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a
Abstract

Most data sets from sample surveys contain incomplete observations for various reasons,
such as a respondent’s refusal to answer questions. Unfortunately, most analysis tools
assume complete data sets. When applying such tools to incomplete data, researchers
are limited to using either complete observations or complete variables, which can
have problematic consequences: biased and inefficient estimates, and decreased power
in statistical tests. However, often, the challenges of missing data can be circumvented
through sequential imputation (SI), an iterative procedure that imputes missing values
variable by variable, conditioning on observed or previously imputed values of other
variables. SI generates a complete data set that can be analyzed using standard an-
alytical tools. Multiple imputation, which generates multiple data sets with different
draws of the missing values, can be used to improve efficiency and provide inferences
that take into account imputation uncertainty.

Various procedures have been proposed for SI, and each procedure involves a choice
of options, which can lead to subjectivity in the imputation process. Further, data
are mainly analyzed with a substantive question in mind and missing data imputation
might not be the primary focus of an analyst. To address these issues, previous studies
compared different procedures to find the best way to apply SI. However, they often
rely on one assessment strategy, e.g., simulated data only, and often compare only a
small number of procedures. These shortcomings lead to findings with low general-
izability. This dissertation tries to close this gap by comparing multiple parametric
and non-parametric procedures for multiple imputation within the SI framework and
to automate and reduce sensitivity in the SI process.

Study One compares several parametric and non-parametric procedures for SI. The
evaluation uses a simulation approach, analyzing data from 1) parametric models, 2)
non-parametric models, and 3) a real survey data set, a publicly available version of the
National Health and Nutrition Examination Survey (NHANES) data. The procedures
to be compared include parametric and tree-based procedures. The first study finds
that there is no overall best performing method. However, we provide guidance for

xvi



practice based on the simulation, taking into account the data situation and required
modelling effort.

Study Two proposes a modified SI procedure in which the assessment of different pro-
cedures is automated. The study develops criteria for binary, nominal, and continuous
incomplete variables to assess imputation methods within SI in an automated and ob-
jective fashion. The modified SI process is assessed via a simulation study using data
from the NHANES. This study provides methodology for a more automated SI proce-
dure with included plausibility checks for a potential application to high-dimensional
data sets with missing values, where specifying models via a human imputer is ineffi-
cient.

Study Three investigates the use and implications of incorporating response indicators
(RIs) for covariates in the imputation process. This approach leads to imputation un-
der a missing-not-at-random (MNAR) model. A literature review provides insights into
how to include RIs for predictors into models with different analysis goals. Further-
more, a targeted simulation study suggests data situations and analysis goals where
this approach is sensible. The simulation shows that, under MAR, methods including
RIs perform as well as those without them. In MNAR scenarios, methods including
RIs can improve performance.

xvii



Chapter 1

Introduction

Missing values are increasingly present in survey data sets. Two of multiple rea-
sons for incomplete observations are item nonresponse (Groves, 2004) and unit nonre-
sponse (Lessler & Kalsbeek, 1992). Additional causes are partial responses like survey
breakoffs (Peytchev, 2009) and panel attrition (Freedman et al., 1980; Kalton, 1986).
Related to this, refusal to participate in complementary data collection, such as the
collection of biomarkers (Sakshaug et al., 2010; Schonlau et al., 2010) also results in
missing data. Another cause is associated with the latest attempts to link survey data
to other data sources, such as administrative records. This occurs in two ways: first,
respondents do not consent to link the data (Sakshaug & Kreuter, 2012), and second,
linking those data sources can fail (Sayers et al., 2015). Furthermore, high numbers of
missing values can also result from survey data linked to automated measures, such as
sensor data (Bähr et al., 2022).

Most analysis tools assume complete data sets. Therefore, when these tools are applied
to complete cases of a data set only, the reduced sample size implies a loss of information
resulting in a loss of power, especially when many incomplete variables are included
in the analysis. Generally, complete case analysis also assumes that missing values are
missing completely at random (MCAR) (Little & Rubin, 2019, Chapter 1.3), which is
often unrealistic, because this means that the probability of observing a value does not
depend on either observed or unobserved variables. If this strong assumption does not
hold, the results of the analysis may be biased.

In order to analyze all available observations, whether complete or not, with standard
analysis tools, imputation procedures have been developed (Rubin, 1978, 1996). One
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such imputation procedure is multiple imputation (MI), where multiple complete data
sets are produced and then analyzed independently, after which the results are com-
bined for inference purposes (Rubin, 1987, Chapter 3). MI of the missing data can
be applied under the weaker missing at random (MAR) assumption (Little & Rubin,
2019, Chapter 1.3) prior to the actual data analysis. This approach also incorporates
the uncertainty about the process of predicting the missing values (Little & Rubin,
2019, Chapter 5.4). Importantly, this MI procedure allows all available information to
be utilized in a subsequent analysis and, if MAR holds, produces unbiased estimates.

One common way to perform MI is sequential imputation (SI) (e.g., Raghunathan
et al., 2001), an iterative procedure that imputes missing values variable by variable.
One limitation, however, is that the SI framework needs a well-specified model for each
incomplete variable in the data set to provide reasonable predictions of the missing
values. In this process, model specification can become a complicated task for an
imputer, particularly for data sets with many (incomplete) variables. Thus, a more
automated and less burdensome model specification procedure may be desirable given
the current trend towards larger (survey) data sets, which more frequently are including
data from automated measures, such as sensor data with potentially high numbers of
missing values (Bähr et al., 2022), and other data sources (Callegaro & Yang, 2018).
Such a procedure would also be desirable for other high-dimensional data, such as when
information added to a study creates a missing data problem (Gu et al., 2019).

In theory, SI can be performed using many different procedures, such as regression
models (Raghunathan et al., 2001; Van Buuren & Groothuis-Oudshoorn, 2011) or
supervised learning procedures (e.g., tree-based (Burgette & Reiter, 2010; Doove et
al., 2014; Loh, Eltinge, et al., 2019; Shah et al., 2014; Xu et al., 2016); neural networks
(Nordbotten, 1996); support vector machines (Aydilek & Arslan, 2013; Sivapriya et
al., 2012)). SI further allows each procedure to then be applied in many different ways
(i.e. different specification and parameterization). These many options, however, lead
to subjectivity in the imputation process, which threatens reproducible science (Munafò
et al., 2017); different researchers might reach different conclusions based on the same
data set. In addition to this problem, data are typically analyzed with a substantive
question in mind and missing data imputation (and other data preparation steps) might
not be the primary focus or interest of an analyst. To address these issues, many studies
have proposed and compared different procedures and model types within SI in order
to find the best way to apply SI and guide practitioners. Some of the most cited
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examples are Burgette and Reiter (2010), who compare classification and regression
trees (CART) and linear regression and Shah et al. (2014), who compare random
forests (RF) with linear models and predictive mean matching. Although these studies
have advanced the field, they often rely on one assessment strategy, e.g., simulated data
only, and often compare only a small number of procedures and model types, i.e. the
current standard and the new procedure. These shortcomings lead to findings with
low generalizability. This dissertation tries to address these limitations by comparing
multiple parametric and non-parametric procedures for MI within the SI framework
in different ways, and also tries to further automate and reduce subjectivity in the
imputation model selection process.

The first study in this dissertation (Chapter 2) focuses on comparing several parametric
and non-parametric models/procedures within SI for incomplete continuous variables.
The evaluation uses a simulation approach, analyzing data from 1) parametric mod-
els, 2) non-parametric models, and 3) a real survey data set, namely, the publicly
available version of the 2015-2016 National Health and Nutrition Examination Sur-
vey (NHANES). The procedures to be compared include Bayesian linear models and
regularized linear models on the parametric side, and, on the non-parametric side,
tree-based methods, namely regression trees, random forests, and Bayesian additive
regression trees, and predictive mean matching. The methods are assessed using the
quantitative properties (Bias, RMSE, confidence interval coverage) of estimated coeffi-
cients of a regression model fitted to the multiply imputed data set. This study provides
an in-depth assessment of parametric and non-parametric imputation procedures based
on simulated data and real data.

In the second study (Chapter 3), we also compare different procedures for imputation.
However, the assessment does not solely evaluate the MI process after completion,
but proposes a modified SI process where the assessment of different procedures is
automated. Two different criteria are developed to assess several different imputation
methods within SI in an automated and objective fashion. The criteria are developed
for continuous incomplete variables and adapted for both binary and nominal cases.
In a case study, we compare the enhanced SI process against one of the state-of-the-
art procedures based on the current literature (Doove et al., 2014; Shah et al., 2014),
imputation via random forest within the software package MICE, using a simulation
process based on the NHANES data. The evaluation focuses on quantitative properties,
similar to the first study, and also reports run time assessing applicability. This study
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provides theory for a more automated SI procedure with plausibility checks for an
application to high-dimensional data sets with missing values, where specifying models
via a human imputer is inefficient.

The third study (Chapter 4) investigates the overall use and implications of incor-
porating response indicators in covariates in the imputation process, which leads to
imputation under a missing not at random (MNAR) model (Little & Rubin, 2019, pp.
11–19). This practice is advocated by Loh et al. (2019), Ding and Simonoff (2010),
and Twala et al. (2008). However, it has been criticized by Little (2020) who shows
theoretically that in the simplest (3 variable) case it leads to implausible assumptions.
The third study reviews the literature on including response indicators as predictors in
models and algorithms. The study also includes a simulation that investigates MAR
and MNAR data situations and compares methods that include and exclude response
indicators in the imputation model. The methods are assessed in two different ways.
The first set of assessment criteria are the quantitative properties (empirical bias,
RMSE, confidence interval coverage) of estimated coefficients of a regression model
fitted to the multiply imputed data set. This set of criteria focuses on model-based
inference after imputation, incorporating uncertainty about the predicted values. The
second criterion consists of the mean of the squared difference between imputed and
observed (“true”) values on multiply imputed data, which focuses purely on prediction
accuracy.
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Chapter 2

Parametric Models vs. Trees for
Missing Data Imputation

Abstract
Chained equation multiple imputation (CEMI) is a common way to deal with missing
values in survey data. Many different CEMI procedures have been proposed over the
past two decades. This study compares a set of parametric models (Bayesian [regu-
larized] linear models, predictive mean matching) with several tree-based approaches
(classification and regression trees, random forest, Bayesian additive regression trees)
for CEMI of missing data. Since different methods may be more suitable for different
data situations, the different methods are assessed in three ways: a comparison based
on data simulated from 1) parametric models; 2) non-parametric models; and 3) a real
data set. We find that there is no overall best method. However, we provide guid-
ance for practice based on the simulation, taking into account the data situation and
required modelling effort.

2.1 Introduction

Unit and item nonresponse are increasing in survey data sets (e.g., Groves (2004)
and Lessler & Kalsbeek (1992)). Additional causes are partial responses like survey
breakoffs (Peytchev, 2009) and panel attrition (Freedman et al., 1980; Kalton, 1986).
Related to this, refusal to participate in complementary data collection, such as the
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collection of biomarkers (Sakshaug et al., 2010; Schonlau et al., 2010) also results in
missing data. The latest attempts to link survey data to other data sources, such as
administrative records, can also cause missing values. This occurs in two ways: first,
respondents do not consent to link the data (Sakshaug & Kreuter, 2012), and second,
linking those data sources can fail (Sayers et al., 2015). Furthermore, high numbers of
missing values can also result from survey data linked to automated measures, such as
sensor data (Bähr et al., 2022).

Most analysis tools assume complete data sets. When applying these tools to incom-
plete data, researchers are limited to using either complete observations or complete
variables. These restrictions can be problematic, yielding biased estimates and de-
creased power in statistical tests due to reduced sample sizes. Chained equation mul-
tiple imputation (CEMI) (see Raghunathan et al. (2001); Van Buuren et al. (2006))
is a popular method for addressing those issues. Developments of CEMI procedures
include Finkbeiner (1979), Raymond & Roberts (1987), Jinn & Sedransk (1989), and
Gold & Bentler (2000). The CEMI process repeatedly imputes missing values in a data
set variable-by-variable conditional on all other available variables; generates several
completed data sets that can be analyzed using standard analysis tools; and provides
inference based on simple multiple imputation combining rules (Rubin, 1987). Unlike
the restricted complete observations/variable analysis, CEMI can lead to valid point
and variance estimates under weaker assumptions on the data (Little & Rubin, 2019,
Chapter 1.3).

One weaker assumption is called missing at random (MAR), which assumes that the
distribution of missing data is related to the observed (measured) variables only. The
weakest assumption on missing values is missing not at random (MNAR) (Little &
Rubin, 2002, pp. 11–19). MNAR allows missingness to depend on missing variables
after conditioning on variables that are observed.

The CEMI process usually assumes MAR. The procedure first fits a model on the
most complete variable and imputes all missing values of this variable based on the
posterior predictive distribution of the model. These imputed values are then used in
conjunction with the observed values to fit the imputation model for the next variable,
and so on. This process continues iteratively over all incomplete variables substituting
the imputed values with the new predictions in each iteration (Raghunathan et al.,
2001). Many different procedures for CEMI have been proposed. For instance, when
applying Bayesian regression models in the CEMI process, the model parameters are
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drawn from their posterior distributions; after which, plausible values for the missing
values in one outcome variable are drawn (Rubin, 1987, pp. 166–167).

While CEMI with Bayesian regression models fulfill the criteria for proper imputa-
tion methods (Rubin, 2004, pp. 116–131), they have potential drawbacks in practice.
First, every regression model needs to be specified in advance, which can lead to high
modeling effort when the number of incomplete variables is high and the risk of mis-
specification (Van Buuren et al., 2006). Second, fitting Bayesian models in CEMI can
be computationally intensive, given the iterative nature of the procedure (Raghunathan
et al., 2001; Van Buuren et al., 2006).

To overcome the first drawback, Zhao and Long (2016) and Deng et al. (2016) use
regularized regression procedures. Specifically, Deng et al. (2016) compares LASSO,
adaptive LASSO, and elastic net regularization in two different ways. First, the regu-
larized model is fit to complete cases of a bootstrap sample. The imputed values are
then randomly drawn from the predictive distribution of this model. Second, regu-
larized regression identifies a subset of the most important covariates, followed by a
standard regression model for imputation using the identified subset. The authors find
elastic net regularization to be superior in most tested scenarios. Although Zhao and
Long (2016) and Deng et al. (2016) show regularization as a promising approach to
avoid misspecification, the reported studies also have shortcomings. They simulated
main effects only and the missingness mechanism is also only based on main effects of
covariates. Further, the simulated data follow (multivariate) normal distributions and
other continuous distributions or categorical variables are not investigated.

Another practical approach to CEMI is predictive mean matching (PM). In the case of
one incomplete variable, PM predicts the values of the missing observations based on
a model (with the incomplete variable as the outcome) fit to the completely observed
portion of the data. Next, for each of these predicted values, the procedure selects
a set of potential donor observations from the complete cases. A randomly drawn
observation from the set of potential donors is used to replace a missing value with the
observed value of its donor (Little, 1988). A main advantage of PM is that the model
for the distribution of missing values is used only to provide a metric for matching; thus,
PM is less prone to misspecification compared to CEMI with (regularized) regression
models (Little & Rubin, 2019, Chapter 4.3.2). Another advantage of PM is that the
imputed values are always realistic (in terms of scale, range, and shape of distribution),
because in PM the imputed values are actually observed in the data (Van Buuren, 2018,
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Chapter 3.4). Despite these advantages, the use of actual observed values can also lead
to problematic behavior. For instance, the same donor value might be used multiple
times, which is especially likely for small samples or when the missing rate is high.
Additionally, omitting important interactions in the regression model might degrade
performance (Morris et al., 2014).

To alleviate these misspecification problems, researchers have been studying the use
of supervised machine learning techniques as a substitute for parametric regression
models in CEMI. Burgette and Reiter (2010) propose multiple imputation of contin-
uous variables using sequential classification and regression trees (CT) (Breiman et
al., 2017). In this process the actual values for imputation are sampled through a
Bayesian bootstrap within the leaves of the CT. The authors find that CT is able to
capture complex interactions without high modelling effort. CT also has advantages
when interactions among covariates influence categorical outcome variables (Doove et
al., 2014). However, CT internally categorizes continuous variables, which potentially
results in inadequate approximations of smooth relationships among variables. One
study, focusing on categorical variables only (Akande et al., 2017), compares general-
ized linear models with CT and a Dirichlet process mixture of products of multinomial
distributions (Si & Reiter, 2013). These two methods outperform the parametric mod-
els in their simulation study.

An even more accurate prediction of the missing values can be obtained by substitut-
ing CT with a random forest (RF) algorithm (Stekhoven & Bühlmann, 2012). This
procedure has been criticized by Shah et al. (2014), however, because imputing predic-
tive means leads to the understatement of variability of the true values. They propose
that missing values should be “imputed by random draws from independent normal
distributions centered on conditional means predicted using random forest” (Shah et
al., 2014, p. 765). They compare this procedure to parametric imputation models im-
plemented in the R software (R Core Team, 2019) package “Multivariate Imputation
by Chained Equations” (MICE) (Van Buuren & Groothuis-Oudshoorn, 2011) and find
an advantage of the non-parametric RF over the default parametric models in MICE.
Using RF for imputation comes with additional computational effort, because multiple
CT procedures are run for each incomplete variable in each iteration.

A Bayesian version of CT (Chipman et al., 1998; Denison et al., 1998) and a fur-
ther development, Bayesian additive regression trees (BA) (Chipman et al., 2010), is
proposed in Xu et al. (2016) for sequentially imputing missing values. The authors
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compare sequential BA with parametric CEMI, the MICE default (PM and logistic
regression), and MICE CT via simulation studies and find comparable performance
for linear relationships among the variables, but a better performance for BA in more
complex data situations.

Another recent study compares a high number of non-parametric and machine learning
methods for imputation (Dagdoug et al., 2023). Their evaluation via simulation focuses
on the assessment of imputation methods in terms of finite population totals. The
study finds that the Cubist algorithm (Quinlan, 1993), BA, and XGBoost (Chen &
Guestrin, 2016) perform best. However, the study lacks an assessment of standard
error estimates, and, relatedly, the application of only single imputation. Further, there
is no assessment focusing on the relationships among variables, e.g., the quantitative
properties of regression coefficients (see below in this section).

Several tree and forest algorithms have been compared recently using the software
packages AMELIA (Honaker et al., 2011) and MICE by applying parametric models to
impute simulated missing income values in public-use survey data (Loh, Eltinge, et al.,
2019). Loh et al. (2019) find that non-parametric approaches outperform the default
MICE. However, there are several limitations (Little, 2020). First, the evaluation of the
methods is based only on bias and MSE of mean income estimates. The relationships
among variables are not evaluated. Second, Loh et al. (2019) criticize simulation
studies using parametric models for data generation (e.g. Burgette & Reiter (2010)),
because this approach would favor parametric models. Yet, their own simulation study
data are based on one of these competing non-parametric methods, also leading to an
unfair comparison.

Non-parametric approaches have both advantages and disadvantages. The major down-
side is that they are generally black box methods, i.e., the interpretation after fitting
is not straight-forward (Breiman, 2001). Even so, model interpretation within CEMI
might not be of primary interest. Further, tree-based methods categorize continuous
variables (Friedman et al., 2001), so smooth relationships among variables are harder
to capture. Thus, if the analysis after imputation focuses on relationships among
variables with parametric models (which is often the case in empirical sciences), tree-
based methods might be inferior. On the other hand, parametric imputation methods
have their own limitations, such as a higher risk for misspecification (White & Carlin,
2010), and specifying parametric models becomes harder with an increasing number of
covariates in the data. Furthermore, multicollinearity among variables is more likely
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in high-dimensional data situations.

For non-parametric methods, there is no need to explicitly specify a model formula;
thus, the strong assumptions in parametric models can be avoided, leading to more
flexibility. This flexibility often also leads to a high predictive power. Additionally,
high numbers of covariates can be incorporated in tree-based procedures easily and,
relatedly, they also work in situations where the number of variables is greater than the
number of observations. However, the complexity of non-parametric methods might be
inefficient, because accounting for main effects may be more important than accounting
for minor complex interactions, depending on the application.

In order to obtain a holistic picture about imputation methods’ strengths and weak-
nesses, the procedures introduced above have to be assessed in different data situations.
Following Rubin (1987), the assessment of CEMI procedures should focus on the quan-
titative properties of β-coefficients (i.e., empirical bias, RMSE, confidence interval cov-
erage rate) of a regression model fit to the multiply imputed data. This assessment
model should fit the data, i.e., it should be compatible with the data generating model
(e.g., when the data is generated with a squared term, the analysis model should also
include a squared term).

The remaining part of this chapter is structured as follows. We first introduce the
framework of the simulation and the kinds of models used in this study. We then
present the results, followed by a simulation based on the NHANES 2015/2016 data
set. We conclude with a discussion of the results.
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2.2 Framework

This study compares different imputation methods within the CEMI framework, mainly
focusing on parametric models and tree-based methods, for different data situations and
different analysis models. We first introduce the general process of data analysis with
missing values and then provide a more detailed overview of the compared imputation
methods.

Figure 2.1: Process of missing data imputation and analysis. M1: data generating
model, M2: imputation model, M3: analysis model.

Figure 2.1 shows the general process of imputing missing data. We start with incom-
plete data (left box), which is assumed to be generated by a data generating model
(henceforth called M1). Next, the incomplete data is imputed by a CEMI model
(henceforth called M2). After the imputation process is finished, the resulting data is
analyzed using an analysis model (henceforth called M3).

Missing data imputation via CEMI is an iterative procedure resulting in multiple com-
pleted data sets. For a data matrix consisting of fully observed columns Y and incom-
plete columns X = (X1, . . . , XK) ordered by ascending missing rate, CEMI imputes
missing values in X1 using a model regressing the observed elements of X1 on (Y, X−1)
with X−1 representing X without the first column. Then moving to the next vari-
able - imputing missings in X2 with a model regressing X2 on (Y, X−2), and so on.
After iteratively refitting the models for X, and updating the missing values in X,
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one imputed data set is obtained. Repeatedly applying this iterative procedure results
in multiple imputed data sets. These data sets can be used to apply complete data
analysis tools (here M3) on each set. Rubin’s rule (Rubin, 1987, Chapter 3) can be ap-
plied to compute point and variance estimates for inference from the multiple resulting
estimates.

2.2.1 M1 - Data Generating Model

We generate data following three different data structures combined with three different
missingness mechanisms. In each case, three variables are generated, with Y being the
completely observed outcome and X1 and X2 being the incomplete covariates of a
hypothetical analysis model M3.

We first draw values of X1 from a uniform distribution:

X1 ∼ Unif(0, 2). (2.1)

Second, we draw values of X2 given X1 as

X2 ∼ N(α0 + α1X1, σ2
X2), (2.2)

where N(µ, σ2) denotes a normal distribution with mean µ and variance σ2. We then
draw Y given X1, X2 as

Y ∼ N(β0 + β1X1 + β2X2 + β3X
2
1 , σ2

Y ). (2.3)

After generating the values for the three variables, we introduce missing values in
(X1, X2). We first compute response probabilities for both variables.

pX1 = logit−1(δX1
0 + δX1

1 X1 + δX1
2 X2 + δX1

3 Y ) (2.4)

pX2 = logit−1(δX2
0 + δX2

1 X1 + δX2
2 X2) (2.5)

The response indicators RX1 and RX2 are drawn as

12



RX1 =

1 for pX1 ≥ uX1

0 for pX1 < uX1

RX2 =

1 for pX2 ≥ uX2

0 for pX2 < uX2

(2.6)

where uX1 and uX2 are independent ∼ Unif(0, 1). The chosen parameter values are
shown in Table 2.1. Setting β1 = 0.5 and β3 = 0 leads to the linear cases (L). The
parameter combination β1 = 0 and β3 = 1 adds a quadratic term and defines the
quadratic cases (Q).

Table 2.1: Overview of fixed and varying parameters for parametric cases. logit(a) =
log(a/(1 − a)), a ∈ (0, 1).

Equation Parameter values
2.2 α0 = 0, α1 = 0.25, σX2 = 0.3
2.3 β0 = 1, β2 = 0.5, σY = 1, β1 ∈ {0, 0.5}, β3 ∈ {0, 1}
2.4 δX1

2 = 1.5, logit(δX1
0 ) ∈ {0.05, 0.15, 0.5}, δX1

1 ∈ {0, 2}, δX1
3 ∈ {0, 1.5}

2.5 logit(δX2
0 ) = 0.15, δX2

1 = 2, δX2
2 ∈ {0, 2}

For the non-parametric case (N), we replace Equation 2.3 with

Y |X1, X2 : Y = β0 + f(X1) + β2X2 + ϵY , ϵY ∼ N(0, σ2
Y ), (2.7)

with f(X1) = sin(5X1)/5 following the wave-shaped function plotted in Figure 2.2.
Second, we change the values of three fixed parameters: α1 = 1, σY = 0.05, and
σX2 = 0.1. These changes result in both a stronger relationship between X1 and X2

and reduced noise.

We investigate three different missingness mechanisms: first, we define the probability
of missingness in X1 and X2 as independent of Y (δX1

3 = 0) and MAR (δX1
1 = 0,

δX2
2 = 0), henceforth called MX; second, we allow that missingness also depends on Y

(δX1
3 = 1.5), henceforth called MXY; and third, we simulate a MNAR mechanism with

missingness depending on X1 and X2 (δX1
1 = 2, δX2

2 = 2, and δX1
3 = 0), henceforth called

NX. We also vary the baseline numbers of missing values, δX1
0 . Table 2.2 summarizes

the investigated scenarios.
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Figure 2.2: Shape of f(X1).

Table 2.2: Overview of generated data.

Missingness Mechanism
MX (δX1

1 = 0, δX2
2 = 0, δX1

3 = 0) MXY (δX1
1 = 0, δX2

2 = 0, δX1
3 = 1.5) NX (δX1

1 = 2, δX2
2 = 2, δX1

3 = 0)

Data
Structure

linear (L) {L,MX} {L,MXY} {L,NX}
quadratic (Q) {Q,MX} {Q,MXY} {Q,NX}

non-parametric (N) {N,MX} {N,MXY} {N,NX}

2.2.2 M2 - Imputation Model

Based on the general CEMI introduction in Section 2.2, we now describe all applied
M2s for X = (X1, X2) and Y . Below, Xobs

k (k ∈ {1, 2}) denotes the observed part
of Xk with length nobs

k . If not stated differently, Zobs
k = (1, Y obs, Xobs

−k ) represents the
covariates corresponding to Xobs

k . Xmis
k denotes the unobserved part of Xk with length

nmis
k , Zmis

k = (1, Y mis, Xmis
−k ) represents the covariates corresponding to Xmis

k . Let
further γk = (γ0,k, γ1,k, γ2,k) denote the parameter vector of length q of the parametric
M2s with Xk as the outcome. Before starting the first CEMI iteration, the process
initially imputes means of the observed values in the respective columns. The software
package MICE (Van Buuren & Groothuis-Oudshoorn, 2011, version 3.14.0) is used to
apply the following methods, if not stated differently.
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2.2.2.1 Bayesian linear models

Bayesian linear models (BMs) were proposed for imputation by Rubin (1987, p. 167)
and are specified here as follows:

f(Xk|Y, X−k, γk, log(σk)) = γ0,k + γ1,kY + γ2,kX−k + ϵ, with ϵ ∼ N(0, σ2
k). (2.8)

We further assume improper prior distributions for the parameters, P (γk, log(σk)) ∝
const. The imputation process in one CEMI step is as follows.

1. Compute the matrix Sk = Z′obs
k Zobs

k .
2. Compute Vk = (Sk + diag(Sk)κ)−1, with κ describing a small ridge parameter.
3. Compute γ̂k = VkZ′obs

k Xobs
k .

4. Draw g ∼ χ2
nobs

k
−q

.
5. Compute σ2

k = (Xobs
k − Zobs

k γ̂k)′(Xobs
k − Zobs

k γ̂k)/g.
6. Draw q i.i.d. w1 ∼ N(0, 1).
7. Compute V1/2

k using Cholesky decomposition.
8. Compute γ̇k = γ̂k + σkw1V1/2

k .
9. Draw nmis

k i.i.d. w2 ∼ N(0, 1).
10. Compute nmis

k values of X imp
k = Zmis

k γ̇k + w2σk.

The procedure predicts nmis
k missing values (10.) accounting for uncertainty in regres-

sion parameters (8.). Adding ẇ2σ̇k in 10. incorporates additional noise in the predicted
values, which is assumed to be normally distributed. Thus, this approach yields proper
imputation (Rubin, 2004, pp. 116–131). For the purpose of this study, we use the BM
implementation provided in the MICE function mice.impute.norm(), which is equal to
Schafer’s NORM procedure (Schafer, 1997) when used on all incomplete variables.

2.2.2.2 Bayesian regularized linear models

Here, in each CEMI step, we apply elastic net, the best performing regularization
technique in Deng et al. (2016), before imputing via a Bayesian linear model. This
indirect use of regularization works as follows.
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1. Fit elastic net regularized regression model using Xobs
k as the outcome, Zobs

k as
the predictor variables, and the parameters γk with the following loss function

L(γ̂k) =
∑nobs

k
i=1 (Xobs

i,k − Zobs
i,k γ̂k)2

2nobs
k

+ λ

1 − α

2

q∑
j=1

γ̂2
j,k + α

q∑
j=1

|γ̂j,k|

 ,

with λ describing the regularization parameter and α ∈ [0, 1] describing the
elastic net mixing parameter.

2. Use the model in 1. to identify the active set of covariates Zobs
A,k.

3. Carry out the BM procedure (2.2.2.1) replacing Zobs
k with Zobs

A,k.

For further information on regularization via elastic net see e.g., Zou and Hastie (2005).
The parameter α is determined via 5-fold cross-validation. We implement this proce-
dure, henceforth E1, based on the R packages glmnet (Simon et al., 2011) (for the reg-
ularized model) and rstan (Stan Development Team, 2019) (for the Bayesian model).
Further, we apply a modified E1 version on basis-expanded covariates (Hastie et al.,
2009, pp. 139–190), i.e., the original covariates in addition to their interactions and
higher-order terms serve as covariates in the model (henceforth called E2). For E2, we
basis-extend the covariates to Zobs

k = (1, Y obs, Xobs
−k , (Y obs)2, (Xobs

−k )2, (Y obs ∗ Xobs
−k )) and

the parameters to γk = (γ0,k, γ1,k, γ2,k, γ3,k, γ4,k, γ5,k)

2.2.2.3 Predictive mean matching

We apply predictive mean matching (PM, Little, 1988) in the CEMI framework as
described in van Buuren (Van Buuren, 2018, Chapter 3.4). The underlying model is
the same as in BM, described in Equation 2.8. However, this model is used in PM to
compute the distance metrics η(i, j) as described below. The procedure is as follows
for one CEMI step.

1. Compute the matrix Sk = Z′obs
k Zobs

k .
2. Compute Vk = (Sk + diag(Sk)κ)−1, with κ describing a small ridge parameter.
3. Compute γ̂k = VkZ′obs

k Xobs
k .

4. Draw q i.i.d. w1 ∼ N(0, 1).
5. Compute V1/2

k using Cholesky decomposition.
6. Compute γ̇k = γ̂k + σkw1V1/2

k .
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7. Compute distances η(i, j) = |Zobs
[i],kγ̂k − Zmis

[i],kγ̇k|, with i = 1, . . . , nobs
k and j =

1, . . . , nmis
k .

8. For all observations in Xmis
k :

• select d potential donors from Xobs
k with ∑

d η(i, j) being minimum for all
j = 1, . . . , nmis

k .
• randomly draw one donor from d potential donors.
• impute the value in Xobs

k from that donor.

For this study, we use the implementation in the MICE function mice.impute.pmm()
with the default parameter settings (d = 5). PM only imputes values that are observed
in the data.

2.2.2.4 Classification and regression trees

In this study, we use classification and regression trees (CT) as proposed for imputation
by Doove et al. (2014). The imputation process in one CEMI step works as follows.

1. Apply CT on outcome Xobs
k and covariates Zobs

k = (Y obs, Xobs
−k ) using recursive

partitioning.
2. For each observation in Xmis

k ,

• identify its corresponding terminal node in the fit CT (each terminal node
includes a subset of Xobs

k ).
• randomly draw one observation from the observations (donors) in the iden-

tified terminal node.
• impute the observed value from that donor.

The described CT procedure is implemented in MICE, within the function
mice.impute.cart(). CT categorizes continuous variables and only imputes val-
ues that are observed in the data. Further, CT is not proper in the sense of Rubin
(2004), but CT has been shown to perform well in terms of quantitative properties
when interactions are present in the data (Doove et al., 2014).
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2.2.2.5 Random forest

Another tree-based method is the random forest (RF), which consists of multiple CTs.
We apply RF in the CEMI framework as used by Doove et al. (2014). The procedure
works as follows.

1. Draw b bootstrap samples from (Xobs
k , Zobs

k ).
2. Apply one CT on each bootstrap sample.
3. For each observation in Xmis

k :

• identify its corresponding terminal nodes in all b CTs.
• randomly draw one donor from the pooled donors in all b terminal nodes.
• impute the observed value from that donor.

The procedure is implemented in the MICE function mice.impute.rf() with the param-
eter settings b = 10 trees and minimum of five observations in terminal nodes. Like
CT, RF only imputes values observed in the data.

2.2.2.6 Bayesian additive regression trees

BA for CEMI was proposed in Xu et al. (2016), the model consists of a sum of trees
with estimation based on a Bayesian probability model.

For an outcome vector Xk and a covariate matrix Zk = (Y obs, Xobs
−k ), the BA model is

defined as:

Xk = f(Zk) + ϵ ≈
g∑

j=1
T M

j (Zk) + ϵ,

with ϵ ∼ N(0, σ2
k) denoting a vector of error terms. Tj represents a single tree structure,

with its parameters in the terminal nodes M . BA consists of a sum of g trees. Prior
distributions are assigned to T , M , and σ2

k. Draws from the posterior distribution
P (T M

1 , . . . , T M
g , σ2

k|Xk) are generated via Gibbs sampling (Geman & Geman, 1984),
where the jth tree is fit iteratively. See Kapelner and Bleich (2016) for further details.

In this study, imputation using BA in one CEMI step works as follows.

1. Fit BA on (Xobs
k , Zobs

k ).
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2. Generate draws from posterior distribution of P̂ (Zmis
k ).

3. Impute each observation in Xmis
k with the corresponding draw from P̂ (Zmis

k ).

In this study, we use an implementation based on the R package bartMachine (Kapelner
& Bleich, 2016, version 1.2.6) with the g = 50 trees (henceforth BA).

2.2.2.7 Complete case analysis

In addition to the compared imputation models, we also apply complete case analysis
(CC), where no imputation is carried out, but only the observations without missing
values are used in the analysis.

All compared approaches in this study perform CEMI with five iterations and produce
five multiply imputed data sets. In this chapter, we compare the different M2s based on
their out-of-the-box functionality. Given this focus, we do not initially assess model fits
nor do we check for convergence of the MCMC chains. While this approach is generally
not recommended, it may be applied in practice, especially when a high number of
incomplete variables make it difficult to implement model assessment within CEMI.

2.2.3 M3 - Analysis model

M3, the analysis model, describes the substantive model fit to the data generated by M1
after CEMI with M2 is applied. In this study, the M3s are regression models compatible
with M1, i.e., when the data is generated by, e.g., Q, M3 also includes an quadratic
effect. In the remaining part of the paper, we denote missingness mechanisms combined
with M1s/M2s using their codes in curly brackets {M1/M2,‘missingness mechanism’,}.
For example, {N,MXY} refers to data generated including the non-parametric term and
the missingness mechanism is MAR with missing values depending on both the X and Y

variables. The assessment is based on the quantitative properties of M3, i.e., empirical
bias (EB) (Equation 2.9), ratio of mean estimated variance to the empirical variance
(RV) (Equation 2.13), RMSE (Equation 2.10), and the confidence interval coverage
rate (CICR) (Equation 2.14) of estimated β coefficients of M3 in the parametric cases.

The following equations define these quantities, starting with EB:

EB(βM2
i ) = 1

nrep

nrep∑
k=1

β̂M2
i,k − βi, (2.9)
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where βi, i ∈ {0, 1, 2, 3}, describes the regression coefficient of interest; nrep = 100 is
the number of replications; βi is the true i-th coefficient; and β̂M2

i,k the corresponding
estimated coefficient, estimated from data multiply imputed using an imputation model
M2. The RMSE is defined as follows.

RMSE(βM2
i ) =

√√√√ 1
nrep

nrep∑
k=1

(β̂M2
i,k − βi)2 (2.10)

The empirical variance is defined as follows.

EV (βM2
i ) = (RMSE(βM2

i ))2 − (EB(βM2
i ))2 (2.11)

The mean of the estimated variance for a βM2
i is defined as

MV (βM2
i ) = 1

nrep

nrep∑
k=1

̂V (βM2
i,k ), (2.12)

with ̂V (βM2
i,k ) being estimated via Rubin’s combining rule (Rubin, 1987, Chapter 3).

We define the ratio of the mean estimated variance (Equation 2.12) to the empirical
variance (Equation 2.11) (RV) as

RV (βM2
i ) = MV (βM2

i )
EV (βM2

i ) . (2.13)

The following equations define CICR.

CICR(βM2
i ) = 1

nrep

nrep∑
k=1

I
{βi∈ ̂CI(βM2

i,k
)}

(2.14)

In Equation 2.14, I
{βi∈ ̂CI(βM2

i,k
)}

describes the indicator function with the decision rule

I
{βi∈ ̂CI(βM2

i,k
)}

=

1 for {βi ∈ ̂CI(βM2
i,k )},

0 for {βi /∈ ̂CI(βM2
i,k )}

(2.15)

and ̂CI(βM2
i,k ) describes the estimated 95% CI of βi,k using variance estimation via

Rubin’s rule (1987, Chapter 3), estimated after multiple imputation via M2.
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In the non-parametric case, f(X1) replaces the β coefficient for X1 in M1, and an
additive M3 with a spline function (s(X1)) is fit on the data ({N,.} case). We propose
a procedure that uses marginal predictions on 28 evaluation points of the X1 axis. For
each point, we carry out the following procedure. After fitting the additive M3 on
all multiply imputed data sets, we obtain estimates for EB, RV, RMSE, and CICRs
(analogously to Equations 2.9, 2.13, 2.10, and 2.14) for all M2s. We then average EB,
RV, RMSE, and CICR values over all evaluation points; for EB, the absolute values
are averaged. These measures are denoted by S-EB, S-RV, S-RMSE, and S-CICR.

2.2.4 Expected results

Following the framework introduced above, we can predict certain expected outcomes
of the simulation study. From Meng (1994) we know that a M2 should be congenial to
the M1, to allow for an M3 to be as complex as the M1. Similarly, Bartlett et al. (2015)
show via simulation that consistent estimates are achieved when M2s are compatible
with the M3s. Therefore, we expect that, in the L case, all imputation procedures
would work similarly, because M1, M2, and M3 are congenial. However, in the Q and
N cases, we expect that the performance of all M2s will depend on the degree to which
the imputation model is compatible with M1 and M3. Thus, we expect that flexible
non-parametric methods like CT, RF, and BA will still result in consistent estimates
in M3 when the underlying data comes from a similar non-parametric model (M3). In
line with Little (1992), we expect that CC is consistent in regression if the probability
of missing values does not depend on the outcome variable of the regression model.
Further, we expect that CC will lead to unbiased estimates in regression coefficients
when missing values in covariates depend on the covariates themselves (Little & Zhang,
2011). However, if the information in the incomplete cases is substantial, we expect
CC to be rather inefficient.

General hypotheses:

• H1) We expect bigger differences among M2s for higher rates of missing values.
• H2) Congeniality - We expect M2s that are as complex as M1 and M3 perform

better in terms of EB, EV, RMSE, and CICR, compared to less complex M2s.
• H3) We expect lower EV and RMSE values in methods imputing existing values

(PM, CT, RF).
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Based on the introduced scenarios in Table 2.2 and the introduced M2s, we can state
the following specific hypotheses.

Scenario-specific hypotheses:

• H4) For {., MX}, we expect CC will result in low EBs and an increase in EV and
RMSE.

• H5) For {., MXY}, we expect CC will lead to increased EB, EV, and RMSE
values.

• H6) For {L, MXY}, we expect a low EB in all M2s, except for CC.

• H7) For {Q, MXY}, we expect an increased EB in BM, E1, PM.

• H8) For {N, MXY}, we expect BA, CT, RF to perform best in terms of EB.

• H9) For {., NX}, we expect CC will result in low EB and high EV and RMSE
values due to reduced sample size. We further expect all other M2s showing
increased EBs.

2.3 Results

The simulation described above results in 27 scenarios (three data structures with
three missingness mechanisms - see Table 2.2, each with three levels of logit(δX1

0 )),
each carried out with 1, 000 observations and replicated 100 times. The results of
the simulation are displayed in 31 plots available in the Appendix (Section 2.8). In
this section, we present summary tables (Tables 2.3, 2.4, 2.5, and 2.6) showing the
resulting values of EB, RV, RMSE, and CICR for all imputation methods (M2), for all
logit(δX1

0 ) = 0.05 scenarios.

Tables 2.3, 2.4, and 2.5 are structured as follows. The column “M1, M3” contains the
model structures (L, Q, N) and column “M2” shows the different imputation methods.
The remaining 16 columns are combined in sets of four, each set presents the resulting
values for EB, RV, RMSE, and CICR for all four possible β coefficients.
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Table 2.3: Overview of the performance of imputation methods for logit(δX1
0 ) = 0.05 scenarios with MX missingness

mechanism. EB, RV, and RMSE values multiplied by 1, 000. CICR values multiplied by 100.
True values EB RV RMSE CICR

M1, M3 M2 β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3

L
BM 1 0.5 0.5 -46 25 -120 973 972 945 212 249 324 92 93 95
E1 1 0.5 0.5 92 -120 -111 667 557 889 306 337 335 75 66 76
E2 1 0.5 0.5 98 -132 -81 786 707 1185 284 310 284 84 75 88
PM 1 0.5 0.5 -40 -11 -28 1075 1005 936 199 223 242 93 94 97
CT 1 0.5 0.5 -12 -39 -29 679 632 763 204 230 254 89 88 91
RF 1 0.5 0.5 -41 -28 35 470 410 556 165 180 222 84 82 88
BA 1 0.5 0.5 -940 973 -733 893 933 712 1161 1240 1185 62 63 82
CC 1 0.5 0.5 -114 74 -17 1002 951 810 467 360 587 91 94 93

Q
BM 1 0.0 0.5 1 -612 1657 -262 -769 1281 1971 741 3638 640 1671 561 771 29 1 89 0
E1 1 0.0 0.5 1 -634 1631 -50 -778 1069 1899 855 3525 660 1644 437 780 21 0 82 0
E2 1 0.0 0.5 1 -606 1585 -82 -761 1187 2301 704 2913 641 1599 452 765 24 5 85 0
PM 1 0.0 0.5 1 -99 121 -142 -19 571 545 739 520 304 705 411 324 87 85 91 86
CT 1 0.0 0.5 1 -12 -115 -42 63 561 576 511 522 332 758 367 353 82 82 90 77
RF 1 0.0 0.5 1 76 -69 121 -62 678 591 802 599 277 647 291 309 91 88 92 89
BA 1 0.0 0.5 1 -1144 1722 -1239 -274 1723 2055 847 1902 1212 1894 1504 446 53 78 58 92
CC 1 0.0 0.5 1 -183 235 -27 -70 1226 1207 809 1164 816 1449 596 601 93 96 93 96

N
BM 0 0.5 121 -133 1314 1361 149 155 83 77
E1 0 0.5 138 -149 1485 1528 150 158 72 55
E2 0 0.5 151 -161 1606 1638 175 180 76 74
PM 0 0.5 355 -352 1403 1415 361 358 16 11
CT 0 0.5 261 -264 2043 2042 268 269 33 25
RF 0 0.5 368 -364 1430 1557 370 365 0 0
BA 0 0.5 57 -71 1326 1329 111 113 96 95
CC 0 0.5 70 -47 991 1038 94 62 78 76

Description: evaluation of different imputation procedures (M2s) in terms of empirical bias (EB), ratio of estimated variance to empirical variance (RV), root mean squared error
(RMSE), and confidence interval coverage rate (CICR) of regression coefficients (β0, β1, β2, and β3) from the analysis model (M3) fit on multiply imputed data with logit(δX1

0 ) = 0.05
and MX missingness mechanism. Investigated are three scenarios of data generating and analysis model (’M1, M3’): linear (L), quadratic (Q), and non-parametric (N). Method codes:
BM = Bayesian linear model, E1 = elastic net regularization followed by Bayesian linear model, E2 = elastic net regularization on basis-expanded covariates followed by Bayesian
linear model, PM = predictive mean matching, CT = classification and regression tree, RF = random forest, BA = Bayesian additive regression trees, CC = complete case analysis.
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Table 2.3 shows results for the MX missingness mechanism. For {L,MX}, we find that
CT and PM perform best in terms of EB overall, BA performs worst. In terms of RV,
RF shows the lowest values over all β coefficients, PM and BM return the highest and
most balanced values. RF and PM return the lowest RMSE values, while BA shows
the highest values. Regarding CICR, we find that BA returns the lowest values, PM
and BM show the best coverage values.

Regarding {Q,MX}, BA shows the largest EB values, followed by BM. CT and RF
return the smallest EB values. For RV, BM, E1, and E2 show overall high values,
CT returns the lowest RV values, and CC shows the most balanced RVs. RF and PM
perform best in terms of RMSE, while BA shows the highest values. Looking at CICR,
we see that CC returns the best result, followed by RF; E1 shows the lowest values.

Focusing on {N,MX}, we see that CC and BA return the smallest EB values; RF and
PM return the highest values. CT returns the highest RVs, CC shows the lowest and
most balanced values. For RMSE, CC and BA produce the lowest values, while RF
and PM return the highest. The best performing methods for CICR is BA; here RF
and PM perform worst.
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Table 2.4: Overview of the performance of imputation methods for logit(δX1
0 ) = 0.05 scenarios with MXY missingness

mechanism. EB, RV, and RMSE values multiplied by 1, 000. CICR values multiplied by 100.
True values EB RV RMSE CICR

β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3

L
BM 1 0.5 0.5 3 -2 -134 856 1052 1334 102 110 210 92 95 90
E1 1 0.5 0.5 59 -24 -240 946 842 1101 204 193 305 95 96 67
E2 1 0.5 0.5 69 -58 -175 830 665 1049 155 179 264 86 83 89
PM 1 0.5 0.5 7 -5 -133 945 1043 1345 101 115 206 90 94 90
CT 1 0.5 0.5 55 -66 -99 725 607 807 135 165 216 88 83 89
RF 1 0.5 0.5 42 -62 -68 536 453 800 127 154 190 88 79 89
BA 1 0.5 0.5 -175 141 46 709 735 944 262 288 336 65 89 92
CC 1 0.5 0.5 744 -104 -386 971 999 1151 760 154 418 1 85 40

Q
BM 1 0.0 0.5 1 -312 726 -108 -310 1404 2170 1051 1917 323 746 193 322 11 22 91 30
E1 1 0.0 0.5 1 -315 726 -100 -310 1144 1844 762 1598 328 749 234 324 15 21 81 39
E2 1 0.0 0.5 1 -314 784 -173 -333 1310 1713 857 1575 326 812 261 350 13 23 76 31
PM 1 0.0 0.5 1 29 -137 -47 73 657 625 940 614 196 514 179 238 89 87 92 85
CT 1 0.0 0.5 1 129 -376 -57 173 898 889 853 867 231 608 205 273 94 91 93 87
RF 1 0.0 0.5 1 154 -449 2 191 701 637 834 616 228 613 182 271 80 74 90 75
BA 1 0.0 0.5 1 -117 158 -30 -14 1458 1492 923 1506 248 559 309 228 96 100 94 100
CC 1 0.0 0.5 1 877 -502 -221 57 1028 1033 1156 1018 927 712 265 210 16 86 72 93

N
BM 0 0.5 145 -156 1648 1728 156 164 55 49
E1 0 0.5 147 -156 1629 1752 154 161 37 16
E2 0 0.5 183 -190 2270 2334 196 200 63 52
PM 0 0.5 327 -327 1679 1669 333 331 13 12
CT 0 0.5 244 -246 2018 2060 251 253 46 38
RF 0 0.5 354 -350 1560 1627 355 352 0 0
BA 0 0.5 17 -31 1638 1661 72 72 97 97
CC 0 0.5 92 -54 972 1009 103 63 57 64

Description: evaluation of different imputation procedures (M2s) in terms of empirical bias (EB), ratio of estimated variance to empirical variance (RV), root mean squared
error (RMSE), and confidence interval coverage rate (CICR) of regression coefficients (β0, β1, β2, and β3) from the analysis model (M3) fit on multiply imputed data with
logit(δX1

0 ) = 0.05 and MXY missingness mechanism. Investigated are three scenarios of data generating and analysis model (’M1, M3’): linear (L), quadratic (Q), and
non-parametric (N). Method codes: BM = Bayesian linear model, E1 = elastic net regularization followed by Bayesian linear model, E2 = elastic net regularization on
basis-expanded covariates followed by Bayesian linear model, PM = predictive mean matching, CT = classification and regression tree, RF = random forest, BA = Bayesian
additive regression trees, CC = complete case analysis.
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Regarding {L,MXY}, we find that BM and PM return smallest EB values, CC and BA
result in the highest absolute values. PM and BM return overall highest RV values,
RF shows the smallest values, CC shows the most balanced RVs. In terms of RMSE,
BM and PM perform best , CC and BA perform worst. BM and PM also perform best
in terms of CICR. CC and BA yield the lowest CICR values.

In the {Q,MXY} case, BA and PM show the lowest EB values, while CC and E2 return
the highest values. For RV, we find that PM and RF return the lowest values, while
BM results in overall highest values, and CC shows most balanced RVs. For RMSE,
PM, RF, and CT perform best, CC and E2 perform worst. BA show highest CICR
values, with some over-coverage; E2 and BM result in the lowest values.

For {N,MXY}, looking at EB, we find that BA and CC perform best, while RF and
PM perform worst. In terms of RV, we see that CC results in the lowest and most
balanced values, E2 shows the highest values. For RMSE, BA shows the best values;
RF and PM perform worst. For CICR, we find again that BA performs best overall
(with small over-coverage); RF and PM perform worst.
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Table 2.5: Overview of the performance of imputation methods for logit(δX1
0 ) = 0.05 scenarios with NX missingness

mechanism. EB, RV, and RMSE values multiplied by 1, 000. CICR values multiplied by 100.
True values EB RV RMSE CICR

β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3

L
BM 1 0.5 0.5 -260 34 41 1235 1296 1173 291 107 151 64 95 95
E1 1 0.5 0.5 -29 -96 -153 658 679 919 388 280 307 60 75 73
E2 1 0.5 0.5 -49 -88 -127 565 596 769 374 269 299 66 80 76
PM 1 0.5 0.5 -248 27 31 1118 1189 1170 284 111 146 65 95 95
CT 1 0.5 0.5 -247 24 27 1003 952 791 281 110 168 52 91 92
RF 1 0.5 0.5 -248 22 36 850 847 822 280 102 154 46 92 88
BA 1 0.5 0.5 -1022 580 198 894 969 814 1048 609 301 9 25 82
CC 1 0.5 0.5 -44 27 -11 1026 1121 917 220 137 203 94 92 93

Q
BM 1 0.0 0.5 1 -849 809 62 -277 1888 2094 1166 2235 862 852 195 299 0 48 96 67
E1 1 0.0 0.5 1 -879 805 143 -279 1944 1872 1133 1971 891 852 231 304 1 50 82 67
E2 1 0.0 0.5 1 -892 864 90 -300 2229 2254 1083 2426 902 903 215 319 0 47 87 69
PM 1 0.0 0.5 1 -278 -341 44 207 614 509 1002 505 371 619 188 306 64 79 94 69
CT 1 0.0 0.5 1 -195 -495 33 266 738 661 681 686 323 730 223 349 79 77 90 66
RF 1 0.0 0.5 1 -131 -608 79 293 913 785 808 787 257 765 210 355 85 72 92 65
BA 1 0.0 0.5 1 -1173 878 -60 -74 1171 1310 408 1322 1215 1041 410 240 15 66 80 92
CC 1 0.0 0.5 1 -73 76 -12 -18 1149 1157 916 1132 450 702 203 269 97 96 93 96

N
BM 0 0.5 55 -86 1667 1701 70 94 93 66
E1 0 0.5 83 -107 1614 1619 90 112 62 29
E2 0 0.5 30 -60 1544 1622 95 102 91 88
PM 0 0.5 66 -96 1816 1712 82 107 88 76
CT 0 0.5 16 -43 1772 1871 42 56 95 90
RF 0 0.5 175 -192 2454 2641 178 194 12 8
BA 0 0.5 -86 56 1186 1263 97 70 66 81
CC 0 0.5 -3 -4 922 913 32 23 93 91

Description: evaluation of different imputation procedures (M2s) in terms of empirical bias (EB), ratio of estimated variance to empirical variance (RV), root mean squared
error (RMSE), and confidence interval coverage rate (CICR) of regression coefficients (β0, β1, β2, and β3) from the analysis model (M3) fit on multiply imputed data with
logit(δX1

0 ) = 0.05 and NX missingness mechanism. Investigated are three scenarios of data generating and analysis model (’M1, M3’): linear (L), quadratic (Q), and non-
parametric (N). Method codes: BM = Bayesian linear model, E1 = elastic net regularization followed by Bayesian linear model, E2 = elastic net regularization on basis-expanded
covariates followed by Bayesian linear model, PM = predictive mean matching, CT = classification and regression tree, RF = random forest, BA = Bayesian additive regression
trees, CC = complete case analysis.
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Table 2.5 shows results for the NX missingness mechanism. For {L,NX}, we see that CC
and E2 perform best in terms of EB; BA performs worst. E2 shows lowest RV values,
BM returns highest values, and CC returns the most balanced RV values, overall. Here,
BM, PM, CT, and RF return the lowest RMSE values, while BA shows the highest
values. For CICR, CC shows the best results, followed by BM; BA performs worst.

For {Q,NX}, CC returns the lowest absolute EB values, while BA returns the highest
values. PM and CT show lowest RV values, E2 shows highest RVs, and CC leads to
the most balanced RVs. In terms of RMSE, PM and RF perform best; BA performs
worst. For CICR, CC and RF show best values. E1 and E2 return the lowest values.

Looking at {N,NX}, we see that CC and CT lead to the lowest absolute EB values; RF
and E1 show the highest values. RF returns highest, CC the lowest and most balanced
RV values. For RMSE, CC and CT perform best, while RF returns the highest values.
CT and CC show highest CICR values; RF results the lowest values.
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Table 2.6: Overview of the performance of imputation methods in terms of spline evaluation for all N and scenarios with
logit(δX1

0 ) = 0.05. S-EB, S-RV, and S-RMSE values multiplied by 1, 000. S-CICR values multiplied by 100.

MX MXY NX
M2 S-EB S-RV S-RMSE S-CICR S-EB S-RV S-RMSE S-CICR S-EB S-RV S-RMSE S-CICR
BM 143 1279 174 59 112 2471 121 55 67 2140 76 69
E1 141 5463 144 42 112 2572 120 49 78 2060 84 54
E2 112 7958 223 67 110 2572 124 64 57 1590 89 85
PM 116 2659 134 66 188 1863 196 32 69 2111 80 71
CT 29 2044 43 92 124 1965 134 47 30 1699 46 86
RF 13 1031 29 91 209 1629 211 6 133 2141 136 12
BA 23 1824 63 95 22 1716 60 92 40 1223 58 80
CC 40 382 81 89 32 344 65 88 30 298 54 86

Description: spline evaluation of different imputation procedures (M2s) in terms of empirical bias (S-EB), ratio of estimated variance to
empirical variance (S-RV), root mean squared error (S-RMSE), and confidence interval coverage rate (S-CICR) for M3s including a spline
function (N case). S-EB, S-RV, S-RMSE, and S-CICR are computed based on marginal predictions and averaged over 28 evaluation points
of X1 from the analysis model (M3) fit on multiply imputed data with logit(δX1

0 ) = 0.05 for all three missingness mechanisms (MX, MXY,
NX). Method codes: BM = Bayesian linear model, E1 = elastic net regularization followed by Bayesian linear model, E2 = elastic net
regularization on basis-expanded covariates followed by Bayesian linear model, PM = predictive mean matching, CT = classification and
regression tree, RF = random forest, BA = Bayesian additive regression trees, CC = complete case analysis.
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Table 2.6 shows the spline evaluation for the non-parametric case (N) of M1 and M3
models and is structured as follows. The first column, “M2”, contains the different
imputation methods. The following 12 columns present S-EB, S-RV, S-RMSE, and
S-CICR for all three investigated missingness mechanisms (MX, MXY, NX).

The spline evaluation in {N,MX} shows that for S-EB, RF and BA perform best, while
BM and E1 show the highest values. CC returns the lowest S-RV, E2 shows the highest
S-RV value, and RF results in the most balanced S-RV value. For S-RMSE, we find
that RF and CT perform best, E2 and BM perform worst. We further find that BA
and CT perform best in terms of S-CICR, while E1 and BM perform worst.

In the {N,MXY} case, we see that BA and CC perform best in terms of S-EB, while
RF and PM perform worst. CC returns the lowest S-RV, E1 and E2 show the highest
values, and RF returns the most balanced S-RV. For S-RMSE, BA and CC show the
best results; RF and PM show highest values. BA and CC return the highest S-CICR
values. RF and PM show lowest S-CICR values.

For the non-parametric part of the {N,NX} scenario, CT and CC perform best in terms
of S-EB, while RF and E1 perform worst. BM and RF return the highest RV, CC shows
the lowest RV values, and BA results in the most balanced S-RV. CT and CC show
the best results for S-RMSE; RF and E2 show the highest values. For S-CICR, CT
and CC again return the best results. RF and E1 return the lowest values.

To summarize, we find that, as expected, CC shows good performance in all MX and
NX cases. In the MXY scenarios, we see that, overall, PM performs well in L and Q,
while BA yield the best results in the N scenario. The parametric methods, BM, E1,
and E2, show similar patterns in most of the investigated scenarios. CT works well in
all MX scenarios. We find that BA generally performs well in N cases. However, BA
often shows the worst performance in L and Q cases, which is an unexpected finding
(see Section 2.3.0.1).

We now compare the stated hypotheses (Section 2.2.4) to the findings, starting with
the general hypotheses. Overall, we observe bigger differences among the imputation
procedures for higher rates of missing values, as stated in H1. Further, there is partial
support for H2: in {L,MXY} all imputation methods show low EB, supporting H2.
However, we find increased EB in some of the applied methods in the {Q,MXY} sce-
narios. Also, some of the non-parametric methods lead to high EB values in {N,MXY}.
Finally, looking at H3, we do not find support for lower RMSE values after imputing
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with methods that impute only observed values.

Focusing on the scenario-specific hypotheses, for the parametric cases, we observe that
CC performs well in MX, as stated in H4. Further, we see increased RMSE values for
CC in {L,MX}, but not in {N,MX}, and only a small increased RMSE in {Q,MX}.
In {.,MXY}, CC generally leads to an increased EB, and increased RMSE in L and Q
scenarios, mostly supporting H5. We find support for H6; all imputation methods show
a low EB in {L,MXY}, compared to CC, except BA. While BA performs generally well
in the non-parametric case (stated in H8), the general poor performance of BA in the
parametric part of the simulation does not support H6. In {Q,MXY}, BM, E1, and
E2 show high EB; PM performs better in terms of EB. This finding does not support
H7. In the NX scenarios, CC results in empirically unbiased estimates. We further
find increased RMSE values in L and Q scenarios. Both findings are mostly in line
with H9.

2.3.0.1 Investigating BA behavior

From the BA results in the previous simulation we overall see that BA shows ex-
tremely underwhelming performance in the {L,MX} case, while BA performs well
in the {N,MX} case. Besides the different relationships in the data in {L,MX} and
{N,MX}, the scenarios differ in terms of the magnitude of variance in the data generat-
ing process. For the parametric part of the simulation (L, Q), the variance is generally
higher (Equations 2.2 and 2.3) than the variance used for the N-case (Equation 2.7).
We applied higher variances in L and Q to reduce collinearity in M3.

For this additional investigation of BA’s behavior, we compare different BA imple-
mentations and CT on {L,MX} data. We vary the data in terms of variance levels
(σY ∈ {0.05, 1}, σX2 ∈ {0.1, 0.3}) and numbers of observations (n ∈ {1000, 3000, 5000})
and focus on EB in one simulated data set. One applied BA implementation in-
cludes cross-validation for an optimized hyperparameter selection (henceforth BA-CV).
The grid of choices for BA-CV consists of: number of trees ∈ {50, 200}, parameter
kBA ∈ {1, 2, 3, 5}, and the parameter pair (ν, q) ∈ {(10, 0.75), (3, 0.90), (3, 0.99)}. The
parameters kBA and (ν, q) influence the prior choices for BA. These choices are based
on recommendations in Chipman et al. (2010), the implementation is based on the R
package ‘bartMachine’ (Kapelner & Bleich, 2016, version 1.2.6). Additionally, we ap-
ply BA as implemented in the R package ‘BART’ (Sparapani et al., 2021, version 2.9)
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(henceforth BA-P). The low performance of BA could result from BA being a stepwise
function applied to continuous data. For that reason, we also investigate the perfor-
mance of a BA procedure designed for smooth functions (A. Linero & Yang, 2018)
implemented in the R package ‘SoftBart’ (A. R. Linero, 2022) (henceforth BA-S). For
all additional BA implementation, the changes only apply to fitting BA, the remaining
CEMI procedure for BA remains as described in Section 2.2.2.6.
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Table 2.7: Overview of BA performances in terms of EB for a L scenario with different levels of variability and different
numbers of observations in the data with logit(δX1

0 ) = 0.05. All values are multiplied by 1, 000.

n = 1,000 n = 3,000 n = 5,000
σY σX2 M2 β0 β1 β2 β0 β1 β2 β0 β1 β2

0.05 0.1 BA-CV 35 -64 -45 59 -121 87 44 -79 -37
0.05 0.1 BA-P 9 -13 31 1 -18 74 -2 -13 61
0.05 0.1 BA-S 8 -10 23 -2 -15 71 -1 -15 68
0.05 0.1 BA 4 -9 25 0 -14 62 -1 -15 69
0.05 0.1 CT 12 12 -85 10 1 -25 5 0 -17
0.05 0.3 BA-CV 109 -110 -107 60 -66 -94 35 -61 -35
0.05 0.3 BA-P 9 -1 -18 1 2 2 -5 3 8
0.05 0.3 BA-S -1 10 -26 1 0 5 -7 5 8
0.05 0.3 BA 0 -1 4 0 -2 12 -3 -1 14
0.05 0.3 CT 42 -15 -51 25 -9 -22 23 -11 -13
1.00 0.1 BA-CV 104 113 -1030 136 -80 -262 47 -42 -164
1.00 0.1 BA-P -162 1051 -3804 -63 247 -828 -116 264 -770
1.00 0.1 BA-S -220 1189 -4159 -63 250 -831 -80 197 -646
1.00 0.1 BA -249 1047 -3529 -128 368 -1079 -176 327 -813
1.00 0.1 CT -6 202 -924 19 28 -200 20 -31 -51
1.00 0.3 BA-CV 109 -39 -399 102 -74 -138 62 -87 -61
1.00 0.3 BA-P -235 397 -784 -111 111 30 -163 137 77
1.00 0.3 BA-S -177 308 -707 -95 86 74 -161 160 -39
1.00 0.3 BA -200 329 -604 -79 60 144 -165 140 138
1.00 0.3 CT 23 107 -517 67 -16 -130 36 -27 -65

Description: evaluation of different imputation procedures (M2s) in terms of empirical bias for all three co-
efficients of M3. Method codes: BA = Bayesian additive regression trees, BA-CV = BA with cross-validated
hyperparameter tuning, BA-P = BA implementation from R package ’BART’, BA-S = BA implementation for
smooth functions, CT = classification and regression tree.
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Table 2.7 shows the results for different BA approaches in the investigated scenario. For
σY = 0.05, σX2 = 0.1, we only find small differences among the BA implementations,
with BA-CV overall showing the strongest EB. The EB of CT is of similar magnitude.
In the σY = 0.05, σX2 = 0.3 case, BA-CV returns the highest absolute EB, followed by
CT. The remaining BA procedures show only small biases. Looking at σY = 1, σX2 =
0.1, we see the strongest differences among the procedures. For 1,000 observations,
BA, BA-P, and BA-S return strong EBs, especially in β2. BA-CV and CT return
lower absolute EBs in all three parameters. Increasing the number of observations
overall reduces EBs for all compared procedures. For 5,000 observations we find CT
performing best, followed by BA-CV. For σY = 1, σX2 = 0.3 we see a similar pattern
to the σY = 1, σX2 = 0.1 case, but overall less extreme EB values. Overall, we find
that increased variance in the outcome of M3 (σY ) in the L cases (compared to the N
case) leads to low performance in terms of EB in BA.

We can offer guidance to practitioners based on the findings of this simulation. When
missing data occur in practice, the underlying data generating model, including the
missingness mechanism, is most likely unknown. If the analysis model is known by
the imputer, we can base the selection of the imputation model on the complexity
of the analysis model. The imputation model should then be at least as complex as
the analysis model. However, when the analysis model is unknown (e.g., in imputed
public-use data files), we recommend choosing an imputation model that can automat-
ically detect important interactions in the data, like RF or CT. In each case, a careful
inspection of the imputation process is necessary. We recommend at least comparing
the distributions of imputed and observed values in all incomplete variables. Differ-
ences between observed and missing values can result from a bad imputation model or
a non-ignorable missingness mechanism.

2.4 Simulation using Real Data

This section describes the process of evaluating the M2s with real data. As seen in
the previous section, the performance of imputation procedures can be sensitive to the
data generating process. We therefore generate data sets with missing values from a
publicly available version of the NHANES (National Health and Nutrition Examination
Survey) data. The process of evaluation follows Ezzati-Rice et al. (1995) and Schafer
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et al. (1996). A detailed description can be found in the following section 2.4.1. We use
the 2015-2016 NHANES data, consisting of about 12,000 respondents, as a synthetic
population. The data set consists of data from different modes of data collection: all
respondents completed an initial questionnaire, complemented by a physical examina-
tion taking place in a mobile examination center and two days of recording a nutrition
diary. For missing data patterns, we find values of variables for the physical exami-
nation completely missing for some observations, because some respondents refused to
participate in this part of data collection. There are also incomplete nutrition diaries,
notably on the second day, in addition to item-missing data for sensitive questions in
the questionnaire.

2.4.1 Assessment Process

Figure 2.3 depicts the process used to evaluate the different imputation procedures,
which assumes an incomplete data set with observations in rows and variables in
columns. We begin by defining the variables of interest (VOI), indicated in blue,
that are later used to compare the different imputation procedures. After the VOI are
defined, the data set (on the left side of the figure) is further divided into two subsets
of variables: one that is fully observed (lefthand side, 31 variables), and one (right-
hand side, 355 variables) with incomplete observations (indicated by dark gray fields)
including the VOI (three variables). The 5,474 observations are then divided into two
sets, one with fully observed VOI, and another where missing values are present in the
VOI.
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Figure 2.3: Structure of the evaluation process using NHANES data.
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The evaluation process continues with repeatedly drawing simple random samples with
replacement (SRSWR) of 500 observations from the subset of cases with completely
observed VOI. These SRSWR-sub-data sets are the foundation of the evaluation, and
consist of complete cases for all VOI, and the aforementioned subsets of variables. In
the next step, missing value patterns observed in the data are introduced into the
observations of VOI (indicated in red). These introduced missing values are donated
from the observations of incomplete VOI matched to the observations in the subsampled
data sets. In this study, only the VOI are imputed, the complete variables are used as
covariates.

The matching of complete observations in VOI in each SRSWR with those observa-
tions including missing values in VOI in the original data set is based on 26 of the
31 completely observed variables. To perform the matching, we use the package Stat-
Match (D’Orazio, 2019) in the statistical software R (version 3.6.1) (R Core Team,
2019). Specifically, random hot deck (see Andridge & Little (2010)), a procedure that
randomly selects a donor (i.e., the matched observation including missing values in the
VOI) for each observation in the SRSWR from an appropriate subset of all donors is
carried out. The subset is built from the 26 completely observed variables. In order to
use the variables in the random hot deck procedure, it is necessary to categorize them.
All continuous variables with more than 10 unique values are categorized using deciles,
resulting in a data set with maximal 10 categories of similar size per variable.

The matching is performed within donation classes defined by the variables AGE,
RACE and GENDER. The following parameters were set in the matching process:
dist.fun = ”exact”, cut.don = ”span”, and k = 0.15. This setup allows 15% of the
closest donors to be considered using exact matching. Since only observations with
at least one missing value in the VOIs are considered for donating the missing data
pattern, the resulting data set consists of observations without complete cases in the
VOI. After finding a match for each observation in the subsampled data set, the missing
pattern in the VOI of this matched observation is introduced. This procedure results
in an ignorable missingness mechanism, conditional on the fully observed variables; see
Ezzati-Rice et al. (1995) and Schafer et al. (1996) for further details.

This process has several advantages. For instance, the missingness pattern introduced
in the VOI is actually observed in the data set. That is, missing patterns are neither ar-
tificial nor unrealistic. Further, this approach avoids the need to specify a probabilistic
model for introducing missing values, an often used approach when evaluating impu-
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tation procedures using simulation. Together with this advantage, no specified model
is needed for the data generating process; both the data sets and the relationships
among variables are observed. This leads to an evaluation of missing data imputation
procedures that is closer to real world missing data problems.

2.4.2 Variables of Interest (VOI)

There are several selection criteria for the VOI in place:

1. Relationship: the selected variables should follow an approximately linear rela-
tionship, because a linear model should be fit as M3.

2. Missing values: in order to introduce missing data patterns following Ezzati-Rice
et al. (1995), the VOI should have a relatively high number of missing values (i.e.,
20 − 40%). Next, for the incomplete cases to provide substantial information,
missing values should be in predictors rather than in the outcome (Little, 1992).
Additionally, in order to observe different missing data patterns in the VOIs, they
should also be collected from different modes of data collection.

3. Population: The variables should target the whole population of NHANES (i.e.,
no sub-populations like “smokers”), to avoid “not applicable” cases which would
reduce the number of observations used.

4. Time period: the variables should be measured in NHANES data collection
2015/2016.

For the selection of VOI, it would have been ideal to base the choice on a substantive
paper that used NHANES data. However, a search for recently published studies using
NHANES 2015/2016 revealed that, if regression is used as an analysis tool, covariates
mostly consist of socio-demographic variables, which are (almost) completely observed.
With this in mind, we decided to select variables fulfilling the four criteria from the
NHANES data and use them in a hypothetical substantive regression model. For the
outcome variable, we use the log-transformed BMI (body mass index) computed from
height and weight (BMI = (weight in kg)/(height in cm)2) measured in the physical
examination. The covariates are the daily kilo-calories intake (KCAL), calculated from
the complete nutrition diary of the second day, and the number of days having 4 to 5
alcoholic drinks in the past 12 months (ALC) (treated as a continuous variable), which
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was collected using the questionnaire. The three variables are included in the following
analysis model for the i-th observation:

BMIi = β0 + βKCALKCALi + βALCALCi + ϵi,

with ϵi ∼ N(0, σ2).

Figure 2.4 shows the missing data pattern for the selected VOIs in the NHANES
2015/2016 data, with blue indicating ‘observed’, and gray meaning ‘missing’. The left
side of the figure shows the proportion of missing values for each variable. The right
side of the figure displays the most frequent missing patterns appearing in the data
(omitting patterns of frequencies smaller than 0.01), including the frequencies of the
displayed missing patterns on the very right. As seen on the bar chart on the left, ALC
has the highest proportion of missing values (approximately 0.41), followed by KCAL
(approximately 0.23) and BMI (approximately 0.02). Further, from the graph on the
right the proportion of complete cases (in VOI) is 0.49, followed by the case where only
ALC is missing (0.27), and the case where ALC and KCAL are both missing (0.12).
In 10% of the cases, we find only KCAL missing.

2.4.3 Results

In this simulation, we do not apply CC, because there are no complete cases in the VOI.
E2 was not applied either, because using basis-expanded covariates was not feasible on
this data set. We compute EB, RMSE, and CICR based on Equations 2.9, 2.10, and
2.14.

2.4.3.1 Results - Bias

Figure 2.5 shows that CT, RF, and BA perform best and result in about the same EB
in β0. The parametric methods, BM and E1, show the highest absolute EB.

Similarly, Figure 2.6 shows that CT and RF perform best with approximately the same
EB in βKCAL. Again, BM and E1 lead to the highest EB.

Figure 2.7 shows that PM and E1 result in the smallest EB, while BA returns the
biggest absolute EB.
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Figure 2.4: Missing data pattern of VOIs found in the NHANES 2015/2016 data,
excluding missing patterns of frequencies smaller than 0.01. Blue indicates observed
cases, and gray shows missing values.
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Figure 2.5: Different M2s compared in terms of the resulting empirical bias in the
estimated regression coefficient β0 in M3 based on NHANES data. The solid black line
indicates zero empirical bias.
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Figure 2.6: Different M2s compared in terms of the resulting empirical bias in the
estimated regression coefficient βKCAL in M3 based on NHANES data. The solid black
line indicates zero empirical bias.
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Figure 2.7: Different M2s compared in terms of the resulting empirical bias in the
estimated regression coefficient βALC in M3 based on NHANES data. The solid black
line indicates zero empirical bias.

2.4.3.2 Results - RMSE

Figure 2.8 shows RMSE values for β0 estimates for different M2s. Here, E1 performs
best and yields the lowest RMSE. All other M2s show similar RMSE values.

A similar pattern is displayed in Figure 2.9 showing results for βKCAL. Here, E1 returns
the lowest, BA the highest RMSE values.

Figure 2.10 displays RMSE values for βALC , again, with E1 resulting in the lowest
RMSE value and BA yielding the highest one.

2.4.3.3 Results - CICR

Figure 2.11 shows that BM produces the lowest CICR for β0 (90%), while BA produces
the highest result (94%), which is also closest to 95%.

For βKCAL (Figure 2.12), we find that RF and E1 result in highest CICR (both at
99%). CT (94%), BM (94%), and BA (96%) are closest to 95%.

Figure 2.13 displays CICR for βKCAL. Here, we find that E1 and RF result again in
highest CICR (100%, 99%). BM results in the lowest coverage rate (91%). PM and
BA (both at 94%) are closest to 95%.
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Figure 2.8: Different M2s compared in terms of the resulting RMSE in the estimated
regression coefficient β0 in M3 based on NHANES data. The solid black line indicates
zero RMSE.
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Figure 2.9: Different M2s compared in terms of the resulting RMSE in the estimated
regression coefficient βKCAL in M3 based on NHANES data. The solid black line
indicates zero RMSE.
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Figure 2.10: Different M2s compared in terms of the resulting RMSE in the estimated
regression coefficient βALC in M3 based on NHANES data. The solid black line indicates
zero RMSE.
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Figure 2.11: Different M2s compared in terms of the resulting confidence interval cov-
erage rates (CICR) in the estimated regression coefficient β0 in M3 based on NHANES
data.
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Figure 2.12: Different M2s compared in terms of the resulting confidence interval
coverage rates (CICR) in the estimated regression coefficient βKCAL in M3 based on
NHANES data.

0.925

0.950

0.975

1.000

BM E1
PM CT RF BA

M2

C
IC

R
−

β A
LC

Figure 2.13: Different M2s compared in terms of the resulting confidence interval
coverage rates (CICR) in the estimated regression coefficient βALC in M3 based on
NHANES data.
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We find no overall best procedure in terms of EB. However, we find that E1 performs
best in terms of RMSE and BA results in the best CICR, over all three β coefficients.

In this simulation, we applied M2s on data with many (complete) covariates. In this
case, we recommend procedures that include some sort of variable selection to re-
move unnecessary covariates and address potential collinearity. All applied imputation
methods except BM and PM have such a feature.

2.5 Discussion

This study reveals how different imputation procedures perform under different data
scenarios and how their performance depends on the underlying data situation. In this
discussion section, we first restate the main findings of the simulation, followed by the
limitations of the study and directions for future research.

Summarizing the findings of the simulation, we see that, as expected, CC shows good
performance in all scenarios where the probability of missingness only depends on the
covariates. When missingness also depends on the outcome, we see that, overall, PM
performs well in the parametric scenarios, while BA yield the best results in the non-
parametric cases. The parametric methods (BM, E1, and E2) show similar patterns
in most of the investigated scenarios. CT works well in all MAR scenarios where
missingness is independent of the outcome. While we find that BA generally performs
well in non-parametric cases, BA often shows the worst performance in parametric
cases.

The investigation of the unexpected behavior of BA reveals the following. Imputation
using BA on data with increased variance leads to higher absolute empirical bias, com-
pared to imputation using CT. The tested BA implementations from different packages
show overall similar patterns in terms of empirical bias, but selecting hyperparame-
ters and prior-settings via cross-validation helps to reduce strong biases. Increasing
the sample size leads to reduced empirical bias for all compared procedures, but the
overall patterns remain the same.

Regarding the simulation using real data, CT and RF perform well in terms of EB,
but E1 shows the best performance for RMSE in all three parameters. This finding
suggests that applying regularization can remove unnecessary “noisy” terms in settings
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with more covariates present, as is the case in the NHANES data. For CICR, BA shows
overall the best coverage results.

The results from the simulations reveal no best overall imputation method. Therefore,
missing data imputation in practice requires a careful consideration of the best impu-
tation method for the given situation. We now provide recommendations for practice
based on the given data set and other aspects. If the analysis model is a regression
with a known outcome and covariates, not imputing the missing values can be con-
sidered; CC leads to consistent regression coefficients if missingness does not depend
on the outcome. As seen in the simulation, compared to the imputation methods, CC
works well in many of the investigated scenarios. In general, utilizing information from
the incomplete observations requires effort in terms of diagnostics of the imputation
process.

When the number of variables is small, modeling effort is likely manageable and para-
metric models like BM can be properly modified. If the analyst can not put in the
effort to select appropriate imputation models, the simulations suggest that PM with-
out modifications can be used as a robust alternative to BM. In case of a high number
of (incomplete) variables, we recommend the use of automated imputation methods
as the sequential imputation with integrated model selection (SIIMS) procedure in-
troduced in Chapter 3 of this dissertation. Another recently published automated
imputation procedure is multiple imputation by super learning (MISL) (Carpenito &
Manjourides, 2022). An advantage of both SIIMS and MISL is that they use several
imputation models in each SI step, which eliminates the need for a preceding model
selection.

The current simulation investigates scenarios with congenial M1s and M3s. Thus, in
data where the probability of missingness only depends on the covariates, we find CC
performing well. However, for uncongenial M1 and M3, this finding might not hold.
The missing values might have a stronger effect on parameter estimates in a simplified
M3 (compared to M1), while imputation with a M2 congenial to M1 can restore the
joint distribution of the outcome and covariates. Thus, a simplified M3 can still result
in consistent estimates for uncongenial M1s and M3s when imputation is performed.

Machine learning (ML) procedures like tree-based methods perform well in prediction
tasks and their default parameter settings were often determined from studies with
assessment based on straight forward prediction. While missing data imputation is a
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form of prediction, there are some unique aspects to imputation. CEMI is an iterative
procedure and additional parameter tuning in each CEMI step can lead to increased
runtime. For instance, we experienced strongly increased runtime when applying BA
with parameter tuning via cross-validation within CEMI (Section 2.3.0.1). On the
other side, RF and CT default values often lead to good performance, in contrast
to neural networks (Nordbotten, 1996) or support vector machines (Y. Zhang & Liu,
2009), where parameter tuning is highly recommended. The resulting time advantage
of RF and CT is the main reason for mostly focusing on tree-based ML methods in this
study. However, generally, optimal parameters for machine learning procedures within
CEMI lack investigation. For instance, Shah et al. (2014) compare CEMI using RF
with different parameter settings and find, for example, that there is no further gain in
performance when increasing the number of trees above ten. However, such studies are
relatively rare. Future studies can investigate the sensitivity to non-optimal parameters
and the effect of parameter tuning within CEMI. These studies can examine parameter
tuning in CEMI within time constraints (Z. Wang et al., 2018) to determine feasibility
for application in larger data sets.

Despite the variety of multiple imputation methods compared, this study is limited
in several aspects. First, the simulated scenarios are kept simple and focus only on
continuous variables. We set up these scenarios so that relationships among variables
are obvious and can be adjusted as needed in order to learn about the behavior of
different imputation procedures. Reality is, of course, complex, and analysis models
with only three continuous variables are rare. Future research can build on this current
study and investigate the performance of imputation procedures in scenarios with a
higher number of variables, including binary and nominal variables.

Second, in the simulation, we find the parametric methods (BM, E1, and E2) mostly
perform in similar ways, for instance, they result in similar EB values. Care should be
taken in generalizing this conclusion because these methods have different underlying
model structures. However, it is possible that the regularized methods identify active
sets of covariates that result in models close or equal to the BM. A similar performance
of BM and the regularized methods in the {Q,.} cases supports this explanation. Fur-
ther, in M1, the data generating model, we specify an incomplete variable uniformly
distributed, thus, all parametric methods are misspecified to some degree. Varying the
strength of the quadratic relationship in M1 can help to compare the performances
among the parametric imputation procedures.
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Third, this study assumes simple random sampling of the data, ignoring complex sam-
pling features like weights and clusters. Work by Zhou, Elliott, and Raghunathan
(e.g., Zhou et al., 2016b, 2016a) provides a two-step approach for incorporating these
complex sampling features of survey data in multiple imputation. In their approach,
the first step is based on the finite population Bayesian bootstrap, and the second step
consists of imputing missing values using a parametric model. Future studies could
evaluate how substituting this parametric model with other procedures compared in
this study affects performance.

Fourth, the setup of the data generating process could lead to unintended MNAR
situations when missingness of an incomplete variable depends on missing values of
another incomplete variable. An alternative to sequentially generating missing value
indicators is introducing missing values based on missing patterns as in the MICE
function “ampute()” (Schouten et al., 2018). This procedure uses weighted scores of
the variables and assures the defined missingness mechanism.
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2.6 Appendix 1 - table of acronyms
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Table 2.8: Table of acronyms used in Chapter 2, ordered by as they appear in the
text.

Acronym Description
CEMI Chained equation multiple imputation
MAR Missing at random
MNAR Missing not at random
PM Predictive mean matching
CT Classification and regression trees
RF Random forest
MICE Multivariate Imputation by Chained Equations
BA Bayesian additive regression trees
RMSE Root mean squared error
NHANES National Health and Nutrition Examination Survey
M1 Data generating model
M2 Imputation model
M3 Analysis model
L Linear case
Q Quadratic case
N Non-parametric case
MX MAR, missingness independent of outcome of M1/M3
MXY MAR, missingness dependent of outcome of M1/M3
NX MNAR, missingness independent of outcome of M1/M3
BM Bayesian linear model
E1 Bayesian regularized linear model using elastic net
E2 E1 with basis-expanded covariates
CC Complete case analysis
MCMC Markov chain Monte Carlo
EB Empirical bias
RV Ratio of mean estimated variance to the empirical variance
CI Confidence interval
CICR CI coverage rate
S-EB EB measure for spline in N case
S-RV RV measure for spline in N case
S-RMSE RMSE measure for spline in N case
S-CICR CICR measure for spline in N case
BA-CV BA including cross-validation
BA-P BA as implemented in the R package "BART"
BA-S BA designed for smooth functions
VOI Variables of interest
SRSWR Simple random sample with replacement
BMI Body mass index
KCAL Kilo-calories intake
ALC Number of days having 4 to 5 alcoholic drinks in the past 12 months
SIIMS Sequential imputation with integrated model selection
MISL Multiple imputation by super learning
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2.7 Appendix 2 - design table
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Table 2.9: Design table for Chapter 2.

Method Parameter Description Levels Choices Tuning
NORM - No tuning parameters - - None
E1, E2 α Elastic net mixing parameter [0, 1] Interval of all possible values. 5-fold cross-validation
PMM - No tuning parameters - - None
CT minbucket The minimum number of observations in any terminal node used. 5 Default of MICE package version 3.14.7 None
CT cp Complexity parameter 1e-04 Default of MICE package version 3.14.7 None
RF b Number of trees 10 Provided by Shah et al. (2014) None
RF minbucket The minimum number of observations in any terminal node used. 5 Default of MICE package version 3.14.7 None

BA mem_cache_for_speed
Speed enhancement that caches the predictors and the
split values that are available at each node for selecting

new rules.
TRUE, FALSE

Recommened for large number of predictors, set ’FALSE’
in simulation with three variables (Section 2.2.1),

set ’TRUE’ in simulation using real data (Section 2.4).
None

BA use_missing_data If TRUE, incomplete observations are included. FALSE Only complete observations are used in each CEMI step. None
CC - No tuning parameters - - None

BA-CV m Number of trees 50, 200 Recommended in Chipman et al. (2010) 5-fold cross-validation
BA-CV kBA Hyperparameter influencing the effect of a single tree component. {1, 2, 3, 5} Recommended in Chipman et al. (2010). 5-fold cross-validation

BA-CV (u, q)
Pair of prior degrees of freedom and quantile,
see Chipman et al. (2010) for detail.

{(10, 0.75), (3, 0.90), (3, 0.99)} Recommended in Chipman et al. (2010). 5-fold cross-validation

BA-P - No tuning parameters - - None
BA-S - No tuning parameters - - None

All other parameters of the presented imputation procedures are specified as in the corresponding software packages.
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2.8 Appendix 3 - detailed results

The plots in this appendix show results of the described simulation study and follow the
same basic organizational scheme. The y-axes show the quantitative properties (i.e.,
either EB, RMSE, or CICR); the x-axes display the different M2s. The figures’ columns
show the results for the different parameter values of logit(δX1

0 ) ∈ {0.05, 0.15, 0.5}; the
rows are separated by the different missingness mechanisms. The dots display the
simulation results and compare M2s.
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Figure 2.14: Different M2s compared in terms of the resulting empirical bias in the
estimated regression coefficient β0 in M3 for nine different data scenarios with linear
relationships. The solid black line indicates zero empirical bias.

We first focus on EB in the {L,MX} case. Figures 2.14, 2.15, and 2.16 show that the
imputation by BA results in the largest EB in all three M3 coefficients. E1 and E2
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Figure 2.15: Different M2s compared in terms of the resulting empirical bias in the
estimated regression coefficient β1 in M3 for nine different data scenarios with linear
relationships. The solid black line indicates zero empirical bias.
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Figure 2.16: Different M2s compared in terms of the resulting empirical bias in the
estimated regression coefficient β2 in M3 for nine different data scenarios with linear
relationships. The solid black line indicates zero empirical bias.

56



show similar performances with a small EB in all three coefficients. CC, CT, BM, PM,
and RF also perform on a similar level with mostly small EB.

For EB in the {L,MXY} case, we see differences in EB for the three coefficients of
M3. For the intercept (Figure 2.14), CC has the largest EB, followed by BA. All other
imputation models perform similarly well with only small EB values. For β1 (Figure
2.15), BA results in a small EB; all other M2s show no or a very small EB. For β2

(Figure 2.16), we see the largest EB in CC, followed by E1; all other M2s showing
small EB values.

For EB in {L,NX}, the imputation by BA results in the largest EB in β0 and β1. E1
and E2 perform similarly well with a small EB in all three coefficients. CT, BM, PM,
and RF are mostly empirically unbiased. CC is empirically unbiased in this scenario.
For β2, the compared methods are mostly empirically unbiased; BA, E1, and E2 show
small EBs.

The described patterns appear to be the same for different values of logit(δX1
0 ), but

tend to be strongest for logit(δX1
0 ) = 0.05 and weakest for logit(δX1

0 ) = 0.5. In other
words, the patterns are strongest for the highest number of missing values.

EB - {Q,.}
For {Q,MX}, we find that CC results in only small EB in parameter estimates for M3.
For β0, β1, and β3 (Figures 2.17, 2.18, and 2.20), we find similar magnitudes of EBs in
estimates for BM, BA E1, and E2 (β0 and β3 negatively, β1 positively biased), except
for BA, which shows a less strong EB in the β3 case. For β2 (Figure 2.19), we find that
BA results in the strongest EB; all remaining M2s are mostly empirically unbiased.

For {Q,MXY}, we find that BM, E1, and E2 results in EB for all parameters, except
for β2, where no method shows a large EB. All other M2s result in either no or small
EB. One exception of this pattern is the large EB for CC in the β0 estimate.

For {Q,NX}, we find that CC results in small EB in parameter estimates for M3. For
the β0, β1, and β3, we find similar magnitudes of EB in estimates for BM, BA, E1,
and E2 (β0 and β3 negatively, β1 positively biased), except for BA, which shows a less
strong EB in the β3 case. In β3, we also find positive EB in CT, PM, and RF. For β2,
all M2s are mostly empirically unbiased.

RMSE - {L,.}
The RMSE for {L,MX} is highest for BA in all estimated coefficients (cf. Figures 2.21,
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Figure 2.17: Different M2s compared in terms of the resulting empirical bias in the
estimated regression coefficient β0 in M3 for nine different data scenarios including a
quadratic relationship. The solid black line indicates zero empirical bias.
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Figure 2.18: Different M2s compared in terms of the resulting empirical bias in the
estimated regression coefficient β1 in M3 for nine different data scenarios including a
quadratic relationship. The solid black line indicates zero empirical bias.
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Figure 2.19: Different M2s compared in terms of the resulting empirical bias in the
estimated regression coefficient β2 in M3 for nine different data scenarios including a
quadratic relationship. The solid black line indicates zero empirical bias.
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Figure 2.20: Different M2s compared in terms of the resulting empirical bias in the
estimated regression coefficient β3 in M3 for nine different data scenarios including a
quadratic relationship. The solid black line indicates zero empirical bias.
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Figure 2.21: Different M2s compared in terms of the resulting RMSE in the estimated
regression coefficient β0 in M3 for nine different data scenarios with linear relationships.
The solid black line indicates zero RMSE.
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Figure 2.22: Different M2s compared in terms of the resulting RMSE in the estimated
regression coefficient β1 in M3 for nine different data scenarios with linear relationships.
The solid black line indicates zero RMSE.

63



logit(δ0
X1) = 0.05 logit(δ0

X1) = 0.15 logit(δ0
X1) = 0.5

M
X

M
X

Y
N

X

B1
BM CC CT E1 E2

PM RF B1
BM CC CT E1 E2

PM RF B1
BM CC CT E1 E2

PM RF

0.0

0.3

0.6

0.9

1.2

0.0

0.3

0.6

0.9

1.2

0.0

0.3

0.6

0.9

1.2

M2

R
M

S
E

−
β 2

Figure 2.23: Different M2s compared in terms of the resulting RMSE in the estimated
regression coefficient β2 in M3 for nine different data scenarios with linear relationships.
The solid black line indicates zero RMSE.
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2.22, 2.23), followed by CC, and then by all other M2s. Overall, RF performs best in
terms of RMSE in this scenario.

For {L,MXY}, we generally see lower RMSE, compared to {L,MX}. Here, CC results
in a noticeable higher RMSE value for β0; otherwise, the values are similar.

For {L,NX}, RMSE is highest for BA in β0 and β1. For β2, only small differences occur,
with E1, E2, and BA resulting in highest RMSEs, followed by all other methods.
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Figure 2.24: Different M2s compared in terms of the resulting RMSE in the estimated
regression coefficient β0 in M3 for nine different data scenarios including a quadratic
relationship. The solid black line indicates zero RMSE.

For {Q,MX}, BA results in the highest RMSE in β0 (Figures 2.24). In β1 (Figures
2.25), CT, PM, and RF return the lowest RMSE values. In β2 (Figures 2.26), only BA
yields a noticeably higher RMSE values compared to the other imputation methods.
For β3 (Figure 2.27), CT, PM, and RF result in similar low RMSE values compared to
all other M2s.
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Figure 2.25: Different M2s compared in terms of the resulting RMSE in the estimated
regression coefficient β1 in M3 for nine different data scenarios including a quadratic
relationship. The solid black line indicates zero RMSE.
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Figure 2.26: Different M2s compared in terms of the resulting RMSE in the estimated
regression coefficient β2 in M3 for nine different data scenarios including a quadratic
relationship. The solid black line indicates zero RMSE.
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Figure 2.27: Different M2s compared in terms of the resulting RMSE in the estimated
regression coefficient β3 in M3 for nine different data scenarios including a quadratic
relationship. The solid black line indicates zero RMSE.
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For {Q,MXY}, we again find lower RMSE values, compared to {Q,MX}. All M2s are
generally at the same performance level, except for β0, where CC yields higher values.

In the {Q,NX} case, the biggest differences in M2s occur in β0. BA shows highest
RMSEs, followed by BM, E1, and E2. CC, CT, PM, and RF show lowest RMSEs, all
three being at a similar level. For β1 and β2, we find only minor differences in resulting
RMSE values, with BA showing the highest values. The RMSE values in β3 are on a
similar level.
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Figure 2.28: Different M2s compared in terms of the resulting confidence interval
coverage rates (CICRs) in the estimated regression coefficient β0 in M3 for nine different
data scenarios with linear relationships. The solid black line indicates 95% coverage
rate.

Regarding CICR, for {L,MX}, logit(δX1
0 ) = 0.05, and the coverage rates of β0 estimates

(Figure 2.28), BA shows the lowest coverage rate (62%), followed by B2 and E1 (both
at 75%), E2 and RF (both at 80%). All remaining M2s approach the 95% mark. This
pattern emerges with minor numerical differences for estimates of β1 and β2 as well
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Figure 2.29: Different M2s compared in terms of the resulting confidence interval
coverage rates (CICRs) in the estimated regression coefficient β1 in M3 for nine different
data scenarios with linear relationships. The solid black line indicates 95% coverage
rate.
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Figure 2.30: Different M2s compared in terms of the resulting confidence interval
coverage rates (CICRs) in the estimated regression coefficient β2 in M3 for nine different
data scenarios with linear relationships. The solid black line indicates 95% coverage
rate.
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(see Figures 2.29, and 2.30). For increasing logit(δX1
0 ), we find all M2 CICR increase

as well for β0 and β1, except for BA, which remains at approximately the same level.
For β2, coverage rates do not increase for increasing logit(δX1

0 ) values.

For {L,MXY}, β0 and logit(δX1
0 ) = 0.05, CC yields the lowest coverage rate (0%), next

is BA (65%). For increasing logit(δX1
0 ), the coverage rates of CC and BA increase; for

BA, CICRs approach 95%, and CC increases to 55%. For β1, BM, PM, and E1 result
in a CICR close to 95% for logit(δX1

0 ) = 0.05. The remaining M2s stay below 95%,
but all methods move closer to 95% with increasing logit(δX1

0 ). For β2, we find that
CC and E1 lead to low coverage (40% and 65%) for logit(δX1

0 ) = 0.05. In the case
of increasing logit(δX1

0 ), CC’s coverage increases, while other BA, E1, and E2 leads to
lower coverage.

For {L,NX}, β0 and logit(δX1
0 ) = 0.05, we find that CC yields best coverage rate at 95%

followed by E1, E2, BM, and PM (all around 64%); BA shows lowest rates close to 0%.
For increasing logit(δX1

0 ), the coverage rates of all methods increase; the coverage rate
of BA approach 25%, while the remaining methods increase to approximately 75%.
For β1, BA results in the lowest coverage (12%, 25%, and 25%) for logit(δX1

0 ) = 0.05.
The remaining M2s approach 95% and all methods move closer to 95% with increasing
logit(δX1

0 ), except for BA, which only reach 75%. For β2 and logit(δX1
0 ) = 0.05, the

methods resulting in lowest CICIR are E1, E2, and BA (at or above 75%). In the
case of increasing logit(δX1

0 ), all coverage rates increase, except for BA which drops to
about 75%.

CICR - {Q,.}
Regarding the CICRs for {Q,MX}, and across logit(δX1

0 ) values, we see similar patterns
for estimates of β0, β1, and β3 (Figures 2.31, 2.32, and 2.34). LM, E1, and E2, perform
noticeably worse than the other methods. BA also show a poor performance for β0 and
β1. Different logit(δX1

0 ) values do not substantially change these patterns. Increasing
logit(δX1

0 ) leads to lower CICR values in BA.

For {Q,MXY}, β0, β1, β3, and logit(δX1
0 ) = 0.05, CC, BM, E1, E2 clearly perform

worse than other methods. Their performance increased with increasing logit(δX1
0 ),

but do not approach 95%. Regarding β2, for lower values of logit(δX1
0 ), we find that

CC results in lower coverage.

For {Q,NX}, CC performs best at 95% in all four parameters. BM, E1, and E2 show
lowest CICR in β0 and β1; BA has the lowest CICR in β2. In β3, CT, BM, PM, RF,
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Figure 2.31: Different M2s compared in terms of the resulting confidence interval
coverage rates (CICRs) in the estimated regression coefficient β0 in M3 for nine different
data scenarios including a quadratic relationship. The solid black line indicates 95%
coverage rate.
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Figure 2.32: Different M2s compared in terms of the resulting confidence interval
coverage rates (CICRs) in the estimated regression coefficient β1 in M3 for nine different
data scenarios including a quadratic relationship. The solid black line indicates 95%
coverage rate.
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Figure 2.33: Different M2s compared in terms of the resulting confidence interval
coverage rates (CICRs) in the estimated regression coefficient β2 in M3 for nine different
data scenarios including a quadratic relationship. The solid black line indicates 95%
coverage rate.
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Figure 2.34: Different M2s compared in terms of the resulting confidence interval
coverage rates (CICRs) in the estimated regression coefficient β3 in M3 for nine different
data scenarios including a quadratic relationship. The solid black line indicates 95%
coverage rate.
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E1, and E2 all show low CICR (between 63% and 72%).

Non-Parametric Data
Broadly speaking, regarding values of logit(δX1

0 ), we mostly see the same pattern for
all three investigated values. This is true for EB and RMSE. For CICR, there are some
exceptions, described below.
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Figure 2.35: Different M2s compared in terms of the resulting empirical bias in the
estimated regression coefficient β0 in M3 for nine different data scenarios including a
non-parametric relationship. The solid black line indicates zero empirical bias.

We first investigate EB in β0 and β2 estimates in {N,.}, the non-parametric data.
Results for β0 and β1 are shown in Figures 2.35 and 2.36.

For {N,MX}, we find opposite signs for EBs in β0 and β2. We find the largest absolute
EB in PM and BM. CC, and BA perform best.
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Figure 2.36: Different M2s compared in terms of the resulting empirical bias in the
estimated regression coefficient β1 in M3 for nine different data scenarios including a
non-parametric relationship. The solid black line indicates zero RMSE.

78



For {N,MXY}, EBs in β0 and β2 have opposite signs, but are otherwise very similar.
We find that BA performs best, followed by CC, and then the remaining methods that
show minor differences for different logit(δX1

0 ) values.

For {N,NX}, CC leads to empirically unbiased estimates in both β0 and β2. We find
the largest EBs in RF, followed by E1, PM, and BM.

RMSE - {N,.}
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Figure 2.37: Different M2s compared in terms of the resulting RMSE in the es-
timated regression coefficient β0 in M3 for nine different data scenarios including a
non-parametric relationship. The solid black line indicates zero RMSE.

Regarding RMSE, we find a nearly identical pattern for β0 and β2 (Figures 2.37 and
2.38) for {N,MX} and {N,MXY} cases. Here, CC and BA result in the smallest RMSE
values in both parameter estimates. While the RMSE of BA decline with increasing
logit(δX1

0 ) values, the RMSE values of all other M2s increase or remain stable.

For {N,NX}, CC show the lowest RMSE values, while RF yield the highest values.
The RMSE values of all methods decrease with increasing logit(δX1

0 ).
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Figure 2.38: Different M2s compared in terms of the resulting RMSE in the es-
timated regression coefficient β2 in M3 for nine different data scenarios including a
non-parametric relationship. The solid black line indicates zero RMSE.
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CICR - {N,.}
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Figure 2.39: Different M2s compared in terms of the resulting RMSE in the esti-
mated regression coefficient β0 in M3 for nine different data scenarios including a
non-parametric relationship. The solid black line indicates 95% coverage rate.

For {N,MX}, we see similar patterns in β0 and β2 in terms of CICR. BA performs best
at approximately 95% CICR. While RF, E1, and E2 result in CICR above 50% for
logit(δX1

0 ) = 0.05, all methods drop to (or close to) 0% coverage rate for logit(δX1
0 ) =

0.5.

In the {N,MXY} case, for both parameters (Figures 2.39 and 2.40), BA performs best
in terms of CICR, while all other methods drop to zero for increasing logit(δX1

0 ) values.

For {N,NX}, we again see similar patterns for β0 and β2. CC always performs best,
followed by CT. RF performs worst overall.

Spline evaluation - {N,.}
We now focus on the mean absolute distance between the true shape and the estimated
spline (S-EB), presented in Figure 2.41. In {N,MX} scenarios, the strongest deviations
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Figure 2.40: Different M2s compared in terms of the resulting RMSE in the esti-
mated regression coefficient β2 in M3 for nine different data scenarios including a
non-parametric relationship. The solid black line indicates 95% coverage rate.

82



Figure 2.41: Different M2s compared in terms of mean divergence of marginal predicted
means from true spline shape (S-EB) in the M3. Results presented for nine different
data scenarios including a non-parametric relationship.
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occur for BM, PM, E1, and E2, the best performing methods are CT, RF, and BA.
The deviations are generally reduced for increasing logit(δX1

0 ). Focusing on {N,MXY},
we find BA performing best, PM and RF performing worst. In {N,NX} cases, CC
and CT perform best, RF shows highest S-EB. For increasing logit(δX1

0 ), differences
between the M2s diminish.

Figure 2.42: Different M2s compared in terms of mean RMSE based on marginal
predictions (S-RMSE) in the M3. Results presented for nine different data scenarios
including a non-parametric relationship.

We now look at S-RMSE of the estimated spline, visualized in Figure 2.42. In {N,MX}
scenarios, the highest S-RMSE value occurs for E2, and the best performing methods
are CT and RF. S-RMSE values are reduced for increasing logit(δX1

0 ) values.

Focusing on {N,MXY}, we find that CC and BA perform best in terms of S-RMSE,
while PM and RF performing worst. Again higher logit(δX1

0 ) values lead to smaller
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S-RMSE values.

For {N,NX} cases, RF and E2 show the highest S-RMSE values; CC and CT show the
best performance. For increasing logit(δX1

0 ), differences between methods diminish.

Figure 2.43: Different M2s compared in terms of mean confidence interval coverage
rates (S-CICR) based on marginal predictions in the M3. Results presented for nine
different data scenarios including a non-parametric relationship.

We now look at mean confidence interval coverage rates of marginal predictions (S-
CICR) of the estimated spline, visualized in Figure 2.43. In {N,MX} scenarios, BA,
CT, and RF result in the best S-CICR (approximately 95%); E1 achieves the lowest
S-CICR (< 50%), followed by BM, RF, and E2 (between 60% and 70%). Coverage
generally increases for increasing logit(δX1

0 ) values.

Focusing on {N,MXY}, we find that CC, and BA perform best (close to a 95% coverage
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rate), while RF performs worst. Here, higher logit(δX1
0 ) values lead to lower S-CICR

values overall, except for CC.

For {N,NX} cases, CT, CC, and E2 show the highest coverage rates (at approximately
85%); RF shows the worst performance (12%). For increasing logit(δX1

0 ), differences
between methods diminish and move towards 60%; only CC remains high in S-CICR.
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Chapter 3

Sequential Imputation with
Integrated Model Selection

Abstract

The issue of incomplete observations, which are attributable to item nonresponse, unit
nonresponse, failure to link records, or panel attrition, is an inevitable problem in
survey data sets. Sequential imputation (SI) is often used to impute those missing
values. However, in data sets where many variables are affected by missing values,
appropriate specifications of sequential regression models can be burdensome and time
consuming, as a separate model needs to be developed by a human imputer for each
incomplete variable. This task is even more complex because survey data typically
consists of many different kinds of variables (i.e., continuous, binary, and nominal)
with possibly non-trivial and non-linear relationships. Available software packages for
imputation procedures (e.g., Multivariate Imputation by Chained Equations (MICE)
or IVEware) require model specifications for each variable containing missing values.
Additionally, the default models in this software can lead to bias in imputed values, for
example, when variables are non-normally distributed or when important interactions
are not included in the imputation models.

In this chapter we propose an enhanced SI procedure with automated model selection.
The procedure takes into account data sets consisting of potentially non-normally dis-
tributed variables and potentially complex and non-linear interactions. In each step of
the procedure, model selection is carried out from a pool of several parametric and non-
parametric models based on two criteria. The first criterion compares models based on
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their predictive power. The second criterion focuses on the similarity between imputed
and observed values conditional on the response propensity score for the outcome vari-
able. A case study based on a survey data set (the 2015-2016 National Health and
Nutrition Examination Survey) illustrates the proposed procedure using state-of-the-
art imputation methods. The evaluation of the proposed method focuses on differences
in the quantitative properties of a hypothetical analysis regression model of interest,
fit to the imputed data. We further assess runtime of the imputation process. Overall,
SIIMS’ performance mostly lies in between the performances of the single models.

3.1 Introduction

Missing values in data sets introduce several problems in data analysis, because most
analysis tools assume complete cases. Thus, when applied to complete cases only, the
reduced sample size leads to a loss of information, often resulting in loss of power. This
problem is exacerbated for each additional variable included in an analysis, because
these variables further reduce the number of complete cases. To address this issue,
multiple imputation (MI) of the missing data can be applied under the missing at
random (MAR) assumption (Little & Rubin, 2002, pp. 11–19) in order to compute
unbiased estimates and also to use all available information in a subsequent analysis
(i.e., not only complete cases).

First proposed by Rubin (1978, 1996), the MI procedure produces multiple complete
data sets that can later be analyzed with standard data analysis tools. Combining the
analysis results from each MI data set following Rubin’s rule leads to valid point and
variance estimates under MAR and correct model specification. This means that the
method can account for both the uncertainty about the imputed missing data (Rubin,
1987, Chapter 3) and the uncertainty of the model (i.e., proper imputation (Rubin,
2004, pp. 116–131)). Once a data set is multiply imputed, different analysts can use
the same data sets for their analyses.

To carry out MI, sequential imputation (SI), where missing values are imputed variable
by variable, is often used in practice (see e.g. Paulin et al. (2006), Schenker et al.
(2006), Stuart et al. (2009))1. First proposed and applied by Gleason and Staelin

1An alternative approach is to jointly model the data using a multivariate distribution, which is
not part of this chapter. Further information about MI using joint modeling can be found in Li (1988),
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(1975), several evaluations of the SI approach in simulation studies have found that it is
a robust, easily applicable, and flexible way to implement MI in practice (Raghunathan
et al., 2001; Van Buuren et al., 2006; Van Buuren, 2007). Further variations of SI
have since been developed by Finkbeiner (1979), Raymond & Roberts (1987), Jinn &
Sedransk (1989), and Gold & Bentler (2000). Classic linear regression models are often
applied (Raghunathan et al., 2001) to specify the necessary conditional distributions
within SI using all partially observed variables as dependent variables, and all other
available variables as covariates.

MI with SI can be realized by applying Bayesian regression models, first drawing model
parameters from their posterior distributions, and then drawing plausible values for
the missing values (Rubin, 1987, pp. 166–167). These imputed values are then used
in conjunction with the observed values to fit the imputation model to the next vari-
able. This process continues iteratively over all incomplete variables, substituting the
imputed values with the new draws in each iteration (Kennickell, 1991).

Despite its flexibility, the SI procedure has some drawbacks. First, SI can be com-
putationally intensive, given the iterative nature of the procedure (Raghunathan et
al., 2001; Van Buuren et al., 2006). Every regression model needs to be specified in
advance, leading to a potentially high modeling effort and the risk of misspecification
(Van Buuren et al., 2006). Each of these difficulties can be especially problematic when
the number of incomplete variables is high. Predictor selection for each incomplete vari-
able can be performed, as implemented in the software package MICE (Multivariate
Imputation by Chained Equations) (Van Buuren & Groothuis-Oudshoorn, 2011).

To limit misspecification, researchers have studied supervised machine learning tech-
niques as substitutes for parametric regression models in SI. Burgette and Reiter (2010),
for example, propose MI of continuous variables using sequential classification and re-
gression trees (CART) (Breiman et al., 2017). The authors conclude that CART is
able to capture complex interactions without high modelling effort and can outperform
models that omit important interactions. CART also has advantages when interac-
tions of covariates influence categorical outcome variables (Akande et al., 2017; Doove
et al., 2014). Substituting a random forest (RF) algorithm for CART leads to a more
accurate prediction of the missing values and can better account for model uncertainty
(Stekhoven & Bühlmann, 2012). This procedure, however, has been criticized by Shah

Rubin and Schafer (1990), and Schafer (1997).
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et al. (2014) because the variance of the imputed values can potentially underesti-
mate the variance of the actual values. Shah et al. (2014) propose that missing values
should be “imputed by random draws from independent normal distributions centered
on conditional means predicted using [RF]” and compare this procedure to paramet-
ric imputation models implemented in the R software (R Core Team, 2019) package
MICE (Van Buuren & Groothuis-Oudshoorn, 2011). According to Shah et al. (2014),
the non-parametric RF has an advantage over the default parametric models in MICE.
Despite this advantage, using RF for imputation comes with additional computational
expense since multiple CART procedures are applied for each incomplete variable in
each iteration.

Bayesian additive regression trees (BART) (Chipman et al., 2010) were proposed in Xu
et al. (2016) for sequentially imputing missing values. The authors compare sequential
BART, parametric SI within MICE, and CART within MICE via simulation studies.
They find that, for simple linear cases, all of the approaches perform equally well, but
for more complex data situations, BART performs better than other approaches. A
recent publication combines BART with a penalized splines of propensity prediction
(PSPP) to create a doubly-robust (G. Zhang & Little, 2009) imputation procedure
(Tan et al., 2019). Tan et al. (2019) find that PSPP carried out with BART is more
robust than PSPP alone.

Missing data imputation can also be combined with regularization procedures, which
can prevent overfitting in parametric models. For instance, Zhao et al. (2016) com-
pares several regularized approaches - LASSO (Tibshirani, 1996), adaptive LASSO
(Zou, 2006), elastic net (Zou & Hastie, 2005), and Bayesian LASSO (Park & Casella,
2008) - for MI of one incomplete variable in high-dimensional data sets. Their compar-
ison via simulation suggests that Bayesian LASSO performs best in terms of empirical
bias, standard error, and the coverage rate of a regression coefficient estimated from the
multiply imputed data sets (i.e., in terms of quantitative properties). This approach
was expanded to multiple incomplete variables in a paper by Deng et al. (2016). In
their work, LASSO, adaptive LASSO, and elastic net regularization are incorporated
in an SI procedure and tested on similarly simulated data sets. The authors find elastic
net regularization to be superior to the other methods in most tested scenarios. Al-
though Zhao and Long (2016) and Deng et al. (2016) conclude that regularization is
a promising approach in high-dimensional data situations, the studies also have short-
comings. For one, only main effects were simulated and the missing data mechanism
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is also based on main effects of covariates. For another, the simulated data follow
(multivariate) normal distributions only; neither other continuous distributions nor
categorical variables were investigated.

Two additional studies focus on missing data imputation in high-dimensional data.
Razzak and Heumann (2019) propose a hybrid approach combining joint modeling
(JM) and SI to impute high-dimensional survey data in response to the failure of
MICE in their example data set. They find that the proposed hybrid approach in-
volving JM and SI (using CART and PMM in MICE) performs better than CART
in MICE alone, in terms of both quantitative properties of regression coefficients and
runtime. However, this hybrid approach also has shortcomings. In a first step, JM is
applied to incomplete categorical variables (ignoring incomplete continuous variables).
Next, SI (using MICE) imputes the incomplete continuous variables, conditional on
the JM-imputed categorical variables. This procedure potentially leads to suboptimal
performance. First, JM is based only on the subset of categorical variables leading to
a less plausible MAR assumption. Second, the SI portion treats imputed and observed
values in the JM-imputed variables as the same.2

The second study (Liang et al., 2018) proposes a general algorithm for missing data
imputation in high-dimensional data. The two-step procedure procedure alternates
between imputation of missing values and regularized optimization. The imputation
conditions on the latest parameter estimates and the observed data. The optimization
estimates the parameters based on the current data. The evaluation is based on sim-
ulated data from an auto-regressive process, and precision-recall curves from different
imputation approaches are compared. Although the proposed method works best in
the given scenario, the missing values often follow an unrealistic missing completely
at random mechanism (Little & Rubin, 2002, pp. 11–19) (i.e., they were randomly
deleted). Further, the assessment is based only on precision-recall curves; quantita-
tive properties of regression coefficients (as recommended by Rubin (2004)) are not
investigated.

The studies discussed above compare different approaches after completion of MI. In
contrast to these studies, in this chapter we propose a framework that assesses and
compares models within SI, building on Bondarenko and Raghunathan (2016) and

2A potential solution would be an iterative procedure alternating between the JM and the SI
step updating missing values. For the JM step, continuous variables could be categorized for use as
covariates.

91



Su et al. (2011). Bondarenko and Raghunathan (2016) propose several (graphical)
diagnostic tools for imputation. One of these tools compares residual density plots of
observed and proposed values from an imputation model of the incomplete variable.
Both densities are conditioned on the estimated response propensity score of observing
this particular variable. In this approach, an appropriate imputation model should
lead to similar densities in both cases under MAR. Still, because the plots need to
be investigated visually, this idea is limited to situations where a modest number of
variables are imputed. Another resource for diagnostics in SI is a software package
(called mi) by Su et al. (2011). This package implements residual plots and plots
comparing distributions of observed and imputed values.

In this chapter, we extend the tools presented in Bondarenko and Raghunathan (2016)
and Su et al. (2011) to automatically compare competing imputation models in terms of
different criteria under an MAR assumption. We present criteria for continuous, binary,
and nominal incomplete variables, as well as a modified SI procedure with integrated
model selection. Afterwards, we describe a case study applying some current state-of-
the-art procedures for SI in a simulation based on a real data set. The procedures in
this example are regularized regression, following Deng et al. (2016), CART, following
Burgette and Reiter (2010), RF, following Shah et al. (2014), and BART, following Xu
et al. (2016). The proposed procedure can be applied to data sets with a high number
of incomplete variables with arbitrary distributions, where model specification and
model diagnostics by a human imputer is not feasible. This combination of methods
can be especially useful, because Chapter 2 finds no universally optimal imputation
method.

The remaining part of this chapter is structured as follows. First, we introduce the dif-
ferent selection criteria for continuous incomplete variables and the new SI framework,
as well as the modified criteria for binary and nominal variables. Then we describe the
setup of the case study, followed by the results. Finally, we discuss the new approach
and provide directions for future research.
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3.2 Methods

3.2.1 Assessment Strategy

3.2.1.1 Missing Values in Continuous Variables

We propose two different criteria to assess imputation models, specifically an MSE cri-
terion and one comparing densities of imputed and observed values, henceforth called
the similarity criterion. The assumption about the conditional mean (i.e., the struc-
tural form) is essential to the model, and so we propose an MSE criterion assessing
prediction accuracy on the observed values of the incomplete variable. For the second
criterion, we build on Bondarenko and Raghunathan (2016) to assess the plausibility
of imputed values. For an incomplete variable, this procedure regresses observed and
imputed values on the estimated response propensity score of the variable. The result-
ing residuals are used to estimate the densities of the observed and imputed values.
The greater the similarity between these densities, the better the imputation model
under MAR. In short, the similarity criterion assesses imputation models in terms of
marginal distributions. Instead of investigating the similarity of densities by hand (as
proposed by Bondarenko & Raghunathan (2016)), we automate the evaluation to assess
automatically competing methods.

3.2.1.1.1 MSE criterion. Let X be a continuous variable with missing values and
let R denote the corresponding vector of response indicators. Also, let X|R = 1 be the
subset of observed values of length NR, and X|R = 0 be the subset of missing values
for X. Also, let model m ∈ {1, . . . , M} be an imputation model in a pool of models
of size M . Each model can be fit to the observed data X|R = 1 and Z|R = 1 with Z
as the fully observed covariates. For an observation Xi|Ri = 1, i = 1, . . . , NR, and a
given model m, we compute the MSE as a measure of prediction accuracy:

Si,m = (X̄i,m − Xi)2 (3.1)

with X̄i,m = 1
B

∑B
b=1 X

(b)
i,m and X

(b)
i,m describing the b-th prediction for the value Xi|Ri =

1 produced by model m, and B representing the number of predicted values drawn.
Averaging over all Si,m leads to the MSE criterion for model m:
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MSEm = 1
NR

∑
i∈{X|R=1}

Si,m (3.2)

In Bayesian models, the necessary B draws for the i-th observation can be obtained
from the posterior predictive distributions. In other procedures, the generation of
draws is specific to the procedure. For example, in CART, values can be drawn from
the observations in the corresponding terminal node of the tree.

3.2.1.1.2 Similarity criterion. For the second criterion, we follow the framework
in Bondarenko and Raghunathan (2016), again for X being one incomplete continuous
variable. Specifically, if X|R = 0 is MAR, the conditional distributions of X, given the
covariates Z, are the same for the observed and missing values, i.e., f(X|Z, R = 1) =
f(X|Z, R = 0). Using the response propensity score e = P (R = 1|Z) as an aggregate
for Z (Rosenbaum & Rubin, 1983), f(X|e, R = 1) = f(X|e, R = 0) also holds under
MAR in X. Since the missing values X|R = 0 are unobserved, they will be substituted
with a set of values Xm|R = 0 estimated by an imputation model m. We propose the
Hellinger distance (see e.g. Van der Vaart (1988), p. 211-212) to quantify the similarity
of f(X|e, R = 1) and f(Xm|e, R = 0)):

Hm = Hm(f(X|e, R = 1), f(Xm|e, R = 0)) =
√

1 −
∫ √

f(X|e, R = 1)f(Xm|e, R = 0)dX

(3.3)
The better model m is in terms of providing plausible imputed values under MAR, the
more similar are f(X|e, R = 1) and f(Xm|e, R = 0), and the lower is Hm.

We assume the following models for f(Xm|e, R = 0) and f(X|e, R = 1):

f(Xm|e, R = 0) = s(e)0 + ϵR=0, (3.4)

f(X|e, R = 1) = s(e)1 + ϵR=1 (3.5)

with s(e)0 and s(e)1 defining spline functions of e. We estimate ê via BART based on
Z. After fitting the imputation models, we estimate f̂(Xm|ê, R = 0) via kernel density
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estimation using the estimated residuals ϵ̂R=0:

f̂(Xm|ê, R = 0) = f̂(ϵ̂R=0). (3.6)

We estimate f̂(X|ê, R = 1) in the same way. Afterwards, Ĥm is estimated using both
f̂(Xm|ê, R = 0) and f̂(X|ê, R = 1).

In order to finally decide on a best imputation model, we propose to combine both
metrics, the MSE and the similarity criterion. To accomplish this, a transformation is
necessary, because MSEm ≥ 0 and Hm ∈ [0, 1]. Computing MSEm and Hm for all M

models and standardizing all values (subtracting estimated means and dividing these
differences by estimated standard deviations) leads to measures on the same scale,
denoted by M̃SEm, and H̃m. We define a final model assessment criterion (MAC) for
a model m as follows:

MACm = w1 ∗ M̃SEm + w2 ∗ H̃m (3.7)

with criteria weights w1 + w2 = 1.

For the case study, we consider weights averaging M̃SEm and H̃m in different ways.
The two most extreme weight sets ({w1 = 0, w2 = 1} and {w1 = 1, w2 = 0}) lead to
completely relying on one criterion (H̃m or M̃SEm). Further, we consider other sets of
weights ({0.25, 0.75}, {0.5, 0.5}, {0.75, 0.25}) as possible choices in between those two
extremes.

3.2.2 Sequential Imputation with Integrated Model Selection
(SIIMS)

We now present the modified SI procedure, including model selection based on the
presented criteria, where a different model can be selected for each incomplete variable.
Let a data set consist of fully observed variables Z and K continuous incomplete
variables X = (X1, . . . , XK) with corresponding response indicators R = (R1, . . . , RK).
Also let X−k denote X without variable Xk. We propose the following SI procedure
under an MAR assumption.

For an iteration j > 1 the following steps are performed:
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1) Repeat for all k ∈ {1, . . . , K} variables containing missing values:

a) Estimate response propensity scores êj
k = P (Rk = 1|Z, Xj

−k) for all values
in Xk.

b) Estimate the density of residuals for Xk regressed on êj
k (Equation 3.4)

for the observed values f̂(Xk|êj
k, Rk = 1) using kernel density estimation

(Equation 3.6).

c) Repeat for all m ∈ {1, . . . , M} assessed imputation models:

• Fit the model m to Xk|Rk = 1 as the dependent variable and
Z, Xj

−k|Rk = 1 as the independent variables.
• Estimate M̂SEj

k,m.
• Predict values Xj

k,m|Rk = 0 for Xk|Rk = 0 using the model m.
• Estimate f̂(Xj

k,m|êj
k, Rk = 0) (cf. Equations 3.5 and 3.6).

• Estimate the Hellinger distance

Ĥj
k,m = H(f̂(Xk|êj

k, Rk = 1), f̂(Xj
k,m|êj

k, Rk = 0))

.

d) Standardize the criteria: M̂SEj
k,m ⇒

̂̃
MSEj

k,m; Ĥj
k,m ⇒ ˆ̃

Hj
k,m:

̂̃
MSEj

k,m = M̂SEj
k,m − MSEj

k

SD(M̂SEj
k)

,

with MSEj
k = 1

M

∑M
m=1 M̂SEj

k,m and

SD(M̂SEj
k) =

√√√√ 1
M − 1

M∑
m=1

(M̂SEj
k,m − MSEj

k)2.

We compute ˆ̃
Hj

k,m analogously.

e) Calculate the weighted sum to obtain the model assessment criterion for all
M models:

M̂ACj
k,m = w1 ∗

̂̃
MSEj

k,m + w2 ∗ ˆ̃
Hj

k,m.

f) Select the best model mopt = minm M̂ACj
k,m and use Xj

k,mopt
|Rk = 0 to

update Xj
k|Rk = 0.
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2) Repeat step 1) J times or until convergence, i.e., |(Xj
k|Rk = 0) − (Xj−1

k |Rk =
0)| < ck, ∀k with ck > 0, and use the imputed values from the last iteration to
obtain one imputed data set.

3) Repeat steps 1)-2) l times to obtain l multiply imputed data sets.

The observations Xj
−k|Rk = 0 are missing for the first iteration (j = 1). Therefore, the

variables Xj
−k are excluded from the estimation of the response propensity score and

the imputation models. The differences in step 1) are as follows:

1) Repeat for all k ∈ {1, . . . , K} variables containing missing values:

a) Estimate the response propensity score ê1
k = P (Rk = 1|Z) for all n values

in Xk.
b) Estimate the density of residuals for Xk regressed on ê1

k (Equation 3.4)
for the observed values f̂(Xk|ê1

k, Rk = 1) using kernel density estimation
(Equation 3.6).

c) Repeat for all m ∈ {1, . . . , M} potential imputation models:

• Fit the model m to Xk|Rk = 1 as the dependent variable and Z|Rk = 1
as the independent variable.

The remaining part of the proposed procedure is the same for the first iteration. In the
presented procedure, a different imputation model can be selected for each incomplete
variable in each SI iteration. After multiply imputing and receiving l complete data
sets, data analysis can be performed using analysis tools for complete data sets. The
resulting l estimates can be combined with Rubin’s rule (Rubin, 1987, Chapter 3) to
compute valid point and variance estimates.

3.2.3 Missing Values in Categorical Variables

For categorical variables, the structure of SIIMS introduced in the previous section
remains the same, only the assessment criteria (M̂SEk,m and Ĥk,m) are replaced. The
following sub-sections introduce criteria for incomplete binary and nominal variables.
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3.2.3.1 Binary Variables

3.2.3.1.1 Prediction accuracy criterion The previous MSE criterion cannot be
applied to binary variables with missing values (X ∈ {0, 1}). We thus use the absolute
distance for each observation and substitute Equation 3.1 with

Si,m = |X̄i,m − Xi|. (3.8)

As in the continuous variable case, X̄i,m is the average of repeated draws for each value
Xi|Ri = 1. The Si,m are then combined as described in Equation 3.2.

3.2.3.1.2 Similarity criterion For the second measure, comparable to continuous
variables, the conditional densities of observed and missing values should be similar
under MAR (similarity indicated by ∼):

f(X|e, R = 1) ∼ f(X|e, R = 0) ⇔ P (X = 1|e, R = 1) ∼ P (X = 1|e, R = 0)

For a well performing imputation model, the distance between P (X = 1|e, R = 1) and
P (X = 1|e, R = 0)m should be small, with P (X = 1|e, R = 0)m being estimated from
the potentially imputed values generated from model m. However, for binary X, a
comparison based on residual densities, as done in the continuous case, is not feasible.
Thus, for each model m, we propose comparing P (X = 1|R = 1) and P (X = 1|R = 0)m

within S subsets of similar e values. Let (ds, ds+1], s ∈ {1, . . . , S}, be half-open intervals
of equal lengths with ds ∈ [0, 1], ds < ds+1, and ⋃S−1

s=1 (ds, ds+1] = [0, 1]. Further let

|∆|(ds,ds+1],m = |P (X = 1|R = 1) − P (X = 1|R = 0)m|(ds,ds+1] (3.9)

define the absolute difference between the probabilities of X = 1 for observed and
predicted missing values from the fitted model m restricted to e ∈ (ds, ds+1]. The
number of intervals S can be determined by the number of observations in the data. The
sum of all absolute differences, |∆|m = ∑S−1

s=1 |∆|(ds,ds+1],m, for all intervals of e leads to
an overall similarity criterion, i.e., a small |∆|m indicates f(X|e, R = 1) ∼ f(X|e, R =
0)m. All measures needed in Equation 3.9 can be estimated in a straightforward way
from the observed data, or from the imputation model m.

98



3.2.3.2 Nominal Variables

3.2.3.2.1 Prediction accuracy criterion For multiple categories, the prediction
accuracy criterion can be applied in the same manner as in the nominal case by trans-
forming the nominal comparison to a binary comparison. After generating repeated
draws for each value Xi|Ri = 1, the assessment is based on the draw being in the right
category as opposed to the draw being in the wrong category.

3.2.3.2.2 Similarity criterion Now we expand the approach of comparing den-
sities of observed and imputed values presented in sub-section 3.2.3.1.2 to multiple
categories. The underlying principle can be applied to incomplete variables with mul-
tiple (C) categories:

f(X|e, R = 1) ∼ f(X|e, R = 0) ⇔ P (X = c|e, R = 1) ∼ P (X = c|e, R = 0), (3.10)

∀c ∈ {1, . . . , C}. Analogous to the binary case (Equation 3.9), we can define a sum of
differences over all categories within classes of response propensity score values:

|∆|(ds,ds+1],m =
C∑

c=1
|P (X = c|R = 1) − P (X = c|R = 0)m|(ds,ds+1].

The overall measure for similarity is defined analogously to the binary case as |∆|m =∑S−1
s=1 |∆|(ds,ds+1],m.

3.3 Case Study

In this section, we first describe an implementation of the proposed SIIMS procedure,
then we introduce the simulation setup, after which we report the results. For both
continuous and binary incomplete variables, we incorporate four different state-of-the-
art imputation models in SIIMS: Bayesian regularized linear model (BLM), CART,
RF, and BART. Technical details on each procedure are provided in the following
paragraphs, along with information concerning the assessment process and general
notes on the implementation. We apply the procedure with balanced weights, leading
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to a mean of both criteria (w1 = w2 = 0.5). We used the R software version 4.1.2 (R
Core Team, 2021) for this case study.

3.3.1 Continuous Incomplete Variables

We now describe all applied imputation models for the outcome Xk and covariates
Z, X−k. The observed part of Xk (Xk|Rk = 1) has length nobs

k . The missing part of
Xk (Xk|Rk = 0) has length nmis

k . Let further γk denote the parameter vector of the
parametric imputation model with Xk as the outcome.

The first imputation model is the BLM. This procedures applies elastic net, the best
performing regularization technique in Deng et al. (2016), before imputing via a
Bayesian linear model (Rubin, 1987, p. 167). First, the Bayesian linear model is
specified here as follows:

f(Xk|Z, X−k, γk, log(σk)) = (Z, X−k)γk + ϵ, with ϵ ∼ N(0, σ2
k). (3.11)

We further assume improper prior distributions for the parameters, P (γk, log(σk)) ∝
const. The BLM fitting process in one SIIMS step is as follows.

1. Fit the elastic net regularized regression model using Xk|Rk = 1 as the out-
come, Z, X−k|Rk = 1 as the predictor variables, and the parameters γk with the
following loss function

L(γ̂k) =
∑nobs

k
i=1 ((Xk|Rk = 1) − (Z, X−k|Rk = 1)γ̂k)2

2nobs
k

+λ

1 − α

2

q∑
j=1

γ̂2
j,k + α

q∑
j=1

|γ̂j,k|

 ,

with λ describing the regularization parameter and α ∈ [0, 1] describing the
elastic net mixing parameter.

2. Use the model in 1. to identify the active set of covariates (Z, X−k|Rk = 1)A,k.
3. Compute the matrix Sk = (Z, X−k|Rk = 1)′

A,k(Z, X−k|Rk = 1)A,k.
4. Compute Vk = (Sk + diag(Sk)κ)−1, with κ describing a small ridge parameter.
5. Compute γ̂k = Vk(Z, X−k|Rk = 1)′

A,k(Xk|Rk = 1).
6. Draw g ∼ χ2

nobs
k

−q
.

7. Compute σ2
k = ((Xk|Rk = 1) − (Z, X−k|Rk = 1)A,kγ̂k)′((Xk|Rk = 1) −

(Z, X−k|Rk = 1)A,kγ̂k)/g.
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8. Draw q i.i.d. w1 ∼ N(0, 1).
9. Compute V1/2

k using Cholesky decomposition.
10. Compute γ̇k = γ̂k + σkw1V1/2

k .
11. Draw nmis

k i.i.d. w2 ∼ N(0, 1).
12. Compute nmis

k values of (Xk|Rk = 0) = (Z, X−k|Rk = 0)A,kγ̇k + w2σk.

For further information on regularization via elastic net see e.g., Zou and Hastie (2005).
The parameter α is determined via 5-fold cross-validation. We implement this proce-
dure based on the R packages glmnet (Simon et al., 2011) (for the regularized model)
and rstan (Stan Development Team, 2019) (for the Bayesian model). B sets of draws
for Xk|Rk = 0 from the posterior predictive distribution (PPD) are obtained for use
in the MSE criterion. Only one set of draws from the PPD is used to compare the
densities of potentially imputed and observed values.

For CART, we implemented the model as proposed for imputation by Doove et al.
(2014). The imputation process in one SIIMS step works as follows.

1. Apply CART on outcome Xk|Rk = 1 and covariates Z, X−k|Rk = 1 using recur-
sive partitioning.

2. For each observation in Xk|Rk = 0,

• identify its corresponding terminal node in the fit CART (each terminal
node includes a subset of Xk|Rk = 1).

• randomly draw one observation from the observations (donors) in the iden-
tified terminal node.

• impute the observed value from that donor.

The described CART procedure is based on the R package rpart (Therneau & Atkinson,
2019). In this implementation, the parameter minbucket (the minimum number of
observations in any terminal node) is set to 5, and the parameter maxsurrogate (the
number of competitor splits retained in the output) is set to 0. The B sets of draws
for Xk|Rk = 0 are generated from draws from the terminal nodes for each observation.
For the similarity criterion, only one value is drawn from the terminal nodes for each
observation.

Another tree-based model is RF, which consists of multiple CARTs. We use RF in the
SIIMS framework as used by Doove et al. (2014). The procedure works as follows.
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1. Draw b bootstrap samples from Xk, Z, X−k|Rk = 1.
2. Apply one CART on each bootstrap sample with the outcome Xk|Rk = 1 and

the covariates Z, X−k|Rk = 1.
3. For each observation in Xk|Rk = 0:

• identify its corresponding terminal nodes in all b CARTs.
• randomly draw one donor from the pooled donors in all b terminal nodes.
• impute the observed value from that donor.

For RF, we use the implementation of the randomForest package (Liaw & Wiener,
2002). Here, the minimum node size is set to 5, as in Doove et al. (2014), and
number of trees is set to b = 20. The MSE criterion uses B sets of draws, generated
from predictions of B randomly selected single trees. The set of draws for the similarity
criterion is generated from normal draws with means and standard deviations estimated
from all 20 trees.

All BART applications within SIIMS are based on Xu et al. (2016). The BART model
consists of a sum of trees with estimation based on a Bayesian probability model. For
an outcome vector Xk|Rk = 1 and a covariate matrix Z, X−k|Rk = 1, the BART model
is defined as:

(Xk|Rk = 1) = f(Z, X−k|Rk = 1) + ϵ ≈
g∑

j=1
T M

j (Z, X−k|Rk = 1) + ϵ,

with ϵ ∼ N(0, σ2
k) denoting a vector of error terms. Tj represents a single tree structure,

with its parameters in the terminal nodes M . BART consists of a sum of g trees. Prior
distributions are assigned to T , M , and σ2

k. Draws from the posterior distribution
P (T M

1 , . . . , T M
g , σ2

k|Zk) are generated via Gibbs sampling (Geman & Geman, 1984),
where the jth tree is fit iteratively. See Kapelner and Bleich (2016) for further details.

In this study, the imputation using BART in one SIIMS step works as follows.

1. Fit BART on Xk, Z, X−k|Rk = 1.
2. Generate draws from posterior distribution of P̂ (Z, X−k|Rk = 0).
3. Impute each observation in Xk|Rk = 0 with the corresponding draw from

P̂ (Z, X−k|Rk = 0).
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In this study, we use an implementation based on the R package bartMachine (Kapel-
ner & Bleich, 2016, version 1.2.6) with g = 50 trees, because Kapelner & Bleich
(2016) show that a lower number of trees can lead to low performance. The parameter
mem_cache_for_speed is set to “FALSE” to avoid memory problems in larger data
situations. For the MSE criterion, B sets of draws are generated from the PPD. The
similarity criterion is based on the one set of draws from the PPD created in point 3.

3.3.2 Binary Incomplete Variables

For binary incomplete variables, all models target a binary outcome variable. The
BLM consists of a logistic regression model, and the other procedures now perform
classification instead of regression. The MSE criterion used is now replaced with a
prediction accuracy criterion, as described in Section 3.2.3.1.1. The binary counterpart
of the Hellinger distance is implemented as proposed in Section 3.2.3.1.2 with S = 4
subsets. The finally imputed values are the predicted classes of the selected procedure.
All other settings are the same as those defined for continuous variables. However,
there are differences in the implementation, as described below. For BLM, logistic
regression is performed using the package rstan (Stan Development Team, 2019). For
all models, draws for the prediction accuracy criterion are probabilities. For BLM and
BART, the draws come from the PPD, and for CART and RF, they are estimated
from the terminal nodes, respectively single trees in RF.

3.3.3 Imputation Step

After a best model is selected, we impute the missing values as follows. For Bayesian
models, the values are drawn from the PPD. For RF, the imputed values are drawn from
single trees, following Shah et al. (2014). CART selects imputed values from terminal
nodes, following Burgette and Reiter (2010). BART draws values for imputation from
the PPD, following Xu et al. (2016).

3.3.4 Further Details

Starting at the first iteration, variables are imputed ordered by completeness, starting
with the variable with the fewest number of missing values, to exploit potential mono-
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tone missing data patterns (see Little and Rubin p. 11-12 (2019)). We set B = 20 draws
to estimate the MSE criterion. For the similarity criterion, the response propensity
score is estimated using BART.

Several checks are implemented to detect extreme distributions in partially observed
variables. Depending on the type of extreme distribution, we either remove the incom-
plete variable or we change the imputation process. First, for a variable with constant
observed values, all missing values are imputed by that constant value. For a binary
variable with a low frequency in one category (< 4%), all missing values are imputed
by the modal category, because some of the applied models returned problems in the
fitting process. If a variable has few or no observed values (< 20 observations), it is
not imputed and removed from the imputation process. In some cases, such as for a
small number of missing values in the variable (10 observations), the similarity criterion
cannot be computed because of unstable kernel density estimates. When this occurs,
model assessment is based on the MSE criterion (prediction accuracy criterion in the
binary case) only.

The current implementation of SIIMS imputes and updates missing values with a max-
imum number of J = 5 iterations. Convergence checks start after the second iteration.
For binary variables, less than 5 of the imputed values are allowed to change compared
to the previous iteration; for continuous variables, the relative variance of differences
between currently and previously imputed values needs to be < 5. The process stops
when all incomplete variables fulfill the convergence criteria or when the maximum
number of iterations is reached. The procedure provides multiply imputed data sets
along with information about the selected imputation model of each incomplete vari-
able in each iteration.

3.3.5 Simulation Setup

This section describes the process of evaluating SIIMS with real data. We generate data
sets with missing values from a publicly available version of the NHANES (National
Health and Nutrition Examination Survey) data. The process of evaluation follows
Ezzati-Rice et al. (1995) and Schafer et al. (1996). A detailed description can be
found in the following Section 3.3.6. We use the 2015-2016 NHANES data, consisting of
about 12,000 respondents, as a synthetic population. The data set consists of data from
different modes of data collection: all respondents completed an initial questionnaire,
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complemented by a physical examination taking place in a mobile examination center
and two days of recording a nutrition diary. For missing data patterns, we find values
of variables for the physical examination completely missing for some observations,
because some respondents refused to participate in this part of data collection. There
are also incomplete nutrition diaries, notably on the second day, in addition to item-
missing data for sensitive questions in the questionnaire.

3.3.6 Assessment Process

Figure 3.1 depicts the process used to evaluate the different imputation procedures,
which assumes an incomplete data set with observations in rows and variables in
columns. We begin by defining the variables of interest (VOI), indicated in blue,
that are later used to compare the different imputation procedures. After the VOI are
defined, the data set (on the left side of the figure) is further divided into two subsets
of variables: one that is fully observed (lefthand side, 31 variables), and one (right-
hand side, 355 variables) with incomplete observations (indicated by dark gray fields)
including the VOI (four variables). The 5,474 observations are then divided into two
sets, one with fully observed VOI, and another where missing values are present in the
VOI.

The evaluation process continues with repeatedly drawing simple random samples with
replacement (SRSWR) of 500 observations from the subset of cases with completely
observed VOI. These SRSWR-sub-data sets are the foundation of the evaluation, and
consist of complete cases for all VOI, and the aforementioned subsets of variables. In
the next step, missing value patterns observed in the data are introduced into the
observations of VOI (indicated in red). These introduced missing values are donated
from the observations of incomplete VOI matched to the observations in the subsampled
data sets. In this study, only the VOI are imputed, the complete variables are used as
covariates.

The matching of complete observations in VOI in each SRSWR with those observa-
tions including missing values in VOI in the original data set is based on 26 of the
31 completely observed variables. To perform the matching, we use the package Stat-
Match (D’Orazio, 2019) in the statistical software R (version 3.6.1) (R Core Team,
2019). Specifically, random hot deck (see Andridge & Little (2010)), a procedure that
randomly selects a donor (i.e., the matched observation including missing values in the
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VOI) for each observation in the SRSWR from an appropriate subset of all donors is
carried out. The subset is built from the 26 completely observed variables. In order to
use the variables in the random hot deck procedure, it is necessary to categorize them.
All continuous variables with more than 10 unique values are categorized using deciles,
resulting in a data set with maximal 10 categories of similar size per variable.
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Figure 3.1: Structure of the evaluation process using NHANES data.
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The matching is performed within donation classes defined by the variables AGE,
RACE and GENDER. The following parameters were set in the matching process:
dist.fun (the distance function used) set to “exact”, cut.don (the rule to create the
subset of the closest donors) set to “span”, and k (the proportion of closest donors
from all possible donors) set to 0.15. This setup allows 15% of the closest donors to
be considered using exact matching. Since only observations with at least one missing
value in the VOIs are considered for donating the missing data pattern, the resulting
data set consists of observations without complete cases in the VOI. After finding a
match for each observation in the subsampled data set, the missing pattern in the
VOI of this matched observation is introduced. This procedure results in an ignorable
missingness mechanism, conditional on the fully observed variables; see Ezzati-Rice et
al. (1995) and Schafer et al. (1996) for further details.

This process has several advantages. For instance, the missingness pattern introduced
in the VOI is actually observed in the data set. That is, missing patterns are neither ar-
tificial nor unrealistic. Further, this approach avoids the need to specify a probabilistic
model for introducing missing values, an often used approach when evaluating impu-
tation procedures using simulation. Together with this advantage, no specified model
is needed for the data generating process; both the data sets and the relationships
among variables are observed. This leads to an evaluation of missing data imputation
procedures that is closer to real world missing data problems.

3.3.7 Variables of Interest (VOI)

There are several selection criteria for the VOI in place:

1. Relationship: the selected variables should follow an approximately linear rela-
tionship, because a linear model should be fit as an analysis model.

2. Missing values: in order to introduce missing data patterns following Ezzati-Rice
et al. (1995), the VOI should have a relatively high number of missing values (i.e.,
20 − 40%). Next, for the incomplete cases to provide substantial information,
missing values should be present in predictors (Little, 1992). Additionally, in
order to observe different missing data patterns in the VOIs, they should also be
collected from different modes of data collection.
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3. Population: The variables should target the whole population of NHANES (i.e.,
no sub-populations like “smokers”), to avoid “not applicable” cases which would
reduce the number of observations used.

4. Time period: the variables should be measured in NHANES data collection
2015/2016.

For the selection of VOI, it would have been ideal to base the choice on a substantive
paper that used NHANES data. However, a search for recently published studies using
NHANES 2015/2016 revealed that, if regression is used as an analysis tool, covariates
mostly consist of socio-demographic variables, which are (almost) completely observed.
With this in mind, we decided to select variables fulfilling the four criteria from the
NHANES data and use them in a hypothetical substantive regression model.

For the outcome variable, we use the “total calorie intake day 2 of the nutrition diary”
(CAL). The covariates are the “loud noise indicator” (NOISE) (binary), “Sagittal Ab-
dominal Diameter 1st” (SAD) (cm), and “carbohydrate intake day 1” (CARB). The
four variables are included in the following analysis model for the i-th observation:

CALi = β0 + βNOISENOISEi + βSADSADi + βCARBCARBi + ϵi, (3.12)

with ϵi ∼ N(0, σ2). The NHANES 2015-2016 contains 3,294 observations with com-
plete VOI. The model in 3.12 fit on these observation returns a significant effect for
the coefficients for NOISE and CARB. Figure 3.2 shows the missing data pattern for
the selected VOIs in the NHANES 2015/2016 data, with blue indicating ‘observed’,
and gray meaning ‘missing’. The left side of the figure shows the proportion of miss-
ing values for each variable. The right side of the figure displays the most frequent
missing patterns appearing in the data (omitting patterns of frequencies smaller than
0.01), including the frequencies of the displayed missing patterns on the very right. As
seen in the bar chart on the left, CAL has the highest proportion of missing values
(approximately 0.23), followed by SAD (approximately 0.16), NOISE (approximately
0.09), and CARB (approximately 0.08). Further, from the graph on the right we see
that the proportion of complete cases (in VOI) is 0.602.
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Figure 3.2: Overview of missing values found in NHANES 2015/2016 data for the
variables of interest (VOI). Blue indicating ’observed’, and gray meaning ’missing’. On
the left, a bar chart displays proportions of missing values. The right side of the figure
shows a plot with the most frequent missing patterns appearing in the VOI (omitting
patterns of frequencies smaller than 0.01). On the very right, the plot displays the
frequencies for each missing pattern.
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3.3.8 Results

We compare SIIMS using five different sets of criteria weights w1, w2 ({0, 1},
{0.25, 0.75}, {0.5, 0.5}, {0.75, 0.25}, {1, 0}) with only applying its component methods
(BART, CART, BLM, RF) using selected quantitative properties, namely empirical
bias (EB), ratio of estimated variance to empirical variance (RV), RMSE, and
confidence interval coverage rate (CICR) (Table 3.1). Additionally, we investigate
the selection frequency of the models assessed within SIIMS and the runtime of the
compared models. All applied methods use J = 5 iterations of SI and l = 5 multiply
imputed data sets. For the simulation, a server with an E5 Xeon processor was
employed. The results are averaged over 40 simple random samples with replacement
with the previously described evaluation process.
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Table 3.1: SIIMS with different criteria weights and the component methods compared in terms of the resulting empirical
bias (EB), ratio of estimated variance to empirical variance (RV), root mean squared error (RMSE), and confidence interval
coverage rate (CICR) in the estimated regression coefficients. EB, RV, and RMSE values are multiplied by 1,000. CICR
values are multiplied by 100. The best value in each line is indicated in bold. The cells showing true values are highlighted
in gray.

Component Methods SIIMS

BART CART BLM RF 0, 1 0.25, 0.75 0.5, 0.5 0.75, 0.25 1, 0

CARB True value 3142 3142 3142 3142 3142 3142 3142 3142 3142

CARB EB -39 -809 -2443 -591 -959 -969 -503 -1147 -1112

CARB RV 82 53 1504 234 439 504 344 549 423

CARB RMSE 1149 1489 2498 1003 1228 1207 992 1317 1305

CARB CICR 42 20 3 60 48 50 72 49 45

SAD True value -1204 -1204 -1204 -1204 -1204 -1204 -1204 -1204 -1204

SAD EB 2154 1914 2062 7717 4114 4817 6546 5911 5212

SAD RV 93 166 1138 336 412 408 302 452 438

SAD RMSE 25462 16832 3672 15869 11649 13648 17350 12442 11903

SAD CICR 49 62 87 76 88 73 75 85 81

NOISE True value -155503 -155503 -155503 -155503 -155503 -155503 -155503 -155503 -155503

NOISE EB 294619 87076 135370 57139 109317 183099 143741 163611 157876

NOISE RV 515 576 1843 1207 1547 1233 1273 1628 1580

NOISE RMSE 311341 147825 142358 94761 131362 195520 164196 175059 171379

NOISE CICR 4 78 21 84 64 43 50 46 45
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We first focus on the EB of the regression coefficients of the VOI after MI. For two
of the coefficients (NOISE and CARB), we see that all SIIMS procedures return EB
values that lie between the highest and lowest EB values of the component methods
(BART, CART, BLM, RF), i.e., the best and worst performing methods are component
methods. For CARB, we find SIIMS performing overall better in terms of EB than their
components. The different SIIMS weights lead to similar EB values overall. Looking at
RV, we find for CARB that the SIIMS procedures result in a better RV value (closer to
1,000) overall, compared to their component methods. For SAD, BLM shows the best
result. For the NOISE coefficient, we find the SIIMS procedures performing mostly
in between their component methods and above 1,000. For performance in terms of
the RMSE, we find in all coefficients (CARB, SAD, NOISE) that the tested SIIMS
procedures perform among their component methods. For CICR, we find that SIIMS
performs overall better than the components in the coefficient for SAD. For the other
two coefficients we find the tested SIIMS procedures perform among the components.
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Table 3.2: SIIMS with different criteria weights and the component methods compared in terms of the resulting empirical
bias (EB) in estimated means of variables of interest. All values are multiplied by 1,000. The cells showing true values
are highlighted in gray.

Component Methods SIIMS

BART CART BLM RF 0, 1 0.25, 0.75 0.5, 0.5 0.75, 0.25 1, 0

CAL True value 1948098 1948098 1948098 1948098 1948098 1948098 1948098 1948098 1948098

CAL EB 930637 151485 6700 340766 304963 327915 342470 300072 296874

CARB True value 251996 251996 251996 251996 251996 251996 251996 251996 251996

CARB EB 12102 153 -134 5499 4858 7051 6534 7620 5727

SAD True value 22987 22987 22987 22987 22987 22987 22987 22987 22987

SAD EB 109 60 78 61 82 94 76 73 74

NOISE True value 855 855 855 855 855 855 855 855 855

NOISE EB -24 3 7 3 -4 -21 -17 -16 -18
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We now focus on comparing SIIMS with different criteria weights and the component
methods in terms of the resulting EB in the estimated means of all VOIs (Table 3.2).
We find for all mean estimates that BART shows the highest EBs, while CART and
BLM perform best, overall. RF shows low EBs (similar to the best performing method)
for the variables SAD and NOISE. Similar to EB in the regression coefficients, we find
the SIIMS procedures return EB values that lie between the highest and lowest EB
values of the component methods (BART, CART, BLM, RF). We find no influence of
the different criteria weights on the EB values of the investigated means.

In Chapter 2 we find low performance for imputation by BART on parametric in-
complete data (L), but high performance when the data include a non-parametric
relationship (N) and overall less variance. To investigate if SIIMS can select the right
model in each scenario, we applied SIIMS with different criteria weights on 100 repli-
cations of both L and N scenarios with missingness depending on the outcome (MXY)
and the highest base-line missing rate (logit(δX1

0 ) = 0.05) for 1,000 observations and
5,000 observations in the data. Figure 3.3 shows the relative frequencies of the se-
lected models for L and N cases. In the L case, we find that SIIMS always selects
RF, regardless of the used criteria weights and sample size. In the N case for 1, 000
observations, the SIIMS criteria select RF in approximately 75% of the cases, BART in
approximately 24%, and BLM in about 1%, regardless of the applied criteria weights.
Comparing these results with those in Table 2.4 in Chapter 2, the rejection of BART
and the selection of RF in the L scenario is desirable as RF works well in terms of
quantitative properties. In the N scenario, although RF is selected most of the time, it
shows low performance (also cf. Table 2.6, Chapter 2). In this same scenario, however,
SIIMS selects BART, the best performing model on N data, in one fourth of the cases.
In the N case for 5, 000 observations, the SIIMS criteria select RF almost exclusively,
regardless of the weights. One possible explanation of this unexpected finding is the
different software used in Chapters 2 and 3. While in Chapter 2 we apply RF within the
software package MICE (Van Buuren & Groothuis-Oudshoorn, 2011), RF in SIIMS is
based on a custom implementation. In Chapter 3, the number of trees is set to b = 20,
because the MSE criterion uses B = 20 sets of draws, generated from predictions of B
randomly selected single trees, which forces b ≥ B. In Chapter 2, the number of trees
is set to 10, based on recommendations by Doove et al. (2014).

We now present further findings regarding the SIIMS procedure. First, we focus on how
often each model is actually selected for imputation, given the criteria. The relative
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Figure 3.3: Barplot of selected models in SIIMS for L and N scenarios of Chapter 2.
The rows separate different sets of criteria weights, the columns separate data scenarios
(L, N) and numbers of observations in the data (1, 000, 5, 0000). The y-axis displays
relative frequencies.
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frequencies over all l = 5 MIs; all J = 5 iterations; 280 incomplete variables; and all 40
replications is as follows. With a relative frequency slightly below 0.4, RF is the model
selected most often, followed by BLM at approximately 0.29 and BART at slightly
above 0.25. CART has the lowest relative frequency at approximately 0.07.

For the runtime of the applied models in SIIMS, BART, CART, and RF all require 10
seconds or less to fit and produce draws. BLM shows a median runtime of approxi-
mately 20 seconds. However, in some cases BLM requires several minutes (maximum
at 6.75 minutes).

In summary, we find different criteria weighting in SIIMS lead to overall lower variation
in performance in all investigated metrics. We do not find a best set of weights here.
Generally, we find SIIMS with different criteria weights performing in between the
component methods for both estimated regression coefficients and means.

3.4 Discussion

In this chapter we propose a modified SI procedure allowing for multiple competing
models and plausibility checks during the imputation process. We further present a
case study of this procedure in a simulation based on a real survey data set and compare
it to the single models. The presented results suggest that SIIMS’ performance mostly
lies in between the performances of the single models.

We use two criteria to select imputation models within SI. The MSE criterion is com-
puted on an observation level and then averaged over all observations to which the
imputation model is fit. This criterion focuses on the predictive power of the imputa-
tion model. The similarity criterion automatically assesses the plausibility of imputed
values by comparing their density to the density of the observed values of the incomplete
variable to be imputed, conditional on the response propensity score. The higher the
similarity between those two densities, the better the imputation model under MAR.
This criterion compares the imputation models in terms of marginal distributions. The
presented criteria can handle continuous, binary, and nominal variables.

While the current SIIMS implementation focuses on comparing tree-based and para-
metric models, the developed criteria can objectively compare a wide range of model
types within SI. To be incorporated in the current SIIMS framework, an imputation
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model only needs to be able to predict values of an outcome. We present current state-
of-the-art imputation models; however, future imputation models can still be assessed
using the same criteria proposed in this chapter. Additionally, the criteria can be used
to compare models only differing in parametrization and perform parameter tuning
that is specific to the imputation problem.

The SIIMS procedure shares some characteristics with multiple imputation by super
learning (MISL) (Carpenito & Manjourides, 2022), which imputes missing values using
weighted estimates from multiple models (see also Laqueur et al. (2021) for an imple-
mentation). Similar to SIIMS, super learning (SL) also requires a set of pre-specified
models to be combined. The results of all these models are weighted by optimizing the
prediction error (or another metric) via cross-validation. SL automatically selects the
best combination of estimators, reducing the risk of misspecified models. While SIIMS
selects one best model and uses the predicted values directly, MISL for continuous vari-
ables performs a form of PMM using the SL model to predict the observed and missing
values of the variable to be imputed. Similar to SIIMS, for categorical variables MISL
uses the predicted probabilities from the SL model to draw the imputed category.

Using SIIMS with the similarity criterion only also shares some characteristics with
doubly-robust (DR) estimators for missing data, such as augmented inverse probability
weighting (AIPW) (Robins et al., 1994) and penalized splines of propensity prediction
(PSPP) (G. Zhang & Little, 2009). When either the mean model or the response
propensity (RP) model is correctly specified, DR estimators produce consistent esti-
mators of means. PSPP includes a spline of the estimated RP score in the mean model,
similar to SIIMS’ similarity criterion, where a spline is used to condition on the RP
score. While DR estimators use one mean model, SIIMS selects from multiple mean
models. A comparison between DR estimators and SIIMS under MAR reveals the
following. When all imputation models in SIIMS are misspecified, the estimates will
be inconsistent, regardless of the RP model’s specification. Similarly, when all models
compared within SIIMS are correct, the estimates will be consistent, again regardless
of the RP model’s specification. When at least one imputation model is correctly
specified, and when the RP model is correctly specified, we expect the estimates to
be consistent, because the similarity criterion can select the correctly specified model.
When at least one imputation model is misspecified and the RP model is misspecified,
we expect inconsistent estimates, because the criterion can no longer select correctly
specified imputation models. While we already use BART as the RP model to further
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increase robustness (Tan et al., 2019), the estimated RP score could also be included
in the imputation models, as done in PSPP. Future studies could investigate a hybrid
of SIIMS, PSPP, and MISL, such as RP scores included in all imputation models.

Regarding the results of the case study, we expected lower EB and RMSE values for
SIIMS because the best model is selected according to plausible criteria, i.e., more
checks for bad model fits are implemented. However, all compared procedures can
perform variable selection and can capture important interactions in the fitting process.
This might be the reason why SIIMS and its component models perform similarly well.
Another possible explanation for a similar performance is that the criteria developed
compare the models in terms of marginal distributions of the variables, while the
evaluation focuses on joint distributions. Future research can base the model selection
on criteria for regression models, like focusing on the distribution of residuals. Such
a criterion would require a pre-specified structure of the substantive model before the
imputation.

Another unexpected finding is the increased RMSE for BART in the SAD coefficient,
compared to the RMSEs of the other component methods. The investigation of BART’s
unexpected behavior in Chapter 2 revealed a tendency for BART to produce relatively
extreme imputed values in some data situations. This behavior is a possible explanation
for BART resulting in such a high RMSE in this coefficient, since the same BART
implementation is used in both Chapters 2 and 3.

The univariate analysis reveals a similar pattern as for the EB for regression coefficients.
Specifically, the SIIMS procedures return EB values that lie between the highest and
lowest EB values of the component methods. This finding suggests that SIIMS averages
the component methods, rather than selecting the best. One possible explanation
is that even one BART selection in SIIMS could introduce outliers that are carried
forward in the SI procedures, regardless of the following selected methods. A further
investigation could first examine which methods are selected, followed by the influence
of a selected BART on the imputed values in the remaining iterations of SI. If BART
leads to the underwhelming performance of SIIMS, future research needs to investigate
the reason for the criteria selecting this method.

Due to the sequential nature of the procedure in conjunction with the assessment of
multiple potential models, SIIMS is relatively slow compared to the runtime of a single
model class. Removing slow models is a first step to increase runtime. For example,
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while RF, BART, and CART require less than 10 seconds, BLM requires on average
about twice as long to fit and produce draws. Thus, replacing BLM with a faster
procedure could reduce runtime by several hours. Further, the selection frequencies of
the models can be analyzed after the first iterations to identify low frequency models.
The low-frequency models could then be dropped to increase process speed.

Another possibility for increasing the speed of SIIMS is to use an upstream variable
selection. This selection process could function similarly to the function “quickpred” in
MICE, which provides a subset of covariates for each incomplete variable to be imputed
subsequently. Determining the subsets of covariates can be based on correlations with
the corresponding outcome. Another option to reduce dimensionality and increase
speed is principal component analysis (PCA) (Abdi & Williams, 2010). Before starting
the imputation process, PCA can be performed on the complete variables of the data
set. The resulting principal components can substitute the complete covariates in the
imputation models. Since the complete variables are “fixed” in the imputation process,
only one PCA is necessary before the imputation process starts. While PCA originally
required continuous variables, the use of polychoric correlation allows PCA on mixed
data as well (Kolenikov et al., 2004).

An evaluation of sets of imputed values from the same model could also be a time-
saving alternative to assessing multiple models within SIIMS. These sets could be
assessed by the similarity criterion, leading to a faster imputation process while keeping
a plausibility check for the imputed values. See the appendix (Section 3.5) for further
details on the procedure.

In the presented case study, we evaluate SIIMS based on different criteria weights.
However, we find that the different weight choices fail to provide insights of whether
SIIMS results in valid standard errors. A further investigation of this issue is needed,
ideally in a more simple situation with data generated from a probabilistic model.
Related to that, optimal weighting of both criteria might depend on the kind of analysis
following the imputation. For instance, in univariate analyses, the optimal weight
for estimating means and their standard errors likely uses only the MSE criterion.
When kernel density estimation is performed, weights should emphasize the similarity
criterion to focus on the whole distribution. Future studies could further evaluate
both criteria separately, as well as explore weighting that results in a mixture of both
proposed SIIMS selection criteria to find optimal weights for different analysis goals.
Another venue for future research is the performance of SIIMS on only categorical,
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binary, or continuous incomplete variables. Further, this study also did not investigate
different models within SIIMS. The performance of the procedure likely depends on
the criterion used and the pool of potential models evaluated.

While the evaluation process does not require a specified data generating model, sev-
eral expansions could be explored. For example, pooling several waves of NHANES
data would increase the variety of the sampled observations and the diversity of the
introduced missing data patterns in the data. Further, a different set of VOI and dif-
ferent data sets can be used to obtain a more comprehensive picture of performance
differences. Ideally, an independent third person determines a model of interest and the
resulting VOI, to mimic the situation where the imputer and the analyst are different
individuals.

3.5 Appendix 1 - SIIMS Modification: Rejection of
Samples

The proposed SIIMS procedure in this chapter is computationally intensive when
the number of variables with missing values (K) is large. Thus we present a more
computationally-efficient alternative. Instead of fitting M models for each variable
with missing values, only one model is used in each iteration. The predicted plausible
values Xj

m,k|Rk = 0 from one model can be assessed by the proposed procedure using
Ĥj. The values can be rejected or accepted, based on a threshold H0. The proposed
procedure from Section 3.2.2 can be changed in step 1) as follows:

1) Repeat for all k ∈ {1, . . . , K} variables containing missing values:

a) Estimate response propensity scores êj
k = P (Rk = 1|Z, Xj

−k) for all values
in Xk.

b) Estimate the density of residuals for Xk regressed on êj
k (Equation 3.4)

for the observed values f̂(Xk|êj
k, Rk = 1) using kernel density estimation

(Equation 3.6).
c) Fit a model with Xj−1

k as the dependent variable and Z and Xj
−k as the

independent variables.
d) Repeat until Ĥj < H0:
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• Draw plausible values X̂j
k|Rk = 0 for Xk|Rk = 0 using model m.

• Estimate the density of residuals for Xk regressed on êj
k for imputed

values (f̂(Xj
k|êj

k, Rk = 0)) using kernel density estimation.
• Estimate the Hellinger distance Ĥj = H(f̂(Xk|êj

k, Rk = 1), f̂(Xj
k|êj

k, Rk =
0)).

• Compare Ĥj with H0.

If the current set of values is rejected, a new set is drawn and assessed in the same way.
However, modifying the procedure can lead to higher computational effort if the model
fails to produce plausible values that fulfill the criterion, i.e., if the model is not a good
fit to the particular outcome variable. To avoid a long search, H0 can be modified after
several unsuccessful tries. For example, starting with a low value of H0 = 0.01 and
increasing this value by 0.05 every 10 unsuccessful tries. Alternatively, the best set of
plausible values among a pre-specified number of drawn sets can be used.

3.6 Appendix 2 - Design Table
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Table 3.3: Design table for Chapter 3.

Method Parameter Description Levels Choices Tuning
BLM α Elastic net mixing parameter [0, 1] Interval of all possible values. 5-fold cross-validation

CART minbucket The minimum number of observations in any terminal node used. 5 Default of MICE package version 3.14.7 None
CART max-surrogate Number of competitor splits retaine in the output 0 Not of interest here None

RF b Number of trees 20 Minimum number needed for generating draws for MSE criterion None
RF minbucket The minimum number of observations in any terminal node used. 5 Default of MICE package version 3.14.7 None

BART mem_cache_for_speed
Speed enhancement that caches the predictors and the

split values that are available at each node for selecting
new rules.

TRUE, FALSE
Recommened for large number of predictors, set ’FALSE’

in simulation with three variables (Chapter 2 data),
set ’TRUE’ in simulation using real data (Section 3.3.6).

None

BART use_missing_data If TRUE, incomplete observations are included. FALSE Only complete observations are used in each CEMI step. None

All other parameters of the presented imputation procedures are specified as in the corresponding software packages.
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Chapter 4

Multiple Imputation under Missing
Not at Random: Incorporating

Response Indicators into Sequential
Imputation

Abstract

Multiple imputation (MI) of missing values is mostly applied under the assumption of
missing at random (MAR), but the alternative missing not at random (MNAR) as-
sumption may be more plausible. MI approaches that include response indicators (RIs)
for incomplete covariates in predictions of missing values assume MNAR. This chapter
investigates MI under MNAR assumptions using RIs as covariates. We review litera-
ture on imputation under MNAR and prediction with incomplete covariates. We then
compare the performance of different strategies for incorporating RIs in a simulation
with two objectives. The first objective is analytic inference. Specifically, MI methods
are assessed based on the quantitative properties of regression coefficient estimates of a
model fit to multiply imputed data. The second objective is descriptive inference that
focuses on predicting a missing value as accurately as possible. From the simulation,
we find that under an MAR mechanism in the data, methods including RIs perform
as well as those without them. In MNAR data scenarios, methods including RIs can
help to improve performance for both analytic and descriptive inference.
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4.1 Introduction

Most data sets from sample surveys contain incomplete observations for various rea-
sons, such as a respondent’s refusal to answer certain questions. If researchers limit
themselves to analyzing only the complete observations in a data set (i.e., cases where
all variables are observed), they reduce the sample size and potentially lose power for
statistical inference.

An additional issue with complete case analysis is that for many purposes, this method
(implicitly) assumes that the missing data are missing completely at random (MCAR)
(Little & Rubin, 2002, pp. 11–19), meaning that the distribution of the missing data
is unrelated to variables in the data set. Exceptions where complete case analysis does
not assume MCAR can be found in Little (1992) and Little and Zhang (2011).

A weaker assumption than MCAR is missing at random (MAR), which assumes that
the distribution of missing data is related only to the observed (measured) variables
(Little & Rubin, 2002, pp. 11–19). To handle missing values under MAR, a commonly-
used tool is multiple imputation (MI) (Rubin, 1987, Chapter 3). MI is a general ap-
proach to statistical inference with incomplete data. Following MI, the imputed data
set can be analyzed using complete-case data analysis tools. Generally, MI replaces the
missing values with plausible values estimated from the observed values in the incom-
plete data set. This process creates complete data sets, which under MAR and correct
model specifications can produce consistent estimates of univariate and multivariate
quantities and valid estimates of uncertainty.

Besides MCAR and MAR, missing not at random (MNAR) models (Little & Rubin,
2002, pp. 11–19) allow missingness to depend on missing variables after conditioning
on values of variables that are observed. The missingness mechanism in many ap-
plications is likely MNAR (e.g. nonresponse in sample surveys); thus, the alternative
MNAR assumption may be more realistic. However, since available software like MICE
(Van Buuren & Groothuis-Oudshoorn, 2011) or IVEware (Raghunathan et al., 2016)
imputes missing values assuming MAR as a default, practitioners generally believe that
MI always assumes MAR. In reality, however, MI can also be applied under MNAR
models. These models are based on selection models, pattern-mixture models (PMM),
or hybrids of both (Little & Rubin, 2002, Chapter 15). Including response indicators
(RIs) for predictors into MI assumes a form of MNAR and can be applied without
additional knowledge about the missing values, as demonstrated recently by Beesley
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et al. (2021).

Earlier literature does not recommend including RIs in an analysis model targeted at
the whole population (Greenland & Finkle, 1995; Jones, 1996), because this approach
can lead to biased estimates (Donders et al., 2006; Knol et al., 2010; Vach & Blettner,
1991). However, in an MI analysis, the imputation model and analysis model can
differ. Thus, it is possible to base MI on a model that conditions on RIs, but then
analyze the imputed data with a model not conditioning on RIs, such as a regression
model for the whole population. When training data for fitting a prediction model
are incomplete, Loh et al. (2019) propose a tree-based algorithm that includes RIs of
predictors (specifically GUIDE (Loh, 2002)). Their results suggest that the information
about a value being observed or missing can be potentially useful in a prediction task.

Here, we will further explore MI when RIs in predictors are included in the impu-
tation models and evaluate different procedures in terms of analytic and descriptive
inference. In this chapter, we focus on analytic and descriptive inference, a major part
of statistical analysis. For analytic inference, we consider inference about regression
coefficients estimated from a sample drawn from a well-defined population. Inference
about particular values of a variable in a test data set via a prediction model is viewed
as a form of descriptive inference.

The remainder of this chapter is structured as follows. We first review relevant litera-
ture on MI under MNAR and then present work on predictive models, specifically tree-
based procedures, fit to incomplete data. To explore MI under MNAR, we then present
a simulation focusing on two possible deviations from MAR and compare methods un-
der two analysis goals, analytic and descriptive inference. We end with a discussion
and guidance for practice.

4.2 Literature Review

4.2.1 Imputation under MNAR

For data on variables (X1, . . . , Xp, Z), let X = (X1, . . . , Xp), and let X−i (i = 1, . . . , p)
represent X without the i-th variable. Let R = (RX1 , . . . , RXp , RZ) be a RI matrix
with RXi,j ∈ {0, 1} and RZ,j = 1, for each subject j (i.e., Z is fully observed). Similarly,
define R and R−i. Finally let f() denote the probability distribution of the argument.
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Generally speaking, MNAR models are based on selection models (see Equation 4.5),
PMMs, or hybrids of both (Little & Rubin, 2002, Chapter 15). For the PMM repre-
sentation, the joint distribution of X and R is factorized as

f(X, R|Z, γ, π) = f(X|R, Z, γ)f(R|Z, π) (4.1)

with π representing the parameter vector for the missingness mechanism (Little &
Rubin, 2002) and γ representing the parameters in the model for each pattern. The
factorization in Equation (4.1) specifies separate models for each response pattern.
Methods that include RIs of covariates in predictions of missing values are effectively
based on PMMs (Little, 1993).

A simple example of a PMM is the delta-adjustment procedure (Rubin, 1977), which
adds a fixed parameter (called δ) to the imputed values under MAR that are obtained
from posterior predictive distribution draws. For example, with a continuous incom-
plete variable X1, a fully observed variable Z, and a simple MAR imputation model
with the expected value modeled as

E(X1|Z, RX1) = E(X1|Z) = β0 + β1Z, (4.2)

a complementary delta-adjustment MNAR model is given by

E(X1|Z, RX1) = β0 + β1Z + δ(1 − RX1). (4.3)

Since values for δ cannot be estimated from the given data, plausible values are provided
by subject experts or other auxiliary information like past studies that typically lead
to a range of plausible δ values. In order to assess the impact of potential δ values,
sensitivity analysis is often carried out (see e.g., Leacy et al. (2017) and Rezvan et al.
(2018)).

Another imputation approach using RIs focuses on missing values in the outcome of
a regression model and is based on randomly drawing an additional set of RIs, called
random indicators (Jolani et al., 2012, Chapter 4). A response propensity model, also
including the incomplete outcome itself, generates these indicators. In this MNAR-
imputation method, the random indicators help to adjust the regression coefficients of
the analysis model.

For multiple incomplete variables, e.g., X1, X2, and a complete variable Z, a common
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way to execute MI under MAR is sequential imputation (SI) (see e.g., Van Buuren
et al. (2006)). For all incomplete variables in the data, this approach requires spec-
ified imputation models for all conditional distributions, here f(Xi|Z, X−i), ∀i. The
SI process starts with filling in the missing data with some plausible values. Next, SI
iteratively updates the missing values variable by variable. For each variable, SI fits
the corresponding imputation model and draws the values to be updated. This process
is repeated several times, resulting in one imputed data set. These steps are repeated
to produce multiply imputed data.

As with delta-adjustment for one incomplete variable, RIs can be incorporated into an
SI procedure. Giusti and Little (2011) perform a sensitivity analysis using the delta-
adjustment in one incomplete variable. Their SI procedure imputes one variable under
MNAR, while missing values in other variables are imputed under MAR. Leacy (2016)
introduced a general approach, where all conditional distributions incorporate all RIs:

f(Xi|Z, X−i, R), ∀i. (4.4)

An additive model in (X, Z) and R in this representation results in p sensitivity param-
eters δ = (δ1, . . . , δp), one for each incomplete variable, in addition to other parameters
that can be estimated from the data. In order to apply the procedure, values for all
sensitivity parameters need to be assumed. Tompsett et al. (2018) note that, given
the conditional nature of each sensitivity parameter, performing sensitivity analysis
becomes much harder. For one variable, δ is a marginal parameter, but for multiple
incomplete variables, each sensitivity parameter describes the (mean) differences in Xi

of two groups (Ri = 1 and Ri = 0) of subjects, conditional on Z, X−i, and R−i. There-
fore, providing useful values for sensitivity parameters is quite challenging for experts.
To overcome this problem, Tompsett et al. (2018) propose fully conditional specifica-
tion only including R−i in the i-th equation in 4.4. They also state that all RIs R−i

should always be included in the imputation models so that any possible relationships
between the R and X can be exploited.

Although Tompsett et al. (2018) provide practical guidance on how to include RIs in
imputation, the paper does not provide theoretical guidance for how specific missing-
ness mechanisms impact their proposed procedure. Beesley et al. (2021) contribute
here by providing theory for binary, nominal, and continuous incomplete variables, as
well as an assessment via simulation. Motivating the problem with a Bayesian Markov
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Chain Monte Carlo (MCMC) approach, the authors start by factorizing the joint dis-
tribution of X and R into a selection model

f(X, R|Z) = f(X|Z)f(R|X, Z). (4.5)

However, in an MCMC algorithm, this approach results in drawing from unidentified
distributions f(Ri|X, R−i), because Ri also conditions on the incomplete Xi. Thus,
they state the following specific assumptions for the approaches investigated:

A1) Ri ⊥ Ri′|X, Z ∀i ̸=i′

A2) f(Ri|X, Z) = f(Ri|X−i, Z).

Importantly, A2 leads to relaxing MAR to a specific MNAR assumption because the
probability of observing a missing value for one variable is now allowed to depend on
other potentially incomplete variables X−i. Under these assumptions, the resulting
general conditional distributions are still challenging to draw from directly. Thus,
Beesley et al. (2021) provide details on approximations based on further assumptions.
Their simulation compares several approximation approaches to SI including R, e.g.,
including R−i as main effects only, or also adding interactions of R−i with covariates
X−i.

Another approximation introduced by Beesley et al. (2021) is based on modeling the
mode instead of approximating the mean with Taylor-series approximations. Assuming
a unimodal distribution and normally distributed data for each incomplete variable in
an SI step, this approach (henceforth MI-NORM-OFFSET) first estimates the prob-
abilities of observing the incomplete variables not being updated in this step using a
logistic regression model. Second, these probabilities are incorporated to adjust the
estimated mean of a normal distribution from which to draw the missing values. The
generated draws are then used to update the missing values.

Also included in their work are SI without R−i (assuming MAR) and imputing from
the ideal distribution (i.e., without approximations) as benchmark methods. In their
simulation, the probabilities of missing in a covariate are allowed to depend on other
incomplete covariates and the degree of the dependency is varied to result in deviations
from MAR of different strength. The authors find that when the data are generated by
a limited class of MNAR mechanisms, including RIs in MI can reduce bias in estimates
of an analysis model. Further, methods including RIs show the same performance under
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MAR compared to default SI procedures. They also find that including interactions of
RIs with other covariates generally results in increased variance, but also in reduced
bias. Assuming normality for all variables, the MI-NORM-OFFSET approach works
best in the investigated simulation scenarios.

4.2.2 Prediction Models fit to Incomplete Data

Wang et al. (2006) consider the inclusion of RIs for descriptive inference (under the
name “orthogonal coding scheme”) describing it as “(. . . ) one of the useful input
coding schemes (that) are widely used in machine learning technology such as neural
networks and support vector machines.”. Wang et al. (2006) state further that “(i)n
recent years, it (the orthogonal coding scheme) has been successfully used in various
fields in biology, such as prediction of protein secondary structure (Qian & Sejnowski,
1988), solvent accessibility (Yuan et al., 2002), etc.”.

Ding and Simonoff (2010) investigate different ways of incorporating missing indica-
tors as predictors into classification trees (RPART, C4.5, and CART). One of their
approaches recodes missingness as a separate category for categorical covariates and
an unobserved value in continuous covariates (here called the “separate class method”).
In their work, the impact of different MCAR, MAR, and MNAR scenarios as well as
incomplete test and training data sets on classifying a binary outcome are investigated
via mathematical theory and simulation (see Table 1 in Ding and Simonoff (2010)).
They find that, overall, the separate class method performs best in terms of prediction
accuracy, especially when RIs are related to the outcome of the prediction model and
when test data are incomplete.

Twala (2009) surveys several other ways of using incomplete covariates, like surrogate
variable splitting (Therneau et al., 1997) and fractional cases (FC) (Quinlan, 2014) in
tree algorithms. Twala (2009) finds strengths and limitations for all methods reviewed.
The study reports that the predictive performance of the methods depends on the
proportion of missing values, the missingness mechanism, and the type of covariates.
All procedures perform worst for the MNAR case, and missingness in one variable
seems less severe than missing values in multiple variables. Overall, applying MI with
the EM algorithm under an MAR model (Moon, 1996) (henceforth EMMI) before
training a tree performs best, while listwise deletion performs worst.
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A related study by Twala et al. (2008) investigated the performance of a method
called “Missing Incorporated in Attributes” (MIA), which is similar to the separate
class method in Ding and Simonoff (2010). In their comparison of MIA, EMMI, and
FC, Twala et al. (2008) find that while MIA performs well in many settings with
different missingness mechanisms, a computationally heavy combination of EMMI and
MIA performs best overall.

Not investigated in either Ding and Simonoff (2010) or Twala et al. (2008) is the
GUIDE procedure used by Loh et al. (2019). The GUIDE tree algorithm uses χ2-tests
to determine whether a split between the observed values and the missing values in an
incomplete covariate should be performed (Loh, 2002). GUIDE, and its forest version
(Loh, 2014), are assessed on a diverse range of data sets (Loh et al., 2013; Loh, Man, et
al., 2019). Loh et al. (2019) set up missing value imputation in a continuous variable
(income) as a prediction task. Biases and RMSEs of mean income after imputing are
smaller for GUIDE than for compared MI procedures. This work is critiqued in detail
in Section 4.2.3.

A Bayesian version of tree-based algorithms is Bayesian additive regression trees
(BART). While the original BART implementation of Chipman et al. (2010) requires
completely observed data, a paper by Kapelner and Bleich (2015) extends BART
by incorporating an MIA option for use with incomplete covariates as well. The
simulation results show that incorporating RIs via MIA into BART results in equal or
better predictive performance in MCAR, MAR, and MNAR situations compared to
the original BART procedure.

The previously described approaches to incorporating RIs in prediction models focus on
specific methods. A more general idea is presented in Fletcher et al. (2020), where sep-
arate models are trained on observations with different response patterns in covariates.
Specifically, the authors propose to first split the training data by response patterns in
the covariates and then fit a separate prediction model (called pattern submodel) on
each sub-data set. Fletcher et al. (2020) state that no further assumptions about the
missingness mechanism are necessary, because submodels are fit to specific response
patterns only. One disadvantage of this approach, however, is sparse data for some
response patterns, when the number of response patterns is large, as argued in Loh et
al. (2020). In this case, Fletcher et al. (2020) propose simplifying the models or com-
bining patterns. In their simulation, looking at MAR and different MNAR scenarios,
they find that, in terms of total prediction error, pattern submodels perform as well
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as MI which includes RIs, and are faster computationally. This advantage in speed is
particularly important when predictions in new data sets are needed in real-time.

To summarize, the literature focusing on descriptive inference using incomplete data
overall supports including RIs of incomplete covariates. Multiple strategies, like the
pattern submodel or the orthogonal coding scheme, have been proposed for the general
use of RIs in prediction models. Further, specific methods like GUIDE or BART have
been developed that incorporate RIs in incomplete training data.

4.2.3 Loh-Little Debate

MI of missing data can have two different analysis goals: analytic and descriptive
inference. These two objectives are discussed in Loh et al. (2019) (Section 4.2.2),
Little (2020), and the rejoinder from Loh et al. (2020). This debate is summarized
here because it shows the importance of clearly stating analysis goals and motivates
the following simulation in this chapter. Little (2020) considers a three-variable case
where Z is fully observed, and X1 and X2 are incomplete with 4 patterns: both X1

and X2 complete, one missing, or both missing.

To impute missing values in X1, the GUIDE tree used in Loh et al. (2019) is built
on all observations where X1 is observed, i.e. RX1 = 1. Little (2020) shows that the
main assumption underlying this procedure is that the distribution of X1 (regardless
of RX1) is the same conditional on RX2 :

f(X1|RX1 = 1, RX2 = 1, X2, Z) = f(X1|RX1 = 0, RX2 = 1, X2, Z), (4.6)

f(X1|RX1 = 1, RX2 = 0, Z) = f(X1|RX1 = 0, RX2 = 0, Z). (4.7)

When X2 is imputed, the roles of X1 and X2 and their corresponding RIs (RX1 and
RX2) in these equations are reversed (additional parameters are omitted for simplicity).
As Little (2020) points out, this setup corresponds with a pattern-mixture model and
a specific MNAR situation. In contrast, MAR assumes the following:

f(X1|RX1 = 0, RX2 = 1, X2, Z) = f(X1|X2, Z), (4.8)

f(X2|RX2 = 0, RZ = 1, X1, Z) = f(X2|X1, Z), (4.9)
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and
f(X1, X2|RX1 = 0, RX2 = 0, Z) = f(X1, X2|Z). (4.10)

Little (2020) further states that the relative plausibility of these two assumptions
(Equations 4.6 and 4.7 on the one side and Equations 4.8 to 4.10 on the other) cannot
be assessed based on a given data set. Further, if there is no conditioning on X2 for
RX2 = 0 when imputing X1, and also if X2 is related to both X1 and RX1 , assuming
this specific MNAR mechanism can lead to bias. In this situation, MI based on MAR
imputing X1 and X2 iteratively (via SI) would lead to unbiased results. Further, Little
(2020) points out that the simulation in Loh et al. (2019) is rather narrow and favors
models including RIs.

Loh et al.’s (2020) rejoinder is based on a simulation study comparing imputation via
GUIDE and sequential regression imputation using the MICE software package (Van
Buuren & Groothuis-Oudshoorn, 2011) in terms of analytic and descriptive inference.
In the descriptive inference case, imputation via GUIDE and sequential regression
imputation (via MICE) are performed before applying multiple prediction methods.
Additionally, they compare the training of methods without previous imputation and
method-specific defaults for missing observations in covariates (like surrogate splits in
classification and regression trees (CART)). The authors find that overall, GUIDE’s
forest version performs best for both analytic and descriptive inference.

Loh et al. (2020) compare methods based on a prediction accuracy measure and the
bias in estimated regression parameters. An important goal of MI is accounting for
uncertainty in the imputed values to obtain valid standard errors, tests, and confidence
intervals. Thus, the evaluation of imputation procedures should also be based on a
measure of uncertainty, like the RMSE of estimated regression coefficients.

While Loh et al. (2020) compare several methods with and without previous imputa-
tion, some procedures are not assessed in their simulation. First, they do not multiply
impute the whole data set and average multiply imputed values for prediction; second,
they do not use tree-based methods implemented in MICE (like CART (Doove et al.,
2014) or random forest (Shah et al., 2014)). We compare both approaches with and
without including RIs.
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4.2.4 Analysis Goals

The Loh-Little debate points out the importance of distinguishing two goals of data
analysis: analytic inference, focusing on inference about regression coefficients or uni-
variate quantities estimated from a sample, and descriptive inference, focusing on in-
ference about values of a variable in a test data set. Doing analytic inference generally
also requires variance estimates of parameters. The success of descriptive inference can
be assessed via a prediction accuracy metric.

When these analysis goals are not clearly distinguished, the results can be misleading.
For instance, Loh et al. (2019) actually compare procedures for MI, where missing
values are generally replaced by draws, with algorithms developed for descriptive in-
ference, like GUIDE. Although Loh et al. (2020) evaluate the different methods based
on the bias of estimated regression coefficients and prediction accuracy, assessment in
terms of analytic inference also requires investigating estimates of variance and confi-
dence coverage.

Another recent study by Dagdoug et al. (2023) follows a similar assessment approach
as Loh et al. (2019), focusing on a point estimate of one incomplete variable; i.e., they
ignore variance estimates and do not assess relationships between variables. In their
study, a high number of non-parametric and machine learning methods are compared
in terms of their single imputation (prediction) abilities. Specifically, the authors find
that the Cubist algorithm (Quinlan, 1993), BART, and XGBoost (Chen & Guestrin,
2016) perform best in terms of finite population totals. An analysis of all observations
of one particular variable is unbiased for point estimates, but the variance is generally
underestimated, because single imputed and observed values are treated the same. The
results of such a study can suggest that methods designed for descriptive inference per-
form better than MI procedures, even in the case of imputation for analytic inference.
Therefore, a clear distinction between these two analysis goals, as well as the different
corresponding assessment strategies, is necessary to reach valid conclusions.

4.3 Simulation

In this chapter, we extend the simulation in Beesley et al. (2021) to include another
method based on the PMM factorization, and show that in some MNAR situations,
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MI based on this factorization may have advantages over MAR methods. We simulate
two deviations from MAR to investigate the effect of including RIs in imputation
models: a selection model factorization and a scenario with correlated RIs. Using
these generated data, we compare two types of imputation methods: those including
and those excluding RIs. We further add to the Loh-Little debate by evaluating the
applied methods in terms of both analytic and descriptive inferential properties. For
analytic inference, we assess the methods by analyzing the multiply imputed data via
a hypothetical regression model. We do this in terms of empirical bias (EB), ratio
of estimated variance to empirical variance (RV), RMSE, and confidence interval (CI)
coverage rates of β-coefficients (see Section 4.3.2). For descriptive inference, we base
our assessment on the squared error of the predicted values (see Section 4.3.3).

4.3.1 Data Generating Process

Four variables X = (X1, X2, X3, X4) are generated from a multivariate normal distri-
bution,

X ∼ N(0, Σ),

with

Σ =


1 0.3 0.4 0.4

0.3 1 0.3 0
0.4 0.3 1 0
0.4 0 0 1

 .

We now introduce missing values in X1 with the following response probabilities:

pX1 = logit−1(δX1
0 + δX1

1 X1 + δX1
2 X2 + δX1

3 X3 + δX1
4 X4). (4.11)

The RI vector RX1 is calculated by comparing the vector of pX1 with values drawn
from a random variable uX1 ∼ Unif(0, 1) using the following decision rule:

RX1 =

1 for pX1 ≥ uX1 ,

0 for pX1 < uX1 .
(4.12)

Finally, we introduce missing values in X2 following the same procedure as for X1:

135



pX2 = logit−1(δX2
0 + δX2

1 X1 + δX2
2 X2 + δX2

3 X3 + δX2
4 X4 + δX2

5 RX1), (4.13)

with RX2 results from

RX2 =

1 for pX2 ≥ uX2 ,

0 for pX2 < uX2 .
(4.14)

This data generating process results in a specific MAR mechanism in the incomplete
data set (X1, X2, X3) for δX2

1 = δX1
2 = δX1

1 = δX2
2 = δX1

4 = δX2
4 = δX2

5 = 0. Other
fixed parameters are: δX1

0 = δX2
0 = δX1

3 = δX2
3 = 0.5. These parameter values result

in approximately 50% missing values in both X1 and X2, with approximately 25%
overlapping missing values and approximately 25% complete cases. The data were
simulated using the R software version 4.1.2 (R Core Team, 2021); the code is available
upon request. The simulated scenarios consist of n = 1, 000 observations, all of which
were replicated 200 times. We next describe the two deviations from MAR.

4.3.1.1 MNAR Scenario 1 (MNAR1)

For the first deviation from MAR, we link δX2
1 = δX1

2 and investigate the scenarios of
both δX2

1 and δX1
2 ∈ {0, 0.5, 1, 1.5, 2}, similar to the simulation in Beesley et al. (2021).

We further set δX1
4 = δX2

4 = 0 and ignore X4 in imputation and evaluation. This setup
is represented by the following selection model:

f(X1, X2, RX1 , RX2|X3) = f(X1, X2|X3)f(RX1 , RX2|X1, X2, X3), (4.15)

with additional parameters omitted for simplicity. Since δX1
1 = δX2

2 = 0, we can further
decompose the second factor:

f(RX1 , RX2|X1, X2, X3) = f(RX1|X1, X2, X3)f(RX2 |X1, X2, X3)

= f(RX1|X2, X3)f(RX2|X1, X3).
(4.16)

4.3.1.2 MNAR Scenario 2 (MNAR2)

In this scenario, we set δX1
2 = 0 and link δX2

1 = δX2
5 . We investigate δX2

1 , δX2
5 ∈

{0, 0.5, 1, 1.5, 2}. Further, we allow for the influence of X4 on the RIs for both X1 and
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X2 by simulating δX1
4 , δX2

4 ∈ {0, 0.5, 1, 1.5, 2}. As in MNAR1, we exclude X4 from the
analysis and thus, in this case, RX1 and RX2 serve as substitutes for X4 for δX1

4 , δX2
4 ̸= 0.

4.3.2 Objective 1 - Analytic Inference with Incomplete Data

The assessment for analytic inference is based on quantitative properties (EB, RMSE,
and CI coverage) of the estimated β-coefficients from a linear model

X1 = β0 + β1X2 + β2X3 + ϵ, (4.17)

with X1 as the outcome, X2 and X3 included as main effects, and ϵ ∼ N(0, σ2). The
quantities are computed after combining multiple imputation results using Rubin’s rule
(Rubin, 1987, Chapter 3). All compared approaches perform SI with 5 iterations and
produce 10 multiply imputed data sets. Next, we describe the imputation methods in
more detail.

CART

We apply CART, following Doove et al. (2014). In this implementation, first, a regres-
sion tree is fit via recursive partitioning. Second, the terminal node for each observation
with missing outcomes is derived. Finally, imputed values are drawn randomly from
observations in the corresponding terminal nodes of the trees. We use the MICE imple-
mentation in the R package Multivariate Imputation by Chained Equations (MICE)
(Van Buuren & Groothuis-Oudshoorn, 2011, version 3.14.0) with a minimum of five
observations in terminal nodes. This method is henceforth called MI-CART.

CART-R

This SI method includes the RIs, RX1 and RX2 , as covariates along with the other
variables in the data set into the imputation process, with all other settings equal
to MI-CART (henceforth called MI-CART-R). Since CART can automatically model
important interactions present in the covariates (Doove et al., 2014), the procedure
can, in theory, exploit potentially useful information in RIs in combination with the
original covariates.

NORM

This SI method uses MICE (Van Buuren & Groothuis-Oudshoorn, 2011, version 3.14.0)

137



to apply imputation via Bayesian linear regression models (henceforth called MI-
NORM) following Schafer (1997).

NORM-OFFSET

This method is described in Section 4.2.1 as one of the approximations presented in
Beesley et al. (2021) (see the article for further detail). For this simulation, we adapted
the code from the corresponding online appendix of the article (https://github.com/
lbeesleyBIOSTAT/SRMIMI_Example_Code). This method is henceforth called MI-
NORM-OFFSET.

4.3.3 Objective 2 - Descriptive Inference with Incomplete
Data

The assessment for descriptive inference is based on the squared error of the predicted
values (SEV) for RX1 = 0 observations:

SEV =
∑

j∈{X1|RX1 =0}
(X t

j,1 − Xp
j,1)2, (4.18)

with X t
j,1 representing the true (t) value and Xp

j,1 representing the predicted (p) value
of the j-th element in {X1|RX1 = 0}.

The four approaches from Objective 1 (MI-CART, MI-CART-R, MI-NORM, MI-
NORM-OFFSET) are used here to perform 10-fold MI. After MI, multiply imputed
values are averaged to obtain one predicted value for each missing value. We also use
BART to predict missing values in X1 directly, as described below.

BART

BART is trained on the complete data with X1 as the outcome variable, with no
previous imputation. Predicted values for the missing values in X1 are obtained from
averaged posterior predictive distribution draws. The procedure is implemented in the
R package bartMachine (Kapelner & Bleich, 2016, version 1.2.6).

BART-R

Here, BART is trained on all RX1 = 1 observations with no previous imputation. Thus,
RX2 can be used as a covariate in the training process, as described in Section 4.2.2.
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4.3.4 Expectations

For the MAR scenarios, we expect MI-NORM to perform best in terms of quantitative
properties, because the imputation model is closest to the data generated. We fur-
ther expect BART-R to perform better than BART in terms of SEV, because of the
increased amount of training data.

For both deviations from MAR (MNAR1 and MNAR2), we generally expect methods
including RIs to perform better in terms of quantitative properties and show lower SEV
compared to the standard methods, because the information in RIs can be exploited.

For MNAR1 and Objective 1, we expect that MI-NORM-OFFSET performs better
than MI-NORM in terms of quantitative properties, because the simulated scenario is
similar to the one in Beesley et al. (2021). We also expect that MI-CART-R performs
better than MI-CART with increased deviation from MAR.

4.3.5 Results

4.3.5.1 Objective 1

4.3.5.1.1 MNAR1 Table 4.1 shows the results for MNAR1 and Objective 1. For
MNAR1, we first focus on the EB. The table shows that for MAR (δX2

1 = δX1
2 = 0)

all methods perform similarly well, resulting in approximately no EB in all regression
coefficients. In the MNAR cases (δX2

1 = δX1
2 ̸= 0), MI-CART and MI-NORM show the

lowest EB for β0, but result in the highest bias for β1 and β2 (MI-CART being more
biased than MI-NORM for both parameters). While MI-NORM-OFFSET yields the
best results for β1 in MNAR cases with almost no bias, MI-CART-R performs best for
β2. In the MNAR cases, MI-NORM-OFFSET performs best over all β-coefficients in
terms of EB, followed by MI-CART-R.
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Table 4.1: Effect of deviating from MAR (δX2
1 = δX1

2 = 0) to MNAR1. Different imputation methods are compared
in terms of the resulting empirical bias (EB), ratio of estimated variance to empirical variance (RV), root mean squared
error (RMSE), and confidence interval coverage rate (CICR) in the estimated regression coefficients. EB, RV, and RMSE
values multiplied by 1, 000. CICR values multiplied by 100.

EB RV RMSE CICR
δX2

1 , δX1
2 Method β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2

0, 0 MI-CART -4 -7 -3 687 711 627 46 65 53 88 90 90
0, 0 MI-CART-R -4 -2 -4 742 639 684 46 67 53 92 90 91
0, 0 MI-NORM -5 -1 2 951 1084 892 45 56 50 95 97 94
0, 0 MI-NORM-OFFSET 8 -19 -6 962 1205 1023 46 57 48 94 98 96
0.5, 0.5 MI-CART 16 17 -20 628 887 647 51 68 58 86 90 88
0.5, 0.5 MI-CART-R 14 -21 -15 669 553 737 54 78 57 90 84 89
0.5, 0.5 MI-NORM 10 22 -12 905 1032 853 48 60 52 92 92 95
0.5, 0.5 MI-NORM-OFFSET 36 -23 -18 958 1455 984 59 55 51 88 97 94
1, 1 MI-CART 20 104 -53 629 989 690 54 123 76 86 66 74
1, 1 MI-CART-R 32 -54 -17 578 378 723 65 103 60 83 68 88
1, 1 MI-NORM 14 82 -36 1004 1003 930 48 99 60 94 70 88
1, 1 MI-NORM-OFFSET 58 -22 -28 1108 1538 1210 74 55 54 82 98 95
1.5, 1.5 MI-CART 17 193 -87 634 1201 763 53 200 102 85 16 52
1.5, 1.5 MI-CART-R 59 -81 -23 521 335 709 90 127 66 73 57 87
1.5, 1.5 MI-NORM 16 138 -60 979 1091 914 48 147 77 94 34 74
1.5, 1.5 MI-NORM-OFFSET 73 -11 -37 1194 1620 1206 86 51 59 71 98 90
2, 2 MI-CART 12 264 -115 613 1178 766 51 269 125 86 0 34
2, 2 MI-CART-R 73 -98 -27 428 265 644 107 149 70 68 56 82
2, 2 MI-NORM 12 189 -78 1063 907 966 45 197 91 96 11 60
2, 2 MI-NORM-OFFSET 81 0 -45 1307 1579 1291 94 52 64 70 98 88
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For RV, for MAR (δX2
1 = δX1

2 = 0), MI-NORM and MI-NORM-OFFSET show the
best RV (closest to 1,000) in all regression coefficients, both other methods show lower
values. In the MNAR cases (δX2

1 = δX1
2 ̸= 0), for all β- coefficients, MI-NORM remains

on a similar level as in the MAR case, while MI-NORM-OFFSET’s RV increases with
increasing δX2

1 , δX1
2 values. Overall, MI-CART-R shows the lowest RVs in the MNAR

case. Generally, MI-CART also leads to low RV values in MNAR, but there is an
increase in β1 for increasing δX2

1 , δX1
2 .

Focusing on RMSE, for MAR (δX2
1 = δX1

2 = 0), all methods again perform equally
well, resulting in approximately the same RMSE in all regression coefficients. For the
MNAR cases (δX2

1 = δX1
2 ̸= 0), MI-CART and MI-NORM have the lowest RMSE for

β0, but MI-CART results in the highest RMSE for β1 and β2, followed by MI-NORM.
While MI-NORM-OFFSET shows the lowest RMSE for β1 (followed by MI-CART-R),
MI-CART-R and MI-NORM-OFFSET both perform best for β2. In the MNAR cases,
MI-NORM-OFFSET performs best over all β-coefficients in terms of RMSE, followed
by MI-CART-R.

Looking at CI coverage rate, for MAR (δX2
1 = δX1

2 = 0), all methods perform equally
well at approximately 95% coverage for all regression coefficients. When there are
deviations from MAR, MI-CART and MI-NORM perform best for β0, but result in the
lowest coverage rate for β1 and β2 (here, MI-CART performs worst, followed by MI-
NORM). For both β1 and β2, MI-NORM-OFFSET returns the best coverage rate (at
or close to 95%). MI-CART-R performs as well as MI-NORM-OFFSET for β2, but has
a lower coverage rate for β1. In the MNAR cases, MI-NORM-OFFSET performs best
over all β-coefficients in terms of CI coverage rates, again followed by MI-CART-R.

Overall, MI-NORM-OFFSET shows the best performance for all three metrics inves-
tigated, followed by MI-CART-R.

4.3.5.1.2 MNAR2 The results for the MNAR2 scenarios are presented in Tables
4.2, 4.4, and 4.5.

We first focus on the EB. Table 4.2 shows that for MAR (δX1
4 = δX2

4 = 0) all methods
perform similarly well in β0 and β2, resulting in approximately no EB in these regression
coefficients. One exception, however, is the negative EB in β0 from MI-CART-R in high
δX2

1 , δX2
5 scenarios. For β1, we see that, for low δX2

1 , δX2
5 values, MI-NORM-OFFSET

returns the highest absolute EB. For δX2
1 , δX2

5 ≥ 1, MI-CART shows the strongest
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Table 4.2: Effect of deviating from MAR (δX1
4 = δX2

4 = 0) to MNAR2. Different
imputation methods are compared in terms of the resulting empirical bias (EB) with
values multiplied by 1, 000.

δX1
4 , δX2

4 δX2
5 , δX2

1 Method EB - β0 EB - β1 EB - β2

0, 0 0, 0 MI-CART -4 -7 -2
0, 0 0, 0 MI-CART-R -5 -3 -3
0, 0 0, 0 MI-NORM -6 -1 4
0, 0 0, 0 MI-NORM-OFFSET 8 -20 -7
0, 0 1, 1 MI-CART 0 -29 6
0, 0 1, 1 MI-CART-R -70 -11 17
0, 0 1, 1 MI-NORM -6 -8 5
0, 0 1, 1 MI-NORM-OFFSET 9 -11 -8
0, 0 2, 2 MI-CART 1 -56 11
0, 0 2, 2 MI-CART-R -151 -21 47
0, 0 2, 2 MI-NORM -7 -15 8
0, 0 2, 2 MI-NORM-OFFSET 8 -6 -11
1, 1 0, 0 MI-CART 170 -7 -36
1, 1 0, 0 MI-CART-R 154 -2 -36
1, 1 0, 0 MI-NORM 165 -2 -32
1, 1 0, 0 MI-NORM-OFFSET 175 -14 -41
1, 1 1, 1 MI-CART 173 -14 -34
1, 1 1, 1 MI-CART-R 28 1 -11
1, 1 1, 1 MI-NORM 164 -3 -32
1, 1 1, 1 MI-NORM-OFFSET 176 2 -46
1, 1 2, 2 MI-CART 173 -27 -31
1, 1 2, 2 MI-CART-R -66 12 11
1, 1 2, 2 MI-NORM 163 -4 -32
1, 1 2, 2 MI-NORM-OFFSET 175 7 -46
2, 2 0, 0 MI-CART 250 -1 -42
2, 2 0, 0 MI-CART-R 199 1 -38
2, 2 0, 0 MI-NORM 243 1 -39
2, 2 0, 0 MI-NORM-OFFSET 254 -3 -49
2, 2 1, 1 MI-CART 250 -1 -42
2, 2 1, 1 MI-CART-R 46 11 -22
2, 2 1, 1 MI-NORM 243 2 -39
2, 2 1, 1 MI-NORM-OFFSET 254 9 -53
2, 2 2, 2 MI-CART 249 -12 -40
2, 2 2, 2 MI-CART-R -61 16 -6
2, 2 2, 2 MI-NORM 242 0 -40
2, 2 2, 2 MI-NORM-OFFSET 255 14 -55
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absolute EB in β1, all other methods result in some EB as well. In the MNAR cases
(δX1

4 = δX2
4 ̸= 0) and for increasing δX2

1 , δX2
5 values, EB in β0 increases in all methods

except for MI-CART-R, which shows the lowest EB.

For β1 in the MNAR cases, all methods start with a negative EB and move towards
no EB or a positive one with increasing δX1

4 = δX2
4 values. MI-CART shows the

strongest negative EB and the differences from the other methods decrease with in-
creasing δX2

1 , δX2
5 values. For β2 in the MNAR cases, all methods start with approx-

imately no EB and result in negative EB with increasing δX1
4 = δX2

4 values. One
exception, however, is the EB in MI-CART-R, which starts with a higher EB that de-
creases with increasing δX2

1 , δX2
5 values. MI-CART-R performs on the same level as the

other methods for δX2
1 = δX2

5 = 0, but shows stronger bias for low δX1
4 , δX2

4 values and
less bias for high δX1

4 , δX2
4 values. In the MNAR cases, we find no clear best method

over all β-coefficients in terms of EB.

Table 4.3 presents the results for RV. In the MAR (δX1
4 = δX2

4 = 0) condition, we find
that, overall, the CART and CART-R return too low RV values, compared to both
other methods. For MNAR, the CART and CART-R remain on a low RV level, while
MI-NORM shows the best results (closest to 1,000) in β1, and β2. For β0, MI-NORM
overall returns RV values below 1,000, while MI-NORM-OFFSET shows values on or
above the 1,000 mark. A change in the parameters δX2

1 and δX2
5 does not result in an

obvious pattern in RV.

In the case of RMSE (Table 4.4) in β0, for MAR (δX1
4 = δX2

4 = 0), all methods perform
equally well, except for MI-CART-R, which results in increasing RMSE for increasing
δX2

1 , δX2
5 values. For MAR in β1, we find MI-CART and MI-CART-R resulting in

increasing RMSEs for increasing δX2
1 , δX2

5 values. For β2, MI-CART shows increased
RMSE values in scenarios with high δX2

1 , δX2
5 values, all other methods remain mostly

on the same level. For the MNAR cases (δX1
4 = δX2

4 ̸= 0), MI-CART-R shows the
lowest RMSE for β0 (RMSE values increase equally for increasing δX2

1 , δX2
5 values in

other methods). For β1, MI-NORM and MI-NORM-OFFSET both result in the lowest
RMSEs. While MI-CART’s RMSE values decrease with increasing δX2

1 , δX2
5 values,

MI-CART-R remains on a high level. For β2 and increasing δX1
4 and δX2

4 values, all
methods increase in terms of RMSE, MI-NORM-OFFSET shows higher RMSE values
compared to the other methods. In the MNAR cases, there is no best method over all
β-coefficients in terms of RMSE.
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Table 4.3: Effect of deviating from MAR (δX1
4 = δX2

4 = 0) to MNAR2. Different
imputation methods are compared in terms of ratio of estimated variance to empirical
variance (RV) with values multiplied by 1, 000.

δX1
4 , δX2

4 δX2
5 , δX2

1 Method RV - β0 RV - β1 RV - β2

0, 0 0, 0 MI-CART 667 743 654
0, 0 0, 0 MI-CART-R 751 693 640
0, 0 0, 0 MI-NORM 932 1029 893
0, 0 0, 0 MI-NORM-OFFSET 967 1297 962
0, 0 1, 1 MI-CART 697 814 636
0, 0 1, 1 MI-CART-R 670 536 659
0, 0 1, 1 MI-NORM 938 977 948
0, 0 1, 1 MI-NORM-OFFSET 1069 1267 1129
0, 0 2, 2 MI-CART 653 755 583
0, 0 2, 2 MI-CART-R 656 474 597
0, 0 2, 2 MI-NORM 975 967 918
0, 0 2, 2 MI-NORM-OFFSET 1042 1155 1078
1, 1 0, 0 MI-CART 677 662 708
1, 1 0, 0 MI-CART-R 698 637 767
1, 1 0, 0 MI-NORM 927 1031 1063
1, 1 0, 0 MI-NORM-OFFSET 992 1173 1170
1, 1 1, 1 MI-CART 671 630 687
1, 1 1, 1 MI-CART-R 618 584 655
1, 1 1, 1 MI-NORM 906 1006 1066
1, 1 1, 1 MI-NORM-OFFSET 1064 1173 1311
1, 1 2, 2 MI-CART 660 660 666
1, 1 2, 2 MI-CART-R 628 549 595
1, 1 2, 2 MI-NORM 963 950 1017
1, 1 2, 2 MI-NORM-OFFSET 1184 1219 1269
2, 2 0, 0 MI-CART 693 629 751
2, 2 0, 0 MI-CART-R 661 691 696
2, 2 0, 0 MI-NORM 868 1045 979
2, 2 0, 0 MI-NORM-OFFSET 998 1141 1101
2, 2 1, 1 MI-CART 711 687 710
2, 2 1, 1 MI-CART-R 571 604 614
2, 2 1, 1 MI-NORM 947 991 1074
2, 2 1, 1 MI-NORM-OFFSET 1051 1145 1210
2, 2 2, 2 MI-CART 698 680 710
2, 2 2, 2 MI-CART-R 655 550 661
2, 2 2, 2 MI-NORM 1008 992 987
2, 2 2, 2 MI-NORM-OFFSET 1016 1132 1263

144



Table 4.4: Effect of deviating from MAR (δX1
4 = δX2

4 = 0) to MNAR2. Different
imputation methods are compared in terms of the resulting root mean squared error
(RMSE) with values multiplied by 1, 000.

δX1
4 , δX2

4 δX2
5 , δX2

1 Method RMSE - β0 RMSE - β1 RMSE - β2

0, 0 0, 0 MI-CART 47 65 53
0, 0 0, 0 MI-CART-R 46 66 55
0, 0 0, 0 MI-NORM 45 57 49
0, 0 0, 0 MI-NORM-OFFSET 46 57 49
0, 0 1, 1 MI-CART 45 68 53
0, 0 1, 1 MI-CART-R 83 71 55
0, 0 1, 1 MI-NORM 46 55 48
0, 0 1, 1 MI-NORM-OFFSET 46 50 47
0, 0 2, 2 MI-CART 46 91 57
0, 0 2, 2 MI-CART-R 158 93 73
0, 0 2, 2 MI-NORM 44 56 49
0, 0 2, 2 MI-NORM-OFFSET 47 52 51
1, 1 0, 0 MI-CART 176 61 60
1, 1 0, 0 MI-CART-R 161 62 60
1, 1 0, 0 MI-NORM 171 53 54
1, 1 0, 0 MI-NORM-OFFSET 181 52 59
1, 1 1, 1 MI-CART 179 65 60
1, 1 1, 1 MI-CART-R 55 70 53
1, 1 1, 1 MI-NORM 169 52 54
1, 1 1, 1 MI-NORM-OFFSET 182 49 62
1, 1 2, 2 MI-CART 179 74 59
1, 1 2, 2 MI-CART-R 82 84 58
1, 1 2, 2 MI-NORM 169 52 54
1, 1 2, 2 MI-NORM-OFFSET 180 49 63
2, 2 0, 0 MI-CART 254 55 61
2, 2 0, 0 MI-CART-R 204 58 62
2, 2 0, 0 MI-NORM 247 48 58
2, 2 0, 0 MI-NORM-OFFSET 257 47 64
2, 2 1, 1 MI-CART 254 53 62
2, 2 1, 1 MI-CART-R 69 70 59
2, 2 1, 1 MI-NORM 247 49 58
2, 2 1, 1 MI-NORM-OFFSET 258 47 67
2, 2 2, 2 MI-CART 253 57 60
2, 2 2, 2 MI-CART-R 78 85 55
2, 2 2, 2 MI-NORM 246 49 59
2, 2 2, 2 MI-NORM-OFFSET 258 48 69
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Table 4.5: Effect of deviating from MAR (δX1
4 = δX2

4 = 0) to MNAR2. Different
imputation methods are compared in terms of the resulting confidence interval coverage
rate (CICR) with values multiplied by 100.

δX1
4 , δX2

4 δX2
5 , δX2

1 Method CICR - β0 CICR - β1 CICR - β2

0, 0 0, 0 MI-CART 90 91 90
0, 0 0, 0 MI-CART-R 91 91 89
0, 0 0, 0 MI-NORM 96 97 94
0, 0 0, 0 MI-NORM-OFFSET 94 97 94
0, 0 1, 1 MI-CART 90 91 86
0, 0 1, 1 MI-CART-R 52 84 85
0, 0 1, 1 MI-NORM 94 94 96
0, 0 1, 1 MI-NORM-OFFSET 93 97 98
0, 0 2, 2 MI-CART 90 83 86
0, 0 2, 2 MI-CART-R 6 79 70
0, 0 2, 2 MI-NORM 94 94 95
0, 0 2, 2 MI-NORM-OFFSET 96 96 96
1, 1 0, 0 MI-CART 0 90 84
1, 1 0, 0 MI-CART-R 5 92 85
1, 1 0, 0 MI-NORM 4 96 91
1, 1 0, 0 MI-NORM-OFFSET 2 96 86
1, 1 1, 1 MI-CART 0 90 83
1, 1 1, 1 MI-CART-R 82 86 90
1, 1 1, 1 MI-NORM 6 96 91
1, 1 1, 1 MI-NORM-OFFSET 3 96 87
1, 1 2, 2 MI-CART 1 85 84
1, 1 2, 2 MI-CART-R 58 86 86
1, 1 2, 2 MI-NORM 4 94 90
1, 1 2, 2 MI-NORM-OFFSET 4 98 90
2, 2 0, 0 MI-CART 0 88 80
2, 2 0, 0 MI-CART-R 0 90 78
2, 2 0, 0 MI-NORM 0 96 86
2, 2 0, 0 MI-NORM-OFFSET 0 96 82
2, 2 1, 1 MI-CART 0 90 80
2, 2 1, 1 MI-CART-R 71 86 86
2, 2 1, 1 MI-NORM 0 94 88
2, 2 1, 1 MI-NORM-OFFSET 0 97 84
2, 2 2, 2 MI-CART 0 88 80
2, 2 2, 2 MI-CART-R 63 82 90
2, 2 2, 2 MI-NORM 0 95 86
2, 2 2, 2 MI-NORM-OFFSET 0 95 84
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In terms of the CI coverage rate (Table 4.5), for MAR (δX1
4 = δX2

4 = 0), all methods
perform equally well at approximately 95% coverage for all regression coefficients. One
exception is the reduced coverage rate in β0 for MI-CART-R for δX2

1 , δX2
5 ≥ 1. When

there are deviations from MAR (δX1
4 = δX2

4 ≥ 0.5 scenarios), coverage rates for β0

decrease in a similar way and approach 0 in all investigated methods. Only MI-CART-
R shows values notably above zero for high δX2

1 , δX2
5 values. For β1, MI-NORM and

MI-NORM-OFFSET remain mostly at the 95% level; MI-CART and MI-CART-R show
reduced coverage (between 75% and 90%) for all δX2

1 , δX2
5 values. For β2, the MNAR

scenarios lead to reduced coverage rates (between 75% and 95%) in all methods. In
the MNAR cases, no method stands out over all β-coefficients in terms of CI coverage
rate.

In summary, in MNAR1, the MI-NORM-OFFSET procedure performs best overall,
followed by MI-CART-R. MI-NORM generally performs better than MI-CART. In
the MNAR2 scenarios, we see that including RIs in the SI process can improve the
results for some regression parameters, and at the same time achieve similar results as
standard procedures in the MAR case. However, in MNAR2 we do not find a clear
best imputation method.

4.3.5.2 Objective 2

The figures in this sub-section present box plots for each method investigated. The
SEV (Equation 4.18) is shown on the y-axis.

4.3.5.2.1 MNAR1 In Figure 4.1 the x-axis displays the δX2
1 and δX1

2 values. Un-
der MAR (δX2

1 = δX1
2 = 0), MI-CART and MI-CART-R perform worst, followed by

MI-NORM and MI-NORM-OFFSET. BART and BART-R perform best here. For
increasing δX2

1 and δX1
2 , BART-R results in the lowest SEV, followed by MI-CART-R,

and then MI-CART, MI-NORM, and MI-NORM-OFFSET, which perform similarly
well. BART clearly performs worst in the MNAR cases.

4.3.5.2.2 MNAR2 For MNAR2, the different columns in Figure 4.2 show results
for different δX2

1 , δX2
5 values; the x-axes correspond to the values of δX1

4 and δX2
4 , but

only display 0, 1, 2 for readability. Under MAR (δX1
4 = δX2

4 = 0) and δX2
1 = δX2

5 = 0, we
find BART-R performing best, and MI-CART and MI-CART-R performing worst. For
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Figure 4.1: Effect of deviating from MAR (δX2
1 = δX1

2 = 0) to MNAR1. Different
imputation methods are compared in terms of the resulting squared error of predicted
values (SEV). The solid black line indicates zero SEV.
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δX2
1 = δX2

5 = 0 and increasing δX1
4 and δX2

4 , BART-R shows the lowest and BART shows
the highest SEV. For δX1

4 = δX2
4 = 0, when δX2

1 , δX2
5 values increase, BART-R results in

the lowest SEV, followed by MI-CART-R, and then MI-NORM, MI-NORM-OFFSET,
and MI-CART, all of which perform similarly well. BART performs worst here. This
pattern remains the same with greater differences among the methods for increasing
δX1

4 , δX2
4 , and δX2

1 , δX2
5 values.
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Figure 4.2: Effect of deviating from MAR (δX2
4 = δX1

4 = 0) to MNAR2. Different
imputation methods are compared in terms of the resulting squared error of predicted
values (SEV). The solid black line indicates zero SEV.

The findings for Objective 2 imply that, first, under MAR, the inclusion of RIs does not
lead to decreased predictive performance. Second, under MAR, averaging the values of
multiply imputed data can result in a performance that is similar to when the outcome
is predicted directly. Third, in the simulated MNAR cases, RIs can improve predictive
power. However, performance differs among the different approaches incorporating RI
information. Specifically, including RIs as additional covariates in MI-CART-R results
in lower SEVs than MI-NORM-OFFSET. Finally, including RIs directly in a prediction
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method (as in BART-R) leads to lower SEVs than including RIs in an MI process (as
in MI-CART-R).

4.4 Discussion

For analytic inference, including RIs in the model can help to improve parameter esti-
mates in specific MNAR situations. For parametric models, including RIs as covariates
in the model is generally not recommended (Donders et al., 2006; Greenland & Finkle,
1995; Jones, 1996; Knol et al., 2010; Vach & Blettner, 1991). Rather, models should be
fit to multiply imputed data. We can further learn that studies comparing methods can
produce misleading results when analysis goals are not stated clearly, e.g., when draws
from MI procedures are assessed only in terms of their predictive power, as described
in Section 4.2.4.

The simulation aiming at analytic inference (Objective 1) shows that under MAR, all
MI procedures perform mostly equally well in terms of quantitative properties and have
similar SEV values. For MNAR cases, MI-NORM-OFFSET performs best in terms of
the evaluated quantitative properties when the MNAR mechanism follows a selection
model (MNAR1), but no clear best method can be found in the MNAR scenario al-
lowing for a correlation between RIs (MNAR2). The slightly inferior performance of
MI-CART-R in MNAR1 can be explained by the properties of the compared methods.
While incorporating RIs into MI-CART-R as additional covariates is a simple way to
access the potential information in RIs, MI-NORM-OFFSET might better approximate
the underlying selection model of the data. Further, the underlying data generating
process is parametric, which likely favors parametric imputation models.

The simulation addressing descriptive inference shows that, in the MAR case, the
performance of the methods for direct prediction (BART and BART-R) is slightly
better than that of the MI methods. For MNAR scenarios, we see a clear advantage of
the methods that include RIs directly (BART-R, MI-CART-R). These findings suggest
that MI procedures can also perform well in prediction tasks if the mean of multiply
imputed values is used as the predicted value. However, fitting a model including RIs
on unimputed data seems to be the best choice for descriptive inference.

In the case of descriptive inference, the behavior of MI-NORM-OFFSET is similar
to that of methods that do not include RIs, but MI-CART-R remains on the same
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level of performance in the MNAR situations compared to the MAR situation. These
performance differences likely occur because MI-NORM-OFFSET follows a selection
model factorization, while MI-CART-R is based on a PMM. A direct comparison of
the selection model representative, MI-NORM-OFFSET, and the PMM representative,
MI-CART-R, suggests the following: MI-NORM-OFFSET performs best in terms of
quantitative properties when the underlying data are generated from a selection model;
for data allowing for correlated RIs, there is no best performing model overall. When
assessing prediction accuracy, MI-CART-R clearly performs best among the imputation
methods in both MNAR scenarios.

Table 4.6 provides guidance for practice when RIs are considered for inclusion in statis-
tical models. The table summarizes the conclusions drawn from the literature review
and the simulation study. We distinguish between two different analysis goals, ana-
lytic and descriptive inference (see Objectives 1 and 2 in Sections 4.3.2 and 4.3.3), and
between two different missingness mechanisms, MAR and MNAR.

Analysis Goal
Analytic Inference Descriptive Inference

Missingness
Mechanism

MAR RIs not useful, but ... (1) RIs not useful, but ... (2)
MNAR RIs potentially useful (3) RIs potentially useful (4)

Table 4.6: Summary: usefulness of response indicators (RIs) in statistical modeling by
analysis goals and missingness mechanisms.

(1) For analytic inference under MAR, RIs do not provide information and thus
are unnecessary in imputation models. Methods including RIs can show de-
creased performance in MAR scenarios, as seen in the MNAR1 scenario, where
MI-NORM-OFFSET leads to increased EB in the intercept parameter (cf. Table
4.1)

(2) For descriptive inference under MAR, RIs do not provide information and thus
are unnecessary in imputation models. However, the additional training data
(observations with incomplete covariates rather than complete cases only) can
lead to better performance in terms of prediction accuracy. In the simulation for
Objective 2 we find including RIs under MAR does not lead to worse performance.

(3) For analytic inference under MNAR, the simulation suggests that RIs can help
to improve MI and the estimates of subsequent analyses. However, the simulated
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scenarios are narrow and their findings might not generalize to other missing data
patterns and other MNAR mechanisms. There are likely MNAR mechanisms that
lead to worse performance when RIs are included in the MI process, compared
to MI under MAR.

(4) For descriptive inference under MNAR, the simulation suggests that RIs can help
to improve performance. However, how RIs are used in models is key. In the
investigated scenarios, an imputation method based on the PMM is preferred, as
well as fitting predictive models without a previous imputation of missing values.
Again, these suggestions are based on a limited number of simulation scenarios
and might not hold in other data situations.

In practice, given a data set with missing values, the decision of whether to include
RIs in a statistical model can be based on the following reasoning. First, the analysis
goal needs to be clear, i.e., whether the goal is analytic or descriptive inference. When
performing descriptive inference, RIs can be included, and methods with and without
RIs can also be compared in order to investigate whether including RIs increases per-
formance. For example, tree-based methods like BART and GUIDE provide specific
features to incorporate RIs. For a low number of response patterns, the pattern sub-
model provides a more general approach to adding RIs in models and can be combined
with many different procedures; a completely different model class for each response
pattern is possible.

When the analysis goal is analytic inference, the more plausible missingness mechanism
can be decided based on the number of variables and the strength of their associations.
The higher the number of variables and the stronger their relationships, the more
plausible an MAR mechanism becomes. Although the missingness mechanism in many
applications is likely MNAR (e.g. nonresponse in sample surveys), what matters is
“how far away” from MAR it is, i.e., how the results change when assuming MAR as
opposed to MNAR. Comparing analysis results after performing MI without RIs (under
MAR) vs. with RIs (assuming a specific MNAR mechanism) can provide information
about how sensitive the results are to the MAR assumption.

While distinguishing MAR and MNAR solely based on a given data set is not possible,
there are two views based on the analysis goals. On the one hand, Loh et al. (2020),
who mostly focus on descriptive inference, state that “(. . . ) it is hard to justify that
the hundreds of covariates are missing at random (MAR)”. Rubin, on the other hand,
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argues that MI under MAR is plausible in the presence of useful covariates, and that
assuming MAR is a good starting point for the analysis (Rubin et al., 1995). This
approach is similar to other statistical analyses focusing on analytic inference that
start by assuming, for example, a normal distribution and then evaluate the impact of
potential deviation from this assumption. These two views are described in Breiman’s
famous article about the two cultures of statistical modeling (Breiman, 2001). The
article describes the use of algorithmic and more flexible methods vs. classic statistical
modeling (i.e. parametric models). While Breiman’s article favors algorithmic methods,
we argue that a distinction between analytic and descriptive inference is crucial and
that the modeling approach should be selected based on the analysis goal.

The research presented here is limited in several ways. First, the literature review
is not based on a systematic literature search, but rather on an unstructured search.
Although we think that we have included the most important papers, it is still possible
that some relevant literature has been overlooked. While we covered important parts
of statistical modeling, we did not investigate the full range of statistical methods like
unsupervised learning / clustering or causal inference. Second, the presented simulation
investigates only one MAR scenario based on continuous variables with relatively low
associations and only two out of many possible deviations from this MAR scenario. As
stated earlier, there are likely MNAR scenarios where procedures under MAR perform
better than procedures including RIs. Further, the present study presents only a
limited number of methods mentioned in the preceding literature review. We focus on
those methods because they are examples of parametric and non-parametric methods
available in standard software and thus are likely used in practice. However, multiple
additional methods, e.g., SI via BART, BART-R, and GUIDE, are not investigated
here, suggesting avenues for future work.

While here we focus on a literature review and a simulation, future theoretical work
can further clarify the underlying assumptions of models including RIs. One possibility
is to focus on two categorical incomplete variables, because this setup requires only
minimal distributional assumptions on the variables. The assumptions of an MAR
model can be compared with two different MNAR models: conditioning on one or
both RIs. Further, connections with other MNAR models for incomplete categorical
variables (Little, 1985; Little & Rubin, 2019, Chapter 13) can be explored.

RIs can be classified into a nominal variable if additional information about the missing
values is available. Unpublished work by Kamphuis et al. (2015) extends the penalized
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spline of propensity prediction method (G. Zhang & Little, 2009) by utilizing codes for
missing data like “don’t know” or “refusal” (or other indicators like for “top-coded”
values). These codes, often available in survey data (e.g. in the U.S. Consumer Ex-
penditure Survey), could also be incorporated as covariates in MI. As mentioned by
Loh et al. (2020), GUIDE now also allows for splits between RIs with more than two
categories.

Another situation where the RI approach can be useful is when filter questions in
survey questionnaires are used to give a subgroup of respondents (henceforth G1)
additional questions. This common practice leads to “not applicable” (NA) values
for the subgroup that does not receive the additional questions (henceforth G2). NA
values are not missing values because true values do not exist. In a regression context,
the interactions between the filter question and additional questions are comparable to
using RIs with interactions, but more plausible, because a slope can be estimated for
G1, while the G2 estimate for the variable is constant.
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4.5 Appendix - Design Table

Table 4.7: Design table for Chapter 4.

Method Parameter Description Levels Choices Tuning

CART, CART-R minbucket
The minimum number of
observations in any
terminal node used

5
Default of MICE package
version 3.14.7

None

CART, CART-R cp Complexity parameter 1e-04
Default of MICE package

version 3.14.7
None

NORM - No tuning parameters - - None
NORM-OFFSET - No tuning parameters - - None

BART, BART-R mem_cache_for_speed

Speed enhancement that
caches the predictors
and the split values
that are available at

each node for selecting
new rules.

FALSE
Recommened for large number
of predictors, not the case here

None

BART, BART-R use_missing_data
If TRUE, additional

RIs are included.
TRUE

Difference between BART
and BART-R achieved

via different data input.
None

Any other parameters of imputation via CART and CART-R are as specified in
function rpart::rpart.control(), package version 4.1.16. All other parameters
of BART or BART-R are set as specified in function bartMachine::bartMachine(),
package version 1.2.7
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Chapter 5

Conclusion

This dissertation aims to produce research in the domain of method selection for mul-
tiple imputation (MI) of missing data. Specifically, the three studies provide a com-
parison of methods and guidance for practitioners (Study One), present a framework
for automated method selection within sequential imputation (SI) (Study Two), and
investigate the use of response indicators (RIs) in imputation models (Study Three).
In this chapter, we first restate the main findings of the three studies, followed by the
limitations and directions for future research.

Study One (Chapter 2) reveals how different imputation procedures perform under dif-
ferent data scenarios. We find that, in general, all parametric procedures (Bayesian lin-
ear models and regularized Bayesian linear models) perform similarly. While Bayesian
additive regression trees (BART) performs generally well in the non-parametric case,
overall it performs poorly in the parametric part of the simulation. For practical appli-
cations, we find random forest and classification and regression trees work best in most
of the investigated scenarios. Further, in the parametric cases, complete case analysis
(CC) performs well when missingness only depends on covariates, and shows reduced
performance in MAR scenarios where missingness depends on both the covariates and
the outcome. Both of these findings can be explained following Little (1992). In MNAR
scenarios where missingness depends on covariates, CC results in empirically unbiased
estimates, as explained in Little and Zhang (2011). However, CC generally has lower
performance in terms of RMSE, compared to other methods, because all incomplete
observations are excluded from the analysis.

Study Two (Chapter 3) proposed a modified SI procedure, called SI with integrated
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method selection (SIIMS). SIIMS allows for multiple competing methods and auto-
mated plausibility checks during the imputation process. The plausibility checks in
SIIMS are carried out via two criteria. One criterion is an MSE-like measure includ-
ing a variance and a bias component; it is computed at the level of observations and
then averaged over all of the observations that the imputation model is fit on. The
assessment here focuses on the predictive power of the imputation model. The other
criterion automatically assesses the plausibility of imputed values by comparing their
density to the density of the observed values of the incomplete variable to be imputed,
conditional on the response propensity score. The higher the similarity between those
two densities, the better the imputation model under MAR. This criterion is applied to
compare the imputation models in terms of marginal distributions. The study devel-
oped both criteria for continuous, binary, and nominal variables with missing values.
The developed criteria are broad in the sense that they can be used to compare compare
any methods that can predict values of an outcome. While we illustrate the proposed
SIIMS framework using some current state of the art imputation methods, the pro-
posed criteria can still assess new, potential better, methods. The presented case study
suggest that SIIMS’ performance is among the performance of the component methods
applied separately.

Study Three (Chapter 4) reviews the literature on the use of RIs in statistical models
and presents a simulation study of missing data imputation under MNAR, specifically
when RIs are included in the imputation models. For descriptive inference, when
the focus is on predicting a missing value as accurately as possible, including RIs in
the model can improve predictive power when response patterns provide information.
For non-informative response patterns, the algorithm ignores the RIs. For analytic
inference, i.e., multiple imputation assessed on the basis of the quantitative properties
of a regression model fit on multiply imputed data, including RIs in the model can help
to improve parameter estimates in specific MNAR situations. For parametric models
fit on incomplete data, including RIs in the model is generally not recommended.
Further, misleading results can occur when analysis goals are not stated clearly, e.g.,
when draws from MI procedures are assessed only in terms of their predictive power.

The simulation investigates MNAR scenarios where RIs can help to improve MI pro-
cedures. The simulation focused on analytic inference shows that under MAR, all MI
procedures perform equally well. For MNAR cases, the methods incorporating RIs of
covariates perform better in terms of quantitative properties. The simulation focusing
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on descriptive inference shows that in the MAR case the performance of the method
doing prediction without previous imputation is slightly better than that of the MI
methods. For MNAR scenarios, we see a clear advantage of the methods that directly
include RIs. These findings suggest that MI procedures can also perform well in pre-
diction tasks, if the mean of multiply imputed values is used as the predicted value.
However, fitting a model including RIs on unimputed data seems to be the best choice
for descriptive inference.

Although Study One investigates a high number of imputation methods and many sce-
narios, the study is limited in several aspects. First, the simulation contains only three
continuous variables, and analysis models with only three variables are rare. Future
research can build on this current study and investigate scenarios with a higher number
of variables that are binary and nominal. Second, this study did not consider complex
sampling feature like weights and clusters. Work by Zhou, Elliott, and Raghunathan
(e.g., Zhou et al., 2016b, 2016a) provides a two-step approach for incorporating these
complex sampling features of survey data in multiple imputation using finite popula-
tion Bayesian bootstrap. Future studies could evaluate how performance is affected
by substituting the parametric model used in the second step with the procedures
compared in this study.

In Study Two, the criteria developed compare the imputation methods in terms of
marginal distributions of the variables. However, the case study presents an evaluation
focusing on joint distributions. Future research can explore the role of BART on the
SIIMS process to examine if this method introduces extreme imputed values that are
carried forward in the imputation process. Further, several incomplete variables are
removed in the SIIMS procedure due to extreme distributions, which cause problems
when computing the assessment criteria (e.g., a low number of missing observations
can lead to an unstable kernel density estimation). Further modifications can incor-
porate these variables into the imputation process, potentially leading to increased
performance. Related to Study Three, those variables could be excluded from SI, but
serve as incomplete covariates together with their RIs in the imputation models.

Another major aspect of future SIIMS research should focus on runtime. SIIMS is
relatively slow compared to other methods, because SI is an iterative process, mul-
tiple potential methods need to be fit and evaluated in each step, and the potential
applications are high-dimensional data situations with many incomplete variables. An
increase in speed could be achieved, first, by aggregating the complete variables via
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principal component analysis, and using only a low number of principal components
as covariates in SI. Another option is to provide only a subset of covariates for each
incomplete variable based on correlations. In fact, removing slow methods from the
process might be the simplest way to increase speed. Compared to the other proce-
dures, Bayesian linear models often result in runtime outliers. Removing or replacing
this method with a faster procedure would certainly speed up the whole process.

The presented case study serves only as an example of an application for SIIMS. Fu-
ture studies can further evaluate both criteria separately, along with performance on
only categorical, binary, and continuous incomplete variables. While the evaluation
process does not require a specified data generating model, there are several possible
expansions. First, pooling several waves of NHANES data would further increase the
synthetic population from which samples are drawn. Second, a different set of VOI,
given by an independent third person, and different data sets can be used to receive a
more comprehensive picture of performance differences.

Study Three is also limited in several ways. First, the literature review is not based
on a systematic literature search; thus, it is still possible that some relevant literature
has been overlooked, although most important papers are included. While the liter-
ature review covers important parts of statistical modeling, excluded are topics like
unsupervised learning / clustering. Second, the presented simulation investigates only
one MAR scenario and only two possible deviations. For example, not investigated
are MNAR scenarios where procedures under MAR perform better than procedures
including RIs. Further, the present study applies only a limited number of methods.
For instance, SI via BART or GUIDE are not investigated here, which suggests avenues
for future work.

Future studies can further clarify the underlying assumptions of models including RIs.
In two categorical incomplete variables only minimal distributional assumptions on the
variables are necessary. The assumptions of a MAR model can be compared with two
different MNAR models: conditioning on one or both RIs. Further, connections with
other MNAR models for incomplete categorical variables (Little, 1985; Little & Rubin,
2019, Chapter 13) can be further explored.

A simple extension of Study Three would be to further sub-classify RIs into multino-
mial variables utilizing codes for missing data like “don’t know” or “refusal” (or other
indicators like for “top-coded” values). These codes can be incorporated and thus
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utilized in MI in order to further enhance imputation of missing values.
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