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ABSTRACT

A critical change is happening in today’s Internet of Things (IoT). The computational power
of edge devices is steadily increasing. AI chips are rapidly infiltrating the market, smart phones
nowadays have compute power comparable to everyday use laptops, Tesla just boasted that its
autopilot system has computing power of more than 3000 MacBook pros and small local computers
such as Raspberry Pis have become common place in many applications especially manufacturing.
This opens a new paradigm for data analytics in IoT; one that exploits local computing power to
process more of the user’s data where it is created. This new paradigm is coined as Federated Data
Analytics (FDA).

I envision that many modern engineering systems are on the verge of shifting from a centralized
regime to a distributed, smart and connected system where some of the data processing is deferred
to the edge. This report sets research objectives to develop federated data analytics methodologies
and working prototypes that may help facilitate this transition and allow practitioners to fully reap
its benefits. While promising, FDA faces several fundamental challenges.

1. Edge devices with few data, limited bandwidth/memory, or unreliable connection may not
be favored by conventional distributed learning algorithms. As a result, such device(s) can
potentially incur higher error rate(s). This vicious cycle often relinquishes the opportunity of
these devices to significantly contribute to the training process. Besides this aforementioned
notion of individual fairness, group fairness also deserves attention. As FDA penetrates
practical applications, it is important to achieve fair performance across groups of clients
characterized by their gender, ethnicity, socio-economic status, geographic location, etc.
Despite the importance of fairness, very limited work exists along this line. The key challenge
is that, unlike traditional definitions such as demographic disparity or equal opportunity, there
is no clear notion of an outcome that is “good” for a device in the FDA scenario.

2. In spite of some recent advances in FDA, most, if not all, literature focuses on deep neural
networks and their applications for mobile networks. However, neural networks are not a
panacea for all engineering problems. To date, very few papers have delivered a federated
treatment of models that go beyond deep learning. Questions such as variable selection,

xi



uncertainty quantification, hypothesis testing, and incorporating domain expert knowledge
remain unanswered in FDA.

3. In engineering systems, data across devices possess trends that are often heterogeneous. For
example, vehicles/machines operated under different environments typically yield heteroge-
neous condition monitoring data. As such, learning a global model, “one model that fits all”,
may easily fail. Unfortunately, the vast majority of FDA work falls in this category due to
the focus on mobile applications. Indeed some recent literature shows that global modeling
approaches fail to provide reasonable predictions or classifications when heterogeneity exists.

This report develops three data analytics frameworks that solve the challenges above, with
application to quality and reliability engineering. (i) Developing FDA algorithms that target

fairness: the proposed framework – GIFAIR - imposes group and individual fairness to the FDA
setting. By adding a regularization term, GIFAIR penalizes the spread in the loss of client groups
to drive the optimizer to a fair solution. (ii) Developing FDA algorithms that go beyond deep

learning: the proposed approach extends linear models and sparse linear models to federated
scenarios, presenting solutions for hypothesis testing, uncertainty quantification, variable selection,
and deriving engineering insight. (iii) Tackling data heterogeneity through personalization: the
proposed approach builds personalized Bayesian models that tackle data heterogeneity among
different devices. Furthermore, it also provides the first theoretical results on FDA convergence
in correlated settings, which is very common in engineering situations. In turn, this may help
researchers further investigate FDA within alternative stochastic processes built upon correlations,
such as Lévy processes.

xii



CHAPTER 1

Introduction

1.1 Motivation and Research Objectives

Nowadays, the sheer amount of data collected from edge devices such as mobile phones and
self-driving vehicles is beginning to overwhelm traditional centralized data analytics regimes
where data from the edge is continuously uploaded to a central server to be processed. Excessive
communication traffic from data upload, significant central server storage needs, energy expenditures
from centralized learning of big data models, and privacy concerns from sharing raw data are
becoming critical challenges in centralized systems. Statista predicted that, by 2024, data produced
on edge devices (e.g., cell phone data, self-driving vehicle data) would reach more than hundreds of
zettabytes while the global central servers only have 10.4 zettabytes of storage (Morell and Alba
2022). Transmitting such a vast amount of edge data into a central server is infeasible. Adding
to that, training a model with moderately large datasets results in significant budget costs and
carbon emissions (Patterson et al. 2021). Furthermore, data-sharing comes with serious privacy
concerns. According to Lawson et al. (2015), Canadian drivers who refused to enroll in the
automotive telematics program demanded that their personal driving data (e.g., behavior, location,
web-browsing history) should be respected by vehicle companies and that they be given control
over the data collection process. These debates over data protection standards have not faded away
over the past few years.

Fortunately, a critical change is happening in today’s Internet of Things (IoT). The processing
and computational power of edge devices is becoming increasingly powerful. AI chips are rapidly
infiltrating the global market. Today’s flagship cell phones are more powerful than many laptops,
and Tesla has boasted that the computer that runs its Autopilot system is as powerful as hundreds
of MacBook Pros. As such, we now have the opportunity to process more of our data where it is
created - i.e. at the edge. This decentralized data analytics paradigm is often coined as federated
data analytics (FDA) or Federated Learning (FL). FDA resolves many of the aforementioned
drawbacks. By exploiting edge computations, one can parallelize inference, reduce storage and
communication costs, achieve faster alerts and decisions, and protect privacy, amongst many others.
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I envision that many modern engineering systems are on the verge of shifting from a centralized
regime to a distributed, smart and connected system where some of the data processing is deferred
to the edge. My research focus is to develop methodologies and working prototypes that may help
facilitate this transition and allow practitioners to fully reap its benefits. This report focuses on the
development of federated and distributed data analytics for IoT-enabled systems.

While promising, FDA faces critical yet intrinsic challenges that need to be solved. First, in spite
of some recent advances in FDA, most, if not all, literature focuses on deep neural networks and their
applications for mobile networks. However, neural networks are not a panacea for all engineering
problems. To date, very few papers have delivered a federated treatment of models that go beyond
deep learning. Questions such as variable selection, uncertainty quantification, hypothesis testing,
and incorporating domain expert knowledge remain unanswered in FDA. Second, edge devices with
few data, limited bandwidth/memory, or unreliable connection may not be favored by conventional
distributed learning algorithms. As a result, such device(s) can potentially incur higher error rate(s).
This vicious cycle often relinquishes the opportunity of these devices to significantly contribute
in the training process. Besides this aforementioned notion of individual fairness, group fairness
also deserves attention. As FDA penetrates practical applications, it is important to achieve fair
performance across groups of clients characterized by their gender, ethnicity, socio-economic status,
geographic location, etc. Despite the importance of fairness, very limited work exists along this
line. The key challenge is that, unlike traditional definitions such as demographic disparity or equal
opportunity, there is no clear notion of an outcome which is “good” for a device in the FDA scenario.
Third, in engineering systems, data across devices possess trends that are often heterogeneous. For
example, vehicles/machines operated under different environments typically yield heterogeneous
condition monitoring data. As such, learning a global model, “one model that fits all”, may easily
fail. Unfortunately, the vast majority of FDA work fall in this category due to the focus on mobile
applications. Indeed some recent literature shows that global modeling approaches fail to provide
reasonable predictions or classifications when heterogeneity exists (Yu et al. 2020a, Zhu et al.
2021a).

To truly accomplish the promise of IoT-enabled systems, these challenges should be adequately
addressed. This report is committed to developing and designing novel federated and distributed
data analytics solutions that address the aforementioned challenges. To this end, the research
objectives of this dissertation are set as follows.

1.2 Outline of Dissertation

This dissertation aims to achieve the above research objectives to address crucial challenges
arising when developing data analytics frameworks for smart & connected systems. Here the

2



dissertation is outlined as follows.
Chapter 2 – GIFAIR-FL: A Framework for Group and Individual Fairness in Federated

Learning In this chapter, we propose GIFAIR-FL: a framework that imposes Group and Individual
FAIRness to Federated Learning settings. By adding a regularization term, our algorithm penalizes
the spread in the loss of client groups to drive the optimizer to fair solutions. Our framework
GIFAIR-FL can accommodate both global and personalized settings. Theoretically, we show
convergence in non-convex and strongly convex settings. Our convergence guarantees hold for both
i.i.d. and non-i.i.d. data. To demonstrate the empirical performance of our algorithm, we apply
our method to image classification and text prediction tasks. Compared to existing algorithms, our
method shows improved fairness results while retaining superior or similar prediction accuracy.

Chapter 3 – Federated Data Analytics: A Study on Linear Models Despite the recent success
stories of FDA, most literature focuses exclusively on deep neural networks. In this work, we take a
step back to develop an FDA treatment for one of the most fundamental statistical models: linear
regression. Our treatment is built upon hierarchical modeling that allows borrowing strength across
multiple groups. To this end, we propose two federated hierarchical model structures that provide
a shared representation across devices to facilitate information sharing. Notably, our proposed
frameworks are capable of providing uncertainty quantification, variable selection, hypothesis
testing, and fast adaptation to new unseen data. We validate our methods on a range of real-life
applications, including condition monitoring for aircraft engines. The results show that our FDA
treatment for linear models can serve as a competing benchmark model for the future development
of federated algorithms.

Chapter 4 – Federated Gaussian Process: Convergence, Automatic Personalization and
Multi-fidelity Modeling In this chapter, we propose FGPR: a Federated Gaussian process (GP)
regression framework that uses an averaging strategy for model aggregation and stochastic gradient
descent for local computations. Notably, the resulting global model excels in personalization as
FGPR jointly learns a shared prior across all devices. The predictive posterior then is obtained by
exploiting this shared prior and conditioning on local data, which encodes personalized features
from a specific dataset. Theoretically, we show that FGPR converges to a critical point of the full
log-marginal likelihood function, subject to statistical errors. This result offers standalone value
as it brings federated learning theoretical results to correlated paradigms. Through extensive case
studies, we show that FGPR excels in a wide range of applications and is a promising approach for
privacy-preserving multi-fidelity data modeling.

Finally, Chapter 5 concludes this report by summarizing the unique contributions of the com-
pleted studies and introducing possible future directions.

For the sake of brevity, the notations and abbreviations defined in a particular chapter are only
applicable to that chapter and its corresponding Appendix.
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CHAPTER 2

GIFAIR-FL: A Framework for Group and Individual Fairness in Federated
Learning

In this chapter, we propose GIFAIR-FL: a framework that imposes Group and Individual
FAIRness to Federated Learning settings. By adding a regularization term, our algorithm penalizes
the spread in the loss of client groups to drive the optimizer to fair solutions. Our framework
GIFAIR-FL can accommodate both global and personalized settings. Theoretically, we show
convergence in non-convex and strongly convex settings. Our convergence guarantees hold for both
i.i.d. and non-i.i.d. data. To demonstrate the empirical performance of our algorithm, we apply
our method to image classification and text prediction tasks. Compared to existing algorithms, our
method shows improved fairness results while retaining superior or similar prediction accuracy.

2.1 Introductory Remarks

A critical change is happening in today’s Internet of Things (IoT). The computational power
of edge devices is steadily increasing. AI chips are rapidly infiltrating the market, smart phones
nowadays have compute power comparable to everyday use laptops (Samsung 2019), Tesla just
boasted that its autopilot system has computing power of more than 3000 MacBook pros (Clean-
Technica 2021) and small local computers such as Raspberry Pis have become common place in
many applications especially manufacturing (Al-Ali et al. 2018). This opens a new paradigm for
data analytics in IoT; one that exploits local computing power to process more of the user’s data
where it is created. This future of IoT has been recently termed as the “The Internet of Federated
Things (IoFT)” (Kontar et al. 2021) where the term federated, refers to some autonomy for IoT
devices and is inspired by the explosive recent interest in federated data science.
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Figure 2.1: Example of the traditional IoT-enabled System

To give a microcosm of current IoT and its future, consider the IoT teleservice system shown in
Fig. 2.1. Vehicles enrolled in this tele-service system often have their data in the form of condition
monitoring signals uploaded to the cloud at regular intervals. The cloud acts as a data processing
center that analyzes data for continuous improvement and to keep drivers informed about the health
of their vehicles. IoT companies and services, such as Ford’s SYNC and General Motors Onstar
services, have long adopted this centralized approach to IoT. However, this state where data is
amassed on the cloud yields significant challenges. The need to upload large amounts of data to
the cloud incurs high communication and storage costs, demands large internet bandwidth (Jiang
et al. 2020a, Yang et al. 2020), and leads to latency in deployment as well as reliability risks due to
unreliable connection (Zhang et al. 2020a). Further, such a system does not foster trust or privacy
as users need to share their raw data which is often sensitive or confidential (Li et al. 2020a).

With the increasing computational power of edge devices, the discussed challenges can be
circumvented by moving part of the model learning to the edge. More specifically, rather than
processing the data at the cloud, each device performs small local computations and only shares the
minimum information needed to allow devices to borrow strength from each other and collabora-
tively extract knowledge to build smart analytics. In turn, such an approach (i) improves privacy as
raw data is never shared, (ii) reduces cost and storage needs as less information is transmitted, (iii)
enables learning parallelization and (iv) reduces latency in decisions as many decisions can now be
achieved locally. Hereon we will use edge device and client interchangeably, also, the cloud or data
processing center is referred to as the central server.

This idea of exploiting the computational power of edge devices by locally training models
without recourse to data sharing gave rise to federated learning (FL). In particular, FL is a data
analytics approach that allows distributed model learning without access to private data. Although
the main concept of FL dates back a while ago, it was brought to the forefront of data science
in 2017 by a team at Google which proposed Federated Averaging (FedAvg) (McMahan et al.
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2017). In FedAvg, a central server distributes the model architecture (e.g., neural network, linear
model) and a global model parameter (e.g., model weights) to selected devices. Devices run local
computations to update model parameters and send updated parameters to the server. The server
then takes a weighted average of the resulting local parameters to update the global model. This
whole process is termed as one communication round and the process is iterated over multiple
rounds until an exit condition is met. Figure 2.2 provides one illustrative example of FedAvg.
Since then FL has seen immense success in various fields such as text prediction (Hard et al. 2018,
Ramaswamy et al. 2019), Bayesian optimization (Dai et al. 2020, Khodak et al. 2021), Multi-fidelity
modeling (Yue and Kontar 2021), environment monitoring (Hu et al. 2018, Jiang et al. 2020b) and
healthcare (Li et al. 2020a, Xu et al. 2021).
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Figure 2.2: Illustrative Example of FL with FedAvg

Over the last few years, literature has been proposed to improve the performance of FL algo-
rithms; be it speeding up FL algorithms to enable faster convergence (Karimireddy et al. 2020,
Yuan and Ma 2020, Nguyen et al. 2020), tackling heterogeneous data both in size and distribution
(Zhao et al. 2018, Li et al. 2018a, Sattler et al. 2019, Ghosh et al. 2019, Li and Wang 2019, Shi et al.
2023a,b), improving the parameter aggregation strategies at the central server (Pillutla et al. 2019,
Wang et al. 2020a), designing personalized FL algorithms (Jiang et al. 2019, Fallah et al. 2020,
Mansour et al. 2020), protecting federated systems from adversarial attacks (Bhagoji et al. 2019,
Wang et al. 2020b), and promoting fairness (Mohri et al. 2019, Li et al. 2019a, Du et al. 2020, Hu
et al. 2020, Huang et al. 2020, Zhang et al. 2020b). Please refer to Kontar et al. (2021) for a detailed
literature review. Among those advances, fairness is a critical yet under-investigated area.

In the training phase of FL algorithms, devices with few data, limited bandwidth/memory, or
unreliable connection may not be favored by conventional FL algorithms. For instance, as shown in
Figure 2.2, FedAvg samples devices using the weight coefficient pk proportional to the sample size
on the device k. Scant data on device k will render pk insignificant and this device less favorable
by the resulting global model. As a result, such device(s) can potentially incur higher error rate(s).
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This vicious cycle often relinquishes the opportunity of these devices to significantly contribute in
the training process. Indeed, many recent papers have shown the large variety in model performance
across devices under FL (Jiang et al. 2019, Hard et al. 2018, Wang et al. 2019, Smith et al. 2017,
Kairouz et al. 2019), with some clients showing extremely bad model performance. Besides this
aforementioned notion of individual fairness, group fairness also deserves attention in FL. As FL
penetrates practical applications, it is important to achieve fair performance across groups of clients
characterized by their gender, ethnicity, socio-economic status, geographic location, etc. Despite
the importance of this notion of group fairness, unfortunately, no work exists along this line in FL.

Contribution: We propose a framework, GIFAIR-FL, that aims for fairness in FL. GIFAIR-FL
resorts to regularization techniques by penalizing the spread in the loss of clients/groups to drive the
optimizer to fair solutions. We show that our regularized formulation can be viewed as a dynamic
client re-weighting technique that adaptively gives higher weights to low-performing individuals or
groups. Our proposed method adapts the client weights at every communication round accordingly.
One key feature of GIFAIR-FL is that it can handle both group-level and individual-level fairness.
Also, GIFAIR-FL can be naturally tailored to either a global FL algorithm or a personalized FL
algorithm. We then prove that, under reasonable conditions, our algorithm converges to an optimal
solution for strongly convex objective functions and to a stationary solution for non-convex functions
under non-i.i.d. settings. Through empirical results on image classification and text prediction
datasets, we demonstrate that GIFAIR-FL can promote fairness while achieving superior or
similar prediction accuracy relative to recent state-of-the-art fair FL algorithms. Besides that,
GIFAIR-FL can be easily plugged into other FL algorithms for different purposes.

Organization: The rest of the paper is organized as follows. In Sec. 2.2, we introduce important
notations/definitions and briefly review FL. Related work is highlighted in Sec. 2.2.1. In Sec. 2.3,
we present GIFAIR-FL-Global which is a global modeling approach for fairness in FL. We then
briefly discuss the limitation of GIFAIR-FL-Global and introduce GIFAIR-FL-Per which is
a personalized alternative for fairness, in Sec. 2.4. Meanwhile, we provide convergence guarantees
for both methods. Experiments on image classification and text prediction tasks are then presented
in Sec. 2.5. Finally, Sec. 2.6 concludes the paper with a brief discussion.

2.2 Background

We start by introducing needed background and notation for model development. Then we
provide a brief overview of current literature.

Notation: Suppose there are K ≥ 2 local devices and each device has Nk datapoints. Denote
by Dk =

(
(xk,1, yk,1), (xk,2, yk,2), . . . , (xk,Nk

, yk,Nk
)
)

the data stored at device k where x ∈ X is
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the input, X is the input space, y ∈ Y is the output/label and Y is the output space. Denote by
∆Y the simplex over Y , h : X 7→ ∆Y the hypothesis and H a family of hypotheses h. Let ℓ be
a loss function defined over ∆Y × Y . Without loss of generality, assume ℓ ≥ 0. The loss of h is
therefore given by ℓ(h(x), y). Let θ ∈ Θ be a vector of parameters defining a hypothesis h and Θ

is a parameter space. For instance, θ can be the model parameters of a deep neural network. In the
following section we use hθ to represent the hypothesis.

Brief background on FL with FedAvg: In FL, clients collaborate to learn a model that yields
better performance relative to each client learning in isolation. This model is called the global model
where the global objective function is to minimize the average loss over all clients:

min
θ

F (θ) :=
K∑
k=1

pkFk(θ),

where pk = Nk∑
k Nk

, Fk(θ) = E(xk,i,yk,i)∼Dk
[ℓ(hθ(xk,i), yk,i)] ≈ 1

Nk

∑Nk

j=1[ℓ(hθ(xk,j), yk,j)] and Dk

indicates the data distribution of the k-th device’s data observations (xk,i, yk,i). During training, all
devices collaboratively learn global model parameters θ to minimize F (θ). The most commonly
used method to learn the global objective is FedAvg (McMahan et al. 2017). Details of FedAvg
are highlighted in Algorithm 2.1 as our work will build upon it for fairness. As shown in Algorithm
2.1, FedAvg aims to learn a global parameter θ, by iteratively averaging local updates θk learned
by performing E steps of stochastic gradient descent (SGD) on each client’s local objective Fk.

Algorithm 2.1: FedAvg Algorithm
Data: number of communication rounds C, number of local updates E, SGD learning rate

schedule {η(t)}t, initial model parameter θ
1 for c = 0 : (C − 1) do
2 Select some clients by sampling probability pk and denote by Sc the set of selected

clients;
3 Server broadcasts θ;
4 for all selected devices do
5 θ

(cE)
k = θ;

6 for t = cE : ((c+ 1)E − 1) do
7 Randomly sample a subset of data and denote it as ζ(t)k ;
8 Local Training θ

(t+1)
k = θ

(t)
k − η(t)gk(θ

(t)
k ; ζ

(t)
k ) ;

9 end
10 end
11 Aggregation θ̄c =

1
|Sc|
∑

k∈Sc θ
((c+1)E)
k , Set θ = θ̄c;

12 end
13 Return θ̄C .
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In Algorithm 2.1, ζk denotes the set of indices corresponding to a subset of training data on
device k and gk(·; ζk) denotes the stochastic gradient of Fk(·) evaluated on the subset of data indexed
by ζk. Also, |Sc| denotes the cardinality of Sc. One should note that it is also common for the central
server to sample clients uniformly and then take a weighted average using pk (Li et al. 2019b).
Whichever method used, the resulting model may not be fair as small a pk implies a lower weight
for client k

Defining fairness in FL: Suppose there are d ∈ [2, K] groups and each client can be assigned to
one of those groups s ∈ [d] := {1, . . . , d}. Note that clients from different groups are typically
non-i.i.d. Denote by ki, k ∈ [K], i ∈ [d] the index of k-th local device in group i. Throughout this
paper, we drop the superscript i unless we want to emphasize i explicitly. Group fairness can be
defined as follows.

Definition 1. Denote by {ai1}1≤i≤d and {ai2}1≤i≤d the sets of performance measures (e.g., testing

accuracy) of trained models 1 and 2 respectively. We say model 1 is more fair than model 2 if

V ar({ai1}1≤i≤d) < V ar({ai2}1≤i≤d), where V ar is variance.

Definition 1 is straightforward: a model is fair if it yields small discrepancies among testing
accuracies of different groups. It can be seen that when d = K, Definition 1 is equivalent to
individual fairness (Li et al. 2019a). Definition 1 is widely adopted in FL literature (Mohri et al.
2019, Li et al. 2019a, 2020b, 2021). This notion of fairness might be different from traditional
definitions such as demographic disparity (Feldman et al. 2015), equal opportunity and equalized
odds (Hardt et al. 2016) in centralized systems. The reason is that those definitions cannot be
extended to FL as there is no clear notion of an outcome which is “good” for a device (Kairouz et al.
2019). Instead, fairness in FL can be reframed as equal access to effective models (e.g., the accuracy
parity (Zafar et al. 2017) or the representation disparity (Li et al. 2019a)). Specifically, the goal is to
train models that incur a uniformly good performance across all devices (Kairouz et al. 2019).

2.2.1 Literature Overview

Now we briefly review existing state-of-the-art fair and personalized FL algorithms.
Fair FL: Mohri et al. (2019) propose a minimax optimization framework named agnostic FL

(AFL). AFL optimizes the worst weighted combination of local devices and is demonstrated to be
robust to unseen testing data. Du et al. (2020) further refine the notation of AFL and propose the
AgnosticFair algorithm. Specifically, they linearly parametrize weight parameters by kernel
functions and show that AFL can be viewed as a special case of AgnosticFair. Upon that, Hu
et al. (2020) combine minimax optimization with gradient normalization techniques to produce a fair
algorithm FedMGDA+. Motivated by fair resource allocation problems, Li et al. (2019a) propose
q-Fair FL (q-FFL). q-FFL reweights loss functions such that devices with poor performance
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will be given relatively higher weights. The q-FFL objective is proved to encourage individual
fairness in FL. However, this algorithm requires accurate estimation of a local Lipschitz constant
L. Later, Li et al. (2020b) developed a tilted empirical risk minimization (TERM) algorithm to
handle outliers and class imbalance in statistical estimation procedures. TERM has been shown
to be superior to q-FFL in many FL applications. Along this line, Huang et al. (2020) propose
to use training accuracy and frequency to adjust weights of devices to promote fairness. Zhang
et al. (2020b) develop an algorithm to minimize the discrimination index of the global model to
encourage fairness. Here we note that recent work study collaborative fairness in FL (Zhang et al.
2020c, Xu and Lyu 2020, Lyu et al. 2020). The goal of this literature, which is perpendicular to our
purpose, is to provide more rewards to high-contributing participants while penalizing free riders.

Personalized FL: One alternative to global modeling is personalized FL (Shi and Kontar 2022a,
Liang et al. 2023, Shi and Kontar 2022b) which allows each client to retain their own individualized
parameters {θk}Kk=1. For instance, in Algorithm 2.1 and after training is done, each device i can
use θ = θ̄C as the initial weight and run additional SGD steps to obtain a personalized solution
θi. Though personalization techniques do not directly target fairness, recent papers have shown
that personalized FL algorithms may improve fairness. Arivazhagan et al. (2019) and Liang et al.
(2020) use different layers of a network to represent global and personalized solutions. Specifically,
they fit personalized layers to each local device such that each device will return a task-dependent
solution based on its own local data. Wang et al. (2019), Yu et al. (2020b), Dinh et al. (2020) and
Li et al. (2021) resort to fine-tuning techniques to learn personalized models. Notably, Li et al.
(2021) develops a multi-task personalized FL algorithm Ditto. After optimizing a global objective
function, Ditto allows local devices to run more steps of SGD, subject to some constraints, to
minimize their own losses. Li et al. (2021) have shown that Ditto can significantly improve
testing accuracy among local devices and encourage fairness.

Features of GIFAIR-FL: We here give a quick comparison to highlight the features of our
proposed algorithm. The detailed formulation of GIFAIR-FL will be presented in the following
section. GIFAIR-FL resorts to regularization to penalize the spread in the loss of client groups.
Interestingly, GIFAIR-FL can be seen as a dynamic re-weighting strategy based on the statistical
ordering of client/group losses at each communication round. As such, our approach aligns with
FL literature that uses re-weighting client schemes, yet existing work faces some limitations.
Specifically, AFL and its variants (Mohri et al. 2019, Li et al. 2019a, Hu et al. 2020, Du et al. 2020)
exploit minimax formulations that optimize the worst-case distribution of weights among clients
to promote fairness. Such approaches lead to overly pessimistic solutions as they only focus on
the device with the largest loss. As will be shown in our case studies, GIFAIR-FL significantly
outperforms such approaches. Adding to this key advantage, GIFAIR-FL enjoys convergence
guarantees even for non-i.i.d. data and is amenable to both global and personalized modeling.
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2.3 GIFAIR-FL-Global: a Global Model for Fairness

We start by detailing our proposed global modeling approach - GIFAIR-FL-Global. In
this approach, all local devices collaborate to learn one global model parameter θ. Our fair FL
formulation aims at imposing group fairness while minimizing the training error. More specifically,
our goal is to minimize the discrepancies in the average group losses while achieving a low training
error. By penalizing the spread in the loss among client groups, we propose a regularization
framework for computing optimal parameters θ that balances learning accuracy and fairness. This
translates to solving the following optimization problem

min
θ

H(θ) ≜
K∑
k=1

pkFk(θ) + λ
∑

1≤i<j≤d

|Li(θ)− Lj(θ)|, (2.1)

where λ is a positive scalar that balances fairness and goodness-of-fit, and

Li(θ) ≜
1

|Ai|
∑
k∈Ai

Fk(θ)

is the average loss for client group i, Ai is the set of indices of devices that belong to group i, and
|A| is the cardinality of the set A.

Remark 2. Objective (2.1) aims at ensuring fairness by reducing client loss spread when losses

are evaluated at a single global parameter θ. This achieves fairness from the server perspective.

Specifically, the goal is to find a single solution that yields small discrepancies among {Li(θ)}di=1.

In typical FL settings, the global objective is given as

H(θ) =
K∑
k=1

pkHk(θ)

where each client uses local data to optimize a surrogate of the global objective function. For
instance, FedAvg simply uses the local objective function Hk(θ) = Fk(θ) for a given client k.
Interestingly, our global objective in (2.1) can also be written as H(θ) =

∑K
k=1 pkHk(θ) as shown

in Lemma 3 below.

Lemma 3. Let sk ∈ [d] denote the group index of device k. For any given θ, the global objective

function H(θ) defined in (2.1) can be expressed as

H(θ) =
K∑
k=1

pk

(
1 +

λ

pk|Ask |
rk(θ)

)
Fk(θ), (2.2)
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where

rk(θ) =
∑

1≤j ̸=sk≤d

sign(Lsk(θ)− Lj(θ)).

Consequently,

H(θ) =
K∑
k=1

pkHk(θ)

such that the local client objective is,

Hk(θ) ≜

(
1 +

λ

pk |Ask |
rk(θ)

)
Fk(θ). (2.3)

In Lemma 3, rk(θ) ∈ {−d + 1,−d + 3, . . . , d − 3, d − 1} is a scalar directly related to the
statistical ordering of Lsk among client group losses. To illustrate that in a simple example, suppose
that at a given θ, we have L1(θ) ≥ L2(θ) ≥ . . . ≥ Ld(θ). Then,

rk(θ) =



d− 1 if sk = 1

d− 3 if sk = 2
...

−d+ 1 if sk = d.

According to Lemma 1, one can view our global objective as a parameter-based weighted sum of
the client loss functions. Particularly, rather than using uniform weighting for clients, our assigned
weights are functions of the parameter θ. More specifically, for a given parameter θ, our objective
yields higher weights for groups with higher average group loss; hence, imposing group fairness.
To illustrate this idea, we provide a simple concrete example.

Example 2.3.1. Without loss of generality and for a given θ, consider four different groups each

having 10 clients with L1(θ) > L2(θ) > L3(θ) > L4(θ). Then our global objective function H(θ)

in (2.2) can be expressed as

40∑
k=1

pkFk(θ) + λ

(
|L1(θ)− L2(θ)|+ |L1(θ)− L3(θ)|

+ |L1(θ)− L4(θ)|+ |L2(θ)− L3(θ)|+ |L2(θ)− L4(θ)|+ |L3(θ)− L4(θ)|
)
,
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which is equivalent to

∑
k∈A1

pk

(
1 +

3λ

10pk

)
Fk(θ) +

∑
k∈A2

pk

(
1 +

λ

10pk

)
Fk(θ)

+
∑
k∈A3

pk

(
1− λ

10pk

)
Fk(θ) +

∑
k∈A4

pk

(
1− 3λ

10pk

)
Fk(θ).

The objective clearly demonstrates a higher weight applied to clients that belong to a group with a

higher average loss.

According to (2.3), the optimization problem solved by every selected client is a weighted
version of the local objective in FedAvg. The objective imposes a higher weight for clients that
belong to groups with higher average losses. These weights will be dynamically updated at every
communication round. To assure positive weights for clients, we require the following bounds on λ

0 ≤ λ < λmax ≜ min
k

{
pk|Ask |
d− 1

}
.

When λ = 0, our approach is exactly FedAvg. Moreover, a higher value of λ imposes more
emphasis on fairness.

Now, the above formulation can be readily extended to individual fairness; simply through
considering each client to be a group. This translates to the global objective in (2.2) to be given as

H(θ) =
K∑
k=1

(
1 +

λ

pk
rk(θ)

)
Fk(θ).

In essence our approach falls in line with FL literature that exploit re-weighting of clients.
For instance, AFL proposed by Mohri et al. (2019) computes at every communication round the
worst-case distribution of weights among clients. This approach promotes robustness but may be
overly conservative in the sense that it focuses on the largest loss and thus causes very pessimistic
performance to other clients. Our algorithm, however, adaptively updates the weight of clients at
every communication round based on the statistical ordering of client/group losses. Moreover, the
dynamic update of the weights can potentially avoid over-fitting by impeding updates for clients
with low loss. We will further demonstrate the advantages of our algorithm in Sec. 2.5. In the next
subsection, we provide our detailed algorithm for solving our proposed objective.

2.3.1 Algorithm

In this section, we describe our proposed algorithm GIFAIR-FL-Global which is detailed
in Algorithm 2.2. We highlight the difference between GIFAIR-FL-Global and FedAvg in
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Algorithm 2.2: GIFAIR-FL-Global Algorithm
Data: number of devices K, fraction α, number of communication rounds C, number of

local updates E, SGD learning rate schedule {η(t)}t, initial model parameter θ,
regularization parameter λ, initial loss {Li}1≤i≤d

1 for c = 0 : (C − 1) do
2 Select clients by sampling probability pk and denote by Sc the indices of these clients;

3 Server broadcasts
(
θ,

{
λ

pk|Ask |
rck(θ)

}
k∈Sc

)
;

4 for k ∈ Sc do
5 θ

(cE)
k = θ;

6 for t = cE : ((c+ 1)E − 1) do
7 Randomly sample a subset of data and denote it as ζ(t)k ;

8 θ
(t+1)
k = θ

(t)
k − η(t)

(
1 +

λ

pk|Ask |
rck(θ)

)
gk(θ

(t)
k ; ζ

(t)
k ) ;

// Note that rck(θ) is fixed during local update (See
Remark 6)

9 end
10 end
11 Aggregation θ̄c =

1
|Sc|
∑

k∈Sc θ
((c+1)E)
k , Set θ = θ̄c;

12 Calculate Li =
1
|Ai|
∑

k∈Ai
Fk(θ

((c+1)E)
k ) for all i ∈ [d] and update rc+1

k (θ);
13 c← c+ 1;
14 end
15 Return θ̄C .
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red color. At every communication round c, our algorithm selects a set of clients to participate in
the training and shares rck with each selected client. For each client, multiple SGD steps are then
applied to a weighted client loss function. The updated parameters are then passed to the server that
aggregates these results and computes rc+1

k .
Computationally, our approach requires evaluating the client loss function at every communi-

cation round to compute rck. Compared to existing fair FL approaches, GIFAIR-FL-Global
is simple and computationally efficient. For instance, q-FFL proposed by Li et al. (2019a) first
runs FedAvg to obtain a well-tuned learning rate and uses this learning rate to roughly estimate
the Lipschitz constant L. Another example is AFL which requires running two gradient calls at
each iteration to estimate the gradients of model and weight parameters. Similarly, Ditto requires
running additional steps of SGD, at each communication round, to generate personalized solutions.
In contrast, our proposed method can be seen as a fairness-aware weighted version of FedAvg.

Remark 4. In Algorithm 2.2, we sample local devices by sampling probability pk and aggre-

gate model parameters by an unweighted average 1
|Sc|
∑

k∈Sc θ
((c+1)E)
k . Alternatively, one may

choose to uniformly sample clients. Then, the aggregation strategy should be replaced by θ̄c =
K
|Sc|
∑

k∈Sc pkθ
((c+1)E)
k (Li et al. 2019b).

Remark 5. Instead of broadcasting pk and |Ask | separately to local devices, the central server

broadcasts the product λ
pk|Ask

|r
c
k(θ) to client k. Hence, the local device k cannot obtain any

information about pk, |Ask | and rck(θ). This strategy can protect privacy of other devices.

Remark 6. Notice that in (2.3), Hk(θ) is not differentiable due to the rk(θ) component. However,

rck is fixed during local client training as it is calculated on the central server. Also, local devices do

not have any information about other devices hence they cannot update rck during local training.

Remark 7. Despite introducing O(d2) regularizers to the main objective, our algorithm only

requires computing group losses and rck values which require sorting the losses. More specifically,

once the central server collects the selected clients’ losses {Fk}k, it first calculates group losses

{Li}i. This step only involves the summation of scalars. Afterward, the server runs a sort algorithm

to rank loss values. One can use many built-in sort functions in the Python library and this sorting

step is very fast even with millions of groups.

2.3.2 Convergence Guarantees

In this section, we first show that, under mild conditions, GIFAIR-FL-Global converges to
the global optimal solution at a rate ofO(E2

T
) for strongly convex functions and to a stationary point

at a rate of O( (E−1) log(T+1)√
T

), up to a logarithmic factor, for non-convex functions. Here T := CE

denotes the total number of iterations across all devices. Our theorems hold for both i.i.d. and
non-i.i.d. data. Due to space limitation, we defer proof details to the Appendix.
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2.3.2.1 Strongly Convex Functions

We assume each device performs E steps of local updates and make the following assumptions.
Here, our assumptions are based on Fk rather than Hk. These assumptions are very common in
many FL papers (Li et al. 2019c, 2018a, 2019b).

Assumption 7.1. Fk is L-smooth and µ-strongly convex for all k ∈ [K].

Assumption 7.2. The variance of stochastic gradient is bounded. Specifically,

E
{∥∥∥gk(θ(t)

k ; ζ
(t)
k )−∇Fk(θ

(t)
k )
∥∥∥2} ≤ σ2

k, ∀k ∈ [K].

Assumption 7.3. The expected squared norm of the stochastic gradient is bounded. Specifically,

E
{∥∥∥gk(θ(t)

k ; ζ
(t)
k )
∥∥∥2} ≤ G2,∀k ∈ [K].

Typically, data from different groups are non-i.i.d.. We modify the definition in Li et al.
(2019b) to roughly quantify the degree of non-i.i.d.-ness. Specifically,

ΓK = H∗ −
K∑
k=1

pkH
∗
k =

K∑
k=1

pk(H
∗ −H∗k),

where H∗ ≜ H(θ∗) =
∑K

k=1 Hk(θ
∗) is the optimal value of the global objective function and

H∗k ≜ Hk(θ
∗
k) is the optimal value of the local loss function. If data are i.i.d., then ΓK → 0 as

the number of samples grows. Otherwise, ΓK ̸= 0 (Li et al. 2019b). Given all aforementioned
assumptions, we next prove the convergence of our proposed algorithm. We first assume all devices
participate in each communication round (i.e., |Sc| = K, ∀c).

Theorem 8. Assume Assumptions 7.1-7.3 hold and |Sc| = K. If η(t) is decreasing in a rate of O(1
t
)

and η(t) ≤ O( 1
L
), then for γ, µ, ϵ > 0, we have

E
{
H(θ̄C)

}
−H∗ ≤ L

2

1

γ + T

{
4ξ

ϵ2µ2
+ (γ + 1)

∥∥θ̄(0) − θ∗
∥∥2},

where ξ = 8(E − 1)2G2 + 4LΓ + 2Γmax

η(t)
+ 4

∑K
k=1 p

2
kσ

2
k and Γmax :=

∑K
k=1 pk|(H∗ − H∗k)| ≥

|
∑K

k=1 pk(H
∗ −H∗k)| = |ΓK |. Here θ̄(0) := θ(0) where θ(0) is the initial model parameter in the

central server.

Remark 9. Theorem 38 shows an O(E2

T
) convergence rate which is similar to that obtained from

FedAvg. However, the rate is also affected by ξ, which contains the degree of non-i.i.d.-ness.
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Under a fully i.i.d. settings where ΓK = Γmax = 0, we retain the typical FedAvg for strongly

convex functions.

Next, we assume only a fraction of devices participate in each communication round (i.e.,
|Sc| = αK,∀c, α ∈ (0, 1)). As per Algorithm 2.2, all local devices are sampled according to the
sampling probability pk (Li et al. 2018a). Our Theorem can similarly be extended to the scenario
where devices are sampled uniformly (i.e., with the same probability). Recall, the aggregation
strategy becomes θ̄c =

K
|Sc|
∑

k∈Sc pkθk (Li et al. 2019b).

Theorem 10. Assume at each communication round, the central server samples a fraction |Sc| of

devices according to the sampling probability pk. Additionally, assume Assumptions 7.1-7.3 hold. If

η(t) is decreasing at a rate of O(1
t
) and η(t) ≤ O( 1

L
), then for γ, µ, ϵ > 0, we have

E
{
H(θ̄C)

}
−H∗ ≤ L

2

1

γ + T

{
4(ξ + τ ′)

ϵ2µ2
+ (γ + 1)

∥∥θ̄(0) − θ∗
∥∥2},

where τ ′ = 4G2E2

|Sc| .

Remark 11. Under the partial device participation scenario, the same convergence rate O(E2

T
)

holds. The only difference is that there is a term τ ′ = 4G2E2

|Sc| that appears in the upper bound. This

ratio slightly impedes the convergence rate when the number of sampled devices |Sc| is small.

2.3.2.2 Non-convex Functions

To prove the convergence result on non-convex functions, we replace Assumption 7.1 by the
following assumption.

Assumption 11.1. Fk is L-smooth for all k ∈ [K].

Theorem 12. Assume Assumptions 7.2-11.1 hold and |Sc| = K. If η(t) = O( 1√
t
) and η(t) ≤ O( 1

L
),

then our algorithm converges to a stationary point. Specifically,

min
t=1,...,T

E
{∥∥∇H(θ̄(t))

∥∥2}

≤

{
2
(
1 + 2L2 log(T + 1)

)
E
{
H(θ̄(0))−H∗

}
+ 2ξΓK

}
√
T

,

where

ξΓK
= O

((
2L2ΓK + 8(E − 1)LG2 + 10L

K∑
k=1

pkσ
2
k

)
log(T + 1)

)
,

and θ̄(t) = 1
|Sc|
∑

k∈Sc θ
(t)
k .
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Remark 13. Our results show that GIFAIR-FL converges to a stationary point at a rate of

O( (E−1) log(T+1)√
T

). Similar to the strongly-convex setting, this convergence rate is affected by the

degree of non-i.i.d.-ness ΓK .

2.3.3 Discussion and Limitations

We here note our theoretical results require exact computation of rk. However, Algorithm
2.2 uses an estimate of rk at every communication round using the local client loss prior to
aggregation. This procedure might generate an inexact estimate of rk as one cannot guarantee
Fk(θ̄c) = Fk(θ

((c+1)E)
k ) at each communication round. Here recall that rk in Eq. (2.2) is calculated

based on the order of Fk(θ̄c). To guarantee exact an rk, the server can ask clients to share the
local losses evaluated at the global parameters. Specifically, after sharing θ̄c to selected local
devices, those devices calculate {Fk(θ̄c)}k and send loss values back to the central server to
update rc+1

k . This, however, requires more communication rounds. One approach to remedy
the limitation of GIFAIR-FL-Global is to develop a personalized counterpart to circumvent
additional communication rounds. We will detail this idea in the coming section.

2.4 GIFAIR-FL-Per: A Personalized Model for Fairness

In this section, we slightly tailor GIFAIR-FL-Global to a personalized fair algorithm
GIFAIR-FL-Per. While still aiming to minimize the spread in the loss among client groups, our
proposed objective evaluates the loss at the client-specific (i.e. personalized) solution . Formally
speaking, our objective function is

min
θ

H(θ,θ1, . . . ,θK) ≜
K∑
k=1

pkFk(θ) + λ
∑

1≤i<j≤d

∣∣Li({θk}k∈Ai
)− Lj({θk}k∈Aj

)
∣∣ , (2.4)

where
Li({θk}k∈Ai

) ≜
1

|Ai|
∑
k∈Ai

Fk(θk)

is the average loss for client group i and
∑K

k=1 pkθk = θ.

Remark 14. Different from (2.1), objective (2.4) achieves fairness from the device perspective. By

optimizing (2.4), we can obtain device-specific solutions {θk}Kk=1 that yield small discrepancies

among {Li({θk}k∈Ai
)}di=1. Although (2.1) and (2.4) have different perspectives, their ultimate

goals are aligned with Definition 1.
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Objective (2.4) has many notable features: (i) first, compared to (2.1), the new objective
function (2.4) evaluates group losses {Li}di=1 with respect to personalized solutions {θk}Kk=1. This
formulation circumvents the need to collect losses evaluated at global parameter and therefore
requires no extra communication rounds to calculate rk exactly; (ii) second, the global parameter
θ =

∑K
k=1 pkθk ensures aggregation happens at every communication round. This can safeguard

against over-fitting on local devices. Otherwise, each device will simply minimize its own local loss,
without communication, and obtain a small loss value; (iii) before discussing the third property, we
first need to present the convergence results of GIFAIR-FL-Per.

Theorem 15. Assume Assumptions 7.1-7.3 hold and |Sc| = K. If η(t) is decreasing in a rate of

O(1
t
) and η ≤ O( 1

L
), then for γ, µ, ϵ > 0, we have

E
{
H(θ̄C , {θ(T )

k }
K
k=1)

}
−H∗ ≤ O(E

2

T
)

where
∑K

k=1 pkθ
(T )
k = θ̄C and H∗ := H(θ

∗
, {θk}Kk=1) such that

∑K
k=1 pkθk = θ

∗
. A same

convergence rate holds for the partial device participation scenario.

Under non-convex condition, we have

min
t=1,...,T

E
{∥∥∇H(θ̄(t))

∥∥2} ≤ O((E − 1) log(T + 1)√
T

).

The proof here follows a similar scheme to those in GIFAIR-FL-Global. Theorem 15
implies that GIFAIR-FL-Per drives aggregated parameter θ̄C to the global optimal solution θ∗

at a rate of O(E2

T
). This aggregated parameter is obtained from taking the weighed average of

personalized solutions {θ(T )
k }Kk=1. This leads to a new interpretation of GIFAIR-FL-Per: once

the optimizer reaches θ̄C , device k retains personalized solution θ
(T )
k that stays in the vicinity of the

global model parameter to balance each client’s shared knowledge and unique characteristics. One
can link this idea to Ditto (Li et al. 2021) - the recent state-of-the-art personalized FL algorithm.
Ditto allows local devices to run more steps of SGD, subject to some constraints such that local
solutions will not move far away from the global solution. GIFAIR-FL-Per, on the other hand,
scales the magnitude of gradients based on the statistical ordering of client/group losses.

Finally, we detail GIFAIR-FL-Per in Algorithm 2.3. In the algorithm, rk is defined as

rk({θk}Kk=1) =
∑

1≤j ̸=sk≤d

sign(Lsk({θm}m∈Ask
)− Lj({θm}m∈Aj

)). (2.5)

In other words, rk is computed based on the ordering of losses evaluated on the personalized
solutions.
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Algorithm 2.3: GIFAIR-FL-Per Algorithm
Data: number of devices K, fraction α, number of communication rounds C, number of

local updates E, SGD learning rate schedule {η(t)}Et=1, initial model parameter θ,
regularization parameter λ, initial loss {Li}1≤i≤d

1 for c = 0 : (C − 1) do
2 Select |Sc| clients by sampling probability pk and denote by Sc the indices of these

clients;

3 Server broadcasts
(
θ,

{
λ

pk|Ask |
rck({θk}Kk=1)

}
k∈Sc

)
;

4 for k ∈ Sc do
5 θ

(cE)
k = θ;

6 for t = cE : ((c+ 1)E − 1) do

7 θ
(t+1)
k = θ

(t)
k − η(t)

(
1 +

λ

pk|Ask |
rck({θk}Kk=1)

)
∇Fk(θ

(t)
k ) ;

8 end
9 end

10 Aggregation θ̄c =
1
|Sc|
∑

k∈Sc θ
((c+1)E)
k , Set θ = θ̄c;

11 Calculate Li =
1
|Ai|
∑

k∈Ai
Fk(θ

((c+1)E)
k ) for all i ∈ [d];

12 Set θk = θ
((c+1)E)
k for all k ∈ Sc. Remain θk unchanged otherwise;

13 update rc+1
k ({θk}Kk=1);

14 c← c+ 1;
15 end
16 Return {θk}Kk=1.
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2.5 Experiments

In this section, we test GIFAIR-FL on image classification and text prediction tasks.
We benchmark our model with the following algorithms: q-FFL (Li et al. 2019a), TERM

and TERM-Group (Li et al. 2020b), FedMGDA+ (Hu et al. 2020), AFL (Mohri et al. 2019), and
FedMGDA+ (Hu et al. 2020). To the best of our knowledge, those are the well-known current
state-of-the-art FL algorithms for fairness. We also benchmark our model with Ditto (Li et al.
2021) which is a personalized FL approach using multi-task learning.

2.5.1 Image Classification

We start by considering a federated image classification dataset FEMNIST (Federated Extended
MNIST) (Caldas et al. 2018). FEMNIST consists of images of digits (0-9) and English characters
(A-Z, a-z) with 62 classes (Figure A.1) written by different people. Images are 28 by 28 pixels. All
images are partitioned and distributed to 3,550 devices by the dataset creators (Caldas et al. 2018).

Figure 2.3: Example of Images from FEMNIST.

Individual Fairness (FEMNIST-skewed, d = 100) Following the setting in (Li et al. 2018a),
we first sample 10 lower case characters (‘a’-‘j’) from Extended MNIST (EMNIST) (Cohen et al.
2017) and distribute 5 classes of images to each device. Each local device has 500 images. There are
100 devices in total. Results are reported in Table 2.2. (FEMNIST-original, d = 500) Following
the setting in (Li et al. 2021), we sample 500 devices and train models using the default data stored
in each device. Results are reported in Table 2.3.

Group Fairness (FEMNIST-3-groups, d = 3) We manually divide FEMNIST data into three
groups. See Table 2.1 for the detailed assignment. This assignment is inspired by the statistic that

most people prefer to write in lowercase letters while a small amount of people use capital letters or

a mixed of two types (Jones and Mewhort 2004). In such cases, it is important to assure that an FL
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algorithm is capable of achieving similar performance between such groups. Results are reported in
Table 2.4.

Group Data Type Number of Images Number of Devices
Group 1 Capital Letters + Digits 800 60
Group 2 Lowercase Letters + Digits 1,000 100
Group 3 Capital/Lowercase Letters + Digits 600 40

Table 2.1: Data Structure of FEMNIST-3-groups
Implementation: For all tasks, we randomly split the data on each local device into a 70%

training set, a 10% validation set and a 20% testing set. This is a common data splitting strategy
used in many FL papers (Li et al. 2018a, Chen et al. 2018, Reddi et al. 2020). The batch size is set to
be 32. We use the tuned initial learning rate 0.1 and decay rate 0.99 for each method. During each
communication round, 10 devices are randomly selected and each device will run 2 epochs of SGD.
We use a CNN model with 2 convolution layers followed by 2 fully connected layers. All benchmark
models are well-tuned. Specifically, we solve q-FFL with q ∈ {0, 0.001, 0.01, 0.1, 1, 2, 5, 10} (Li
et al. 2019a) in parallel and select the best q. Here, the best q is defined as the q value where
the variance decreases the most while the averaged testing accuracy is superior or similar to
FedAvg. This definition is borrowed from the original q-FFL paper (Li et al. 2019a). Similarly,
we train TERM with t ∈ {1, 2, 5} and select the best t (Li et al. 2020b). For Ditto, we tune
the regularization parameter λDitto ∈ {0.01, 0.05, 0.1, 0.5, 1, 2, 5}. In GIFAIR-FL, we tune the
parameter λ ∈ {0, 0.1λmax, 0.2λmax, . . . , 0.8λmax, 0.9λmax}. Here kindly note that λmax is a
function of pk, |Ask | and d (i.e., data-dependent).

Performance metrics: Denote by ak the prediction accuracy on device k. We define (1)
individual-level mean accuracy as ā := 1

K

∑K
k=1 ak and (2) individual-level variance as V ar(a) :=

1
K

∑K
k=1(ak − ā)2.

Algorithm FedAvg q-FFL TERM FedMGDA+ Ditto GIFAIR-FL-Global GIFAIR-FL-Per
ā 79.2 (1.0) 84.6 (1.9) 84.2 (1.3) 85.0 (1.7) 92.5 (3.1) 87.9 (0.9) 93.0 (1.1)√

V ar(a) 22.3 (1.1) 18.5 (1.2) 13.8 (1.0) 14.9 (1.6) 14.3 (1.0) 5.7 (0.8) 6.2 (0.9)

Table 2.2: Empirical results on FEMNIST-skewed. Each experiment is repeated 5 times.

Algorithm FedAvg q-FFL TERM AFL Ditto GIFAIR-FL-Global GIFAIR-FL-Per
ā 80.4 (1.3) 80.9 (1.1) 81.0 (1.0) 82.4 (1.0) 83.7 (1.9) 83.2 (0.7) 84.1 (1.2)√

V ar(a) 11.1 (1.4) 10.6 (1.3) 10.3 (1.2) 9.85 (0.9) 10.1 (1.6) 5.2 (0.8) 4.5 (0.8)

Table 2.3: Test accuracy on FEMNIST-original. Each experiment is repeated 5 times.

2.5.2 Text Data

Individual Fairness: We train a RNN to predict the next character using text data built from
“The Complete Works of William Shakespeare”. In this dataset, there are about 1,129 speaking roles.
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Algorithm FedAvg q-FFL TERM FedMGDA+ Ditto TERM-Group
Group 1 79.72 (2.08) 81.15 (1.97) 81.29 (1.45) 81.03 (2.28) 82.37 (2.06) 82.01 (1.95)
Group 2 90.93 (2.35) 88.24 (2.13) 88.08 (1.09) 89.12 (1.74) 92.05 (2.00) 89.13 (1.00)
Group 3 80.21 (2.91) 80.93 (1.86) 81.84 (1.44) 81.33 (1.59) 83.03 (2.18) 81.75 (2.04)

Discrepancy 11.21 7.31 6.79 8.09 9.02 7.38
Algorithm GIFAIR-FL-Global GIFAIR-FL-Per

Group 1 83.41 (1.34) 83.96 (1.22)
Group 2 88.29 (1.22) 91.05 (1.31)
Group 3 84.37 (1.85) 84.98 (0.99)

Discrepancy 6.07 7.09

Table 2.4: Test accuracy on FEMNIST-3-groups. Each experiment is repeated 5 times. Discrepancy
is the difference between the largest accuracy and the smallest accuracy.

Naturally, each speaking role in the play is treated as a device. Each device stored several text data
and those information will be used to train a RNN on each device. The dataset is available on the
LEAF website (Caldas et al. 2018).

Following the setting in McMahan et al. (2017) and Li et al. (2019a), we subsample 31 roles
(d = 31). The RNN model takes a 80-character sequence as the input, and outputs one character
after two LSTM layers and one densely-connected layer. For FedAvg, q-FFL and Ditto, the
best initial learning rate is 0.8 and decay rate is 0.95 (Li et al. 2021). We also adopt this setting
to GIFAIR-FL-Global and GIFAIR-FL-Per. The batch size is set to be 10. The number of
local epochs is fixed to be 1 and all models are trained for 500 epochs. Results are reported in Table
2.5.

Algorithm FedAvg q-FFL AFL Ditto GIFAIR-FL-Global GIFAIR-FL-Per
ā 53.21 (0.31) 53.90 (0.30) 54.58 (0.14) 60.74 (0.42) 57.04 (0.23) 61.58 (0.14)√

V ar(a) 9.25 (6.17) 7.52 (5.10) 8.44 (5.65) 8.32 (4.77) 3.14 (1.25) 4.33 (1.25)

Table 2.5: Mean and standard deviation of test accuracy on Shakespeare (d = 31). Each experiment
is repeated 5 times.

Group Fairness:
We obtain the gender information from https://shakespeare.folger.edu/ and

group speaking roles based on gender (d = 2). It is known that the majority of characters in
Shakespearean drama are males. Simply training a FedAvg model on this dataset will cause
implicit bias towards male characters. On a par with this observation, we subsample 25 males and
10 females from “The Complete Works of William Shakespeare”. Here we note that each device
in the male group implicitly has more text data. The setting of hyperparameters is same as that of
individual fairness. Results are reported in Table 2.6.
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Algorithm FedAvg q-FFL FedMGDA+ Ditto TERM-Group GIFAIR-FL-Global GIFAIR-FL-Per
Male 72.95 (1.70) 67.14 (2.18) 67.07 (2.11) 74.19 (3.75) 72.87 (1.01) 67.42(0.98) 73.95 (0.59)

Female 40.39 (1.49) 43.26 (2.05) 43.85 (2.32) 45.73 (4.01) 44.31 (0.96) 52.04 (1.10) 54.88 (1.12)
Discrepancy 32.56 23.88 23.22 28.46 28.56 15.38 19.07

Table 2.6: Test accuracy on Shakespeare (d = 2). Each experiment is repeated 5 times.

2.5.3 Analysis of Results

Based on Table 2.2-2.6, we can obtain important insights. First, compared to other benchmark
models, GIFAIR-FL-Global/GIFAIR-FL-Per lead to significantly more fair solutions. As
shown in Tables 2.2, 2.3 and 2.5, our algorithm significantly reduces the variance of testing accu-
racy of all devices (i.e., V ar(a)) while the average testing accuracy remains consistent. Second,
from Tables 2.4 and 2.6, it can be seen that GIFAIR-FL-Global/GIFAIR-FL-Per boosted
the performance of the group with the worst testing accuracy and achieved the smallest discrep-
ancy. Notably, this boost did not affect the performance of other groups. This indicates that
GIFAIR-FL-Global/GIFAIR-FL-Per is capable of ensuring fairness among different groups
while retaining a superior or similar prediction accuracy compared to existing benchmark models.
Finally, we note that GIFAIR-FL-Global sometimes achieves lower prediction performance
than Ditto. This is understandable as Ditto provides a personalized solution to each device k

while our model only returns a global parameter θ̄. Yet, as shown in the last column, if we use
GIFAIR-FL-Per, then the prediction performance can be significantly improved without sacri-
ficing fairness. However, even without personalization, GIFAIR-FL-Global achieves superior
testing performance compared to existing fair FL benchmark models.

2.5.4 Sensitivity Analysis

𝟎. 𝟗𝝀𝒎𝒂𝒙𝟎
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Figure 2.4: Sensitivity with respect to λ (Shakespeare Dataset).

In this section, we use GIFAIR-FL-Global to study the effect of the tuning parameter λ ∈
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[0, λmax) using the Shakespeare dataset. A similar conclusion holds for GIFAIR-FL-Per and we
therefore omit it. Results are reported in Figure 2.4. It can be seen that as λ increases, the discrepancy
between male and female groups decreases accordingly. However, after λ passes a certain threshold,
the averaged testing accuracy of the female group remained flat yet the performance of the male
group significantly dropped. Therefore, in practice, it is recommended to consider a moderate λ

value. Intuitively, when λ = 0, GIFAIR-FL becomes FedAvg. When λ is close to λmax, the
coefficient (i.e., (1 + λ 1

pk|Ask
|rk)) of devices with good performance will be close to zero and the

updating is, therefore, impeded. A moderate λ balances those two situations well. Besides this
example, we also conducted additional sensitivity analysis. Due to space limitation, we defer those
results to the Appendix.

2.6 Conclusion

In this paper, we propose GIFAIR-FL: a framework that imposes group and individual fairness
to FL. Experiments show that GIFAIR-FL can lead to more fair solutions compared to recent
state-of-the-art fair and personalized FL algorithms while retaining similar testing performance. To
the best of our knowledge, fairness in FL is an under underinvestigated area and we hope our work
will help inspire continued exploration into fair FL algorithms.

Also, real-life FL datasets for specific engineering or health science applications are still scarce.
This is understandable as FL efforts have mainly focused on mobile applications. As such we only
test on image classification and text prediction datasets. However, as FL is expected to infiltrate
many applications, we hope that more real-life datasets will be generated to provide a means for
model validation within different domains. We plan to actively pursue this direction in future
research.
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CHAPTER 3

Federated Data Analytics: A Study on Linear Models

As edge devices become increasingly powerful, data analytics are gradually moving from a
centralized to a decentralized regime where edge compute resources are exploited to process more
of the data locally. This regime of analytics is coined as federated data analytics (FDA). Despite
the recent success stories of FDA, most literature focuses exclusively on deep neural networks.
In this work, we take a step back to develop an FDA treatment for one of the most fundamental
statistical models: linear regression. Our treatment is built upon hierarchical modeling that allows
borrowing strength across multiple groups. To this end, we propose two federated hierarchical
model structures that provide a shared representation across devices to facilitate information sharing.
Notably, our proposed frameworks are capable of providing uncertainty quantification, variable
selection, hypothesis testing, and fast adaptation to new unseen data. We validate our methods on a
range of real-life applications, including condition monitoring for aircraft engines. The results show
that our FDA treatment for linear models can serve as a competing benchmark model for the future
development of federated algorithms.

3.1 Introductory Remarks

The sheer amount of data collected nowadays is beginning to overwhelm traditional centralized
data analytics regimes where data from the edge is continuously uploaded to a central server to be
processed. Excessive communication traffic from data upload, significant central server storage
needs, energy expenditures from centralized learning of big data models, and privacy concerns
from sharing raw data are becoming critical challenges in centralized systems. Statista, a German
company specializing in market and consumer data, predicted that, by 2024, data produced on
edge devices (e.g., cell phone data, self-driving vehicle data) would reach more than hundreds of
zettabytes while the global central servers only have 10.4 zettabytes of storage (Morell and Alba
2022). Transmitting such a vast amount of edge data into a central server is infeasible. Adding
to that, training a model with moderately large datasets results in significant budget costs and
carbon emissions (Patterson et al. 2021). Furthermore, data-sharing comes with serious privacy
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concerns. According to Lawson et al. (2015), Canadian drivers who refused to enroll in the
automotive telematics program demanded that their personal driving data (e.g., behavior, location,
web-browsing history) should be respected by vehicle companies and that they be given control
over the data collection process. These debates over data protection standards have not faded away
over the past decade.

Fortunately, the Internet of Things (IoT) is undergoing a new revolution in which the compute
power of edge devices is tremendously increasing (Hassan et al. 2018). AI Chips such as general-
purpose chips (GPUs), semi-customized chips (FGPAs), and fully-customized chips (ASICs) are
becoming readily available across many applications (Blanco-Filgueira et al. 2019, Rahman and
Hossain 2021, Zhu et al. 2021b). Such AI chips are able to process a vast amount of data locally
and provide timely responses and decisions (Shi et al. 2016). For instance, the autonomous vehicle
company PerceptIn has released a real-time edge computing system, DragonFly+, that is three times
more power efficient and delivers three to five times of the computing power of an Nvidia Tx1 and
an Intel Core i7 processor (Liu et al. 2019). Another notable example is Tesla’s autopilot system that
has computing power on the car itself comparable to hundreds of MacBook pros (CleanTechnica
2021). As a consequence, traditional IoT is on the verge of shifting to a decentralized framework
recently termed the Internet of Federated Things (IoFT) (Kontar et al. 2021) in which some of the
data processing is deferred to the edge. In this future, the central server only acts as an orchestrator
of the learning process and an integration point of model updates from different devices, rather than
the central location where all data is processed. Indeed, IoFT is slowly infiltrating various fields
such as manufacturing, transportation, and energy systems (Kontar et al. 2021).

The underlying data analytics framework in IoFT is federated data analytics (FDA), where edge
devices exploit their own computation power to collaboratively extract knowledge and build smart
analytics while keeping their personal data stored locally. Consequently, edge devices no longer
need to upload their data to the cloud (or server), and, in turn, the cloud does not need to store that
immense amount of data. As such, FDA resolves many of the aforementioned drawbacks of the
centralized computing system and sets forth many intrinsic advantages, including privacy-preserving
and reducing storage/computation/communication costs, among many others.

In spite of some recent advances in FDA, most, if not all, literature focuses on deep neural
networks (Li et al. 2020c, Yue et al. 2020) (learned via first-order methods). To date, very few
papers have delivered federated treatments of traditional statistical models. Perhaps the closest field
where statistical models were investigated is distributed learning (DL) (Jordan et al. 2018), yet DL
and FDA have several fundamental differences. Despite the terminology “distributed”, DL is still
a centralized computation approach where different compute nodes operate on all data (Fan et al.
2021). These nodes communicate often, observe each other’s data, and can operate on different
data partitions. The underlying philosophy for DL is “divide-and-conquer” where data is divided
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across the nodes (often dynamically), and then the nodes collaborate to “conquer” (learn) a single
model. As a notable example, Zhang et al. (2015) propose a DL algorithm that solves a ridge
regression problem. The basic idea of this paper is as follows: a server first evenly divides a set
of data into m disjoint sets and assigns each set to a different node. Each node then solves a ridge
regression problem and sends the optimal solutions back to the server. The server then aggregates
local estimations. As a result, this approach returns a single global model. In contrast, in FDA,
data resides at the edge and cannot be shuffled, randomized, or divided. Therefore, edge devices
cannot see each others’ data and data partitions for FDA are fixed and often heterogeneous. Besides
that, devices have datasets with unique features as they correspond to different clients, components
or systems (e.g., cars). Therefore, in FDA we cannot divide the data and there is often no single
model to conquer, rather, our goal is to borrow strength across edge devices to improve inference
and prediction.

In this work, we take a step back and move out of the regime of deep neural networks to
study one of the most fundamental statistical models: linear regression (LR) (Yue et al. 2022a).
Indeed, linear models may facilitate hypothesis testing, uncertainty quantification, variable selection,
deriving engineering insight, and establishing a baseline to compare other models with. Needless to
say, in reality, many real applications can be sufficiently characterized by linear models (Liu et al.
2013, Si et al. 2017, Li et al. 2018b, Schulz et al. 2020, Arashi et al. 2021, Şahın et al. 2022). In
addition, building upon FDA for linear models, one may develop approaches for more complex
derivatives such as logistic regression, mixed-effects, and kernel methods.

To this end, we exploit the properties and structure of linear models and develop an FDA
treatment for linear regression with Gaussian noise, entitled FedLin. Our treatment is built upon
hierarchical models (HM), which allow borrowing statistical knowledge across groups (i.e., devices
or clients in FDA). Specifically, we propose two federated HM structures that provide a shared
representation across devices to facilitate information transfer. The first structure establishes a
shared representation defined through a structural prior over concatenated device parameters. The
second structure is based on the assumption that all device parameters are generated from the
same underlying distribution. This allows uncertainty quantification and, consequently, a Bayesian
treatment for variable selection in FedLin. Our methods are validated on a range of real-life
problems, including variable selection and condition monitoring. The results highlight the effective
performance of our approaches and their ease of implementation, which may help them serve as
benchmark models for many future developments of federated statistical algorithms.

Organization: The remainder of this paper is organized as follows. In Section 3.2, we conduct
a literature review, and introduce the general setting and motivation. In Sections 3.3 and 3.4, we
present our two model structures and their applications. We validate our proposed models on various
simulated and real-life datasets in Sections 3.5 and 3.6. Finally, we conclude our paper in Section

28



3.7.

3.2 Background

3.2.1 Literature Overview

The idea of FDA was first brought to the forefront of deep learning by McMahan et al. (2017).
In this work, they proposed the FDA algorithm termed federated averaging (FedAvg). The idea
of FedAvg is simple: a central server distributes initial deep learning model parameters and the
network structure to some selected devices, devices perform local stochastic gradient descent (SGD)
steps using their data and send their updated parameters back. The server then takes an average
of those parameters to update the global model. This process is termed as one communication
round and is iterated several times. Although simple, FedAvg is still one of the most competitive
benchmark models nowadays (Kairouz et al. 2021). To date, some work has been proposed to
improve the performance of federated deep learning algorithms. For instance, Yuan and Ma (2020)
and Liu et al. (2020) provided several provable techniques to accelerate FedAvg and enable faster
convergence. Li et al. (2019a), Yu et al. (2020c), Yue et al. (2021), Du et al. (2021) developed
variants of FedAvg that ensure uniformly good performance across all devices to achieve fairness.
Another line of work aims to develop personalized solutions in federated data analytics as excessive
heterogeneity can greatly impact the performance of a single global model (Deng et al. 2020,
Fallah et al. 2020, Li et al. 2021). Such approaches usually either follow a train-then-personalize
philosophy where a trained global model is fine-tuned on local devices or divide the layers of a
neural network into shared and individualized ones (Tan et al. 2022), where devices collaborate to
learn the common layers using methods such as FedAvg. From a theoretical perspective, Stich
(2018), Li et al. (2020d) prove the convergence of FedAvg for convex functions and homogeneous
(i.i.d.) datasets. Those results are then extended to a non-convex setting by Wang and Joshi
(2021). On the other hand, Li et al. (2019b) extend the results of Stich (2018) to the non-i.i.d.

setting. Furthermore, Shi et al. (2021) extend the convergence results to a kernel regime. For a
comprehensive overview of current literature, please refer to Kontar et al. (2021).

The major trend of FDA exclusively focuses on neural networks and classification tasks. FDA
for statistical models is still scant. Yue and Kontar (2021) extend the Gaussian process to a federated
framework and show that their proposed algorithm can achieve state-of-the-art performance on
multi-fidelity modeling problems. Yuan et al. (2021) develop a federated composite optimization
framework that solves the federated Lasso problem. Tong et al. (2020) propose a federated iterative
hard thresholding algorithm to tackle the non-convex 0-norm penalized regression problem. The
two aforementioned papers mainly formulate penalized regression from a frequentist perspective. In
Sec. 3.4, we will develop a Bayesian formulation built upon HM for federated penalized regression.
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3.2.2 General Setting

We start by describing our problem setting. Suppose there exists K ≥ 2 edge devices. For
device k ∈ [K] := {1, . . . , K}, the dataset is given as Dk = {Xk,Yk} with Nk observations,
where Yk = [yk1, . . . , ykNk

]⊺ is a Nk × 1 output vector, Xk = [xk1, . . . ,xkNk
] is a d × Nk input

matrix and xk1 = ([xk1]1, . . . , [xk1]d)
⊺. Here, d is the dimensionality of the input space. In this

work, we focus on linear models. More specifically, data on device k is used to learn a linear model
parameterized by θk ∈ Rd. The distribution of yki is given as

yki|xki,θk ∼ N (x⊺
kiθk, σ

2
k), ∀i = 1, . . . , Nk, (3.1)

where σ2
k is a noise parameter. For the sake of compactness, denote by Θ = (θ1, . . . ,θK) a d×K

matrix concatenating all device parameters.
Further, we assume that a central server is connected to all edge devices and can facilitate the

collaborative model learning process. As such, our goal in FDA is to let devices leverage their
commonalities to better learn model parameters Θ; all while distributing the learning efforts and
circumventing the need to share raw data.

3.2.3 Federated Data Analytics and Hierarchical Models

Since our goal is to borrow strength across devices, the first step is to create a shared representa-
tion across individual device models in order to facilitate the inductive transfer of knowledge. Here
we adopt the natural hierarchy in FDA where a central server is connected to edge devices and can
orchestrate the learning process. Specifically, we assume that individual device parameters θk at
the lower hierarchical level are generated from a set of shared parameters at the higher hierarchical
level. Through collaboratively learning these shared parameters in a federated manner, devices
induce an update on their personalized parameters θk that uses information from all other devices.

Two hierarchical structures are proposed. The first defines a joint prior over Θ parameterized by
a cross-covariance matrix Ω. This allows learning a graph that achieves inductive transfer. Whereas,
the second HM structure assumes that the θk’s are sampled from a common distribution (e.g.,
θk|ϕ ∼ N (µ,Σ)). This allows a Bayesian treatment capable of uncertainty quantification as well
as learning a global random variable ϕ that can be used to predict on new unseen devices.

We will detail our model formulations, inferences, and applications in the following two sections.

3.3 A Shared Representation via Correlation

In this section, we present our first hierarchical structure (denoted as HM1) that establishes a
shared representation by defining a structural prior over Θ (Figure 3.1). This prior is parameterized
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by Ω - a K × K cross-covariance matrix. In Figure 3.1, the matrix Ω acts as a graph on the
central server that encodes a shared representation among the K devices and facilitates information
sharing. By learning and exploiting the matrix Ω, devices can borrow information from each other
to improve prediction performance.

Device 𝑘

Observation 𝑖

𝜃𝑘

𝑓𝑘𝑖𝑥𝑘𝑖 𝑦𝑘𝑖

Ω

Θ~𝑀𝑁(0, 𝐼, Ω)

Figure 3.1: The first hierarchical model structure.

Mathematically, we impose a structural prior N (0,Ω ⊗ I) on Vec(Θ), where Vec(·) is a
vectorization operation and⊗ is a Kronecker product. This prior encodes the belief on the underlying
distribution that generates components of Θ. More specifically, Ω is a symmetric matrix whose
(i, j)-th component captures the covariance between device i and j. Overall, the aforementioned
description translates to the following formulation:

Θ ∼MN (0, I,Ω), (3.2)

whereMN (M ,A,B) denotes a matrix normal distribution with location (mean) parameter M ,
row covariance A, and column covariance B. In this prior, the column covariance Ω captures
the covariance across devices. Our prior assumes that the covariance across devices is the same
for different parameter components. In fact, this is a common practice in multitask learning
literature (Zhang and Yeung 2012, Ruder 2017) for multiple reasons: 1) The goal here is to facilitate
information transfer amongst devices and Ω achieves exactly this goal. 2) This is only a prior
and, in reality, it is hard to pre-define the within component covariance. 3) Posterior computations
become rather challenging if the prior (basically a regularization) is complex. As we will show later,
a single Ω is capable of providing excellent performance in several prediction tasks.

By Bayes’ rule and incorporating Eqs. 3.1-3.2, we can obtain the posterior distribution of Θ as
a product of the prior and the likelihood function. By omitting the constant terms and taking the
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negative logarithm, we can obtain the negative log-likelihood function:

− log p(Θ|Ω, {Yk}Kk=1) ∝ − log p({Yk}Kk=1|Θ)p(Θ|Ω) = − log

(
K∏
k=1

p(Yk|θk)

)
− log p(Θ|Ω)

∝
K∑
k=1

1

σ2
k

∥Yk −X⊺
kθk∥22 + Tr(ΘΩ−1Θ⊺) + d log |Ω| := L(Θ,Ω).

Therefore, our goal is to find the maximum a posteriori (MAP) of (Θ,Ω) that minimizes the
negative log-likelihood function, in a federated fashion:

(Θ∗,Ω∗) = argminΘ,ΩL(Θ,Ω).

To solve this, notice that the derivative with respect to θk, for all k, is

∂L(Θ,Ω)

∂θk

=
−2
σ2
k

Xk(Yk −X⊺
kθk) + 2

K∑
i=1

θiΩ
−1
i,k ,

where Ω−1i,k is defined as the component located in the i-th row and k-th column of Ω−1.
In IoFT, the central server does not have access to datasets D = {D1, · · · ,DK}, nor do devices

have access to each other’s datasets. Further, the central server cannot share Ω and Θ with any
device, due to the privacy constraint. Therefore, directly running gradient descent using ∂L

∂θk
is not

feasible. Yet, by scrutinizing ∂L
∂θk

, one can observe that a gradient update on each θk is split into two
gradients. The first term is an update from local data Dk while the second is a regularization term
from all devices based on Ω. Therefore, the local parameter update can be done via the two local
steps below

Stage 1: Multiple local GD or SGD steps θk ← θk + 2
η1
σ2
k

Xk(Yk −X⊺
kθk).

Stage 2: Prior Shrinkage θk ← θk − 2η2

K∑
i=1

θiΩ
−1
i,k .

At the first stage, device k runs multiple steps of stochastic gradient descent (SGD) or gradient
descent (GD) using the local gradient information −2

σ2
k
Xk(Yk −X⊺

kθk). To compute this gradient
value, one needs to estimate the local variance parameter σ2

k. Yet, recall that our main goal is to
estimate θk by borrowing information from the covariance matrix Ω. Adding to that, θk and σ2

k are
independent. Therefore, it is not necessary to estimate σ2

k at each local step. Here observe that η1 is
a tunable learning rate parameter and we can thus view η2 :=

η1
σ2
k

as a tuning parameter in stage 1.
In other words, we define η2 as the tunable learning rate during the optimization procedure. This
circumvents the need to estimate σ2

k locally. Nevertheless, σ2
k can be easily estimated from the linear
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residual term if it is of practitioner’s interest. We here note that, since each device k has a different
σ2
k, it is possible to use device-specific learning rates η2k for all k. However, it incurs a heavy tuning

cost. In this paper, we use the same learning rate for each device.
At the second stage, device k will then use the aggregated information from all devices∑K

i=1 θiΩ
−1
i,k broadcasted from the central server to update θk by exploiting the covariance matrix

Ω. One key notable feature of this updating framework is that the central server only needs to share
an aggregated metric

∑K
i=1 θiΩ

−1
i,k . This operation is indeed reminiscent of federated averaging and

can preserve privacy while allowing devices to borrow strength from each other.
Finally, we will discuss the updating rule of Ω on the central server. The most straightforward

way is to take the derivative of L(Θ,Ω) with respect to Ω. By doing so, we obtain

∂L(Θ,Ω)

∂Ω
= −Ω−1Θ⊺ΘΩ−1 + dΩ−1 = 0⇒ Ω =

Θ⊺Θ

d
.

As a result, it is natural to update Ω using this closed-form expression. Here one can view that
Θ⊺Θ encodes the information of device covariance. Unfortunately, this approach typically faces
singularity issues when Θ⊺Θ is not a positive definite matrix (e.g., contains zero elements). To
resolve this, we propose an updating procedure that prevents an abrupt change in Ω to safeguard
against singularity. More specifically, we express the updated Ω as a convex combination between
Ω from the previous communication round and the exact updating equation Θ⊺Θ

d
. That being said,

we have

Ω← (1− α)Ω+
α

d
Θ⊺Θ.

Here, α is a parameter that controls the change in Ω and Θ⊺Θ
d

encodes the devices’ covariance.
A small α renders a conservative updating rule while a large α under-weights the importance of
the covariance matrix from the previous communication round. When α = 1, we recover the
closed-form updating equation.

Here note that, in the aforementioned framework, the central server selects all devices at each
communication round. This scheme is known as full device participation. In reality, however, some
local devices are often offline or unwilling to respond due to various reasons. To accommodate this
situation, one can sample a subset of devices at each communication round. We term this scenario
as partial device participation. We summarize the detailed algorithm in Algorithm 3.1.

As we will show in our numerical studies, this simple-to-implement algorithm requires very few
communication rounds to recover the true parameters and excels at leveraging knowledge across all
devices.
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Algorithm 3.1: Improving Device Performance by Exploiting Structural Covariance
Data: Number of devices K, Set S that contains indices of the selected devices, number of communication rounds C, randomly

initialized model parameter Θ, initial matrix Ω = I , learning rate η2 (selected by grid-search or other tuning methods), proportion
α = 0.1 (default), dimension d.

1 for c = 0 : (C − 1) do
2 Server broadcasts column of Θ (i.e., θk) and

∑K
i=1 θiΩ

−1
i,k for all selected k;

3 for k ∈ S do
4 for t = 0 : (T − 1) do
5 Device-side: (Sampling Batch) Sample a subset of data (Xb

k,Y
b
k ) from Dk , where superscript b means batch;

6 Device-side: (SGD or GD) θ(t+1)
k = θ

(t)
k + 2η2Xb

k(Y
b
k −Xb⊺

k θ
(t)
k );

7 end
8 Device-side: (Prior Shrinkage) θnew

k ← θ
(T )
k − 2η2

∑K
i=1 θiΩ

−1
i,k ;

9 end
10 Server-side: Combine all θk , for k /∈ S, and all θnew

k , for k ∈ S, to create a new matrix Θ;
11 Server-side: Ω← (1− α)Ω+ α

d
Θ⊺Θ.

12 end
13 Return Θ,Ω.

3.4 A Hierarchical Model based on the Distribution Assumption

So far, we have presented HM1, which exploits the relationship among devices to improve
prediction performance. One drawback of Algorithm 3.1 is that it only returns a point estimate of Θ.
In practice, it is also desirable to quantify the uncertainty in the parameter estimates. Additionally,
the estimated Θ and Ω cannot provide any borrowable information for new devices, yet the idea
of fast adaptation to new unseen data is crucial in many fields such as meta-learning (Vanschoren
2019). In this section, we will present an alternative model structure that is formulated from a
Bayesian perspective to tackle the aforementioned issues.

3.4.1 Structure and Formulation

Our second structure (denoted as HM2) assumes all device parameters are generated from the
same underlying distribution. To give a simple example, one can assume θk|ϕ ∼ N (µ, τI) (Figure
3.2) where ϕ = (µ, τ) is a set of a global hyper-parameters on the central server. Here it is critical
to note that τI ∈ Rd×d is a within covariance matrix and does not denote covariances across K
devices as all θk’s come from the same underlying distribution. This assignment indicates that
{θk}Kk=1 are related and generated from the same distribution, yet the degree of model similarity is
controlled by the variance parameter τ . A small |τ | implies all model parameters are similar (i.e.,
homogeneous) and the hierarchical model is closely related to learning a single common parameter
θ that fits all devices’ data. On the other hand, a large variance |τ | incurs more heterogeneity among
devices. In the extreme case when |τ | → ∞, the hierarchical model is equivalent to a separate
modeling approach where each device’s data is fitted separately (Albert and Hu 2019).

Now, we formally define the HM2 formulation. From our hierarchical definition and taking a
fully Bayesian treatment by placing a prior p(ϕ) on the global hyper-parameters, the joint posterior
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Device 𝑘𝑘

Observation 𝑖𝑖

𝜃𝜃𝑘𝑘

𝑓𝑓𝑘𝑘𝑘𝑘𝑥𝑥𝑘𝑘𝑘𝑘 𝑦𝑦𝑘𝑘𝑘𝑘

𝜙𝜙

𝜇𝜇 𝜏𝜏

e.g., 𝜃𝜃𝑘𝑘|𝜙𝜙~𝑁𝑁(𝜇𝜇, 𝜏𝜏𝜏𝜏)

Figure 3.2: The second hierarchical model structure.

of {θk}Kk=1 and ϕ for HM2 can be written as:

p(θ1, . . . ,θK ,ϕ|Y1, . . . ,YK) ∝ p(Y1, . . . ,YK |θ1, . . . ,θK ,ϕ)p(θ1, . . . ,θK ,ϕ) (3.3)

= p(ϕ)
K∏
k=1

p(Yk|θk,ϕ)p(θk|ϕ) .

To further contextualize HM2, we provide an example of a possible formulation.
Assume each device k fits a linear regression parameterized by θk. The local dataset is given as

(Xk,Yk) for all k. Then one possible hierarchical formulation is:

Yk|θk,ϕ ∼ N (X⊺
kθk, σ

2
kI)

θk|ϕ ∼ N (µ, τI)

µ ∼ N (0, I)

τ ∼ logN (0, 1)

ϕ = (µ, τ).

Clearly, inferring the joint posterior above is very challenging in a federated setting. Yet, in a
hierarchical model, if we know the posterior over the upper hierarchical level p(ϕ|{Yk}Kk=1) (i.e.,
over global hyper-parameters ϕ), we can directly use this posterior as a prior to infer the lower level
p(θk|{Yk}Kk=1) parameters locally.
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More specifically, by integrating out device parameters from Eq. (3.3), we can derive that∫
p(θ1, . . . ,θK ,ϕ|Y1, . . . ,YK)dθ1 . . . dθK

= p(ϕ|Y1, . . . ,YK) = p(ϕ)
K∏
k=1

∫
p(Yk|θk,ϕ)p(θk|ϕ)dθk = p(ϕ)

K∏
k=1

fk(ϕ),

where fk(ϕ) =
∫
p(Yk|θk,ϕ)p(θk|ϕ)dθk. As a consequence, our main goal is to collaboratively

learn p(ϕ|Y1, . . . ,YK) in a federated setting. One key challenge, however, is that the central server
does not have any access to any edge dataset Dk and therefore directly computing p(ϕ|Y1, . . . ,YK)

is infeasible. For this reason, we resort to a trick based on approximate inference methods to learn
this posterior distribution.

3.4.2 Federated Bayesian Inference - Expectation Propagation

In this section, we will present the federated inference framework for HM2. Specifically, our
goal is to learn the posterior density p(ϕ|Y1, . . . ,YK). In statistics, the most straightforward and
popular approaches to do so are Markov chain Monte Carlo (MCMC) methods. Yet, as will be
clear shortly, we argue that sampling methods are not practical in the federated hierarchical setting
due to their sequential nature. Take Gibbs sampling as an example, device 1 needs to sample
θ1 from the density p(θ1|θ2, . . . ,θK ,ϕ,Y1) then passes those samples to the central server. The
central server then needs to transmit those sampled θ1 to device 2, and device 2 will sample from
p(θ2|θ1, . . . ,θK ,ϕ,Y2). It can be seen that this sequential nature of MCMC significantly increases
the communication cost and also slows down the federated optimization process when the total
number of devices is large. Even if one can smartly parallelize the sampling process, the number
of MCMC samples obtained locally will be large if the dimension is high due to the curse of
dimensionality (Jordan et al. 2018).

To resolve the aforementioned issues, we resort to expectation propagation (EP) (Minka 2001) to
approximate the posterior distribution. EP is one of the most widely-used algorithms for computing
an approximate posterior distribution (Minka 2013, Vehtari et al. 2020). Here, we first briefly
introduce the idea of EP in a centralized regime. Consider a posterior distribution with independent
data points

π(ϕ) := p(ϕ|Y ) ∝ p(ϕ)
N∏
i=1

p(yi|ϕ)
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where Y = (y1, . . . , yN)
⊺ is the data vector. EP approximates π(ϕ) by a density q(ϕ) such that

q(ϕ) = p(ϕ)
N∏
i=1

qi(ϕ).

Intuitively, EP uses qi(ϕ) to approximate p(yi|ϕ), for all i. The most common choice is the normal
density (Vehtari et al. 2020). To achieve this goal, at each iteration, EP first takes an approximation
factor qi(ϕ) out from the current q(ϕ) and replaces it with the true factor p(yi|ϕ). This step yields a
new density qnew(ϕ). This resulting new density can be used as an updated approximated posterior.
This step is iterated over all i till convergence. Please, refer to Barthelme (2016) for a comprehensive
summary of EP. It can be seen that EP can be naturally extended to FDA where each device can be
viewed as an independent “data point”. In the following paragraphs, we will detail the federated
extension of EP.

The main idea is to approximate terms fk(ϕ) by a local device approximation function qk(ϕ)

for all k = 1, . . . , K. More specifically, we have

p(ϕ|Y1, . . . ,YK) ≈ p(ϕ)
K∏
k=1

qk(ϕ) := q(ϕ). (3.4)

Using the framework of EP, we gradually update q(ϕ) by iteratively renewing qk(ϕ) at each device
k. During each communication round, given the estimated q(ϕ) broadcasted from the server, device
k first computes the cavity distribution

q−k(ϕ) ∝
q(ϕ)

qk(ϕ)
(3.5)

and the tilted distribution

q\k(ϕ) ∝ fk(ϕ)q−k(ϕ). (3.6)

It then computes the updated posterior approximation such that

qnew(ϕ) ≈ q\k(ϕ). (3.7)

Intuitively, the cavity distribution q−k(ϕ) removes the impact of the old qk(ϕ) from the approximated
posterior density q(ϕ) and the tilted distribution adds the true target density fk(ϕ) to q−k(ϕ). As a
result, we use the tilted distribution as an updated approximation to the posterior density of ϕ. This
step is typically done through a sampling method and is distribution-dependent. We will detail this
approximation procedure in Sec. 3.4.2.2.
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Afterward, device k calculates the change in its local approximation by

∆qk(ϕ) =
qnew(ϕ)

q(ϕ)
. (3.8)

Instead of sending qnew back to the server, we calculate the change in the global posterior imposed
by device k via Eq. (3.8) and sends ∆qk(ϕ) to the central server. The server aggregates all device
approximations by

q(ϕ)← q(ϕ)
K∏
k=1

∆qk(ϕ). (3.9)

We summarize the EP algorithm in Algorithm 3.2.

Algorithm 3.2: The Federated Expectation Propagation Algorithm
Data: number of devices K, Set S that contains indices of the selected devices, number of communication rounds C, initial

approximation {qk(ϕ)}Kk=1, prior p(ϕ), learning rate η (Selected by grid-search)
1 for c = 0 : (C − 1) do
2 Server broadcasts q(ϕ);
3 for k ∈ S do
4 Device-side: Calculate the cavity distribution q−k(ϕ) using Eq. (3.5);
5 Device-side: Calculate the tilted distribution q\k(ϕ) using Eq. (3.6);
6 Device-side: Get new q(ϕ) from the tilted distribution using Eq. (3.7);
7 Device-side: Calculate ∆qk(ϕ) using Eq. (3.8) and update local qk(ϕ) ;
8 Device-side: Send ∆qk(ϕ) to the central server;
9 end

10 Server-side: Update q(ϕ) using Eq. (3.9);
11 end
12 Return q(ϕ).

3.4.2.1 Posterior of Device Parameters

Once we obtain q(ϕ) that approximates p(ϕ|Y1, . . . ,Yk), we can further estimate the posterior
of device parameters. Specifically, given a device k,

p(θk|{Yk}Kk=1) =

∫
ϕ

∫
θj ,j ̸=k

p(θk,ϕ|{Yk}Kk=1)dθjdϕ

∝
∫

p(ϕ)p(Yk|θk,ϕ)p(θk|ϕ)
∏
j ̸=k

∫
p(Yj|θj,ϕ)p(θj|ϕ)dθjdϕ

≈
∫

q−k(ϕ)p(Yk|θk,ϕ)p(θk|ϕ)dϕ.

As a consequence, we can use the posterior of θk to quantify uncertainties or conduct hypothesis
testing. The posterior samples from p(θk|{Yk}Kk=1) can be obtained by off-the-shelf posterior
sampling techniques (see mcmc package in R or NumPyro library in Python). Here we provide
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a simpler sampling trick. In the above equation, if we ignore the integral, we can obtain the joint
posterior

p(θk,ϕ|{Yk}Kk=1) ≈ q−k(ϕ)p(Yk|θk,ϕ)p(θk|ϕ). (3.10)

As a result, one can ignore the integration and use sampling methods to jointly sample (θk,ϕ) from
Eq. (3.10) and discard ϕ. Now, given M samples {θki}Mi=1, we can readily use the samples to
estimate moments, coverage probability, and do hypothesis tests.

Here we should note that the estimated posterior density q(ϕ) encodes crucial information
across all devices (recall the explanation in Sec. 3.4.1). One can exploit this information for a new
device to achieve fast adaption. For example, we can treat the posterior mean of ϕ as an initial
model parameter for a new device. This idea is similar to meta-learning (Vanschoren 2019), where
one tries to learn a global model that can quickly adapt to a new task.

3.4.2.2 Normal Approximation

In practice, it is common to model p(ϕ) and qk(ϕ), ∀k as normal densities. This is due to a very
useful property of normal random variables.

Lemma 16. (Williams and Rasmussen 2006) Suppose there are two normal random variables (with

the same dimension) such that θ1 ∼ N (µ1,Σ1) and θ2 ∼ N (µ2,Σ2). Let ri = Σ−1i µi, Qi = Σ−1i

for i = 1, 2. Define p(θ+) = p(θ1)p(θ2) and p(θ−) =
p(θ1)
p(θ2)

. We have that

θ+ ∼ N (r1 + r2,Q1 +Q2)

θ− ∼ N (r1 − r2,Q1 −Q2).

Lemma 16 states that the product of two Gaussian densities gives another unnormalized Gaussian
density. We use θ+ to represent this new Gaussian random variable. Similarly, the quotient of two
Gaussian densities gives an unnormalized Gaussian density and we use θ− to represent this new
random variable.

Using Lemma 16, one can efficiently implement the EP algorithm, as all components in
Algorithm 3.2 can be computed in closed forms. Here, we detail the implementation technique. We
model the prior of ϕ as a multivariate normal random variable with mean µ0 and variance Σ0. We
also assume qk(ϕ) has a normal density parameterized by µk,Σk, for all k. If the support of some
components in ϕ does not lie in R, one can always perform a logarithmic or logistic transformation
to those components. By Gaussian properties, Eq. (3.4) can be computed in closed-form such
that q(ϕ) has a normal density parametrized by mean r0 +

∑K
k=1 rk and variance Q0 +

∑K
k=1Qk,

where rj = Σ−1j µj and Qj = Σ−1j , for all j = 0, 1, . . . , K. Similarly, by Lemma 16, the cavity
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distribution in Eq. (3.5) can be computed in a closed-form by a subtraction operation. This results
in r−k := r − rk,Q−k := Q−Qk. Compared to sampling approaches, one key advantage of EP
is that the computation and communication steps are simple and efficient. The central server and
devices only need to transmit the mean vector and variance matrix to perform model updating and
aggregation. Notably, during each communication round, there is no need to estimate or transmit
normalizing constants. We detail this idea in Algorithm 3.3. In Algorithm 3.3, one needs to compute
the tilted distribution and obtain rnew

k ,Qnew
k . These steps correspond to Eqs. (3.6)-(3.7). However,

as fk(ϕ) may not be a normal density, the resulting tilted distribution is not normal. Therefore, we
need to use a normal distribution to approximate the tilted distribution. To do so, we can run a set of
simulation draws (using any sampling method coded in R or Python libraries) from fk(ϕ)q−k(ϕ)

and estimate the mean and covariance of those draws. We set the resulting mean to be µ\k and the
resulting covariance to be Σ\k.

Algorithm 3.3: The Federated Expectation Propagation Algorithm using Normal Approx-
imation

Data: number of devices K, Set S that contains indices of the selected devices, number of communication rounds C, initial
approximation {rk,Qk}Kk=1, prior r0,Q0, initial posterior parameters r = r0 +

∑K
k=1 rk,Q = Q0 +

∑K
k=1 Qk , learning

rate η (Selected by grid-search)
1 for c = 0 : (C − 1) do
2 Server broadcasts r,Q;
3 for k ∈ S do
4 Device-side: Calculate the cavity distribution with parameters r−k := r − rk,Q−k := Q−Qk;
5 Device-side: Calculate the tilted distribution r\k,Q\k ;
6 Device-side: Obtain new rnew

k ,Qnew
k ;

7 Device-side: Calculate ∆rk = rnew
k − rk,∆Qk = Qnew

k −Qk ;
8 Device-side: Send ∆rk,∆Qk to the central server;
9 end

10 Server-side: Update r = r +
∑

k∈S ∆rk,Q = Q+
∑

k∈S ∆Qk;
11 end
12 Return r,Q.

3.4.3 Federated & Penalized Regression for Variable Selection

To move a step further, we ask “is it possible to let devices exploit the shared representation
structure to perform variable selection?” Indeed, there are some attempts to tackle this question
from a frequentist perspective. Yuan et al. (2021) develop a federated composite optimization
framework that solves the federated lasso problem. Tong et al. (2020) propose a federated iterative
hard thresholding algorithm to tackle non-convex penalized regression. Despite these few efforts
in exploring variable selection from a frequentist perspective, no literature exists in the Bayesian
setting.

Tibshirani (1996) has shown that a Lasso estimate can be achieved when the regression param-
eters have i.i.d. Laplace priors. Since then, researchers have started to build Bayesian priors for
many other penalized regressions such as the elastic net and fussed Lasso. Please refer to the work

40



of Van Erp et al. (2019) for a detailed literature review. Inspired by the Bayesian interpretation of
penalized regressions, we develop a hierarchical structure, based upon HM2, to perform federated
variable selection. To proceed, we impose priors on θk, for all k, such that

θki|ϕ ∼ π(λ, σ2),∀i = 1, . . . , d

where ϕ = (λ, σ2), λ is a regularization parameter and σ2 is a variance parameter. Here, π(λ, σ2) is
a distribution parameterized by λ, σ2. For instance, if we set π(λ, σ2) to be a Laplace distribution
with zero mean and σ

λ
diversity, then we recover the Bayesian counterpart of Lasso regression

(Tibshirani 1996). Another example is if we set π(λ, σ2) to be N (0, σ
λ
), then we recover Ridge

regression. There are many possible choices of prior beliefs on σ2 and λ. In this work, we impose
log-normal priors on σ2 and λ (Van Erp et al. 2019) and we set ϕ = (log λ, log σ2). Our framework
can flexibly incorporate other priors such as a non-informative prior on σ2 or a half-Cauchy prior
on λ. In this work, we will use a log-normal prior as an illustrative example.

The posterior distribution of θk, for all k, and ϕ can be learned by Algorithm 3.2. Here,
one caveat is that, unlike frequentist penalized regressions, the Bayesian methods do not shrink
regression coefficients to be exactly zero. As a result, we will calculate the credible interval (CI) for
each parameter. If the CI of a parameter, say θki, covers 0, we will exclude this predictor.

3.5 Simulation Studies

3.5.1 HM1 Proof of Concept using Algorithm 3.1

Case I: We assume that K = 2 and generate (θ1,θ2) from a matrix-variate normal distribution

with zero mean and I ⊗ Ω = I ⊗

[
1 0.7

0.7 1

]
covariance. The input space dimension is d = 5.

Data on each device are generated from linear models using the generated parameters. We set
noise to be 0.05. To demonstrate the benefits of our correlation-based construction in HM1, we
create imbalanced sample sizes on the devices. Specifically, device 1 only has N1 = 20 data points
and device 2 has N2 = 200 data points. We train Algorithm 3.1 with C = 30, η2 = 0.01, α = 0.1

and we set the number of local steps T to be 20. We compare the performance of Algorithm 3.1
with a separate modeling approach where each device fits its own model without communication.
Specifically, each device runs 600 local SGD steps with learning rate 0.01.

Case II: We set K = 100 and generate a 100 × 100 positive definite matrix Ω using the R
package clusterGeneration. We then generate true device parameters based on the matrix Ω.
We set d = 8 and generate data using the linear models with noise σ2 = 0.1. For the first 30 devices,
we assign 40 data points and for the remaining 70 devices, we assign 275 data points. Overall, we
create an imbalanced data generation scenario. Case II can be viewed as a generalization of Case I
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with more devices. Again, we train models using the same hyperparameters as those in Case I.
Case III: We use the same setting as the one in Case II, but all devices have 20 data points (i.e.,

balanced data generation).
Case IV: We increase the sample size on each device to 200 and use the same setting as the one

in Case III.
Performance Evaluation: Denote by (X∗

k ,Y
∗
k ) the testing dataset on device k where X∗

k =

[x∗k1, . . . , x
∗
kN∗

k
]⊺ and Y ∗k = [y∗k1, . . . , y

∗
kN∗

k
]. The averaged Root-mean-square error (A-RMSE)

across all devices is defined as

A-RMSE =
1

K

K∑
k=1

√∑N∗
k

i=1(f(x
∗
ki)− y∗ki)

2

N∗k
,

where fk(x
∗) = x∗⊺θk. On each device, we generate 1, 000 data points using the true device

parameters for testing. In Case I, the RMSE is calculated on device 1. In Case II, the A-RMSE
is calculated using devices k ∈ {1, . . . , 30}. Here our goal is to assess the prediction accuracy on
devices with scant data. In Cases III/IV, we calculate A-RMSE using all 100 devices. We report
our results in Table 3.1. It can be seen that Algorithm 3.1 yields much smaller A-RMSE under the
imbalanced data scenario. This conveys the importance of borrowing strength from other devices
under the FDA framework. In Case III, the local sample size is not enough such that each model
alone cannot perform well. However, our FDA can still benefit devices’ training by borrowing
information from other devices. In case IV, Algorithm 3.1 does not offer a major improvement as
all local devices have enough data. In this case, doing local training without collaboration should be
sufficient.

Table 3.1: The A-RMSE of our proposed model and the separate model over 30 independent runs.
We report standard deviations of A-RMSEs in brackets.

Case Algorithm 3.1 Separate
I 0.081(±0.001) 0.094(±0.001)
II 0.050(±0.000) 0.056(±0.001)
III 0.044(±0.002) 0.072(±0.004)
IV 0.035(±0.000) 0.035(±0.000)

Accuracy of Parameter Estimation: The negative log-likelihood function L(Θ,Ω) is a
non-convex function of (Θ,Ω). To test the impact of the initialization, we conducted a sensitivity
analysis below. Denote by Θ̂ the concatenated estimated device parameters and Θ∗ the concatenated

true data-generating parameters. In Figure 3.3, we plotted ∥Θ̂−Θ
∗∥√

K
versus communication round

for Case II and III over 30 independent runs. Each independent run used a different initialized Θ.
More specifically, we first generate d ∗K random numbers from a standard normal distribution.

42



We then create a d ∗K matrix Θ using these random numbers. It can be seen that Algorithm 3.1
accurately recovers the true underlying model parameters. Furthermore, it can be observed that
Algorithm 3.1 typically converges within 30-40 communication rounds. We observed that, in all
simulations, Algorithm 3.1 could be trained within 5 seconds on a standard laptop. In conclusion,
our proposed algorithm is easy to implement and optimize.
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Figure 3.3: Plot of ∥Θ̂−Θ
∗∥√

K
versus communication round. Each color represents one independent

run.

3.5.2 HM2 Proof of Concept

In this section, we test the variable selection performance of HM2. Following the examples in
Van Erp et al. (2019), we create several simulation cases below:

Case I: We set K = 10, θtrue = (3, 1.5, 0, 0, 2, 0, 0, 0)⊺ and generate all columns of {Xk}Kk=1

from a standard multivariate normal distribution. We then generate {Yk}Kk=1 using θtrue and
{Xk}Kk=1 for all k. We set the noise to 0.05. Each device has 100 data points for training and 1000

data points for testing.
Case II: We use the same setting as the one in Case I. The difference is that the first 2 devices

only have 20 data points each, while the other devices have 200 data points each. The number of
testing data points is 1000.

Case III: We set K = 20, θtrue = (3, . . . , 3,︸ ︷︷ ︸
10

0, . . . , 0,︸ ︷︷ ︸
10

3, . . . , 3︸ ︷︷ ︸
10

)⊺. Each device has 40 observa-

tions for training and 400 observations for testing.
We evaluate the performance of our model based on prediction and variable selection accuracy.

The prediction accuracy is evaluated by A-RMSE. Variable selection accuracy is based on the
averaged correct and false inclusion rates. To decide whether to include a variable or not, we
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first calculate a 90% credible interval for each parameter. If the CI covers 0, we will exclude this
predictor. Results are reported in Table 3.2. It can be seen that our proposed federated variable
selection methods can correctly identify more than 85% of effective predictors while maintaining
low false inclusion rates.

Table 3.2: The A-RMSE and averaged correct/false inclusion rates for different federated variable
selection methods over 30 experimental runs.

Methods A-RMSE Averaged Correct Inclusion Rate Averaged False Inclusion Rate
Lasso (HM2, Case I) 0.055(±0.001) 0.880(±0.003) 0.095(±0.001)
Lasso (HM2, Case II) 0.062(0.002) 0.875(±0.004) 0.101(±0.001)
Lasso (HM2, Case III) 0.088(0.001) 0.891(±0.005) 0.115(±0.001)

As mentioned in Sec. 3.4, one advantage of HM2 is that it can provide uncertainty quantification
(UQ) for parameter estimation. We will provide two examples to demonstrate the UQ capability of
HM2.

1. We collect the estimated posterior for parameters θ1 from an independent run in case I and
calculate the mean and 90% credible interval. The resulting plot is presented in Figure 3.4 (Left). It
can be seen that the true parameters are included in the confidence interval generated by HM2.
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Figure 3.4: Plot of parameter estimation and confidence interval.

2. We create K = 100 devices and generate device parameter

θk|ϕ ∼ N (µtrue,Σtrue) := N




1

3

0.5

2

 ,


1.17 0 0 0

0 2.35 0 0

0 0 2.52 0

0 0 0 0.67




for k ∈ {1, . . . , 100}. We then use θk to generate 100 data points for each device k. Our HM
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structure can be summarized as follows.

Yk|θk,ϕ ∼ N (X⊺
kθk, σ

2
kI)

θk|ϕ ∼ N (µ, diag(τ1, . . . , τ4))

µ ∼ N (0, I)

τi ∼ logN (0, 1),∀i

ϕ = (µ, log τ1, . . . , log τ4).

We calculate the posterior distribution of ϕ using Algorithm 3.3 and plot the mean and 90% CI for
each component in Figure 3.4 (Right). It can be seen that the mean of the posterior of ϕ is close to
the truth and the 90% credible interval also covers the true parameter. This estimated q(ϕ) can be
used as an initialization for new devices to achieve fast adaption.

3.6 Real-World Case Studies

3.6.1 Student Performance Dataset

This is a public dataset that can be found at archive.ics.uci.edu/ml/index.php. The
dataset contains information on student performance (measured by exam scores) in secondary
education of two Portuguese schools, namely, Gabriel Pereira and Mousinho da Silveira. It includes
29 predictors covering gender, grades, demographic, and many other social/school-related features.
Detailed information can be found in Cortez and Silva (2008). We treat each school as a “device”
(i.e., K = 2). On each device, we randomly pick 60% of the students as the training dataset and
another 40% of the students as the testing dataset. We create dummy variables for all nominal
variables, such as job and guardian. All other numeric variables are standardized to a zero mean
and one standard deviation, following the guide in Cortez and Silva (2008). This data processing
yields 38 predictors.

Our first goal is to select relevant predictors using our federated penalized regression technique
(See Sec. 3.4.3). We then use the selected predictors to predict the final exam grades of students.
We consider the two most widely-used variable selection methods: Lasso and Ridge. Results are
reported in Table 3.3. The model performance is evaluated based on the RMSE and the number of
included predictors.

It can be seen that the variable selection performance of HM2 is consistent with the centralized
variable selection method such as Lasso and Ridge regressions. This implies that our framework
can serve as a new paradigm for decentralized variable selection problems. Additionally, HM2 also
yields comparable A-RMSEs compared to centralized methods. This demonstrates the advantage of
borrowing strength from other devices. However, please note that, in terms of prediction accuracy,
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Table 3.3: The RMSE and number of included predictors for different federated variable selection
methods.

Methods A-RMSE # included predictors (School 1) # included predictors (School 2)
Lasso (HM2) 0.825 21 23
Ridge (HM2) 0.817 21 22

Methods RMSE # included predictors
Lasso (Centralized) 0.820 21
Ridge (Centralized) 0.815 21

federated variable selection can rarely beat the centralized approach as the latter uses more data.

3.6.2 NASA Aircraft Gas Turbine Engines

In this case study, we consider condition monitoring data generated from aircraft gas turbine en-
gines using the NASA commercial Modular Aero-Propulsion System Simulation (C-MAPSS) tools.
The dataset is available at https://ti.arc.nasa.gov/tech/dash/groups/pcoe/. This
dataset contains 100 engines. In each engine, 24 sensors are installed to collect time-series degrada-
tion signals. For each engine, we treat the first 60% of the time-series observations as the training
dataset and the remaining 40% of the signals as the testing dataset. Within the training dataset, we
sample 20% of the data as a validation dataset. Our goal is therefore to predict the sensor signal
trajectory on each gas turbine engine by training Algorithm 3.1 using the training dataset. In this
scenario, each engine can be viewed as a device (i.e., K = 100).

It can be observed that all signal trajectories exhibit polynomial patterns and therefore, many
existing works resort to polynomial regression to analyze this dataset (Liu et al. 2013, Song and
Liu 2018). Here we detail the modeling procedure. Given a specific sensor, for all k ∈ {1, . . . , K},
device k fits a d = 6-th order polynomial regression in the form of

Yk = X⊺
kθk + noise,

where the (d+ 1)×Nk design matrix Xk is in the form of

X⊺
k =


1 [xk1]1 [xk1]

2
2 . . . [xk1]

d
d

1 [xk2]1 [xk2]
2
2 . . . [xk2]

d
d

...
...

... . . .
...

1 [xkNk
]1 [xkNk

]22 . . . [xkNk
]dd

 .

In the above expression, Yk represents the signal trajectory for device k and xk1 represents time. In
HM1, device parameters {θk}k are estimated using Algorithm 3.1.

We benchmark our proposed model with the following algorithms:

• FedAvg: FedAvg is one of the most fundamental and competing benchmark models in
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the FDA. During each communication round, device k, for all selected k, first runs several
steps of local SGD and then sends updated parameters θk back to the server. The server the
aggregates those parameters by calculating θ̄ = 1

|S|
∑

k∈S θk. This step is repeated several
times and ultimately, each device will use the global parameter θ̄ to perform prediction.

• Dis-Ridge (Zhang et al. 2015): Dis-Ridge is a distributed ridge regression method. The
server first evenly divides a set of data into m disjoint sets and assigns each set to a different
node. Each node then solves a ridge regression problem, by optimizing 1

Nk

∑Nk

i=1(yki −
x⊺
kiθk)

2 + λ ∥θk∥2, and sends optimal solution back to the server. The server then aggregates
local estimations.

• Ditto: Ditto is a personalized FL algorithm. The first stage of Ditto is the same as
FedAvg and generates a global parameter θ̄. Afterwards, each device k derives the personal-
ized solution vk by solving a constrained optimization problem Fk(vk) +

λDitto

2

∥∥vk − θ̄
∥∥2
2

where Fk(·) is the local loss function and λDitto is a tuning parameter. The intuition is that
each device can run several updating procedures to collect personalized solutions while this
solution stays in the vicinity of the shared global model to retain useful information from a
global model.

• Separate: In Separate, each device simply fits its own linear model without communi-
cation.

For all models, we set T = 20, C = 100, and use grid-search to tune the learning rate (and other
model hyper-parameters). In Algorithm 3.1, we set α = 0.9. We report the A-RMSE across all 100
devices in Table 3.4.

Table 3.4: The A-RMSE of all models over 30 independent runs. We report the standard deviation
in the brackets.

Sensor HM1 (α = 0.9) Separate FedAvg Ditto Dis-Ridge
Sensor 2 0.270(±0.001) 0.299(±0.003) 0.450(±0.013) 0.281(±0.001) 0.552(±0.002)
Sensor 3 0.218(±0.002) 0.223(±0.001) 0.303(±0.009) 0.220(±0.001) 0.288(±0.002)
Sensor 7 0.369(±0.004) 0.405(±0.003) 0.628(±0.011) 0.388(±0.005) 0.605(±0.001)
Sensor 8 0.267(±0.001) 0.307(±0.001) 0.395(±0.008) 0.289(±0.001) 0.390(±0.003)

From Table 3.4, it can be seen that FedAvg and Dis-Ridge consistently yield the worst
prediction accuracy as one shared global parameter θ̄ does not suit all devices, especially in a
heterogeneous setting. Personalized approaches such as Ditto circumvent this disadvantage of
global models and generate personalized solutions for each device. Those personalized methods,
however, ignore related information amongst devices. Our method, on the other hand, improves the
prediction accuracy by exploiting a joint structure for inductive transfer.
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3.7 Conclusion

This paper proposes a federated treatment for linear regression by adopting a hierarchical
modeling approach. We test our proposed framework on a range of simulated and real-world
datasets. Despite the simplicity of our linear model framework, it can outperform many state-of-
the-art federated algorithms and we argue that it can serve as a competing benchmark model for
the future development of federated algorithms. One possible future direction is to extend our
framework to generalized linear models such as linear mixed-effect models or to more complicated
models such as Gaussian processes and tensor regression. We hope our work will help inspire
continued exploration into the world of federated data analytics and its engineering applications.
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CHAPTER 4

Federated Gaussian Process: Convergence, Automatic Personalization and
Multi-fidelity Modeling

In this chapter, we propose FGPR: a Federated Gaussian process (GP) regression framework
that uses an averaging strategy for model aggregation and stochastic gradient descent for local
computations. Notably, the resulting global model excels in personalization as FGPR jointly learns
a shared prior across all devices. The predictive posterior then is obtained by exploiting this shared
prior and conditioning on local data, which encodes personalized features from a specific dataset.
Theoretically, we show that FGPR converges to a critical point of the full log-marginal likelihood
function, subject to statistical errors. This result offers standalone value as it brings federated
learning theoretical results to correlated paradigms. Through extensive case studies, we show that
FGPR excels in a wide range of applications and is a promising approach for privacy-preserving
multi-fidelity data modeling.

4.1 Introductory Remarks

The modern era of computing is gradually shifting from a centralized regime where data is
stored in a centralized location, often a cloud or central server, to a decentralized paradigm that
allows devices to collaboratively learn models while keeping their data stored locally (Kontar et al.
2021). This paradigm shift was set forth by the massive increase in compute resources at the edge
device and is based on one simple idea: instead of learning models on a central server, edge devices
execute small computations locally and only share the minimum information needed to learn a
model. This modern paradigm is often coined as federated learning (FL). Though the prototypical
idea of FL dates back decades ago, to the early work of Mangasarian and Solodov (1994), it was
only brought to the forefront of deep learning after the seminal paper by McMahan et al. (2017).
In their work, McMahan et al. (2017) propose Federated Averaging (FedAvg) for decentralized
learning of a deep learning model. In FedAvg, a central server broadcasts the network architecture
and a global model (e.g., initial weights) to selected devices; devices perform local computations
(using stochastic gradient descent - SGD) to update the global model based on their local data, and
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the central server then takes an average of the resulting local models to update the global model.
This process is iterated until an accuracy criterion is met.

Despite the simplicity of taking averages of local estimators in deep learning, FedAvg (McMa-
han et al. 2017) has seen immense success and has since generated an explosive interest in FL. To
date, FedAvg for decentralized learning of deep neural networks (NN) was tailored to image clas-
sification, text prediction, wireless network analysis, and condition monitoring & failure detection
(Smith et al. 2018, Brisimi et al. 2018, Tran et al. 2019, Kim et al. 2019, Yue and Kontar 2019, Li
et al. 2020d). Besides that, building upon FedAvg’s success, literature has been proposed to: (i)
tackle adversarial attacks in FL (Bhagoji et al. 2019, Wang et al. 2020b); (ii) allow personalization
whereby each device retains its own individualized model (Li et al. 2021); (iii) ensure fairness in
performance and participation across devices (Li et al. 2019a, Mohri et al. 2019, Yue et al. 2021,
2022b, Zeng et al. 2021); (iv) develop more complex aggregation strategies that accommodate deep
convolution network (Wang et al. 2020a); (v) accelerate FL algorithms to improve convergence
rate or reduce communication cost (Karimireddy et al. 2020, Yuan and Ma 2020); (vi) improve
generalization through model ensembling (Shi et al. 2021).

Despite the aforementioned ubiquitous application of FL, most, if not all, FL literature lies
within an empirical risk minimization (ERM) framework - a direct consequence of the focus
on deep learning. To date, very few papers study FL beyond ERM, specifically when correlation
exists. In this paper, we go beyond ERM and focus on the Gaussian process (GP). We investigate
both theoretically and empirically the (i) plausibility of federating model/parameter estimation in
GPs and (ii) applications where federated GPs can be of immense value. Needless to say, the
inherent capability to encode correlation, quantify uncertainty, and incorporate highly flexible model
priors has rendered GPs a key inference tool in various domains such as multi-fidelity modeling,
experimental design (Rana et al. 2017, Yue and Kontar 2020a, Jiang et al. 2020c, Krishna et al. 2021,
Yue and Kontar 2021), manufacturing (Tapia et al. 2016, Peng et al. 2017, Yue and Kontar 2020b,
Chung and Kontar 2020, Chung et al. 2022a, Yue and Al Kontar 2023), healthcare (Imani et al.
2018, Ketu and Mishra 2021, Chung et al. 2022b), autonomous vehicles (Goli et al. 2018), energy
(Liu et al. 2022) and robotics (Deisenroth et al. 2013, Jang et al. 2020). Therefore, the success of
FL within GPs may help pave the way for FL to infiltrate many new applications and domains.

The central challenge is that, unlike empirical risk minimization (see Sec. 4.3 for a formal
definition), GPs feature correlations across all data points such that any finite collection of which
has a joint Gaussian distribution (Sacks et al. 1989, Currin et al. 1991). As a result, the objective
function does not simply sum over the loss of individual data points. Adding to that, mini-batch
gradients become biased estimators when correlation exists. The performance of FL in such a
setting is yet to be understood and explored.

To this end, we propose FGPR: a Federated GP Regression framework that uses FedAvg
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(i.e., averaging strategy) for model aggregation and SGD for local devices computations. First,
we show that, under some conditions, FGPR converges to a critical point of the full log-marginal
likelihood function and recovers true parameters (or minimizes the global objective function)
up to statistical errors that depend on the device’s mini-batch size. Our results hold for kernel
functions that exhibit exponential or polynomial eigendecay, which is satisfied by a wide range
of kernels commonly used in GPs such as the Matérn and radial basis function (RBF) kernels.
Our proof offers standalone value as it is the first to extend the theoretical results of FL beyond
ERM and to a correlated paradigm. In turn, this may help researchers further investigate FL within
alternative stochastic processes built upon correlations, such as Lévy processes. Second, we explore
FGPR within various applications to validate our results. Most notably, we propose FGPR as a
privacy-preserving approach for multi-fidelity data modeling and show its advantageous properties
compared to the state-of-the-art benchmarks. In addition, we find an interesting yet unsurprising
observation. The global model in FGPR excels in personalization. This feature is due to the fact that
ultimately FGPR learns a shared prior across all devices. The predictive posterior then is obtained
by exploiting this shared prior and conditioning on local data, which encodes personalized features
from a specific device. This notion of automatic personalization is closely related to meta-learning,
where the goal is to learn a model that can achieve fast personalization.

4.1.1 Summary of Contributions & Findings

We briefly summarize our contributions below:

• Convergence: We explore two data-generating scenarios. (1) Homogeneous setting where
local data is generated from the same underlying distribution or stochastic process across all
devices; (2) Heterogeneous setting where devices have distributional differences. Under both
scenarios and for a large enough batch size M , we prove that FGPR converges to a critical
point of the full log-marginal likelihood function (from all data) for kernels that exhibit an
exponential or polynomial eigendecay. We also provide uniform error bounds on parameter
estimation errors and highlight the ability of FGPR to recover the underlying noise variance.

– Interestingly, our derived bounds not only depend on iteration T , but also explicitly
depend on batch size M , which is a direct consequence of correlation. Our results do
not assume any specific functional structure, such as convexity, Lipschitz continuity, or
bounded variance.

• Automatic Personalization Capability: We demonstrate that FGPR can automatically
personalize the shared global model to each local device. Learning a global model by FGPR
can be viewed as jointly learning a global GP prior. On the other hand, the posterior predictive
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distribution of a GP depends both on this shared prior and the local training data. The latter
one can be viewed as a personalized feature encoded in the GP model. This important
personalization feature allows FGPR to excel in the scenario where data among each local
device is heterogeneous (Sec. 4.6 and Sec. 4.7).

– In addition to the personalization capability, we find that the prior class learned from
FGPR excels in transfer learning (Appendix). This idea is similar to meta-learning,
where one tries to learn a global model that can quickly adapt to a new task.

• Multi-fidelity modeling and other applications: We propose FGPR as a privacy-preserving
approach for multi-fidelity data modeling, which combines datasets of varying fidelities into
one unified model. We find that in such settings, not only does FGPR preserve privacy but also
can improve generalization power across various existing state-of-the-art multi-fidelity and
distributed learning (DL) approaches. We also validate FGPR on various simulated datasets
and real-world datasets to highlight its advantageous properties.

The remainder of this paper is organized as follows. A detailed literature review can be found in
Sec. 4.2. In Sec. 4.3, we present the FGPR algorithm. We study the theoretical properties of FGPR
in Sec. 4.4. In Sec. 4.5-4.7, we present several empirical results over a range of simulated datasets
and real-world datasets. We conclude our paper in Sec. 4.8 with a brief discussion.

4.2 Related Work

4.2.1 Federated Learning

Most of the existing FL literature has focused on developing deep learning algorithms and
their applications in image classification and natural language processing. Please refer to (Kontar
et al. 2021) for an in-depth review of FL literature. Here we briefly review some related papers
that tackle data heterogeneity. One popular trend (Li et al. 2018a, Zhang et al. 2020d, Pathak and
Wainwright 2020) uses regularization techniques to allay heterogeneity. For instance, FedProx (Li
et al. 2018a) adds a quadratic regularizer to the device objective to limit the impact of heterogeneity
by penalizing local updates that move far from the global model. Alternatively, personalized models
were proposed. Such models usually follow an alternating train-then-personalize approach where
a global model is learned, and the personalized model is regularized to stay within its vicinity
(Kirkpatrick et al. 2017, Dinh et al. 2020, Li et al. 2021). Other approaches (Arivazhagan et al.
2019, Liang et al. 2020) use different layers of a network to represent global and personalized
solutions. More recently, researchers have tried to remove the dependence on a global model for
personalization by following a multi-task learning philosophy (Smith et al. 2017). Yet, such models
can only handle simple convex formulations.
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4.2.2 Distributed Learning

Table 4.1: Comparison between benchmark DL methods and our proposed FL approach. For
Modular GP , sparse representation of data entails the pseudo-targets, variational density, model
parameters, and approximate likelihood value.

Models Theory Inference Comm. Frequency Comm. Load
DVI (Gal et al. 2014) ✗ Approximate Every Iteration Gradient Tensor

DGP (Deisenroth and Ng 2015) ✗ Approximate One-Shot Predicted Output
Modular GP (Moreno-Muñoz et al. 2021) ✗ Approximate One-Shot Sparse Representation of Data

FGPR ✓ Exact Multiple local steps Model Parameters

Our work focuses on developing federated models, specifically for GPs, that go beyond deep
learning. To date, little to no literature exists along this line. Perhaps, the closest field where various
regression approaches were investigated is DL for distributed systems. Distributed approaches for
MCMC, GPs, PCA, logistic, and quantile regression have been proposed (Zhang et al. 2013, Wang
and Dunson 2013, Lee et al. 2017, Lin et al. 2017, Chen et al. 2019, 2021a,b, Fan et al. 2021).
However, DL and FL have several fundamental differences.

Distributed learning is a centralized computation approach where devices are compute nodes
connected by large bandwidth. Nodes can communicate often and access any part of a dataset,
as data partitions can be continuously adjusted. DL aims to parallelize computation tasks across
different compute nodes to improve computational efficiency. In FL, data resides at the edge where
the goal is to process more of the data at the origin of creation (the edge) and only share updated
model parameters rather than entire datasets. In FL, we do not have the luxury to partition, shuffle,
and randomize the data. In essence, each device in FL has its model, and all devices borrow strength
from each other to improve model learning. One critical bottleneck in FL is communication (Zheng
et al. 2020). Unlike centralized regimes, aggregation of local models cannot be done after every
single optimization iteration, as this incurs huge communication needs between edge devices and
the central server. Instead, each device runs multiple local optimization iterates before uploading
the data. Indeed, the FedAvg algorithm that we discussed earlier (McMahan et al. 2017) was
motivated by the ability to perform multiple optimization iterations locally before updating the
global model - hence reducing communication needs. Interestingly, the number of local updates
cannot be very large, as we will discuss in Sec. 4.4.

Along the line of DL, distributed GPs are closely related to our proposed algorithm FGPR.
(Cao and Fleet 2014) proposed a distributed GP approach that uses the product-of-experts (PoE)
approximation (Ng and Deisenroth 2014) to partition a central dataset into several blocks so that
the inference can be made in a distributed fashion. This approach often overestimates predictive
variance. (Deisenroth and Ng 2015) proposed a new distributed GP counterpart (denoted as DGP)
that alleviates the aforementioned drawback. The product-of-experts approximation assumes the
independence of local experts and therefore ignores correlation among them. (Tavassolipour et al.
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2019) overcame the limitation of PoE using vector quantization to learn correlation among experts.
However, the proposed approach requires different nodes to transmit data to each other. (Gal et al.
2014) resorted to variational inference (VI) to approximate the GP marginal likelihood function and
developed a distributed variational inference (DVI) framework that parallelizes inference procedures.
(Moreno-Muñoz et al. 2021) developed a Modular GP that extended the VI-based framework into
a multi-output scenario where one can model data from multiple sources. Due to space limitation,
please refer to (Chen et al. 2022) for a comprehensive review of the distributed GP methods.

That said, the methods described above and our approach FGPR feature key differences. The
differences are highlighted in Table 4.1.

First, DGP and Modular GP are one-shot approaches. Whereas our model FGPR is a col-
laborative process where the global model is updated over multiple communication rounds. In
FL, a one-shot approach, where each device trains till convergence and then model aggregation
happens, is sub-optimal. This is due to the well-known “Client-drift” phenomenon (Karimireddy
et al. 2020) where many local steps can push the local solutions to different neighborhoods, and
then the aggregation becomes sub-optimal, often giving meaningless predictions. This has also been
shown from a theoretical perspective. For instance, in FedAvg, the number of local optimization
steps at each communication round should be less than the order of communication rounds for
convergence. A similar result is shown for our model in Sec. 4.4. Whilst Modular GP and DGP
require only one-shot communication, DVI requires communication after every single optimization
iterate. This is clearly not viable in FL. Adding to that, DVI needs to send a high-dimension tensor
to a central server. This further amplifies communication loads and costs. FGPR, on the other hand,
only shares model parameters.

Second, FGPR aims to optimize the exact marginal likelihood function. We alleviate the
computational burden by using mini-batch SGD and accordingly show convergence on the exact
likelihood. In contrast, DGP, DVI, and Modular GP are approximate inference methods that
approximate the exact likelihood function and optimize the approximate objectives.

Third, our paper presents the first successful try at extending the theoretical results of FL beyond
ERM and to a correlated paradigm, while existing work (Gal et al. 2014, Deisenroth and Ng 2015,
Moreno-Muñoz et al. 2021) did not study the theoretical properties of their proposed algorithms.

More detailed explanations that shed light on the differences between all models can be found
in our experiments (Sec. 4.6 and Sec. 4.7), where we benchmark our approach with DGP, DVI, and
the Modular GP amongst others.
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4.3 The FGPR Algorithm

In this section, we describe the problem setting in Sec. 4.3.1 and introduce FGPR - a federated
learning scheme for GPs in Sec. 4.3.2. We then provide insights on the advantages of FGPR in Sec.
4.3.3. Specifically, we will show that FGPR is capable of automatically personalizing the global
model to each local device. This property allows FGPR to excel in many real-world applications,
such as multi-fidelity modeling, where heterogeneity exists.

4.3.1 Background

We consider the Gaussian process regression. We first briefly review the centralized GP model.
Suppose the training dataset is given as D = {X,y}, where y = [y1, ..., yN ]

⊺, X = [x⊺
1, ..., x

⊺
N ]

and N denotes the number of observations. In this paper, we use |D| = N to denote the cardinality
of set D. Here, x ∈ Rd is a d-dimensional input and y ∈ R is the output. We decompose the output
as yi = f(xi) + ϵi, where

f ∼ GP(0,K(·, ·;θK)), ϵi
i.i.d.∼ N (0, σ2),

and K(·, ·;θK) is the prior kernel function parameterized by kernel parameters θK. The prior
encodes a belief about the data-generating process and incurs correlations across all data points.

Given a new observation x∗, the goal of GP regression is to predict f(x∗). By definition, any
finite collection of observations from a GP follows a multivariate normal distribution. Therefore,
the joint distribution of y and f(x∗) is given as[

y

f(x∗)

]
∼ N

(
0,

[
K(X,X) + σ2I K(X, x∗)

K(x∗,X) K(x∗, x∗)

])

where K(·, ·) : Rd × Rd → R is a covariance matrix whose entries are determined by the kernel
function K(·, ·;θK). Therefore, the conditional distribution (also known as the posterior predictive
distribution) of f(x∗) is given as N

(
µpred(x

∗), σ2
pred(x

∗)
)
, where

µpred(x
∗) = K(x∗,X)

(
K(X,X) + σ2I

)−1
y,

σ2
pred(x

∗)

= K(x∗, x∗)−K(x∗,X)
(
K(X,X) + σ2I

)−1
K(X, x∗).

(4.1)

Here, µpred(x
∗) is often used as a point estimate of f(x∗) and σ2

pred(x
∗) quantifies the variance. It

can be seen that our predictions will depend on the kernel parameters that parameterize K(·, ·) and
on the noise parameter σ2. In this paper, we denote by θ := (θK, σ

2) the GP model parameters.
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Therefore, predicting an accurate output f(x∗) critically depends on finding a good estimate of θ.
To estimate θ, the most popular approach is to minimize the negative log-marginal likelihood in the
form of

− log p(y|X;θ) = − log

∫
p(y|X,f ;θ)p(f |X;θ)df

=
1

2
[y⊺(K(X,X) + σ2I)−1y

+ log
∣∣K(X,X) + σ2I

∣∣+N log(2π)], (4.2)

where f = (f(x1), . . . , f(xN)), y|X,f ∼ N (0, σ2I) and p(f |X;θ) is a prior density function.
There are numerous optimizers that are readily available to minimize− log p(y|X;θ). In this paper,
we resort to stochastic optimization methods such as SGD or Adam (Kingma and Ba 2014).

Remark 17. Needless to say, a current critical challenge in FL is that edge devices have limited

compute power. SGD offers an excellent scalability solution to the computational complexity of

GPs, which has been a long-standing bottleneck since GPs require inverting a covariance matrix

K(·, ·) at each iteration of an optimization procedure (see Eq. (4.2)). This operation, in general,

incurs a O(N3) time complexity. In SGD, only a mini-batch with a size of M ≪ N is taken at

each iteration; hence allowing GPs to scale to big data regimes. Besides that, and as will become

clear shortly, our approach only requires edge devices to do a few steps on SGD on their local data.

Another notable advantage of SGD is that it offers good generalization power (Keskar et al. 2016,

Gnanasambandam et al. 2022). In deep learning, it is well-known that SGD can drive solutions to a

flat minimizer that generalizes well (Wu et al. 2018). Although this statement is still an open problem

in GP , Chen et al. (2020) empirically validate that the solution obtained by SGD generalizes better

than other deterministic optimizers.

In the non-federated setting, applying stochastic inference to GP is not new. Indeed, prior
work (Hensman et al. 2013) introduced Nz < N inducing points and employed stochastic VI that
optimizes an approximate log-marginal likelihood function. As a result, the computation burden is
reduced to O(N2

zN). Unfortunately, (Stein 2014, Burt et al. 2019) show that the VI approximation
does not work well when the underlying process is not smooth and requires many inducing points
to achieve a satisfactory approximation accuracy. Even for a smooth kernel such as the RBF kernel,
O(logd N) inducing points are needed. On the other hand, our work directly applies SGD to the
exact log-marginal likelihood function without using an approximation. In Sec. 4.4, we also support
our approach with theoretical guarantees.

Now to use SGD on the exact log-marginal likelihood in Eq. (4.2) in a centralized regime, we
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can derive the stochastic gradient given mini-batch of size M as

g(θ; ξ)

=
1

2

[
− y⊺

ξK
−1(Xξ,Xξ)

∂K(Xξ,Xξ)

∂θ
K−1(Xξ,Xξ)yξ

+ Tr
(
K−1(Xξ,Xξ)

∂K(Xξ,Xξ)

∂θ

)]

=

Tr

[
K−1(Xξ,Xξ)

(
I − yξy

T
ξ K

−1(Xξ,Xξ)
) ∂K(Xξ,Xξ)

∂θ

]
2

,

where ξ is the set of indices corresponding to a subset of training data with mini-batch size M and
Xξ,yξ is the respective subset of inputs and outputs indexed by ξ. At each iteration t, a subset of
training data is taken to update model parameters as

θ(t+1) ← θ(t) − η(t)g(θ(t); ξ(t)),

where η(t) is the learning rate at iteration t. This step is repeated several times till some exit condition
is met.

Although SGD was a key propeller for deep learning, it faces a fundamental challenge in GPs.
In deep learning, the empirical risk function is given as R̂(θ;D) ≈ 1

N

∑N
i=1 ℓ(fθ(xi), yi), where

D = {(xi, yi)}Ni=1 is the training dataset, fθ is the neural network to be learned and ℓ(·, ·) is a loss
function. Therefore, the stochastic gradient of R̂(θ;D) evaluated using a batch of data, indexed by
a set ξ, is∇R̂k(θ; ξ) =

1
|ξ|
∑

i∈ξ ℓ(fθ(xi), yi). As a result, E[∇R̂(θ; ξ)] = ∇R̂(θ;D), which means
the stochastic gradient is an unbiased estimator of the full gradient. This is a direct consequence
of the fact that the objective R̂(θ;D) is given as a summation over the training data. On the other
hand, GPs feature correlations where any finite collection of data points has a joint Gaussian
distribution. Therefore, the objective, − log p(y|X;θ), to be minimized in a GP does not simply
sum over individual data points. Consequently, stochastic gradients become biased estimators when
correlation exists. Mathematically, this implies E[g(θ; ξ)] ̸= ∇(− log p(y|X;θ)).

Despite this challenge, we will show in the following sections that our federated SGD approach
for learning a GP converges to a critical point of log p(y|X;θ), subject to statistical errors.

4.3.2 The FGPR Framework

Suppose there exists K ≥ 2 local devices. In this paper, we will use (edge) devices and clients
interchangeably. For client k ∈ [K], the local dataset is given as Dk = {Xk,yk} with cardinality
Nk. We let N =

∑K
k=1 Nk. Denote by Lk(θ;Dk) := − log p(yk|Xk;θ) the negative log-marginal
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likelihood function for device k and gk(θ; ξk) the SG of this negative log-marginal function with
respect to a mini-batch of size M indexed by ξ.

In FL, our goal is to collaboratively learn a global parameter θ that minimizes the global
objective function in the form of

L(θ) :=
K∑
k=1

pkLk(θ;Dk) (4.3)

where pk = Nk∑K
k=1 Nk

is the weight parameter for device k such that
∑K

k=1 pk = 1. To fulfill this
goal, during each communication period, each local device k runs E steps of SGD and updates
model parameters as

θ
(t+1)
k ← θ

(t)
k − η(t)gk(θ

(t)
k ; ξ

(t)
k ).

At the end of each communication round, the central server aggregates model parameters as

θ̄ =
K∑
k=1

pkθk.

The aggregated parameter θ̄ is then distributed back to local devices. This cycle is repeated several
times till convergence. In this training framework, all devices participate during each communication
round. We define this framework as synchronous updating. In reality, however, some local devices
are frequently offline or reluctant/slow to respond due to various unexpected reasons. To resolve
this issue, we develop an asynchronous updating scheme. Specifically, at the beginning of each
communication round (c), we select Ksample ∈ [1, K) clients by sampling probability pk and denote
by S the indices of these clients. During the communication round, the central server aggregates
model parameter as

θ̄ =
1

Ksample

∑
k∈S

θk.

The detailed procedure is given in Algorithm 4.1.

Remark 18. The aggregation strategy used in Algorithm 4.1 is known as FedAvg (McMahan

et al. 2017). Despite being the first proposed aggregation scheme for FL, FedAvg has stood the

test in the past couple of years as one of the most robust and competitive approaches for model

aggregation. That being said, it is also possible to extend our algorithm to different strategies, such

as different sampling or weighting schemes.
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Algorithm 4.1: The FGPR algorithm
Data: number of sampled devices Ksample, number of communication rounds R, initial

model parameter θ
1 for c = 0 : (R− 1) do
2 Select Ksample clients by sampling probability pk and denote by S the indices of these

clients;
3 Server broadcasts θ;
4 for k ∈ S do
5 θ

(0)
k = θ;

6 Update model parameter (e.g., using Algorithm 4.2);
7 end
8 Aggregation θ̄c =

1
Ksample

∑
k∈S θ

(E)
k , Set θ = θ̄c;

9 end
10 Return θ̄R.

Algorithm 4.2: Local update using SGD
Data: index of device k, number of local updates E, SGD learning rate schedule {η(t)}Et=1,

initial model parameter θ(0)
k

1 for t = 0 : (E − 1) do
2 Randomly sample a subset of data from Dk and denote it as ξ(t)k ;
3 θ

(t+1)
k = θ

(t)
k − η(t)gk(θ

(t)
k ; ξ

(t)
k ) ;

4 end
5 Return θ

(E)
k ;
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4.3.3 Why a Single Global GP Model Works?

In this paper, we will demonstrate the viability of FGPR in cases where data across devices are
both homogeneous or heterogeneous. In heterogeneous settings, it is often the case that personalized
FL approaches are developed where clients eventually retain their own models while borrowing
strength from one another. Popular personalization methods usually fine-tune the global model
based on local data while encouraging local weights to stay in a small region in the parameter space
of the global model (Li et al. 2021). This allows a balance between the client’s shared knowledge
and unique characteristic. This literature, however, is mainly focused on deep learning.

One natural question is: why does a single global model learned from Algorithm 4.1 work in
FGPR? Here it is critical to note that, unlike deep learning, estimating θ in a GP is equivalent to
learning a prior through which predictions are obtained by conditioning on the observed data, and
the learned prior. Here, by “learning a prior”, we refer to estimating hyper-parameters of GPs by
maximizing the global objective.

More specifically, in the GP , we impose a prior on fk such that fk ∼ GP(0,K(·, ·;θK)). The
kernel function is parameterized by θK. Therefore, learning a global model by FGPR can be
viewed as learning a common model prior over fk,∀k. On the other hand, the posterior predictive
distribution at a testing point x∗ is given as

p(f ∗k |Xk,yk, x
∗) =

∫
p(f ∗k |x∗,fk)p(fk|Xk,yk)dfk

=

∫
p(f ∗k |x∗,fk)

p(yk|Xk,fk)

prior︷ ︸︸ ︷
p(fk)

p(yk|Xk)
dfk

= N (µk,pred(x
∗), σ2

k,pred(x
∗)),

where fk is defined in Eq. (4.2), the predictive mean µk,pred(x
∗) and the predictive variance

σ2
k,pred(x

∗) are defined in Eq. (4.1). From this posterior predictive equation, one can see that
the predicted trajectory (and variance) of GP in device k is affected by both prior distribution
and training data (Xk,yk) explicitly. For a specific device, the local data themselves embody
the personalization role. Therefore, FGPR can automatically tailor a shared global model to a
personalized model for each local device. This idea is similar to meta-learning, where one tries to
learn a global model that can quickly adapt to a new task.

To see this, we create a simple and stylized numerical example. Another example can be found
in the Appendix. Suppose there are two local devices. Device 1 has data that follows y = sin(x)

while device 2 has data that follows y = − sin(x). Each device has 100 training points uniformly
spread in [0, 10]. We use FedAvg to train a 2-layer neural network. Unfortunately, a single global
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model of a neural network simply returns a line, as shown in Figure 4.1. Mathematically, this
example solves

min
θ

(
∥fθ − sin(x)∥22 + ∥fθ + sin(x)∥22

)
,

where fθ is a global neural network parametrized by θ and ∥·∥22 is a functional on [0, 10] defined as
∥f∥22 =

∫ 10

0
f(x)2dx.

By taking the derivative of the above objective and setting it to zero, we can find that the solution
is fθ = 0. This implies that the global model cannot provide meaningful predictions on both
devices.

To remedy this issue, one needs to implement an additional personalization step that fine-tunes
the global model from local data. This comes with its own challenges, such as starting with a bad
global model (as is the case above) and introducing extra computational costs and parameters. On
the other hand, a single GP model learned from FGPR can provide good interpolation performance
for both devices. This demonstrates the advantage of automatic personalization intrinsic to FGPR.

Remark 19. Despite FGPR being a global modeling approach, in our empirical section, we will

compare with personalized FL using NNs when the data distributions are heterogeneous.

0 2 4 6 8 10

-2
-1

0
1

2

 

 

0 2 4 6 8 10

-2
-1

0
1

2

 

 

0 2 4 6 8 10

-2
-1

0
1

2

 

 

Device 1 Device 1

Federated Neural Network Federated GPR
Device 2 Device 2

0 2 4 6 8 10

-2
-1

0
1

2

 

 

Figure 4.1: A simple example that is used to demonstrate the automatic personalization feature of
FGPR. In the plot, the black dots are original data, and the red lines are fitted curves.

4.4 Theoretical Results

Proving convergence of FGPR introduces new challenges due to correlation and the decentralized
nature of model estimation.

In GPs, the objective function cannot be approximated by a summation form since all data
points are correlated. This correlation renders the stochastic gradient a biased estimator of the full
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gradient. To the best of our knowledge, only a recent work from (Chen et al. 2020) has shown
theoretical convergence results of centralized GP in a correlated setting. Adding to that, FGPR
aggregates parameters that are estimated on only a partial dataset.

In this section, we take a step forward in understanding the theoretical properties of GP
estimated in a federated fashion. Specifically, we provide several probabilistic convergence results
of FGPR under both homogeneous and heterogeneous clients and under both full and partial device
participation settings.

To proceed, we define θK = (θ1, l) such that θ = (θ1, θ2, l). Here, θ1 is the signal vari-
ance parameter, θ2 = σ is the noise parameter, and l is the length parameter. Denote by
θ∗ := (θ∗1, θ

∗
2, l
∗) the true data-generating parameter. We impose a structure on the kernel

function such that K(·, ·;θK) = θ21kf (·, ·) where kf (·, ·) is a known function. Now, we define
C(x1, x2) = K(x1, x2;θK) + σ2

2Ix1=x2 as a covariance function, where I is an indicator function.
This form of covariance function is ubiquitous and widely adopted. For instance, the Matérn
covariance is in the form of

Cv(x1, x2)

= θ21
21−v

Γ(v)

(√
2v
∥x1 − x2∥

l

)v

Kv

(√
2v
∥x1 − x2∥

l

)
+ θ22Ix1=x2

where v is a positive scalar and Kv is the modified Bessel function of the second kind. In this
example, kf (x1, x2) =

21−v

Γ(v)

(√
2v ∥x1−x2∥

l

)v
Kv

(√
2v ∥x1−x2∥

l

)
. Another example is the RBF co-

variance:

CRBF (x1, x2) = θ21exp

(
∥x1 − x2∥2

2l2

)
+ θ22Ix1=x2 .

There are also many other examples, such as the Ornstein–Uhlenbeck covariance and the periodic
covariance (Williams and Rasmussen 2006).

Remark 20. A more general setting is to consider the compound kernel function that is in the

form of K(·, ·;θK) =
∑A

i=1 θ
2
1ikfi(·, ·). For simplicity, in the theoretical analysis, we assume A = 1.

However, our proof techniques can be easily extended to the scenario where A > 1.

In the theoretical analysis, we will show the explicit convergence bounds on θ1 and θ2. The
convergence behavior of the length parameter l is still an open problem (Chen et al. 2020). The
key reason is that one needs to apply the eigendecomposition technique to the kernel function and
carefully analyze the lower and upper bounds of eigenfunctions. The length parameter l, however,
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lies in the denominator of a kernel function. In this case, it is extremely challenging to write the
kernel function in the form of eigenvalues and bound them. To the best of our knowledge, the work
that studies convergence results of l is still vacant even in centralized regimes.

4.4.1 Assumptions

To derive our convergence results, we make the following assumptions.

Assumption 20.1. The parameter space Θ is a compact and convex subset of R2. Moreover,

(θ∗1, θ
∗
2)

⊺ ∈ Θo and sup(θ1,θ2)⊺∈Θ ∥(θ1, θ2)
⊺ − (θ∗1, θ

∗
2)

⊺∥ > 0, where Θo is the interior of set Θ.

This assumption indicates that all parameter iterates are bounded, and the global minimizer
(θ∗1, θ

∗
2)

⊺ exists. Without loss of generality, assume the lower (or upper) bound of the parameter
space on each dimension is θmin (or θmax).

Assumption 20.2. The norm of the stochastic gradient is bounded. Specifically,

0 ≤
∥∥∥gk(·; ξ(t)k )

∥∥∥ ≤ G, for all k ∈ [K], t ∈ [T ].

Here T is defined as the total number of iteration indices on each device. Mathematically,
T = R(E − 1) and [T ] = {0, . . . , T}.

Remark 21. It is very common to assume the local functions are L-smooth, (strongly-)convex, or

the variance of the stochastic gradient is bounded. Here we do not make those assumptions.

In the GP setting, the explicit convergence bound depends on the rate of decay of eigenvalues
from a specific type of kernel function. In this paper, we study two types of kernel functions:
(1) kernel functions with exponential eigendecay rates; and (2) kernel functions with polynomial
eigendecay rates. Those translate to the following assumptions.

Assumption 21.1. For each k ∈ [K], the eigenvalues of function kf with respect to probability

measure µ are {λ1j}∞j=1 = {Cke
−bkj}∞j=1, where bk > 0 and Ck < ∞. Without loss of generality,

assume Ck ≤ 1.

Assumption 21.2. For each k ∈ [K], the eigenvalues of function kf with respect to probability

measure µ are {λ1j}∞j=1 = {Ckj
−2bk}∞j=1, where bk >

√
21+3
4

and Ck < ∞. Without loss of

generality, assume Ck ≤ 1.

Remark 22. Assumption 21.1 is satisfied by smooth kernels such as RBF kernels and Assumption

21.2 is satisfied by the non-smooth kernels such as Matérn kernels.
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4.4.2 Homogeneous Setting

We first assume that data across all devices are generated from the same underlying process or
distribution (i.e., homogeneous data). Mathematically, it indicates (Li et al. 2019b)

lim
N1,...,Nk→∞

∣∣∣∣∣
K∑
k=1

pkLk(θ
∗;Dk)−

K∑
k=1

pkLk(θ
∗
k;Dk)

∣∣∣∣∣ = 0.

We briefly parse this expression. Since the data distribution across all devices is homogeneous, we
know, for each k, θ∗k = θ∗ as Nk → ∞. Therefore,

∑K
k=1 pkLk(θ

∗;Dk) =
∑K

k=1 pkLk(θ
∗
k;Dk).

Later, we will consider the heterogeneous data settings, which are often more realistic in real-world
applications.

To derive the convergence result, we divide [gk(θ; ξk)]1 by a constant factor s1(Mk) = τ logMk

and [gk(θ; ξk)]2 by s2(Mk) = Mk, where [gk(θ; ξk)]i is the i-th component in the stochastic gradient.
Those scaling factors are introduced to ensure [gk(θ; ξk)]1 and [gk(θ; ξk)]2 have the same scale in
the theoretical analysis.

Remark 23. The aforementioned scaling factors are only needed for convergence results. In

practice, we observe that those factors s1(Mk), s2(Mk) have minimal influence on the model

performance.

Our first Theorem shows that FGPR using RBF kernels converges if all devices participated in
the training.

Theorem 24. (RBF kernels, synchronous update) Suppose Assumptions 20.1-21.1 hold. At each

communication round, assume |S| = K. If η(t) = O(1
t
) (i.e., a decay learning rate scheduler), then

for some constants β1, Cθ, cθ > 0, ϵk ∈ (0, 1
2
), when Mk > Cθ, at iteration T , with probability at

least mink

(
1− CθT exp

{
−cθ (logMk)

2ϵk
})

,∣∣∣θ̄(T )
1 − θ∗1

∣∣∣2 + ∣∣∣θ̄(T )
2 − θ∗2

∣∣∣2
≤ 2β2

1 (8(E − 1)2 + 2)G2

T + 1

+O

(
max

k

logMk

Mk

+
K∑
k=1

pk(logMk)
ϵk− 1

2

)
,

and with probability at least

min
k

(
1− Cθ

(
log
(
M

ϵk− 1
2

k

))4
T exp

{
−cθM2ϵk

k

})
,
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∥∥∥θ̄(T )
2 − θ∗2

∥∥∥2
2
≤ 2β2

1 (8(E − 1)2 + 2)G2

T + 1

+O

(
max

k

logMk

Mk

+
K∑
k=1

pkM
ϵk− 1

2
k

)
.

Here, constants β1, Cθ, cθ only depend on θmin, θmax and {bk}Kk=1.

Remark 25. Recall that T is the number of iterations. Theorem 24 implies that, when the batch size

is large enough, then with a high probability, the parameter iterate converges to the global optimal

parameter at a rate of O( 1
T
). This is credited to the unique structure of the GP objective function,

which we refer to as relaxed convexity (See Lemma 4 and Lemma 5 in the Appendix).

Remark 26. In the upper bound, there is a term
2β2

1(8(E−1)2+2)G2

T+1
∼ (E−1)2

T+1
, where E is the number

of local SGD steps. To ensure this term decreases with respect to T , one needs to ensure E does not

exceed Ω(
√
T ). Otherwise, the FGPR will not converge. For instance, if E = T , then the FGPR is

equivalent to the one-shot communication approach (Zhang et al. 2013).

Remark 27. In addition to the O( 1
T
) term, there is also a statistical error term O(maxk

logMk

Mk
+∑K

k=1 pkM
ϵk− 1

2
k ) that appeared in the upper bound. Theoretically, it indicates that a large batch

size is capable of reducing errors in parameter estimation.

Remark 28. From Theorem 24, it can be seen that
∥∥∥θ̄(T )

2 − θ∗2

∥∥∥2
2

has smaller error term than

O
(∑K

k=1 pk(logMk)
ϵk− 1

2

)
. This implies that the noise parameter θ2 is easier to estimate than θ1.

This is intuitively understandable due to the different eigenvalue structures dictated by kf compared

to Ix1=x2 .

Next, we study the convergence behavior under the asynchronous update (i.e., partial device
participation) framework. In this scenario, only a portion of devices is actively sending their model
parameters to the central server at each communication round.

Theorem 29. (RBF kernels, asynchronous update) Suppose Assumptions 20.1-21.1 hold. At each

communication round, assume |S| = Ksample < K number of devices are sampled according to

the sampling probability pk. If η(t) = O(1
t
), then for some constants Cθ, cθ > 0, ϵk ∈ (0, 1

2
), when
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Mk > Cθ, at iteration T , with probability at least mink

(
1− CθT exp

(
−cθ (logMk)

2ϵk
))

,

ES
{∣∣∣θ̄(T )

1 − θ∗1

∣∣∣2 + ∣∣∣θ̄(T )
2 − θ∗2

∣∣∣2}

≤
2β2

1

(
1
|S|4E

2 + 8(E − 1)2 + 2
)
G2

T + 1

+O

(
max

k

logMk

Mk

+
K∑
k=1

pk(logMk)
ϵk− 1

2

)
,

and with probability at least

min
k

(
1− Cθ

(
log
(
M

ϵk− 1
2

k

))4
T exp

{
−cθM2ϵk

k

})
,

ES
{∥∥∥θ̄(T )

2 − θ∗2

∥∥∥2
2

}

≤
2β2

1

(
1
|S|4E

2 + 8(E − 1)2 + 2
)
G2

T + 1

+O

(
max

k

logMk

Mk

+
K∑
k=1

pkM
ϵk− 1

2
k

)
,

where the expectation is taken over the set S, and please refer to Appendix 6.3 for a rigorous

definition.

Remark 30. Under the asynchronous update setting, a similar convergence guarantee holds. The

only difference is that the number of active devices |S| plays a role in the upper bound. Numerically,

the ratio E2

|S| enlarges the upper bound and impedes the convergence rate. As |S| grows (i.e., more

devices participate in the training), the ratio E2

|S| decreases.

Our next theorem provides explicit convergences rate for FGPR with Matérn kernels under both
a synchronous and asynchronous update scheme.

Theorem 31. (Matérn kernels) Suppose Assumptions 20.1-20.2 and 21.2 hold,

(1) At each communication round, assume |S| = K. If η(t) = O(1
t
), then for some constants

Cθ, cθ > 0, β1 > 0, bk > (
√
21+3)
4

and 0 < αk < 1
2
, when Mk > Cθ, with probability at least
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mink

(
1− CθT (log(M

ϵk− 1
2

k ))4exp{−cθM2ϵk
k }

)
,

∥∥∥θ̄(T )
2 − θ∗2

∥∥∥2
2
≤ 2β2

1 (8(E − 1)2 + 2)G2

T + 1

+O

max
k

M
− 8b2k−12bk−6−3αk−4αkbk

8b2
k
−4bk

k


+O

(
K∑
k=1

pkM
ϵk− 1

2
k

)
.

Additionally, ∥∥∥∇L(θ̄(T )
)
∥∥∥2
2
≤ 2β2

1 (8(E − 1)2 + 2)G2

4θ4min(T + 1)

+O

(
max

k

{
M

(2+αk)(4bk+3)

4bk(2bk−1)
−1

k +
K∑
k=1

pkM
ϵk− 1

2
k

})
.

(2) At each communication round, assume |S| = Ksample, number of devices are sampled

according to the sampling probability pk. If η(t) = O(1
t
), then for some constants Cθ, cθ > 0,

β1 > 0, bk >
(
√
21+3)
4

and 0 < αk <
1
2
, when Mk > Cθ, with probability at least

min
k

(
1− CθT

(
log
(
M

ϵk− 1
2

k

))4
exp{−cθM2ϵk

k }
)
,

ES
{∥∥∥θ̄(T )

2 − θ∗2

∥∥∥2
2

}

≤
2β2

1

(
4E2

|S| + 8(E − 1)2 + 2
)
G2

T + 1

+O

max
k

M
− 8b2k−12bk−6−3αk−4αkbk

8b2
k
−4bk

k


+O

(
K∑
k=1

pkM
ϵk− 1

2
k

)
.
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Additionally,

ES
{∥∥∥∇L(θ̄(T )

)
∥∥∥2
2

}

≤
2β2

1

(
4E2

|S| + 8(E − 1)2 + 2
)
G2

4θ4min(T + 1)

+O

(
max

k

{
M

(2+αk)(4bk+3)

4bk(2bk−1)
−1

k +
K∑
k=1

pkM
ϵk− 1

2
k

})
.

Remark 32. It can be seen that the FGPR using Matérn kernel has a larger statistical error

than the one using RBF kernel. In the RBF kernel, the statistical error is partially affected by

O
(
maxk

logMk

Mk

)
(Theorems 24,29) while this term becomesO

maxk M
− 8b2k−12bk−6−3αk−4αkbk

8b2
k
−4bk

k

 in

the Matérn kernel. The latter one is larger since bk > (
√
21+3)
4

and αk ∈ (0, 0.5). This difference

arises from the fact that the Matérn kernel has a slower eigenvalue decay rate (determined by

bk) than the RBF kernel (i.e., polynomial vs. exponential). This slow decay rate leads to slower

convergence and larger statistical error. When bk becomes larger, the decay rate becomes faster,

and the influence of O

maxk M
− 8b2k−12bk−6−3αk−4αkbk

8b2
k
−4bk

k

 gets smaller. In this case, the statistical

error is dominated by O
(∑K

k=1 pkM
ϵk− 1

2
k

)
, which is the same as the one in the RBF kernel.

Remark 33. In addition to the convergence bound on parameter iterates, we also provide an

upper bound on the full gradient
∥∥∥∇L(θ̄(T )

)
∥∥∥2
2
. This bound scales the same as the bound for∥∥∥θ̄(T+1)

2 − θ∗2

∥∥∥2
2
.

Remark 34. For Matérn kernel, there is no explicit convergence guarantee for parameter θ̄1. The

reason is that it is very hard to derive the lower and upper bounds for the SG for Matérn kernel.

However, Theorem 31 shows that both θ̄2 and the full gradient converge at rates of O( 1
T
) subject to

statistical errors.

4.4.3 Heterogeneous Setting

Besides the homogeneous setting, we further consider the scenario where data from all devices
are generated from several different processes or distributions. Equivalently, this indicates

P

(∣∣∣∣∣
K∑
k=1

pkLk(θ
∗;Dk)−

K∑
k=1

pkLk(θ
∗
k;Dk)

∣∣∣∣∣ = 0

)
= 0.
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Since the data are heterogeneous, we know θ∗k ̸= θ∗. As a result, the weighted average of Lk(θ
∗
k;Dk)

can be very different from L(θ∗). We here note that convergence results for the heterogeneous
setting are moved to Appendix due to space limitations.

Overall, in this theoretical section, we show that the FGPR is guaranteed to converge under both
homogeneous setting (Sec. 4.2) and heterogeneous setting, regardless of the synchronous updating
or the asynchronous updating.

4.5 Proof of Concept

We start by validating the theoretical results obtained in Sec. 4.4.2. We also provide sample
experiments that shed light on key properties of FGPR.

Example 1: Homogeneous Setting with Balanced Data. We generate data from a GP with
zero-mean and both a RBF and Matérn−3/2 kernel. We consider θ1 ∈ [0.1, 10], θ2 ∈ [0.01, 1] and
a length parameter l ∈ [0.01, 1]d. The input space is a d-dimensional unit cube [0, 1]d in Rd with
d ∈ {1, . . . , 10} and the dimension of the output is one. We conduct 20 independent experiments.
In each experiment, we first randomly sample θ1, θ2, l and d to generate data samples from the GP .
In each scenario, we set Nk =

N
K

. This setting is homogeneous and balanced as the number of data
points across K clients is equal and they all come from the same underlying stochastic process. We
consider three scenarios: (1) K = 20, N = 5000, (2) K = 50, N = 2000, (3) K = 100, N = 800.
Results from the RBF kernel are provided in Figure 4.2. Due to space limitation, we move plots of
the Matérn Kernel into Appendix 1. It can be seen that the convergence rate follows a O( 1

T
) pattern.

In some runs, the values of
∥∥θ̄ − θ∗

∥∥2
2

are very large at the beginning. Those imply that initial
parameters are far away from true parameters. However, after 20-40 communication rounds, those
values quickly diminish. In 4.2, we also observe that plots in (c) are more dispersed and fluctuated
than (a) and (b). This is because each device only has fewer data points (N/K = 2000/100 = 20).
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Figure 4.2: (RBF kernel) Evolution of
∥∥θ̄ − θ∗

∥∥2
2

over training epochs. In the plot, each color
represents an independent run. The input dimension d is different for each run and d ∈ {1, . . . , 10}.
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Example 2: Homogeneous Setting with Unbalanced Data. We use the same data-generating
strategy as Example 1, but the sample sizes are unbalanced. Specifically, the number of data points
in each device ranges from 10 to 10,000. The histogram of data distribution from one experiment
is given in Figure 4.4. The convergence curves are plotted in Figure 4.3. Again, the convergence
rate agrees with our theoretical finding. This simple example reveals a critical property of FGPR:
FGPR can help devices with few observations recover true parameters (subject to statistical errors)
or reduce prediction errors. We will further demonstrate this advantage in the heterogeneous setting
in Sec. 4.6.
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Figure 4.3: (RBF kernel) Evolution of
∥∥θ̄ − θ∗

∥∥2
2

over training epochs using unbalanced data. In
the plot, each color represents an independent run. The input dimension d is different for each run
and d ∈ {1, . . . , 10}.

Example 3: The Ability to Recover Accurate Predictions for a Badly Initialized GP . When
training an FL algorithm, it is not uncommon to initialize the model parameters θ near a bad
stationary point. Here we provide one toy example. We simulate data from y = sin(x) + ϵ, where
ϵ ∼ N (0, 0.2) and create two clients (K = 2). Each client has 100 training data points and 1, 000

testing data points that are uniformly sampled from [0, 1]. We artificially find a bad initial parameter
θ such that the fitted curve is just a flat line. This can be achieved by finding a θ whose noise
parameter θ2 is large. In this case, θ = (1, 10, 1) where the GP interprets all data as noise and
simply returns a flat line.

We evaluate the predictive performance of FGPR using the averaged root-mean-square error
(RMSE) metric. The RMSE for each device is evaluated on the local testing data, and the averaged
RMSE averages RMSEs across all devices. We find that FGPR is robust to parameter initialization.
We plot the evolution of averaged RMSE versus training epoch in Figure 4.5. It can be seen
that, even when the parameter is poorly initialized, FGPR can still correct the wrong initialization
after several communication rounds. This credits to the stochasticity in the SGD method. It is
known that, in ERM, SGD can escape bad stationary solutions and converge to solutions with good
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Figure 4.4: Histogram of Sample Sizes (Example 2).
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Figure 4.5: Evolution of the averaged RMSE in Example 3.
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generalization (often flat ones) (Wu et al. 2018).

4.6 Application I: Multi-fidelity Modeling

For many computer experiments, high-fidelity numerical simulations of complex physical
processes typically require a significant amount of time and budget. This limits the number of data
points researchers can collect and affects the modeling accuracy due to insufficient data. A major
work trend has been proposed to augment the expensive data source with cheaper surrogates to
overcome this hindrance. Multi-fidelity models are designed to fuse scant but accurate observations
(i.e., high-fidelity, HF) with cheap and biased approximations (i.e., low-fidelity, LF) to improve the
HF model performance.

Denote by fh a high-fidelity function and fl a low-fidelity function. Multi-fidelity approaches
(Bailly and Bailly 2019, Cutajar et al. 2019, Brevault et al. 2020) aim to use fl to better predict fh.
During the past decades, many multi-fidelity models have been proposed to fulfill this goal. We
refer to (Fernández-Godino et al. 2016) and (Peherstorfer et al. 2018) for detailed literature reviews.
Among all the methods, GP-based approaches have caught the most attention due to their ability
to incorporate prior beliefs, interpolate complex functional patterns and quantify uncertainties
(Fernández-Godino et al. 2016). The last ability is critical to fuse observations across different
fidelities effectively.

Within many applications, two specific models have been shown to be very competitive (Brevault
et al. 2020); the auto-regressive (AR) and the Deep GP (Deep) approaches. Both approaches model
fh as shown below

fh(x) = ρ(fl(x), x) + ∆(x),

where ρ(·, ·) is a space-dependent non-linear transformation and ∆(x) is a bias term modeled
through a GP .

More specifically, the AR model (Kennedy and O’Hagan 2000) sets the transformation as a
linear mapping such that ρ(fl(x), x) = ρcfl(x), where ρc is a constant. It then imposes a GP prior
on fl and accordingly obtains its posterior f ∗l . As a result, one can derive the closed-form posterior
distribution p(fh|f ∗l , x, y) and obtain the posterior predictive equation of the high-fidelity model. On
the other hand, the Deep model (Cutajar et al. 2019) treats ρ(fl(x), x) as a deep Gaussian process
to uncover highly complex relationships among fl and fh . Deep is one of the state-of-the-art
multi-fidelity models. For more details, please refer to (Brevault et al. 2020).

Nowadays, as data privacy gains increased importance, having access to data across multiple
fidelities is often impractical as multiple clients can own data. This imposes a key challenge in
multi-fidelity modeling approaches as effective inference on expensive high-fidelity models often
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necessitates the need to borrow strength from other information sources. Fortunately, in such a case,
FGPR is a potential candidate that learns a GP prior without sharing data.

In this section, we test the viability of FGPR in multi-fidelity modeling. We test our approach
using settings where local devices contain data with different fidelities. We then use Algorithm 4.1
to train our FGPR algorithm. Specifically, each device runs several steps of SGD and then sends its
model parameter to the central orchestrator. The orchestrator then aggregates model parameters and
sends the aggregated parameter back to each device. This procedure is repeated several times till
some exit condition is met. Upon estimating the model parameters, we then test the local predictive
accuracy using the predictive equation (4.1) for device k.

We benchmark FGPR with several state-of-the-art models. Interestingly, our results (Table
4.2) show that FGPR not only preserves privacy but also can provide superior performance than
centralized multi-fidelity approaches.

Below we detail the benchmark models: (1) Separate which fits a single GP to the HF dataset
without any communication. This means the HF dataset does not use any information from the LF
dataset; (2) the AR method (Kennedy and O’Hagan 2000). AR is the most classical and widely-used
multi-fidelity modeling approach (Laurenceau and Sagaut 2008, Fernández-Godino et al. 2016,
Bailly and Bailly 2019); (3) the Deep model (Damianou and Lawrence 2013) highlighted above;
(4) Modular GP (Moreno-Muñoz et al. 2021) that models each fidelity-level as an output. For this
method, we introduce 20 inducing points for each device and 3 global latent variables. All output
values are standardized to mean 0 and variance 1.

We start with two simple illustrative examples from (Cutajar et al. 2019) and then benchmark
all models on five well-known models in the multi-fidelity literature.

Example 1: Linear Example - We first present a simple one dimensional linear example where
x ∈ [0, 1]. The low and high-fidelity models are given by (Cutajar et al. 2019)

yl(x) =
1

2
yh(x) + 10(x− 1

2
) + 5,

yh(x) = (6x− 2)2 sin(12x− 4),

where yl(·) is the output from the LF model and yh(·) is the output from the HF model. We simulate
100 data points from the LF model and 20 data points from the HF model. The number of testing
data points is 1,000.

Example 2: Nonlinear Example - The one dimensional non-linear example for x ∈ [0, 2] is
given as

yl(x) = cos(15x),

yh(x) = xexpyl(2x−0.2) − 1.
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We use the same data-generating strategy in Example 1.

Ex 1: Low-fidelity Model Ex 1: High-fidelity Model

𝑥𝑥

𝑦𝑦

Ex 2: Low-fidelity Model Ex 2: High-fidelity Model

Figure 4.6: Results of Example 1 and 2. The solid black line denotes the predicted mean, and the
grey area is a 95% confidence interval.

Ex 2

Figure 4.7: Results of Example 2 using separate on the HF data only.

The results from both examples are plotted in Figure 4.6. The results provide a simple proof-of-
concept that the learned FGPR is able to accurately predict the HF model despite sparse observations.
Additionally, FGPR can also adequately capture uncertainties (grey areas in Figure 4.6) in predic-
tions. The results also confirm our insights on automatic personalization in Sec. 4.3.3 whereby
a single global model was able to adequately fit both HF and LF datasets. Here we conduct one
additional comparison study on Example 2. We train a GP model solely using a high-fidelity dataset.
The fitted curve is plotted in Figure 4.7. It can be seen that, without borrowing any information from
the LF dataset, the fitted GP curve fails to recover the true underlying pattern. This example further
demonstrates the advantage of FGPR: the shared global model parameter encodes key information
(e.g., trend, pattern) from the low-fidelity dataset such that the high-fidelity dataset can exploit this
information to fit a more accurate surrogate model.

74



Table 4.2: RMSEs and standard deviations compared to the true HF model. Each experiment is
repeated 30 times. The sample size is in a format of HF/MF/LF, where MF represents a medium-
fidelity model.

RMSE-HF Sample Size FGPR Separate AR Deep Modular GP
CURRIN 40/0/200 0.148± 0.056 0.301± 0.080 0.295± 0.052 0.252± 0.064 0.243± 0.033

PARK 50/0/300 0.012± 0.002 0.052± 0.006 0.035± 0.001 0.013± 0.001 0.039± 0.001
BRANIN 20/40/200 0.260± 0.065 0.374± 0.089 0.335± 0.070 0.213± 0.085 0.365± 0.076

Hartmann-3D 50/100/200 0.365± 0.074 0.456± 0.087 0.412± 0.067 0.383± 0.092 0.438± 0.085
Borehole 50/0/200 0.604± 0.006 0.633± 0.006 0.615± 0.005 0.622± 0.007 0.621± 0.004

Next, we consider a range of benchmark problems that are widely used in the multi-fidelity
literature (Cutajar et al. 2019, Brevault et al. 2020). We defer the full specifications of those
problems to the Appendix. For each experiment, we generate 1,000 testing points uniformly on the
input domain.

• CURRIN: CURRIN (Currin et al. 1991, Xiong et al. 2013) is a two-dimensional function
that is widely used for multi-fidelity computer simulation models.

• PARK: The PARK function (Cox et al. 2001, Xiong et al. 2013) lies in a four-dimensional
space (x ∈ (0, 1]4). This function is often in testing for parameter calibration and design of
experiments.

• BRANIN: BRANIN is widely used as a test function for metamodeling in computer exper-
iments. In this example, there are three fidelity levels (Perdikaris et al. 2017, Cutajar et al.
2019).

• Hartmann-3D: Similar to BRANIN, this is a 3-level multi-fidelity dataset where the input
space is [0, 1]3.

• Borehole Model: The Borehole model is an 8-dimensional physical model that simulates
water flow through a borehole (Moon et al. 2012, Gramacy and Lian 2012, Xiong et al. 2013).

Each experiment is repeated 30 times, and we report RMSEs of the model performance on the
true HF model, along with the standard deviations in Table 4.2. The training data size is highlighted
in the table.

First, it can be seen in Table 4.2, FGPR consistently yields smaller RMSE than Separate. This
confirms that FGPR is able to borrow strength across multi-fidelity datasets. More importantly, we
find that FGPR can even achieve superior performance compared to the AR and Deep benchmarks.
This implies that one can avoid centralized approaches without compromising accuracy. Finally, the
inferior performance of Modular GPs is because: (1) Modular GP optimizes an approximate
likelihood instead of the exact likelihood. FGPR, on the other hand, directly performs stochastic
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optimization on the exact likelihood; (2) Modular GP is a one-shot approach. For instance,
the convergence bound of FedAvg follows O(E2/T ) where E is the number of local steps and
T = R(E − 1) where R is the number of communication rounds. Clearly, E should be small
(less than the order of O(R)) to guarantee convergence. A similar result is shown in FGPR in Sec.
4.4. Whereas our model FGPR is a collaborative process where the global model is updated over
R communication rounds; (3) Modular GP require one additional layer of approximation that
sacrifices accuracy (Moreno-Muñoz et al. 2021). As a side note, as mentioned in Table 4.1, in
Modular GP , a sparse representation of the local data is shared, which entails the pseudo-targets,
variational density, model parameters, and approximate likelihood value. Clearly, if the sparse
approximation is close to the true local posterior, there is an infringement on local privacy. FGPR,
on the other hand, only shares model parameters.

In summary, the results show that FGPR can serve as a compelling candidate for privacy-
preserving multi-fidelity modeling in the modern era of statistics and machine learning.

Below, we also detail an interesting technical observation.

Remark 35. In our settings, the weight coefficient pk for the HF is low compared to LF, as HF

clients have fewer data. For instance, in the CURRIN example, the HF coefficient is p1 = 40
240

= 0.17.

Therefore, the global parameter is averaged with higher weights for the LF model. Yet, the model

excels in predicting the HF model. This again goes back to the fact that, unlike deep learning based

FL approaches, FGPR is learning a joint prior on the functional space. The scarce HF data alone

cannot learn a strong prior, yet, with the help of the LF data, such prior can be learned effectively.

That being said, it may be interesting to investigate the adaptive assignment of pk, yet this requires

additional theoretical analysis.

On par with Remark 17, we conduct an ablation study on pi using the CURRIN function.
Specifically, we use the same sample size (i.e., N1 = 40, N2 = 200), but we gradually increase p1

from 0.17 to 1 and decrease p2 from 0.83 to 0. We plot the RMSE versus p1 in Figure 4.8. It can be
seen that the RMSE remains consistent when we moderately increase p1. However, once p1 passes
a threshold, the RMSE increases sharply. Again this is because the increased weight to HF can be
misleading due to the scarcity of HF data.

4.7 Application II: Robotics

We now test the performance of FGPR on a robotic dataset [Link].
To enable accurate robot movement, one needs to control the joint torques (Nguyen-Tuong

et al. 2008). Joint torques can be computed by many existing inverse dynamics models. However,
in real-world applications, the underlying physical process is highly complex and often hard to
derive using first principles. Data-driven models were proposed as an appealing alternative to
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Figure 4.8: Ablation Study (CURRIN).

handle complex functional patterns and, more importantly, quantify uncertainties (Nguyen-Tuong
and Peters 2011). The goal of this section is to test FGPR as a data-driven approach to accurately
compute joint torques at different joint positions, velocities, and accelerations.

Table 4.3: For FGPR & Neural we report averaged RMSE and the standard deviation (std) of
RMSEs across all testing devices for the robotics data. Each experiment is repeated 30 times. The
standard deviation of each performance measure is reported in brackets. For DVI/DGP, we report
the RMSE on a central server

Averaged RMSE ×10
std of RMSE ×10 Output 1 Output 3 Output 5 Output 7

FGPR
2.75 (0.00)
1.84 (0.01)

2.42 (0.03)
1.57 (0.01)

2.20 (0.05)
1.29 (0.02)

2.38 (0.01)
1.44 (0.02)

Neural
3.01 (0.01)
1.70 (0.00)

3.05 (0.06)
2.11 (0.02)

2.89 (0.09)
1.37 (0.02)

2.90 (0.02)
1.50 (0.01)

DVI 2.85 (0.02) 3.32 (0.06) 2.57 (0.03) 2.98 (0.02)

DGP 2.99 (0.03) 3.17 (0.04) 2.62 (0.01) 2.77 (0.02)

To this end, we test FGPR using a Matérn-3/2 kernel on learning an inverse dynamics problem
for a seven degrees-of-freedom SARCOS anthropomorphic robot arm (Williams and Rasmussen
2006, Bui et al. 2018). This task contains d = 21 dimensional input and 7 dimensional output with
44,484 points for training and 4,449 points for testing. Since FGPR is a single-output FL framework,
we only use one output each time (See Table 4.3). Our goal is to accurately predict the forces used
at different joints given the joints’ input information. We randomly partition the data into 25 devices.
Overall, each device has around 1850 training points and 180 testing points each.

We benchmark FGPR with (1) neural network; (2) DGP (Deisenroth and Ng 2015) that uses the
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product-of-experts approximation and distributes learning tasks to different experts (i.e., nodes); (3)
DVI (Gal et al. 2014) that performs distributed variational inference.

We found that neural network trained from a simple FedAvg failed. This is due to the large
heterogeneity. To resolve this issue, we train Neural using a state-of-the-art personalized FL
framework Ditto (Li et al. 2021). In Ditto, each local device solves two optimization problems.
The first is the same as FedAvg and to find θ, while the second derives personalized parameters vk

for each client k by solving

min
vk

hk(vk;θ) := R̂k(vk;Dk) +
λ

2
∥vk − θ∥22

where λ is a regularization parameter and θ is the shared global parameter. The idea behind Ditto
is clear: in addition to updating a shared global parameter θ, each device also maintains its own
personalized solution vk. Yet, the regularization term ensures that this vk should be close to θ such
that one can retain useful information learned from a global model.

For DVI and DGP, we use Matérn-3/2 kernels and introduce 1024 inducing points for the former
method.

In Table 4.3, we present results for outputs 1, 3, 5, and 7. Here, note that the RMSEs of DVI
and DGP are evaluated on the central location using all testing data rather than on each node. This
is because the goal of DVI or DGP is to distribute learning tasks and speed up training rather
than improve the model performance on each local node. Whilst for FGPR and Neural, we can
additionally obtain the standard error of RMSEs across devices since predictions are performed on
local devices.

Under the heterogeneous setting, FGPR still provides lower averaged RMSE than the personal-
ized Neural, DGP, and DVI benchmark models. This credits to (1) the flexible prior regularization
in the GP regression that can avoid potential model over-fitting; (2) the intrinsic personalization
capability of FGPR; (3) FGPR does exact inference whereas DVI and DGP use approximate objec-
tives that may often be inadequate. Recall that DGP uses the product-of-experts approximation that
induces a notion of independence across local experts (devices). DVI uses VI that faces several
drawbacks, per our earlier discussion in Sec. 4.3; (4) DGP is a one-shot approach that is not optimal,
as discussed earlier. Here we note that DVI requires each device to send an Nz ×Nz × d dimension
tensor to the server after every single optimization step. This incurs very heavy communication
loads and high costs. Also, DGP shares local predicted output to a central server, and the server can
re-construct the data pattern from each device. This clearly leaks the local data information.

An additional case study on NASA Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) tools dataset (Saxena and Goebel 2008) that involves multiple engines is deferred
to the appendix due to space limitation. In this case study, we also benchmarked with federated
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polynomial regression models.

4.8 Conclusion

In this paper, we extend the standard GP regression model to a federated setting, FGPR. We
use both theory and a wide range of experiments to justify the viability of our proposed framework.
We highlight the unique capability of FGPR to provide automatic personalization and strong
transferability on untrained devices.

FGPR may find value in meta-learning as it provides an inherent Bayesian perspective on this
topic (Yue and Kontar 2020a). Other interesting research directions include extending the current
framework to a multi-output GP model. The challenge lies in capturing the correlation across
output in a federated paradigm. Another possible direction arises from the theoretical perspective
of FGPR. In this work, we only provide theoretical guarantees on noise/variance parameters and
the gradient norm. Studying the convergence behavior of length parameters is another crucial but
challenging future research direction.
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CHAPTER 5

Conclusion

The contribution of the completed studies can be summarized as follows. In Chapter 2, we
propose GIFAIR-FL: a framework that imposes Group and Individual FAIRness to Federated
Learning settings. By adding a regularization term, our algorithm penalizes the spread in the loss of
client groups to drive the optimizer to fair solutions. Our framework GIFAIR-FL can accommodate
both global and personalized settings. Theoretically, we show convergence in non-convex and
strongly convex settings. Our convergence guarantees hold for both i.i.d. and non-i.i.d. data. To
demonstrate the empirical performance of our algorithm, we apply our method to image classification
and text prediction tasks. Compared to existing algorithms, our method shows improved fairness
results while retaining superior or similar prediction accuracy. In Chapter 3, we develop an FDA
treatment for one of the most fundamental statistical models: linear regression. Our treatment is
built upon hierarchical modeling that allows borrowing strength across multiple groups. To this
end, we propose two federated hierarchical model structures that provide a shared representation
across devices to facilitate information sharing. Notably, our proposed frameworks are capable of
providing uncertainty quantification, variable selection, hypothesis testing, and fast adaptation to
new unseen data. We validate our methods on a range of real-life applications, including condition
monitoring for aircraft engines. The results show that our FDA treatment for linear models can serve
as a competing benchmark model for the future development of federated algorithms. In Chapter 4,
we propose FGPR: a Federated Gaussian process (GP) regression framework that uses an averaging
strategy for model aggregation and stochastic gradient descent for local computations. Notably, the
resulting global model excels in personalization as FGPR jointly learns a shared prior across all
devices. The predictive posterior then is obtained by exploiting this shared prior and conditioning
on local data, which encodes personalized features from a specific dataset. Theoretically, we show
that FGPR converges to a critical point of the full log-marginal likelihood function, subject to
statistical errors. This result offers standalone value as it brings federated learning theoretical results
to correlated paradigms. Through extensive case studies, we show that FGPR excels in a wide range
of applications and is a promising approach for privacy-preserving multi-fidelity data modeling.

FDA is still at its infancy phase. Many methodological questions are yet to be answered.
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Further, as FDA infiltrates new domains, the domains themselves will pose the fundamental research
challenges. To this end, my research plan involves:

1. Building a framework for distributed and collaborative design. Optimal design of process
parameters is a critical yet challenging task within many domains. This challenge arises from
the need for trial and error. This process is typically done through simulations that mimic
the underlying process, yet for complex engineering processes, the dimensionality of process
parameters are usually high. That being said, a high fidelity simulation model might take
days or weeks to obtain outputs from a single setting of process parameters. Fortunately,
the increased connectivity and computation power of edge devices in manufacturing sets
forth a new collaborative paradigm for process parameter design: different manufacturers
collaborate and borrow strength from each other to reduce the effort of trial and error. The
success within this domain may help engineers develop a distributed framework that promotes
collaborative design. Along this line, I plan to design a large-scale collaborative Bayesian
optimization framework that allows different manufacturers to fit response-surface models,
quantify uncertainties, extract knowledge across devices and make decisions on experimental
design [11]. The central idea is based on FDA methods: manufacturers run local computations
and collaboratively make decisions using aggregated information from a central server.

2. Tackling statistical challenges in FDA. I decide to work on several open questions in FDA.
(I) Federated Graph Learning: Learning graphic networks is a problem that has received
significant attention in the statistics and computer science literature. In FDA, when there
is dependence amongst devices, learning a graphical model/network structure potentially
improves overall performance. However, there remains the open challenge of adapting and
implementing graphical algorithms that learn pairwise sufficient statistics to respect communi-
cation and differential privacy constraints. At the heart of the challenge, if our goal is to learn
a network structure amongst devices, second-order statistics are required in the computation.
From a privacy and communication perspective, this requires communication between all
pairs of devices in order to compute these second-order sufficient statistics. Along this line,
I plan to propose practical and communication-efficient graphic modeling algorithms that
overcome the aforementioned challenges. (II) Federated Uncertainty Quantification and
Hypothesis Testing: To date, very few FDA approaches are able to quantify uncertainty.
Instead, they are focusing on point estimations. Yet a model should acknowledge the confi-
dence in prediction and provide a guideline to perform hypothesis testing. Along this line,
I plan to continue working on federated Bayesian methods and provide a systematic frame-
work that provides uncertainty quantification and model testing. (III) Heterogeneity and
Personalization: The other line of my future research is to tackle statistical heterogeneity and
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personalized problems. In FDA, statistical heterogeneity is a central challenge as individual
devices may have different data patterns and potentially collect different amounts and types
of data. As mentioned before, personalization is one way to overcome the heterogeneity
challenge by allowing clients to retain their individualized models while still borrowing
strength from each other. However, there are still several open questions: (i) it is crucial to
decide when a personalized model is needed and provide a trade-off between a global model
and personalized models; (ii) how to cluster devices with similar features such that devices
within a group can build a “group-level global model”. As data sharing is not practical in
FDA, clustering devices becomes extremely challenging; (iii) how to avoid adversarial attacks
from malicious devices. As some devices tend to provide adversarial attacks to the central
server and deteriorate aggregated information, it is important to detect those devices and take
proper action.

3. Creating real-life federated and distributed engineering data repository. As FDA is still
in its infancy phase, real-life datasets in engineering areas such as manufacturing, energy, and
healthcare are pressingly needed to fully explore the disruptive potential of FDA. However,
there is a limited number of existing engineering datasets. In the near future, I plan to
collaborate with professors/students from manufacturing, mechanical engineering, civil
engineering, transportation, and healthcare to collect real-life data and create a central
directory for federated and distributed real-life engineering datasets. For example, I plan
to purchase a few 3D printers and construct a small FDA environment to collect several
federated 3D printing datasets. I believe this is a fruitful process that helps researchers unveil
the potential challenges and opportunities faced within different domains. I will continue to
build this central directory to promote collaboration and communication.

4. Research collaboration and exploration. Finally, I would like to mention that one of
the most wonderful parts of research is the collaboration process. Research without any
communication or collaboration is like an ivory tower, isolating researchers from the real
world. During my past four years of studies, I have collaborated with many incredible
collaborators to study parameter calibrations and physics-informed neural networks [7, 10].
The latter work [10] won the first prize in the IISE QCRE/ProcessMiner Data Challenge
Competition. Though those are not my expertise area, it is amazing to explore new research
directions by communicating with domain experts from that area. As such, I plan to seek
research or industrial collaborations actively.

FDA is a relatively new and underdeveloped area, yet I envision that this is a very promising
direction in the Engineering community, especially in the smart-and-connected IoT-enabled system.
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I am extremely motivated to continue my research endeavors and strive to make the engineering
community bloom.
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APPENDIX A

Appendix for Chapter 2

A.1 Appendix

In Sec. A.2, we restate our main assumptions. In Sec. A.3, we provide the detailed proofs
of Lemmas and Theorems in our main paper. Finally, in Sec. A.4, we present some additional
empirical results.

A.2 Assumptions

We make the following assumptions.

Assumption 35.1. Fk is L-smooth and µ-strongly convex for all k ∈ [K].

Assumption 35.2. Denote by ζ
(t)
k the batched data from client k and gk(θ

(t)
k ; ζ

(t)
k ) the stochastic

gradient calculated on this batched data. The variance of stochastic gradients are bounded.

Specifically,

E
{∥∥∥gk(θ(t)

k ; ζ
(t)
k )−∇Fk(θ

(t)
k )
∥∥∥2} ≤ σ2

k,∀k ∈ [K].

It can be shown that, at local iteration t during communication round c,

E
{∥∥∥∇Hk(θ

(t)
k ; ζ

(t)
k )−∇Hk(θ

(t)
k )
∥∥∥2}

= E
{∥∥∥∥(1 + λrck

pk|Ask |
)gk(θ

(t)
k ; ζ

(t)
k )− (1 +

λrck
pk|Ask |

)∇Fk(θ
(t)
k )

∥∥∥∥2}
≤ (1 +

λ

pk|Ask |
rck)

2σ2
k,∀k ∈ [K].

Here,∇Hk(θ
(t)
k ; ζ

(t)
k ) denotes the stochastic gradient of Hk evaluated on the batched data ζ

(t)
k .
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Assumption 35.3. The expected squared norm of stochastic gradient is bounded. Specifically,

E
{∥∥∥gk(θ(t)

k ; ζ
(t)
k )
∥∥∥2} ≤ G2,∀k ∈ [K].

It can be shown that, at local iteration t during communication round c,

E
{∥∥∥∇Hk(θ

(t)
k ; ζ

(t)
k )
∥∥∥} = E

{∥∥∥∥(1 + λ

pk|Ask |
rck)gk(θ

(t)
k ; ζ

(t)
k )

∥∥∥∥2}
≤ (1 +

λ

pk|Ask |
rck)

2G2,∀k ∈ [K].

For the non-convex setting, we replace Assumption 35.1 by the following assumption.

Assumption 35.4. Fk is L-smooth for all k ∈ [K].

In our proof, for the sake of neatness, we drop the superscript of rck.
We use the definition in Li et al. (2019b) to roughly quantify the degree of non-i.i.d.-ness.

Specifically,

ΓK = H∗ −
K∑
k=1

pkH
∗
k =

K∑
k=1

pk(H
∗ −H∗k).

If data from all sensitive attributes are i.i.d., then ΓK = 0 as number of clients grows. Otherwise,
ΓK ̸= 0 (Li et al. 2019b).

A.3 Detailed Proof

A.3.1 Proof of Lemma

Lemma 36. For any given θ, the global objective function H(θ) defined in the main paper can be

expressed as

H(θ) =
K∑
k=1

(
pk +

λ

|Ask |
rk(θ)

)
Fk(θ),

where

rk(θ) ≜
∑

1≤j ̸=sk≤d

sign(Lsk(θ)− Lj(θ))
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and sk ∈ [d] is the group index of device k. Consequently,

H(θ) =
K∑
k=1

pkHk(θ).

Proof. By definition, at communication round c,

H(θ) =
K∑
k=1

pkFk(θ) + λ
∑

1≤i<j≤d

|Li(θ)− Lj(θ)|

=
K∑
k=1

pkFk(θ) + λ
∑

1≤i<j≤d

∣∣∣∣ 1

|Ai|
∑
k∈Ai

Fk(θ)−
1

|Aj|
∑
k∈Aj

Fk(θ)

∣∣∣∣
=

K∑
k=1

pkFk(θ) + λ
∑

1≤i<j≤d

sign(Li(θ)− Lj(θ))

(
1

|Ai|
∑
k∈Ai

Fk(θ)−
1

|Aj|
∑
k∈Aj

Fk(θ)

)

=
K∑
k=1

pkFk(θ) + λ
d−1∑
u=1

∑
u<j≤d

sign(Lu(θ)− Lj(θ))

(
1

|Au|
∑
k∈Au

Fk(θ)−
1

|Aj|
∑
k∈Aj

Fk(θ)

)

=
K∑
k=1

pkFk(θ) + λ
d∑

u=1

∑
k∈Au

∑
u̸=j≤d

sign(Lu(θ)− Lj(θ))
Fk(θ)

|Au|

=
K∑
k=1

pkFk(θ) +
K∑
k=1

λ

|Ask |
∑

1≤j ̸=sk≤d

sign(Lsk(θ)− Lj(θ))Fk(θ)

=
K∑
k=1

(
pk +

λ

|Ask |
rck(θ)

)
Fk(θ).

The fifth equality is achieved by rearranging the equation and merging items with the same group
label. By definition of Hk, we thus proved

H(θ) =
K∑
k=1

pkHk(θ).

A.3.2 Learning Bound

We present a generalization bound for our learning model. Denote by G the family of the losses
associated to a hypothesis setH : G = {(x, y) 7→ ℓ(h(x), y) : h ∈ H}. The weighted Rademacher
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complexity (Mohri et al. 2019) is defined as

Rm(G,p) := E
σ

[
sup
h∈H

K∑
k=1

pk
Nk

Nk∑
n=1

σk,nℓ(h(xk,n), yk,n)

]

where m = (N1, N2, . . . , Nk), p = (p1, . . . , pK) and σ = (σk,n)k∈[K],n∈[Nk] is a collection of
Rademacher variables taking values in {−1,+1}. Denote by LDλ

p
(h) the expected loss according

to our fairness formulation. Denote by L̂Dλ
p
(h) the expected empirical loss (See Appendix for a

detailed expression).

Theorem 37. Assume that the loss ℓ is bounded above by M > 0. Fix ϵ0 > 0 and m. Then, for any

δ0 > 0, with probability at least 1− δ0 over samples Dk ∼ Dk, the following holds for all h ∈ H:

LDλ
p
(h) ≤ L̂Dλ

p
(h) +

√√√√1

2

K∑
k=1

(
pk
Nk

M + λ
d(d− 1)

2
M)2 log

1

δ0
+ 2Rm(G,p) + λ

d(d− 1)

2
M.

It can be seen that, given a sample of data, we can bound the generalization error LDλ
p
(h) −

L̂Dλ
p
(h) with high probability. When λ = 0, the bound is same as the generalization bound

in FedAvg (Mohri et al. 2018). When we consider the worst combination of pk by taking the
supremum of the upper bound in Theorem 37 and let λ = 0, then our generalization bound is same
as the one in AFL (Mohri et al. 2019).

Proof. Define

Φ(D1, . . . , DK) = sup
h∈H

(
LDλ

p
(h)− L̂Dλ

p
(h)

)
.

Let D′ = (D′1, . . . , D
′
K) be a sample differing from D = (D1, . . . , DK) only by one point x′k,n.

Therefore, we have

Φ(D′)− Φ(D) = sup
h∈H

(
LDλ

p
(h)− L̂D′λ

p
(h)

)
− sup

h∈H

(
LDλ

p
(h)− L̂Dλ

p
(h)

)
≤ sup

h∈H

(
LDλ

p
(h)− L̂D′λ

p
(h)

)
−
(
LDλ

p
(h)− L̂Dλ

p
(h)

)
≤ sup

h∈H

{
sup
h∈H
LDλ

p
(h)− sup

h∈H
L̂D′λ

p
(h)− LDλ

p
(h) + L̂Dλ

p
(h)
}

= sup
h∈H

{
L̂Dλ

p
(h)− L̂D′λ

p
(h)
}

87



By definition,

L̂D′λ
p
(h) =

K∑
k=1

pk
Nk

Nk∑
n=1

ℓ(h(x′k,n), y
′
k,n)+

λ
∑

1≤i<j≤d

|
∑

k∈Ai

1
Nk

∑Nk

n=1 ℓ(h(x
′
k,n), y

′
k,n)

|Ai|
−
∑

k∈Aj

1
Nk

∑Nk

n=1 ℓ(h(x
′
k,n), y

′
k,n)

|Aj|
|.

Therefore,

sup
h∈H

{
L̂Dλ

p
(h)− L̂D′λ

p
(h)
}

≤ sup
h∈H

[
pk
Nk

(ℓ(h(x′k,n), y
′
k,n)− ℓ(h(xk,n), yk,n)) + λ

d(d− 1)

2
M

]
≤ pk

Nk

M + λ
d(d− 1)

2
M.

By McDiarmid’s inequality, for δ0 = exp

(
−2ϵ20∑K

k=1(
pk
Nk

M+λ
d(d−1)

2
M)2

)
, the following holds with proba-

bility at least 1− δ0

Φ(D)− ED[Φ(D)] ≤ ϵ0 =

√√√√1

2

K∑
k=1

(
pk
Nk

M + λ
d(d− 1)

2
M)2 log

1

δ0
.
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Our next goal is to bound E[Φ(D)]. We have

ED[Φ(D)] = ED

[
sup
h∈H

(
LDλ

p
(h)− L̂Dλ

p
(h)

)]
= ED

[
sup
h∈H

ED′

(
L̂D′λ

p
(h)− L̂Dλ

p
(h)

)]
≤ EDED′ sup

h∈H

(
L̂D′λ

p
(h)− L̂Dλ

p
(h)

)
≤ EDED′ sup

h∈H

[ K∑
k=1

pk
Nk

Nk∑
n=1

ℓ(h(x′k,n), y
′
k,n)

−
K∑
k=1

pk
Nk

Nk∑
n=1

ℓ(h(xk,n), yk,n) + λ
d(d− 1)

2
M

]

≤ EDED′Eσ sup
h∈H

[ K∑
k=1

pk
Nk

Nk∑
n=1

σk,nℓ(h(x
′
k,n), y

′
k,n)

−
K∑
k=1

pk
Nk

Nk∑
n=1

σk,nℓ(h(xk,n), yk,n) + λ
d(d− 1)

2
M

]
≤ 2Rm(G,p) + λ

d(d− 1)

2
M.

Therefore,

Φ(D) ≤

√√√√1

2

K∑
k=1

(
pk
Nk

M + λ
d(d− 1)

2
M)2 log

1

δ0
+ 2Rm(G,p) + λ

d(d− 1)

2
M.

A.3.3 Convergence (Strongly Convex)

Our proof is based on the convergence result of FedAvg (Li et al. 2019b).

Theorem 38. Assume Assumptions in the main paper hold and |Sc| = K. For γ, µ > 0 and η(t) is

decreasing in a rate of O(1
t
). If η(t) ≤ O( 1

L
), we have

E
{
H(θ̄(T ))

}
−H∗ ≤ L

2

1

γ + T

{
4ξ

ϵ2µ2
+ (γ + 1)

∥∥θ̄(0) − θ∗
∥∥2},

where ξ = 8(E − 1)2G2 + 4LΓK + 2Γmax

η(t)
+ 4

∑K
k=1 p

2
kσ

2
k and Γmax :=

∑K
k=1 pk|(H∗ −H∗k)| ≥

|
∑K

k=1 pk(H
∗ −H∗k)| = |ΓK |.

Proof. For each device k, we introduce an intermediate model parameter w(t+1)
k = θ

(t)
k −η(t)∇Hk(θ

(t)
k ).
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If iteration t+ 1 is in the communication round, then θ
(t+1)
k =

∑K
k=1 pkw

(t+1)
k (i.e., aggregation).

Otherwise, θ(t+1)
k = w

(t+1)
k . Define w̄(t) =

∑K
k=1 pkw

(t)
k and θ̄(t) =

∑K
k=1 pkθ

(t)
k . Also, define

g(t) =
∑K

k=1 pk∇Hk(θ
(t)
k ; ζ

(t)
k ) and ḡ(t) = E(g(t)) =

∑K
k=1 pk∇Hk(θ

(t)
k ).

Denote by θ∗ the optimal model parameter of the global objective function H(·). At iteration t,
we have

E
{∥∥θ̄(t+1) − θ∗

∥∥2} = E
{∥∥θ̄(t) − η(t)g(t) − θ∗ − η(t)ḡ(t) + η(t)ḡ(t)

∥∥2}
= E

{∥∥θ̄(t) − θ∗ − η(t)ḡ(t)
∥∥2}+ E

{
2η(t)⟨θ̄(t) − θ∗ − η(t)ḡ(t), ḡ(t) − g(t)⟩

}
+ E

{
η(t)2

∥∥g(t) − ḡ(t)
∥∥2}

= E
{∥∥θ̄(t) − θ∗ − η(t)ḡ(t)

∥∥2}︸ ︷︷ ︸
A

+E
{
η(t)2

∥∥g(t) − ḡ(t)
∥∥2}︸ ︷︷ ︸

B

,

since E
{
2η(t)⟨θ̄(t) − θ∗ − η(t)ḡ(t), ḡ(t) − g(t)⟩

}
= 0. Our remaining work is to bound term A and

term B.

Part I: Bounding Term A We can split term A above into three parts:

E
{∥∥θ̄(t) − θ∗ − η(t)ḡ(t)

∥∥2} = E
{∥∥θ̄(t) − θ∗

∥∥2}−2η(t)E{⟨θ̄(t) − θ∗, ḡ(t)⟩
}

︸ ︷︷ ︸
C

+ η(t)2E
{∥∥ḡ(t)

∥∥2}︸ ︷︷ ︸
D

.

For part C, We have

C = −2η(t)E
{
⟨θ̄(t) − θ∗, ḡ(t)⟩

}
= −2η(t)E

{ K∑
k=1

pk⟨θ̄(t) − θ∗,∇Hk(θ
(t)
k )⟩

}

= −2η(t)E
{ K∑

k=1

pk⟨θ̄(t) − θ
(t)
k ,∇Hk(θ

(t)
k )⟩

}
− 2η(t)E

{ K∑
k=1

pk⟨θ(t)
k − θ∗,∇Hk(θ

(t)
k )⟩

}

To bound C, we need to use Cauchy-Schwarz inequality, inequality of arithmetic and geometric
means. Specifically, the Cauchy-Schwarz inequality indicates that

⟨θ̄(t) − θ
(t)
k ,∇Hk(θ

(t)
k )⟩ ≥ −

∥∥∥θ̄(t) − θ
(t)
k

∥∥∥∥∥∥∇Hk(θ
(t)
k )
∥∥∥
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and inequality of arithmetic and geometric means further implies

−
∥∥∥θ̄(t) − θ

(t)
k

∥∥∥∥∥∥∇Hk(θ
(t)
k )
∥∥∥ ≥ −

∥∥∥θ̄(t) − θ
(t)
k

∥∥∥2 + ∥∥∥∇Hk(θ
(t)
k )
∥∥∥2

2
.

Therefore, we obtain

C = −2η(t)E
{
⟨θ̄(t) − θ∗, ḡ(t)⟩

}
= −2η(t)E

{ K∑
k=1

pk⟨θ̄(t) − θ∗,∇Hk(θ
(t)
k )⟩

}

= −2η(t)E
{ K∑

k=1

pk⟨θ̄(t) − θ
(t)
k ,∇Hk(θ

(t)
k )⟩

}
− 2η(t)E

{ K∑
k=1

pk⟨θ(t)
k − θ∗,∇Hk(θ

(t)
k )⟩

}

≤ E
{
η(t)

K∑
k=1

pk
1

η(t)

∥∥∥θ̄(t) − θ
(t)
k

∥∥∥2 + η(t)
2

K∑
k=1

pk

∥∥∥∇Hk(θ
(t)
k )
∥∥∥2

− 2η(t)
K∑
k=1

pk(Hk(θ
(t)
k )−Hk(θ

∗))− 2η(t)
K∑
k=1

pk
(1 + λ

pk|Ask
|rk(θ))µ

2

∥∥∥θ(t)
k − θ∗

∥∥∥2},
where −2η(t)E

{∑K
k=1 pk⟨θ

(t)
k − θ∗,∇Hk(θ

(t)
k )⟩

}
is bounded by the property of strong convexity

of Hk.
Since Hk is (1 + λ

pk|Ask
|rk(θ))L-smooth, we know

∥∥∥∇Hk(θ
(t)
k )
∥∥∥2 ≤ 2(1 +

λ

pk|Ask |
rk(θ))L(Hk(θ

(t)
k )−H∗k)

and therefore

D = η(t)2E
{∥∥ḡ(t)

∥∥2} ≤ η(t)2E
{ K∑

k=1

pk

∥∥∥∇Hk(θ
(t)
k )
∥∥∥2}

≤ 2η(t)2E
{ K∑

k=1

pk(1 +
λ

pk|Ask |
rk(θ))L(Hk(θ

(t)
k )−H∗k)

}

by convexity of norm.
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Therefore, combining C and D, we have

A = E
{∥∥θ̄(t) − θ∗ − η(t)ḡ(t)

∥∥2}
≤ E

{∥∥θ̄(t) − θ∗
∥∥2}+ 2η(t)2E

{ K∑
k=1

pk(1 +
λ

pk|Ask |
rk(θ))L(Hk(θ

(t)
k )−H∗k)

}

+ η(t)E
{ K∑

k=1

pk
1

η(t)

∥∥∥θ̄(t) − θ
(t)
k

∥∥∥2}+ η(t)
2E
{ K∑

k=1

pk

∥∥∥∇Hk(θ
(t)
k )
∥∥∥2}

− 2η(t)E
{ K∑

k=1

pk(Hk(θ
(t)
k )−Hk(θ

∗))

}

− 2η(t)E
{ K∑

k=1

pk
(1 + λ

pk|Ask
|rk(θ))µ

2

∥∥∥θ(t)
k − θ∗

∥∥∥2}

≤ E
{∥∥θ̄(t) − θ∗

∥∥2}− η(t)E
{ K∑

k=1

pk(1 +
λ

pk|Ask |
rk(θ))µ

∥∥∥θ(t)
k − θ∗

∥∥∥2}

+
K∑
k=1

pk

∥∥∥θ̄(t) − θ
(t)
k

∥∥∥2
+ 4η(t)2E

{ K∑
k=1

pk(1 +
λ

pk|Ask |
rk(θ))L(Hk(θ

(t)
k )−H∗k)

}
− 2η(t)E

{ K∑
k=1

pk(Hk(θ
(t)
k )−Hk(θ

∗))

}
︸ ︷︷ ︸

E

.

In the last inequality, we simply rearrange other terms and use the fact that
∥∥∥∇Hk(θ

(t)
k )
∥∥∥2 ≤

2(1 + λ
pk|Ask

|rk(θ))L(Hk(θ
(t)
k )−H∗k) as aforementioned.

To bound E, we define γ(t)
k = 2η(t)(1−2(1+ λ

pk|Ask
|rk(θ))Lη

(t)). Assume η(t) ≤ 1

4(1+
(d−1)

min{pk|Ask
|}λ)L

,

then we know η(t) ≤ γ
(t)
k ≤ 2η(t).
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Therefore, we have

E = 4η(t)2E
{ K∑

k=1

pk(1 +
λ

pk|Ask |
rk(θ))L(Hk(θ

(t)
k )−H∗k)

}

− 2η(t)E
{ K∑

k=1

pk(Hk(θ
(t)
k )−Hk(θ

∗))

}

= 4η(t)2E
{ K∑

k=1

pk(1 +
λ

pk|Ask |
rk(θ))L(Hk(θ

(t)
k )−H∗k)

}

− 2η(t)E
{ K∑

k=1

pk(Hk(θ
(t)
k )−H∗k +H∗k −Hk(θ

∗))

}

= −2η(t)E
{ K∑

k=1

pk(1− 2(1 +
λ

pk|Ask |
rk(θ))Lη

(t))(Hk(θ
(t)
k )−H∗k)

}

+ 2η(t)E
{ K∑

k=1

pk(Hk(θ
∗)−H∗k)

}

= −E
{ K∑

k=1

γ
(t)
k pk(Hk(θ

(t)
k )−H∗ +H∗ −H∗k)

}
+ 2η(t)E

{
H∗ −

K∑
k=1

pkH
∗
k

}

= −E
{ K∑

k=1

γ
(t)
k pk(Hk(θ

(t)
k )−H∗)

}
︸ ︷︷ ︸

F

+ E
{ K∑

k=1

(2η(t) − γ
(t)
k )pk(H

∗ −H∗k)

}
︸ ︷︷ ︸

G

.

If H∗ − H∗k ≥ 0 for some k, then (2η(t) − γ
(t)
k )pk(H

∗ − H∗k) ≤ 2η(t)pk(H
∗ − H∗k). If H∗ −

H∗k < 0 otherwise, then (2η(t) − γ
(t)
k )pk(H

∗ −H∗k) is negative and (2η(t) − γ
(t)
k )pk(H

∗ −H∗k) ≤
−2η(t)pk(H∗ −H∗k). Therefore, by definition of Γmax,

G ≤ 2η(t)E
{ K∑

k=1

pk|H∗ −H∗k |
}

= 2η(t)Γmax.
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The remaining goal of Part I is to bound term F. Note that

F = −E
{ K∑

k=1

γ
(t)
k pk(Hk(θ

(t)
k )−H∗)

}

= −E
{( K∑

k=1

pkγ
(t)
k (Hk(θ

(t)
k )−Hk(θ̄

(t))) +
K∑
k=1

pkγ
(t)
k (Hk(θ̄

(t))−H∗)

)}

≤ −E
{( K∑

k=1

pkγ
(t)
k ⟨∇Hk(θ̄

(t)),θ
(t)
k − θ̄(t)⟩+

K∑
k=1

pkγ
(t)
k (Hk(θ̄

(t))−H∗)

)}

≤ E
{ K∑

k=1

1

2
γ
(t)
k pk

[
η(t)
∥∥∇Hk(θ̄

(t))
∥∥2 + 1

η(t)

∥∥∥θ(t)
k − θ̄(t)

∥∥∥2 ]− K∑
k=1

pkγ
(t)
k (Hk(θ̄

(t))−H∗)

}

≤ E
{ K∑

k=1

γ
(t)
k pk

[
η(t)(1 +

λ

pk|Ask |
rk(θ))L(Hk(θ̄

(t))−H∗k) +
1

2η(t)

∥∥∥θ(t)
k − θ̄(t)

∥∥∥2 ]

−
K∑
k=1

pkγ
(t)
k (Hk(θ̄

(t))−H∗)

}
.

In the second inequality, we again use the Cauchy–Schwarz inequality and Inequality of arith-

metic and geometric means. In the last inequality, we use the fact that
∥∥∥∇Hk(θ

(t)
k )
∥∥∥2 ≤ 2(1 +

λ
pk|Ask

|rk(θ))L(Hk(θ
(t)
k )−H∗k).
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Since η(t) ≤ γ
(t)
k ≤ 2η(t), we can bound E as

E ≤ F + E
{
2η(t)Γmax

}
= (η(t)(1 +

λ

pk|Ask |
rk(θ))L− 1)E

{ K∑
k=1

γ
(t)
k pk

[
(Hk(θ̄

(t))−H∗)

]}

+ E
{ K∑

k=1

η(t)γ
(t)
k pk(1 +

λ

pk|Ask |
rk(θ))L(H

∗ −H∗k)

}

+
1

2η(t)

K∑
k=1

γ
(t)
k pk

{∥∥∥θ(t)
k − θ̄(t)

∥∥∥2}+ 2η(t)Γmax

≤ E
{ K∑

k=1

η(t)γ
(t)
k pk(1 +

λ

pk|Ask |
rk(θ))L(H

∗ −H∗k)

}

+
1

2η(t)

K∑
k=1

γ
(t)
k pkE

{∥∥∥θ(t)
k − θ̄(t)

∥∥∥2}+ 2η(t)Γmax

≤
K∑
k=1

pkE
{∥∥∥θ(t)

k − θ̄(t)
∥∥∥2}+ E

{ K∑
k=1

η(t)γ
(t)
k pk(1 +

d− 1

pk|Ask |
λ)L(H∗ −H∗k)

}
+ 2η(t)Γmax

≤
K∑
k=1

pkE
{∥∥∥θ(t)

k − θ̄(t)
∥∥∥2}+ 4η(t)2LE

{ K∑
k=1

pk(H
∗ −H∗k)

}
+ 2η(t)Γmax

=
K∑
k=1

pkE
{∥∥∥θ(t)

k − θ̄(t)
∥∥∥2}+ 4η(t)2LΓK + 2η(t)Γmax

The second inequality holds because (η(t)(1 + λ
pk|Ask

|rk(θ))L− 1) ≤ 0 and the fourth inequality
uses the fact that 1 + d−1

pk|Ask
|λ ≤ 2 based on the constraint of λ.
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Therefore,

A ≤ E
{∥∥θ̄(t) − θ∗

∥∥2}− η(t)E
{ K∑

k=1

pk(1 +
λ

pk|Ask |
rk(θ))µ

∥∥∥θ(t)
k − θ∗

∥∥∥2}

+
K∑
k=1

pk

∥∥∥θ̄(t) − θ
(t)
k

∥∥∥2 + E

≤ 2
K∑
k=1

pkE
{∥∥∥θ̄(t) − θ

(t)
k

∥∥∥2}+ 4η(t)2LΓK + 2η(t)Γmax + E
{∥∥θ̄(t) − θ∗

∥∥2}

− η(t)E
{ K∑

k=1

pk(1−
d− 1

pk|Ask |
λ)µ

∥∥∥θ(t)
k − θ∗

∥∥∥2}

≤ 2
K∑
k=1

pkE
{∥∥∥θ̄(t) − θ

(t)
k

∥∥∥2}+ 4η(t)2LΓK + 2η(t)Γmax + E
{∥∥θ̄(t) − θ∗

∥∥2}

− η(t)E
{ K∑

k=1

p2k(1−
d− 1

pk|Ask |
λ)µ

∥∥∥θ(t)
k − θ∗

∥∥∥2}

≤ 2
K∑
k=1

pkE
{∥∥∥θ̄(t) − θ

(t)
k

∥∥∥2}+ 4η(t)2LΓK + 2η(t)Γmax + E
{∥∥θ̄(t) − θ∗

∥∥2}

− η(t)E
{
(1− d− 1

min{pk|Ask |}
λ)µ

1

K

∥∥∥∥∥
K∑
k=1

pkθ
(t)
k − θ∗

∥∥∥∥∥
2}

= 2
K∑
k=1

pkE
{∥∥∥θ̄(t) − θ

(t)
k

∥∥∥2}+ 4η(t)2LΓK + 2η(t)Γmax

+ (1− η(t)(1− d− 1

min{pk|Ask |}
λ)

µ

K
)E
{∥∥θ̄(t) − θ∗

∥∥2}
The third inequality uses the fact that 0 ≤ pk ≤ 1 and −p2k ≥ −pk. The last inequality uses the fact

that
∥∥∥∑K

k=1 pkθk

∥∥∥2 ≤ K
∑K

k=1 ∥pkθk∥2 = K
∑K

k=1 p
2
k ∥θk∥2 and 1− d−1

pk|Ask
|λ ≥ 1− d−1

min{pk|Ask
|}λ.

Part II: Bounding Term
∑K

k=1 pkE
{∥∥∥θ̄(t) − θ

(t)
k

∥∥∥2} in Term A For any iteration t ≥ 0, denote

by t0 ≤ t the index of previous communication iteration before t. Since the FL algorithm requires
one communication each E steps, we know t−t0 ≤ E−1 and θ

(t0)
k = θ̄(t0). Assume η(t) ≤ 2η(t+E).
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Since η(t) is decreasing, we have

E
{ K∑

k=1

pk

∥∥∥θ̄(t) − θ
(t)
k

∥∥∥2} = E
{ K∑

k=1

pk

∥∥∥(θ(t)
k − θ̄(t0))− (θ̄(t) − θ̄(t0))

∥∥∥2}

≤ E
{ K∑

k=1

pk

∥∥∥θ(t)
k − θ̄(t0)

∥∥∥2}

= E
{ K∑

k=1

pk

∥∥∥∥∥
t−1∑
t=0

η(t)gk(θ
(t)
k ; ζ

(t)
k )

∥∥∥∥∥
2}

≤ E
{ K∑

k=1

pk(t− t0)
t−1∑
t=0

η(t)2
∥∥∥gk(θ(t)

k ; ζ
(t)
k )
∥∥∥2}

≤
K∑
k=1

pk

t−1∑
t=t0

(E − 1)η(t)2G2 ≤
K∑
k=1

pk

t−1∑
t=t0

(E − 1)η(t0)2G2

≤
K∑
k=1

pk(E − 1)2η(t0)2G2 ≤ 4η(t)2(E − 1)2G2.

Part III: Bounding Term B By assumption, it is easy to show

E
{
η(t)2

∥∥g(t) − ḡ(t)
∥∥2} ≤ η(t)2

K∑
k=1

p2k(1 +
λ

pk|Ask |
rk(θ))

2σ2
k.

Part IV: Proving Convergence So far, we have shown that

E
{∥∥θ̄(t+1) − θ∗

∥∥2} ≤ A + B

≤ 8η(t)2(E − 1)2G2 + 4η(t)2LΓK + 2η(t)Γmax + (1− η(t)(1− d− 1

pk|Ask |
λ)µ)E

{∥∥θ̄(t) − θ∗
∥∥2}

+ η(t)2
K∑
k=1

p2k(1 +
λ

pk|Ask |
rk(θ))

2σ2
k

= (1− η(t)(1− d− 1

min{pk|Ask |}
λ)

µ

K
)E
{∥∥θ̄(t) − θ∗

∥∥2}+ η(t)
2

ξ

where ξ = 8(E − 1)2G2 + 4LΓK + 2Γmax

η(t)
+
∑K

k=1 p
2
k(1 +

λ
pk|Ask

|rk(θ))
2σ2

k.

Let η(t) = β
t+γ

with β > 1
(1− d−1

min{pk|Ask
|}λ)

µ
K

and γ > 0. Define ϵ := (1 − d−1
min{pk|Ask

|}λ). Let

v = max{ β2ξ
βϵµ−1 , (γ + 1)

∥∥θ̄(0) − θ∗
∥∥2}. We will show that

∥∥θ̄(t) − θ∗
∥∥2 ≤ v

γ+t
by induction. For

t = 0, we have
∥∥θ̄(0) − θ∗

∥∥2 ≤ (γ + 1)
∥∥θ̄(0) − θ∗

∥∥2 ≤ v
γ+1

. Now assume this is true for some t,
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then

E
{∥∥θ̄(t+1) − θ∗

∥∥2} ≤ (1− η(t)ϵµ)E
{∥∥θ̄(t) − θ∗

∥∥2}+ η(t)
2

ξ

≤ (1− βϵµ

t+ γ
)

v

t+ γ
+

β2ξ

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

β2ξ

(t+ γ)2
− βϵµ− 1

(t+ γ)2
v.

It is easy to show t+γ−1
(t+γ)2

v + β2ξ
(t+γ)2

− βϵµ−1
(t+γ)2

v ≤ v
t+γ+1

by definition of v. Therefore, we proved∥∥θ̄(t) − θ∗
∥∥2 ≤ v

γ+t
.

By definition, we know H is
∑K

k=1 pk
(1+ λ

pk|Ask
| rk(θ))

2
L-smooth. Therefore,

E
{
H(θ̄(t))

}
−H∗ ≤

∑K
k=1 pk

(1+ λ
pk|Ask

| rk(θ))

2
L

2
E
{∥∥θ̄(t) − θ∗

∥∥2}

≤
∑K

k=1 pk
(1+ λ

pk|Ask
| rk(θ))

2
L

2

v

γ + t
.

By choosing β = 2
ϵ µ
K

We have

v = max{ β2ξ

βϵµ− 1
, (γ + 1)

∥∥θ̄(0) − θ∗
∥∥2} ≤ β2ξ

βϵµ− 1
+ (γ + 1)

∥∥θ̄(0) − θ∗
∥∥2

≤ 4ξ

ϵ2µ2
+ (γ + 1)

∥∥θ̄(0) − θ∗
∥∥2 .

Therefore,

E
{
H(θ̄(T ))

}
−H∗ ≤

∑K
k=1 pk

(1+ λ
pk|Ask

| rk(θ))

2
L

2

1

γ + T

{
4ξ

ϵ2µ2
+ (γ + 1)

∥∥θ̄(0) − θ∗
∥∥2}

≤
∑K

k=1 pk
(1+

λ(d−1)
pk|Ask

| )

2
L

2

1

γ + T

{
4ξ

ϵ2µ2
+ (γ + 1)

∥∥θ̄(0) − θ∗
∥∥2}

≤ L

2

1

γ + T

{
4ξ

ϵ2µ2
+ (γ + 1)

∥∥θ̄(0) − θ∗
∥∥2}.

We thus proved our convergence result.

Theorem 39. Assume at each communication round, central server sampled a fraction α of devices

and those local devices are sampled according to the sampling probability pk. Additionally, assume
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Assumptions in the main paper hold. For γ, µ, ϵ > 0, we have

E
{
H(θ̄(T ))

}
−H∗ ≤ L

2

1

γ + T

{
4(ξ + τ)

ϵ2µ2
+ (γ + 1)

∥∥θ̄(0) − θ∗
∥∥2},

τ = E2

⌈αK⌉
∑K

k=1 pk(1 +
λ

pk|Ask
|rk(θ))

2G2.

Proof.

E
{∥∥θ̄(t+1) − θ∗

∥∥2} = E
{∥∥θ̄(t+1) − w̄(t+1) + w̄(t+1) − θ∗

∥∥2}
= E

{∥∥θ̄(t+1) − w̄(t+1)
∥∥2 + ∥∥w̄(t+1) − θ∗

∥∥2 + 2⟨θ̄(t+1) − w̄(t+1), w̄(t+1) − θ∗⟩
}

= E
{∥∥θ̄(t+1) − w̄(t+1)

∥∥2 + ∥∥w̄(t+1) − θ∗
∥∥2}.

Note that the expectation is taken over subset Sc.

Part I: Bounding Term E
{∥∥θ̄(t+1) − w̄(t+1)

∥∥2} Assume ⌈αK⌉ number of local devices are

sampled according to sampling probability pk. During the communication round, we have θ̄t+1 =
1
⌈αK⌉

∑⌈αK⌉
l=1 w

(t+1)
l . Therefore,

E
{∥∥θ̄(t+1) − w̄(t+1)

∥∥2} = E
{

1

⌈αK⌉2

∥∥∥∥∥∥
⌈αK⌉∑
l=1

w
(t+1)
l − w̄(t+1)

∥∥∥∥∥∥
2}

= E
{

1

⌈αK⌉2
⌈αK⌉∑
l=1

∥∥∥w(t+1)
l − w̄(t+1)

∥∥∥2}

=
1

⌈αK⌉

K∑
k=1

pk

∥∥∥w(t+1)
k − w̄(t+1)

∥∥∥2 .
We know

K∑
k=1

pk

∥∥∥w(t+1)
k − w̄(t+1)

∥∥∥2 = K∑
k=1

pk

∥∥∥(w(t+1)
k − θ̄(t0))− (w̄(t+1) − θ̄(t0))

∥∥∥2
≤

K∑
k=1

pk

∥∥∥(w(t+1)
k − θ̄(t0))

∥∥∥2 ,
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where t0 = t− E + 1. Similarly,

E
{∥∥θ̄(t+1) − w̄(t+1)

∥∥2} ≤ 1

⌈αK⌉
E
{ K∑

k=1

pk

∥∥∥(w(t+1)
k − θ̄(t0))

∥∥∥2}

≤ 1

⌈αK⌉
E
{ K∑

k=1

pk

∥∥∥(w(t+1)
k − θ

(t0)
k )

∥∥∥2}

≤ 1

⌈αK⌉
E
{ K∑

k=1

pkE

t∑
m=to

∥∥∥η(m)∇Hk(θ
(m)
k ; ζ

(t)
k )
∥∥∥2}

≤ E2η(t0)2

⌈αK⌉

K∑
k=1

pk(1 +
λ

pk|Ask |
rk(θ))

2G2

≤ E2η(t)2

⌈αK⌉

K∑
k=1

pk(1 +
λ

pk|Ask |
rk(θ))

2G2

using the fact that η(t) is non-increasing in t.

Part II: Convergence Result As aforementioned,

E
{∥∥θ̄(t+1) − θ∗

∥∥2}
= E

{∥∥θ̄(t+1) − w̄(t+1)
∥∥2 + ∥∥w̄(t+1) − θ∗

∥∥2}
≤ E2η(t)2

⌈αK⌉

K∑
k=1

pk(1 +
λ

pk|Ask |
rk(θ))

2G2 + (1− η(t)ϵ
µ

K
)E
{∥∥θ̄(t) − θ∗

∥∥2}+ η(t)
2

ξ

= (1− η(t)ϵ
µ

K
)E
{∥∥θ̄(t) − θ∗

∥∥2}+ η(t)
2

(
ξ +

E2

⌈αK⌉

K∑
k=1

pk(1 +
λ

pk|Ask |
rk(θ))

2G2

)
.

Let τ = E2

⌈αK⌉
∑K

k=1 pk(1 + λ
pk|Ask

|rk(θ))
2G2. Let η(t) = β

t+γ
with β > 1

ϵ µ
K

and γ > 0. Let

v = max{β
2(ξ+τ)
βϵµ−1 , (γ + 1)

∥∥θ̄(0) − θ∗
∥∥2}. Similar to the full device participation scenario, we can

show that E
{∥∥θ̄(t) − θ∗

∥∥2} ≤ v
γ+t

by induction.
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By definition, we know H is
∑K

k=1 pk
(1+ λ

pk|Ask
| rk(θ))

2
L-smooth. Therefore,

E
{
H(θ̄(t))

}
−H∗ ≤

∑K
k=1 pk

(1+ λ
pk|Ask

| rk(θ))

2
L

2
E
{∥∥θ̄(t) − θ∗

∥∥2}

≤
∑K

k=1 pk
(1+ λ

pk|Ask
| rk(θ))

2
L

2

v

γ + t
.

By choosing β = 2
ϵ µ
K

We have

v = max{ β2ξ

βϵµ− 1
, (γ + 1)

∥∥θ̄(0) − θ∗
∥∥2} ≤ β2ξ

βϵµ− 1
+ (γ + 1)

∥∥θ̄(0) − θ∗
∥∥2

≤ 4ξ

ϵ2µ2
+ (γ + 1)

∥∥θ̄(0) − θ∗
∥∥2 .

Therefore,

E
{
H(θ̄(T ))

}
−H∗ ≤

∑K
k=1 pk

(1+ λ
pk|Ask

| rk(θ))

2
L

2

1

γ + T

{
4(ξ + τ)

ϵ2µ2
+ (γ + 1)

∥∥θ̄(0) − θ∗
∥∥2}

≤ L

2

1

γ + T

{
4(ξ + τ)

ϵ2µ2
+ (γ + 1)

∥∥θ̄(0) − θ∗
∥∥2}

A.3.4 Convergence (Non-convex)

Lemma 40. If η(t) ≤ 2
L

, then E
{
H(θ̄(t))

}
≤ E

{
H(θ̄(0))

}
.

Proof.

E
{
H(θ̄(t+1))

}
= E

{
H(θ̄(t) − η(t)

K∑
k=1

pk∇Hk(θ
(t)
k ; ζ

(t)
k ))

}

= E
{
H(θ̄(t) − η(t)

K∑
k=1

pk∇Hk(θ̄
(t); ζ

(t)
k ))

}
= E

{
H(θ̄(t) − η(t)g(t)(θ̄(t)))

}
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Here we used the fact that θ̄(t) = θ
(t)
k since the aggregated model parameter has been distributed to

local devices. By Taylor’s theorem, there exists a w(t) such that

E
{
H(θ̄(t+1))

}
= E

{
H(θ̄(t))− η(t)g(t)(θ̄(t))Tg(t)(θ̄(t)) +

1

2
(η(t)g(t)(θ̄(t)))Tg(t)(w(t))(η(t)g(t)(θ̄(t)))

}

≤ E
{
H(θ̄(t))− η(t)g(t)(θ̄(t))Tg(t)(θ̄(t)) + η(t)2

∑K
k=1 pk

(1+ λ
pk|Ask

| rk(θ))

2
L

2

∥∥g(t)(θ̄(t)
∥∥2}

≤ E
{
H(θ̄(t))

}
− η(t)

∥∥g(t)(θ̄(t)
∥∥2 + η(t)2

L

2

∥∥g(t)(θ̄(t)
∥∥2

since H is
∑K

k=1 pk
(1+ λ

pk|Ask
| rk(θ))

2
L-smooth. It can be shown that if η(t) ≤ 2

L
, we have

−η(t)
∥∥g(t)(θ̄(t)

∥∥2 + η(t)2
L

2

∥∥g(t)(θ̄(t)
∥∥2 ≤ 0.

Therefore, By choosing η(t) ≤ 2
L

, we proved E
{
H(θ̄(t))

}
≤ E

{
H(θ̄(0))

}
.

Theorem 41. Assume Assumptions in the main paper hold and |Sc| = K. If η(t) = O( 1√
t
) and

η(t) ≤ O( 1
L
), then for > 0

min
t=1,...,T

E
{∥∥∇H(θ̄(t))

∥∥2} ≤ 1√
T

{
2(1 + 2KL2

T∑
t=1

η(t)2)E
{
H(θ̄(0))−H∗

}
+ 2

T∑
t=1

ξ(t)
}
,

where ξ(t) = 2KL2η(t)2ΓK + (8η(t)3KL2(E − 1) + 8KLη(t)2 + 4(2 + 4L)KLη(t)4(E − 1))G2 +

(2Lη(t)2 + 8KLη(t)2)
∑K

k=1 pkσ
2
k

Proof. Since H is
∑K

k=1 pk
(1+ λ

pk|Ask
| rk(θ))

2
L-smooth, we have

E
{
H(θ̄(t+1))

}
≤ E

{
H(θ̄(t))

}
+ E

{
⟨∇H(θ̄(t)), θ̄(t+1) − θ̄(t)⟩

}
︸ ︷︷ ︸

A

+

∑K
k=1 pk

(1+ λ
pk|Ask

| rk(θ))

2
L

2
E
{∥∥θ̄(t+1) − θ̄(t)

∥∥2}︸ ︷︷ ︸
B

.
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Part I: Bounding Term A We have

A = −η(t)E
{
⟨∇H(θ̄(t)),

K∑
k=1

pk∇Hk(θ
(t)
k ; ζ

(t)
k )⟩

}
= −η(t)E

{
⟨∇H(θ̄(t)),

K∑
k=1

pk∇Hk(θ
(t)
k )⟩

}

= −1

2
η(t)E

{∥∥∇H(θ̄(t))
∥∥2}− 1

2
η(t)E

{∥∥∥∥∥
K∑
k=1

pk∇Hk(θ
(t)
k )

∥∥∥∥∥
2}

+
1

2
η(t)E

{∥∥∥∥∥∇H(θ̄(t))−
K∑
k=1

pk∇Hk(θ
(t)
k )

∥∥∥∥∥
2}

= −1

2
η(t)E

{∥∥∇H(θ̄(t))
∥∥2}− 1

2
η(t)E

{∥∥∥∥∥
K∑
k=1

pk∇Hk(θ
(t)
k )

∥∥∥∥∥
2}

+
1

2
η(t)E

{∥∥∥∥∥
K∑
k=1

pk∇Hk(θ̄
(t))−

K∑
k=1

pk∇Hk(θ
(t)
k )

∥∥∥∥∥
2}

≤ −1

2
η(t)E

{∥∥∇H(θ̄(t))
∥∥2}− 1

2
η(t)E

{∥∥∥∥∥
K∑
k=1

pk∇Hk(θ
(t)
k )

∥∥∥∥∥
2}

+
1

2
η(t)E

{
K

K∑
k=1

pk

∥∥∥∇Hk(θ̄
(t))−∇Hk(θ

(t)
k )
∥∥∥2}

≤ −1

2
η(t)E

{∥∥∇H(θ̄(t))
∥∥2}− 1

2
η(t)E

{∥∥∥∥∥
K∑
k=1

pk∇Hk(θ
(t)
k )

∥∥∥∥∥
2}

+

1

2
η(t)E

{
K

K∑
k=1

pk((1 +
λ

pk|Ask |
rk(θ))L)

2
∥∥∥θ̄(t) − θ

(t)
k

∥∥∥2︸ ︷︷ ︸
C

}
.

In the convex setting, we proved that

C ≤ 4η(t)2(E − 1)G2.

This is also true for the non-convex setting since we do not use any property of convex functions.
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Part II: Bounding Term B We have

B = E
{∥∥η(t)g(t)∥∥2} = E

{∥∥∥∥∥η(t)
K∑
k=1

pk∇Hk(θ
(t)
k ; ζ

(t)
k )

∥∥∥∥∥
2}

= E
{∥∥∥∥∥η(t)

K∑
k=1

pk(∇Hk(θ
(t)
k ; ζ

(t)
k )−∇Hk(θ

(t)
k ))

∥∥∥∥∥
2}

+ E
{∥∥∥∥∥η(t)

K∑
k=1

pk∇Hk(θ
(t)
k )

∥∥∥∥∥
2}

= η(t)2
K∑
k=1

p2kE
{∥∥∥∇Hk(θ

(t)
k ; ζ

(t)
k )−∇Hk(θ

(t)
k )
∥∥∥2}+ E

{∥∥∥∥∥η(t)
K∑
k=1

pk∇Hk(θ
(t)
k )

∥∥∥∥∥
2}

≤ η(t)2
K∑
k=1

p2k(1 +
λ

pk|Ask |
rk(θ))

2σ2
k + η(t)2E

{
K

K∑
k=1

p2k

∥∥∥∇Hk(θ
(t)
k )
∥∥∥2}.

Since Hk is (1 + λ
pk|Ask

|rk(θ))L-smooth, we know

∥∥∥∇Hk(θ
(t)
k )
∥∥∥2 ≤ 2(1 +

λ

pk|Ask |
rk(θ))L(Hk(θ

(t)
k )−H∗k).

Therefore,

B ≤ η(t)2
K∑
k=1

p2k(1 +
λ

pk|Ask |
rk(θ))

2σ2
k+

η(t)2E
{
K

K∑
k=1

2p2k(1 +
λ

pk|Ask |
rk(θ))L(Hk(θ

(t)
k )−H∗k)

}

= η(t)2
K∑
k=1

p2k(1 +
λ

pk|Ask |
rk(θ))

2σ2
k+

η(t)2E
{
K

K∑
k=1

2p2k(1 +
λ

pk|Ask |
rk(θ))L(Hk(θ

(t)
k )−H∗ +H∗ −H∗k)

}

≤ η(t)2
K∑
k=1

p2k(1 +
λ

pk|Ask |
rk(θ))

2σ2
k+

η(t)2E
{
K

K∑
k=1

2pk(1 +
λ

pk|Ask |
rk(θ))L(Hk(θ

(t)
k )−H∗ +H∗ −H∗k)

}

since 0 ≤ pk ≤ 1 and p2k ≤ pk.
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Therefore,

E
{
H(θ̄(t+1))

}
≤ E

{
H(θ̄(t))

}
− 1

2
η(t)E

{∥∥∇H(θ̄(t))
∥∥2}−1

2
η(t)E

{∥∥∥∥∥
K∑
k=1

pk∇Hk(θ
(t)
k )

∥∥∥∥∥
2}

︸ ︷︷ ︸
D<0

+

1

2
η(t)E

{
K

K∑
k=1

pk((1 +
λ

pk|Ask |
rk(θ))L)

24η(t)2(E − 1)G2

}

+

∑K
k=1 pk

(1+ λ
pk|Ask

| rk(θ))

2
L

2

[
η(t)2

K∑
k=1

p2k(1 +
λ

pk|Ask |
rk(θ))

2σ2
k

+ η(t)2E
{
K

K∑
k=1

2pk(1 +
λ

pk|Ask |
rk(θ))L(Hk(θ

(t)
k )−H∗ +H∗ −H∗k)

}]
≤ E

{
H(θ̄(t))

}
− 1

2
η(t)E

{∥∥∇H(θ̄(t))
∥∥2}

1

2
η(t)E

{
K

K∑
k=1

pk((1 +
λ

pk|Ask |
rk(θ))L)

24η(t)2(E − 1)G2

}

+

∑K
k=1 pk

(1+ λ
pk|Ask

| rk(θ))

2
L

2

[
η(t)2

K∑
k=1

p2k(1 +
λ

pk|Ask |
rk(θ))

2σ2
k+

4KLη(t)2E
{ K∑

k=1

pk(Hk(θ
(t)
k )−H∗) +

K∑
k=1

pk(H
∗ −H∗k)

}
︸ ︷︷ ︸

E

]

≤ E
{
H(θ̄(t))

}
− 1

2
η(t)E

{∥∥∇H(θ̄(t))
∥∥2}

+
1

2
η(t)E

{
K

K∑
k=1

4pkL
24η(t)2(E − 1)G2

}

+
L

2

[
η(t)2

K∑
k=1

4p2kσ
2
k + 4KLη(t)2E

{ K∑
k=1

pk(Hk(θ
(t)
k )−H∗) +

K∑
k=1

pk(H
∗ −H∗k)

}
︸ ︷︷ ︸

E

]
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Here

E

= 4KLη(t)2E
{ K∑

k=1

pk(Hk(θ
(t)
k )−H∗)

}
+ 4KLη(t)2E

{ K∑
k=1

pk(H
∗ −H∗k)

}

= 4KLη(t)2E
{ K∑

k=1

pk(Hk(θ
(t)
k )−Hk(θ̄

(t)))

}
+ 4KLη(t)2E

{ K∑
k=1

pk(Hk(θ̄
(t))−H∗)

}
+ 4KLη(t)2ΓK

= 4KLη(t)2 E
{ K∑

k=1

pk(Hk(θ
(t)
k )−Hk(θ̄

(t)))

}
︸ ︷︷ ︸

F

+4KLη(t)2E
{
H(θ̄(t))−H∗

}
+ 4KLη(t)2ΓK .

We can bound term F as

F = E
{ K∑

k=1

pk(Hk(θ
(t)
k )−Hk(θ̄

(t)))

}

≤ E
{ K∑

k=1

pk(⟨∇Hk(θ̄
(t)),θ

(t)
k − θ̄(t)⟩+

(1 + λ
pk|Ask

|rk(θ))L

2

∥∥∥θ(t)
k − θ̄(t)

∥∥∥2︸ ︷︷ ︸
≤4η(t)2(E−1)G2

)

}

where we use the fact that Hk is (1 + λ
pk|Ask

|rk(θ))L-smooth. To bound the inner product, we again
use the inequality of arithmetic and geometric means and Cauchy–Schwarz inequality:

⟨∇Hk(θ̄
(t)),θ

(t)
k − θ̄(t)⟩ ≤

∥∥∇Hk(θ̄
(t))
∥∥∥∥∥θ(t)

k − θ̄(t)
∥∥∥ ≤

∥∥∇Hk(θ̄
(t))
∥∥2 + ∥∥∥θ(t)

k − θ̄(t)
∥∥∥2

2
.

It can be shown that

E
{∥∥∇Hk(θ̄

(t))
∥∥2} = E

{∥∥∥∇Fk(θ
(t)
k , D

(t)
k )
∥∥∥}2

+ E
{∥∥∥∇Fk(θ

(t)
k ; ζ

(t)
k )−∇Fk(θ

(t)
k )
∥∥∥2}

≤ E
{∥∥∥∇Fk(θ

(t)
k ; ζ

(t)
k )
∥∥∥2}+ E

{∥∥∥∇Fk(θ
(t)
k ; ζ

(t)
k )−∇Fk(θ

(t)
k )
∥∥∥2}

≤ (1 +
λ

pk|Ask |
rk(θ))

2(G2 + σ2
k) ≤ 4(G2 + σ2

k)
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Therefore, we can simplify F as

F ≤ E
{ K∑

k=1

pk(

∥∥∇Hk(θ̄
(t))
∥∥2 + ∥∥∥θ(t)

k − θ̄(t)
∥∥∥2

2
+

(1 + λ
pk|Ask

|rk(θ))L

2

∥∥∥θ(t)
k − θ̄(t)

∥∥∥2︸ ︷︷ ︸
≤4η(t)2(E−1)G2

)

}

≤ E
{ K∑

k=1

pk(
4(G2 + σ2

k) + 4η(t)2(E − 1)G2

2
+ 4Lη(t)2(E − 1)G2)

}

= 2E
{ K∑

k=1

pkσ
2
k

}
+ 2G2 + (2 + 4L)η(t)2(E − 1)G2

Combining with E, we obtain

E ≤ 4KLη(t)2
(
2

K∑
k=1

pkσ
2
k + 2G2 + (2 + 4L)η(t)2(E − 1)G2

)
+ 4KLη(t)2E

{
H(θ̄(t))−H∗

}
+ 4KLη(t)2ΓK

Part III: Proving Convergence Therefore,

1

2
η(t)E

{∥∥∇H(θ̄(t))
∥∥2}

≤ E
{
H(θ̄(t))

}
− E

{
H(θ̄(t+1))

}
+

1

2
η(t)3E

{
K

K∑
k=1

4pkL
24(E − 1)G2

}
+

L

2

[
η(t)2

K∑
k=1

4p2kσ
2
k + 4KLη(t)2

(
2

K∑
k=1

pkσ
2
k + 2G2 + (2 + 4L)η(t)2(E − 1)G2

)
+ 4KLη(t)2E

{
H(θ̄(t))−H∗

}
+ 4KLη(t)2ΓK

]
= E

{
H(θ̄(t))

}
− E

{
H(θ̄(t+1))

}
+ 2KL2η(t)2E

{
H(θ̄(t))−H∗

}
+ 2KL2η(t)2ΓK

+ (8η(t)3KL2(E − 1) + 8KLη(t)2 + 4(2 + 4L)KLη(t)4(E − 1))G2

+ (2Lη(t)2 + 8KLη(t)2)
K∑
k=1

pkσ
2
k.
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Let ξ(t) = 2KL2η(t)2ΓK + (8η(t)3KL2(E − 1) + 8KLη(t)2 + 4(2 + 4L)KLη(t)4(E − 1))G2 +

(2Lη(t)2 + 8KLη(t)2)
∑K

k=1 pkσ
2
k, then

1

2
η(t)E

{∥∥∇H(θ̄(t))
∥∥2}

≤ E
{
H(θ̄(t))

}
− E

{
H(θ̄(t+1))

}
+ 2KL2η(t)2E

{
H(θ̄(t))−H∗

}
+ ξ(t)

≤ E
{
H(θ̄(t))

}
− E

{
H(θ̄(t+1))

}
+ 2KL2η(t)2E

{
H(θ̄(0))−H∗

}
+ ξ(t)

since η(t) ≤ 1√
2KL

and E
{
H(θ̄(t))

}
≤ E

{
H(θ̄(0))

}
by Lemma 44. By taking summation on both

side, we obtain

T∑
t=1

1

2
η(t)E

{∥∥∇H(θ̄(t))
∥∥2}

≤ E
{
H(θ̄(0))

}
− E

{
H(θ̄(t+1))

}
+ 2KL2

T∑
t=1

η(t)2E
{
H(θ̄(0))−H∗

}
+

T∑
t=1

ξ(t)

≤ E
{
H(θ̄(0))

}
− E

{
H(θ̄∗)

}
+ 2KL2

T∑
t=1

η(t)2E
{
H(θ̄(0))−H∗

}
+

T∑
t=1

ξ(t)

= (1 + 2KL2

T∑
t=1

η(t)2)E
{
H(θ̄(0))−H∗

}
+

T∑
t=1

ξ(t).

This implies

min
t=1,...,T

E
{∥∥∇H(θ̄(t))

∥∥2} T∑
t=1

η(t) ≤ 2(1 + 2KL2

T∑
t=1

η(t)2)E
{
H(θ̄(0))−H∗

}
+ 2

T∑
t=1

ξ(t)

and therefore

min
t=1,...,T

E
{∥∥∇H(θ̄(t))

∥∥2} ≤ 1∑T
t=1 η

(t)

{
2(1 + 2KL2

T∑
t=1

η(t)2)E
{
H(θ̄(0))−H∗

}
+ 2

T∑
t=1

ξ(t)
}
.

Let η(t) = 1√
t
, then we have

∑T
t=1 η

(t) = O(
√
T ) and

∑T
t=1 η

(t)2 = O(log(T + 1)). Therefore,

min
t=1,...,T

E
{∥∥∇H(θ̄(t))

∥∥2} ≤ 1√
T

{
2(1 + 2KL2

T∑
t=1

η(t)2)E
{
H(θ̄(0))−H∗

}
+ 2

T∑
t=1

ξ(t)
}
.
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A.4 Additional Experiments

We conduct a sensitivity analysis using the FEMNIST-3-groups setting. Results are reported
in Figure A.1. Similar to the observation in the main paper, it can be seen that as λ increases, the
discrepancy between two groups decreases accordingly. Here kindly note that we did not plot group
3 for the sake of neatness. The line of group should stay in the middle of two lines.

𝟎. 𝟗𝝀𝒎𝒂𝒙𝟎

80

82

84

86

88

90 Group 2

Group 1

Figure A.1: Sensitivity analysis on FEMNIST
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APPENDIX B

Appendix for Chapter 3

This chapter does not have an Appendix.
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APPENDIX C

Appendix for Chapter 4

C.1 Convergence Plot

The convergence plots of Example 1 in the main paper are provided below. In Figure C.1(c), we
observe some fluctuations due to the small sample size. In this setting, since N = 800, each device
only has Mk = 8 data points on average. Recall that in the theoretical analysis, we have shown that
the convergence rate is also affected by O(

∑K
k=1 pkM

ϵk−0.5
k ).

𝜽
𝟐
−
𝜽
𝟐∗
𝟐

(a) 𝑲 = 𝟐𝟎,𝑵 = 𝟓𝟎𝟎𝟎 (b) 𝑲 = 𝟓𝟎,𝑵 = 𝟐𝟎𝟎𝟎 (c) 𝑲 = 𝟏𝟎𝟎,𝑵 = 𝟖𝟎𝟎

Communication Round

𝜽
𝟐
−
𝜽
𝟐∗
𝟐

𝜽
𝟐
−
𝜽
𝟐∗
𝟐

Communication Round Communication Round

Figure C.1: (Matérn−3/2 kernel) Evolution of
∥∥θ̄2 − θ∗2

∥∥2
2

over training epochs. The input dimen-
sion is 1. In the plot, each color represents an independent run.

C.2 Multi-fidelity Modeling

Example 3: CURRIN The CURRIN (Currin et al. 1991, Xiong et al. 2013) is a two-dimensional
function widely used for multi-fidelity computer simulation models. Given the input domain
x ∈ [0, 1]2, the high-fidelity model is

yh(x) =

[
1− exp

(
− 1

2x2

)]
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20
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whereas the low-fidelity model is given by

yl(x) =
1

4
[yh(x1 + 0.05, x2 + 0.05) + yh(x1 + 0.05,max(0, x2 − 0.05))]

+
1

4
[yh(x1 − 0.05, x2 + 0.05) + yh(x1 − 0.05,max(0, x2 − 0.05))].

We collect 40 data points from the HF model and 200 data points from the LF model. The number
of testing data points is 1,000.

Example 4: PARK The PARK function (Cox et al. 2001, Xiong et al. 2013) is a four-
dimensional function (x ∈ (0, 1]4) where the high-fidelity model is given as

yh(x) =
x1

2

[√
1 + (x2 + x2

3)
x4

x2
1

− 1

]
+ (x1 + 3x4)exp[1 + sin(x3)],

while the low-fidelity model is

yl(x) =

[
1 +

sin(x1)

10

]
yh(x)− 2x1 + x2

2 + x2
3 + 0.5.

Example 5: BRANIN In this example, there are three fidelity levels (Perdikaris et al. 2017,
Cutajar et al. 2019):

yh =

(
−1.275x2

1

π2
+

5x1

π
+ x2 − 6

)2

+

(
10− 5

4π

)
cos(x1) + 10,

ym = 10
√

yh(x− 2) + 2(x1 − 0.5)− 3(3x2 − 1)− 1,

yl = ym(1.2(x+ 2))− 3x2 + 1,

x ∈ [−5, 10]× [0, 15]

where ym(·) represents the output from the medium-fidelity (MF) model.
Example 6: Hartmann-3D Similar to Example 5, this is a 3-level multi-fidelity dataset where

the input space is [0, 1]3. The evaluation of observations with fidelity t is defined as (Cutajar et al.
2019)

yt(x) =
4∑

i=1

αiexp

(
−

3∑
j=1

Aij(xj − Pij)
2

)
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where

A =


3 10 30

0.1 10 35

3 10 30

0.1 10 35

 , P =


0.3689 0.1170 0.2673

0.4699 0.4387 0.7470

0.1091 0.8732 0.5547

0.0381 0.5743 0.8828

 ,

α = (1.0, 1.2, 3.0, 3.2)⊺,αt = α+ (3− t)δ, δ = (0.01,−0.01,−0.1, 0.1)⊺.

Example 7: Borehole Model The Borehole model is an 8-dimensional physical model that
simulates water flow through a borehole (Moon et al. 2012, Gramacy and Lian 2012, Xiong et al.
2013). The high-fidelity model is given as

yh(x) =
2πx3(x4 − x6)

ln(x2/x1)[1 + 2x7x3/(ln(x2/x1)x2
1x8) + x3/x5]

where x1 ∈ [0.05, 0.15], x2 ∈ [100, 50000], x3 ∈ [63070, 115600], x4 ∈ [990, 1110], x5 ∈ [63.1, 115],

x6 ∈ [700, 820], x7 ∈ [1120, 1680], x8 ∈ [9855, 12045]. The low-fidelity model is

yl(x) =
5πx3(x4 − x6)

ln(x2/x1)[1.5 + 2x7x3/(ln(x2/x1)x2
1x8) + x3/x5]

.

C.3 Additional Application: NASA Aircraft Gas Turbine Engines

CombustorFan
N1

LPT

Nozzle

HPT
N2HPC

LPC

Figure C.2: The engine diagram in C-MAPSS.

In this case study, we consider degradation signals generated from aircraft gas turbine engines
using the NASA Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) tools
(NASA dataset Link). The dataset consists of 100 engines and contains time-series degradation
signals collected from multiple sensors installed on the engines. Figure C.2 illustrates the engine
diagram in C-MAPSS. The experiment aims to predict the degradation signals for test engines in a
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federated paradigm. To do so, we assume that each client/device is a single engine, and all engines
aim to collaboratively learn a predictive degradation model.

Table C.1: Averaged RMSE (line 1 in each cell) and standard deviation (std) of RMSE (line 2 in
each cell) across all testing devices for the NASA data. Each experiment is repeated 30 times.

Averaged RMSE ×10
std of RMSE ×10 FGPR Polynomial Neural

Sensor 2
5.45 (0.01)
0.87 (0.02)

6.79 (0.01)
0.98 (0.02)

6.47 (0.05)
1.02 (0.01)

Sensor 7
5.76 (0.03)
0.76 (0.01)

6.55 (0.02)
0.89 (0.04)

6.71 (0.02)
0.85 (0.03)

We briefly describe our training procedures. We randomly divide the 100 engines into 60 training
engines and 40 testing engines. For each testing unit k, we randomly split the data on each device
into a 50% training dataset Dk,train := (Xk,train,yk,train) and a 50% testing dataset Dk,test := (X∗

k ,y
∗
k),

where y∗k =
[
y∗k,1, ...y

∗
k,|Dk,test|

]⊺
, X∗

k =
[
x∗k,1

⊺, ..., x∗k,|Dk,test|
⊺
]
. Recall that in the main paper, we

define |Dk,test| as the number of data points in the set Dk,test. We first train FGPR using the 60
training units and obtain a final aggregated global model parameter θ. The testing unit k then
directly uses this global parameter θ and Dk,train to predict outputs [f(x∗k,1

⊺), · · · , f(x∗k,|Dk,test|
⊺)] at

testing locations X∗
k without any additional training.

We benchmark FGPR with the following models.

1. Polynomial: All signal trajectories exhibit polynomial patterns, and therefore a polynomial
regression is often employed to analyze this dataset (Liu et al. 2013, Yan et al. 2016, Song
and Liu 2018). More specifically, we train a polynomial regression using FedAvg. During
the training process, each device updates the coefficients of a polynomial regression in the
form of yk(x) =

∑p
i=0 βikx

i + ϵk(x), where {βik}pi=0 are model parameters. This update
is done by running gradient descent to minimize the local sum squared error. The central
server aggregates the parameters using FedAvg and broadcasts the aggregated parameter
to all devices in the following communication round. Here, we conduct experiments with
different p ∈ {1, . . . , 20} and select the best p with the smallest averaged testing RMSE. Our
empirical study finds that p = 10 provides the best performance.

2. Neural: we train a q-layer neural network using FedAvg (McMahan et al. 2017). Similar to
Polynomial, we test the performance of the neural network with different q ∈ {1, . . . , 20}.
The best value is 2.

The prediction performance of each model is measured by the averaged RMSE across all 40
testing devices.
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The averaged RMSE and the standard deviation of RMSEs across all testing devices are reported
in Table C.1. Each experiment is repeated 30 times. The outputs on each device are scaled to be a
mean 0 and variance 1 sequence.

From Table C.1, we can obtain some important insights. First, FGPR consistently yields lower
averaged RMSE than other benchmark models. This illustrates the good transferability of FGPR.
More concretely, a shared global model can provide accurate surrogates even on untrained devices.
This feature is in fact very helpful in transfer learning or online learning. For instance, the shared
global model can be used as an initial parameter for fine-tuning on streaming data. Second, FGPR
also provides smaller standard deviations of RMSEs across all devices. This credits to the automatic
personalization feature encoded in GP .

C.4 One Additional Illustrative Example

In this section, we provide another toy example to demonstrate why the global model may fail
in deep networks. Consider a noiseless linear regression problem y = βx. Suppose there are two
devices. Device 1 has the data that follows y = 3x (i.e., β∗1 = 3) while device 2 has data that
follows y = x (i.e., β∗2 = 1). Each device has 100 training points uniformly spread in [0, 1]. If we
use FedAvg to train neural networks, then the optimization problem is

min
β

(
∥fβ − 3x∥22 + ∥fβ − x∥22

)
,

where ∥·∥22 is a functional on [0, 1] defined as ∥f∥22 =
∫ 1

0
f(x)2dx. One can derive that the global

optimal model parameter will be β = 2, and as a result, each device will fit a line y = 2x that fails
to predict the trend on any device.

C.5 Heterogeneous Setting

In this section, we consider the scenario where data from all devices are generated from several
different processes or distributions. Equivalently, this indicates

P

(∣∣∣∣∣
K∑
k=1

pkLk(θ
∗;Dk)−

K∑
k=1

pkLk(θ
∗
k;Dk)

∣∣∣∣∣ = 0

)
= 0.

Since the data are heterogeneous, the weighted average of Lk(θ
∗
k;Dk) can be very different from

L(θ∗).

Theorem 42. (RBF kernels) Suppose Assumptions 1-3a hold. At each communication round, assume

|S| = K. If η(t) = O(1
t
), then for some constants Cθ, cθ > 0, ϵk ∈ (0, 1

2
), when Mk > Cθ, at
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iteration T , with probability at least mink{1− Cθ(log(M
ϵk− 1

2
k ))4T exp{−cθM2ϵk

k }},∥∥∥∇L(θ̄(T )
)
∥∥∥2
2
≤ 2β2

1 (8(E − 1)2 + 2)G2

4θ4min(T + 1)

+O

(
max

k

logMk

Mk

+
K∑
k=1

pkM
ϵk− 1

2
k

)
.

On the other hand, at each communication round, assume |S| = Ksample number of devices are

sampled according to the sampling probability pk, then we have

ES
{∥∥∥∇L(θ̄(T )

)
∥∥∥2
2

}
≤

2β2
1

(
1
|S|4E

2 + 8(E − 1)2 + 2
)
G2

4θ4min(T + 1)

+O

(
max

k

logMk

Mk

+
K∑
k=1

pkM
ϵk− 1

2
k

)
.

Remark 43. In the heterogeneous setting, we show that the FGPR algorithm will converge to

a critical point of L(·) at a rate of O( 1
T
) subject to a statistical error. The upper bound of∥∥∥∇L(θ̄(T )

)
∥∥∥2
2

has the same form as the one for
∥∥θ̄2 − θ∗2

∥∥2
2
.

For the Matérn Kernel, we have the same upper bounds on
∥∥∥∇L(θ̄(T )

)
∥∥∥2
2

and ES
{∥∥∥∇L(θ̄(T )

)
∥∥∥2
2

}
as those in the Theorem 3. This implies that the heterogeneous data distribution has little to no
influence on the convergence behavior. The reason is that the heterogeneous definition is based
on true parameters θ∗ and {θ∗k}Kk=1. The main Theorem, however, states that our algorithm will
converge to a stationary point. In the non-convex scenario, the stationary point might be different
from the true parameter.

C.6 Important Lemmas

In this section, we present some key lemmas used in our theoretical analysis. We defer the
proofs of those Lemmas into Section C.8.

Lemma 44. (Theorem 4 in Braun (2006)) Let Ker be a Mercer kernel on a probability space X
with probability measure µ, satisfying Ker(x, x) ≤ 1 for all x ∈ X , with eigenvalues {λ∗i }∞i=1. Let

Kf,N (i.e., K(X,X)) be the empirical kernel matrix evaluated on data X i.i.d. sampled from µ,

then with probability at least 1− δ, the eigenvalues of λj(Kf,N) satisfies the following bound for
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1 ≤ j ≤ N and 1 ≤ r ≤ N :∣∣∣∣λj(Kf,N)

N
− λ∗j

∣∣∣∣ ≤ λ∗jC(r,N) +H(r,N),

where

C(r,N) < r

√
2

Nλ∗r
log

2r(r + 1)

δ
+

4r

3Nλ∗r
log

2r(r + 1)

δ
,

H(r,N) < λ∗r +
∞∑

i=r+1

λ∗i +

√
2
∑∞

i=r+1 λ
∗
i

N
log

2

δ
+

2

3N
log

2

δ
.

Alternatively, C(r,N) and H(r,N) can also be bounded as follows:

C(r,N) < r

√
r(r + 1)

Nδλ∗r
,

H(R,N) < λ∗r +
∞∑

i=r+1

λ∗i +

√
2
∑∞

i=r+1 λ
∗
i

Nδ
.

This Lemma is proved in Braun (2006).

Lemma 45. (Chen et al. 2020) Under Assumptions 1-3a, in device k, for any 0 < ϵk, αk < 1,

C1k(αk, bk) > 0 and Nk > C2k(ϵk, bk), then with probability at least 1− 2
N

αk
k

, we have

ϵk logNk

8bkθ2max

≤
Nk∑
j=1

λ2
1j(

θ
(t)
1kλ1j + θ

(t)
2kλ2j

)2 ≤ 4 + 2αk

bkθ2min

logNk

Nk − C1k(αk, bk) logNk

4θ2max

≤
Nk∑
j=1

λ2
2j(

θ
(t)
1kλ1j + θ

(t)
2kλ2j

)2 ≤ Nk

θ2min

Nk∑
j=1

λ1jλ2j(
θ
(t)
1kλ1j + θ

(t)
2kλ2j

)2 ≤ 5 + 2αk

7bkθ2min

logNk.

This Lemma is proved in Chen et al. (2020). Here note that we omit the subscript k in the
eigenvalues λ for simplicity. The full notation should be, for example, λ1jk for device k.

Lemma 46. Under Assumption 1-2 and 3b, for any 0 < αk <
8b2k−12bk−6

4bk+3
, with probability at least
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1− 1

N
1+αk
k

, the following inequalities hold:

Nk∑
j=1

λ2
1j(

θ
(t)
1kλ1j + θ

(t)
2kλ2j

)2 ≤ N
(2+αk)(4bk+3)

4bk(2bk−1)

k

(
1

θ2min

+
C2

mat,k(4bk + 3)

θ2min(8b
2
k − 8bk − 3)

)
,

Nk∑
j=1

λ1jλ2j(
θ
(t)
1kλ1j + θ

(t)
2kλ2j

)2 ≤ N
(2+αk)(4bk+3)

4bk(2bk−1)

k

(
1

θ2min

+
Cmat,k(4bk + 3)

θ2min(4b
2
k − 6bk − 3)

)
,

Nk − Cmat,kN
(2+αk)(4bk+3)

4bk(2bk−1)

k

4θmax

≤
Nk∑
j=1

λ2
2j(

θ
(t)
1kλ1j + θ

(t)
2kλ2j

)2 ≤ Nk

θ2min

,

where Cmat,k will be defined later.

Lemma 46 provides several bounds to constrain the eigenvalues of a Matérn kernel.

Lemma 47. Under Assumption 1-3a, with probability at least 1−2TM−αk
k , the following inequality

holds for any k ∈ [K] and 0 ≤ t < T :

⟨θ(t)
k − θ∗, g∗k(θ

(t)
k )⟩ ≥ γk

2

∥∥∥θ(t)
k − θ∗k

∥∥∥2
2
− C3k(αk, bk)

logMk

Mk

,

where γk = min
{

1
32τbkθ2max

, 1
4θ2max

− 8θ2max

τbkθ
4
min

}
and C3k(αk, bk) =

1
64bk

+ C1k(αk,bk)
8

− 4θ2max

bθ2min
.

Lemma 48. Under Assumption 1-2 and 3b, with probability at least 1 − T 1

M
1+αk
k

, the following

inequality holds:[
g∗k(θ

(t)
k )
]
2
(θ

(t)
2k − θ∗2k)

≥ γk
2
(θ

(t)
2k − θ∗2k)

2 − (θmax − θmin)
2M

(2+αk)(4bk+3)

4bk(2bk−1)
−1

k

(
1

2θ2min

+
Cmat,k(4bk + 3)

2θ2min(4b
2
k − 6bk − 3)

)
,

where γk :=
1

2Mk

Mk−Cmat,kM

(2+αk)(4bk+3)
4bk(2bk−1)

k

4θmax
.

Lemma 49. (Chen et al. 2020) Under Assumptions 1-2, for any ϕ > 0, we have

P

(
sup
θ

Nk

si(Nk)
|[∇Lk(θ;Dk)]i − [∇L∗k(θ)]i| > Cθϕ

)
≤ δ(ϕ), i = 1, 2,

where ∇L∗k(θ) := E (∇Lk(θ;Dk)|Xk).

Furthermore, if assumption 3a holds and si(Nk) = τ logNk, then for Nk > Cθ, cθ > 0, we
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have

δ(ϕ) ≤ Cθ

N cθ
k

+ Cθ(log ϕ)
4exp{−cθ logNk min{ϕ2, ϕ}}.

If assumption 3a or 3b holds and si(Nk) = Nk, then

δ(ϕ) ≤ Cθ(log ϕ)
4exp{−cθNk min{ϕ2, ϕ}}.

C.7 Proof of Theorems

C.7.1 Detailed Notations

Let θ(t)
k be the model parameter maintained in the kth device at the tth step. Let IE = {cE | c =

1, 2, . . . , R} be the set of global aggregation steps. If t + 1 ∈ IE , then the central server collects
model parameters from active devices and aggregates all of those model parameters. Motivated
by (Li et al. 2019b), we introduce an intermediate parameter v(t+1)

k := θ
(t)
k − η(t)gk(θ

(t)
k ; ξ

(t)
k ).

It can be seen that θ(t+1)
k = v

(t+1)
k if t + 1 /∈ IE and θ

(t+1)
k =

∑K
k=1 pkv

(t+1)
k otherwise. Let

v̄(t) =
∑K

k=1 pkv
(t)
k and θ̄

(t)
=
∑K

k=1 pkθ
(t)
k . The central server can only obtain θ̄

(t) when t+1 ∈ IE .
The term v̄(t) is introduced for the purpose of proof and is inaccessible in practice. We further
define g(t) =

∑K
k=1 pkgk(θ

(t)
k ; ξ

(t)
k ).

C.7.2 Proof of Theorem 1

Under the scenario of full device participation, we have θ̄
(t+1)

= v̄(t+1) for all t. By definition
of v̄(t), we have

∥∥v̄(t+1) − θ∗
∥∥2
2
=
∥∥∥θ̄(t)−η(t)g(t) − θ∗

∥∥∥2
2

=
∥∥∥θ̄(t)−θ∗

∥∥∥2
2︸ ︷︷ ︸

A

−2η(t)⟨θ̄(t)−θ∗, g(t)⟩︸ ︷︷ ︸
B

+η(t)2
∥∥g(t)∥∥2

2︸ ︷︷ ︸
C

.
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We can write B as

B = −2η(t)⟨θ̄(t)−θ∗, g(t)⟩ = −2η(t)⟨θ̄(t)−θ∗,
K∑
k=1

pkgk(θ
(t)
k ; ξ

(t)
k )⟩

= −2η(t)
K∑
k=1

pk⟨θ̄
(t)−θ∗, gk(θ(t)

k ; ξ
(t)
k )⟩

= −2η(t)
K∑
k=1

pk⟨θ̄
(t)−θ(t)

k , gk(θ
(t)
k ; ξ

(t)
k )⟩ − 2η(t)

K∑
k=1

pk⟨θ(t)
k − θ∗, gk(θ

(t)
k ; ξ

(t)
k )⟩.

By Cauchy-Schwarz inequality and inequality of arithmetic and geometric means, we can
simplify the first term in B as

−2⟨θ̄(t)−θ(t)
k , gk(θ

(t)
k ; ξ

(t)
k )⟩ ≤ 2

√
η(t)√
η(t)

∥∥∥θ̄(t)−θ(t)
k

∥∥∥∥∥∥gk(θ(t)
k ; ξ

(t)
k )
∥∥∥

≤ 2

1
η(t)

∥∥∥θ̄(t)−θ(t)
k

∥∥∥2 + η(t)
∥∥∥gk(θ(t)

k ; ξ
(t)
k )
∥∥∥2

2

≤
(

1

η(t)

∥∥∥θ̄(t)−θ(t)
k

∥∥∥2
2
+ η(t)

∥∥∥gk(θ(t)
k ; ξ

(t)
k )
∥∥∥2
2

)
.

By Lemma 47, we can simplify the second term in B as

− 2η(t)⟨θ(t)
k − θ∗, gk(θ

(t)
k ; ξ

(t)
k )⟩ = −2η(t)⟨θ(t)

k − θ∗, gk(θ
(t)
k ; ξ

(t)
k ) + g∗k(θ

(t)
k )− g∗k(θ

(t)
k )⟩

≤ −2η(t)γk
2

∥∥∥θ(t)
k − θ∗

∥∥∥2
2
+ 2η(t)C3k(αk, bk)

logMk

Mk

− 2η(t)⟨θ(t)
k − θ∗, gk(θ

(t)
k ; ξ

(t)
k )− g∗k(θ

(t)
k )⟩.

By Assumption 2,

C =
∥∥g(t)∥∥2

2
=

∥∥∥∥∥
K∑
k=1

pkgk(θ
(t)
k ; ξ

(t)
k )

∥∥∥∥∥
2

≤

(
K∑
k=1

∥∥∥pkgk(θ(t)
k ; ξ

(t)
k )
∥∥∥)2

≤

(
K∑
k=1

pkG

)2

= G2.
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Combining A, B and C together, we obtain

∥∥v̄(t+1) − θ∗
∥∥2
2

≤
∥∥∥θ̄(t)−θ∗

∥∥∥2
2
+ η(t)

K∑
k=1

pk

(
1

η(t)

∥∥∥θ̄(t)−θ(t)
k

∥∥∥2
2
+ η(t)G2

)

− 2η(t)
K∑
k=1

pk
γk
2

∥∥∥θ(t)
k − θ∗

∥∥∥2
2
+ 2η(t)

K∑
k=1

pkC3k(αk, bk)
logMk

Mk

+ η(t)2G2

− 2η(t)
K∑
k=1

pk⟨θ(t)
k − θ∗, gk(θ

(t)
k ; ξ

(t)
k )− g∗k(θ

(t)
k )⟩

=
∥∥∥θ̄(t)−θ∗

∥∥∥2
2
+

K∑
k=1

pk

∥∥∥θ̄(t)−θ(t)
k

∥∥∥2
2︸ ︷︷ ︸

D

+η(t)2G2

− 2η(t)
K∑
k=1

pk
γk
2

∥∥∥θ(t)
k − θ∗

∥∥∥2
2︸ ︷︷ ︸

E

+2η(t)
K∑
k=1

pkC3k(αk, bk)
logMk

Mk

+ η(t)2G2

− 2η(t)
K∑
k=1

pk⟨θ(t)
k − θ∗, gk(θ

(t)
k ; ξ

(t)
k )− g∗k(θ

(t)
k )⟩.

Since the aggregation step happens each E steps, for any t ≥ 0, there exists a t0 ≤ t such that
t− t0 ≤ E− 1 and θ

(t0)
k = θ̄

(t0) for all k ∈ [K]. Since η(t) is non-increasing, for all t− t0 ≤ E− 1,
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we can simplify D as

D =
K∑
k=1

pk

∥∥∥θ̄(t)−θ(t)
k

∥∥∥2
2
=

K∑
k=1

pk

∥∥∥(θ(t)
k − θ̄

(t0))− (θ̄
(t)− θ̄

(t0))
∥∥∥2
2

≤
K∑
k=1

pk

∥∥∥θ(t)
k − θ̄

(t0)
∥∥∥2
2
+

K∑
k=1

pk

∥∥∥θ̄(t)− θ̄
(t0)
∥∥∥2
2︸ ︷︷ ︸∑

pk=1

=
K∑
k=1

pk

∥∥∥∥∥
t−1∑
t=t0

η(t)gk(θ
(t)
k ; ξ

(t)
k )

∥∥∥∥∥
2

2

+

∥∥∥∥∥
K∑
k=1

pk

t−1∑
t=t0

η(t)gk(θ
(t)
k ; ξ

(t)
k )

∥∥∥∥∥
2

2

≤
K∑
k=1

pk(t− t0)
t−1∑
t=t0

η(t)2
∥∥∥g(θ(t)

k ; ξ
(t)
k )
∥∥∥2
2
+

K∑
k=1

pk

∥∥∥∥∥
t−1∑
t=t0

η(t)gk(θ
(t)
k ; ξ

(t)
k )

∥∥∥∥∥
2

2

≤ 2
K∑
k=1

pk(E − 1)
t−1∑
t=t0

η(t)2
∥∥∥g(θ(t)

k ; ξ
(t)
k )
∥∥∥2
2
≤ 2

K∑
k=1

pk(E − 1)
t−1∑
t=t0

η(t0)2G2

= 2
K∑
k=1

pk(E − 1)2η(t0)2G2.

Without loss of generality, assume η(t0) ≤ 2η(t) since the learning rate is decreasing. Therefore,
D ≤ 8(E − 1)2η(t)2G2. To simplify E, we have

E =
K∑
k=1

pk
γk
2

∥∥∥θ(t)
k − θ∗

∥∥∥2
2
≥ min

k
γk

1

2

K∑
k=1

pk

∥∥∥θ(t)
k − θ∗

∥∥∥2
2

≥ min
k

γk
1

2

∥∥∥∥∥
K∑
k=1

pk(θ
(t)
k − θ∗)

∥∥∥∥∥
2

2

= min
k

γk
1

2

∥∥∥θ̄(t)−θ∗
∥∥∥2
2
,

using Jensen’s inequality.
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Therefore, we obtain

∥∥v̄(t+1) − θ∗
∥∥2
2

≤
∥∥∥θ̄(t)−θ∗

∥∥∥2
2
+ 8(E − 1)2η(t)2G2 + η(t)2G2

− 2η(t) min
k

γk
1

2

∥∥∥θ̄(t)−θ∗
∥∥∥2
2
+ 2η(t)

K∑
k=1

pkC3k(αk, bk)
logMk

Mk

+ η(t)2G2

− 2η(t)
K∑
k=1

pk⟨θ(t)
k − θ∗, gk(θ

(t)
k ; ξ

(t)
k )− g∗k(θ

(t)
k )⟩

=

(
1− 2η(t) min

k
γk

1

2

)∥∥∥θ̄(t)−θ∗
∥∥∥2
2
+ (8(E − 1)2η(t)2 + 2η(t)2)G2

+ 2η(t)
K∑
k=1

pkC3k(αk, bk)
logMk

Mk

− 2η(t)
K∑
k=1

pk⟨θ(t)
k − θ∗, gk(θ

(t)
k ; ξ

(t)
k )− g∗k(θ

(t)
k )⟩

≤
(
1− 2η(t) min

k
γk

1

2

)∥∥∥θ̄(t)−θ∗
∥∥∥2
2
+ (8(E − 1)2η(t)2 + 2η(t)2)G2

+ 2η(t) max
k

C3k(αk, bk)
logMk

Mk

− 2η(t)
K∑
k=1

pk⟨θ(t)
k − θ∗, gk(θ

(t)
k ; ξ

(t)
k )− g∗k(θ

(t)
k )⟩

=

(
1− 2η(t) min

k
γk

1

2

)∥∥∥θ̄(t)−θ∗
∥∥∥2
2
+
(
8(E − 1)2 + 2

)
η(t)2G2

+ 2η(t)
(
max

k
C3k(αk, bk)

logMk

Mk

−
K∑
k=1

pk⟨θ(t)
k − θ∗, gk(θ

(t)
k ; ξ

(t)
k )− g∗k(θ

(t)
k )⟩

)
.

Since 3
2mink γk

≤ β1 ≤ 2
mink γk

and η(t) = β1

t
for all t ≥ 1. Here we set η(0) = β1. We will show

∥∥∥θ̄(t)−θ∗
∥∥∥2
2
≤ 2β2

1 (8(E − 1)2 + 2)G2

t+ 1

+
t−1∑
u=0

(
2η(u+1)

t∏
v=u+2

(1− η(v) min
k

γk)

)(
max

k
C3k(αk, bk)

logMk

Mk

−
K∑
k=1

pk⟨θ(u)
k − θ∗, gk(θ

(u)
k ; ξ

(u)
k )− g∗k(θ

(u)
k )⟩

)
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by induction. When t = 1, we have∥∥∥θ̄(1)−θ∗
∥∥∥2
2
≤
(
8(E − 1)2 + 2

)
β2
1G

2 + 2β1

(
max

k
C3k(αk, bk)

logMk

Mk

−
K∑
k=1

pk⟨θ(0)
k − θ∗, gk(θ

(0)
k ; ξ

(0)
k )− g∗k(θ

(0)
k )⟩

)

since
(
1− 2η(0)mink γk

1
2

)
< 0. Assume the inequality holds for t = l ≥ 1, then we have∥∥∥θ̄(l+1)−θ∗
∥∥∥2
2

≤
(
1− 2η(l) min

k
γk

1

2

){
2β2

1 (8(E − 1)2 + 2)G2

l + 1

+
l−1∑
u=0

2η(u+1)

l∏
v=u+2

(1− η(v) min
k

γk)

(
max

k
C3k(αk, bk)

logMk

Mk

−
K∑
k=1

pk⟨θ(u)
k − θ∗, gk(θ

(u)
k ; ξ

(u)
k )− g∗k(θ

(u)
k )⟩

)}
+
(
8(E − 1)2 + 2

)
η(l)2G2

+ 2η(l)
(
max

k
C3k(αk, bk)

logMk

Mk

−
K∑
k=1

pk⟨θ(l)
k − θ∗, gk(θ

(l)
k ; ξ

(l)
k )− g∗k(θ

(l)
k )⟩

)
≤ 2β2

1 (8(E − 1)2 + 2)G2

l + 2

+
l∑

u=0

2η(u+1)

l∏
v=u+2

(1− η(v) min
k

γk)

(
max

k
C3k(αk, bk)

logMk

Mk

−
K∑
k=1

pk⟨θ(u)
k − θ∗, gk(θ

(u)
k ; ξ

(u)
k )− g∗k(θ

(u)
k )⟩

)
.

To derive the above inequality, we can first show that(
1− 2η(l) min

k
γk

1

2

)
2β2

1 (8(E − 1)2 + 2)G2

l + 1
+
(
8(E − 1)2 + 2

)
η(l)2G2

≤ 2β2
1 (8(E − 1)2 + 2)G2

l + 2

as long as β1 ≥ 3l+1
2l+2

1
mink γk

. This is true since the right-hand side is always less or equal to 3
2mink γk

.
The remaining part in the above inequality is apparent since 1 − 2η(l) mink γk

1
2
≤ 1. Thus, the
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proof of the induction step is complete. Using this fact, it can be shown that∥∥∥θ̄(t+1)−θ∗
∥∥∥2
2

≤ 2β2
1 (8(E − 1)2 + 2)G2

t+ 2

+
t∑

u=0

2η(u+1)

t∏
v=u+2

(1− η(v) min
k

γk)

(
max

k
C3k(αk, bk)

logMk

Mk

−
K∑
k=1

pk⟨θ(u)
k − θ∗, gk(θ

(u)
k ; ξ

(u)
k )− g∗k(θ

(u)
k )⟩

)
≤ 2β2

1 (8(E − 1)2 + 2)G2

t+ 2

+
t∑

u=0

(
2η(u+1)

t∏
v=u+2

(1− η(v) min
k

γk)

)(
max

k
C3k(αk, bk)

logMk

Mk

)

−
t∑

u=0

(
2η(u+1)

t∏
v=u+2

(1− η(v) min
k

γk)

)( K∑
k=1

pk⟨θ(u)
k − θ∗, gk(θ

(u)
k ; ξ

(u)
k )− g∗k(θ

(u)
k )⟩

)
≤ 2β2

1 (8(E − 1)2 + 2)G2

t+ 2

+
t∑

u=0

2β1

t+ 1

(
max

k
C3k(αk, bk)

logMk

Mk

)

+
t∑

u=0

2β1

t+ 1

( K∑
k=1

pk

∥∥∥θ(u)
k − θ∗

∥∥∥
2

∥∥∥gk(θ(u)
k ; ξ

(u)
k )− g∗k(θ

(u)
k )
∥∥∥
2

)
≤ 2β2

1 (8(E − 1)2 + 2)G2

t+ 2

+

(
max

k
C3k(αk, bk)

logMk

Mk

)
+

t∑
u=0

2β1

t+ 1

( K∑
k=1

pk

∥∥∥θ(u)
k − θ∗

∥∥∥
2

∥∥∥gk(θ(u)
k ; ξ

(u)
k )− g∗k(θ

(u)
k )
∥∥∥
2

)
≤ 2β2

1 (8(E − 1)2 + 2)G2

t+ 2

+max
k

C3k(αk, bk)
logMk

Mk

+
2β1

t+ 1

t∑
u=0

( K∑
k=1

√
2pk(θmax − θmin)

∥∥∥gk(θ(u)
k ; ξ

(u)
k )− g∗k(θ

(u)
k )
∥∥∥
2

)
≤ 2β2

1 (8(E − 1)2 + 2)G2

t+ 2

+ 2β1max
k

C3k(αk, bk)
logMk

Mk

+ 2β1 max
0≤u≤t

( K∑
k=1

√
2pk(θmax − θmin)

∥∥∥gk(θ(u)
k ; ξ

(u)
k )− g∗k(θ

(u)
k )
∥∥∥
2

)
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In the third inequality, we use the Cauchy–Schwarz inequality and the fact that 2η(u+1)
∏t

v=u+2(1−
η(v) mink γk) ≤ 2 β1

u+1

∏t
v=u+2(1−

3
2v
) ≤ 2β1

t+1
.

Let ϕk = (logMk)
ϵk− 1

2 . By Lemma 49 and using a union bound over u, with probability at least
1− Cθ(T + 1)exp(−cθ(logMk)

2ϵk), we have

max
0≤u≤t

∥∥∥gk(θ(u)
k ; ξ

(u)
k )− g∗k(θ

(u)
k )
∥∥∥
2
≤ Cθ(logMk)

ϵk− 1
2 .

Therefore, ∥∥∥θ̄(t+1)−θ∗
∥∥∥2
2

≤ 2β2
1 (8(E − 1)2 + 2)G2

t+ 2
+ 2β1max

k
C3k(αk, bk)

logMk

Mk

+ 2β1 max
0≤u≤t

K∑
k=1

√
2pk(θmax − θmin)Cθ(logMk)

ϵk− 1
2

=
2β2

1 (8(E − 1)2 + 2)G2

t+ 2
+ 2β1max

k
C3k(αk, bk)

logMk

Mk

+ 2
√
2β1(θmax − θmin)Cθ

K∑
k=1

pk(logMk)
ϵk− 1

2 .

Using the same proof technique, we can also derive the same bound on
∥∥∥θ̄(t+1)

2 − θ∗2

∥∥∥2
2
. Let

ϕk = M
ϵk− 1

2
k . By Lemma 49 and using a union bound over u, with probability at least 1− Cθ(t+

1)(log(M
ϵk− 1

2
k ))4exp{−cθM2ϵk

k },

max
0≤u≤t

∥∥∥gk(θ(u)
k ; ξ

(u)
k )− g∗k(θ

(u)
k )
∥∥∥
2
≤ CθM

ϵk− 1
2

k .

Therefore, ∥∥∥θ̄(t+1)
2 − θ∗2

∥∥∥2
2

≤ 2β2
1 (8(E − 1)2 + 2)G2

t+ 2
+ 2β1max

k
C3k(αk, bk)

logMk

Mk

+ 2β1 max
0≤u≤t

K∑
k=1

√
2pk(θmax − θmin)CθM

ϵk− 1
2

k

=
2β2

1 (8(E − 1)2 + 2)G2

t+ 2
+ 2β1max

k
C3k(αk, bk)

logMk

Mk

+ 2
√
2β1(θmax − θmin)Cθ

K∑
k=1

pkM
ϵk− 1

2
k .
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C.7.3 Proof of Theorem 2

We slightly modify the definition of θ(t+1)
k such that θ(t+1)

k = 1
|S|
∑

k∈S v
(t+1)
k if t + 1 ∈ IE .

Under the scenario of asynchronous update, it can be seen that θ̄(t+1) ̸= v̄(t+1). Therefore, we want

to establish a bound on the difference
∥∥∥θ̄(t+1)−v̄(t+1)

∥∥∥2
2
. We have

∥∥∥θ̄(t+1)−θ∗
∥∥∥2
2
=
∥∥∥θ̄(t+1)−v̄(t+1) + v̄(t+1) − θ∗

∥∥∥2
2

=
∥∥∥θ̄(t+1)−v̄(t+1)

∥∥∥2
2︸ ︷︷ ︸

A

+
∥∥v̄(t+1) − θ∗

∥∥2
2︸ ︷︷ ︸

B

+2⟨θ̄(t+1)−v̄(t+1), v̄(t+1) − θ∗⟩︸ ︷︷ ︸
C

.

We can show

ES
{
θ̄
(t+1)

}
= ES

{
1

|S|
∑
k∈S

v
(t+1)
k

}
=

1

|S|
∑
k∈S

ES
{
v
(t+1)
k

}
= ES

{
v
(t+1)
1

}
=

K∑
k=1

pkv
(t+1)
k = v̄(t+1)

since the sampling distribution is identical. Therefore, ES [C] = 0.
For part A, we have

ES
{∥∥∥θ̄(t+1)−v̄(t+1)

∥∥∥2
2

}
= ES

{
1

|S|2
∑
k∈S

∥∥∥v(t+1)
k − v̄(t+1)

∥∥∥2
2

}
=

1

|S|

K∑
k=1

pk

∥∥∥v(t+1)
k − v̄(t+1)

∥∥∥2
2
.

The first equality uses the fact that v(t+1)
k is independent of each other and is an unbiased estimator
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of v̄(t+1). Therefore, we have

K∑
k=1

pk

∥∥∥v(t+1)
k − v̄(t+1)

∥∥∥2
2
=

K∑
k=1

pk

∥∥∥v(t+1)
k − θ̄

(t0)−(θ̄(t0)−v̄(t+1))
∥∥∥2
2

≤
K∑
k=1

pk

∥∥∥v(t+1)
k − θ̄

(t0)
∥∥∥2
2

≤
K∑
k=1

pk

∥∥∥v(t+1)
k − θ

(t0)
k

∥∥∥2
2

=
K∑
k=1

pk

∥∥∥∥∥
t∑

i=t0

η(i)gk(θ
(i)
k ; ξ

(i)
k )

∥∥∥∥∥
2

2

≤
K∑
k=1

pk

t∑
i=t0

E
∥∥∥η(i)gk(θ(i)

k ; ξ
(i)
k )
∥∥∥2
2

≤ E2η(t0)2G2 ≤ 4E2η(t)2G2

where t0 = t− E + 1 is the iteration where communication happens. Therefore,

ES
{∥∥∥θ̄(t+1)−v̄(t+1)

∥∥∥2
2

}
≤ 4E2η(t)2G2

|S|
.

For part B, we can follow the exact proof in Theorem 1 to get an upper bound after taking
expectation with respect to S. In a nutshell, we can obtain

ES
{∥∥∥θ̄(t+1)−θ∗

∥∥∥2
2

}
≤ 4E2η(t)2G2

|S|
+

(
1− 2η(t) min

k
γk

1

2

)∥∥∥θ̄(t)−θ∗
∥∥∥2
2
+
(
8(E − 1)2 + 2

)
η(t)2G2

+ 2η(t)
(
max

k
C3k(αk, bk)

logMk

Mk

−
K∑
k=1

pk⟨θ(t)
k − θ∗, gk(θ

(t)
k ; ξ

(t)
k )− g∗k(θ

(t)
k )⟩

)
.
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Following the induction proof in Theorem 1, we have

ES
{∥∥∥θ̄(t+1)−θ∗

∥∥∥2
2

}

≤
2β2

1

(
1
|S|4E

2 + 8(E − 1)2 + 2
)
G2

t+ 2
+ 2β1max

k
C3k(αk, bk)

logMk

Mk

+ 2
√
2β1(θmax − θmin)Cθ

K∑
k=1

pkM
ϵk− 1

2
k .

C.7.4 Proof of Theorem 3

Convergence of Parameter Iterates
Define C4k := (θmax − θmin)

2
(

1
2θ2min

+
Cmat,k(4bk+3)

2θ2min(4b
2
k−6bk−3)

)
. Following the same proof strategy in

Theorem 1 and using Lemma 46 and 48, we can show that∥∥∥θ̄(t+1)
2 − θ∗2

∥∥∥2
2

≤ 2β2
1 (8(E − 1)2 + 2)G2

t+ 1
+

t∑
u=0

2η(u+1)

t∏
v=u+2

(1− η(v) min
k

γk)

(
max

k
C4kM

(2+αk)(4bk+3)

4bk(2bk−1)
−1

k −

K∑
k=1

pk⟨θ(u)2k − θ∗2, [gk(θ
(u)
k ; ξ

(u)
k )]2 − [g∗k(θ

(u)
k )]2⟩

)
≤ 2β2

1 (8(E − 1)2 + 2)G2

t+ 1
+ 2β1max

k
C4kM

(2+αk)(4bk+3)

4bk(2bk−1)
−1

k

+ 2β1 max
0≤u≤t

( K∑
k=1

√
2pk(θmax − θmin)

∥∥∥[gk(θ(u)
k ; ξ

(u)
k )]2 − [g∗k(θ

(u)
k )]2

∥∥∥
2

)
.

Let ϕk = M
ϵk− 1

2
k . By Lemma 49, for any 0 < αk <

8b2k−12bk−6
4bk+3

, ϵk < 1
2
, with probability at least

1− Cθ(t+ 1)(log(M
ϵk− 1

2
k ))4exp{−cθM2ϵk

k }, we have

max
0≤u≤t

∥∥∥[gk(θ(u)
k ; ξ

(u)
k )]2 − [g∗k(θ

(u)
k )]2

∥∥∥
2
≤ CθM

ϵk− 1
2

k .
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Therefore,∥∥∥θ̄(t+1)
2 − θ∗2

∥∥∥2
2

≤ 2β2
1 (8(E − 1)2 + 2)G2

t+ 1
+ 2β1max

k
C4kM

(2+αk)(4bk+3)

4bk(2bk−1)
−1

k

+ 2β1

( K∑
k=1

√
2pk(θmax − θmin)CθM

ϵk− 1
2

k

)

=
2β2

1 (8(E − 1)2 + 2)G2

t+ 1
+O

max
k

M
− 8b2k−12bk−6−3αk−4αkbk

8b2
k
−4bk

k

+O

(
K∑
k=1

pkM
ϵk− 1

2
k

)
.

The partial device participation proof is similar to Theorem 2. Again, using Lemma 46 and 48,
we can show that

ES
{∥∥∥θ̄(t+1)

2 − θ∗2

∥∥∥2
2

}

≤
2β2

1

(
4E2

|S| + 8(E − 1)2 + 2
)
G2

t+ 1

+ 2β1max
k

C4kM
(2+αk)(4bk+3)

4bk(2bk−1)
−1

k + 2β1

( K∑
k=1

√
2pk(θmax − θmin)CθM

ϵk− 1
2

k

)

=
2β2

1

(
4E2

|S| + 8(E − 1)2 + 2
)
G2

t+ 1
+O

max
k

M
− 8b2k−12bk−6−3αk−4αkbk

8b2
k
−4bk

k

+O

(
K∑
k=1

pkM
ϵk− 1

2
k

)
.

Convergence of Full Gradient
We follow the same proof strategy in Theorem 4. We defer this proof to the subsection after it.

C.7.5 Proof of Theorem 4

Proof. Our final goal is to bound the squared norm of full gradient

∥∥∇L(θ̄)∥∥2
2
=

∥∥∥∥∥
K∑
k=1

pk∇Lk(θ̄;Dk)

∥∥∥∥∥
2

2

.

We define a conditional expectation of∇Lk(θ̄
(t)
;Dk) as

∇L∗k(θ̄
(t)
) := E

(
∇Lk(θ̄

(t)
;Dk)|Xk

)
.
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By the definition of∇L∗k(θ̄
(t)
), for i ∈ {1, 2}, we have[

∇L∗k(θ̄
(t)
)
]
i

=
1

2Nk

Tr

[
KNk

(θ̄
(t)
)−1
(
INk
−KNk

(θ∗k)KNk
(θ̄

(t)
)−1
) ∂KNk

(θ̄
(t)
)

∂θ̄
(t)
i

]

=
1

2Nk

Tr

[
KNk

(θ̄
(t)
)−1
(
KNk

(θ̄
(t)
)−KNk

(θ∗k)
)
KNk

(θ̄
(t)
)−1

∂KNk
(θ̄

(t)
)

∂θ̄
(t)
i

]
.

where θ∗k := (θ∗1k, θ
∗
2k) is the set of optimal model parameters for device k and KNk

(θk) =

θ1kKf,Nk
+ θ2kINk

, where θ1k, θ2k are device-specific model parameters and INk
is an identity

matrix of size Nk. Therefore, we obtain[
∇L∗k(θ̄

(t)
)
]
i

=
1

2Nk

Tr

[
KNk

(θ̄
(t)
)−1
(
(θ̄

(t)
1 − θ∗1k)Kf,Nk

+ (θ̄
(t)
2 − θ∗2k)INk

)
KNk

(θ̄
(t)
)−1

∂KNk
(θ̄

(t)
)

∂θ̄
(t)
i

]
,

where θ̄
(t)
i =

∑K
k=1 pkθ

(t)
ik , i = 1, 2.

By Eigendecomposition, we can write Kf,Nk
= QNk

ΛNk
Q−1Nk

where QNk
contains eigenvectors

of Kf,Nk
, ΛNk

:= diag(λ11, λ12, . . . , λ1Nk
) is a diagonal matrix with eigenvalues of Kf,Nk

and λ1j

is the jth largest eigenvalue of Kf,Nk
. Here note that the values of λ·· are different for each device k.

For simplicity, we drop the notation k in the eigenvalues unless there is an ambiguity. When i = 1,
we can simplify

[
∇L∗k(θ̄

(t)
)
]
i

as

[
∇L∗k(θ̄

(t)
)
]
1

=
1

2Nk

Tr
[
KNk

(θ̄
(t)
)−1
(
(θ̄

(t)
1 − θ∗1k)Kf,Nk

+ (θ̄
(t)
1 − θ∗2k)INk

)
KNk

(θ̄
(t)
)−1Kf,Nk

]
=

1

2Nk

(θ̄
(t)
1 − θ∗1k)

Nk∑
j=1

λ2
1j(

θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2 +
1

2Nk

(θ̄
(t)
2 − θ∗2k)

Nk∑
j=1

λ2jλ1j(
θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2 .
where λ2j = 1 is the jth largest eigenvalue of INk

. Similarly, it can be shown that, when i = 2,[
∇L∗(θ̄(t)

)
]
2

=
1

2Nk

(θ̄
(t)
1 − θ∗1k)

Nk∑
j=1

λ1jλ2j(
θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2 +
1

2Nk

(θ̄
(t)
2 − θ∗2k)

Nk∑
j=1

λ2
2j(

θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2 .
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Our first goal is to bound eigenvalues of Kf,Nk
using Lemma 44 and 45.

Part I: Bounding eigenvalues By Lemma 44 and 45, for any 0 < ϵk, αk < 1, C1k(α, b) > 0

and Nk > C2k(ϵk, bk), with probability at least 1− 3
N

αk
k

,

ϵk logNk

8bkθ2max

≤
Nk∑
j=1

λ2
1j(

θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2 ≤ 4 + 2αk

bkθ2min

logNk

Nk − C1k(αk, bk) logNk

4θ2max

≤
Nk∑
j=1

λ2
2j(

θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2 ≤ Nk

θ2min

0 <

Nk∑
j=1

λ1jλ2j(
θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2 ≤ 5 + 2αk

7bkθ2min

logNk.

Therefore, we can show that, with probability at least 1− 3
N

αk
k

,

[
∇L∗k(θ̄

(t)
)
]
1
=

1

2Nk

(θ̄
(t)
1 − θ∗1k)

Nk∑
j=1

λ2
1j(

θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2
+

1

2Nk

(θ̄
(t)
2 − θ∗2k)

Nk∑
j=1

λ2jλ1j(
θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2
≤ 1

2Nk

(θ̄
(t)
1 − θ∗1k)

4 + 2αk

bkθ2min

logNk +
1

2Nk

5 + 2αk

7bkθ2min

logNk

≤ (θmax − θmin)(33 + 16αk)

14Nkbkθ2min

logNk =
(θmax − θmin)(33 + 16αk)

14bkθ2min

logNk

Nk

,

and

[
∇L∗k(θ̄

(t)
)
]
1
=

1

2Nk

(θ̄
(t)
1 − θ∗1k)

Nk∑
j=1

λ2
1j(

θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2
+

1

2Nk

(θ̄
(t)
2 − θ∗2k)

N∑
j=1

λ2jλ1j(
θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2
≥ 1

2Nk

ϵk logNk

8bkθ2max

=
ϵk

16bkθ2max

logNk

Nk

> 0.
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Similarly, it can be shown that[
∇L∗k(θ̄

(t)
)
]
2

=
1

2Nk

(θ̄
(t)
1 − θ∗1k)

Nk∑
j=1

λ1jλ2j(
θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2 +
1

2Nk

(θ̄
(t)
2 − θ∗2k)

Nk∑
j=1

λ2
2j(

θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2
≤ 1

2Nk

(θ̄
(t)
1 − θ∗1k)

5 + 2αk

7bkθ2min

logNk +
1

2Nk

(θ̄
(t)
2 − θ∗2k)

Nk

θ2min

≤ (θmax − θmin)(5 + 2αk)

14bkθ2min

logNk

Nk

+ (θ̄
(t)
2 − θ∗2k)

1

2θ2min

,

and [
∇L∗k(θ̄

(t)
)
]
2

=
1

2Nk

(θ̄
(t)
1 − θ∗1k)

Nk∑
j=1

λ1jλ2j(
θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2 +
1

2Nk

(θ̄
(t)
2 − θ∗2k)

Nk∑
j=1

λ2
2j(

θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2
≥ 1

2Nk

(θ̄
(t)
2 − θ∗2k)

Nk − C1k(αk, bk) logNk

4θ2max

≥ (θ̄
(t)
2 − θ∗2k)

1

8θ2max

− (θmax − θmin)C1k(αk, bk)

8θ2max

logNk

Nk

.

By combining above inequalities, we obtain∥∥∥∇L∗k(θ̄(t)
)
∥∥∥2
2

=

([
∇L∗k(θ̄

(t)
)
]2
1
+
[
∇L∗k(θ̄

(t)
)
]2
2

)
≤
{(

(θmax − θmin)(33 + 16αk)

14bkθ2min

logNk

Nk

)2

+

(
(θmax − θmin)(5 + 2αk)

14bkθ2min

logNk

Nk

+ (θ̄
(t)
2 − θ∗2k)

1

2θ2min

)2}
.

Our next goal is therefore to study the behavior of θ̄(t)2 − θ∗2k during iteration and provide a bound
on this parameter iterate.

Part II: Bounding parameter iterates We consider the full device participation scenario and
the partial device participation scenario separately.

Under the full device participation scenario, following the same procedure in the proof of
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Theorem 1, we can show that∥∥∥θ̄(t+1)
2 − θ̄∗2k

∥∥∥2
2
≤ 2β2

1 (8(E − 1)2 + 2)G2

t+ 2

+ 2β1max
k

C3k(αk, bk)
logMk

Mk

+ 2β1 max
0≤u≤t

( K∑
k=1

√
2pk(θmax − θmin)

∥∥∥gk(θ(u)
k ; ξ

(u)
k )− g∗k(θ

(u)
k )
∥∥∥
2

)
≤ 2β2

1 (8(E − 1)2 + 2)G2

t+ 2
+ 2β1max

k
C3k(αk, bk)

logMk

Mk

+ 2
√
2β1(θmax − θmin)CθM

ϵk− 1
2

k ,

with probability at least 1− Cθ(t+ 1)(log(M
ϵ− 1

2
k ))4exp{−cθM2ϵk

k }.
Under the partial device participation scenario, following the same procedure in the proof of

Theorem 2, we can show

ES
{∥∥θ̄(t+1) − θ̄∗2k

∥∥2
2

}
≤

2β2
1

(
1
|S|4E

2 + 8(E − 1)2 + 2
)
G2

t+ 2
+ 2β1max

k
C3k(αk, bk)

logMk

Mk

+ 2
√
2β1(θmax − θmin)CθM

ϵk− 1
2

k .

Part III: Bounding
[
∇L(θ̄(t)

)
]
i

for i = 1, 2 and Proving convergence Finally, equipped with
all aforementioned results, we are going to prove our convergence result.

From Part I, we know∥∥∥∇L∗k(θ̄(t)
)
∥∥∥2
2

≤
{(

(θmax − θmin)(33 + 16αk)

14bkθ2min

logNk

Nk

)2

+

(
(θmax − θmin)(5 + 2αk)

14bkθ2min

logNk

Nk

+ (θ̄
(t)
2 − θ∗2k)

1

2θ2min

)2}
≤ w2

1k

(
logNk

Nk

)2

+ w2
2k

(
logNk

Nk

)2

+ 2w2k
logNk

Nk

(θ̄
(t)
2 − θ∗2k)

1

2θ2min

+
∥∥∥θ̄(t)2 − θ̄∗2k

∥∥∥2
2

1

4θ4min

≤ (w2
1k + w2

2k)

(
logNk

Nk

)2

+ 2w2k
logNk

Nk

(θmax − θmin)
1

2θ2min

+

(
2β2

1 (8(E − 1)2 + 2)G2

t+ 1
+ 2β1max

k
C3k(αk, bk)

logMk

Mk

+ 2
√
2β1(θmax − θmin)CθM

ϵk− 1
2

k

)
1

4θ4min

,
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where

w1k =
(θmax − θmin)(33 + 16αk)

14bkθ2min

,

w2k =
(θmax − θmin)(5 + 2αk)

14bkθ2min

.

By Lemma 49, with probability at least 1− Cθ(t+ 1)(log(M
ϵ− 1

2
k ))4exp{−cθM2ϵk

k },∥∥∥∇Lk(θ̄
(t)
)
∥∥∥2
2
≤
(
CθM

ϵk− 1
2

k

)2
+
∥∥∥∇L∗k(θ̄(t)

)
∥∥∥2
2
+ 2

∥∥∥∇L∗k(θ̄(t)
)
∥∥∥
2

(
CθM

ϵk− 1
2

k

)
≤ C2

θ,kM
2ϵk−1
k + (w2

1k + w2
2k)

(
logNk

Nk

)2

+ 2w2k
logNk

Nk

(θmax − θmin)
1

2θ2min

+

(
2β2

1 (8(E − 1)2 + 2)G2

t+ 1
+ 2β1max

k
C3k(αk, bk)

logMk

Mk

+ 2
√
2β1(θmax − θmin)CθM

ϵk− 1
2

k

)
1

4θ4min

+ 2
∥∥∥∇L∗k(θ̄(t)

)
∥∥∥
2

(
CθM

ϵk− 1
2

k

)
.

Therefore,

∥∥∇L(θ̄)∥∥2
2
=

∥∥∥∥∥
K∑
k=1

pk∇Lk(θ̄;Dk)

∥∥∥∥∥
2

2

≤
K∑
k=1

pk
∥∥∇Lk(θ̄;Dk)

∥∥2
2
≤ max

k

∥∥∇Lk(θ̄;Dk)
∥∥2
2

≤ max
k

(
2β2

1 (8(E − 1)2 + 2)G2

4θ4min(t+ 1)
+O

(
logMk

Mk

+M
ϵk− 1

2
k +

logNk

Nk

))
.

Under the partial device participation scenario, we have

∥∥∇L(θ̄)∥∥2
2
≤ max

k

2β2
1

(
1
|S|4E

2 + 8(E − 1)2 + 2
)
G2

4θ4min(t+ 1)
+O

(
logMk

Mk

+M
ϵk− 1

2
k +

logNk

Nk

) .
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C.7.6 Missing Proof in Theorem 3

Following the same strategy in Theorem 4, we can show that∥∥∥∇L∗k(θ̄(t)
)
∥∥∥2
2

=

([
∇L∗k(θ̄

(t)
)
]2
1
+
[
∇L∗k(θ̄

(t)
)
]2
2

)

=

 1

2Nk

(θ̄
(t)
1 − θ∗1)

Nk∑
j=1

λ2
1j(

θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2 +
1

2Nk

(θ̄
(t)
2 − θ∗2)

Nk∑
j=1

λ2jλ1j(
θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2


2

+

 1

2Nk

(θ̄
(t)
1 − θ∗1)

Nk∑
j=1

λ1jλ2j(
θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2 +
1

2Nk

(θ̄
(t)
2 − θ∗2)

Nk∑
j=1

λ2
2j(

θ̄
(t)
1 λ1j + θ̄

(t)
2 λ2j

)2


2

.
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By Lemma 46, we have∥∥∥∇L∗k(θ̄(t)
)
∥∥∥2
2

≤
(

1

2Nk

(θ̄
(t)
1 − θ∗1)N

(2+αk)(4bk+3)

4bk(2bk−1)

k

(
1

θ2min

+
C2

mat,k(4bk + 3)

θ2min(8b
2
k − 8bk − 3)

)
+

1

2Nk

(θ̄
(t)
2 − θ∗2)N

(2+αk)(4bk+3)

4bk(2bk−1)

k

(
1

θ2min

+
Cmat,k(4bk + 3)

θ2min(4b
2
k − 6bk − 3)

))2

+

(
1

2Nk

(θ̄
(t)
1 − θ∗1)N

(2+αk)(4bk+3)

4bk(2bk−1)

k

(
1

θ2min

+
Cmat,k(4bk + 3)

θ2min(4b
2
k − 6bk − 3)

)
+

1

2Nk

(θ̄
(t)
2 − θ∗2)

Nk

θ2min

)2

≤
(
1

2
(θmax − θmin)N

(2+αk)(4bk+3)

4bk(2bk−1)
−1

k

(
1

θ2min

+
C2

mat,k(4bk + 3)

θ2min(8b
2
k − 8bk − 3)

)
+

1

2
(θmax − θmin)N

(2+αk)(4bk+3)

4bk(2bk−1)
−1

k

(
1

θ2min

+
Cmat,k(4bk + 3)

θ2min(4b
2
k − 6bk − 3)

))2

+

(
1

2
(θmax − θmin)N

(2+αk)(4bk+3)

4bk(2bk−1)
−1

k

(
1

θ2min

+
Cmat,k(4bk + 3)
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2
k − 6bk − 3)

)
+

(θ̄
(t)
2 − θ∗2)

2θ2min

)2

≤ amat,1N
2(2+αk)(4bk+3)

4bk(2bk−1)
−2

k +

(
amat,2N

(2+αk)(4bk+3)

4bk(2bk−1)
−1

k +
(θ̄

(t)
2 − θ∗2)

2θ2min

)2

≤ amat,1N
2(2+αk)(4bk+3)

4bk(2bk−1)
−2

k + a2mat,2N
2(2+αk)(4bk+3)

4bk(2bk−1)
−2

k + 2amat,2N
(2+αk)(4bk+3)

4bk(2bk−1)
−1

k

(θ̄
(t)
2 − θ∗2)

2θ2min

+
(θ̄

(t)
2 − θ∗2)

2

4θ4min

≤ amat,1N
2(2+αk)(4bk+3)

4bk(2bk−1)
−2

k + a2mat,2N
2(2+αk)(4bk+3)

4bk(2bk−1)
−2

k + 2amat,2N
(2+αk)(4bk+3)

4bk(2bk−1)
−1

k

(θ̄
(t)
2 − θ∗2)

2θ2min

+
1

4θ4min

(
2β2

1 (8(E − 1)2 + 2)G2

t+ 1

+ 2β1max
k

C4kM
(2+αk)(4bk+3)

4bk(2bk−1)
−1

k + 2β1

( K∑
k=1

√
2pk(θmax − θmin)CθM

ϵk− 1
2

k

))

where

amat,1 =

(
1

2
(θmax − θmin)

(
1

θ2min

+
C2

mat,k(4bk + 3)

θ2min(8b
2
k − 8bk − 3)

)
+

1

2
(θmax − θmin)

(
1

θ2min

+
Cmat,k(4bk + 3)

θ2min(4b
2
k − 6bk − 3)

))2
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and amat,2 =
1
2
(θmax − θmin)

(
1

θ2min
+

Cmat,k(4bk+3)

θ2min(4b
2
k−6bk−3)

)
.

By Lemma 49 and Lemma 48, with probability at least

1−max
k
{Cθ(t+ 1)(log(M

ϵk− 1
2

k ))4exp{−cθM2ϵk
k }}

∥∥∥∇Lk(θ̄
(t)
)
∥∥∥2
2

≤ 2β2
1 (8(E − 1)2 + 2)G2

4θ4min(t+ 1)
+O

(
M

(2+αk)(4bk+3)

4bk(2bk−1)
−1

k +
K∑
k=1

pkM
ϵk− 1

2
k +N

(2+αk)(4bk+3)

4bk(2bk−1)
−1

k

)
.

For the partial device participation scenario, the proof is similar.

C.8 Proof of Lemmas

C.8.1 Proof of Lemma 46

Remember that the eigenvalues in each device k are different. For the sake of neatness, we omit
the subscript k in the eigenvalues. Let rk = j

4bk
4bk+3 and δk = 1

N
αk+1

k

, where 0 < αk <
8b2k−12bk−6

4bk+3
,

then, by Lemma 44, with probability at least 1− δk, we have

C(rk, Nk) < rk

√
rk(rk + 1)

Nkδkλ∗rk
= j

4bk
4bk+3

√√√√√j
4bk

4bk+3 (j
4bk

4bk+3 + 1)

Ckj
−8b2

k
4bk+3

N
αk
2

k

= N
α
2
k j

4b2k+6bk
4bk+3

√
j

4bk
4bk+3 (j

− 4bk
4bk+3 + 1)

Ck

≤ N
α
2
k j

4b2k+8bk
4bk+3

√
2

Ck

and

H(rk, Nk) <
Ck

2bk − 1
r−(2bk−1) +

√
2Ck

2bk − 1
r−(bk−1/2)N

α/2
k

≤

(
Ck

2bk − 1
+

√
2Ck

2bk − 1

)
j
− 2bk(2bk−1)

4bk+3 N
αk/2
k .
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Therefore, by Lemma 44, we obtain

λj(Kf,Nk
)

Nk

≤ λ∗j + λ∗jN
α
2
k j

4b2k+8bk
4bk+3

√
2

Ck

+

(
Ck

2bk − 1
+

√
2Ck

2bk − 1

)
j
− 2bk(2bk−1)

4bk+3 N
αk/2
k

= Ckj
−2bk + Ckj

−2bkN
αk
2

k j
4b2k+8bk
4bk+3

√
2

Ck

+

(
Ck

2bk − 1
+

√
2Ck

2bk − 1

)
j
− 2bk(2bk−1)

4bk+3 N
αk/2
k .

This implies

λj(Kf,Nk
) ≤ Ckj

−2bk
(
Nk +N

1+α
2

k j
4b2k+8bk
4bk+3

√
2

Ck

)
+

(
Ck

2bk − 1
+

√
2Ck

2bk − 1

)
j
− 2bk(2bk−1)

4bk+3 N
1+αk/2
k

≤

(
2
√
2Ck +

Ck

2bk − 1
+

√
2Ck

2bk − 1

)
j
− 2bk(2bk−1)

4bk+3 N
1+αk/2
k ,

where probability at least 1− 1

N
αk+1

k

. Let Cmat,k =
(
2
√
2Ck +

Ck

2bk−1
+
√

2Ck

2bk−1

)
.

Therefore, we have

Nk∑
j=1

λ2
1j(

θ
(t)
1kλ1j + θ

(t)
2kλ2j

)2 ≤ Lmat,k

θ2min

+
C2

mat,k

θ2min

∞∑
j=Lmat,k

j
− 4bk(2bk−1)

4bk+3 N2+αk
k

for any 0 < Lmat,k ≤ Nk. Let Lmat,k = N
(2+αk)(4bk+3)

4bk(2bk−1)

k , then we obtain

Nk∑
j=1

λ2
1j(

θ
(t)
1kλ1j + θ

(t)
2kλ2j

)2 ≤ N
(2+αk)(4bk+3)

4bk(2bk−1)

k

(
1

θ2min

+
C2

mat,k(4bk + 3)
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2
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)
.

Similarly, we have

Nk∑
j=1

λ1jλ2j(
θ
(t)
1kλ1j + θ

(t)
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)2 ≤ N
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4bk(2bk−1)

k

(
1
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+
Cmat,k(4bk + 3)

θ2min(4b
2
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)
.

Additionally, we can show that

Nk∑
j=1

λ2
2j(

θ
(t)
1kλ1j + θ

(t)
2kλ2j

)2 ≥ |{j : θ(t)1kλ1j + θ
(t)
2kλ2j ≤ 2θmax}|
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.
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The fact that j : θ(t)1kλ1j + θ
(t)
2kλ2j ≤ 2θmax implies

Cmat,kθmaxj
− 2bk(2bk−1)

4bk+3 N
1+αk/2
k ≤ θmax

⇒ j ≥ C
4bk+3

2bk(2bk−1)

mat,k N
(2+αk)(4bk+3)

4bk(2bk−1)

k ≥ Cmat,kN
(2+αk)(4bk+3)

4bk(2bk−1)

k

since bk ≥
√
21+3
4

. Therefore,

Nk − Cmat,kN
(2+αk)(4bk+3)

4bk(2bk−1)

k

4θmax

≤
Nk∑
j=1

λ2
2j(

θ
(t)
1kλ1j + θ

(t)
2kλ2j

)2 ≤ Nk

θ2min

where the upper bound is trivially true.

C.8.2 Proof of Lemma 47

Proof. For compactness, we drop the subscript k in Mk. For device k, denote by θ
(t)
k = (θ

(t)
1k , θ

(t)
2k )

the model parameter at iteration t. Let λ(t)
1jk be the jth largest eigenvalue of K

f,ξ
(t)
k

and λ
(t)
2jk = 1 be

the jth largest eigenvalue of IM . By definition,[
g∗k(θ

(t)
k )
]
1

=
1

2s1(M)
Tr

K
ξ
(t)
k
(θ

(t)
k )−1

(
IM −K

ξ
(t)
k
(θ∗k)Kξ

(t)
k
(θ

(t)
k )−1

) ∂K
ξ
(t)
k
(θ

(t)
k )

∂θ
(t)
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=

1

2s1(M)
(θ

(t)
1k − θ∗1k)

M∑
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λ
(t)2
1jk

(θ
(t)
1kλ

(t)
1jk + θ

(t)
2kλ

(t)
2jk)

2

+
1

2s1(M)
(θ

(t)
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M∑
j=1

λ
(t)
2jkλ

(t)
1jk

(θ
(t)
1kλ

(t)
1jk + θ

(t)
2kλ

(t)
2jk)

2

140



and [
g∗k(θ

(t)
k )
]
2

=
1

2M
Tr

K
ξ
(t)
k
(θ

(t)
k )−1

(
IM −K

ξ
(t)
k
(θ∗k)Kξ

(t)
k
(θ

(t)
k )−1

) ∂K
ξ
(t)
k
(θ

(t)
k )
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=

1

2M
(θ
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λ
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2
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1

2s1(M)
(θ
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M∑
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λ
(t)
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(θ
(t)
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(t)
1jk + θ

(t)
2kλ

(t)
2jk)

2
.

Based on those two expressions, we can obtain

⟨θ(t)
k − θ∗, g∗k(θ

(t)
k )⟩

= (θ
(t)
k − θ∗)⊺

[
A11 A12

A21 A22

]
(θ

(t)
k − θ∗)

where A11, A12, A21, A22 will be clarified shortly. Let ϵk = 1
2
, by Lemma 45, with probability at

least 1− 2
Mαk

,

A11 :=
1

2τ logM

M∑
j=1

λ
(t)2
1jk

(θ
(t)
1kλ

(t)
1jk + θ

(t)
2kλ

(t)
2jk)

2
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2τ logM

ϵk logM
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=
1
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,
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1

2τ logM
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2
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,
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1
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λ
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(t)
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2
≤ 1

2M

5 + 2αk
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logM =
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M

≤ 1
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M
,
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1
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2

≥ 1

2M
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Therefore,

⟨θ(t)
k − θ∗, g∗k(θ

(t)
k )⟩

≥
(

1

64τbkθ2max

− logM

64θ2maxbkM

)
(θ

(t)
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2

+
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1
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+
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1
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1
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2
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2
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logM
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,

where
γk = min

{
1
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1
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1

64bk
+
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.

C.8.3 Proof of Lemma 48

For compactness, we drop the subscript k in Mk. By definition, we can show that[
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Therefore, [
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. Therefore,[
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where we slightly abuse the notation and define γk := 1
2M

M−Cmat,kM

(2+αk)(4bk+3)
4bk(2bk−1)
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. Here note that

this γk is different from the γk in the Lemmas/Theorems involved with RBF kernels.
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and H Brendan McMahan. Adaptive federated optimization. arXiv preprint arXiv:2003.00295, 2020.

Najmul Hassan, Saira Gillani, Ejaz Ahmed, Ibrar Yaqoob, and Muhammad Imran. The role of edge computing
in internet of things. IEEE communications magazine, 56(11):110–115, 2018.

Beatriz Blanco-Filgueira, Daniel Garcia-Lesta, Mauro Fernández-Sanjurjo, Vı́ctor Manuel Brea, and Paula
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