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ABSTRACT

Deep reinforcement learning (Deep RL) has recently emerged as a powerful method for devel-
oping AI that can learn to select actions in the world. One key question in RL is how an agent
should learn knowledge that can be transferred to new situations. In this dissertation, I hypothe-
size that one key to transferring knowledge is the ability to discover structured representations that
permit relational reasoning over basic units describing the agent’s experience. Recent research in
computer vision and natural language processing has shown that structured neural networks with
sparse and dynamic information flow enable the discovery of such structured representations, lead-
ing to faster learning and improved generalization. The thesis of this dissertation is that we can
equip reinforcement learning agents with the ability to discover and exploit structured represen-
tations by incorporating structured neural networks with dynamic information flow into the core
components of an RL learner. By equipping RL agents with the ability to discover structured rep-
resentations, we can reduce the amount of experience the agent needs for learning and improve its
ability to transfer behaviors across situations. To support this argument, I present the following
evidence.

First, I incorporate structured neural networks into an RL agent’s transition function and show
that this enables the discovery of object representations that capture an object’s category, proper-
ties, and attributes, while achieving performance comparable to an agent with access to ground-
truth object information. Afterward, I incorporate structured neural networks into an RL agent’s
state function and demonstrate that this enables discovering object primitives that facilitate gen-
eralization across three diverse object-centric environments. Next, I incorporate structured neural
networks into an agent’s value function and show that this enables the discovery of features that
enable generalization to combinations of tasks. Finally, I incorporate structured neural networks
into an agent’s policy and provide a method that transfers to new tasks with hundreds of millions
fewer samples compared to other transfer learning baselines. Taken together, this thesis demon-
strates that incorporating structured neural networks into the core components of an RL learner
can enable structured representation learning that both reduces the amount of experience an agent
requires for learning and improves its ability to transfer behaviors across situations.

xiv



CHAPTER 1

Introduction

Reinforcement Learning (RL) aims to develop autonomous systems that can leverage experience to
learn behaviors for acting optimally in the world. One of the key challenges for RL is how an agent
can gain knowledge about the world which permits transfer across situations. Once a household
robot has learned to slice a fruit, say an apple, learning to slice other fruits (e.g. oranges and pears)
should become easier. In this dissertation, I hypothesize that one key to transferring knowledge is the
ability to discover structured representations that permit relational reasoning over discovered basic
units that describe the agent’s experience. Further, I hypothesize that defining the core components

Wash
Possible Tasks:

Fry

On table Is dirty On 
counter

Basic units that 
describe experience

Dirty + on tableRelational function 
over basic units

Structured representation: 
representation that permits 

relational reasoning over more 
basic representation units

Dirty + on counter

Figure 1.1: An example of “structured representations” that an agent can discover. On the
left, we show a robot in toy kitchen environment. This robot has numerous tasks it can complete
such as washing a plate, frying eggs, and putting a pot on the stove. As it completes these tasks,
the robot may discover basic units that describe its experience such as an object being on the table,
dirty, or on the counter. If the agent can learn relational functions over these basic units, it permits
transferring knowledge across situations. For example, the function that describes the dirty plate on
the table may be re-used or inform the function that describes the dirty pot on the counter.

of a reinforcement learning agent with relational functions over basic units will both lead to RL
agents that learn more quickly and that can generalize their behaviors to novel situations. My
hypothesis is that the ability to discover basic units which can recombined can enable faster learning
and improve generalization to new settings. Returning to our example of slicing fruits, the ability to
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discover structured representations could manifest as an agent discovering representations where
objects are basic units. In such a setting, the agent might be able to transfer knowledge about slicing
fruits from an apple to an orange by transferring knowldge from the function for relating an apple to
the knife to the function for relating an orange to the knife. For example, the world model the agent
learns for how the apple will evolve after being sliced by the knife may inform the world model is
learns for how the orange will be sliced by the knife. So even if the agent’s task is to learn to slice
an orange, if it slices an apple, this may still lead to faster learning on this task.

In RL, an agent learns a behavioral policy π for producing actions that maximizes the cumulative
reward it will experience in its lifetime. In a large and complex world, individual observations
commonly do not have enough information to select actions a which maximize future reward r.
Therefore, an RL agent commonly learns a subjective “state” representation st = fs(ot, ot−1, . . . , o1)

which summarizes the agent’s experienced observations into a representation useful for selecting
actions that maximize reward. Here, o refers to observations and the subscript t refers to a time-step.
The agent’s goal is thus to

learn π(a|s) that maximizes
∞∑
t=0

rt. (1.1)

In addition to state, RL defines a few key components that an agent can also learn. First, an agent
can learn to estimate the sum of future rewards it will experience from following a particular
behavioral policy π and starting at a state s. This is the RL definition of the “value” of that state,
V π(s) = Eπ [

∑∞
t=0 γ

trt], where γ is a discount factor which prioritizes immediate rewards for
defining the value of the current state. The agent can then use this value function to select actions
which lead to states with higher value. In addition to the value function, an agent can learn a
transition function T which predicts a future state and reward given an initial state and action,
(ŝt+1, r̂t+1) = T (st, at).

Structured representations can aid each of these component in an RL agent. Structured repre-
sentations can enable a state function that is comprised of basic units which can be recombined
(for example objects or other aspects of the environment the agent commonly experiences). The
agent’s transition function can be defined with relational functions that permit re-using parameters
across components. Likewise, the agent’s value function can support recombining more basic
component-wise value functions. For example, the value of slicing an apple and an orange could be
expressed as sum of the values for slicing the individual objects. I emphasize that the structure that
an agent can discover may not necessarily be object-centric. However, objects provide familiar and
intuitive examples for thinking about how such structured representations may be helpful for RL
agents.

So how do we equip RL agents with the ability to discover structured representations? Recently,
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the field of “Deep Reinforcement Learing” or “Deep RL” has emerged which equips RL agents
with the ability to learn representations from their experience. Key to Deep RL is the use of large,
multi-layer artificial neural networks or “Deep Learning” for function approximation. With the
ability of RL to converge in the limit to an optimal behavior policy (Watkins and Dayan, 1992;
Jaakkola et al., 1993; Singh et al., 2000) and the ability of neural networks to approximate any
function (Hornik et al., 1989; Funahashi, 1989; Lu and Lu, 2020), this has enabled a powerful class
of AI systems that can learn representations and behaviors for very complex tasks from experience.
For example, RL agents have surpassed human-level performance in Atari video games (Mnih et al.,
2015), the game of Go (Schrittwieser et al., 2020), and an RL system has enabled autonomous
control over a nuclear fusion reactor (Degrave et al., 2022). However, traditional neural networks
are limited in their ability to do set-based relational reasoning. This is because each “layer” typically
produces a single vector output. If they do any set-based relational reasoning over dynamically
chosen subsets of their representations, they do so completely implicitly. In contrast, more recent
neural networks have layers that produce a set of vector outputs (He et al., 2020; Vaswani et al.,
2017). Subsets of these vectors can then be dynamically re-combined by downstream functions.

Recently, in Natural Language Processing (NLP) and Computer Vision (CV), structured neural
networks with sparse and dynamic information flow have rise to prominence. Researchers have
shown that neural networks which dynamically flow information between sparsely-connected and
repetitive internal structures can facilitate the discovery of structured representations that enable
faster learning and improved generalization. In CV, “ResNets” that employ residual blocks with
residual connections are known to discover object parts and shapes while additionally improving
generalization across visual settings (He et al., 2020; Huang et al., 2020a; Li et al., 2020). In NLP,
“Transformers” use attention “heads” that dynamically flow information and have led to impressive
generalization results (Vaswani et al., 2017; Devlin et al., 2018; Radford et al., 2018). Interestingly,
researchers have found that attention heads can discover functions for attending to adjacent words
and for tracking specific syntactic relations (Voita et al., 2019).

Thesis

We can equip reinforcement learning agents with the ability to discover structured repre-
sentations by incorporating structured neural networks with dynamic information flow into
the core components of an RL learner. Equipping RL agents with the ability to discover
structured representations can reduce the amount of experience the agent needs for learning
and improve its ability to transfer behaviors across situations.
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Figure 1.2: Left: a typical Deep RL agent which fixed information flow. Right: a schematic of
future Deep RL agent which incorporate structured neural networks with dynamic information into
their core components. I hypothesize this will enable an RL agent to discover and exploit structured
representations for faster learning and improved generalization.

1.1 Contributions

Below, I summarize how each chapter of this dissertation contributes to my thesis that structured
neural networks enable the discovery of structured representations that reduce learning time and
improve generalization. In §1.1.1, I study structured neural networks within the context of learning
a structured transition function, in §1.1.2 within the context of learning structured state function, in
§1.1.3 within the context of learning structured value function, and in §1.1.4 within the context of
learning structured policy.

1.1.1 Reinforcement Learning for Sparse-Reward Object-Interaction Tasks
in First-person Simulated 3D Environments

In this chapter, we consider the problem of learning sparse-reward object-interaction tasks in a
photorealistic 3D environment. Learning sparse-reward object-interaction tasks in a 3D environment
efficiently requires that an agent learn environment abstractions which capture object-pertinent
information such as an object’s category (is it a toaster?), its properties (is it on?), and object-
relations (is something inside of it?) from a sparse-reward signal. Object-interaction tasks are
particularly challenging because the size of the state-space grows exponentially with the number
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of objects, object-states, and object-relationships that exist. In order to study this problem, we
adopt the virtual home-environment AI2Thor (Kolve et al., 2017) because no prior work had yet
learned sparse-reward object-interaction tasks without expert demonstrations or shaped rewards in
this domain.

We propose the Learning Object Attention & Dynamics (or LOAD) agent. LOAD is composed
of a base object-centric relational policy that leverages inter-object attention to incorporate object-
relationships when estimating object-interaction action-values. Without ground-truth information to
identify object categories, properties, or relationships, LOAD discovers useful object-representations
by learning a structured object-centric transition model in an (initially random) embedding space.
LOAD learns to structure the space by treating the learning problem as a classification problem,
where random embeddings are treated as incorrect labels. We compare our method to other methods
for learning object representations. We find that our method best closes the performance gap
with an oracle that has access to ground-truth object-information. We also perform a quantitative
analysis indicating that our method best learns representations that capture the ground-truth object
information. This work was published in IJCAI, 2021 (Carvalho et al., 2021b).

1.1.2 Feature-Attending Recurrent Modules for Generalization in Reinforce-
ment Learning

While LOAD enabled discovering object-centric abstractions that supported faster learning for
sparse-reward tasks, it relied on access to an “objectness”-detector. In this chapter, we remove this
assumption and study weak inductive biases for discovering abstractions that support generalization
in object-centric environments. We study three diverse environments: (1) one, where an agent must
remember object motions, (2) a 3D pick and place environment, and (3) a navigation environment
where the agent must navigate around object-induced obstacles.

We propose Feature Attending Recurrent Modules (FARM), a structured neural network archi-
tecture for representing state. FARM learns a state representation that is distributed across multiple
modules that each attend to spatiotemporal features with an expressive feature attention mechanism.
This enables FARM to represent diverse object-induced spatial and temporal regularities across sub-
sets of modules. We compare FARM against other methods with weak inductive biases for enabling
objects to emerge in a state representation. We find that FARM enables generalizing (a) memory to
longer combinations of object motions; (b) navigation to 3D objects in larger environments; and (c)
memory of goal information to longer tasks with more distractors. This work was published in the
ICML Workshop on Unsupervised RL, 2021 (Carvalho et al., 2021a).
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1.1.3 Composing Task Knowledge With Modular Successor Feature Approx-
imators

FARM was a structured neural network for discovering abstractions in an agent’s state representation.
In this chapter, we develop a structured neural network for the agent’s value function. Specifically,
we investigate whether the abstractions learned by FARM can form prediction targets for the
generalization “successor features” framework. Successor features are a type of value function that
estimate how much features known as “cumulants” will be experienced by an agent when following
a particular behavioral policy. One key challenge to using the successor features framework for
generalization is that it commonly requires carefully designed cumulants and their discovery is
currently an open problem. Here, we hypothesize that a simple inductive bias for learning structured
cumulants can enable an agent to learn abstractions that capture regularities across multiple tasks.

We present Modular Successor Feature Approximators (MSFA) and we show that we can
improve reward-driven discovery of cumulants through an architectural bias alone. MSFA learns a
set of prediction modules that are responsible for discovering state features (i.e. cumulants) and
predictions (i.e. successor features) for different aspects of the environment. We compare against
using an unstructured architecture for discovering cumulants and against using a reward-based
value function architecture. We first show that MSFA is able to recover the generalization results of
prior work that has leveraged oracle cumulants. Afterwards, we show that MSFA enables cumulant
discovery and faster learning on a more complex suite of longer horizon entity-interaction tasks.
This work was published in ICLR, 2023 (Carvalho et al., 2023a).

1.1.4 Discovering Representations for Transfer with Successor Features and
the Deep Option Keyboard

MSFA was able to discover cumulants that enabled transfer; however, MSFA relies on hand-
designed task encodings and we only showed generalization within 2D gridworld environments. A
more general solution would discover all features necessary and support tasks in 3D environments.
Discovering all features necessary for transfer with successor features is challenging for a number
of reasons. First, tasks in 3D environments typically have long-horizons and sparse-rewards. This
makes it challenging to discover both cumulants and task encodings from the reward signal. The
horizon of tasks can then make learning successor features challenging because of high-variance in
the return estimates. These challenges can compound with additionally learning successor features
over a non-stationary return-target (the changing cumulants).

To address the issues, we present two novel methods: the Deep Option Keyboard (Deep OK) and
Categorical Successor Feature Approximators (CSFA). CSFA is an algorithm for jointly estimating
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successor features while learning the cumulants and task encodings that support them. CSFA
addresses challenges with estimating a non-stationary return by estimating SFs with a variant of
the categorical two-hot representation introduced by MuZero (Schrittwieser et al., 2020). CSFA
discretizes the space of cumulant-return values into bins and learns a probability mass function
(pmf) over them. Modelling cumulant-returns with a pmf is more robust to outliers and can better
accomodate a shifting magnitude. At transfer time, we leverage Deep OK to adaptively combine
subsets of known behaviors using the machinery of successor features. With Deep OK and CSFA,
we achieve the first demonstration of transfer with SFs in a challenging 3D environment where all
the necessary representations are discovered. We first compare CSFA against other methods for
approximating SFs and show that only CSFA discovers representations compatible that support the
SF framework at this scale. We then compare Deep OK against transfer learning baselines and show
that it transfers most quickly to long-horizon tasks. This work is under submission (Carvalho et al.,
2023b).
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CHAPTER 2

Reinforcement Learning for Sparse-Reward
Object-Interaction Tasks in First-person Simulated

3D Environments

First-person object-interaction tasks in high-fidelity, 3D, simulated environments such as the
AI2Thor virtual home-environment pose significant sample-efficiency challenges for reinforcement
learning (RL) agents learning from sparse task rewards. To alleviate these challenges, prior work
has provided extensive supervision via a combination of reward-shaping, ground-truth object-
information, and expert demonstrations. In this work, we show that one can learn object-interaction
tasks from scratch without supervision by learning an attentive object-model as an auxiliary task
during task learning with an object-centric relational RL agent. Our key insight is that learning an
object-model that incorporates object-attention into forward prediction provides a dense learning
signal for unsupervised representation learning of both objects and their relationships. This, in
turn, enables faster policy learning for an object-centric relational RL agent. We demonstrate our
agent by introducing a set of challenging object-interaction tasks in the AI2Thor environment where
learning with our attentive object-model is key to strong performance. Specifically, we compare our
agent and relational RL agents with alternative auxiliary tasks to a relational RL agent equipped
with ground-truth object-information, and show that learning with our object-model best closes the
performance gap in terms of both learning speed and maximum success rate. Additionally, we find
that incorporating object-attention into an object-model’s forward predictions is key to learning
representations which capture object-category and object-state.

2.1 Introduction

Consider a robotic home-aid agent that learns object-interaction tasks that involve using multiple
objects together to accomplish various tasks such as chopping vegetables or heating meals. Such
tasks are important for artificial intelligence (AI) to make progress on because of their large potential
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to impact our everday world: nursing robots can serve healthcare workers in hospitals, and home-aid
robots can help busy families, the disabled, and the elderly.

Prior work on object-interaction tasks has focused on achieving strong training performance
using expert demonstrations (Zhu et al., 2017; Shridhar et al., 2019). Unfortunately, Zhu et al.
(2017) found they were unable to learn relatively simple pick and place tasks when only learning
from a sparse task-completion signal. Other work has relaxed the learning problem by relying on
domain knowledge in the form of shaped rewards or object-affordance knowledge (Jain et al., 2019;
Gordon et al., 2018).

Unfortunately, expert demonstrations and shaped rewards can be challenging to obtain for tasks
novel to an agent. Additionally, it can be tedious or impossible to obtain ground-truth information
about all novel objects an agent may encounter. Ideally, agents are capable of learning object-
interaction tasks without this information. To work towards this, we focus on the setting where none
of these are available.

Learning object-interaction tasks without expert demonstrations or shaped rewards is challenging
because selecting between object-interactions induces a branching factor that scales with the number
of visible objects, leading the agent to choose from 50-100 possible actions at a given time-step.
This leads the agent to infrequently experience a successful episode. When the agent does, task
completion typically occurs after many hundred time-steps. Consider learning to toast bread. The
agent should learn to turn on the toaster after a bread slice is placed inside, i.e. it needs to learn to
represent containment relationships (the bread is inside the toaster) and object properties (the toaster
is on or off). Without domain knowledge about objects, task-completion alone provides a weak
learning signal for learning both to represent 3D object categories, properties, and relationships.
When episodes last for hundreds of time-steps and the agent interacts with many objects, this makes
it challenging to learn about about how the agent’s object-interactions led to reward.

In this work, we find that we can achieve strong training performance on object-interaction tasks
without expert demonstrations, shaped rewards, or ground-truth object-knowledge by incorporating
inter-object attention and an object-centric model into a reinforcement learning agent.We call our
agent the Learning Object Attention & Dynamics (or LOAD) agent. LOAD is composed of a base
object-centric relational policy (Attentive Object-DQN, §2.4.1) that leverages inter-object attention
to incorporate object-relationships when estimating object-interaction action-values. Without
ground-truth information to identify object categories, properties, or relationships, LOAD learns
object-representations with a novel learning objective that frames learning an object-model as a
classification problem, where random object-embeddings are incorrect labels (Attentive Object-

Model, §2.4.2). By doing so, we provide the object-model with a dense learning signal for learning
to represent both object categories and changes in object-properties caused by different object-
interactions. Additionally, by sharing inter-object attention between the policy and the model,
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learning the model helps drive learning of inter-object attention helpful for speedening task learning.
In order to study object-interaction tasks and evaluate our agent, we adopt the virtual home-

environment AI2Thor (Kolve et al., 2017) (or Thor). Thor is an open-source environment that is
high-fidelity, 3D, partially observable, and enables object-interactions. We show that LOAD is
able to significantly reduce sample complexity in this domain where no prior work has yet learned
sparse-reward object-interaction tasks without expert demonstrations or shaped rewards.

In our main evaluation, we compare pairing Attentive Object-DQN with our Attentive Object-
Model to alternative representation learning methods, and show that learning with our object-model
best closes the performance gap to an agent supplied with ground-truth information about object
categories, properties, and relationships (§2.5.1). Through an analysis of the learned object-
representations and inter-object attention learned by each auxiliary task, we provide quantitative
evidence that our Attentive Object-Model best learns representations that capture the ground-
truth information present in our oracle (§2.5.2). We hypothesize that this is the source of our
strong performance. Afterwards, we perform a series of ablations to study the importance of object-
representations which capture object-properites and object-relations for reducing sample-complexity
(§2.5.3).

In summary, the key contributions of this work are: (1) LOAD: an RL agent that demonstrates
how to learn sparse-reward object-interaction tasks with first-persosn vision without expert demon-
strations, shaped rewards, or ground-truth object-knowledge. (2) A novel Attentive Object-Model
auxilliary task, which frames learning an object-model as a classification problem. With our anal-
ysis, we provide evidence that for our 3D, high-fidelty domain and our architecture, it is key to
learn object-representations which not only capture object-categories but also object-properties and
object-relations.

2.2 Related Work

Learning object-interaction tasks in 3D, first-person environments. Due to the large branching
factor induced by object-interactions, most work here has relied extensively on expert demonstra-
tions (Zhu et al., 2017; Shridhar et al., 2019; Xu et al., 2019) or avoided this problem by hard-coding
object-selection (Jain et al., 2019; Gordon et al., 2018). The work most closely related to ours is
Oh et al. (2017a) (in Minecraft) and Zhu et al. (2017) (in Thor). Both develop a hierarchical rein-
forcement learning agent where a meta-controller provides goal object-interactions for a low-level
controller to complete using ground-truth object-information. Both provide agents with knowledge
of all objects and both assume lower-level policies pretrained to navigate to objects and to select
interactions with a desired object. In contrast, we do not provide the agent with any ground-truth
object information; nor do we pretrain navigation to objects or selection of them.
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Object-Centric Relational RL. An intutive approach to tasks with objects is object-centric
relational RL. Most work here has used hand-designed representations of objects and their relations,
showing things like improved sample-efficiency (Xu et al., 2020), improved policy quality (Zaragoza
et al., 2010), and generalization to unseen objects (Van Hoof et al., 2015). In contrast, we seek to
learn object-representations and object-relations implicitly with our network. Most similar to our
work is Zambaldi et al. (2018)–which applies attention to the feature vector outputs of a CNN. In this
work, Attentive Object-DQN is a novel architecture extension for a setting with an object-centric
observation- and action-space. Additionally, we show that learning an object-model as an auxilliary
task can help drive learning of attention.

Learning an object-model as an auxiliary task. Most prior work here has focused on how an
object-model can be used in model-based reinforcement learning by enabling superior planning (Ye
et al., 2020; Veerapaneni et al., 2020; Watters et al., 2019). In contrast, we do not use our object-
model for planning and instead show that it can be leveraged to learn object-representation and
inter-object attention to support faster policy learning in a model-free setting. Additionally, other
work focused on domains where representation-learning only had to differntiate object-categories.
We show that our method can additionally differentiate object-properties and does so significantly
better than the object-model of Watters et al. (2019). Our attentive object-model is most similar
to the Contrastive Structured World Model (CSWM) (Kipf et al., 2019), which uses a maximum
margin contrastive learning objective (Hadsell et al., 2006) to learn an object-model. Instead, we
formulate a novel object-model contrastive objective as learning a classification problem. We note
that they applied their model towards video-prediction and not reinforcement learning.

2.3 Sparse-Reward Object-Interaction Tasks in a First-Person
Simulated 3D environment

Observations. We focus on an agent that has a 2D camera for experiencing egocentric observations
xego of the environment. Our agent also has a pretrained vision system that enables it to extract
bounding box image-patches corresponding to the visible objects in its observation Xo = {xo,i}.
Besides boxes around objects, no other information is extracted (i.e. no labels, identifiers, poses,
etc.). We assume the agent has access to its (x, y, z) location and body rotation (ϕ1, ϕ2, ϕ3) in a
global coordinate frame, xloc = (x, y, z, ϕ1, ϕ2, ϕ3).

Actions. In this work, we focus on the Thor environment. Here, the agent has 8 base object-
interactions: I = {Pickup, Put, Open, Close, Turn on, Turn off, Slice, Fill}. The agent interacts
with objects by selecting (object-image-patch, interaction) pairs a = (b, xo,c) ∈ I ×Xo, where xo,c

corresponds to the chosen image-patch. For example, the agent can turn on the stove by selecting the
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Figure 2.1: We present the steps required to complete two of our tasks. In “Toast Bread Slice”, an
agent must pickup a bread slice, bring it to the toaster, place it in the toaster, and turn the toaster on.
In order to complete the task, the agent needs to recognize the toaster across angles, and it needs to
recognize that when the bread is inside the toaster, turning the toaster on will cook the bread. In
“Place Apple on Plate & Both on Table”, agent must pickup an apple, place it on a plate, and move
the plate to a table. It must recognize that because the objects are combined, moving the plate to
the table will also move the apple. We observe that learning to use objects together such as in the
tasks above poses a representation learning challenge – and thus policy learning challenge – when
learning from only a task-completion reward.

Slice {Xi}, n ∈
[1, 3]

Make Tomato &
Lettuce Salad

Place Apple on
Plate, Both on
Table

Cook Potato on
Stove

Fill Cup with Wa-
ter

Toast Bread Slice

(A) recognize
knife across an-
gles
(B) recognize 2-4
objects

(B) recognize 3
objects
(C) use contain-
ment: plate with
tomato/lettuce
slice

(B) recognize 3
objects
(C) use contain-
ment: apple on
plate

(B) recognize 2
objects
(C) use contain-
ment: potato on
stove
(D) changing
properites: cooked
potato

(A) recognize
translucent cup
across back-
grounds
(B) recognize 2
objects
(C) use contain-
ment: cup in sink
(D) changing
properites: filled
cup

(A) recognize
toaster across an-
gles
(B) recognize 2
objects
(C) use contain-
ment: bread inside
toaster
(D) changing
properites: cooked
bread

Table 2.1: Description of challenges associated with the tasks we study. See Figure 2.1 for example
panels of 2 tasks.

image-patch containing the stove-knob and the Turn on interaction (see Figure 2.2 for a diagram).
Each action is available at every time-step and can be applied to all objects (i.e. no affordance
information is given/used). Interactions occur over one time-step, though their effect may occur
over multiple. For the example above, when the agent applies “Turn on” to the stove knob, food on
the stove will take several time-steps to heat.

In addition to object-interactions, the agent can select from 8 base navigation actions: AN =
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{Move ahead, Move back, Move right, Move left, Look up, Look down, Rotate right, Rotate left}.
With {Look up, Look down}, the agent can rotate its head up or down in increments of 30◦ between
angles {0◦,±30◦,±60◦}. 0◦ represents looking straight ahead. With {Rotate Left, Rotate Right},
the agent can rotate its body by {±90o}.

Tasks. We construct 8 tasks with the following 4 challenges. Challenge (A): the visual complexity
of task objects (e.g. the cup is translucent). Challenge (B): the number of objects to be interacted
with (e.g., “Slice Apple, Potato, Lettuce” requires the agent interact with 4 objects). Challenge
(C): whether object-containment must be recognized and used (e.g. toasting bread in a toaster).
Challenge (D): whether object-properties change (e.g. bread gets cooked). See Figure 2.1 for a
description of the challenges associated with each task and Figure 2.1 for example panels of 2 tasks.

Reward. We consider a single-task setting where the agent receives a terminal reward of 1 upon
task-completion.

2.4 LOAD: Learning Object Attention & Dynamics Agent

LOAD is a reinforcement learning agent composed of an object-centric relational policy, Attentive
Object-DQN, and an Attentive Object-Model. LOAD uses 2 perceptual modules. The first, f oenc,
takes in an observation x and produces object-encodings {zo,i}ni=1 for the n visible object-image-
patches Xo = {xo,i}ni=1, where zo,i ∈ Rd

o. The second, fκenc, takes in the egocentric observation
and location xκ = [xego, xloc] to produce the context for the objects zκ ∈ Rd

κ. LOAD treats state as
the union of these variables: s = {zo,i} ∪ {zκ}. Given object encodings, Attentive Object-DQN
computes action-values Q(s, a = (b, xo,i)) for interacting with an object xo,i and leverages an
attention module A to incorporate information about other objects xo,j 6=i into this computation (see
§2.4.1).

To address the representation learning challenge induced by a sparse-reward signal, object-
representations zo,i and object-attention A are trained to predict object-dynamics with an attentive
object-model (see §2.4.2). See Figure 2.2 for an overview of the full architecture.

2.4.1 Attentive Object-DQN

Attentive Object-DQN uses Q̂(s, a) to estimate the action-value function Qπ(s, a) =

Eπ[
∑∞

t=0 γ
trt|St = s, At = a], which maps state-action pairs to the expected return on starting

from that state-action pair and following policy π thereafter.
Leveraging inter-object attention during action-value estimation. In many tasks, an agent

must integrate information about multiple objects when estimating Q-values. For example, in the
“toast bread” task, the agent needs to integrate information about the toaster and the bread when
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Figure 2.2: Full architecture and processing pipeline of LOAD. A scene is broken down into
object-image-patches {xo,j} (e.g. of a pot, potato, and stove knob). The scene image is combined
with the agent’s location to define the context of the objects, xκ. The objects {xo,j} and their context
xκ are processed by different encoding branches and then recombined by an attention module A that
selects relevant objects for computing Q-value estimates. Here, A might select the pot image-patch
when computing Q-values for interacting with the stove-knob image-patch. Actions are selected as
(object-image-patch, base action) pairs a = (b, xo,c). The agent then predicts the consequences of
its interactions with our attentive object-model fmodel which reuses A.

deciding to turn on the toaster. To accomplish this, we exploit the object-centric observations-space
and employ attention (Vaswani et al., 2017) to incorporate inter-object attention into Q-value
estimation.

More formally, given an object-encoding zo,i, we can use attention to select relevant objects
A(zo,i,Zo) ∈ Rdo for estimating Q(s, a = (b, xo,i)). With a matrix of object-encodings, Zo =

[zo,i]i ∈ Rn×do , we can perform this computation efficiently for each object-image-patch via:
A(zo,1,Zo)

...
A(zo,n,Zo)

 = Softmax

(
(ZoW qo)

(
ZoW k

)>
√
dk

)
Zo. (2.1)

Here, ZoW qo projects each object-encoding to a “query” space and ZoW k projects each encoding
to a “key” space, where their dot-product determines whether a key is selected for a query. The
softmax acts as a soft selection-mechanism for selecting an object-encoding in Zo.

Estimating action-values. We can incorporate attention to estimate Q-values for selecting an
interaction b ∈ I on an object xo,i as follows:

Q̂(s, a = (b, xo,i)) = fint([z
o,i, A(zo,i,Zo), zκ]) (2.2)

Importantly, this enables us to compute Q-values for a variable number of unlabeled objects. We
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can similarly incorporate attention to compute Q-values for navigation actions by replacing ZoW qo

with (W qκzκ)> in equation 2.1. We estimate Q-values for navigation actions b ∈ AN as follows:

Q̂(s, a = b) = fnav([z
κ, A(zκ,Zo)]) (2.3)

Learning. We estimate Q̂(s, a) as a Deep Q-Network (DQN) by minimizing the following
temporal difference objective:

LDQN = Est,at,rt,st+1

[
||yt − Q̂(st, at; θ)||2

]
, (2.4)

where yt = rt+γQ̂(st+1, at+1; θold) is the target Q-value, and θold is an older copy of the parameters
θ. To do so, we store trajectories containing transitions (st, at, rt, st+1) in a replay buffer that we
sample from Mnih et al. (2015). To stabilize learning, we use Double-Q-learning Van Hasselt et al.
(2016) to choose the next action: at+1 = argmaxa Q̂(st+1, a; θ).

2.4.2 Attentive Object-Dynamics Model

Consider the global set of objects {ogt,i}mi=1, where m is the number of objects in the environment.
At each time-step, each object-image-patch the agent observes corresponds to a 2D projection of
ogt,i, ρ(o

g
t,i) (or ρg,it for short) and encodes it as zg,it . Given, an object-image-patch encoding zg,it and

a performed interaction at, we can define an object-dynamics model D(Zo
t , z

g,i
t , at) which produces

the resultant encoding for ρg,it+1. We want D(Zo
t , z

g,i
t , at) to be closer to zg,it+1 than to encodings of

other object-image-patches.
Classification problem. We can formalize this by setting up a classification problem. For an

object-image-patch encoding zg,it , we define the prediction as the output of our object-dynamics
model D(Zo

t , z
g,i
t , at). We define the label as the encoding of a visible object-image-patch at

the next time-step with the highest cosine similarity to the original encoding zg,i+ = argmaxzg,jt+1

cos(zg,it , z
g,j
t+1). We can then select K random object-encodings {zok,−}Kk=1 as incorrect labels.

Rewriting D(Zo
t , z

g,i
t , at) as D, this leads to:

p(zg,it+1|Zo
t , at) =

exp(D>zg,i+ )

exp(D>zg,i+ ) +
∑

k exp(D
>zok,−)

. (2.5)

The set of indices corresponding to visible objects at time t is vt = {i : ρg,it is visible at time t}.
The set of observed object-image-patch encodings is then Zo

t = {z
o,j
t } = {z

g,i
t }i∈vt . Assuming the

probability of each object’s next state is conditionally independent given the current set of objects

15



and the action taken, we arrive at the following objective:

Lmodel = Ezt,at,zt+1

[
− log p(Zo

t+1|Zo
t , at)

]
= Ezt,at,zt+1

− ∑
i∈vt+1

log p(zg,it+1|Zo
t , at)

 . (2.6)

Our final objective becomes:
L = LDQN + βmodelLmodel. (2.7)

Leveraging inter-object attention for improved accuracy. Consider slicing an apple with a
knife. When selecting “slice” on the apple patch, learning to attend to the knife patch both enables
more accurate estimation of Q-values and higher model-prediction accuracy. We can accomplish
this by incorporating A(zg,i,Zo) into our object-model as follows:

D(Zo
t , z

g,i
t , at) = fmodel([z

g,i
t , A(z

g,i
t ,Z

o
t ), z

a
t ]). (2.8)

To learn an action encoding zat for action at, following Oh et al. (2015); Reed et al. (2014), we
employ multiplicative interactions so our learned action representation zat compactly models the
cartesian product of all base actions b and object-image-patch selections oc as

zat = W ozg,ct �W bbt, (2.9)

where W o ∈ Rda×do , W b ∈ Rda×|AI |, and � is an element-wise hadamard product. In practice,
fmodel is a small 1- or 2-layer neural network making this method compact and simple to implement.

2.5 Experiments

The primary aim of our experiments is to study how different auxilliary tasks for learning object-
representations enable sample complexity comparable to an agent with oracle object-knowledge.
We additionally study the degree to which each auxilliary task enables object-representation learning
that captures the ground-truth knowledge present in our oracle agent. We conclude this section
with ablation experiments studying the importance of different forms of object-knowledge in task
learning.

Evaluation Settings. The agent’s spawning location is randomized from 81 grid positions. The
agent receives a terminal reward of 1 if its task is completed successfully and 0 otherwise. It receives
a time-step penalty of −0.04. Episodes have a time-limit of 500 time-steps. The agent has a budget
of 500K samples to learn a task. This was the budget needed by a relational agent with oracle
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Figure 2.3: Top-panel: we present the success rate over learning
for competing auxiliary tasks. We seek a method that best enables
our Attentive Object-DQN (grey) to obtain the sample-efficiency
it would from adding Ground-Truth Object-Information (black).
We visually see that LOAD (red) is best able to learn more
quickly on tasks that require using containment-relationships
(e.g. a cup in a sink) or recognizing changing object properties
(e.g. a toaster turning on with bread in it).
Bottom-panel: by measuring the % AUC achieved by each agent
w.r.t to the agent with ground-truth information, we can measure
how close each method is to the performance of an agent with
ground-truth object-knowledge. We find LOAD (red), which
learns an attentive object-model best closes the performance gap
on 6/8. We hypothesize that this is due to our object-model’s abil-
ity to capture oracle object-information about object-categories,
object-properties, and object-relations. We show evidence for
this in Table 2.2.

Figure 2.4: Ablation of object-
properties and object-relations
from oracle. With only oracle
object-category information, the
oracle can’t learn these tasks in
our sample budget.

Figure 2.5: Ablation of inter-
object attention in policy. With-
out this, DQN cannot learn these
tasks in our sample-budget. See
§2.5.3 for details.
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object-information.
Baseline methods for comparison. In order to study the effects of competing object repre-

sentation learning methods, we compare combining Attentive Object-DQN with the Attentive
Object-Model against four baseline methods:
1. Attentive Object-DQN. This baseline has no auxiliary task and lets us study how well an agent

can learn from the sparse-reward signal alone.
2. Ground-Truth Object-Information. This baseline has no auxiliary task. Instead, we supply

the agent with 14 ground-truth features from the simulator. They roughly describe an object’s
category (is it a toaster?), its properties (e.g., is it on/off/etc.?), and relevant object-containment
(e.g., what object is this object inside of?).

3. OCN. The Object Contrastive Network (Pirk et al., 2019). This method also employs a
classification-like contrastive learning objective to cluster object-images across time-steps. How-
ever, it doesn’t use an object-model or incorporate action-information. This enables us to study
the importance of incoporating an object-model and action information.

4. COBRA Object-Model. This is the object-model employed by the COBRA RL agent (Wat-
ters et al., 2019). They also targeted improved sample-efficiency—though in a simpler, fully-
observable 2D environment with shapes that only needed differentiation by category. Their model
had no mechanism for incorporating inter-object relations into its predictions.

To enable faster learning in a sparse-reward setting, all baselines sample training batches using a
second self-imitation learning replay buffer of successful episodes (Oh et al., 2018).

2.5.1 Task Performance

Metrics. We evaluate agent performance by measuring the agent’s success rate over 5K frames every
25K frames of experience. The success rate is the proportion of episodes that the agent completes.
We compute the mean and standard error of these values across 5 seeds. To study sample-efficiency,
we compare each method to “Ground-Truth Object-Information” by computing what percent of the
Ground-Truth Object-Information mean success rate AUC each method achieved.

We present sample-efficiency bar plots for all 8 of our tasks in Figure 2.3. We found that using
containment relationships and recognizing changing object-properties (Challenges C & D in §2.3)
were most indicative of task difficulty. We only present learning curve results for 4 tasks which
match this criteria.

Performance. We find that using Ground-Truth Object-Information is able to get the highest
success rate on all tasks. Attentive Object-DQN performs below all methods besides OCN on
7/8 tasks. Surprisingly, Attentive Object-DQN outperforms OCN on 5/8 tasks. OCN doesn’t
incorporate action-information when learning to represent object-images across time-steps. We
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hypothesize that this leads it to learn degenerate object-representations that cannot discriminate
object-propertiess that change due to actions, something important for our tasks.

In terms of sample-efficiency, our Attentive Object-Model comes closest to Ground-Truth Object-
Information on 6/8 tasks. For tasks that require using objects together, such as “Fill Cup with Water”
where a cup must be used in a sink or “Toast Bread Slice” where bread must be cooked in a toaster,
our Attentive Object-Model significantly improves over the COBRA Object-Model. Interestingly,
sample-efficiency goes above 100% on 2 tasks. We suspect that this is because the object-model
provides a learning signal for inter-object attention which is not provided by oracle information.

2.5.2 Analysis of Learned Object Representations

In Table 2.2, we explore our conjecture that the key to strong task-learning performance is an agent’s
ability to capture the information present in the oracle agent. To study this, we freeze the parameters
of each encoding function, and add a linear layer to predict object-categories, object-properties, and
containment relationships using a dataset of collected object-interactions we construct. We find that
our object-model best captures the information present in the oracle agent.

Representation Learning
Method Category Object-Properties

Containment
Relationship

OCN 39.2± 8.2 66.5± 8.5 69.1± 9.0
COBRA Object-Model 79.8± 2.8 73.4± 8.9 83.1± 5.8
Attentive Object-Model 88.6± 3.5 98.6± 0.3 94.3± 0.6

Table 2.2: Performance of different unsupervised learning methods for learning object-features. We
find that our object-model best captures features present in the oracle agent, providing evidence that
its strong object-representation learning is responsible for its strong task-learning performance.

2.5.3 Ablations

Importance of object-properties & object-relations. To verify that capturing object-properties
and -relations is key, we train an agent with only oracle object-category information. We find that
this agent is not able to learn tasks that require using objects together as object-properties change in
our sample-budget (see Figure 2.4).

Importance of inter-object attention. In order to verify the utility of using attention as an
inductive bias for capturing object-relations, we ablate attention from both Attentive Object-DQN
and our Attentive Object-Model. First, we look at two variants of Attentive Object-DQN without
attention. The first is a regular DQN. In the second, we incorporate inter-object information by
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using the average of all present object-embeddings (DQN + Object Average). Neither learns our
tasks in the sample-budget (see Figure 2.5).

Additionally, we look at performance where our policy can use inter-object attention but remove
inter-object attention from our object-model. Without attention, we still get relatively good perfor-
mance with 70% success rate; however, attention in the object-model helps increase this to 90%+
(TODO: add plot).

2.6 Conclusion

We have shown that learning an attentive object-model can enable sample-efficient learning in high-
fidelity, 3D, object-interaction domains without access to expert demonstrations or ground-truth
object-information. Further, when compared to strong unsupervised learning baselines, we have
shown that our object-model best captures object-categories, object-properties, and containmennt-
relationships. We believe that LOAD is a promising step towards agents that can efficiently learn
complex object-interaction tasks.
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CHAPTER 3

Feature-Attending Recurrent Modules for
Generalization in Reinforcement Learning

To generalize in object-centric tasks, a reinforcement learning (RL) agent needs to exploit the
structure that objects induce. Prior work has either hard-coded object-centric features, used complex
object-centric generative models, or updated state using local spatial features. However, these
approaches have had limited success in enabling general RL agents. Motivated by this, we introduce
“Feature-Attending Recurrent Modules” (FARM), an architecture for learning state representations
that relies on simple, broadly applicable inductive biases for capturing spatial and temporal regulari-
ties. FARM learns a state representation that is distributed across multiple modules that each attend
to spatiotemporal features with an expressive feature attention mechanism. This enables FARM to
represent diverse object-induced spatial and temporal regularities across subsets of modules. We
hypothesize that this enables an RL agent to flexibly recombine its experiences for generalization.
We study task suites in both 2D and 3D environments and find that FARM better generalizes
compared to competing architectures that leverage attention or multiple modules.

3.1 Introduction

Objects are key to real-world tasks. For example, a self-driving car needs to represent the movements
of other cars, and a household robot needs to recognize and use kitchen items. In order to generalize
across tasks with objects, a reinforcement learning (RL) agent should capture and exploit object-
induced structure present across the tasks.

One way to capture this structure is in an agent’s state representation. Unfortunately, flexibly
capturing objects in a state representation is challenging because objects manifest in a multitude
of ways. Consider a household robot tasked with cooking. Completing the task might require
memory about objects that range in size, shape, and color (e.g. a stove vs. a tomato). Additionally,
other agents may be in motion requiring that the agent represent temporal information about
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Figure 3.1: We study three environments with different structural regularities induced by
objects. In the Ballet environment, tasks share regularities induced by object motions; in the
KeyBox environment, they share regularities induces by object configurations; and in the Place
environment, tasks share regularities induces by 3D objects. The Ballet and KeyBox environments
pose learning challenges for long-horizon memory and require generalizing to more objects. The
KeyBox and Place environments pose learning challenges in obstacle navigation and requires
generalizing to a larger map. Videos of our agent performing these tasks: https://bit.ly/3kCkAqd.

objects in order to coordinate navigation. It is unclear how to best incorporate objects into a state
representations to enable generalization.

Prior work has attempted to capture object-induced task structure by hand-designing object-
centric state features (Diuk et al., 2008; Carvalho et al., 2021b; Borsa et al., 2019; Marom and
Rosman, 2018). The “COBRA” agent (Watters et al., 2019) avoids hand-designing features by
learning an object-centric generative model. However, these methods are limited in their generality
because they rely on relatively strong inductive biases. For example, COBRA relies on environments
being fully-observable and objects having regular shapes to learn representations by predicting
object segmentations. We focus on weak inductive biases in order to maximize an architecture’s
flexibility.

Objects can be described by subsets of features over space and time. We conjecture that weak
inductive biases for capturing subsets of features over space and time may enable agents that can
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flexibly incorporate objects into state across a wide range of environments.
We propose Feature Attending Recurrent Modules (FARM), a simple but flexible architecture for

learning state representations when tasks share object-induced structural regularities. FARM learns
state representations that are distributed across multiple, smaller recurrent modules. To help
motivate this, consider word embeddings. A word embedding can represent more information than
a one-hot encoding of the same dimension because subsets of dimensions can coordinate activity
to represent different patterns of word usage. Analogously, learning multiple modules enables
FARM to coordinate subsets of modules to represent different temporal segments in an agent’s
experiences. To capture general object-induced patterns, modules select observation information to
update with by weighting observation features.

We study FARM across three diverse object-centric environments, each with their own suite
of tasks that share object-induced structural regularities. Tasks in the Ballet environment share
regularities induced by object motions; tasks in the Place environment share regularities induced by
navigating towards and around 3D objects; and tasks in the KeyBox environment share regularities
induced by object configurations. These environments present a number of challenges. First,
their state-space grows exponentially with the number of objects. The more distractor objects an
environment has, the larger the chance an object will obstruct an agent’s path. This requires learning
a policy that can navigate around distractor-based obstacles. When task objects appear in sequence,
this can require long-horizon memory of object information (e.g. of goal information). Finally,
tasks defined by language can require an agent learn a complex mapping (e.g. to object motions
and to irregular shapes in our tasks). Across these environments, we study an agent’s ability to
recombine object-oriented memory, obstacle-avoidance, and navigation to longer tasks with more
objects.

We compare against methods with weak inductive biases for enabling objects to emerge in a state
representation. Recent work has shown that spatial attention is a simple inductive bias for strong
performance on object-centric vision tasks because it enables attending to individual objects (Greff
et al., 2020; Locatello et al., 2020; Goyal et al., 2020a). Thus, we compare against recent RL agents
that leverage spatial attention for object-centric state-update functions (Goyal et al., 2020b; Mott
et al., 2019).

Summary of contributions.
1. We introduce FARM, a simple architecture for learning an agent’s state representation when an

environment has object-induced structural regularities (§3.4).

2. We show that FARM’s simple inductive biases–feature attention and multiple modules–
synergistically enable generalizing (a) memory to longer combinations of object motions (§3.5.1);
(b) navigation to 3D objects in larger environments (§3.5.2); and (c) memory of goal information
to longer tasks with more distractors (§3.5.3).
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3. We compare against spatial attention, which has been shown to enable object-centric state updates.
We find mixed benefits in for our diverse object-centric tasks, including interference with learning
multiple modules.

4. We analyze FARM’s state representations and provide evidence that object-induced regularities
are represented in patterns that are flexibly distributed across subsets of modules (§3.5.3.1).

3.2 Related work on generalization in deep RL

The key question for generalization is how to capture structure in the problem in a flexible way.
How much structure do you build in? How much do you let the agent discover? Some work takes a
data-driven approach (Tobin et al., 2017; Packer et al., 2018; Hill et al., 2020; Justesen et al., 2019).
Others have a policy that captures task structure with either hierarchical RL (Oh et al., 2017b; Zhang
et al., 2018; Sohn et al., 2018, 2021; Brooks et al., 2021) or successor features (Borsa et al., 2019;
Barreto et al., 2020). A final strand focuses on learning invariant representations (Higgins et al.,
2017; Chaplot et al., 2018; Lee et al., 2020; Zhang et al., 2021) or building in inductive biases (Mott
et al., 2019; Goyal et al., 2020b). In this work we focus on weak inductive biases for capturing
structure. Below we review approaches most closely related to ours.

Generalizing across object-centric tasks dates back at least to object-oriented MDPs (Džeroski
et al., 2001; Diuk et al., 2008) which enabled generalization by representing dynamics with logical
object attributes (Kansky et al., 2017; Marom and Rosman, 2018). Successor features have also lever-
aged objects for generalization by formulating rewards as linear with object-centric features (Borsa
et al., 2019; Barreto et al., 2020). A common thread among these directions is that they relied on
hand-designed object features. Watters et al. (2019) avoided hand-designing features by learning an
object-centric generative model (Burgess et al., 2019). However, they focused on fully-observable
top-down environments with regular shapes, which allowed them to predict future object masks.
This is incompatible with our environments. While research on object-centric models (Kabra et al.,
2021; Zoran et al., 2021) has progressed, these methods commonly add training complexity (more
objective terms, extra modules, etc.) and make stronger assumptions (e.g. on the number of objects).
We differ from this work because we focus on simple, broadly applicable inductive biases for
capturing object-induced task regularities.

Generalizing with feature attention has also been studied by Chaplot et al. (2018). They
showed that mapping language instructions to non-linear feature coefficients enabled generalizing
to tasks specified over unseen feature combinations in a 3D environment. While FARM also learns
non-linear feature coefficients, our work has two important differences. First, we develop a multi-
head version where individual feature coefficients are produced by their own recurrent modules.
This enables FARM to leverage this form of attention in settings where language instructions don’t
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indicate what to attend to (this is true in 2/3 of our tasks). Second, we are the first to show that
feature attention enables generalizing memory of object motions and of goal information to longer
tasks (Figure 3.4 and Figure 3.6, respectively).

Generalizing with top-down spatial attention. Most similar to FARM are the Attention
Augmented Agent (AAA) (Mott et al., 2019) and Recurrent Independent Mechanisms (RIMs) (Goyal
et al., 2020b). Both are recurrent architectures that leverage spatial attention to learn an object-
centric state-update function. Both showed generalization to novel distractors. The major difference
between AAA, RIMs, and FARM is that FARM attends to an observation with feature attention as
opposed to spatial attention. Our experiments indicate that spatial attention has limited utility in
updating state during reinforcement learning of tasks defined by object motions (Figure 3.4) or 3D
objects (Figure 3.5). In terms of modularity, we also show different results from RIMs who showed
that their modules “specialize”. Our experiments suggest that in FARM, a modular state instead
leads subset of modules to jointly represent regularities in an agent’s experience (§3.5.3.1).

3.3 Problem setting

We study generalization across tasks within deterministic, partially-observable, pixel-based envi-
ronments. Within an environment, a task is defined by a Partially Observable Markov decision
processes (POMDP): M = 〈S,A,O, R, T, ψ〉. S corresponds to environment states, A corre-
sponds to actions that agent can take, O corresponds to the agent’s observations, r = R(s, a) ∈ R
is the reward function, s′ = T (s, a) ∈ S is the environment transition function, and o = ψ(s) ∈ O
is an observation function that maps the underlying environment state to an RGB image.

We seek an RL agent that learns to perform tasks by finding a policy π that maximizes the
expected discounted sum of rewards it obtains starting at a state s: V (s) = E [

∑∞
t=0 γ

tR(St, At)]—
also known as the value of a state. In a POMDP, the agent doesn’t have access to the environment
state. A common strategy is to instead learn an “agent state” representation, sAt , that compresses
the full history (o1, a1, r1, . . . , at−1, ot) into a sufficient statistic suitable for selecting actions. The
agent state is commonly learned with a recursive function sAt = η(ot, at−1, rt−1, s

A
t−1).

Object-induced structural regularities. We study object-centric environments, where objects
induce structural regularities across tasks in the reward functions R, transition functions T , and
observation functions ψ. For example, consider the KeyBox environment in Figure 3.1 (c). First,
R(s, a) always specifies the goal key based on a goal box. Second, whenever the agent has to
navigate around an obstacle (see Figure 3.2, b), the agent always sees the sprite it controls move
closer to an object and then around it. This is true regardless of where in the hallway the agent
observes the obstacle because of regularities in the transition function T (s, a) and observation
function ψ(s). We want an agent that captures these regularities in its representation for state to
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enable zero-shot generalization to new tasks.

3.4 Architecture: FARM

Figure 3.2: Overview of FARM. (a) FARM learns an agent state representation that is distributed
across n recurrent modules. (b) By distributing agent state across multiple modules, FARM is able
to represent different object-centric task regularities, such as navigating around obstacles or picking
up goal keys, across subsets of modules. We hypothesize that this enables a deep RL agent to
flexibly recombine its experience for generalization. See §3.4 for details on the architecture and
§3.5.3.1 for supporting analysis.

We propose a new architecture, “Feature Attending Recurrent Modules” (FARM) for learning an
agent’s state representations when an environment has object-induced structural regularities. We
provide an overview of the architecture in Figure 3.2. Instead of representing agent state with a
single recurrent function, FARM learns a state representation that is distributed across n recurrent
functions {ηk}nk=1, which we call modules (Figure 3.2, a). Distributing state across modules allows
subsets of modules to jointly represent different regularities in the agent’s experience (Figure 3.2,
b). We hypothesize that having subsets of modules represent different regularities in the agent’s
experience enables the agent to flexibly recombine its experience for generalization.

At each time-step t, each module updates with both observation features and information from
other modules. First, the agent computes observation features with a recurrent observation encoder,
Zt = φ(ot,Zt−1). Afterward, each module creates a query vector by combining its previous module-
state with the previous action and reward, qkt−1 = [hkt−1, at−1, rt−1]. The query is used to attend to
observation features via a dynamic feature attention mechanism ukt = fkatt(Zt, q

k
t−1). The query is

also used to retrieve information from other modules with a transformer-style attention mechanism
νkt = fkshare(s

A
t−1, q

k
t−1). (We explain both attention mechanisms in more detail below). Each module

updates with both attention outputs to produce the next module-state hkt = ηk(ukt , ν
k
t , q

k
t−1). Agent

state is then defined by the combination of these module-states sAt = [h1t , . . . , h
n
t ]. We provide an
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Figure 3.3: Computations of FARM. (a) Schematic of updates. See 2nd paragraph in §3.4 for
details. (b) In order to update with features that describe both visual and temporal regularities, the
agent learns structured spatiotemporal features Zt ∈ Rm×dz that share dz spatio-temporal features
across m spatial positions. Here we show toy computations where static observations features (blue)
on the top and bottom row move to spatial positions to the right. The resultant spatio-temporal
features (red) also include temporal information about the features (here, that the features came from
leftward spatial positions). (c) fkatt computes coefficients for features and applies them uniformly
across all spatial positions. This allows the agent to attend to all spatial position that possess desired
features.

overview in Figure 3.3 (a) and summarize the computations below:

Zt = φ(ot,Zt−1) obs features (3.1)

qkt−1 = [hkt−1, at−1, rt−1] query (3.2)

ukt = fkatt(Zt, q
k
t−1) obs attention (3.3)

νkt = fkshare(s
A
t−1, q

k
t−1) share info (3.4)

hkt = ηk(ukt , ν
k
t , q

k
t−1) module update (3.5)

sAt = [h1t , . . . , h
n
t ] agent state (3.6)

We now describe each computation in more detail.
Structured spatiotemporal observation features. Our first insight is that modules can attend

to features describing an object’s motion if an agent learns observation features that describe both
spatial and temporal regularities. An agent can accomplish this by learning structured spatiotemporal
features with a recurrent observation encoder Zt = φ(xt,Zt−1) ∈ Rm×dz that share dz features
across m spatial positions1. At each spatial position, these features both describe what is there
visually along with temporal information about the recent dynamics of these features. We show
example toy computations in Figure 3.3 (b).

1One can convert height by width observation features as follows: Rh×w×dz → Rhw×dz
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Dynamic feature attention. Our second insight is that feature attention is an expressive attention
function that can focus on desired information present across all spatial positions in observation
features. An agent accomplishes this by having a module predict feature coefficients that it applies
to uniformly across all spatial positions in Zt (Perez et al., 2018; Chaplot et al., 2018). We show
example toy computations in Figure 3.3 (c). We found it useful to linearly project the features before
and after using shared parameters as in Andreas et al. (2016); Hu et al. (2018). The operations are
summarized below:

fkatt(Zt, q
k
t−1) =

(
ZtW1 � σ(W att

k qkt−1)
)
W2 (3.7)

where � denotes an element-wise product over the feature dimension and σ is a sigmoid non-
linearity. Since our features capture dynamics information, this allows a module to attend to
object motion (§3.5.1). When updating, we flatten the attention output. Flattening leads all spatial
positions to be treated uniquely and allows a module to represent aspects of the observation that
span multiple positions, such as 3D objects (§3.5.2) and spatial arrangements of objects (§3.5.3).
Since the feature-coefficients for the next time-step are produced with observation features from the
current time-step, modules can dynamically shift their attention when task-relevant events occur
(see Figure 3.7, b for an example).

Sharing information. Similar to RIMs (Goyal et al., 2020b), before updating, each module
retrieves information from other modules using transformer-style attention (Vaswani et al., 2017).
We define the collection of previous module-states as Ht−1 =

[
h
(1)
t−1; . . . ;h

(n)
t−1;0

]
∈ R(n+1)×dh ,

where 0 is a null-vector used to retrieve no information. A module computes a “retrieval query” to
search for information as qkr = qkt−1W

que
k ∈ Rdh . That module computes “retrieval keys and values”

as Kk = Ht−1W
key
k ∈ Rn+1×dh and V k = Ht−1W

val
k ∈ Rn+1×dh , respectively. Each module then

retrieves information as follows:

fkshare(s
A
t−1, q

k
t−1, ) = softmax

(
qkrK

k>

√
dh

)
V k. (3.8)

Intuitively, the dot-product inside the softmax is computing n+1 scores (one for each “key”), which
then form probabilities. The outter dot-product multiplies each “value” by its probability and sums
them to perform soft-selection.

3.5 Experiments

In this section, we study the following questions:
1. Can LOAD generalize memory to longer spatiotemporal combinations of object motions?
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2. Can LOAD generalize navigation towards and avoidance of 3D objects to larger environments?

3. Can LOAD generalize memory of goal-information to larger maps with more distractor-based
obstacles?

Method
Observation

Attention
Modular

State

LSTM 7 7

AAA Spatial 7

RIMs Spatial 3

FARM (Ours) Feature 3

Table 3.1: Baselines.

Baselines. Our first baseline is a common choice for
learning state-representations, a Long Short-term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997). We
study two other baselines that also attend to observation
features: Attention Augmented Agent (AAA) (Mott
et al., 2019) and Recurrent Independent Mechanisms
(RIMs) (Goyal et al., 2020b). Both employ transformer-
style attention (Locatello et al., 2020; Vaswani et al., 2017)
to attend to individual spatial positions by reducing obser-
vation features to a weighted average over spatial positions. We instead attend to features shared

across all spatial positions. RIMs, like FARM, represents state with a set of recurrent modules.
Implementation details. We implement our recurrent observation encoder, φ, as a ResNet (He

et al., 2016) followed by a Convolutional LSTM (ConvLSTM) (Shi et al., 2015). We implement the
update function of each module with an LSTM. We used multihead-attention (Vaswani et al., 2017)
for fkshare. We trained the architecture with the IMPALA algorithm (Espeholt et al., 2018) and an
Adam optimizer (Kingma and Ba, 2014).

3.5.1 Generalizing memory to more object motions

We study this with the “Ballet” grid-world (Lampinen et al., 2021) shown in Figure 3.1 (a). Tasks.
The agent controls a white square that begins in the middle of the grid. There are m other “ballet-
dancer” objects that move with a one of 15 distinct object motions. The dances move in sequence
for 16 time-steps with a 48-time-step delay in between. After all dancers finish, the agent is given a
language instruction indicating the correct ballet dancer to navigate towards. All shapes and colors
are randomized making motion the only feature indicating the goal object. Observations. The
agent observes a top-down RBG image of the environment. Actions. The agent can move left,
right, up, and down. Reward is 1 if it touches the correct dancer and 0 otherwise. Tasks split.
Training tasks always consists of seeing m = {2, 4} dancers; testing tasks always consists of seeing
m = {8} dancers. All agents learn with a sample budget of 2 billion frames. A poorly performing
agent will obtain chance performance, 1/m.

We present the training and generalization success rates in Figure 3.4. We learned spatiotemporal
observation features with RIMs and AAA for a fair comparison. We found that only FARM is able
to obtain above chance performance for training and testing. In order to understand the source of
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Figure 3.4: FARM enables generalizing memory to longer spatiotemporal combinations of
object motions. We present the success rate means and standard errors computed using 5 seeds. (a)
Only FARM is able to go above chance performance for each setting. (b) Given spatiotemporal
features, we find that either using multiple modules or feature attention enables learning memory of
object motions. These results suggest that spatial attention removes the benefits of using multiple
modules for learning to remember object motions. Encouragingly, feature attention by itself can
support it.

Figure 3.5: FARM enables generalizing navigation towards and avoidance of 3D objects to
a larger environment. We present the success rate means and standard errors computed using
3 seeds. (a) FARM generalizes best. (b) Our performance benefits mainly come from learning
multiple modules, though feature attention slightly improves performance and lowers variance.
These results suggest that spatial attention interferes with reinforcement learning of 3D objects.

our performance, we ablate using a recurrent observation encoder, using multiple modules, and
using feature-attention. We confirm that a recurrent encoder is required. Interestingly, we find
that either using multiple modules or using our feature-attention enables task-learning, with our
feature-attention mechanism being slightly more stable.

3.5.2 Generalizing navigation with more 3D objects

Here, we study the 3D Unity environment from Hill et al. (2020) shown in Figure 3.1 (b). Tasks.
The agent is an embodied avatar in a room filled with task objects and distractor objects. The agent
receives a language instruction of the form “X on Y” —e.g., “toothbrush on bed”. We partition
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Figure 3.6: FARM enables generalizing memory of goal-information and avoidance of obstacles
to larger maps with more objects. We show the the success rate mean and standard error computed
using 10 seeds. (a) In the densely populated setting, FARM better generalizes to longer hallways
with more distractors. (b) In the sparsely populated setting, FARM has slightly better performance
than AAA for 2nmax but comparable performance for 3nmax. (c) Using multiple modules and feature
attention both improve generalization. These results suggest that spatial attention interferes with
generalization benefits of learning multiple modules. Learning feature attention and multiple
modules, instead, act synergistically.

objects into two sets as follows: pickup-able objects O1 = A ∪ B and objects to place them on
O2 = C ∪ D. Observations. The agent receives first-person egocentric RGB images. Actions.
The agent has 46 actions that allow it to navigate, pickup and place objects. Reward is 1 if it
completes the task and 0 otherwise. Tasks split. During training the agent sees A×D and B × C
in a 4m× 4m room with 4 distractors, along with A× C and B ×D in a 3m× 3m room with 0

distractors. We test the agent on A× C and B ×D in a 4m× 4m room with 4 distractors. We also
train with “Go to X” and “Lift X”.

We present the generalization success rate in Figure 3.5. We find that baselines which used
spatial attention learn more slowly than an LSTM or FARM. Additionally, both models that use
spatial attention have poor performance until the end of training where AAA begins to improve.
FARM achieves relatively good performance, achieving a success rate of 60% and 80% on the two
test settings, respectively.

3.5.3 Generalizing to larger maps with more objects

To study this, we create the “keyBox” environment depicted in Figure 3.1 (c). Tasks are defined
with n levels. Each level is a hallway with a single box and a key of the same color that the agent
must retrieve. The agent and the box always starts in the left-most end and the goal key always starts
in the right-most end. The agent always begins in the first level. It is teleported to the next level after
placing the goal key next to the goal box. The hallway for level n consists of a length-n sequence
of w × w environment subsections. Each subsection contains d distractor objects. Observations.
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The agent observes egocentric top-down images over a short segments of the hallway. Actions.
The agent can move forward, turn left, turn right, pick up objects and drop them. Rewards. When
completing a level, the agent gets a reward of n/nmax where nmax is the maximum level. Tasks split.
Learning tasks include levels 1 to nmax = 10. Test tasks only use levels 2nmax and 3nmax. We study
two generalization settings: a densely populated setting with subsections of area w2 = 9 and d = 2

distractors, and a sparsely populated setting with subsections of area w2 = 25 and d = 4 distractors.
We present the generalization success rates in Figure 3.6. In the dense setting, we see an LSTM

quickly overfits in both settings. All architectures with attention continue to improve in generaliza-
tion performance as they continue training. In the dense setting, we find that FARM generalizes
better (by about 20% for AAA and about 30% for RIMs). In the sparse setting, both RIMs and
an LSTM fail to generalize above 30%. FARM generalizes better than AAA for level 20 but gets
comparable performance for level 30. In some ways, this is our most surprising result since it is not
obvious that either learning multiple modules or using feature attention should help with this task.
In the next section we study possible sources of our generalization performance.

3.5.3.1 Analysis of state representations

We study the state representations FARM learns for categories of regularly occurring events. We
collect 2000 generalization episodes in level 20. We segment these episodes into 6 categories:
pickup ball, drop ball, pickup wrong key, drop wrong key, pickup correct key, and drop correct key.
We study the time-series of the L2 norm of each module-state and their attention coefficients. For
reference, we also show the L2 norm for the entire episode. We note that we observed consistent
activity that was not captured by our simple programmatic classification of states; for example,
salient activity from module 0 when the agent moved around obstacles. We show an example in
Figure 3.7 a.

Due to space constraints, we present a subset of results in Figure 3.7. While some modules are
selective for different recurring events such as attending to goal information (Figure 3.7, b), it seems
that subsets of modules jointly represent different aspects of state. We hypothesize that this enables
FARM to leverage overlapping sets of modules to store goal-information or to navigate around
obstacles in a decoupled way that supports recombination. This is further supported by our ablation
where we find that having 4 or 8 modules significantly outperforms using a single large module (all
had about 8M params) (Figure 3.6, (c)). Feature attention consistently improves performance.
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Figure 3.7: We show evidence that different subsets of modules jointly represent object-induced
task regularities. (a) Module 0 commonly exhibits salient activity when the agent moves around
an obstacle. (b) Module 6 activates its attention coefficients as the agent picks up the goal key.
(c) Modules 2 and 6 correlate for picking up the correct key but anti-correlate for dropping the
wrong object. This is similar to when neurons in word embeddings correlate for some words (e.g.
man and king), but anti-correlate for other words (e.g. man and woman). In general, we find
rich patterns of correlation and anti-correlation between the modules. These results suggest that
FARM is representing task regularities across the modules in complicated and interesting ways.
Videos of the state-activity and attention coefficients: https://bit.ly/3qCxatr.

3.6 Discussion and conclusion

We have presented FARM, a novel state representation learning architecture for environments that
have object-induced structural regularities. Our results show that learning feature attention and
multiple modules acts synergistically to support generalizing (a) memory to longer combinations of
object-motions (§3.5.1); (b) navigation around 3D objects to larger environments (§3.5.2); and (c)
memory of goal information to longer sequences of obstacles (§3.5.3). Our ablations suggest that
feature attention mainly helps with long-horion memory. Interestingly, learning multiple modules
helped across all conditions (memory, obstacle-avoidance, and language learning). Our analysis
suggests that learning multiple modules enables subsets to represent object-centric task-relevant
events in flexible ways. We hypothesize that this enables a deep RL agent to flexibly recombine its
experience for generalization.

We compared FARM to other architectures that used spatial attention as a weak inductive bias
for enabling objects to emerge in a state representation. We found that spatial attention hindered
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learning tasks with object motions and 3D objects. In the KeyBox task, spatial attention seemed to
help AAA most in the sparse setting with many objects. This makes sense since spatial attention
has been shown to help with distractors and the agent mainly needed to ignore objects and move
forward. Interestingly, pairing spatial attention with multiple modules (RIMs) removed the benefits
of both.

One limitation of FARM is that feature attention is not spatially invariant since it treats all
positions as unique. Future work can look to adapt this attention for something that still describes
multiple positions but in a spatially invariant way. Another limitation of FARM is the length
of temporal regularities it can capture. Transformers (Vaswani et al., 2017) have shown strong
performance for representing long sequences. An interesting next-step might be to integrate
FARM with a transformer. We hope that our work contributes to future RL algorithms that leverage
weak inductive biases for capturing object-centric task regularities.
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CHAPTER 4

Composing Task Knowledge With Modular Successor
Feature Approximators

Recently, the Successor Features and Generalized Policy Improvement (SF&GPI) framework has
been proposed as a method for learning, composing, and transferring predictive knowledge and
behavior. SF&GPI works by having an agent learn predictive representations (SFs) that can be
combined for transfer to new tasks with GPI. However, to be effective this approach requires state
features that are useful to predict, and these state-features are typically hand-designed. In this
work, we present a novel neural network architecture, “Modular Successor Feature Approximators”
(MSFA), where modules both discover what is useful to predict, and learn their own predictive
representations. We show that MSFA is able to better generalize compared to baseline architectures
for learning SFs and modular architectures for learning state representations.

4.1 Introduction

Consider a household robot that needs to learn tasks including picking up dirty dishes and cleaning
up spills. Now consider that the robot is deployed and encounters a table with both a spill and a
set of dirty dishes. Ideally this robot can combine its training behaviors to both clean up the spill
and pickup the dirty dishes. We study this aspect of generalization: combining knowledge from
multiple tasks.

Combining knowledge from multiple tasks is challenging because it is not clear how to synthe-
size either the behavioral policies or the value functions learned during training. This challenge
is exacerbated when an agent also needs to generalize to novel appearances and environment
configurations. Returning to our example, our robot might need to additionally generalize to both
novel dirty dishes and to novel arrangements of chairs.

Successor features (SFs) and Generalized Policy Improvement (GPI) provide a mechanism to
combine knowledge from multiple training tasks (Barreto et al., 2017, 2020). SFs are predictive
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representations that estimate how much state-features (known as “cumulants”) will be experienced
given a behavior. By assuming that reward has a linear relationship between cumulants and a task
vector, an agent can efficiently compute how much reward it can expect to obtain from a given
behavior. If the agent knows multiple behaviors, it can leverage GPI to compute which behavior
would provide the most reward (see Figure 4.2 for an example). However, SF&GPI commonly
assume hand-designed cumulants and don’t have a mechanism for generalizing to novel environment
configurations.

Modular architectures are a promising method for generalizing to distributions outside of the
training distribution (Goyal et al., 2020b; Madan et al., 2021). In chapter §3, I presented “FARM”
and showed that learning multiple state modules enabled generalization to environments with unseen
environment parameters (e.g. to larger maps with more objects).In this work, we hypothesize that
modules can further be leveraged to discover state-features that are useful to predict.

Figure 4.1: (1) FARM learns multiple state modules. This promotes generalization to novel
environments. However, it has no mechanism for combining task solutions. (2) USFA learns a
single monolithic architecture for predicing SFs and can combine task solutions. However, it relies
on hand-designed state features and has no mechanism for generalization to novel environments. (3)
We combine the benefits of both. We leverage modules for reward-driven discovery of state features
that are useful to predict. These form the basis of their own predictive representations (SFs) and
enables combining task solutions in novel environments.

We present “Modular Successor Feature Approximators” (MSFA), a novel neural network for
discovering, composing, and transferring predictive knowledge and behavior via SF&GPI. MSFA is
composed of a set of modules, which each learn their own state-features and corresponding predictive
representations (SFs). Our core contribution is showing that an inductive bias for modularity
can enable reward-driven discovery of state-features that are useful for zero-shot transfer with
SF&GPI. We exemplify this with a simple state-feature discovery method presented in Barreto et al.
(2018) where the dot-product between state-features and a task vector is regressed to environment
reward. This method enabled transfer with SF&GPI in a continual learning setting but had limited
success in the zero-shot transfer settings we study. While there are other methods for state-feature
discovery, they add training complexity with mutual information objectives (Hansen et al., 2019)
or meta-gradients (Veeriah et al., 2019). With MSFA, by adding only an architectural bias for

36



modularity, we discover state-features that (1) support zero-shot transfer competitive with hand-
designed features, and (2) enable zero-shot transfer in visually diverse, procedurally generated
environments. We are hopeful that our architectural bias can be leveraged with other discovery
methods in future work.

4.2 Related Work on Generalization in RL

Hierarchical RL (HRL) is one dominant approach for combining task knowledge. The basic idea
is that one can sequentially combine policies in time by having a “meta-policy” that sequentially
activates “low-level” policies for protracted periods of time. By leveraging hand-designed or pre-
trained low-level policies, one can generalize to longer instructions (Oh et al., 2017a; Corona et al.,
2020), to new instruction orders (Brooks et al., 2021), and to novel subtask graphs (Sohn et al.,
2021, 2022). We differ in that we focus on combining policies concurrently in time as opposed to
sequentially in time. To do so, we develop a modular neural network for the SF&GPI framework.

SFs are predictive representations that represent the current state as a summary of the successive

features to follow (see §4.3 for a formal definition). By combining them with Generalized Policy
Improvement, researchers have shown that they can transfer behaviors across object navigation
tasks (Borsa et al., 2019; Zhang et al., 2017; Zhu et al., 2017), across continuous control tasks (Hunt
et al., 2019), and within an HRL framework (Barreto et al., 2019). However, these works tend to
require hand-designed cumulants which are cumbersome to design for every new environment. In
our work, we integrate SFs with Modular RL to facilitate reward-driven discovery of cumulants and
improve successor feature learning.

Modular RL (MRL) (Russell and Zimdars, 2003) is a framework for generalization by combin-
ing value functions. Early work dates back to (Singh, 1992), who had a mixture-of-experts system
select between separately trained value functions. Since then, MRL has been applied to generalize
across robotic morphologies (Huang et al., 2020b), to novel task-robot combinations (Devin et al.,
2017; Haarnoja et al., 2018), and to novel language instructions (Logeswaran et al., 2021). MSFA,
is the first to integrate MRL with SF&GPI. This integration enables combining task solutions in
novel environment configurations.

Generalizing to novel environment configurations with modules. Goyal et al. (2020b)
showed that leveraging modules to learn a state function improved out-of-distribution generalization.
Carvalho et al. (2021a) showed that a modified attention mechanism led to strong generalization
improvements with RL. MSFA differs from both in that it employ modules for learning value

functions in the form of SFs. This enables a principled way to compose task knowledge while
additionally generalizing to novel environment configurations.
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4.3 Problem Setting and Background

We study a reinforcement learning agent’s ability to transfer knowledge between tasks in an
environment. During training, the experiences ntrain tasks Mtrain = {Mi}ntraini=1 , sampled from a
training distribution ptrain(M). During testing, the agent is evaluated on ntest tasks, {Mi}ntesti=1 ,
sampled from a testing distribution ptest(M). Each taskMi is specified as Partially Observable
Markov Decision Process (POMDP), Mi = 〈Se,A,X , R, p, fx〉. Here, Se, A and X are the
environment state, action, and observation spaces. p(·|set , at) specifies the next-state distribution
based on taking action at in state set , and fx(s

e
t ) maps the underlying environment state to an

observation xt. We focus on tasks where rewards are parameterized by a task vector w, i.e.
rwt = R(set , at, s

e
t+1, w) is the reward obtained for transition (set , at, s

e
t+1) given task vector w. Since

this is a POMDP, we need to learn a state function that maps histories to agent state representations.
We do so with a recurrent function: st = sθ(xt, st−1, at−1). Given this learned state, we want to
obtain a behavioral policy π(st) that best maximises the expected reward it will obtain when taking
an action at at a state st: Q

π,w
t = Qπ,w(st, at) = Eπ [

∑∞
t=0 γ

trwt ].

Figure 4.2: High-level diagram of how MSFA can be leveraged for transfer with SF&GPI.
During training, we can have the agent learn policies for tasks—e.g. “open drawer” and “open
fridge”. Each task leads the agent to experience different aspects of the environment—e.g. a “fork”
during “open drawer” or an “apple” during “open fridge”. We can leverage MSFA to have different
modules learn different “cumulants”, φ, and SFs, ψ. For example, module 1 (θ1) can estimate SFs
for apple cumulants. Module SFs are combined to form the SF for a policy. When the agent wants
to transfer its knowledge to a test task—e.g., “get milk”—it can compute Q-values for that task as a
dot-product with the SFs of each training task. The highest Q-value is then used to select actions.
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Transfer with SF&GPI. In order to leverage SFs (Barreto et al., 2017), one assumes an agent
has access to state features known as “cumulants”, φt = φ(st, at, st+1). Given a behavioral policy
π(a|s), SFs are a type of value function that use φt as pseudo-rewards:

ψπt = ψπ(st, at) = Eπ

[
∞∑
i=0

γiφt+i

]
(4.1)

If reward is (approximately) rwt = φ>t w, then action-values can be decomposed as Qπ,w
t = ψπt

>w.
This is interesting because it provides an easy way to reuse task-agnostic features ψπt for new tasks.

We can re-use the SFs we’ve learned from training tasks Mtrain for transfer with GPI. Assume we
have learned (potentially optimal) policies {πi}ntraini=1 and their corresponding SFs {ψπi(s, a)}ntraini=1 .
Given a test task wtest, we can obtain a new policy with GPI in two steps: (1) compute Q-values
using the training task SFs (2) select actions using the highest Q-value. This operation is summarized
as follows:

π(st;wtest) ∈ argmax
a∈A

max
i∈{1,...,ntrain}

{Qπi,wtest

t } = argmax
a∈A

max
i∈{1,...,ntrain}

{ψπit
>wtest} (4.2)

This is useful because the GPI theorem states that π will perform as well as all of the training
policies, i.e. that Qπ,wtest(s, a) ≥ maxiQ

πi,wi(s, a)∀(s, a) ∈ (S ×A) (Barreto et al., 2017).
SF&GPI enable transfer by exploiting structure in the RL problem: a policy that maximizes

a value function is guaranteed to perform at least as well as the policy that defined that value
function. However, SF&GPI relies on combining a fixed set of SFs. Another form of transfer comes
from “Universal Value Function Approximators” (UVFAs) (Schaul et al., 2015), which add the
task-vector w as a parameter to a Q-approximator parameterized by θ, Qθ(s, a, w). If Qθ is smooth
with respect to w, then Qθ should generalize to test tasks nearby to train tasks in task space. Borsa
et al. (2019) showed that one could combine the benefits of both with “Universal Successor Feature
Approximators”. Since rewards rw, and therefore task vectors w, reference deterministic task
policies πw, one can parameterize successor feature approximators with task-vectors ψ̃πw = ψ̃w ≈
ψθ(s, a, w). However, USFA assumed hand-designed cumulants. We introduce an architecture for
reward-driven discovery of cumulants and improved function approximation of universal successor
features.

4.4 Modular Successor Feature Approximators

We propose a new architecture Modular Successor Feature Approximators (MSFA) for approxi-
mating SFs, shown in Figure 4.3. Our hypothesis is that learning cumulants and SFs with modules
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Figure 4.3: Left: Universal Successor Feature Approximator (USFA) learns a single, monolithic
successor feature estimator that uses hand-designed cumulants. Right: Modular Successor
Feature Approximator (MSFA) learns a set of successor feature modules, each with their own
functions for (a) updating module-state, (b) computing cumulants, and (c) estimating successor
features. Modules then share information with an attention mechanism. We hypothesize that isolated
module computations facilitate learning cumulants that suppot generalization with GPI.

improves zero-shot composition of task knowledge with SF&GPI. MSFA accomplishes this by
learning n state modules {sθk}nk=1 that evolve with independent parameters θk and have sparse inter-
module information flow. MSFA then produces modular cumulants {φ̃(k)

t }nk=1 and SFs {ψ̃π,kt }nk=1 by
having their computations depend only on individual module-states. For example, a cumulant may
correspond to information about apples, and would be a function only of the module representing
state information related to apples. This is in contrast to prior work, which learns a single monolithic
prediction module for computing cumulants and SFs (see Figure 4.3).

The rest of section is structured as follows. In section §4.4.1, we derive Modular Successor
Feature Learning within the Modular RL framework. We then describe our architecture, MSFA, for
learning modular successor features in §4.4.2. In §4.4.3, we describe how to generate behavior with
MSFA. Finally, we describe the learning algorithm for MSFA in section §4.4.4.

4.4.1 Modular Successor Feature Learning

Following the Modular RL framework (Russell and Zimdars, 2003), we assume that reward has
an additive structure R(st, at, st+1) =

∑
k R

k(st, at, st+1) =
∑

k R
(k)
t , where R(k)

t is the reward of
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the k-th module. We enforce that every module decomposes reward into an inner-product between
its own task-description w(k) and task-agnostic cumulants φ(k) ∈ R: R(k)

t = φ
(k)
t · w(k). Here, we

simply break up the task vector into n pieces so individual modules are responsible for subsets of
the task vector. This allows us to decompose the action-value function as

Qπ(st, at, w) =
n∑
k=1

Qπ,k(st, at, w
(k)) =

n∑
k=1

ψπ,k(st, at) · w(k) (4.3)

where we now have modular SFs {ψπ,k(s, a)}nk=1 (see the Appendix for a derivation). Rather than
hand-designing modules or cumulants, we aim to discover them from the environment reward
signal.

4.4.2 Architecture

We learn a set of modules with states St = {s(k)t }nk=1. They update at each time-step t with the
observation xt, the previous module-state s(k)t−1, and information from other modules Aθ(s

(k)
t−1,St−1).

Following prior work (Santoro et al., 2018; Goyal et al., 2020b; Carvalho et al., 2021a), we have Aθ
combine transformer-style attention (Vaswani et al., 2017) with a gating mechanism (Parisotto et al.,
2020) to enforce that inter-module interactions are sparse. Since Aθ is not the main contribution of
this paper, we describe these computations in more detail with our notation in the Appendix. We
summarize the high-level update below.

s
(k)
t = sθk(xt, s

(k)
t−1, Aθ(s

(k)
t−1, St−1)) (4.4)

We learn modular cumulants and SFs by having sets of cumulants and SFs depend on
individual module-states. Module cumulants depend on the module-state from the current and
next time-step. Module SFs depend on the current module-state and on their subset of the task
description. We summarize this below:

φ̃
(k)
t = φθ(s

(k)
t , at, s

(k)
t+1) ψ̃w,kt = ψθ(s

(k)
t , at, w

(k)) (4.5)

We highlight that cumulants share parameters but differ in their input. This suggests that the key is
not having cumulants and SFs with separate parameters but that they are functions of sparse subsets
of state (rather than all state information). We show evidence for this hypothesis in Figure 4.6.

We concatenate module-specific cumulants and SFs to form the final outputs: φ̃t =[
φ̃
(1)
t , . . . , φ̃

(n)
t

]
and ψ̃wt = ψθ(st, at, w) =

[
ψ̃w,1t , . . . , ψ̃w,nt

]
. Note that cumulants, are only used

during learning, update with the module-state from the next time-step.
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4.4.3 Behavior

During training, actions are selected in proportion to Q-values computed using task SFs as
π(st, w) ∝ Q̃(st, a, w) = ψθ(st, a, w)

>w. In practice we use an epsilon-greedy policy, though
one can use other choices. During testing, we compute policies with GPI as π(st, wtest) ∈
argmaxamaxz∈Mtrain

{ψθ(st, a, z)>wtest}, where Mtrain are train task vectors.

4.4.4 Learning Algorithm

MSFA relies on three losses. The first loss, LQ, is a standard Q-learning loss, which MSFA uses to
learn optimal policies for the training tasks. The main difference here is that MSFA uses a particular
parameterization of the Q-function Qπw,w(s, a) = ψπw(s, a)>w. The second loss, Lψ, is an SF
learning loss, which we use as a regularizer to enforce that the Q-values follow the structure in the
reward function rwt = φ>t w. For this, we again apply standard Q-learning but using SFs as value
functions and cumulants as pseudo-rewards. The final loss, Lφ is a loss for learning cumulants that
grounds them in the environment reward signal. The losses are summarised as follows

LQ = ||rt + γψθ(st+1, a
′, w)>w − ψθ(st, at, w)>w||2 (4.6)

Lψ = ||φ̃t + γψθ(st+1, a
′, w)− ψθ(st, at, w)||2 (4.7)

Lφ = ||rwt − φ̃t
>
w||2 (4.8)

where a′ = argmaxa ψθ(st+1, a, w)
>w. Selecting the next action via the combination of all modules

ensures they individually convergence to optimal values (Russell and Zimdars, 2003). The final loss
is L = αQLQ + αψLψ + αφLφ.

4.5 Experiments

We study generalization when training behaviors must be combined concurrently in time in the
presence of novel object appearances and layouts. The need to combine training behaviors tests how
well MSFA can leverage SF&GPI. Generalization to novel object appearances and layouts tests how
well MSFA’s modular construction supports generalization to novel environment configurations.

Baselines. (1) Universal Value Function Approximator (UVFA) (Schaul et al., 2015), which
takes the task as input: Qθ(s, w). This comparison shows shows the transfer benefits of SF&GPI. (2)
UVFA with Feature-Attending Recurrent Modules (UVFA+FARM) instead takes state-factors
as input Qθ(s

(1), . . . , s(n), w). Each state-factor s(k) is the output of a FARM module. (3) Modular
Value Function Approximator(MVFA) is an adaptation of (Haarnoja et al., 2018) where modules
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Figure 4.4: We study an agent’s ability to combine task knowledge in three environments. (a)
In BabyAI, an agent learns to pick up one object type at a time during training. During testing, the
agent must pickup combinations of object types while avoiding other object types. This is the setting
used by USFA which assumed hand-designed cumulants. (b) In Procgen, we study extending this
form of generalization to a visually diverse, procedurally generated environment. (c) In Minihack,
we go beyond combining object navigation skills. Here, an agents needs to combine (1) avoiding
teleportation traps, (2) avoiding monsters, and (3) partial visibility around the agent.

learn individual Q-values Q(i)
θ (s(i), w(i)). Comparing to UVFA+FARM and MVFA enables us

to study the benefits of leveraging modules for learning value functions in the form of SFs. (4)
Universal Successor Function Approximator (USFA) (Borsa et al., 2019) leverages a single
monolithic function for successor features with hand-designed cumulants. USFA is an upper-
bound baseline that allows us to test the quality of cumulants and successor features that MSFA
learns. We also test a variant of USFA with learned cumulants, USFA-Learned-φ, which shows
how the architecture degrades without oracle cumulants.

Implementation. We implement the state modules of MSFA with FARM modules (Carvalho
et al., 2021b). For UVFA and USFA, we learn a state representation with an LSTM (Hochreiter
and Schmidhuber, 1997). We implement all φ, ψ, and Q functions with Mutli-layer Perceptrons.
We train UVFA and UVFA+FARM with n-step Q-learning (Watkins and Dayan, 1992). When
learning cumulants, USFA and MSFA have the exact same losses and learning alogirthm. They
both learn Q-values and SFs with n-step Q-learning. We use n = 5. When not learning cumulants,
following (Borsa et al., 2019), USFA only learns SFs with n-step Q-learning. All agents are built
with JAX (Bradbury et al., 2018) using the open-source ACME codebase (Hoffman et al., 2020) for
reinforcement learning.

4.5.1 Combining object navigation task knowledge

MSFA learns modular functions for computing φ and estimating ψ. We hypothesize that this
facilitates learning cumulants that respond to different aspects of the environment (e.g. to different
object categories). This leads to the following research questions. R1: Can we recover prior
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Figure 4.5: MSFA matches USFA, which has hand-designed cumulants. We show mean and
standard error generalization episode return across 10 runs. We put a task’s L2 distance to the
closest train task in parenthesis. USFA best generalizes to novel combinations of picking up and
avoiding objects. Once USFA learns cumulants, its performance degrades significantly. UVFA-
based methods struggle as more objects should be avoided or tasks are further in distance to train
tasks.

generalization results that relied on hand-designed cumulants for different object categories? R2:
How important is it to learn modular functions for φ and ψ? R3: Without GPI, do learning modular
functions for φ and ψ still aid in generalization?

Setup. We implement a simplified version of the object navigation task of (Borsa et al., 2019) in
the (Chevalier-Boisvert et al., 2019) BabyAI environment. The environment consists of 3 instances
of 4 object categories. Observations are partial and egocentric. Actions: the agent can rotate left or
right, move forward, or pickup an object. When it picks up an object, following (Borsa et al., 2019),
the object is respawned somewhere on the grid. Task vectors lie in w ∈ R4 with training tasks being
the standard unit vectors. For example, [0, 1, 0, 0] specifies the agent must obtain objects of category
2. Generalization tasks are linear combinations of training tasks. For example, [−1, 1,−1, 1]
specifies the agent must obtain categories 2 and 4 while avoiding categories 1 and 3. Borsa et al.
(2019) showed that USFA could generalize with hand-designed cumulants that described whether
an object was picked up. We describe challenges for this task in detail in the Appendix.

R1: MSFA is competitive with USFA, which uses oracle φ. Figure 4.5 shows USFA with
a similar generalization trend to (Borsa et al., 2019). Tasks get more challenging as they are
further from train tasks or involve avoiding more objects. For simply going to combinations of
objects, USFA-Learned-φ does slightly worse than MSFA. However, with more objects to avoid, all
methods except MSFA (including USFA-Learned-φ) degrades significantly. For comparison, we
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show performance by an oracle bread-first-search policy with access to ground-truth state (BFS
State Oracle). All methods have room for improvement when objects must be avoided. In the
appendix, we present heat-maps for how often object categories were picked up during different
tasks. We find that MSFA most matches USFA, while USFA-Learned-φ commonly picks up all
objects regardless of task.

Figure 4.6: Learning modular φ and ψ is key to generalization and improves generalization
even without GPI. We show mean and standard error generalization episode return across 10 runs.
(a) We ablate having modular functions for φθ and ψθ. Generalization results degrade significantly.
(b) We ablate leveraging GPI for generalization from all SF-based methods. MSFA without GPI
can outperform both USFA-Learned-φ with GPI and USFA without GPI. This shows the utility of
modularity for generalization.

R2: Learning modular φ and ψ functions is critical for generalization. Learning an entangled
function corresponds to learning a monolithic function for ψ or φ where we concatenate module-
states, e.g. ψ̃wt = ψθ(s

(1)
t , . . . , s

(n)
t , a, w). Modular functions correspond to equation 4.5. Figure 4.6

(a) shows that without modular functions for φ and ψ, performance severely degrades. This also
highlights that a naive combination of USFA+FARM—with entangled functions for φ and ψ—does
not recover our generalization performance.

R3: Modularity alone improves generalization. For all SF-based methods, we remove GPI
and select actions with a greedy policy: π(s) = argmaxa ψθ(st, a, w)

>w. Figure 4.6 (b) shows that
GPI is critical for generalization with USFA as expected. USFA-Learned-φ benefits less from GPI
(presumably because of challenges in learning φ). Interestingly, MSFA can generalize relatively
well without GPI, sometimes doing better than USFA without GPI.

4.5.2 Combining object navigation task knowledge with novel appearances
and environment configurations

Beyond generalizing to combinations of tasks, agents will need to generalize to different layouts
and appearances of objects. R4: Can MSFA enable combining task knowledge in a visually diverse,
procedurally generated environment?
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Setup. We leverage the “Fruitbot” environment within ProcGen (Cobbe et al., 2020). Here,
an agent controls a paddle that tries to obtain certain categories of objects while avoiding others.
When the agent hits a wall or fence, it dies and the episode terminates. If the agent collects a
non-task object, nothing happens. Observations are partial. Actions: At each time-step the agent
moves one step forward and can move left or right or shoot pellets to open fences. Training and
generalization tasks follow the same setup as §4.5.1.

Figure 4.7: MSFA is able to combine task knowledge in a visually diverse, procedurally
generated ProcGen environment. We find that no method is able to do well when there are objects
to avoid (w = [1, 0, 0,−1]) in this setting (see text for more). However, as more objects need to be
collected MSFA best generalizes (10 runs).

R4: MSFA enables combining task knowledge of object navigation tasks in a visually
diverse, procedurally generated environment. Figure 4.7 shows that when an agent has to
generalize to collecting more objects, modular architectures generalize best, with MSFA doing best.
When objects have to be avoided, we see that no architecture does well, though MSFA tends to do
better. We observe that avoiding objects leads agents to hit walls. Since the agent always moves
forward at each time-step in Fruibot, this makes avoiding objects a particularly challenging type of
generalization.

4.6 Discussion and Conclusion

We have presented “Modular Successor Feature Approximators”, a modular neural network for
learning cumulants and SFs produced by their own modules. We first showed that MSFA is com-
petitive with prior object navigation generalization results that relied on hand-designed cumulants
(§4.5.1). Afterwards, we showed that MSFA improves an agent’s ability to combine task knowledge
in a visually diverse, procedurally generated environment (§4.5.2). We also show that MSFA can
combine solutions of heterogeneous tasks. Our ablations show that learning modular cumulants and
SFs is critical for generalization with GPI.
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We compared MSFA to (1) USFA, a monolithic architecture for learning cumulants and SFs; (2)
FARM, an architecture which learns multiple state-modules but combines them with a monolithic
Q-value function. Our results show that when learning cumulants, MSFA improves generalization
with SF&GPI compared to USFA. Additionally, without GPI, MSFA as an architecture improves
generalization as compared to both FARM and USFA.

Limitations. While we demonstrated reward-driven discovery of cumulants for transfer with
SF&GPI, we focused on relatively simple task encodings. Future work can extend this to more
expressive encodings such as language embeddings. Another limitation is that we did not explore
more sophisticated state-feature discovery methods such as meta-gradients (Veeriah et al., 2019).
Nonetheless, we think that MSFA provides an important insight for future work: that modularity is
a simple but powerful inductive bias for discovering state-features that enable zero-shot transfer
with SF&GPI.

Future directions. SFs are useful for exploration (Janz et al., 2019; Machado et al., 2020);
for discovering and combining options (Barreto et al., 2019; Hansen et al., 2019); for transferring
policies across environments (Zhang et al., 2017); for improving importance sampling (Fujimoto
et al., 2021); and for learning policies from other agents (Filos et al., 2021). We hope that future
work can leverage MSFA for improved state-feature discovery and SF-learning in all of these
settings.
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CHAPTER 5

Discovering Representations for Transfer with
Successor Features and the Deep Option Keyboard

The Option Keyboard (OK) was recently proposed as a method for transferring behavioral knowledge
across tasks. OK transfers knowledge by adaptively combining subsets of known behaviors using
Successor Features (SFs) and Generalized Policy Improvement (GPI). However, it relies on hand-
designed state-features and task encodings. In this work, we propose the Deep Option Keyboard
(Deep OK), which enables transfer with discovered state-features and task encodings. To enable
discovery, we propose the Categorical Successor Feature Approximator (CSFA), a novel learning
algorithm for estimating SFs while jointly discovering state-features and task encodings. With
Deep OK and CSFA, we achieve the first demonstration of transfer with SFs in a challenging 3D
environment where all the necessary representations are discovered. We first compare CSFA against
other methods for approximating SFs and show that only CSFA discovers representations compatible
with SF&GPI at this scale. We then compare Deep OK against transfer learning baselines and show
that it transfers most quickly to long-horizon tasks.

5.1 Introduction

Consider a household robot that learns tasks for interacting with objects such as finding and moving
them around. When this robot is deployed to a house and needs to perform combinations of these
tasks, collecting data for reinforcement learning (RL) will be expensive. Thus, ideally this robot can
effectively transfer its knowledge to efficiently learn these novel tasks with minimal interactions in
the environment. We study this form of transfer in Deep RL.

One promising method for transfer is the Option Keyboard (OK)(Barreto et al., 2019, 2020),
which transfers to new tasks by adaptively combining subsets of known behaviors (see Figure 5.1).
OK combines known behaviors by leveraging Successor Features (SFs) and Generalized Policy
Improvement (GPI) (Barreto et al., 2017, 2018). SFs are predictive representations for behaviors.

48



Figure 5.1: Diagram of transfer with the Option Keyboard (OK). OK uses SF-based “keys”
to represent behaviors by how much of some feature (known as a “cumulant”) they obtain. OK
dynamically selects from behaviors with GPI by generating preference “queries” over these features.
The “value” of each behavior is then computed with a dot-product and the highest value is used
to generate behavior. One limitation of OK is that it hand-designs the features that define queries
and SFs. Here, we study the problem of transferring with OK while discovering all necessary
representations.
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They represent behaviors with estimates of how much state-features (known as “cumulants”) will
be experienced given that behavior. GPI can be thought of as a query-key-value system that, given
feature preferences, can be used to select from behaviors that obtain those features.

While OK is a promising transfer method, it relies on hand-designed representations for the
“cumulants” and task feature-preferences (i.e. task encodings). There is work that has discovered
either cumulants or task encodings (Barreto et al., 2017, 2018; Filos et al., 2021; Carvalho et al.,
2023a). However, either (a) they only showed transfer with SF&GPI using a fixed (not dynamic)
transfer query, (b) they only demonstrated results in simple grid-worlds where an agent combines
short-horizon “goto” tasks (e.g. goto A and B), or (c) they leveraged separate networks for the SFs
of each task-policy and for each task-encoding. This means parameter count scales with the number
of tasks and limits representation re-use across tasks.

Ideally, we can transfer with a dynamic query while leveraging discovered representations
for cumulants and feature preferences. Further, a transfer method should scale to sparse-reward
long-horizon tasks such as those found in complex 3D environments. However, jointly discovering
cumulants and feature preferences while estimating SFs is challenging in this setting. First, jointly
learning cumulants and SFs involves estimating boot-strapped returns over a non-stationary target
with high-variance and a shifting magnitude (Barreto et al., 2018). To maximize knowledge sharing
across tasks, we can share our SF-estimator and task encoder across tasks. However, no work has
yet achieved transfer results doing so.

To transfer with a dynamic query that leverages discovered representations while sharing func-
tions across tasks, we propose two novel methods, the Deep Option Keyboard (Deep OK) and
the Categorical Successor Feature Approximator (CSFA). Deep OK leverages CSFA to learn SF-
estimates over discovered cumulants and task-preferences in a pretraining phase. Afterwards, in a
finetuning phase, Deep OK learns to generate dynamic queries which are linear combinations of
CSFA-discovered task-preferences. CSFA addresses challenges with estimating a non-stationary
return by estimating SFs with a variant of the categorical two-hot representation introduced by
MuZero (Schrittwieser et al., 2020). We discretize the space of cumulant-return values into bins
and learns a probability mass function (pmf) over them. Modelling cumulant-returns with a pmf
is more robust to outliers and can better accomodate a shifting magnitude. In contrast, standard
methods estimate SFs with regression of a single point-estimate (Barreto et al., 2017; Borsa et al.,
2019) which is succeptible to outliers and varying scales (Raffin et al., 2021).

We study Deep OK and CSFA in Playroom (Abramson et al., 2020), a challenging 3D en-
vironment with high-dimensional pixel observations and long-horizon tasks defined by sparse
rewards. Prior work on transfer with SF&GPI has mainly focused on transfer in simpler 2D environ-
ments (Abdolshah et al., 2021; Barreto et al., 2017, 2018; Filos et al., 2021; Carvalho et al., 2023a).
While Borsa et al. (2019) studied transfer in a 3D environment, they relied on hand-designed cumu-
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lants and task encodings (Borsa et al., 2019) and only transferred to combinations of “Goto” tasks.
We discover cumulants and task encodings while studying transfer to combinations of long-horizon,
sparse-reward “Place near” tasks.

Contributions. (1) We propose the Deep Option Keyboard, a novel method that transfers to
novel taks with SF&GPI using a dynamic query, discovered representations, and a task encoder and
SF-approximator that are shared across tasks. (2) To enable discovery when sharing a task encoder
and SF-approximator cross tasks, we propose a novel learning algorithm, the Categorical Successor
Feature Approximator. (3) We present the first demonstration of transfer with successor features in
a complex 3D environment where all the necessary representations are discovered.

5.2 Related work on Transfer in Deep RL

Several avenues exist to transfer knowledge in Deep RL. We can transfer an agent’s representations
(how they represent situations), their control policy (how they act in situations), or their value
function (how they evaluate situations). To transfer representations, one can learn a mapping from
source domains to target domains (Taylor et al., 2007), learn disentangled representations (Higgins
et al., 2017; Watters et al., 2019), or learn a modular architecture (Rusu et al., 2016; Fernando
et al., 2017). To transfer a control policy, some methods distill knowledge from a source policy to a
target policy (Rusu et al., 2015), others exploit policy improvement (Bellman, 2010), and a third set
transfer low-level policies by learning a meta-controller (Sutton et al., 1999b). Finally, to transfer
value functions, some approaches learn universal value functions (Schaul et al., 2015) and others
exploit SFs (Barreto et al., 2020). Below we review approaches most closely related to ours.

Transferring policies. One strategy to transfer a policy is to leverage multi-task RL (MTRL)
training where you learn and transfer a goal-conditioned policy (Oh et al., 2017a). Another stratgy
is to distill knowledge from one policy to another, as Distral does (Teh et al., 2017). Distral works
by learning two policies: one goal-conditioned policy and another goal-agnostic “centroid policy”.
The action-likelihoods of each policy are then distilled into the other by minimizing KL-divergences.
Distral has strong performance in multi-task settings but it relies on the utility of a “centroid” policy
for sharing knowledge across tasks. When we transfer to longer horizon tasks with sparse rewards,
neither MTRL nor Distral may provide a policy with good jumpstart performance (Zhu et al., 2020).
In this work, we study jumpstart performance and exploit successor features (SFs) with generalized
policy improvement (GPI) (Barreto et al., 2017).

SFs are useful because they enable computing of action-values for new task encodings (Barreto
et al., 2017). When combined with GPI, prior work has shown strong zero-shot or few-shot transfer
to combinations of tasks. To accomplish this, GPI can evaluate known SFs with a “query” transfer
task encoding. SF&GPI relies on “cumulants” (which SFs predict returns over) and task encodings
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Method disc. φ disc. w query share wθ share ψθ 3D transfer
Barreto et al. (2017) 3 3 static 7 7 7 goto-n
Zhu et al. (2017)β 3 3 static 7 7 3 goto-n
Barreto et al. (2018) 3 7 static 7 7 3 goto-c
Filos et al. (2021)β 3 3 static 7 7 7 goto-c
Borsa et al. (2019) 7 7 static 7 3 3 goto-c
Carvalho et al. (2023a) 3 7 static 7 3 7 goto-c
Barreto et al. (2019) 7 7 dynamic 7 7 7 goto-c
Deep OK (ours) 3 3 dynamic 3 3 3 place-c

Table 5.1: Related methods for transfer with SF&GPI. Deep OK is the first method to transfer
with a dynamic query, discover cumulants φ and task encodings w, while sharing a task encoder
wθ and SF approximator ψθ across tasks. Each of these is important to transfer with SF&GPI in a
large-scale multi-task setting. Together, this enables the first SF method to transfer to combinations
of long-horizon place tasks in a 3D environment with discovered φ and w. Note: β refers to methods
which learn from demonstration data, which we do not. goto-n is “goto new goal state”, goto-c is
“goto object combo”, and place-c is “place object combo”.

that respect a dot-product relationship. Prior work has had one of three limitations. Some work has
discovered representations but only shown transfer with a static transfer query and did not share SF-
estimators or task-encoders across tasks (Barreto et al., 2017; Zhu et al., 2017; Barreto et al., 2017;
Filos et al., 2021). Other work has shared SF-estimators across tasks but exploited hand-designed
task encodings with static GPI queries (Borsa et al., 2019; Carvalho et al., 2023a). The Option
Keyboard (Barreto et al., 2020) transferred using a dynamic query; however, they hand-designed
cumulants and task encodings and didn’t share functions across tasks. In this work, we present
the Deep Option Keyboard, where we address all three limitations. We transfer with a dynamic
query, discover cumulants and task encodings, and learn both a task-encoder and SF-estimator
that are shared across tasks. Additionally, prior work has only studied transfer to combinations of
short-horizon “go to” tasks whereas we include longer horizon “place” tasks and do so in a 3D
environment. We summarize these differences in Table 5.1.

5.3 Background

We study an RL agent’s ability to transfer knowledge from a set nκ training tasks Ttrain =

{κ1, . . . , κnκ} to a set of n′κ transfer tasks Tnew = {κn1, . . . , κnn′
κ
}. During training, tasks are sampled

from distribution ptrain(Ttrain). At transfer, tasks are sampled from distribution ptransfer(Tnew).
Each task is specified as a Partially Observable Markov Decision Process (POMDP, (Kaelbling
et al., 1998)),Mi = 〈Se,A,X , R, p, fx〉, where Se,A and X are the environment state, action, and
observation spaces. Rewards are parameterized by a task description κ, i.e. rκt+1 = R(set , at, s

e
t+1, κ)
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is the reward for transition (set , at, s
e
t+1). When the agent takes action at in state set , s

e
t+1 is sampled

according to p(·|set , at), an observation xt+1 is generated via fx(set+1), and the agent gets reward
rκt+1. We assume the agent learns a recurrent state function that maps histories to agent state
representations, st = sθ(xt, st−1, at−1). Given this learned state, we aim to obtain a behavior policy
π(st, κ) that maximises the expected reward when taking an action at in state st: i.e. that maximizes
Qπ,κ
t = Qπ,κ(st, at) = Eπ

[∑∞
t=0 γ

trκt+1

]
. We study agents that continue learning during transfer

and aim to maximize jump-start performance (Zhu et al., 2020).
Transfer with SF&GPI requires two things: (1) state-features known as “cumulants” φt+1 =

φθ(st, at, st+1), which are useful “descriptions” of a state-transition, and (2) a task encoding
w = wθ(κ), which define “preferences” over said transitions. Reward is then defined as rκt =

φ>t w (Barreto et al., 2017). Successor Features ψπ are then value functions that describe the
discounted sum of future φ that will be experienced under policy π:

ψπt = ψπ(st, at) = Eπ

[
∞∑
i=0

γiφt+i+1

]
(5.1)

Given ψπt , we can obtain action-values for rκt as Qπ,κ
t = ψπt

>w.
The linear decomposition of Qπ,κ is interesting because it can be exploited to re-evaluate ψπ

for new tasks with GPI. Assume we have learned SFs {ψπi(s, a)}nκi=1 for tasks Ttrain. Given a new
task κ′, we can obtain a new policy π(st;κ

′) with GPI in two steps: (1) re-evaluate each SF with
the task’s query encoding to obtain new Q-values (2) select an action using the highest Q-value. In
summary,

π(st, κ
′) ∈ argmax

a∈A
max

i∈{1,...,nκ}
{ψπit

>wθ(κ
′)} = argmax

a∈A
max

i∈{1,...,nκ}
{Qπi,κ

′

t } (5.2)

Option Keyboard. One benefit of equation 5.2 is that it enables transfer to linear combinations of
training task encodings. However, it has two limitations. First, the feature “preferences” wθ(κ′) are
fixed across time. When κ′ is a complex task (e.g. avoiding an object at some time-points but going
towards it at others), we may want something that is state-dependent. Second, if we learn wθ with a
nonlinear function approximator such as a neural network, there is no guarentee that wθ(κ′) is in the
span of training task encodings. The “Option Keyboard” (Barreto et al., 2019, 2020) can circumvent
these issues by learning a transfer policy that maps states and tasks to preferences w = gθ(s, κ):

π(st, κ
′) ∈ argmax

a∈A
max

i∈{1,...,nκ}
{ψπit

>gθ(st, κ
′)} (5.3)

Learning. In the most general setting, we learn ψθ, φθ, wθ and gθ from experience. Since rewards rκ

and therefore their task encodings w reference deterministic task policies πκ, one can parameterize
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the approximator for ψπκ with its task-encoding, i.e. ψ̃πκ = ψ̃πw = ψ̃w ≈ ψθ(s, a, w). This
is known as a Universal Successor Feature Approximator (USFA) and can be learned with td-
learning (Borsa et al., 2019) with cumulants as pseudo-rewards. To discover φθ and wθ, we match
their dot-product to experienced reward (Barreto et al., 2017). We summarize this below:

Lψ = ||φθ(st, at) + γψθ(st+1, at+1, w)−ψθ(st, at, w)|| Lr = ||rτ − φθ(st, at)>wθ(τ)|| (5.4)

No prior work has jointly learned a task encoder wθ and USFA ψθ(s, a, w) while discovering
cumulants φθ. In this work, we introduce the Deep Option Keyboard to address these limitations to
enable transfer with SF&GPI and discovered representations in a large-scale 3D environment.

5.4 The Deep Option Keyboard and Categorical Successor Fea-
ture Approximator

We propose a novel Deep RL method for transfer, the Deep Option Keyboard (Deep OK), where all
necessary representations are discovered. To discover representations, we propose a new method,
the Categorical Successor Feature Approximator for jointly learning SFs ψθ, cumulants φθ, and
task encodings wθ. The rest of this section is structured as follows. In §5.4.1, we describe CSFA
and how to leverage it for pretraining. Finally, in §5.4.2, we describe how to leverage Deep OK for
transfer.

Figure 5.2: Left: Categorical Successor Feature Approximator (CSFA) estimates SFs for a task
encoding w with a structured, categorical network. Right: Deep Option Keyboard (Deep OK)
transfers by dynamically selecting combinations of known task behaviorsWtrain = {w1, . . . , wn}.
Deep OK accomplishes this by learning a policy gθ(s, wnew) that generates linear combinations
of known task encodingsWtrain. Deep OK then leverages GPI to compute Q-values for known
behaviors, Qwi,g = ψ(s, a, wi)

>gθ(s, wnew) and acts using the highest Q-value.
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5.4.1 Pretraining with a Categorical Successor Feature Approximator

We propose a novel learning algorithm, Categorical Successor Feature Approximator (CSFA),
composed of a novel architecture, shown in Figure 5.2, and a novel learning objective. Challenge:
when jointly learning a Universal SF-approximator ψθ and a cumulant-network φθ for long-horizon
tasks, ψθ needs to fit φθ-generated returns that are potentially high-variance, non-stationary, and
changing in magnitude (Barreto et al., 2018). CSFA addresses this challenge by modelling SFs with
a probability mass function (pmf) over a discretized range of continous values. CSFA then fits this
data by leveraging a categorical cross-entropy loss, enabling our estimator to give probability mass
to different ranges of values. This is in contrast to prior work that models SFs with a point-estimate
that is fit via regression (Barreto et al., 2017; Borsa et al., 2019). Leveraging a point-estimate can
be unstable for modelling a non-stationary target with changing magnitude (Raffin et al., 2021) .

Architecture. At each time-step, we update a state function sθ with an encoding of the current
observation zt = f enc(xt), the previous action at−1, and the previous state representation st−1,
i.e. st = sθ(zt, at−1, st−1). CSFA estimates an SF ψkθ (s, a, w) ∈ R for each discovered cumulant
φkθ(st, at) as the expectation of a learned probability mass function (pmf) pψk(·) over a predefined
discrete domain B = {b1, . . . , bm}, i.e. ψkθ (s, a, w) = Epψk [B], where b ∈ R and pψk ∈ Rm.
We parameterize pψk as a softmax with m logits lψk ∈ Rm produced by a network that takes in
the current state st, task encoding w, and an embedding for the current SF dimension ek, i.e.
pψk ∝ exp(lψθ (st, w, ek)). In summary,

ψθ(s, a, w) = {ψkθ (s, a, w)}nk=1 ψkθ (s, a, w) = Epψk [B] pψk ∝ exp(lψθ (st, w, ek))

(5.5)

Using a pmf allows us to re-use the same network to estimate SFs across cumulants. We hypothesize
that this provides a stronger learning signal to stabilize learning across more challenging return
estimates. We show evidence in Figure 5.4.

Learning objective. We learn to generate behavior by employing a variant of Q-learning. In
particular, we generate Q-values using learned SFs, and use these Q-values to create targets for
both estimating Q-values and for estimating SFs. For both, targets correspond to the action which
maximized future Q-estimates. We learn SFs with a categorical cross-entropy loss where we obtain
targets from scalars with the twohot(·) operator. Intuitively, this represents a scalar with likelihoods
across the two closest bins. For example, if bins increase by 1, 3.7 would be represented with
likelihoods .3 and .7 across the two closest adjacent bins (see (Schrittwieser et al., 2020) for more).

55



In summary,

yQt = rt+1 + γψθo(st+1, a
∗, wθo(κ))

>wθo(κ) LQ = ||ψθ(st, at, wθ(κ))>wθ(κ)− yQt ||2 (5.6)

yψkt = φkθo(st, at) + γψkθo(st+1, a
∗, wθo(κ)) Lcatψ =

1

n

∑
k

log p>ψktwohot(y
ψk
t ) (5.7)

a∗ = argmaxa ψ(st+1, a, w)
>w, where pψk ∝ exp(lψθ (st, w, ek)), w is a stop-gradient operation

on w. Like prior work (Mnih et al., 2015), we mitigate non-stationary in the return-targets by
leveraging target networks with old parameters θo for computing yQt and yψkt . The overall loss is
L = βQLQ + βψLcatψ + βφLr.

Important implementation details. Estimating SFs while jointly learning a cumulant function
and task encoder can be unstable in practice (Barreto et al., 2017). No work has jointly learned
all three functions while sharing them across tasks. Here, we detail important implementation
challenges that prohibited us from discovering representations that worked with SF&GPI in our
large-scale setting. D1. We found that passing gradients to wθ through ψθ(s, a, w) or through
ψθ(s, a, w)

>w during Q-learning lead to dimensional collapse (Jing et al., 2021) and induces a small
angle between task encodings. We hypothesize that this makes ψθ(s, a, w) unstable and manifests
as poor GPI performance. D2. When ||w|| is large, it can make ψθ(s, a, w) unstable. To mitigate
this, we bound w by enforcing it lies on a unit sphere, i.e. w = wθ(κ)

||wθ(κ)||
.

5.4.2 Transfer with the Deep Option Keyboard

The original Option Keyboard (equation 5.3) learned a policy that mapped states st to queries w,
w′ = g(st, κ

n). However, they used a hand-designed wθ and thus hand-designed space for w. In our
setting, we learn wθ. However, GPI performance is bound by the distance of a transfer query w′ to
known preference vectors w (Barreto et al., 2017). Thus, we want to sample w′ that are not too “far”
from known w. To accomplish this, we shift from learning policy that samples preference vectors to
a policy that samples coefficients {αi}nκi=1 for known preference vectorsWtrain = {w1, . . . , wnκ}.
The GPI query is then computed as a weighted sum. Below we describe this policy in more detail
along with how to learn it.

At each time-step, the agent uses a pretrained CSFA to compute SFs ψπw(st, a) for wi ∈ Wtrain:

zt = fθ(xt) st = sθ(zt, at−1, st−1) {ψπwi = ψθ(st, a, wi)}wi∈Wtrain
(5.8)

In our experiments, we freeze the observation encoder, state function, and task encoder and learn
a new state function and task encoder at transfer time with parameters θn. Given a new state
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representation snt , we sample coefficients independently:

w′t = gθn(s
n
t , wθn(κ

n)) =
nκ∑
i=1

αitwi where αit ∼ pθn(α
i|snt , wθn(κn)) (5.9)

We find that a Bernoulli distribution performs well. We learn this α-coefficient policy with
policy gradients (Sutton et al., 1999a), ∇Lθn =

∑
i(Rt − Vθn(s

n
t ))∇ log pθn(αi|snt , wn) where

Rt =
∑∞

i=0 rt+i+1 is the return experienced from that time-point onwards, and Vθn(snt ) is an estimate
of the return which, when subtracted, reduces variance in the gradients.

5.5 Experiments

We study transfer with sparse-reward long-horizon tasks in the complex 3D Playroom environ-
ment (Abramson et al., 2020). To transfer behavioral knowledge, we propose Deep OK for
combining behaviors with SF&GPI, and CSFA for discovering the necessary representations. In
§5.5.1, we study the utility of CSFA for discovering representations that are compatible with
SF&GPI. In §5.5.2, we study the utility of Deep OK for transferring to sparse-reward long-horizon
tasks.

Figure 5.3: Playroom.

Environment setup. We conduct our experiments in the 3D
playroom environment. Observations are partial and egocentric
pixel-based images. The agent gets no other information. Actions.
The agent can rotate its body and look up or down. To pick up an
object it must move its point of selection on the screen. When it
picks up an object, it must continuously hold it in order to move it
elsewhere. To accomplish this, the agent has 46 actions. Training
tasks. The agent experiences nκ = 32 training tasks Ttrain =

{κ1, . . . , κnκ} composed of “Find A” and “Place A near B”. |A| = 8

and |B| = 3. All tasks provide a reward of 1 upon-completion.

5.5.1 Evaluating the utility of discovered representations for SF&GPI

Our first experiments are a sanity check for the utility of discovered representations for SF&GPI. We
train and evaluate agents on the same set of tasks. However, during evaluation the agent has access to
all training tasks and must select the appropriate one with SF&GPI; given task encodingsWtrain =

{w1, . . . , wnκ}, the agent acts according to policy π(s, wi) = argmaxamaxwk{ψ(s, a, wk)>wi}.
When wk = wi, π(s, wi) = argmaxaQ(s, a, wi). This will fail if the agent hasn’t learned represen-
tations that support GPI. If an agent cannot perform GPI on training tasks, then it will probably fail
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with novel transfer tasks. Metric. We evaluate agents with average success rate. Challenges. Most
prior work has leveraged SF&GPI for combining “Find tasks” where an agent simply navigates
to objects (Barreto et al., 2018; Borsa et al., 2019; Carvalho et al., 2023a). We add a significantly
longer horizon “Place Near” task where the agent must select an object and hold it as it moves it
to another object. This tests the utility of discovered representations for learning SFs that enable
SF&GPI over long horizons.

Research questions. Q1. How does CSFA compare against baseline methods that share their SF
estimatar ψ across tasks while discovering φ and w? Q2. Is each piece of CSFA necessary?

Baselines. (1) Universal Successor Feature Approximators (USFA) (Borsa et al., 2019) is the
only method that shares an SF estimator across tasks and has shown results in a 3D environment.
(2) Modular Successor Feature Approximators (MSFA) (Carvalho et al., 2023a) showed that
leveraging modules improved SF estimation and enabled cumulant discovery. However, they did not
discover task encodings and only showed results in simple grid-worlds. Both baselines estimate SFs
with point-estimates. Comparing to them tests (a) the utility of our categorical representation and
(b) CSFA’s ability to discover both cumulants and task encodings that enable GPI in a large-scale
setting.

Figure 5.4: CSFA discovers representations compatible with GPI across short and long task-
horizons. We see that while most USFA seeds learn Find tasks, a smaller subset can perform GPI.
MSFA can do so consistently. Neither are able to learn our longer horizon task. We hypothesize
that this is because they approximate SFs with a point-estimate. (4 seeds)

CSFA discovers SFs compatible with SF&GPI while baseline methods cannot. For fair
comparison, we train each baseline with the same learning algorithm (except for SF-losses), enforce
w lie on a unit sphere, and stop gradients from Q-lerning. We found that large-capacity networks
were needed for discovering φ. In particular, we parameterized φθ with a 8-layer residual network
(ResNet) (He et al., 2016) for all methods. One important difference is that we leverage a set of
ResNet modules for MSFA since Carvalho et al. (2023a) showed that modules facilitate cumulant
discovery. Figure 5.4 shows that USFA and MSFA can perform GPI for Find tasks; however, neither
learn place tasks in our computational budget. Given that we controlled for how φ and w are learned,
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Figure 5.5: CSFA Ablations. Left. Not bounding ||w|| (D2) degrades GPI performance. Inter-
estingly, removing our categorical representation (CSFA - no categorical) gets perfect training
performance but terrible GPI performance. Right. Passing gradients to the task-encoder from the
SF-approximator leads to unstable GPI performance (D1) despite good training performance. If
CSFA does not share its SF-estimator, it seems to learn more slowly. Thankfully, each addition is
simple and together enables GPI with long-horizon place tasks. (3 seeds)

we hypothesize that the key limitation of USFA and MSFA is their reliance on scalar SF estimates.
A categorical representation is necessary. One difference between MSFA/USFA and CSFA

is that CSFA shares an estimator parameters across individual SFs. Figure 5.5 shows that when
CSFA shares an estimator but produces scalar estimates (CSFA - no categorical), GPI performance
degrades below MSFA/USFA. We hypothesize that a network producing point-estimates has trouble
estimating returns for cumulants of varying magnitude. Sharing our estimator across cumulants
is necessary. If we keep our categorical representation but don’t share it across cumulants (CSFA -
independent), GPI performance degrades on our long-horizon place near task. Stopping gradients
from Q-learing is necessary. Interestingly, when we pass gradients to the task-encoder from
Q-learning (CSFA - no stop grad), we can get perfect train performance on place tasks but highly
unstable GPI performance. We found that passing gradients leads to dimensional collapse (Jing
et al., 2021). We hypothesize that this makes ψθ unstable. Likewise, if we don’t bound tasks (CSFA
- no ||w||), we find degraded GPI performance compared to training but for even simpler tasks.
While other methods may work, enforcing w lie on a unit-sphere is a simple solution.
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5.5.2 Transferring to combinations of long horizon tasks

Our second experiments test the utility of Deep OK for transferring to combinations of long horizon,
sparse-reward tasks. Transfer tasks are conjunctions of known known tasks. Subtasks can be
completed in any order but reward is only provided at task-completion. Find tasks contribute a
reward of 1 and place tasks contribute a reward of 2.

Research questions. Q3. How do we compare against baseline transfer methods? Q4. How
important is it to use CSFA and to sample coefficents over known task encodings?

Figure 5.6: Deep OK transfer most quickly to longer horizon tasks. Distral and MTRL learn an
about the same speed, though Distral is slightly faster. For put x 3, where the agent needs to do 3
place tasks (A near B, C near D, and E near F) Deep OK learns with 100+ fewer samples. (9 seeds)

Baselines. (1) Multitask RL (MTRL). We train an Impala (Espeholt et al., 2018) agent on
all training tasks and see how this enables faster learning for our transfer tasks. We select Impala
because it is well studied in the Playroom environment (Chan et al., 2022; Hill et al., 2019; Abramson
et al., 2020). (2) Distral (Teh et al., 2017) is a common transfer learning method which learns a
centroid policy that is distilled to training task policies. Comparing against MTRL and Distral tests
the utility of combining behaviors with SF&GPI.

Q3: Deep OK has better jumpstart performance. Figure 5.6 shows that all methods get
similar performance by 500 million frames. However, for longer task combinations (Put 2 times
or 3 times), Deep OK gets to similar performance with far fewer frames. When we remove our
curriculum (Figure 5.7) this gap further increases. No method does well for our longest task (Put
x 4) which involves 8 objects. We conjecture that one challenge that methods face is holding an
object over prolonged periods of time. If the agent selects the wrong action, it will drop the object
it’s holding. This may make it challenging when there’s some noise from either (a) centroid task, as
with Distral, or (b) SF&GPI as with Deep OK. Despite not reaching optimal performance, Deep
OK provides a good starting point for long-horizon tasks.

Q4: Leveraging CSFA and sampling coefficents over known task encodings is critical to
jumpstart performance. Figure 5.8 shows us that if we don’t leverage CSFA to estimate SFs and
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Figure 5.7: Deep OK transfers most quickly with no curriculum of shorter tasks. Deep OK
and Distral reach the same performance but Deep OK is 200+ million frames faster. MTRL fails to
transfer here. For “Put x 4”, Deep OK is suboptimal but achieves some success. (8 seeds)

instead use USFA, Deep OK fails to transfer. We hypothesize that this is because of the USFA
uses point-estimates for SFs, which shows poor GPI on training tasks (see Figure 5.4) so its not
surprising it fails on novel transfer tasks. We find that directly sampling from the encoding space
does not transfer nearly as quickly. Empirically, we find that learned task encodings tend to have a
high cosine similarity, indicating that they occupy a relatively small portion of the possible encoding
space. We hypothesize that this makes it challenging to directly sample in this embedding space to
produce meaningful behavior.

5.6 Discussion and conclusion

We have presented Deep OK, a novel method for transfer that adaptively combines known behaviors
using SF&GPI. To discover representations that are compatible with SF&GPI, Deep OK estimates
SFs with a novel algorithm, CSFA. CSFA constitutes both a novel architecture (of the same name)
which approximates SFs with a pmf over a discretized continous values and a novel learning
objective which estimates SFs for discovered cumulants with a categorical cross-entropy loss.

We first showed that CSFA is able to discover SF&GPI-compatible cumulants and task encodings
for long-horizon sparse-reward tasks in the 3D Playroom environment (§5.5.1). We compared CSFA
to other methods which share their approximator across tasks: (1) USFA, which showed results in a
3D environment but hand-designed representations, and (2) MSFA, which discovered cumulants
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Figure 5.8: Deep OK ablation. Deep OK fails to transfer if we remove CSFA. We find that
sampling directly in task-encoding space instead of sampling binary coefficents is both slower to
learn and has higher performance variance. We hypothesize that this is due to concentation in the
task encoding space. (6 seeds)

but did so in gridworlds with hand-designed task encodings. We additionally compared against an
ablation which removed our categorical representation and or did not share it across cumulants. Our
results show that a categorical representation over discretized values can better handle estimating
SF-returns when discovering cumulants and task encodings for long-horizon sparse-reward tasks.

We built on these results for our second set of experiments and showed that Deep OK provides
strong jumpstart performance for transfer to combinations of training tasks (§5.5.2). We compared
Deep OK to (1) Mulitask RL (MTRL) pretraining and finetuning, and (2) Distral, which distills
knowledge back and forth between a task-specific policy and a “centroid” policy. Our results
showed that, for long-horizon tasks, Deep OK could transfer with 100 million+ fewer samples when
a curriculum was present, and 300 million+ fewer samples when no curriculum was present.

Limitations. While we demonstrated discovery of cumulants and task encodings that enabled
transfer with a dynamic SF&GPI query, we relied on generating queries as weighted sums of known
task encodings. A more general method would directly sample queries from the task encoding space.
We found that the task encodings we discovered were fairly concentrated. Future work may mitigate
this with contrastive learning (Schroff et al., 2015). This respects the dot-product relationship
of cumulants and task encodings while enforcing they be spread in latent space. Finally, while
we demonstrated good jumpstart performance for long-horizon tasks, we did not reach optimal
performance in our sample budget. Despite building on the Option Keyboard, we did not employ
options as we sampled a new query at each time-step. Future work may improve performance by
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sampling queries more sparsely and by implementing a latent “initiation set” (Veeriah et al., 2022).
These results present the first demontration of transfer with the Option Keyboard (SF&GPI with

a dynamic query) when all representations are discovered and when the task-encoder and SF-
approximator are shared across tasks. This may enable other methods that leverage SFs in a
multi-task settings (e.g. for exploration (Janz et al., 2019) or for multi-agent RL (Filos et al.,
2021; Gupta et al., 2021)) to leverage discovered representations. More broadly, this work may
also empower neuroscience theories that leverage SFs as cognitive theories (e.g. for multitask
transfer (Tomov et al., 2021) or for learning cognitive maps (De Cothi et al., 2022)) to better
incorporate discovered representations. We are hopeful that Deep OK and CSFA will enable SFs to
be adopted more broadly with less hand-engineering.
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CHAPTER 6

Conclusion

The thesis of this disseration is that leveraging sparsely connected and structured neural networks in
the core components of an RL learner can enable the discovery of representations which improve
sample-efficiency and generalization. In Chapter 1, I motivated this by recent advancements in
AI, which have shown that such structured neural networks can improve sample efficiency and
generalization in computer vision and natural language processing. However, this research was
also motivated by literature in cognitive neuroscience which suggests that structured, predictive
representations are key to human learning speed and generalization. In this final chapter, I will
connect the work in each chapter to literature in cognitive neuroscience, describe what artificial
intelligence can still glean from these findings, and postulate how this work may contribute to future
research in cognitive neuroscience.

6.1 Summary of contributions in context of
cognitive neuroscience

In Chapter 2, I drew from evidence suggesting that humans learn predictions about objects in
the environment. In particular, cognitive science has found evidence that infants expect objects to
have continuity (i.e. they can’t pass through each other), cohesiveness (they can’t spontaneously
break apart), and solidity (they can’t occupy the same space) (Spelke, 1990). Within neuroscience,
prominent theoretical accounts of human vision assert that representations in the inferior temporal
cortex and in the occipital and temporal lobes are explicitly about object categories (Kriegeskorte
et al., 2008; DiCarlo et al., 2012). Given this evidence, I hypothesized that learning object-oriented
predictions would enable the discovery of object-centric representation that reduced the nuber
of samples an agent needed for sparse-reward object-interactiont tasks in a photorealistic 3D
environment.

To test this hypothesis, I developed an agent which learned an object-centric transition model
where predicting how an object evolved was formalized as a classification problem. In this setting,
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the agent predicted an object’s next state and them compared its prediction to “incorrect” object-
states randomly sampled from the agent’s experience. This simple solution enabled unsupervised
discovery of representations which captured an object’s category (is it a toaster?), its properties
(is it on?), and object-relations (is something inside of it?). From a sample-efficiency perspective,
our method learned as quickly as an agent equipped with hand-designed object-representations.
However, one limitation of this work was that I relied on an agent having access to an object-detector
to segment its perception into useful pieces.

In Chapter 3, I sought to mitigate this limitation by exploiting a mixture of modularity and
visual attention. Neuroscience researchers have argued that brains have sets of “expert” modules
that specialize on different aspects of sensory data. The argument is that leveraging modules enables
generalization to novel combinations of sensory inputs and to system perturbations (Graybiel
et al., 1994; Ghahramani and Wolpert, 1997; Gershman et al., 2009). For example, Ghahramani
and Wolpert (1997) presented a neuroscience model for visuomotor learning where different
modules were responsible for representing different parts of a state space. They showed that this
parameterization enabled a visual system to generalize to new starting states and to environment
perturbations where the agent’s actual location different from its perceived location.

Brains seem to exploit modules to represent subsets of perception. However, most models assume
fixed, hand-designed functions for how module select their inputs (Graybiel et al., 1994; Ghahramani
and Wolpert, 1997; Gershman et al., 2009). In neuroscience, researchers have suggested attention
models to explain how processes in the visual system select inputs from each other (Sperling and
Weichselgartner, 1995; Sperling, 2018).

My hypothesis was that the combination of modularity and attention would enable discovering
useful object representations with fewer assumptions and improve generalization across object-
centric environments. To test this hypothesis, I developed state modules that discovered generically
useful state factors by using attention to select their own inputs. We found that this enabled
the discovery of useful object primitives that were distributed across subsets of modules. For
example, we found evidence that combinations of modules learned to represent primitive state
events such as moving around an obstacle and picking up goal objects. Additionally, this also
enabled generalization to longer tasks with more distractor objects across a diverse set of object-
centric environments. Despite these promising results, one limitation of this work was that it only
enabled generalization to variations of a task—a more general method would allow for generalization
to combinations of known tasks.

In Chapter 4, I sought to enable generalization to combinations of tasks by drawing on a popular
neuroscience representation scheme known as “successor representations” (Dayan, 1993) and its
deep learning generalization, “successor features” (Barreto et al., 2016). As a reminder, successor
features are predictive representations that represent states with predictions of what features will
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follow. Interestingly, there is significant evidence that brains learn successor features. For example,
neuroscience researchers have found that successor features to explain how place fields represent
cognitive maps (Stachenfeld et al., 2017), why transferring to new rewards is easier than transferring
to new transition functions (Momennejad et al., 2017), and how humans re-apply behaviors to
new tasks (Tomov et al., 2021). One limitation of both neuroscience and AI research leveraging
successor features is that they commonly rely on hand-designed representations. To both develop
scalable AI algorithms and to model human learning, we need algorithms that can work with sensory
data such as visual observations.

In the previous chapter, I showed that learning modules enabled the discovery of useful state
primitives. In this chapter, I hypothesized that modules could be used to discover the features that
successor features would form predictions over. To accomplish this, I developed an agent that learned
successor feature modules where individual modules both discovered what is useful to predict and
learned successor features over over these discovered representations. By learning successor
feature modules, we not only get generalization to task variations, we also get generalization to
combinations of tasks. For example, once an agent has learned to pick up an apple and a potato, it
can now pick up combinations of apples and potatoes for free. By leveraging modules, we were able
to discover the features that were used to represent these objects. Additionally, this solution enabled
zero-shot transfer that was competitve to methods that used hand-designed features. Despite these
benefits, we faced two major obstaces. The first is that successor features rely on hand designed
task representations—and we were not able to circumvent this requirement. The second is that one
transfers to a task task with a fixed transfer task representation. This prevented us from transferring
to tasks that involved both conjunctions and sequences of known tasks.

In Chapter 5, I sought to address these challenges by drawing on inspiration from literature
on hierarchical reinforcement learning. Significant evidence suggests that humans and animals
are able to chain behaviors sequentially in-time by leveraging a meta-controller which adaptively
selects subgoals for an agent to follow (Botvinick, 2012; Botvinick and Weinstein, 2014; Merel
et al., 2019). Brains seem to leverage hierarchical RL to chain behaviors. Brains also seem to use
successor features to transfer behavioral knowledge. Is there a way to integrate the two of these?

One limitation of the algorithm we used in Chapter 4 was that we transferred to new tasks
with a fixed representation for transfer tasks. In this chapter, we mitigated this challenge by
having the transfer representation be time-dependent and addressed how to leverage learned task
representations. The lesson of this work is much the lesson of contemporary deep learning and deep
reinforcement learning: the pieces to solve the problem already exist in the literature; however, we
need careful engineering to figure out how to leverage them in large-scale settings. Discovering all
representations needed for learning successor features leads to a non-stationary prediction problem
that is challenging to learn with standard methods. However, if we learn successor feature modules
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that represent successor features with a categorical representation and leverage sparse, structured
neural networks for discovering features, we can discover all representations for transfer with
successor features and transfer to both conjunctions and sequences of tasks.

6.2 Towards more human-like human-level AI

Currently, human intelligence in its broad flexibility — its ability to learn diverse and dispirate tasks,
its ability to learn and generalize in the real world — is unrivaled by artificial intelligence. What are
some of the key ingredients to human-like human-level intelligence?

Discovering objects. Humans have an extraordinary ability to uncover structure that is present
in the environment. I began this chapter by describing one source of structure that humans are
well-equipped to discover: objects. In Chapter 2, I imbued an AI agent with the ability to detect
objects by providing it an object detector. While I didn’t assume knowledge of object information
(e.g. categories or properties), I found that I was still limited by the detector as this placed a ceiling
on what our agent could learn about.

While humans learn object-oriented representations, the objects which we hold in our minds
can be quite diverse. We can reference a cup on a table, the moon in the sky, the forest in front of
us, and the particles in our cup. Humans seem to capable of delienating arbitrary aspects of their
perception into useful “objects” to use for reasoning. If the sky seems dark, I may reason that it will
rain and choose to stay indoors. If our office building’s lights are off, I may reason that it is closed
and that I cannot enter it. If we are to imbue machines with object-oriented representations, we need
algorithms that make minimal assumptions about the format of those objects. Recent research has
shown that simply learning a structured transition model over a structured state space can enable
the discovery of objects (at least in rudimentary settings) (Kipf et al., 2019). This suggests that
the key to object discovery may lie in combining that right prediction problem with the right set of
(minimal) assumptions.

Returning to cognitive neuroscience, these methods may provide theoretical models for how
brains discovers object representations. Recently, Konkle and Alvarez (2022) showed that con-
trastive learning that simply contrasts pairs of images can explain representations in lower layers
of the ventral stream but fails to capture more object-oriented features in the inferior temporal
cortex. The method we introduced in Chapter 2 is a strict generalization of their method where
we leverage contrastive learning with a structured world model. Thus, given the ability of these
methods to enable object-discovery, perhaps our algorithm can inform future theories for how
object-representations are learned brain regions such as the inferior temporal cortex.

Discovering agents. In addition to object-oriented representations, evidence suggests that
humans leverage agent-oriented representations. Cognitive science research has shown that early in
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infancy humans have expectations that agents will have (a) beliefs about the world, (b) goals they
pursue subject to constraints, and (c) pursue goals in an efficient manner (Spelke and Kinzler, 2007;
Jara-Ettinger et al., 2020). This brings to question: is there a basic prediction problem and set of
minimal assumptions to enable agent discovery in artificial systems? Keeping to the theme of this
thesis—consider enforcing a structured state function as we did in chapters 3 and 4—perhaps we
can discover agent-oriented primitives by learning to predict a state factor’s (a) policy (b) reward
function and (c) value function? This might enable AI agents to discover representations of state
factors as agents that efficiently pursue goals as “optimal” RL agents.

Generally discovering primitives in a large and complex world. In both Chapters 3 and 4, I
found that simply leveraging modules enabled the discover of useful primitives which promoted
generalization. This is consistent with other work in which structured, modular neural networks
facilitate feature discovery. For example, Transformers have multiple attention “heads” where
different heads will capture different syntactic structures in language. When I did secondary analysis,
I found a lot of redundancy among the modules. People have found similar with Transformers.
Many modules can be effectively “zeroed-out” and the agent would still generalize. Reflecting on
this work and on the state of current in-simulation AI research, I conjecture that we don’t currently
have rich and sophisticated enough environments to benefit from modularity. For these experiments,
I was able to recover our results with just 2 or 4 modules. Presumably, the benefit of having dozens
of even hundreds of modules will come when we have such rich and varied environments and
an agent needs to reserve sparse subsets of modules to represent radically different aspects of its
experience. Rather than learning in a single house, I suspect we will need environments where an
agent must learn within a neighborhood or city filled with diverse houses and rich terrains that the
agent must traverse over.

Planning with a causal world model. One key finding of this thesis is that simply adding
structure and enforcing sparsity within a state function can facilitate the discovery of useful
primitives for representing the environment. Having explicit state factors can enable relational
reasoning over these factors. One key human ability is our ability to identify causal variables and
infer a causal structure for our experience (Goddu and Gopnik, 2020; Gerstenberg et al., 2021;
Wente et al., 2019). Recently, cognitive scientists have tried to imbue this into RL agents and dubbed
it “Theory-based RL” (Tsividis et al., 2021), in reference to the theory-theory (Gopnik and Wellman,
1994). Here, RL agents infer “theories” for their environments as causal models which they then
use for planning. While this is an exciting direction for RL, it thus far has relied on hand-designed
representations of possible objects and interactions. Given the findings of this thesis, I posit that
adding structure and enforcing sparsity may enable “Theory-based Deep RL”, where the primitives
that are the basis for causal inference can be discovered rather than hand-engineered. If we can
develop Theory-based Deep RL agents, perhaps we can begin to form theoretical models for how
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humans are able to plan with causal models in rich, high-dimensional, pixel-based environments
that are filled with a multitude of diverse and unfamiliar objects and interactions.

Transferring object-oriented behavioral skills. Chapters 4 and 5 focused on discovering
representations that enabled transfer with successor features. To discover these features, I setup a
prediction problem where the features had to predict the environment reward signal. While general,
this meant that the resultant features were limited by the reward signal and could only represent the
aspects of the environment that defined reward. A more general method would learn to represent
and form predictions over arbitrary aspects of the environment. But how do we enable an agent to
discover features (and thus predictions) over broad and general aspects of the environment?

Cognitive science tells us that humans learn predictions over representations of objects. This
thesis and concurrent work (Kipf et al., 2019) has shown that learning a structured world model
can enable the discovery of object-oriented representations. If features that defined rewards are
covered by the features that describe objects, then the features discovered by a structured world
model might be good candidates to learn successor features over. If we can learn successor features
over discovered object representations, this may enable an agent to mix-and-match object-oriented
behavioral predictions with object-oriented subgoals for flexible recombination of its behavioral
skills. Consider an object-oriented representation of the environment which indicates that the
refridgerator has vegetables while cabinets have dishware. Behaviors oriented around objects
then become gateway predictions to the other objects present: opening the refridgerator leads to
vegetables and opening the cabinet leads to dishware. Such “object-oriented” successor features may
be key to flexible, human-like behavioral transfer for artificial agents. From a cognitive neuroscience
perspective, we know that humans leverage both object-oriented representations and successor
feature like representations. This research may thus inform theoretical models for how humans
compose object-oriented behavioral skills.

What role do large language models play in this picture? Large language models (LLMs)
are a class of unsupervised learningLarge language models (LLMs) are a class of unsupervised
learning algorithms that, given some context of words (e.g., sentences), learn to predict the next
word. One of the most surprising developments of the 21st century is that if you train these LLMs
on petabytes of human data, they begin to produce both human-like and human-level behavior for
text-based reasoning. This has led some to coin LLMs as effectively "amortized humans". LLMs
are a powerful and interesting ingredient in producing both human-like and human-level intelligence
due to their ability to mimic human-like behavior in text and reproduce it at what seems like a
human-level.

LLMs can effectively capture any knowledge that humans know how to put down into text. This
can be either in the form of explicit rules (e.g., the rules of chess) or exemplar-based definitions that
define abstract patterns governing rules. However, humans possess a lot of tacit knowledge that we
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do not know how to write down. Perhaps the most notable is the social domain. When we interact
with each other, we leverage tacit knowledge to map people’s tones, inflections, talking speed, and
body language to their emotional and mental states. Speaking quickly, for instance, might indicate
nervousness, excitement, or joy, depending on the situation and individual personality, which is
often implicitly defined within our minds. Body language also plays a role in this.

LLMs, in their current incarnation, rely on the premise that significant amounts of knowledge
can be discovered by learning to predict the next pieces of data based on a history of data. This
approach has worked remarkably well in language domains where we have petabytes of data to
learn from. In fields like mathematics, computer science, and law—due to copious amounts of
high-quality, human-generated data—this enables the development of human-level AI assistants.
However, in other domains, such as social reasoning, we lack copious amounts of high-quality data.

Additionally, in domains like video, it is unclear whether the strategy of simply predicting the
next data point is a feasible learning problem for capturing the structure inherent in the data. This
is because videos consist of sequences of high-dimensional images, whereas language consists of
highly compressed, well-defined tokens. Whether the training regime for LLMs is sufficient for
these challenges remains uncertain. While I do not claim to have the answer, I merely highlight this
challenge and emphasize that achieving human-like, human-level intelligence will require the ability
to acquire tacit knowledge in areas such as social reasoning and with complex data modalities such
as video.

6.3 Concluding Remarks

We have shown that leveraging sparsely connected and structured neural networks in the core
components of an RL learner can enable the discovery of representations which improve sample-
efficiency and generalization. This hypothesis was motivated by cognitive neuroscience research
that has argued that structured functions over objects and agents is key to human-like human-level
intelligence. While human intelligence may not be the pinnacle of all possible intelligences, it is a
fascinating exemplar. I hope this thesis provides inspiration to future work in AI that aims to draw
inspiration from cognitive neuroscience and to future work in cognitive neuroscience that aims to
draw inspiration from AI. While this thesis may only be a few bricks of the bridge between the two
fields, I hope that it contributes to a new era of understanding for how intelligence may flourish in
an environment as complex as the real world.
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