require reproducible steps for data pre-
processing, cross-validation, testing, model evaluation, and often interpretation of why the
model makes particular predictions. Performing these steps is important, as failure to im-
plement them can result in incorrect and misleading results [131, 34].
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Supervised ML is widely used to recognize patterns in large datasets and to make predic-
tions about outcomes of interest. Several packages including caret [132] and tidymodels
[133] in R, scikitlearn [134] in Python, and the H2O autoML platform [135] allow scientists
to train ML models with a variety of algorithms. While these packages provide the tools
necessary for each ML step, they do not implement a complete ML pipeline according to
good practices in the literature. This makes it difficult for practitioners new to ML to easily
begin to perform ML analyses.

To enable a broader range of researchers to apply ML to their problem domains, we
created mikropml, an easy-to-use R package [67] that implements the ML pipeline created
by Topçuoğlu et al. [32] in a single function that returns a trained model, model performance
metrics and feature importance. mikropml leverages the caret package to support several
ML algorithms: linear regression, logistic regression, support vector machines with a radial
basis kernel, decision trees, random forest, and gradient boosted trees. It incorporates good
practices in ML training, testing, and model evaluation [32, 131]. Furthermore, it provides
data preprocessing steps based on the FIDDLE (FlexIble Data-Driven pipeLinE) framework
outlined in Tang et al. [136] and post-training permutation importance steps to estimate
the importance of each feature in the models trained [137, 138].

mikropml can be used as a starting point in the application of ML to datasets from many
different fields. It has already been applied to microbiome data to categorize patients with
colorectal cancer [32], to identify differences in genomic and clinical features associated with
bacterial infections [139], and to predict gender-based biases in academic publishing [140].

4.4.3 mikropml package

The mikropml package includes functionality to preprocess the data, train ML models, eval-
uate model performance, and quantify feature importance (Figure 4.6). We also provide
vignettes and an example Snakemake workflow [66] to showcase how to run an ideal ML
pipeline with multiple different train/test data splits. The results can be visualized using
helper functions that use ggplot2 [141].

While mikropml allows users to get started quickly and facilitates reproducibility, it is not
a replacement for understanding the ML workflow which is still necessary when interpreting
results [142]. To facilitate understanding and enable one to tailor the code to their appli-
cation, we have heavily commented the code and have provided supporting documentation
which can be read online.
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4.4.3.1 Preprocessing data

We provide the function preprocess_data() to preprocess features using several different
functions from the caret package. preprocess_data() takes continuous and categorical
data, re-factors categorical data into binary features, and provides options to normalize con-
tinuous data, remove features with near-zero variance, and keep only one instance of perfectly
correlated features. We set the default options based on those implemented in FIDDLE [136].
More details on how to use preprocess_data() can be found in the accompanying vignette.

4.4.3.2 Running ML

The main function in mikropml, run_ml(), minimally takes in the model choice and a data
frame with an outcome column and feature columns. For model choice, mikropml currently
supports logistic and linear regression [glmnet: 143], support vector machines with a radial
basis kernel [kernlab: 144], decision trees [rpart: 145], random forest [randomForest: 146],
and gradient-boosted trees [xgboost: 147]. run_ml() randomly splits the data into train
and test sets while maintaining the distribution of the outcomes found in the full dataset.
It also provides the option to split the data into train and test sets based on categorical
variables (e.g. batch, geographic location, etc.). mikropml uses the caret package [132] to
train and evaluate the models, and optionally quantifies feature importance. The output
includes the best model built based on tuning hyperparameters in an internal and repeated
cross-validation step, model evaluation metrics, and optional feature importances. Feature
importances are calculated using a permutation test, which breaks the relationship between
the feature and the true outcome in the test data, and measures the change in model per-
formance. This provides an intuitive metric of how individual features influence model
performance and is comparable across model types, which is particularly useful for model
interpretation [32]. Our introductory vignette contains a comprehensive tutorial on how to
use run_ml().

4.4.3.3 Ideal workflow for running mikropml with many different train/test
splits

To investigate the variation in model performance depending on the train and test set used
[32, 139], we provide examples of how to run_ml() many times with different train/test
splits and how to get summary information about model performance on a local computer
or on a high-performance computing cluster using a Snakemake workflow.
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Figure 4.6: The mikropml pipeline

4.4.3.4 Tuning & visualization

One particularly important aspect of ML is hyperparameter tuning. We provide a reasonable
range of default hyperparameters for each model type. However practitioners should explore
whether that range is appropriate for their data, or if they should customize the hyperpa-
rameter range. Therefore, we provide a function plot_hp_performance() to plot the cross-
validation performance metric of a single model or models built using different train/test
splits. This helps evaluate if the hyperparameter range is being searched exhaustively and
allows the user to pick the ideal set. We also provide summary plots of test performance met-
rics for the many train/test splits with different models using plot_model_performance().
Examples are described in the accompanying vignette on hyperparameter tuning.

4.4.3.5 Dependencies

mikropml is written in R [67] and depends on several packages: dplyr [148], rlang [149] and
caret [132]. The ML algorithms supported by mikropml require: glmnet [143], e1071 [150],
and MLmetrics [151] for logistic regression, rpart2 [145] for decision trees, randomForest
[146] for random forest, xgboost [147] for xgboost, and kernlab [144] for support vector
machines. We also allow for parallelization of cross-validation and other steps using the
foreach, doFuture, future.apply, and future packages [152]. Finally, we use ggplot2 for

60

http://www.schlosslab.org/mikropml/articles/tuning.html


plotting [141].
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CHAPTER 5

Discussion

5.1 Major contributions
This dissertation introduces two new tools that improve ML capabilities for microbiome
research and beyond, applies ML with microbiome data to CDI severity prediction, and
introduces two new educational resources that teach coding for data science to young au-
diences and scientists. For all of the analyses described in this dissertation, the complete
software workflows and dependencies required to reproduce the results are publicly available
with open source licenses so that anyone can reproduce, replicate, or build upon our work.
The impact of this work spans microbial ecology, gut microbiome research, applied machine
learning, and data science education.

5.1.1 Novel method for reference-based OTU clustering

OptiFit is a novel OTU clustering method that enables high quality OTUs for ML workflows
and other applications where consistent OTUs are required. Prior to the development of
OptiFit, the only option for researchers who wanted to deploy OTU-based ML models was
to cluster both the training set and external validation sets to the same database using
a closed-reference clustering method. Existing tools for reference-based clustering against
databases produce lower quality OTUs than de novo clustering with OptiClust. However, de
novo clustering results in slightly different OTU assignments when adding new sequences,
thus models trained on one dataset could not be deployed on new data due to incompatible
features. Now with OptiFit, an initial dataset can be clustered de novo with OptiClust and
then used to train a model, then new sequences from an external validation set can be fit
to the OTUs from the training data prior to deploying the model on the new dataset. A
follow-up paper demonstrated the suitability of OptiFit for this very task on a colorectal
cancer dataset to distinguish patients with screen-relevant neoplasias from normal controls
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[48]. OptiFit opens a new door for microbial ecologists to deploy ML models using higher
quality OTUs than were possible before.

5.1.2 Microbiome models for prediction of severe CDI outcomes

Prior studies to date have trained models to predict severe CDI outcomes using routine
clinical data, selected serum biomarkers, curated variables from EHR data, or entire EHRs.
However, none have focused on using the initial taxonomic composition of the gut microbiome
to predict CDI severity, despite ample evidence for a link between dysbiosis and C. difficile
colonization, infection, and recurrence. We trained models on OTU relative abundances
collected on the day of CDI diagnosis to predict four different definitions of severity. Models
trained to predict the pragmatic severity definition performed best, as this definition uses as
much data as possible while also using physicians’ determinations of whether severe outcomes
were CDI-attributable when available. While these models did not outperform prior EHR-
based models extracted two days after diagnosis, the pragmatic severity models matched
the performance of EHR-based models from the day of diagnosis. These results provide an
initial exploration of the utility of OTU-based models for predicting CDI severity, and they
may become more clinically relevant in the future as new evidence emerges of efficacious
treatments for preventing severity.

5.1.3 Educational resources

In Chapter 4.2, we introduced a new curriculum to teach introductory Python for data science
via live-coding or a flipped classroom format. We deployed the curriculum for in-person and
virtual Girls Who Code clubs during a three year period with high school students as the
audience. The curriculum takes students from having no knowledge of programming to
being able to analyze a real-world dataset and present their findings to the group. In a post-
survey, students overwhelmingly reported that they improved their Python programming
skills, problem solving and critical thinking, collaboration with others, and self-confidence.
Not only were the students we taught positively impacted; our curriculum is free and available
with an open source license so any other educators can use our curriculum or modify it for
their own needs. This curriculum is continually improved upon and is still in use for the
chapter of Girls Who Code at the University of Michigan Department of Computational
Medicine and Bioinformatics.

In Chapter 4.3, we introduced a new curriculum to teach coding for reproducible research
practices to scientists and other researchers in an academic setting. The Carpentries materi-
als that inspired us taught three topics in a disparate manner: introductory R programming,
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the Unix shell, and version control with git and GitHub. Our curriculum covers these topics
in an integrated manner so that learners understand how they are used together in practice.
We piloted the curriculum in a virtual workshop and assessed our work with a post-workshop
survey. On average, learners reported that they felt more confident writing programs, using
programming to work with data, overcoming problems while programming, and searching
for answers to technical questions online. This curriculum is still in use today for Carpentries
workshops at the University of Michigan and is freely available with an open source license
for anyone to use and modify.

5.1.4 Software

In Chapter 4.4, we introduced a tool that integrates current best practices for ML in a user-
friendly R package. Our goal was to enable researchers who are novices in ML to train and
evaluate models with guard rails to prevent common pitfalls, while allowing experienced users
to tailor the package for advanced needs. At the time of this writing, mikropml has been
downloaded 13,471 times from the Comprehensive R Archive Network and 24,727 times from
the Anaconda package manager, suggesting a healthy user base. The reach of mikropml has
expanded outside of our immediate scientific network and into fields spanning gut microbiome
research, microbial ecology, public health, and environmental research. Rather than write
code intended for one-time-use-only to conduct the ML analyses we routinely perform, we
chose to bundle our methods into a package for others within and outside our lab to reuse for
their own research. As a result, our efforts have contributed directly to the greater scientific
endeavor, with 18 citations to date of the mikropml publication.

In addition to mikropml, other software tools were developed while conducting the re-
search described in this dissertation. These include: schtools, an R package for processing
output from the mothur program and miscellaneous functions for microbiome research [109];
the mikropml snakemake workflow, a template for building reusable and scalable machine
learning pipelines with mikropml for use in high performance computing environments [105],
and the mothur snakemake workflow, a template implementing the mothur MiSeq SOP for
processing 16S rRNA gene amplicon sequence data and authoring reproducible scientific
manuscripts [153]. While we have not published any stand-alone papers to describe these
tools, they have been used within the Schloss Lab for several manuscripts-in-process as well
as published studies [48, 154].
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5.2 Future work
Below, we discuss key areas of improvement and propose ideas to build on the work described
in Chapters 2 through 4.

5.2.1 Integrate microbiota with clinical factors for improved CDI
severity prediction

Our OTU-based models described in Chapter 3 were trained on a different dataset as the
EHR-based models we compared them to. Since the different datasets have different propor-
tions of severe cases, precision and AUPRC are not directly comparable. While AUROC has
the same baseline regardless of the dataset and is thus always directly comparable, it is not
as useful for rare outcomes because the model may identify many true negatives but few true
positives and yet report a high AUROC. A more salient comparison would train models on
the same cohort of patients using either OTUs, EHRs, or both in order to determine which
approach leads to the best performance in terms of AUPRC. However, to demonstrate clini-
cal value, it is not enough to simply show that one modeling approach outperforms another.
How a model might improve clinical practice if it were deployed must be considered. This
especially relates to the treatment options available along with their potential risks, which
influences which performance metrics are most meaningful. A large increase in AUROC,
AUPRC, or other metrics may or may not translate to a large increase in benefit to patients.
In situations where predicting a severe case may lead clinicians to choose a treatment option
that has an established record of safety, such as oral fidaxomicin instead of vancomycin, some
false positives are tolerable to a certain extent and a lower precision is acceptable (although
still better than a no-skill model). On the other hand, if new evidence were to emerge of a
treatment preventing severe outcomes but with substantial risk of negative side effects, fewer
false positives and a higher precision would be required. Collaborating with clinicians in the
infectious dieases specialty is paramount to discuss the performance requried depending on
the intervention at hand. The ultimate goal of CDI severity prediction models is to help
clinicians identify early on which patients are at risk of experiencing a severe outcome so
they can tailor treatments to prevent the outcome from ever occurring, but care must be
taken to ensure no harm is inflicted on patients who never would have experienced a severe
outcome, and to ensure that clinicians will actually find the model useful to support their
decision-making.
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5.2.1.1 Decision curve analysis

For the analysis of potential clinical value, we reported the precision at the 95th percentile of
risk, which is the decision threshold where 5% of cases are predicted to be positive and would
thus undergo a different treatment in order to prevent the adverse outcome from occurring.
Choosing this threshold allowed for comparison to the previously published EHR models
which reported precision at that threshold. However, rather than evaluating performance
at a single threshold, we could extend this across a range of thresholds. Decision curve
analysis would explore how the confusion matrix varies across a range of thresholds for
models of interest [155]. We could then compare the net benefit, NNS, or other metrics
for different modeling approaches, as their relative performance may vary across decision
thresholds. A model based on only OTUs may perform optimally at a different threshold than
a model based on only EHRs, and different thresholds could be selected for model deployment
depending on the importance of recall versus precision for the alternative treatment being
considered by clinicians.

5.2.1.2 Cost-benefit analysis

The costs of model training, deployment, and treatment are significant factors that influence
the practicality of deploying models in clinical settings. If a model has good discriminative
performance, it may never be used if it is expensive to collect the data for deployment.
Similarly, an inexpensive model may never be used if the alternative treatment it would be
paired with is too expensive. We did not consider these costs when evaluating the poten-
tial clinical value, although we reported the NNS and NNB when paired with the NNT of
fidaxomicin so the work could be extended to consider costs as well as other treatment op-
tions. (For example, bezlotoxumab has also been shown to prevent recurrent CDI in humans
as well as systemic organ damage in mice [156, 157]. However, it is used as an adjuvant
therapy and as such it does not replace antibiotics for CDI treatment.) A predictive model
paired with a treatment may be cost-effective if the decrease in costs for averting severe out-
comes outweighs the increase in treatment costs for cases predicted positive plus the costs
of deployment, or if any increase in cost is deemed worth the benefit [158]. A limitation
of cost-benefit analysis techniques is that the most often used metric of benefit (Quality-
Adjusted Life-Years) is controversial, as it is prone to systematic bias and devalues health
gains for patients with disabilities [158, 159, 160, 161]. Although existing methodologies
for cost-benefit analyses are imperfect, performing a thorough cost-benefit analysis would
provide more information about whether deploying CDI severity prediction models could be
worth the estimated benefits gained.
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5.2.2 Beyond taxonomic composition

Efforts to find consistent changes in taxonomic composition of microbiomes between normal
and dysbiotic states have found mixed success, in part because interpersonal variability in
taxonomic composition sometimes exceeds the variability between disease states [162, 163].
ML models for diagnosing colorectal cancer or predicting severe CDI perform moderately
well, but may not perform well enough to justify clinical deployment. Variability of mi-
crobiome composition between individuals with the same disease status may be explained
by functional redundancy, where different microbial species carry out the same functions
and thus can replace each other with little effect on the overall function of the community
[164]. Extending analyses of taxonomic composition to also include the functional compo-
sition of the microbiome may shed more light on how the microbiome changes in disease
states. Sequencing whole metagenomes to identify the genes present and annotate known
gene functions is commonly used to build a profile of functional potential of the microbiome.
Functional potential could be paired with meta-transcriptomics or untargeted mass spec-
trometry to validate the gene products that are active in a community, thus painting a more
precise picture of active microbial functions than with metagenomics alone. Incorporating
the known functional potential of the microbiome from metagenomic data may help account
for functional redundancy and improve the performance of OTU-based models in classifying
CRC, predicting CDI severity, or other microbiome modeling problems. These insights could
inform the design of future experiments to determine the mechanisms of dysbiosis or improve
performance of ML models for clinical decision making.

5.2.3 Continued maintenance of software tools and educational
resources

It is notoriously difficult to fund the development and maintenance of scientific software
and educational resources. Nevertheless, we initially developed and continue to maintain
the open source contributions described in Chapter 4 with our discretionary time because
we believe they are valuable to the scientific community and society at large. Developing
software and educational resources is never a one-and-done task; they must be maintained
as users discover and report bugs, new methods are discovered, and the preferences of the
community change over time. While no tool is designed to be used forever (despite the
best intentions of fans of certain programming languages), neglecting to maintain a tool
will unnecessarily hasten its obsolescence. We would much prefer to honor the time and
effort spent during initial development, as well as that of end-users who adopt our tools
and resources, by continuing to maintain them. However, few funding mechanisms through
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traditional grant-making agencies exist to maintain existing resources, as most value new
discoveries and ideas [9]. We are hopeful that the landscape is changing for the better with
the announcement of programs such as the Better Software for Science initiative by the
Alfred P. Sloan Foundation [165]. Funding mechanisms like these will enable scientists and
researchers to not only create new tools and resources but also maintain them over time, so
that the time, effort, and other resources expended in creating and adopting them are used
efficiently.

5.3 Conclusions
In this work, we introduced a novel method for OTU clustering that improves the ability of
researchers to apply ML to microbiome research, applied ML to predict the severity of CDI
infections from the composition of the gut microbiome, and introduced three new resources
that empower data scientists from a broad range of backgrounds to go from coding novices
to ML practitioners. This dissertation advances bioinformatics for microbiome research from
the start of the data analysis pipeline through applying machine learning to biological and
clinical problems, and ultimately toward enabling other scientists to reproduce, replicate,
and build upon our work.
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