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Abstract 

 
In critically fatal diseases like cancer, the regulation of gene expression at the level of 

cap-dependent translation (CDT) initiation is crucial for tumor initiation and progression. The 

protein-protein interactions (PPIs) between eukaryotic translation initiation factor 4E (eIF4E), 

eIF4E- binding protein (4EBP1), and eukaryotic translation initiation factor 4G (eIF4G) regulate 

the initiation of CDT. As a result, they are therapeutic targets of interest. While small molecule 

inhibitors of eIF4E PPIs have been reported, these compounds exhibit modest potency and 

cellular target engagement remains to be demonstrated. Thus, we were driven to identify new 

scaffolds for inhibiting eIF4E PPIs. 

Natural products have been invaluable sources of drug-like and lead-like molecules for 

developing front-line therapeutics against cancer, microbial infection, and parasites. We utilized 

our catalytic enzyme-linked click chemistry assay (cat-ELCCA) technology to perform a high-

throughput screen (HTS) against full-length eIF4E PPIs using a marine natural product extract 

library (>34000 extracts). From this effort, we isolated monophenazine- and diphenazine-based 

natural products as inhibitors of eIF4E PPIs from an active strain Streptomyces 

papuanewguineus, leading to the discovery of a novel diphenazine, izumiphenazine E, which 

showed promising binding to eIF4E in cellular assays, representing a novel scaffold targeting 

eIF4E PPIs.  

 Discovery and structural elucidation of natural products structure available in 

infinitesimally small quantities is a recognized challenge. This challenge is epitomized by the 

diphenazine class of molecules which contain three bridged stereocenters, several conformations, 
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ring fusions, and multiple spatially-isolated phenols. Since empirical NMR and spatial analyses 

using ROESY/NOESY were unsuccessful in tackling these challenges, we developed a 

computational pipeline to determine the stereochemistry and phenol positions of diphenazines. In 

this pipeline, we incorporated electronic circular dichroism (ECD) and NMR calculations 

coupled with DP4+ probability measure, enabling the structural revision of phenazinolin D, 

izumiphenazine A, and baraphenazine G, and the structural characterization of two new 

diphenazines, baraphenazine H and izumiphenazine E. Importantly, through these efforts, we 

demonstrated the feasibility of NMR/DP4+ analysis for the determination of phenol positions in 

phenazine-based molecules, further expanding the limits of computational methods in the 

structural elucidation of complex natural products.     
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Chapter 1      Natural Products as Protein-Protein Interaction Modulators 

 

Protein-protein interactions (PPI) are interactions between two identical or unique 

proteins at their domain interfaces that mediate the function of a protein complex.1 The human 

interactome is predicted to contain 650,000 PPIs that regulate critical physiological and 

pathological processes, including signal transduction, cell growth, proliferation, and apoptosis 

among others.2, 3 Because of the significance of PPIs, they have been potential drug targets for a 

broad range of therapeutic areas, including cancer,4, 5 neglected tropical diseases,6 central 

nervous system (CNS) disorders,7 cardiovascular diseases,8 and inflammation and oxidative 

stress.9 Nevertheless, PPIs were commonly regarded as ‘undruggable’ twenty years ago. High-

resolution crystal structures of protein complexes in the 1980s and 1990s revealed that PPI 

interfaces are usually flat, hydrophobic, and solvent-exposed with large (1,000-2,000 Å2) buried 

surface areas (BSAs), which are in stark contrast to traditional targets such as enzyme active sites 

(~300-500 Å2).10-12 Furthermore, these surfaces lack endogenous small molecule ligands and 

contain very few grooves or pockets for potential exogenic small molecules to bind, which poses 

a challenge for designing small molecules as PPI modulators.13  

Despite these challenges, promising signs emerged after 1995. With the advancement of 

genetics, kinetics, energetics, X-Ray crystallography, and computational tools, we now have a 

much deeper understanding of PPI structures and energetics, facilitating the discovery of potent 

PPI modulators. Mutagenesis studies on PPI interfaces revealed that the binding energy of a PPI 

is often not evenly distributed across the entire BSA of a PPI interface; instead, small ‘hot spots’ 
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confer most of the binding energy.14 These hot spots tended to cluster at the center of the 

interface and cover about 250-900 Å2 BSA,15, 16 which is comparable to the BSA of a typical 

enzyme active site and the size of a small molecule.  

Since the discovery of hot spots, significant effort has been put into the discovery of PPI-

targeting molecules. For example, high-throughput screening (HTS) campaigns of small 

molecule libraries successfully identified nutlins,17 benzodiazepinediones,18 and 

chromenotriazolo-pyrimidines19 as inhibitors of the mouse double minute 2 (MDM2)/p53 

interaction in cancer. Since PPI interfaces often contain discontinuous hot spots, fragment-based 

drug discovery (FBDD) has also been proven to be a powerful method for identifying hot spot-

binding low-complexity fragments which can be linked together to generate potent PPI 

modulators. FBDD approaches can be coupled with surface plasmon resonance (SPR), nuclear 

magnetic resonance (NMR), X-ray crystallography, and mass spectrometry (MS) for the 

discovery, validation, and optimization of linked hit fragments.20 The iconic example of the 

success of FBDD in the discovery of PPI modulators is the development of the FDA-approved 

drug, Venetoclax (ABT-199), as an inhibitor of the B-cell lymphoma 2 (Bcl-2)/ Bcl-2-associated 

X protein (BAX) interaction for the treatment of chronic lymphocytic leukemia.21, 22 Virtual 

screening campaigns have also yielded some success in discovering molecules that target the 

ubiquitin-conjugating enzyme Ubc13/Uev1,23 MDM2/p53,24 and T cell factor (TCF)/b-catenin 

interactions.25  

Aside from synthetic small molecules, peptide-based PPI modulators have also been 

discovered through both HTS and rational structure-based design. Tirofiban, a clinically 

approved antagonist of integrin IIbIIIa, was designed to mimic the tripeptide Arg-Gly-Asp, the 

epitope of fibrinogen that binds to IIbIIIa.26 Other primary structure peptide mimics that target 
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leukocyte function-associated antigen-1 (LFA-1),27, 28 inhibitor of apoptosis proteins (IAPs),29, 30 

bromodomains,31, 32 and HIV integrase PPIs33 have also been advanced into clinical trials. 

Peptidomimetics that resemble secondary structure epitopes, including non-peptidic mimics and 

hydrocarbon-stapled peptide mimics, have also been reported as modulators of, for instance, 

MDM2-p5334, 35 and Bcl-2/BAX36, 37 interactions.  

Besides synthetic molecules and peptidomimetics, another important source of PPI 

modulators is natural products. Often defined as compounds derived from natural sources, 

natural products have served as invaluable sources of drug-like and lead-like molecules that 

possess anticancer, antiviral, antibacterial, antimalarial, and parasiticidal activities. Importantly, 

a recent survey of all 259 FDA-approved small molecule anticancer drugs approved between 

1946-2019 showed that 65% were either natural products or natural product mimics, indicating 

the overwhelming success of natural products in human pharmacopeia.38 In fact, most of the 

earliest discovered PPI modulators were natural products, including taxanes and rapamycin.11, 39 

Interestingly, while synthetic molecules and rationally designed peptidomimetics often show 

inhibitory activities toward PPIs, natural products confer their activities mainly by stabilizing 

specific PPIs, either the interactions between two naturally bound proteins or proteins that do not 

normally bind to each other.40 In the remainder of this chapter, I will review natural product-

based PPI modulators, including their discoveries and mechanisms of action. These natural 

products will be classified according to their natural sources of isolation (bacteria, plants, fungi, 

etc.).    

 

1.1 Natural Product-Based PPI Modulators Isolated from Plants 

1.1.1 Taxanes 
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Taxanes are a group of diterpenoids isolated from Yews (Taxus) with a characteristic 

(1S,3R,4R,8S,11S,12R)-4,8,12,15,15-pentamethyltricyclo[9.3.1.03,8]pentadecane skeleton 

(Figure 1).41 They represent one of the most well-known natural product-based anti-neoplastic 

agents in the past few decades. So far, there are three classes of taxanes available on the market, 

including Taxol, also known as PTX or paclitaxel, and two synthetic analogs of Taxol, DTX 

(docetaxel) and CTX (cabazitaxel, Figure 1).41 In 1971, Taxol was isolated from an extract from 

the bark of Taxus brevifolia that showed antitumor activities.42 It was approved by the FDA for 

the treatment of breast, pancreatic, ovarian, non-small-cell lung cancers, and Kaposi’s sarcoma.43 

Despite its broad antitumor activities, the direct extraction from T. brevifolia could not 

economically support large-scale production, with each fully grown tree only yielding 0.5 g of 

Taxol.44 As a result, a significant amount of effort has been put into developing economical 

chemical and bio-catalyzed synthetic and semi-synthetic strategies for the mass production of 

Taxol to meet the market's needs.45-49 Hyper-production of Taxol (up to  1.6g/L) has also been 
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conducted  using fermentation of Aspergillus fumigatus, an endophytic fungus isolated from 

Taxus sp. of the Northern Himalayan region.50  

The mechanistic target of Taxol was first described in studies by Schiff and co-workers in 

1979.51, 52 They found that Taxol promotes the aggregation of microtubules, resulting in the 

formation of stable, dysfunctional microtubules that lead to cell arrest in the G2/M phase.51, 52 

Microtubules, formed by the polymerization of heterodimers of a-tubulin and b-tubulin, are 

crucial in cell division for the formation of the mitotic spindle.53 High-resolution co-crystal 

structures of microtubules and Taxol revealed that it binds to a hydrophobic allosteric pocket of 

b-tubulin with high affinity, suppressing microtubule dynamics and strengthening the lateral 

contacts of neighboring b-tubulin in the microtubule filament.54-56 Taxol represents one of the 

first antimitotic agents isolated from nature.  

1.1.2 Taccalonolides 

Taccalonolides are highly acetylated pentacyclic steroids that were first isolated in 1963 

when Scheuer and co-workers were investigating the ‘bitter principle’ from the starchy tubers of   
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Tacca leontopetaloides.57 So far, more than 40 natural taccalonolides have been isolated.58 

Taccalonolides A, E, and N were the first few derivatives of this class that were found to possess 

antiproliferative activities against drug-sensitive and multidrug-resistant cell lines via the 

stabilization of microtubule polymers (Figure 2).59 Interestingly, taccalonolides AF and AJ 

(Figure 2), the two epoxidized derivatives of taccalonolides A, were shown to exhibit potent 

activity against Taxol-resistant tumors and a high degree of cellular persistence after drug 

washout, suggestive of a distinct mechanism of action from Taxol.60, 61 Further investigations of 

the cocrystal structure of the AJ-tubulin complex revealed covalent binding between the C22-

C23 epoxide in taccalonolide AJ and Asp226 of b-tubulin through an SN2 reaction mechanism, 

resulting in its enhanced binding and in vivo activity compared to taxanes.62  

1.1.3 Vinca Alkaloids 

Vinca alkaloids are another class of antimitotic and microtubule-targeting natural 

products first isolated from an antileukemic extract of the periwinkle plant, Catharanthus 

Figure 3. Structures of first-generation and selected semisynthetic derivatives of vinca alkaloids. 
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roseus.63 These compounds comprise two fragments, an upper catharanthine ring system 

connected to a lower vindoline ring system by a single bond (Figure 3). The first generation of 

vinca alkaloids includes vincaleukoblastine (later shortened to vinblastine),64 and leurocristine 

(later shortened into vinblastine).65 Vincristine is used in combination chemotherapy for the 

treatment of lymphoblastic leukemias and lymphomas whereas vinblastine is used in 

combination chemotherapy for the treatment of bladder and breast cancers.66 Semisynthetic 

derivatives of first-generation vinca alkaloids including anhydrovinblastine,67 vindesine,68 

vinorelbine,69 and vinflunine (JavlorÒ)70 have also been developed into clinical treatments 

against leukemia, NSCLC, bladder cancer, and breast cancer.  

 Mechanistic studies revealed that vinca alkaloids binds to b-tubulin near the GTP-

binding site, altering the dimeric conformation, and inhibiting tubulin-dependent GTP hydrolysis 

and GTP-GDP exchange.71 In stark contrast to taxanes and taccalonolides that act through 

microtubule stabilization, vinca alkaloids inhibit microtubule polymerization, arresting cell 

division at prometaphase. 

1.1.4 Emodins 

Emodin, named 1,3,8-trihydroxy-6-methyl anthraquinone, is an anthraquinone derivative 
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Figure 4. Structures of representative emodins. 
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isolated from various Chinese herbs, including Rheum emodi, Polygonum cuspidatum, 

Polygonum multiflorum, and Aloe vera (Figure 4).72 Its close analog, aloe-emodin, named 1,8-

dihydroxy-3-hydroxymethyl anthraquinone, was also reported to be isolated from similar 

sources.73 This class of metabolites possesses a wide range of bioactivities, including laxative, 

antibacterial, and autoinflammatory effects.72, 73  

Studies have revealed that the inflammatory activities of the emodin class of molecules 

rely on their interferences with nuclear factor kappa B (NF-kB) signaling pathways which play a 

crucial role in inflammation, immune responses, and cell survival and proliferation. Specifically, 

iNUB (Figure 4), an emodin analog, binds to NF-kB essential modulator, a scaffolding subunit 

of the IkB kinase complex that is required for NF-kB activation, and disrupts its interaction with 

methionine-1-linked linear ubiquitin chains, thereby inhibiting NF-kB signaling.74  

Recently, the antiviral activity of emodin against coronaviruses such as SARS-CoV-2 

was also described and it was formulated as one of the primary active components in antiviral 

Traditional Chinese Medicine (TCM), Lianhuaqingwen.75, 76 Its antiviral activity resulted from 

its inhibition of the PPI between SARS-CoV spike protein (S) and angiotensin-converting 

enzyme 2 (ACE2) which is crucial for viral attachment to host cells for SARS-CoV infection.77  

1.1.5 Forskolins 

Forskolin, also known as colforsin, is a labdane diterpene isolated from Coleus forskohlii 

in 1977 as a blood pressure-lowering and cardioactive natural product (Figure 5).78 Later, 

forskolin was found to confer its activity by increasing the level of the secondary messenger 

molecule cyclic adenosine monophosphate (cAMP) through the activation of adenylyl cyclase, a 

transmembrane enzyme that catalyzes the conversion of ATP to 3’,5’-cyclic AMP and 

pyrophosphate.79 It was found that forskolin activates adenylyl cyclase by stabilizing the binding 
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between the two cytoplasmic domains of this enzyme, the C1 and C2 subunits.80 Later, 

crystallographic studies suggested that forskolin binds to a hydrophobic pocket at the rim of the 

dimer interface, stabilizing the interaction between the C1 and C2 subunits.81, 82  

 Despite its exciting activities, forskolin has poor water solubility, resulting in poor oral 

bioavailability. A few attempts at chemical derivatizations of forskolin focusing on improving its 

water solubility have been reported.83-87 The most well-known example is NKH477, also known 

as colforsin dapropate hydrochloride (Figure 5). It is a potent, water-soluble forskolin derivative 

with a promising bronchodilator effect in humans and an inotropic effect in rats with chronic 

heart failure after myocardial infarction.88-90  

1.1.6 Phytohormones: Auxins and Jasmonates 

Phytohormones are signaling molecules produced within plants that control all plant 

growth and development aspects. Auxins, first isolated from oat coleoptile tip, were the first 
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significant plant hormones discovered. Five endogenous auxins include indole-3-acetic acid 

(IAA, Figure 6), the most important one of the family, 4-chloroindole-3-acetic acid (4Cl-IAA), 

phenylacetic acid (PAA), indole-3-butyric acid (IBA), and indole-3-propionic acid (IPA).91 

Auxin was found to target the transporter inhibitor response 1 (TIR1), an auxin-signaling F-box 

protein (ABF) that promotes ubiquitin-dependent proteolysis.92 In the presence of auxin, TIR1 

promotes the proteolytic degradation of the transcriptional repressor family Aux/IAA. 

Subsequently, it dissociates and activates auxin-responsive factors (ARFs), a transcription factor 

family that binds to Aux/IAA.93 Later, crystallography studies revealed that auxin binds to TIR1, 

generates a new interface that allows the auxin/TIR1 complex binding with Aux/IAA, and 

thereby releases ARFs for auxin signaling.94  

Jasmonates (JAs) are lipid-based plant hormones that are critical for the wound defense 

of plants.95 Methyl jasmonate, the first of this class, was isolated from jasmine oil extracted from 

Jasminum grandiflorum (Figure 7).96 The bioactive jasmonate, (3R,7S)-jasmonoyl-L-isoleucine 

(JA-Ile), showed a similar signaling mechanism as auxins.97 It binds to the F-box protein, 

coronatine insensitive 1 (COI1), induces the binding between the JA-Ile/COI1 complex and the  

transcriptional repressor, jasmonate zinc-finger inflorescence meristem domain (JAZ), and 

releases the jasmonate-inducing transcriptional factor MYC2.97  
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1.2 Natural Product-Based PPI Modulators Isolated from Fungi 

1.2.1 Chlorofusin 

p53, the ‘guardian of the genome’, is a potent tumor suppressor critical in regulating the 

cell cycle, stress signals, senescence, and apoptosis.98 The p53 gene is one of the most frequently 

mutated genes in cancer and it is mutated in nearly 50% of all cancers.99 p53 is regulated by 

MDM2, an E3 ubiquitin ligase that functions as a crucial negative regulator of p53 through an 

autoregulatory feedback loop.100 In this loop, MDM2 binds to p53 for ubiquitin-dependent 

degradation; p53 binds to the p2 promoter of the MDM2 gene and activates the expression of this 

protein; the increased level of MDM2 induces the negative feedback on p53, decreasing the level 

and activity of p53. Thus, when overexpressed in cancer cells, MDM2 promotes tumorigenesis 

by binding and inhibiting the tumor suppressor p53.101  

A lot of effort has been put into targeting the p53-MDM2 PPI. Using structure-based 

design strategy and HTS methods, b-hairpin peptidomimetics,102 chalcone derivatives (the base 

form chalcone was originally isolated from plants),103 nutlins,17 spiro-oxindoles,104 
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benzodiazepines,18 and chromenotriazolo-pyrimidines19 have been identified as p53-MDM2 PPI 

inhibitors. Besides peptide-based and small-molecule inhibitors, the fungal natural product 

chlorofusin (Figure 8), was also discovered as an inhibitor of p53/MDM2 PPI from a screen of 

over 53,000 microbial extracts.105 It is an orange lipopeptide first isolated in 2001 from the 

fungal strain Microdochium caespitosum fermentation broth.105 It consists of a fully 

functionalized, azaphilone-derived chromophore linked through ornithine to a cyclic peptide 

moiety composed of nine amino acids. Despite all the structural elucidation effort through NMR 

and chemical syntheses, the absolute stereochemistry of the two Asp residues could not be 

determined and was established to have opposite configurations (L and D).106-108 It exhibits 

inhibitory activity against the p53/MDM2 PPI in ELISA with an IC50 of 4.6 µM105 and direct 

binding to the N-terminus of MDM2 with a KD of 4.7 µM in surface plasmon resonance (SPR) 

experiments.109 Despite its promising activity, the molecular detail of this binding has yet to be 

reported.  

1.2.2 Fusicoccanes: Fusicoccin A and Cotylenin A 

Fusicoccin A (FCA, Figure 9), a wilting phytotoxin first isolated from the fungal parasite 

Fusicoccum amygdali, is a diterpenoid glycoside that possesses a 5-8-5 fusicoccane ring 

structure.110 It was shown to bind to a complex between 14-3-3 proteins, a family of regulatory 

proteins, and the plasma membrane H+-ATPase (PMA), stabilizing the PPI and activating the 

proton pump permanently.111 14-3-3 proteins bind to several hundreds of signaling proteins in 

eukaryotic cells, such as kinases, phosphatases, and transmembrane receptors, and directly 

inhibit or activate the activities of these target proteins.112 Thorough examination of the co-

crystal structure of FCA and 14-3-3/PMA complex revealed that FCA fills a hydrophobic gap at 

the interface of the two proteins, with the sugar moiety exposed to the solvent.113 It was also 
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shown that the binding of FCA to the protein complex enhances the affinity of the two proteins 

by about 90-fold.113 FCA can also stabilize the PPI between 14-3-3 with the F domain of 

estrogen receptor a (ERa) and inhibit the transcriptional activity of this nuclear receptor.114 A 

semi-synthetic derivative of FCA, FC-THF (Figure 9), was shown to stabilize the PPI between 

14-3-3 and a potassium channel, TWIK-related acid-sensitive K channel 3 (TASK3), enhancing 

the transport of TASK3 to the cell membrane and resulting in an increased level and activity of 

this ion channel.115, 116  

Cotylenin A (CNA, Figure 9) is a derivative of FCA that was first isolated from the 

fungal strain Cladosporium sp. 501-7W and showed cytokinin-like activity in plants.117 CNA has 

been shown to induce differentiation in murine and human myeloid leukemia cells and inhibit the 

proliferation of breast cancer cells.118, 119 At the molecular level, it binds and stabilizes the 

protein complex of 14-3-3 and protein kinase C-Raf, thereby inhibiting the activity of C-Raf.120 

Interestingly, while CNA alone is not active in RAS mutant cancer models, the combined 

treatment with anti-EGFR (epidermal growth factor receptor) antibody and CNA synergistically 

repress tumor growth in vitro and in vivo, presenting a novel strategy for treating RAS mutant 

cancer.120  

1.2.3 Chetomin 
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Chetomin is a dimeric epidithiodiketopiperazine first isolated from the fungus 

Chaetomium cochliodes (Figure 10).121 Due to its complex structural features, no successful 

total synthesis of this natural product has yet been reported. Chetomin was discovered to inhibit 

the PPI between the hetero-dimeric transcription factor hypoxia-inducible factor 1 (HIF-1) and 

300-kDa coactivator, p300, from an HTS campaign of over 600,000 synthetic and natural 

compounds.122 Hypoxia, or decreased oxygen in the cellular environment, is an almost universal 

hallmark of solid tumors and adaptation of tumor cells to hypoxia is crucial for tumor survival 

and growth.123 This adaptation is mainly achieved by activating the HIF-1 pathway, which also 

requires the binding of HIF-1a subunit to cAMP-response element binding protein (CBP)/p300 

complex.124 Overexpression of HIF-1 was associated with resistance to certain therapies and 

increased risk of metastasis.125 Chetomin was found to bind to the CH1 domain of p300/CBP 

complex, inhibit the binding of HIF-1 to the protein complex, and thus deactivate the HIF-1-

mediated signaling pathways.122 Despite its promising submicromolar inhibitory activities 

against hypoxia-induced HIF-1 activation and downstream targets in both in vitro and in vivo 

assays, it suffers from high toxicity, which dampens the interest in further developing this 

scaffold.122 So far, no co-crystal structure of the chetomin/p300 complex has been reported. 

1.2.4  Brefeldin A 
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 Brefeldin A is an unsaturated macrolactone originally isolated from the fungal strain 

Penicillium decumbens in 1958 (Figure 11).126 It is also produced by Penicillium brefeldianum 

and Penicillium cyaneum.127, 128 The complete structural elucidation of brefeldin A was not 

accomplished until 1971 by Weber and co-workers.129 Later, it was found to inhibit protein 

transport between the endoplasmic reticulum (ER) and the Golgi apparatus.130 This 

transportation of proteins is regulated by the small guanine nucleotide-binding protein ADP 

ribosylation factor 1 (ARF1), which is involved in forming of transport vesicles.131 Further 

biochemical and crystallography studies found that brefeldin A inhibits Golgi function by 

binding to guanine nucleotide exchange factors (ARF-GEFs) and stabilizing the PPI between this 

protein and ARF1.132, 133 This stabilization results in the impairment of the GDP/GTP exchange 

activity of ARF-GEFs, thereby inhibiting Golgi function. Despite the modest IC50 of 15 µM of 

brefeldin A and only 10-fold increase in binding affinity of ARF-1 and ARF-GEF, a visible 

fusion of ER and Golgi already occurs minutes after the dosing of this molecule in cells, likely 

due to the underlying uncompetitive inhibition mode.132 Because of this activity, brefeldin A has 

been widely used as a biology tool to study membrane trafficking and protein transportation in 

cells.134  

1.2.5 Cyclosporin A 
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Figure 11. The structure of brefeldin A. 
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Cyclosporin A (Figure 12) is a cyclic undecapeptide first isolated from ascomycete 

Tolypocladium inflatum in 1970 with immunosuppressive properties.135 Its chemical structure 

was determined  in 1976, containing several N-methylated peptide bonds and noncanonical 

amino acids aminobutyric acid, (4R)-4-[€-2-butenyl]-4,N-dimethyl-L-threonine (MeBmt) and D-

alanine.135 The FDA approved it to prevent transplant rejection in 1983.136 As the active 

component of Neoral (Novartis), it is also used for treating patients with severe active 

rheumatoid arthritis. It has also been formulated into Apo-cyclosporin (Novartis) for treating 

steroid-dependent and steroid-resistant nephrotic syndrome. In addition, a cyclosporine 

ophthalmic emulsion (Verkazia) was approved by FDA in 2020 for the treatment of vernal 

keratoconjunctivitis in adults and children. 

As an immunosuppressant, cyclosporin A was found to act on the immune system by 

inhibiting T-lymphocyte activation and lymphokine production.137, 138 Later, the molecular target 

of cyclosporin A was found to be the peptidyl-prolyl isomerase, cyclophilin A (CypA).139 As a 

‘molecular glue’, cyclosporin A binds to CypA and this cyclosporin A/CypA complex can bind 

to and inhibit calcineurin (CaN), a calcium- and calmodulin-dependent serine/threonine 
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phosphatase.140-142 As a critical enzyme in Ca2+-dependent signal transduction pathways, CaN 

dephosphorylates and activates the transcription factor nuclear factor of activated T cells (NF-

AT), which upregulates the transcription of cytokine signaling protein interleukin 2 (IL-2) and 

thereby activates T-cell responses.143 As cyclosporin A/CypA complex binds to CaN, it inhibits 

the dephosphorylation of NF-AT by CaN and reduces T-cell responses in the adaptive immune 

system.144  

 

1.3 Natural Product-Based PPI Modulators Isolated from Marine Sponges 

1.3.1 Microtubule-stabilizing macrolides: (-)-dictyostatin, (-)-zampanolide, and (+)-

discodermolide 

Marine invertebrates have been fruitful sources of macrolactone-based microtubule 

targeting natural products. (-)-Dictyostatin is a 22-membered macrolactone first isolated from a  

marine sponge species Spongia sp. in 1986, collected from the Republic of Maldives, showing 

antiproliferative activities in cancer cells (Figure 13).145 It has been shown to exhibit similar 

microtubule-stabilizing activity as the taxanes and bind to b-tubulin at the Taxol-binding site, but 

with higher binding affinity.146, 147 Interestingly, it retained the antiproliferative activity against 
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Figure 13. Structures of microtubule-stabilizing macrolides isolated from marine sponges. 
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human ovarian carcinoma cells resistant to Taxol due to b-tubulin mutations.146 (-)-Zampanolide, 

another macrolactone, was first isolated from the marine sponge Fasciospongia rimosa in 1996 

with anticancer activities (Figure 13).148 Mechanistic studies suggested that it is another 

microtubule-stabilizing agent that can compete with Taxol for covalent binding to b-tubulin.149, 

150 (+)-Discodermolide, a polyhydroxylated lactone that shares great structural similarity to 

dictyostatin, was first isolated from a Caribbean marine sponge Discodermia dissoluta in 1990 as 

an immunosuppressive agent (Figure 13).151 It was also found to stabilize microtubule polymers 

and compete with Taxol for its binding site on b-tubulin.152 Interestingly, significant synergistic 

activity was found between Taxol and discodermolide in ovarian carcinoma xenograft-bearing 

mice, suggestive of potential combination therapy for ovarian carcinoma.153  

1.3.2 Microtubule-destabilizing macrolides: halichondrin B and eribulin 

  Halichondrin B (Figure 14), an antitumor polyether macrolide, was first isolated from 

the marine sponge Halichondria okadai in 1986.154 It is a microtubule-destabilizing natural 

product and it was shown to be a noncompetitive inhibitor of the binding of vinblastine to 

microtubules in the ’60-cell line screen’ project led by National Cancer Institute (NCI).155 With 

significant mechanistic studies and total synthesis effort toward this scaffold, eribulin (Figure 

14), the synthetic intermediate derivative of halichondrin B, was identified as a potential clinical 

Figure 14. The structure of halichondrin B. 
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candidate for the treatment of cancer in 2004.156 Eribulin was later shown to bind to a restricted 

range of high-affinity sites at the plus ends of microtubules, suppressing the dynamic instability 

at the plus end and inhibiting microtubule polymerization.157 It was approved in 2010 by the 

FDA to treat patients with metastatic breast cancer who have received at least two prior 

chemotherapy regimens, including anthracycline- and taxane-based drugs, for late-stage cancers 

and also in 2016 to treat patients with unresectable or metastatic liposarcoma who have received 

anthracycline-containing regimens.158  

 

1.4 Natural Product-Based PPI Modulators Isolated from Bacteria 

1.4.1 Epothilones 

Epothilone A and B belong to the epothilone class of macrolactone with a methylthiazole 

group (Figure 15). They were first isolated from the bacterial strain Sorangium cellulosum with 

antifungal and cytotoxic activities.159 Their structures were first determined in 1996 using NMR 

and X-ray crystallography.160 They exhibited a similar microtubule-stabilizing effect as Taxol 

and bind to tubulin on the same Taxol binding site.161, 162 Compared to Taxol, epothilones have 

better solubility and less intracellular toxicity.163 They also possess potent antiproliferative 

activity against Taxol-sensitive and P-glycoprotein (Pgp)-expressing multidrug-resistant cells.162 
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Because of their superior activities, a lot of effort has been devoted to this scaffold’s chemical 

syntheses and derivatizations, enabling SAR investigations for structural optimization.164, 165 

Ixabepilone (Figure 15) was a semisynthetic lactam derivative of epothilone B developed by 

Bristol-Myers Squibb (BMS) with improved metabolic stability and pharmacokinetics compared 

to the parent compound.166, 167 It was approved by the FDA in 2007 for the treatment of 

metastatic or locally advanced breast cancer in patients whose tumors are resistant to 

anthracyclines, taxanes, and capecitabine. Besides ixabepilone, other epothilone derivatives are 

currently being evaluated in Phase I, II, or III clinical trials, including Patupilone, BMS-247550, 

BMS-310705, Sagopilone, epothilone D, and KOS-1584.168  

1.4.2 Tacrolimus (FK506) 

Tacrolimus (Figure 16), also named FK506, is a 23-membered macrolactone first 

isolated from Streptomyces tsukubaensis in 1987.169 The FDA approved it as an oral 

immunosuppressant for the prevention of liver, lung, kidney, and heart transplant rejection under 

the brand name PrografÒ.170 The molecular target of FK506 is the peptidyl-prolyl isomerase 

FK506 binding protein 12 (FKBP12).171 Similar to cyclosporin A, FK506 binds to FKBP12 and 
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induces the binding of FK506/FKBP12 complex to calcineurin, which inhibits both IL-2 

transcription and T-lymphocyte signaling.172  

1.4.3 Rapamycin 

Rapamycin (Figure 16) is an antifungal macrolactone first isolated in 1975 from 

Streptomyces hygroscopicus found on Rapa Nui island.173 It was approved by the FDA in 1999 

under the brand name RapamuneÒ for preventing renal transplant rejection. Similar to FK506, 

rapamycin binds to FKBP12 but instead of binding to calcineurin, the rapamycin/FKBP12 

complex binds to and inhibits the mammalian target of rapamycin (mTOR).174, 175 As the core 

component of two protein complexes mTOR complex 1 (mTORC1) and mTOR complex 2 

(mTORC2), mTOR plays critical roles in the regulation of diverse cellular processes such as 

protein synthesis, cell growth, cell proliferation, and autophagy.176 The role of mTOR in 

regulating protein translation initiation pathways will be further discussed in Chapter 2. Through 

the inhibition of mTOR, rapamycin inhibits IL-2 signal transduction and the activation of T cells 

in a similar manner to cyclosporin A and FK506.177  

1.4.4 Manumycins: manumycin A and asukamycin 

Manumycin A and asukamycin (Figure 17) belong to the manumycin class of 

polyketides with two unsaturated polyene chains linked by a six-membered ring. Manumycin A 

was first isolated in 1963 from Streptomyces parvulus and it was found to exhibit inhibitory 

activity against Ras farnesyltransferase in a microbial screening project in 1993.178-180 

Asukamycin was another manumycin first isolated in 1976 from Streptomyces nodosus subsp. 

asukaensis with a terminal cyclohexane moiety in the upper chain.181, 182 Along with over 20 

other manumycins isolated, this class of natural products exhibits potent activities against 
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farnesyltransferase, interleukin-1b-converting enzymes, IkB kinase b, and acetylcholinesterase 

and are considered promising clinical candidates for treating cancers, inflammation, and 

Alzheimer disease.183-186  

Recently, Isobe et al. postulated that multiple electrophilic moieties within the 

manumycin class of molecules could potentially react covalently with nucleophilic residues in 

proteins such as cysteines and form bifunctional or molecular glue-type interactions.187 Using 

Activity-Based Protein Profiling (ABPP)-based chemoproteomic platforms, they demonstrated 

that one of the primary targets of asukamycin and manumycin A is Cys374 of E3 ubiquitin ligase 

UBR7. Asukamycin binds to UBR7 in breast cancer cells and the resulting complex engages in 

molecular glue interactions with the tumor suppressor p53, leading to the transcriptional 

activation of p53 and cell death. Both molecules can activate p53 activity more so than the 

anthracycline anticancer drug doxorubicin. 
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1.5 Conclusion 

Natural products have been used for thousands of years for almost every aspect of our lives such 

as medicine, agriculture, and cosmetics. They can be derived from various natural sources 

including plants, bacterial and fungi fermentations, and even marine vertebrates. As reviewed in 

this chapter, natural products have been one of the most critical sources of modulators of 

‘undruggable’ PPIs with disease relevance. Many of these natural product-based PPI modulators 

have been developed into FDA-approved drugs for treating lethal diseases. These successes have 

motivated us to search for potential natural product-based PPI inhibitors of the RNA-binding 

protein eIF4E in this work.  
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Chapter 2  Bioactivity-Guided Discovery of Diphenazines as Inhibitors of eIF4E PPIs† 

 

 
In critically fatal diseases like cancer, the regulation of gene expression at the level of 

translation initiation is paramount for proper control of cellular growth, proliferation, 

differentiation, and apoptosis. Dysregulation of mRNA translation is a hallmark of tumorigenesis 

and tumor progression across various cancer types.1 Cap-dependent mRNA translation initiation 

(CDT) is regulated by the availability of eukaryotic translation initiation factor 4E (eIF4E, 

Figure 18).2 eIF4E is an RNA-binding protein that plays two important roles in the initiation of 

cap-dependent translation: (1) it binds to the m7GpppX-cap at the 5¢ terminus of coding mRNAs 

to promote the assembly of the eIF4F translation initiation complex, and (2) it promotes the 

nuclear export of selected cap-dependent translation transcripts.3-5 Based on the significance of 

these functions in maintaining cellular homeostasis, eIF4E is the rate-limiting translation factor 

and its overexpression has been shown to induce tumorigenesis across various cancer types. 

 
† This study has been submitted to Journal of Natural Products. 

Figure 18.The mechanism of eIF4E-mediated cap-dependent translation initiation. 
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Because of the important nature of eIF4E, it is highly regulated, in part through protein-protein 

interactions (PPIs) with its negative regulator 4E binding protein 1 (4E-BP1), and eukaryotic 

translation initiation factor 4G (eIF4G), a scaffolding protein that aids the formation of the eIF4F 

translation initiation complex that drives cap-dependent translation.6, 7 4E-BP1 is regulated by 

mTORC1-mediated phosphorylation: hypophosphorylated 4E-BP1 binds strongly to eIF4E 

whereas hyperphosphorylation of 4E-BP1 at multiple sites (T37, T46, S65, T70) releases eIF4E, 

allowing the formation of the eIF4F complex and the initiation of cap-dependent mRNA 

translation.8  

Significant effort has been put into developing inhibitors of eIF4E and its PPIs. The 

development of m7G-cap-based antagonists has been extensively explored.9, 10 Unfortunately, 

poor permeability has hindered the application of most of these compounds in cellular assays, 

including recent derivatives reported by Amgen and proteolysis targeting chimeras (PROTACs) 

developed by our group.11, 12 In addition to m7G-cap competitive ligands, small molecule 

inhibitors of eIF4E PPIs have also been reported, notably 4EGI-1 and 4E1RCat.13, 14  However, 

cellular target engagement for these molecules remains to be demonstrated,13 raising concern 

regarding their usage as chemical probes for targeting eIF4E. Based on the shortcomings of 

4EGI-1 and 4E1RCat as eIF4E PPI inhibitors, our group worked toward the rational design and 

development of peptide inhibitors based on eIF4E’s canonical protein-binding partners.15-17 

eIF4E forms PPIs with 4E-BP1 and eIF4G (Figure 1), whereby, each competes for the same 

binding site on eIF4E, establishing a competitive binding model for the initiation of cap-

dependent translation.18, 19 Although these peptides were very active in biochemical assays (IC50 

values of ~3.1-6.7 nM), they showed significantly weaker activities in cells (low µM IC50). This 

large discrepancy was likely due to limited cellular permeability of these highly charged 
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peptides. Thus, there remains a need for fully profiled small molecules targeting eIF4E and its 

PPIs so that rigorous validation can be performed in disease models for future clinical 

development. Based on the past successes of natural products in targeting PPIs as discussed in 

Chapter 1, we were eager to search within mother Nature for potential eIF4E PPI inhibitors. 

 

2.1 High-Throughput Screening (HTS) 

2.1.1 Development of PPI Cat-ELCCA 

We recently developed catalytic enzyme-linked click chemistry assay (cat-ELCCA) 

technology for enabling the screening of full-length PPIs, including the interaction of eIF4E with 

4E-BP1 and eIF4G (Figure 19).20, 21 In this assay, a biotinylated protein is immobilized in the 

wells of a streptavidin-coated microtiter plate. The wells are then incubated with a methyl-

tetrazine (mTet)-labeled protein-binding partner to form the PPI. Detection occurs via an initial 

inverse electron demand Diels-Alder (IEDDA) click reaction with trans-cyclooctene (TCO)-

labeled horseradish peroxidase (HRP), followed by the addition of an HRP substrate. Unlike 

Figure 19. An illustration of PPI cat-ELCCA. mTet: methyl-tetrazine; TCO: trans-cyclooctene; HRP: 
horseradish peroxidase. 



 42 

traditional fluorescent-based assays such as FRET and fluorescence polarization, cat-ELCCA 

relies on chemiluminescence measurement of the reaction between HRP and HRP substrate. As a 

result, it is not subject to compound interference by colored or fluorescent compounds that 

typically litter natural product extract (NPE) libraries, thereby minimizing false positives 

encountered in screening.  

Using this approach, we developed a miniaturized cat-ELCCA in 384-well format 

amenable to automated liquid handling for high-throughput screening (HTS).22 HTS-compatible 

PPI cat-ELCCA was subsequently employed to perform a proof-of-concept HTS against 

commercial fragment libraries (~3,000 compounds).22 Based on the success of NPs in targeting 

Figure 20.HTS campaign overview of the BIC library. N=20793, Z’=0.7; red dots: positive controls; blue dots: 
negative controls; green dots: samples tested in the screen; red line represents the 3 ´ standard deviation value; hit 
compound, Kd , IC50, and Hill Slope listed in the table. 
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“undruggable” proteins like eIF4E and its PPIs,23 coupled with the demonstrated applicability of 

cat-ELCCA for screening small-molecules as well as complex NPE libraries,24 we were eager to 

deploy this assay technology to complete a larger HTS campaign to identify small-molecule and 

NP-based inhibitors of eIF4E PPIs. 

2.1.2 PPI Cat-ELCCA-Based HTS 

Figure 21. HTS campaign overview of the NPE library. N=34114, Z’=0.62; red dots: positive controls; blue dots: 
negative controls; green dots: samples tested in the screen; red line represents 3 ´ standard deviation value; CCG ID, 
Strain ID, and IC50 listed. 
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For HTS, we utilized a collection of drug-like small molecules, the Eli Lilly Biological 

Interrogation Cassette (BIC; 20,793 compounds), as well as the NPE library housed at the Center 

of Chemical Genomics of the University of Michigan (34,114 NPEs). The Natural Product 

Figure 22. (A) Representative BiotageÒ fractionation chromatogram during the hit reconfirmation stage. R1: rack 
one; R2: rack two; bold dark line: concentration gradient; dark curve: signal at all wavelength (198 – 810 nm); red 
curve: signal at 235 nm; blue curve: signal at 285 nm; left Y-axis: mAU; right Y axis: percentage of methanol in 
water (except for the last fraction, the percentage of acetonitrile in water); X-axis: number of column volumes 
(CV). (B) Dose-dependent NPEs tested in eIF4E-4E-BP1 cat-ELCCA with a table of EC50 values presented as 
95% confidence intervals with Hill slope values. 
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Extract (NPE) library housed at the University of Michigan Center for Chemical Genomics 

contains ~50,000 (and growing) pre-fractionated natural product extracts derived from a unique 

collection of diverse marine and terrestrial actinomycetes, fungi, and cyanobacteria collected 

from various locations throughout the world, including but not limited to, Antarctica, Brazil, 

China, Costa Rica, Israel, Panama, Papua New Guinea, Peru, and United States. The methods for 

Figure 23. (A) Heatmap showing ANI values between S. coelicoflavus strains and S. papuanewguineus. The 
numbers are shown as %. Values of ≥95% indicate same species. (B) Pairwise comparisons of genomes under 
examination using in silico DDH experiments. 
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preparation, purification, and maintenance of these extracts were described in previous 

literature.25, 26 BIC and NPE samples were screened at final concentrations of 25 µM and 75 

µg/mL, respectively, using the eIF4E-4E-BP1 PPI cat-ELCCA. While 9 confirmed hits were 

identified from the BIC Library following primary biochemical testing and secondary 

biophysical assays, the compounds failed to meet the potency thresholds and were not selected 

for further analyses (Figure 20). Excitingly, out of 340 initial hits from the NPE library, 38 

NPEs were validated after retesting. After that 18 NPEs from 18 strains out of the 38 validated 

hits showed promising dose-responsive inhibition in PPI cat-ELCCA (Figure 21).  

2.1.3 Hit regrowth and re-confirmation 

To reconfirm the activity and reproducibility of validated hits, all 18 strains were 

subsequently re-grown using standard protocol on 1-L scale. The crude extracts were subjected 

to Biotage fractionation based on polarity (Figure 22A). All crude extracts and Biotage fractions 

Figure 24. Phylogenetic tree (whole-genome sequence-based). The strain 06-282-1I is most similar to 
Streptomyces coelicoflavus ASM1100752v1. 
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were first tested for bioactivity in cat-ELCCA at fixed concentrations. Active fractions were then 

tested in a dose-dependent manner and four strains contained fractions with dose-dependent 

inhibitory activity <500 µg/mL (Figure 22B). The most active fraction came from strain 06-282-

1I (EC50 ~43 µg/mL), which was selected for further deconvolution. 

 

2.2 A Multi-Prong Approach for the Deconvolution of 06-282-1I 

2.2.1 Genomic characterization of 06-282-1I 

06-282-1I was isolated from marine sediment collected in Papua New Guinea. Its 

genome was extracted and sequenced at the MiGS-Seq Center on the Illumina NextSeq 2000 

platform. Whole-genome similarity metrics including Average Nucleotide Identity (ANI) and 

DNA-DNA Hybridization (DDH) were obtained to estimate genetic relatedness and define the 

Figure 25. AntiSMASH analysis of the genome of S. papuanewguineus. 
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phylogeny of this strain.27-29 The strain 06-282-1I showed a 96.33% ANI value to Streptomyces 

coelicoflavus (Accession number: ASM1100752v1) indicating that they belong to the same 

species (ANI≥95% for the same species) (Figure 23A). When comparing 06-282-1I and S. 

coelicoflavus_ ASM1100752v1 (query sequences) to the other 4 publicly available S. 

Figure 26. GNPS molecular networking of S. papuanewguineus in the positive mode; networks in the three red 
boxes: clusters containing deferoxamine-related molecules (top), prodigiosin-related molecules (bottom left), 
phenazine related molecules (bottom mid), and 𝛼-lipomycin (bottom right); structures of molecules are shown in 
dashed red box. 

Figure 27. GNPS molecular networking of S. papuanewguineus in the negative mode annotated with hits. 
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coelicoflavus genomes (ASM311255v1, ASM1054843v1, ASM24183v2, ASM1054838v1), ANI 

values below the ≥95% ANI literature threshold for same species were obtained. Furthermore, in 

silico DDH experiments showed a dDDH (d6) value of 74.8% for the two query genomes (06-

282-1I and ASM1100752v1) further validating their genetic relatedness (≥70% for the same 

species, Figure 23B). Additional DDH experiments revealed that the query sequences 

Figure 28. Chemical Profile of S. papuanewguineus. From the top to the bottom: LC-MS/MS trace in negative 
mode; LC-MS/MS trace in positive mode; extracted Base Peak Chromatogram(BPC) of LC-MS/MS chromatogram 
in negative mode; extracted Base Peak Chromatogram(BPC) of LC-MS/MS chromatogram in positive mode; UV 
trace of LC-MS/MS chromatogram; selected peaks including deferoxamine B/E, compound 1-7, 𝛼-lipomycin, and 
prodigiosins were labeled with exact masses; Y axis: normalized ion count (except for UV, it’s normalized 
absorbance); X-axis: acquisition time (min). 
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(ASM311255v1, ASM1054843v1, ASM24183v2, ASM1054838v1) showed dDDH (d6) values 

between 61.1 to 61.9% to the subject sequences (06-282-1I and ASM1100752v1), meanwhile, 

the subject sequences had values between 71.5 to 91.9% when compared to one another (Figure 

S). These results suggested that (1) S. coelicoflavus_ ASM1100752v1 was mislabeled possibly 

due to assignments based on 16S rRNA identity only and (2) 06-282-1I and S. coelicoflavus_ 

ASM1100752v1 belong to a new species closely related to S. coelicoflavus as shown in the 

phylogenetic tree (Figure 24). Thus, strain 06-282-1I was named Streptomyces 

papuanewguineus 06-282-1I in recognition of the location from which it was originally collected 

and isolated. Subsequent genome mining of this strain using antiSMASH30 revealed the presence 

of putative biosynthetic gene clusters (BGCs) for the phenazine class of molecules, as well as 

undecylprodigiosin, a-lipomycin, and deferoxamine B/E (Figure 25).  

2.2.2 Chemical profiling of S. papuanewguineus 

Global Natural Product Social (GNPS) molecular networking is a powerful in silico tool 

for LC-MS/MS-based metabolomic analyses of crude natural product extracts.31 The processed 

LC-MS/MS data of the crude extract of S. papuanewguineus was subject to GNPS workflow 

using LC-MS/MS data of the medium, ISP2, and methanol blank as filters. Both positive mode 

(Figure 26) and negative mode (Figure 27) data were analyzed. The LC/MS traces of crude 

extract in positive and negative modes were also compared and labeled with GNPS hits(Figure 

28).  

From these analyses, we observed the clusters containing undecylprodigiosin, a-

lipomycin, and deferoxamine B/E, matching the predictions by antiSMASH. Prodigiosins are a 

family of red-colored pigments isolated from Streptomyces.32 Even though potential antitumor 

activities of prodigiosins have been reported, they have a wide range of reported bioactivities,32 
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which dampened enthusiasm for developing this scaffold for targeting eIF4E PPIs. Commercial 

undecyl-prodigiosin showed 50% inhibition of eIF4E PPI at ~0.1 mg/mL (approximately 200 

µM) and when compared to the active fraction of S. papuanewguineus, it was approximately 

one-fold less active. Desferrioxamine E, also known as nocardamine, is a ferrioxamine 

siderophore commonly found in Streptomyces strains that exhibits antibacterial, antitumor, and 

biofilm inhibitory activities.33, 34 However, nocardamine-containing Biotage and HPLC fractions 

were not active in eIF4E PPI cat-ELCCA. a-lipomycin is an orange-red colored acyclic polyene 

antibiotic that shows potent gram-positive antibacterial activity with no activity against the 

Figure 29. Representative HPLC trace of active biotage fraction and the bioactivity of HPLC fractions;  
column: C18; gradient: 2-42 min: 10-60% B (acetonitrile with 0.01% TFA) in A (water with 0.01% TFA), 
and then 10 min of 95% B in A; pink curve: UV absorbance at 254 nm; Left Y axis: mAU; X axis: 
acquisition time (min); for the bioactivity plot, Left Y axis: chemiluminescence; X axis: fraction number; 
some active fractions were labeled with percentage of inhibition. 
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growth of fungi, yeasts, and gram-negative bacteria.35 a-lipomycin-containing Biotage and 

HPLC fractions were not active in eIF4E PPI cat-ELCCA. This evidence suggested that there 

were other active natural products in the crude extract of S. papuanewguineus, which further 

motivated us to deconvolute this strain. 
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Figure 30. Chemical profile comparison between broth, cell mass extract, and resin extract of S. papuanewguineus. 
(A) Extracted Base Peak Chromatogram(BPC) of the LC-MS/MS chromatograms of broth, cell mass extract, and 
resin extract of S. papuanewguineus in both positive and negative modes. (B) Extracted Ion Chromatograms of the 
phenazine peaks (m/z 467.0975) in the LC-MS/MS chromatograms of broth, cell mass extract, and resin extract of 
S. papuanewguineus in negative mode (EIC of the positive mode chromatogram was the same as that in negative 
mode when searching m/z 469.1088). 
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2.2.3 Bioactivity-guided isolation and purification of phenazine class of molecules 

To obtain enough biomass for the next steps of deconvolution, a 40-L scale-up growth of 

S. papuanewguineus was conducted using standard protocol in ISP2+salt medium and 

approximately 200 grams of dried biomass was yielded (5 g per liter). To confirm the activity, 

about 1-L of biomass (5 g) was subjected to the same stepwise-gradient Biotage fractionation 

and F5 and F6 were found to be the most active fractions. To identify the mass(es) of the active 

component(s) in these fractions, they were then fractionated using reverse-phase high-

B 

A 

Figure 31. Representative prep HPLC and biotage chromatograms of S. papuanewguineus crude extract. (A) 
Representative prep HPLC chromatogram; (B) Representative biotage chromatogram. 
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performance liquid chromatography (RF-HPLC) and tested in cat-ELCCA (Figure 29). We 

noticed that the mass [M+H]+ 469.11443 was found across multiple active HPLC fractions. 

Thus, we decided to focus on the targeted isolation of this mass during the processing of the 

remaining biomass (195 g).  
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Figure 32. Semi-prep HPLC chromatograms of the purifications of phenazines. Detailed concentration gradients 
were discussed in the Materials and Methods section; Light blue line: concentration of B (acetonitrile in 0.01% 
TFA); purple line: concentration of A (water in 0.01% TFA); dark blue line: pump A pressure; pink curve: UV 
absorbance at 254 nm; black curve: UV absorbance at 190 nm; Left Y axis: mAU; Right Y-axis: concentration of 
B; X axis: acquisition time (min). 
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First, we compared the content of the mass [M+H]+ 469.11443 (or the equivalence in 

negative mode) in broth, cell mass, and resin extract using LC-MS (Figure 30). Based on the 

quantitative analyses by extracted ion chromatograms (EICs), we found that expectedly, most of 

this mass appeared in the resin extract. Then, we developed a preparative HPLC purification 

method the of the resin extract (Figure 31A). One challenge was the contamination of pink color 

in fractions, which was found to be prodigiosins by LC-MS. These colored molecules retained on 

the column very well and spanned across ~80% of all HPLC fractions; they were also hard to be 

entirely washed off, potentially damaging the column and contaminating other samples. To 

eliminate these unwanted pigments, we moved to reverse-phase flash chromatography on 

Biotage Selekt (Figure 31B). We successfully developed a Biotage method to separate water-

soluble media components, masses of interest, and pink pigments using pre-packed C-18 

columns, which were much cheaper than the Phenomenex C-18 column used in 

prep-HPLC and were disposable after several uses. This method enabled the initial fast and 

effective processing of crude extract from ~200 g to ~20 g of less complex extract containing 

masses of interest.  

The next round of purification was conducted on both prep-HPLC and semi-prep HPLC. 

Several factors were taken into account during the method development: (1) column: among the 

available columns, the phenylhexyl column worked the best, likely due to the presence of 

multiple aromatic rings in the structures; (2) solvent system: acetonitrile (ACN)/water worked 

slightly better than methanol (MeOH)/water; (3) acid-modifier: we found that adding an acid-

modifier, either 0.1% formic acid (FA) or 0.01% trifluoroacetic acid (TFA), significantly 

improved the elution patterns and resolutions of peaks of interest; and (4) gradients: isocratic 

gradient using 30%, 35%, 40%, and 45% ACN/water were chosen for the final rounds of 
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purification of molecules of interest (Figure 32). After several rounds of purification, we 

successfully identified and isolated eight phenazine molecules from the active fractions. 

Phenazines are chorismate-derived dibenzo-annulated pyrazine-based secondary 

metabolites produced by soil microbes reported with antibiotic, antifungal, insecticidal, and 

antitumor activities.36, 37 While over 150 phenazine-based NPs have been reported, only a tiny 

portion is composed of two phenazine monomers, including diphenazithionin,38 phenazostatins 

A-D,39-41  izumiphenazines A-D,42, 43 esmeraldines A and B,44 phenazinolins A-E,45 

diastaphenazine,46 and baraphenazines A-G.47 In this study, we isolated 1,6-phenazinediol, 

baraphenazine F, phenazinolin D, izumiphenazine A, baraphenazine G, baraphenazine I, which 

was the spontaneous conversion product of baraphenazine G, and two new diphenazines, 

izumiphenazine E and baraphenazine H (Figure 33). The detailed structure elucidation of these 

molecules will be further discussed in Chapter 3. 
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Figure 33. Structures of isolated phenazines from S. papuanewguineus. 
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2.3 Biochemical and Cellular Activities of Isolated Phenazines 

2.3.1 Biochemical activities in PPI cat-ELCCA 

With phenazine 1-7 in hand, we first tested their inhibitory activity in PPI cat-ELCCA for 

the eIF4E-4E-BP1 PPI (Figure 34). Izumiphenazine E (6) was the most potent molecule with a 

measured EC50 of 7.8 µM, followed by baraphenazine H (3) with an EC50 of 68 µM. Since we 

postulated that the beta-unsaturated ketone might serve as a Michael acceptor in baraphenazine 

H as its mechanism of inhibition, another phenazine-1-one containing phenazine, pyocyanin was 

purchased and tested, which turned out to be inactive. Both 6 and 3 showed a Hill slope value of 

around -1, suggesting a noncooperative inhibition mechanism. As structurally diverse phenazines 

were isolated, we were able to glean preliminary structure-activity relationships (SAR) around 

this scaffold. Since neither 1,6-phenazinediol nor pyocyanin showed any activity, a fused-

phenazine geometry is probably required for inhibition. While a defining feature of many of the 

isolated NPs was the presence of a phenazinediol unit with phenol groups at different positions, 6 
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Figure 34. Biochemical activities of isolated phenazines and dose-response curves of izumiphenazine E and 
baraphenazine H.  
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is the only compound that contains a 1,6-phenazinediol unit. This suggests that the phenol 

positions of the 1,6-phenazinediol unit in 6 may be important for its enhanced inhibitory activity. 

Furthermore, compared to the 10R,11S,21S configuration in 5, 6 possesses an enantiomeric 

configuration of 10S,11R,21R, suggesting that this configuration may also be responsible for the 

~30-fold increase in activity of 6 compared to 5.  

 

Contro
l 

Com
pound 6

Contro
l 

Com
pound 6

Contro
l 

Com
pound 6

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 to
 C

on
tr

ol

42 °C
49 °C
53 °C

Control 2.5 5 10 25
0.0

0.2

0.4

0.6

0.8

1.0

1.2

izumiphenazineE (µM)

N
or

m
al

iz
ed

 L
um

in
es

ce
nc

e

Co
nt

ro
l 

25
µM

 6
 

eIF4E 

eIF4G 

4EBP1 

A 

B C 

Figure 35. Biological activities of 6. (A) Representative western blot of CETSA assay in HEK 293 cells with 0 
(control) and  25 𝜇M of compound 5 at 42, 49 and 53 °C, probing for eIF4E and actin (control), and the 
quantification of band intensities in the western blots of three replicates by ImageJ; (B) Cell Titer-GloÒ in Mia-
PaCa-2 cells with compound 6 at 0, 2.5, 5, 10, 25 µM, 48-hour incubation; (C) Cap pull down assay in HEK 293 
cells with 25 µM of 6, 1 hour incubation. 
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2.3.2 Cellular activities of izumiphenazine E (6) 

Since 6 was the most active compound, we further characterized its activity in cellular 

assays. We first determined whether it could bind to eIF4E in the complex cellular milieu using 

the cellular thermal shift assay (CETSA)48 in HEK293 cell lysate. Encouragingly, an increase in 

the stability of eIF4E was observed following treatment with 25 µM, suggesting that it can bind 

and stabilize eIF4E (Figure 35A). Of note, this concentration was chosen based on solubility 

limitations. We next profiled the antiproliferative activity of 6 in MiaPaca-2 cells whose growth 

is known to be affected by modulation of eIF4E and cap-dependent translation,49 using the 

CellTiter-GloÒ cell viability assay. Unfortunately, the compound exhibited no anti-proliferative 

activity in this assay (Figure 35B), and upon further profiling in additional cell-based assays, 

including the m7GDP cap affinity assay,16 it was further found to be inactive (Figure 35C). As 

the biochemical activity of this compound is much weaker than our previously disclosed peptide-

based inhibitors, it is possible that 6 is not potent enough to disrupt cellular eIF4E PPIs, which 

exhibit nanomolar binding affinity. It is also possible that 6 suffers from poor cellular 

permeability due to the presence of its carboxylic acid. Indeed, previous investigations of 

baraphenazines found that only when the carboxylic acid was a primary amide as in 

baraphenazine E, was anti-proliferative activity observed in A549 and PC3 cells, likely due to 

improved cellular uptake.47 In the future, we will perform additional medicinal chemistry 

optimization on 6 to improve its cellular uptake and activities and further develop this scaffold 

for targeting ‘undruggable’ eIF4E and its PPIs. 

2.4 Biosynthesis of Phenazine Class of Molecules 

Toward the goal of obtaining chemically modified diphenazine analogs, we became 

curious about their biosynthesis. The biosynthesis of mono-phenazines has been intensively 
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studied since the mid 20th century.36 All natural phenazines share several conserved enzymes in 

their BGCs including PhzA/B, PhzC, PhzD, PhzE, PhzF, and PhzG, which serve to synthesize 

the common phenazine monomers including phenazine, phenazine-1-carboxylic acid (PDC), and 

phenazine-1,6-dicarboxylic acid (PDA). 

2.4.1 Biosynthesis of phenazine, PDC, and PDA 

Chorismic acid, an intermediate in the shikimate pathway, is a critical precursor for many 

primary and secondary metabolites in plants and microorganisms such as phenazine, aromatic 

amino acids, vitamin K, and alkaloids.50 In the first step of the biosynthesis of chorismic acid by 

the shikimate pathway, phzC, encoding the 3-deoxy-D-arabinoheptulosonate 7-phosphate 

(DHAP) synthase, catalyzes the formation of DAHP from the starting materials erythrose 4-

phosphate (E4P) and phosphoenolpyruvate (PEP, Figure36).51 After that, through a series of 

enzymes in the shikimate pathway including 3-dehydroquinate (DHQ) synthase, DHQ 

dehydratase, shikimate dehydrogenase, shikimate kinase, 5-enolpyruvylshikimate 3-phosphate   

(EPSP), and chorismate synthase, DHAP is converted into shikimic acid, and then chorismic acid 

as the final product.51 Next, chorismic acid is converted to 2-amino-4-desoxyisochorismate 

(ADIC) by phzE, an Mg2+-dependent ADIC synthase.52 The vinyl ether group of ADIC is then 

cleaved by an isochorismatase phzD to form the side product pyruvate and the major product 
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trans-2,3-dihydro-3-hydroxyanthranillic acid (DHHA).53 The subsequent enol tautomerization of 

DHHA catalyzed by phzF yielded 6-amino-5-oxocyclohex-2-ene-1-carboxylic acid (AOCHC).54 

After that, the double condensations of AOCHC, aided by the Δ5-3-ketosteroid isomerase/nuclear 

chorismic acid

OH
O

OHO

OHO

PhzE

Gln Glu
-H2O

ADIC

OH
O

OHO

NH2

OH

O

DHHA

OH
OH

OHO

NH2PhzD

pyruvate

PhzF

OHO

NH2

O

OHO

NH2

OH

PhzA/B

-2H2ON

H
N

OHO

HO O

AOCHCHHPDCO2

H2O2
CO2 PhzG PhzG

O2

H2O2

N
H

H
N

OHO

DHPCA

N

H
N

OHO

HO O
DHPDC

N
H

H
N

DHPHZ

O2

H2O2

O2

H2O2

O2

H2O2

N

N

N

N

OHO

N

N

OHO

O OH
phenazine PCA PDC

Figure 37. The biosynthesis of phenazine, PCA, and PDC from chorismic acid using phenazine core enzymes 
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transport factor family phzB, give the key dimerized intermediate hexahydrophenazine-1,6-

dicarboxylic acid (HHPDC).55 Pseudomonas species contain phzA, a copy of phzB that shares a 

70% sequence identity and as a result, phzB is also referred to as phzA/B.56 Then, catalyzed by 

flavin-dependent dihydrophenazinedicarboxylate synthase phzG, HHPDC undergoes oxidative 

decarboxylation to form either dihydrophenazine (DHPHZ), 5,10-dihydro-PDC (DHPDC), or 

5,10-dihydro-PCA (DHPCA), which are further oxidized into the final products phenazine, PDC, 

or PCA, respectively.57  

2.4.2 Biosynthesis of diphenazine 

Dimeric natural products have been extensively isolated from bacteria, fungi, and plants 

and they exhibited a wide range of biological activities.58 A lot of these dimeric compounds have 

been developed into potential therapeutic agents, for instance, vinblastine (anticancer agent), 

gossypol (immunosuppressant), hypericin (kinase inhibitor), etc. From a biosynthesis standpoint, 

dimerization reactions of natural products are catalyzed by a variety of enzymes, including 

cytochrome P450s that catalyze coupling reactions via a free radical mechanism,59 laccases that 

catalyze the dimerization of phenolic compounds,60 [4+2] cyclases that catalyze the coupling 

reactions between two polyene units,61 etc. The biosynthetic pathway of phenazine monomers 

including phenazine, phenazine-1-carboxylic acid (PCA), phenazine-1,6-dicarboxylic acid 

(PDA), and 1,6-phenazinediol have been well studied whereas how these phenazine monomers 

dimerize into di-phenazines remain poorly understood. To date, only one enzyme, dap5, has 

been discovered to catalyze the dimerization of phenazine-type metabolites.62 dap5, a NTF2-like 

superfamily protein harboring a snoaL-like polyketide cyclase domain, has been shown to be 

responsible for the dimerization of two PCA units into diastaphenazine by knockout studies.62 

However, the catalytic mechanism of this enzyme has not been fully elucidated, which 
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further motivated us to analyze the phenazine BGC in S. papuanewguineus.  

Annotation of phenazine BGC in contig181 of the genome of S. papuanewguineus 

revealed the presence of (1) PhzA/B, PhzC, PhzD, PhzE, PhzF, and PhzG that were responsible 

for the production of phenazine, PCA, and PDA from chorismate (Figure 38); (2) PhzS 

(accession number: QJS40191.1), a flavin-containing monooxygenase that is responsible for the 

generation of 1,6-phenazinediol from PDA;63 (3) 3-phosphoshikimate 1-carboxyvinyltransferase 

(also known as EPSP, accession number: AKC91623.1), an enzyme in the shikimate pathway 

that catalyzes the coupling of shikimate 3-phosphate and phosphoenol pyruvate into 5-

enolpyruvylshikimate-3-phosphate, which is a key intermediate of the biosynthesis of 

chorismate;51 (4) a FAD-dependent monooxygenase/3-hydroxybenzoate 6-hydroxylase 

(accession number: RZB16712.1) that catalyzes the conversion of 3-hydroxybenzoate to 

gentisate in the biosynthesis of diazaquinomycins;64, 65 and (5) an unknown gene that shares 53% 

sequence identity with EsmH1 gene (accession number: AFB35619.1) in the biosynthetic gene 

cluster of esmeraldins whose function has not been characterized.66 However, genes that could 

potentially catalyze the dimerization of phenazines were not identified in contig181 and its 

neighboring contigs, contig180 and contig182, which impeded us from further elucidating the 

Shikimate biosynthesis pathway related genes 

Transporter related genes Unknown gene 

Phenazine biosynthesis genes             

PhzE PhzD PhzC PhzA/B PhzF PhzG PhzS 

FAD-dependent oxidoreductase 

Figure 38. Annotation of the phenazine BGC in S. papuanewguineus. 
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biosynthetic pathway of the isolated diphenazines.  

Retro-synthetic analyses of these molecules suggested that they were likely constructed 

via a two-step mechanism in no particular order: (1) aryl coupling of a phenazinediol unit and a 

dihydroxy phenazine-carboxylic acid to form a new C-C bond, and (2) phenol-aryl coupling to 

form either a tetrahydrofuran or a tetrahydropyran ring through a new C-O bond (Figure 39). 

Cytochrome P450s, a superfamily of oxidative hemoproteins commonly found in nature, are 

known to be able to catalyze these bi-phenol C-C and C-O coupling reactions. For instance, JulI, 

a P450 enzyme in the biosynthesis pathway of julichromes, catalyzed the dimerization of 
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julichrome Q6 to form julichrome Q6-6 via C-C coupling.67, 68 BmP7, a P450 found in P. 

luteoviolacea 2ta16, catalyzed the dimerization of polybromophenol-based metabolites via C-O 

coupling.69 These bi-phenol C-C and C-O coupling reactions go through a common radical 
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mechanism: P450 enzymes generate oxygen-centered radicals on the phenolic hydroxyl group or 

carbon-center radicals on the carbon located in the ortho or para position of the phenolic 

hydroxyl group through the delocalized benzene ring system.70, 71  

Based on these established mechanisms of P450-catalyzed bi-phenol coupling, a 

hypothetical mechanism of dimerization for the isolated diphenazines was proposed (Figure 40). 
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First, these starting phenazine units with variations in the positions of hydroxyl and carboxyl 

groups are generated from 1, PDA, and PCA, most likely catalyzed by the identified 3-

hydroxybenzoate 6-hydroxylase. Then, taking compound 2 as an example, the P450 enzyme 

generates carbon radicals at C-10 of the phenazinediol and C-9 of the dihydroxylphenazine-

carboxylic acid. After that, the diradical combination results in the C-C bond formation between 

C-9 and C-10, and the tautomerization of C-22 carbonyl regenerates the 22-OH of the carboxyl 

phenazinediol. The carbon radical at C-21 generated by a free hydrogen radical through a 

delocalized ring system, combined with the oxygen radical at O-22 generated by the P450, closes 

the six-membered ring through the new C-O bond between C-21 and O-22. The subsequent 

reduction of the C-11 carbonyl by free hydrogen radical results in the final product, compound 2. 

Contrary to 2 and 4, the dimerization mechanisms of 5 and 6 require the generation of carbon 

radical at the meta position of the phenolic hydroxyl group, which is uncommon for P450-

catalyzed bi-aryl coupling. All of these speculations need to be further investigated to fully 

elucidate the mechanism of the dimerization reactions that generate 2-7. 

 

2.5 Deconvolution of Other Strains 

2.5.1 Other HTS hit strains:YNYX265C, 87797-1N, and 86930-1I 

YNYX265C was another hit strain in the HTS campaign. This strain was deconvoluted 

using the same strategy as 06-282-1I: genome sequencing, chemical profiling, and bioactivity-

guided purification. antiSMASH analysis of its genomic DNA revealed diverse classes of 

metabolites, including multiple non-ribosomal peptide synthetases (NRPSs), a few terpenoids, 

several polyketide synthases (PKSs), and one polycyclic tetramate macrolactone (PTM), which 



 68 

is a PKS/NRPS hybrid (Figure 41). GNPS molecular networking analyses provided no 

interesting hits other than deferoxamine and fatty acids.  

The crude extract of this strain was saturated with pink pigments of unknown origin that 

retained on the column and contaminated almost all HPLC fractions, which posed a challenge in 

the purification processes. The initial prep-HPLC followed by testing in PPI cat-ELCCA yielded 

F29 as the active fraction (Figure 42). Subsequent semi-prep HPLC and testing gave us F29-F7 

as the active fractions. However, the molecule(s) were very low in quantity (800µg out of 40L of 

growth), which was not enough for a full characterization by NMR, and it only exhibited very 

modest activity (IC50 ~0.1 mg/mL). Thus, we decided not to follow up on this strain further. The 

strain 87797-1N was the third most active strain. Detailed deconvolution of this strain will be 
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further elaborated in Chapter 4. 86930-1I was inactive after the first round of preparative HPLC, 

so it was not followed up further.  

2.5.2 Additional natural product extract plates 

8 plates, namely P432-P439, were tested in PPI cat-ELCCA in two rounds: (1) all crude 

extracts and fractions were tested at a fixed concentration (0.15 mg/mL); (2) active fractions 

were retested at the same fixed concentration (0.15 mg/mL, Figure 43). BR55-I (P439-F11), A-

M5-I (P436-F2, F4, F5, F6), 41383-MH10I (P436-H2, H4, H5, H6), P256-3I (P435-F10, F11), 

EMU227-I (P437-C10, C11), and EMU247-I (P437-A10, A11) were selected for the subsequent 

regrowth and deconvolution. All strains were regrown in a 4-L scale and the crude extracts were 

fractionated by prep-HPLC using 5-95% acetonitrile/H2O without any acid modifiers and then 

tested. All fractions were tested at 0.1 mg/mL concentration and only a few fractions from A-
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M5-I were active (Figure 44). By comparing the LC-MS and LC-MS/MS profiling with the 

active diphenazines isolated from 06-282-1I, we found that their masses and retention times 

match with each other, suggesting that the active components in A-M5-I were also diphenazines. 

This was further confirmed by proton NMR. 

2.6 Conclusion 

In this study, we adopted catalytic enzyme-linked click chemistry assay (cat-ELCCA) 

technology for enabling the screening of full-length PPIs, including the interaction of eIF4E with 

4E-BP1 and eIF4G. Based on the success of NPs in targeting “undruggable” proteins like eIF4E 

and its PPIs, coupled with the demonstrated applicability of cat-ELCCA for screening small-

molecules as well as complex NPE libraries, we deployed the assay to complete an HTS 

campaign to NP-based inhibitors of eIF4E PPIs. From these efforts, we isolated monophenazine- 
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and diphenazine-based NPs as inhibitors of eIF4E PPIs from an active strain, S. 

papuanewguineus, leading to the discovery of a novel diphenazine, izumiphenazine E (6), which 

shows promising binding to eIF4E in cellular assays, representing a novel scaffold targeting 

eIF4E PPIs. 

 

2.7 Methods and Materials 

2.7.1 General LC-MS/MS methods and materials 

LC-HRMS/MS analyses of Biotage fractions, HPLC fractions, and purified compounds 

were performed using an Agilent 1290 Infinity II UPLC coupled to an Agilent 6545 ESI-Q-TOF-

MS system operating in both positive and negative modes. Chromatography was performed 

using a Phenomenex Kinetexâ 1.7 µm Phenyl-Hexyl 100 Å (2.1 ´ 50 mm) column. The injection 

volume was 2 µL per sample. The samples were eluted utilizing a gradient starting with a 1 min 

isocratic wash step consisting of 90% A (95% water/5% acetonitrile with 0.1% formic acid) and 

10% B (100% acetonitrile with 0.1% formic acid), then 6 min linear gradient step starting from 

10% B to 100% B and ended with 2 min of 100% B wash with a flow rate of 0.4 mL/min. The 

divert valve was set to MS for 0 – 7.4 min and set to waste from 7.4 - 9 min. The conditions of 

the dual AJS ESI were set with gas temperature at 320 °C, sheath gas temperature at 350 °C, 

sheath gas flow rate at 11 L/min, and source capillary voltage at 3500 V. The mass range of MS 

was set to 100 – 2000 m/z and acquisition rate was set to 10 spectra per second. The mass range 

of MS/MS was set to 50 – 2000 m/z; acquisition rate was set to 6 spectra per second, and 

isolation width was set to ~1.3 m/z. The collision energy was set based on the formula: Collision 

Energy = (5 ´ m/z)/100 + 10. Maximum precursor per cycle was set to 9 and the MS/MS mass 
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error tolerance was ± 20 ppm. The reference masses for positive mode are purine C5H4N4 

[M+H]+ ion (m/z 121.050873) and hexakis(1H,1H,3H-terafluoropropoxy)-phosphazine 

C18H18F24N3O6P3 [M+H]+ ion (m/z 922.009798). The reference masses for negative mode are 

trifluoroacetic acid C2HF3O2 [M-H]- (m/z 112.985587) and hexakis(1H,1H,3H-

terafluoropropoxy)-phosphazine C18H18F24N3O6P3 [M+TFA-H]- (m/z 1033.988109). All solvents 

used for Biotage fractionation were ACS grade and those used for HPLC purification and LC-

HRMS/MS analyses were HPLC grade or better unless otherwise stated.  

2.7.2 General assay and biology methods and materials 

For screening, plate washing was performed using a Biotek 405 ELX plate washer. 

Liquid handling was performed using a Multidrop Combi Reagent Dispenser (Thermo Scientific). 

All samples were dispensed using a Sciclone (Caliper) liquid handler with V&P pintool. For PPI 

cat-ELCCA, Horseradish peroxidase (HRP), streptavidin-coated 384-well plates (white, high 

binding capacity; cat#15505), and SuperSignal West Pico Chemiluminescent substrate kit were 

purchased from Pierce. Preparation of biotin-eIF4E, biotin-eIF4G, mTet-4E-BP1, mTet-eIF4E, 

and TCO-HRP was carried out as previously described.16 Pyocyanin,1,6-phenazinediol, 

phenazine, and undecylprodigiosin were all purchased from commercial sources. NPE library 

HTS, hit reconfirmation, and testing of biotage fractions, HPLC fractions, and purified 

compounds were conducted using PPI Cat-ELCCA as previously described.16 

Chemiluminescence data was collected on a BioTek Cytation3 or PHERAstat plate reader using 

LUM plus module (BMG Labtech). For cellular assays, gels were imaged on a ProteinSimple 

Fluorchem M Gel Imager or a Biorad ChemiDoc imaging system. BL21DE3 E.Coli were used 

for protein expression. Mia-Paca-2 and HEK293T cells were cultured in DMEM (Corning) 

supplemented with 2 mM L-glutamine, 1% Penicillin/streptomycin (Gibco), and 10% FBS 
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(Atlanta Biologicals). Cells Were incubated at 37 °C in a humidified atmosphere containing 5% 

CO2. 

2.7.3 General data analysis method 

All LC-MS/MS chromatograms, Extracted Base Peak Chromatograms (BPCs), extracted 

UV (254 nm) traces, cat-ELCCA data, and quantification of CESTA data were plotted using 

GraphPad Prism 9 (version 9.4.1) for MacOS (GraphPad Software, www. Graphpad.com). 

2.7.4 Natural product extract library 

The Natural Product Extract (NPE) library housed at the University of Michigan Center 

for Chemical Genomics contains ~50,000 (and growing) pre-fractionated natural product extracts 

derived from a unique collection of diverse marine and terrestrial actinomycetes, fungi, and 

cyanobacteria collected from various locations throughout the world, including but not limited to, 

Antarctica, Brazil, China, Costa Rica, Israel, Panama, Papua New Guinea, Peru, and United 

States. The methods for preparation, purification, and maintenance of these extracts were 

described in previous literature.25, 26 

2.7.5 HTS PPI cat-ELCCA Protocol (384-well format) 

Buffer A: 50 mM Phosphate Buffer (pH 7.4), 200 mM NaCl, 0.01% Tween-20, 2 mM DTT 

Buffer B: 50 mM Phosphate Buffer (pH 7.4), 200 mM NaCl, 0.05% Tween-20 

Buffer C: 50 mM Phosphate Buffer (pH 7.4) 

*Pre-wash the plate with Buffer A 

1. Immobilization of biotin-eIF4E (10 μL of 50 nM in Buffer A) 

a. **Prime the tubing well with buffer** 

b. POS Ctrl (usually columns 23-24): add Buffer A (10 μL) 
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c. NEG Ctrl (usually columns 1-2): add biotin-eIF4E (10 μL) 

d. Compound wells (usually columns 3-22): add biotin-eIF4E (10 μL) 

e. Cover the wells with plate-sealing tape. 

f. Spin down on centrifuge (1000´RPM, 1 min, 4 °C) 

g. Overnight incubation (4 °C) 

h. **Thoroughly wash and clean the dispensing cassette with Buffer C, and then 

with water** 

2. Removing well contents 

a. Prime ELX405 with Buffer B and wash  

b. Lay absorbent towel, smack the plates post wash (should see residual liquid 

leaving stains on the towel) 

c. Finish washing the rest of the plates in the exact same way prior to the next step 

3. PPI incubation of mTet 4E-BP1 (10 μL of 4 nM in Buffer A) 

a. **Prime the tubing well with buffer** 

b. Add mTet-4E-BP1 (10 μL of 4 nM in Buffer A) to all the wells 

c. Dispense the compounds  

d. Cover the wells with plate-sealing tape 

e. Spin down on centrifuge (1000´RPM, 1 min, 4 °C) 

f. Incubate at 4 °C for 30 min  

4. Removing well contents 

a. Prime ELX405 with Buffer B and wash  

b. Lay absorbent towel, smack the plates post wash (should see residual liquid 

leaving stains on the towel) 
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c. Finish washing the rest of the plates in the exact same way prior to the next step 

5. Click chemistry with TCO-HRP (10 μL of 1 μM in Buffer A) 

a. **Prime the tubing well with buffer** 

b. Add TCO-HRP (10 μL of 1 μM in Buffer A) to all the wells 

c. Cover the wells with plate-sealing tape 

d. Spin down on centrifuge (1000´RPM, 1 min, 4 °C) 

e. Incubate at room temperature for 30 min  

6. Removing well contents 

a. Prime ELX405 with Buffer B and wash  

b. Lay absorbent towel, smack the plates post wash (should see residual liquid 

leaving stains on the towel) 

c. Finish washing the rest of the plates in the exact same way prior to the next step 

7. Final wash with Buffer C 

a. Prime ELX405 with Buffer C and wash  

b. Lay absorbent towel, smack the plates post wash (should see residual liquid 

leaving stains on the towel) 

c. Finish washing the rest of the plates in the exact same way prior to the next step 

8. Chemiluminescence detection 

a. **Prime the tubing well with buffer** 

b. Add chemiluminescent substrate (25 μL of 1:1 mixture of black & white 

components of the chemiluminescence substrates) to all the wells 

c. Stack the plates from bottom up  

9. Readout 
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a. Load up the stacker with the plates, and start the data collection 

i. The protocol takes the focal adjustment from the first plate and keeps that 

constant throughout the rest of the plates 

ii. The protocol marks the gain from A2, and sets it to 60% for each plate 

 

2.7.6 Fermentation for hit reconfirmation 

All strains were streaked onto R2YE agar: 5g yeast extract, 103 g sucrose, 10 g dextrose, 

0.1 g casamino acid, 0.25 g K2SO4, 10.12 g MgCl2•6H2O, 5.73 g TES buffer, 2 mL trace element 

solution (10 mg (NH4)6Mo7O24•4H2O, 10 mg Na2B4O7•10H2O, 10 mg MnCl2•4H2O, 10 mg 

CuCl2•2H2O, 200 mg FeCl3•6H2O, 40 mg ZnCl2, 1 L ddH2O, filter sterilize), 10 mL of 0.5% 

KH2PO4, 4 mL of 5M CaCl2•2H2O, 15 mL of 20% L-Proline, 7 mL 1N NaOH, 25 µg/mL 

nalidixic acid, 10 µg/mL benomyl, 15 g agar, 1 L ddH2O. Plates were grown for 5-7 days at 28 

°C. For each strain, 3 mL seed cultures in 14-mL dual-position cap tubes were inoculated with a 

loop-full of vegetative cells from R2YE plates and grown for 5 days at 28 °C, 200 r.p.m. 3-mL 

seed cultures were inoculated into 100-mL seed cultures in 250-mL baffled flask and they were 

grown for 7 days at 28 °C, 200 r.p.m. 50-mL of seed cultures were inoculated into 1 L 

fermentation media in 2.8 L baffled Fernbach flasks and grown for 7 days at 28 °C, 200 r.p.m. 

For 06-282-1I, 39017-N1I, 86930-1I, 82379-N3I, 87745-N2I, 32420-N3I, N383-A3I, 

GXXG380I, 34360-3I and 58236I, ISP2 media (4 g yeast extract, 10 g malt extract, 4 g dextrose, 

30 g NaCl, 1 L ddH2O) were used in both seed cultures and fermentation. For 34365-A1N and 

87797-1N, ISP2 was used for seed cultures and Nutrient Poor media (0.25 g yeast extract, 0.64 

g malt extract, 0.25 g dextrose, 30 g NaCl, 1 L ddH2O) was used for fermentation.  
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For R02-N5R, YNYX265C, and 90357-4R, A3M media (3 g yeast extract, 10 g soluble 

starch, 4 g dextrose, 2 g pharma-media, 20 mL glycerol, 1 L ddH2O) were used in both seed 

cultures and fermentations. In addition, 10 mL of Corneybacterium cultured in V22 media (2 g 

yeast extract, 10 g soluble starch, 5 g dextrose, 3 g NZ Case, 0.5 g MgSO4•7H2O, 3 g CaCO3, 1 

g K2HPO4, 1 L ddH2O) was added to the fermentation medium of YNYX265C on day 2 of 

fermentation. 10 mL of Rhodococcus cultured in V22 media was added to each of the 

fermentation media of R02-N5R and 90357-4R on day 2 of fermentation.  

At day 7 of the fermentation, 25 g of Amberlite XAD16 resin contained within a 

polypropylene mesh bag was added to each fermentation culture, and shaken overnight at 28 °C, 

200 r.p.m, except for R02-N5R, YNYX265C, and 90357-4R, resin bags were added at day 3 of 

fermentations. At day 8, all resin bags were removed and washed extensively with dIH2O to 

remove any water-soluble media components and residual cell mass adsorbed on the resin bags. 

Each washed resin bag was extracted with 250 mL methanol and 250 mL ethyl acetate (EtOAc). 

The combined organic fractions were dried in vacuo, and then re-dissolved in minimal methanol. 

The solutions were centrifuged, and the supernatants were loaded onto C18 resin and dried 

extensively in vacuo prior to Biotage C18 fractionation. 

2.7.7 Fractionation of crude extracts of HTS hits for reconfirmation 

Flash chromatography was performed using an automated chromatography system 

(Isolera Selekt, Biotageâ) utilizing a pre-packed Phenomenexâ reverse phase C18 column (12g, 

column volume = 17 mL). Dried C18 loaded with crude extracts was packed into a separate 

column that was attached to the Phenomenexâ C18 column for fractionation. Materials were 

eluted with a flow rate of 20 mL/min collecting 5CV (85 mL) fractions. Materials were eluted 

utilizing a stepwise methanol/water gradient: 5CV of 100% water (F1);10% methanol in water 
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(F2); 25% methanol in water (F3); 40% methanol in water (F4); 55% methanol in water (F5); 70% 

methanol in water (F6); 85% methanol in water (F7); 100% methanol (F8); final wash with 100% 

acetonitrile (F9) into a total 9 fractions. All fractions were dried into pre-weighed scintillation 

vials using a V10-touch evaporator (Biotageâ) coupled with a Gilson GX-271 Liquid Handler. 

All crude extracts and fractions were dissolved into 1 mg/mL in methanol and MS/MS data in 

both positive and negative modes were acquired using the method described in general methods 

and materials section above.  

2.7.8 GNPS molecular networking 

The acquired MS/MS data for all crude extracts and Biotageâ fractions were converted 

from Agilent MassHunter data files (.d) to mzXML file format using MSConvert software, 

which is part of the ProteoWizard package.72 The mzXML files were then transferred to the 

global Natural Products Social Molecular Networking server (GNPS) (gnps.ucsd.edu). A 

molecular network was created using the GNPS data analysis workflow.31 The precursor ion 

mass tolerance was set to 0.05 Da and a MS/MS fragment ion mass tolerance to 0.05 Da. A 

network was then created where edges were filtered to have a cosine score above 0.7, a minimum 

of 6 matched fragment ions and a minimum cluster size of 2 nodes. Furthermore, edges between 

two nodes were kept in the network of and only if each of the nodes appeared in each other’s 

respective top 10 most similar nodes. Finally, the maximum connected component size in a 

cluster was set to 100. The spectra in the input network were then searched against GNPS’ 

spectral libraries. All matches were required to have a score above 0.7 and at least 6 matched 

peaks. The resulting network was imported into Cytoscape (version 3.9.1) for visualization,73 

where nodes corresponding to media components and solvent were subtracted. The remaining 
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nodes represent parent (+) or (-) m/z metabolites detected in analyzed extracts, with node size 

indicating metabolite abundance. 

2.7.9 Scale-up growth, extraction, and fractionation of S. papuanewguineus 

S. papuanewguineus was streaked onto R2YE agar plates. Plates were grown for 5-7 days 

at 28 °C. 3 mL ISP2 + salt medium in 14-mL dual-position cap tubes were inoculated with a 

loop-full of vegetative cells from R2YE plates and grown for 5 days at 28 °C, 200 r.p.m (20´). 3-

mL seed cultures were inoculated into 100 mL ISP + salt in a 250-mL baffled flask and they 

were grown for 7 days at 28 °C, 200 r.p.m (20´). 50-mL seed cultures were inoculated into 1 L 

fermentation media in 2.8-L baffled Fernbach flasks and grown for 7 days at 28 °C, 200 r.p.m 

(40´). On day 7 of the fermentation, 25 g of Amberlite XAD16 resin contained within a 

polypropylene mesh bag was added to each fermentation culture and shaken overnight at 28 °C, 

200 r.p.m. At day 8, all resin bags were removed and washed extensively with dIH2O to remove 

any water-soluble media components and residual cell mass adsorbed on the resin bags. Washed 

resin bags were combined and extracted with 250 mL methanol and 250 mL ethyl acetate 

(EtOAc) per bag. The combined organic fractions were dried in vacuo, and then re-dissolved in 

minimal methanol. The solutions were centrifuged, and the supernatants were divided into two 

portions that were processed using two different methods. One portion of the material (~20 L) 

was loaded onto C18 resin and dried extensively in vacuo prior to Biotageâ C18 fractionation 

and the other portion (~20 L) was directly subject to preparative RF-HPLC fractionation.  

Preparative RF-HPLC fractionation was performed using Shimadzu LC-20AP system 

equipped with a reverse-phase Phenomenex Kinetexâ 5 µm C18 100 Å (250 ´ 21.2 mm) 

column, and an autosampler. The injection volume was set to either 1 mL or 2 mL. The materials 
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(brought up in methanol at ~100 to 200 mg/mL) were eluted with a flow rate of 20 mL/min and a 

linear gradient starting with a 2 min isocratic wash step consisting of 95% water and 5% 

acetonitrile, then 40 min linear gradient step starting from 5% acetonitrile in water to 95% 

acetonitrile in water, then 10 min wash with 95% acetonitrile in water, ended with a 10 min 

equilibration with 5% acetonitrile in water. Flash chromatography was performed using an 

automated chromatography system (Isolera Selekt, Biotageâ) utilizing a pre-packed 

Phenomenexâ reverse phase C18 column (12g, column volume = 17 mL). The materials were 

either eluted with a flow rate of 15 mL/min collecting 4CV (68 mL) fractions. Materials were 

eluted utilizing a linear gradient of acetonitrile/water: 4CV of 5% acetonitrile in water with 0.01% 

trifluoroacetic acid(F1);16CV of linear gradient of 5% acetonitrile in water to 100% acetonitrile 

with 0.01% trifluoroacetic acid (F2-F5); final wash with 100% acetonitrile with 0.01% 

trifluoroacetic acid (F6) into a total 6 fractions. All Biotageâ and prep-HPLC fractions were 

dried into pre-weighed scintillation vials using a V10-touch evaporator (Biotageâ) coupled with 

a Gilson GX-271 Liquid Handler. All crude extracts and fractions were dissolved into 1 mg/mL 

in methanol and MS/MS data in both positive and negative modes were acquired using the 

method described in the general methods and materials section above. 

2.7.10 Purification of Compounds 1-8 

Biotageâ fraction F3 containing compounds 1, 2, and 3 were subject to two rounds of 

semi-preparative HPLC purification using Shimadzu LC-20AT system equipped with a reverse-

phase Phenomenex Lunaâ 5 µm Phenyl-Hexyl 100 Å (250 ´ 10 mm) column and an 

autosampler. The injection volume was set to 200 µL. The materials (brought up in methanol at 

~10 to 20 mg/mL) were eluted with a flow rate of 4 mL/min and an isocratic gradient of 35% 
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acetonitrile in water with 0.01% trifluoroacetic acid (TFA) for 35 min, then 7 min isocratic wash 

with 95% acetonitrile in water with 0.01% TFA, ended with a 7 min equilibration with 5% 

acetonitrile in water with 0.01% TFA. HPLC fractions that contains compound 1, 2, and 3 were 

subject to a second round of semi-preparative HPLC purification using the same system and 

column. The injection volume was set to 200 µL. The materials (brought up in methanol at ~5 to 

10 mg/mL) were eluted with a flow rate of 4 mL/min and an isocratic gradient of 30% 

acetonitrile in water with 0.01% TFA for 30 min, then 7 min isocratic wash with 95% TFA in 

water with 0.01% TFA, ended with a 7 min equilibration with 5% acetonitrile in water with 

0.01% TFA, yielding 0.3 mg/L of 1, 0.05 mg/L of 2, and 0.04 mg/L of 3.  

Biotageâ fraction F4 containing compounds 4-7 were first subject to one round of 

preparative HPLC purification using Shimadzu LC-20AP system equipped with a reverse-phase 

Phenomenex Kinetexâ 5 µm Phenyl-Hexyl 100 Å (250 ´ 21.2 mm) column. The injection 

volume was set to 2 mL. The materials (brought up in methanol at ~100 mg/mL) were eluted 

with a flow rate of 20 mL/min and an isocratic gradient of 40% acetonitrile in water with 0.01% 

TFA for 20 min, then 10 min isocratic wash with 95% acetonitrile in water with 0.01% TFA, 

ended with a 10 min equilibration with 40% acetonitrile in water with 0.01% TFA. Fractions 

containing compounds 4-6 were then subject to one round of semi-preparative HPLC purification 

using Shimadzu LC-20AT system equipped with a reverse-phase Phenomenex Lunaâ 5 µm 

Phenyl-Hexyl 100 Å (250 ´ 10 mm) column. The injection volume was set to 200 µL. The 

materials (brought up in methanol at ~10 mg/mL) were eluted with a flow rate of 4 mL/min and 

an isocratic gradient of 40% acetonitrile in water with 0.01% TFA for 30 min, then 7 min 

isocratic wash with 95% TFA in water with 0.01% TFA, ended with a 7 min equilibration with 
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40% acetonitrile in water with 0.01% TFA, yielding 0.4 mg/L of 4, 1 mg/L of compound 5, 0.05 

mg/L of 6, and 0.2 mg/L of 7. 

The fractions obtained from initial preparative RF-HPLC fractionation that contain 

compound 1-7 were then subject to two to three round of semi-preparative HPLC purification 

using Shimadzu LC-20AT system equipped with a reverse-phase Phenomenex Lunaâ 5 µm 

Phenyl-Hexyl 100 Å (250 ´ 10 mm) column. Fractions that contain compounds 1, 2, and 3 

(brought up in methanol at ~5 mg/mL) were eluted with a flow rate of 4 mL/min and an isocratic 

gradient of 30% acetonitrile in water with 0.01% TFA for 30 min, then 10 min isocratic wash 

with 95% acetonitrile in water with 0.01% TFA, ended with a 10 min equilibration with 5% 

acetonitrile in water with 0.01% TFA with similar yields. Fractions that contain compounds 4-7 

were eluted with a flow rate of 4 mL/min and an isocratic gradient of 40% acetonitrile in water 

with 0.01% TFA for 30 min, then 10 min isocratic wash with 95% acetonitrile in water with 

0.01% TFA, ended with a 10 min equilibration with 5% acetonitrile in water with 0.01% TFA 

with similar yields. 

2.7.11 Genome extraction, sequencing, assembly, and annotation 

The genomic DNA for 06-282-1I was extracted using the Lucigen MasterPure Complete 

DNA and RNA Purification Kit following the manufacturer’s protocol with minor modifications 

including an additional lysis step using EDTA (50mM) and lysozyme (10 mg/mL). The genomic 

DNA was sequenced at the MiGS-Seq Center in Pittsburg. The sample library was prepared 

using the Illumina DNA Prep kit and IDT 10bp UDI indices and sequenced to 1GB depth on an 

Illumina NextSeq 2000 platform, generating paired end reads (2x151bp) with a quality score of 

Q30 or higher. Demultiplexing, quality control and adapter trimming was performed with bcl-

convert (v3.9.3).74 A total of 7,538,537 read pairs were obtained. The 06-282-1I strain was 
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assembled using Unicycler v0.4.8 with the following parameters: -t 8 –min_fasta _length 300 –

keep 2 –no_pilon, and polished using Pilon 1.23 with 2 rounds of iteration as part of the 

comprehensive genome analysis service at PATRIC.75 QUAST v5.0.2 was used for quality 

assessment and Bandage 0.8.1 for assembly visualization. The resulting assembled genome has 

an estimated length of 7,871,553 bp long and an average GC content of 72.19% (Figure S6). The 

genome was annotated using RAST tool kit (RASTtk)76 to reveal a total of 7,466 protein coding 

sequences (CDS), 53 transfer RNA (tRNA) genes, and 2 ribosomal RNA (rRNA) genes. The 

annotation included 1,908 hypothetical proteins and 5,558 proteins with functional assignment 

that included 1,314 proteins with Enzyme Commission (EC) numbers,77 1,139 with Gene 

Ontology (GO) assignments,78 and 1,023 proteins that were mapped to KEGG pathways.79  

Whole-genome similarity metrics including Average Nucleotide Identity (ANI) and 

DNA-DNA Hybridization (DDH) were obtained to estimate genetic relatedness and define 

phylogeny. ANI values were calculated using the gANI method in the FBAC.fmicrobe.cn 

platform.29 For the phylogenomic inference, all pairwise comparisons among the set of genomes 

were conducted using GBDP and accurate intergenomic distances inferred under the algorithm 

'trimming' and distance formula d5.28 100 distance replicates were calculated each. Digital DDH 

values and confidence intervals were calculated using the recommended settings of the GGDC 

3.0.28, 29 A whole-genome sequence-based phylogenetic tree was built using the TYGS analysis 

method. The tree was inferred with FastME 2.1.6.1 from GBDP distances calculated from 

genome sequences.80 The branch lengths were scaled in terms of GBDP distance formula d5. The 

numbers above branches were GBDP pseudo-bootstrap support values >60 % from 100 

replications, with an average branch support of 92.8 %. The tree was rooted at the midpoint. The 

genome sequence of S. papuanewguineus was then analyzed by antiSMASH in relax mode to 
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identify plausible BGC of compound 1-7. All genes in the putative phenazine BGC were 

annotated by protein BLAST.81  

2.7.12 Cell viability assay 

The Cell Titer-GloÒ assay kit was purchased from Promega and was performed according 

to the manufacturer’s instructions. Briefly, 2,000 cells of Mia Paca -2 cell line were plated in a 

white, 96-well tissue culture-treated plate. Cells were treated with the compounds at different 

concentrations in triplicate and incubated for 48 hours. After 48 hours, the cell culture media was 

replaced with 100 µl of OptiMEM and then lysed with 100 µl of Cell Titer-GloÒ reagent. Total 

luminescence was read within 1 h using a BioTek Cytation 3 reader. Data was normalized and 

processed in GraphPad Prism 9. 

2.7.13 Cellular thermo shift assay (CETSA) 

Cultured HEK 293 cells were trypsinized and washed with PBS. The cells were then 

diluted in PBS supplemented with protease inhibitors. The cell suspensions were freeze-thawed 

three times using liquid nitrogen. The soluble fraction (lysate) was separated from the cell debris 

by centrifugation at 15000 rpm for 25 minutes at 4°C.The cell lysates were then divided and 

treated with either the control (DMSO) or the compounds. After one-hour incubation at room 

temperature, lysates were divided into 100μL aliquots and heated at 42°C ,49°C and 53°C for 3 

minutes followed by cooling at 20°C for 3 minutes. The heated lysates were centrifuged 15000 

rpm for 25 minutes at 4°C to separate the soluble fractions from precipitates. The supernatants 

were transferred to new tubes and analyzed by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE). Samples were run on a 4-12% Bis-Tris gel and transferred to 

PVDF membrane in Towbin’s Buffer. The membrane was blocked in 5% milk for 1 h at 25 °C, 
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and then incubated with a primary antibody (overnight at 4 °C) and secondary antibody (1 h at 

25 °C). eIF4E antibody was purchased from cell signaling technology (# 9742) and Actin-HRP 

antibody was purchased from Santa Cruz Biotechnology (#sc-47778). Proteins were visualized in 

a Biorad ChemiDoc imaging system. Figures were formatted in Adobe Illustrator. 

2.7.14 M7GDP cap affinity assay 

The cap pull-down assay was carried out as previously described.16 For whole cell cap 

pull-down, cells were grown in 6-cm dishes and treated with the compound for 6 h. Cells were 

then lysed in cap pull-down buffer (50 mM HEPES-KOH (pH 7.5), 150 mM KCl, 1 mM EDTA, 

2 mM DTT and 0.1% Tween 20) containing protease inhibitors and freeze-thawed three times. 

The cell lysate was centrifuged at 15,000 rpm for 25 min. The supernatant was subsequently 

incubated for 2 hours at 4 °C with m7GDP agarose resin. Beads were washed 3´ with the cap 

pull-down buffer, 1´ with TBS, and 1´ with water. Proteins were eluted by boiling in 2× LDS 

sample buffer for 10 min at 70 °C, resolved on a 4-12% Bis-Tris gel and proteins were probed 

by western blot as described above. For cell lysate cap pull-down, cells grown in a 6-cm tissue 

culture plate were harvested in cap pull-down buffer and freeze-thawed three times. The cell 

lysate was centrifuged at 15000 rpm for 25 minutes to remove cell debris. The supernatant was 

incubated with the compound for 1 hour at room temperature and pull-down and western blot 

was carried out as described for whole cell cap pull-down assay. 
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Chapter 3 An ECD and NMR/DP4+ Computational Pipeline for Structural Revision and 

Elucidation of Diphenazine-Based Natural Products 

 

The complete structural characterization of natural products, especially those produced in 

sub-microgram levels, is recognized as a significant bottleneck in the field of natural product 

discovery and is highlighted on multiple occasions by structure revisions reported in the 

chemical literature.1 Also, traditional natural product characterization approaches often lead to 

misreporting absolute configurations of identified new natural products.1 This challenge is 

epitomized by the diphenazine class of molecules which contain three bridged stereocenters, 

several conformations, and ring fusions. The bond length of bridged stereocenters is usually too 

close, leading to experimental NMR parameters that are a weighted average of an ensemble of 

conformations using empirical NMR and spatial analyses using ROESY/NOESY. In addition, 

the determination of phenol positions in diphenazines is often challenging or even neglected 

because of the lack of NMR correlations between the phenols and the rest of the molecules. Even 

though 1H-15N HMBC experiments can predict the phenol positions, it requires a large amount of 

compound which can be unobtainable for low-yielding molecules. 

Computational analyses of spectroscopic data, such as Optical Rotation Dispersion 

(ORD), Electronic Circular Dichroism (ECD), and NMR, have been widely used for the 

structural characterization of complex natural products.2, 3 In particular, the calculation of 1H and 

13C NMR data using Density Functional Theory (DFT) has been recently proven to be a reliable 

tool for the structural revision of natural products.4, 5 The development of DP4 and DP4+ 
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probability measure by Goodman and Sarotti further enabled the statistical comparison between 

calculated and experimental NMR data.6, 7 In this study, we developed a computational pipeline 

using ECD and Gauge-Independent Atomic Orbital (GIAO) NMR shift calculations coupled with 

DP4+ probability measure to determine the relative and absolute configurations, as well as 

phenol positions of diphenazine-based natural products. Using this pipeline, we propose the 

structural revision of molecules isolated from our efforts, phenazinolin D (4),8 izumiphenazine A 

(5),9 and baraphenazine G (7).10 We also report the isolation and structural elucidation of two 

new diphenazines, izumiphenazine E (6) and baraphenazine H (3), guided by the same 

computational platform. Importantly, we proved the feasibility of NMR/DP4+ analysis for 

determining not only relative/absolute configurations but also phenol positions in diphenazines, 

further expanding the limits of this tool for the complete structural elucidation of complex 

natural products. 

 

3.1 ECD and NMR Computations in Structure Elucidation of Natural Products 

3.1.1 Density functional theory (DFT) functionals, basis sets, and solvent effects 

First-principles calculations aim to describe a molecule’s physical properties at the scale 

of atoms and subatomic particles using the theories of quantum mechanics.11 The quantum 

mechanical description of a molecule is based on the nonrelativistic electronic Schrödinger 

equation in the Born-Oppenheimer approximation.2 However, the Schrödinger equation is too 

complicated to be exactly solved for more than a few electrons. One commonly used alternative 

is the Hartree-Fock method, named after Douglas Hartree and Vladimir Fock who developed this 

method in the late 1920s. This method assumes that the many-electron wave function of a system 

can be approximated as an independent linear combination of one-electron wave functions, 
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which are also known as molecular orbitals. It considers the electrostatic repulsion between 

electrons and exchange interaction, resulting from the requirement that wave functions are 

antisymmetric with respect to exchanging two electrons. However, one of the drawbacks of the 

HF method is that it assumes that electrons move independently of each other, neglecting the 

electron correlation. 

Another widely used alternative is density functional theory, or DFT, first proposed by 

Pierre Hohenberg and Walter Kohn in the 1960s and later developed by Walter Kohn and Lu Jeu 

Sham into Kohn-Sham DFT. In Kohn-Sham DFT, all the properties of the ground state of a 

molecule are determined by its total electron density rather than the wave functions.2 This 

method involves an initial calculation of the energy of non-interacting electrons, neglecting both 

exchange energy (calculated by the HF method) and correlation energy (also neglected in the HF 

method). The energy can be corrected by additional exchange-correlation functionals which 

estimate the exchange and correlation energies by summing separate exchange and correlation 

functionals. In general, the name of a DFT functional is the combination of the names of the 

exchange and correlation functionals. For instance, the BLYP functional is composed of the 

exchange functional developed by Becke (B)12 and the correlation functional developed by Lee, 

Yang, and Parr (LYP).13 

There are several main categories of DFT functionals, including (1) local density 

approximation (LDA), which assumes that the exchange and correlation energy density of a 

point can be estimated using a function of the electron density only at that point; (2) generalized 

gradient approximation (GGA, such as BLYP) that assumes that the energy density at a point 

also depends on the gradient of the electron density at that point; (3) meta-GGA functionals 

(such as M06-L) that include additional terms beyond the GGA that depend on the kinetic energy 
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density and its derivatives; (4) hybrid functionals (such as B3LYP or BPE0) which combine the 

LDA or GGA with a fraction of HF exchange energy; (5) range-separated hybrid functionals 

(such as CAM-B3LYP) that take into account the different behavior of the electron density at 

different distances by using different functionals for the exchange-correlation energy at long-

range and short-range distances; and (6) functionals with empirical dispersion (such as B3LYP-

D3) that improves the accuracy by taking into account London dispersion forces.2 Out of all 

available DFT functionals, B3LYP is the most used functional in DFT calculations.14 First 

proposed in 1994, it is a hybrid functional that includes GGA exchange and correlation functions 

and a moderate amount (20%) of HF exchange energy, with three empirical parameters.15 It is 

typically the first-attempt functional general-purpose calculations with relatively low 

computational costs and high accuracy. Despite its popularity, B3LYP has some major problems, 

including the inaccurate calculation of the energies of conformers and the overestimation of 

energy of many UV/ECD transitions.16 In these cases, alternative functionals including M06-2X, 

PBE0, B3LYP-D3, CAM-B3LYP, and wB97X-D should be considered.  

Basis sets are a set of mathematical functions used to describe the molecular orbitals of a 

molecule. The most common choices for the basis functions are hydrogen-like s, p, and d atomic 

orbital centered at each nucleus. These basis functions are represented by Gaussian exponentially 

decaying functions and a sum of multiple Gaussian functions is often needed to describe the 

exponential radial decay accurately. The most popular basis sets are the 6-31G and its variants 

that belong to the Pople basis sets.17 In these 6-31G sets, each core orbital is described by one 

basis function which is the sum of six different Gaussian functions (the ‘6’ in the name of this 

basis set). In addition, each valence orbital is described by two independent basis functions: one 

comprised of 3 Gaussian functions (the ‘3’ in the name of this basis set) and one comprised of 1 
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Gaussian function (the ‘1’ in the name of this basis set). As a result, 6-31G is considered a 

double-zeta (double-z) basis set. Similarly, 6-311G is considered a triple-z basis set whose 

valence orbitals are described by 3 independent basis functions, one composed of 3 Gaussian 

functions, and the other two composed of 1 Gaussian function each.  

This minimal set of functions can be further enriched into, for example, 6-311++G(d,p) 

using additional polarization basis functions and diffuse basis functions. Polarization basis 

functionals (p-functions for hydrogen atoms denoted as * or (p) and both p-functionals and d-

functionals for H and non-H atoms denoted as ** or (d,p)) provide the mathematical flexibility 

needed to describe changes in the electronic charge when a chemical bond is forming. Diffuse 

basis functionals are slowly decaying Gaussian functions that do not significantly change the 

electron density in the proximity of the nucleus, but still maintain a considerable value when far 

away from the nucleus, which provides a more realistic description of the electron density far 

from the nuclei. Pople basis sets denote diffuse functions for non-H atoms as + and for all atoms 

as ++. Diffuse functions are known to be crucial when anions are involved,18 when charge-

transfer UV transitions are present,16 and when performing optical rotation (OR) calculations.19, 

20 Other basis sets, including Dunning’s basis set21 and Ahlrichs basis set,22 have also been 

proposed and used in calculations. Generally, a triple-z basis set such as 6-311++G(d,p) is 

adequate for DFT calculations of medium-sized natural products.  

When a quantum mechanical calculation of the physical properties of an isolated 

molecule is conducted, it is described as an in vacuo calculation, or calculation of a molecule in 

the gas phase. It neglects all the potential interactions between the molecule and the solvent, 

which often affect on the geometry and energy profiles of the molecule. The solvent effect can 

be calculated using two major categories of models, explicit solvation models, and implicit 
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solvation models.18 In explicit solvation models, hundreds of individual solvent molecules 

surrounding the solutes are included to accurately reproduce the various spheres of solvation. As 

the more popular solvent model, the implicit solvation model treats the solvent as a continuum 

medium, stimulating the solvent’s the average effect on the solute. The most commonly used 

implicit solvation model is the polarizable continuum model (PCM). In this model, the 

continuum solvent is treated as a dielectric that becomes polarized in response to the polarity of 

the solute, which, in turn, affects the polarity of the solute. PCM considers the solvent’s 

polarization caused by the solute as well as the electrostatic interactions between the solvent and 

the solute, which are crucial in the calculations of properties of molecules in different solvent 

systems.  

3.1.2  ECD 

With the development of computing power, the reliability and convenience of quantum 

mechanical prediction of chiroptical properties have significantly increased. As a result, there 

have been overwhelming successes in using computational methods for structural elucidation 

and revision, especially in determining the absolute configurations of complex natural products.2, 

23 There are several chiroptical techniques currently used for stereochemistry determinations, 

including specific optical rotation (SOR), optical rotation dispersion (ORD), electronic circular 

dichroism ECD, and vibrational circular dichroism (VCD). SOR is based on circular 

birefringence (CB), which measures the difference in refractive indices of left- and right-

circularly polarized light at a fixed wavelength (typically yellow sodium D line at 589 nm). ORD 

measures the change in optical rotation as a function of wavelength in the near-infrared (NIR) 

and UV-Vis range. ORD and ECD provide similar information and are mathematically linked, 

but ECD is much more sensitive and is more commonly used nowadays.  
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ECD (electronic circular dichroism) is a highly sensitive chiroptical technique used for 

stereochemical studies of natural products. It relies on the Cotton effect, which is the difference 

between the absorption coefficients of left- and right-circularly polarized electromagnetic 

radiations in the UV-Vis range, or differential UV absorption. A positive Cotton effect means 

that CD increases as the wavelength decreases, while a negative Cotton effect means that CD 

decreases as the wavelength decreases. One limitation of ECD is that it requires at least one 

chromophore in close proximity to the chiral center(s). To address this, many chemical 

derivatization methods introduce chromophores in UV-inactive molecules. VCD (vibrational 

circular dichroism) is another technique that measures the difference between the absorption 

coefficients of left- and right-circularly polarized infrared radiation (IR) during vibrational 

excitation. Unlike ECD, it doesn't require the presence of a chromophore, and the IR spectrum 

provides richer information. However, it suffers from low sensitivity, requiring milligrams of 

material and hours of acquisition time, and there are no simple methods to correlate the VCD 

spectrum with the molecule's stereochemical properties without quantum mechanical 

calculations. Nevertheless, ECD is widely used because of its high sensitivity (a few micrograms 

of material is sufficient) and the availability of ECD spectropolarimeters. In contrast, VCD has 

lower sensitivity and is more complex to analyze but provides more detailed information about 

molecular properties. 

ECD relies on the transitions between ground states and excited states in a molecule, 

which are computed using time-dependent DFT (TDDFT). TDDFT describes how the electron 

density of a molecule behaves in the presence of an electromagnetic field. A UV/ECD 

calculation output is a set of electronic transitions, each characterized by its energy difference 

(intensity) and wavelength. In UV spectroscopy, the intensity is proportional to the dipole 
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strength, while in ECD, it's proportional to the rotational strength (positive or negative Cotton 

effect). The procedures and outputs for ECD calculations will be discussed in detail in Chapter 

3.2. 

3.1.3 GIAO NMR and DP4+ 

Nuclear magnetic resonance (NMR) is the most important technique in the field of 

natural product chemistry for stereochemical studies. NMR parameters such as chemical shifts 

(mainly protons and carbons), two- and three-bond proton-proton coupling constants (3JH,H) and 

nuclear Overhauser effects (NOEs) provide useful information for conformational and 

configurational assignments. Besides the empirical NMR experiments, the quantum mechanical 

calculation of 1H and 13C NMR using DFT methods has been proven to be a reliable tool for the 

structural revision of natural products.4, 5 Out of the methods developed for calculating DFT-

NMR, including the gauge-including atomic orbitals method (GIAO), the individual gauge for 

localized orbitals method (IGLO), and the continuous set of gauge transformation method 

(CSGT), GIAO is the most commonly used for its relatively low computational cost and high 

accuracy.24-26  

After the NMR parameters of one or more candidate structures have been calculated, it is 

necessary to use some methods such as ANN-PRA, CP3, and DP4, to evaluate the fit between 

the theoretical and experimental data, either to select among possible candidate structures or to 

accept or reject a single proposed structure.27 ANN-PRA, or Artificial Neural Network Pattern 

Recognition Analysis method, evaluates the correctness of a single proposed structure.28 CP3 

method assigns the absolute configurations by comparing two diastereomers’ experimental and 

calculated data.29 DP4 is used to select between candidate structures using the experimental data 

of only one stereoisomer,6 which matches better with our needs in this research project.  
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The DP4 method in R-based applet was originally developed by Goodman in 2009 to 

improve CP3 for determining the correct structure among multiple plausible isomers.6 However, 

it can sometimes be challenging to use DP4 to distinguish between closely related isomeric 

compounds when only one set of experimental values is available, leading to incorrect 

configurational assignments. An improved version of DP4, called DP4+, was then developed by 

Sarotti with a great accuracy improvement, mainly by including unscaled data and using higher 

levels of theory.7 It is also more user-friendly: all analyses can be performed in a publicly 

available EXCEL sheet and no coding experience is required. There are a few other versions of 

DP4 developed by the same group, including J-DP4,30, 31 which include proton-proton coupling 

constants as an additional parameter in the DP4 analyses, and customizable DP4+,31 where 

different statistical parameters in the DP4+ analyses could be tuned for different levels of theory 

used. An automated NMR data analyses tool, DP4-AI, was also developed by Goodman to 

enable automatic processing and assignment of raw 1H and 13C NMR data and structure 

elucidation of the molecules of interest.32 We chose DP4+ for this study because it is both highly 

accurate and easy to use. and will be further elaborated in Chapter 3.2.  

 

3.2 The Complete Protocol for ECD and NMR Calculations 

An overview of the entire calculation process is described in Figure 45. In this sub-

chapter, we will elaborate on these processes from the initial conformational search of the 

starting 3D model of the molecule of interest all the way to the final quantum mechanical 

calculations of ECD and NMR chemical shifts.  

3.2.1 Conformational search using CONFLEX 
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All physical and chemical properties of a molecule are dependent on its conformation. A 

medium-sized natural product may possess thousands of conformers; depending on their 

associated energies, only a fraction are significantly populated. Modern algorithms for 

conformational search require fast energy minimization and conformer search of a flexible 

molecule, often being done using molecular mechanics force fields rather than quantum 

mechanical calculations. Force field is a mathematical model used to describe a molecule’s 

geometry in terms of its potential energy profile (bond length, bond angle, dihedral angle, 

electrostatic, London dispersion, etc.). The most commonly used force field is Merck molecular 

Figure 45. An overview of the proposed computational pipeline. 
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force field (MMFF94) first proposed by Merck Research Group in 1996.33 MMFF94s (‘s’ for 

‘static’) was later developed as a variant of MMFF94 which reflects time-averaged geometries 

better than MMFF94.34  

There are mainly three conformational search methods: systematic search, Monte Carlo 

methods, and Molecular Dynamics (MD).2 A systematic search attempts to analyze all the 

possible geometries of a molecule by adjusting each torsion angle of the molecules and 

considering all the possible combinations between these values. Afterward, each geometry is 

subjected to minimization to the closest local minimum. While this method guarantees that no 

conformer is overlooked, it is only feasible for small, acyclic molecules with a limited flexible 

part. MD simulates a molecule’s conformational changes using classical Newton’s laws of 

motion in a force field. During this simulation, the geometry of the molecule is recorded at set 

intervals and used as the starting point for minimization. The Monte Carlo method uses random 

conformational changes to explore the potential energy surface of a molecule in order to identify 

its low-energy conformers. In this method, the Cartesian coordinates of a molecule are changed 

to random values, and then generated geometries are evaluated based on the energy difference 

between the current and previous conformations. This process is repeated until the lowest-energy 

conformations are identified. Since it is the most used method, many tools have been developed 

to incorporate the Monte Carlo method into conformational search, including GMMX module of 

GaussView 6, MacroModel, Spartan, and CONFLEX. As CONFLEX is the only software we are 

aware of that supports Monte Carlo conformational search using MMFFs, it was chosen for the 

conformational search of our molecules.  
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In CONFLEX 9 (Rev. B, Tokyo, Japan), the starting 3D structure of the molecule of 

interest will first undergo ‘Geometry Optimization’ using MMFFs in the gas phase (Figure 46). 

The optimized structure will then undergo ‘Conformation Search’ using the same MMFFs in the 

gas phase. Depending on how flexible the molecule is, the search limit can be adjusted, typically 

ranging from 1-3 kcal/mol. The higher the search limit set, the longer it will take to finish the 

search. This step will yield a list of conformers of the molecule labeled with their energies and 

populations calculated according to the Boltzmann equation. The Boltzmann equation states that 

the ratio of two conformers’ populations depends only on their energy difference. For instance, 

when there is a 2.5 kcal/mol energy difference between two conformers, it means that they have 

a population ratio of 99:1, with the higher energy conformer only accounting for 1% of the total 

population. Since the energy of conformers is only evaluated using an imperfect force field at 

this stage, the threshold used to filter out high-energy conformers should be set high, typically 5-

20 kcal/mol. An extremely low threshold may filter out some important conformers while an 

extremely high threshold will create massive computation demand in the subsequent 

optimization step.  

Figure 46. Geometry optimization, conformation search, and the output list of conformers 
with their energy and population profiles using CONFLEX. 
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The Cartesian coordinates of each picked conformer are saved into one separate .mol file. 

Then each .mol file is converted into a .gjf file (Gaussian input file) using Chem3D. Each .gjf 

file contains not only the Cartesian coordinates for each atom but also the molecule’s net charge 

and spin multiplicity (Figure 47). This information will be incorporated into the script for the 

next round of the calculation. 

3.2.2 Geometry optimization 

After the low-energy conformers are picked, they are then subjected to quantum 

mechanical optimization using Gaussian 16. This process is computationally demanding because 

energy minimization is an iterative numerical procedure that requires a DFT calculation for each 

step. Typically, a total of 20-100 steps are required to reach a local minimum. As a result, a 

relatively low-level basis set (B3LYP/6-31G(d)) was selected for this step. Also, solvent effects 

need to be considered from this step all way to the final DFT/TDDFT calculations. 

Figure 47. An example of the .gjf file of a conformer. 
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A sample of the Gaussian 16 optimization script is shown in Figure 48. It contains 

information about the number of nodes, cores, and memory requested and used, the directory of 

the script, the checkpoint files, and the output file, the level of theory and solvent effect model 

used in the calculation, and the Cartesian coordinates copied from the .gjf files of selected 

conformers. One important note is that the speedup of the calculation is not perfectly 

proportional to the number of CPU cores used. As a result, tests run are often needed to find the 

‘sweet spot’ with a balance between CPU hour consumed and the actual run time. For instance, 

this optimization step of our diphenazine class of molecule took about 9 minutes using one node, 

32 cores, and 70 GB of memory, or 16 minutes using one node, 16 cores, and 70 GB of memory.  

Figure 48. A sample of the script for Gaussian 16 optimization with explanations. 
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The output file records all the iterative steps and their results in the optimization process. 

The most important part of this log file is the potential energy of the optimized geometry, which 

Figure 49. An example of the ECD calculation script. 

Figure 50. An example of energy search in the log file of Gaussian optimization and energy 
comparison between all conformers using EXCEL. 
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can be found by searching ‘SCF done’. SCF stands for the Self-Consistent Field, the method 

used to calculate a molecule’s electronic structure, or potential energy. The lowest energy from 

the list, or the energy associated with the largest cycle number, must be recorded for later 

comparison. The energy is in the Hartree-Fock unit, or atomic unit (A.U.), and it can be 

converted to kcal/mol by 1 A.U. = 627.5095 kcal/mol. After the energies for all conformers are 

recorded and ranked in EXCEL, the relative energy of each conform with respect to the lowest-

energy conformer can be calculated. At this stage, a strict filter is often applied. Only those 

conformers that are within 2-3 kcal/mol (1% population) compared to the lowest energy 

conformer will be selected for the final ECD or NMR calculations. The log files of these selected 

conformers need to be converted into .gjf files using GaussView 6. These .gjf files contain 

Cartesian coordinates of the optimized conformers that are used for the final calculation of 

ECD/UV and NMR chemical shifts. 

3.2.3 ECD/UV calculation and data interpretation 

The ECD (TDDFT) calculation is carried out in Gaussian 16 as well and a higher level of 

theory and a larger basis set is usually required for high accuracy. APFD (Austin-Frisch-Peterson 
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Figure 51. The comparisons between the experimental ECD curve and the 
calculated ECD curves using 30, 50, and 100 excited states of the 10S,11S,21S 
stereoisomer of phenazinolin D. 
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Dispersion)35 was selected over B3LYP for this study because B3LYP has some problems with 

the inaccurate calculation of the energies of conformers and the overestimation of energy of 

many UV/ECD transitions16 and it ignores dispersion forces. APFD/6-311G(2d,p) was the final 

basis set in the ECD calculations conducted in this study.  

A representative script for this step is shown in Figure 50. Solvent effect using the PCM 

model is necessary and the solvent needs to be consistent from experimental to optimization and 

to this final calculation. Since ECD relies on the transition between ground and excited states, it 

is also important to define how many excited states to calculate for each time point (or 

Figure 52.ECD averaging using SpecDisc. 
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wavelength). 30 excited states is usually a fair starting point and increasing the number of 

excited states would provide more details only in the low wavelength range (190 nm to 240 nm) 

but not the higher wavelength (>240 nm, Figure 51). For the diphenazine class of molecules in 

this study, this calculation (using 32 CPU cores) took around 1 hour 10 min for 30 excited states, 

1 hour 43 min for 50 excited states, and 3 hours 4 min for 100 excited states. Therefore, it is 

crucial to perform testing runs to determine how many excited states are sufficient to yield ECD 

curves that best match the experimental ones.  

After the calculated ECD/UV curves for each conformer are obtained, Boltzmann-

weighted summation using SpecDisc is calculated.36 In the software, the ECD/UV spectrums and 

the energy associated with each conformer and average the ECD/UV curves using the population 

calculated by the Boltzmann equation was extracted(Figure 52). The averaged spectrums can 

then be exported into .csv files for comparison with the experimental ones.  

Figure 53. An example of the script for NMR calculation. 
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There are a few parameters that can be modified for ECD spectrums. One of them is the 

half-width of the Gaussian curve, or s, expressed in eV. The half-width is not predicted by 

quantum mechanical calculation, and it is an adjustable parameter that can be optimized to better 

fit with the experimental curve. In many ECD calculations, while the sign and relative intensities 

of state transitions are correctly predicted, the calculated transition energies are not accurate, 

resulting in a red- or blue-shift of wavelength. As a result, the calculated ECD curve can be 

shifted along the wavelength (or X-axis) from -30 nm to +30 nm to better match with the 

experimental curve. Finally, the overall intensity of the calculated curve (or scaling factor) can 

be adjusted. More often, when there is a significant difference between the intensity of calculated 

and experimental ECD curves, instead of changing the scaling factor, they could be plotted using 

separate Y-axes with different scales like what we did in this study.  

3.2.4 GIAO NMR calculation and data interpretation 

NMR chemical shift calculation is also done using Gaussian 16 and GaussView 6. The 

most commonly used DFT functional is B3LYP and another family of hybrid functionals based 

on the Perdew-Wang exchange correlations such as mPW1PW91.37 In this study, we chose 

B3LYP/6-311+G(d,p) as our functional and basis set with PCM as the solvent model (DMSO) 

and GIAO as our method. An example of the script for this calculation is shown in Figure 53. 

This process is much less computationally demanding than ECD calculations, usually less than 

10 min when using 32 cores for diphenazine class of molecules.  
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The output log file can then be opened in GaussView 6 for data visualization and the 

magnetic shielding tensors of all atoms of the molecule can be exported into .txt files (Figure 

54). One important note is that the numbering of the atoms by GaussView 6 is based on the rank 

(from low to high) of the shielding tensors and will need to be reorganized to match your 

numbering of the atoms in the molecule for future DP4+ analyses. Shielding tensors of the 

reference compound, tetramethylsilane (TMS), using the same exact procedure for the DFT 

calculation of the molecule (B3LYP/6-31G(d) with PCM in DMSO for optimization and 

B3LYP/6-311G(d,p) with PCM in DMSO for the DFT calculation) also need to be calculated. 

The theoretical chemical shift (di) can be calculated using:  

di = sref - si + dref, 

where sref and si are the calculated shielding tensors of the nuclei of interest (proton and carbon) 

of the reference compound and the molecule and dref is the experimental chemical shifts of the 

reference compound (set to zero for both proton and carbon for TMS). The calculated shielding 

tensors can also be corrected using:  

Figure 54. Calculated NMR shielding tensors in GaussView 6. 
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di = (intercept -  dexp)/slope, 

where the intercept and slope are empirical values obtained from the linear regression of the 

calculated shielding tensors of the molecule against its experimental chemical shifts.  

The calculated chemical shifts of all selected conformers are then averaged using 

Boltzmann population, which can be calculated in EXCEL using the energy recorded from the 

DFT log files (Figure 55). The same procedures are repeated for another possible isomer and the 

calculated NMR chemical shifts of all isomers are compared in the DP4+ EXCEL sheet. In this 

sheet, the functional (B3LYP or mPW1PW91), solvent model (PCM or gas phase), basis set (6-

31G(d), 6-31G(d,p), 6-31+G(d,p), 6-311G(d), or 6-311G(d,p)) and the type of data (unscaled 

Figure 55. Boltzmann average of calculated NMR chemical shifts and DP4+ analyses of two possible isomers. 
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shifts, scaled shifts, or shielding tensors) will be selected according to the calculation methods. 

Based on the probability calculated on the sheet, the isomer that best fits with the experimental 

data can be determined. 

 

3.3 Structural Revision and Elucidation of Diphenazines 

Using the pipeline described in Chapter 3.2, we propose the structural revision of 

phenazinolin D (4),8 izumiphenazine A (5),9 and baraphenazine G (7),10 and the structural 

elucidation of two new diphenazines, izumiphenazine E (6) and baraphenazine H (3, Figure 56). 
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Compound 2 was isolated as a dark yellow solid with a molecular formula of 

C25H16N4O6, which was derived from an HRESIMS ion peak of C25H17N4O6 [M+H]+ (m/z: 

found 469.11443, calcd 469.11481). Proton and COSY NMR spectra exhibited three aromatic 

proton spin systems: H-15(dH 7.36), H-16(dH 7.60), and H-17(dH 7.07); H-7(dH 7.89) and H-8(dH 

8.06); and H-2(dH 7.28) and H-3(dH 8.59, Table S2). Proton and HSQC spectra suggested the 

presence of two phenolic alcohols, 1-OH(dH 12.03) and 18-OH(dH 10.61); one non-phenolic 

alcohol, 11-OH(dH 6.20); one carboxylic acid, 25-COOH(dH 14.91); 3 methines, H-10(dH 3.82), 

H-11(dH 4.79), and H-21(dH 5.74); and 1 methylene, H-12ax(dH 3.80) and H-12eq(dH 3.39). The 

observed COSY correlations between H-11(dH 4.79)/H-10(dH 3.82), 11-OH(dH 6.20), and H-

21(dH 5.74), and H-10(dH 3.82)/H-12ax(dH 3.80), H-12eq(dH 3.39) indicated the presence of a 

rigid oxabicylco[3.3.1]nonadienol moiety for connecting the 7,9-disubstituted tetrahydro-

phenazine-1,8-diol unit and 8,9-disubstituted 1-hydroxyl-phenazine-4-carboxylic acid unit 

(Figure 56). The positions for H-10(dH 3.82) and H-21(dH 5.74) were assigned based on the 

HMBC correlation between H-21(dH 5.74)/C-20(dC 146.7) and H-10(dH 3.82)/C-9(dC 123.0) and 
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Figure 57. Key ROESY correlations in 2-5, and 7; all shown 3-D structures were the most stable conformer of 
each molecule optimized at B3LYP/6-311+G(d,p) level with solvent effects of dimethyl sulfoxide (DMSO) 
included using a polarizable continuum model (PCM).   
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the ROESY correlation between H-10(dH 3.82)/H-8(dH 8.06, Figure 57). Because of the strict 

geometry of the bicyclic rings, H-10(dH 3.82) and H-21(dH 5.74) must point in the same facial 

direction, leaving only four possible configurations for the three chiral centers: 2a (10S,11S,21S), 

2b (10S,11R,21S), and their enantiomers. Although strong ROESY correlations were observed 

between H-10(dH 3.82)/H-11(dH 4.79) and H-21(dH 5.74)/H-11(dH 4.79), the calculated atomic 

2a 

2

2a: 11S

N

N
HO

H

H
N

N

O

1

2
3

4

5

16

7

6

18

17

15
14

13 12
10

9

22

11
21

20
19

24

23

8HO

HO

2b: 11R

O

OH

baraphenazine F (2)

Figure 58. The comparisons of the atomic distances and dihedral angels of 2a and 2b; all shown 3-D structures were 
the most stable conformer of each isomer optimized at B3LYP/6-311+G(d,p) level with solvent effects of DMSO 
included using PCM model. 
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distances between  H-10/H-11 and H-21/H-11 were identical for both 2a and 2b, suggesting that 

these ROESY correlations were not sufficient in determining the relative configuration at C-11. 

Instead, the 10S,11S,21S configuration was determined based on the small vicinal coupling 

constant observed between H-11(dH 4.79) and OH-11 (dH 6.20, J = 3.7Hz), which matched better 

with the observed dihedral angle of H-11-C-11-O-11-OH-11 in 2a (50.9°) compared to 2b 

(171.0°, Figure 58).38 The obtained NMR data of 2 matched that of the known compound, 

baraphenazine F;10 however, the absolute configuration of baraphenazine F remained unknown. 

Determination of phenol positions has been challenging for diphenazine molecules, 

mainly due to the lack of NMR correlations between the phenols and the rest of the molecule. In 

addition, the sample amount requirement for 1H-15N HMBC to determine phenol positions for 
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low-yielding natural products like compound 2 (<0.05 mg/L) renders it ineffective. Therefore, to 

establish a platform for configurational analysis of the isolated molecules in our study, we 

performed ECD calculations and NMR/DP4+ analyses2, 6, 7 to determine the absolute 

configurations and phenol positions of 2.  

First, we randomly selected configurations 2a and 2b as the starting point and calculated 

the theoretical ECD of 8 possible isomers (Figure). We found that the experimental ECD curve 

matched better with 2a, 2b, 2c, and 2d compared to the other four isomers with phenol position 

at 4OH (Figure 4B). 2a and 2b were slightly favored over 2c and 2d because they shared an 

extra minor peak at ~300nm with the experimental curve. Nevertheless, we could not 

differentiate 2a and 2b solely based on ECD likely because the chromophores in 2 are too far 

from C-11. To tackle this problem, we then performed 1H and 13C NMR shift calculations of 

2a-2d and compared them with the experimental chemical shifts using DP4+ to determine the 

most probable isomer.6, 7 During our calculations, we observed that while most carbon-bound 

hydrogens showed < 0.5 ppm differences between the calculated and the experimental chemical 

shifts, exchangeable protons, especially OHs, showed much larger differences (1-OH: ~3 ppm; 

11-OH: ~4.5 ppm; 18-OH: ~2 ppm). In addition, we barely observed any improvement in the 

differences in the chemical shifts of these exchangeable protons when we switched from B3LYP 

to mPW1PW91 as the DFT functional during the calculations.37 This challenge was successfully 

overcome by the DP4+ analyses where both unscaled and scaled (corrected) chemical shifts were 

taken into account for accuracy. Our analyses showed that the isolated molecule 2 most likely 

exists as the 2a conformation with an overall DP4+ probability score of 95.95%, compared  to 

0.09% for 2b, 3.94% for 2c, and 0.03% for 2d (Figure 60). It is important to note that for 

isomers 2a, we observed a DP4+ probability of 59.50% for 1H NMR data and 36.32% for 13C 
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NMR data compared to isomer 2c with a probability of 1.41% for 1H NMR data and 63.08% for 

13C NMR data. While the carbon NMR data favored 2c as the structure isomer, the combined 

DP4+ probability supported 2a as the final structure isomer of 2, confirming the reported 

structure of baraphenazine F.10 

 

3.3.2 Baraphenazine H (3) 

Compound 3 was isolated as a dark red solid with a molecular formula of C25H16N4O6, 

which was derived from an HRESIMS ion peak of C25H17N4O6 [M+H]+ (m/z: found 469.11485, 

calcd 469.11481). Analyses of NMR spectra of 3 suggested that it shared the same 7,9-

disubstituted tetrahydro-phenazinediol and 8,9-disubstituted hydroxyl-phenazine-carboxylic acid 

units and the oxabicylco[3.3.1]nonadienol moiety as 2. It also shared the same 10S,11S,21S 

relative configuration as 2, which was supported by the small vicinal coupling constant observed 

between H-11(dH 4.74) and OH-11 (dH 6.06, J = 3.1Hz) that matched better to the observed 

dihedral angle of H-11-C-11-O-11-OH-11 in (10S,11S,21S)-3 (50.7°) rather than 

Figure 60. DP4+ probabilities of possible isomers of 2-6. All NMR 
calculations were conducted at B3LYP/6-311+G(d,p) level of theory 
with solvent effects of DMSO included using PCM model. 
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(10S,11R,21S)-3 (171.8°). However, the proton peak for 1-OH (dH 12.03) of 2 was missing in 3. 

In addition, a deshielded chemical shift of 6.15 ppm was observed for H-2, which is often 

observed in resorcinol-like structures that contain two electron-donating groups at ortho and 

para positions relative to the proton. Furthermore, an HMBC correlation between H-3(dH 8.15) 

and a carbon with dC of 177.5 ppm was observed, indicating the presence of a carbonyl at C-1 

and supporting the presence of a 6-hydroxy-4-oxo-4,10-dihydrophenazine-1-carboxylic acid 

moiety. However, the 5-NH proton was not observed in the 1H NMR spectrum, and therefore, 
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the position of this proton could not be determined solely by NMR. To tackle this challenge and 

determine absolute configurations and the positions of the carboxylic acid and phenols in 

compound 3, we utilized our established ECD calculation methodology on all four possible 

isomers, 3a-3d, as described for 2 (Figure 61). However, we could not determine which ECD 

curve fits better with the experimental ECD curve unambiguously. Therefore, we performed 

NMR calculations for the four possible isomers. Our analyses showed that 3a had an overall 

DP4+ probability score of 100.00% (98.02% for 1H NMR data and 10.64% for 13C NMR data) 

compared to 0.00% (0.00% for 1H NMR data and 89.36% for 13C NMR data) for 3b, suggestive 

of 3a as the final structure isomer of 3, which was named baraphenazine H based on its structural 

similarities to baraphenazine F (2, Figure 60). 

3.3.3 Phenazinolin D (4)  
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Compound 4 was isolated as a yellow-orange solid with a molecular formula of 

C25H16N4O6, which was derived from an HRESIMS ion peak of C25H17N4O6 [M+H]+ (m/z: found 

4a-S-MTPA ester 4a-R-MTPA ester 
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Figure 63. Mosher’s analysis to determine the absolute configuration of C-11 of 4. Fischer projection 
representations of 4a-S-MTPA ester and 4a-R-MTPA ester around C-11; differences in chemical shifts of H-10 
and H-21 in 4a-S-MTPA ester and 4a-R-MTPA ester in CDCl3. 
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469.11552, calcd 469.11481). Proton, COSY, and HSQC spectra revealed the presence of 

different aromatic proton spin systems compared to 2 and 3: H-15, H-16, and H-17; H-8; and H-

2, H-3, and H-4. The observed COSY correlations between H-11(dH 4.77)/H-10(dH 5.60), 11-

OH(dH 6.20) and H-21(dH 4.85) suggested the same oxabicylco[3.3.1]nonadienol moiety as 2 and 

3. The positions of H-10 and H-21 and the linkage between C-21(dC 30.9) and C-22 (dC 122.2) 

were established by the observed HMBC correlations between H-10(dH 5.60)/C-9 (dC 151.1), and 

H-21(dH 4.85)/C-9, C-22(dC 151.1, 122.2), suggesting the presence of 7,9-disubstituted 

tetrahydro-phenazine-diol and 8,9-disubstituted hydroxyl-phenazine-carboxylic acid units. The 

positions of the two phenols were assigned based on 1H-15N HMBC correlations between H-

17/N-18(dH 7.29/dN 324.5), H-20ax,H-20eq/N-18(dH 3.87,3.42/dN 324.5), H-4/N-5(dH 7.71/dN 

298.6), H-8/N-5(dH 7.71/dN 298.6), H-10/N-12(dH 5.60/dN 325.9), and H-15/N-12(dH 7.09/dN 

325.9). All of these NMR data matched the known molecule phenazinolin D.8 However, contrary 

to the reported relative configuration 10S,11R,21S (4b), our analysis suggested the relative 

configuration to be 10S,11S,21S (4a). Firstly, ROESY between H-11(dH 4.77) and H-12ax(dH 

3.87) was not observed, which contradicted the observed 2.5 Å distance between H-11/H-12ax in 

conformer 4b. Secondly, a weak ROESY was observed between 11-OH(dH 6.20) and H-12ax(dH 

3.87), which matched better with the observed 3.5 Å distance between 11-OH/H-12ax in 

conformer 4a compared to 4.6 Å in 4b (Figure 57). Thirdly, and most importantly, we calculated 

an overall DP4+ probability score of 100.00% for 4a (100% for 1H NMR data and 95.51% for 

13C NMR data, Figure 60). These observations and the match between the experimental ECD 

curve with the calculated ECD curve of 4a (Figure 62), unequivocally confirmed the revised 

structure. Therefore, we propose that the absolute configuration of phenazinolin D (4) should be 

corrected to 10S,11S,21S from that previously reported (10S,11R,21S).8 In order to validate our 



 124 

in silico analysis and determination of the absolute configuration of C-11, we prepared the S and 

R-MTPA esters of the hydroxyl group at C-11 of 4 (Figures 63).39 The ΔδS-R values of H-10 and 

H-21 unambiguously confirmed that C-11 possesses the S configuration, further validating our 

proposed ECD/NMR pipeline. 

3.3.4 Izumiphenazine A (5) 

Compound 5 was isolated as an orange-red solid. It has a molecular formula of 

C25H16N4O6, which was derived from an HRESIMS ion peak of C25H17N4O6 [M+H]+ (m/z: found 

469.11489, calcd 469.11481). Initially, we could not obtain a clean NMR spectrum of 5 even 

from pure HPLC fractions, and the 1H NMR spectrum always showed a mixture of 5 and another 

structurally related phenazine, which was later found to be 7 (Figure 64). This impurity, which 

shared the same isotopic mass, was generated after 5 was dried, indicating that 5 was vulnerable 

to heat. Detailed 1D and 2D NMR spectra revealed the presence of three groups of aromatic 

protons at H-15, H-16, and H-17; H-8; and H-2, H-3, and H-4; two phenols, 1-OH  and 14-OH; 

one hydroxyl group, 11-OH; one carboxylic acid, 25-COOH; 3 methines, H-10, H-11, and H-21; 

and one methylene, H-20ax and H-20eq. Further COSY and HMBC correlations indicated the 

presence of a unique tetrahydrobenzofuran-7-ol moiety connecting a 7,8-disubstituted 

tetrahydro-phenazinediol unit and an 8,9-disubstituted hydroxyl-phenazine-carboxylic acid unit. 

While all of these NMR data matched the known molecule izumiphenazine A,9 there were still a 

few concerns regarding the structure of 5.  

Due to the relatively flexible planar bicyclic moiety, H-10(dH 5.59) and H-21(dH 4.84) 

could face either the same or opposite directions, resulting in eight possible configurations: 5a 

(10S,11R,21S), 5b (10S,11S,21S), 5c (10R,11R,21S), 5d (10R,11S,21S), and their respective 

enantiomers. Since we observed strong ROESY correlations between H-10/H-21(dH 5.59/dH 
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4.84) and H-11/H-20eq(dH 5.35/dH 3.69), 5c and 5d were favored due to the observed smaller 

atomic distances. The observed vicinal coupling constant between H-10(dH 5.59)/H-11(dH 5.35 

J=5.6Hz) matched better with the dihedral angle of H-10-C-10-C-11-H-11 or 5d (59.9°) 

compared to 5c (161.6°), undeniably contradicting the reported 10R,11R,21S configuration for 

izumiphenazine A.9 The position of the phenol in the 7,8-disubstituted tetrahydro-phenazinediol 

unit was assigned to C-14 based on the observed 1H-15N HMBC correlations between H-17/N-

18(dH 7.40/dN 321.9) and H-20ax, H-20eq/N-18(dH 4.19,3.69/dN 321.9). Due to insufficient NMR 

data to determine the position of the phenol in the hydroxyl-phenazine-carboxylic acid unit, we 

first calculated the theoretical ECD curves of all possible isomers 5a-5h (Figure 65) to 

determine the absolute configuration and the positional analysis of this phenol. Since the 

experimental ECD curve matched better to 5d and 5h, we subjected these two configurations to 
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NMR/DP4+ analyses. Our analyses showed an overall DP4+ probability of 100.00% for 5d 

(100.00% for 1H NMR data and 100.00% for 13C NMR data), suggesting the phenol at position 

C-1 (Figure 60). Therefore, we propose that the absolute configuration of izumiphenazine A (5) 

should be corrected to 10R,11S,21S from the previously reported 10R,11R,21S.9 

3.3.5 Izumiphenazine E (6) 

Compound 6 was isolated as an orange-red solid with a molecular formula of 

C25H16N4O6, which was derived from an HRESIMS ion peak of C25H17N4O6 [M+H]+ (m/z: found 

469.11461, calcd 469.11481). Similarities between the NMR spectra of 5 and 6 suggested the 

same skeleton and tetrahydrobenzofuran-7-ol moiety for connecting the two phenazine units. The 

major differences were a singlet aromatic proton in 6 (dH 7.05 ppm) compared to the more 

deshielded H-8 (dH 8.15) in 5, and C-22 in 6 (dC 116.6 ppm) compared to 124.9 ppm in 5. These 
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data, combined with the observed HMBC correlations between the singlet aromatic proton (dH 
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7.05) and C-22(dC 116.6), suggested that 6 contained a flipped hydroxyl-phenazine-carboxylic 

acid unit compared to 5. However, there was insufficient information to determine whether this 

proton was at C-23 or C-24.  

To investigate dH 7.05 proton’s position and the absolute configuration of 6, we first 

calculated the ECD curves of eight possible isomers 6a-6h (Figure 66A). To reduce the 

computational cost, we chose to tentatively assign the two phenols to C-14 and C-6 based on the 

established phenol positions in compounds 2-5. Our analyses showed that the experimental ECD 

matched better with 6e and 6g, both with 10S,11R,21R configurations. NMR calculations 

indicated that 6e was favored with an overall DP4+ probability of 91.83% (97.36% for 1H NMR 

data and 23.39% for 13C NMR data) compared to 8.17% for 6g (2.64% for 1H NMR data and 

76.61% for 13C NMR data, Figure 60), establishing that the proton was at C-23. Next, to 
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determine the phenol positions, we attempted ECD calculations for isomers 6e and 6i-6k, which 

we observed to be indistinguishable (Figure 66B). The following NMR/DP4+ calculations of 

these four isomers established that 6 as the 6j conformer with an overall DP4+ probability score 

of 65.64% (66.72% for 1H NMR data and 0.01% for 13C NMR data) compared to 30.66% 

(0.00% for 1H NMR data and 93.18% for 13C NMR data) for 6k, suggesting phenols at positions 

C-6 and C-17, respectively. In addition, analysis of the biosynthetic pathway of these 

diphenazines revealed that they should all share the same 1-hydroxyl phenazine-6-carboxylic 

acid unit (Figure 39 and 40), which agreed with the predicted phenol position at C-6 (6j) instead 

of C-3 (6k) as suggested by DP4+ analysis.  

3.3.6 Baraphenazine G (7) 

Compound 7 was isolated as an orange-red solid with a molecular formula of 
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C25H16N4O6, which was derived from a HRESIMS ion peak of C25H17N4O6 [M+H]+ (m/z: found 

469.11545, calcd 469.11481). While it shares the same 7,8-disubstituted tetrahydrophenazine-

1,9-diol unit and 8,9-disubstituted 1-hydroxylphenazine-6-carboxylic acid unit as 5, it possesses 

two methylenes at C-11(dH 2.64, 2.83) and C-20(dH 3.61, 3.77) and a hemi-ketal carbon C-10(dC 

97.3). The NMR data matched perfectly with the known molecule, baraphenazine G.10 Again, we 

observed 1H-15N HMBC correlations between 14-OH/N-12(dH 10.23/dN 302.8), 10-OH/N-12(dH 

8.30/dN 302.8), H-8/N-5(dH 7.92/dN 298.1) and H-4/N-5(dH 7.73/dN 298.1), suggesting that the 

positions of the two phenols, 1-OH(dH 10.67) and 14-OH(dH 10.23), were different from the 

reported structure of baraphenazine G.10 From these analyses, we propose that the phenol 

position in baraphenazine G (7) should be corrected to C-4 from C-1. Furthermore, the calculated 

ECD curve of (10S,21S)-7 showed exactly the opposite of the experimental curve, confirming 

the reported absolute configuration of 10R,21R (Figure 67).10 

By comparing the proton NMR spectrums of 7 and degraded 5, we found that proton 

peaks of 7 and the degradation product of 5 matched perfectly, indicating that 5 readily 

rearranged into 7 under heat (Figure 64). This suggested that 7 might not be naturally produced 

by the bacteria but rather a degradation product of 5. Compound 7 was stable throughout the 

purification and drying stages, but it readily degraded even when stored in a cold and dark 

environment after dissolved in DMSO-d6 and going through a few NMR experiments (Figure 

68). The degradation product was isolated as a brown solid and had a molecular formula of 

C25H16N4O6, which was derived from HRESIMS of C25H15N4O6 [M+H]+ (m/z: found 467.0979, 

calcd 467.0992). Initially, we proposed that the degradation mechanism involved the 

decomposition of the hemiketal moiety in 7 and the subsequent ring-opening yielded a new 

cyclohexanone and a phenol, which was exactly izumiphenazine B (Figure 69). However, after 
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examining NMR spectra, we found that the predominant proton peaks of this degradation 

product were all in the aromatic regions and the anticipated retainment of two methylenes in 

izumiphenazine B were not observed. In fact, the proton peaks for the middle bicyclic structure 

in 7 completely disappeared. Proton, Carbon, COSY, and HSQC spectra revealed the presence of 

one carboxylic acid (25-COOH), four phenolic hydroxyl groups (1-OH, 14-OH, 9-OH, 10-OH), 

and two groups of triplet/doublet/doublet (H-15 to H-17, H-2 to H-5) combinations, indicating 

the retainment of two phenolic moieties in the two phenazine units. The connection part of the 

two phenazine units was assigned based on the HMBC correlations between H-20/C-11, 10-

OH/C-11, H-11/C-22, H-8/C-25, and H-8/C-22, giving us the final structure of 8. Comparing the 

structures of 7 and 8, we found that the two methylenes were reduced and the aromaticity was 

regenerated in the phenazinediol unit, suggesting that izumiphenazineB might be an intermediate 

in the degradation mechanism. No degradation was observed for compounds 1-6 when stored in 

DMSO. Both of these degradation transformations are novel in the field of phenazines and their 

mechanisms need to be further investigated. 
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3.4 Conclusion 

In conclusion, through our structure determination efforts, we have developed a powerful 

pipeline for structural elucidation of diphenazines using ECD and GIAO NMR calculations 

coupled with DP4+ probability measure. Compared to traditional NMR-based structural 

analyses, this method is advantageous because: (1) it can determine the absolute configuration of 

chiral centers on the bridge of isolated diphenazines unlike ROESY/NOESY-based spatial 

analyses, and (2) it can determine the phenol positions of low-yielding diphenazines that 

typically give low-quality 1H-15N HMBC spectra. Subsequent use of this methodology led to 

several structural revisions, including resolving the absolute configuration of C-11 of 

phenazinolin D (4) and izumiphenazine A (5) from R to S. We also corrected the position of the 

phenol from C-4 to C-1 in baraphenazine G using 1H-15N HMBC experiments. Moreover, we 

isolated two new diphenazines, baraphenazine H (3), a stable keto-enol tautomer of 

baraphenazine F (2), and izumiphenazine E (6) that bear a unique 1,6-phenazinediol moiety. The 

structural diversity of 2-7 suggests S. papuanewguineus as a new source for further 

characterization of the biosynthetic mechanisms of late-stage dimerization of phenazine 

monomers. 

 

3.5 Materials and Methods 

3.5.1 General NMR and LC-HRMS/MS Materials and Methods 

Nuclear Magnetic Resonance (NMR) spectra were collected using a Bruker 600 NMR 

spectrometer (1H: 600 MHz, 13C: 150 MHz) equipped with a Magnex 600/54 active shielded 
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premium magnet, a Bruker liquid N2 cooled Prodigy cryo-probe and a Bruker NEO600 console, 

or a Bruker 800 NMR (1H: 800 MHz, 13C: 200 MHz) equipped with an Ascend magnet with 

active shield, a 5mm Triple resonance inverse detection TCI cryoprobe and a Bruker NEO 

console. All NMR data analyses were performed using MestReNova NMR software. All 

chemical shifts were referenced to residual solvent peaks [1H (DMSO-d6): 2.50 ppm; 13C 

(DMSO-d6): 39.51 ppm]. 

LC-HRMS/MS analyses of Biotage fractions, HPLC fractions, and purified compounds 

were performed using an Agilent 1290 Infinity II UPLC coupled to an Agilent 6545 ESI-Q-TOF-

MS system operating in both positive and negative modes. Chromatography was performed 

using a Phenomenex Kinetexâ 1.7 µm Phenyl-Hexyl 100 Å (2.1 ´ 50 mm) column. The injection 

volume was 2 µL per sample. The samples were eluted utilizing a gradient starting with a 1 min 

isocratic wash step consisting of 90% A (95% water/5% acetonitrile with 0.1% formic acid) and 

10% B (100% acetonitrile with 0.1% formic acid), then 6 min linear gradient step starting from 

10% B to 100% B and ended with 2 min of 100% B wash with a flow rate of 0.4 mL/min. The 

divert valve was set to MS for 0 – 7.4 min and set to waste from 7.4 - 9 min. The conditions of 

the dual AJS ESI were set with gas temperature at 320 °C, sheath gas temperature at 350 °C, 

sheath gas flow rate at 11 L/min, and source capillary voltage at 3500 V. The mass range of MS 

was set to 100 – 2000 m/z and acquisition rate was set to 10 spectra per second. The mass range 

of MS/MS was set to 50 – 2000 m/z; acquisition rate was set to 6 spectra per second, and 

isolation width was set to ~1.3 m/z. The collision energy was set based on the formula: Collision 

Energy = (5 ´ m/z)/100 + 10. Maximum precursor per cycle was set to 9 and the MS/MS mass 

error tolerance was ± 20 ppm. The reference masses for positive mode are purine C5H4N4 

[M+H]+ ion (m/z 121.050873) and hexakis(1H,1H,3H-terafluoropropoxy)-phosphazine 
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C18H18F24N3O6P3 [M+H]+ ion (m/z 922.009798). The reference masses for negative mode are 

trifluoroacetic acid C2HF3O2 [M-H]- (m/z 112.985587) and hexakis(1H,1H,3H-

terafluoropropoxy)-phosphazine C18H18F24N3O6P3 [M+TFA-H]- (m/z 1033.988109). All solvents 

used for Biotage fractionation were ACS grade and those used for HPLC purification and LC-

HRMS/MS analyses were HPLC grade or better unless otherwise stated. All LC-MS/MS 

chromatograms, Extracted Base Peak Chromatograms (BPCs), and extracted UV (254 nm) traces 

in this work were subtracted from the chromatograms of methanol (MeOH) blank and were 

plotted using GraphPad Prism version 9.4.1 for Mac OS X (GraphPad Software, www. 

Graphpad.com). 

3.5.2 ECD and DFT calculations 

Experiment ECD spectra of isolated compounds were obtained by a J-815 

spectropolarimeter (JASCO Co. Tokyo, Japan) using the following parameters: photometric 

mode: circular dichroism (CD), high voltage (HT), and absorbance (Abs); wavelength range: 190 

nm to 600 nm; data pitch: 0.5 nm; sensitivity: standard; digital integration time (DIT): 4 seconds; 

bandwidth: 1 nm; start mode: immediately; start mode: immediately; scanning mode: 

continuous; scanning speed: 100 nm/minute; baseline correction: HPLC grade methanol; 

accumulations: 3.  

For ECD calculations, Monte Carlo conformational searches were carried out by 

CONFLEX 9 (Rev. B, Tokyo, Japan) using Merck Molecular Force Field static (MMFFs) force 

field in the gas phase. All conformers within 5 kcal/mol of the lowest energy conformer were 

subjected to further optimization by Gaussian 16 (Rev. C01, Wallingford, CT, USA) using 

density functional theory (DFT) at B3LYP/6-31G(d) level with solvent effects of methanol 

included using a polarizable continuum model (PCM).40 Optimized conformers within 3 
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kcal/mol of the lowest energy conformer were then selected for time-dependent DFT (TDDFT) 

calculations by Gaussian 16 (Rev. C01, Wallingford, CT, USA) at APFD/6-311+G(2d,p) level 

with PCM in methanol for a total of 50 excited states. Calculated ECD and UV spectra of the 

conformers were averaged by SpecDis (Version 1.71, Berlin, Germany)36 according to their 

Boltzmann distributions and their relative Gibb’s free energy to generate the theoretical ECD and 

UV spectra of each configuration. The sigma value was set to s=0.16 eV. All theoretical and 

experimental ECD and UV curves were plotted using GraphPad Prism version 9.4.1 for Mac OS 

X (GraphPad Software, www. Graphpad.com). 

For 13C and 1H NMR calculations, Monte Carlo conformational searches were carried out 

by CONFLEX 9 (Rev. B, Tokyo, Japan) using Merck Molecular Force Field static (MMFFs) 

force field in the gas phase. All conformers within 5 kcal/mol of the lowest energy conformer 

were subjected to further optimization by Gaussian 16 (Rev. C01, Wallingford, CT, USA) using 

DFT at B3LYP/6-31G(d) level with PCM in dimethyl sulfoxide (DMSO). Optimized conformers 

within 3 kcal/mol of the lowest energy conformer were then selected for Gauge-independent 

atomic orbital (GIAO) calculations of 13C and 1H NMR chemical shifts by Gaussian 16 (Rev. 

C01, Wallingford, CT, USA) at B3LYP/6-311+G(d,p) level with PCM in DMSO. The 13C and 

1H chemical shifts of TMS were calculated by the same protocol and were used as the reference. 

The referenced NMR data of selected conformers of each configuration were averaged according 

to their Boltzmann distributions and their relative Gibb’s free energy. The experimental and 

theoretical NMR data were analyzed by the improved probability DP4+ method to determine the 

absolute configurations and phenol positions of all isolated molecules.7 When comparing the 

NMR chemical shifts of the same molecule with different phenol positions, the carbon 
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numbering of the corresponding benzene ring was changed accordingly to allow the comparison 

between the same carbon and proton. 

3.5.3 Mosher’s Analysis 

To stir a solution of phenazinolin D (4, 1 mg, 2.14 µmol) and dry pyridine-d5 (5 µL, 128 µmol, 60 

equiv.) in dry deuterochloroform (1 mL) at room temperature for 2 hours, R-(-)-MTPA-Cl (16 uL, 85.6 

µmol, 40 equiv.) was added. The reaction progress was monitored by LC-MS. The 1H NMR spectrum of 

the 4-R-MTPA ester product was obtained using the crude reaction solution. In an entirely analogous 

fashion, the 4-S-MTPA ester was prepared using S-(+)-MTPA-Cl.  
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Chapter 4 Other Natural Products Isolated from Various Marine and Terrestrial Sources 

 

4.1 PTM: PKS/NRPS Type of Natural Products 

Besides S. Papuanewguineus, another active strain out of the HTS against eIF4E PPI was 

87797-1N, which was isolated from a soil sample collected from Costa Rica. In this chapter, we 

will discuss in detail the discovery and structural characterization of polycyclic tetramate 

macrolactams (PTMs) from this strain, including one novel molecule, capsimycin H.  

4.1.1 An introduction to ikarugamycin type of 5/6/5 PTM 

PTMs are a growing class of natural products that share a common tetramate-containing 

macrolactam fused to a diverse subset of carbocyclic rings, such as 5/5 in alteramide1 and 

cylindramide,2 5/5/6/ in heat-stable antifungal factor (HSAF),3 frontalamides,4 and 

discodermide,5 and 5/6/5 in ikarugamycin (9)6 and clifednamides (Figure 70).7 The structural 

diversity of PTMs is further enriched by tailoring modifications such as epoxidation, 

hydroxylation, and N-methylation. More than 30 PTM-class of molecules have been isolated so 

far from a variety of sources, including both terrestrial and marine bacteria and marine sponges.8  

The first ever PTM, ikarugamycin (9), was isolated in 1972 from a soil Streptomyces 

strain.6 Five years later in 1977, the 5/6/5 tricyclic ring-containing macrolactam structure and 

absolute configurations of ikarugamycin (9) were elucidated utilizing a combination of 

spectroscopic and chemical degradation methods.9 In 2003, ikarugamycin (9) was re-isolated 

together with epoxyikarugamycin (10) and ripromycin from a soil Streptomyces sp. Tü 6239 by 
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the Fiedler group.10 Later, capsimycin (12) that contains a methoxy group at C-29 of 

epoxyikarugamycin (10) was isolated from Streptomyces NO. C49-87,11 and its analogs, 

capsimycin C-G were also reported recently.12 Utilizing a PCR screening method targeting 

conserved PTM biosynthetic genes in Streptomyces sp. JV178, the Clardy group reported the 

isolation of clifednamides A and B that contain an unusual ketone at C-29 position.7  

These 5/6/5 PTMs exhibited a variety of bioactivities, including antimicrobial, antitumor, 

antiulcer, and antiprotozoal activities.8 In particular, as the most studied PTM molecule, 
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ikarugamycin (9) was reported to exert significant cytotoxicity against different cancer cell lines, 

such as MCF-7 breast cancer, HMO2 gastric adenocarcinoma, Hep G2 hepatocellular carcinoma, 

Figure 71. Biosynthetic pathway of ikarugamycin (9), epoxyikarugamycin (10), capsimycin G (11), and 
capsimycin (12). 
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and Huh 7 hepatoma cells.10 It was also demonstrated to induce apoptosis in HL-60 cells through 

genotoxicity and caspase activation to cause DNA damage.13 It also inhibited clathrin-dependent 

endocytosis14 and oxidized low-density lipoprotein-induced uptake.15 It was also shown to block 

Nef-induced cell surface CD4 down-regulation on type I HIV-infected T cells.16 These diverse 

and potent bioactivities make ikarugamycin (9) a promising lead for drug development. 

The biosynthetic pathway of 9 has been well characterized through heterologous 

reconstitution, knockout studies, and feeding experiments.17, 18 These studies revealed that the 

core biosynthetic genes of 9 consist of ikaA (a hybrid PKS/NRPS), ikaB (a flavin-dependent 

phytoene desaturase family enzyme), and ikaC (an alcohol dehydrogenase, Figure 71). IkaA acts 

iteratively to synthesize two slightly different polyene chains that are then condensed 

respectively with the a- and d-amino groups of L-ornithine loaded on the peptidyl carrier protein 

(PCP or T) domain of the NRPS module of ikaA. Then the two polyene chains undergo an 

intramolecular Dieckmann-type cyclization to form the tetramate ring, and the product is then 

released from the NRPS module by the thioesterase (TE) domain. After that, ikaB catalyzes the 

formation of the first five-membered ring in the 5/6/5 ring system and the intermediate will 

undergo a Diels-Alder reaction to form the cyclohexene ring by either a spontaneous or ikaB-

catalyzed [4+2] cycloaddition. Finally, ikaC catalyzes the formation of the last five-membered 

ring to give the structure of ikarugamycin (9). A tailoring enzyme of 9, ikaD, was recently 

characterized as a putative cytochrome P450 enzyme through knockout and complementation 

experiments.12 It was shown to be able to catalyze the epoxidation of 9 to form 

epoxyikarugamycin (10) and also the hydroxylation of 10 to form capsimycin G (11). This 

hydroxy group in 11 was further O-methoxylated to form capsimycin (12), which was achieved 

by the non-enzymatic in vitro incubation of methanol and 11.  
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4.1.2 Isolation and structure characterization of ikarugamycin analogs from 87797-1N 

During the initial hit re-confirmation, we found that the most active fraction showed an 

EC50 of around 0.1-0.2 mg/mL against eIF4E-4E-BP1 PPI in cat-ELCCA (Figure 22). However, 

during our purification processes, we observed a complete loss of activity from preparative 

HPLC to semi-preparative HPLC (Figure 72). By comparing the chemical profiles of the crude 

extract (Figure 73) and prep-HPLC fractions, we found that the masses [M-H]- 509.2642, 

Figure 72. Representative prep-HPLC chromatogram (5%-95% acetonitrile/H2O with 0.1% formic acid); PPI Cat-
ELCCA results of prep-HPLC fractions and semi-prep HPLC fractions of prep-HPLC fractions F13 and F14 (0.1 
mg/mL for all fractions).  
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539.2727, and 523.2793 in the crude extract changed to 527.2774, 557.2885, and 541.2944, and 

the masses 493.2706 and 477.2743 disappeared. Using antiSMASH analysis, we identified the 

biosynthetic gene cluster for the ikarugamycin class of natural products. By comparing the 
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masses of known ikarugamycin analogs to ours, we found the masses [M-H]- 477.2743, 493.270, 

509.2642, 523.2793, 557.2885, 541.2944, and 527.2774 matched the known molecule 

ikarugamycin (9) and epoxyikarugamycin (10),6, 10 capsimycin G (11), capsimycin (12),12 

hydroxyikarugamycin A (14), hydroxyikarugamycin B (16), and hydroxyikarugamycin C (18),19 

respectively. Targeted purification of masses 557.2885, 541.2944, and 527.2774 yielded not only 

known compounds 14, 16, and 18 but also their close analogs hydroxyikarugamycin A-2 (15), 

hydroxyikarugamycin B-2 (17), and hydroxyikarugamycin C-2 (19, Figure 73). 

With the highest yield among these compounds, compound 16 was first purified and 

characterized. It was isolated as a yellow powder with a molecular formula of C30H42N2O7, 

which was derived from an HRESIMS ion peak of C30H41N2O7 [M-H]- (m/z: found 541.2944, 

calcd 541.2914). Its 1H, 13C, and 2D NMR data matched those of the known compound, 

hydroxyikarugamycin B (Table 1).19 The observed NOE correlations between H-8 (dH 3.68)/H-6 

(dH 1.88) and H-7 (dH 3.73)/H-5 (dH 1.95) suggested that H-8 and H-6 were on the same side and 
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H-7 and H-5 were on the same side (Figure 74), matched the previously reported 7S,8S 

configuration.  

Compound 17 was isolated in pairs with 16 as a yellow powder with a molecular formula 

of C30H42N2O7, which was derived from an HRESIMS ion peak of C30H41N2O7 [M-H]- (m/z: 

found 541.2864, calcd 541.2914). Its 1H, 13C, and 2D NMR data were very similar to those of the 

16, suggesting a structure very similar to 16 (Table 1). By a close comparison of their NMR 

data, we found that most of the differences were located in the C-6 to C-10 region with ~5-10 

ppm differences in 13C chemical shifts and ~0.2-0.5 ppm in 1H chemical shifts. Thus, we 

postulated that the configurations of C-7 and C-8 were switched to 7R,8R from 7S,8S in 16. 

Unfortunately, the 1H peaks of H-7 and H-8 were buried under the water noise peak, and we 

Table 1. 1H and 13C NMR data for hydroxyikarugamycin B (16) and B-2 (17) in DMSO-d6. 
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were unable to observe any NOE of these two protons to determine their absolute configurations. 

In the future, DFT calculations could be applied to validate this hypothesis.  

Compounds 14 and 15 were isolated in pairs as brown solids with the same molecular 

formula of C30H42N2O8, which was derived from an HRESIMS ion peak of C30H41N2O8 [M-H]- 

(m/z: found 557.2885 for 14 and 557.2864 for 15, calcd 557.2863). We observed that the 1H 

peaks of the methylene at C-24 in 16 were missing and a new peak at ~3.9 ppm was gained, 

suggesting a potential hydroxylation at C-24 (Figure 75). These data matched the known 

compound hydroxyikarugamycin A.19 Since we observed almost identical 1H NMR spectrums 

between 14 and 15, we postulated that their only structural difference was the configurations of 

C-7 and C-8, similar to what we observed for the hydroxyikarugamycin B pairs. For the 

determination of the configuration of C-24, more material is needed to obtain good 2D NMR 

Figure 75. 1H NMR data comparison of 14, 16, and 18 between 0.8 to 4.2 ppm in DMSO-d6. 
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spectrums, especially ROESY/NOESY. 

Compounds 18 and 19 were isolated in pairs as brown solids with the same molecular 

formula of C29H40N2O7, which was derived from an HRESIMS ion peak of C29H39N2O7 [M-H]- 

(m/z: found 527.2774 for 18 and 527.2695 for 19, calcd 557.2757). We observed that while the 

1H NMR spectrums of 16 and 18 were almost identical, the methoxy group on C-30 was missing 

(Figure 75). Based on this and the observed difference of 14 in their molecular weights, we 

postulated that compound 18 was the known compound, hydroxyikarugamycin C.19 Since we 

observed almost identical 1H NMR spectrums between 18 and 19, we hypothesized that their 

only structural difference was the configurations of C-7 and C-8, similar to what we observed for 

the hydroxyikarugamycin A and B pairs.  

Then, we put our efforts into developing methods for the isolation of other masses, 

including [M-H]- 509.2642, 539.2727, 523.2793, and the disappeared 493.2706 and 477.2743. 

Previous studies have shown the vulnerability of the epoxide groups in capsimycins and 

epoxyikarugamycin in the presence of trifluoroacetic acid (TFA), suggesting that non-acidic 

solvents were necessary to isolate these compounds.12 An initial prep-HPLC fractionation 

followed by several rounds semi-Prep HPLC purification using acetonitrile/H2O without acid 

successfully yielded 9-13 (Figure 73). 

As the most basic structure of all ikarugamycin analogs, ikarugamycin (9, Figure 73) 

was first isolated as a light-yellow solid with a molecular formula of C29H38N2O4, which was 

derived from an HRESIMS ion peak of C29H37N2O4 [M-H]- (m/z: found 477.2703, calcd 

477.2753). Its structure was confirmed by the observed BGC in the antiSMASH analyses and by 

comparing the LC-MS retention time with that of the commercial ikarugamycin. Its epoxidized 

analog, epoxyikarugamycin (10, Figure 73), was then isolated as a light-yellow solid with a 
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molecular formula of C29H38N2O5, which was derived from an HRESIMS ion peak of 

C29H37N2O5 [M-H]- (m/z: found 493.2667, calcd 493.3702). Its 1H, 13C, and 2D NMR data 

matched the previous molecule, epoxyikarugamycin (also named ikarugamycin epoxide or 

capsimycin B).10, 12  Its epoxide group was confirmed by the observed chemical shifts of H-7 (dH 

2.92) and H-8 (dH 3.12, Table 2) and their respective carbons, C-7 (dC 53.2) and C-8 (dC 57.0, 

Table 3). C-27 was proven to be unfunctionalized by the observed methylene at this carbon (dH 

1.45) and the triplet methyl group at C-28 (dH 13.5). The absolute configurations of C-7 and C-8 

were determined to be 7S,8R based on the observed NOE between H-7 (dH 2.92)/H-5 (dH 1.50) 

and H-8 (dH 3.12)/H-10 (dH 1.67).  

Table 2. 1H NMR data for 10-13 in DMSO-d6. 
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Compound 11 was then isolated as a light-yellow solid with a molecular formula of 

C29H38N2O6, which was derived from an HRESIMS ion peak of C29H37N2O6 [M-H]- (m/z: found 

509.2605, calcd 509.2652). Its 1H, 13C, and 2D NMR data matched the previously reported 

molecule, capsimycin G.12 Its epoxide group was confirmed by the observed chemical shifts of 

Table 3. 13C NMR data for 10-13 in DMSO-d6. 
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H-7 (dH 2.88) and H-8 (dH 3.17, Table 2) and their respective carbons, C-7 (dC 53.1) and C-8 (dC 

57.4, Table 3). The absolute configurations of C-7 and C-8 were determined to be the same 

7S,8R as those in 9 based on the observed NOE between H-7 (dH 2.88)/H-5 (dH 1.48) and H-8 

(dH 3.17)/H-10 (dH 1.76). The hydroxy group at C-27 was confirmed by the observed COSY 

correlation between 27-OH (dH 4.34) and H-27 (dH 3.71) and the HMBC correlation between 27-

OH (dH 4.34) and C-10 (dC 51.4).  

Compound 12 was isolated as a light-yellow solid with a molecular formula of 

C30H40N2O6, which was derived from an HRESIMS ion peak of C30H39N2O6 [M-H]- (m/z: found 

523.2757, calcd 523.2808). Its 1H, 13C, and 2D NMR data matched the previously reported 

molecule, capsimycin.12 Its epoxide group was confirmed by the observed chemical shifts of H-7 

(dH 2.88) and H-8 (dH 3.18, Table 2) and their respective carbons, C-7 (dC 53.1) and C-8 (dC 

57.3, Table 3). The absolute configurations of C-7 and C-8 were determined to be the same 

7S,8R as those in other capsimycins based on the observed NOE between H-7 (dH 2.88)/H-5 (dH 

1.49) and H-8 (dH 3.18)/H-10 (dH 1.88, Figure 74). The methoxy group at C-27 was confirmed 

by the observed singlet methyl group at C-30 (dH 3.21, dC 54.6), and the HMBC correlation 

between this methoxy to C-27 (dC 76.8, Figure 74).  

Compound 13 was isolated as a light-yellow solid with a molecular formula of 

C30H40N2O7, which was derived from an HRESIMS ion peak of C30H39N2O7 [M-H]- (m/z: found 

539.2773, calcd 539.2757). By comparing its NMR spectrums to those of 12, we found that they 

were almost identical, except that the methylene at C-24 (dH 1.67, 1.75) in 12 was missing 

(Table 2). Instead, a new proton with dH 3.78 was observed, and it’s correlating with C-22 (dC 

193.6), C-25 (dC 31.3), and C-26 (dC 36.1, Figure 74). These observations, combined with its 

molecular weight and the observed HSQC correlation of this proton to a carbon dC 70.8,  
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suggested that C-24 was hydroxylated. Based on its structural similarity to capsimycin, it was 

named capsimycin H. This hydroxylation at C-24 has also been found in other PTMs, including 

HSAF, frontalamide A, alteramide A, cylindramide, etc, and most importantly, this hydroxy 

group was shown to bear a conserved S configuration.20 By comparing the dihedral angle of H-

24-C-24-H-25a-C-25 in 24S-13 (135.2°) and 24R-13 (110.3°), we found that the coupling 

constant of 6.7 Hz between H-24 (dH 3.78) and H-25a (dH 1.14) matched better with 24S-13. In 

the future, the configuration of this secondary alcohol could be further validated using DFT 

calculations or Mosher’s analysis.  

4.1.3 Bioactivity of ikarugamycin analogs 9-19 

Out of these ikarugamycin analogs, ikarugamycin was the only active molecule in eIF4E 

PPI cat-ELCCA. It showed an EC50 of ~300 µM against eIF4E-4E-BP1 PPI and ~200 µM in 

eIF4G-eIF4E PPI (Figure 76). We noticed that it suffered from poor solubility in the assay 

buffer at >500 µM, which significantly lowered its potency at high concentrations. To further 

characterize its cellular activity, we tested this molecule in a series of cell-based assays. First, it 

showed an LD50 ~1 µM against Mia Paca-2 cells in the Cell Titer-Glo assay (Figure 77A). 
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Figure 76. eIF4E-4E-BP1 and eIF4G-eIF4E PPI Cat-ELCCA activities of ikarugamycin (9). 
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However, this compound exhibited no noticeable inhibition against eIF4E PPIs in the m7GDP 

cap pull-down assay at 5 µM or any significant binding to eIF4E in the CETSA assay at 10 µM 

(Figures 77B and 77C). The large discrepancy between its cytotoxicity and its inhibitory activity 

against eIF4E PPIs suggested that it has significant off-target effects. Interestingly, we found that 

it readily downregulated the overall protein translation in the SunSET assay (Figure 77D), which 

might correlate with its reported apoptotic activity.13 Based on these results, we decided to not 

further develop this scaffold into an eIF4E PPI inhibitor. 

4.1.4 Biosynthesis of capsimycin H 

Figure 77. Cellular activities of ikarugamycin (9). (A) Cell Titor-Glo assay in Mia Paca-2 cells; (B) 
m7GDP cap pull-down assay in Mia Paca-2 cells at 1.25, 2.5, and 5 µM of 9; (C) CETSA assay in HEK293 
cells at 1 and 10 µM of 9; (D) SunSET assay in Mia Paca-2 cells at 1.25 and 2.5 µM of 9. 
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 With the isolation of a new PTM, capsimycin H, we became curious about its 

biosynthesis, especially the mechanism of the hydroxylation at C-24. As discussed in Chapter 

4.1.1, its precursor, capsimycin, was generated through a two-step mechanism that involves an 

epoxidation, and then hydroxylation of ikarugamycin catalyzed by the P450 enzyme, ikaD.12 We 

found that for other PTMs bearing a hydroxy at C-24, this hydroxylation is often catalyzed by a 

hydroxylase upstream of core ikarugamycin BGC, such as the sterol desaturase (SD) gene for 

HSAF, ftdA gene for frontalamides, and cftE gene for clifednamides.20 antiSMASH analysis of 

the genome of 87797-1N successfully identified the BGC of ikarugamycin in contig 18. 

Annotation of genes in Contig 18 revealed the presence of ikarugamycin core genes ikaA-ikaD 

that are responsible for the biosynthesis of capsimycin G (Figure 78). However, no gene that 

shares any sequence similarity with the previously reported SD, ftdA, or cftE genes was identified 

in Contig 17-19. Annotation of the upstream of the ikarugamycin BGC revealed a hydroxylase 

gene that could potentially catalyze the observed hydroxylation at C-24 (Figure 78).  

We then cloned and expressed this hydroxylase as well as ikaD, the P450 enzyme that 

might be able to further hydroxylate capsimycin into capsimycin H. We observed the complete 

conversion of ikarugamycin (9) to capsimycin G (11) in 10 minutes using 2 µM ikaD, and we 

were able to trap the intermediate, epoxyikarugamycin (10), using 0.5 µM ikaD with the same 

reaction duration (Figure 79), confirming the two-step mechanism of the biosynthesis of 11. 

However, we did not observe the further conversion of 11 to capsimycin (12) or capsimycin H 

(13) even when we extended the reaction time to 2 hours (data not shown). Neither did we 

hydroxylase ikaA ikaB ikaC ikaD 

Figure 78. Annotated ikarugamycin BGC in Contig 18 of the genome of 87797-1N. 
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observe the conversion from capsimycin (12) to capsimycin H (13) using the hydroxylase 

upstream of the ikarugamycin BGC under similar reaction conditions. Further gene knockout 

studies are necessary to fully elucidate the mechanism of C-24 hydroxylation in capsimycin H 

(13).  

4.2 Actiphenols and cycloheximides isolated from 44321-A2I 
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Figure 79. LC-MS analyses of the conversion of ikarugamycin (9) to capsimycin G (11) catalyzed by 
ikaD. X axis: acquisition time; Y axis: ion counts; (a) standard curve of ikarugamycin (9); (b) 
standard curve of epoxyikarugamycin (10); (c) standard curve of capsimycin G (11); (d) standard 
curve of capsimycin H (13); (e) standard curve of capsimycin (12); (f) conversion of ikarugamycin 
(9) to capsimycin G (11) using 2 µM ikaD for 10 minutes at room temperature; (g) trapping of the 
intermediate, epoxyikarugamycin (10), using 0.5 µM ikaD for 10 minutes at room temperature. 
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Through our collaboration with Sun Pharma Advanced Research Company (SPARC), we  

conducted an HTS campaign using the marine natural product extract library to identify natural 

products that exhibit selective antiproliferative activity against HCT15 cells, a KRASG13D mutant 

colon cancer cell line. One of the most active strains was 44321-A2I, from which we isolated and 

characterized a series of actiphenols and cycloheximides. Cycloheximide (28) is one of the most 

well-known members of the glutarimide-containing polyketide family of natural products. It is 

most well-known for its inhibitory activity of eukaryotic translation by blocking the translocation 

step in the polypeptide elongation process.21 Actiphenol (22, Figure 80) shares the same carbon 

skeleton as but has a phenol in place of a cyclohexanone moiety.22 It was shown to exhibit potent 

antiviral and antifungal activities.23, 24 In this section, we will elaborate on the structure 

elucidation of cycloheximides and actiphenols isolated from 44321-A2I.  

4.2.1 Structure elucidation of actiphenol analogs 20-27 

Figure 80. Structures of actiphenol analogs 20-27 isolated from strain 44321-A2I. 
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The base form actiphenol (22) was isolated as a yellow solid with a molecular formula of  

C15H17NO4, which was derived from an HRESIMS ion peak of C15H16NO4 [M-H]- (m/z: found 

274.1073, calcd 274.1079). The  2,4-dimethyl-phenol structure was confirmed by the observed 

HMBC correlations of H-3 (dH 7.27) to C-1 (dC 157.7), C-5 (dC 127.9), C-14 (dC 15.1), and C-15 

(dC 20.0, Figure 81). The glutarimide moiety was elucidated by the observed amide proton 11-

NH (dH 10.76, Table 5), amide carbons C-11 and C-12 (dC 172.9, Table 4), and two methylenes 

at C-10 and C-13. The connection between the glutarimide and the phenol was established by the 

COSY correlation between H-9 (dH 2.64) and methylene H-8 (dH 3.17) and the HMBC 

correlation between H-10a/H-10b (dH 3.64, 2.59)/C-8 (dC 42.3) and H-9 (dH 2.64)/C-7 (dC 

205.3). The final structure matched with the known molecule, actiphenol.22  

Compound 23 was isolated as a yellow solid with a molecular formula of C15H17NO5, 

which was derived from an HRESIMS ion peak of C15H16NO5 [M-H]- (m/z: found 290.1033, 

calcd 290.1028). By comparing its NMR spectrums to those of 22, we found that they were 

almost identical, except that the methyl at C-2 of the phenol was missing. Instead, a new 

Figure 81. Key COSY and HMBC correlations in 20-27. 
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methylene H-14 (dH 4.51, Table 5) at C-2 was observed and it showed HMBC correlation to C-1 

(dC 156.8) and C-3 (dC 127.9, Figure 81), suggesting the hydroxylation at C-14. These NMR 

data matched with the known compound, AH-135Y.25 

Compound 24 was isolated as a yellow solid with a molecular formula of C15H17NO5, 

which was derived from an HRESIMS ion peak of C15H16NO5 [M-H]- (m/z: found 290.1033, 

calcd 290.1028). By comparing its NMR spectrums to those of 22, we found that the methylene 

at C-8 was missing. Instead, a new proton H-8 (dH 5.03, Table 5) at C-8 and a new broad peak of 

dH 5.78 were observed, suggesting the hydroxylation at C-8. These data matched the known 

Table 4. 13C NMR data of 20 and 22-27 in DMSO-d6. 
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compound, Nong-kang 101-G.26 To determine the absolute stereochemistry of H-8, we 

performed ECD calculations of 8S-24 and 8R-24 (Figure 82). We found that the ECD curve of 

8S-24 fit the experimental ECD curve better, suggesting an S configuration at C-8. 

Compound 25 was isolated as a yellow solid with a molecular formula of C15H17NO5, 

which was derived from an HRESIMS ion peak of C15H16NO5 [M-H]- (m/z: found 290.1040, 

calcd 290.1028). Since it has the same molecular weight as 23 and 24, we suspected that it was 

another hydroxylated actiphenol analog. The hydroxylation was confirmed at C-10 based on the 

observed HMBC correlations between 11-NH (dH 10.84)/C-10 (dC 70.8) and H-10 (dH 4.06)/C-

11 (dC 175.2, Figure 81). These data matched with the known molecule, C-73X.27 Next, we 

attempted to determine the configuration of C-9 and C-10 based on ROESY analyses. As we 

observed a weak ROESY correlation between H-5 (dH 7.59) and H-9 (dH 2.57), we examined the 

atomic distance between H-5 and H-9 in all four possible stereoisomers, 9S,10S-25, 9S,10R-25, 

Table 5.1H NMD data of 20 and 22-26 in DMSO-d6. 
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9R,10S-25, and 9R,10R-25. We found that this ROESY matched better with the atomic distances 

in 9R,10S-25 and 9R,10R-25 (~5.0 Å) than those observed in 9S,10S-25 and 9S,10R-25 (>6.0 Å), 

suggesting a R configuration at C-9. For the configuration of C-10, we compared the atomic 

distances between H-9 and H-13a/13b (dH 2.54, 2.62) in 9S,10S-25 and 9S,10R-25. We found 

that the atomic distances in 9S,10S-25 (2.6 Å and 3.8 Å) matched better with the strong ROESY 

between H-9 and H-13a/13b than those in 9S,10R-25 (3.8 Å and 4.3 Å), suggesting a S 

configuration at C-10. Together, the final configuration of 9S,10S was elucidated for C-73X (25) 

and in the future, this configuration needs further validation using the established 

ECD/NMR/DP4+ computational pipeline or Mosher’s analysis.  

Compound 26 was isolated as a yellow solid with a molecular formula of C15H15NO5, 

which was derived from an HRESIMS ion peak of C15H14NO5 [M-H]- (m/z: found 288.0847, 

calcd 288.0872).  After comparing its NMR data with Nong-kang 101-G (24), we found that it 

possessed an unusual carbon with a chemical shift of 105.2 ppm (Table 4), suggestive of the 

presence of a hemiketal. We also observed that a hydroxy with a chemical shift of 8.04 ppm was 
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correlating with the ketone at C-7 (dC 199.4), this hemiketal carbon, and C-9 (dC 35.5) in the 

glutarimide, confirming the hemiketal at C-8. These data matched the known compound, 

actiketal.28 In the future, the configuration at C-7 can be determined using ECD calculations.  

Compound 20 was isolated as a yellow solid with a molecular formula of C22H23N3O5, 

which was derived from an HRESIMS ion peak of C22H22N3O5 [M-H]- (m/z: found 408.1455, 

calcd 408.1559). After comparing its NMR data with actiphenol (20), we found that it possesses 

all the structural features of actiphenol except that the methyl group on C-4 is missing. Instead, 

we observed a new methylene (dH 4.30) at C-15 (dC 45.9) that is correlating with C-3 (dC 136.9), 

C-5 (dC 127.6), and an aromatic carbon C-16 with a chemical shift of (dC 149.9) that is not in the 

actiphenol spin systems (Figure 81, Tables 4 and 5). Further examination of its NMR data 

Table 6. 1H and 13C NMR data of 21 and 27 in DMSO-d6. 
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revealed the presence an additional aminobenzamide moiety attached to the actiphenol through 

an N-C bond. The HMBC correlations between the triplet H-18 (dH 7.23)/C-16 (dC 149.9) and 

the doublet H-20 (dH 7.61)/C-16 (dC 149.9) and C-22 (dC 171.9) confirmed the relative position 

of the secondary amine (dH 7.23) and the primary amide on this aromatic ring. Based on its 

structure, we named this molecule 2-aminobenzamide-actiphenol (20). 

Compound 27 was isolated as a yellow solid with a molecular formula of C16H21NO5, 

which was derived from an HRESIMS ion peak of C16H20NO5 [M-H]- (m/z: found 306.1344, 

calcd 306.1341). Examination of its NMR data revealed the presence of the same phenol and 

glutarimide methylenes as in actiphenol. However, we observed a new methoxy (dH 3.57) as well 

as two new amide protons (dH 6.84, 7.34), suggestive of an opening of the glutarimide ring 

(Table 6). This was likely a non-enzymatic conversion of actiphenol (22) by methanol and acid. 

These data matched the known compound, methyl phenatic acid A.24  

Compound 21 was isolated as a yellow solid with a molecular formula of C16H21NO6, 

which was derived from an HRESIMS ion peak of C16H20NO6 [M-H]- (m/z: found 323.1291, 

calcd 323.1292). Similar to compound 27, we observed an opening of the glutarimide ring of 
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Nong-kang 101-G (24), which yielded a new methoxy (dH 3.46) as well as two new amide 

protons (dH 6.99, 7.47, Table 6). Because of its structural similarity to 27, we named this 

molecule methyl phenatate C. To determine the absolute configuration of C-8, we compared the 

experimental ECD curves of 24 and 21 and we observed that they were completed the opposite 

of each other, suggesting an 8R configuration (Figure 83). This needs further confirmation 

through ECD calculations.  

4.2.2 Structure elucidation of cycloheximide analogs 28-33 

Compound 28 (Figure 84) was isolated as a yellow solid with a molecular formula of 

C15H23NO4, which was derived from an HRESIMS ion peak of C15H22NO4 [M-H]- (m/z: found 

280.1509, calcd 280.1549). The glutarimide moiety was confirmed by the observed amide proton 

11-NH (dH 10.58, Table 8) amide carbons C-11 and C-12 (dC 173.8 and 173.9, Table 7), and 

two methylenes at C-10 and C-13. The  2,4-dimethyl-cyclohexanone structure was confirmed by 

Figure 84. Structures of cycloheximide analogs 28-33 isolated from 44321-A2I. 
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the observed HMBC correlations of H-3a/H-3b (dH 1.42, 1.73) to C-5 (dC 35.5), C-14 (dC 15.0), 

and C-15 (dC 18.7, Figure 85). The connection between the glutarimide and the cyclohexane was 

established by the COSY correlation between H-6 (dH 2.39) and methylene H-7 (dH 3.76) and the 

HMBC correlation between H-6 (dH 2.39) and both C-4 (dC 26.6) and C-8 (dC 40.5). The position 

of the hydroxy was elucidated at C-7 based on the observed HMBC correlation between H-7 (dH 

3.76) and C-5 (dC 35.5). Using the method developed by Breit and Schmidt,29 the relative 

stereochemistry of the two methyl groups on the cyclohexanone was determined to be anti based 

on the small chemical shift difference between H-3a/H-3b (~0.31 ppm). This was also supported 

by the observed ROESY between H-2 (dH 2.55) and H-15 (dH 1.12, Figure 86). The relative 

stereochemistry of H-6 and H-7 was determined to be syn to H-15 based on the observed strong 

ROESY between H-6/H-15 and H-6/H-7 (Figure 86). These data matched the known molecule, 

cycloheximide.30 While we believe its absolute configurations are the same as cycloheximide, 

this needs further validation, potentially by ECD calculations. 
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Compound (29, Figure 84) was isolated as a yellow solid with a molecular formula of 

C15H23NO4, which was derived from an HRESIMS ion peak of C15H22NO4 [M-H]- (m/z: found 

280.1592, calcd 280.1549). While its planar structure was determined to be identical to 27 based 

on the similarities between their NMR data, some chemical shifts in the cyclohexanone moiety 

significantly differed (Tables 7 and 8), suggesting some changes in the stereochemistry. We 

found that the chemical shift difference between H-3a/H-3b was ~0.96 ppm, suggesting a syn 

configuration between the methyl groups. Similarly, the relative configuration between H-6/H-15 

was determined to be anti based on the large chemical shift difference of ~1.02 ppm between H-

5a/H-5b, in stark contrast to ~0.33 ppm observed in cycloheximide (27). The relative 

stereochemistry of H-6 and H-7 was determined to be anti based on the observed weak ROESY 

between H-6/H-7 (Figure 86). This was further confirmed by the observed coupling constant of 

Table 7. 13C NMR data of 28-33 in DMSO-d6. 
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9.9 Hz between H-6/H-7 (Table 8), which matched better with the dihedral angle H-6-C-6-C-

7-H-6 in 7S-29 (168.6°) than that in 7R-29 (65.2°). The absolute configurations need further 

confirmation by ECD calculations.  

Compound 30 was isolated as a yellow solid with a molecular formula of C15H23NO4, 

which was derived from an HRESIMS ion peak of C15H22NO4 [M-H]- (m/z: found 280.1509, 

calcd 280.1549). Similar to the previous analyses, the relative configurations between H-14 (dH 

0.86), H-15 (dH 0.94), and H-6 (dH 2.57) were found to be syn,anti based on the large chemical 

shift differences between H-3a/H-3b (~0.95 ppm) and H-5a/H-5b (~0.95 ppm). The relative 

stereochemistry of H-6 and H-7 (dH 3.87) was determined to be syn based on the observed strong 

ROESY between H-6 and H-7 (Figure 86). The absolute configurations need further 

confirmation by ECD calculations. 

Table 8. 1H NMR data of 28-33 in DMSO-d6. 
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Compound 31 was isolated as a yellow solid with a molecular formula of C17H25NO6, 

which was derived from an HRESIMS ion peak of C17H24NO6 [M-H]- (m/z: found 338.1629, 

calcd 338.1604). Examination of its NMR data led to the identification of the HMBC correlation 

between an extra singlet methyl group with dH of 2.05 ppm to a carbon with dC of 170.4 (Figure 

85, Tables 7 and 8), suggesting the presence of an acetyl group. The position of this acetylation 

at C-4 was determined by the observed HMBC correlations between H-3b (dH 2.52) /C-4 (dC 

80.2)  and H-15 (dH 1.50)/C-4 (dC 80.2). Next, the relative stereochemistry of H-6 (dH 2.72) and 

H-7 (dH 3.92) was determined to be syn based on the observed strong ROESY between H-6 and 

H-7 (Figure 86). We also observed a weak ROESY between H-6 and H-17 (dH 2.05), which 

matched better with the observed distance of these two protons in the 4R-31 isomer (3.3 Å) than 

in the 4S-31 isomer (6.8 Å), suggesting a syn relation between H-16 and the acetyl at C-4. Since 

we observed a large chemical shift difference for both methylenes H-3a/H-3b (~1.0 ppm) and H-

5a/H-5b (~0.95 ppm), the relative stereochemistry of H-2 (dH 2.63) and the acetyl at C-4 should 

also be syn. These data matched with the known compound, acetoxycycloheximide,31 which is 

the acetylation product of cycloheximide. The absolute configurations need further confirmation 

by ECD calculations. 

Compound 32 was isolated as a yellow solid with a molecular formula of C15H21NO4, 

which was derived from an HRESIMS ion peak of C15H20NO4 [M-H]- (m/z: found 278.1379, 

calcd 278.1392). While the glutarimide moiety remained intact, the 7-OH group was missing in 

the structure. We also observed the presence of two alkene carbons (dC 134.7, 138.0) and one 

alkene proton (dH 6.25, Tables 7 and 8), suggestive of a dehydration at C-6/C-7. The position of 

the new hydroxy at C-2 was determined by the observed HMBC correlations between 7-OH (dH 

5.24) and C-1 (dC 200.6)/C-3 (dC 46.7). Because of its structural similarities to the dipteronine 
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class of molecules, it was named dipteronine D.32 The (E)-configuration of the C-6/C-7 alkene 

was determined based on the observed ROESY between H-5b (dH 2.71) and 8a/8b (dH 2.14, 2.18, 

Figure 86). The relative stereochemistry of H-14 (dH 1.17) and H-4 (dH 2.11) was determined to 

be syn based on the observed ROESY between them (Figure 86). The absolute configurations 

need further confirmation by ECD calculations. 

Compound 33 was isolated as a yellow solid with a molecular formula of C15H21NO5, 

which was derived from an HRESIMS ion peak of C15H20NO5 [M-H]- (m/z: found 294.1316, 

calcd 294.1341). Even though it was eluted as a single peak on the HPLC as well as LC-MS, its 

NMR data showed a mixture of two structurally related molecules. Nevertheless, we were able to 

pick out the peaks for the major component based on their relative intensities and elucidated its 

structure. Similar to compound 32, this molecule possesses an alkene at C6/C7 based on the 

observed two alkene carbons (dC 133.3, 139.9) and one alkene proton H-7 (dH 6.68, Tables 7 and 

8). The presence of a broad proton peak with dH 12.28 and the HMBC correlations between H-7 

(dH 6.68) and a carbon peak with dC 169.0 suggested a carboxylic acid at C-6. The presence of a  

cycloheximide (28)

weak

cycloheximide-2 (29) cycloheximide-3 (30)

acetoxycycloheximide (31) dipteronine D (32) cycloheximide acid A (33)

Figure 86. Key ROESY/NOESY correlations in 28-33 in DMSO-d6; all shown conformers were energy minimized 
using MMFF94 molecular force field in Chem3D. 
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single methyl group H-1 (dH 2.06) correlating with the ketone with dC 208.7 and a doublet 

methyl group H-14 (dH 0.78) correlating with two methylenes established the ring-opened 

cyclohexanone moiety. The (E)-configuration of the C-6/C-7 alkene was determined based on 

the observed ROESY between H-8 (dH 2.24) and H-14 (dH 0.78, Figure 86). Also,  by 

comparing the atomic distance between H-8/H-14 in 4R-33 and 4S-33, we found that this strong 

ROESY matched better with the 2.6 Å in 4R-33 than 3.2 Å in 4S-33, suggesting an R 

configuration at C-4. These NMR data matched the known molecule, cycloheximide acid A.33 

The absolute configuration of the C-4 needs further confirmation by ECD calculations or 

chemical derivatizations.  

4.2.3 Bioactivity of 20-33 

Figure 87. Antiproliferative activities of 20-27, 32, and 33. 
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With molecules 20-33 in hand, we tested their antiproliferative activities against the 

HCT15 cell line, KRASG13D mutant, and the SW48 cell line, which contains wild-type KRAS. 

AH-135Y (23) was the only compound that showed antiproliferative activity against both cell 

lines and most importantly, it showed selectivity against HCT15 over SW48 (Figure 87). The 

base form actiphenol was inactive, suggesting the importance of hydroxylation for its activity. 

The position of the hydroxylation at C-14 was also crucial to its activity as the C-8 hydroxylation 

in Nong-kang 101-G and C-10 hydroxylation C-73X completely depleted their activities. Future 

studies are needed to further investigate the mechanism of action. In addition, because of the 

reported protein translation inhibition activity of cycloheximide, we will also test these 

molecules in the SunSET assay to probe their impact on overall protein synthesis in various 

cancer cell lines.  

 

4.3 Borrelidins: Type-I PKS Class of Natural Products 

Another active strain from our collaboration project with SPARC was a terrestrial 

bacterial strain, EMU190C. Through our bioactivity-guided deconvolution efforts, we were able 

to identify borrelidin type of natural products that showed selective antiproliferative activity 

against HCT15 cells. Borrelidin is a nitrile-containing 18-membered macrolide that was first 

isolated from Streptomyces rochei in 1949.34 Its structure was first elucidated in 1967 and then 

confirmed by NMR and X-ray crystallography.35-37 Since its initial discovery as an antibiotic,34 a 

variety of biological activities have been reported for borrelidin, including antifungal,38 anti-

angiogenic,39 antiviral,40 and antimalarial activities.41 However, its exhibits significant toxicity 

toward nonmalignant cell types through the inhibition of threonyl tRNA synthetase (ThRS), 
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eventually preventing normal protein synthesis, preventing its advancement as a clinical 

candidate.42-44  

The biosynthesis of borrelidin has been described by Salas et.al. in 2004.45 A key 

component of the BGC of borrelidin is borA, the PKS module gene that consists of borA1, the 

loading module, and BorA2-BorA6, five genes with eight PKS modules for the biosynthesis of 

the polyketide chain. The last gene BorA6 contains a thioesterase gene at the end to catalyze the 

closing of the macrolactone ring. The BGC of borrelidin also contains borI and borJ, the P450 

and the aminotransferase that are responsible for the synthesis of the nitrile group, and borB-H 

and borK-N that are responsible for the stereospecific synthesis of the starting unit, trans-

cyclopentane-(1R,2R)-dicarboxylic acid (trans-1,2-CPDA). The stereochemistry of the chiral 

centers and alkenes of the macrolactone ring is achieved by the stereospecific keto-reductases  

(KRs), dehydratases (DHs), and enoyl-reductases (ERs) in the BGC. 
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Besides the base form borrelidin, there are a total of fifteen analogs reported for this class 

of molecule, namely borrelidin B-O (Figure 88).46-50 Borrelidin B contains an aminomethyl 

group in place of the nitrile functionality in borrelidin. It retained the antiproliferative activities 

against N87, MDA-MB0361-DYT2, and HT29 cancer cell lines through a mitotic stalling 

mechanism.46 Borrelidins C-E were reported to be hydroxylated borrelidin derivatives. While 

Borrelidin C and D exhibited weaker antiproliferative activities against A549, HCT116, 

SNU638, SK-HEP1, MDA-MB231, and K562 cancer cell lines than borrelidin, borrelidin E 

showed no toxicity against these cell lines.47 Borrelidins F-H were reported as stereoisomers of 

borrelidin with variations in the absolute configurations of the C-11 hydroxy and the C-14/C-15 

alkene.48 Borrelidin I contains a homoacetamide (NAc-capped methylene) instead of the nitrile 

group. As the most active derivative among borrelidin F-H, borrelidin H showed IC50 values 

ranging from 0.12 to 2.05 µM against A549, CNE2, HeLa, HepG2, and MCF-7 cancer cell lines. 

Moreover, it exhibited significant anti-cancer selectivity over nonmalignant cell lines. In 

addition, in a wound-healing assay, borrelidin H effectively inhibited cell migration of both 

HeLa and A549 tumor cells even at the concentrations of half of IC50. Six additional borrelidin 

derivatives, borrelidin J-O, were also recently reported with antimicrobial activities.49, 50 The 

biosynthetic origin of these reported modifications of borrelidin remains elusive. 

In this section, we report the structural characterization of known molecules, borrelidin 

(34), borrelidins C-F (35-38), borrelidins J (39) and K (40) as well as four new borrelidin 

analogs, which we named borrelidins P-S (39-44, Figure 89).  

4.3.1 Structure elucidation of 34-44 
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Compound 34 (Figure 89) was isolated as a white powder with a molecular formula of 

C28H43NO6, which was derived from an HRESIMS ion peak of C28H42NO6 [M-H]- (m/z: found 

Figure 89. Structures of borrelidin derivatives 34-44 isolated from EMU190C. 
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488.2990, calcd 488.3012). When we searched this molecular formula in the publicly available 

marine natural product database, MarinLit, we found a few matches to several borrelidin analogs. 

Figure 90. Key COSY and HMBC correlations in 34-44. 
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Deep analyses of its NMR data revealed the presence of two hydroxy groups, four doublet 

methyl groups, two carboxyl groups, three alkene protons, and a nitrile, matching the key 

structural features of the base form borrelidin (Tables 9 and 10). Later, we found that its NMR 

data matched perfectly with the commercial borrelidin, confirming its planar structure and 

absolute configurations.  

Compound 35 was isolated as a white powder with a molecular formula of C28H43NO7, 

which was derived from an HRESIMS ion peak of C28H42NO7 [M-H]- (m/z: found 504.2983, 

calcd 504.2961). It NMR data was almost identical to those of 34, except that the methylene at 

C-20 was missing (Tables 9 and 10). Instead, we observed a new hydroxy (dH 4.68) and a new 

proton (dC 4.15), suggesting a hydroxylation at C-20. In the original study that reported these C-

20 hydroxylated borrelidins, they used ROESY and Mosher’s analysis to determine the absolute 

configuration of the C-20 hydroxy.47 Using the same ROESY strategy, we observed the ROESY 

correlation between H-20 and H-18 (Figure 91), suggesting an S configuration at C-20. These 

data matched the known compound, borrelidin C. 

Table 9. 13C NMR data of 34-44 in DMSO-d6. 
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Compound 36 was isolated as a white powder with a molecular formula of C28H43NO7, 

which was derived from an HRESIMS ion peak of C28H42NO7 [M-H]- (m/z: found 504.2983, 

calcd 504.2961). Comparing its NMR data to those of 35, we found that it also possesses a 

hydroxylation at C-20. However, the chemical shifts of its neighboring protons (H-18, H-19a/H-

19b, H-21a/H-21b, and H-22) changed dramatically (Table 10), suggesting a different 

configuration on the hydroxy group. Since we observed the ROESY between H-20 (dH 4.20) and 

H-22 (dH 2.55, Figure 91), the absolute configuration of the hydroxy was determined to be S, 

matching the known molecule borrelidin D.  

Compound 37 was isolated as a white powder with a molecular formula of C28H43NO7, 

which was derived from an HRESIMS ion peak of C28H42NO7 [M-H]- (m/z: found 504.2983, 

calcd 504.2961). When comparing its NMR data to those of 34, we found that the methylene at 

C-7 was missing. Instead, we observed that two methyl groups H-25 (dH 0.72) and H-26 (dH 

0.83) were correlating to the same carbon C-7 with a chemical shift of 79.5 ppm, suggesting a 

Table 10. 1H NMR data of 34-39 in DMSO-d6. 
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hydroxylation at C-7. The absolute configuration of the C-7 was characterized as S based on the 

observed strong ROESY correlations between H-25 (dH 0.72)/H-7 (dH 2.82) and H-26 (dH 

0.83)/H-7 (dH 2.82, Figure 91). These data matched the known compound, borrelidin E.47 The 

7S configuration was further confirmed based on the observed 3JH7H8 of 9.9 Hz compared to the 

reported value of 9.0 Hz.  

Compound 38 was isolated, by Prof. Ashootosh Tripathi from strain 58119I, as a white 

powder with a molecular formula of C28H43NO6, which was derived from an HRESIMS ion peak 

of C28H42NO6 [M-H]- (m/z: found 488.2990, calcd 488.3012). When comparing its NMR data to 

those of 34, we found that major differences were located in the C-10 to C-15 region, suggesting 

Table 11. 1H NMR data of 40-44 in DMSO-d6. 
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a potential stereochemistry change in this area. Specifically, we observed a dramatic change in 

chemical shifts at C-11 in 38 (dH 3.74/dC 77.6) compared to 34 (dH 4.07/dC 71.1, Tables 9 and 

10), indicating a change in absolute configuration at this position. These data matched with the 

reported chemical shifts for borrelidin F, which possesses an S configuration at C-11.48 This 

configuration was further validated by the strong ROESY between the methyl group H-27 (dH 

0.92) and H-11 (dH 3.74) in 38 compared to only a weak ROESY between the same protons in 

34.  

Compound 39 was isolated as a white powder with a molecular formula of C28H43NO7, 

which was derived from an HRESIMS ion peak of C28H42NO7 [M-H]- (m/z: found 504.2906, 

borrelidin C (35) borrelidin D (36)

borrelidin E (37) borrelidin F (38)

Figure 91. Key ROESY correlations observed in 35-38; all shown conformers were energy 
minimized using MMFF molecular force field in Chem3D. 
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calcd 504.2961). When comparing its NMR data to those of 34, we found that one of the four 

methyl groups was missing. Instead, we observed a new methylene (dH 3.02, 3.39) that was 

correlating with C-7 (dC 42.4) and C-9 (dC 33.4, Figure 90), suggesting a hydroxylation at C-26. 

The absolute configuration of C-8 remained unchanged based on the observed ROESY between 

H-8 (dH 1.54) and H-27 (dH 0.97, Figure 92). These data matched the known compound, 

borrelidin J.49  

Compound 40 was isolated as a white powder with a molecular formula of C28H43NO7, 

which was derived from an HRESIMS ion peak of C28H42NO7 [M-H]- (m/z: found 504.2983, 

Figure 92. Key ROESY correlations observed in 39-42; all shown conformers were energy minimized 
using MMFF molecular force field in Chem3D. 

borrelidin J (39) borrelidin K (40)

borrelidin P (41) borrelidin Q (42)
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calcd 504.2961). After comparing its NMR data to those of 34, we found that one of the methyl 

groups with dH 1.06 ppm changed from a doublet to a singlet, and this methyl group was 

correlating with a carbon with dC 72.2 ppm and two methylenes at C-7 (dH 1.20, 1.24/dC 53.0) 

and C-9 (dH 1.10, 1.28/dC 42.8, Figure 90), suggestive of a hydroxylation at C-8. These data 

matched the known compound, borrelidin K.49 The unsolved absolute configuration of C-8 was 

determined as R based on the observed ROESY between H-6 (dH 1.65) and H-26 (dH 1.06, 

Figure 92).  

Compound 41 was isolated as a white powder with a molecular formula of C28H43NO7, 

which was derived from an HRESIMS ion peak of C28H42NO7 [M-H]- (m/z: found 504.2983, 

calcd 504.2961). Same as what we observed in 37, we found that two methyl groups H-25 (dH 

0.70) and H-26 (dH 0.84) were correlating to the same carbon C-7 with a chemical shift of 80.4 

ppm (Figure 90), suggesting a hydroxylation at C-7. While we observed a strong ROESY 

between H-7 (dH 2.82) and H-26 (dH 0.83), the ROESY between H-7 (dH 2.82) to H-25 (dH 0.72) 

was missing (Figure 92). In addition, the chemical shift of the C-24 changed dramatically from 

16.6 ppm in 37 to 11.2 ppm in 41 (Table 9), a low chemical shift that was never observed in the 

reported borrelidin analogs. Furthermore, the chemical shift difference between two methylene 

protons at C-5 changed from 1.18 ppm in 37 to 0.04 ppm in 41, suggesting an anti configuration 

between C-4 and C-6 methyl groups based on the established method.29 All of these data 

supported an S configuration at C-6, the opposite of the conserved R configuration at C-6 in 

previously reported borrelidin derivatives. This compound was named borrelidin P. 

Compound 42 was isolated as a white powder with a molecular formula of C28H43NO7, 

which was derived from an HRESIMS ion peak of C28H42NO7 [M-H]- (m/z: found 504.2906, 

calcd 504.2961). Same as what we observed in 37 and 39, we found that two methyl groups H-25  
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(dH 0.73) and H-26 (dH 0.84) were correlating to the same carbon C-7 with a chemical shift of 

79.2 ppm (Figure 90), suggesting a hydroxylation at C-7. The strong ROESY correlations 

between H-25 (dH 0.73)/H-7 (dH 2.91) and H-26 (dH 0.84)/H-7 (dH 2.91, Figure 92) suggest an S 

configuration at C-7. We also observed dH 3.67/dC 78.1 chemical shifts at C-11, similar to those 

in 38 (dH 3.74/dC 77.6, Tables 9 and 11), confirming an S configuration at this position. This was 

further validated by the strong ROESY between the methyl group H-27 (dH 0.90) and H-11 (dH 

3.67, Figure 92). This compound was named borrelidin Q. 

Compound 43 was isolated as a white powder with a molecular formula of C28H43NO7, 

which was derived from an HRESIMS ion peak of C28H42NO7 [M-H]- (m/z: found 504.2906, 

calcd 504.2961). Similar to 40, we found that one of the methyl groups with dH 1.10 ppm 

changed from a doublet to a singlet, and this methyl group was correlating with a carbon with dC 

71.2 ppm and two methylenes at C-5 (dH 1.07, 1.58/dC 46.7) and C-7 (dH 1.33, 1.45/dC 50.5, 

Figure 90), suggestive of a hydroxylation at C-6. The absolute configuration of C-6 was 

determined as S based on the observed ROESY between H-4 (dH 1.87)/H-25 (dH 1.10) and H-8 

borrelidin R (43) borrelidin S (44)

weak

Figure 93. Key ROESY correlations observed in 43-44; all shown conformers were energy minimized using 
MMFF molecular force field in Chem3D. 
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(dH 1.87)/H-25 (dH 1.10, Figure 91). This compound was a diastereomer of the known 

compound, borrelidin O,50 and was named borrelidin R.  

Compound 44 was isolated as a white powder with a molecular formula of C28H43NO7, 

which was derived from an HRESIMS ion peak of C28H42NO7 [M-H]- (m/z: found 504.2983, 

calcd 504.2961). When comparing its NMR data to those of 34, we found that the methylene at 

C-9 was missing. Instead, we observed that two methyl groups H-26 (dH 0.81) and H-27 (dH 

0.97) were correlating to the same carbon C-9 with a chemical shift of 74.0 ppm, suggesting a 

hydroxylation at C-9 (Figure 90). We then observed a strong ROESY correlation between H-9 

(dH 3.16)/H-11 (dH 4.40), which matched better with the atomic distance between these two 

protons in 9S-44 (2.4 Å) than that in 9R-44 (3.6 Å) and very weak ROESY observed between (dH 

2.82, Figure 91). The weak ROESY between H-9 and H-14 also matched better with the atomic 

distance between these two protons in 9S-44 (4.3 Å) than that in 9R-44 (5.8 Å). This evidence 

suggested that the C-9 position likely possessed an S configuration. Because of the low yield and 

low-quality NMR data, this needs further confirmation using DFT/DP4+ calculations. This 

molecule is named borrelidin S.  

4.3.2 Biological activities of borrelidin 34-44 

With 11 borrelidin derivatives on hand, we tested their antiproliferative activities against 

the HCT15 cell line, KRASG13D mutant, and the SW48 cell line, which contains wild-type 

KRAS. Out of all borrelidin derivatives isolated from EMU190C, the original borrelidin (34) 

was the most active molecule with highly selective antiproliferative activity against HCT15 cells. 

Importantly, we observed a significant ~100-fold decrease in activity in 38 when compared with 

the base form borrelidin (34), suggesting that the R configuration of C-11 hydroxy is crucial for 

its antiproliferative activity. We also found that an additional hydroxylation, regardless of its 
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stereochemistry or position, completely depleted its activity. The molecular mode of action needs 

further investigations.   

4.4 Tunicamycins, the Fatty Acyl Nucleoside Antibiotics 

Tunicamycins are fatty acyl nucleoside antibiotics first isolated in 1971 from the soil 

actinomycete Streptomyces lysosuperificus.51 Their structures consist of an unusual eleven 

carbon aminodialdose core (tunicamine) decorated with uracil, N-acetylglucosamine (GlcNAc), 

and a range of amide-linked unsaturated fatty acids (Figure 95).52 Several other natural products 

that share the same carbohydrate core have also been reported, including streptovirudins,53 

corynetoxins,54 MM19290,55 mycospocidin,56 and antibiotic 24010.57  

Tunicamycins are well known for their inhibition against bacterial cell wall biosynthesis. 

More specifically, they inhibit the formation of peptidoglycan precursor lipid I by targeting 

Figure 94. Antiproliferative activities of 34-44. 
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enzyme MraY.51, 52, 58 They also inhibit eukaryotic N-linked glycoprotein synthesis at the first 

committed step,59 resulting in significant cytotoxicity in mammalian cells. Although, this 

cytotoxicity precludes these antibiotics from clinical uses, it renders them a crucial tool in 

glycobiology.60 

In this sub chapter, we reported the isolation and structure elucidation of four known 

tunicamycins 45-48 from strain 69078-5R (Figure 96), another active strain from the SPARC 

project.  

4.4.1 Identification and structural elucidation of 45-48 

Using the bioactivity-guided fractionation strategy, we identified prep HPLC fraction 

HF9 as the active fraction. GNPS analysis of the LC-MS/MS data of this fraction revealed the 

presence of a cluster featuring tunicamycin analogs (Figure 96A). antiSMASH analysis also 

suggested the presence of tunicamycin BGC (data not shown). Further purification efforts yield 

tunicamycin 45-48 as the active components of this fraction (Figure 96B). 
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Compound 45 was isolated as a white powder with a molecular formula of C39H64N4O16, 

which was derived from an HRESIMS ion peak of C39H63N4O16 [M-H]- (m/z: found 843.4211, 

calcd 843.4239). Compound 46 was isolated as a white powder with the same molecular formula 

of C39H64N4O16 as 45, which was derived from an HRESIMS ion peak of C39H63N4O16 [M-H]- 

(m/z: found 843.4211, calcd 843.4239). Compound 47 was isolated as a white powder with a 

molecular formula of C40H66N4O16, which was derived from an HRESIMS ion peak of 

C40H65N4O16 [M-H]- (m/z: found 857.4412, calcd 857.4396). Compound 48 was isolated as a 

white powder with the same molecular formula of C39H64N4O16 as 47, which was derived from 

an HRESIMS ion peak of C39H63N4O16 [M-H]- (m/z: found 857.4311, calcd 857.4396). Analysis 

of the NMR data of 45 confirmed all the structural features of tunicamycin (Figure 96C, Table 

12). By comparing the NMR data and masses of 45-48, we found that their 1H NMR data were 

Figure 96. (A) Cluster of tunicamycins in GNPS analysis of HF7 in negative mode; (B) structures of isolated 
tunicamycins 45-48 from 69078-5R; (C) key COSY and HMBC correlations in 45. 
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almost identical, and their masses differed by a unit of 14, suggesting a difference in the length 

and branching of lipid chain. Using the established method for determining the branching of lipid 

chain,61, 62 we compared their 13C NMR spectrums of 45-48 (Figure 97). In both 45 and 48, we 

identified a terminally branched (iso-) carbon with a single chemical shift (corresponding to both 

methyl group carbons) at ~23.0 ppm. For 46, we identified a linear type (n-) carbon with a single 

shift at ~14.4 ppm. For 47, we identified an anteiso- type branching with two carbons at ~11.7 

ppm and ~19.6 ppm. These observations suggested that 45-48 were known compounds 

tunicamycin VII, tunicamycin VIII, corynetoxin H17a,63 and tunicamycin X, respectively.  

4.4.2 Biological activities of tunicamycins analogs 45-48 

Table 12. 1H and 13C NMR data of 45 in DMSO-d6. 
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With 4 tunicamycin derivatives on hand, we tested their antiproliferative activities against 

the HCT15 cell line, KRASG13D mutant, and the SW48 cell line, which contains wild-type 

KRAS. All four molecules showed selective antiproliferative activities against HCT15 over 

SW48 with similar potencies (Figure 98), which was consistent with the reported activities of 

this class of molecules. Further studies are needed to assess their cytotoxicity against 

nonmalignant mammalian cells for consideration into clinical development.  

4.5 Conclusion 

Besides phenazines, we also isolated and characterized ikarugamycin, actiphenol and 

cycloheximide, borrelidin, and tunicamycin classes of molecules with exciting structural features 

Figure 97. Comparison of the 13C data (DMSO-d6) of 45-48 to determine the branching of their lipid chains. 
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and biological activities. For ikarugamycin analogs, we identified a new molecule capsimycin H, 

which is the C-24 hydroxylated product of known compound, capsimycin (13). While the 

ikarugamycin BGC was identified in the genome of 87797-1N, we did not identify any potential 

P450 or hydroxylase that could potentially catalyze this hydroxylation. Further investigations 

will focus on knock-out experiments of genes upstream and downstream of the ikarugamycin 

BGC to elucidate the mechanism of this hydroxylation. For actiphenol and cycloheximide 

classes of molecules, we reported the structures of three new molecules, namely 2-

aminobenzamide-actiphenol (20), methyl phenatate C (21), and dipteronine D (32), as well as 11 

known molecules isolated from strain 44321-A2I. In addition, we reported the discovery and 

structure elucidation of 4 new hydroxylated borrelidins, namely borrelidin P-S (41-44), and 7 

known borrelidins, all isolated from local Michigan strain EMU190C. Last but not least, we 

identified four known tunicamycin analogs 45-48 from strain the Costa Rican strain 69078-5R. 

Figure 98.Antiproliferative activities of 45-48. 
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AH-135Y (23), borrelidin (34), and four tunicamycins 45-48 showed selective antiproliferative 

activity against the KRASG13D HCT15 cells over the wild-type KRAS SW48. Further studies are 

necessary to investigate their molecular modes of action for future clinical development. 

 

4.6 Materials and Methods 

4.6.1 General NMR and LC-MS/MS methods 

Nuclear Magnetic Resonance (NMR) spectra were collected using a Bruker 600 NMR 

spectrometer (1H: 600 MHz, 13C: 150 MHz) equipped with a Magnex 600/54 active shielded 

premium magnet, a Bruker liquid N2 cooled Prodigy cryo-probe and a Bruker NEO600 console, 

or a Bruker 800 NMR (1H: 800 MHz, 13C: 200 MHz) equipped with an Ascend magnet with 

active shield, a 5mm Triple resonance inverse detection TCI cryoprobe and a Bruker NEO 

console. All NMR data analyses were performed using MestReNova NMR software. All 

chemical shifts were referenced to residual solvent peaks [1H (DMSO-d6): 2.50 ppm; 13C 

(DMSO-d6): 39.51 ppm]. 

LC-HRMS/MS analyses of Biotage fractions, HPLC fractions, and purified compounds 

were performed using an Agilent 1290 Infinity II UPLC coupled to an Agilent 6545 ESI-Q-TOF-

MS system operating in both positive and negative modes. Chromatography was performed 

using a Phenomenex Kinetexâ 1.7 µm Phenyl-Hexyl 100 Å (2.1 ´ 50 mm) column. The injection 

volume was 2 µL per sample. The samples were eluted utilizing a gradient starting with a 1 min 

isocratic wash step consisting of 90% A (95% water/5% acetonitrile with 0.1% formic acid) and 

10% B (100% acetonitrile with 0.1% formic acid), then 6 min linear gradient step starting from 

10% B to 100% B and ended with 2 min of 100% B wash with a flow rate of 0.4 mL/min. The 
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divert valve was set to MS for 0 – 7.4 min and set to waste from 7.4 - 9 min. The conditions of 

the dual AJS ESI were set with gas temperature at 320 °C, sheath gas temperature at 350 °C, 

sheath gas flow rate at 11 L/min, and source capillary voltage at 3500 V. The mass range of MS 

was set to 100 – 2000 m/z and acquisition rate was set to 10 spectra per second. The mass range 

of MS/MS was set to 50 – 2000 m/z; acquisition rate was set to 6 spectra per second, and 

isolation width was set to ~1.3 m/z. The collision energy was set based on the formula: Collision 

Energy = (5 ´ m/z)/100 + 10. Maximum precursor per cycle was set to 9 and the MS/MS mass 

error tolerance was ± 20 ppm. The reference masses for positive mode are purine C5H4N4 

[M+H]+ ion (m/z 121.050873) and hexakis(1H,1H,3H-terafluoropropoxy)-phosphazine 

C18H18F24N3O6P3 [M+H]+ ion (m/z 922.009798). The reference masses for negative mode are 

trifluoroacetic acid C2HF3O2 [M-H]- (m/z 112.985587) and hexakis(1H,1H,3H-

terafluoropropoxy)-phosphazine C18H18F24N3O6P3 [M+TFA-H]- (m/z 1033.988109). All solvents 

used for Biotage fractionation were ACS grade and those used for HPLC purification and LC-

HRMS/MS analyses were HPLC grade or better unless otherwise stated. All LC-MS/MS 

chromatograms, Extracted Base Peak Chromatograms (BPCs), and extracted UV (254 nm) traces 

in this work were subtracted from the chromatograms of methanol (MeOH) blank and were 

plotted using GraphPad Prism version 9.4.1 for Mac OS X (GraphPad Software, www. 

Graphpad.com). 

4.6.2 Scale-up fermentation of 87797-1N, 44321-N2I, EMU190C, and 69078-5R 

All strains were scaled up to 40 liters. All strains were streaked onto R2YE agar plates 

and were grown for 5-7 days at 28 °C. For each strain, 3 mL seed cultures in 14-mL dual-

position cap tubes were inoculated with a loop-full of vegetative cells from R2YE plates and 

grown for 5 days at 28 °C, 200 r.p.m. 3-mL seed cultures were inoculated into 100-mL seed 
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cultures in 250-mL baffled flask and they were grown for 7 days at 28 °C, 200 r.p.m. 50-mL of 

seed cultures were inoculated into 1 L fermentation media in 2.8 L baffled Fernbach flasks and 

grown for 7 days at 28 °C, 200 r.p.m. For 87797-1N and 44321-N2I, ISP2 broth was used in both 

seed cultures and fermentation. For 69078-5R and EMU190C, A3M medium was used in both 

seed cultures and fermentations. In addition, 10 mL of Corneybacterium cultured in V22 media 

was added to the fermentation medium of EMU190C on day 2 of fermentation. 10 mL of 

Rhodococcus cultured in V22 media was added to each of the fermentation media of 69078-5R 

on day 2 of fermentation.  

On day 7 of the fermentation, 25 g of Amberlite XAD16 resin contained within a 

polypropylene mesh bag was added to each fermentation culture, and shaken overnight at 28 °C, 

200 r.p.m. On day 8, all resin bags were removed and washed extensively with dIH2O to remove 

any water-soluble media components and residual cell mass adsorbed on the resin bags. Each 

washed resin bag was extracted with 250 mL methanol and 250 mL ethyl acetate (EtOAc). The 

combined organic fractions were dried in vacuo. 

4.6.3 Purification of PTMs 9-19 

For compounds 9-13, preparative RF-HPLC fractionation of the crude extract of 87797-

1N was performed using a Shimadzu LC-20AP system equipped with a reverse-phase 

Phenomenex Kinetexâ 5 µm C18 100 Å (250 ´ 21.2 mm) column, and an autosampler. The 

injection volume was set to either 1 mL or 2 mL. The materials (brought up in methanol at ~100 

to 200 mg/mL) were eluted with a flow rate of 20 mL/min and a linear gradient starting with a 2 

min isocratic wash step using 10% acetonitrile/H2O, then 40 min linear gradient step from 10% 

acetonitrile/H2O  to 70% acetonitrile/H2O, and then 10 min wash with 95% acetonitrile/H2O 

followed by 10 min equilibration with 10% acetonitrile/H2O.  
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These compounds were then purified using semi-preparative HPLC purification using a 

Shimadzu LC-20AT system equipped with a reverse-phase Phenomenex Lunaâ 5 µm Phenyl-

Hexyl 100 Å (250 ´ 10 mm) column and an autosampler. 9 (~0.3 mg/L) was purified from prep 

HPLC fraction F20-F26 using 20 min of an isocratic 30% acetonitrile/H2O gradient, and then 10 

min of 70% acetonitrile/H2O. 10 (~0.5 mg/L) was purified from prep HPLC fraction F15-F16 

using 6 min of an isocratic 50% acetonitrile/H2O gradient, and then 8 min of 95% 

acetonitrile/H2O wash. 11 (~1 mg/L) was purified from prep HPLC fraction F9-F10 using 25 

min of an isocratic 10% acetonitrile/H2O gradient and then 10 min of 95% acetonitrile/H2O 

wash. 12 (~2 mg/L) was purified from prep HPLC fraction F12-F14 using 10 min of a 5% to 

20% acetonitrile/H2O gradient and then 20 min of an isocratic 20% acetonitrile/H2O gradient 

followed by a 10 min 95% acetonitrile/H2O wash. 13 (~0.3 mg/L) was purified from prep HPLC 

fraction F11 using 20 min of an isocratic 20% acetonitrile/H2O gradient followed by a 10 min 

95% acetonitrile/H2O wash. 

For compounds 14-19, preparative RF-HPLC fractionation was performed using the 

same Shimadzu LC-20AP system equipped with a reverse-phase Phenomenex Kinetexâ 5 µm 

C18 100 Å (250 ´ 21.2 mm) column, and an autosampler. The materials (brought up in methanol 

at ~100 to 200 mg/mL) were eluted with a flow rate of 20 mL/min and a linear gradient starting 

with a 2 min isocratic wash step using 20% acetonitrile/H2O (with 0.1% formic acid), then 30 

min linear gradient step from 20% acetonitrile/H2O (with 0.1% formic acid) to 95% 

acetonitrile/H2O (with 0.1% formic acid), and then 10 min wash with 95% acetonitrile/H2O (with 

0.1% formic acid) followed by a 10 min equilibration with 20% acetonitrile/H2O (with 0.1% 

formic acid). 
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These compounds were then purified using semi-preparative HPLC purification using the 

same Shimadzu LC-20AT system equipped with a reverse-phase Phenomenex Lunaâ 5 µm 

Phenyl-Hexyl 100 Å (250 ´ 10 mm) column and an autosampler. 14 (~0.1 mg/L) and 15 (~0.05 

mg/L) were purified from prep HPLC fraction F13-F15 using 10 min of a 0% to 40%  

acetonitrile/H2O gradient, and then 20 min of an isocratic 40% acetonitrile/H2O gradient 

followed by a 10 min 95% acetonitrile/H2O wash. 16 (~0.4 mg/L) and 17 (~0.2 mg/L) were 

purified from prep HPLC fraction F16-F18 using 10 min of a 0% to 45%  acetonitrile/H2O 

gradient, and then 20 min of an isocratic 45% acetonitrile/H2O gradient followed by a 10 min 

95% acetonitrile/H2O wash. 18 (~0.1 mg/L) and 19 (~0.05 mg/L) were purified from prep HPLC 

fraction F16-F18 using 10 min of a 0% to 45%  acetonitrile/H2O gradient, and then 20 min of an 

isocratic 45% acetonitrile/H2O gradient followed by a 10 min 95% acetonitrile/H2O wash. 

4.6.4 Expression and purification of ikaD 

The pET-28a(+) vector containing ikaD was purchased from Twist Bioscience. The 

plasmid was transformed into BL21(DE3) cells on LB agar plate containing kanamycin (50 

µg/L) overnight at 37 °C. A single colony was then inoculated into 10 mL of LB broth 

containing 1 mM kanamycin and incubated overnight at 37 °C. The overnight culture into 1 L of 

TB broth containing kanamycin (50 µg/L) and shaken at 37°C (160 r.p.m.). When the OD600 

reached 0.6-1.0, IPTG (isopropyl b-D-thiogalactoside, 1 mM) and d-aminolevulinic acid (0.4 

mM) were added to induce protein expression and to promote the production of the heme 

cofactor in E. coli, respectively. The cultures were grown at 16 °C for 18-20 hours before the 

cells were harvested by centrifugation and stored at -80 °C. The following purification steps 

were performed on ice or at 4 °C. The cells were thawed and resuspended in 50 mL of lysis 
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buffer [50 mM Tris-HCl, pH 7.4 at rt, 50 mM NaCl, 10% (v/v) glycerol, 1mM PMSF 

(phenylmethylsulphonyl fluoride), 15 mg/L lysozyme, 2mg/L DNase] per 1 L of the original 

overexpression culture. The cell suspension was then sonicated using a model 705 Sonic 

Dismembrator (Thermo Fisher Scientific) and centrifuged at 50000g for 20 min to remove 

cellular debris. The resulting clarified lysate was loaded onto a prepacked column containing 7 

mL of Ni-NTA resin (Qiagen). The loaded material was washed with 4 column volumes (CV) of 

wash buffer 1 [50 mM Tris-HCl, pH 7.4, 300 mM NaCl, 20 mM imidazole, 10% (v/v) glycerol], 

4 CV of wash buffer 2 [50 mM Tris-HCl, pH 7.4, 300 mM NaCl, 50 mM imidazole, 10% (v/v) 

glycerol], and then eluted with 2 CV of elution buffer [50 mM Tris-HCl, pH 7.4, 300 mM NaCl, 

300 mM imidazole, 10% (v/v) glycerol]. Elution fractions containing pure material were 

accessed by gel electrophoresis and by monitoring absorbance A420/A280. Pooled fractions were 

concentrated using 10 KD molecular weight cut-off (MWCO) centrifugal filters. Concentrated 

protein was loaded onto a desalting column and eluted using 4 mL of storage buffer [50 mM 

Tris, pH 7.4, 10% (v/v) glycerol]. Aliquots of purified protein were flash-frozen in liquid N2 and 

stored at -80 °C. The concentration of functional P450 was assessed by obtaining CO difference 

spectra according to the established protocol.64 

4.6.5 Expression and purification of hydroxylase 

The pET-28a(+) vector containing ikaD was purchased from Twist Bioscience. The 

plasmid was transformed into BL21 Rosetta 2 cells on LB agar plate containing kanamycin (50 

µg/L) overnight at 37 °C. A single colony was then inoculated into 10 mL of LB broth 

containing 1 mM kanamycin and incubated overnight at 37 °C. The overnight culture into 1 L of 

TB broth containing kanamycin (50 µg/L) and shaken at 37°C (250 rpm). When the OD600 

reached 0.6-1.0, IPTG (1 mM) was added to induce protein expression. The cultures were grown 
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overnight at 20 °C for before the cells were harvested by centrifugation and stored at -80 °C. The 

following purification steps were performed on ice or at 4 °C. The cells were thawed and 

resuspended in 50 mL of lysis buffer [25 mM Tris-HCl, pH 7.4 at rt, 150 mM NaCl, 1mM DTT 

(dithiothreitol), 2mg/L Aprotinin] per 1 L of the original overexpression culture. The cell 

suspension was then sonicated using a model 705 Sonic Dismembrator (Thermo Fisher 

Scientific) and centrifuged at 40000g for 30 min to remove cellular debris. The resulting clarified 

lysate was loaded onto a prepacked column containing 3.5 mL of Ni-NTA resin (Qiagen). The 

loaded material was washed with 4 CV of wash buffer [25 mM Tris-HCl, pH 7.4, 150 mM NaCl, 

1mM DTT, 20 mM imidazole], and then eluted with 6 CV of elution buffer [25 mM Tris-HCl, 

pH 7.4, 150 mM NaCl, 1mM DTT, 300 mM imidazole]. Elution fractions containing pure 

material were accessed by gel electrophoresis. Pooled elution fractions were concentrated using 

10 KD molecular weight cut-off (MWCO) centrifugal filters. The concentration of the protein 

was assessed using NanoDrop. Aliquots of purified protein were flash-frozen in liquid N2 and 

stored at -80 °C. 

4.6.6 In vitro conversion of ikarugamycin by ikaD and hydroxylase 

A standard conversion of ikarugamycin to capsimycin G was achieved by combining 2 

µM ikaD, 200 µM ikarugamycin, 40 µM spinach ferredoxin, 6 µM spinach ferredoxin-NADP+ 

reductase, 5 mM G6P (glucose-6-phosphate), 1 U/mL G6PDH (G6P dehydrogenase), and 1 mM 

NADP+ in the reaction buffer (50 mM Tris-HCl, pH 7.5), and incubating the reaction mixture 

(100 µL in total) for 10 min at rt. The trapping of the intermediate, epoxyikarugamycin (10), was 

achieved using 0.5 µM ikaD, 200 µM ikarugamycin, 10 µM spinach ferredoxin, 1.5 µM spinach 

ferredoxin-NADP+ reductase, 5 mM G6P (glucose-6-phosphate), 1 U/mL G6PDH (G6P 

dehydrogenase), and 1 mM NADP+ in the reaction buffer (50 mM Tris-HCl, pH 7.5), and 
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incubating the reaction mixture (100 µL in total) for 10 min at rt. Similar reaction conditions 

were applied for the hydroxylase. 

4.6.7 ECD and DFT calculations 

Experiment ECD spectra of isolated compounds were obtained by a J-815 

spectropolarimeter (JASCO Co. Tokyo, Japan) using the following parameters: photometric 

mode: circular dichroism (CD), high voltage (HT), and absorbance (Abs); wavelength range: 190 

nm to 600 nm; data pitch: 0.5 nm; sensitivity: standard; digital integration time (DIT): 4 seconds; 

bandwidth: 1 nm; start mode: immediately; start mode: immediately; scanning mode: 

continuous; scanning speed: 100 nm/minute; baseline correction: HPLC grade methanol; 

accumulations: 3.  

For ECD calculations, Monte Carlo conformational searches were carried out by 

CONFLEX 9 (Rev. B, Tokyo, Japan) using Merck Molecular Force Field static (MMFFs) force 

field in the gas phase. All conformers within 5 kcal/mol of the lowest energy conformer were 

subjected to further optimization by Gaussian 16 (Rev. C01, Wallingford, CT, USA) using 

density functional theory (DFT) at B3LYP/6-31G(d) level with solvent effects of methanol 

included using a polarizable continuum model (PCM).65 Optimized conformers within 3 

kcal/mol of the lowest energy conformer were then selected for time-dependent DFT (TDDFT) 

calculations by Gaussian 16 (Rev. C01, Wallingford, CT, USA) at APFD/6-311+G(2d,p) level 

with PCM in methanol for a total of 50 excited states. Calculated ECD and UV spectra of the 

conformers were averaged by SpecDis (Version 1.71, Berlin, Germany)66 according to their 

Boltzmann distributions and their relative Gibb’s free energy to generate the theoretical ECD and 

UV spectra of each configuration. The sigma value was set to s=0.16 eV. All theoretical and 
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experimental ECD and UV curves were plotted using GraphPad Prism version 9.4.1 for Mac OS 

X (GraphPad Software, www. Graphpad.com). 

4.6.8 Purification of cycloheximides and actiphenols 20-33 

Preparative RF-HPLC fractionation was performed using the same Shimadzu LC-20AP 

system equipped with a reverse-phase Phenomenex Kinetexâ 5 µm C18 100 Å (250 ´ 21.2 mm) 

column. The materials of strain 44321-A2I (brought up in methanol at ~100 to 200 mg/mL) were 

eluted with a flow rate of 20 mL/min and a linear gradient starting with a 2 min isocratic wash 

step using 10% acetonitrile/H2O (with 0.01% TFA), then 30 min linear gradient step from 10% 

acetonitrile/H2O (with 0.01% TFA) to 100% acetonitrile/H2O (with 0.01% TFA), and then 5 min 

wash with 100% acetonitrile/H2O (with 0.01% TFA) followed by an 8 min equilibration with 

10% acetonitrile/ H2O (with 0.01% TFA).  

The following compounds were then further purified using the same prep HPLC system 

and semi-preparative HPLC purification using the Shimadzu LC-20AT system equipped with a 

reverse-phase Phenomenex Lunaâ 5 µm C-18 100 Å (250 ´ 10 mm) column. For 23, prep HPLC 

fraction HF12 was first fractionated using 40 min of an isocratic 17% acetonitrile/H2O (with 

0.01% TFA) gradient using prep HPLC. 23 (~1 mg/L) was then purified from HF12_F28-30 

using 40 min of an isocratic 13% acetonitrile/H2O (with 0.01% TFA) gradient. For 28-31, prep 

HPLC fraction HF13-15 was first fractionated using 40 min of an isocratic 17% acetonitrile/H2O 

(with 0.01% TFA) gradient using prep HPLC. 29 (~0.3 mg/L) was then purified from 

HF13-15_F18-20 using 40 min of an isocratic 25% acetonitrile/H2O (with 0.01% TFA) gradient 

using semi-prep HPLC. 28 (~0.3 mg/L) and 31 (~1 mg/L) were purified from HF13-15_F22-30 

using 20 min of an isocratic 25% acetonitrile/H2O (with 0.01% TFA) gradient using semi-prep 
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HPLC. 30 (~2 mg/L) was collected by combining HF13-15_F18-20. 22 (~2 mg/L) was purified 

from HF19 using 25 min of an isocratic 40% acetonitrile/H2O (with 0.01% TFA) gradient using 

semi-prep HPLC. 

Prep HPLC HF16-18 was fractionated using 40 min of an isocratic 33% acetonitrile/H2O 

(with 0.01% TFA) gradient. The following compounds were purified using the same semi-prep 

system with a reverse-phase Phenomenex Lunaâ 5 µm Phenylhexyl 100 Å (250 ´ 10 mm) 

column. 32 (~0.025 mg/L) and 33 (~0.075 mg/L) were purified from HF16-18_F2-7 using 25 

min of an isocratic 20% acetonitrile/H2O (with 0.01% TFA) gradient. 24 (~0.05 mg/L) and 26 

(~0.025 mg/L) were purified from HF16-18_F11-13 using 30 min of an isocratic 30% 

acetonitrile/H2O (with 0.01% TFA) gradient. 21 (~0.025 mg/L) and 25 (~0.075 mg/L) were 

purified from HF16-18_F14-15 using 30 min of an isocratic 30% acetonitrile/H2O (with 0.01% 

TFA) gradient. 27 (~0.04 mg/L) was purified from HF16-18_F24-28 using 25 min of an 

isocratic 35% acetonitrile/H2O (with 0.01% TFA) gradient. 20 (~0.05 mg/L) was purified from 

HF16-18_F24-28 using 30 min of an isocratic 35% acetonitrile/H2O (with 0.01% TFA) 

gradient.  

4.6.9 Purification of borrelidins 34-44 

Preparative RF-HPLC fractionation was performed using the same Shimadzu LC-20AP 

system equipped with a reverse-phase Phenomenex Kinetexâ 5 µm C18 100 Å (250 ´ 21.2 mm) 

column. The materials of strain EMU190C (brought up in methanol at ~ 300 to 400 mg/mL) 

were eluted with a flow rate of 20 mL/min and a linear gradient starting with a 2 min isocratic 

wash step using 10% acetonitrile/H2O (with 0.01% TFA), then 30 min linear gradient step from 

10% acetonitrile/H2O (with 0.01% TFA) to 100% acetonitrile/H2O (with 0.01% TFA), and then 
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5 min wash with 100% acetonitrile/H2O (with 0.01% TFA) followed by an 8 min equilibration 

with 10% acetonitrile/ H2O (with 0.01% TFA). 

The following compounds were then further purified using the same prep HPLC system 

and semi-preparative HPLC purification using the Shimadzu LC-20AT system equipped with a 

reverse-phase Phenomenex Lunaâ 5 µm Phenylhexyl 100 Å (250 ´ 10 mm) column. Prep HPLC 

fractions HF15-16 were subjected to 35 min of an isocratic 30% acetonitrile/H2O (with 0.01% 

TFA) gradient, yielding (in order of elution) 41 (~0.05 mg/L), 39 (~0.025 mg/L), and 40 (~0.1 

mg/L). Prep HPLC fractions HF17-18 was subjected to 40 min of an isocratic 35% 

acetonitrile/H2O (with 0.01% TFA) gradient, yielding (in order of elution) 43 (~0.2 mg/L), 36 

(~0.04 mg/L), 35 (~0.15 mg/L), 37 (~0.3 mg/L), and 42 (~0.06 mg/L). Prep HPLC fractions 

HF19-20 was subjected to 45 min of an isocratic 35% acetonitrile/H2O (with 0.01% TFA) 

gradient, yielding 44 (~0.08 mg/L). HF21-22 was subjected to 35 min of an isocratic 45% 

acetonitrile/H2O (with 0.01% TFA) gradient, yielding 34 (0.6 mg/L). Compound 38 was isolated 

by Prof. Ashootosh Tripathi from strain 58119I.  

4.6.10 Purification of tunicamycins 45-48 

Preparative RF-HPLC fractionation was performed using the same Shimadzu LC-20AP 

system equipped with a reverse-phase Phenomenex Kinetexâ 5 µm C18 100 Å (250 ´ 21.2 mm) 

column. The materials of strain 69078-5R (brought up in methanol at ~ 300 to 400 mg/mL) were 

eluted with a flow rate of 20 mL/min and a linear gradient starting with a 2 min isocratic wash 

step using 10% acetonitrile/H2O (with 0.01% TFA), then 30 min linear gradient step from 10% 

acetonitrile/H2O (with 0.01% TFA) to 100% acetonitrile/H2O (with 0.01% TFA), and then 5 min 
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wash with 100% acetonitrile/H2O (with 0.01% TFA) followed by an 8 min equilibration with 

10% acetonitrile/ H2O (with 0.01% TFA). 

The following compounds were then further purified using the same prep HPLC system 

and semi-preparative HPLC purification using the Shimadzu LC-20AT system equipped with a 

reverse-phase Phenomenex Lunaâ 5 µm Phenylhexyl 100 Å (250 ´ 10 mm) column. Prep HPLC 

fractions HF17-18 were subjected to 35 min of an isocratic 40% acetonitrile/H2O (with 0.01% 

TFA) gradient, yielding (in order of elution) 45 (~1 mg/L), 46 (~0.5 mg/L), 47 (~0.4 mg/L),  and 

48 (~0.08 mg/L). 
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Appendices 

 

Appendix A: Compound Data 

 

(Please see Appendix B for all the NMR data) 

1,6-phenazinediol (1): yellow solid; HRESIMS of C12H9N2O2 [M+H]+ (m/z: found 213.06817, 

calcd 213.06640), Dppm=8.30; HRESIMS of C12H7N2O2 [M-H]- (m/z: found 211.05063, calcd 

211.05075), Dppm=-0.57. 

 

baraphenazine F (2): dark yellow solid; UV (MeOH) lmax (log e) 214 (3.55), 259 (3.65), 278.5 

(3.67), 370 (2.78) nm; ECD (c 2.14´10-4 M, MeOH) lmax (De) 219.5 (+7.25), 230 (+2.27), 254 (-

55.06), 273.5 (+25.53), 298.5 (+6.88), 322 (+4.63) nm; HRESIMS of C25H17N4O6 [M+H]+ (m/z: 

found 469.11443, calcd 469.11481), Dppm=-0.81; HRESIMS of C25H15N4O6 [M-H]- (m/z: found 

467.10357, calcd 467.09916), Dppm=9.44. 

 

baraphenazine H (3): dark red solid; UV (MeOH) lmax (log e) 217.5 (3.53), 258 (3.73), 274 

(3.64), 303 (3.35) nm; ECD (c 2.14´10-4 M, MeOH) lmax (De) 206.5 (-1.58), 222 (+9.83), 230 

(+2.99), 249 (-41.45), 273 (+23.61), 326 (+5.35) nm; HRESIMS of C25H17N4O6 [M+H]+ (m/z: 

found 469.11485, calcd 469.11481), Dppm=0.09; HRESIMS of C25H15N4O6 [M-H]- (m/z: found 

467.10345, calcd 467.09916), Dppm=9.18. 
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phenazinolin D (4): yellow-orange solid; UV (MeOH) lmax (log e) 217.5 (3.50), 261 (3.69), 272 

(3.65), 320 (2.90), 396.5 (2.90) nm; ECD (c 2.14´10-4 M, MeOH) lmax (De) 207.5 (-2.12), 223.5 

(+14.15), 251.5 (+86.85), 273 (-55.91), 280.5 (-59.70) nm; HRESIMS of C25H17N4O6 [M+H]+ 

(m/z: found 469.11552, calcd 469.11481), Dppm=1.51; HRESIMS of C25H15N4O6 [M-H]- (m/z: 

found 467.09928, calcd 467.09916), Dppm=0.26. 

 

izumiphenazine A (5): orange-red solid; UV (MeOH) lmax (log e) 216.5 (3.21), 261.5 (3.42), 

275.5 (3.41), 328 (2.52), 393 (2.52) nm; ECD (c 2.14´10-4 M, MeOH) lmax (De) 212.5 (+0.83), 

254.5 (+22.19), 274 (-20.39) nm; HRESIMS of C25H17N4O6 [M+H]+ (m/z: found 469.11489, 

calcd 469.11481), Dppm=0.17; HRESIMS of C25H15N4O6 [M-H]- (m/z: found 467.10001, calcd 

467.09916), Dppm=1.82. 

 

izumiphenazine E (6): brown solid; UV (MeOH) lmax (log e) 218 (3.56), 258 (3.65), 272 (3.62), 

328 (2.87) nm; ECD (c 2.14´10-4 M, MeOH) lmax (De) 210 (-0.57), 249 (+20.90), 273 (-15.01), 

286 (-17.89) nm; HRESIMS of C25H17N4O6 [M+H]+ (m/z: found 469.11461, calcd 469.11481), 

Dppm=-0.43; HRESIMS of C25H15N4O6 [M-H]- (m/z: found 467.09489, calcd 467.09916), 

Dppm=-9.14. 

 

baraphenazine G (7): orange-red solid; UV (MeOH) lmax (log e) 218 (3.55), 261.5 (3.68), 276 

(3.64) nm; ECD (c 2.14´10-4 M, MeOH) lmax (De) 208 (-6.71), 224 (+7.44), 251 (+74.14), 272 (-

47.31), 283 (-54.66) nm; HRESIMS of C25H17N4O6 [M+H]+ (m/z: found 469.11545, calcd 
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469.11481), Dppm=1.36; HRESIMS of C25H15N4O6 [M-H]- (m/z: found 467.10202, calcd 

467.09916), Dppm=6.12. 

 

baraphenazine I (8): red solid; HRESIMS of C25H15N4O6 [M+H]+ (m/z: found 467.09791, calcd 

467.09916) Dppm=-2.68; HRESIMS of C25H13N4O6 [M-H]- (m/z: found 465.08699, calcd 

465.08351), Dppm=7.48. 

 

ikarugamycin (9): light-yellow solid; UV: lmax 238, 320 nm; HRESIMS of C29H39N2O4 [M+H]+ 

(m/z: found 479.2903, calcd 479.2910), Dppm=-1.46; HRESIMS of C29H37N2O4 [M-H]- (m/z: 

found 477.2703, calcd 477.2753), Dppm=-10.48. 

 

epoxyikarugamycin (10): light-yellow solid; UV: lmax 239, 312 nm; HRESIMS of C29H39N2O5 

[M+H]+ (m/z: found 495.2799, calcd 495.2859), Dppm=-12.11; HRESIMS of C29H37N2O5 

[M-H]- (m/z: found 493.2667, calcd 493.2702), Dppm=-7.09. 

 

capsimycin G (11): yellow-brown solid; UV: lmax 209, 325 nm; HRESIMS of C29H39N2O6 

[M+H]+ (m/z: found 511.2806, calcd 511.2808), Dppm=-0.39; HRESIMS of C29H37N2O6 [M-H]- 

(m/z: found 509.2605, calcd 509.2652), Dppm=-9.23.  

 

capsimycin (12): yellow-brown solid; UV: lmax 236, 318 nm; HRESIMS of C30H41N2O6 [M+H]+ 

(m/z: found 525.2969, calcd 525.2965), Dppm=0.76; HRESIMS of C30H39N2O6 [M-H]- (m/z: 

found 523.2757, calcd 523.2808), Dppm=-9.46.  
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capsimycin H (13): yellow-brown solid; UV: lmax 240, 315 nm; HRESIMS of C30H41N2O7 

[M+H]+ (m/z: found 541.2867, calcd 541.2914), Dppm=-8.68; HRESIMS of C30H39N2O7 [M-H]- 

(m/z: found 539.2773, calcd 539.2757), Dppm=2.97.  

 

hydroxyikarugamycin A (14): brown solid; UV: lmax 230, 326 nm; HRESIMS of C30H43N2O8 

[M+H]+ (m/z: found 559.2969, calcd 559.3019), Dppm=-8.94; HRESIMS of C30H41N2O8 [M-H]- 

(m/z: found 557.2885, calcd 557.2863), Dppm=3.95.  

 

hydroxyikarugamycin A-2 (15): brown solid; UV: lmax 228, 329 nm; HRESIMS of C30H41N2O8 

[M-H]- (m/z: found 557.2864, calcd 557.2863), Dppm=0.18. 

 

hydroxyikarugamycin B (16): brown solid; UV: lmax 229, 328 nm; HRESIMS of C30H43N2O7 

[M+H]+ (m/z: found 543.3003, calcd 543.3070), Dppm=-12.33; HRESIMS of C30H41N2O7 

[M-H]- (m/z: found 541.2944, calcd 541.2914), Dppm=-5.54.  

 

hydroxyikarugamycin B-2 (17): brown solid; UV: lmax 222, 325 nm; HRESIMS of C30H43N2O7 

[M+H]+ (m/z: found 543.3003, calcd 543.3070), Dppm=-14.17; HRESIMS of C30H41N2O7 

[M-H]- (m/z: found 541.2864, calcd 541.2914), Dppm=-14.78. 
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hydroxyikarugamycin C (18): brown solid; UV: lmax 221, 327 nm; HRESIMS of C30H41N2O7 

[M+H]+ (m/z: found 529.2839, calcd 529.2914), Dppm=-14.17; HRESIMS of C30H39N2O7 

[M-H]- (m/z: found 527.2774, calcd 527.2757), Dppm=3.22.  

 

hydroxyikarugamycin C-2 (19): brown solid; UV: lmax 221, 326 nm; HRESIMS of C30H41N2O7 

[M+H]+ (m/z: found 529.2839, calcd 529.2914), Dppm=-14.17; HRESIMS of C30H39N2O7 

[M-H]- (m/z: found 527.2695, calcd 527.2757), Dppm=-11.76.  

 

2-aminobenzamide-actiphenol (20): yellow solid; UV: lmax 213, 258, 344 nm; HRESIMS of 

C22H24N3O5 [M+H]+ (m/z: found 410.1684, calcd 410.1716), Dppm=-7.80; HRESIMS of 

C22H23N3O5 [M-H]- (m/z: found 408.1569, calcd 408.1559), Dppm=2.45. 

 

methyl phenatate C (21): yellow solid; UV: lmax 215, 267, 354 nm; HRESIMS of C16H21NO6Na 

[M+Na]+ (m/z: found 346.1226, calcd 346.1267), Dppm=-11.85; HRESIMS of C16H20NO6 

[M-H]- (m/z: found 322.1304, calcd 322.1291), Dppm=4.04. 

 

actiphenol (22): yellow solid; UV: lmax 223, 259, 347 nm; HRESIMS of C15H18NO4 [M+H]+ 

(m/z: found 276.1216, calcd 276.1236), Dppm=-7.24; HRESIMS of C15H16NO4 [M-H]- (m/z: 

found 274.1073, calcd 274.1079), Dppm=-2.19. 

 

AH-135Y (23): yellow solid; UV: lmax 203, 260, 344 nm; HRESIMS of C15H16NO5 [M-H]- (m/z: 

found 290.1033, calcd 290.1028), Dppm=1.72. 
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Nong-kang 101-G (24): yellow solid; UV: lmax 219, 264, 336 nm; HRESIMS of C15H18NO5 

[M+H]+ (m/z: found 292.1187, calcd 292.1185), Dppm=0.68; HRESIMS of C15H16NO5 [M-H]- 

(m/z: found 290.1033, calcd 290.1028), Dppm=1.72.  

 

C-73X (25): yellow solid; UV: lmax 220, 268, 355 nm; HRESIMS of C15H18NO5 [M+H]+ (m/z: 

found 292.1153, calcd 292.1185), Dppm=-10.95; HRESIMS of C15H16NO5 [M-H]- (m/z: found 

290.1054, calcd 290.1028), Dppm=8.96.  

 

actiketal (26): yellow solid; UV: lmax 219, 268, 355 nm; HRESIMS of C15H16NO5 [M+H]+ (m/z: 

found 290.1009, calcd 290.1028), Dppm=-6.55; HRESIMS of C15H14NO5 [M-H]- (m/z: found 

288.0882, calcd 288.0872), Dppm=3.47.  

 

methyl phenatate A (27): yellow solid; UV: lmax 214, 261, 346 nm; HRESIMS of C15H22NO5 

[M+H]+ (m/z: found 308.1491, calcd 308.1498), Dppm=-2.27; HRESIMS of C16H20NO5 [M-H]- 

(m/z: found 306.1344, calcd 282.1705), Dppm=0.98. 

 

cycloheximide (28): yellow solid; UV: lmax 202 nm; HRESIMS of C15H24NO4 [M+H]+ (m/z: 

found 282.1713, calcd 282.1705), Dppm=2.84; HRESIMS of C15H22NO4 [M-H]- (m/z: found 

280.1557, calcd 280.1549), Dppm=2.86. 
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cycloheximide-2 (29): yellow solid; UV: lmax 200, 295 nm; HRESIMS of C15H24NO4 [M+H]+ 

(m/z: found 282.1703, calcd 282.1705), Dppm=-0.71; HRESIMS of C15H22NO4 [M-H]- (m/z: 

found 280.1558, calcd 280.1549), Dppm=3.21. 

 

cycloheximide-3 (30): yellow solid; UV: lmax 202 nm; HRESIMS of C15H24NO4 [M+H]+ (m/z: 

found 282.1721, calcd 282.1705), Dppm=5.67; HRESIMS of C15H22NO4 [M-H]- (m/z: found 

280.1567, calcd 280.1549), Dppm=6.43.  

 

acetoxycycloheximide (31): yellow solid; UV: lmax 201 nm; HRESIMS of C17H25NO6Na 

[M+Na]+ (m/z: found 362.1587, calcd 362.1580), Dppm=1.93; HRESIMS of C17H24NO6 [M-H]- 

(m/z: found 338.1645, calcd 338.1604), Dppm=12.12.  

 

dipteronine D (32): yellow solid; UV: lmax 203, 248 nm; HRESIMS of C15H21NO4Na [M+Na]+ 

(m/z: found 302.1358, calcd 302.1368), Dppm=-3.31; HRESIMS of C15H20NO4 [M-H]- (m/z: 

found 278.1397, calcd 278.1392), Dppm=1.80.  

 

cycloheximide acid A (33): yellow solid; UV: lmax 203, 220 nm; HRESIMS of C15H21NO5Na 

[M+Na]+ (m/z: found 318.1314, calcd 318.1317), Dppm=-0.94; HRESIMS of C15H20NO5 [M-H]- 

(m/z: found 294.1351, calcd 294.1341), Dppm=3.40.  
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borrelidin (34): white powder; UV: lmax 258 nm; HRESIMS of C28H43NO6Na [M+Na]+ (m/z: 

found 512.2988, calcd 512.2988), Dppm=0.00; HRESIMS of C28H42NO6 [M-H]- (m/z: found 

488.2990, calcd 488.3012), Dppm=-4.51.  

 

borrelidin C (35): white powder; UV: lmax 258 nm; HRESIMS of C28H43NO7Na [M+Na]+ (m/z: 

found 528.2942, calcd 528.2937), Dppm=0.95; HRESIMS of C28H42NO7 [M-H]- (m/z: found 

504.2983, calcd 504.2961), Dppm=4.36.  

 

borrelidin D (36): white powder; UV: lmax 258 nm; HRESIMS of C28H43NO7Na [M+Na]+ (m/z: 

found 528.2948, calcd 528.2937), Dppm=2.08; HRESIMS of C28H42NO7 [M-H]- (m/z: found 

504.2983, calcd 504.2961), Dppm=4.36.  

 

borrelidin E (37): white powder; UV: lmax 258 nm; HRESIMS of C28H43NO7Na [M+Na]+ (m/z: 

found 528.2934, calcd 528.2937), Dppm=-0.57; HRESIMS of C28H42NO7 [M-H]- (m/z: found 

504.2983, calcd 504.2961), Dppm=4.36.  

 

borrelidin F (38): white powder; UV: lmax 258 nm; HRESIMS of C28H43NO6Na [M+Na]+ (m/z: 

found 512.2980, calcd 512.2988), Dppm=-1.56; HRESIMS of C28H42NO6 [M-H]- (m/z: found 

488.2990, calcd 488.3012), Dppm=-4.51.  
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borrelidin J (39): white powder; UV: lmax 258 nm; HRESIMS of C28H43NO7Na [M+Na]+ (m/z: 

found 528.2946, calcd 528.2937), Dppm=1.70; HRESIMS of C28H42NO7 [M-H]- (m/z: found 

504.2980, calcd 504.2961), Dppm=3.77. 

 

borrelidin K (40): white powder; UV: lmax 258 nm; HRESIMS of C28H43NO7Na [M+Na]+ (m/z: 

found 528.2935, calcd 528.2937), Dppm=-0.38; HRESIMS of C28H42NO7 [M-H]- (m/z: found 

504.2983, calcd 504.2961), Dppm=4.36. 

 

borrelidin P (41): white powder; UV: lmax 258 nm; HRESIMS of C28H43NO7Na [M+Na]+ (m/z: 

found 528.2943, calcd 528.2937), Dppm=1.14; HRESIMS of C28H42NO7 [M-H]- (m/z: found 

504.2983, calcd 504.2961), Dppm=4.36. 

 

borrelidin Q (42): white powder; UV: lmax 258 nm; HRESIMS of C28H43NO7Na [M+Na]+ (m/z: 

found 528.2938, calcd 528.2937), Dppm=0.19; HRESIMS of C28H42NO7 [M-H]- (m/z: found 

504.2906, calcd 504.2961), Dppm=-10.91. 

 

borrelidin R (43): white powder; UV: lmax 258 nm; HRESIMS of C28H43NO7Na [M+Na]+ (m/z: 

found 528.2919, calcd 528.2937), Dppm=-3.14; HRESIMS of C28H42NO7 [M-H]- (m/z: found 

504.2975, calcd 504.2961), Dppm=2.78. 

 



 216 

borrelidin S (44): white powder; UV: lmax 218 nm; HRESIMS of C28H43NO7Na [M+Na]+ (m/z: 

found 528.2937, calcd 528.2937), Dppm=0.00; HRESIMS of C28H42NO7 [M-H]- (m/z: found 

504.2993, calcd 504.2961), Dppm=6.35. 

 

tunicamycin VII (45): white powder; UV: lmax 209, 258 nm; HRESIMS of C39H65N4O16 [M+H]+ 

(m/z: found 845.4342, calcd 845.4396), Dppm=-6.39; HRESIMS of C39H63N4O16 [M-H]- (m/z: 

found 843.4211, calcd 843.4239), Dppm=-3.32. 

 

tunicamycin VIII (46): white powder; UV: lmax 209, 258 nm; HRESIMS of C39H65N4O16 

[M+H]+ (m/z: found 845.4342, calcd 845.4396), Dppm=-6.39; HRESIMS of C39H63N4O16 

[M-H]- (m/z: found 843.4211, calcd 843.4239), Dppm=-3.32. 

 

corynetoxin H17a (47): white powder; UV: lmax 209, 260 nm; HRESIMS of C40H67N4O16 

[M+H]+ (m/z: found 859.4559, calcd 859.4552), Dppm=0.81; HRESIMS of C40H65N4O16 [M-H]- 

(m/z: found 857.4412, calcd 857.4396), Dppm=1.87. 

 

tunicamycin X (48): white powder; UV: lmax 209, 260 nm; HRESIMS of C40H67N4O16 [M+H]+ 

(m/z: found 859.4564, calcd 859.4552), Dppm=1.40; HRESIMS of C40H65N4O16 [M-H]- (m/z: 

found 857.4422, calcd 857.4396), Dppm=3.03. 
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Appendix B: NMR data of 1-48 

(All NMR data were captured in DMSO-d6) 
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1H spectrum of 1, 6-phenazinediol (1) 

 

13C spectrum of 1, 6-phenazinediol (1) 
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COSY spectrum of 1, 6-phenazinediol (1) 

 

HSQC spectrum of 1, 6-phenazinediol (1) 
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HMBC spectrum of 1, 6-phenazinediol (1) 
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1H spectrum of baraphenazine F (2) 

 

13C spectrum of baraphenazine F (2) 
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COSY spectrum of baraphenazine F (2) 
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HSQC spectrum of baraphenazine F (2) 

 

1H-13C HMBC spectrum of baraphenazine F (2)  
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TOCSY spectrum of baraphenazine F (2)  

 

ROESY spectrum of baraphenazine F (2)  
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1H spectrum of baraphenazine H (3)  

 

13C spectrum of baraphenazine H (3) 
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COSY spectrum of baraphenazine H (3) 

 

HSQC spectrum of baraphenazine H (3) 
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1H-13C HMBC spectrum of baraphenazine H (3) 

 

Close-up view of 1H-13C HMBC correlations in the aromatic region of baraphenazine H (3) 
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TOCSY spectrum of baraphenazine H (3) 

 

ROESY spectrum of baraphenazine H (3) 

 

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
f2	(ppm)

1

2

3

4

5

6

7

8

9

f1
	(p
pm
)

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.0
f2	(ppm)

0

1

2

3

4

5

6

7

8

9

10

11

12

f1
	(p
pm
)



 232 

 

 

 

 

 

 

 

 

 

N

NN

N

HO

HO

O
HO

O

H

H

1
2

3

4
5

6

7
25

8

9
10

11
12

1314

15

16 17
18

19 20

21
22 23

24

phenazinolin D (4)

HO



 233 

1H spectrum of phenazinolin D (4) 

 

13C spectrum of phenazinolin D (4) 
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COSY spectrum of phenazinolin D (4) 

 

HSQC spectrum of phenazinolin D (4) 
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1H-13C HMBC spectrum of phenazinolin D (4) 

 

1H-15N HMBC spectrum of phenazinolin D (4) 
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TOCSY spectrum of phenazinolin D (4) 

 

ROESY spectrum of phenazinolin D (4) 
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1H spectrum of izumiphenazine A (5) 

 

13C spectrum of izumiphenazine A (5) 
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COSY spectrum of izumiphenazine A (5) 

 

HSQC spectrum of izumiphenazine A (5) 
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1H-13C HMBC spectrum of izumiphenazine A (5) 

 

1H-15N HMBC spectrum of izumiphenazine A (5) 
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TOCSY spectrum of izumiphenazine A (5) 

 

ROESY spectrum of izumiphenazine A (5) 
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1H spectrum of izumiphenazine E (6) 

 

13C spectrum of izumiphenazine E (6) 
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COSY spectrum of izumiphenazine E (6) 

 

HSQC spectrum of izumiphenazine E (6) 
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1H-13C HMBC spectrum of izumiphenazine E (6) 
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1H spectrum of baraphenazine G (7) 

 

13C spectrum of baraphenazine G (7) 
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COSY spectrum of baraphenazine G (7) 

 

HSQC spectrum of baraphenazine G (7) 
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1H-13C HMBC spectrum of baraphenazine G (7) 

 

1H-15N HMBC spectrum of baraphenazine G (7) 
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TOCSY spectrum of baraphenazine G (7) 

 

ROESY spectrum of baraphenazine G (7) 
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1H spectrum of baraphenazine I (8) 

 

COSY spectrum of baraphenazine I (8) 
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HSQC spectrum of baraphenazine I (8) 

 

1H-13C HMBC spectrum of baraphenazine I (8) 
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1H spectrum of epoxyikarugamycin (10) 

 

13C spectrum of epoxyikarugamycin (10) 
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COSY spectrum of epoxyikarugamycin (10) 

 

HSQC spectrum of epoxyikarugamycin (10) 
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1H-13C HMBC spectrum of epoxyikarugamycin (10) 

 

ROESY spectrum of epoxyikarugamycin (10) 
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1H spectrum of capsimycin G (11) 

 

13C spectrum of capsimycin G (11) 
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COSY spectrum of capsimycin G (11) 

 

HSQC spectrum of capsimycin G (11) 
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1H-13C HMBC spectrum of capsimycin G (11) 

 

NOESY spectrum of capsimycin G (11) 

 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0
f2	(ppm)

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

f1
	(p
pm
)

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
f2	(ppm)

1

2

3

4

5

6

7

8

9

f1
	(p
pm
)



 262 

 

 

 

 

 

 

capsimycin (12)

O

H
N

O

NH

O

OH

12

3

4

56

7
8

910

11 12

13 14
15

16
17

18 19

20
21

22

23
24

25

26

27

28

29

O
O

30

H
H



 263 

1H spectrum of capsimycin (12) 

 

13C spectrum of capsimycin (12) 
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COSY spectrum of capsimycin (12) 

 

HSQC spectrum of capsimycin (12) 
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1H-13C HMBC spectrum of capsimycin (12) 

 

ROESY spectrum of capsimycin (12) 
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1H spectrum of capsimycin H (13) 

 

13C spectrum of capsimycin H (13) 

 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
f1	(ppm)

-100000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

1600000

1700000

1800000

1900000

2000000

A	(dd)
5.82

J(11.4,	2.8)

B	(td)
6.00

J(11.3,	2.6)

C	(t)
7.98
J(6.0)

D	(m)
2.15

E	(ddd)
3.63

J(16.2,	11.0,	4.0)

F	(td)
1.54

J(12.4,	5.9)

G	(m)
1.63

H	(d)
2.88
J(4.0)

I	(d)
3.19
J(2.9)

J	(td)
0.88

J(11.9,	2.3)

K	(dq)
1.87

J(16.2,	7.7,	6.3)

L	(m)
2.23

M	(td)
0.59

J(11.9,	8.6)

N	(dq)
1.97

J(17.2,	7.5,	5.3)

O	(dd)
2.31

J(12.7,	9.7)

P	(d)
7.26
J(11.2)

Q	(d)
3.78
J(6.7)

R	(q)
1.40
J(13.6)

S	(tq)
2.59

J(13.3,	8.3,	6.6)

T	(d)
1.20
J(6.1)

U	(d)
0.94
J(7.1)

1.
21

1.
14

3.
3
3

3.
25

0.
9
2

0.
9
0

1.
0
4

1.
28

2.
3
2

1.
11

1.
3
9

0.
9
8

1.
3
7

0.
9
8

1.
6
5

0.
9
6

1.
15

1.
0
0

1.
0
9

1.
3
3

1.
0
2

0.
57

0.
58

0.
59

0.
6
0

0.
6
1

0.
6
2

0.
8
6

0.
8
7

0.
8
7

0.
8
8

0.
8
9

0.
9
0

0.
9
1

0.
9
3

0.
9
5

1.
20

1.
21

1.
3
4

1.
3
5

1.
3
6

1.
3
6

1.
3
7

1.
3
9

1.
4
1

1.
4
3

1.
52

1.
52

1.
54

1.
54

1.
55

1.
56

1.
58

1.
6
0

1.
6
1

1.
6
2

1.
6
3

1.
6
4

1.
6
5

1.
6
5

1.
6
6

1.
8
4

1.
8
5

1.
8
7

1.
8
9

1.
8
9

1.
9
0

1.
9
2

1.
9
4

1.
9
6

1.
9
7

1.
9
7

1.
9
8

1.
9
9

1.
9
9

2.
14

2.
14

2.
16

2.
17

2.
20

2.
21

2.
22

2.
22

2.
23

2.
25

2.
26

2.
28

2.
29

2.
3
0

2.
3
1

2.
3
3

2.
56

2.
57

2.
58

2.
59

2.
6
0

2.
6
0

2.
6
1

2.
6
2

2.
8
8

2.
8
9

3.
18

3.
18

3.
19

3.
6
1

3.
6
1

3.
6
2

3.
6
3

3.
6
4

3.
6
5

3.
6
6

3.
77

3.
78

5.
8
1

5.
8
2

5.
8
3

5.
8
3

5.
9
8

5.
9
9

6
.0
0

6
.0
1

6
.0
2

6
.0
2

7.
24

7.
25

7.
27

7.
27

7.
9
7

7.
9
8

7.
9
9

0102030405060708090100110120130140150160170180190200
f1	(ppm)

-1000000

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

11000000

12000000



 268 

COSY spectrum of capsimycin H (13) 

 

HSQC spectrum of capsimycin H (13) 
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1H-13C HMBC spectrum of capsimycin H (13) 

 

ROESY spectrum of capsimycin H (13) 
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1H spectrum of hydroxyikarugamycin A (14) 
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1H spectrum of hydroxyikarugamycin A-2 (15) 
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O

H
N

O

NH

O

OH

12

3

4

56

78

9
10

11 12

13 14
15

16
17

18 19

20
21

22

23

24
25

26

27

28

29

O
30

HO
OHHO

H
H

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
f1 (ppm)

-200000

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2400000

2600000

2800000



 272 

 

 

 

 

 

hydroxyikarugamycin B (16)
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1H spectrum of hydroxyikarugamycin B (16) 

 

13C spectrum of hydroxyikarugamycin B (16) 
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COSY spectrum of hydroxyikarugamycin B (16) 

 

HSQC spectrum of hydroxyikarugamycin B (16) 
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1H-13C HMBC spectrum of hydroxyikarugamycin B (16) 

 

TOCSY spectrum of hydroxyikarugamycin B (16) 
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NOESY spectrum of hydroxyikarugamycin B (16) 
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1H spectrum of hydroxyikarugamycin B-2 (17) 

 

13C spectrum of hydroxyikarugamycin B-2 (17) 
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COSY spectrum of hydroxyikarugamycin B-2 (17) 

 

HSQC spectrum of hydroxyikarugamycin B-2 (17) 
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1H-13C HMBC spectrum of hydroxyikarugamycin B-2 (17) 

 

NOESY spectrum of hydroxyikarugamycin B-2 (17) 
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1H spectrum of hydroxyikarugamycin C (18) 

 

 

 

 

 

hydroxyikarugamycin C (18)

O

H
N

O

NH

O

OH

12

3

4

56

78

9
10

11 12

13 14
15

16
17

18 19

20
21

22

23

24
25

26

27

28

29

OH
OHHO

H
H

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000



 282 

 

 

1H spectrum of hydroxyikarugamycin C (19) 
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1H spectrum of 2-aminobenzamide-actiphenol (20) 

 

13C spectrum of 2-aminobenzamide-actiphenol (20) 
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COSY spectrum of 2-aminobenzamide-actiphenol (20) 

 

HSQC spectrum of 2-aminobenzamide-actiphenol (20) 
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1H-13C HMBC spectrum of 2-aminobenzamide-actiphenol (20) 

 

ROESY spectrum of 2-aminobenzamide-actiphenol (20) 
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1H spectrum of methyl phenatate C (21) 

 

13C spectrum of methyl phenatate C (21) 
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COSY spectrum of methyl phenatate C (21) 

 

HSQC spectrum of methyl phenatate C (21) 
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1H-13C HSQC spectrum of methyl phenatate C (21) 

 

ROESY spectrum of methyl phenatate C (21) 
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1H spectrum of actiphenol (22) 

 

13C spectrum of actiphenol (22) 
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COSY spectrum of actiphenol (22) 

 

HSQC spectrum of actiphenol (22) 
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1H-13C HMBC spectrum of actiphenol (22) 
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1H spectrum of AH-135Y (23) 

 

13C spectrum of AH-135Y (23) 
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COSY spectrum of AH-135Y (23) 

 

HSQC spectrum of AH-135Y (23) 
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1H-13C HMBC spectrum of AH-135Y (23) 
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1H spectrum of Nong-kang 101-G (24) 

 

13C spectrum of Nong-kang 101-G (24) 

 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.5
f1	(ppm)

-100000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

0102030405060708090100110120130140150160170180190200210
f1	(ppm)

-500000

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

6000000

6500000

7000000

7500000

8000000

8500000

9000000

15
.7
2

20
.4
7

3
2.
4
3

3
3.
9
0

3
4
.9
8

3
9
.5
8

3
9
.7
2

3
9
.8
6

4
0.
0
0

4
0.
14

4
0.
28

4
0.
4
2

4
0.
54

73
.4
8

11
7.
3
7

12
6
.7
4

12
7.
8
3

12
8.
3
4

13
9
.1
2

15
8.
58

17
3.
4
0

17
3.
4
3

20
6
.2
5



 301 

COSY spectrum of Nong-kang 101-G (24) 

 

HSQC spectrum of Nong-kang 101-G (24) 
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1H-13C HMBC spectrum of Nong-kang 101-G (24) 

 

ROESY spectrum of Nong-kang 101-G (24) 
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1H spectrum of C-73X (25) 

 

13C spectrum of C-73X (25) 
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COSY spectrum of C-73X (25) 

 

HSQC spectrum of C-73X (25) 
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1H-13C HMBC spectrum of C-73X (25) 

 

ROESY spectrum of C-73X (25) 
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1H spectrum of actiketal (26) 
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13C spectrum of actiketal (26) 

 

COSY spectrum of actiketal (26) 
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HSQC spectrum of actiketal (26) 

 

1H-13C HMBC spectrum of actiketal (26) 

 

2.02.53.03.54.04.55.05.56.06.57.07.58.0
f2	(ppm)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

f1
	(p
pm
)

2.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.5
f2	(ppm)

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

f1
	(p
pm
)



 310 

 

 

 

 

 

 

 

 

 

 

 

 

OH O NH2

O

OO

1
2

3
4

5

6 7
8

9 10

11 12

13 14

15

16

methyl phenatate A (27)



 311 

1H spectrum of methyl phenatate A (27) 

 

13C spectrum of methyl phenatate A (27) 
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COSY spectrum of methyl phenatate A (27) 

 

HSQC spectrum of methyl phenatate A (27) 
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1H-13C spectrum of methyl phenatate A (27) 

 

ROESY spectrum of methyl phenatate A (27) 
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1H spectrum of cycloheximide (28) 

 

13C spectrum of cycloheximide (28) 
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COSY spectrum of cycloheximide (28) 

 

HSQC spectrum of cycloheximide (28) 
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1H-13C HMBC spectrum of cycloheximide (28) 

 

ROESY spectrum of cycloheximide (28) 
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1H spectrum of cycloheximide-2 (29) 

 

13C spectrum of cycloheximide-2 (29) 
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COSY spectrum of cycloheximide-2 (29) 

 

HSQC spectrum of cycloheximide-2 (29) 
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1H-13C HMBC spectrum of cycloheximide-2 (29) 

 

ROESY spectrum of cycloheximide-2 (29) 
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1H spectrum of cycloheximide-3 (30) 

 

13C spectrum of cycloheximide-3 (30) 
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COSY spectrum of cycloheximide-3 (30) 

 

HSQC spectrum of cycloheximide-3 (30) 
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1H-13C HMBC spectrum of cycloheximide-3 (30) 

 

ROESY spectrum of cycloheximide-3 (30) 
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1H spectrum of acetoxycycloheximide (31) 

 

13C spectrum of acetoxycycloheximide (31) 

 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.0
f1	(ppm)

-200000

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2400000

2600000

2800000

3000000

3200000

3400000

0102030405060708090100110120130140150160170180190200210
f1	(ppm)

-500000

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000



 328 

COSY spectrum of acetoxycycloheximide (31) 

 

HSQC spectrum of acetoxycycloheximide (31) 
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1H-13C HMBC spectrum of acetoxycycloheximide (31) 

 

ROESY spectrum of acetoxycycloheximide (31) 
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1H spectrum of dipteronine D (32) 

 

13C spectrum of dipteronine D (32) 
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COSY spectrum of dipteronine D (32) 

 

HSQC spectrum of dipteronine D (32) 
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1H-13C HMBC spectrum of dipteronine D (32) 

 

ROESY spectrum of dipteronine D (32) 
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1H spectrum of cycloheximide acid A (33) 

 

13C spectrum of cycloheximide acid A (33) 

 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.513.0
f1	(ppm)

-100000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

0102030405060708090100110120130140150160170180190200210
f1	(ppm)

-200000

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2400000

2600000

2800000

3000000

3200000



 336 

COSY spectrum of cycloheximide acid A (33) 

 

HSQC spectrum of cycloheximide acid A (33) 
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1H-13C HMBC spectrum of cycloheximide acid A (33) 

 

ROESY spectrum of cycloheximide acid A (33) 
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1H spectrum of borrelidin (34) 

 

13C spectrum of borrelidin (34) 
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COSY spectrum of borrelidin (34) 

 

HSQC spectrum of borrelidin (34) 
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1H-13C HMBC spectrum of borrelidin (34) 

 

ROESY spectrum of borrelidin (34) 

 

0.51.01.52.02.53.03.54.04.55.05.56.06.57.0
f2	(ppm)

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

f1
	(p
pm
)

0.51.01.52.02.53.03.54.04.55.05.56.06.57.0
f2	(ppm)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

f1
	(p
pm
)



 342 

 

 

 

 

 

OH

O

OOH

N H O

OH

1
2

3
4

5
6

7
89

10

11

12

13

14

15

16
17

18
19

20 21

22
23

242526

27

28

HO

borrelidin C (35)



 343 

1H spectrum of borrelidin C (35) 

 

13C spectrum of borrelidin C (35) 
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COSY spectrum of borrelidin C (35) 

 

HSQC spectrum of borrelidin C (35) 
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1H-13C HMBC spectrum of borrelidin C (35) 

 

ROESY spectrum of borrelidin C (35) 
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1H spectrum of borrelidin D (36) 

 

13C spectrum of borrelidin D (36) 
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COSY spectrum of borrelidin D (36) 

 

HSQC spectrum of borrelidin D (36) 
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1H-13C HMBC spectrum of borrelidin D (36) 

 

ROESY spectrum of borrelidin D (36) 
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1H spectrum of borrelidin E (37) 

 

13C spectrum of borrelidin E (37) 
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COSY spectrum of borrelidin E (37) 

 

HSQC spectrum of borrelidin E (37) 
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1H-13C HMBC spectrum of borrelidin E (37) 

 

ROESY spectrum of borrelidin E (37) 
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1H spectrum of borrelidin F (38) 

 

13C spectrum of borrelidin F (38) 
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COSY spectrum of borrelidin F (38) 

 

HSQC spectrum of borrelidin F (38) 
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1H-13C HMBC spectrum of borrelidin F (38) 

 

ROESY spectrum of borrelidin F (38) 
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1H spectrum of borrelidin J (39) 

 

13C spectrum of borrelidin J (39) 
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COSY spectrum of borrelidin J (39) 

 

HSQC spectrum of borrelidin J (39) 
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1H-13C HMBC spectrum of borrelidin J (39) 

 

ROESY spectrum of borrelidin J (39) 
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1H spectrum of borrelidin K (40) 

 

13C spectrum of borrelidin K (40) 
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COSY spectrum of borrelidin K (40) 

 

HSQC spectrum of borrelidin K (40) 
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1H-13C HMBC spectrum of borrelidin K (40) 

 

ROESY spectrum of borrelidin K (40) 
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1H spectrum of borrelidin P (41) 

 

13C spectrum of borrelidin P (41) 
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COSY spectrum of borrelidin P (41) 

 

HSQC spectrum of borrelidin P (41) 
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1H-13C HMBC spectrum of borrelidin P (41) 

 

ROESY spectrum of borrelidin P (41) 
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1H spectrum of borrelidin Q (42) 

 

13C spectrum of borrelidin Q (42) 

 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.5
f1	(ppm)

-50000

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

600000

650000

0102030405060708090100110120130140150160170180
f1	(ppm)

-200000

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2400000

2600000

2800000

3000000

3200000

3400000

3600000

3800000



 372 

COSY spectrum of borrelidin Q (42) 

 

HSQC spectrum of borrelidin Q (42) 
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1H-13C HMBC spectrum of borrelidin Q (42) 

 

ROESY spectrum of borrelidin Q (42) 
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1H spectrum of borrelidin R (43) 

 

13C spectrum of borrelidin R (43) 
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COSY spectrum of borrelidin R (43) 

 

HSQC spectrum of borrelidin R (43) 
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1H-13C HMBC spectrum of borrelidin R (43) 

 

ROESY spectrum of borrelidin R (43) 
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1H spectrum of borrelidin S (44) 

 

13C spectrum of borrelidin S (44) 
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COSY spectrum of borrelidin S (44) 

 

HSQC spectrum of borrelidin S (44) 
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1H-13C HMBC spectrum of borrelidin S (44) 

 

ROESY spectrum of borrelidin S (44) 
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NMR data of tunicamycin VII (45) 
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1H spectrum of tunicamycin VII (45) 

 

13C spectrum of tunicamycin VII (45) 

 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5
f1	(ppm)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0102030405060708090100110120130140150160170
f1	(ppm)

-1000000

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

11000000

12000000



 384 

COSY spectrum of tunicamycin VII (45) 

 

HSQC spectrum of tunicamycin VII (45) 
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1H-13C HMBC spectrum of tunicamycin VII (45) 

 

TOCSY spectrum of tunicamycin VII (45) 
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1H spectrum of tunicamycin VIII (46) 

 

13C spectrum of tunicamycin VIII (46) 
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COSY spectrum of tunicamycin VIII (46) 

 

HSQC spectrum of tunicamycin VIII (46) 
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1H-13C HMBC spectrum of tunicamycin VIII (46) 

 

TOCSY spectrum of tunicamycin VIII (46) 
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1H spectrum of corynetoxin H17a (47) 

 

13C spectrum of corynetoxin H17a (47) 
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COSY spectrum of corynetoxin H17a (47) 

 

HSQC spectrum of corynetoxin H17a (47) 
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1H-13C HMBC spectrum of corynetoxin H17a (47) 

 

NOESY spectrum of corynetoxin H17a (47) 
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1H spectrum of tunicamycin X (48) 

 

13C spectrum of tunicamycin X (48) 
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COSY spectrum of tunicamycin X (48) 

 

HSQC spectrum of tunicamycin X (48) 
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1H-13C HMBC spectrum of tunicamycin X (48) 

 

NOESY spectrum of tunicamycin X (48) 
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Appendix C: DFT Calculations and DP4+ Results 

(All theoretical chemical shifts were calculated using B3LYP/6-311+G(d,p) with solvent effect 

of DMSO included using PCM model)  

baraphenazine F (2) 
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2b: 11R 2c: 11S
2d: 11R
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HO
OH

O

OH
18

#C experimental 2a 2b 2c 2d
1 159.9 167.5127409 167.5641996 167.5275592 167.5254733
2 110.5 114.6366376 114.6594338 114.6887915 114.7807036
3 139.1 149.2268916 149.1979132 149.2467868 149.2708583
4 114.5 120.2451375 120.3447366 120.3881685 120.4094847
5 140.7 147.6551074 147.5898165 147.591318 147.5804447
6 139.8 148.5998637 148.6044685 148.6458126 148.5312576
7 119.8 126.4935881 126.4136243 126.421438 126.4425797
8 135.8 144.5577026 145.3267109 144.5673382 145.2496896
9 123.0 133.3732436 132.101252 133.4042371 131.8806943
10 35.9 43.89430663 45.6216464 43.72962144 45.43173289
11 63.0 71.53218448 70.96793277 71.6565378 71.02048703
12 35.5 42.38098475 46.75073955 41.70541811 46.01884262
13 152.2 163.2284275 162.3054484 159.0198616 157.8409557
14 142.8 151.069466 151.1557128 150.2949734 149.8910152
15 117.8 125.1645955 125.0939122 125.8864349 126.1469219
16 131.6 140.4803852 140.8268806 138.7131063 139.3409511
17 111.8 116.4433285 116.7026284 117.734795 118.1695477
18 153.7 161.8896428 162.1115197 161.0036882 160.8175773
19 132.6 138.1235278 137.6675007 139.0401726 139.0528849
20 146.7 153.5007374 153.1238316 158.4691881 158.3256469
21 75.6 82.96731829 83.79841519 83.56126607 84.3378827
22 146.7 156.837247 156.4954886 157.0109921 156.6817975
23 134.2 140.0599916 139.994156 140.0887905 140.0412697
24 134.2 137.8568529 137.915285 137.9481054 137.8837945
25 165.7 175.9585153 175.8941993 175.8485996 175.9020095

#H experimental 2a 2b 2c 2d
1-OH 12.03 9.18099719 9.237939872 9.182010068 9.208882422
2 7.28 7.565292624 7.570872075 7.554116498 7.551862581
3 8.59 9.1741858 9.163752016 9.14702223 9.161600712
7 7.89 8.120923834 8.126236246 8.117196748 8.124901257
8 8.06 8.314785701 8.330063828 8.32133432 8.334619673
10 3.82 3.880322381 3.669600503 3.884375311 3.680534549
11 4.79 5.135640391 4.870934626 5.131314789 4.879761678

11-OH 6.20 1.871566433 1.895202062 1.880029359 1.90412638
12a 3.80 4.181144807 3.873776155 4.225185211 3.932431699
12b 3.39 3.547660261 3.735416003 3.603529046 3.774309177
15 7.36 7.659798294 7.648019948 7.897031214 7.924384014
16 7.60 8.00250853 8.023711984 7.969532996 7.982087639
17 7.07 7.447518766 7.467535939 7.470275987 7.467311649

18-OH 10.61 8.46398866 8.451655728 8.173490318 8.147830274
21 5.74 5.924172501 6.070011419 5.848313225 5.988873035

25-COOH 14.91 14.47160452 14.49321164 14.46846019 14.50571666

2a 2b 2c 2d
40.93% 32.46% 18.50% 8.10%
28.96% 1.97% 50.49% 18.58%
50.79% 2.74% 40.02% 6.45%
50.82% 40.64% 2.66% 5.89%
49.02% 1.01% 48.83% 1.14%
93.35% 1.54% 4.86% 0.25%
59.50% 37.73% 1.41% 1.36%
36.32% 0.05% 63.08% 0.05%
95.95% 0.09% 3.94% 0.09%

uDP4+ ( all data)
DP4+ (1H data)
DP4+ (13C data)
DP4+ (all data)

DP4+
sDP4+ (1H data)
sDP4+ (13C data)
sDP4+ (all data)
uDP4+ (1H data)
uDP4+ (13C data)
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baraphenazine H (3) 
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phenazinolin D (4) 
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izumiphenazine A (5) 
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izumiphenazine E (6) 
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