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ABSTRACT

This thesis studies two online learning problems in which the efficiency of the proposed

strategies is studied in terms of their regret. The first problem deals with designing learning

algorithms that optimize the social welfare of a single server queuing system when both the

arrival and service rates are unknown and the second one involves finding an asymptotically

optimal strategy for the problem of prediction with expert advice.

In Chapter II, we consider a long-term average profit maximizing admission control

problem in an M/M/1 queuing system with unknown service and arrival rates. We propose

a learning-based dispatching algorithm and characterize its regret with respect to optimal

threshold dispatch policies. We show that our algorithm achieves O(1) regret when feasible,

and O(ln1+ϵ(N)) otherwise for every ϵ > 0 where N is the number of customers arrived.

In Chapter III, we consider the problem of prediction with expert advice under the

adversarial setting with a geometric stopping time from a zero-sum game point of view. In

the literature, it has been shown in this setting that the discounted cost problem yields the

solution of the long-term average cost problem as the discount parameter goes to 0, when

quantities are appropriately scaled. We will focus on this asymptotic regime, and hence, the

long-term average behavior of this game. We show that it is optimal for nature to play the

“comb strategies” in the 4 expert game and that the best regret grows as O(1/
√
2δ), where δ

is the parameter of the geometric stopping time.
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CHAPTER I

Introduction

Online machine learning refers to a learning paradigm where the model is trained on

data that is presented in a sequential fashion. A huge variety of learning problems can be

considered online learning problems, and the techniques used to solve these may vary from

problem to problem. Yet, links, similarities, and methods inspired by each other may also

appear. To measure the performance of the proposed strategies, regret, which is often defined

to be the difference between the optimal gain and actual gain, is a popular and natural choice

of the objective to analyze; see [Hoi et al. 2021; Hazan 2021] and their references. An online

machine learning algorithm can adjust its predictions and decisions at a low computational

cost according to the new data that has arrived. This enables the algorithm to adapt and

improve the model it learns in real-time. This paradigm is useful in scenarios where data

arrives continuously.

This thesis is devoted to two problems in online learning where decisions need to be made

repeatedly under uncertainty. The goals and methodologies used for these two problems are

quite different. The first problem focuses on designing admission policies in a single server

queuing system to optimize the long-term average social welfare; see Chapter II. The second

problem deals with finding an asymptotic optimal strategy for the problem of predicting

with expert advice under adversarial environments; see Chapter III. Despite the different

types of uncertainty considered in the two problems, we aim to learn and analyze an adaptive

control that achieves sub-linear regret in both problems. Both problems fall under the topic
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of model-based adaptive control as discussed in books [Landau et al. 2011; Ioannou and

Sun 2012; Benosman 2016]. The trade-off between exploitation and exploration is also

a common challenge in the dispatching/scheduling problems in queuing systems and the

problem of learning with expert advice, in addition to other online learning problems, for

example, multi-armed bandit problems and problems in Markov Decision Processes (MDPs)

that are developed in Reinforcement Learning (RL).

Learning in queuing systems naturally falls under the category of online learning since

customers usually arrive at the system in sequential order. Various learning problems have

been considered with different models, see survey [Walton and Xu 2021], which also points

out the link between queuing theoretic results with adversarial learning, and also [Neely

2010]. Multi-armed bandit problems have been thoroughly studied and many algorithms

are developed and analyzed, see [Lattimore and Szepesvári 2020b]. Adapting the classical

algorithms from this topic, [Yang, Srikant, and Ying 2023] and [Krishnasamy, Sen, et al.

2021] studied the problem of learning the scheduling policy in queuing systems and proposed

algorithms that achieve sub-linear regret when model statistics are unknown. Also working on

learning a scheduling policy in queuing systems, [Agrawal and R. Jia 2022] and [Salodkar et al.

2008] use an MDP formulation to analyze this learning problem and proposed algorithms that

converge to the optimal scheduling policy. An overview of applications of MDPs in queues is

provided in [Li et al. 2019]. With applications in routers and network switches, [Kahe and

Jahangir 2019], [Xiong et al. 2010] and [H. Zhang et al. 2003] developed self-tuning Active

Queue Management algorithms that do not require careful tuning of the parameters to reduce

the congestion in the network.

Motivated by the job dispatching problem for online computing demands, in Chapter

II, we consider a learning problem of an M/M/1 queuing model that was first proposed

and analyzed in [Naor 1969]. We design a two-phase algorithm with a skippable explicit

exploration phase. Our algorithm achieves O(1) regret on the regret accumulated when

2



feasible and O(ln1+ϵ(N)) for every ϵ > 0 otherwise, where N is the number of arrivals.

In this model, a positive reward R is obtained after a customer finishes service, and a

holding cost of C is collected per unit of time for each customer in the system (including any

customer in service). Upon the arrival of a customer, with the goal of optimizing the long-term

average social welfare, a dispatcher decides whether to admit this customer to the queue.

Having joined the queue, the customer only leaves after service is received; the customer

does not return to the system if denied entry. If all the model parameters are known, then the

optimal admission policies found in [Naor 1969] is a threshold policy in which arrivals are

not admitted whenever the system occupancy (queue-length plus customer in service) reaches

a static threshold value.

We consider the learning problem where both the arrival and service rates are unknown

but the reward R and per unit time holding cost C are known. Our learning-based algorithm

consists of batches with each batch being composed of an optional fixed-length forced

exploration phase (phase 1) and an exploitation phase (phase 2) whose length increases with

batch index. During the (potential) exploration phase, every arriving customer is admitted to

the system. During the exploitation phase, the learning dispatcher uses a fixed threshold that is

computed using all samples of the service completions and inter-arrival times collected from

all prior exploitation phases as well as exploration phases. In general systems, one would first

need to show the stability of the queue under the learning algorithm before characterizing

regret performance. However, since our proposed learning algorithm has a fixed-length

exploration phase and uses a threshold policy in the exploitation phase, the queue is stable

with probability 1 under the proposed learning algorithm. To reduce the regret we omit the

exploration phase in the next batch if the threshold used in the exploitation phase of the

previous batch (that just ended to start the new batch) is non-zero.

The expected regret is defined as the difference between the accumulated net gain of an

optimal dispatcher and that of the learning dispatcher. We show how to translate the regret

3



from a given time horizon to a function of the number of arrivals within said time horizon,

and hence, we work with analyzing the queuing system at customer arrivals. Then we show

that our learning dispatcher is able to achieve O(1) regret when all optimal thresholds with

full information are non-zero, and achieves an O(ln1+ϵ(N)) regret for ϵ > 0 in the case

that an optimal threshold with full information is 0 (i.e., an optimal policy is to reject all

arrivals), where N is the number of arrivals. We also perform numerical experiments to

examine the finite-time performance of our algorithm. This chapter is based on [Cohen, V. G.

Subramanian, and Y. Zhang 2022]. Part of the work has been presented at the 58th Annual

Allerton Conference on Communication, Control, and Computing at the University of Illinois

at Urbana-Champaign (September, 2022).

The problem of learning with expert advice for an agent has been studied widely from the

perspective of designing algorithms (for the agent which can also be referred to as the player)

that achieve sub-linear accumulated regret when comparing the gain of the agent with the best-

performing expert. This problem is typically regarded as a zero-sum game between the agent

and nature, with the optimal min-max regret representing the value of this game. Both upper

and lower regret bounds for regret of the agents have been studied under various settings; see

[Cesa-Bianchi and Lugosi 2006] for a comprehensive study. It is well known that the optimal

regret of O(
√

T log(N)) can be achieved by the weighted average algorithm [Littlestone and

Warmuth 1994; Vovk 1990] where T is the number of the rounds and N is the number of

the experts when the loss function is bounded and convex. Recent work has discussed more

sophisticated regret bounds, see [Koolen and Erven 2015; Mhammedi, Koolen, and Erven

2019], and proposed algorithms that can outperform the best expert [Hoeven, Zhivotovskiy,

and Cesa-Bianchi 2022]. The optimality of an adaptive weighted-average algorithm, when

one expert is malicious, is proved in [Bayraktar, Poor, and X. Zhang 2021]. Taking a PDE

approach, [Bayraktar, Ekren, and X. Zhang 2022] worked in Wasserstein space and considered

the expert problem with partial information where both nature (again the adversary) and the

4



agent update their belief of the distribution on the accumulative rewards of the experts by

performing a Bayesian update, and [Bayraktar, Ekren, and X. Zhang 2021] analyzed the

situation when both the agent and nature have common knowledge of the probability vector

of the gain of experts, and nature can at most affect the gain of one expert.

We focus on finding the asymptotically optimal strategy for nature in a repeatedly played

zero-sum game between an agent(or player) and nature in Chapter III. The maturity time of

this game is determined by a geometric random variable with parameter δ > 0; note that this

leads to a discounted cost formulation as the game stops at this time. The two parties of this

game interact through a set of N experts. At each round, with the history of the gains of

each expert and the player available to both parties of the game, the player and nature choose

subsets of the experts simultaneously. The gain of the expert(s) chosen by nature increases by

1, and so does the reward of the player if this expert is also chosen by the player. The regret

of the player at time t is defined to be the difference between the gain of the best-performing

expert and the gain of the player. The player aims to minimize the regret while nature aims to

maximize it. The lower and upper values of this game are given by max-min and min-max of

the expected regret. This problem was first studied in [Cover 1967] for the 2-experts case.

Observed that it is a weakly dominant strategy for nature to choose from one of the vertices

of the convex polytope of the set of possible distributions over the experts. Optimal strategies

of the player and nature were found by solving the dynamic programming equation directly

in [Gravin, Peres, and Sivan 2016] for the 3-experts case. A re-scaled game was studied in

[Drenska 2017] where a partial differential equation (PDE) is derived for the limiting value

function of the re-scaled game.

We explicitly solve the PDE that is derived in [Drenska 2017], and show that an optimal

strategy for nature in the 4-expert case is the following. In each round, nature divides the

experts into two sets. One set contains the experts with the highest and third-highest gains.

The other contains the experts with the second and fourth-highest gains. Ties are broken at

5



random. Nature then chooses between the two sets uniformly at random. This strategy is

called the “comb strategy”. It is a weakly dominant strategy for nature and was first introduced

in [Gravin, Peres, and Sivan 2016]. We also prove that the regret of the limiting game grows

as O(π/
√
32δ) as δ goes to 0. Both the optimal strategy for nature, and the order of the

regret were conjectured in [Gravin, Peres, and Sivan 2016], and hence, our work settles the

conjecture. This chapter is based on [Bayraktar, Ekren, and Y. Zhang 2020]. Part of the

work has been presented in the Financial/Actuarial Mathematics Seminar at the University of

Michigan (April, 2019).
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CHAPTER II

Learning-based Optimal Admission Control In A Single Server Queuing

System

2.1 Introduction

We consider admission control for a first-in-first-out (FIFO) single-class single-server

queuing model with Poisson arrivals and exponential service times. Specifically, there is a

dispatcher that decides on admitting arrivals with the goal to maximize the long-term average

profit – each admitted arrival yields a positive reward R (obtained after a customer finishes

service), which is balanced by a holding cost for the (homogeneous) customers waiting

in the queue. The buffer capacity of this queue is infinite and the dispatcher may decide

upon arrivals to reject any customers joining the queue with the profit objective in mind.

When the service and arrival rates are known, this model was studied in [Naor 1969]. In our

investigation, we will consider the situation where the dispatcher does not have knowledge

of either the arrival rate or the service rate. One potential application is the job dispatching

problem for online computing demands, especially when the computing servers are provided

by a third-party cloud computing platform: the dispatcher may negotiate the reward and cost

with the customers, and thus, have information (via market research) on the arrival rate of the

jobs, but since the servers are provided by a third-party platform, the dispatcher may not know

the service rate. Despite prior market research, it is, however, plausible that the dispatcher

doesn’t know the arrival rate accurately.

7



[Naor 1969] studied two problems: 1) the optimal policy for the self-optimization problem

where customers are maximizing their own net (expected) profit so that a selfish Wardrop

equilibrium is of interest; as well as 2) the optimal policy for the social welfare maximization

problem where a dispatcher is aiming at maximizing the long-term average profit so that a

social Wardrop equilibrium is of interest. In both problems, a threshold policy was shown to be

optimal: 1) in the self-optimization problem, arrivals do not join the queue if the queue-length

upon arrival is high enough; and 2) in the social-welfare maximization problem, the dispatcher

doesn’t admit arrivals whenever a threshold level is reached. [Naor 1969] showed that the

threshold for the social welfare maximization problem is not greater than the threshold for the

self-optimization problem. Our investigation and the accompanying algorithm are primarily

designed for the social welfare optimization problem where the dispatcher is interested in

learning how to perform at the same level of efficiency as if knowing the actual arrival and

service rate. Any learning-based algorithm will necessarily need exploration which could

violate incentive-compatibility constraints (even ex-ante and not only ex-post) of individual

utility maximizing agents. Hence, we do not consider the self-optimization version of the

problem in this manuscript.

In our analysis, we will couple two queuing systems: a learning system, whose dispatcher

does not know the arrival and service rate apriori, and a genie-aided system, whose dispatcher

has full information of the model parameters. We refer to the corresponding algorithm and

dispatcher of the two systems as the learning algorithm, learning dispatcher and genie-aided

algorithm, genie-aided dispatcher, respectively. Our figure of metric at a given time t will be

the difference between the net expected profits of a genie-aided algorithm and the learning

algorithm, i.e., the expected regret.

Contributions: We propose a learning-based dispatching algorithm that achieves an O(1)

regret when (genie-aided) optimal algorithms use a non-zero threshold, and achieves an

8



O(ln1+ϵ(N)) regret for any specified ϵ > 0 when it is optimal to use threshold 0, where

N denotes the number of arrivals 1; see Remark 2.4.3 for a refinement on the achievable

regret. Our learning-based algorithm consists of batches with each batch being composed

of an optional forced exploration phase (phase 1) and an exploitation phase (phase 2) whose

length increases with batch index. The exploration phase is omitted if there are new samples

collected from the exploitation phase that just ended. Our learning algorithm uses samples

collected from all the exploitation phases as well as from any exploration phases; the former

is important if the exploration phase is omitted.

For the system studied in [Naor 1969], not all values of the unknown model parameters

result in a unique optimal static threshold policy. For some specific choices of the model

parameters, there exist two optimal static thresholds, and therefore all the policies that

stochastically alternate between the two static optimal thresholds also achieve the optimal

long-term average profit. As mentioned earlier, we are interested in analyzing the regret

– defined to be the difference between the expected profit of the learning and genie-aided

systems. When the optimal policy is unique, there is no ambiguity in the definition of the

regret as there is a fixed optimal policy to compare against. However, when there are multiple

policies that are optimal, we need to specify a particular optimal policy that we are comparing

against. Among the multiple optimal policies, we compare against a policy with a specific

way of randomizing between the two static optimal thresholds, and then we prove that we can

achieve similar regret as when there exists a unique optimal policy, which is of order O(1)

when both thresholds are positive, and of order O(ln1+ϵ(N)) for any specified ϵ > 0 when 0

is an optimal threshold and N is the number of customers that have arrived; Remark 2.4.3

applies with non-unique thresholds too.

In our setting, we do not exclude the case where the genie-aided dispatcher uses a

static threshold 0, and hence, rejects all customers. This leads to a balancing act for the

1We show how to translate the regret from the number of arrivals to a time horizon.
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dispatcher: quickly transitioning to reject all customers if the true threshold is 0 versus

admitting customers infinitely often otherwise (based on the optimal threshold), and all of this

while not being aware of the true optimal admission policy. With this in mind, for learning to

not stall, the existence of the exploration phase is crucial when the true threshold is positive.

A naive learning scheme that only uses the empirical average service time as an estimate

of the unknown parameter may perform poorly: a few extremely long service times at the

beginning may mislead the learning dispatcher to think that the service rate is low, and hence,

result in it not accepting customers into the queue even when the genie-aided dispatcher uses

a non-zero threshold; see plots in Section 2.6.

Related work: On the topic of finding optimal controls vis-a-vis individual and social

welfare maximization, there are many models that have studied generalizations of the model

introduced in [Naor 1969]. [Knudsen 1972] generalized the model in [Naor 1969] to multiple

servers with a non-linear cost for customers waiting in the system. The reward for customers

served is constant and customers arrive according to a Poisson process. The service times of

the customers are exponentially distributed and are independent of the identity of the currently

active server. [Lippman and Stidham 1977] studied a single queue model with Poisson arrivals

and non-decreasing, concave service rate with respect to the number of customers in the

system. The holding cost per unit of time for each customer is constant and the rewards

for the customers entering the system are i.i.d. random variables with finite mean. The

authors first considered the discounted net profit in the finite horizon case (in terms of the

total number of admissions and service completions), and then extended the analysis to the

non-discounted and infinite horizon case. [Johansen and Stidham 1980] studied the problem

of finding the optimal admission policy of a system with general service and arrival processes.

In the problem’s setting, the net profit is discounted and the authors considered the finite

horizon (in terms of the number of arriving customers) case. The rewards of the customers
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are i.i.d. random variables with finite mean and the non-negative waiting cost is a function of

the number of customers in the system as well as the total number of past arrivals. All the

works [Knudsen 1972; Lippman and Stidham 1977; Johansen and Stidham 1980] compared

the optimal policy for the individual and social welfare maximization problems and showed

that the optimal policies for both optimization problems are threshold policies that depend

on the rewards of customers. Moreover, they also showed that the optimal threshold for the

social welfare maximization problem is no greater than the individual maximization problem.

Assuming a random arrival rate, [Y. Chen and Hasenbein 2020] showed that the optimal

thresholds for the social welfare maximization problem are no larger than the individual

maximization problem when either the queue length is observable or unobservable. They also

showed that the optimal threshold for the revenue maximization problem may not coincide

with the social welfare maximization problem when the queue is unobservable.

Learning unknown parameters to operate optimally in queuing systems, and analyzing

queuing systems with model uncertainly have both been studied under various settings –

see the tutorial [Walton and Xu 2021] for a recent overview. Our paper focuses on regret

analysis in comparison with an optimal algorithm when the parameters are known. Under

this framework, there is growing literature considering different models and various types

of regret. [Adler, Moharrami, and V. Subramanian 2022] considered an Erlang-B blocking

system with unknown arrival and service rates, where a customer is either blocked or receives

service immediately. The authors proposed an algorithm that observes the system upon

arrivals and converges to the optimal policy that either admits all customers when there is a

free server, or blocks all customers. In our setting, the queue has infinite capacity, customers

may wait in the queue, and the dispatcher observes the whole history of the queue-length

when making a decision. The reward of admitting a customer in both our paper and [Adler,

Moharrami, and V. Subramanian 2022] is only realized in the future as it involves knowledge

of service times and (in our case also) waiting times, and the expected net profit requires
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knowledge of the arrival and service rates; this precludes the direct use of Reinforcement

Learning based methods discussed in [Sutton and Barto 2018] and [Bertsekas 2019]. Stability

is always assured in [Adler, Moharrami, and V. Subramanian 2022] since the maximum

system occupancy is bounded (finite number of servers with no queuing). The queuing

system is stable under any optimal policy for the problem we consider. However, under an

arbitrary learning dispatcher, the supremum of the queue-lengths may be unbounded when the

service rate is unknown. We will discuss the impact of this on our analysis in Section 2.2.3.

[Krishnasamy, Arapostathis, et al. 2018] first considered a discrete-time single-server queuing

system with multi-class customers and unknown service rates, and then modified and extended

their algorithms to parallel multi-server queuing systems, again with multi-class customers. In

the model customers of class i have (per unit-time) waiting cost ci when waiting in the queue

and Bernoulli services with the service success probability at server j being µi,j for class i

(i.e., geometrically distributed service-times). They proposed a cµ-rule-based algorithm that

achieves constant regret compared to using the cµ rule with the true service rates. The cµ

rule prioritizes the service of customers of type i at server j when ciµi,j is higher. Optimality

of the cµ rule has been proved in various settings, especially in the single server case; see

[W. E. Smith 1956; Shwartz and Makowski 1986; Buyukkoc, Varaiya, and Walrand 1985]

and [Cox and W. L. Smith 1961, Chapter 3]. [Zhong, Birge, and Ward 2022] considered

the problem of learning the optimal static scheduling policy in a multi-class many-server

queuing system with time-varying Poisson arrivals. Customers of type i have exponentially

distributed patience with rate θi and exponentially distributed service requirements with rate

µi. Unlike in [Krishnasamy, Arapostathis, et al. 2018], where stability is not guaranteed

for arbitrary scheduling policies, the impatience of the customers helps to stabilize the

queue without any extra requirements on the scheduling policy. The authors compared their

Learn-Then-Schedule learning algorithm with the cµ/θ-rule and showed that their learning

algorithm achieves a Θ(log(T )) regret where T is the (finite) time-horizon. For a discrete-
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time multi-class parallel-server system, when compared to the algorithm which matches a

queue to a server for which the success service probability is the highest among all possible

matches of this queue to any other server, [Krishnasamy, Sen, et al. 2021] used a multi-armed

bandit viewpoint and proposed Q-UCB and Q-Thompson sampling algorithms that achieve

O(poly(log(T ))/T ) queue-regret as the time horizon T goes to infinity. [Stahlbuhk, Shrader,

and Modiano 2021] focused on a single-server discrete-time queue, and showed the existence

of queue-length-based policies that can achieve an O(1) regret. When each server has its

own queue, [Choudhury et al. 2021] studied the discrete-time routing problem when service

rate and queue-length are not known. Taking a Markov Decision Process (MDP) viewpoint,

[Agrawal and R. Jia 2022] considered a discrete-time inventory control problem where orders

to be made arrive with delay and the decision-maker observes solely the sales and not the

demands. Thereafter, a holding cost is collected for each unit of the good that is in storage.

At each time step, the decision-maker needs to make new orders and aims to minimize the

total expected holding cost. The authors studied the problem of learning the proper units of

orders to be made at each time step when the distribution of the demand is unknown. The

algorithm they proposed achieves an O(
√
T ) regret (for horizon T ) when compared to the

best base-stock policy.

With the goal of stabilizing the queues and also minimizing penalties enforced in a discrete-

time system, [Neely, Rager, and La Porta 2012] proposed an algorithm that learns a set of

Max-Weight functionals that depend on the unknown underlying distribution, and make two-

stage decisions (which are shown to correspond to scheduling choices in illustrated examples).

The proposed algorithm stabilizes the system considered and achieves at most linear regret in

the accumulated penalties when compared to the optimal controller. Considering a scheduling

problem with unknown arrival and channel statistics, [Krishnasamy, Akhil, et al. 2018]

considered the transformation scheduling problem with activation cost. Under their proposed

explore-exploit policy with the exploration probability going to 0 slowly and together with
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a Max-Weight scheduling policy using learned statistics, the network is shown to be stable

and the algorithm achieves at most linear regret in the accumulated switching and activating

cost when comparing to the optimal scheduler with the knowledge of the model statistics.

The error bound on the long-term average in both works can be made arbitrarily small

(when compared to the optimal cost) by changing algorithm parameters. Instead of having

explicit exploration, [Yang, Srikant, and Ying 2023] studied a discrete-time multi-server

queuing system, and proposed a Max-Weight with discounted Upper Confidence Bound

(UCB) scheduling algorithm. Their main result shows the stability of the queuing system

under the proposed algorithm.

There is a growing literature that studies online dynamic pricing in service systems using

queuing models. We discuss some relevant recent work next. The authors of [X. Chen, Liu,

and Hong 2022] considered optimal pricing with congestion in a GI/GI/1 queue where there

is unit cost depends on the service rate, the arrival rate depends on the service fee, and where

customers experience congestion given by the average queue-length of the system. As the

cost as a function of the service rate and the dependence of the arrival rate in chosen price

is unknown, the authors proposed a gradient-based online learning algorithm that achieves

a sub-linear regret when compared with the accumulated profit obtained with the optimal

service rate and fee (using steady-state quantities). Also considering an online learning

version of finding a proper price amongst a finite set of prices, [H. Jia, Shi, and Shen 2022]

considered a multi-server queuing model with Poisson arrivals and exponential services

where the dependence of arrival and service rates price chosen is unknown (with the values

unknown as well but such that the load for each choice is strictly less than 1). Two online

batch processing algorithms based on UCB and Thompson sampling are proposed in [H. Jia,

Shi, and Shen 2022]. Both algorithms achieve sub-linear regret (optimal up to logarithmic

factors) when compared with the accumulated profit achieved by the optimal price choice.

In our work, we consider a paradigm where there’s uncertainty in the model parameters.
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A different type of uncertainty, often called Knightian uncertainty, was studied in [Atar,

Castiel, and Shadmi 2022], [Cohen 2019a], [Cohen 2019b], and [Cohen and Saha 2021] for

multi-class queuing systems in the heavy traffic regime. In these models, the decision-maker

is looking for robust control for a class of models. The uncertainty is modeled by including

an adversarial player who chooses a worst-case scenario. Hence, the robust control problem

is formulated via a stochastic game between the decision maker and the adverse player.

Optimality is then characterized by studying Stackelberg equilibria.

Outline of paper: In Section 2.2 we introduce the model, propose our learning algorithm

and state our main results. In Section 2.3, we state some preliminary results, including the

properties of the coupling introduced in Section 2.2. Section 2.4 and 2.5 are devoted to the

analysis of our learning algorithm and include the proof of our main results. Section 2.6

provides the finite-time performance of our algorithm via simulations. In section 2.7 we

summarize our result.

2.2 The learning problem and the main results

In this section, we introduce the stochastic model and the learning algorithm. Specifically,

in Section 2.2.1 we introduce the optimal admission control problem for the queuing system

studied in [Naor 1969]. In this model, all the parameters are known. The same model but

with unknown service and arrival rate is introduced in Section 2.2.2. We couple the models

with known and unknown parameters so that we can characterize the regret of our learning

dispatcher. Our learning algorithm is provided in Section 2.2.3. Finally, in Section 2.2.4 we

state the main results.
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2.2.1 The stochastic model with known parameters

[Naor 1969] studied the self-optimization and social welfare maximization problems for

the following model. Homogeneous customers arrive at a single server queue according to

a Poisson process with a rate 0 < λ < ∞. When a customer arrives, and only then, the

dispatcher decides whether to admit this customer to the queue or not. A customer that is

not admitted (i.e., rejected) leaves and does not return. An admitted customer remains in the

queue until being served. Upon service completion, the dispatcher receives a reward R > 0.

Once the service is completed, the customer leaves the queue. The dispatcher suffers from

a waiting/holding cost at the rate of C > 0 per time unit for each customer in the queue

until service completion. The service requirements for the customers are i.i.d. EXP(µ) (i.e.,

exponentially distributed random variables with the rate 0 < µ < ∞). The dispatcher’s goal

is to maximize the social welfare, i.e., to maximize the long-term average profit accrued

by serving customers – the ergodic-reward maximization problem. Let Q(t) denote the

queue-length of the system at time t, NA(t) denote the number of customers that arrived at

the system until and including time t, then for an admission policy ρ the long-term average

profit can be expressed as:

lim inf
T→∞

1

T

NA(T )∑
i=1

R1{Policy ρ admits customer i} −
∫ T

0

CQ(t)dt

 , (II.1)

where throughout the paper, 1A is the indicator function of event A: namely, 1A = 1 if A

happens and 0 otherwise.

The optimal admission policy of the dispatcher in [Naor 1969] is a static threshold policy.

That is, there is a threshold that depends on the parameters of the model, such that the

dispatcher admits an arriving customer if and only if the queue-length upon arrival is strictly

below this threshold. [Naor 1969] studied optimal admission control for the ergodic cost
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minimization problem by choosing the best threshold value among all possible thresholds.

When the dispatcher uses a static threshold policy with a threshold K, the result is an

M/M/1/K queueing system. The queue-length process of such a system has a stationary

distribution and is also ergodic. Note that the optimal threshold can then be determined by

computing the expected reward using the stationary distribution of the M/M/1/K queueing

system for all possible values of K. Using this logic [Naor 1969] characterized the optimal

threshold via the function V : N× (0,∞)2 → [0,∞), given by:

V (K, y, z) =


K(y−z)−z(1−(z/y)K)

(y−z)2
, if y ̸= z,

K(K+1)
2y

, if y = z.

(II.2)

The following proposition states a few properties of this function V (·, ·, ·).

Proposition 2.2.1. The following hold:

1. For all fixed K, the function V (K, ·, ·) is continuous in its domain.

2. For all fixed (y, z), V (K, y, z) is strictly increasing in K.

Proof. Note that when K = 0, V (0, y, z) = 0 for all (y, z) ∈ (0,∞)2. Consider any point

(K, y, z) ∈ N+ × (0,∞)2. In order to prove the continuity of V , it will be easier to rely on an

alternative formulation of V based on the stationary distribution which we now provide. Let

pKi denote the stationary probability of having the queue-length equal to i and let EK denote

the stationary expected queue-length when using the threshold policy with a threshold K.

One can show that:

V (K, y, z) =
EK−1 − EK

pKK − pK−1
K−1

1

z
, where pKi =

(z/y)i∑K
i=0(z/y)

i
and EK =

K∑
i=0

ipKi .

Clearly, when (y, z) ∈ (0,∞)2, 1/z, EK , EK−1, pKK and pK−1
K−1 are all continuous in (y, z).

Moreover, pK−1
K−1 ̸= pKK for all (y, z) ∈ (0,∞)2.
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Now, let us consider the function V (K, y, z) for any fixed (y, z) ∈ (0,∞)2. To show

the monotonic increasing property, we consider the function f : [0,∞) → [0,∞), f(K) =

V (K, y, z) by extending the definition of V (·, ·, ·) to real-valued K. From (II.2), it follows

that when y = z, f(K) is strictly increasing. Now, we focus on the case y ̸= z. Computing

the derivative of f(K), we get:

f ′(K) =
(y − z) + z(z/y)K ln(z/y)

(y − z)2
.

Using the inequality ln(x) > 1− 1/x for all x > 0, x ̸= 1, we get:

(y − z) + z(z/y)K ln(z/y) > (y − z) + z(z/y)K(1− y/z) = (y − z)(1− (z/y)K) > 0,

for all y ̸= z. This shows that f(K) is strictly increasing, which implies that V (K, y, z) is

strictly increasing in K for all fixed (y, z) ∈ (0,∞)2.

Using these properties [Naor 1969] showed that for every service rate µ and arrival rate λ

the following inequalities for integer x

V (x, µ, λ) ≤ R

C
< V (x+ 1, µ, λ) (II.3)

have a unique solution x = K̄, and this K̄ is an optimal admittance threshold for the problem

considered. Moreover, when V
(
K̄, µ, λ

)
< R/C, the optimal threshold is unique. However,

when V
(
K̄, µ, λ

)
= R/C, both K̄ and K̄ − 1 are optimal thresholds; hence, any policy that

randomizes between the two thresholds at each arrival is also optimal2.

Let m := 1/µ and ν := 1/λ denote the average service time and the average inter-arrival

times respectively. Consider a pair of the true service and arrival rates (µ, λ) for which

2We discuss what we mean by “optimal" in Remark 2.5.1 after we specify the strategy to which we compare
our learning algorithm in the case that there are multiple optimal thresholds.

18



there exists a unique optimal threshold and the corresponding K̄ satisfying (II.3) with strict

inequalities. Proposition 2.2.1 implies that there exist δ1 > 0 and δ2 > 0, both depending on

µ and λ, such that for all pairs of points (m̂, ν̂), where

m− δ1 < m̂ < m+ δ1 and ν − δ2 < ν̂ < ν + δ2, (II.4)

we have:

V (K̄, 1/m̂, 1/ν̂) <
R

C
< V (K̄ + 1, 1/m̂, 1/ν̂). (II.5)

That is, if one can estimate the average service time and the average inter-arrival time

accurately so the inequality (II.4) is satisfied, one can obtain the corresponding K̄ by solving

(II.3) using 1/m̂ and 1/ν̂ instead of µ and λ.

When equality holds in (II.3), for pairs of the true service and arrival rates (µ, λ) and

the corresponding K̄ that satisfies V (K̄, µ, λ) = R/C, there exist δ̃1 > 0 and δ̃2 > 0, both

depending on µ and λ, such that for all pairs of points (m̂, v̂) where

m− δ̃1 < m̂ < m+ δ̃1 and ν − δ̃2 < ν̂ < ν + δ̃2, (II.6)

we have:

V (K̄ − 1, 1/m̂, 1/ν̂) <
R

C
< V (K̄ + 1, 1/m̂, 1/ν̂). (II.7)

That is, as long as the estimated average service time and average inter-arrival time are

accurate enough to satisfy inequality (II.6), the integer solved from inequality (II.3) using

1/m̂ and 1/ν̂ in place of µ and λ will be in the set of optimal thresholds, that is, {K̄ − 1, K̄}.
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2.2.2 The learning system and the genie-aided system

We assume that the reward R and the cost per time unit C are known to the learning

dispatcher, but neither the service rate µ nor the arrival rate λ. Consider again the potential

application of job dispatch for online computing demands. When the computation clusters are

provided by a third-party cloud computing platform, the dispatcher of the online computing

jobs may not have knowledge about the configuration of the servers and their service rate. The

dispatcher may also be unfamiliar with the customers who demand services, and therefore may

only possess limited knowledge of the arrival rate. In our model, the dispatcher continuously

observes the queue-length and past admission control decisions. Hence, we restrict the

dispatcher to admission controls that at the time of a new arrival, admit or reject based on the

entire history of the queue-length until the arrival time, and also the past admission control

decisions. We call such controls admissible. Note that based on the FIFO serving discipline

that’s used, we can infer the time to enter service for all customers entering service by time t,

and also the departure epochs for all the customers departing (after completing service) by t.

Therefore, when a new customer arrives, the dispatcher can estimate the mean service time

(also the service rate) using the service times of the customers that have departed before the

new arrival, and use it for admission control. Further, knowledge of all past admission control

decisions enables the dispatcher to obtain information on all past inter-arrival times, which

will then be used to compute the statistics for the arrival process, i.e., the arrival rate.

We measure the performance of a policy chosen by the learning dispatcher by the regret it

incurs in comparison to an optimal policy. Specifically, we use the difference between the

expected net profit under the given learning-based control/policy and the best expected net

profit the dispatcher could have obtained had it known the parameters µ and λ. To rigorously

define the regret, we introduce some relevant processes for both the genie-aided and the

learning systems.
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We will use the marker ¯ to denote processes associated with the genie-aided system

(dispatcher knows µ). The processes without a marker are associated with the learning system

(dispatcher does not know µ). We let

• Q̄(t) and Q(t) denote the queue-length at time t;

• Q̄i and Qi denote the queue-length right before the arrival of the ith customer;

• N̄A(t) and NA(t) denote the number of customers that have arrived at the system until and

including time t;

• N̄join(t) and Njoin(t) denote the number of customers that have joined the queue until and

including time t;

• T̄A
i and TA

i denote the arrival time of the ith customer to the system (i.e., T̄A
i = inf{t :

N̄A(t) ≥ i} and TA
i = inf{t : NA(t) ≥ i}, respectively);

• K̄i and Ki denote the threshold policy used by the respective dispatchers at the arrival of

the ith customer.

2.2.2.1 A coupling between the two systems

Consider a probability space (Ω,F ,P) rich enough to support two independent Poisson

processes (P (t))t≥0 and (NA(t))t≥0 with rates µ and λ, respectively. Set N̄A = NA so the

arrival processes to both systems are the same. Let T PD
i denote the ith jump time of P . The

service requirements of the customers that are being served at time t by all systems to be

analyzed are determined as follows: the head of the line customer of each system (assuming

not empty) completes her service at the time of the next jump of P (t). Note that it may be the

case that the services of the currently in-service customers are initiated at different times for

the learning and genie-aided systems. Nevertheless, because the exponential distribution is

memoryless, this does not change the distribution of the random process corresponding to the
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two systems, and in particular the distribution of the customer’s service times. In other words,

the time between the beginning of a service of a customer and the next jump of P is EXP(µ)

distributed. Hence, we refer to P (t) as the potential departure process, and to {T PD
i }i≥1

as the potential departure times, i.e., when there is a jump in P , and the queue-length is

larger than 0, there will be a departure of a customer, but when the queue-length is 0, i.e., no

customer is being served, this potential departure is wasted. Therefore, {P (TA
i )−P (TA

i−1)}i≥1

is the number of potential services between two consecutive arrivals for both systems.

Now, we will use the underlying processes N̄A = NA and P to couple the queue-length

processes of both systems assuming that a threshold policy is used in each system. Consider a

sequence of random variables {Ki}i≥0 taking vales in N, such that each Ki is measurable with

respect to the filtration generated by the queue-length until time TA
i : since TA

i is a stopping

time for the filtration being used, we can define the σ-algebra FTA
i
:= Fi (for short) using

the original filtration FT = σ(Q(t) : t ≤ T ) in the usual way (See [Durrett 2016]). We use

{Ki}i≥0 as a sequence of thresholds. Similarly, we use {K̄i}i≥0 to denote the sequence of

thresholds used by the genie-aided dispatcher. We refer to any such {Ki}i≥0 as a threshold

policy. For the coupled genie-aided and learning systems, we have the following: for any

i ≥ 1,

Qi =
(
Qi−1 + 1{Qi−1<Ki−1} − (P (TA

i )− P (TA
i−1))

)+
,

and Q̄i =
(
Q̄i−1 + 1{Q̄i−1<K̄i−1} − (P (TA

i )− P (TA
i−1))

)+
,

where for x ∈ R, (x)+ := max(x, 0). Similarly, we have:

Q(t) =
(
Qn + 1{Qn<Kn} − (P (t)− P (TA

n ))
)+

, (II.8)

and Q̄(t) =
(
Q̄n + 1{Q̄n<K̄n} − (P (t)− P (TA

n ))
)+

, (II.9)
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where n := max{m : TA
m < t}. Once the initial queue-lengths Q0 and Q̄0 are specified in

Z+, by induction one can show that the processes {Qi}i≥0 and {Q̄i}i≥0 are well-defined, and

using these {Qt}t≥0 and {Q̄t}t≥0 are also well-defined.

2.2.2.2 The regret.

Let E[·] be expectation associated with (Ω,F ,P). Then, the regret is given by

G(t) := E
[
R N̄join(t)− C

∫ t

0

Q̄(u)du−
(
RNjoin(t)− C

∫ t

0

Q(u)du

)]
.

This definition of the regret compares the net reward processes of the learning and genie-aided

systems: if the learning-based admission control algorithm achieves the same long-term

average profit, then this will allow us to estimate the sub-linear offset. The genie-aided

dispatcher uses a static threshold policy that maximizes the long-term average profit described

in (II.1). Note that when equality does not hold in (II.3), the genie-aided policy is unique so

there is no ambiguity in the definition of the regret. In this case, K̄i ≡ K̄, where K̄ uniquely

satisfies inequality (II.3). However, when equality holds in (II.3), the genie-aided policy is

not unique. We will compare our learning algorithm with a particular optimal genie-aided

system that will be specified in Section 2.5.

Consider a threshold policy for the learning system, {Ki}i≥0, and a threshold policy for

the genie-aided system, {K̄i}i≥0, the regret can be estimated as:

G(t) = E

R NA(t)∑
i=1

(
1{Q̄i<K̄i} − 1{Qi<Ki}

)− E
[
C

∫ t

0

(
Q̄(u)−Q(u)

)
du

]

≤ E

R NA(t)∑
i=1

∣∣1{Q̄i<K̄i} − 1{Qi<Ki}
∣∣+ E

[
C

∫ t

0

∣∣∣Q̄(u)−Q(u)
∣∣∣du] . (II.10)
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From (II.8) and (II.9), we note that

∣∣Q̄(t)−Q(t)
∣∣ ≤ ∣∣Q̄n + 1{Q̄n<K̄n} −

(
Qn + 1{Qn<Kn}

)∣∣ .
This expression helps us to get an upper bound for the integral

∫ t

0
|Q̄(u)−Q(u)|du in (II.10)

as follows:

t∫
0

∣∣∣Q̄(u)−Q(u)
∣∣∣du ≤

NA(t)∑
i=0

(
TA
i+1 − TA

i

) (
|Q̄i −Qi|+|1{Q̄i<K̄i} − 1{Qi<Ki}|

)
.

Substituting the above bound in (II.10), we get:

G(t) ≤ E

R NA(t)∑
i=1

∣∣∣1{Q̄i<K̄i} − 1{Qi<Ki}

∣∣∣
+ E

C NA(t)∑
i=0

(TA
i+1 − TA

i )
∣∣∣Q̄i −Qi

∣∣∣


+ E

C NA(t)∑
i=0

(
TA
i+1 − TA

i

) ∣∣∣1{Q̄i<K̄i} − 1{Qi<Ki}

∣∣∣
 . (II.11)

Note that the (future) inter-arrival time TA
i+1 − TA

i is independent of the queue-length of the

learning and genie-aided systems Qi and Q̄i, respectively, as well as the threshold used at the

arrival of the ith customer Ki and K̄i. In particular, TA
i+1 − TA

i is independent of |Q̄i −Qi|

and |1{Q̄i<K̄i} − 1{Qi<Ki}|. Then as the increments of the Poisson process are independent,

we have:

E

C NA(t)∑
i=0

(TA
i+1 − TA

i )
∣∣∣Q̄i −Qi

∣∣∣
 = E

[
C

∞∑
i=0

(TA
i+1 − TA

i )
∣∣∣Q̄i −Qi

∣∣∣1{TA
i ≤t}

]

= C

∞∑
i=0

E
[
(TA

i+1 − TA
i )
∣∣∣Q̄i −Qi

∣∣∣1{TA
i ≤t}

]
(MCT)

= C

∞∑
i=0

E
[
1

λ

∣∣∣Q̄i −Qi

∣∣∣1{TA
i ≤t}

]
(By independence)
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= E

[
C

λ

∞∑
i=0

∣∣∣Q̄i −Qi

∣∣∣1{TA
i ≤t}

]
(MCT)

=
C

λ
E

NA(t)∑
i=0

∣∣∣Q̄i −Qi

∣∣∣
 ,

where MCT stands for the Monotone Convergence Theorem. Similarly, we can also simplify

E
[
C
∑NA(t)

i=0 (TA
i+1 − TA

i )
∣∣∣1{Q̄i<K̄i} − 1{Qi<Ki}

∣∣∣] to get

G(t) ≤ E

(R +
C

λ

)NA(t)∑
i=1

∣∣1{Q̄i<K̄i} − 1{Qi<Ki}
∣∣+ E

C
λ

NA(t)∑
i=0

∣∣∣Q̄i −Qi

∣∣∣


≤
(
R +

C

λ

)
E

NA(t)∑
i=1

∣∣1{Q̄i<K̄i} − 1{Qi<Ki}
∣∣+ ∣∣∣Q̄i −Qi

∣∣∣
 . (II.12)

Following this bound, from now on, we analyze the systems at the arrival epochs {TA
i }i≥1.

With the shift to analyzing the systems at arrival epochs, we will characterize the regret in

terms of the total number of arrivals N . We use G̃(N) := G(TA
N ) to denote the total regret

accumulated up to the arrival of the N th customer. Recall that m = 1/µ denote the average

service time and ν = 1/λ denote the inter-arrival time. We assume that 0 < m < ∞ and

0 < ν < ∞: we allow for the average service time to be large, and it is possible to have

K̄ = 0 where the optimal policy for the genie-aided system is to reject any arriving customer.

Note that when K̄ = 0, equality in (II.3) is not possible for R,C > 0, therefore the optimal

policy is unique, and K̄i = K̄ = 0 for all i ≥ 0. If the genie-aided dispatcher always admits

customers when the queue is empty and the learning dispatcher knows this, then the algorithm

design would be simpler: there is no need to balance exploration and exploitation explicitly.

With this knowledge, a learning dispatcher can achieve constant regret using a policy that

always accepts customers when the queue is empty and uses a threshold computed by solving

the inequalities (II.3) using the empirical service rate otherwise. The conflicting requirements
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for a learning algorithm in the two different regimes – K̄ = 0 (stop admitting customers soon)

versus K̄ > 0 (admit customers infinitely often but at the correct rate via the right choice of

the threshold) – are critical to the difficulty of our problem and its analysis.

2.2.3 The learning algorithm

We propose (and study) Algorithm 1 for learning-based social-welfare maximizing dis-

patch that consists of a sequence of batches, where each batch has two phases: phase 1 for

exploration and phase 2 for exploitation. For customer i who arrives during phase 1 (assuming

that a phase 1 is used), we can assume that Ki = ∞ as this customer is admitted in the

queue no matter the queue-length at this arrival. However, in our algorithm, we will fix any

exploration phase (if used) for all batches to last for exactly l1 arrivals, and so, the threshold

Ki is effectively Ki = l1 for all arrivals in any phase 1. At the beginning of phase 2 of the jth

batch K(j) is computed by finding the minimum between K∗(j) and the integer that solves

inequalities V (x, 1/m̂, 1/ν̂) ≤ R/C < V (x + 1, 1/m̂, 1/ν̂). The computed K(j) will be

used for the entire exploitation phase of batch j. That is, for customers i1 and i2 who arrive

during phase 2 of the jth batch, Ki1 = Ki2 = K(j) and these customers are admitted to the

queue when the queue-length seen at their arrival is strictly less than K(j). For technical

reasons, we will insist that at the termination of phase 2, the queue is empty. As the batch

number increases, our algorithm will extend the length of the exploitation phase and reduce

the occurrences of the exploration phases.

Here is some notation that we use in the algorithm:

• l1: A positive integer representing the length of phase 1, l1 > 1;

• l2: A positive integer representing the initial minimum length of phase 2, l2 ≥ l1;

• i: A positive integer which is the index of the arriving customer from the very beginning. It

is used to update the belief of the average arrival rate;
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Algorithm 1: Learning-based customer dispatch, with unknown service and arrival
rate.
i = 0; j = 0; αj grows at polynomial rate in j ; s = 0;
K∗(j) = max{⌊ln(j)⌋, 0}+ l1 +Q0.

while i ≤ N do
j = j + 1;
% If the phase 1 of the jth batch happens, it sees l1 customers.
if j == 1 or (K(j − 1) == 0 and Bj == 1) then

for the next l1 customers do
i = i+ 1;
% we update the belief of the average arrival time when there is a

new arrival.
ν̂ = ν̂ + inter-arrival time observed −ν̂

i
;

Exploration phase: customers always join the queue, Ki = l1.
end
if there are Scnt > 0 new services completed during this phase 1 then

for cnt = 1 to Scnt do
s = s+ 1;
m̂ = m̂+ service time of the sth customer that completed service−m̂

s
;

end
end

end
Compute integer K, which satisfies
V (K, 1/m̂, 1/ν̂) ≤ R/C < V (K + 1, 1/m̂, 1/ν̂);

Set K(j) = min{K∗(j), K};
count = 0 ;
% The phase 2 of the jth batch sees at least αjl2 customers. The

queue-length is 0 when phase 2 ends.
while count < αjl2 or Qi > 0 do

count = count +1;
i = i+ 1;
ν̂ = ν̂ + inter-arrival time observed −ν̂

i
;

Customers join the queue if and only if the queue-length is smaller than K(j),
and so Ki = K(j).

end
if there are Scnt > 0 new services completed during this phase 2 then

for cnt = 1 to Scnt do
s = s+ 1;
m̂ = m̂+ service time of the sth customer that completed service−m̂

s
;

end
end

end
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• j: A positive integer that indices the batch number;

• αj ≥ 1: Growth factor for the length of phase 2 in the jth batch which ensures that the

phase 2 duration lasts for at least ⌈αjl2⌉ arrivals;

• Bj: A Bernoulli random variable that is independent of everything else, where P [Bj = 1] =

1 for j = 1, and P [Bj = 1] = lnϵ(j)/j for j > 1 and fixed ϵ > 0. If the threshold used

in the previous batch (the (j − 1)th batch) is 0, the random variable Bj will be used to

determine if phase 1 will happen;

• K(j): the threshold used by the learning dispatcher during phase 2 of the jth batch;

• K∗(j): the upper bound of the threshold used by the learning algorithm. This parameter

slowly increases to infinity, and is chosen to be larger than the initial queue-length, Q0, and

the length of phase 1, i.e., l1;

• Scnt: A counter which counts for the number of completed services in each phase. This

counter is used to update the belief of the average service rate after each phase.

Note that Algorithm 1 enforces an exploration phase only for the first batch, and then

utilizes one in a probabilistic manner when the learned threshold in the previous batch

is 0. When the genie-aided system uses a non-zero threshold, as the number of services

experienced by the customers admitted by the dispatcher increases, the threshold learned by

the algorithm will quickly become non-zero for phase 2. In this scenario, the exploration phase

can potentially be eschewed, and, in fact, should be used more and more infrequently as time

progresses so that the regret is not large. In fact, in our algorithm we completely eliminate

a phase 1 for a batch if in the previous batch the threshold of its phase 2 is positive: some

customers will be admitted in a phase 2 with a positive threshold so new service time estimates

will obtain, and on the contrary, a phase 2 with a 0 threshold will not admit any customers.

However, allowing for an exploration phase is necessary. When the genie-aided system uses

28



a non-zero threshold, it is possible that the learning system sees the first few service times

being long enough so that the learned threshold is 0. Then, without the exploration phase,

the learning system will stop admitting any customers to the queue, and therefore, will not

get any more samples to update its false belief. Although this is a low-probability event, the

probability of this happening is non-negligible for any fixed length l1 of the exploration.

The frequency of the exploration phase in our algorithm is controlled by the distribution of

Bj . Our theoretical regret analysis uses P [Bj = 1] = ln(j)/j. When the genie-aided system

uses the threshold 0, the exploration phase should not happen too often. This is because every

time the learning system admits a customer into the queue, the regret increases. Hence, this

regime demands that phase 1 be eschewed as fast as possible. However, as the algorithm is

unaware of the parameter regime (even whether the optimal threshold is zero or non-zero),

we necessarily need enough phase 1s when the threshold from the previous batch is 0. Hence,

to combat the regret accumulation from phase 1s when the optimal policy is not to admit

any arrivals, we increase the length of phase 2 (the exploitation phase) as the batch count

increases. The control of the length of phase 2 of the jth batch is achieved using parameter

αj: phase 2 of the jth batch will last for at least ⌈αjl2⌉ arrivals. Whereas we do require that

αj grows to infinity, we do not want it to grow too fast as this could lead to poor performance:

when the thresholds used by the learning and genie-aided systems do not match in a batch,

there may be too much regret accumulated during that batch if there is a large value of αj for

small j (when the probability of an error is higher).

Note that K∗(j) = max{⌊ln(j)⌋, 0}+ l1 +Q0 is a deterministic function, with K∗(j) no

smaller than l1 and the initial queue-length of the learning system Q0 (when Q0 is chosen

in a deterministic manner). We also note that limj→∞K∗(j) = ∞. This ensures that as the

number of batches increases, eventually, the (true) optimal thresholds will be smaller than this

upper bound. Note that for all j ≥ ⌈eK̄⌉ batches, K∗(j) ≥ K̄. Therefore, if the estimations

on the service and arrival rates are accurate during batch j for j ≥ ⌈eK̄⌉, then the learning
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dispatcher will be using K̄ during phase 2. Although ⌈eK̄⌉ can be a large number, it is a fixed

constant (fixing µ and λ), and the total expected regret accumulated during the first ⌊eK̄⌋

batches will also be a constant (see Remark 2.4.1). Therefore, in our analysis we focus our

analysis on the regret accumulated when j ≥ ⌈eK̄⌉.

2.2.4 Main results: Regret bounds for Algorithm 1

Theorem 2.2.1. Assume that the initial queue-length for the learning and genie-aided systems

are the same, and 0 is not in the set of optimal thresholds used by the genie-aided system.

Then, Algorithm 1 achieves O(1) regret as N → ∞, where N is the total number of arrivals.

Theorem 2.2.2. Assume that the initial queue-length for the learning and genie-aided systems

are the same, and 0 is in the set of optimal thresholds used by the genie-aided system. Then,

Algorithm 1 achieves O(ln1+ϵ(N)) regret for any specified ϵ > 0 as N → ∞, where N is the

total number of arriving customers.

When the learning and genie-aided systems have different initial queue-lengths, as stated

in Remark 2.3.1 below, the regret characterization still holds. This is done by introducing

another genie-aided system that has the same initial queue-length as the learning system.

Thereafter, we will use Proposition 2.3.1 (discussed in the following section), which shows

that if two coupled systems use the same threshold policy, then the ordering of their queue-

lengths is preserved. We end this section by pointing out that the regret characterization in

Theorem 2.2.2 can be changed to O(log1+ϵ(N)) for all ϵ > 0 as N → ∞; see the discussion

in Remark 2.4.3.

2.3 Preliminary results

We will use a few coupled systems to prove the main results. Besides the coupling

between the learning and the genie-aided systems mentioned before, we will also compare
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the queue-length process of the learning system with systems using the same threshold policy

but with different initial queue-lengths. The following results are proved for systems coupled

by having the same arrival process and with the service time of the customers in the queue of

both systems begin determined by the same Poisson process from t = 0.

The next proposition states that the order of the queue-lengths of two coupled systems

is preserved over time if their threshold policies satisfy certain conditions. This is a core

preliminary result that is used in different ways, and helps us establish our main results in

considerable generality. Consider two systems G and L coupled through process {NA(t)}t≥0

and {P (t)}t≥0 as described in Section 2.2.2.1, but with possibly different initial queue-lengths

and (threshold) admission policies. Let QG(t) and QL(t) denote the queue-length at time t of

the two systems, respectively. Let {KG
i }i≥0 and {KL

i }i≥0 denote the threshold policies of the

two systems, respectively.

Proposition 2.3.1.

1. If the dispatchers for the two coupled systems G and L use the same threshold admission

policy for all arrivals, i.e., KG
i = KL

i for all i, then with probability 1, the order of their

queue-lengths is preserved for all time, that is,

QG(0) ≥ QL(0) =⇒ QG(t) ≥ QL(t), ∀t ≥ 0. (II.13)

2. Assume that both systems have the same initial queue-length q := QG(0) = QL(0). Let

DG(t) and DL(t) denote the number of departures up to time t for the systems G and L,

respectively. If KG
i ≥ KL

i for all i, then with probability 1,

QG(t) ≥ QL(t) and DG(t) ≥ DL(t), ∀t ≥ 0. (II.14)

Moreover, every customer that joins the queue in the system L necessarily joins the queue
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in the system G when static thresholds KG ≥ KL are used in the two systems, respectively,

and q ≤ KL.

Before proving the proposition, we state a useful corollary.

Corollary 2.3.1. Assume that phase 1 of the jth batch did not happen and the queue-length

processes of the learning and genie-aided systems are coupled. If the two systems use the

same threshold during the phase 2 of the jth batch and if the queue-length of the genie-aided

system hits 0 during this phase 2, then the queue-lengths of both systems are 0 at the end of

this phase 2.

Proof of Corollary 2.3.1. Recall that under the proposed algorithm, the queue-length of the

learning system is 0 at the end of each phase 2. Hence, the result follows immediately by

Proposition 2.3.1.

Proof of Proposition 2.3.1. Let us start by proving the first part of Proposition 2.3.1. Since

the queue-length process is a jump process, it is sufficient to show that after each jump, the

queue-lengths of the two systems satisfy (II.13). Note that the set of potential jump times

is the union of the arrival times (jumps times in the arrival process) and the jump times in

the Poisson process that determines the service process. Let {tl}l≥0 = {TA
i }i≥0 ∪ {T PD

i }i≥0

denote the ordered countable set of potential jump times of the queue-length process, where

tl−1 < tl. By the superposition property of independent Poisson processes, with probability

1, {TA
i }i ∩ {T PD

i }i = ∅, so that at any time instant tl, either there is an arrival, or there is

a potential departure. Let QG
l and QL

l denote the queue-lengths immediately before the lth

potential jump of the system G and L, respectively. Also, let QG
0 and QL

0 , respectively, denote

the initial queue-length of the two systems.

The proof follows by induction. Fix n > 0 and assume QG
l ≥ QL

l holds for all l ≤ n.

Immediately after time tn, one of the following can happen:
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• If QG
n = QL

n : In case the jump at time tn is due to a service completion or a service wasted,

QG
n+1 = QL

n+1. If the jump is due to a new arriving customer, the dispatcher will make the

same choice in both systems, and QG
n+1 = QL

n+1 holds.

• If QG
n > QL

n ≥ 0: In case the jump at time tn is due to a service completion or a service

wasted, QG
n+1 ≥ QL

n+1. Otherwise, the jump is due to an arriving customer. We have

QG
n+1 ≥ QG

n ≥ QL
n + 1 ≥ QL

n+1.

Now, let us consider the second part of Proposition 2.3.1. First, we show that QG(t) ≥

QL(t) holds for all t. Again, it is sufficient to show QG
l ≥ QL

l for every l > 0, the proof of

which follows by induction. Fix n > 0 and assume that QG
l ≥ QL

l for all l ≤ n. Immediately

after tn, one of the following can happen:

• If QG
n = QL

n : In case the jump at time tn is due to a service completion or a service wasted,

then QG
n+1 = QL

n+1. Otherwise, the jump is due to an arriving customer. Since KG
i ≥ KL

i

for all i, this customer is admitted in system L only if also admitted in system G and we

have QG
n+1 ≥ QL

n+1.

• If QG
n > QL

n ≥ 0: As before, either both processes jump in the same direction at time tn or

only one of them jumps (which would be the L system). In either case, QG
n+1 ≥ QL

n+1.

Since QG(t) ≥ QL(t) holds for all t it follows that whenever there is a service completion in

system L then there is one also in G. Therefore, DG(t) ≥ DL(t).

Now assume that the static thresholds KG and KL are used in the systems G and L,

respectively. To show that every customer who joins the queue in system L also joins the

queue in system G, we will show first that QG(t) − QL(t) ≤ KG −KL. Fix a n > 0 and

assume that QG
l − QL

l ≤ KG −KL holds for all l ≤ n. One of the following can happen

immediately after time tn:

• If QG
n − QL

n = KG − KL: Under this case, either we have {QG
n = KG, QL

n = KL}, or

{QL
n ≤ QG

n < KG, QL
n < KL}. Then, only when QG

n = KG −KL, QL
n = 0, and the jump
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is due to a service completion or service being wasted, the queue-length processes of the

two systems evolve differently: system G has a service completion but not L. However,

QG
n+1 −QL

n+1 ≤ KG −KL still holds.

• If QG
n −QL

n < KG−KL: Either we have {QL
n ≤ QG

n < KG, QL
n = KL}, or {QL

n ≤ QG
n <

KG, QL
n < KL}. When {QL

n ≤ QG
n < KG, QL

n = KL}, if the jump is due to an arriving

customer, the dispatcher in the system G will assign this customer to the queue but not

the dispatcher in the system L. Otherwise, both systems have a service completion. Then,

QG
n+1 − QL

n+1 ≤ KG − KL holds in either case. When {QL
n ≤ QG

n < KG, QL
n < KL},

if the jump is due to a new arriving customer, the dispatchers in both systems admit the

customers to the queue. Otherwise, the jump is due to a service completion or service being

wasted, where it is possible that only in system G there is a service completion. Again,

QG
n+1 −QL

n+1 ≤ KG −KL holds in either cases.

At the time TA
l , which corresponds to the arrival of the lth customer, assume that this customer

is admitted to the queue in the system L but not in G. We must have QL
l < KL and QG

l = KG,

i.e., QG
l − QL

l > KG −KL. This is a contradiction. Therefore, for any arriving customer,

either the dispatchers in both systems G and L make the same admission decision, or only

the dispatcher in the system G admits this customer. As a result, any customer who joins the

queue in the system L necessarily joins the queue in the system G.

Remark 2.3.1. In case the genie-aided system and the learning system have different initial

queue-lengths, we can introduce a second genie-aided system that has the same initial queue-

length as the learning system and is also coupled with the two systems using the procedure

from Section 2.2.2.1. Let Q′
i denote the queue-length of this new system right before the ith

arrival customer, G′(N) denote the regret of the learning algorithm with respect to the second
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genie-aided system. Using the triangle inequality and equation (II.12), we get:

G̃(N) ≤
(
R +

C

λ

)
E

[
N∑
i=1

∣∣∣1{Q̄i<K̄i} − 1{Q′
i<K̄i}

∣∣∣+ ∣∣∣Q̄i −Q′
i

∣∣∣]+G′(N).

Theorems 2.2.1 and 2.2.2 provide regret bounds for G′(N). By Proposition 2.3.1, the orders of

Q′
i and Q̄i are preserved, thus after both queue-length processes hit 0, Q′

i and Q̄i will evolve

together. Since the expected time of both queue-length processes to hit 0 simultaneously is

finite, the regret characterization in Theorems 2.2.1 and 2.2.2 still holds.

2.4 Unique admittance threshold case

In this section, we analyze the case where (II.3) holds with strict inequality. In this case,

the genie-aided dispatcher uses a unique optimal threshold K̄, and the resulting queue-length

process has a stationary distribution.

In section 2.4.1, we start by providing an estimate for the number of samples of completed

service times that the learning algorithm uses in order to estimate the average service time,

and then to update the threshold policy for each phase 2: see Proposition 2.4.1. We use it to

estimate the probability that the learning system can obtain an accurate estimate of the average

service time: see Proposition 2.4.2. Combining the above estimate with the probability that the

learning system can obtain an accurate estimation on the arrival rate, see Proposition 2.4.4, we

can bound the probability of the learning system using the same threshold as the genie-aided

system; see Corollary 2.4.1. In section 2.4.2, we estimate the regret of the learning algorithm

because of having phase 1 (if used) and using incorrect thresholds in phase 2 separately.

Proposition 2.4.6 we consider “bad" events where there will be regret accumulated during

phase 2 because of using the wrong threshold. In addition, we will use an upper bound on

the difference between the queue-length processes of the learning and genie-aided system to

bound the regret accumulated because of the existence of phase 1 (if used) in Lemma 2.4.1
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and because of using the wrong threshold during phase 2 in Lemma 2.4.2. The proof of

Theorem 2.2.1 and 2.2.2 are stated in section 2.4.3 and 2.4.4 respectively.

2.4.1 Sample estimation

First, we state and prove some results on the number of samples the learning dispatcher

gets on the inter-arrival times and completed service times, and the resulting implications on

the estimates of the arrival and service rates.

In the following proposition, we show that with high probability, the number of samples

of completed service times that the learning algorithm can observe is sufficiently large at the

beginning of the phase 2 of the jth batch. For this, we use the fact that (by design) each phase

2 is longer than phase 1.

Proposition 2.4.1. Let Dj denote the number of observed service times up to the beginning

of phase 2 of the jth batch. Then,

P
[
Dj ≤

l1 ln
1+ϵ(j)µ

4(1 + ϵ)(λ+ µ)

]
≤ exp

(
− l1 ln

1+ϵ(j)µ

16(1 + ϵ)(λ+ µ)

)
+ exp

(
−C0(ϵ)

8
− ln1+ϵ(j)

8(1 + ϵ)

)
,

where C0(ϵ) := 1 +
∑⌊eϵ⌋

i=2
lnϵ(i)

i
− ln1+ϵ(⌈eϵ⌉)

1+ϵ
is a constant depending on the choice of ϵ.

Proof. Consider the epoch which is the beginning of phase 2 of the jth batch. Let X̂j denote

the total number of arrivals that the learning dispatcher sees during the past batches and the

potential phase 1 of the jth batch . Note that X̂j counts for the arrivals in phase 1’s (when

they occur), and all past phase 2’s using a threshold ≥ 1.

The following inequality holds when αjl2 ≥ l1 for all j:

X̂j ≥ l1 +

j−1∑
i=1

(
1{K(i)>0}αil2 + 1{K(i)=0}B

i+1l1
)
≥ l1

j∑
i=1

Bi.

Observing the function lnϵ(x)/x is decreasing when x ≥ eϵ, when j ≥ ⌈eϵ⌉, we have:

36



ln1+ϵ(j)

1 + ϵ
− ln1+ϵ(⌈eϵ⌉)

1 + ϵ
=

∫ j

⌈eϵ⌉

lnϵ(x)

x
dx ≤

j∑
i=⌈eϵ⌉

lnϵ(i)

i
,

j∑
i=⌈eϵ⌉

lnϵ(i)

i
≤ lnϵ(⌈eϵ⌉)

⌈eϵ⌉
+

∫ j

eϵ

lnϵ(x)

x
dx =

lnϵ(⌈eϵ⌉)
⌈eϵ⌉

+
ln1+ϵ(j)

1 + ϵ
− ln1+ϵ(eϵ)

1 + ϵ
.

Set

C0(ϵ) := 1 +

⌊eϵ⌋∑
i=2

lnϵ(i)

i
− ln1+ϵ(⌈eϵ⌉)

1 + ϵ
and C̃0(ϵ) := 1 +

⌈eϵ⌉∑
i=2

lnϵ(i)

i
− ln1+ϵ(eϵ)

1 + ϵ
,

we get:

C0(ϵ) +
ln1+ϵ(j)

1 + ϵ
≤ E

[
j∑

i=1

Bi

]
≤ C̃0(ϵ) +

ln1+ϵ(j)

1 + ϵ
.

Using the multiplicative Chernoff bound for independent Bernoulli random variables, the

inequalities above, and C̃0(ϵ) ≥ 0 for all ϵ > 0, we get the following upper bound on the

probability of X̂j being small:

P
[
X̂j <

l1 ln
1+ϵ(j)

2(1 + ϵ)

]
≤ P

[
l1

j∑
i=1

Bj <
l1 ln

1+ϵ(j)

2(1 + ϵ)

]
≤ exp

(
−C0(ϵ)

8
− ln1+ϵ(j)

8(1 + ϵ)

)
.

Let ζi be a Bernoulli random variable such that ζi = 1 when there is at least one potential

service completion between the arrival time of the ith and (i+ 1)th customer. The random

variables {ζi}i are i.i.d. and P[ζi = 1] = µ/(λ+µ). When the threshold used is at least 1, if the

ith customer is rejected, the queue-length at the arrival of this customer is non-zero; obviously,

when the ith customer is admitted to the queue, the queue-length right after the arrival of this

customer is non-zero. In either case, if there are any potential services during the inter-arrival

times between the ith and (i + 1)th customers, at least one of the completed services is

observed by the learning dispatcher. This implies that
∑

i counted in X̂j
ζi =

∑X̂j

n=0 ζcntn ≤ Dj ,

where cntn is a sub-sequence of i and cntn is the index from the beginning of the nth arrival
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customer that is counted in X̂j . Then we have:

P
[
Dj ≤

l1 ln
1+ϵ(j)µ

4(1 + ϵ)(λ+ µ)

∣∣∣∣ X̂j ≥ l1 ln
1+ϵ(j)

2(1 + ϵ)

]
≤ P

⌈l1 ln1+ϵ(j)/2(1+ϵ)⌉∑
n=1

ζcntn ≤ l1 ln
1+ϵ(j)µ

4(1 + ϵ)(λ+ µ)


≤ exp

(
− l1 ln

1+ϵ(j)µ

16(1 + ϵ)(λ+ µ)

)
.

We dropped the conditioning in the first inequality using
∑X̂j

i=1 ζi ≤ Dj , and P[
∑n+1

i=1 ζi ≤

c] ≤ P[
∑n

i=1 ζi ≤ c] for all n, c ∈ Z+, and the second inequality follows from multiplicative

Chernoff bound for independent Bernoulli random variables. Combining the results above,

we obtain:

P
[
Dj ≤

l1 ln
1+ϵ(j)µ

4(1 + ϵ)(λ+ µ)

]
= P

[
Dn ≤ l1 ln

1+ϵ(j)µ

4(1 + ϵ)(λ+ µ)

∣∣∣∣ X̂j ≥ l1 ln
1+ϵ(j)

2(1 + ϵ)

]
P
[
X̂j ≥ l1 ln

1+ϵ(j)

2(1 + ϵ)

]
+ P

[
Dj ≤

l1 ln
1+ϵ(j)µ

4(1 + ϵ)(λ+ µ)

∣∣∣∣ X̂j <
l1 ln

1+ϵ(j)

2(1 + ϵ)

]
P
[
X̂j <

l1 ln
1+ϵ(j)

2(1 + ϵ)

]
≤ exp

(
− l1 ln

1+ϵ(j)µ

16(1 + ϵ)(λ+ µ)

)
+ exp

(
−C0(ϵ)

8
− ln1+ϵ(j)

8(1 + ϵ)

)
.

This completes the proof.

Using Proposition 2.4.1 above, in the next proposition we will establish that with high

probability, the learning dispatcher will have an accurate estimate of the average service time,

and therefore the service rate.

Proposition 2.4.2. Let m̂(j) denote the empirical service time estimated by the learning

dispatcher at the beginning of phase 2 of the jth batch. For the proposed algorithm,

P [|m̂(j)−m| > ∆1] ≤ C1 exp(−C2 ln
1+ϵ(j)), (II.15)
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where

C1 := max

{
exp

(
−C0(ϵ)

8

)
,

2 exp (∆2
1/(8m

2))

exp (∆2
1/(8m

2))− 1
, 1

}
,

C2 := min

{
l1µ

16(1 + ϵ)(λ+ µ)
,

1

8(1 + ϵ)
,

l1µ∆
2
1

32(1 + ϵ)m(λm+ 1)

}
,

(II.16)

with ∆1 := min{δ1, 2m}, and δ1 is the constant from inequality (II.4) which is one part of

the condition needed for the conclusion in (II.5).

The proof of the proposition relies upon tail concentration bounds for sub-exponential

random variables. We follow the definition and concentration bounds as in [Wainwright 2019,

Section 2.1].

Definition 2.4.1. A random variable X with mean µ is called sub-exponential if there are

non-negative parameters (α2, β) such that E[eγ(X−µ)] ≤ e
α2γ2

2 for all |γ| < 1
β

.

Proposition 2.4.3. Suppose that X is sub-exponential with parameters (α2, β). Then:

P[X ≥ µ+ t] ≤


e−

t2

2α2 , 0 ≤ t ≤ α2

β
,

e−
t
2β , t ≥ α2

β
,

= max

{
e−

t2

2α2 , e−
t
2β

}
.

Proof of Proposition 2.4.2. Let Si denote the service time of the ith service completion.

Since Si are i.i.d. with distribution EXP(1/m), which is a (4m2, 2m) sub-exponential random

variable,
∑n

i=1 Si is a (4m2n, 2m) sub-exponential random variable; see [Vershynin 2018,

Section 2.8]. Observe that 0 ≤ k∆1 ≤ 2mk. Using the sub-exponential concentration bounds

above, we get:

P [|m̂(j)−m| > ∆1|Dj > n] ≤
∞∑

k=n+1

P

[∣∣∣∣∣
k∑

i=1

Si − km

∣∣∣∣∣ ≥ k∆1

]

≤
∞∑

k=n+1

2 exp

(
−k∆2

1

8m2

)
≤

2 exp
(
∆2

1/(8m
2)
)

exp (∆2
1/(8m

2))− 1
exp

(
− (n+ 1)∆2

1

8m2

)
.

The third inequality follows by the geometric sum formula.
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Then, substituting n = ⌊l1 ln1+ϵ(j)µ/(4(1 + ϵ)(λ+ µ))⌋, we get:

P
[
|m̂(j)−m| > ∆1

∣∣∣∣Dj >
l1 ln

1+ϵ(j)µ

4(1 + ϵ)(λ+ µ)

]
= P

[
|m̂(j)−m| > ∆1

∣∣∣∣Dj >

⌊
l1 ln

1+ϵ(j)µ

4(1 + ϵ)(λ+ µ)

⌋]
≤

2 exp
(
∆2

1/(8m
2)
)

exp (∆2
1/(8m

2))− 1
exp

(
−
(⌊

l1 ln
1+ϵ(j)µ

4(1 + ϵ)(λ+ µ)

⌋
+ 1

)
∆2

1

8m2

)

≤
2 exp

(
∆2

1/(8m
2)
)

exp (∆2
1/(8m

2))− 1
exp

(
−

l1µ ln1+ϵ(j)∆2
1

32(1 + ϵ)m2(λ+ µ)

)
.

Using the last upper bound and Proposition 2.4.1, we find:

P [|m̂(j)−m| > ∆1] = P
[
|m̂(j)−m| > ∆1

∣∣∣∣Dj ≤
l1 ln

1+ϵ(j)µ

4(1 + ϵ)(λ+ µ)

]
P
[
Dj ≤

l1 ln
1+ϵ(j)µ

4(1 + ϵ)(λ+ µ)

]
+ P

[
|m̂(j) = m| > ∆1

∣∣∣∣Dj >
l1 ln

1+ϵ(j)µ

4(1 + ϵ)(λ+ µ)

]
P
[
Dj >

l1 ln
1+ϵ(j)µ

4(1 + ϵ)(λ+ µ)

]
≤ exp

(
− l1 ln

1+ϵ(j)µ

16(1 + ϵ)(λ+ µ)

)
+ exp

(
−C0(ϵ)

8
− ln1+ϵ(j)

8(1 + ϵ)

)
+

2 exp
(
∆2

1/(8m
2)
)

exp (∆2
1/(8m

2))− 1
exp

(
− l1µ ln1+ϵ(j)∆2

1

32(1 + ϵ)m2(λ+ µ)

)
≤ C1 exp(−C2 ln

1+ϵ(j)),

where C1 and C2 are given by (II.16).

Proposition 2.4.4. Let ν(j) denote the empirical inter-arrival time estimated by the learning

dispatcher at the beginning of phase 2 of the jth batch. For the proposed algorithm,

P [|ν − ν̂(j)| > ∆2] ≤ C3 exp(−C4βj),

where

C3 :=
2 exp(∆2

2/(8ν
2))

exp(∆2
1/(8ν

2))− 1
, C4 :=

l1∆
2
2

8ν2
, and βj := 1 +

j−1∑
i=1

αi, (II.17)

with ∆2 := min{δ2, 2ν}, and δ2 is the constant from inequality (II.4) which is the second part

of the condition needed for the conclusion in (II.5).
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Proof. Note that no matter whether customers are admitted to the queue or not, the learning

dispatcher is able to observe all arrivals. We always have the first phase 1, and that the number

of customers who arrived during the jth phase 2 is at least αjl2. Note that we also have l2 > l1.

Let βj = 1 +
∑j−1

i=1 αi. Right before the jth phase 2, there are at least l1 +
∑j−1

n=1 αnl2 ≥ βjl1

customers that have arrived at the system, and the learning dispatcher would have observed

all the inter-arrival times. Following a similar logic as in the proof of Proposition 2.4.2,

let Ai denote the inter-arrival time of consecutive customers. Ai are i.i.d. with distribution

EXP(1/ν), which is a (4ν2, 2ν) sub-exponential random variable. Using the concentration

result detailed in Proposition 2.4.3 for sub-exponential random variables, we have:

P [|ν − ν̂(j)| > ∆2] ≤
∞∑

k=βj

P

[∣∣∣∣∣
k∑

i=1

Ai − kν

∣∣∣∣∣ > k∆2

]

≤
∞∑

k=βj

2 exp

(
−k∆2

2

8ν2

)
≤ 2 exp(∆2

2/(8ν
2))

exp(∆2
1/(8ν

2))− 1
exp

(
−βjl1∆

2
2

8ν2

)
,

which establishes the result.

Note that since αj ≥ 1 for all j, βj ≥ j. Therefore, as the number of batches, j, increases,

the probability of not having a correct estimate of the average arrival rate decreases faster than

the probability of not having a correct estimate of the average service time. In the following

corollary, we will combine Propositions 2.4.2 and 2.4.4 to get a bound on the probability of

the learning dispatcher not using (an optimal) threshold K̄ when j is large.

Corollary 2.4.1. For the proposed algorithm, when j ≥ ⌈eK̄⌉,

P
[
K(j) ̸= K̄

]
≤ C1 exp(−C2 ln

1+ϵ(j)) + C3 exp(−C4βj), (II.18)

where C1 and C2 are defined in (II.16); C3 and C4 are defined in (II.17).
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Proof. Recall that for the true arrival and service rates λ and µ, we have

V̂ (K̄, µ, λ) <
R

C
< V̂ (K̄ + 1, µ, λ).

Proposition 2.2.1 says that if m̂ and ν̂ satisfy inequality (II.4), then the learning dispatcher

would be able to solve for the desired threshold K̄. Moreover, since j > eK̄ , K∗(j) ≥ K̄, i.e.,

the learning dispatcher would be able to use K̄ in the jth phase 2. Using Proposition 2.4.2

and Proposition 2.4.4, we have:

P
[
K(j) ̸= K̄

]
≤ P [|m− m̂(j)| > ∆1] + P [|ν − ν̂(j)| > ∆2]

≤ C1 exp(−C2 ln
1+ϵ(j)) + C3 exp(−C4βj),

which concludes the proof.

When the learning dispatcher has knowledge of either µ or λ, one can obtain an inequality

similar to that in Corollary 2.4.1 by setting the corresponding bound from Propositions 2.4.2

and 2.4.4 to 0. When the service rate is known and the arrival rate is not known, then a better

characterization of the regret obtains; see Remark 2.4.2.

2.4.2 Regret accumulated in each phase

We now analyze the regret. Let Gj
1 denote the expected regret accumulated during the

period starting with the (potential) phase 1 and ending at the first time the queue is emptied

in the immediate phase 2 for the jth batch that follows. Let Gj
2 denote the expected regret

accumulated in the remainder of phase 2 of the jth batch. Whenever phase 1 of the jth batch

does not happen, there is no regret to be grouped to Gj
1, and the regret accumulated in phase

2 is entirely in Gj
2; in this case, the regret accumulated during the entire jth batch is also

solely in Gj
2. Both Gj

1 and Gj
2 count for the regret accumulated because of not having accurate
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estimates of the service rate as well as not estimating the arrival rate accurately. Intuitively,

Gj
1 takes into consideration the regret accumulated because of the existence of a phase 1,

and Gj
2 considers the regret accumulated because of the learning system using an incorrect

threshold. Despite the subtleties, for easier recall, we refer to Gj
i as the regret accumulated in

phase i ∈ {1, 2} of batch j.

Let N denote the number of arrivals as a function of which we will determine the regret.

Then, we have:

G̃(N) ≤ E

[
J∑

j=1

(Gj
1 +Gj

2)

]
≤

⌈N/l2⌉∑
j=1

(Gj
1 +Gj

2), (II.19)

where J := J(N) is the total number of batches until N arrivals including the batch in

progress or initiated by the N th arrival. The last inequality follows by the observation:

N ≥
J∑

i=1

αil2 ≥ βJ l2 ≥ Jl2,

which implies J ≤ N/l2 a.s. When one uses αj that grows like jα, for some α > 0, we obtain

that J is of order of O(N1/(a+1)). This adjustment would not affect the order of the regret but

only the constants: see Sections 2.4.3 and 2.4.4.

For each j, we will analyze Gj
1 and Gj

2 separately. Let E j
1 denote the event that phase 1

of the jth batch happens. Since in the proposed algorithm, we always have the first phase 1,

we have P[E1
1 ] = 1. Phase 1 is omitted when the threshold used in the previous phase 2 is

non-zero. By the independence of Bj and K(j), for j > 1 we have:

P
[
Ej
1

]
= P

[
Ej
1

∣∣∣K(j − 1) = 0
]
P [K(j − 1) = 0] + P

[
Ej
1

∣∣∣K(j − 1) ̸= 0
]
P [K(j − 1) ̸= 0]

= P
[
Bj = 1

]
P [K(j − 1) = 0] . (II.20)

Let E j
2 denote the event that K(j) = K̄, and E j

3 denote the event that the queue-lengths of
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the two systems are the same at the beginning of the jth batch, i.e.,

E j
2 := {K(j) = K̄} and E j

3 := {Qnj = Q̄nj}.

Also, denote by τK,l the number of arrivals during a busy period of an M/M/1/K queue

with initial queue-length l. The proof of lemmas 2.4.1 and 2.4.2 rely on an upper bound of

E
[
τK,l

]
which is stated in the following proposition.

Proposition 2.4.5. Consider an M/M/1/K queue with arrival rate λ, service rate µ and

intial queue length 0 < l ≤ K.

E
[
τK,l

]
≤ g(l;K), (II.21)

where

g(1;K) =


λ/µ+1
λ/µ−1

((
λ
µ

)K
− 1

)
, λ ̸= µ,

2K, λ = µ,

and for all 1 < l ≤ K,

g(l;K) =


λ/µ+1

(λ/µ−1)2

((
1−

(
λ
µ

)l)((
λ
µ

)K+1

− λ
µ
+ 1

)
+ (l − 1)

(
1− λ

µ

))
, λ ̸= µ,

l(2K − l + 1), λ = µ.

In particular, E
[
τK,l

]
is of order O((λ/µ)K +K2).

Proof. Consider a finite state Markov chain with state space {0, 1, ..., .K}, and with the
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following transition matrix:

p(0, 0) = 1;

p(l, l + 1) =
λ

λ+ µ
, p(l, l − 1) =

µ

λ+ µ
, when l ∈ {1, ..., K − 1};

p(K,K) =
λ

λ+ µ
, p(K,K − 1) =

µ

λ+ µ
;

Let g(l;K) denote the expected number of jumps of this Markov chain until it hits 0 for the

first time when the initial state is l and the threshold is K. Conditional on the first jump, we

obtain the following relationship for g(l : K),

g(l;K) =
λ

λ+ µ
g(l + 1;K) +

µ

λ+ µ
g(l − 1;K) + 1, when l ∈ {1, ..., K − 1};

g(K;K) =
λ

λ+ µ
g(K;K) +

µ

λ+ µ
g(K − 1;K) + 1;

together with the condition g(0;K) = 0, we can solve for g(l;K), and obtain:

g(1;K) =


λ/µ+1
λ/µ−1

((
λ
µ

)K
− 1

)
, λ ̸= µ,

2K, λ = µ,

and for all 1 < l ≤ K,

g(l;K) =


λ/µ+1

(λ/µ−1)2

((
1−

(
λ
µ

)l)((
λ
µ

)K+1

− λ
µ
+ 1

)
+ (l − 1)

(
1− λ

µ

))
, λ ̸= µ,

l(2K − l + 1), λ = µ.

From the transition probabilities of the Markov chain, g(n : K) is also the expected number

of services and arrivals of the corresponding M/M/1/K queue with arrival rate λ > 0,

service rate µ > 0 and initial queue length l during the busy period which is initiated with
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n customers in the queue. Since each arrival must also be served when the Markov chain

hits 0, E
[
τK,l

]
≤ g(l;K) ≤ 2E

[
τK,l

]
+K. Therefore, g(l;K) serves as an upper bound on

E
[
τK,l

]
. This upper-bound is tight in the sense that g(l;K) is at most 2E

[
τK,l

]
+K.

Lemma 2.4.1. For j > eK̄ , we have the following:

1. When K̄ > 0,

Gj
1 ≤

(
R +

C

λ

)(
l21 +

(
K̄ + 1

)
l1 +

(
1 +K∗(j)

)
g(l1;K

∗(j))

)
P
[
E j
1

]
;

2. When K̄ = 0,

Gj
1 ≤

(
R+

C

λ

)(
l21 + l1 + C5

)
P
[
Ej
1

]
+

(
R+

C

λ

)(
1 +K∗(j)

)
g(l1;K

∗(j))P
[(

Ej
2

)c]
;

where

C5 := (1 + l1)
l1λ

µ
.

The function g(l;K) is defined in Proposition 2.4.5, and is O((λ/µ)K +K2) for all l ≤ K.

Proof. Let nj denote the total number of customers that arrived until the beginning of the

jth batch, and Lj
1 := min{n | Qnj+l1+n = 0}. Recall that E j

1 denotes the event that phase 1

happens during the jth batch. Using (II.12) and observing that regret accumulates in Gj
1 only
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when E j
1 happens, we have:

Gj
1 ≤

(
R +

C

λ

)
E

 nj+l1∑
i=nj+1

∣∣1{Q̄i<K̄i} − 1{Qi<Ki}
∣∣+ ∣∣∣Q̄i −Qi

∣∣∣
∣∣∣∣∣∣ E j

1

P
[
E j
1

]

+

(
R +

C

λ

)
E

 nj+l1+Lj
1∑

i=nj+l1+1

∣∣1{Q̄i<K̄i} − 1{Qi<Ki}
∣∣+ ∣∣∣Q̄i −Qi

∣∣∣
∣∣∣∣∣∣ E j

1

P
[
E j
1

]
=: (I) + (II).

Note that I is a bound on the regret accumulated during phase 1 of the jth batch (when it

occurs), and II is a bound on the regret accumulated in phase 2 of the jth batch until the

queue is emptied for the first time in this phase 2. When K̄ > 0 or K̄ = 0, we can follow the

same logic to bound I , i.e. the regret accumulated during phase 1 for j > eK̄ :

(I) ≤
(
R +

C

λ

)
E

nj+l1∑
i=nj

(
1 + K̄ + l1

)P
[
E j
1

]
≤
(
R +

C

λ

)(
l21 +

(
K̄ + 1

)
l1

)
P
[
E j
1

]
.

Now, we bound II in the case K̄ > 0. We use K∗(j) to obtain a bound on the queue-length

difference of the two systems as well as the expectation of Lj
1. The queue-length of the

learning system at the beginning of each phase 2 is at most l1 since the queue-length of

the learning system is 0 at the end of the previous phase 2. Moreover, the threshold used

by the learning dispatcher in the jth batch is bounded above by K∗(j) ≥ l1. Hence the

queue-length of the learning system is bounded by K∗(j) during phase 2. Consider a system

S2 that uses the admission policy with threshold K∗(j) and which is coupled with the learning

system according to Section 2.2.2.1. Assume that the initial queue-length of S2 is the same

as the queue-length of the learning system at the beginning of the jth phase 2 which is at

most l1. Note that the threshold used in the learning system is less or equal to the one used

in S2. Let τ denote the total number of arrivals during the first busy period of the system

S2. Using Proposition 2.3.1, we get Qi ≤ QS2
i for nj + l1 + 1 ≤ i ≤ nj + l1 + Lj

1, and
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E[Lj
1|E

j
1 ] ≤ E

[
τK

∗(j),l1
]
. Using Proposition 2.4.5, and together with the upper bound K∗(j)

of the queue-length of the learning system, we get :

(II) ≤
(
R+

C

λ

)
(1 +K∗(j))E

[
Lj
1|E

j
1

]
P
[
Ej
1

]
≤
(
R+

C

λ

)
(1 +K∗(j)) g(l1;K

∗(j))P
[
Ej
1

]
,

where F1(j) is defined in the statement of Lemma 2.4.1.

Together, we have the following bound for Gj
1 when K̄ > 0:

Gj
1 ≤

(
R +

C

λ

)(
l21 +

(
K̄ + 1

)
l1 +

(
1 +K∗(j)

)
g(l1;K

∗(j))
)
P
[
E j
1

]
.

In the case of K̄ = 0, we take a slightly different path of analyzing II: we consider the

threshold used in the jth phase 2 to get a better regret bound compared to using the same

argument as in the case K̄ > 0. We have:

(II) =

(
R+

C

λ

)
E

 nj+l1+Lj
1∑

i=nj+l1+1

∣∣1{Q̄i<K̄i} − 1{Qi<Ki}
∣∣+ ∣∣∣Q̄i −Qi

∣∣∣
∣∣∣∣∣∣ Ej

1 ∩ Ej
2

P
[
Ej
1 ∩ Ej

2

]

+

(
R+

C

λ

)
E

 nj+l1+Lj
1∑

i=nj+l1+1

∣∣1{Q̄i<K̄i} − 1{Qi<Ki}
∣∣+ ∣∣∣Q̄i −Qi

∣∣∣
∣∣∣∣∣∣ Ej

1 ∩ (Ej
2)

c

P
[
Ej
1 ∩ (Ej

2)
c
]

≤
(
R+

C

λ

)
(1 + l1)E

[
Lj
1|E

j
1 ∩ Ej

2

]
P
[
Ej
1 ∩ Ej

2

]
+

(
R+

C

λ

)
(1 +K∗(j))E

[
Lj
1|E

j
1 ∩ (Ej

2)
c
]
P
[
Ej
1 ∩ (Ej

2)
c
]

≤
(
R+

C

λ

)
(1 + l1)

l1λ

µ
P
[
Ej
1

]
+

(
R+

C

λ

)
(1 +K∗(j)) g(l1;K

∗(j))P
[
(Ej

2)
c
]
.

The first follows since the total number of customers admitted in phase 1 is l1, and since in

the case K̄ = 0 and under E j
2 , the threshold used in phase 2 is 0. Under E j

1 ∩ E j
2 , the learning

system does not accept any new customers to the queue, and E[E j
1 ∩ E j

2 ] is the number of

arrivals during the period of serving all the remaining customers in the queue. Observe the

queue-length of the learning system at the beginning of phase 2 is at most l1, conditioning on

the time used to serve l1 customers, we get the desired bound on E[E j
1 ∩ E j

2 ]. The bound on
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E[Lj
1|E

j
1 ∩ (E j

2)
c] follows the same logic as the bound of E[Lj

1|E
j
1 ]. Combined with the bound

for I , we get the desired result.

We observe that under the event E j
2 ∩E j

3 , there will be no regret accumulated in Gj
2: indeed,

under the event (E j
1)

c ∩ E j
2 ∩ E j

3 , the dispatcher of the learning system and the dispatcher

of the genie-aided system will make the same decision on every arrival customer in phase

2 of the jth batch. As a result, their queue-lengths will be matched and there will be no

regret accumulated during this exploitation phase, thus also no regret accumulated in Gj
2.

The threshold used in phase 1 can be considered as the maximum allowed value, namely

K∗(j)(≥ l1), since all the arriving customers during phase 1 are admitted. Under the event

E j
2 , the threshold used in the jth phase 2 is the same as the genie-aided system. Therefore,

under the event E j
1 ∩ E j

2 ∩ E j
3 , although phase 1 of the jth batch happens, the queue-length

at the beginning of the jth batch is the same for both systems and the thresholds used in the

learning system is no smaller than the threshold used in the genie-aided system. The coupling

between the learning and genie-aided system preserves the order between the queue-lengths

of the two systems as proved in Proposition 2.3.1: when the queue-length of the learning

system hits 0 the first time after phase 1, the queue-length of the genie-aided system is also 0.

Therefore, under event E j
1 ∩ E j

2 ∩ E j
3 , after the queue-length of the learning system hits 0 after

phase 1, the queue-lengths of the learning and genie-aided system are matched, and no regret

is accumulated in Gj
2.

The next proposition shows that the probability of the event E j
2 ∩ E j

3 is high. We use

De Morgan’s law to get an upper bound on the probability of this event by using already

characterized bounds on the probabilities of a few events.

Proposition 2.4.6. Fix j ≥ ⌈eK̄⌉. Then, we have the following:
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1. In the case K̄ > 0,

P
[(
E j
2 ∩ E j

3

)c] ≤ C1 exp
(
− C2 ln

1+ϵ(j)
)
+ C1 exp

(
− C2 ln

1+ϵ(j − 1)
)

+ C3 exp
(
− C4βj

)
+ C3 exp

(
− C4βj−1

)
+
(
cK̄
)αj−1l2 .

2. In the case K̄ = 0,

P
[(
E j
2 ∩ E j

3

)c] ≤ C1 exp(−C2 ln
1+ϵ(j)) + C3 exp(−C4βj).

The constants C1, C2, C3 and C4 are defined in (II.16) and (II.17), and

cK̄ := 1−
(

µ

λ+ µ

)K̄

∈ (0, 1).

Proof. We first consider the case K̄ > 0. Let E j
4 denote the event that the queue-length

of the genie-aided system hits 0 during phase 2 of the jth batch. The probability that at

least K̄ potential services occur between two consecutive inter-arrivals is 1− cK̄ . Since the

genie-aided system is an M/M/1/K̄ queue, there are at most K̄ customers in the queue.

Since the total number of arrivals during the phase 2 of the jth batch is at least αjl2, we get:

P[(E j
4)

c] ≤ (cK̄)
αj l2 .

By Corollary 2.3.1, we have:

P
[(
E j
3

)c ∣∣ E j−1
2

]
≤ P

[(
E j−1
4

)c ∣∣ E j−1
2

]
≤ (cK̄)

αj−1l2 .

Using De Morgan’s laws we can re-write the event (E j
2 ∩ E j

3)
c as (E j

2)
c ∪ (E j

3)
c and by using
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Corollary 2.4.1 for j > eK̄ we obtain:

P
[(
E j
2 ∩ E j

3

)c] ≤ P
[(
E j
2

)c]
+ P

[(
E j−1
2

)c]
+ P

[(
E j
3

)c ∣∣∣ E j−1
2

]
≤ C1 exp

(
− C2 ln

1+ϵ(j)
)
+ C1 exp

(
− C2 ln

1+ϵ(j − 1)
)

+ C3 exp
(
− C4βj

)
+ C3 exp

(
− C4βj−1

)
+ (cK̄)

αj−1l2 .

In case that K̄ = 0, the queue-length of the genie-aided system is always 0, and E j
3 happens

with probability 1. Hence,

P
[(
E j
2 ∩ E j

3

)c]
= P

[
(E j

2)
c
]
≤ C1 exp(−C2 ln

1+ϵ(j)) + C3 exp(−C4βj).

This completes the proof.

Next, we will estimate Gj
2, which considers the regret accumulated during the jth batch

after the first time the queue-length of the learning system hit 0 during the jth phase 2 if there

is a phase 1, and considers the regret accumulated during phase 2 if phase 1 did not happen.

As we mentioned before, only under the event
(
E j
2 ∩ E j

3

)c
, regret is accumulated to Gj

2.

Lemma 2.4.2. For j > eK̄ ,

Gj
2 ≤

(
R +

C

λ

)(
(1 +K∗(j))αjl2 +

(
1 +K∗(j)

)
g(K∗(j);K∗(j))

)
P
[(
E j
2 ∩ E j

3

)c]
,

with g(l;K) defined in Proposition 2.4.5.

Proof. Let ñj denote the total number of customers that arrived until the beginning of phase

2 of the jth batch. Note that when phase 1 did not happen in the jth batch, ñj = nj , and when

phase 1 happened, ñj = nj + l1. However, since we are analyzing the regret accumulated in

phase 2 because of using an incorrect threshold and not conditional on having a phase 1 or no,

using ñj would give simpler expressions during the analysis. By its definition, Gj
2 takes into
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consideration only part of the regret that is accumulated in phase 2. Since we are interested in

finding an upper bound, we will “double-count” parts of the regret that are already considered

in Gj
1 in the case that there is a phase 1 and compute the regret accumulated during phase 2.

Set Lj
2 := min{n | Qñj+αj l2+n = 0}. This is the total number of arriving customers beyond

the first αjl2 ones during the exploitation phase for the jth batch. Using (II.12) and (E j
2 ∩E j

3)
c,

we get:

Gj
2 ≤

(
R +

C

λ

)
E

ñj+αj l2+Lj
2∑

i=ñj+1

∣∣∣1{Q̄i<K̄} − 1{Qi<K(j)}

∣∣∣1{(Ej
2∩E

j
3)

c}


+

(
R +

C

λ

)
E

ñj+αj l2+Lj
2∑

i=ñj

∣∣Q̄i −Qi

∣∣1{(Ej
2∩E

j
3)

c}


=:

(
R +

C

λ

)(
(III) + (IV )

)
.

In what follows we bound the two expectations on the RHS. For the first expectation, since

|1{Q̄i<K̄} − 1{Qi<K(j)}| ≤ 1, after splitting phase 2 into two parts, we get:

(III) ≤ E

ñj+αj l2∑
i=ñj+1

1{(Ej
2∩E

j
3)

c}

+ E

 ñj+αj l2+Lj
2∑

i=ñj+αj l2+1

1{(Ej
2∩E

j
3)

c}


= E

[
αjl21{(Ej

2∩E
j
3)

c}
]
+ E

[
Lj
21{(Ej

2∩E
j
3)

c}
]

= αjl2P
[(
E j
2 ∩ E j

3

)c]
+ E

[
Lj
2

∣∣∣(E j
2 ∩ E j

3

)c]P [(E j
2 ∩ E j

3

)c]
.

Using a similar way of analyzing Lj
1 in the proof of Lemma 2.4.1 but comparing with a

coupled system that uses threshold K∗(j) and having initial queue-length K∗(j), we get:

E
[
Lj
2

∣∣∣(E j
2 ∩ E j

3

)c] ≤ E
[
τK

∗(j),K∗(j)
]
≤ g(K∗(j);K∗(j)).
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Together with the inequalities above, we get a bound for (III):

(III) ≤ (αjl2 + g(K∗(j);K∗(j)))P
[(
E j
2 ∩ E j

3

)c]
.

We can split (IV) in a similar manner as above, and then, together with Qi ≤ K∗(j), we have:

(IV ) ≤ K∗(j)

E

ñj+αj l2∑
i=ñj

1{(Ej
2∩E

j
3)

c}

+ E

ñj+αj l2+Lj
2∑

i=ñjαj l2

1{(Ej
2∩E

j
3)

c}


≤ K∗(j) (αjl2 + g(K∗(j);K∗(j)))P

[(
E j
2 ∩ E j

3

)c]
.

Combining the bounds for (III) and (IV ) , we get:

Gj
2 ≤

(
R +

C

λ

)(
(1 +K∗(j))αjl2 +

(
1 +K∗(j)

)
g(K∗(j), K∗(j))

)
P
[(
E j
2 ∩ E j

3

)c]
.

with g(l;K) defined in Proposition 2.4.5.

Before proving the regret bound for Algorithm 1, the following remark gives an upper

bound on the regret accumulated during the first ⌊eK̄⌋ batches where the upper-bound of the

threshold used in the phase 2 of the learning systems may be smaller than K̄.

Remark 2.4.1. Recall that the queue-length of each batch does not exceed K∗(j) in the jth

batch. Following the definition of K∗(j), when j ≥ ⌈eK̄⌉, K∗(j) ≥ K̄ + l1 +Q0 ≥ K̄. The

regret accumulated during the first ⌊eK̄⌋ batches is at the most

G0 :=

(
R +

C

λ

) ⌈eK̄⌉∑
j=1

(
K∗(j) + K̄ + 1

)
(l1 + αjl2 + g(K∗(j);K∗(j))) ,

where g(l;K) is defined in Proposition 2.4.5. This bound is loose since it assumes that phase

1 happens at each batch and a worst-case assumption of regret being accumulated at all times

is enforced. Note that the bound is a finite function of the system parameters.
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2.4.3 Proof of theorem 2.2.1

In the case that K̄ > 0, using inequality (II.19), Lemma 2.4.1, and Lemma 2.4.2, we have:

⌈N/l2⌉∑
j=⌈eK̄⌉

Gj
1 +Gj

2 ≤
(
R+

C

λ

) ⌈N/l2⌉∑
j=⌈eK̄⌉

(
l21 +

(
K̄ + 1

)
l1 +

(
1 +K∗(j)

)
g(l1;K

∗(j))
)
P
[
Ej
1

]

+

(
R+

C

λ

) ⌈N/l2⌉∑
j=⌈eK̄⌉

(
(1 +K∗(j))αj l2 +

(
1 +K∗(j)

)
g(K∗(j);K∗(j))

)
P
[(

Ej
2 ∩ Ej

3

)c]
.

Substituting values/bounds for P[E j
1 ] and P[

(
E j
2 ∩ E j

3

)c
] from Corollary 2.4.1 and Proposition

2.4.6, we get:

⌈N/l2⌉∑
j=⌈eK̄⌉

Gj
1 +Gj

2

≤
⌈N/l2⌉∑
j=⌈eK̄⌉

(
R+

C

λ

)(
l21 +

(
K̄ + 1

)
l1 +

(
1 +K∗(j)

)
g(l1,K

∗(j))
) lnϵ(j)

j

(
C1 exp(−C2 ln

1+ϵ(j)) + C3e
−C4βj

)

+

⌈N/l2⌉∑
j=⌈eK̄⌉

(
R+

C

λ

)(
1 +K∗(j)

)(
αj l2 + g(K∗(j),K∗(j))

)

×
(
C1 exp

(
− C2 ln

1+ϵ(j − 1)
)
+ C1 exp

(
− C2 ln

1+ϵ(j)
)
+ C3e

−C4βj + C3e
−C4βj−1 +

(
cK̄
)αj−1l2

)
,

where g(l;K) is defined in Proposition 2.4.5 and is of order O((λ/µ)K +K2). Recall that

βj ≥ j. All terms involved are partial sums of convergent series when αj increases to infinity

as a function bounded by polynomial in j. Therefore limN→∞G(N) is bounded, and the

proposed algorithm achieves O(1) regret in the case that K̄ > 0.
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2.4.4 Proof of Theorem 2.2.2

Similarly to the proof of Theorem 2.2.1, using inequality (II.19), Lemma 2.4.1, Lemma
2.4.2, Corollary 2.4.1 and Proposition 2.4.6, we have:

⌈N/l2⌉∑
j=⌈eK̄⌉

Gj
1 +Gj

2 ≤
⌈N/l2⌉∑
j=⌈eK̄⌉

(
R+

C

λ

)(
l21 + l1 + C5

) lnϵ(j)
j

+

⌈N/l2⌉∑
j=⌈eK̄⌉

(
R+

C

λ

)(
1 +K∗(j)

)
g(l1,K

∗(j))
(
C1 exp(−C2 ln

1+ϵ(j)) + C3 exp(−C4βj)
)

+

⌈N/l2⌉∑
j=⌈eK̄⌉

(
R+

C

λ

)
(1 +K∗(j))

(
αj l2 + g(K∗(j);K∗(j))

)(
C1 exp(−C2 ln

1+ϵ(j)) + C3 exp(−C4βj)
)
.

The dominant term on the RHS above is

⌈N/l2⌉∑
j=⌈eK̄⌉

(
R +

C

λ

)(
l21 + l1 + C5

) lnϵ(j)

j
.

When N is large, we have
⌈N/l2⌉∑
j=2

lnϵ(j)

j
= O(ln1+ϵ(N)).

Hence the regret for K̄ = 0 is of order O(ln1+ϵ(N)).

Remark 2.4.2. We mentioned earlier that one can adapt the analysis to the case when only

the service rate is unknown or only the arrival rate is unknown by adjusting the probability

of the learning system using the optimal thresholds in phase 2 and receiving similar regret

bounds. As shown in the prof above, in the case when the optimal threshold is 0, the reason

why the regret is O(ln1+ϵ(N)) is that phase 1 is likely to happen infinitely often so that enough

samples of the service rate can be obtained. This explicit exploration phase is necessary when

the service rate is unknown. However, when only the arrival rate is unknown, the learning

system would always obtain free samples for the arrival rates whether accepting customers to

the queue or not. In this case, it would be unnecessary to explore explicitly, so that an O(1)

regret results similar to the case where the optimal threshold is non-zero when one always
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omits phase 1 and only the arrival rate is unknown.

Remark 2.4.3. The regret analysis above showed that we can obtain constant regret for

the case where the optimal thresholds are non-zeros, and an O(ln1+ϵ(N)) regret when 0

is an optimal threshold for any fixed ϵ > 0. From the proof of Theorem 2.2.2, the order

of the regret is a result of explicit exploration as it is the dominant term. One natural

question is the following: can we further reduce the order of the regret in the case that 0

is an optimal threshold while preserving the constant regret in the case that the optimal

threshold is non-zero, if we reduce P [Bj = 1], the probability of having phase 1 when the

previous phase 2 uses threshold 0? Following the steps of our proof we can show that having

P [Bj = 1] = ln(ln(j))/j would result in regret accumulating slower than O(ln1+ϵ(N)) for

any ϵ > 0 in the case that 0 is a optimal threshold, and constant regret in the case that the

optimal threshold is non-zero. However, this result would hold for large enough N , as the

finite time performance of using P [Bj = 1] = ln(ln(j))/j may not out-perform our discussed

choices for P [Bj = 1] as it would require j to be extremely large (but still finite) to show

improved performance.

Remark 2.4.4. We believe that the dramatically different behaviors for our algorithm between

cases when 0 is an optimal threshold, and when it is not, is fundamental to our problem

owing to completely different demands in two parameter regimes: in one case, no customers

should be dispatched at all, versus the other case where asymptotically a positive fraction of

customers are dispatched. Hence, we conjecture that for any given learning-based dispatching

algorithm the regret accumulated would grow at least at Ω(ln(N)) when the parameters are

chosen in an adversarial manner. Note that our algorithm satisfies this conjecture. We will

argue later on in Section 2.6 that an Upper-Confidence Bound (UCB) scheme will have a

worst-case regret over parameter choices of Ω(ln(N)).
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2.5 Non-unique admittance threshold case

When the dispatcher uses a static threshold policy, the queue-length process is Markovian

and ergodic. [Naor 1969] showed that the social welfare (long-term average profit in (II.1)) is

maximized when using the static threshold K̄ that uniquely satisfies (II.3) by analyzing the

stationary distributions of the queue-length process for all possible static threshold policies.

When (II.3) holds with equality and K̄ ≥ 1, static thresholds K̄ and K̄ − 1 are both optimal,

and furthermore, policies that (stochastically) alternate between the thresholds K̄ and K̄ − 1

with a fixed probability yield the same long-term average profit, i.e., are optimal for the

ergodic reward maximization problem. This complicates our regret analysis as we will need

to pick a specific ergodic reward-maximizing policy for our regret analysis.

In Section 2.5.1 we analyze the learned threshold; in Section 2.5.2, we introduce the

specific ergodic reward maximizing genie-aided dispatcher that we will compare to, which

we will label the alternating genie-aided dispatcher; and finally, Section 2.5.3 is devoted

to the analysis of the regret of the learning algorithm compared to the specific genie-aided

dispatcher introduced earlier.

2.5.1 Threshold used by the learning dispatcher in phase 2.

Following Algorithm 1, the threshold used by the learning dispatcher in the jth phase

2 is K(j) = min(K∗(j), K), where K is the unique integer that satisfies the inequality

V (K, 1/m̂, ν̂) ≤ R/C < V (K + 1, 1/m̂, 1/ν̂), where m̂ is the empirical average service

time, and ν̂ is the empirical inter-arrival time, computed using all completed services and

observed arrivals before each phase 2. As mentioned earlier, the threshold is fixed throughout

each phase 2. Proposition 2.2.1 implies that as long as the estimations are accurate so that

inequalities (II.6) are satisfied, and when j ≥ ⌈eK̄⌉, the learning dispatcher would use a

threshold in {K̄, K̄ − 1} during the jth phase 2. Proposition 2.4.1 still holds when equality
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holds in (II.3). Unlike in the previous case where we showed that eventually, the learning

dispatcher uses the same threshold K̄ as the genie-aided dispatcher in phase 2, we now

show that as the number of batches goes to infinity, the learning algorithm will (eventually)

stochastically alternate only between the thresholds K̄ or K̄ − 1. We first state the analogous

of Proposition 2.4.2, Proposition 2.4.4 and Corollary 2.4.1.

Proposition 2.5.1. Let m̂(j) denote the empirical service time estimated by the learning

dispatcher at the beginning of phase 2 of the jth batch. For the proposed algorithm, in case

that V (K̄, µ, λ) = R/C, we have,

P
[
|m̂(j) = m| > ∆̃1

]
≤ C̃1 exp(−C̃2 ln

1+ϵ(j)), (II.22)

where

C̃1 := max

exp

(
− C0(ϵ)

8(1 + ϵ)

)
,

2 exp
(
∆̃2

1/(8m
2)
)

exp (∆̃2
1/(8m

2))− 1
, 1

 ,

C̃2 := min

{
l1µ

16(1 + ϵ)(λ+ µ)
,

1

8(1 + ϵ)
,

l1µ∆̃
2
1

32(1 + ϵ)m(λm+ 1)

}
,

(II.23)

with ∆̃1 := min{δ̃1, 2m}, and δ̃1 is a constant for the first inequality in (II.6) which is one

part of the condition needed to reach the conclusion in (II.7).

Proof. The proof is the same as the proof of Proposition 2.4.2, but with different constants.

Proposition 2.5.2. Let ν(j) denote the empirical inter-arrival time estimated by the learning

dispatcher at the beginning of phase 2 of the jth batch. For the proposed algorithm, in case

that V (K̄, µ, λ) = R/C, we have,

P
[
|ν − ν̂(j)| > ∆̃2

]
≤ C̃3 exp(−C̃4βj),
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where

C̃3 :=
2 exp(∆̃2

2/(8ν
2))

exp(∆̃2
1/(8ν

2))− 1
and C̃4 :=

l1∆̃
2
2

8ν2
, (II.24)

where βj is defined in Proposition 2.4.4, and ∆̃2 := min{δ̃2, 2ν}, where δ̃2 is the constant in

the second inequality in (II.6) that is the second part needed to reach the conclusion in (II.7).

Proof. The proof is the same as the proof of Proposition 2.4.4, but with different constants.

Corollary 2.5.1. For the proposed algorithm, when j ≥ ⌈eK̄⌉ , in case that V (K̄, µ, λ) =

R/C,

P
[
{K(j) ̸= K̄} ∩ {K(j) ̸= K̄ − 1}

]
≤ C̃1 exp(−C̃2 ln

1+ϵ(j)) + C̃3 exp(−C̃4βj), (II.25)

where C̃1 and C̃2 are defined in (II.23) and C̃3 and C4 are defined in (II.24).

Proof. The proof for this proposition follows the same logic as the proof of Corollary 2.4.1,

but with different constants.

Corollary 2.5.2. In case that V (K̄, µ, λ) = R/C, there exists a random index J that is finite

with probability 1, where the learning algorithm would use threshold K̄ or K̄ − 1 after the

J th batch.

Proof. We show that the learning algorithm uses thresholds that are not K̄ nor K̄ − 1 only

finitely many times with probability 1. From Corollary 2.5.1, when K̄ > 1, we have:

∞∑
j=1

P
[(

{K(j) = K̄} ∪ {K(j) = K̄ − 1}
)c]

≤
∞∑
j=1

C̃1 exp(−C̃2 ln
1+ϵ(j)) + C̃3 exp(−C̃4j

2)

< ∞.
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By the Borel–Cantelli lemma (See [Durrett 2016]), we have

P
[
lim sup
j→∞

(
{K(j) = K̄} ∪ {K(j) = K̄ − 1}

)c]
= 0,

that is, with probability 1, the learning algorithm uses thresholds not in {K̄, K̄ − 1} only a

finite number of times. Thus, almost surely the learning algorithm uses the optimal thresholds

K̄ and K̄ − 1 after a finite random time. When K̄ = 1, a similar proof holds.

2.5.2 An alternating genie-aided dispatcher coupled with the learning dispatcher that

maximizes the long-term average profit

If we compare our learning algorithm with a genie-aided system that uses a static threshold

K̄ (or alternatively K̄ − 1), the regret will not be constant even when K̄ > 1. The reason is

that the learning dispatcher may switch between the thresholds K̄ and K̄−1 in different phase

2s even when m̂ ∈ (m−ϵ,m+ϵ), where ϵ is sufficiently small. However, we can compare the

queue-length process under the learning dispatcher with an optimal genie-aided dispatcher to

which we refer to as the alternating genie-aided dispatcher: a dispatcher who may change the

threshold used between K̄ and K̄−1 at the beginning of any busy cycle (a busy period plus an

immediately following idle period). We will ensure that the threshold-changing policy of this

alternating genie-aided dispatcher is adapted to the filtration generated by the queue-lengths of

the two systems and the random variable Bj , with the threshold remaining unchanged during

each busy cycle. It is worth mentioning that although the learning dispatcher may compute

and change the threshold at the beginning of each phase 2 (which may involve multiple busy

cycles), only the genie-aided dispatcher may change the threshold at the beginning of a busy

cycle. This alternating genie-aided dispatcher is aware of the fact that the learning dispatcher

follows Algorithm 1 and can compute the threshold learned by the learning dispatcher. This

alternating genie-aided dispatcher is coupled with the learning dispatcher under the coupling
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described in Section 2.2.2.1. Moreover, when a customer arrives, having seen the realization

of Bj , this genie-aided dispatcher is aware of whether this customer arrives during a phase 1

or 2 of the learning system, and would pick the proper threshold to use when this customer

initiates a busy cycle.

Recall that Ki denotes the threshold used by the learning system at the arrival of the

ith customer. Following similar notation as in Section 2.2 for the alternating genie-aided

dispatcher, let K̃i denote the threshold policy used at the arrival of the ith customer, Q̃i denote

the queue-length right before the arrival of the ith customer, Q̃(t) denote the queue-length at

time t, τBn denote the time of the beginning of the nth busy cycle, ÑA(τ
B
n ) denote the index

of the arrival customer who arrives at the beginning of the nth busy cycle, Ñ(t) denote the

total number of completed busy cycles up to time t, and K̃n denote the threshold used during

the nth busy cycle; note that τB1 = 0. At the beginning of each busy cycle, the alternating

genie-aided dispatcher then chooses a threshold K̃n ∈ {K̄, K̄ − 1}, where we have

K̃n =


K̄ − 1, if n = 1,

K̄ − 1, if n > 1 and {KÑA(τB
n ) ≤ K̄ − 1 OR customer ÑA(τ

B
n ) arrives during phase 1},

K̄, if n > 1 and {KÑA(τB
n ) ≥ K̄ AND customer ÑA(τ

B
n ) arrives during phase 2}.

(II.26)

That is, when the customer who initiates a busy cycle in the genie-aided system arrives

during phase 1 of the learning system, the genie-aided dispatcher uses threshold K̄ − 1 in the

initiated busy cycle. When the customer arrives during phase 2, in the initiated busy cycle,

the genie-aided dispatcher uses a threshold from {K̄, K̄ − 1} that is closer to the threshold

used by the learning system. This threshold choice would help to preserve the queue-lengths

ordering under desired events, as explained in subsection 2.5.3. In other words, for customers

i1 and i2 who arrive during the nth busy cycle, i.e., ÑA(τ
B
n ) ≤ i1 < i2 < ÑA(τ

B
n+1), we

have K̃i1 = K̃i2 = K̃n. This switching policy is adapted to the filtration generated by the
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queue-lengths of the genie-aided and learning systems. Since the learning algorithm always

has the first exploration phase, we set K̃1 = K̄ − 1.

The following proposition shows the optimality of the alternating genie-aided dispatcher

described above using the strong law of large numbers for martingales.

Proposition 2.5.3. Consider a dispatcher who uses a static threshold policy, either K̄ or

K̄−1, during a busy cycle, and may switch between these two thresholds only at the beginning

of a busy cycle following the switching rule described in (II.26). The long-term average profit

of the system under this dispatcher is the same as a dispatcher using either one of the static

thresholds K̄ or K̄ − 1.

Proof. Assume the initial queue-length is some a ∈ {0, 1, . . . , K̄}, where the particular value

doesn’t impact the asymptotic results. We are interested in finding:

lim inf
t→∞

1

t

aR +

ÑA(t)∑
i=1

R1{Q̃i≤K̃i} −
∫ t

0

CQ̃(u)du


= lim inf

t→∞

1

t

aR +

ÑA(τB2 )−1∑
i=1

R1{Q̃i≤K̃1} −
∫ τB2

0

CQ̃(u)du


+ lim inf

t→∞

1

t

Ñ(t)∑
n=2

ÑA(τBn+1)−1∑
i=ÑA(τBn )

R1{Q̃i≤K̃n} −
∫ τBn+1

τBn

CQ̃(u)du



+ lim inf
t→∞

1

t

 ÑA(t)∑
i=ÑA

(
τB
Ñ(t)+1

)R1{Q̃i≤K̃Ñ(t)+1} −
∫ t

τB
Ñ(t)+1

CQ̃(u)du

 . (II.27)

Let the tuple (Xn,Bn) denote the total net profit and duration of the nth busy cycle under this

dispatcher. For the first busy cycle, we have:

X1 := aR +

ÑA(τB2 )−1∑
i=1

R1{Q̃i≤K̃1} −
∫ τB2

0

CQ̃(u)du, and B1 := τB2 .
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For n ≥ 2, we have:

Xn :=

ÑA(τBn+1)−1∑
i=ÑA(τn)

R1{Q̃i≤K̃n} −
∫ τBn+1

τBn

CQ̃(u)du, and Bn := τBn+1 − τBn .

We can rewrite (II.27) as:

lim inf
t→∞

1

t

Ñ(t)∑
n=2

Xn + lim inf
t→∞

1

t

X1 +

ÑA(t)∑
i=ÑA(τB

Ñ(t)+1
)

R1{Q̃i≤K̃Ñ(t)+1} −
∫ t

τB
Ñ(t)+1

CQ̃(u)du

 .

When the initial queue-length is finite, E [B1] and E[(B1)
2] are finite; see [Takagi and Tarabia

2009].

Let (Y K̄
n ,BK̄

n ) denote the total net profit and the duration of the nth busy cycle of a

dispatcher that uses static threshold K̄ and with initial queue-length 1, and let YK̄(t) denote

the accumulated total net profit of this dispatcher up to time t. Setting the initial queue-length

to 1 is owing to a generic busy cycle starting as such. The random variables (Y K̄
n ,BK̄

n ) are

i.i.d., and YK̄(t) is a renewal reward process: see [Durrett 2016, Section 3.1]. Similarly,

we can define (Y K̄−1
n ,BK̄−1

n ) and YK̄−1(t) for a dispatcher that uses static threshold K̄ − 1.

[Naor 1969] showed that there exists a constant O denoting the optimal long-term average

profit of the dispatcher, where with probability 1,

lim
t→∞

1

t
YK̄(t) = lim

t→∞

1

t
YK̄−1(t) = O.

By the renewal-reward theorem, [Durrett 2016, Section 3.1], we have:

E
[
Y K̄
1

]
= E

[
BK̄
1

]
O, and E

[
Y K̄−1
1

]
= E

[
BK̄−1
1

]
O.

Let F̃n−1 := F̃τn denote the sigma-algebra generated by the queue-length process of the
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coupled learning dispatcher and the dispatcher described in Proposition 2.5.3 up to time τBn

(the end of the (n− 1)th busy cycle of the dispatcher described in Proposition 2.5.3). By the

independence of the Poisson arrival and Poisson potential service process, the distribution

of (Xn,Bn) conditioned on F̃n−1 is the same as the distribution of (Xn,Bn) conditioned on

the filtration generated by K̃n. Moreover, for n ≥ 2, (Xn,Bn) conditioned on the event

{K̃n = K̄} has the same distribution as (Y K̄
1 ,BK̄

1 ) and (Xn,Bn) conditional on the event

{K̃n = K̄ − 1} has the same distribution as (Y K̄−1
1 ,BK̄−1

1 ). Using these, for i ≥ 2, we have:

E [Bn] = E
[
Bn

∣∣∣∣K̃n = K̄

]
P
[
K̃n = K̄

]
+ E

[
Bn

∣∣∣∣K̃n = K̄ − 1

]
P
[
K̃n = K̄ − 1

]
= E

[
BK̄
1

]
P
[
K̃n = K̄

]
+ E

[
BK̄−1
1

]
P
[
K̃n = K̄ − 1

]
,

and similarly,

E
[
(Bn)

2
]
= E

[
(Bn)

2

∣∣∣∣K̃n = K̄

]
P
[
K̃n = K̄

]
+ E

[
(Bn)

2

∣∣∣∣K̃n = K̄ − 1

]
P
[
K̃n = K̄ − 1

]
= E

[
(BK̄

1 )2
]
P
[
K̃n = K̄

]
+ E

[
(BK̄−1

1 )2
]
P
[
K̃n = K̄ − 1

]
.

Both BK̄
1 and BK̄−1

1 have finite first and second moments, [Takagi and Tarabia 2009], and

thus, so does Bi.

Let Ñn
join denote the number of the customers joining the queue during the nth busy cycle

under the dispatching policy described in Proposition 2.5.3. Observe that the total number of

arrivals joining the queue and services are equal during a busy cycle except for the first one

for which there are exactly a more service completions than the number of customers joining

the queue during the first busy cycle. When there are at least K̄ potential services between

two consecutive arrivals, the queue-length under the dispatcher described in Proposition 2.5.3
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hits 0 and a busy period ends. Therefore, for any integer M , we have:

P
[
Ñn

join > M
]
≤

(
1−

(
µ

λ+ µ

)K̄
)M

,

which then implies that the random variable Ñ i
J has finite first and second moments.

Since |Xn| ≤ RÑn
join+CK̄Bn, a.s., for all n ≥ 2, and |X1| ≤ RÑ1

join+ aR+CK̄B1 a.s.,

we can conclude that Xn also has finite first and second moments, and it is clear that with

probability 1,

lim inf
t→∞

1

t

X1 +

ÑA(t)∑
n=ÑA

(
τB
Ñ(t)+1

)R1{Q̃i≤K̃Ñ(t)+1} −
∫ t

τB
Ñ(t)+1

CQ̃(u)du

 = 0.

For almost every sample path, there exists t∗ such that Ñ(t) > 1 for all t ≥ t∗, and we have

the following upper and lower bounds with probability 1:

lim inf
t→∞

1∑Ñ(t)+1
n=1 Bi

Ñ(t)∑
n=2

Xn ≤ lim inf
t→∞

1

t

Ñ(t)∑
n=2

Xn ≤ lim inf
t→∞

1∑Ñ(t)
n=2 Bn

Ñ(t)∑
i=2

Xn.

We show lim inft→∞(1/t)
∑Ñ(t)

n=2 Xn = O a.s. by showing that with probability 1, both

lim inf
t→∞

1∑Ñ(t)+1
n=1 Bn

Ñ(t)∑
n=2

Xn = O, and (II.28)

lim inf
t→∞

1∑Ñ(t)
n=2 Bn

Ñ(t)∑
n=2

Xn = O. (II.29)

65



Note that we have:

lim inf
t→∞

1∑Ñ(t)+1
n=1 Bn

Ñ(t)∑
n=2

Xn = lim inf
t→∞

∑Ñ(t)
n=2 Bn∑Ñ(t)+1

n=1 Bn

1∑Ñ(t)
n=2 Bn

Ñ(t)∑
n=2

Xn

= lim inf
t→∞

Ñ(t) + 1∑Ñ(t)+1
n=1 Bn

×
∑Ñ(t)

n=2 Bn

Ñ(t)− 1
× Ñ(t)− 1

Ñ(t) + 1
× 1∑Ñ(t)

n=2 Bn

Ñ(t)∑
n=2

Xn.

We can also rewrite (II.29) as

lim inf
n→∞

Ñ(t)− 1∑Ñ(t)
n=2 Bn

1

Ñ(t)− 1

Ñ(t)∑
n=2

(Xn − BnO) = 0.

Note that limt→∞ Ñ(t) = ∞ and limt→∞
∑Ñ(t)

n=2 Bn = ∞ a.s., which in turn imply that a.s.

we have:

lim inf
t→∞

Ñ(t) + 1∑Ñ(t)+1
n=1 Bn

= lim inf
k→∞

k∑k
n=1 Bn

= lim inf
t→∞

Ñ(t)− 1∑Ñ(t)
n=2 Bn

and lim
t→∞

Ñ(t)− 1

Ñ(t) + 1
= lim

k→∞

k − 1

k + 1
= 1.

Then, in order to establish (II.28) and (II.29), it is sufficient to show that with probability 1,

lim inf
k→∞

1

k − 1

k∑
n=2

(Xn − BnO) = 0, and (II.30)

0 < lim inf
k→∞

k∑k
n=1 Bn

≤ lim sup
k→∞

k∑k
n=1 Bn

< ∞. (II.31)

We will prove (II.30) by using the strong law of large numbers for martingales [Csörgő

1968, Theorem 1]. Let Mk =
∑k

n=2 (Xn − BnO) for k ≥ 2, M1 = 0. Clearly E [|Mk|] < ∞

for all k. Also,

E
[
Mk+1 −Mk

∣∣∣F̃k

]
= E

[
Xk+1 − Bk+1O

∣∣∣F̃k

]
= E

[
Xk+1 − Bk+1O

∣∣∣K̃k
]

= 1{K̃k+1=K̄}E
[
Y K̄
1 − BK̄

1 O
]
+ 1{K̃k+1=K̄−1}E

[
Y K̄−1
1 − BK̄−1

1 O
]
= 0.

(II.32)
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The second equality follows since the distribution of (Xn,Bn) conditioned on F̃n−1 is the

same as the distribution of (Xn,Bn) conditioned on the filtration generated by K̃n for all

n ≥ 2. Therefore, we have shown that Mk is a martingale with respect to filtration {F̃k}k≥1

with martingale difference sequence Xk − BkO for k ≥ 2.

Next, we will show that
∑∞

k=2 k
−2E [(Xk − BkO)2] is finite. For k ≥ 2, we have:

E
[
(Xk − BkO)2

]
= E


ÑA(τBk+1)−1∑

i=ÑA(τBk )

R1{Q̃i≤K̃k} −
∫ τBk+1

τBk

CQ̃(u)du− BnO

2


≤ E


ÑA(τBk+1)−1∑

i=ÑA(τBk )

R1{Q̃i≤K̃k}

2

+

(∫ τBk+1

τBk

CQ̃(u)du+ BnO

)2


≤ E
[
R2(Ñk

join)
2 + (Bk)

2(O + CK̄)2
]
,

where we recall that Ñk
join denotes the customers joining the queue during the kth busy cycle,

and Bk = τBk+1−τBk is the duration of the kth busy cycle. When k ≥ 2, both Ñk
join and Bk have

finite second moments that do not depend on k, so that
∑∞

k=2 k
−2E [(Xk − BkO)2] < ∞.

Therefore, by the strong law of large numbers for martingales [Csörgő 1968, Theorem 1],

(II.30) holds.

Next, we prove (II.31). Consider a dispatcher that uses the static threshold policy K̄,

which is coupled with the dispatcher described in Proposition 2.5.3, and also has initial

queue-length a. The duration of the nth busy cycles of this dispatcher is denoted B̃K̄
n . The

random variables B̃K̄
n s are i.i.d. for all n ≥ 2. Although having a different distribution, B̃K̄

1 is

independent of B̃K̄
n for all n ≥ 2.

Using Proposition 2.3.1, observe that on any sample path, when the dispatcher that uses

the static threshold K̄ has experienced k busy periods, the dispatcher described in Proposition

2.5.3 would have experienced more than k busy periods. Thus, we can conclude that, with
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probability 1,
k∑

n=1

B̃K̄
i ≥

k∑
n=1

Bk,

for all k. Moreover, since BK̄
n s have finite first moments, [Takagi and Tarabia 2009], and are

non-negative, they are finite a.s. Therefore, limk→∞ k/
∑k

n=1 B̃K̄
n = 1/E[BK̄

2 ] exists a.s. and

is strictly positive. Therefore, with probability 1, we have:

lim inf
k→∞

k∑k
n=1 Bn

≥ lim
k→∞

k∑k
n=1 B̃K̄

n

=
1

E[BK̄
2 ]

> 0.

Similarly, comparing with the dispatcher using static threshold policy K̄ − 1 that is coupled

with the genie-aided dispatcher described in Proposition 2.5.3, with probability 1, we have:

lim sup
k→∞

k∑k
n=1 Bn

≤ lim
k→∞

k∑k
n=1 B̃K̄−1

n

=
1

E[BK̄−1
2 ]

< ∞.

The last two results imply (II.31). Then, (II.31) and (II.30) prove the desired result.

Remark 2.5.1. When there exists a unique optimal threshold policy, the definition of regret is

straightforward and without any ambiguity. However, in the case where there are multiple

optimal threshold policies, we need to define the regret with respect to one of the optimal

policies. Proposition 2.5.3 shows that the alternating genie-aided system is asymptotically

optimal for almost all sample paths in the sense that it achieves the same long-term average

profit as the system that uses either static threshold K̄ or K̄ − 1 starting from the beginning.

The total net profit achieved by this alternating genie-aided system up to time T is not

necessarily equal to the total net profit achieved by the genie-aided system using static

threshold K̄ or K̄ − 1. These three policies (including the two static policies) do not

necessarily achieve the same net profit up to time T on given sample paths of the arrival and

service processes. Note that by Propositoin 2.3.1, the net profit process of the alternating

genie-aided system during any busy cycle is either the same as the gain of one of the systems
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using static thresholds K̄ and K̄ − 1 or the net profit during the busy cycle is no smaller than

the gain in the system using the static threshold K̄: consider the case that the alternating

system switches from using threshold K̄ − 1 to K̄, and the queue-length hits K̄ during the

current busy cycle. This is the only case where the behavior of the alternating genie-aided

system may be different from the two systems using a static threshold. However, during the

time between the switch and the time that the queue length of the alternating system hits K̄ in

the current busy cycle, the queue-length of the system using threshold K̄ is greater than or

equal to the queue-length of the alternating system. Moreover, the number of customers being

served is the same for these two systems (in the current busy cycle). A similar but opposite

comparison can be made with the system using static threshold K̄ − 1. In fact, the total net

profit achieved (as a function of time) by the two systems using the static thresholds K̄ and

K̄−1, respectively, are not necessarily equal on given sample paths of the arrival and service

processes either. We expect that the difference between the net profit of pairs of such systems

obeys a Central-Limit Theorem behavior (including a functional form of the Central-Limit

Theorem) when appropriately normalized and scaled (in time).

Take as a concrete example the situation where K̄ = 1 and K̄ − 1 = 0 are both optimal

thresholds and assume that the initial queue length is 0 for both systems. Using the inequalities

in II.3, we get that these two optimal thresholds only occur when C/µ = R. The system

that uses the static threshold 0 does not admit any customers into the system, and clearly

achieves a total net profit equal to 0 for any time T . The system that uses the static threshold

1 admits a customer in the queue if and only if the system is empty when this customer arrives.

The busy periods of this system using the static threshold 1 are exactly the periods when a

single customer is served, and the expected net profit during any busy period of this system is

R−C/µ = 0. However, this does not imply that the total net profit up to time T of the system

using threshold 1 is 0. In fact, the difference of the total net profit between these two systems

over the busy periods of the system using threshold 1 is a sum of mean-zero random variables
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(with each random variable being R − C × S where S ∼ EXP(µ) is the service time of

the customer-in-service), which, intuitively, will lead to the claimed Central-Limit Theorem

behavior. Furthermore, by the (finite-time) Law of the Iterated Logarithm [Balsubramani

2015], along (almost all) sample paths the difference of the total net profit of the two systems

may grow at most as O(
√

T ln(ln(T ))) (with high probability).

For this example, we can also carry out an explicit analysis of E[G(t)], the expected total

net profit up to any time t of the system using static threshold 1. With the assumption that

the initial queue length is 0, it is easier to consider the busy cycle as the idle period together

with the consecutive busy period. Let (Y 1
n ,B1

n) denote the total net profit and the duration

of the nth busy cycle of the dispatcher that uses threshold 1. As mentioned in the previous

paragraph, E[Y 1
n ] = 0 for all n. The random variables B1

n are i.i.d. and have the same

distribution as A+ S, where A is an EXP(λ) random variable and S is an EXP(µ) random

variable independent of A. Let N(t) denote the number of completed busy cycles until time

t, n(t) = E [N(t)] denote the expected number of completed busy cycles up to time t, σs(t)

denote the residual service time of the current busy cycle at time t, and τt =
∑N(t)+1

n=1 B1
n

denote the end-time of the current busy cycle. Recalling that the reward R is given to the

dispatcher at each service completion, we have:

E [G(t)] = E [G(τt)]−R + CE[σs(t)].

Note that n(t) is the renewal function of the associated (alternating) renewal process with

renewal interval distributed the same as A+ S. By standard renewal theory arguments, n(t)

is finite for all t, and N(t) + 1 is a stopping time of the sequence (Y 1
n ,B1

n). Applying Wald’s
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equality, we get

E[G(τt)] = E

N(t)+1∑
i=1

Y 1
i

 = E [N(t) + 1]E
[
Y 1
1

]
= 0.

Note that the distribution of σs(t) follows EXP(µ): if at time t the busy period has not

started yet, clearly the residual service time is an EXP(µ) random variable. If there is a

customer being served at time t, the busy cycle ends at the completion of this service. Using

the memory-less property of exponential random variable, the residual service time is again

an EXP(µ) random variable.

Then, using E[G(τt)] = 0, we get:

E [G(t)] = E [G(τt)]−R + CE[σs(t)] = 0−R + C/µ = 0.

Despite admitting a customer when the queue is empty, the expected net profit at any time is

exactly 0 for the dispatcher using static threshold 1 when both K̄ = 1 and K̄ − 1 = 0 are

optimal thresholds. We expect that a similar but more complicated computation using renewal

theory (as the memory-less argument no longer holds for the busy period, which is now a

phase-type distribution, plus we need to determine the remaining workload to be served) can

be carried out for systems using threshold K̄ > 1 and K̄ − 1 > 0, when both are optimal

thresholds. We expect that as t → ∞, the expected total net profit of the two systems using

static thresholds differ by at most a constant, and so is the difference of the expected total net

profit of the alternating system and the two systems using a static threshold. These questions

are outside the scope of the paper and are left for future research.
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2.5.3 Regret analysis with respect to the alternating genie-aided dispatcher.

In Proposition 2.5.3 we proved that the alternating genie-aided dispatcher described in

Section 2.5.2 that uses K̄ and K̄ − 1 “in favor" of the learning algorithm is optimal for (II.1).

Next, we bound the regret of the learning dispatcher when compared with this genie-aided

dispatcher.

Recall from Section 2.5.2 that K̃i denotes the threshold used by the alternating genie-aided

dispatcher at the arrival of the ith arriving customer. Following (II.12), we have:

G(t) ≤
(
R +

C

λ

)
E

NA(t)∑
i=1

∣∣∣1{Q̃i<K̃i} − 1{Qi<Ki}

∣∣∣+|Q̃i −Qi|

 .

Similar to the earlier analysis, assuming that both systems start with the same initial queue-

length, we use G̃j
1 to denote the expected regret accumulated during the (potential) phase 1

and the first time the queue is emptied in the consecutive phase 2 for the jth batch. Again, we

use G̃j
2 to denote the expected regret accumulated in the remainder of (the phase 2 of the) jth

batch.

Set Ẽ j
2 := {K(j) = K̄}∪{K(j) = K̄− 1}. We will reuse the events E j

1 and E j
3 that were

first introduced in Section 2.4. Recall that E j
1 denotes the event that phase 1 of the jth batch

happens, and E j
3 = {Qnj = Q̃nj} denotes the event that at the beginning of the jth phase 2 of

the learning system, the queue-length of the two systems are the same.

Only under the event E j
1 there is a regret contribution to G̃j

1 (since otherwise phase 1 of the

jth batch is omitted, and the queue-length at the beginning of phase 2 is 0). Under the event

(E j
1)

c ∩ Ẽ j
2 ∩ E j

3 , there is no regret contribution to G̃j
2: indeed, for this batch of customers,

Ẽ j
2 ensures the learned threshold is either K̄ or K̄ − 1. The event (E j

1)
c ensures that phase 1

is omitted, so the queue-length at the beginning of this phase 2 of the learning system is 0.

Moreover, E j
3 ensures that the queue-length of the alternating genie-aided system is also 0 at
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this time, which means that the arrival of the first customer of this phase 2 initiates a busy

cycle for both systems. In this case, the alternating genie-aided system would pick the same

threshold used as the learning system for all the busy cycles in this phase 2. Both systems

would make the same choices of admitting each arrival in this phase 2, and the queue-length

processes of the two systems would also coincide for the entire phase 2. Under the event

E j
1 ∩ Ẽ j

2 ∩E j
3 , although phase 1 happens, Proposition 2.3.1 tells us that the queue-length of the

learning system at the end of phase 1 is no smaller than the queue-length of the genie-aided

system. The event Ẽ j
2 ensures that the threshold used by the learning system during the entire

phase 2 is no smaller than the threshold used by the genie-aided system (since the genie-aided

system would be either using the same threshold as the learning system when a busy cycle

is initiated by a customer who arrives during phase 2 or using threshold K̄ − 1 when a busy

cycle is initiated by a customer who arrives during phase 1), when the queue-length of the

learning system hits 0 for the first time after phase 1, the queue-length of the genie-aided

system also hits 0. The next proposition gives a bound that holds in the current setting for the

probability of
(
Ẽ j
2 ∩ E j

3

)c
.

Proposition 2.5.4. Fix j ≥ ⌈eK̄⌉. In case that V (K̄, µ, λ) = R/C, we have the following:

P
[(

Ẽ j
2 ∩ E j

3

)c]
≤ C̃1 exp

(
− C̃2ln

1+ϵ(j)
)
+ C̃1 exp

(
− C̃2 ln

1+ϵ(j − 1)
)

+ C̃3 exp
(
− C̃4βj

)
+ C̃3 exp

(
− C̃4βj−1

)
+
(
cK̄
)αj−1l2 .

C̃1, C̃2, C̃3 and C̃4 are defined in (II.23) and (II.24), and

cK̄ := 1−
(

µ

λ+ µ

)K̄

∈ (0, 1).

Proof. The proof for both cases K̄ > 1 and K̄ = 1 follows the same logic as in the case

K̄ > 0 in Proposition 2.4.6.
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Since we are using l1, K∗(j) and K̄ to bound the queue-length in the proof of Lemmas

2.4.1 and 2.4.2, these two lemmas still hold when the optimal threshold is not unique. It

should be now clear that Theorem 2.2.1 and Theorem 2.2.2 also hold when equality holds in

(II.3).

2.6 Simulation-based numerical results

In this section, we demonstrate the performance of our proposed Algorithm 1 using

simulations. To compute the regret we compare our algorithm to the genie-aided system that

has the knowledge of the arrival and service rates and uses the optimal strategy proposed

by [Naor 1969]. For the simulations, we set the initial queue-length to be 0 for both the

genie-aided and learning systems. For all numerical experiments, unless specified otherwise,

we use the following set of parameters: l2 = 10, C = R = 1, E[Bj] = ln(j)/j, αj = j

where recall that l2 is the minimum length of phase 2, C is the cost per unit time, R is the

reward granted to the dispatcher when each service completes, Bj is the random variable

which controls the probability of having phase 1 when the threshold used in the previous

phase 2 is 0, and αj is the rate at which the minimum length of phase 2 increases. Note that,

unless specified otherwise, we use ϵ = 1 in E[Bj] = lnϵ(j)/j. We vary µ and λ for different

experiments, and explore zero and non-zero optimal threshold cases, as well as the cases

where the optimal threshold is unique and when it is not unique. To show the pattern of the

regret within a reasonable number of arriving customers, when the largest optimal threshold

is 0, we use l1 = 1 and when the largest optimal threshold is positive, we use l1 = 3, where l1

is the length of phase 1 (when used), and stays unchanged for all batches. Our theoretical

analysis holds for arbitrary choices of the constants l1 ≥ 1. However, when l1 is large and

the service rate is small, it will take a long time for the queue to empty during phase 2, and

therefore, will require more arrivals to show the correct asymptotic behavior of the regret.

The finite-time performance of the simulated results agrees qualitatively with our upper
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bound: when an optimal strategy is to use threshold 0, the learning system achieves an

expected regret that grows in a sub-linear manner; and when all optimal strategies use a

non-zero threshold, the learning system achieves an O(1) expected regret.

(a) λ = 1, R = 1, and the optimal threshold is
K̄ = 5.

(b) λ = 1, R = 129
32 , and the optimal thresholds

{4, 5} (K̄ = 5).

Figure II.1: Regret of the learning system when all optimal thresholds are positive. We set
C = 1, E[Bj] = ln(j)/j , K∗(j) ∼ ln(j), and αj = j.

Expected regret with non-zero optimal thresholds: Figure II.1a shows the variation of

the (expected) regret with respect to the number of arrivals for µ = 6 and µ = 6.5 when

l1 = 3 and λ = 1. The regret is averaged over 1000 simulations and there are more than

2 ∗ 105 customers arrivals to the system. The optimal threshold is unique, and the genie-aided

dispatcher uses the threshold K̄ = 5 in both cases that are plotted in Figure II.1a. The

initial upper bound is K∗(1) = l1, which is smaller than the optimal threshold but increases

slowly so that eventually K̄ < K∗(j) for large j. As shown in the analysis and the numerical

experiments, the regret is O(1). Figure II.1b shows the regret plot with respect to the number

of arrivals for µ = 2, λ = 1 and R = 129/32 with l1 = 3. The regret is averaged over 2000

simulations and there are more than 2 ∗ 105 customers arrivals to the system. In this case,

the optimal threshold is not unique: both K̄ − 1 = 4 and K̄ = 5 are optimal thresholds.

The alternating genie-aided algorithm uses the policy that is described in Proposition 2.5.3
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and only changes the threshold used between busy cycles. Similarly, as in Figure II.1a, the

learning algorithm will not be able to use K̄ in the first few batches because of the truncation.

The plots indicate that constant regret is accumulated, which is consistent with our analytical

results; interestingly, in all cases, convergence to the constant regret value happens rapidly.

(a) λ = 1 and the optimal threshold is K̄ = 0.
(b) λ = 1 and the optimal thresholds are {0, 1};
K̄ = 1.

Figure II.2: Regret of the learning system when an optimal threshold is zero. We set
C = R = 1, E[Bj] = ln(j)/j , K∗(j) ∼ ln(j) and αj = j.

Expected regret with zero being an optimal threshold: Figure II.2a shows how the regret

changes with respect to the number of arrivals for µ = 0.8 and µ = 0.9 when l1 = 1 and

λ = 1. The regret is averaged over 2000 simulations and there are more than 105 customers

arrived in the system. In both cases shown in Figure II.2a, the genie-aided dispatcher uses

threshold K̄ = 0. Figure II.2b shows the regret plot with respect to the number of customers

for µ = 1 and λ = 1 when l1 = 3. The regret is averaged over 2000 simulations and there

are more than 2 ∗ 105 customers arrived in the system. In this case, the optimal threshold is

not unique: both K̄ − 1 = 0 and K̄ = 1 are optimal thresholds. The alternating genie-aided

dispatcher uses the policy that is described in Proposition 2.5.3 and only changes the threshold

between busy cycles. The plots indicate that sub-linear regret is accumulated in all cases.

Here, when the learning dispatcher uses threshold 0 in phase 2 of a given batch, the existence
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of the forced exploration phase in the next batch results in regret being accumulated. Note

that for all plots shown in Figure II.2, the optimal thresholds can be used by the learning

dispatcher in phase 2 right from the first batch.

Figure II.3: Regret of the learning system when µ = 9, λ = 1, R = C = 1 and the optimal
threshold is 8 using and not using the truncation for the threshold used in phase 2. We set
E[Bj] = ln(j)/j and αj = j.

(a) With the no-truncation option included. (b) Exclude the no-truncation option.

Figure II.4: Regret of the learning system when µ = 3, λ = 3.5, R = 21 and the optimal
threshold is 8 using and not using the truncation for the threshold used in phase 2. We set
C = 1, E[Bj] = ln(j)/j and αj = j.

Expected regret with different choices of K∗(j): We introduced truncation with the

parameter K∗(j) in our analysis since we needed a bound on the worst-case queue length
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for the learning system. We obtained a particular order of the regret with the choice of

K∗(j) = max{⌊ln(j)⌋, 0} + l1 + Q0. Next, we explore the impact of different choices of

K∗(j) in Figure II.3 and Figure II.4. We use ∼ to indicate the order at which K∗(j) increases:

specifically, K∗(j) ∼ f(j) means K∗(j) = max{⌊f(j)⌋, 0} + l1 + Q0. The regret values

are averaged over 2000 simulations, and there are more than 3 ∗ 105 arrival customers that

arrive in more than 700 batches. In Figure II.3, we use µ = 9, λ = 1, and R = 1. The optimal

threshold is K̄ = 8. This Figure indicates that under the chosen model parameters, with or

without truncation, a constant regret can be achieved. However, this is not always the case.

In Figure II.4, we use µ = 3, λ = 3.5, and R = 21. The optimal threshold is K̄ = 8. The

M/M/1 queue with µ = 3 and λ = 3.5 is not stable. Despite this, Figure II.4b suggests that

constant regret is achieved for various truncation choices. However, when no truncation is

enforced, the regret accumulated seems to grow linearly with respect to the number of arrivals,

see Figure II.4a. This suggests that the truncation is necessary and it helps to ensure a lower

regret yet one may use a K∗(j) that grows faster than ln(j). Confirming this through analysis

is a topic to explore in future research.

(a) Average regret plot. (b) Log versus log-log regret plot.

Figure II.5: Regret accumulated when µ = 0.8, λ = 1 and R = 1 for different choice of αj .
Optimal threshold is K̄ = 0. We set C = 1, E[Bj] = ln(j)/j and K∗(j) ∼ ln(j).
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(a) Average regret plot.
(b) Average regret plot when αj ∼ j1/3 and αj ∼
ln(j).

Figure II.6: Regret accumulated when µ = 3, λ = 3.5, and R = 21 for different choices of
αj . Optimal threshold is K̄ = 8. We set C = 1, E[Bj] = ln(j)/j and K∗(j) ∼ ln(j).

Expected regret with different choices of αj: We introduced αjl2 to be the minimum

length of phase 2 for the jth batch. Figure II.5 and II.6 plots the average regret accumulated

with different choices of αj’s. In particular, Figure II.5 includes the plot of the average regret

accumulated as well as the log versus log-log plot when µ = 0.8, λ = 1 with more than 2∗105

arrival customers, and Figure II.6 plots the average regret accumulated when µ = 3, λ = 3.5

with more than 10∗105 arrival customers. We use αj ∼ f(j) to denote αj = max{⌊f(j)⌋, 1}.

The regret is averaged over 2000 simulations in both plots. Figure II.5 and II.6 suggests that

for all these choices of αj , a sub-linear regret is accumulated, and having an αj that grows

slower may still be able to achieve the regret bounds proved for αj = j.

Expected regret with different choices of E[Bj]: We also examined difference choices

of E[Bj], which controls the probability of having a phase 1 when the threshold used in the

previous phase 2 is 0. Figure II.7 and II.8 shows the plots of various choices of E[Bj]. From

these finite-time experiments, it seems that having a high enough chance to explore during

the first few batches the learning dispatcher observes helps to reduce the regret accumulated.

However, comparing the plots of E[Bj] = ln4(j)/j2 and E[Bj] = ln(j)/j in Figure II.8b, it
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(a) Average regret plot. (b) Log versus log-log regret plot.

Figure II.7: Regret accumulated when µ = 0.8, λ = 1 and the choices of E[Bj] vary. The
optimal threshold is K̄ = 0. We set C = R = 1, K∗(j) ∼ ln(j) and αj = j.

(a) Average regret plot.
(b) Average regret plot excluding the option when
E[Bj ] = 1/j and E[Bj ] = 1/j1.1.

Figure II.8: Regret accumulated when µ = 1.3, λ = 1 and the choices of E[Bj] vary. The
optimal threshold is K̄ = 1 We set C = R = 1, K∗(j) ∼ ln(j) and αj = j.
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seems that only having a high probability of exploration for the first few batches is not be

enough to achieve O(1) regret since the slope of the plot for E[Bj] = ln(j)/j decreases a lot

faster than the plot of E[Bj] = ln4(j)/j2. Although all the choices of E[Bj] seem to achieve

sub-linear regret for the case K̄ = 0, always having the exploration phase when the threshold

used in the previous phase 2 is 0 accumulates a higher regret with a different scaling behavior.

(a) Average regret plot versus various λ’s when
µ = 6.

(b) Average regret plot versus various µ’s when
λ = 1

Figure II.9: Regret plot for various arrival and service rates. We set C = R = 1, E[Bj] =
ln(j)/j, K∗(j) ∼ ln(j) and αj = j.

Expected regret with different values of µ and λ: Figure II.9 plots the average regret

accumulated when seeing more than 3 ∗ 105 arriving customers when fixing one of the pair

of arrival and service rates while varying the other. The regret values are averaged over 600

simulations. From the plot, we observe that when the arrival rate is fixed, as the service rate

increases, in general, the regret decreases. However, the decrease is not strict and instead is

non-monotonic, where the large cusps are usually around the parameter choices that have

non-unique optimal thresholds. When the service rate is fixed, as the arrival rate increases,

the regret follows a similar increasing/decreasing trend.
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(a) Log average regret plot when µ = 0.8, λ = 1,
R = 1 and K̄ = 0.

(b) Log average regret plot when µ = 3, λ = 3.5,
R = 21 and K̄ = 8.

Figure II.10: Log of regret accumulated when using different algorithms when the optimal
threshold is unique. Alg1 is the learning algorithm proposed in Algorithm 1. We set C = 1,
E[Bj] = ln(j)/j , K∗(j) ∼ ln(j) and αj = j. ETO(M ) is the Estimate-Then-Optimize
algorithm that always accepts the first M customers. UCB is the Upper Confidence Bound
algorithm.

(a) Log averaged regret plot when µ = 1 and
λ = 1. Both K̄ = 1 and K̄ − 1 = 0 are optimal
thresholds.

(b) Log of average regret plot when µ = 2, λ = 1
and R = 129/32. Both K̄ = 5 and K̄ − 1 = 4
are optimal thresholds.

Figure II.11: Log of regret accumulated when using different algorithms when the optimal
thresholds are not unique. Alg1 is the learning algorithm proposed in Algorithm 1. We
set C = 1, E[Bj] = ln(j)/j , K∗(j) ∼ ln(j) and αj = j. ETO(M ) is the Estimate-Then-
Optimize algorithm that always accepts the first M customers. UCB is the Upper Confidence
Bound algorithm.
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Comparison with benchmark algorithms: We also compared the finite time performance

of our proposed Algorithm 1 with a few benchmark algorithms. In Figure II.10 and Figure II.11

we compared Algorithm 1 with the Estimate-Then-Optimize (ETO) algorithm and the Upper

Confidence Bound (UCB) algorithm when there are more than 3 ∗ 105 arrival customers

and the regrets are averaged over 2000 simulations. We use ETO(M ) to denote the ETO

algorithm which always accepts the first M customers. We use the UCB algorithm described

in [Lattimore and Szepesvári 2020a, Section 7.1] but with UCB bias subtracted from the

estimated average service time. Figure II.10a plots the log of average regret for the case when

µ = 0.8, λ = 1 and the optimal threshold is 0. Figure II.10b plots the log of average regret

for the case when µ = 3, λ = 3.5 and the optimal threshold is 8. For the parameters used in

these two plots, the optimal threshold is unique. Figure II.11a plots the average regret for

the case when µ = 1, λ = 1 and the optimal thresholds are {1, 0}. Figure II.11b plots the

average regret for the case when µ = 2, λ = 1 and the optimal thresholds are {5, 4}. For

the parameter choices in Figure II.11, the optimal threshold is not unique. The regret values

in these two plots are computed with respect to the alternating genie-aided system which

would change the threshold used between {K̄, K̄ − 1} according to the threshold used by

Algorithm1, ETO or UCB.

The order of the regret accumulated by Algorithm 1 and UCB are similar in Figure II.10b

and II.11b. However, in Figure II.10a and II.11a where 0 is an optimal threshold, UCB

achieves constant regret yet Algorithm 1 achieves a sublinear regret. It is likely that the regret

accumulated by Algorithm 1 would slowly increase as the number of arrivals increases and

eventually becomes larger than the regret of the UCB algorithm. Our algorithm may choose

to use threshold 0 and then a phase 1 may be enforced and regret accumulates because of

this. In Figure II.12, we compared the finite time performance of our proposed algorithm with

UCB when µ = 1.1 and λ = 1 with 2000 simulations and more than 106 arrival customers. In

this case, 1 is the unique optimal threshold. As we can observe from Figure II.12, the regret
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Figure II.12: Regret accumulated when µ = 1.1, λ = 1, C = R = 1 and K̄ = 1. Alg1
is the learning algorithm proposed in Algorithm 1. We set l1 = l2 = 30, Bj = ln(j)/j ,
K∗(j) ∼ ln(j) and αj = j. UCB is the Upper Confidence Bound algorithm.

of UCB increases in a (approximately) linear fashion, while our proposed algorithm is able

to achieve constant regret. In fact, we can argue the following for UCB-based dispatching

(under the simpler setting of the arrival rate being known):

1. When the optimal threshold(s) is positive, then some bad initial service time samples can

result in the estimated threshold being 0. This bad event happens with positive probability

for all µ > C
R

(the probability decreases to 0 as µ → ∞). Whenever this bad event occurs,

then the UCB-based dispatching algorithm stops dispatching customers, obtains no new

service time samples, and incurs linear regret.

2. When 0 is an optimal threshold, then the corresponding bad event of estimating the

threshold as positive is more benign. This holds as dispatching more customers only

results in more service time samples, which then help to correct inaccurate estimates.

Hence, we expect to achieve a constant or slowly growing (sub-linear) regret.

Note that the explanation above supports the conjecture in Remark 2.4.4 since the worst-case

(over parameters) regret of UCB is expected to be linear in N . Moreover, since UCB needs to

compute the estimated threshold at every arrival, it requires more computation when compared
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to Algorithm 1.

(a) µ = λ = C = R = 1. Both K̄ = 1 and
K̄ − 1 = 0 are optimal thresholds.

(b) µ = 2, λ = 1 and R = 129/32. Both K̄ = 5
and K̄ − 1 = 4 are optimal thresholds.

Figure II.13: Performance difference between the alternating genie, the genie algorithm using
threshold K̄ and the genie algorithm using threshold K̄ − 1. The accumulated net gain of the
genie algorithm using threshold K̄ − 1 is scaled to be 0.

Comparison of different genie-aided algorithms: Figure II.13 compares the accumulated

net gain between the alternating genie-aided algorithm (“AG algo" in the legend) coupled

with Algorithm 1 and the genie-aided algorithms using threshold K̄ (“ThreshK algo" in the

legend) or K̄ − 1 (“ThreshK-1 algo" in the legend) when optimal thresholds are not unique;

the accumulated net gain of the genie-aided algorithm using threshold K̄−1 are scaled to be 0.

Figure II.13 plots the difference between the net gain obtained by the alternating genie-aided

system and the genie-aided system using static threshold K̄ − 1, and the difference of the

net gain between two genie-aided systems using static threshold K̄ and K̄ − 1 over two sets

of parameters. We also include the regret accumulated by the learning algorithm compared

with the genie-aided algorithm using threshold K-1. The performances of the algorithms are

averaged over 18000 simulations. As we can observe from the plots, the regret accumulated

by the learning algorithm (with respect to either the alternating genie-aided system or the

genie-aided system using threshold K − 1) dominates the performance difference between
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the alternating genie-aided system and the genie-aided system using threshold K− 1 , and the

performing difference between the genie-aided system using threshold K and the genie-aided

system using threshold K − 1. This is more evidence in favor of Remark 2.5.1.

2.7 Conclusions

In this paper, we considered a social welfare maximizing problem, which was first

proposed and studied in [Naor 1969]. We studied the learning problem of finding the proper

threshold admission policy when the service and arrival rates are unknown. We proposed

a learning algorithm that consists of batches where each batch has an optional exploration

phase with a fixed length and an exploitation phase. When the optimal policy is unique, we

showed that our learning algorithm achieves an O(1) regret whenever the optimal threshold

is non-zero, and achieves an O(ln1+ϵ(N)) regret when the optimal threshold is zero, where

N denotes the total number of arrival customers to the systems. When the optimal policy is

not unique, we specified a particular optimal policy to compare with, and proved that similar

regret bounds hold for our learning algorithm.
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CHAPTER III

On The Asymptotic Optimality Of The Comb Strategy For Prediction

with Expert Advice

3.1 Introduction

In this chapter we use PDE tools to analyze one of the classical problems in machine

learning, namely prediction with expert advice. In this framework, a game is played between a

player and nature (also called the adversary in the learning literature). At each time step, given

past information, the player has to choose an expert among N > 0 experts. Simultaneously

nature chooses a set of winning experts. Then, both choices are announced. If the player

chooses an expert belonging to the set of winning experts, the player also wins. The objective

of the player is to minimize his regret with respect to the best performing expert, i.e., minimize

RT = max
i

Gi
T −GT

where Gi
T is the total gain of the expert i and GT is the gain of the player at the final time.

The objective of nature is to choose the set of winning experts to maximize the regret of

the player. This problem that has been extensively studied in learning theory [Cover 1967;

Cesa-Bianchi and Lugosi 2006; Rakhlin, Shamir, and Sridharan 2012; Gravin, Peres, and

Sivan 2016; Haussler, Kivinen, and Warmuth 1995; Littlestone and Warmuth 1994; Vovk

1990], and can also be seen as a discrete time and discrete space robust utility maximization
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problem similar to [Nutz 2016] for a particular choice of utility function.

For the case of 2 experts, the optimal strategy for the adversary was first described by

Cover [Cover 1967] in the 1960s. Recently, for the case with 3 experts, using an ansatz of

exponential type for the value function of the game, Gravin et al. showed in [Gravin, Peres,

and Sivan 2016] that the so called “comb strategy”, the strategy that consists of choosing

the leading and the third leading expert by nature, is optimal. However, the exponential type

ansatz for the value of the game does not generalize to larger number of experts.

In this chapter, we follow the setting of [Gravin, Peres, and Sivan 2016], where the

maturity of the game is a geometric random variable with parameter δ > 0 and study the game

where both the player and nature can use randomized strategies. In this framework, we prove

two conjectures stated in [Gravin, Peres, and Sivan 2016] for the game with N = 4 experts.

We use tools from stochastic analysis and PDE theory to give an explicit expansion of the

value function of the game for small δ > 0, which corresponds to long time asymptotics. In

Theorem 3.3.1, this expansion allows us to prove that the value of the game, also called best

regret, indeed grows as π
4
√
2δ

as conjectured in [Gravin, Peres, and Sivan 2016].

The proof of this result is achieved in two steps. This first step can be found in [Drenska

2017], where, using tools from viscosity theory, the author showed that the rescaled value

function (III.4) solves the elliptic PDE (III.5). The second step, which is the main contribution

of this chapter, is to explicitly solve this PDE for the case of 4 experts. In order to find this

expression, we use the conjectured optimal strategy in [Gravin, Peres, and Sivan 2016], and

relate the value function of the control problem (III.6) to the expectation of a functional of

an obliquely reflected Brownian motion; see in particular Lemma 3.4.1. This expression is

a discounted expected value of the local time that measures the number of times the best

two experts’ gains cross each other. Then, using appropriate differentiation of the dynamic

programming equation (III.33), we characterize the value of the expectation on two “opposite”

faces of the domain of reflection by a system of hyperbolic PDE (III.42) and (III.43). Then,
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we solve this system of hyperbolic PDE to explicitly compute the value for the conjectured

control at the boundary, which then leads to the value in the whole domain. Finally, in

Section 3.6, we check that the value given for the conjectured control solve the nonlinear PDE

(III.5), which is a simple verification argument proving the optimality of comb strategy, the

second conjecture in [Gravin, Peres, and Sivan 2016]. See Theorem 3.3.2. The direct proof

of the verification argument is quite tedious. Hence, we came up with a method that relies

on Proposition 3.5.4, which is a type of maximum principle for the system of hyperbolic

equations (III.53).

From the perspective of control theory, we note that the setting of [Gravin, Peres, and

Sivan 2016] is in fact similar to the weak formulation (or feedback/closed loop formulation)

of zero-sum games in the sense of [T. Pham and J. Zhang 2014] (see also [Bayraktar, Cosso,

and H. Pham 2016]) where the player and nature observe the same source of information,

i.e. the path of the gains of the experts and the player. One can also state the game in a

Elliott-Kalton sense, see e.g. [Fleming and Souganidis 1989], in which similarly to [Kohn

and Serfaty 2010], before taking its decision, nature learns the choice of the player. These

two formulations generally lead to different values; see Remark 4.2 in [Bayraktar, Cosso, and

H. Pham 2016].

Our expansion is in accordance with well-known results in prediction problems. Indeed,

it is known that in the long run, there is an upper bound for the value of regret minimization

problems that grows at most as
√

T log(N)
2

, which is achieved by the so-called multiplicative

weight algorithms [Cesa-Bianchi and Lugosi 2006]. In this chapter, we compute the exact

scaling for the geometric stopping problem which also allows us to directly provide explicit

algorithms for nature.

The rest of the chapter is organized as follows. In Section 3.2 we introduce our notation

and define the value function of the regret minimization problem. In Section 3.3, we give the

main results of the chapter. This result is proven in Section 3.6. The Sections 3.4 and 3.5 are
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there to provide the methodology used in finding the explicit solution (III.7).

3.2 Statement of the problem

We fix N ≥ 2 and denote by U the set of probability measures on {1, . . . , N} and by V

the set of probability measures on P (N), the power set of {1, . . . N}. These sets of probability

measures are in fact in bijection with respectively N and 2N dimensional unit simplexes.

We denote by {ei}i={1,...,N} the canonical basis of RN and for J ∈ P (N), eJ stands for

eJ :=
∑

j∈J ej . Similar to [Ichiba, Karatzas, and Shkolnikov 2013], for all x ∈ RN , we

denote by {x(i)}i=1,...,N the ranked coordinates of x with

x(1) ≤ x(2) ≤ . . . ≤ x(N),

and define the function

Φ : x ∈ RN 7→ max
i

xi = x(N). (III.1)

We assume that a player and nature interact through the evolution of the state of N experts.

At time t ∈ N, the state of the game in hand is described by {Gi
s}s=1,...,t−1, the history of the

gains of each expert i = 1, . . . N and {Gs}s=1,...,t−1 the history of the gains of the player. At

time step t ∈ N, observing {(Gi
s, Gs) : s = 0, . . . , t− 1}, simultaneously, the player chooses

It ∈ {1, . . . , N} and nature chooses Jt ∈ P (N). The gain of each expert chosen by nature

increases by 1 i.e.,

Gi
t = Gi

t−1 + 1 if i ∈ Jt

Gi
t = Gi

t−1 if i /∈ Jt.

If the player also chooses an expert chosen by nature, then the gain of player also increases
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i.e.,

Gt = Gt−1 + 1 if It ∈ Jt

Gt = Gt−1 if It /∈ Jt.

The regret of the player at time t ∈ N is defined as

Rt := max
i=1,...,N

Gi
t −Gt.

Let T denote the random maturity of the problem. We assume that T is a geometric random

variable with parameter δ > 0.

We now convexify the problem by assuming that instead of choosing deterministic Jt

and It, nature and the player choose randomized strategies. At time t, the player chooses

a probability distribution αt ∈ U and nature chooses βt ∈ V that may depend on the

observation {(Gi
s, Gs) : s = 0, . . . t − 1, i = 1, . . . , N}. We denote by U the set of such

sequences {αt}t∈N and by V the set of such sequences {βt}. With some notational abuse,

we denote by It ∈ {1, . . . N} the random variable with distribution αt and Jt ∈ P (N) the

random variable with distribution βt.

The objective of the player is to minimize his expected regret at time T and the objective

of nature is to maximize the regret of the player. Hence we have a zero sum game with the

lower and the upper value for the game

sup
β∈V

inf
α∈U

Eα,β [RT ] ≤ inf
α∈U

sup
β∈V

Eα,β [RT ]

where Eα,β is the probability distribution under which we evaluate the regret given the controls
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α = {αt} and β = {βt}. We denote by

Xt := (X1
t , . . . , X

N
t ) := (G1

t −Gt, . . . , G
N
t −Gt) (III.2)

the difference between the gain of the player and the experts. The following result, which can

be found in [Gravin, Peres, and Sivan 2016; Drenska 2017], establishes the existence of a

value for this discrete game.

Proposition 3.2.1. The game has a value, i.e.,

V δ(X0) := sup
β∈V

inf
α∈U

Eα,β [RT ] = inf
α∈U

sup
β∈V

Eα,β [RT ] . (III.3)

There exists M > 0 independent of δ such that for all δ > 0 and x ∈ RN we have that

|V δ(x)− Φ(x)| ≤ M√
δ
.

Additionally, V δ satisfies the following dynamic programming principle

V δ(x) = δΦ(x) + (1− δ) inf
α∈U

sup
β∈V

∑
J

βJ

(
V δ (x+ eJ)− α(J)

)
.

Proof. The existence of the value is a direct consequence of the Minimax Theorem and is

provided in [Gravin, Peres, and Sivan 2016]. The proof of the rest of the Proposition can be

found in [Drenska 2017]. In particular the uniform bound in x is a consequence of [Drenska

2017, Theorem 3].
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3.2.1 Limiting behavior of V δ

The main objective of the chapter is to provide an explicit formula for the leading order

for the function V δ for small δ > 0. For this purpose define the rescaled value function:

uδ : x ∈ RN 7→ V δ

(
x√
δ

)√
δ. (III.4)

The next result shows that the limiting behavior of the value of the game can be characterized

by the value of a stochastic control problem.

Proposition 3.2.2. As δ ↓ 0, the function uδ converges locally uniformly to u : RN 7→ R

which is the unique viscosity solution of the equation

u(x)− 1

2
sup

J∈P (N)

e⊤J ∂
2u(x)eJ = Φ(x) (III.5)

in the class of functions with linear growth. Additionally, u admits the stochastic control

representation

u(x) = sup
(σt)

E
[∫ ∞

0

e−tΦ(Xt)dt

]
(III.6)

where X is defined by Xt = x +
∫ t

0
σsdWs with W a 1-dimensional Brownian motion and

the progressively measurable process (σt) satisfies for all t σt ∈ {eJ : J ∈ P (N)}.

Proof. The fact that uδ converges to u is a consequence of [Drenska 2017, Theorem 7]. Note

also that an analysis of the proof of [Drenska 2017, Theorem 7] and the general methodology

of proof in [Barles and Souganidis 1991] allows us to claim that the convergence is in

fact locally uniform. The fact that u admits the representation (III.6) is a consequence of

uniqueness of viscosity solution of (III.5) with linear growth that is proven in [Crandall, Ishii,

and Lions 1992, Theorem 5.1] and the stochastic Perron’s method of [Bayraktar and Sîrbu
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2013].

3.3 Main Results

3.3.1 Explicit solution for 4 experts

The main contribution of the chapter is to provide a method to explicitly solve the PDE

(III.5).

Theorem 3.3.1. With 4 experts, for x ∈ R4, the function u is given by the expression

u(x) = x(4) −
√
2

4
sinh(

√
2(x(4) − x(3))) (III.7)

+

√
2

2
arctan

(
e

x(1)+x(2)−x(3)−x(4)√
2

)
cosh

(
x(1) − x(2) + x(3) − x(4)

√
2

)
cosh

(
−x(1) + x(2) + x(3) − x(4)

√
2

)
cosh

(
−x(1) − x(2) + x(3) + x(4)

√
2

)
+

√
2

2
arctanh

(
e

x(1)+x(2)−x(3)−x(4)√
2

)
sinh

(
x(1) − x(2) + x(3) − x(4)

√
2

)
sinh

(
−x(1) + x(2) + x(3) − x(4)

√
2

)
sinh

(
−x(1) − x(2) + x(3) + x(4)

√
2

)

Additionally, u is twice continuously differentiable, monotone 1, symmetric in its variables on

R4, satisfy

u(x+ λ(e1 + e2 + e3 + e4)) = u(x) + λ for all x ∈ R4 and λ ∈ R (III.8)

and if J is a maximizer of the Hamiltonian supJ∈P (N) e
⊤
J ∂

2u(x)eJ then its complement J c is

also a maximizer of the same Hamiltonian.

1Monotone here means

u(x1 + y1, . . . , xN + yN ) ≥ u(x1, . . . , xN ) for all xi ∈ R and yi ≥ 0.
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Moreover,

V δ(0) =
π

4
√
2δ

+ o

(
1√
δ

)
, (III.9)

In fact, u has the following expansion at the origin

u(x1, x2, x3, x4) =
π

4
√
2
+

1

4
(x1 + x2 + x3 + x4)+

3π

16
√
2
(x2

1 + x2
2 + x2

3 + x2
4 −

2

3
(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4))

+ o(|x|2).

(III.10)

Proof. The proof of this result is provided in Section 3.6 after developing the methodology

required to obtain this expression. Note that one can check by hand (or preferably with a

computer) that the expression provided at (III.7) solves the equation (III.5) when all xi are

different from each other. Since the set of points x ∈ R4 with xi = xj for some i, j is of zero

Lebesgue measure, this proves that u is an almost everywhere solution of (III.5). However,

due to potential discontinuities of the derivatives when two of the x′
is are equal we need to

check that the almost everywhere solution of the equation (III.5) defined via this expression

is twice continuously differentiable and is therefore a smooth solution.

Remark 3.3.1. i)(III.9) is the main result for the long time behavior of the regret minimization

problem with geometric stopping and is conjectured in [Gravin, Peres, and Sivan 2016]. The

optimal regret scales as the square root of the time scale in hand. In this case of geometric

stopping u(0) = π
4
√
2

gives the term of proportionality between the optimal regret and the

stopping time parameter.

ii) The fact that J c maximizes supJ∈P (N) e
⊤
J ∂

2u(x)eJ whenever J maximizes this Hamil-

tonian is a direct consequence of the regularity of u and its translation invariance as in (III.8).

This fact will be useful to us while checking the optimality of comb strategies.
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3.3.2 Asymptotically optimal strategies

Given the value of u, we now describe a family of asymptotically optimal strategies for

nature. Inspired by [Gravin, Peres, and Sivan 2016] we give the following definition.

Definition 3.3.1. (i) We denote

J ∗(x) = argmax
J∈P (N)

e⊤J ∂
2u(x)eJ , (III.11)

the set of maximizers of the Hamiltonian.

(ii) For all x ∈ R4 with xi1 ≤ xi2 ≤ xi3 ≤ xi4 , we denote JC(x) ∈ P (N) the comb

strategy which is the control for the problem (III.6) that consists in choosing the experts i4

and i2. We take the convention that if two components xi and xj of the points are equal for

i < j then the ordering of the point is taken with xi ≤ xj .

(iii) We denote J b
C ∈ V the balanced comb strategy which is the control for nature in

game (III.3) that consists in choosing at x√
δ
∈ R4, JC(x) ∈ P (N) with probability 1

2
and

J c
C (x) ∈ P (N) with probability 1

2
.

Remark 3.3.2. Note that (ii) defines a control for the control problem (III.6) while (iii) defines

a control for the game (III.3). Hence the latter depends on δ and x and is scaled to reflect

the scaling between the two problems. Additionally, as a consequence of [Gravin, Peres,

and Sivan 2016, Claim 1], we have defined J b
C as the unique balanced strategy that can be

generated using JC(x).

One may conjecture that it is asymptotically optimal for nature to choose for all x√
δ
∈ R4

an element in J (x). However, this conjecture is not true since the strategy is not balanced in

the sense of [Gravin, Peres, and Sivan 2016]. Indeed, assume for example that for x ∈ R4

J ∗(x) is reduced to a unique subset of cardinality 1, meaning J ∗(x) = {J} = {{i}}. In this

case, choosing the expert i would be sub-optimal for nature since the player can also guess
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this control and choose the expert i. It is proven in [Gravin, Peres, and Sivan 2016] that in

order to be optimal any strategy of nature has to be balanced. Thanks to the Theorem 3.3.1,

the simplest strategy for nature would be to randomize his strategy between the maximizer of

the Hamiltonian and its complement.

The main result for asymptotically optimal strategies is the following theorem.

Theorem 3.3.2. The control J b
C ∈ V is asymptotically optimal for nature, in the sense that

uδ(x) = u(x) + o(1), (III.12)

where o is locally uniform in x, and we denote

uδ(x) =
√
δ inf
α∈U

Eα,J b
C

[
R

x√
δ

T

]
(III.13)

where R
x√
δ

T is the regret of player at time T starting from the state X0 =
x√
δ
.

The proof is deferred to Section 3.6.2. We will finish this section with a few remarks.

Remark 3.3.3. As a sanity check, the expansion of u implies that the Hessian of u is

H =
π

8
√
2



3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3


and

u(0) =
π

4
√
2
=

1

2



1

0

1

0



⊤

H



1

0

1

0


,
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where the second equality follows from (III.5) and the optimality of the comb strategies.

Remark 3.3.4. We note that at the leading order it is optimal for nature to choose the controls

J b
C in the sense that for all family αδ ∈ U and βδ ∈ V for δ > 0, we have that

lim sup
δ↓0

√
δ
(
Eαδ,βδ

[
R

x√
δ

T

]
− Eαδ,J b

C

[
R

x√
δ

T

])
≤ 0.

This inequality means that up to an error negligible at the leading order, the comb strategy is

optimal for nature.

Remark 3.3.5. i)In the case of 3 experts, [Gravin, Peres, and Sivan 2016] gives the exact

value of V δ based on a “guess and verify approach”.The following expression is given for u

in [Drenska 2017]

x(3) +
1

2
√
2
e
√
2(x(2)−x(3)) +

1

6
√
2
e
√
2(2x(1)−x(2)−x(3)),

which is obtained by taking a continuum analogue of [Drenska 2017]. Compared to this 3

dimensional counterpart the expression (III.7) is not a simple sum of exponentials. Instead of

guess and verify we needed to directly compute the value of comb strategies.

ii)It is possible to prove the Theorem 3.3.2 for the particular case of x = 0 using a

combination of Theorem 3.3.1 and [Gravin, Peres, and Sivan 2016, Theorem 5.1]. However,

unlike the proof provided below, such a proof cannot be directly extended to the general case

x ∈ R4.

Remark 3.3.6. Note that for all x ∈ R4 we have ∂iu(x) ∈ [0, 1] with
∑4

i=1 ∂iu(x) ∈ [0, 1] =

1. Hence {∂iu(x)}4i=1 ∈ U . The claim is direct consequence of (III.8). Thanks to this

observation, we can define α∗ ∈ U via the feedback control : at point x√
δ
∈ R4, the player
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chooses the expert i with probability ∂iu(x) and define the value

uδ(x) =
√
δ sup

β∈V
Eα∗,β

[
R

x√
δ

T

]
. (III.14)

We conjecture that

uδ(x) = u(x) + o(1)

which would imply that α∗ is an asymptotically optimal strategy for the player. The main

difficulty one faces to obtain such a result is to obtain locally uniform bounds for uδ(x) when

δ ↓ 0.

3.4 Value for comb strategies

Inspired by the conjecture in [Gravin, Peres, and Sivan 2016], our objective here is to

introduce the value of the control problem (III.6) corresponding to comb strategies. Then, in

Section 3.5, we develop a methodology to compute this value. Finally, in Section 3.6, we

check that the value computed in these sections is a solution to (III.5).

We note that the Sections 3.4 and 3.5 are only included in the chapter to explain how

to find the expression (III.7). Indeed, the only rigorous proofs for our results are in Section

3.6. Therefore, in Sections 3.4 and 3.5, we will slightly deviate from mathematical rigor.

The purpose of this section is to relate the value given by comb strategies with distributional

properties of an obliquely reflected Brownian Motion. Then, we compute and analyze this

value in Sections 3.5 and 3.6.

3.4.1 Analysis

The optimal strategy for (III.6) conjectured in [Gravin, Peres, and Sivan 2016] consists in

choosing the best and the third best experts. This is a rank based interaction for the evolution

of the components of XC , the optimally controlled state. Therefore, for any x ∈ R4, it is
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expected that X i,x,C solves the following SDE

X i,x,C
t = xi +

∫ t

0

4∑
j=1

σC
j 1{Xi,x,C

r =X
(j),x,C
r }dWr for t ≥ 0 and i = 1, . . . , 4; (III.15)

where σC
4 = σC

2 = 1 and σC
3 = σC

1 = 0 is the control corresponding to comb strategy.

It is not clear that (III.15) admits a strong solution. In fact, based on [Fernholz et al.

2011, Theorem 4.1], we conjecture that there is no strong solution to (III.15). However, it

is expected that the ranked components X
(i),x,C
t are well-defined. Given also the fact that

the payoff of the problem is symmetric, we will directly define our value of interest via an

obliquely reflected Brownian motion. This procedure also allows a reduction of the dimension

of the problem.

We first recall the definition of an obliquely reflected Brownian motion given in [Williams

1995, Definition 2.1].

Definition 3.4.1. We say that the family of continuous processes {Yy
t }y∈R3

+
and probability

measures {¶y}y∈R3
+

is a weak solution to the semimartingale reflected Brownian motion on

R3
+ with covariance matrix Γ and reflection matrix R if

i) For all t ≥ 0 and y ∈ R3
+

Yy
t = Wy

t +Rλy(t)

ii) The process Wy
t ∈ R3 is a Brownian motion with covariance matrix Γ under ¶y.

iii) λy is adapted to the filtration generated by Yy, λy
0 = 0, λy is continuous, non decreasing,

and ∫ t

0

1{Yi,y
r =0}dλ

i
r = λi

t for i = 1, 2, 3.
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We will denote by (Y y)y∈R3
+
= (Y 1,y, Y 2,y, Y 3,y)y∈R3

+
the family with

Γ :=


1 −1 1

−1 1 −1

1 −1 1

 , R :=


1 −1/2 0

−1/2 1 −1/2

0 −1/2 1


and (Y y

1 (0), Y
y
2 (0), Y

y
3 (0)) = y ∈ R3

+. These processes have the following semimartingale

decomposition for t ≥ 0,

dY 3,y
t = dWt + dΛ3

t −
1

2
dΛ2

t ,

dY 2,y
t = −dWt + dΛ2

t −
1

2
(dΛ3

t + dΛ1
t ), (III.16)

dY 1,y
t = dWt + dΛ1

t −
1

2
dΛ2

t ,

and denote Λj
t for j = 1, 2, 3 the local time of Y y

j ≥ 0 at the origin. Since the matrix R− I

is a tridiagonal Toeplitz matrix whose eigenvalues are less than 1 in absolute value, there

exists a unique solution to the oblique reflection problem; see [Williams 1995, Theorem 2.1].

However, the existence of solution to (III.15) is not straightforward as discussed above. If a

solution to this system existed, then we clearly would have

Y j−1,y
t (t) = X

(j),x,C
t −X

(j−1),x,C
t ≥ 0 for j = 2, 3, 4,

with y = (x(2) − x(1), x(3) − x(2), x(4) − x(3)) ∈ R3
+. Henceforth, we will assume that this is

the case. (This is the only non-rigorous part of the derivation. But we should again remark that

a rigorous verification of our claims is in Section 3.6 and the arguments here are performed
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for giving an intuitive construction of the solution.) In the sequel we will denote

Y 4,y
t =

4∑
j=1

X
(j),x,C
t =

4∑
j=1

Xj,x,C
t .

3.4.2 Value associated to an obliquely reflected Brownian motion

We now give a lemma that allows us to define our candidate solution to (III.5).

Lemma 3.4.1. Assume that there exists a weak solution to (III.15). Then for all x we have

E
[∫ ∞

0

e−tΦ(Xx,C
t )dt

]
=Φ(x) + v(x(2) − x(1), x(3) − x(2), x(4) − x(3)) (III.17)

where

v(y1, y2, y3) :=
1

2
E
[∫ ∞

0

e−tΛ3,y
t dt

]
.

Proof. We fix x ∈ Rd define y ∈ R3
+ with y := (x(2) − x(1), x(3) − x(2), x(4) − x(3)). Thanks

to our definitions for all t ≥ 0,

Y 1,y
t + 2Y 2,y

t + 3Y 3,y
t = 3X

(4),x,C
t −X

(3),x,C
t −X

(2),x,C
t −X

(1),x,C
t

= 4X
(4),x,C
t − Y 4,y

t .

Thus,

E
[∫ ∞

0

e−tΦ(Xx,C
t )dt

]
=

1

4
E
[∫ ∞

0

e−tY 4,y
t dt

]
+

1

4
E

[∫ ∞

0

e−t

3∑
k=1

kY k,y
t dt

]
. (III.18)
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Note that Y 4,y is a martingale, and by differentiation and (III.16)

d

(
3∑

k=1

kY k,y
t

)
= dWt + 2dΛ3,y

t .

Therefore,

E
[∫ ∞

0

e−tΦ
(
Xx,C

t

)
dt

]
=

4∑
i=1

xi

4
+

1

4

3∑
i=1

iyi +
1

2
E
[∫ ∞

0

e−tΛ3,y
t dt

]
. (III.19)

Thus, by the definition of v, and a simple algebraic verification for the first two terms on the

right, we have the equality (III.17).

Remark 3.4.1. One interpretation of the previous lemma is that the optimal strategy aims

to maximize the third component of the local time of a reflected Brownian motion. This

is consistent with discrete time problem in the case N = 2 or N = 3 where the optimal

strategies of nature is proven to be maximizer of the number of crossings between the leading

and the second leading experts [Cover 1967; Gravin, Peres, and Sivan 2016]. We note

that this strategy also maximize the expected value of
∑3

k=1 kY
k,y
τ where τ is exponentially

distributed.

Proposition 3.4.1. The function defined by

v : y ∈ R3
+ 7→ 1

2
E
[∫ ∞

0

e−tΛ3,y
t dt

]
(III.20)

is a viscosity solution of

0 = v − 1

2


1

−1

1


T

∂2v


1

−1

1

 , on (0,∞)3 (III.21)
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with the reflection conditions

∂3v −
1

2
∂2v = −1

2
if y3 = 0, and (y1, y2) ∈ (0,∞)2, (III.22)

∂2v −
1

2
(∂1v + ∂3v) = 0 if y2 = 0 and (y1, y3) ∈ (0,∞)2, (III.23)

∂1v −
1

2
∂2v = 0 if y1 = 0 and (y2, y3) ∈ (0,∞)2. (III.24)

Proof. We introduce the auxiliary function

ṽ(y) =
1

4

3∑
i=1

iyi + v(y) for all y ∈ R3
+. (III.25)

Thanks to (III.18) and (III.19), ṽ(y) = 1
4
E
[∫∞

0
e−t
∑3

k=1 kY
k,y
t dt

]
. For all stopping time

τ ≥ 0, the dynamic programming principle leads to

ṽ(y1, y2, y3) = E

[∫ τ

0

e−t

4

3∑
k=1

kY k,y
t dt+ e−τ ṽ(Y y

τ )

]
.

Using the martingality of Yy on (0,∞)3, we obtain that on (0,∞)3,

0 = ṽ − 1

4

3∑
k=1

kyk −
1

2


1

−1

1


T

∂2ṽ


1

−1

1

 = v − 1

2


1

−1

1


T

∂2v


1

−1

1

 .

For ṽ the reflection conditions are

∂3ṽ −
1

2
∂2ṽ = 0, if y3 = 0, and (y1, y2) ∈ (0,∞)2;

∂2ṽ −
1

2
(∂1ṽ + ∂3ṽ) = 0, if y2 = 0 and (y1, y3) ∈ (0,∞)2;

∂1ṽ −
1

2
∂2ṽ = 0, if y1 = 0 and (y2, y3) ∈ (0,∞)2.
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Thanks to (III.25), this yields (III.21)-(III.24) .

3.5 Characterization of the value on the reflection boundary

We now characterize the function v via a system of hyperbolic first order PDE.

3.5.1 The value of v for y1 = y3

We start by characterizing v on the set y1 = y3.

Proposition 3.5.1. The value function v satisfies

v(y1, y2, y1) = V (y1, y2), for y1 ≥ 0, y2 ≥ 0,

where

V (y1, y2) :=
1

2
E
[∫ ∞

0

e−tΛ
1,(y1,y2)
t dt

]
, (III.26)

and Λ1,(y1,y2) is the local time at 0 of the first component of the two dimensional obliquely

reflected Brownian Motion (Z
1,(y1,y2)
t , Z

2,(y1,y2)
t ) defined by

dZ
1,(y1,y2)
t = dWt + dΛ

1,(y1,y2)
t − 1

2
dΛ

2,(y1,y2)
t ,

dZ
2,(y1,y2)
t = −dWt + dΛ

2,(y1,y2)
t − dΛ

1,(y1,y2)
t .

(III.27)

Additionally, for all y ∈ R2
+, we have

V (y1, y2) =

√
2

2
cosh(

√
2y1) cosh(

√
2(y1 + y2)) arctan

(
e−

√
2(y1+y2)

)
(III.28)

−
√
2

4
sinh(

√
2y1).

Proof. If y1 = y3 it is clear due to the uniqueness of the solution of the oblique reflection
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problem (III.16) that for all

Y 1,y
t = Y 3,y

t for all t ≥ 0

and the couple (Y 1,y
t , Y 2,y

t ) solves the reflection problem (III.27). Thus, (III.26) holds. Addi-

tionally, using (III.26) we can derive the following dynamic programming equations for all

(y1, y2) ∈ (0,∞)2,

V (y1, y2)−

 1

−1


T

∂2V (y1, y2)

 1

−1

 = 0, (III.29)

∂1V (0, y2)− ∂2V (0, y2) = −1

2
, (III.30)

∂1V (y1, 0)

2
− ∂2V (y1, 0) = 0. (III.31)

First, we compute the functions

V1(x) := V (x, 0) and V2(x) := V (0, x).

Let y1 > 0 and y2 > 0 and define

τ := τ1 ∧ τ2,

where τ1 := inf{t ≥ 0 : Wt ≤ −y1} and τ2 := inf{t ≥ 0 : Wt ≥ y2}. Then, by the dynamic

programming principle

V (y1, y2) := E
[
e−τV (Y1

τ ,Y2
τ )
]

(III.32)

= E
[
e−τ1τ1<τ2V2(y1 + y2)

]
+ E

[
e−τ1τ1>τ2V1(y1 + y2)

]
=

sinh(
√
2y2)

sinh(
√
2(y1 + y2))

V2(y1 + y2) +
sinh(

√
2y1)

sinh(
√
2(y1 + y2))

V1(y1 + y2) (III.33)

Assuming V is smooth we differentiate this equality in y1, then in the expression we send
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y1 → 0 for y2 > 0 fixed to obtain

∂1V (0, y2) =

√
2

sinh(
√
2y2)

V1(y2)−
√
2

tanh(
√
2y2)

V2(y2) + V ′
2(y2).

One of the main point of the chapter is the fact that the equality (III.30) allows us to eliminate

∂1V (0, y2) so that we can write a system of differential equations for V1 and V2 as follows

∂2V2(0, y2)−
1

2
= V ′

2(y2)−
1

2
=

√
2

sinh(
√
2y2)

V1(y2)−
√
2

tanh(
√
2y2)

V2(y2) + V ′
2(y2).

Similarly, differentiating (III.33) in y2 and taking the limit as y2 → 0, we obtain that

∂2V (y1, 0) = −
√
2

tanh(
√
2y1)

V1(y1) +

√
2

sinh(
√
2y1)

V2(y1) + V ′
1(y1).

Additionally, the reflection conditions at (III.31) yield

V ′
1(y1)

2
= ∂2V (y1, 0) = −

√
2

tanh(
√
2y1)

V1(y1) +

√
2

sinh(
√
2y1)

V2(y1) + V ′
1(y1).

Combining both equalities we find that (V1, V2) solves the system

−1

2
=

√
2

sinh(
√
2x)

V1(x)−
√
2

tanh(
√
2x)

V2(x), (III.34)

0 = −
√
2

tanh(
√
2x)

V1(x) +

√
2

sinh(
√
2x)

V2(x) +
V ′
1(x)

2
. (III.35)

Combining the two equalities we obtain that V1 is a solution to

0 =
1

cosh(
√
2x)

− 2
√
2 tanh(

√
2x)V1(x) + V ′

1(x). (III.36)

Given the antiderivative of the hyperbolic tangent, the solution to the homogeneous part of
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(III.36) is x 7→ cosh2(
√
2x). Thus, we solve (III.36) under the form

V1(x) = H(x) cosh2(
√
2x),

which imposes H ′(x) = −1
cosh3(

√
2x)

. Thus, for some constant C, V1 is

V1(x) =

(
C − 1√

2
arctan

(
tanh

(
x√
2

)))
cosh2(

√
2x)− sinh(

√
2x)

2
√
2

.

With the choice C = π
4
√
2

we obtain that

V1(x) =
1√
2

(
π

4
− arctan

(
tanh

(
x√
2

)))
cosh2(

√
2x)− sinh(

√
2x)

2
√
2

(III.37)

is the unique bounded solution to (III.36). Indeed, given the properties of the Gudermannian

function, and arctan we have

π

4
− arctan

(
tanh

(
x√
2

))
=

π

2
− arctan

(
e
√
2x
)

= arctan
(
e−

√
2x
)
= e−

√
2x + o(e−2

√
2x)

as x → ∞. Thus, as x → ∞,

1√
2

(
π

4
− arctan

(
tanh

(
x√
2

)))
cosh2(

√
2x)− sinh(

√
2x)

2
√
2

=
1√
2

(
e−

√
2x + o(e−2

√
2x)
)(1

4
e2

√
2x +O(1)

)
− 1

4
√
2

(
e
√
2x +O(1)

)
= O(1)

which shows that (III.37) is the unique bounded solution to (III.36). Injecting this into (III.34)

108



and further simplifying we obtain that

V1(x) =
1√
2
arctan

(
e−

√
2x
)
cosh2(

√
2x)− sinh(

√
2x)

2
√
2

,

V2(x) =
1√
2
arctan

(
e−

√
2x
)
cosh(

√
2x).

Thanks to (III.33), this finally yields (III.28).

3.5.2 Deriving a Hyperbolic system to characterize the value on the boundary

We now return to the computation of v defined at (III.20) on R3
+. In order to compute v

on the whole domain we first characterize its value on the boundary of this domain. For this

purpose, we define for x, y ≥ 0,

f(x, y) = v

(
0,

x√
2
,
y√
2

)
, (III.38)

r1(x, y) = v

(
x√
2
, 0,

y + x√
2

)
, (III.39)

h(x, y) = v

(
y√
2
,
x√
2
, 0

)
− 1

2
√
2

(
1 +

e−2x

3

)
, (III.40)

r2(x, y) = v

(
x+ y√

2
, 0,

x√
2

)
− 2

3
√
2
e−x. (III.41)

The next proposition provides a characterization of these functions and allows us to compute

the value function everywhere.

Proposition 3.5.2. The couples (f, r1) and (h, r2) solve the same system of hyperbolic

equations on (0,∞)2

(∂x − 2∂y)f(x, y) =
2

tanhx
f(x, y)− 2

sinhx
r1(x, y), (III.42)

∂xr1(x, y) = − 2

sinhx
f(x, y) +

2

tanhx
r1(x, y), (III.43)
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with the compatibility conditions

f(0, y) = r1(0, y), h(0, y) = r2(0, y) for y > 0,

and initial conditions

f(x, 0) =
1√
2
arctan

(
e−x
)
cosh(x),

r1(x, 0) =
1√
2
arctan

(
e−x
)
cosh2(x)− sinh(x)

2
√
2

,

h(x, 0) =
1√
2
arctan

(
e−x
)
cosh(x)− 1

2
√
2

(
1 +

e−2x

3

)
,

r2(x, 0) =
1√
2
arctan

(
e−x
)
cosh2(x)− sinh(x)

2
√
2

− 2

3
√
2
e−x for x > 0.

Remark 3.5.1. In the definition of h and r2 the terms 1
2
√
2

(
1 + e−2x

3

)
and sinh(x)

2
√
2
− 2

3
√
2
e−x are

subtracted to eliminate 1 in equation (III.46). This allow us to study one system of equation

with two different initial condition rather than two systems with the same initial condition.

Proof. Proceeding similarly as in (III.33), we obtain that for 0 ≤ y1 ≤ y3 we have

v(y1, y2, y3) = v(0, y2 + y1, y3 − y1)
sinh(

√
2y2)

sinh(
√
2(y1 + y2))

,

+ v(y1 + y2, 0, y3 + y2)
sinh(

√
2y1)

sinh(
√
2(y1 + y2))

, (III.44)

and for 0 ≤ y3 ≤ y1,

v(y1, y2, y3) = v(y1 − y3, y2 + y3, 0)
sinh(

√
2y2)

sinh(
√
2(y3 + y2))

,

+ v(y1 + y2, 0, y3 + y2)
sinh(

√
2y3)

sinh(
√
2(y3 + y2))

. (III.45)

Let us first consider the case 0 ≤ y1 ≤ y3. Similarly to the proof of (3.5.1), we differentiate
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(III.44) in y1, and send y1 to 0, and obtain that

∂1v(0, y2, y3) = ∂2v(0, y2, y3)− ∂3v(0, y2, y3) + v(0, y2, y3)
−
√
2

tanh(
√
2y2)

+ v(y2, 0, y2 + y3)

√
2

sinh(
√
2y2)

Additionally, the reflection conditions (III.24) gives

(2∂3 − ∂2)v(0, y2, y3) =
2
√
2

sinh (
√
2y2)

v(y2, 0, y3 + y2)−
2
√
2

tanh (
√
2y2)

v(0, y2, y3)

Then we differentiate (III.44) in y2 and send y2 to 0 to obtain

∂2v(y1, 0, y3) =∂1v(y1, 0, y3) + ∂3v(y1, 0, y3) + v(0, y1, y3 − y1)

√
2

sinh(
√
2y1)

+ v(y1, 0, y3)
−
√
2

tanh(
√
2y1)

.

The reflection conditions (III.23) yields

(∂1 + ∂3)v(y1, 0, y3) =
2
√
2

tanh (
√
2y1)

v(y1, 0, y3)−
2
√
2

sinh (
√
2y1)

v(0, y1, y3 − y1).

Combining both equalities, and write them in f(x, y) and r1(x, y), we get the desired system:

(∂x − 2∂y)f(x, y) =
2

tanhx
f(x, y)− 2

sinhx
r1(x, y),

∂xr1(x, y) = − 2

sinhx
f(x, y) +

2

tanhx
r1(x, y).

Let us now consider the case 0 ≤ y3 ≤ y1. Following a similar procedure as before, we
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differentiate (III.45) in y2, and send y2 to 0 to obtain

∂2v(y1, 0, y3) =∂1v(y1, 0, y3) + ∂3v(y1, 0, y3) + v(y1 − y3, y3, 0)

√
2

sinh(
√
2y3)

+ v(y1, 0, y3)
−
√
2

tanh(
√
2y3)

.

Additionally, the reflection conditions (III.23) gives

(∂1 + ∂3)v(y1, 0, y3) =
2
√
2

tanh (
√
2y3)

v(y1, 0, y3)−
2
√
2

sinh (
√
2y3)

v(y1 − y3, y3, 0).

Then we differentiate (III.45) in y3 and send y3 to 0 and obtain

∂3v(y1, y2, 0) =∂2v(y1, y2, 0)− ∂1v(y1, y2, 0) + v(y1, y2, 0)
−
√
2

tanh(
√
2y2))

+ v(y1 + y2, 0, y2)

√
2

sinh(
√
2y2)

.

The reflection conditions (III.22) gives

(2∂1 − ∂2)v(y1, y2, 0) = 1− 2
√
2v(y1, y2, 0)

tanh(
√
2y2)

+
2
√
2v(y1 + y2, 0, y2)

sinh(
√
2y2)

. (III.46)

Combining both equalities, and write them in h(x, y) and r2(x, y), we have the desired

system:

(∂x − 2∂y)h(x, y) =
2

tanhx
h(x, y)− 2

sinhx
r2(x, y),

∂xr2(x, y) = − 2

sinhx
h(x, y) +

2

tanhx
r2(x, y).

The compatibility conditions and initial conditions follows form the change of variable

described at the beginning of this section and Proposition 3.5.1.
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3.5.3 Solving the Hyperbolic system

Although first order and linear, the system (III.42) can not be directly solved via the

method of characteristics since the characteristics for the two equations are not in the same

direction. Additionally, we cannot employ methods described in [Tsarev 2007] and [Fusco

and Manganaro 1996].

3.5.3.1 Heuristic to find an ansatz of the solution

We first note that if f is given then thanks to (III.43), r solves a linear ODE whose unique

solutions that is bounded at infinity is

r1(x, y) = 2 sinh2(x)

∫ ∞

x

f(r, y)

sinh3(r)
dr. (III.47)

{f(x, 0)}x≥0 being given, we can easily obtain {r1(x, 0)}x≥0 by integration. This allows us

to compute {∂yf(x, 0)}x≥0 by isolating it in (III.42).

Since the system does not depend on y we can differentiate in y. Thus, we can compute

{∂2
yf(x, 0)}x≥0 with a similar procedure if we start with initial condition {∂yf(x, 0)}x≥0.

Then, we can repeat the procedure to compute several derivatives {∂n
y f(x, 0)}x≥0.

Additionally thanks to the form of solutions in [Iskenderov and Mamedov n.d.], we expect

that the solutions f and r are functions of x+ y
2

and y
2
. Combining this with the computation

of the derivatives {∂n
y f(x, 0)}x≥0 we conjecture that

f(x, y) =h1

(y
2

)
arctan

(
e−x− y

2

)
cosh

(
x+

y

2

)
+ h2

(y
2

)
arctanh

(
e−x− y

2

)
sinh

(
x+

y

2

)
+ h3

(y
2

)

with the condition

h1(0) =
1√
2
, h2(0) = h3(0) = 0.
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3.5.3.2 Solution to the systems

Given the ansatz for f , one can integrate (III.47) to find that r then (III.42) leads to 2

2 arctanh(e−x) sinh(x)
(
coth

(y
2

)
h2

(y
2

)
+ 2h3

(y
2

)
+ h1

(y
2

)
tanh

(y
2

))
+ arctan

(
e−x− y

2

)
cosh

(
x+

y

2

)(
2h1

(y
2

)
tanh

(y
2

)
− h′

1

(y
2

))
+ arctanh

(
e−x− y

2

)
sinh

(
x+

y

2

)(
2h2

(y
2

)
coth

(y
2

)
− h′

2

(y
2

))
− h1

(y
2

)
− h2

(y
2

)
− h′

3

(y
2

)
= 0. (III.48)

Setting the second and the third lines to 0, we solve the ODE obtained for h1 and h2 with the

initial condition to obtain that

h1(y) =
1√
2
cosh2(y) and h2(y) = C sinh2(y) for some constant C.

Injecting this to the first line, the term in parentheses in the first line becomes

(
C

2
+

1

2
√
2

)
sinh (y) + 2h3

(y
2

)
.

This allows us to identify

h3 (y) = −C
√
2 + 1

4
√
2

sinh (2y) .

Thus, to satisfy (III.48) we need

1√
2
cosh2(y) + C sinh2(y)− C

√
2 + 1

2
√
2

cosh (2y) = 0

2This computation could be extremely tedious by hand. We have checked the identity with Mathematica V11.
The code for this verification and other tedious computations are provided in [Bayraktar, Ekren, and Y. Zhang
n.d.].
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which is satisfied for C = 1√
2
. Thus, we obtain f as

f(x, y) =
1√
2

(
arctan(e−x− y

2 ) cosh(x+
y

2
) cosh2(

y

2
)
)

(III.49)

+
1√
2

(
arctanh (e−x− y

2 ) sinh(x+
y

2
) sinh2(

y

2
)− 1

2
sinh(y)

)
.

Injecting this expression in (III.47) we obtain

r1(x, y) =
1√
2

(
arctan(e−x− y

2 ) cosh2(x+
y

2
) cosh(

y

2
)
)

(III.50)

+
1√
2

(
arctanh (e−x− y

2 ) sinh2(x+
y

2
) sinh(

y

2
)− 1

2
sinh(x+ y)

)
.

Using the same method we can also solve the system (III.42)-(III.43) with initial condition

(
1

2
√
2

(
1 +

e−2x

3

)
,

2

3
√
2
e−x

)
,

then using the linearity of the system subtract this from (f, r) to obtain

h(x, y) =
1√
2

(
arctan(e−x− y

2 ) cosh(x+
y

2
) cosh2(

y

2
)− 1

2
− e−2x

6

)
(III.51)

− 1√
2
arctanh (e−x− y

2 ) sinh(x+
y

2
) sinh2(

y

2
),

r2(x, y) =
1√
2

(
arctan(e−x− y

2 ) cosh2(x+
y

2
) cosh(

y

2
)− 2

cosh(x)

3

)
(III.52)

− 1√
2

(
arctanh (e−x− y

2 ) sinh2(x+
y

2
) sinh(

y

2
)− sinh(x)

6

)
.

The reader may find in [Bayraktar, Ekren, and Y. Zhang n.d.], the Mathematica code to check

that (III.49)-(III.52) provides solutions to the system (III.42) and (III.43). Combining (III.49),

(III.50), (III.51) and (III.52), we now give the expression of v.
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Proposition 3.5.3. The function v defined at (III.20) is given by

v(y1, y2, y3) =−
√
2

4
sinh(

√
2y3)

+

√
2

2
arctan

(
e
− y1+2y2+y3√

2

)
cosh

(
−y1 + y3√

2

)
cosh

(
y1 + 2y2 + y3√

2

)
cosh

(
y1 + y3√

2

)
+

√
2

2
arctanh

(
e
− y1+2y2+y3√

2

)
sinh

(
−y1 + y3√

2

)
sinh

(
y1 + 2y2 + y3√

2

)
sinh

(
y1 + y3√

2

)

Remark 3.5.2. For reader’s convenience we provide in [Bayraktar, Ekren, and Y. Zhang

n.d.] the Mathematica code to check that this expression provides a solution to the equations

(III.21) and (III.22)-(III.24).

Proof. The proof is a direct consequence of identities (III.44)-(III.45) and (III.49)-(III.52).We

inject f(x, y) and r1(x, y) to obtain v for 0 ≤ y1 ≤ y3, i.e.
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v(y1, y2, y3)

= f(
√
2(y1 + y2)),

√
2(y3 − y1)

sinh(
√
2y2)

sinh(
√
2(y1 + y2))

+ r1(
√
2(y1 + y2),

√
2(y3 − y1))

sinh(
√
2y1)

sinh(
√
2(y1 + y2))

=

√
2

2
arctan(e

− y1+2y2+y3√
2 ) cosh(

−y1 + y3√
2

) cosh2(
y1 + 2y2 + y3√

2
)

× csch(
√
2(y1 + y2)) sinh(

√
2y1)

+

√
2

2
arctan(e

− y1+2y2+y3√
2 ) cosh2(

−y1 + y3√
2

) cosh(
y1 + 2y2 + y3√

2
)

× csch(
√
2(y1 + y2)) sinh(

√
2y2)

−
√
2

4
csch(

√
2(y1 + y2)) sinh(

√
2y2) sinh(

√
2(−y1 + y3))

−
√
2

4
csch(

√
2(y1 + y2)) sinh(

√
2y1) sinh(

√
2(y2 + y3))

+

√
2

2
arctanh(e

− y1+2y2+y3√
2 ) csch(

√
2(y1 + y2)) sinh(

√
2y2)

× sinh2(
−y1 + y3√

2
) sinh(

y1 + 2y2 + y3√
2

)

+

√
2

2
arctanh(e

− y1+2y2+y3√
2 ) csch(

√
2(y1 + y2)) sinh(

√
2y1)

× sinh(
−y1 + y3√

2
) sinh2(

y1 + 2y2 + y3√
2

).
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And injecting h(x, y) and r2(x, y) we obtain v for 0 ≤ y3 ≤ y1

v(y1, y2, y3)

=

(
h(
√
2(y2 + y3),

√
2(y1 − y3)) +

1

2
√
2
(1 +

e2
√
2(y2+y3)

3
)

)
sinh(

√
2y2)

sinh(
√
2(y3 + y2))

+

(
r2(

√
2(y2 + y3),

√
2(y1 − y3) +

2

3
√
2
e−

√
2(y2+y3))

)
sinh(

√
2y3)

sinh(
√
2(y3 + y2))

=

√
2

2
arctan(e

− y1+2y2+y3√
2 ) cosh2(

y1 − y3√
2

) cosh(
y1 + 2y2 + y3√

2
) csch(

√
2(y3 + y2)) sinh(

√
2y2)

+

√
2

2
arctan(e

− y1+2y2+y3√
2 ) cosh(

y1 − y3√
2

) cosh2(
y1 + 2y2 + y3√

2
) csch(

√
2(y3 + y2)) sinh(

√
2y3)

−
√
2

4
sinh(

√
2y3)

−
√
2

2
arctanh(e

− y1+2y2+y3√
2 ) csch(

√
2(y3 + y2)) sinh(

√
2y2) sinh

2(
y1 − y3√

2
) sinh(

y1 + 2y2 + y3√
2

)

−
√
2

2
arctanh(e

− y1+2y2+y3√
2 ) csch(

√
2(y3 + y2)) sinh(

√
2y3) sinh(

y1 − y3√
2

) sinh2(
y1 + 2y2 + y3√

2
)

Note that these expressions can be simplified and combined into one expression on the whole

space 0 ≤ y1, y2, y3

v(y1, y2, y3)

=

√
2

2
arctan

(
e
− y1+2y2+y3√

2

)
cosh

(
−y1 + y3√

2

)
cosh

(
y1 + 2y2 + y3√

2

)
cosh

(
y1 + y3√

2

)
−

√
2

4
sinh(

√
2y3)

+

√
2

2
arctanh

(
e
− y1+2y2+y3√

2

)
sinh

(
−y1 + y3√

2

)
sinh

(
y1 + 2y2 + y3√

2

)
sinh

(
y1 + y3√

2

)
.

We will close this section by giving a minimum principle for the supersolutions of the

system (III.42)-(III.43), which we will need in the next section when proving our main result.

Proposition 3.5.4. Let F,R : [0,∞)2 7→ R be functions that are continuous on their domain
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and continuously differentiable in the interior of their domain. Assume that for all x, y ≥ 0,

F (x, 0) ≥ 0, F (0, y) ≥ 0, lim inf
r2+s2→∞

F (r, s) ≥ 0, and lim
r→∞

R(r, y) = 0.

Assume also that F,R are supersolution of (III.42)-(III.43) in the sense

(∂x − 2∂y)F (x, y) ≤ 2

tanhx
F (x, y)− 2

sinhx
R(x, y) (III.53)

∂xR(x, y) ≤ − 2

sinhx
F (x, y) +

2

tanhx
R(x, y) (III.54)

Then F (x, y) ≥ 0 and R(x, y) ≥ 0 for all x, y ≥ 0.

Proof. To obtain a contradiction we first assume that F is negative at some point on its

domain. Therefore, by the values of this function on the boundary of the domain, its minimum

on [0,∞)2 is achieved and there exists (x0, y0) ∈ (0,∞)2 and δ > 0 such that

inf
x,y∈[0,∞)

F (x, y) = F (x0, y0) = −δ < 0.

Thanks to (III.54) we can write

∂xR(x, y) = − 2

sinhx
F (x, y) +

2

tanhx
R(x, y)− P (x, y)

for some P ≥ 0 and continuous. We solve this ODE to obtain similarly to (III.47) that

R(x, y) = sinh2(x)

∫ ∞

x

2F (r, y)

sinh3(r)
+

P (r, y)

sinh2(r)
dr ≥ 2 sinh2(x)

∫ ∞

x

F (r, y)

sinh3(r)
dr (III.55)

≥ 2 inf
r∈[x,∞]

F (r, y) sinh2(x)

∫ ∞

x

1

sinh3(r)
dr.
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We have the identity

2 sinh2(x)

∫ ∞

x

1

sinh3(r)
dr = cosh(x)− 2 arctanh(e−x) sinh2(x) ∈ [0, 1] for all x > 0.

Thus,

R(x0, y0) ≥ 2 inf
r∈[x0,∞]

F (r, y0) sinh
2(x0)

∫ ∞

x0

1

sinh3(r)
dr ≥ inf

r∈[x0,∞]
F (r, y0) = −δ (III.56)

where the last inequality is due to the fact that

inf
r∈[x0,∞]

F (r, y0) = −δ < 0.

The minimality of F at (x0, y0) ∈ (0,∞)2 and the differentiability of F (which implies that

∂xF (x0, y0) = ∂yF (x0, y0) = 0) combined with (III.53) allows us to claim that

cosh(x0)F (x0, y0) ≥ R(x0, y0).

Then, the inequality (III.56) yields

−δcosh(x0) = cosh(x0)F (x0, y0) ≥ R(x0, y0) ≥ −δ

which is in contradiction with x0 > 0. Thus, F ≥ 0. Combining this inequality with (III.55),

we obtain that R ≥ 0.
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3.6 Regularity of u and proof of the main theorems

In this section we use the expression of v to define the candidate solution to the PDE

(III.5). Let W4 := {x ∈ Rd : x1 < x2 < x3 < x4} and define

U : x ∈ W4 7→x4 + v(x2 − x1, x3 − x2, x4 − x3) = x4 −
√
2

4
sinh(

√
2(x4 − x3))

+

√
2

2
arctan

(
e

x1+x2−x3−x4√
2

)
cosh

(
x1 − x2 + x3 − x4√

2

)
cosh

(
−x1 + x2 + x3 − x4√

2

)
cosh

(
−x1 − x2 + x3 + x4√

2

)
+

√
2

2
arctanh

(
e

x1+x2−x3−x4√
2

)
sinh

(
x1 − x2 + x3 − x4√

2

)
sinh

(
−x1 + x2 + x3 − x4√

2

)
sinh

(
−x1 − x2 + x3 + x4√

2

)
(III.57)

so that

u(x) = U(x(1), x(2), x(3), x(4)) for x ∈ R4. (III.58)

We give the following proposition for the regularity of u and U .

Proposition 3.6.1. U has a C2 extension to W̄4 and the extension satisfies for all x ∈ W̄4,

∂1U(x1, x1, x3, x4) = ∂2U(x1, x1, x3, x4), (III.59)

∂2U(x1, x2, x2, x4) = ∂3U(x1, x2, x2, x4), (III.60)

∂3U(x1, x2, x3, x3) = ∂4U(x1, x2, x3, x3). (III.61)
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Additionally, u defined by (III.7) is C2 on R4 and U satisfies

0 = U(x)− Φ(x)− 1

2



0

1

0

1



T

∂2U(x)



0

1

0

1


for all x ∈ W4. (III.62)

Remark 3.6.1. As needed for the smoothness of u, U is symmetric in its variables.

Proof. The main problem with the existence of the extension of U is the fact that the function

z 7→ arctanh(ez) has a singularity at 0. Thus, the C2 extension a priori only exists whenever

all the components are not equal to each other.

For the points where all the components are equal to each other we use the fact that

arctanh(ez) sinh(z) → 0 as z ↓ 0. Thus, the last two lines of (III.57) goes to 0 as x converges

to a point whose components are equal. This shows that there is a continuous extension of U

to W̄4.

To show that the extension is C1 it is now sufficient to show that all partial derivatives

admits finite limits as we take the limit to the boundary of W4, in particular, when x1 = x2 =

x3 = x4. First, we observe that

G(x1, x2, x3, x4) =x4 −
√
2

4
sinh(

√
2(x4 − x3)) (III.63)

+

√
2

2
arctan

(
e

x1+x2−x3−x4√
2

)
cosh

(
x1 − x2 + x3 − x4√

2

)
cosh

(
−x1 + x2 + x3 − x4√

2

)
cosh

(
−x1 − x2 + x3 + x4√

2

)
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is analytic everywhere so we only need to consider the behavior of

T (x1, x2, x3, x4) =

√
2

2
arctanh

(
e

x1+x2−x3−x4√
2

)
sinh

(
x1 − x2 + x3 − x4√

2

)
sinh

(
−x1 + x2 + x3 − x4√

2

)
sinh

(
−x1 − x2 + x3 + x4√

2

)

at a point satisfying x1 = x2 = x3 = x4. By chain rule, the fist order partial derivatives of U

are linear combinations of the following 4 terms:

t1(x1, x2, x3, x4) = arctanh
(
e

x1+x2−x3−x4√
2

)
sinh

(
x1 − x2 + x3 − x4√

2

)
sinh

(
−x1 + x2 + x3 − x4√

2

)
cosh

(
−x1 − x2 + x3 + x4√

2

)
t2(x1, x2, x3, x4) = arctanh

(
e

x1+x2−x3−x4√
2

)
sinh

(
x1 − x2 + x3 − x4√

2

)
cosh

(
−x1 + x2 + x3 − x4√

2

)
sinh

(
−x1 − x2 + x3 + x4√

2

)
t3(x1, x2, x3, x4) = arctanh

(
e

x1+x2−x3−x4√
2

)
cosh

(
x1 − x2 + x3 − x4√

2

)
sinh

(
−x1 + x2 + x3 − x4√

2

)
sinh

(
−x1 − x2 + x3 + x4√

2

)
t4(x1, x2, x3, x4) =

e
x1+x2−x3−x4√

2

1− e
√
2(x1+x2−x3−x4)

sinh

(
x1 − x2 + x3 − x4√

2

)
sinh

(
−x1 + x2 + x3 − x4√

2

)
sinh

(
−x1 − x2 + x3 + x4√

2

)
.

In W , as x1 < x2 < x3 < x4, we have the inequalities

0 ≥ x1 − x2 + x3 − x4 ≥ x1 + x2 − x3 − x4

−x1 − x2 + x3 + x4 ≥ −x1 + x2 + x3 − x4 ≥ x1 + x2 − x3 − x4.
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Combined with the equality | sinh(x)| = sinh(|x|), these inequalities yield

∣∣∣∣sinh(x1 − x2 + x3 − x4√
2

)∣∣∣∣ ≤ ∣∣∣∣sinh(x1 + x2 − x3 − x4√
2

)∣∣∣∣∣∣∣∣sinh(−x1 + x2 + x3 − x4√
2

)∣∣∣∣ ≤ ∣∣∣∣sinh(x1 + x2 − x3 − x4√
2

)∣∣∣∣ .
Using the observation that arctanh(ez) sinh(z) → 0 as z ↓ 0 one more time, and the limit

sinh(z/
√
2)

1−e
√
2z

→ 1
2
, as z ↓ 0 we can conclude that each of t1, t2, t3, and t4 → 0 as x converge to

a point where components are equal to each other. Thus, we have showed that T has a C1

extension to W̄4 and in fact all its first order partial derivatives are 0 on x1 = x2 = x3 = x4.

Similarly, using these observations, one can also show that all the second order partial

derivatives of U have continuous extension on x1 = x2 = x3 = x4 and all second order

partial derivatives of T are 0 on x1 = x2 = x3 = x4 as well.

We now use the reflection conditions (III.22), (III.23), and (III.24) to show that on the

boundaries x1 = x2, x2 = x3, x3 = x4, the first order partial derivatives of U satisfy (III.59),

(III.60), and (III.61).

Since U(x1, x2, x3, x4) = x4 + v(x2 − x1, x3 − x2, x4 − x3) using (III.24) we obtain that

∂1U(x1, x1, x3, x4)− ∂2U(x1, x1, x3, x4)

= −∂1v(0, x3 − x1, x4 − x3)− (∂1v(0, x3 − x1, x4 − x3)− ∂2v(0, x3 − x1, x4 − x3))

= −2∂1v(0, x3 − x1, x4 − x3) + ∂2v(0, x3 − x1, x4 − x3) = 0.
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Using (III.23) we obtain

∂2U(x1, x2, x2, x4)− ∂3U(x1, x2, x2, x4)

= ∂1v(x2 − x1, 0, x4 − x2)− ∂2v(x2 − x1, 0, x4 − x2)

− (∂2v(x2 − x1, 0, x4 − x2)− ∂3v(x2 − x1, 0, x4 − x2))

= ∂1v(x2 − x1, 0, x4 − x2)− 2∂2v(x2 − x1, 0, x4 − x2) + ∂3v(x2 − x1, 0, x4 − x2) = 0.

On the other hand (III.22) gives

∂3U(x1, x2, x3, x3)− ∂4U(x1, x2, x3, x3)

= ∂2v(x2 − x1, x3 − x2, 0)− ∂3v(x2 − x1, x3 − x2, 0)− (1 + ∂3v(x2 − x1, x3 − x2, 0))

= −1 + ∂2v(x2 − x1, x3 − x2, 0)− 2∂3v(x2 − x1, x3 − x2, 0) = 0.

Thus, U has a C2 extension to W̄4, its first order partial derivatives satisfy (III.59)-(III.61)

and the first two order of partial derivatives of T are 0 on x1 = x2 = x3 = x4.

We now show that u defined by (III.58) or (III.7) is C2 on R4. The smoothness of U and

the equalities (III.59)-(III.61) implies that u is C1. In order to show that u is C2 we need to

show that for any point x ∈ W̄4 that has two components xi, xj equal, the Hessian of U is
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symmetric in xi and xj . This is implied by the conditions

∂1,1U(x1, x1, x3, x4) = ∂2,2U(x1, x1, x3, x4), (III.64)

∂1,2U(x1, x1, x3, x4) = ∂2,1U(x1, x1, x3, x4), (III.65)

∂1,3U(x1, x1, x3, x4) = ∂2,3U(x1, x1, x3, x4), (III.66)

∂1,4U(x1, x1, x3, x4) = ∂2,4U(x1, x1, x3, x4), (III.67)

∂2,2U(x1, x2, x2, x4) = ∂3,3U(x1, x2, x2, x4), (III.68)

∂2,3U(x1, x2, x2, x4) = ∂3,2U(x1, x2, x2, x4), (III.69)

∂2,1U(x1, x2, x2, x4) = ∂3,1U(x1, x2, x2, x4), (III.70)

∂2,4U(x1, x2, x2, x4) = ∂3,4U(x1, x2, x2, x4), (III.71)

∂3,3U(x1, x2, x3, x3) = ∂4,4U(x1, x2, x3, x3), (III.72)

∂3,4U(x1, x2, x3, x3) = ∂4,3U(x1, x2, x3, x3), (III.73)

∂3,1U(x1, x2, x3, x3) = ∂4,1U(x1, x2, x3, x3), (III.74)

∂3,2U(x1, x2, x3, x3) = ∂4,2U(x1, x2, x3, x3) (III.75)

for x ∈ W̄4. Thanks to the smoothness of U on W̄4, in fact, we only need these equalities for

x ∈ W4.

Note that for x ∈ W4, around each of the points

(x1, x1, x3, x4), (x1, x2, x2, x4), and (x1, x2, x3, x3)

there exists a neighborhood such that the expression defining U is analytical on this neigh-

borhood. Thus, we can apply Schwarz Theorem to obtain (III.65), (III.69) and (III.73). The

remaining conditions (III.66), (III.67), (III.70), (III.71), (III.74), and (III.75) on cross deriva-

tives are consequences of differentiation of (III.59)-(III.61). To show (III.64), we differentiate
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(III.59) in x1 then subtract (III.65) to obtain

∂1,1U(x1, x1, x3, x4) = ∂2,2U(x1, x1, x3, x4).

Repeating the same procedure with (III.60), x2 and (III.69) then with (III.61), x3 and (III.73)

we obtain (III.68) and (III.72) which concludes the proof.

3.6.1 Proof of Theorem 3.3.1

The expansion of u, in (III.10), can be found by taking the second order Taylor expansion

of G defined in (III.63)3. Note that as discussed in the proof of Proposition 3.6.1, the first two

derivatives of u and G are equal at 0 and hence the lack of smoothness of the arctanh does

not contribute to the second order derivative at the origin.

We now show that U defined in (III.57) solves (III.5) on W4 which implies by continuity

of the derivatives that u solves the same PDE on R4. By direct computation4 we have that for

all x ∈ W4 we have

0 = U(x)− Φ(x)− 1

2
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,

0 = U(x)− Φ(x)− 1

2
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0

1
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1

1

0


.

3The code of the computation is available in [Bayraktar, Ekren, and Y. Zhang n.d.].
4The code of the computation is available in [Bayraktar, Ekren, and Y. Zhang n.d.]

127



The function U also satisfies the equality (III.8). Using its smoothness, we obtain

1 =
U(x+ λ(e1 + e2 + e3 + e4))− U(x)

λ
→

4∑
i=1

∂iU(x) as λ → 0. (III.76)

Note that 1 =
∑4

i=1 ∂iU(x) implies

∂2U(x)(e1 + e2 + e3 + e4) = 0 for all x ∈ R4.

Therefore, for all J ∈ P (N), we have that

e⊤J ∂
2U(x)eJ − e⊤Jc∂2U(x)eJc = (e⊤J − e⊤Jc)∂2U(x)(eJ + eJc) = 0.

Thus, if J is a maximizer of the Hamiltonian supJ∈P (N) e
⊤
J ∂

2u(x)eJ then its complement J c

is also a maximizer of the same Hamiltonian. This means that in order to show that the comb

strategy (and also the strategy that chooses the second and the third leading expert) is optimal
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it is sufficient to show that the functions U1, ..., U6 defined by

U1(x) := U(x)− Φ(x)− 1

2



0

0

0

0



T

∂2U(x)



0

0

0

0


,

U2(x) := U(x)− Φ(x)− 1

2
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

0

0

0

1


,

U3(x) := U(x)− Φ(x)− 1

2



0

0

1

0



T

∂2U(x)



0

0

1

0


,

U4(x) := U(x)− Φ(x)− 1

2



0

0

1

1



T

∂2U(x)



0

0

1

1


,

U5(x) := U(x)− Φ(x)− 1

2



0

1

0

0



T

∂2U(x)



0

1

0

0


,

U6(x) := U(x)− Φ(x)− 1

2



0

1

1

1



T

∂2U(x)



0

1

1

1


,
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are non-negative. We study each term separately. For the first term we have

U1(x) = U(x)− Φ(x)− 1

2



0

0

0

0



T

∂2U(x)



0

0

0

0


= v(x(2) − x(1), x(3) − x(2), x(4) − x(3)) ≥ 0

due to the definition of v. Additionally we have the following identities for x ∈ W4 that can

be computed via Mathematica5.

U4

(
x√
2

)
=
ex4−x2(e2x1 − e2x3)(e2x3 − e2x2)

2
√
2(e2(x1+x2) − e2(x3+x4))

≥ 0,

√
2(U3(

√
2x)− U2(

√
2x))

sinh(2(x3 − x4))
=1− arctanh(ex1+x2−x3−x4) cosh(x1 + x2 − x3 − x4)

+ arctan(ex1+x2−x3−x4) sinh(x1 + x2 − x3 − x4) (III.77)
√
2(U5(

√
2x)− U3(

√
2x))

sinh(2(x2 − x3))
=− arctanh(ex1+x2−x3−x4) cosh(x1 − x2 − x3 + x4)

+ arctan(ex1+x2−x3−x4) sinh(x1 − x2 − x3 + x4) (III.78)
√
2(U6(

√
2x)− U3(

√
2x))

sinh(2(x3 − x1))
= arctanh(ex1+x2−x3−x4) cosh(x1 − x2 + x3 − x4)

+ arctan(ex1+x2−x3−x4) sinh(x1 − x2 + x3 − x4). (III.79)

Due to x ∈ W4, U4(x) ≥ 0. Additionally, the function

x ≥ 0 7→ 1− arctanh(e−x) cosh(−x) + arctan(e−x) sinh(−x)

is non-positive. Thus

U3 ≥ U2.

Finding the sign of the right hand side of (III.78) and (III.79) is equivalent to finding the signs

5The code of the computation is available in [Bayraktar, Ekren, and Y. Zhang n.d.]
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of

− arctanh(e−x) cosh(−x+ y) + arctan(e−x) sinh(−x+ y), for x, y ≥ 0

and

arctanh(e−x) cosh(−x+ y) + arctan(e−x) sinh(−x+ y), for x, y ≥ 0.

These functions are respectively non-positive and non-negative due to the fact that

arctanh(e−x) ≥ arctan(e−x) ≥ 0 and cosh(x) ≥ | sinh(x)|.

Thus

U5 ≥ U3 and U6 ≥ U3.

Finally, to finish the proof of the main theorem, it is sufficient to show that

U2 ≥ 0. (III.80)

To show this inequality, it is more convenient to write U2 as in terms of v. Thanks to (III.57),

U2(x) = v(x2 − x1, x3 − x2, x4 − x3)−
1

2


0

0

1


T

∂2v(x2 − x1, x3 − x2, x4 − x3)


0

0

1

 ,

and to show (III.80), it is sufficient to show that for all y1, y2, y3 ≥ 0,

v2(y1, y2, y3) := v(y1, y2, y3)−
1

2


0

0

1


T

∂2v(y1, y2, y3)


0

0

1

 ≥ 0.

Thanks to the smoothness of v on (0,∞)3 and the fact that the data of (III.21) is constant,
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we can differentiate (III.21) to obtain that v2 also solves (III.21). Thanks to the maximum

principle for this PDE, in order to show (III.21), it is sufficient to show that v2 ≥ 0 for y1 = 0

or y2 = 0 or y3 = 0. Our objective is to use the Proposition 3.5.4. Similarly to (III.38)-(III.41)

define

f̃(x, y) = v2

(
0,

x√
2
,
y√
2

)
,

r̃1(x, y) = v2

(
x√
2
, 0,

y + x√
2

)
,

h̃(x, y) = v2

(
y√
2
,
x√
2
, 0

)
,

r̃2(x, y) = v2

(
x+ y√

2
, 0,

x√
2

)
.

By direct computation via Mathematica6, these functions satisfy,

(∂x − 2∂y)f̃(x, y) =
2

tanhx
f̃(x, y)− 2

sinhx
r̃1(x, y),

∂xr̃1(x, y) = − 2

sinhx
f̃(x, y) +

2

tanhx
r̃1(x, y),

(∂x − 2∂y)h̃(x, y) =
2

tanhx
h̃(x, y)− 2

sinhx
r̃2(x, y)

+
1√
2

(
1− arctanh(e−x−y/2) cosh(x+ y/2)− arctan(e−x−y/2) sinh(x+ y/2))

)
,

∂xr̃2(x, y) = − 2

sinhx
h̃(x, y) +

2

tanhx
r̃2(x, y).

Since the function

x ≥ 0 7→ 1− arctanh(e−x) cosh(x)− arctan(e−x) sinh(x)

6The code of the computation is available in [Bayraktar, Ekren, and Y. Zhang n.d.]
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is non-positive, we have that

(∂x − 2∂y)f̃(x, y) =
2

tanhx
f̃(x, y)− 2

sinhx
r̃1(x, y),

∂xr̃1(x, y) = − 2

sinhx
f̃(x, y) +

2

tanhx
r̃1(x, y),

(∂x − 2∂y)h̃(x, y) ≤
2

tanhx
h̃(x, y)− 2

sinhx
r̃2(x, y),

∂xr̃2(x, y) = − 2

sinhx
h̃(x, y) +

2

tanhx
r̃2(x, y).

Thus, to finish the proof of the main result by application of Proposition 3.5.4, we need to

control f̃ and h̃ on the boundary of their domain of definition and obtain the limit of r̃1 and r̃2

at infinity. Note that r̃1 and r̃2 converge to 0 at infinity. By a direct computation7, we have that

f̃(x, y) =Ff (x, y) +

(
arctan(e−x− y

2 )− e−x− y
2 +

e−3x− 3y
2

3

)
Hf (x, y)

+

(
arctanh(e−x− y

2 )− e−x− y
2 − e−3x− 3y

2

3

)
Gf (x, y),

h̃(x, y) =Fh(x, y) +

(
arctan(e−x− y

2 )− e−x− y
2 +

e−3x− 3y
2

3

)
Hh(x, y)

+

(
arctanh(e−x− y

2 )− e−x− y
2 − e−3x− 3y

2

3

)
Gh(x, y),

7The code of the computation and the expressions for the functions are available in [Bayraktar, Ekren, and
Y. Zhang n.d.].
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where as x2 + y2 → ∞,

Ff (x, y) :=
e−2(2x+y)

(
4 cosh(y) + 6 csch(2x+ y) sinh2(x)− sinh(y)

)
24
√
2

= o(1),

Hf (x, y) :=
3 cosh(x− y

2
) + 6 cosh(x+ y

2
)− 5 cosh(x+ 3y

2
)

16
√
2

= o(e5x+
5y
2 ),

Gf (x, y) :=
3 sinh(x− y

2
)− 6 sinh(x+ y

2
)− 5 sinh(x+ 3y

2
)

16
√
2

= o(e5x+
5y
2 ),

Fh(x, y) :=
e−2(2x+y) (4 + 3 coth(2x+ y)− 3 cosh(y) csch(2x+ y))

24
√
2

= o(1),

Hh(x, y) :=
(−1 + 3 cosh(y)) cosh(x+ y

2
)

8
√
2

= o(e5x+
5y
2 ),

Gh(x, y) :=
(1 + 3 cosh(y)) sinh(x+ y

2
)

8
√
2

= o(e5x+
5y
2 ).

Given also the expansions at 0

arctan(x) = x− x3

3
+O(x5), arctanh(x) = x+

x3

3
+O(x5),

we have that

lim
x2+y2→∞

f̃(x, y) = lim
x2+y2→∞

h̃(x, y) = 0.

Additionally,

f̃(x, 0) = h̃(x, 0) = v2(0, x/
√
2, 0)

=
1

8
√
2

(
2 arctan(e−x) cosh(x)− 4 arctanh(e−x) sinh(x) + tanh(x)

)
,

f̃(0, y) =
5

8
√
2
ey(−1 + coth(y)) sinh2(y) +

1

16
√
2
ey(−1 + coth(y)) sinh(y)(

arctan(e−y/2)(9 cosh(y/2)− 5 cosh(3y/2)− arctanh(e−y/2)(9 sinh(y/2) + 5 sinh(3y/2))
)
,

h̃(0, y) =
1

16
√
2
ey(−1 + coth(y)) sinh(y)(

arctan(e−y/2)(cosh(y/2) + 3 cosh(3y/2)) + arctanh(e−y/2)(sinh(y/2)− 3 sinh(3y/2))
)
.
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These functions are all non-negative. Direct application of Proposition 3.5.4 then yields

f̃ , h̃, r̃1, r̃2 ≥ 0 on [0,∞)2.

Thus, for all x ∈ W4 we have

U(x)− 1

2
sup

J∈P (N)

e⊤J ∂
2U(x)eJ = Φ(x).

Thanks to the smoothness and symmetry of u, we obtain (III.5).

3.6.2 Proof of Theorem 3.3.2

We first prove the asymptotics for uδ. This function satisfies the dynamic programming

principle

uδ(x) = δΦ(x)

+
1− δ

2
inf
α∈U

(
uδ(x+

√
δeJC(x))− α(JC(x)) + uδ(x+

√
δeJ c

C (x)
)− α(J c

C (x))
)

= δΦ(x) +
1− δ

2

(
uδ(x+

√
δeJC(x)) + uδ(x+

√
δeJ c

C (x)
)− 1

)

This is equivalent to

uδ(x) = Φ(x) +
1− δ

2δ

(
uδ(x+

√
δeJC(x)) + uδ(x+

√
δeJ c

C (x)
)− 1− 2uδ(x)

)
.

Similarly to u and V δ,

uδ(x+
√
δλ

4∑
i=1

ei) = uδ(x) + λ for all λ ∈ R.
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Thus,

uδ(x+
√
δeJ c

C (x)
)− 1 = uδ(x+

√
δeJ c

C (x)
−

√
δ

4∑
i=1

ei) = uδ(x−
√
δeJC(x))

and the DPP becomes

uδ(x) = Φ(x) +
1− δ

2δ

(
uδ(x+

√
δeJC(x)) + uδ(x−

√
δeJC(x))− 2uδ(x)

)
.

Due the fact that J b
C is balanced, uδ in fact does not depend on α ∈ U . Thus, by choosing a

particular control we can prove similarly to the proof of [Drenska 2017, Theorem 7] that uδ

converges to the unique viscosity solution of the equation

f(x)− 1

2
e⊤JC(x)

∂2f(x)eJC(x) = Φ(x)

with linear growth. Note that thanks to (III.62), u also solves this PDE and has linear growth.

Thus, comb strategies are asymptotically optimal and uδ(x) → u(x) as δ ↓ 0.

3.7 Concluding Remarks

Using a system of first order hyperbolic PDE, (III.42)-(III.43), we characterize and

compute the expectation (III.20) of the third component of the local time of an obliquely

reflected Brownian motion in the first octant. Then, using a maximum principle in Proposition

3.5.4, we show that this value provides a solution to the Hamilton-Jacobi-Bellman equation

(III.5) that characterizes the long time behavior of a regret minimization problem with 4

experts. Finally, we prove that, as conjectured in [Gravin, Peres, and Sivan 2016], comb

strategies are asymptotically optimal for nature.

We conjectured that this methodology can be performed for N ≥ 5 experts, and the

comb strategy would be optimal. However, numerical experiments in [Chase 2019] suggests
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that when N = 5, the comb strategy is not asymptotically for nature. Instead, the strategy

of picking the first and third experts together with probability 1/2 and picking the second,

fourth, and fifth experts together with probability 1/2 performs strictly better in the numerical

experiments.

We also mention that one can use our methodology to study the parabolic version of (III.5)

which corresponds to the long-time behavior of the game with deterministic stopping. In

this case, we expect the system (III.42)-(III.43) to have an additional time dependence. The

optimality of the comb strategy is proved for the parabolic version in [Bayraktar, Ekren, and

X. Zhang 2020].
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CHAPTER IV

Conclusion

Online learning and sequential decision-making under uncertainty apply to a wide variety

of problems. In this thesis, we investigated two such problems with different models, and

used different analysis techniques for each. In the first problem, we considered stochastic

uncertainties and used many stochastic analysis techniques to bear, and in the second we

studied adversarial uncertainties and used PDE methods.

In Chapter II, we considered the problem of learning an optimal dispatch policy for an

M/M/1 queue with unknown arrival and service rates. We focused on designing an online

learning algorithm that operates in batches where each batch has an explicit exploration phase

that can be skipped using an adaptive criterion, and an exploitation phase with extending

duration. We analyzed and compared the asymptotic performance of our algorithm with the

optimal algorithm that has knowledge of the model statistics by coupling the queue-length

process under the proposed algorithm with the queue-length process of a system using the

optimal dispatch policy. Our algorithm achieves O(1) regret when optimal algorithms use

non-zero admission thresholds and O(ln1+ϵ(N)) for ϵ > 0 regret when 0 is one of the optimal

admission thresholds where N is the number of arrival customers. We also discussed the

finite time-horizon performance of our algorithm through numerical experiments by choosing

different values for the hyper-parameters of the algorithm.

In Chapter III, we studied the problem of finding the optimal policy for nature to pick

experts in an adversarial manner with 4 experts and at all times before a geometrically
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distributed stopping time. We took a game theoretical point of view, adopted PDE results

from [Drenska 2017], and proved the optimality of the “comb strategy” in which nature

randomizes uniformly between two options: picking the best and third-place experts together

, and picking the second and fourth place experts together, where the experts are ranked based

on their accumulated reward. We also showed that the regret grows as O(
√

1/δ) where δ

is the parameter of the geometric stopping time when nature and the player both perform

optimally.

There are a few future directions to pursue based on the problems we studied in this thesis.

Some of them are briefly discussed below.

4.1 Non-parametric learning in queuing systems

In Chapter II, we assumed Poisson arrivals and exponentially distributed service require-

ments for the customers. The memoryless property of the exponential distribution and many

properties of the Poisson process are crucial to our analysis. However, as arrival processes

and service requirements are not this specific in the real-world applications of our model,

generalizations are merited.One possible future direction is to adapt our learning algorithm to

general arrival processes and service-time distributions or to design a non-parametric learning

algorithm that does not make assumptions about the arrival processes or the service-time

distributions. The analysis of the performance of any learning algorithm would be more

involved in this case since the analysis in [Naor 1969] no longer holds. This problem has

received attention—see [Oz 2022]—under a different information structure where only the

queue-length is observed by arrivals. Under this setting, the analytical optimal strategy for

this problem is still unknown and may be time-varying; see [Oz 2022] for details.
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4.2 Learning-based allocation in multiple server queuing systems

Our analysis focused on a single-queue single-server setting with statistically homoge-

neous customer service requirements. A generalization would be studying either the dispatch

or scheduling problem for a system with multiple servers and multiple queues, and where the

customers are heterogeneous with statistically different service requirements.

4.3 Asymptotic optimal strategy of the player in the 4 expert setting

In Chapter III, we focused on studying the asymptotically optimal strategy of the adversar-

ial nature. In Remark 3.3.6, we conjectured that α∗ is an asymptotically optimal strategy for

the player in the 4 experts setting. However, proving this conjecture is still an open problem.

4.4 Asymptotic optimal strategy of nature in the 5 or more expert settings

Numerical experiments in [Chase 2019] have shown evidence that the strategy of choosing

the best and third place experts together with probability 1/2 and choosing the second, fourth,

and fifth place experts together with probability 1/2 where the experts are ranked based on

their accumulated rewards outperforms the “comb strategy” for the adversarial nature in the 5

expert setting. However, finding the asymptotic optimal strategy of the adversary nature in

cases with 5 or more experts is still an open problem.
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