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ABSTRACT

This dissertation aims to provide a richer understanding of the extent to which people

understand complex AI and ML outputs and reasoning, what influences their understanding,

and how we can continue to enhance it going forward. AI- and ML-based systems are now

routinely deployed in real-world settings, including sensitive domains like criminal justice,

healthcare, finance, and public policy. Given their rapidly growing ubiquity, understanding

how AI and ML work is a prerequisite for responsibly designing, deploying, and using

these systems. With interpretability and explainability approaches, these systems can offer

explanations for their outputs to aid human understanding. Though these approaches rely on

guidelines for how humans explain things to each other, they ultimately solve for improving

an artifact (e.g., an explanation or explanation system). My dissertation makes the argument

that helping people understand AI and ML is as much a human problem as a technical

one. Detailing this vital human-centered piece, I present work that shows that current

interpretability and explainability tools do not meet their intended goals for a key stakeholder,

ML practitioners, who end up either over- or under-utilizing these tools. Investigating

the reasons behind this behavior, I apply the cognitive model of bounded rationality to

the human-machine setting. Under this model of decision-making, people select plausible

options based on their prior heuristics rather than internalizing all relevant information. I find

significant evidence showing that interpretability tools exacerbate the application of bounded

rationality. As a solution, I present a new framework for re-imagining interpretability and

explainability based on sensemaking theory from organizational studies. This Sensible AI

framework prescribes design guidelines grounded in nuances of human cognition—facets

of the individual and their environmental, social, and organizational context.
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CHAPTER I

Introduction

Human-machine partnerships are increasingly commonplace. What began as an automa-

tion of routine tasks (e.g., software testing, data analytics, enterprise resource planning)

has grown into algorithms that manage the content we see (e.g., news feeds on social

media, information retrieval via search engines, and recommender systems like Netflix

and Amazon) and AI that is capable of generating new data—text, images, videos—given

sufficient context and prompts (e.g., chatbots grounded in large language models). In effect,

human-machine collaboration has changed the way we think, communicate, and collaborate

in personal and professional settings, at a societal level.

Yet, systems that rely on human-machine partnerships are unable to consistently capture

the dynamic needs of people, or explain complex machine reasoning and outputs. In practice,

a human-machine partnership is bound by both: the extent to which the machine can infer

people’s needs and people’s ability to articulate and process information. When not taken

into consideration, this socio-technical gap—a mismatch between the dynamic social needs

of people and the brittleness of a machine’s representation of them [5]—has led to harmful

outcomes such as propagation of biases against marginalized populations and missed edge

cases in sensitive domains.

How do we fix this? Taking inspiration from prior work in Human-Computer Interaction

(HCI) and the social sciences, my research follows the belief that technical development must
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come in concert with an understanding of human-centric cognitive, social, and organizational

phenomena. Put another way, systems that rely on human-machine partnerships cannot

only be technically sound. They must also adapt to the nuances of human behaviors, as

individuals and collectively. Investigating these nuances and designing for them are the core

themes of this dissertation.

1.1 The Human in Human-Machine Collaboration

The ubiquity of human-machine collaboration has snowballed with the recent devel-

opments in AI and ML. This has allowed the machine counterpart to, for example, infer

patterns in past data to forecast outcomes for future datapoints, simulate seemingly-realistic

content based on prompts, and communicate with end users in natural language—to the

point where it has become challenging to distinguish when the AI is completely fabricating

information that has no basis in reality [23, 104]. Moreover, while AI- and ML-based

systems were once confined to the academic community, they have now grown into an

industry that is far more accessible to everyone. Even people with very little expertise on AI

and ML can now interact with these technologies, especially since the boom in generative

AI. These systems are routinely deployed in real-world settings, including sensitive domains

ranging from criminal justice and public policy to healthcare, education, and finance.

However, there has not been enough parallel growth in helping people keep up with AI-

and ML-based human-machine systems. We are no longer certain of what a system will

do next, explain why it reached a certain conclusion, or what it understands about the data

it was fed. This lack of human understanding has enlarged the delta between innovating

a new human-machine system and its secure deployment in the real world. Over the next

few sections, I will further describe why this lack of human understanding of their complex

machine counterparts is problematic, what solutions currently exist, and the critical piece

that this dissertation contributes.

To concretize the problem and solutions, I study human understanding of complex
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machines in the context of ML-based decision-support systems (DSSs). An ML-based DSS

is an information system that gathers and analyzes data to help people determine future

courses of action in rapidly changing settings. DSSs are widely used in everyday settings

(e.g., which restaurant to try in a new city or which research paper to read next) to critical

domains (e.g., what is the best course of treatment for a patient’s symptoms or should a loan

application be approved). I focus on DSSs developed for a specialized setting, i.e., where

the ML model is tailored for the given task as opposed to utilizing a pre-trained, generative

model. This type of DSS requires at least three human roles with varying ML expertise:

the practitioner who manages the ML-based system backend, the system designer who

designs the interface for user interaction, and the end-user. Of these stakeholders, I focus on

ML practitioners who make decisions such as the data to be used, the ML algorithm being

applied, and when the model is ready for deployment to end-users—all of these decisions

could benefit from a better understanding of the underlying ML model, its inputs and outputs.

1.1.1 The “Why”: Why should we care about helping people understand ML?

To answer this question, consider what happens when people do not have a sufficient

understanding of a ML-based decision-support system, but it is deployed in the real world

regardless. One glaring example of harmful outcomes was the use of scores from COMPAS,

a risk assessment instrument used in the criminal justice system to establish the likelihood

of committing future crimes. The model amplified societal biases in the dataset, wrongly

labeling black defendants as more likely to commit crimes in the future [14]. Another known

example is the social biases that are transmitted from existing data into loan approvals at

banks, causing future predictions to overfit on the gender or ethnicity of loan seekers [77].

This potential for harm is why it is imperative for stakeholders to have some understanding

of how ML models work.
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Figure 1.1: Common types of explanations output by interpretability tools. Left: Summary
feature importances (global explanation). Middle: Component or partial dependence analysis
(global explanation). Right: Feature attributions (local explanation). These particular
visualizations are output by the interpretML implementation of a popular type of glassbox
models, Generalized Additive Models (GAMs) [167]. The underlying dataset used for these
visuals is the Adult Income dataset compiled over 1994 census data. It predicts income
based on demographic features.

1.1.2 The “What”: What can we do to help people understand ML?

Approaches like interpretability have been proposed as a way helping people better

understand ML. Interpretability is defined from a ML model’s perspective as the “abil-

ity to explain or to present in understandable terms to a human” [54, p2]. It serves as a

proxy for other important desiderata for ML-based systems such as reliability, robustness,

transferability, informativeness, etc. These properties in turn promote trustworthiness, ac-

countability, and fair and ethical decision-making based on ML outputs [54, 142]. There are

two common ways to support model interpretability: (1) designing glassbox models that are

inherently interpretable (e.g., simple point systems [106, 256] or generalized additive models

GAMs [39]), and (2) providing post-hoc explanations for the predictions made by complex,

blackbox models (e.g., local interpretable model-agnostic explanations (LIME) [190], Shap-

ley additive values (SHAP) [149]). There are two types of explanations that are commonly

output by these approaches: global explanations that describe the overall logic of the model

(e.g., a summary of feature importances, partial dependence plots, component analysis) and

local explanations pertaining to individual datapoints (e.g., feature attributions that illustrate

the importance of each feature in making a specific prediction). Figure 1.1 shows some

examples of these explanations in a visual format.
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Figure 1.2: Explainable AI, as conceptualized in a DARPA program report [72].

1.1.3 The “How”: How should we design ways to help people understand ML?

Instantiating the aforementioned interpretability approaches and types of explanations

into user-facing tools can be accomplished in several ways. The question is: how should we

design them? What started as static explanations output by mathematical representations

of interpretability now includes interactive visual explanations output by explainable AI.

Although similarly defined, this idea of explainability is more human-centered. It is “associ-

ated with the notion of an explanation as an interface between humans and a decision maker

that is, at the same time, both an accurate proxy of the decision maker and comprehensible

to human” [16, p85]. Figure 1.2 shows DARPA’s conceptualization of explainable AI and

the needs of a user that the model should address when explaining itself [72]. This concep-

tualization is further supported by research. Scholars have incorporated prior work from

philosophy and the social sciences with the motivation that by translating ideas from how

people explain things to each other, we can design better solutions for how ML models can be

explained to people [161]. As a result, increasingly, interpretability and explainability tools

include characteristics such as interactivity [10], counterfactual “what-if” outputs [162, 241],
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and modular and sequential explanations [158].

1.1.4 The Vital “Who”: Do these solutions work for who they are intended for?

So far, using arguments from prior work, I have discussed why we should care about

helping people understand ML, what we can do about this problem, and how researchers

have designed solutions for this problem. My work follows a simple observation: where is

the who in all this? When designing to help people understand ML, we cannot assume that

people are entirely rational agents. Much of the early scholarship on interpretability focused

on developing approaches that explain model behavior and outputs. However, the more

recent thrust of research on explainable AI has argued for a human-centered perspective on

this problem, noting that helping people understand ML is as much a human problem as a

technical one. This emergent research focuses on investigating whether interpretability and

explainability approaches help people understand the model behavior and outputs that they

intend to explain, in practice. My dissertation work is a part of this human-centered research

thrust. It challenges the assumption that people (can) perfectly internalize the information

from interpretability and explainability tools and, as a result, better interact with ML-based

systems. Instead, I empirically show that this problem is bound as much by people’s

information processing capabilities and the nuances of sensemaking, as it is by the quality

of information ML models and explanations can provide. My work is grounded in cognitive

science and organizational research, which has abundantly posited that human behavior

includes descriptive, normative, and prescriptive considerations that are not accounted for in

technical solutions.

While existing interpretability and explainability approaches explain how a ML model

works, they assume that people adequately use this information to make decisions. In my

work, I test the validity of this assumption and propose solutions that take into account the

complexities human behavior in the human-machine context. This takes the form of the

following research questions:
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• Observing Existing Tool Use: How do ML practitioners perceive and use inter-

pretability tools? What are the key challenges to their use of these tools?

• Understanding the Bounds of Human Cognition: What are the underlying causes

for the challenges that ML practitioners face when using interpretability tools?

• Alternate Pathways to Support Human Understanding: What are the characteris-

tics of solutions that account for human-centered cognitive principles when designing

interpretable ML outputs?

I explore these themes via a combination of methodologies, incorporating qualitative and

quantitative methods, and translating theory from other, relevant fields.

1.2 Interpreting Interpretability: Understanding Practitioners’ Use of

Interpretability Tools for Machine Learning

In Chapter III, I present studies on observing the use of interpretability tools by a key

stakeholder—ML practitioners—in context. Prior to this study, there had been little to no

evaluation of interpretability tools in a realistic context. One reason for this is the challenge

of the context itself: designing and running user studies that reflect a realistic data science

context is notoriously difficult. These studies require expertise in the mathematics underlying

ML models and in HCI, as well as knowledge of both the academic literature and day-to-day

engineering practices. To paint a full picture, these studies must rely on qualitative methods

to understand the nuances of how tools are used in context, and quantitative methods to

scale up findings. They must also mimic realistic settings, yet not be too cumbersome (e.g.,

take over an hour to complete).

Working with an interdisciplinary team that met these criteria, I designed a three-phase

setup to study the effectiveness of interpretability tool use by ML practitioners. This

included pilot interviews with practitioners to identify common issues faced by them in
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their day-to-day ML pipeline, followed by a contextual inquiry designed to observe whether

interpretability tools could help practitioners overcome the common issues surfaced during

the pilots, and finally a large-scale survey to generalize the findings from the contextual

inquiry. These studies highlighted a trend of over-trust and misuse of interpretability tools.

Often, the novelty and publicly available nature of the tool, as well as the ability to visualize

complex ML models, served as the reasons people trusted tool outputs rather than using

them to further reason about the underlying data and the accuracy of the model itself. This

study set the stage for the needs of the stakeholders—despite presenting helpful information,

interpretability tools were evaluated by this key stakeholder based on other characteristics

that had little to do with the information being presented.

1.3 Interpretability Gone Bad: The Role of Bounded Rationality in

How Practitioners Understand Machine Learning

A natural follow-up to the results of the previous studies is: why do people over-trust

and misuse interpretability tools? I hypothesize bounded rationality as being the underlying

reason for inadequate use of interpretability tools. Bounded rationality is a model of

decision-making under which people select “good enough” options rather than considering

the utility of all alternatives. For example, a diner may default to the most commonly

purchased or highly-rated items in a food delivery app, rather than evaluate all possible

menu items. Bounded rationality is an innate feature of human decision-making; people can

rarely consider the utility of all possible choices before coming to a decision—it would lead

to information overload and decision paralysis. However, whether the outcomes of bounded

rationality are good or bad is dependent on the heuristics that people apply to select a good

enough option. When these heuristics are inaccurate, bounded rationality can lead to and

propagate harmful judgements.

In Chapter IV, I describe a between-subjects, pre-registered controlled experiment
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with ML practitioners, investigating the role of bounded rationality in people’s use of

interpretability tools and whether it leads to positive or negative outcomes. The experiment

covers a variety of interpretability approaches and tools, including both glassbox and

blackbox models, and static and interactive tools. The results provide significant evidence

showing that interpretability tools lead to bounded rationality with bad outcomes. A control

condition sans interpretability outperforms all interpretability conditions in terms of task

accuracy by ∼17%. Given these results, I argue that interpretability needs to be reconsidered

at a paradigmatic level. I pose the following question for interpretability tool designers and

researchers: how do we design for interpretability and explainability knowing that people

will never pay attention to all the information presented to them?

1.4 Sensible AI: Re-Imagining Interpretability and Explainability us-

ing Sensemaking Theory

Through various user studies, we now know that factors such as stakeholders’ prior ex-

perience [61], attitude towards AI (e.g., algorithmic aversion [35, 51]), socio-organizational

context [60], etc., all affect how (much) people understand ML, even with interpretability

and explainability tools at hand. In the previous work, I studied the role that bounded

rationality—an innate characteristic of people in decision-making settings—plays in all this.

While these types of studies will continue to help us develop a better understanding of the im-

portance of stakeholders and learn about their characteristics that are relevant in this setting,

there is also an opportunity to learn from prior work in other fields and translate theory to

develop a research agenda that is truly focused on who interpretability tools are intended for.

To that end, I present a new theoretical framework called Sensible AI, which takes

into consideration principles of human cognition in proposing guidelines for effective

human-machine collaboration in decision-support settings. This framework is grounded

in Karl Weick’s sensemaking theory from organizational studies [247], which describes
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several individual, environmental, social, and organizational properties that are relevant

when people are trying to make sense of an object or event. In Chapter V, I first explain these

properties and their relevance to the human-machine context, and then use an application of

sensemaking in organizations as a template for discussing design guidelines for Sensible

AI. This new framework complements the recent evaluations with stakeholders by unifying

them based on an explanatory theory from organizational studies: indeed, several properties

of sensemaking (e.g, social and organizational context) have already been shown to be

important by the recent human evaluations of interpretability and explainability tools, and

ML-based systems more broadly [60, 151].

1.5 Contributions of this Dissertation

First, it presents empirical evidence that existing interpretability tools do not work

as intended. While existing tools do meet the criteria of an artifact which is designed to

support exploration of how ML models work, why models make certain predictions, and an

overall understanding of the inputs and outputs, these tools do not cater to what we know

about how people internalize information. This is particularly true for the human-machine

context where the information is often complex and can sometimes present conflicted out-

comes. For example, imagine a local explanation for which the order of feature importance

is quite different from the global feature importance order, making it harder to gauge whether

the model’s prediction is dependent on accurate feature understanding or randomness. In

this regard, my work offers insights into tool use via human evaluations that, although more

common than before, continue to be a rarer thread of research in the community. Not only

that, these empirical studies are a methodological contribution in that they are designed

to simulate a realistic context for ML practitioners, taking into account ML theory, HCI

experimental design guidelines, and considerations from both the engineering and academic

practices surrounding data science.

Second, it provides a richer understanding of the cognitive frameworks under-
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pinning human behavior in the human-machine context. As we move towards human-

centered design and evaluation of interpretability tools, my work in grounded in prior work

in cognitive and organizational sciences. For example, bounded rationality is a well-known

cognitive framework which I am using to explain how ML practitioners currently use inter-

pretability tools. These cognitive frameworks have been extensively used to explain human

behavior in human-only decision-making settings. My work extends them to the AI and

ML settings. I do so by conducting both large-scale quantitative studies to test the validity

of these frameworks and smaller-scale qualitative studies to capture ways in which these

frameworks must be updated for the human-machine context. With this theory-grounded

evaluative work, I answer questions about: 1) how our knowledge of human decision-making

must change to accommodate the role that AI and ML now play in it, and 2) which charac-

teristics of human-only decision-making continue to be relevant in designing for effective

human-machine collaboration.

Third, it presents a new theoretical framework that prescribes design guidelines

for re-imagining interpretability and explainability with human cognition and sense-

making at its core. Only recently have we, as a community, acknowledged the critical role

that stakeholders play in determining the effectiveness of interpretability and explainability

approaches. My work continues this new thread of descriptive and evaluative work. In

addition to that, I also take a prescriptive stance with a research agenda based on properties

of human sensemaking from organizational science. This includes a template for designing

AI- and ML-based systems that account for individual, social, and organizational properties

of sensemaking. Prior work in organizational science has suggested ways in which we can

account for sensemaking in settings that require high reliability (e.g., nuclear power plants,

aircraft carriers [248]). I translate these to design guidelines for the human-machine context.
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1.5.1 Summary of Contributions

Overall, my work presents empirical evidence that current interpretability tools do not

meet their intended goal of helping people understand ML, and highlights the need for

additional in-context human evaluations of these tools. I empirically show that the cognitive

framework of bounded rationality shapes current over-reliance on interpretability tools.

Additionally, I present sensemaking as a new, unifying theoretical framework for designing

solutions that account for important individual, environmental, social, and organizational

properties of human cognition, translated for ML-based decision-support settings.
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CHAPTER II

Background

With ML-based systems routinely being deployed in the wild—including in sensitive

domains such as criminal justice, education, and healthcare—it is increasingly important for

stakeholders of these systems to have some understanding of how they work. Depending

on stakeholder needs and prior experiences, this includes understanding why a certain

prediction was made based on the input features provided, understanding the overall picture

that the model has about the data, understanding specific relationships between the input

and output variables, being able to debug the model, being able to communicate model

behavior with customers and end-users, etc. [92, 143, 224]. Important factors such as trust,

reliability, accountability, transparency, etc., have all been observed as a consequence of

applying interpretability and explainability in AI and ML settings [55, 142]. In the next few

sections, I discuss in detail the questions of what these interpretability and explainability

approaches are, why they are important, and how they are instantiated in existing systems.

This is followed by a discussion of who these approaches are intended for, an area that is the

primary focus and contribution of my work.
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2.1 The “What”, “Why”, and “How” of Interpretability and Explain-

ability

There is not yet consensus within the research community on the distinction between

the terms interpretability and explainability, and they are often, though not always, used

interchangeably. When reviewing these terms in the context of the research conducted

under each, interpretability is often defined from a model’s perspective as the “ability to

explain or to present in understandable terms to a human” [54, p2]. Approaches for model

interpretability have been the focus of ML research for quite some time now. Although

similarly defined, explainability is more human-centered and is “associated with the notion

of an explanation as an interface between humans and a decision maker that is, at the same

time, both an accurate proxy of the decision maker and comprehensible to human” [16,

p85]. Given its human-centered focus, research on explainability has made great strides

by learning from prior work in cognitive science, philosophy, and the social sciences. Both

interpretability and explainability have also been evaluated from a user-centered perspective

in HCI research. Below, I present details on each of these research thrusts.

2.1.1 Machine Learning Approaches

The basic premise of interpretability and why we should care about it has been succinctly

described by Doshi-Velez and Kim as “if the system can explain its reasoning, we can

verify whether than reasoning is sound with respect to [important, pre-determined] auxiliary

criteria”. These criteria include things like “safety [13, 172, 235], nondiscrimination [27, 75,

196], avoiding technical debt [203], or providing the right to explanation [69]” [54, p1]. Inter-

pretability also serves as a proxy for other desiderata for ML-based systems such as reliability,

robustness, transferability, informativeness, etc. These properties in turn promote trustwor-

thiness, accountability, and fair and ethical decision-making based on ML outputs [142].

At a high-level, there are two approaches for achieving interpretability of ML models.
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First, there are “glassbox” ML models that are designed to be inherently interpretable, often

due to their simplicity. These include simple point systems [106, 256], decision trees [185]

and sets [127], and generalized additive models (GAMs) [39, 78, 167]. The second approach

is to train post-hoc explanation techniques that are designed to make the predictions of

“blackbox” models more interpretable. These include local interpretable model-agnostic

explanations (LIME) [190], Shapley additive explanations (SHAP) [150, 206], and other ap-

proaches for local explanations [9, 204, 212]. For an overview of interpretability techniques

for shallow and deep learning models, see the comprehensive reviews by Gilpin et al. [68]

published in 2018, Arrieta et al. [16] published in 2020, Liao and Varshney [138] published

in 2021, and Dwivedi et al. [58] published in 2023.

Despite this proliferation of techniques, there is still debate about what interpretability

should entail [54, 142, 195]. In particular, Rudin [195] argues against the use of post-

hoc explanation techniques for ML models deployed in high-stakes domains because they

may not faithfully represent the models’ behavior. Doshi-Velez et al. [55] propose that an

explanation for a prediction should include not only a justification, but also a description of

the decision-making process followed by the model. Lipton [142] surveys different criteria

for assessing interpretability, such as simulatability and decomposability, as well as different

goals that interpretability may be used to achieve.

Only recently has the ML community begun to evaluate interpretability techniques via

user studies. For example, Tan et al. [229] use publicly available datasets to test the feasibility

of a new GAMs-based post-hoc explanation technique with ML experts. Kim et al. [115] do

the same for a technique based on Bayesian model criticism, intended to add criticisms to

example-based explanations. Poursabzi-Sangdeh et al. [183] test the impact of two factors

often thought to affect interpretability—number of input features and model transparency

(i.e., glassbox vs. blackbox models). They find that it is easier to simulate models with

a small number of features, but that neither factor impacts people’s willingness to follow

a model’s predictions. Moreover, too much transparency can cause people to incorrectly
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follow a model when it makes a mistake, due to information overload. Lage et al. [125]

study two aspects of an explanation (length and complexity) via a wizard-of-oz approach in

two domains, finding that longer explanations overload people’s cognitive abilities. I discuss

more of these factors that shape how interpretability techniques are used by people, as well

as human evaluations of interpretability, in the subsections that follow. Cau et al. [40] note

the difference on task performance when using inductive, abductive, and deductive reasoning

based explanations, finding that the latter two improve performance for the high-uncertainty

domain of stock trading. Meta-reviews like [58, 126] highlight several of these studies.

2.1.2 Cognitive Science, Philosophy, and Social Science Influences

What started as static explanations output by mathematical representations of inter-

pretability now includes interactive text and visual explanations. Several scholars have

sought to incorporate prior work from cognitive science, philosophy, and the social sciences

in designing new approaches and tools, the motivation for doing so being that by translating

ideas from how people explain things to each other, we can design better solutions for how

ML models can be explained to people. Let us consider this work in more detail.

Hempel and Oppenheim [81] and van Fraassen [233] define an explanation as consisting

of two main pieces: the explanandum, a description of the phenomenon to be explained, and

the explanans, the facts or propositions that explain the phenomenon, which may rely on rel-

evant aspects of context. It is the explanans that we refer to as the explanation in the explain-

able AI literature. Different ways of formalizing the explanation have given rise to various

theories, ranging from logical deterministic propositions [81] to probabilistic ones [198, 233].

A historical overview of these terms is included in the surveys by Pitt [180] and Miller [161].

Miller [161] further reviews the properties of explanations from the philosophy (e.g., [70,

141, 178, 233]) and social science (e.g., [83, 130, 146, 154, 166, 214]) literature. He notes

that explanations are contrastive, social, and selected by people in a biased manner (e.g.,

in accordance with cognitive or social heuristics), and that referring to probabilities or
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statistical generalizations in explanations is usually unhelpful. To that end, Miller [161, 163]

and Lombrozo [145] suggest simplicity, generality, and coherence as the main evaluation

criteria for explanations. The social science literature proposes that we think of explanations

as a conversation. Grice’s maxims of quality, quantity, relation, and manner [70], which

form the core of a good conversation, should therefore be followed when designing explana-

tions [123, 154, 214]. Leake’s goal-based approach to explanation evaluation adds metrics

such as the timeliness of an explanation in providing the opportunity to deal better with the

prediction being explained, knowability and the features responsible for “knowing,” and the

independence of individual explanations [130]. Explanations that follow this goal-based

approach must include grounding in some common demonstrative reference between people

and the explanation system [44, 152].

The guidelines from this work can be distilled into five overarching human-centered prin-

ciples for designing explanations: (1) explanations should be contrastive, i.e., explain why

the model predicted a certain outcome over others; (2) explanations should be exhaustive,

i.e., provide a justification for why other alternatives were not predicted; (3) explanations

should be modular and compositional, i.e., break up predictions into their basic, simple

components; (4) explanations should rely on easily-understandable quantities, i.e., ensure

that each component is understandable; and (5) explanations should be parsimonious, i.e.,

they should include only the most relevant facts about the prediction [158]. It is as a result

of these principles that, increasingly, interpretability and explainability tools include char-

acteristics such as interactivity [10, 85], counterfactual “what-if” outputs [162, 241], and

modular and sequential explanations [158].

Although this line of work provides guidance for designing explanation systems that

work best for humans—and ML researchers have begun to incorporate this guidance for

interpretability [8, 58]—it also criticizes the development of explanation systems by re-

searchers, citing this as an example of “inmates running the asylum” [163] because of a

lack of user-centric evaluation. My dissertation addresses this critique by: (1) conducting
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stakeholder evaluations of interpretability and explainability tools; and (2) proposing new

frameworks for interpretability and explainability grounded in theories about the individual,

environmental, social, and organizational factors that affect human understanding.

2.1.3 HCI Background on Human–Machine Collaboration

HCI has a long-standing tradition of studying complex systems from a user-centric per-

spective. Bellotti and Edwards [21] were the first to define intelligibility and accountability,

providing guidelines for system designers. These guidelines include clarifying the system’s

capabilities, providing feedback, navigating privacy via personalized settings, and providing

control and interactive guidance for edge cases. Weld and Bansal extend this notion of intel-

ligibility for ML-based systems [251]. In addition to the ones described in [21], they note the

following benefits of intelligibility for ML-based systems: ensuring that the ML model is us-

ing adequate features for predictions, helping people accept the model’s predictions, improv-

ing human insight into situations for human-in-the-loop ML systems, and for legal auditing.

The HCI community has sought to improve the relationship between people and ma-

chines by providing richer human feedback to the models being used by these systems [223].

This line of work focuses on building interactive ML (iML) systems. The term iML was

coined by Fails and Olsen Jr. [63] to describe an approach where people are involved in an

iterative process of training, using, and correcting an ML model, requiring interpretability

for effective corrections [49]. Several examples of iML systems now exist, for applica-

tions including annotation of animal behavior [107], academic citation review [242], and

on-demand personalized group formation [11]. Although helpful, this approach does have

several challenges. For example, the need for complexity, introspection, and deliberative

thinking, which is not supported by reactive elements since these are observation- rather

than action-centric. Patel et al. [177] and Zhu et al. [261] note these challenges for the

software development and game designing domains, respectively.

There has also been an effort within the HCI community on defining new metrics
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for human–ML collaboration. Adbul et al. [4] highlight interactivity and learnability as

cornerstones for designing visualizations that better support interpretability. Dourish [56]

adds scrutability as an important component of interactivity. Hoffman et al. provide an

overview of potentially relevant metrics for evaluating explainable AI systems: goodness of

explanations, whether users are satisfied by them, how well they understand the AI systems,

how curiosity influences the search for explanations, appropriate trust and reliance, and

how the human-AI system performs overall [84]. Recent tool designs that have followed

these metrics have shown positive outcomes in terms of stakeholders’ understanding and

satisfaction when using these new tools [28, 33, 85, 117, 158, 213, 243, 257].

HCI studies have also contributed insights into explanation formats and modalities

that suit various stakeholders. For example, Liao et al. [136] formalize this in the form

of a question bank to determine the right explanation format for different information

needs. Similarly, Wang et al. [244] outline how desiderata related to human understanding

and reasoning can inform AI explanations. Considering AI systems and explanations more

broadly, Amershi et al. [12] consolidate interaction design guidelines for AI system designers

based on stakeholder needs. This thread of HCI work helps answer questions like: which

explanation types/formats are easier to understand [74, 137, 259]; what works best in higher

stakes settings [40, 175, 238, 255]; how to present explanations to lay users, novices, and

experts [184, 246]; which types of uncertainty information are helpful [92, 187, 258]; what

causes information overload [33, 219]; whether explanations should presented as questions,

answers, or a dialogue [47, 131, 132]; etc.

HCI research has always argued for a human-centered approach to designing and

evaluating intelligent systems. Now, with these intelligent systems becoming increasingly

powerful and the subsequent need for interpretability and explainability, these design

principles are even more essential. Investigating stakeholders’ use of these systems is an

avenue where we can learn from the rich history of prior work in HCI. Next, I discuss

these human-centered factors in the context of research on explainable AI systems. My
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dissertation directly builds on this burgeoning research thrust.

2.2 Understanding the “Who” in Interpretability and Explainability

The last few years have seen exponential growth in research on explainable AI (XAI),

an emerging area with the goal of “making AI understandable by people” [138, p2]. Paez

calls this switch from explainability as a technical or definitional question to a stakeholder-

driven functionalist approach the “pragmatic turn in explainable AI” [174]. Scholars

in all communities—ML, HCI, and social science—have advocated for the importance

of understanding who the explanations are intended for, based on evaluations with ML

experts and practitioners, non-ML domain experts, end-users, and various other stakeholders.

Between 2018 and 2021, over 100 peer-reviewed papers published results from human

subjects evaluations of AI outputs in decision-making contexts [126], and the number has

only grown since. Here, I discuss important principles about stakeholders that have been

identified by this thrust of research on the “who” in interpretability and explainability.

2.2.1 Cognitive Factors

On a cognitive front, one critical element to consider is the role of heuristics and biases.

People are prone to applying these heuristics and biases as shortcuts to avoid conscious

deliberation of information. For example, when applying the anchoring heuristic, people

assign more value to the first piece of information—the anchor—provided to them in a

decision-making setting [110]. Similarly, with the imitate-the-majority heuristic, when given

a choice, people pick one that is popular in their socially proximal reference group [79].

In his dual-process theory of cognition, Kahneman [108] cites heuristics-based automated

reasoning as the use of System 1 (of the brain), compared to System 2 which is a more

deliberative reasoning unit—in other words, “thinking, fast and slow” [109]. Recent studies

with stakeholders have confirmed that these factors are also at play when people use AI/ML

and explanations. Springer and Whittaker [219] find that explanations can create information
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overload and distract people from forming a useful mental model of how a system operates.

Nourani et al. [169] focus on the anchoring bias, and show that the order of positive and

negative information about the system can shape over- or under-reliance. Bertrand et al. [25]

provide an overview of all relevant cognitive heuristics and biases that can apply to how

people use interpretability and explainability tools.

Appropriately handling these cognitive factors (e.g., via accurate mental models, im-

proving the type of reasoning applied in making decisions) has been shown to be critical for

how (much) people understand the outputs of interpretability and explainability tools. For

example, accurate mental model formation and deliberative reasoning can help avoid ML

practitioners’ misuse of, and over-reliance on, interpretability outputs [111]. This applies to

end-users without ML expertise as well, otherwise explanations increase the likelihood that

an end-user will accept an AI’s output, regardless of its correctness [18, 36]. For end-users,

completeness (rather than soundness) is a key property of explanations that help them form

accurate mental models [124]. Accuracy and example-based explanations can similarly

shape people’s mental models and expectations, albeit in different ways [120]. Although

system-focused information helps in mental model formation, recent work has also shown

that people prefer social information (i.e., how other people are using a system) when trying

to form an idea of how a system works [29]. In decision-making settings, it is important to

de-anchor people from only considering certain pieces of information which were selected

due to the application of biases. Rastogi et al. [187] find that increasing interaction time

with an AI system reduces system 1 biases like anchoring. More generally, when cogni-

tive factors are taken into account and explanations are designed to support deliberative

reasoning, over-reliance on explanations is reduced for end-users [33].

2.2.2 Prior Experience

Prior experience with ML is important in determining which explanations are easier

to understand for a stakeholder. For example, evidence from recent studies has shown
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that, compared to ML practitioners and non-ML domain experts, lay users prefer counter-

factuals and example-based explanations over high-dimensionality visuals and graphical

interfaces [73, 217, 218]. Prior experience or background in ML can result in preset ex-

pectations from explanations [61]. Whether these expectations lead to positive or negative

outcomes remains unclear. Some evaluations with ML practitioners have shown that prior

experience can lead to over- or under-reliance on these explanations [61, 111]. With non-ML

domain experts, there are some positive signs of accurate decision-making as long as the

person reviewing the predictions from the ML-based decision support system has plenty

of prior experience with the domain [102]. When presented with explanations in a visual

format (which is the case for most interpretability tool outputs), novices perform worse than

experts with prior experience, and are more likely to have “illusory satisfaction” [228].

2.2.3 Job- and Task-based Information Needs

Different job roles and task needs require different kinds of information from expla-

nations [140, 255]. For daily use applications (e.g., social media, recommender systems),

end users prefer to not have detailed explanations. In fact, only a very small percentage

of people look at explanations for recommendations or timeline content at all [34]. For

applications that support task productivity (e.g., email classification systems, task or break

recommenders), people prefer detailed explanations and, more importantly, the opportunity

to collaborate with the underlying model being used in these systems via an interactive

explanation interface [112, 120, 223]. Further, explanations from glassbox models with

fewer number of features are easier for end-users to understand [183]. For ML practitioners,

specific types of visuals of explanations (e.g., local vs. global, sequential vs. collective)

differ in how much they help them understand and debug models, and explain them to cus-

tomers [85, 158]. Lim et al. [140] review various intelligibility needs (e.g., to filter a cause,

generalize and learn, predict and control) with ML-based systems and suggest adequate

explanation types corresponding to each of these needs. Similarly, Suresh et al. [224] break
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down explainability needs based on two axes: stakeholders’ knowledge and their objectives.

Knowledge options include formal, instrumental, and personal gains; objectives can be

long-term, immediate, and specific tasks to perform with explanations.

2.2.4 Social, Organizational, and Socio-Organizational Context

For stakeholders that work with AI- or ML-based systems within an organization, their

social, organizational, and socio-organizational context has been found to be an important

external factor that the field had not considered thus far [60, 144]. This is particularly true

for technology companies with ML practitioners that are either tasked with deploying a

ML-based system for the company’s products (e.g., content moderation teams for social

media platforms) or responsible for building models for decision-support systems being

used by external organizations (e.g., technology companies building healthcare support

systems) [86, 261]. In these settings, prior work has found there to be a conflict in the

goals of various stakeholders within and outside the organization. This conflict makes the

adoption of responsible and ethical AI practices challenging for practitioners working within

organizations [151, 237]. Adequate use of interpretability and explainability tools requires

cooperation and mental model comparison between people operating at different job roles,

both within and outside an organization [92].

2.2.5 Summary

Studies from ML, HCI, and the social sciences have all highlighted relevant factors about

the “who” in interpretability and explainability. Simply updating explanations is not enough

to account for these external factors that impact people. My dissertation builds on this idea.

I present empirical studies and new frameworks that explain how individual, social, and

organizational factors can affect the human-machine context, and provide a path forward

that accounts for these who-centered factors.
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CHAPTER III

Interpreting Interpretability: Understanding Practitioners’

Use of Interpretability Tools for Machine Learning

Machine learning (ML) has become ubiquitous in our everyday lives in domains ranging

from criminal justice and public policy to healthcare and education. The recent develop-

ments in ML create countless opportunities for impact, but with these opportunities come

new challenges. ML models have been found to amplify societal biases in datasets and lead

to unfair outcomes [14, 38, 113]. When ML models have the potential to affect people’s

lives, it is critical that their developers are able to understand and justify their behavior.

More generally, data scientists and ML practitioners cannot debug their models if they do

not understand their behavior. Yet the behavior of complex ML models like deep neural

networks and random forests is notoriously difficult to understand [195].

Faced with these challenges, the ML community has turned its attention to the design

of techniques aimed at interpretability [54, 142]. These techniques generally take one of

two approaches. First, there are ML models that are designed to be inherently interpretable,

often due to their simplicity, such as point systems [106, 256] or generalized additive

models (GAMs) [39]. Second, there are techniques that provide post-hoc explanations

for the predictions made by complex models, such as local interpretable model-agnostic

explanations (LIME) [190] and Shapley additive explanations (SHAP) [149]. Although the

number of proposed techniques continues to grow, there has been little evaluation of whether
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they help stakeholders achieve their desired goals.

In this chapter, I present studies that I conducted to observe the effectiveness of in-

terpretability tools for one key stakeholder group: data scientists and ML practitioners1

The studies involved a human-centric evaluation of two existing interpretability tools, the

InterpretML implementation of GAMs and the SHAP Python package, in the context of

building and evaluating ML models. These studies took the form of three components that

build on each other: 1) a series of pilot interviews (N = 6) to identify common issues faced

by data scientists in their day-to-day work; 2) a contextual inquiry (N = 11) to observe data

scientists’ abilities to use interpretability tools to uncover these issues, and 3) a large-scale

survey (N = 197) to scale up and quantify the main findings from our contextual inquiry

and shed more light on data scientists’ mental models of interpretability tools.

3.1 Pilot Interviews

To better understand the issues that data scientists face in their data-to-day work—i.e.,

the setting in which the interpretability tools would ideally be used—I first conducted semi-

structured interviews with six data scientists at a large technology company. The interview

protocol was designed to surface common issues that arise when building and evaluating

ML models (see Appendix A). On average, each interview lasted ∼40 minutes.

Based on an inductive thematic analysis of the interview transcripts, conducted via open

coding followed by affinity diagramming [30], I identified six themes capturing common

issues faced by data scientists (see Table 3.1). Five of these themes correspond to issues

with the data itself: missing values, temporal changes in the data, duplicate data masked

as unique, correlated features, and ad-hoc categorization. The sixth theme relates to the

difficulty of trying to debug or identify potential improvements to an ML model based on

only a small number of data points. With only six interviews, this list is at not exhaustive,

but it is consistent with previous research on ML pitfalls [147].

1For simplicity, I refer to this group as “data scientists” throughout the chapter.
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Theme Description Incorporation into Contextual Inquiry Num.

Missing
values

Many methods for dealing with missing
values (e.g., coding as a unique value or
imputing with the mean) can cause biases
or leakage in ML models.

Replaced the value for the “Age” feature with 38 (the
mean) for 10% of the data points with an income of
>$50k, causing predictions to spike at 38. Asked about
the relationship between “Age” and “Income.”

4 of 11

Changes
in data

Data can change over time (e.g., new cate-
gories for an existing feature).

Asked whether the model (trained on 1994 data) would
work well on current data after adjusting for inflation. 10 of 11

Duplicate
data

Unclear or undefined naming conventions
can lead to accidental duplication of data.

Modified the “WorkClass” feature to have duplicate val-
ues: “Federal Employee,” “Federal Worker,” “Federal
Govt.” Asked about the relationship between “Work-
Class” and “Income.”

1 of 11

Redundant
features

Including the same feature in several ways
can distribute importance across all of
them, making each appear to be less im-
portant.

Included two features, “Education” and “Education-
Num,” that represent the same information. Asked
about the relationships between each of these and “In-
come.”

3 of 11

Ad-hoc
catego-
rization

Category bins can be chosen arbitrarily
when converting a continuous feature to a
categorical feature.

Converted “HoursPerWeek” into a categorical fea-
ture, binning arbitrarily at 0–30, 30–60, 60–90, and
90+ hours. Asked about the relationship between
“HoursPerWeek” and “Income.”

3 of 11

Debugging
difficul-
ties

Identifying potential model improvements
based on only a small number of data
points is difficult.

Asked people to identify ways to improve accuracy
based on local explanations for 20 misclassified data
points.

8 of 11

Table 3.1: Six themes capturing common issues faced by data scientists. Each issue was
synthesized in a dataset for the contextual inquiry, as described in the third column. The
fourth column contains the number of participants in the contextual inquiry who identified
the corresponding issue.

3.2 Contextual Inquiry

With these common issues in mind, I designed a contextual inquiry intended to put

data scientists in a realistic setting: exploring a dataset and an ML model in a hands-on

fashion. Eleven participants took part in the study, each of whom was given a Jupyter

notebook that included a dataset, an ML model which had been trained using that dataset,

an interpretability tool, and several questions to answer. The goal was to observe whether

they were able to use the interpretability tool to uncover the issues identified during the

pilot interviews. With participants’ consent, I recorded both audio and video, and saved all

responses provided in the Jupyter notebooks for analysis. The scenario was approved by the

internal IRB at the technology company at which these studies were performed2.

2I conducted these studies over the course of an internship at the same technology company.
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Figure 3.1: Visualizations output by the InterpretML implementation of GAMs (top) and
the SHAP Python package (bottom). Left column: global explanations. Middle column:
component (GAMs) or dependence plot (SHAP). Right column: local explanations.

3.2.1 Dataset

I derived the dataset from the Adult Income dataset,3 a publicly available ML dataset

based on 1994 US census data. Each data point corresponds to a person. The input features

include age, education, marital status, native country, and occupation. Each label is a binary

value indicating whether or not the person in question made >$50k in 1994 (equivalent to

∼$86.5k when adjusted for inflation). I synthetically manipulated a subset of the features

to incorporate the common issues identified via our pilot interviews. For example, to

incorporate missing values, I replaced the age value with 38, the mean for all data points,

for 10% of the data points with an income of >$50k. Table 3.1 includes the details of all

manipulations performed on the dataset.

3.2.2 ML Models and Interpretability Tools

I used two existing interpretability tools: one that implements GAMs, an inherently

interpretable technique, and one that implements SHAP, a post-hoc explanation technique.

GAMs are a class of ML models, rooted in statistics, that decompose a learned predictor

3https://archive.ics.uci.edu/ml/datasets/Adult
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into additive components that are functions of one input feature each [78]. Each component

can be complex and non-linear, but because it is a function of only a single input feature

it can be easily visualized. GAMs can be as accurate as more complex ML models such

as random forests or boosted decision trees. Because GAMs are glassbox models that

are designed to be inherently interpretable, they do not require post-hoc explanations. I

used the InterpretML4 implementation of GAMs. InterpretML provides built-in plotting

functionality, allowing each individual component to be visualized (see Figure 3.1, top

middle). InterpretML also provides global explanations (see Figure 3.1, top left) and local

explanations (see Figure 3.1, top right) by ranking and sorting the contributions made by

each input feature to the predictions [167].

SHAP is a post-hoc explanation technique for blackbox ML models. It assigns each input

feature an importance score for each prediction [149]. These scores are based on the notion

of Shapley values from cooperative game theory [206]; for each prediction, they capture

a fair distribution of “credit” over the input features. I used the implementation of SHAP

in the SHAP Python package.5 The importance scores computed by this package directly

translate to local explanations for individual predictions (see Figure 3.1, bottom right). By

aggregating the importance scores for many predictions, the SHAP Python package can

also produce global explanations (see Figure 3.1, bottom left) and dependence plots for

single input features (see Figure 3.1, bottom middle). Ideally, I would have used the same

underlying ML model—i.e., a GAM—with both interpretability tools; however, it was

not computationally feasible to generate explanations for GAMs using the SHAP Python

package. As a result, I used LightGBM [114], an implementation of gradient boosted

decision trees, to create the underlying model to be explained using the SHAP Python

package. This was for three reasons: the InterpretML implementation of GAMs is based on

gradient boosted decision trees, the SHAP Python package has a highly optimized routine

for computing explanations for the predictions made by a LightGBM model [148], and

4https://github.com/interpretml/interpret
5https://github.com/slundberg/shap
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LightGBM is widely used. Please note that the comparisons that I make between GAMs

and SHAP are comparisons between the InterpretML implementation of a GAM and the

SHAP Python package used to explain a LightGBM model. The two trained models had

similar test-set accuracies (.907 and .904, respectively) for the modified dataset.

I chose these specific interpretability tools because they are publicly available, widely

used, and provide both local and global explanations. In contrast, LIME, another popular

post-hoc explanation technique, only has local explanations. Each participant used one

interpretability tool, selected at random; 6 participants used GAMs, while 5 used SHAP.

I also provided each participant with a print-out of a tutorial which was prepared based

on READMEs and examples included with the interpretability tools, containing a light

overview of the math behind the interpretability technique implemented in the tool that they

were to use and information on the tool’s visualizations. These tutorials are included as

Appendices B and C.

3.2.3 Contextual Inquiry Protocol

First, I asked each participant to sign a consent form and answer some questions. These

questions followed a semi-structured interview protocol about (1) their background in ML;

(2) their team and role; (3) their typical ML pipeline, including how they make decisions

about data and models; (4) any checks they typically perform on data or models; (5) if they

work in customer-facing scenarios, what makes them feel confident enough about a model

to deploy it; and (6) their awareness of and prior experience with interpretability tools.

Next, I let each participant explore the dataset, model, and interpretability tool on

their own. For each tool, the Jupyter notebook included examples of all three types of

visualization—i.e., global explanations, components (GAMs) or dependence plots (SHAP),

and local explanations, as depicted in Figure 3.1. After this, I asked each participant to

complete the trust questionnaire of Jian et al. [105] with respect to the interpretability tool.

This was followed by ten questions about the dataset and model. Four were general questions
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about the visualizations (e.g., “What are the most important features that affect the output In-

come, according to the explanation above?”), while the remaining six were designed to get at

the issues identified via the pilot interviews; a full list is included in Appendix D. Answering

these questions required participants to use all three types of visualization. For each question,

I also asked each participant to rate their confidence in their understanding of the visualiza-

tions and their confidence that these explanations were reasonable, on a scale of 1 (not at all)

to 7 (extremely). After answering the questions, each participant completed the trust ques-

tionnaire again, allowing me to observe whether their self-reported trust in the interpretability

tool had changed. The inquiry ended with a short interview, asking each participant about

their experience with the tool and whether it would be useful in their typical ML pipeline.

3.2.4 Participants and Data

I recruited participants via an internal mailing list at a large technology company. In

order to filter out participants with no prior experience with ML, the recruitment email

included a short survey asking people about their background in ML, the extent to which

they had used interpretability tools before, their familiarity with GAMs or SHAP, and their

familiarity with the Adult Income dataset. Out of 24 potential participants, all passed this

initial filter, but I subsequently excluded several based on their location because I needed

to conduct the contextual inquiry in person. This left 11 participants (4 women, 7 men;

self-reported). Participants’ roles included ML researcher, applied data scientist, and intern

in ML team. On average, participants had been in their current role for 2 years (min = 2

months, max = 6 years). Most participants were not familiar with the Adult Income dataset

(average familiarity = 2 on a scale of 1–7) and moderately familiar with GAMs or SHAP

(average = 4 on a scale of 1–7). All participants were compensated with a $20 lunch coupon

or gift certificate upon completion of the contextual inquiry.

I used speech recognition software to generate transcripts from the video files and

hand-corrected any errors. These transcripts and participants’ open-ended responses were
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qualitatively coded using inductive thematic analysis [30]. I gave participants credit for

uncovering an issue if there was any mention of confusion, suspicion, or a need for more

testing in their response to the question about that issue. I also obtained descriptive statistics

from the trust questionnaire and the questions about their background, etc.

3.2.5 Results

The contextual inquiry revealed a misalignment between data scientists’ understanding

of interpretability tools and these tools’ intended use. Participants either over- or under-used

the tools. In some cases, they ended up over-trusting the dataset or the underlying ML model.

Participants trusted the tools because of their visualizations and their public availability,

though participants took the visualizations at face value instead of using them to uncover

issues with the dataset or models.

The final column in Table 3.1 presents the number of participants who identified the

corresponding issue. Each issue was identified by at least one participant. However, each par-

ticipant only identified 2.5 issues on average (s.d.=1.4). Participants provided high ratings for

their confidence in their understanding of the visualizations (mean=5.6, s.d.=0.8) and for their

confidence that these explanations were reasonable (mean=5.0, s.d.=0.7). The only question

for which participants’ average confidence rating was less than 5 (on a scale of 1–7) was one

in which participants were asked to use local explanations for 20 misclassified data points to

suggest ways to improve the model. Most participants (8 out of 11) recognized that this could

not be done effectively. I did not observe a substantial difference in participants’ self-reported

trust in the interpretability tools before and after using them, though the sample size is too

small to make claims about significance; participants’ average trust (measured via Jian et al.’s

trust questionnaire [105]) was 3.70 (s.d.=0.4) before using the tools and 3.90 (s.d.=0.6) after.
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3.2.5.1 Theme 1: Misuse and Disuse

Most participants relied too heavily on the interpretability tools. Previous work catego-

rizes such over-use as misuse [59, 176]. The misuse resulted from over-trusting the tools

because of their visualizations; participants were excited about the visualizations and took

them at face value instead of using them to dig deeper into issues with the dataset or model:

“Age 38 seems to have the highest positive influence on income based on the plot. Not
sure why, but the explanation clearly shows it... makes sense.”
(P9, GAMs)

Although interpretability tools are meant to help data scientists understand how ML

models work, some participants used the tools to rationalize suspicious observations instead.

After conducting several exploratory tests on the dataset, P8 said “Test of means says the

same thing as SHAP about Age. All’s good!” (P8, SHAP), and gave confidence ratings of 7

(extremely confident).

In contrast, two participants under-used the tools because they did not provide explana-

tions with the content or clarity that they expected. P7 noted that “This is not an explanation

system. It’s a visualization. There was no interpretation provided here” (P7, GAMs). Sim-

ilarly, P4 became skeptical when they did not fully understand how SHAP’s importance

scores values were being calculated, eventually leading to disuse [59, 176]:

“[The tool] assigns a value that is important to know, but it’s showing that in a way that
makes you misinterpret that value. Now I want to go back and check all my answers”...
[later] “Okay, so, it’s not showing me a whole lot more than what I can infer on my
own. Now I’m thinking... is this an ‘interpretability tool’?” (P4, SHAP)

3.2.5.2 Theme 2: Social Context is Important

Social context was important to participants’ perception and use of the interpretability

tools. Both InterpretML and the SHAP Python package are publicly available and widely

used, which swayed several participants to trust the tools without fully understanding them.

P8 said, “I guess this is a publicly available tool... must be doing something right. I think
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it makes sense” (P8, SHAP). Meanwhile, P6 noted:

“I didn’t fully grasp what SHAP values were. This is a pretty popular tool and I get
the log-odds concept in general. I figure they were showing SHAP values for a reason.
Maybe it’s easier to judge relationships using log-odds instead of predicted value.
Anyway, so it made sense I suppose.” (P6, SHAP)

Participants also relied too heavily on the interpretability tools because they had not

encountered such visualizations before: “[The tool] shows visualizations of ML models,

which is not something anything else I have worked with has done. It’s very transparent,

and that makes me trust it more” (P9, GAMs).

3.2.5.3 Theme 3: Visualizations can be Misleading

The visualizations output by both interpretability tools lack details about importance

scores and other values shown. These details were available in my tutorials, but it is not clear

that participants internalized the tutorials enough to interpret the visualizations as intended.

Most participants mentioned some confusion around the seemingly arbitrary values shown

in the visualizations: “It shows all these values, and I’m not sure what they correspond

to because they’re just written on the plot with no context for what they are” (P2, SHAP).

However, participants continued to use the visualizations despite the missing details, which

in turn led to incorrect assumptions about the dataset, models, and interpretability tools, as

discussed above.

Some of the visualizations do not follow usability guidelines. P4, observing different

axis ranges in different visualizations, remarked “cardinal sin of visualization when scales

are not compatible.” However, many participants did not notice this and therefore made

erroneous judgments about the contribution of each input feature to individual predictions.

In fact, P4’s frustration is evident from their attempt to extract concrete information from

SHAP’s local explanations: “Am I supposed to have some sort of calipers? How can anyone

infer the weight (magnitude) [of each feature] from this (force plot)?”
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3.3 Large-Scale Survey

Following the contextual inquiry, I designed a survey to scale up and quantify our main

findings and shed light on data scientists’ mental models of interpretability tools. Similar to

the contextual inquiry, the survey placed data scientists in a realistic setting. The dataset,

models, and interpretability tools used were identical to those used in the contextual inquiry.

I ran the survey through Qualtrics. All participants were compensated with a $20 gift

card. Additionally, three participants were selected at random from those with high-quality

open-ended responses to win a pair of Surface headphones.

3.3.1 Experimental Conditions

As in the contextual inquiry, each participant used only one interpretability tool (either

the InterpretML implementation of GAMs or the SHAP Python package used to explain a

LightGBM model, as described in Section 3.2.2 above), selected at random. I also showed

participants either “normal” or “manipulated” visualizations, again selected at random. In

the normal-visualization condition, participants were shown the visualizations output by

the interpretability tools. However, in the manipulated-visualization condition, they were

shown the global and local explanations where the input feature names had been rearranged,

resulting in the input features with smallest contributions to the predictions being displayed

as the most important, and vice versa. I designed this manipulation to test the extent to which

participants’ perception and use of the interpretability tools depend on how reasonable their

explanations are (as opposed to the mere existence of visualizations).

3.3.2 Components of the Survey

First, I asked each participant to sign a consent form and gave them a brief introduction

to the survey. I then asked them to answer some questions about their demographics and

background, including (1) their current role and how long they had been in this role; (2)

the extent to which ML was a part of their day-to-day work; (3) how long they had been
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using ML; (4) their familiarity with interpretability, and with GAMs or SHAP; (5) the

approximate number of hours that they had spent using interpretability tools, and using

GAMs or SHAP; and (6) their familiarity with the Adult Income dataset.

Because it was not possible to provide Jupyter notebooks, participants were not able to

explore the dataset, models, and interpretability tools on their own. Instead, I showed them

the results of common exploration commands that had been run previously by participants

in the contextual inquiry. I also gave each participant access to a description of the dataset

and a tutorial on the interpretability tool that they were to use. These tutorials were the same

as the ones used in the contextual inquiry (see Appendices B and C).

Next, I asked each participant to answer four blocks of questions about the dataset

and the model, covering global feature importance, the relationship between the age and

the output variable (i.e., whether or not the person in question made >$50k), the local

explanation for a correctly classified data point, and the local explanation for a misclassified

data point, respectively. Each of these blocks contained seven questions: (1) a multiple-

choice question with a ground-truth correct answer, which was designed to quantify the

participants’ accuracy at reading the visualizations (e.g., “Which is the 3rd most important

feature for the underlying model, according to the explanation system?”); (2) an open-ended

question designed to test how well participants understood the visualizations and whether

any suspicions arose; (3) a question about which visualizations they had used to answer the

previous questions; (4) their stated confidence in their understanding of the visualizations

(on a scale of 1–7) ; (5) their stated confidence that these explanations were reasonable (on

a scale of 1–7); (6) their stated confidence that the underlying model was reasonable (on

a scale of 1–7) ; and (7) an optional open-ended text field for comments or concerns.

After answering the questions and familiarizing themselves with the visualizations, I

asked each participant to select the capabilities of the interpretability tool from a list of

options (shown in Figure 3.2). To better understand participants’ mental models of the tools,

I asked them to describe what the x- and y-axes represented in each of the visualizations
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Figure 3.2: Percentage of participants that selected each option when asked about the
interpretability tools’ capabilities.

they had seen. I also asked them whether the visualizations were useful and, if so, how they

would use them in their typical ML pipeline.

Finally, to encourage each participant to think critically about issues with the dataset or

model, I asked them to rate the extent (on a scale of 1–7) to which they thought the model

was ready for deployment and to explain this rating. I also asked them to describe how they

would convince a customer that this was the right model to deploy (or not, as appropriate).

The survey concluded with the NASA-TLX cognitive load questionnaire [1].

3.3.3 Participants

I advertised the survey via internal mailing lists at a large technology company and

publicly via social media. To filter out participants with no prior experience with ML, I

asked people about their ML experience, and only surveyed people who rated their expe-

rience as at least 3 on a scale of 1–7. The survey was completed by 253 participants. After

filtering out responses with exactly the same content for every open-ended text field or other

gibberish text, I was left with responses from 197 participants. Of these, 49 participants

were assigned to GAM-Normal, 51 to GAM-Manipulated, 51 to SHAP-Normal, and 46 to

SHAP-Manipulated. On average, participants took about 44 minutes to complete the survey

(s.d.=28), excluding clear outliers. All participants were compensated with a $20 gift card

upon completion of the survey.
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3.3.4 Preregistration

Before conducting any analyses, I preregistered our intent to analyze eight outcome

variables: (1) participants’ accuracy on the four multiple-choice questions with ground-truth

correct answers; (2) their stated confidence in their understanding of the visualizations; (3)

their stated confidence that the explanations were reasonable; (4) their stated confidence

that the underlying models were reasonable; (5) their NASA-TLX cognitive load index; (6)

the extent to which they thought the models were ready for deployment; (7) whether they

expressed any suspicions about the dataset or models; and (8) whether they expressed any

suspicions about the interpretability tools.

For each outcome variable, the preregistered comparisons were (1) the main effect

of normal vs. manipulated visualizations; (2) GAM-Normal vs. GAM-Manipulated; (3)

GAM-Normal vs. SHAP-Normal; (4) SHAP-Normal vs. SHAP-Manipulated; and (5)

GAM-Manipulated vs. SHAP-Manipulated. These comparisons allow us to understand

differences that arise because of the tools, as well as differences that arise based on how

reasonable the explanations are. I intentionally omitted comparing the main effect of GAMs

vs. SHAP to avoid lumping together data from the normal-visualization and manipulated-

visualization conditions. The preregistration also noted my intent to conduct additional

exploratory analyses. The full document is available on AsPredicted.6

3.3.5 Methods

I used two-way ANOVAs to compare the main effect of normal vs. manipulated visual-

izations and unpaired t-tests for the more specific comparisons. Following convention, I did

not apply Bonferroni correction because only four comparisons were performed for each

outcome variable. The content from the open-ended responses was coded via open and axial

coding [46]. I used inductive, data-driven coding to code participants’ open-ended responses

(in sum) for any mention of suspicions about the dataset or models, or about the interpretabil-

6https://aspredicted.org/ek2bm.pdf
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Table 3.2: The results of the preregistered analyses. Each column is a pair of conditions,
while each row is an outcome variable. Each cell contains the mean of the outcome variable
in that row for one of the conditions being compared in that column (µ1 and µ2 are the
means of conditions 1 and 2 in the header, with standard deviations). Significant differences
are highlighted in gray along with details of the t-test. Cohen’s d values: 0.2–0.5 = small
effect size, 0.5–0.8 = medium effect size, > 0.8 = large effect size.

ity tools. My collaborator and I coded these responses with an inter-rater reliability of 1,

measured using Cohen’s kappa on 12% of the data. Once coded, these suspicion variables

were compared via Fisher’s exact test; I used this over the preregistered chi-squared test

due to a class imbalance for these variables. I conducted exploratory analyses using the

participants’ ML experience by fitting multiple linear regression models and calculating

Pearson correlation coefficients. I also noted descriptive means, standard deviations, and

counts, whenever applicable.

3.3.6 Results

Table 3.2 summarizes the results of the preregistered analyses. For three outcome

variables—participants’ accuracy on the four multiple-choice questions with ground-truth

correct answers, their stated confidence in their understanding of the visualizations, and their

NASA-TLX cognitive load index—there are significant differences between GAM-Normal

and SHAP-Normal and between GAM-Manipulated and SHAP-Manipulated. Specifically,

participants who used GAMs had higher accuracy, higher stated confidence in their under-

standing of the visualizations, and lower cognitive load than participants who used SHAP.

This suggests that explanations based on GAMs are easier to understand than explanations

38



based on SHAP. There are no differences between normal and manipulated visualizations

for these outcome variables.

Although there are no differences between conditions for participants’ stated confidence

that the explanations were reasonable, there are differences in their stated confidence that the

underlying models were reasonable, both as a main effect of normal vs. manipulated visual-

izations in an ANOVA (F(1,101) = 25.05, p<< 0.001) and when comparing GAM-Normal

and GAM-Manipulated, SHAP-Normal and SHAP-Manipulated, and GAM-Manipulated

and SHAP-Manipulated. These results indicate that it is not the mere existence of visu-

alizations that matters. Reassuringly, participants were less confident that the underlying

models were reasonable when shown manipulated visualizations. The difference between

GAM-Manipulated and SHAP-Manipulated suggests that participants who used GAMs

were more likely to be skeptical of the models when shown manipulated visualizations than

participants who used SHAP. This is an argument in favor of GAMs.

Even though participants were, on average, not very confident that the underlying

models were reasonable, few explicitly mentioned suspicions about the dataset, models, or

the interpretability tools. Furthermore, they generally thought that the models were ready

for deployment. There are no differences between conditions for these outcome variables.

3.3.6.1 Factors that Affect Willingness to Deploy

To explain why participants thought, on average, that the underlying models were ready

for deployment, next I present a selection of themes from their open-ended responses.

Intuition. Most participants gave the models high deployment ratings based on intu-

ition, driven by their prior experience with ML, rather than careful consideration of the

explanations:

“I think it’ll be good to test this model in practice. The numbers [for performance
metrics] seem good, and based on my experience with such numbers, I would deploy it
and see if it works.” (P102, SHAP-Normal)

A subset of these participants also said that they would try to convince a customer that
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Figure 3.3: Percentage of participants with low, neutral, and high deployment scores per
condition, and a total percentage per score type across all participants.

this was the right model to deploy by simply asking the customer to trust their judgment.

Superficial Evaluation of Explanations. Instead of critically evaluating the expla-

nations, some participants took the visualizations at face value, using their existence to

convince themselves that the underlying models were ready for deployment.

Participants in all conditions mentioned things like, “the results of the comprehensive

chart display make it easy to make effective judgments” (P28, GAM-Normal), and crafted

narratives to convince themselves about the reasonableness of the models: “The charts in

combination help you infer reasonable things about the model. Person has college level

education, working in private sector full-time, having married to civilian spouse and white

race indicates high income which makes actual sense” (P148, SHAP-Manipulated). They

relied on these narratives, along with the visualizations from the tools, when explaining how

they would attempt to convince a customer that the model was ready for deployment. There

was an element of only superficial evaluation to these responses:

“Considering plot A, the top features are reasonable, and the model does not seem to
be very much impacted by ethnicity or gender bias. Plot B looks reasonable, since
it provides a bonus to individuals in working age range and penalizes others. It also
correctly considers widowed people to be more likely to earn more, since they are more
likely to inherit assets.” (P137, SHAP-Normal)

Perceived Suspicions. Not all participants gave the underlying models high deployment
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ratings: 14.2% were neutral and 18.3% gave low ratings (see Figure 3.3). One reason for

these ratings was that participants were suspicious about the models, and felt that they

could be biased in several ways: “what the heck is happening with the 37/38 year olds?”

(P50, GAM-Manipulated); “Marital status as the top-most predictor of income? Should

we approve loans to married people and not single people (or vice-versa?)” (P98, SHAP-

Normal). The other reason was that participants were unsure about deployment without

running more comprehensive tests: “No R-square value, no confidence interval, no overall

test score. Far away from deployment” (P19, GAM-Normal). These participants were the

ones who used the interpretability tools in their intended ways: to investigate the datasets

and underlying models, uncovering issues that required deeper investigation. When asked

how they would convince a customer to deploy the model (or not, as appropriate), these

participants tended to argue against deployment.

3.3.6.2 Mental Models of Interpretability Tools

The themes above make it clear that participants, for the most part, did not use the

interpretability tools as intended. The HCI literature refers to this kind of behavior as a

mismatch between the participants’ mental models of the tools and the conceptual models of

the tools. A mental model is based on someone’s perceptions of a tool, while the conceptual

model is the intended use that the tool’s designer had in mind [168].

Qualitative analysis of participants’ descriptions of the visualizations indicates that most

participants did not have an accurate understanding of the visualizations. For all three types

of visualizations, one of the axes represents a score (e.g., SHAP’s importance score), and is

titled as such (“Score” for GAMs and “Shap value” for SHAP). Two of my collaborators

and I iteratively coded participants’ open-ended responses until complete agreement was

achieved. A response was considered to be “accurate” when the values represented were

explained (e.g., a clear description of what “Score” represents), “partially accurate” when

the description was accurate but incomplete, and “superficially accurate” when the axis title
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was used as-is as the description.

Only 5.6% of participants were able to accurately describe the score axis for local expla-

nations, 1.9% for components (GAMs) or dependence plots (SHAP), and 1.9% for the global

explanations. Another small percentage of participants (16.4% for local, 7.5% for compo-

nents of dependence plots, and 1.9% for global) provided partially accurate descriptions of

these axes, giving a general outline of what they represent, but no details. A large percentage

of participants (23.4% for local, 43% for components or dependence plots, 48.2% for global)

indicated only a superficial understanding of the axes. Furthermore, the largest percentage

of participants did not understand the visualizations at all (54.6% for local, 47.6% for

components or dependence plots, and 48% for global). These participants often suggested

that the scores represented the data points’ labels or the underlying models’ predictions.

These results indicate that participants did not fully understand the visualizations output

by the interpretability tools. However, despite this, they had high expectations for these

visualizations, above and beyond the tools’ capabilities. When asked to explain how they

would use these visualizations in their typical ML pipeline, participants listed uses that

ranged from actual capabilities of these visualizations (e.g., understanding the underlying

model and its most important features, understanding how a prediction was made) to uses that

no interpretability tool could currently provide (e.g., automated checking for societal biases

in the dataset or unfair outcomes). Figure 3.2 depicts the percentage of participants that

selected each of the options provided when asked about the interpretability tools’ capabilities.

3.3.6.3 Tension between Cognitive and Social Factors

The survey captured contextual information about both cognitive factors (e.g., prior expe-

rience with ML, familiarity with interpretability) and social factors (e.g., confidence ratings

for participants’ understanding of the visualizations, the reasonableness of the explanations,

the reasonableness of the underlying models). Below, I discuss how these factors affected

participants’ use of the tools and their deployment ratings for the underlying models. These
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are exploratory analyses; although I report p-values, I did not preregister these analyses.

Accuracy at Reading Visualizations. To explore the relationship between participants’

prior experience with ML and their accuracy at reading the interpretability tools’ visual-

izations, I fit a multiple linear regression (MLR) using participants’ accuracy on the four

multiple-choice questions with ground-truth correct answers as the dependent variable and

the following independent variables: (1) how long they had been in their current role; (2)

the extent to which ML was a part of their day-to-day work; (3) how long they had been

using ML; (4) their familiarity with interpretability, and with GAMs or SHAP; and (5) their

familiarity with the Adult Income dataset. The second and third of these independent vari-

ables significantly predicted participants’ accuracy at reading the visualizations (b = 5.77,

t(189) = 3.44, p ≪ 0.001 and b = 0.39, t(189) = 5.04, p ≪ 0.001, respectively, where b is

the corresponding coefficient). The MLR was effective at predicting participants’ accuracy

(adjusted R2 = 0.27, F(7,189) = 11.62, p ≪ 0.001; R > 0.5 represents a large effect size).

I used Pearson correlation coefficients to explore the relationship between social factors

and participants’ accuracy at reading the interpretability tools’ visualizations because this

relationship is more symmetric. Of the three questions about confidence, only participants’

stated confidence in their understanding of the visualizations is strongly correlated with

their accuracy (Pearson’s r(195) = 0.49, p ≪ 0.001). This result confirms that participants’

confidence ratings were high when they were accurately reading the visualizations.

Deployment Ratings. I fit an MLR using participants’ deployment ratings as the

dependent variable and the following independent variables: the cognitive factors, the social

factors, and participants’ accuracy on the four multiple choice questions with ground-truth

correct answers. There are several significant predictors for participants’ deployment ratings:

how long they had been using ML (b = −0.02, t(184) = −3.75, p < 0.001), their stated

confidence that the explanations were reasonable (b = 0.37, t(184) = 3.02, p < 0.01), their

stated confidence that the underlying models were reasonable (b = 0.23, t(184) = 2.43,

p < 0.05), and their accuracy at reading the visualizations (b =−0.01, t(184) =−2.61, p <
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0.01). More ML experience and higher accuracy at reading the visualizations have a negative

effect on deployment ratings, whereas higher confidence ratings for the reasonableness of

the explanations and the underlying models have a positive effect. The MLR was accurate

at predicting deployment ratings (adjusted R2 = 0.37, F(12,184) = 10.8, p ≪ 0.001).

These results suggest an inverse relationship between cognitive and social factors: partic-

ipants with more ML experience had higher accuracy at reading the tools’ visualizations, but

lower confidence ratings for the reasonableness of the explanations and the underlying mod-

els, and thus, lower deployment ratings. I confirmed this relationship using Pearson correla-

tion coefficients and found them to match my expectations. Participants’ ML experience and

their stated confidence that the explanations were reasonable are strongly negatively corre-

lated (Pearson’s r(195) =−0.17, p < 0.01), as are their ML experience and their stated con-

fidence that the underlying models were reasonable (Pearson’s r(195) =−0.27, p < 0.001).

The Role of Mental Models. Mental models play a crucial role in this inverse relation-

ship between cognitive and social factors. The tension between these types of factors reflects

a complicated relationship between two outlooks on the use of interpretability tools. When

participants were able to form (partially) accurate mental models of the tools, they evaluated

them in a more principled way, and therefore made careful decisions. For example, P88,

who had only two months of ML experience, noted, “the spike in age around 35–39 worries

me because it seems more representative of a boom that describes a very specific group of

people. The model doesn’t account for the fact that that group of people will age past 35–39.”

In contrast, without (partially) accurate mental models of the tools, even the most ex-

perienced participants “don’t see any red flags as confirmed by the explanations” (P57,

GAM-Manipulated, 4 years of ML experience). Worse, in some cases, their prior experience

with ML led them to rely on their intuition and only superficially evaluate the explanations.

Without accurate mental models, social factors can rationalize suspicious observations,

leading to higher deployment ratings.
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3.4 Discussion and Future Work

3.4.1 Bridging the Gap Between the ML and HCI Communities

The results from this chapter highlight the value of user studies—normally conducted

in HCI and adjacent fields—for evaluating interpretability techniques designed by the ML

community, marrying the goals and methods of both communities. These user studies of

interpretability require qualitative methods to understand the nuances of how tools are used

in context, coupled with quantitative methods to scale up findings. One of the findings here

is that data scientists with different amounts of ML experience are unable to fully understand

the visualizations output by two existing interpretability tools, in turn hindering their ability

to understand the dataset and underlying models. Overcoming this challenge will require

expertise in the mathematics underlying ML models and in communicating information to

users (e.g., the design of tutorials, visualizations, or interactive tools). Ideally, members of

the HCI and ML communities should work together from the start, with HCI methodologies

applied at all stages of interpretability tool development: supporting need-finding studies

(e.g., [37, 244]), designing tools that can be understood by users with different background

(e.g., [128]), and undertaking user studies at each stage of tool development (e.g., [254]).

Indeed, since I conducted these studies in 2019, there has been exponential growth in

studying interpretability from a stakeholder perspective, with user studies being conducted

by scholars in both ML and HCI communities, sometimes jointly. As detailed in Chapter II,

these studies continue to provide invaluable insights into how different explanations are

suited for various stakeholders in a multitude of settings.

3.4.2 Designing Interactive Interpretability Tools

Interpretability is typically viewed as being unidirectional, with tools providing in-

formation to user. However, it may be better to design interpretability tools that allow

back-and-forth communication [19]. As one of my participants said, “These explorations
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are like goal-based communication. If I go in without a hypothesis, it’s hard to evaluate what

the tool tells me. When I do make an evaluation [based on the tool], can the tool follow up?”

(P4, Contextual Inquiry). In essence, this participant was looking for interactivity from the

interpretability tool. Social science and HCI research consider this kind of back-and-forth

to be a key factor in making explanations accessible to people with different levels of ex-

pertise [85, 163]. Weld and Bansal [251] propose interactive interpretability tools that allow

users to dig deeper into explanations or to compare explanations from multiple different

interpretability techniques. One might also imagine a tool that could update its mode of

interactivity based on users’ perceptions [144]. More generally, interpretability tools should

be designed to adapt to users’ expectations. I describe one such design implication below.

3.4.3 Designing Tools for Deliberative Reasoning

Interpretability tools are designed to help stakeholders better understand how ML models

work. However, as I found, these tools’ visualizations can encourage people to make quick

decisions instead of digging deeper. As P4 from the contextual inquiry said, “There is this

concept in UX called thinking fast and slow. While these visualizations are made to make

me think fast, every detail about them requires that I think slow.” This sentiment echoes

Kahneman’s [109, 110] cognitive processes for humans: system 1, which tries to make quick,

automatic decisions based on heuristics, and system 2, which performs deliberative reasoning

and engages more deeply before making decisions. People are prone to make decisions using

system 1, unless system 2 is engaged, because of missing heuristics. Designing interpretabil-

ity tools so that they activate system 2 is therefore an important avenue for future work.

3.5 Limitations

These studies have several limitations. First, although I tried to put data scientists in a

realistic setting via Jupyter notebooks in the contextual inquiry and via visualizations and

the results of common exploration commands in the survey, I cannot be certain that this was
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sufficient. Second, longitudinal studies might reveal different or more nuanced patterns of

behavior than either the contextual inquiry or the survey. Third, I found it challenging to

distinguish between participants’ high-level understanding of the tools’ visualizations and

participants’ deeper understanding of the importance scores shown. Indeed, research on

mental models commonly faces this challenge. I therefore relied on qualitative findings to

support and add nuance to my quantitative results. Fourth, I used a tabular dataset. Although

there is research on interpretability techniques for deep learning and richer types of data

(e.g., images [116, 204]), this was not the focus of my work.

3.6 Conclusion

In this chapter, I presented empirical evidence that existing interpretability tools do not

work as intended. I conducted studies with data scientists’ regarding their use of two existing

interpretability tools: the InterpretML implementation of GAMs (glassbox models) and

the SHAP Python package (a post-hoc explanation technique for blackbox models). These

studies included pilot interviews (N = 6) to identify common issues faced by data scientists

in their day-to-day work, followed by a contextual inquiry (N = 11) to observe how data

scientists use interpretability tools to uncover these issues, and finally a survey (N = 197) to

scale up and quantify the main findings from our contextual inquiry. The results presented

indicate that the visualizations output by interpretability tools can sometimes help data

scientists to uncover issues with datasets or models. However, for both tools, the existence

of visualizations and the fact that the tools were publicly available led to cases of over-trust

and misuse. Finally, I discussed the need for members of the HCI and ML communities

to work together, and some avenues for future exploration when designing interpretability

tools. Overall, this work sets the foundation for my dissertation by identifying challenges to

a key stakeholders’ use of interpretability tools.
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CHAPTER IV

Interpretability Gone Bad:

The Role of Bounded Rationality in How Practitioners

Understand Machine Learning

Harmful use of ML can only be avoided if the people who build and use ML models

understand the reasoning behind their predictions. The ML community has developed

approaches like interpretability and explainability to help people understand ML outputs

and reasoning. However, several studies with both ML practitioners and lay end-users—

including the ones presented in Chapter III—have shown that interpretability and explainabil-

ity approaches, and tools that implement these, do not work as intended. Evidence suggests

that people misuse and over-trust interpretability tools,1 and are unable to make accurate

judgements about the data and model despite having access to the additional information

provided by these tools [18? , 111, 120]. In this chapter, I consider the question of why

interpretability tools are inadequately used.

I hypothesize bounded rationality as being the underlying reason for inadequate use

of interpretability tools. Bounded rationality suggests a “kind of rational behavior that

is compatible with the access to information and the computational capacities that are

1I use the term “interpretability” to indicate both interpretability and explainability approaches and tools
throughout the chapter. Interpretability has model-centric connotations whereas explainability is used to signal
a focus on human-centered values. However, for the purposes of this study and the tools I employ, the two
terms can be considered interchangeable.
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actually possessed by organisms, including man, in the kinds of environments in which such

organisms exist” (emphasis my own) [209, p99]. Under this model of decision-making,

people select “good enough” options rather than considering the utility of all alternatives.

However, whether the outcomes of bounded rationality are good or bad is dependent on

the heuristics that people apply to select a good enough option. When these heuristics are

inaccurate, bounded rationality can lead to and propagate harmful judgements. Therefore,

for this ML-based setting, I ask the following questions: How do people apply bounded

rationality when using interpretability tools? Does it help or hurt in this context?

To observe the role of bounded rationality in the ML context, I conducted a between-

subjects, pre-registered, controlled experiment with ML practitioners (N = 119),2 asking

them to perform exploratory data analysis and answer questions about the data and model.

The experiment compared four interpretability conditions (two glassbox models and two

post-hoc explainers for blackbox models) and a control condition sans interpretability. Next,

I provide a background on bounded rationality along with an example in the ML setting,

followed by a list of hypotheses generated for this setting, the study methods and results,

and a discussion of implications for interpretability tool designers and researchers.

4.1 Bounded Rationality

Bounded rationality describes human beings as rational agents functioning within cogni-

tive and informational constraints [211]. These constraints separate the boundedly rational

person from homo econmicus, described by Mill [160] in 1836 “as a being who desires

to possess wealth, and who is capable of judging of the comparative efficacy of means

for obtaining that end.” It is this latter half with which bounded rationality most directly

disagrees. Bounded rationality thus seeks to explain and predict human behavior in a way

that more closely matches reality than the wholly rational view of human decision making

2I use the broad category term ML practitioners to represent people with prior experience in ML. These
include data scientists, practitioners, ML software designers and developers, and researchers.
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encapsulated by the concept of homo economicus [209].

Given the constrained cognitive abilities and limited information available to people, they

often employ a component of bounded rationality called satisficing in lieu of maximizing.

Under a maximizing framework, people process all relevant information about a set of

options and choose the optimal option in view of available global information and boundless

cognition [210]. In reality, humans have neither the cognitive capacity nor the requisite

information about most choices to maximize in this way. As a consequence, boundedly

rational decision makers satisfice: they choose the option that suffices to meet a (consciously

or unconsciously) predetermined set of criteria to a satisfactory degree (thus, the portmanteau

of satisfy and suffice) [211].

Simply put, bounded rationality is a process by which people choose an option that

is “good enough” as defined by their own criteria. People do not randomly select from a

list of potential choices, but instead employ rational inattention that allows them to reduce

cognitive overhead in the decision-making process [156]. Bounded rationality and satisficing

appear to be a useful descriptive model for many cognitive processes including split-second

decision making [171], patterned and random repeated choice scenarios [200], discrete

choice scenarios [156], and explanations of theory of mind under uncertainty [182]. The

salient commonalities across domains in which these are observed or usefully descriptive

are the presence of uncertainty or a prohibitive cost of information accrual—both potential

characteristics of an exploratory ML task (example below).

4.1.1 Example Setting

Imagine you are a ML practitioner analyzing the Titanic survival dataset.3 This dataset is

used to predict which passengers survived the sinking of the Titanic based on demographic

and socio-economic features. Say you built a blackbox model for this dataset and are

using the SHAP [150] Python package as a post-hoc explainer. Figure 4.1 presents the

3https://www.kaggle.com/c/titanic
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Figure 4.1: Visualizations output by the SHAP Python package, a post-hoc explainer for
blackbox models. These are generated for the Titanic survival dataset using a LightGBM
model. Top (left to right): Overall feature importances; Partial dependence plot for a
continuous input feature, age; Partial dependence plot for a categorical input feature, sex
(all global explanations). Bottom (left to right): Waterfall plot and Force plot, both types of
local explanations for an individual data point.

types of visuals available via SHAP (and most interpretability tools): (1) the overall impact

of each feature on the model’s predictions (global explanation); (2) partial dependence

plots, showing the relationship between one input feature and the output variable (global

explanation); and (3) feature attributions, describing how an individual prediction was made

(local explanation). As a ML practitioner trying to understand the model outputs, one

approach you might take is to explore counterfactuals: what is the smallest change in input

features that would cause a prediction to flip? Consider this question for the datapoint

presented in the bottom row of Figure 4.1. Here are some options and reasoning possibilities

for switching the prediction of this datapoint from 1 (survived) to 0 (did not survive): (1)

change “TotalFamily” from 3 to 5 because if you had more people in your family, your

attention would have been divided in trying to make sure they all reached the rafts; (2)

change “Fare” from $52.55 to $10 because a lower fare would likely correspond to a lower

passenger class, who were assigned cabins in the lower decks; or (3) change “Age” from 37
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Figure 4.2: Using the framework of bounded rationality to create quadrants for human
cognition in Machine Learning settings, defined by the amount of time and cognitive effort
spent on the task. The experimental conditions I tested map to three of these quadrants.

to 70 because the likelihood of survival is lower for older passengers. Which option would

you pick? With bounded rationality, people are looking for a plausible answer, which can be

accurate or inaccurate. Of these options, (1) and (2) are accurate; (2) is also plausible, thus

a case of good, accurate outcomes; and (3) is plausible but inaccurate (due to the mediating

effect of “Pclass” being first), thus a case of bad outcomes from applying bounded rationality.

4.2 Research Goals and Hypotheses

In cognitive science, the bounded nature of human rationality is often expressed as a

function of time and effort. These form the basis of my cognitive framework for the ML

context (Figure 4.2). In an ideal world with infinite information processing capabilities, one

would consider the utility of all information and alternatives before making decisions. This

is referred to as maximizing, which requires significant time and cognitive effort. However,

prior work in cognitive science and behavioral economics shows that people satisfice to

conserve time and effort in decision-making settings [209, 110, 109].

Translating and expanding the motivations behind these cognitive modes to the ML
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setting, I hypothesized that interpretability solutions engage the bounded cognitive modes in

ML practitioners more so than when they do not have access to interpretable outputs. These

explanations essentially bypass the process that practitioners have to follow to understand

the data and model on their own, which includes finding the right approach for generating

interpretable outputs, writing code to make it work, and only then having access to the

explanations. However, not all interpretability solutions are so simple in their working—

some require deliberate engagement with interactive features and show the data and model

in a multitude of visual formats. I hypothesized that this type of engagement might instead

lead to optimizing behavior wherein, similar to satisficing, practitioners spend less cognitive

effort on the task, but differently spend more time being engaged in understanding the

content. The remaining quadrant in the cognitive framework represents low time–high effort

situations. The domains of these situations require urgent decision-making with less time at

hand (e.g., healthcare, aviation). Although ML practitioners are responsible for the models

used in these settings, they are rarely actively involved in the day-to-day of this type of work.

That is, the urgency in less acute for practitioners as stakeholders. Therefore, I did not test

this cognitive mode in the experiment.

Overall, I tested three types of ML setups: (1) a control condition sans interpretability,

(2) visual explanations from interpretability tools that are static in nature, and (3) interactive

interpretability tools. In line with the quadrants that each of these conditions belong to, I

hypothesized that:

H1a People will spend less time on the data science task when using visual explanations

from interpretability tools.

H2a People will expend less cognitive effort on the data science task when using visual

explanations from interpretability tools.

H1b People will spend more time on the data science task when using interpretability tools

with their full range of interactive features.
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H2b People will expend less cognitive effort on the data science task when using inter-

pretability tools with their full range of interactive features.

To avoid making the task setup too cumbersome for participants, I also provided hints

for how to use and interpret the ML models and explanation outputs (setup details in

Section 4.3.4). Compared to a setup with no built-in interpretability options (control), I

anticipated that explanations and interactive elements would make the setup more straight-

forward, and the data and model easy to explore, thus lessening the need for hints. Therefore,

I hypothesize that:

H3a People will rely on fewer hints to complete the data science task when using visual

explanations from interpretability tools.

H3b People will rely on fewer hints to complete the data science task when using inter-

pretability tools with their full range of interactive features.

Time, cognitive effort, and hints reflect the process behind bounded rationality; it also

affects the outcomes of a task. Under bounded rationality, people often apply heuristics,

i.e., automated processes that circumvent the need for conscious deliberation of information.

While this has its benefits (e.g., avoiding information overload), it can have negative conse-

quences when people apply inaccurate heuristics or overly rely on the automaticity afforded

by them. In the ML setting, practitioners are responsible for making accurate decisions

about the data and model. As such, I measured the impact of bounded rationality on the

decisions made by practitioners in the form of two outcome-based proxies: (1) the accuracy

of their answers about the data and model; and (2) the type of responses they select, where

the types can be accurate, plausible, or randomly inaccurate responses.

Prior work claims that ML practitioners overly trust and rely on static explanations

from interpretability tools [18, 111]. This suggests that people might be applying incorrect

heuristics that lead to satisficing in these cases. Therefore, I hypothesized that:
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Dependent
Variable Hypothesis Cognition Mode

1 Time
a) Lower when using visual explanations from interpretability tools. Satisficing
b) Higher when using interpretability tools with interactive features. Optimizing

2 Cognitive Effort
a) Lower when using visual explanations from interpretability tools. Satisficing
b) Lower when using interpretability tools with interactive features. Optimizing

3 Hints
a) Fewer when using visual explanations from interpretability tools. Satisficing
b) Fewer when using interpretability tools with interactive features. Optimizing

4 Accuracy
a) Lower when using visual explanations from interpretability tools. Satisficing
b) Higher when using interpretability tools with interactive features. Optimizing

5 Response Type
a) Plausible when using visual explanations from interpretability tools. Satisficing
b) Accurate when using interpretability tools with interactive features. Optimizing

Table 4.1: An overview of the ten hypotheses corresponding to my dependent variables.
Each dependent variable is split into two hypotheses, one for static visual explanations from
interpretability tools and the other for interpretability tools with interactive features. The
former represents a satisficing cognition mode and the latter, optimizing.

H4a People’s responses to questions about the data and model will be less accurate when

using visual explanations from interpretability tools.

H5a People will select responses to questions about the data and model that are plausible

(rather than accurate or inaccurate) when using visual explanations from interpretabil-

ity tools.

On the other hand, interactive interpretability tools, in leading to the hypothesized

optimizing behavior and more deliberate engagement, might resolve the potentially negative

outcomes of bounded rationality. In his dual-process theory of cognition, Kahneman cites

heuristics-based automated reasoning as the use of System 1 (of the brain), compared to

System 2 which is a more deliberative reasoning unit [108]. It then follows that one way

to combat the application of potentially inaccurate heuristics for bounded rationality is

to engage people in deliberative reasoning modes. Prior work in HCI shows that we can

promote this deliberative thinking and engagement by making interpretability tools more

interactive [10, 85, 186]. Therefore, I hypothesized that:

H4b People’s responses to questions about the data and model will be more accurate when

using interpretability tools with their full range of interactive features.
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H5b People will select responses to questions about the data and model that are accurate

(rather than plausible or inaccurate) when using interpretability tools with their full

range of interactive features.

The five metrics described above form the core of my study of bounded rationality in

the ML and interpretability contexts. Table 4.1 presents a full list of my hypotheses. Before

collecting any data, I pre-registered these hypotheses on AsPredicted.4 I included other

variables of interest for exploratory analysis in the pre-registration, such as usability of the

task setup, validity of the dataset and model in the wild, etc. (Tables 4.2– 4.5 provide an

overview of these).

4.3 Methods

I conducted a pre-registered controlled experiment with ML practitioners to study

my hypotheses. The experiment was between-subjects, split across 5 conditions, each

representing a different ML + interpretability pipeline: (1) normal ML pipeline without any

interpretability tools (control); (2) visual explanations from a glassbox model; (3) visual

explanations from a post-hoc explainer for a blackbox model; (4) interactive interpretability

tool which used a glassbox model; and (5) interactive interpretability tool which used a

post-hoc explainer for a blackbox model.

4.3.1 Experimental Setup

The experiment was conducted using a Qualtrics survey with links to Google Colab

notebooks for access to the data, model, and interpretability tools. I designed the setup after

carefully considering the trade-offs between internal and ecological validity, both of which

are individually hard to achieve in the ML setting with this participant pool [50, 183, 111].

On the one hand, studying an abstract construct via an experiment requires proxies that can

4An anonymized version of this pre-registration generated for peer review is available here: https:
//aspredicted.org/462_XKP
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be consistently captured through direct data collection or logging, for hypothesis testing.

There is no way to log information like individual answers for accuracy or the time spent on

each question in an open-ended Colab notebook. On the other hand, a consistent, purely

quantitative experimental setup would take away both: (1) the context in which bounded

rationality would normally occur, and (2) the ability to study the role of certain relevant

features of interpretability tools (e.g., interactivity). For example, in the survey in Chapter III,

I copied the visual outputs from interpretability tools within a Qualtrics survey. But, one

limitation was that this did not allow for direct participant interaction with the data science

setup.

For my research goals, access to a realistic setup and consistency of data logging were

both critical (conflicting) requirements. To account for these, the setup employed both: a

Qualtrics survey to consistently capture quantitative metrics for hypothesis testing, and a

Colab notebook with the relevant ML components. This worked with all the constraints

because questions about the data and model were asked in the Qualtrics survey, which allows

easy metric logging. The Colab notebooks allow for exploration while answering these ques-

tions, which enables relevant context. Each Colab notebook presented an overview of the

various ML elements included in it, followed by a dataset description, model overview and

train/test accuracy numbers, and an overview of the interpretability option in the condition.

Screenshots of a Colab notebook are included in Appendix E.

4.3.2 Choice of Dataset

Similar to the survey in Chapter III, I used the Adult Income dataset5 with some mod-

ifications for the data science task. The Adult Income dataset is based on 1994 census data,

publicly available via the UCI Machine Learning Repository. Each of its 45,000 instances

represent a person, with 14 attributes that relate to demographic and socio-economic features

such as their age, education, marital status, and occupation. The binary output variable

records whether or not the person made <=$50,000 (converted to 0) or >$50,000 (converted
5https://archive.ics.uci.edu/ml/datasets/adult

57

https://archive.ics.uci.edu/ml/datasets/adult


to 1). This threshold is equivalent to ∼$100,850 in 2022 when adjusted for inflation.

I selected this dataset because it: (1) did not make the data science task overly cumber-

some due to esoteric data, and (2) was on a topic that people would have encountered before

and formed heuristics about. Similar to the previous study (Chapter III), I synthetically

introduced errors in this dataset to quantitatively capture faulty reasoning about the data

and model. I included two errors that commonly occur in people’s day-to-day ML work:

missing values and redundant features [111]. To synthesize missing values, I replaced the

age value with 38, the mean for all data points, for 10% of the data points with an income of

>$50,000. For redundant features, I relied on the pre-existing redundancy in two features of

the dataset, Education (a categorical variable) and Education-Num (a nominal representation

of the categories for Education).

4.3.3 Choice of Model and Interpretability Tools

I selected ML models and interpretability tools based on their consistency in outputs

and features. The two glassbox conditions were built on the same underlying model, GAMs.

The blackbox conditions both used the same post-hoc explainer, SHAP, and blackbox model,

LightGBM. LightGBM model outputs also matched that of the XGBoost model used in the

control condition. Additionally, the glassbox and blackbox conditions were consistent in

their explanation types and features when compared to each other. More details on these

selections are included below.

4.3.3.1 Control Condition

The control condition simulated a normal ML pipeline with no interpretability options.

I relied on a boosted tree model using the XGBoost library.6 Control was intended to be the

hardest of the five conditions—participants had to find and add code for any interpretable

outputs they wanted for the model. XGBoost was selected primarily for the availability

of interpretable outputs for these models, with additional code. I included hints leading to
6https://xgboost.ai/
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these outputs to avoid high drop off rates due to the condition being too challenging. For

example, code for global feature importances (a simple built-in function of the XGBoost

model) and for partial dependence values (a basic function from the scikit-learn library) was

included. However, the latter was a set of complex raw values in array form—participants

would have had to search for the equivalent plotting function to convert these into a visual

output. The local explanations were the most challenging missing piece in this condition.

Ideally, the participants could have searched and found an XGBoost explainer developed

for local explanations on their own. To make this slightly easier (and avoid high drop-off),

I provided a link to the explainer,7 but no code was included. Participants were not required

to use this feature and could rely on other Python libraries or built-in functions. Indeed,

while some participants used the linked explainer, others relied on their prior knowledge

of relevant statistical tests and descriptive plots.

4.3.3.2 Visuals-only Conditions

Static implementations of interpretability tools present visual outputs for global and

local explanations and partial dependence plots per feature. These are available for both

types of interpretability approaches: glassbox models and post-hoc explainers for blackbox

models. I considered several options for both types, eventually selecting the following

implementations due to their underlying consistency (as noted in prior work [111]).

Generalized Additive Models (GAMs). GAMs are a class of glassbox models which

are inherently interpretable. They explain predictions based on additive components, where

each component is a function that models an input feature. I used the interpretML imple-

mentation of GAMs,8 called Explainable Boosting Machines (EBMs) [167]. EBMs have

built-in visualizations for global feature importances, partial dependence plots, and local

explanations (see Figure 4.5).

7XGBoost explainer was originally developed for R (package and the corresponding blog post). The Python
community replicated this functionality for their module.

8https://github.com/interpretml/interpret/
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SHapley Additive exPlanations (SHAP). SHAP is a post-hoc explanation approach

for blackbox models [150]. It explains each prediction by assigning optimal credit to each

input feature, using Shapley values from cooperative game theory [206, 222]. I used the

SHAP Python package9 which provides local explanations for each data point. These are

then aggregated to also present global feature importances and partial dependence plots per

feature (see Figure 4.1). LightGBM10 served as the underlying blackbox model explained

by SHAP. It follows a highly optimized tree-based gradient boosting approach which makes

training the model extremely fast [114]. Additionally, the SHAP implementation offers a

separate, high-speed algorithm for tree ensemble methods like LightGBM.

4.3.3.3 Interactive Tools Conditions

Interactive interpretability tools present many of the same visual outputs that static

options do, but embed them in interactive features. These tools offer more fine-grained

exploration of the data and model, responsive UIs for comparing several datapoints and

features, additional metrics (e.g., fairness performance), etc. I picked the following two

tools over other options because they were the most similar in features, and they ensured

maximum consistency with the visuals-only conditions by supporting the use of the same

underlying models.

Explanation Dashboard (ED). I used Microsoft’s Explanation Dashboard11 with EBMs

for consistency with the other glassbox condition. The Explanation Dashboard includes

interactive features for four avenues of exploration: (1) model overview, i.e., performance

metrics and probability distributions for the data as a whole and for any user-defined data

cohorts of interest; (2) data analysis, i.e., data-centric statistics and plots (e.g., scatter,

density) based on user-selected filters for x and y axes; (3) feature importances, i.e., global

explanations and partial dependence plots, and local explanations and individual conditional

9https://github.com/slundberg/shap
10https://lightgbm.readthedocs.io/en/v3.3.2/
11https://github.com/microsoft/responsible-ai-toolbox/blob/main/docs/

explanation-dashboard-README.md
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Figure 4.3: The landing interface of Microsoft’s Explanation Dashboard with minor edits to
reduce whitespace. The dashboard includes several exploration sections. Here I show two of
them, for Feature Importances (A) and Counterfactuals (C). Each section has its own set of
interactive visuals and controls. Users can view aggregate or individual feature importances,
and clicking on a feature bar shows the partial dependence plot (the middle one here). There
are several sorting and binning options for displaying this data (B). The counterfactuals
section allows users to select datapoints, view their local explanations (not shown here), and
create what-if counterfactuals (D) which opens a new pane with various editing and sorting
options for the suggested counterfactuals.
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Figure 4.4: The landing interface of Google’s What-if Tool showing the Datapoint Editor.
Users can access different tabs related to the data, model performance, and features (A).
Each tab has its own interactive elements with similar density of features as the Datapoint
Editor. The scatter plot representing the data can be updated based on several options, such
as binning x and y axes and scattering data using different labels (B). Users can also compute
additional information about the datapoint, such as counterfactuals, local partial dependence
plots, comparison with the same datapoint’s prediction from a different model (C). Individual
input feature values are editable for interactive what-if testing, for the selected datapoint on
the scatter plot (D). In this case, I set up the tool to also provide SHAP attribution values as
local explanations (D). The inference section for the selected datapoint (E) allows users to
get real-time predictions for any edited input features from (D).
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Questions Independent
Variables

- Use of ML in their daily job (scale 0–7)
- Total time estimate for how long they have been practicing ML
(in months)

Prior Experi-
ence with ML

- Familiarity with interpretability tools in general (scale 0–7)
- Estimated hours spent using interpretability tools (categories
based on an upward-facing parabola, i.e., never, less than 10 hrs,
10–20hrs, 20–50hrs, 50–100hrs, and more than 100hrs; borrowed
from [111]

Prior Expe-
rience with
Interpretability
Tools

- Familiarity with model and interpretability option in the condition
(scale 0–7)
- Estimated hours spent using this model and interpretability option
(categories based on an upward-facing parabola, same as above)

Prior Experi-
ence with Task
Setup

Table 4.2: Questions included under the first survey component on setup familiarity, and
the corresponding independent variables.

expectation plots; and (4) counterfactuals, i.e., answers to what-if questions about individual

datapoints and perturbation-based analysis for how changes in input features would affect

the model’s prediction. Figure 4.3 presents a subset of these features.

What-If Tool (WIT). I used Google’s What-If Tool12 with the same underlying elements

as the post-hoc visuals-only condition: a LightGBM model and a SHAP explainer. The

tool is divided into three main sections: (1) a datapoint editor, for visualizing datapoints

using scatter plots with several options for binning the x and y axes, editing individual input

feature values to test changes in prediction, finding the nearest counterfactual, analyzing

local feature importances, etc.; (2) a performance and fairness tab for global metrics; and (3)

a features tab, for data distributions and descriptive statistics for each feature. Figure 4.4

presents the datapoint editor tab for WIT.

4.3.4 Components of the Survey

Tables 4.2– 4.5 provide an overview of the survey components in the order in which they

were presented to the participants, along with the corresponding dependent and independent

12https://pair-code.github.io/what-if-tool/
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Multiple Choice Questions Dependent
Variables

Global Feature Importance: If you were forced to remove a fea-
ture from this model, which of the following features would you
remove?
Partial Dependence for a Feature: Which of the following ranges
for Age values has the most likelihood of making a high income?
Predict the Outcome: Given the following input feature values
and importances, what do you think the model predicted for this
individual and why?

Time, Number of
Hints Used, Accu-
racy, Response Type

Explain Misclassification: The model misclassified this datapoint
with the given input feature values. Why do you think that hap-
pened?
What-if Question: A person with the following input features
makes <=50k income. A change to which of the following features
would cause the prediction to become 1 (i.e., >50k income)?

Table 4.3: Multiple choice questions included under the second survey component on the
data and model, and the corresponding dependent variables.

Questions

Dependent (in
gray) and

Independent
Variables

- Use of this dataset for a loan approval prediction tool for a bank
now, in 20222 (scale 0–7)
- Possibility of this model’s deployment in the wild (scale 0–7)
- Use of accuracy as a key performance indicator (scale 0–7)

Hypothetical Use
Rating

- Confidence in their answers (scale 0–7)
- Confidence in the setup (scale 0–7)

Task Confidence

- Presence of errors related to missing values (scale 0–7)
- Presence of errors related to redundant features in the dataset
(scale 0–7)

Error Recognition

Cognitive load using NASA-TLX questionnaire [1] Cognitive Effort
Usability of setup using the SUPR-Q scale [199] Usability Score

Table 4.4: Questions included under the third survey component on high-level task evalua-
tion, and the corresponding dependent and independent variables.
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Questions Independent
Variables

Multiple-answer questions with options representing established
and intended capabilities of interpretability solutions (e.g., “in-
dividual instance explanations,” “counterfactuals,” “regions of
error,” etc.); borrowed from [111]

Mental Model Accu-
racy

Extent to which they relied on the setup (scale 0–7) Setup Reliance
Read additional documentation about the dataset, model, or the
interpretability options included in the setup (binary)

Read Documenta-
tion

Wrote their own code in the Colab notebook (binary) Wrote Code

Table 4.5: Questions included under the fourth and fifth survey components on mental
models and setup engagement, and the corresponding independent variables.

variables. First, I provided a brief overview of task and setup, and obtained consent from

participation. This was followed by questions about demographics (e.g., age, self-reported

gender) and educational background (e.g., level of education, occupation, time in their

current job role, the extent to which ML is part of their job, and familiarity with ML

interpretability tools). Participants were next introduced to the data science task setup,

provided access to the Google Colab notebooks, and asked about their familiarity with the

model and interpretability options being used in their condition’s setup.

Next, in the main part of the survey, I asked them five multiple choice questions (MCQs)

about the data and model; and high-level evaluation questions about using the data and model

in real-world applications, and their confidence in the data being error-free and the outputs

from their setup. Since this was the end of the data science element of the task, the questions

immediately after it covered self-reports on cognitive load using the six-item NASA-TLX

questionnaire [1] and the usability of the setup using the eight-item SUPR-Q scale [199].

By now, participants had used the task setup, so I next asked an exploratory multiple-

answer question (same as Chapter III) to understand their mental model of the setup in

their condition. I also included an open-ended free response question asking participants to

reflect on how they answered the questions in the study and their experience with the overall

setup. The survey concluded with three questions to contextualize the extent of participants’
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engagement with the setup: a rating question about the extent to which they relied on the

setup; and two yes-no questions on whether they read any documentation included for the

various models and tools used in the study, and whether they wrote any code of their own.

I include additional relevant details on the main elements below.

4.3.4.1 Multiple Choice Questions

The main portion of the survey consisted of a set of five MCQs about the data and model

(Appendix F lists all MCQs along with their corresponding answer options and hints). These

questions were related to the common ways in which ML practitioners use interpretability

tools [85, 111] (Table 4.3). All MCQs had five choices based on the categories of the

nominal dependent variable, response type (accurate, plausible, or randomly inaccurate),

presented in a randomized order. The plausible choices represented bounded rationality.

They were generated based on common types of heuristics such as the anchoring heuristic

(wherein people make decisions based on the piece of information they notice first [43])

and the availability heuristic (wherein people make decisions based on incomplete infor-

mation, using whatever comes to mind immediately [232]). Naturally, the MCQ choices

I generated for these plausible answers were somewhat dependent on my own heuristics

about income data. Of these, I picked the heuristics-based choices that were also mentioned

most frequently in pilot studies with ML practitioners.

Therefore, the MCQs included choices that were: (1) accurate; (2) inaccurate; (3)

plausible and accurate, i.e., a response that is accurate and is also easier to reach based

on a heuristic that people commonly apply about the relationship between income and

demographics; (4) visually plausible but inaccurate, i.e., a response that is inaccurate but,

when looking at the visual explanation charts, easy to anchor to as the most obvious choice;

and (5) heuristically plausible but inaccurate, i.e., a response that is inaccurate but easy

to reach based on a heuristic that people commonly apply about the relationship between

income and demographics. Additionally, each question included an optional hint, which
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Figure 4.5: Visualizations output by interpretML’s implementation of GAMs, i.e., Explain-
able Boosting Machines. These ones are generated for the Adult Income dataset, same as
the study task. Top (left to right): Overall feature importances (global explanation); Feature
attributions for an individual datapoint (local explanation). Bottom: Partial dependence plot
for a continuous input feature, age (global explanation).

participants could access by clicking a “Hint” button. I recorded this button click to calculate

the total number of hints used by a participant.

For a concrete example of the answer choices, consider one of the MCQs: “Given the

following input feature values, what do you think the model predicted for this individual and

why?” For the interpretability conditions, this question included a visual of the local expla-

nation for the datapoint being considered, with the model’s prediction cropped out (e.g., Fig-

ure 4.5-top right). For the control condition, I only provided the visual in the hint since local

explanations are not featured in a normal ML pipeline. The answer options for this question

were: (1) accurate, “>50K income because most of the features have a positive influence and

it adds up to greater than negative influence;” (2) plausible and accurate, “>50K because the

values of input features for this person correspond to those that have positive influence on in-

come in the partial dependence plots;” (3) visually plausible but inaccurate, “<=50k because

the intercept has a significant negative influence;” (4) heuristically plausible but inaccurate,

“<=50k because the Marital-Status is ‘Never-married’;” and (5) inaccurate, “<=50K income

because the sum of all negative importances is greater than positive importances.”
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4.3.4.2 High-level Task Evaluation

This included hypothetical questions asking participants to rate: (1) the use of the dataset

in the wild (“Consider the case of a loan approval prediction tool for use by a bank now (in

2022). How would you rate the likelihood of this dataset being applicable for predicting

income in that setting?”); (2) the model’s readiness for deployment in the wild; and (3)

the use of accuracy as a key performance indicator. I also used self-reported ratings to

establish participants’ confidence in their answers and their data science setup. Recall that

the modified dataset included two errors, missing values and redundant features. I asked

about participants’ confidence that the dataset was error-free, specifically from these two

errors (rated individually), and any other errors that they might have noticed (open-text). All

rating questions were on an eight-point Likert scale to avoid neutral responses.

4.3.5 Dependent and Independent Variables

The dependent variables were calculated based on people’s answers for the five MCQs

about the data and model: (1) time, i.e., how long participants took to answer all five MCQs

on average; (2) cognitive effort, i.e., total effort applied in answering questions, measured

using the NASA-TLX questionnaire [1]; (3) hints, i.e., the number of hints used (out of a

total of five, one for each MCQ); (4) accuracy, i.e., average correctness of responses across

all five MCQs, where both accurate and plausible and accurate responses were considered

correct; and (5) response type, i.e., counts for whether the MCQ option selected was

accurate, plausible, or randomly inaccurate, across all MCQs. The independent variables

were calculated based on the remaining survey questions. Tables 4.2– 4.5 include a full list

of all variables of interest.

4.3.6 Analysis Methods

I used the pre-registered analysis methods for the dependent variables: one-way ANOVAs

followed by TukeyHSD post-hoc tests for continuous variables and Chi-square test of inde-
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pendence for the nominal variable. I also highlight descriptive statistics and results from

exploratory multiple linear regressions and Pearson’s correlations for the independent vari-

ables. Several of these independent variables were calculated based on responses to a set of

similar questions. I established internal consistency for these metrics using Cronbach’s alpha

and Pearson’s correlation values, and used averages depending on consistency outcomes.

Participants answered one open-ended question reflecting on how they accomplished the

study task. I coded these responses using inductive thematic analysis [46]: open coding

followed by axial coding, with themes generated via affinity diagramming the axial codes.

4.3.7 Participants and Data

I advertised the survey on social media (e.g., Reddit, Twitter), messaging platforms

(e.g., Discord, Slack), and via mailing lists. People could only participate if they were

over 18 years old and rated their ML experience as at least 2 on a scale of 0–7; 21 people

were excluded based on this criteria. After filtering out 7 responses with spam-like text

for the open-ended question, I was left with 119 total participants. These were split into

conditions as: 25 to control, 24 to GAMs, 25 to SHAP, 22 to Explanation Dashboard, and 23

to What-if Tool. Participants rated their ML experience as 4.5 on average (σ=1.7; scale 0–7)

and had practiced ML for 40.2 months on average (σ=22.65). The most commonly listed

job roles for them were data scientist, data analyst, ML researcher, and software developer.

Participants were compensated with a $25 Amazon gift card upon completion of the study.

The study protocol was approved by IRB.

4.4 Results

4.4.1 Hypothesis Testing

The results demonstrate a significant difference across conditions (control, visuals-only

from GAMs and SHAP, and interactive tools ED and WIT) for all dependent variables.
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Dependent Variable Control GAM SHAP

Explana-
tion

Dashboard
(ED)

What-if
Tool

(WIT)

Pairwise
Significance

Time (in minutes)
F(4,114) = 4.15,

p<0.01
partial η2=0.13

19.65 ±
35.68

3.90 ±
4.15

4.63 ±
5.74

3.25 ±
5.68

4.64 ±
4.66

Control > GAM*
Control > SHAP*
Control > ED*
Control > WIT*

Cognitive Effort (1-7)
F(4,114) = 14.62,

p<0.001
partial η2=0.34

4.16 ±
0.77

3.29 ±
0.96

3.49 ±
0.62

4.47 ±
0.86

4.72 ±
0.67

Control > GAM**
Control > SHAP*
ED > GAM***
ED > SHAP***
WIT > GAM***
WIT > SHAP***

Hints (0-5)
F(4,114) = 14.45,

p<0.001
partial η2=0.34

3.08 ±
1.12

1.42 ±
1.06

1.48 ±
1.66

3.18 ±
1.30

3.52 ±
1.24

Control > GAM***
Control > SHAP***
ED > GAM***
ED > SHAP***
WIT > GAM***
WIT > SHAP***

Accuracy (0-100)
F(4,114) = 3.92,

p<0.01
partial η2=0.12

59.20 ±
15.79

44.17 ±
19.54

42.40 ±
15.62

40.91 ±
22.66

41.74 ±
21.67

Control GAM*
Control > SHAP*
Control > ED**
Control > WIT*

Table 4.6: The results of my pre-registered analysis (one-way ANOVAs and TukeyHSD
post-hoc tests) for the continuous dependent variables. Each row represents a dependent
variable with numbers for the ANOVA results, means and standard deviations for each
condition, and the conditions with a significant pairwise difference based on the TukeyHSD
tests. Significance levels are indicated as: *=p<.05, **=p<.01, ***=p<.001. ANOVA results
include a partial η2 value for effect size; suggested norms: small = 0.01, medium = 0.06,
large = 0.14. All of the dependent variables show a large effect size.
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Figure 4.6: Results of my pre-registered Chi-square test for the nominal dependent variable,
response type. Left: Residuals from the test, indicating directionality and effect of each
response type-condition combination for the magnitude of the resulting chi-square statistic.
Right: contribution of each cell to the chi-square statistic calculated as a percentage.

Control GAMs SHAP Explanation
Dashboard (ED)

What-if Tool
(WIT) Total

Accurate 69 39 32 27 21 188
Plausible 49 69 69 67 75 329

Inaccurate 7 12 24 16 19 78
Total 125 120 125 110 115 595

Table 4.7: Contingency table with counts for response types—accurate, plausible, and
randomly inaccurate—for all five conditions.

Table 4.6 presents the means, standard deviations, one-way ANOVA and TukeyHSD results

for significance testing for the continuous dependent variables (time, cognitive effort, hints,

and accuracy). Further, a Chi-square test indicates that the nominal dependent variable—a

response type of accurate, plausible, or randomly inaccurate selected for the MCQs—is

significantly different by condition with a large effect size (χ2(8, N=119) = 51.33, p«0.001,

Cramer’s v=0.47). Figure 4.6 shows two plots: (1) residuals for the three response types

per condition, and (2) the relative contribution of each response type per condition to the

total Chi-square score (calculated as a percentage
residual2

χ2statistic
for each cell). Additionally,

Table 4.7 provides exact counts for each response type per condition in a contingency table.

As hypothesized, participants spend significantly less time and cognitive effort when the

setup provides visuals from GAMs and SHAP, i.e., the visuals-only conditions (H1-2a). They

also use significantly fewer hints when they have access to these visuals (H3a). This supports

my theory that the cognitive framework of bounded rationality via satisficing is applicable in

this ML and interpretability context. With satisficing, it comes as no surprise that participants
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Figure 4.7: Fine-grained breakdown of the type of responses selected under the plausible
response type: plausible and accurate, visually plausible but inaccurate, and heuristically
plausible but inaccurate. The percentages are calculated using the raw plausible response
numbers in Table 4.7.

select plausible response types when answering questions about the data (H4a). Table 4.7

presents the numbers for each high-level response type: accurate, plausible, or inaccurate.

As I noted in the setup details, a plausible response can also be accurate, leading to

good outcomes from bounded rationality and suggesting an optimizing cognitive mode.

Unfortunately, the breakdown of the plausible response type category in Figure 4.7 signifies

that a large percentage of the plausible responses selected are also inaccurate. This is

primarily because participants selected the answer option that was visually the most obvious

choice, and sometimes because they selected the one that was inaccurate but easy to reach

based on a common heuristic. Further supporting this, the accuracy numbers—calculated as

the percentage of accurate and plausible+accurate responses to MCQs—are also significantly

lower for the visuals-only conditions (H5a).

I had hypothesized that the interactive nature of some interpretability tools might promote

more deliberative thinking and fewer instances of satisficing, i.e., encourage optimizing

behavior instead (H1-5b). However, I do not find adequate support for this in the data. There

were no significant differences for time, accuracy or response type between the visuals-only

conditions and interactive interpretability tools (ED and WIT). All metrics continue to

indicate satisficing with significantly bad outcomes when compared to the control condition.

While I had hoped that interactivity would make these tools more engaging, I instead noted
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that participants spend significantly more cognitive effort in navigating these tools’ features

and need more hints to accomplish the task. The interactive tools are as challenging to

use as the control condition with no interpretability options (i.e., no pairwise differences

in cognitive effort and hints between the control condition and interactive tools). It is

noteworthy that the averages for the control condition for cognitive effort and number of

hints used are lower than the interactive tools.

Overall, I find evidence in support of all of the satisficing-related hypotheses for the

visuals-only conditions and none for the optimizing-related hypotheses corresponding to

the interactive tools conditions (Table 4.1). People satisfice—resulting in significantly low

accuracy—when using any interpretability option.

4.4.2 Perceptions of the Setup

Figure 4.8 presents descriptive statistics for the independent variables for which I

observed noteworthy differences (descriptive statistics for all independent variables are

included as Appendix G). These numbers reaffirm that, compared to the control condition,

visual explanations from interpretability tools lead to satisficing and interactivity does not

help. Participants in the control condition were more conservative with their ratings for

hypothetical use, and confidence in the task setup and their own answers. Further, these

control condition participants read documentation and wrote their own code far more than

those in the interpretability conditions. The statistics for the interactive tools were similar to

that of the visuals-only conditions, with two exceptions: participants using interactive tools

had lower mental model accuracy and usability scores. In fact, mental model accuracy and

usability were lowest with interactive tools.

Participants felt that the interactive tools were far more challenging to use. One reason

for this that came up frequently in answers to the open-ended question was that the these

tools include a plethora of information and features, both presented in a way that was

“difficult to understand”, “stressful”, and “burdensome”.
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Figure 4.8: Descriptive statistics for independent variables with noteworthy differences.

I thought the data science setup [Colab notebook] was fairly intuitive (training, test,
etc.) -> but the specific UI [interactive tool] to be extremely burdensome to navigate.
There are a ton of colors + words + toggles going on, such that it almost felt like too
much of a burden to actually derive the insights from the tool. (P103, What-if Tool)

The UI of the tool felt a bit buggy and was kinda annoying to use, required too many
clicks for one small change. (P3, Explanation Dashboard)

While some participants appreciated all the information that they could glean from

the interactive tools, it was often unclear how to interpret this information. Sometimes, it

was hard to connect the different types of information presented across different features.

Other times, the same information was presented in multiple ways without clarity on how to

interpret it. The cognitive demands of using the interactive tools led some participants to

not take advantage of their features and outputs, and instead use them in a limited way to

confirm their own assumptions and narratives.

The reason behind satisficing seemed different for the visuals-only conditions. Partic-

ipants reported higher usability scores for these and believed that they could understand

everything very quickly. This fast-paced understanding of the model outputs “cross-verified

their own understanding” and was in line with what “common sense would suggest.” It

seems that the intuitive type of information presented in visual explanations (e.g., global

feature importance plots, partial dependence plots) closed participants off to further explo-

ration of their own and they engaged in faster automatic processing under satisficing. They
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were also more confident in their understanding of the setup and their answers for the task,

despite not having read much documentation on the task setup or writing code in addition to

what was provided. This fast and limited information processing under satisficing might also

explain why prior work has found static interpretability tools (e.g., GAMs, SHAP, LIME) to

often be misused and over-trusted.

Surprisingly, the control condition seemed to be the best of both worlds: not too easy

that people could quickly apply visual heuristics, and not too difficult that they would be

frustrated by the cognitive effort needed and instead apply heuristics. The control condition

was a normal ML setup sans interpretability, so there were no immediate visuals-based

judgements to be made. It required some cognitive effort, but not as high as the interactive

tools. I had provided some links to modules that might help with understanding the model

outputs, but no actual code was included. The numbers from Figure 4.8-bottom row suggest

that, in having to read documentation and write or debug code, participants remained

engaged enough to carefully look at any outputs.

4.4.3 Exploratory Analyses

Now that I have established that people satisfice when using any interpretability options,

I consider the question: what kind of internal or external factors can affect satisficing? I test

two options: (1) cognitive factors (e.g., prior experience in ML), and (2) contextual factors

(e.g., self-reported confidence, usability, etc.). Significance numbers reported in this section

are only meant for generating concrete hypotheses for future work.

4.4.3.1 Relationship between cognitive factors and satisficing

Results from fitting multiple linear regression (MLR) models do not show any predictive

relationship between the asymmetric cognitive factors (i.e., prior experience with ML,

interpretability in general, and the specific task setup) and satisficing. That is, whether or

not someone has this kind of prior experience does not change their likelihood of satisficing.
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I also do not find evidence in support of a symmetrical relationship between mental model

accuracy and satisficing based on calculating Pearson’s correlation coefficients. That is,

whether or not someone has an accurate understanding (mental model) of the data science

setup (i.e., the model and interpretability option) they are using has no bearing on if they

satisfice while using the setup.

However, prior experience and mental model accuracy do prevent people from anchoring

to the visually plausible but inaccurate response type. We know that an outcome of satisficing

is that people select plausible (over accurate) response options to questions about the data and

model. These are further categorized as: (1) plausible and accurate, (2) visually plausible but

inaccurate, and (3) heuristically plausible but inaccurate responses. Results from fitting three

MLR models—one each for each of the three plausible response categories—show people

with higher values for some prior experience variables as significantly less likely to select

the visually plausible but inaccurate type of plausible answers (F(6,112)=2.99, p < 0.01,

Adj-R2 = 0.092).13 Note that the adjusted-R2 value here is quite low—prior experience only

explains a small amount of variance for visually plausible but inaccurate responses. I also

find a similar relationship between mental model accuracy and visually plausible but inaccu-

rate answers. People with higher mental model accuracy are also less likely to select visually

plausible but inaccurate answers when satisficing (Pearson’s r(117)=-0.27, p < 0.01).

Overall, cognitive factors do not prevent satisficing or support optimizing. But, prior

experience with the setup and higher mental model accuracy can both mitigate—to a small

degree—the immediate type of satisficing that results from a quick skim of the visuals output

by interpretability tools.

13Coefficients for significant predictive relationships between the visually plausible but inaccurate response
type and people’s estimates for number of hours spent using: (1) interpretability tools in general (b=-0.13,
t(112)=-3.03, p < 0.01); and (2) their condition’s setup (b=-0.17, t(112)=-2.47, p < 0.01).
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4.4.3.2 Relationship between contextual factors and satisficing

Results from fitting MLR models show that higher usability can lead to significantly

more satisficing. People who rate their task setup as more usable expend significantly

lower cognitive effort on the task and require fewer hints to complete it.14 These cases

represent satisficing since lower cognitive effort and the use of fewer hints are proxies for it.

Conversely, people who rate their setup as less usable expend more cognitive effort and use

more hints to complete the task. However, this is not necessarily a bad thing. As one see

with the control condition, higher cognitive effort and use of more hints can be present in

conjunction with higher accuracy. Additionally, when people with lower usability setups

do satisfice by selecting plausible response types, these are significantly more likely to be

plausible and accurate or heuristically plausible but inaccurate responses.15 Therefore, with

lower usability, we can perhaps avoid the visually plausible but inaccurate responses caused

by a very quick perusal of the information being presented. The numbers in Table 4.7 and

Figure 4.7 support this hypothesis.

For the symmetrical contextual factors, I find that higher accuracy significantly co-occurs

with: (1) people having lower confidence in their own answers, (2) people having lower

confidence in the study setup for their condition, (3) people thinking that the data and model

have errors, and (4) people thinking that the data and model cannot be used in hypothetical

real-world usage scenarios.16 Even when people satisfice and select plausible responses,

these factors co-occur with plausible and accurate response types rather than the plausible

14Significant predictive relationships between usability and two dependent variables: (1) cognitive effort
(F(4,112)=5.54, p < 0.001, Adj-R2 = 0.14; b=-0.36, t(112)=-4.13, p < 0.001), and (2) the number of hints
used ((F(4,112)=6.02, p << 0.001, Adj-R2 = 0.15); b=-0.58, t(112)=-4.03, p < 0.001).

15Significant predictive relationships between usability and two response types: (1) plausible and accurate re-
sponses ((F(1,115)=3.85, p << 0.05, Adj-R2 = 0.02); b=-0.17, t(115)=-1.96, p < 0.05); and (2) heuristically
plausible but inaccurate ((F(1,115)=7.79, p << 0.01, Adj-R2 = 0.06); b=-0.19, t(115)=-2.79, p < 0.001).

16Significant correlations between accuracy and people’s: (1) confidence in their answers to the study
questions (Pearson’s r(117)=-0.25, p < 0.01); (2) confidence in the study setup for their condition (r(117)=-
0.28, p < 0.01); (3) error recognition ratings (r(117)=0.30, p < 0.01); and (4) hypothetical use ratings
(r(117)=-0.28, p < 0.001).
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but inaccurate types.17 That is, people with these attributes seem to either select accurate

responses (maximizing) or plausible and accurate ones (optimizing).

Overall, I find that contextual factors do affect satisficing and optimizing behaviors.

Higher usability scores significantly predict satisficing. Lower usability scores are predictive

of either a different kind of satisficing (heuristically plausible but inaccurate response

selection) or, interestingly, optimizing (plausible and accurate response selection). Similarly,

lower confidence, higher skepticism about errors, and lower hypothetical use ratings—all

seemingly negative user experience design outcomes—are in fact related to selection of

accurate or plausible and accurate responses.

4.4.4 Summary of Results

Results from a controlled experiment show that people satisfice on a data science task

when using visual explanations from interpretability tools. Interactivity—a strategy com-

monly employed to promote deliberation and engagement—does not help in this setting.

Rather, interactive features make these tools cognitively burdensome to use. Exploratory

analyses indicate that cognitive factors (e.g., prior experience in ML and interpretability)

have no bearing on the likelihood of satisficing. Instead, seemingly negative contextual

factors (e.g., lower confidence and usability, higher skepticism) co-occur with optimizing

behavior (i.e., selection of accurate or plausible and accurate responses during the task).

4.5 Discussion

The core tenet of interpretability is “to explain or to present in understandable terms

to a human.” [54, p2]. Interpretability approaches accomplish the “to explain” aspect of

this—it is only due to these approaches that we can shed light on the reasoning behind model

predictions. However, user studies with interpretability tools have all found them lacking

17Significant correlations between plausible and accurate response type and people’s: (1) confidence in
their own answers (r(117)=-0.30, p < 0.001); (2) error recognition ratings (r(117)=0.21, p < 0.05); and (3)
hypothetical use ratings (r(117)=-0.27, p < 0.01).
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Figure 4.9: Updated overview of the study conditions using my proposed framework for
cognition in Machine Learning settings. The unexpected results are highlighted in color.

on the “in understandable terms to a human” front [18, 50, 111, 183]. There has either

been an over-reliance on outputs from interpretability tools or information overload based

on their transparency, both findings also corroborated via different conditions in my study

presented here. Prior work has touted explainability as the human-centered counterpart of

interpretability. Explainability incorporates insights from the social sciences and underscores

the need for explanations to be contrastive, modular, parsimonious, etc.—all characteristics

of how people explain things to each other [16, 158, 161].

Regardless of a model-centric or human-centric approach for helping people understand

ML, the focus of these approaches is to design a human-understandable explanation. What

is not considered are fundamentals of how people understand. Bounded rationality is one

such fundamental, a cognitive framework that describes human nature and sensemaking

in a way that has little to do with the information that is presented to a human [209]. It

asserts—and this study has confirmed it for the ML setting—that people do not process or

evaluate information in a perfectly rational way. It does not examine how people satisfice,

only that they do, and that they do it irrespective of the setting. How much they satisfice

might vary depending on the criticality of the task or the type of information available,
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but people always satisfice. Presenting new information about the model, presenting it

in a way that is easier for people to parse, all of these facets of designing interpretability

and explainability tools: they assume perfect rationality. They assume people’s desire to

obtain information. And yes, people do want information, but only insofar as they can

use it to attain a “good enough” understanding of the model. Failing to recognize this

is why interpretability is currently broken. These approaches do enable explanation and

interpretation, but they do not ensure cognition.

I put forward the following question for the research community: what would it mean

to design interpretability and explainability knowing what we now know about bounded

rationality? Put another way, how do we present information to people knowing that they

will satisfice and never pay attention to all of it?

4.5.1 Implications for Design

Interactivity does more harm than good in this setting. In theory, interactivity should

help improve engagement with a system [226]. Keeping people engaged should, in turn, have

a higher likelihood of preventing heuristics-based, automated information processing [225,

173]. None of this is true for how interactivity is incorporated in existing interpretability

tools [57]. Interactive features complicate the tool to the extent that people do not want to

expend the high cognitive effort necessary to make sense of the features and the information

they convey. Participants’ responses to their experience with these tools suggest a case of the

law of diminishing returns [207]: the additional information and reactive interface elements

do not add value corresponding to the effort needed to adequately understand them. Indeed,

I believe the interactive tools conditions, as currently designed, end up falling under the

surviving cognitive mode rather than my hypothesized optimizing one (Figure 4.9).

Experience-based cognitive factors do not help. Whether or not someone has prior

experience in ML, interpretability in general or the specific interpretability setup of their

condition, has no bearing on their likelihood of satisficing. Mental model accuracy also has
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no impact. Sure, experience might prevent the immediate satisficing that is a result of a

quick perusal of information, but it does not guarantee the absence of other heuristics (e.g.,

“I’ve looked at similar datasets and models in the past, so I am able to guess which features

may be correlated with each other and how they may be correlated with the response.” (P34,

GAMs); “I used most of my common sense to understand the questions. Income is going to

increase with age, occupation and hours of work per week. Even without looking at feature

importance, I could make guesses of the prediction and answering the question.” (P108,

WIT)). The application of heuristics to answer questions seems related to cognitive effort.

People either apply heuristics because the cognitive effort needed to understand the visuals

is so low that they make quick judgements based on the information, or so high that they are

frustrated and do not want to use the tool for long.

Optimally effortful designs can help. The quadrant that remains unexplored with

current interpretability solutions corresponds to low cognitive effort–high time which, I

believe, would result in the optimizing cognitive mode. My hypothesis here is grounded

in the results for the control condition (Figure 4.9). Control was intended to be the most

challenging condition; to avoid making it too cumbersome for a study, I included links to

some helpful modules in the setup. It seems that this struck that balance between too helpful

(satisficing) or too frustrating (surviving), and increased people’s likelihood of reading

documentation, writing code, and staying engaged enough to veer towards optimizing. The

cognitive effort was not insignificant (4.16 on average on a scale of 1–7)—there is potential

for interpretability tools to improve upon this control setup.

Seemingly negative contextual factors are surprisingly helpful. Features that are

normally considered negative in the context of user experience design are correlated with

higher accuracy in this context. Lower usability and confidence, and higher skepticism,

were all related to accurate understanding of the data and model. Research and application

areas that require optimal information processing have often relied on similar, seemingly

negative, strategies to ensure user engagement. For example, the visualization community
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argues for highlighting the uncertainty of the underlying data in visuals [71, 93, 194, 245],

or using surprise (e.g., Bayesian surprise that models information entropy [17, 22, 100]) and

emotion [42, 121] to catch people’s attention. Similarly, ubiquitous computing researchers

and designers now emphasize seamfulness in their designs, adding uncertainty, ambiguity,

and opportunities for user-appropriation instead of only prioritizing seamlessness, simplicity,

consistency in features and interactions, and ease of use [41, 98, 239].

Balancing efficiency and ease-of-use with emphasizing negative aspects is known to be

an effective strategy for sensemaking in both human-human and human-machine contexts.

Indeed, organizations operating in critical domains employ red teaming and adversarial

design to simulate failure situations for testing the limits of their human and machine

operations [248, 249]. This class of solutions is virtually unexplored in the ML setting. I

hope future work will incorporate these ideas towards designing more human (cognition)-

centered interpretability and explainability.

4.6 Limitations

Bounded rationality is an abstract construct. To study it, I made assumptions about

proxies for bounded rationality and how I could operationalize it for the ML context.

Although these assumptions were grounded in theory, I cannot be sure that these reflect

bounded rationality in practice, especially for domains like ML and interpretability in which

it has not been studied before. Specifically, recording time in a way that also represented

the time spent on data exploration before answering each question was particularly hard.

Additionally, the intricacies of bounded rationality are highly dependent on the varied

heuristics that people develop (and update) over time and on the setting. I had to enforce

consistency on an otherwise personalized construct; it is unclear what level of impact this

had on our results. Similarly, it could be that the high values for cognitive effort and hints had

more to do with how I designed and explained the study and setup, rather than the specific

outputs and interactivity of the interpretability tools. Although I believe this to not be the
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case given the positive comments about the ease of the Colab + Qualtrics combination from

the participants, I cannot be sure if there were any confounds introduced due to the setup.

Not only is human cognition via bounded rationality highly personalized, so is data

science. ML practitioners have a plethora of models and tools available to them and they

use these in unique ways. Since it was infeasible to use people’s varied local setups for a

controlled experiment, I had to find a balance between consistency and rigidity for the study

(i.e., balance ecological and internal validity). Indeed, the generalizability of these results

is dependent on how participants used my setup in comparison to their own ML pipelines.

Perhaps future work can run similar studies within organizations that have uniform setups

and benchmarks for their ML practitioners. The choice of task and questions also likely

affected our results. While most ML practitioners have at some point conducted similar

exploratory data analysis to what I asked for in the study, the majority of the results were

calculated based on asking them very specific MCQs during and after their exploration.

Although the study design decisions I made were necessary for a controlled experiment, the

results could potentially change based on a different task, setup, or set of questions asked

during the study. An easier task and setup might not require the same level of cognitive

effort to begin with. This might in turn encourage people to spend more time interacting

with the ML model and interpretability tool, as I hoped with the optimizing quadrant of my

bounded rationality framework. Adding monetary incentives based on performance might

improve performance as well, although I believe these need to be quite significant if the

participants involved are data scientists with full-time jobs. Recent work does suggest that

these variations can affect the metrics being studied here. For example, with a different

task (solving a maze), changing monetary compensation based on performance, and varying

explanation difficulty, Vasconcelos et al. [236] find there to be less over-reliance on AI

outputs and explanations. However, they similarly note the need for something—adequate

cognitive forcing functions, monetary rewards or other incentives, or task enjoyability—to

ensure appropriate use of explanations.
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As researchers conduct more studies on interpretability and explainability using con-

trolled experimental setups, consistency in the metrics used to evaluate these approaches is

critical. I relied on one set of metrics and validated scales to do so. More recently, researchers

have also proposed scales specific to human-AI interaction and explanations [84, 88, 89, 260].

An interesting avenue of future work would be to compare and contrast interpretability

tools using different scales. It would help us understand the kind of signals we can capture

about people’s use of interpretability and explainability tools in making decisions about

their AI and ML decision-support counterparts. Moreover, these results are specific to a

particular stakeholder in one ML setting. The role of bounded rationality in human-machine

interaction more generally is likely quite varied.

4.7 Conclusion

Interpretability and explainability are purported to be solutions for helping people

understand ML models and their predictions. In this chapter, I presented results from

a pre-registered controlled experiment with ML practitioners (N = 119) which provide

significant empirical evidence that interpretability tools lead people to satisfice when trying

to understand ML outputs. Compared to a control condition sans interpretability, people

who rely on visual explanations from interpretability tools spend 5x less time on the task,

resulting in a 17% lower accuracy in answering questions about the data and model. I

had hypothesized that interactivity might prevent satisficing but did not find this to be

true. Rather, interactivity increases cognitive burden to the extent that people satisfice—

seemingly out of frustration—instead. I argue for a paradigmatic shift in how interpretability

solutions are currently designed, with the knowledge that people never pay attention to

all the information available to them. Overall, this work investigates the role of human

cognition and the bounded nature of human rationality in how a key stakeholder uses

interpretability tools. The evidence from the experiment validates the significant role of

cognitive frameworks in understanding the use of interpretability tools.
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CHAPTER V

Sensible AI: Re-Imagining Interpretability and

Explainability using Sensemaking Theory

With ML-based systems being deployed in the wild, it’s imperative that all stakeholders

of these systems have some understanding of how the underlying ML model works. From

the experts who develop algorithms to practitioners who design and deploy ML-based

systems, and end-users who ultimately interact with these systems—stakeholders require

varying levels of understanding of ML to ensure that these systems are used responsibly.

Approaches like interpretability and explainability have been proposed as a way to bridge

the gap between ML models and human understanding [256, 150, 39]. Tools that implement

these approaches have also been made available for public use. In light of this, recent work

in HCI has evaluated the efficacy of these tools in helping people understand ML models.

These findings suggest that ML practitioners [111] and end-users [18, 120] are not always

able to make accurate judgments about the model, even with the help of explanations. In

fact, having access to these tools often leads to over-trust in the ML models. Ultimately,

noting that interpretability and explainability are meant for the stakeholders, recent work

has proposed design guidelines for explanations based on research in the social sciences

about how people explain things to each other [163? ]. Taking a human-centered or a

model-centered approach, this prior work seeks to answer: what are the characteristics of

an explanation that can help people understand ML models?
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Consider a real-world setting. Imagine you are a doctor in a healthcare organization that

has decided to use a ML-based decision-support software to help with medical diagnosis.

The system takes as input information about patients’ symptoms, demographics, family

history, etc., and returns a predicted diagnosis. Naturally, you want to be able to overview

why the software predicted a certain diagnosis before you suggest treatment based on its

prediction. Further, you want to be able to explain to the patient why you (did not) trust and

follow the predicted diagnosis. To aid with this, the software provider gives you access to an

explanation system (e.g., LIME [190], SHAP [150]) which shows: (1) a local explanation

(e.g., a bar chart) of the input features that were most important for the diagnosis made for a

specific patient, (2) a global explanation for the features that are usually important to the

model when making a prediction, and (3) an overview of each feature’s relationship with

the output classes. The explanation system also includes interactive elements so you can ask

“what if” questions based on different combinations of input features.

Is this enough to ensure that the ML-based decision-support software can be reliably

used by the doctor? I claim that the answer to this question is no. This chapter makes the

argument that current interpretability and explainability solutions will always fall short of

the task of helping people understand ML models due to their focus on designing better

explanations—in other words, improving an artifact. For example, while the explanation

might communicate the symptoms that were important to the model’s prediction (i.e., a local

explanation), it does not tell the doctor to be cautious that the patient’s other symptoms are

fluctuating, that the patient belongs to a sub-group for which the model has limited training

data, or that the nurses have noticed other relevant symptoms in the visiting family. From

the patient’s perspective, the explanation does not convey why, for example, their own fear

of having a particular disease (after an online symptom search or from rare family history)

is unwarranted in this instance. These factors, that have little to do with the particular

explanation or artifact, can alter the stakeholders’ decision-making in significant ways. Here,

I propose a specific theoretical framework to shift from improving the artifact (e.g., an
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explanation or explanation system) to understanding how humans make sense of complex,

and sometimes conflicting, information. Recent work supports this shift from what an

explanation should look like to who it is intended for. Properties of the who such as, prior

experience with AI and ML [61], attitude towards AI (e.g., algorithmic aversion [35, 51]),

the socio-organizational context [60], have been observed as being critical to understanding

AI and ML outputs. I extend this work by providing a framework for how to incorporate

human-centered cognitive principles to interpretability and explainability.

I present Weick’s sensemaking as a framework for envisioning the needs of people in the

human-machine context. Weick describes sensemaking as, quite literally, “the making of

sense,” or “a developing set of ideas with explanatory possibilities” [247]. Although Weick’s

definition is similar to that of prior work in HCI and information retrieval, the two deviate in

their goals; the latter defines sensemaking for the purpose of finding representations that

enable information foraging and question-answering [179, 197]. Weick’s sensemaking is

more procedural: “placement of items into frameworks, comprehending, redressing surprise,

constructing meaning, interacting in pursuit of mutual understanding, and patterning” [247,

p6]. These processes are influenced by one’s identity, environment, social, and organizational

context—Weick expands these into the seven properties of sensemaking (Figure 5.1-Right).

For example, for the doctor trying to diagnose a patient with the help of an ML-based system

(with explanations), their understanding of the predicted diagnosis can be influenced by

questions such as, have they recently diagnosed another patient with similar symptoms; is

the patient’s care team in agreement on a diagnosis; is the predicted diagnosis plausible;

and, which symptoms are more visible and does the explanation present these as important

to the prediction. The seven properties of sensemaking are a framework for identifying and

understanding these contextual factors. I also discuss how this sensemaking perspective

enables a new path forward in designing interpretability and explainability tools, grounded

in prior work on how organizations have handled human sensemaking.
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Figure 5.1: Left: DARPA’s conceptualization of Explainable AI, adapted from [72]. Right:
Weick’s sensemaking properties (1–7) categorized using the high-level Enactment-Selection-
Retention organizational model, adapted from [103]. Enactment includes properties about
perceiving and acting on environmental changes; Selection, properties related to interpreting
what the changes mean; and Retention, properties that describe storing and using prior
experiences [122]. My proposed Sensible AI framework extends the existing definition of
interpretability and explainability to include Weick’s sensemaking properties.

5.1 Sensemaking

Sensemaking describes a framework for the factors that influence human understanding:

“the sensemaking perspective is a frame of mind about frames of mind” [247, pxii]. It is

most prominent in discrepant or surprising events. We try to put stimuli into frameworks

particularly when predictions or expectations break down. That is, when people come across

new or unexpected information, they like to add structure to this unknown. The process by

which they do this, why they do it, and how it affects them and their understanding of the

world are all central to sensemaking.

Sensemaking subsumes interpretability1. They share the same goals: both seek to

understand an output (an outcome or experience, or an ML model) before using it to make

decisions. If a ML-based system could explain its predictions, we can verify whether

the reasoning is sound based on some auxiliary criteria (e.g., safety, nondiscrimination,

etc.), and determine whether the system meets other desiderata such as fairness, reliability,

causality, and trust [54, 142]. Sensemaking includes all of this and more. In describing

how people understand something, sensemaking not only considers the information being

1As in previous chapters, I use the term “interpretability” to represent both interpretability and explain-
ability approaches. I follow similar terminology choices with ML- (rather than AI-) based systems since
interpretability is attributed to ML models.
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Table 5.1: Weick’s basic descriptions of the properties of sensemaking for the human-human
context [247, pp.61-62], and my proposed claims from translating these properties to the
human-machine context.

presented to the person doing the meaning-making, but also additional contextual nuances

that affect whether and how this information is internalized. This includes factors such as,

the enacted environment, the individual’s identity, their social and organizational networks,

prior experiences with similar information, etc.

In the subsections that follow, I describe the seven properties of sensemaking in the

human-human context and translate them for the human-machine context. Table 5.1 presents

an overview of these properties with Weick’s description for the human-human context and

my proposed claims from translating these for the human-machine context. To concretize

how these properties might affect stakeholders of ML-based systems, I present an example

user vignette for each property. Prior work has proposed and applied similar methodology

when translating theory [159, 6]. While the examples are based on popular press articles
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and research papers about ML-based systems, they are not intended as being representative

of these cases. I use them to highlight a sensemaking property, but do not claim that the

property has a causal relationship with the example, i.e., there could be other reasons for

why the ML-based systems functioned the way that they are described in these articles.

5.1.1 Grounded in Identity Construction

Identity is critical for AI/ML sensemaking because people will only understand aspects

of these systems that are congruent with their existing beliefs or those which update their

beliefs in ways that shed a positive light on them.

5.1.1.1 Identity Construction in the Human-Human Context

Sensemaking begins with the sensemaker. In this way, sensemaking is innately human-

centered: “how can I know what I think until I see what I say?” [247, p.18]. Sensemaking

is grounded in the individual’s need to have a clear sense of identity. People make sense of

something to either support their existing beliefs or update them in situations when applying

their beliefs leads to a breakdown in their understanding. There are five things about

identity construction that are relevant for sensemaking, according to Weick [247, pp.23-24]:

(1) controlled, intentional sensemaking is triggered by a failure to confirm one’s self; (2)

sensemaking is grounded in the desire to maintain a consistent, positive self-conception; (3)

people learn about their identities by projecting them into an environment—which includes

their social, organizational, and cultural contexts—and observing the consequences; (4)

sensemaking by way of identity construction is a mix of proaction and reaction; and (5)

despite the importance of the environment, sensemaking is self-referential in that the self is

what ultimately needs interpreting—what a given situation means is defined by the identity

that an individual relies on while dealing with it.

The relationship between identity and sensemaking is not limited to the individual sense-

maker. The influence of social and environmental context becomes apparent as we consider
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how identity is constructed. Weick describes this influence using three definitions of identity

from the social sciences. First, Mead’s claim that the mind and self are developed based

on the communicative processes among people (i.e., social behaviorism). Each individual

is comprised of “a parliament of selves” which reflect the individual’s various social con-

texts [157]. Second, Knorr-Cetina’s inclusion of social contexts based on the larger tapestry

of social, organizational, and cultural norms, i.e., the macro-social [119]. Finally, Erez and

Earley’s three self-derived needs that shape identity, which include intrapersonal and interper-

sonal dynamics. These are: “(1) the need for self-enhancement, as reflected in seeking and

maintaining a positive cognitive and affective state about the self; (2) the self-efficacy motive,

which is the desire to perceive oneself and competent and efficacious; and (3) the need for self

consistency, which is the desire to sense and experience coherence and continuity” [62, p.28].

What ultimately makes sensemaking challenging with respect to identity is that the

more identities that an individual has, the more ways in which they can assign meaning

to something. Given the fluidity of identity construction, it is more commonly the case

that people have to grapple with several, sometimes contradicting, ways of understanding.

Sometimes, this flexibility and adaptability in one’s identity can lead to better outcomes, for

example, when a manager is brainstorming solutions for a personnel problem. However, in

most cases, dealing with this identity-based equivocality can lead to confusion, cognitive

burden, and, in turn, lead people towards heuristics-based understanding [188].

5.1.1.2 Identity Construction in the Human-Machine Context

Consider Platform X, a popular social media site which uses a ML model for content

moderation, with two stakeholders in mind. First, Sharon, a 42 year old conservative in

the U.S. who identifies as a Republican, and is against vaccination for COVID-19. Her

recent posts include graphic descriptions and images of, what she claims, are the potential

side-effects of getting vaccinated. Several of these posts have been flagged for removal

by Platform X’s content moderation ML model. Second, Avery, a 37 year old doctor
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who believes it is their responsibility to share unfiltered information about the COVID-19

pandemic, including the efficacy of the vaccines. Several of their posts highlight the positives

of getting vaccinated, and some of them present the rare potential side-effects that have been

noted by medical professionals.

It is not uncommon for platforms to offer minimal explanation(s) for post removal.

Sharon and Avery might simply be told that their post violated Platform X’s content policy.

With interpretability tools, we can support richer explanations. Based on the local feature

importances output by an interpretability tool, Sharon is told that her post was removed due to

its content type, the number of her previously flagged posts, her predicted political affiliation

based on her posting history, and the topic being COVID-19. She might immediately

latch on to the predicted political affiliation as the explanation, and not concern herself with

understanding the removal any further (i.e., sensemaking is not triggered because her identity

remains intact). For Avery, who simply wants to share all relevant information in line with

their identity as a doctor, the post removal might attack their desire to maintain a positive

self-conception, i.e., their needs for self-enhancement, self-efficacy, and self-consistency.

When provided a more detailed explanation (let’s assume it’s the same one as Sharon’s), they

might assume that the content type being graphic is the main reason. This would support

their positive self-conception, but effectively not require them to understand the model’s

reasoning any further.

Interpretability tools are designed to present information in a context-free, unbiased way.

People, on the other hand, rarely internalize information in this static way. Every new piece

of information has the potential to connect with or build upon different aspects of a person’s

identity. Weick argues that whether or how people internalize the contents of an explanation

is dependent on their identity as an individual and as a part of their varying social contexts.

Claim: Given multiple explanations, people will internalize the one(s) that support their

identity in positive ways.
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5.1.2 Social

Social context is critical for AI/ML sensemaking because it represents the audience-

oriented external factors that shape people’s understanding of the outputs of these systems.

5.1.2.1 Social Elements of Sensemaking in the Human-Human Context

Sensemaking describes human cognition. This might give it the appearance of being

about the individual, but it is not. Weick notes the work on socially shared cognition

(e.g., [189, 135]) which shows that human cognition and social functioning are essential to

each other. Specifically, an individual’s conduct is dependent on their audience, whether this

is an imagined, implied, or a physically present one [7, 32]. Regarding the lack of a need

for a physically present audience, recall Weick’s reference to Mead’s work on the individual

being “a parliament of selves” [157] (see Section 5.1.1 for details on socially-grounded

identity construction).

While social sensemaking entails an audience—imagined, implied, or physically present—

it does not require there to be a shared understanding between the individual and their

audience(s) or even among the audience(s). Indeed, the social aspects of human cog-

nition can be described as “socially shared cognition [189, 134], sociocognition [135];

situated cognition; shared reality [64]; naturalistic social cognition [96, 97]; group cog-

nition; contextualized cognition; social cognition [95]; shared mental models [45]; team

mental models [118]; distributed cognition [94]; the social science of cognition [82]; and

collective identity [31]” [231, p3] (see [231] for a comprehensive review of these terms).

Given this diversity in the form that social elements can take, Weick proposes that social

sensemaking be equated with alignment instead of shared meaning since “alignment is no

less social than is sharing [meaning], but it does suggest a more varied set of inputs and

practices in sensemaking than does sharing” [247, p43].

A focus on social aspects of sensemaking naturally implies that modes of communi-

cation (e.g., speech, discourse) and tools that support these also get attention, since these
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represent the ways in which social contact is mediated. Weick describes their importance

on three levels, which exist beyond the individual: (1) inter-subjective, which represents

conversations with others that can lead to alignment; (2) generic subjective, which represents

socially-established norms (e.g., within organizations) when alignment has been achieved;

and (3) extra-subjective, which represents culturally-established norms that do not necessar-

ily require communication anymore. As we go from inter- to extra-subjective, the role of

the implied or invisible audience becomes increasingly prominent. This, in turn, shapes the

modes and tools of communication necessary for sensemaking.

5.1.2.2 Social Elements of Sensemaking in the Human-Machine Context

As noted above, social elements of sensemaking are quite varied. Let’s consider the

macrosocial, i.e., generic- and extra-subjective outcomes. Most ML-based systems are

grounded in specific datasets and practices of a particular organization or culture. When

extended to a social context that is different, there is a high likelihood that these systems

might break down, even if the model itself is generalizable.

Consider the model developed for predicting diabetic retinopathy (DR) based on health-

care data (predominantly eye fundus photos) collected in the US [20]. US healthcare system

is consistent across organizations—low variability in input features makes it easy to develop

and consistently use the model to screen for DR. When the same model was applied to a

cultural context where the healthcare system is more varied—in Thailand, where healthcare

is dependent on individual providers and patient needs in different regions—it failed in

unanticipated ways.

First, there is the issue with the data itself. Several countries in Southeast Asia, including

Thailand, do not have dedicated rooms for capturing fundus photos, making the photos

inconsistent in opacity and leading to potentially inaccurate predictions. Second, there are

established practices around the results of a DR screening test to consider. While it is fairly

common to receive results immediately in healthcare systems like the US, it is less common
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in countries with fewer technicians, doctors, and specialists. In Thailand, one might not

expect to see the results for several weeks. As a result, a patient who is anticipating their

DR result 4-5 weeks later might not have budgeted time to travel to a bigger hospital farther

away, based on a referral on the same day as the DR screening visit.

While interpretability tools may offer an explanation for a prediction, these explanations

are limited to the model and the training dataset. Weick’s perspective suggests that these

might not be enough to understand the prediction, due to the variability in people’s social

contexts which are also at play when using predictions in real-world settings.

Claim: Differences in micro- and macro-social contexts affect the effectiveness

of explanations.

5.1.3 Retrospective

Retrospection or reflective thinking is critical for AI/ML sensemaking because it en-

gages people in deliberately thinking about diverse interpretations of outputs when trying

to understand these systems, instead of following the more automated, heuristics-based

reasoning pathways.

5.1.3.1 Retrospective Sensemaking in the Human-Human Context

Sensemaking is, by default, retrospective because the object of sensemaking is a lived

experience or outcome. Weick describes the retrospective nature of sensemaking as the

most important, but perhaps the least noticeable, property. The reason it so frequently

goes unnoticed is because of how embedded retrospective thinking is in the sensemaking

process. Retrospective sensemaking is derived from the work of Schutz, who believes

that meaning is “merely an operation of intentionality, which...only becomes visible to the

reflective glance” [202]. He claims that experiences are only meaningful, i.e., considered

for sensemaking, when they are “lived experiences,” the key word being lived [201].

While experiences, events, or situations being considered for sensemaking are discrete
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segments of time, they are best processed retrospectively, separate from their occurrence.

This reflective process is seamless, to the point where we do not even notice it. Time not

only “cover[s] appreciable intervals—a minute, a day, a year” but also the less obvious

intervals such as a fraction of a second. These are “so much with us that we almost fail to

notice [them] consciously...[for example] as I begin the latter portion of a long word, my

utterance of the first part is already in the past” [76, p44].

Having established lived experiences as the objects of sensemaking, let us consider the

process by which meaning is imparted to these experiences. The reflective process starts

with an individual’s present circumstances, and those shape the past experiences selected for

sensemaking. Reflection happens in the form of a cone of light that starts with the present

and spreads backwards. In this way, the cues of the past lived experience that are paid

attention to for sensemaking depend on how the present is shaped.

The challenge lies in which present to consider. People typically have several things

on their mind at the same time, be it multiple projects at work or personal goals. As a

result, they have a multitude of lenses that they could apply for the reflective sensemaking

process—the object of their sensemaking thus becomes equivocal. When dealing with

equivocality, people are already overwhelmed with information and providing more details

is often not helpful. “Instead, they need values, priorities, and clarity about preferences to

help them be clear about which projects matter” [247, pp27-28]. In looking for clarity on

which meaning to select, people are prone to a hindsight bias [221]. They select the meaning

with the most plausible story of causality for the outcome that they are trying to explain (I

also discuss this in Section 5.1.7 which describes another property of sensemaking: being

driven by plausibility over accuracy).

5.1.3.2 Retrospective Sensemaking in the Human-Machine Context

In the situation where someone is trying to understand a ML model or a specific

prediction, the model or the prediction are the “lived experiences.” Interpretability tools are
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Figure 5.2: Saliency maps for chest radiographs, adapted from [48].

intended to aid with this task. For example, consider a radiologist who is tasked with reading

chest radiographs to determine if a patient has COVID-19. Their hospital has purchased an

ML-based image classification software to help with this task. The software also provides

saliency maps (an interpretability approach) to help the radiologist determine if the ML

model’s prediction for the MRI scan makes sense.

By immediately providing an explanation, the interpretability tool effectively disengages

the retrospective process that helps with sensemaking. Figure 5.2 shows example explana-

tions provided to the radiologist. As described in the accompanying research paper [48],

these explanations show that the ML model sometimes relies on laterality markers to make

the prediction. For example, in Figure 5.2, the saliency maps highlight not only the relevant

regions in the lungs as being predictive, but also some areas (see pointers) that differ based

on how the radiograph was taken. These, coincidentally, are also predictive of COVID-19

positive vs. negative results, leading to a spurious correlation.

Ideally, the radiologist evaluating the saliency map would be able to reach the same

conclusion regarding these spurious correlations. However, the retrospective property would

suggest that by providing this explanation without asking the radiologist to first think

about what the explanation could be, the interpretability tool disengages their retrospective

sensemaking process. This makes it easier for the radiologist to craft a plausible narrative

that agrees with the model’s prediction instead of analyzing the radiograph in detail and

accurately understanding the model.

Weick cautions against immediately providing additional information in sensemaking

situations. When trying to understand something, people engage in a reflective process,
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using their present to understand the outcome at hand. This reflective process helps them

generate equivocal meanings (i.e., diverse interpretations). When they immediately have the

explanation, there is no cognitive need for the radiologist to understand the intricacies of the

model, which increases the likelihood of them missing the issues with the model. Prior work

on stakeholders’ use of interpretability tool corroborates this perspective: people expect far

more from interpretability tools than their actual capabilities and, in doing so, often end up

over-trusting and misusing them [18, 111].

Claim: Providing explanations before people can reflect on the model and its predictions

negatively affects sensemaking.

5.1.4 Enactive of Sensible Environments

Enactment is critical for AI/ML sensemaking because it represents how (much) people

understand these systems via an iterative process—it frames the parts of these systems that

people understand and build on, over time. Enactment is the sense in which people create

the environment they are trying to understand.

5.1.4.1 Enactment in the Human-Human Context

When we are tasked with making sense of something (an outcome, event, or situation),

it might appear to belong to an external environment that we must observe and understand.

Weick argues that this is not the case, that sensemaking works such that “people often

produce part of the environment they face” [247, p30]. It is not just the person, rather, the

person and their enacted environment that is the unit of analysis for sensemaking [181].

This environment that provides the necessary context for sensemaking is not a monolithic,

fixed environment that exists external to people. Rather, people act, and their actions shape

the environmental context needed for sensemaking: “they act, and in doing so create the

materials that become the constraints and opportunities they face.” [247, p31]. Weick’s

understanding of enacted environments is influenced by Follett, who claims that there is no
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subject or object when it comes to the activity of meaning-making. There is no meaning

that one understands as the “result of the process;” there is just a “moment in process” [66,

p60]. As such, this meaning is inherently contextual in that it is shaped by the cycle of

action-enaction between the human and their environment.

Weick cautions against two things when it comes to the enactive nature of sensemaking.

First, to not restrict our definition of action in shaping our environment. Action here could

mean creating, reflecting, or interpreting: “the idea that action can be inhibited, abandoned,

checked, or redirected, as well as expressed, suggests that there are many ways in which

action can affect meaning other than by producing visible consequences in the world” ([26]

as described by Weick [247, p37]). Second, the enacted environments do not need to embody

existing ones. People want to believe that the world is defined using pre-given features, i.e.,

knowledge and meaning exist, we just need to find them. This is called Cartesian anxiety:

“a dilemma: either we have a fixed and stable foundation for knowledge, a point where

knowledge starts, is grounded, and rests, or we cannot escape some sort of darkness, chaos,

and confusion” [234, p140]. In practice, when people are faced with equivocal meanings,

they are inclined to select ones that reduce this Cartesian anxiety. But, in doing so, they

also enable existing, socially constructed meanings to shape their sensemaking. This can

be helpful in providing the clarity of values needed when faced with equivocality, or it can

privilege some meanings over others, depending on agency and power [192].

5.1.4.2 Enactment in the Human-Machine Context

The most prominent examples of enactment in the human-machine context are those in

which ML-based systems are used in urgent, reactive situations, such as predictive policing.

Consider the use of PredPol, which uses location-based ML models that rely on connections

between places and their historical crime rates to identify hot spots for police patrol [2]. Say

a police officer is monitoring PredPol to allocate patrol units to various neighbourhoods in

the city. As these patrol units are sent to specific locations based on the model’s predictions,
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both the officer monitoring the software as well as those patrolling the neighbourhoods have

updated their “environment” to be focused on certain neighborhoods. That is, they are primed

to look for criminal activity in these neighborhoods. Additionally, when arrests are made

using model predictions, they provide further evidence to the model that the patterns it has

identified are accurate. The choices made by the monitoring and patrol officers shape the rel-

evant context (i.e., enacted environment), which in turn shapes how the model is updated. In

this way, the feedback loop causes the model to become increasingly biased [80]. Now imag-

ine if the police officers were also provided an explanation for the model’s predictions. Each

explanation and the order in which the explanations are accessed (e.g., global vs. local expla-

nation first) changes the enacted environment for the officers. The sensemaking perspective

presents several properties that describe how factors external to the information being pre-

sented (e.g., their identity, social network, etc.) affect people’s understanding of a situation.

Tools that implement interpretability approaches offer different types of information (e.g.,

global feature importances, local explanations, partial dependency plots, data distributions),

but do not impose any order on how this information is explored. As a result, they do

not account for the enactive nature of sensemaking. End users can take different paths to

reaching conclusions about the model. Because sensemaking is sensitive to these enacted

environments, it is important to remember that people treat explanations (or any information

about the model) not as static and isolated; rather, as dynamic and use it to shape the

environment (e.g., the prediction) that they must understand.

Claim: The order in which explanations are seen affects how people understand a model

and its predictions.

5.1.5 Ongoing

The ongoing nature of AI/ML sensemaking is critical because it highlights the ways in

which interruptions and emotions can influence what is understood about these systems.
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5.1.5.1 Sensemaking as an Ongoing Activity in the Human-Human Context

Sensemaking never starts or stops. People are always in the middle of something. To

think otherwise would suggest that people are able to chop meaningful moments from the

flow of time, but that would be counter-intuitive because to determine whether something is

“meaningful” would require sensemaking in the first place [191, 52].

Sensemaking is akin to being in situations of thrownness. Winograd and Flores describe

these situations in terms of six different properties: (1) you cannot avoid acting; (2) you

cannot step back and reflect on your actions; i.e., you have to rely on your intuitions; (3)

the effects of action cannot be predicted; (4) you do not have a stable representation of

the situation; (5) every representation is an interpretation, i.e., no objective analysis can be

performed in the moment; and (6) language is action, i.e., people enact the situation via

their descriptions of their environment, making it impossible to stay detached from it [253].

The feeling of thrownness comes from interruption of flow. Interruptions are common in

our every day lives and people are rarely indifferent to them even when they are engaged

in work. Interruptions to an ongoing process lead to an emotional response—in this way,

emotion is able to influence sensemaking.

Emotion is embedded in sensemaking via the following process. Interruptions trigger

arousal, i.e., a discharge in the autonomic nervous system, which convinces the individual

that something in the environment has changed and that they must understand it and take

appropriate action to get back to a state of flow [24, 155]. The higher the arousal post-

interruption, the stronger the emotional response and, in turn, the stronger the affect of

emotion on sensemaking. According to Weick, “arousal leads people to search for an answer

to the question, ‘what’s up?”’—the longer it takes to answer that question, the longer people

are in a state of interruption, and the stronger the emotional response.

Even when interrupted, there are situations when arousal does not build and emotional

response is not engaged. If there exist several plausible ways in which the interruption

can be resolved, then it becomes easier to answer the “what’s up?” and “what next?”
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questions. This would suggest that people who are generalists (in terms of skillsets) or able

to improvise show less emotional behavior and less extreme emotions. On the other hand,

when the interrupted action is tightly organized or interdependent, or when the interruption

is pervasive, the arousal is quick and strong, as is the emotional response. As for the

valence of the emotion, negative emotions are generally associated with interruptions that

are unexpected or those that have a detrimental impact on whatever the person was doing

in their state of flow. Positive emotions result from unexpected removal of a potentially

interrupting stimulus, or when the original action being performed is accomplished at an

unexpectedly accelerated pace, without interruptions.

Why does it matter if there is an emotional response during an ongoing sensemaking

process? Emotions affect sensemaking in that recall and retrospect are dependent on one’s

mood [216]. Specifically, people recall events that are congruent with their current emotional

valence. Of all the past events that might be relevant to sensemaking in a current situation,

the ones we recall are not those that look the same, but those that feel the same.

5.1.5.2 Sensemaking as an Ongoing Activity in the Human-Machine Context

The ongoing property of sensemaking tells us that, while sensemaking is constantly hap-

pening, the times when we realize this explicitly are when we are interrupted. Interruptions

create brackets of time that require sensemaking.

Consider the predictive policing example again. Let us assume the record of arrests

shows that the likelihood of a legitimate arrest in an area predicted as a hot spot by the model

is 40%. The officer monitoring the model outputs is made aware of this number every time

they log into the system. Imagine this is what happens one day: the patrol officers allocated

to one of the hot spots predicted by the model make a legitimate arrest. The monitoring

officer is made aware of this and commended for their role in anticipating the situation. This

happens several times during the day. As a result, the monitoring officer associates positive

feedback for arrests based on the model’s predictions. In writing their report about the
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incidents, they use the explanations provided by the software to further justify their choices.

Next day, the patrol officers make another arrest in the same predicted hot spot. The

monitoring officer is once again asked to record an explanation for selecting that area for

patrol. Before they do so, they happen to look at social media and notice several posts

showing outrage with regards to that arrest. This is an interruption, as described by the

ongoing property of sensemaking. This time, when the monitoring officer is writing up their

explanation, it could be that they mention that the model’s predictions are not always right

and highlight some other failure cases.

As I have noted before, information presented in explanations is rarely used in context-

free settings. Despite being shown the same explanation, there is a possibility that the

monitoring officer would notice different aspects of the explanation depending on whether

they were interrupted or not, whether the interruption led to positive or negative emotional

states, and the magnitude of those emotions. Sensemaking does not fix this affect of

emotion on how people understand an outcome, but it accounts for it when observing the

understanding that has been established.

Claim: The valence and magnitude of the emotion caused by an interruption during the

process of understanding explanations from interpretability tools change what

is understood.

5.1.6 Focused on and by Extracted Cues

Recognizing extracted cues is critical for AI/ML sensemaking because they represent

the (incomplete) bits of information that people use in trying to understand these systems.

5.1.6.1 Extracting Cues in the Human-Human Context

Weick describes extracted cues as “simple, familiar structures that are seeds from which

people develop a larger sense of what may be occurring” [247, p50]. These extracted cues

are important for sensemaking because they are taken as “equivalent to the entire datum
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from which they come” and in being taken as such, they “suggest a certain consequence

more obviously than it was suggested by the total datum as it originally came” [101, p340].

Sensemaking uses extracted cues like a partially completed sentence. The completed first

half of the sentence constrains what the incomplete second half could be [208].

Extracting cues involves two processes—noticing and bracketing—which are both

affected by the context in which sensemaking is occurring. First, context affects which cues

are extracted based on what is noticed by the sensemaker. The term noticing is intended

to imply an informal, even involuntary, observation of the environment that begins the

process of sensemaking [220]. As a result, cues that are noticed are either novel, unusual, or

unexpected in some way, or those that we are situationally or personally primed to focus

on (e.g., recently or frequently encountered cues) [230]. Second, context affects how the

extracted (noticed) cues are interpreted. Without context, any cues that are extracted lead

to equivocal meanings [133]. As I noted with the retrospective property of sensemaking

(Section 5.1.3), these situations of equivocality need a clarity of values instead of more

information for sensemaking. Context can provide this clarity in the form of, for example,

the setting or domain from which the cues are extracted, or the social and cultural norms

that are relevant for that setting.

During the process of extracting cues, people are essentially forming a cognitive refer-

ence map that presumes that there is a connection between the situation/outcome and the cue.

When they act based on this presumed connection, they enact an environment in which the

connection is relevant, i.e., a self-fulfilling prophecy. To highlight this characteristic, Weick

shares an incident that happened during military maneuvers in Switzerland, as described in

a poem by Holub: “The young lieutenant of a small Hungarian detachment in the Alps sent

a reconnaissance unit into the icy wilderness. It began to snow immediately, snowed for 2

days, and the unit did not return. The lieutenant suffered, fearing that he had dispatched his

own people to death. But on the third day the unit came back. Where had they been? How

had they made their way? Yes, they said, we considered ourselves lost and waited for the
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end. And then one of us found a map in his pocket. That calmed us down. We pitched camp,

lasted out the snowstorm, and then borrowed this remarkable map and bearings. And here we

are. The lieutenant borrowed this remarkable map and had a good look at it. He discovered

to his astonishment that it was not a map of the Alps, but a map of the Pyrenees.” [87].

While the example above sheds a positive light on this self-fulfilling aspect of extracted

cues, this is not always the case. It can be helpful when seeded with the right cues, e.g.,

when people have encountered a situation before and have a plan of action in mind, they are

able to extract relevant cues from the get go. However, there is potential for important cues

to be missed when people do not have any prior experience with the situation.

5.1.6.2 Extracting Cues in the Human-Machine Context

Consider the example of a company which provides ML-based software to organizations

to help with hiring decisions. A marketing company uses this software to shortlist candidates

by sending some questions in advance—the candidates answer these questions in a video,

the ML-based software analyzes these videos and provides a hiring score along with an

explanation for its score. The kind of input data used by the model includes demographic

information; prior experience from the candidate’s resume; and tone of voice, perceived

enthusiasm, and other emotion data coded by the software after analyzing the recorded video.

Let us assume that the marketing company is using this software to shortlist candidates

for the position of a sales representative. The software shows that A is a better candidate

than B. They provide explanations for both A’s and B’s ratings (based on local explanations

from interpretability tools). The HR folks responsible for the final decision see that A’s

rating is based on their facial expressions during the interview (they were smiling, not visibly

nervous, and seemed enthusiastic). They consider these to be good attributes for a sales

representative and hire A even though B is more qualified. All additional information about

both A’s and B’s qualifications is also noted in the local explanations but, as noted by Weick,

might not be the cue that is extracted or focused on in this instance.
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Sensemaking and other cognitive science theories tell us that people cannot pay attention

to all the information provided to them. As such, how people make sense of something is

dependent on what they extract as relevant cues for that event or experience, i.e., context is

important. As I have noted for other sensemaking properties above, current interpretability

tools present all types of information and let the user decide how to explore. Weick

cautions against this unstructured exploration because it leads to equivocal alternatives for

understanding a situation. Which one of these alternatives is ultimately selected can be a

reasonable, reflective process or entirely arbitrary.

Claim: Highlighting different parts of explanations can lead to varying understanding

of the underlying data and model.

5.1.7 Driven by Plausibility rather than Accuracy

Recognizing that people are driven by plausibility rather than accuracy is critical for

AI/ML sensemaking because we need to account for people’s inclination to only search for

good enough (i.e., plausible) explanations of these systems.

5.1.7.1 Plausibility over Accuracy in the Human-Human Context

Weick argues that accuracy is nice but not necessary for sensemaking. Even when accu-

racy is necessary, people rarely achieve it. Instead, people rely on plausible reasoning which

is: (1) not necessarily correct but fits the facts, and (2) based on incomplete information [99].

Sensemaking is about “plausibility, pragmatics, coherence, reasonableness, creation, inven-

tion, and instrumentality” [247, p57]. When trying to understand something, people not only

consider the sensory experience, but are also influenced by what is “interesting, attractive,

emotionally appealing, and goal relevant” [65]. Weick notes eight reasons for why accuracy

is secondary to sensemaking and what we can learn from these:

1. It is impossible to internalize the overwhelming amount of information available for

sensemaking. To cope with this, people apply relevance filters to the information. It is
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more productive to observe which filters are invoked and what is included or excluded

as a result [67, 215].

2. There is no concrete object which needs to be sensed or understood accurately. Objects

have multiple, often equivocal, meanings depending on the individual doing the

sensemaking and their various contexts (Sections 5.1.3 and 5.1.6).

3. Sensemaking optimizes for continuation of flow, which does not always require or

allow for accuracy considerations. The situations of thrownness that are associated

with sensemaking are characteristically time-sensitive. There is a speed / accuracy

trade-off, and sensemaking requires speed [65].

4. If a sensemaking situation needs accuracy, it is only for short periods of time or for

specific questions. Swann distinguishes this type of accuracy as circumscribed accu-

racy, which is less sweeping than global accuracy [227]. In sensemaking situations,

circumscribed accuracy is the best we can hope for, which, in practice, resembles

plausible reasoning.

5. By virtue of being dependent on the individual (Section 5.1.1), the goal of sensemaking

is the interpersonal perception of a situation rather than object perception. Only the

latter requires accuracy.

6. Sensemaking perspective considers any meaning that helps counteract interruptions

as accurate. This type of accuracy is action-oriented and, as a result, not absolute.

7. Trying to make sense of a situation by internalizing all the information is debilitating.

When people filter what they notice, this biased noticing can be good for action, if not

for deliberation. Deliberation is not the intended outcome: it is “futile in a changing

world where perceptions, by definition, can never be accurate” [247, p60].

8. Accuracy is nice but not necessary because, at the time of sensemaking, it is impossible

to tell if the sensemaker’s perceptions will be accurate. It is only in retrospect—after
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the sensemaker has taken some action based on their understanding—that they evaluate

their perceptions for accuracy.

With accuracy not being necessary for sensemaking, it is only natural to ask: what

is? Weick claims that what is necessary for sensemaking is a good story, “something that

preserves plausibility and coherence, something that is reasonable and memorable, some-

thing that embodies past experiences and expectations, something that resonates with other

people, something that can be constructed retrospectively but also can be used prospectively,

something that captures both feeling and thought, something that allows for embellishment

to fit current oddities, something that is fun to construct” [247, pp60-61]. Stories help with

sensemaking because they are templates generated from previous attempts at making sense

of similar situations. Overall, this property of sensemaking is often amplified by the others

in that the plausible narratives that might appeal to someone could depend on their identity,

implied or actual audience, extracted cues, environmental context, emotional state, etc.

5.1.7.2 Plausibility over Accuracy in the Human-Machine Context

Interpretability outputs, such as text or visual explanations, inherently present a story. As

long as this explanation / story is plausible, there is no reason for an individual to evaluate

it for accuracy. Consider the example with the radiologist again. The radiologist is tasked

with deciding whether a chest radiograph indicates that the patient has COVID-19. Their

decision-making is supported by a ML-based software that is trained on publicly available

chest radiograph datasets. To help them understand the model’s reasoning for a prediction,

the radiologist has access to saliency maps as interpretable outputs (Figure 5.2).

According to Weick, when using the saliency map to determine whether the model’s

prediction makes sense, the radiologist is essentially searching for a plausible story that

explains the prediction. Figure 5.2 shows example explanations for a COVID-19 prediction

model from [48]. These explanations show that the areas inside the lungs are relevant for

the model’s prediction, a plausible reason for predicting COVID-19 positive or negative
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outcomes. The radiologist could believe this plausible explanation and choose to follow it.

Human evaluations of interpretability tools show that this confirmatory use of explanations

is often the case, even when explanations reveal issues with the underlying model. People

are prone to over-trusting interpretability outputs [111]—these explanations increase the

likelihood that people will accept the prediction, without evaluating it for correctness [18].

Say that the radiologist was not immediately convinced that the prediction made sense

after seeing the saliency map. Maybe they looked at the explanation (e.g., Figure 5.2-Middle)

and noticed that the radiograph’s edges (by the person’s shoulders and diaphragm) were

also salient for the prediction. Even with this observation, the radiologist is looking for a

plausible story that explains the model’s prediction. Perhaps the patient was coughing and

could not stay still when the radiograph was being captured, which could explain why the

radiograph has different lateral markers for a COVID-19 positive patient. In reality, the

model is relying on spurious correlations. With the role of plausibility in sensemaking, the

radiologist might not try to accurately interpret the saliency map.

Claim: Given plausible explanations for a prediction, people are not inclined to search

for the accurate one amongst these.

5.1.8 Summary

When designing solutions for promoting human understanding of ML models, it is

imperative that we consider the nuances of human cognition in addition to the technical

solutions which explain ML models. Sensemaking provides a set of properties that describe

these nuances, and each of these can be seen as a self-contained set of research questions

and hypotheses that relates to the other six. As I have shown with examples from the

human-machine context above, these sensemaking properties could explain some of the

external factors that shape the information that is ultimately internalized by people when

they use interpretability solutions to understand ML models.
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5.2 Discussion

I propose a framework for Sensible AI to account for the properties of human cognition

described by sensemaking. This has the potential to not only refine the explanations provided

by interpretability tools for human consumption, but also to better support the human-

centered criteria of ML-based systems. How do we do this? Once again, Weick (along with

his colleagues) proposes a solution: to explicitly promote or amplify sensemaking, we can

follow the model of mindful organizing [248]. Sensemaking and organizing are inextricably

intertwined. While sensemaking describes the meaning-making process of understanding,

organizing describes the final outcome (e.g., a map or frame of reference) that represents

the understanding. They are a part of the same mutually interdependent, cyclical, recursive

process—sensemaking is the process by which organizing is achieved [15, 250]. When one

is observing an event for sensemaking, mindfulness is expressed by actively differentiating

and refining existing categories that we use to assign meaning, and creating new categories

as needed for events that have not been seen before [129, 248, 240].

Mindful organizing was proposed based on observations from high-reliability organiza-

tions (HROs). HROs are organizations that have successfully avoided catastrophes despite

operating in high-risk environments [193, 249]. Examples of these include healthcare or-

ganizations, air traffic control systems, naval aircraft carriers, and nuclear power plants.

Mindful organizing embodies five principles that were consistently observed in HROs: (1)

preoccupation with failure, a focus on anticipating potential risks by always being on the

lookout for failures, being sensitive to even the smallest ones; (2) reluctance to simplify,

wherein each failure is treated as unique because routines, labels, and cliches can stop

us from looking into further details of an event; (3) sensitivity to operations, having a

heightened awareness of the state of relevant systems and processes because systems are

not static or linear, and expecting uncertainty in anticipating how different systems within

the organization will interact with each other in the event of a crisis; (4) commitment to

resilience, prioritizing training for emergency situations by incorporating diverse testing
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Table 5.2: Principles for high-reliability organizations (columns) that inspired my design
ideas (rows) under the Sensible AI framework.

pathways and team structures, and when a problematic event occurs, trying to absorb strain

and preserve function, and learning from previous instances; and (5) deference to expertise,

assuming that people who are in the weeds—often lower-ranking individuals—have more

knowledge about the situation, and value their opinions. My proposal for Sensible AI

encompasses designing, deploying, and maintaining systems that are reliable by learning

from properties of HROs. Table 5.2 presents the corresponding principles of HROs that

serve as inspiration for each idea.

5.2.1 Seamful Design

We can help people understand ML by giving them the agency to do so. Often, AI- and

ML-based systems and interpretability tools are designed with seamless interaction and

effortless usability in mind. However, this can engage people in automatic reasoning modes,

leading them to using outputs from these systems without adequate deliberation [33, 111, 18].

Highlighting complex details of ML outputs and processes —seamful design [98]—can

promote a reluctance to simplify that has helped HROs. It can also add a sensitivity to oper-

ations when changes to inputs for ML models can be clearly seen in the outputs. Enhancing

reconfigurability of ML models and training people to understand their complexity can

reduce the automatic, superficial evaluations on the part of the end-users. Increasing user

control in the form of seamful design has the additional benefit of introducing opportunities

for informational interruptions, which are necessary for the commitment to resilience seen in

HROs. While current interpretability tools have features that allow for users to get additional
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information if they want it, contextualizing this additional information by using narratives

can help people maintain overall situational awareness and avoid dysfunctional momentum

when using ML-based systems. For example, when a doctor is looking at a predicted patient

diagnosis, a Sensible AI system could prompt them to view cases with similar inputs but

different diagnoses. Next, I discuss some ways in which these systems can be designed

without overloading the end-user with system features, interactivity, and information.

5.2.2 Inducing Skepticism

One way to reduce over-reliance on known generalizations and information—both

common outcomes of sensemaking—is to create situations in which people would ask

questions. I call this inducing skepticism, an idea that has also been proposed in prior work

as a strategy for promoting reflective design [205]. Inducing skepticism can be seen as a

way to foster a preoccupation with failure, an HRO principle that encourages cultivating a

doubt mindset in employees. HRO employees are always on the lookout for anomalies, they

interpret any new cues from their systems in failure-centric ways, and collectively promote

wariness. This can be incorporated in ML-based systems, for example, by suggesting that

end-users ask about how a particular prediction is unique or similar to other data points,

questioning outputs of interpretability tools every now and then (e.g., “does this feature

importance value make sense?”), presenting bottom-n feature importances in an explanation

instead of top-n, highlighting cases for which the model is unsure of its’ predictions, etc.

Inducing skepticism can also be accomplished in social ways, by promoting diversity in

teams, both in terms of skillsets and experience. For example, novices can prompt experts

to view an ML output in more detail when they ask questions about it. This diversity is a

common way in which HROs maintain their commitment to resilience. Ultimately, these

technical and social forms of inducing skepticism have a common goal in mind, a reluctance

to simplify by introducing complexity and diversity into a situation.
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5.2.3 Adversarial Design

No one person can successfully anticipate all failures, even when the system supports

inducing skepticism. Adversarial design suggests relying on social and organizational

networks for this task. Adversarial design is a form of political design rooted in the

theory of agonism, a condition of productive contestation and dissensus [53, 164, 252].

By designing Sensible AI systems with dissensus-centric features, we can increase the

likelihood that someone raises a red flag given early signals of a failure situation or has

a better understanding of why a particular model prediction is not accurate. Prior work

has implemented adversarial design in the form of red teaming in technical and social

ways (e.g., adversarial attacks for testing and promoting cybersecurity [3], and forming

teams with collective diversity and supporting deliberation [91, 90], respectively). Here,

HRO principles of reluctance to simplify, commitment to resilience, and deference to

expertise can be observed in practice. I propose technical redundancies and social diversity

to help capture unanticipated failures in model predictions and understanding, as one way of

operationalizing adversarial design. Technical redundancies can be implemented in the form

of system features wherein multiple people view the same output in different contexts, which

gives the team a better chance of finding potential issues. Social or organizational diversity

can be expanded by including people with different roles, skillsets, and opinions. The more

diversity we have in people viewing outputs or explanations, the higher the likelihood that

they collectively discover an issue, as long as deliberation is made easy [90].

5.2.4 Continuous Monitoring and Feedback

When ML-based systems are deployed in real-world settings, changes in data collection

and distributional drifts are a given. However, a model that accurately finds patterns in

data collected in the past is not necessarily generalizable to temporal changes in data. To

manage these, researchers and industry practitioners have proposed MLOps—an extension of

DevOps practices from software to ML-based settings—for incorporating continuous testing,
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integration, monitoring, and feedback in maintaining the operation of ML-based systems

in the wild [153]. I propose incorporating social features in this pipeline by designing for

HRO principles such as preoccupation with failure, sensitivity to operations, and deference

to expertise. This could be achieved by designing features for, for example, (1) continuous

failure monitoring, effectively serving as distributed fire alarms that can be engaged by

people at varying levels in an organization, or (2) model maintenance, by relying on people

on the ground for detailed understanding of failure cases, as is done by several organizations

in discussing and publishing the results of failure panels, audits, etc.

5.3 Conclusion

Interpretability and explainability approaches are designed to help stakeholders ade-

quately understand the predictions and reasoning of a ML-based system. Although these

approaches represent complex models in simpler formats, they do not account for the contex-

tual factors that affect whether and how people internalize information. In this chapter, I have

presented an alternate framework for helping people understand ML models grounded in

Weick’s sensemaking theory from organizational studies. Via its seven properties, sensemak-

ing describes the individual, environmental, social, and organizational context that affects

human understanding. I translated these for the human-machine context and presented

a research agenda based on each property. I also proposed a new framework—Sensible

AI—that accounts for these nuances of human cognition and presented initial design ideas

as a concrete path forward. Overall, this theoretical framework prescribes design guidelines

for re-imagining interpretability and explainability with human cognition at its core. It lays

out my research agenda for future work in this domain.
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CHAPTER VI

Conclusion

I began this dissertation with the goal of investigating how best to support the human

in human-machine collaboration. With advances on the technical front, systems nowadays

routinely employ complex AI and ML models in collaborative tasks with people (e.g., for

decision-support, content moderation, information search, and now, even generating new

content based on end-user prompts). However, the missing critical piece is a parallel growth

in helping people understand these systems. As a result, despite this being an era of AI

advancement like no other, we frequently see these system deployments resulting in massive

failures including missed edge cases in critical domains, and propagation of fake news and

societal biases. Through the work presented in this dissertation, I sought to examine how

(much) people understood ML-based systems, their reasoning, and inputs and outputs; what

(types of) factors affected people’s understanding; and what would be the characteristics

of a solution that helped people better understand ML.

Working in the context of ML-based decision-support systems with a key stakeholder,

ML practitioners, I first examined how practitioners perceive and use interpretability tools

(Chapter III). My mixed-methods study setup helped identify the key challenges in prac-

titioners’ use of these tools. I noted significant misuse and over-trust in interpretability tool

outputs for the setting of a data science task, and a large-scale survey showed that these

findings were generalizable. In Chapter IV, I followed up on these studies to investigate
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the underlying cause of misuse and over-trust of interpretability tools. I found significant

evidence in support of my hypothesis that the cognitive framework of bounded rationality

was at play. Interpretability tools were significantly more likely to engage people in faster

and less effortful thinking modes. This automated thinking is often a result of application

of heuristics, which are grounded in prior experiences and knowledge. Delving deeper

into these external factors that seemed relevant to human cognition, in Chapter V, I trans-

lated a theory about human sensemaking from its original socio-organizational context for

the human-machine setting. This noted the various facets of human cognition that have

nothing to do with the information being presented. Things like one’s identity, social influ-

ences, ongoing personal and professional tasks, human inclination towards plausible stories

over searching for accuracy—these individual, environmental, social, and organizational

characteristics shape how (much) people process information.

In concluding this document, there is one open question I continue to think about: what

next? Or, what do the claims from this dissertation mean for future work on interpretability

and explainability? How do we present information to people knowing they will never pay

attention to all of it? How do we design for the incompatibilities in how people and machines

process information? What other human-centered factors do we need to account for? What

can we do to ensure that human-machine systems are not only effective at the task at hand,

but also do not cause harm when deployed in the real world? These “what next” questions

are even more essential to ask now, with AI and ML taking on a more significant role not

only in our academic disciplines, but also in everyday applications. Pre-trained models have

completely changed the landscape of what is possible with AI and ML technologies, and

who has access to them. These questions apply for all stakeholders, and at a societal level.

Although my dissertation focused on a subset of ML models and DSSs that are more

specialized and well-constrained, extrapolating from this work, I see the following findings

becoming even more relevant in this new age of generative AI: (1) growing over-reliance,

given the natural language interfaces for several new AI and ML technologies, I believe
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systems that rely on these will appear to be far more capable than they are, which might fur-

ther increase over-reliance; (2) more interpretability issues, given that most of the advanced

new models are opaque—we cannot yet faithfully mimic how these models operate, making

transparency and interpretability even harder than before; and (3) the essentiality of under-

standing human cognition, mental models, folk theories, and other sensemaking mechanisms

will be critical for both evaluating and shaping future human-machine collaboration that

does not cause harm. Liao and Vaughan’s recent article on transparency in the age of LLMs

outlines a more exhaustive list of these anticipated challenges and some paths forward [139].

To make progress on these considerations, I propose an updated paradigm for human-

machine collaboration: a paradigm that is human-centered, not only for integrating human

capabilities in innovative human-machine systems, but also in accounting for the some-

times irrational nuances of how people think, communicate, and collaborate, and their

affect on human-machine systems. Next, I discuss a future research agenda based on this

paradigm shift: (1) using inefficiencies and friction in design to promote more deliberate

human-machine engagement, (2) using generative AI as a new interaction modality, (3)

rethinking ways of evaluating human-machine partnerships, and (4) continuing translation

and application of relevant theories from other fields.

6.1 Designing Inefficiencies for Effective Human-Machine

Collaboration

Human-machine systems, especially when embedded with AI or ML, are designed with

seamless interaction and effortless usability in mind. My work shows that efficiency and

seamlessness in system design engage people’s automatic reasoning mode, leading them to

use these systems in superficial ways (Chapters III– IV). There is also some initial evidence

that the recent advances in AI are exacerbating this issue, their fabricated yet realistic-

seeming outputs making it challenging to determine accuracy and ground truth [104]. I hy-

pothesize that adding inefficiencies and friction in human-machine interaction might engage
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people in deliberative reasoning modes. This would, in turn, increase the likelihood of an

accurate assessment of AI/ML and their outputs. To that end, I have proposed a new class of

SENSIBLE AI systems that take into account the nuances of human cognition and sensemak-

ing (Chapter V). As a starting point, these systems could be designed based on principles of:

1. Seamful design, which highlights some of the complexity in information and features

of an AI system rather than simplifying everything. This can nudge people towards

exploring more of the details available to them, especially when the nudges are

surfaced in contextually relevant parts of the system. For example, in a conversational

format with a large language model (LLM), instead of only seeing one utterance in

response to a prompt, we could present an output showing how slightly changing the

prompt would have resulted in different responses from the model.

2. Inducing skepticism, which promotes a preoccupation with failure and anomalies in

system outputs as a means of ensuring that people do not generalize the capabilities of

their machine counterpart. Skepticism can minimize missed system edge cases. This

can be incorporated by, for example, periodically questioning the AI explanations

(e.g., presenting to the end-user the bottom-n features important for the model instead

of the top-n), or highlighting cases for which a model is unsure of its outputs.

3. Adversarial design, which suggests using diverse social and organizational networks

for productive contestation and dissensus in understanding AI. For example, asking

several people to explain their understanding of the same AI output, highlighting the

diversity in responses, and designing system features that ensure engagement amongst

those with differing opinions. Adversarial design is a distributed fail-safe—no one

person is solely responsible for making decisions with the help of AI; technical and

social redundancies can help.
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Figure 6.1: An initial prototype for FrictionBot, an application that supports more deliberate
engagement with ML and interpretability outputs using design guidelines from my Sensible
AI framework, powered by LLMs.

6.2 Generative AI as a New Interaction Modality

Although generative AI models pose enormous transparency risks, they can also be

an opportunity for us to test new ways in which interpretability information about other

models can be communicated. For example, with their affordance of natural language

communication, LLMs could act as an intermediate layer, describing interpretability and

explainability outputs to an end user in a conversational or visual narrative format. Recent

work has shown that these different modalities—questions vs. answers vs. dialogue—can

be effective ways of providing explanations in different settings [47, 132]. Prior work in

the social sciences has similarly noted that a conversational format helps people form better

mental models of each other [45, 163]. These LLM-infused applications could enable new

interaction modalities for explanations that are more human-centered.

With the conversational interfaces enabled by LLMs, imagine the ease with which we
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could design a system grounded in the ideas from Section 6.1. Figure 6.1 presents an initial

prototype of a Slack application, FrictionBot, that I envision as an easy proof-of-concept

and a test of these ideas for the setting of this dissertation: data science. FrictionBot brings

together practitioners with varying expertise, working on different aspects of the same AI

product for an organization (adversarial design). It initiates a conversation about the AI

in question and, every time there is a request for information or conversation around it, it

presents the information in both positive and negative framings (inducing skepticism), and

such that there is always more information than was initially requested (seamful design).

FrictionBot’s goal is to engage a diverse group of practitioners in a longer conversation about

different aspects of the AI, with the intention of helping uncover any potential issues via

this more deliberate engagement. One could also imagine extensions of this same design for

other settings as well (e.g., a system feature that nudges the patient care team to communicate

about a patient’s predicted diagnosis from an AI, and whether they should follow it).

6.3 Rethinking Evaluation Metrics for Human-AI Partnerships

Although there are innumerable human-machine systems now deployed in the wild, we

have yet to answer the question: what does a “good” human-machine partnership look like?

What are the characteristics that define a successful human-machine team? My work argues

for rethinking the primacy of the prevailing metrics for defining success (e.g., optimization,

efficiency, seamlessness, and ease of use). But what should take their place?

One new human-centric metric could be the level of deliberative thinking and engage-

ment, since cognitive and social theories suggest that to be a marker for adequate understand-

ing of a technology. Several validated scales provide measures of user engagement with a

system, cognitive effort in using it, broader acceptance of a technology, etc. However, there

are no existing scales that measure deliberative thinking and engagement, especially for the

human-machine context—an interesting avenue for future work. Another system-centric

proxy for deliberative thinking might be the level of friction in a system or to what extent are
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failures highlighted. For example, one could develop a friction scale by reversing the scale of

the 10 heuristics by Nielsen [165], commonly used for usability evaluation. Similarly, a fail-

ure metric could be the number of GitHub issues that were raised before system deployment.

The innate conflict between these “positive” and “negative” metrics make it challenging

to study and incorporate them. As an example, things that improve deliberative thinking

(e.g., inefficiencies and friction in design) can negatively impact other metrics (e.g., trust,

usability). We must further our understanding of these existing and potential metrics that

represent a human-machine partnership, how these can be harmonious or dissonant, and

how we might encapsulate these variabilities in one system.

6.4 Translating and Applying Relevant Theories

My work follows the belief that, like AI, people are black boxes until we form functional

mental models of those we collaborate with. As such, fields that study how people think

and interact can provide initial guidance for designing effective human-AI partnerships.

For example, I translated the seven properties of human sensemaking from organizational

studies, and highlighted how these were relevant for the human-machine context using case

studies from prior industry and academic work (Chapter V).

With theory translation, the somewhat harder question to answer is: how does this help

future research and practice? When applied conscientiously, these theory translations can

also offer a path forward. For example, with sensemaking, prior work in organizational

studies had applied it as a framework to identify the ways in which teams and organizations

must be made more reliable. These high-reliability organizations (HROs) have safeguards in

place to account for the nuances of human cognition. I proposed new guidelines for designing

interpretability and explainability using the principles of HROs, called Sensible AI.

We have barely scratched the surface in incorporating the decades of research on hu-

man sensemaking, communication, and collaboration into human-machine systems. Going

forward, we must continue translating and applying relevant theories from these other fields.
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APPENDIX A

Semi-Structured Interview Protocol for the Pilot Interviews

1. What is your background in Machine Learning and Data Science? How long have you

been a data scientist?

• What does your team do?

• What type(s) of data do you usually use?

• Do you build models for internal use or customer-facing prediction tasks?

2. At a high level, what is your usual ML / Data Science pipeline (starting from Data to

Model to Usage / Prediction)

• Are there any checks you perform at different stages? How do you generally

evaluate the validity of the data and the model?

• When are you satisfied with the results?

• What makes you feel confident about them?

3. Do you know about any interpretability tools? What are your perceptions of inter-

pretability tools or solutions (e.g., GAMs, black box models with SHAP, etc.)?

• What do you think they are good for?
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• Do you use interpretability tools at any point in your process, whether it’s for

internal checks or external pre-deployment checks?

– If yes, continue to question 4 after asking: which tools do you use?

– If no, ask them if there’s any reason for not using interpretability tools. How

do they evaluate if their model is ready for the prediction task at hand? Skip

question 4.

4. For each of the interpretability tools someone mentions in question 3:

• How familiar are you with <x> tool?

• How frequently do you use it?

• According to you, what is the output or end-result of relying on <x> tool?

• How confident do you feel in using <x> tool? Do you feel like you understand

what it does and the end-result / output from it?

• What is the overall value of using <x> tool in your day-to-day work?

• What kinds of questions do you try to answer using <x> tool?

– If they don’t mention any specific types of questions or outputs, prompt

with: Do you look for global or local explanations, feature importance, or

regions of error? Something else?

• Are there any challenges in using <x> tool or understanding its output?

• Is there other information that you wish <x> tool would tell you that it currently

does not?

5. Retrospective think aloud: Think of an instance when you have had to debug a model

recently. What were some challenges you faced in doing this?

• If there were no challenges: Are you generally comfortable with evaluating

models and feel confident about it? Is there another instance you remember

where the model-building and evaluation process was tricky?
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• If there were challenges:

– How did you overcome these challenges?

– What was the outcome of the challenging situation? How did you “fix it”?

– Did you use any interpretability tools or equivalent techniques in this pro-

cess?

6. More generally, what are your thoughts on the accuracy-interpretability tradeoff? Do

you cater to one or the other (or both) in your pipeline?
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APPENDIX B

Introduction to Generalized Additive Models (GAMs)

A typical linear model assumes that the relationship between the target variable y and

the input variables/features x1, ...,xN for datapoint x is linear and can be captured with slope

terms β1,β2, ...,βN :

y = β0 +β1x1 +β2x2 + ...+βNxN

Generalized Additive Models (or GAMs) are a generalization of linear models in which

the target variable depends linearly on smooth shape functions of the features, f1, ..., fN that

can be nonlinear and complex:

y = β0 + f1(x1)+ f2(x2)+ ...+ fN(xN)

In both models β0 is the model intercept, and the relationship between the target variable

and the features is still additive; however, the effect of each feature xi in a GAM is capture

by a shape function fi. To use GAMs for classification, we replace y in the equation above

with the log odds, log
(

p
1−p

)
, where p is the predicted probability of a positive classifi-

cation, analogous to logistic regression. GAMs allow us to visualize local explanations

(how an individual prediction was made) as well as global explanations (what the model

learned overall from training data). Given their ease of use for providing local and global

explanations, GAMs are often considered to be inherently interpretable.

Local Explanations: How an Individual Prediction was made
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Our GAM interface lets you select a datapoint and displays a local explanation for the

datapoint that highlights how the prediction was made.

For example, let’s consider this datapoint below with a predicted probability of 0.082. If

we look at the local explanation, we can further understand how this prediction was made

by observing how each feature either contributed positively or negatively to the prediction.

The visualization shows a log odds score for each feature, which we refer to as the feature

importance. In this instance, MaritalStatus of Married-civ-spouse (which means that the

individual is married to a civilian spouse) had the most positive influence on the predicted

value, whereas EducationNum of 9 had the most negative influence.

Global Explanations: What the Model Learned Overall from Training Data

You can also use GAMs’ global explanations to understand the overall feature importances,

and how the different values that each feature can take affect the target variable.

For example, here (below) we can see a graph of all feature importances, ranked from

highest to lowest. These are calculated by averaging the absolute value of local feature

importances over all datapoints.

If we wanted to see the relationship between a specific feature and the output, we can

select that feature to see the global trends for it. The plot also shows a density visualization

127



at the bottom to highlight the amount of data available for each value of a feature.
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APPENDIX C

Introduction to SHAP

SHAP (SHapley Additive exPlanations) is a tool that provides an explanation for the

output of any ML model. SHAP is often applied on top of “black box” machine learning

models to provide local explanations (how an individual prediction was made) as well as

global explanations (what the underlying model learned overall from training data).

For every datapoint x with a predicted value f (x), SHAP outputs a vector φ(x) such

that f (x) = β +∑
N
i=1 φi(x), where β is the base value—the output value (prediction) a

datapoint would be assigned if all feature values were zero. Intuitively, the SHAP value

φi(x) represents the contribution that feature i for datapoint x makes to the prediction. The

SHAP value for feature i will be different for each datapoint.

Local Explanations: How an Individual Prediction was made

We can visualize how a prediction for an individual datapoint was made using SHAP’s

force plots. Given a datapoint x, the force plots start at a base value β—the output value

(prediction) a datapoint would be assigned if all feature values were zero. Then, as we add

more specific information about this datapoint (that is, non-zero features xi), we add φi(x) to

the force plot, which either pushes the datapoint to have a higher value than the base value,

or lower than it. Ultimately, the output value represents whichever force (higher or lower)

wins, and that is equal to the prediction.
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For example, if we look at the force plot above, we can see that the base value β is 0.2401.

Input features such as Age (= 57), Occupation (= Craft-repair) and EducationNum (= 9)

push the predicted output value to be lower, whereas input features such as MaritalStatus (=

Married-civ-spouse, i.e., married to a civilian spouse) and HoursPerWeek (30-60) push the

predicted output value to be higher. Ultimately, this results in the overall predicted output

value of 0.07. The positive or negative scores here are SHAP values φi(x) for each feature i.

Global Explanations: What the Model Learned Overall from Training Data

You can also use SHAP’s global visualizations to understand the overall importance of

each feature. For example, here we can see a graph of all feature importances, ranked from

highest to lowest. These are calculated as the mean of the absolute SHAP values for each

input feature.

SHAP also provides global trends per feature in the form of dependency plots. For each

feature’s dependency plot, the x-axis shows the value of that feature for a datapoint (xi), and
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the y-axis is the corresponding SHAP value φi(x). These plots thus highlight the trend in a

feature’s importance. For these dependency plots to be dense enough to highlight patterns,

each feature is usually plotted against another one, which causes the color of the plotted

dots to change. You can observe the pattern when trying to understand the global trends for

each feature
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APPENDIX D

Contextual Inquiry Questions about the Dataset and the

Model

Participants were asked to answer the following questions about the dataset and the

model. They were given one interpretability tool (either InterpretML’s implementation of

GAMs or a post-hoc explanation technique, SHAP) to aid their exploration of the data and

model.

1. What are the most important features that affect the output Income, according to the

explanation above?

2. How does the feature Education affect output Income?

3. How does the feature Age affect output Income?

4. How does the feature EducationNum affect output Income?

5. Can you explain the predicted value of the 5th element in the test set?

6. Below, you can see the local explanations for 20 incorrect predictions. Based on this,

can you suggest ways for improving accuracy?

7. How does the feature HoursPerWeek affect output Income?

8. How do some other categorical variables—Occupation and WorkClass—affect output

Income?
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9. If we adjusted for inflation, do you expect this model would do well in predicting

income now? Please explain your answer.

10. Are there any other questions you would want to ask based on this data? What

information would you hope the explanations would surface?
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APPENDIX E

Screenshots from a Google Colab Notebook

used for the Experiment

The following are screenshots from the Google Colab notebook for one of the inter-

pretability conditions: SHAP, a post-hoc explainer for a blacbox model, and a tool with

static visual outputs. These screenshots present how the study setup was introduced to

the participants, with information about the dataset, the model, and the capabilities of the

interpretability tool for each condition.
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APPENDIX F

Multiple-Choice Questions about the Dataset and the Model

A full list of hypotheses and analyses corresponding to the dependent variables was

pre-registered on AsPredicted: https://aspredicted.org/462_XKP (anonymized link).

For the hypothesis for response type (with options being plausible, accurate, or randomly

inaccurate), with interactive interpretability tools, I accidentally pre-registered this as people

selecting responses that are plausible when using interpretability tools with interactive

features. Adding interactive elements to systems often promotes deliberative thinking and

engagement. If one consistently applies this reasoning to all the metrics, then this hypothesis

would inherently be that people select responses that are accurate (rather than plausible or

inaccurate) when using interactive interpretability tools. All other pre-registered hypotheses

about interactive interpretability tools consistently follow this reasoning.

The experimental setup included five multiple-choice questions (MCQs) as the main

task of the study. This appendix presents these MCQs along with the answer key and hints

provided for each of them. The legend for the experiment conditions:

• Control: Normal ML pipeline sans interpretability

• GAM: Visual explanations from an interpretability approach; glassbox model

• SHAP: Visual explanations from an interpretability approach; post-hoc explainer for

a blackbox model
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• ED: Interactive interpretability tool; Explanation Dashboard, with a glassbox model

• WIT: Interactive interpretability tool; What-if Tool, with a post-hoc SHAP explainer

for a blackbox model

MCQ 1: Global Feature Importance

Question: If you were forced to remove a feature from this model, which of the following

features would you remove?

Answer Options:

• Accurate: EducationNum

• Plausible and accurate: Race

• Visually plausible but inaccurate: Gender

• Heuristically plausible but inaccurate: Age

• Inaccurate: Hours-per-week

Hints:

• Control: The model outputs a global explanation, i.e., importance values for all

features. These can be plotted together to get overall feature importances relative to

each other.

• GAM: The tool outputs Global Explanations which are based on overall feature

importances.

• SHAP: The tool outputs Global Explanations which are based on the average impact

of each feature on the outcome variable.

• ED: There is a Feature Importances section in the tool.

• WIT: The tool allows you to sort the global partial dependence plots for each feature

by importance. Partial dependence plots can be accessed under the Datapoint editor.

MCQ 2: Partial Dependence

Question: Which of the following ranges for Age values has the most likelihood of making

a high income?

Answer Options:
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• Accurate: 40–50

• Plausible and accurate: 55–60

• Visually plausible but inaccurate: 35–40

• Heuristically plausible but inaccurate:73–80

• Inaccurate: 80–90

Hints:

• Control: Python’s sklearn module offers partial dependence raw values as well as

a partial dependence display for input features in a model. You can see the partial

dependence raw values in the notebook. To see these values in a visual format, you

can use the from_estimator() function of partial dependence display (as shown in

examples here). The input arguments needed for it are the same as the inputs for

generating the raw partial dependence values.

• GAM: The tool outputs partial dependence plots that describe the relationship between

an individual feature and the outcome variable.

• SHAP: The tool outputs dependence plots that describe the relationship between an

individual feature and SHAP values. SHAP values, in turn, help the model make

predictions.

• ED: Select aggregate feature importance under the Feature Importances section in the

tool. You can click on the feature in the chart to show its dependence plot.

• WIT: You can access partial dependence plots from the Datapoint Editor tab. If you

were already exploring the data and have a datapoint selected before accessing these

plots, make sure you switch on the “Global partial dependence plots” on the left.

MCQ 3: Predict the Outcome

Question: Given the following input feature values and importances, what do you think the

model predicted for this individual and why?

This question also included a local explanation plot, with the answer cropped out, for all

interpretability conditions. Figure F.1 presents these visuals.
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FEATURE VALUE
Age 43
WorkClass Federal-gov
Education Doctorate
Education-Num 16
Marital-Status Never-married
Occupation Prof-specialty
Race White
Gender Female
Capital-Gain 0
Capital-Loss 0
Hours-per-week 50
Native-Country United-States

Answer Options:

• Accurate: >50K income because most of the features have a positive influence and it

adds up to greater than the negative influence.

• Plausible and accurate: >50K because the values of input features for this person

correspond to those that have positive influence on income based on the partial

dependence values.

• Visually plausible but inaccurate: <=50k because the intercept has a significant

negative influence.

• Heuristically plausible but inaccurate: <=50k because the Marital-Status is “Never-

married.”

• Inaccurate: <=50K income because the sum of all negative importances is greater

than positive importances.

Hints:

• Control: We can get local feature importance values, i.e., the impact of each feature in

making an individual prediction, using the community-developed XGBoost Explainer.

Based on the values output by this explainer, a plot for this current datapoint in

included here (see Figure F.2).

• GAM: The predicted outcome depends on aggregated positive and negative feature

importances.
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• SHAP: SHAP’s local plots show how each contributing feature pushes the model

output from the base value (the average model output over the training dataset we

passed) to the predicted model output.

• ED: The predicted outcome depends on the aggregated positive and negative feature

importances.

• WIT: The predicted outcome depends on the aggregated positive and negative attribu-

tion values for the datapoint.

MCQ 4: Explain Misclassification

Question: The model misclassified this datapoint with the following input feature values.

Why do you think that happened?

FEATURE VALUE
Age 50
WorkClass Local-gov
Education Bachelors
Education-Num 13
Marital-Status Married-civ-spouse
Occupation Prof-specialty
Race White
Gender Female
Capital-Gain 0
Capital-Loss 0
Hours-per-week 24
Native-Country United-States

Answer Options:

• Accurate: Because the input feature values with positive influence on the income

summed up to a value greater than those with negative influence.

• Plausible and accurate: Because the model did not take into account that this female

is probably in a part-time job situation.

• Visually plausible but inaccurate: Because the model assigned too much importance

to “Marital-Status.”

• Heuristically plausible but inaccurate: Because the model assumed that a married
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female would have higher household income by virtue of their spouse, without taking

into consideration their own occupation.

• Inaccurate: Because the model took “Race = White” into consideration more than it

should have.

Hints:

• Control: In addition to the global explanation and the partial dependence plots, you

can also access local explanations using the XGBoost Explainer. Relevant details

on how to use this explainer are under the Local Explanations section in your Colab

notebook.

• GAM: You could look at the local explanation for this datapoint. This datapoint is

in the test dataframes (test_X_df, test_y_df). One way to find the index of a specific

row in a dataframe is: Rows = df[(condition1) & (condition2)], where a condition

can be matching a specific column value like df[“Age”] == 50. Be sure to add those

parentheses!

• SHAP: You could look at the local explanation for this datapoint. This datapoint is

in the test dataframes (test_X_df, test_y_df). One way to find the index of a specific

row in a dataframe is: Rows = df[(condition1) & (condition2)], where a condition

can be matching a specific column value like df[“Age”] == 50. Be sure to add those

parentheses!

• ED: Individual feature importance tab in the Feature Importances section lists all

correctly and incorrectly classified datapoints. When you select a datapoint, you can

also see its local feature importance information.

• WIT: You can access an individual datapoint under the Datapoint Editor. If you select

a datapoint from the scatter plot, its input feature values and attribution values will

appear on the left in a table. Datapoint values are editable in the table where they are

listed on the left, and you can predict the output for edited values.

MCQ 5: What-If Question
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Question: A person with the following input features makes <=50k income. A change to

which of the following feature values would cause the prediction to become 1 (i.e., >50K

income)?

FEATURE VALUE
Age 30
WorkClass Federal-gov
Education Some-college
Education-Num 10
Marital-Status Married-civ-spouse
Occupation Adm-clerical
Race White
Gender Male
Capital-Gain 0
Capital-Loss 0
Hours-per-week 40
Native-Country United-States

Answer Options:

• Accurate: Change Capital-Loss to $5000

• Plausible and accurate: Change Age to 40

• Visually plausible but inaccurate: Change Capital-Gain to $5000

• Heuristically plausible but inaccurate: Change Education to “Bachelors”

• Inaccurate: Change Occupation to “Exec-Managerial”

Hints:

• Control: In addition to the global explanation and the partial dependence plots, you

can also access local explanations using the XGBoost Explainer. Relevant details

on how to use this explainer are under the Local Explanations section in your Colab

notebook.

• GAM: You could look at the local explanation for this datapoint. This datapoint is

in the test dataframes (test_X_df, test_y_df). One way to find the index of a specific

row in a dataframe is: Rows = df[(condition1) & (condition2)], where a condition

can be matching a specific column value like df[“Age”] == 50. Be sure to add those
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parentheses! You can also use ebm’s predict() function to get predictions for any new

datapoints that you generate and want to test.

• SHAP: You could look at the local explanation for this datapoint. This datapoint is

in the test dataframes (test_X_df, test_y_df). One way to find the index of a specific

row in a dataframe is: Rows = df[(condition1) & (condition2)], where a condition

can be matching a specific column value like df[“Age”] == 50. Be sure to add those

parentheses! You can also use a model’s predict() function to get predictions for any

new datapoints that you generate and want to test.

• ED: There is a Counterfactuals section in the tool. You can get counterfactuals for

individual datapoints and even edit input feature values to test outcomes. New data

rows defined based on counterfactuals can appear on the scatter plot with output

probabilities.

• WIT: You can access an individual datapoint under the Datapoint Editor. Datapoint

values are editable in the table where they are listed on the left. You can also

automatically generate the nearest counterfactual from the left menu, above the

table with feature values.
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Figure F.1: Local explanations included with the multiple-choice question about predicting
the outcome given input feature values of a datapoint. These were included by default for
the interpretability conditions. These explanations are output by: (a) interpretML’s version
of GAMs, called Explainable Boosting Machines (EBMs); (b) SHAP applied to a lightGBM
model; (c) Explanation Dashboard, using an EBM; and (d) What-If Tool, using SHAP on a
lightGBM model. (a) and (b) are examples of static interpretability tools whereas (c) and
(d) are from interactive tools. (a) and (c) are glassbox approaches, and the other two are
post-hoc explainers for blackbox models.
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Figure F.2: Local explanation for the multiple-choice question about predicting the outcome
given input feature values of a datapoint. This chart is output by the XGBoost Explainer and
included as a hint for the control condition participants.
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APPENDIX G

Descriptive Statistics for All Independent Variables

Figure G.1 presents descriptive statistics for all independent variables. The values

for two variables are averaged across the questions asked about them because of high

internal consistency in their responses. First, hypothetical use rating, since Cronbach’s

Alpha for the three ratings questions (about the use of data and model in the wild and

of accuracy as a key performance indicator) was α=0.73. This α value is acceptable for

exploratory research [170]. Second, error recognition, since the ratings for the two error-

related questions about missing values and redundant features were strongly correlated

(Pearson’s r(115)=0.76, p < 0.001).
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Figure G.1: Descriptive statistics for all the independent variables in the study.
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