
Systemic Inequality, Technological Innovation, and  

the Limits of Human Understanding 

 

by 

 

Christopher L. Quarles 

A dissertation submitted in partial fulfillment 

 of the requirements for the degree of  

Doctor of Philosophy 

(Information) 

in the University of Michigan 

2023 

Doctoral Committee: 

 

Professor Scott E. Page, Co-Chair  

Associate Professor Daniel Romero, Co-Chair 

Associate Professor Ceren Budak  

Associate Professor Fabian T. Pfeffer 

 

 

 



 

 

 

 

Christopher L. Quarles  

  

cquarles@umich.edu  

  

ORCID iD:  0000-0002-3953-7564  

 

  

  

© Christopher L. Quarles 2023 

 



 ii 

Dedication 

 

For all those throughout history who gave a part of their life, without reward or fame,  

to make the world a better place. 

 

 



 iii 

Acknowledgements 

The acknowledgements for my doctoral dissertation need to start with Mickey Davis, just like 

my career as a social scientist did. He helped me go from being a math teacher with no 

experience in social science research to a published author. Mickey taught me that anyone can be 

a mentor - a principle I’ve carried with me through the years. I wouldn’t be traveling down this 

path if he hadn’t helped me find the trailhead many years ago. Thank you, Mickey. 

I’m also grateful for other mentors who helped me get to UMSI including Alec Campbell, 

Bonnie January, Darryl Dieter, and Al Friedman. 

I want to thank my committee: Daniel Romero, Scott Page, Ceren Budak & Fabian Pfeffer. 

Daniel & Scott took me on and supported me after some big bumps in my graduate career. 

They’ve been a source of wise advice, solid administrative support, and clever research ideas, 

and I will be eternally grateful.  

The number of people that I want to thank here is a sign of how rich my experience over the last 

few years has been. So many people have contributed significantly to my success, whether 

through friendship, advice, or being a fabulous colleague. Thanks to (in no particular order): Rob 

Hladky, Koissi Savi, Bhartendu Pandey, Christine Aidala, Abraham Mhaidli, Yixin Zou, Hao 

Peng, Shubham Atreja, Ashwin Rajadesingan, Tamy Guberek, Chanda Phelan, Ed Platt, Minje 

Choi, Aparna Ananthasubramaniam, David Gamba, Stacey Xiang, Yulin Yu,  Zhuofeng Wu, 

Allison Tyler, Devon Keen, Tom Boyce, Melissa Bora, Brinda Gokul, Jared Wadley, Jane Im, 

Sangmi Kim, Minje Choi, Vaishnav Kameswaran, Linfeng Li, Robert Markum, Jordan 

Hemingway, Lu Xian, Ihudiya Finda Williams, Howard Manly, Joe LaBriola, Julia Mendelsohn, 

Alec Kirkley, Siqi Wu, Melissa Chalmers, Laura Schram, Paula Di Rita Wishart, Abigail Jacobs, 

David Jurgens, Misha Teplitskiy, Tawanna Dillahunt, Kelly Kowatch, Joanna Kroll, Tanya 

Rosenblat, Colleen van Lent, Chris Teplovs, Jessica Sendra, Charles Yun, and Todd Stuart, as 

well as others that I have surely forgotten. 



 iv 

I’ve particularly valued being part of communities like Daniel Romero’s lab group, who have 

been fabulous, and the group that Fabian Pfeffer grew from an “Inequality Lab” to the much 

fancier “Stone Center for Inequality Dynamics”. That growth is due largely to Fabian’s 

superpower: making new people feel welcome and appreciated. 

Many thanks to the UM School of Information, Poverty Solutions, and the Santa Fe Institute for 

research backing. In particular, Beth Yakel, Veronica Falandino, Erin Krupka, and Amy Eaton 

gave me different types of support that kept me going through the pandemic and beyond. The 

managers who capably handle all the little things are the ones who create a lot of well-being and 

are also often underappreciated. I appreciate them. 

I also want to acknowledge the loss of Charlie Doering, who gave a heck of a chalk talk. If he 

was still around, I would surely be thanking him for his contribution to this dissertation. 

Super-special thanks go out to Mohamed Abbadi, Pablo Mitnik, Leo & Epiphani Raabe, Cindy 

Bank, Elizabeth Bruch, Lia Bozarth, Danaja & Nirmala Maldeniya, Song Mi Lee, and Alex Liu. 

All of them know what they’ve done, so no explanation is necessary. 

It may sound silly, but the individual that I’ve spent the most time with was my “Republic of 

Gamers” laptop computer. My computer was with me when I came to Ann Arbor, and it’s where 

I wrote my thesis. We both got considerably beaten up along the way, but we made it through 

together. I suppose you could say this dissertation was written by a cyborg. 

I’ll end this section with my gratefulness to my family, who will be with me long after I’ve left 

UMSI. My parents & step-parents put in years of work, and deserve more appreciation than I 

show them (as most parents do). I also want to thank my siblings. My son, Raphael, has been 

great, putting up with the nights where Dad was working late and all the interesting(?!?) 

conversations about social science. And, of course, words can’t express how much I appreciate 

my wife Ellen. Being successful takes a huge number of skills, traits, and resources, and we 

don’t always have everything we need. Having a strong, capable partner to complement your 

skills, grow together, and support you through the shocks of life is the most powerful single-

factor intervention I can think of. I’ve been so very lucky. 

  



 v 

 

 

Table of Contents 

Dedication ....................................................................................................................................... ii 

Acknowledgements ........................................................................................................................ iii 

List of Tables .................................................................................................................................. x 

List of Figures ................................................................................................................................ xi 

Abstract ......................................................................................................................................... xv 

Chapter 1 Introduction .................................................................................................................... 1 

1.1 Chapter Two – Patterns of Student Success are Universal and Suggest a Latent Limited 

Resource ...................................................................................................................................... 2 

1.2 Chapter Three – Conflicts in Understanding of Language on Social Media Can Be 

Counterproductive and Increase Polarization ............................................................................. 2 

1.3 Chapter Four – Success Arises from Many, Interacting Factors ........................................... 3 

1.4 Chapter Five – Systemic Inequality ...................................................................................... 4 

Chapter 2 The Shape of Educational Inequality ............................................................................. 6 

2.1 Introduction ........................................................................................................................... 6 

2.1.1 Student Capital ............................................................................................................... 6 

2.1.2 Operationalizing Student Capital ................................................................................... 8 

2.1.3 The Shape of Inequality.................................................................................................. 9 

2.1.4 Models for Student Capital Distribution ........................................................................ 9 

2.2 Results ................................................................................................................................. 12 

2.2.1 Testing the Models ....................................................................................................... 13 

2.2.2 Student Capital as a Finite Resource ............................................................................ 17 



 vi 

2.3 Discussion ........................................................................................................................... 19 

2.4 Materials and Methods ........................................................................................................ 21 

2.4.1 Data............................................................................................................................... 21 

2.4.2 Statistical Analysis ....................................................................................................... 22 

Chapter 3 How the Term White Privilege Affects Participation, Polarization, and Content in 

Online Communication ................................................................................................................. 24 

3.1 Introduction ......................................................................................................................... 24 

3.1.1 How people respond to white privilege ........................................................................ 25 

3.1.2 Online conversations .................................................................................................... 26 

3.2 Study design ........................................................................................................................ 29 

3.2.1 Respondents .................................................................................................................. 30 

3.2.2 Instrument ..................................................................................................................... 30 

3.2.3 Coding for stance and frames ....................................................................................... 32 

3.2.4 Frames .......................................................................................................................... 33 

3.2.5 Comparing frames ........................................................................................................ 35 

3.3 Experiment A results: .......................................................................................................... 36 

3.3.1 Avoidance ..................................................................................................................... 36 

3.3.2 Stance ........................................................................................................................... 36 

3.3.3 Response Quality .......................................................................................................... 37 

3.3.4 Frames .......................................................................................................................... 37 

3.3.5 Composition of responses............................................................................................. 39 

3.3.6 Avoidance differences between whites ........................................................................ 40 

3.4 Experiment B results ........................................................................................................... 41 

3.4.1 Avoidance ..................................................................................................................... 42 

3.4.2 Stance ........................................................................................................................... 43 

3.4.3 Response quality ........................................................................................................... 43 



 vii 

3.4.4 Frames .......................................................................................................................... 43 

3.4.5 Composition of responses............................................................................................. 43 

3.5 Summary of Results ............................................................................................................ 44 

3.6 Discussion ........................................................................................................................... 44 

3.6.1 Limitations .................................................................................................................... 45 

3.6.2 Implications .................................................................................................................. 46 

3.7 Conclusion to Chapter Three ............................................................................................... 48 

Chapter 4 Modeling the Accumulation of Success ....................................................................... 49 

4.1 Introduction ......................................................................................................................... 49 

4.1.1 Literature Review ......................................................................................................... 49 

4.2 Model .................................................................................................................................. 51 

4.2.1 A Thought Experiment ................................................................................................. 51 

4.2.2 Model Limitations ........................................................................................................ 53 

4.2.3 The Accumulation Model ............................................................................................. 55 

4.2.4 Basic Properties of the Accumulation Model ............................................................... 57 

4.2.5 Stories All the Way Down ............................................................................................ 58 

4.2.6 Inequality in an Accumulation Model .......................................................................... 58 

4.3 Reduction to One Dimension .............................................................................................. 60 

4.4 One-Dimensional Accumulated Distributions .................................................................... 63 

4.4.1 General Features of 1-Dimensional Accumulated Distributions.................................. 64 

4.4.2 Characterizing 1-D Accumulated Distributions ........................................................... 66 

4.4.3 Dictionary of Distributions ........................................................................................... 71 

4.4.4 Dictionary of Distributions for 𝒂 ~ 𝟏 ........................................................................... 72 

4.5 Examples ............................................................................................................................. 74 

4.5.1 Numerical Simulation: Accumulated Bernoulli ........................................................... 75 



 viii 

4.5.2 Numerical Simulation: Accumulated Normal Distribution .......................................... 79 

4.5.3 Numerical Simulation: Accumulated Pareto ................................................................ 80 

4.5.4 Numerical Simulation: Accumulated Exponential ....................................................... 81 

4.5.5 Explicit Distribution Functions of Accumulated Exponential ..................................... 82 

4.6 Conclusion ........................................................................................................................... 85 

4.6.1 Future Work.................................................................................................................. 86 

4.7 Proofs of Major Theorems .................................................................................................. 87 

Chapter 5 Systemic Inequality .................................................................................................... 106 

5.1 Introduction ....................................................................................................................... 106 

5.1.1 Understanding Systemic Inequality ............................................................................ 106 

5.1.2 Hidden Variables ........................................................................................................ 107 

5.1.3 Reinforcing Networks ................................................................................................ 108 

5.1.4 Progression of Inequality over Time .......................................................................... 109 

5.1.5 Inequality Between Groups ........................................................................................ 110 

5.1.6 Models of Inequality................................................................................................... 111 

5.2 Systemic Inequality Arising Over Time ............................................................................ 113 

5.2.1 Statistics of Systemic Inequality Change ................................................................... 114 

5.2.2 The Causes of Success Need Not be the Indicators of It ............................................ 117 

5.2.3 Increasing relationship between causal factors increases inequality .......................... 120 

5.2.4 Adding a new factor that contributes to success ........................................................ 123 

5.3 Interventions ...................................................................................................................... 127 

5.3.1 Model .......................................................................................................................... 127 

5.3.2 A Note about the Difference between Gaps and Inequality ....................................... 129 

5.3.3 Targeted Interventions ................................................................................................ 130 

5.3.4 Single vs Multifactor Interventions ............................................................................ 137 



 ix 

5.4 Conclusion ......................................................................................................................... 145 

5.5 Appendix to Chapter 5 ...................................................................................................... 146 

Chapter 6 General Discussion ..................................................................................................... 154 

6.1 Implications for Policymakers and Interventionists .......................................................... 155 

6.2 Implications for Researchers ............................................................................................. 156 

6.3 Conclusion ......................................................................................................................... 159 

References ................................................................................................................................... 160 

 

 



 x 

List of Tables 

Table 1: Demographics of respondents ..................................................................................... 30 

Table 2: Experiment A - Likelihood of responding, stance, and response quality by 

treatment group and race ........................................................................................................... 36 

Table 3: Experiment B - Probability of responding, stance, and response quality by 

treatment group and race ........................................................................................................... 42 

Table 4: Cumulants of Accumulated Distributions ................................................................. 72 

Table 5: Approximate Cumulants of Accumulated Distribution for a~1 .............................. 73 

Table 6: Initial values of knowledge, wealth, and the hidden factor .................................... 132 

 

 



 xi 

List of Figures 

Figure 1: (top) The probability distribution function for each model. (bottom) The hazard rate 

of dropping out specified by each model. Specifically, the vertical axis gives the probability that 

a student who has 𝑘 units of student capital will stop their education before earning 𝑘 + 1 units. 

In both cases, the trends suggested are qualitative, designed to show the shape of the distribution 

rather than any specific numbers. ................................................................................................. 10 

Figure 2: Distribution of Credits Earned Each graph corresponds to the distribution of 

students in one college in the dataset within 5 years of enrolling. White bars represent students 

who dropped out. .......................................................................................................................... 13 

Figure 3: QQ plots for the three parametric models. Each plot compares a real data set to a 

simulated population generated using a fitted model. The columns correspond to discrete normal, 

geometric, and zeta distributions, respectively. The first three rows each correspond to a single 

college-year cohort. The bottom row infers the distributions for the complete set of 156,712 

students from all 28 colleges. Points close to the red line indicate that the quantiles of the 

simulated data are very close to the quantiles of the actual data, signifying that the model fits the 

data better. ..................................................................................................................................... 15 

Figure 4: Further analysis of the finite resource model. (A) Histogram of average student 

capital. Each data value is the average student capital of a single college-year cohort. (B) 

Comparison of actual dropout rates and the dropout rates estimated by the finite resource model 

(n = 140). Each point corresponds to one college-year cohort. The red line corresponds to both 

values being equal. The blue line is the line of best fit. ................................................................ 18 

Figure 5: Percentage of responses in Experiment A that used each frame. Squares give the 

proportion of responses that used a given frame, among all responses that supported renaming 

buildings. Diamonds represent frame use among all responses that opposed renaming buildings. 

Starred frames were categorized as low-quality. .......................................................................... 38 

Figure 6: Composition of posts in a hypothetical online conversation among 100 responders 

who are representative of our sample. For Experiment A, the figure represents likely 

responders. For Experiment B, the figure represents those who responded to the renaming-

buildings question. Shape corresponds to the race of each responder. Points are colored based on 

support for renaming buildings. The Other category includes responses that were neutral, 

unclear, or said that it should depend on the situation. ................................................................. 40 

Figure 7: Average self-reported likelihood of responding in Experiment A. Respondents 

rated their likelihood of responding on a scale from 2 = very likely to respond to -2 = very 

unlikely to respond. Error bars represent standard errors. ............................................................ 41 



 xii 

Figure 8: Example matrix of interactions between social skills, professional network strength, 

and knowledge. Numbers are for demonstration only. ................................................................. 52 

Figure 9: Exogenous variables (blue) may be uninfluenceable (or minimally influenceable) by 

other variables in the model. ......................................................................................................... 55 

Figure 10: The relationship between 𝑎 and its effect on inequality. ........................................... 60 

Figure 11: Income distribution in the United States for individuals between ages 25 and 65. Data 

from 2019 American Community Survey. .................................................................................... 75 

Figure 12:Accumulated Bernoulli 𝑌𝑇 for various values of 𝑇, with 𝑎 = 1.01 and 𝑝 = 0.1. ...... 76 

Figure 13: Accumulated Bernoulli 𝑌𝑇 for various values of 𝑇, with 𝑎 = 1.05 and 𝑝 = 0.1 ..... 77 

Figure 14: Accumulated Bernoulli 𝑌𝑇 for various values of 𝑇, with 𝑎 = 1.2 and 𝑝 = 0.1 ........ 78 

Figure 15: Accumulated Bernoulli 𝑌∞ for various values of 𝑎, with 𝑝 = 0.1. Plotted with a 

simulated probability distribution function. .................................................................................. 79 

Figure 16:Accumulated normal distribution 𝑌𝑇 for various values of 𝑇 with 𝑎 = 1.1, 𝜇 = 1, 

𝜎 = 0.2 .......................................................................................................................................... 80 

Figure 17: Accumulated Pareto distribution 𝑌𝑇 for various values of 𝑇 with exponent 2 and 𝑎 =
1.1. Plotted with a simulated probability distribution function. ................................................... 81 

Figure 18: Accumulated exponential distribution 𝑌∞ for various values of 𝑎 with constant 𝑠 =
1. Plotted with a simulated probability distribution function. ...................................................... 82 

Figure 19: Graphical representation of systemic inequality ................................................. 109 

Figure 20: Distribution of Income (A) Earnings distribution for adult Americans. (B) Earnings 

distributions and medians for white and black Americans.  Data taken from 2019 American 

Community Survey, and includes all people age 25-65 with positive earnings. ........................ 111 

Figure 21: Summary statistics of accumulation models with different growth rates over 

time. (A) Median values as 𝑎 varies. (B) Standard deviation of outcomes. (C) Relative social 

mobility, as measured by the probability that an individual below the median at time 𝑡 would 

have a value above the median some time before 𝑡 + 50. (D) Inequality, as measured by the 

coefficient of variation. ............................................................................................................... 115 

Figure 22: Causal relationship between social skills, professional network, and knowledge 

in a toy model. ........................................................................................................................... 118 

Figure 23: Distribution of correlations between causal weights 𝒖 and relative outcome size 

𝒖 of randomly generated exp-exp matrices. 10,000 matrices were drawn from 

𝐸𝑥𝑝𝐸𝑥𝑝. 04, 40. For each matrix, the correlation between the dominant left and right eigenvector 

was calculated. ............................................................................................................................ 120 

file:///C:/Users/Chris/Google%20Drive/Advisor%20Meetings%20and%20Milestones/Dissertation/Written%20Dissertation%20Revisions/Quarles%20Doctoral%20Dissertation%20v2.docx%23_Toc141883567
file:///C:/Users/Chris/Google%20Drive/Advisor%20Meetings%20and%20Milestones/Dissertation/Written%20Dissertation%20Revisions/Quarles%20Doctoral%20Dissertation%20v2.docx%23_Toc141883570
file:///C:/Users/Chris/Google%20Drive/Advisor%20Meetings%20and%20Milestones/Dissertation/Written%20Dissertation%20Revisions/Quarles%20Doctoral%20Dissertation%20v2.docx%23_Toc141883570


 xiii 

Figure 24: Relationship between the average effect of each factor on another factor and 

inequality. The blue line gives the mean, and the gray bar gives the standard deviation. Both 

mean and standard deviation were calculated using a sliding window using a total of 30,000 

iterations. ..................................................................................................................................... 121 

Figure 25: Relationship between the average effect of each factor on another factor and 

growth. The blue line gives the mean, and the gray bar gives the standard deviation. Both mean 

and standard deviation were calculated using a sliding window using a total of 30,000 iterations.

..................................................................................................................................................... 122 

Figure 26: Graphical representation of the accumulation network with social skills, 

professional network strength, knowledge, and an added new factor (red) which we can call 

computer skills. ......................................................................................................................... 123 

Figure 27: Effects on Inequality of a New Factor (A) Effect of new factor on overall 

inequality at time 𝑡 = 50 as a function of the factor’s effect as a proportion of the effects of the 

other factors. (B) Systemic growth multiplier 𝑎. (C) Inequality in short-term investments 𝑐𝑣𝑢 ⋅ 𝑋. 

(D) Percent change of overall inequality broken up in terms of the two factors 𝑎 − 1𝑎 + 1 and 

𝑐𝑣𝑢 ⋅ 𝑋. The y-values on the purple curve are the product of the y-values from the red and blue 

curves. ......................................................................................................................................... 125 

Figure 28: Effects of a uniform intervention on two individuals.......................................... 131 

Figure 29: Effects of the health intervention on Emmy, Gregor, and Johann .................... 133 

Figure 30: Effects of interventions on the average well-being gap between Group High and 

Group Low. Each gray distribution represents 1000 simulations. Positive y-values correspond to 

interventions that increase inequality. The two graphs on the top correspond to the case where 

interventions are given to all individuals, while the graphs on the bottom represent the case 

where interventions are targeted only at the disadvantaged Group Low. The left graphs 

correspond to where the variables that cause inequality are hidden, so interventions focus on a 

single known variable where both groups are similar. In the right graphs, interventions focus on 

one of the dimensions where Group High is better off. Inequality becomes more larger and more 

systemic as the number of inequality-generating variables increases. ....................................... 135 

Figure 31: Optimal interventions when success is dependent on two factors. The blue line is 

the equilibrium value. Arrows represent optimal intervention types for points in different regions.

..................................................................................................................................................... 138 

Figure 32: Relationship between 𝜶𝒋 and the factor 𝟏𝜶𝒋 − 𝟏𝜶 in the proportional loss 

equation. This graph assumes that 𝛼 = 1. A similar shape holds for other values of 𝛼. .......... 141 

Figure 33: Two heterogeneous groups of people. Group A has knowledge, but less wealth. 

Group B is more balanced in their relative amounts of wealth and knowledge. ........................ 142 

Figure 34: Comparative return to single-factor vs multi-factor interventions as a group 

moves closer to equilibrium. The x-axis describes the distance between the centroid of the data 

file:///C:/Users/Chris/Google%20Drive/Advisor%20Meetings%20and%20Milestones/Dissertation/Written%20Dissertation%20Revisions/Quarles%20Doctoral%20Dissertation%20v2.docx%23_Toc141883572
file:///C:/Users/Chris/Google%20Drive/Advisor%20Meetings%20and%20Milestones/Dissertation/Written%20Dissertation%20Revisions/Quarles%20Doctoral%20Dissertation%20v2.docx%23_Toc141883572
file:///C:/Users/Chris/Google%20Drive/Advisor%20Meetings%20and%20Milestones/Dissertation/Written%20Dissertation%20Revisions/Quarles%20Doctoral%20Dissertation%20v2.docx%23_Toc141883572
file:///C:/Users/Chris/Google%20Drive/Advisor%20Meetings%20and%20Milestones/Dissertation/Written%20Dissertation%20Revisions/Quarles%20Doctoral%20Dissertation%20v2.docx%23_Toc141883572
file:///C:/Users/Chris/Google%20Drive/Advisor%20Meetings%20and%20Milestones/Dissertation/Written%20Dissertation%20Revisions/Quarles%20Doctoral%20Dissertation%20v2.docx%23_Toc141883573
file:///C:/Users/Chris/Google%20Drive/Advisor%20Meetings%20and%20Milestones/Dissertation/Written%20Dissertation%20Revisions/Quarles%20Doctoral%20Dissertation%20v2.docx%23_Toc141883573
file:///C:/Users/Chris/Google%20Drive/Advisor%20Meetings%20and%20Milestones/Dissertation/Written%20Dissertation%20Revisions/Quarles%20Doctoral%20Dissertation%20v2.docx%23_Toc141883573
file:///C:/Users/Chris/Google%20Drive/Advisor%20Meetings%20and%20Milestones/Dissertation/Written%20Dissertation%20Revisions/Quarles%20Doctoral%20Dissertation%20v2.docx%23_Toc141883573
file:///C:/Users/Chris/Google%20Drive/Advisor%20Meetings%20and%20Milestones/Dissertation/Written%20Dissertation%20Revisions/Quarles%20Doctoral%20Dissertation%20v2.docx%23_Toc141883574
file:///C:/Users/Chris/Google%20Drive/Advisor%20Meetings%20and%20Milestones/Dissertation/Written%20Dissertation%20Revisions/Quarles%20Doctoral%20Dissertation%20v2.docx%23_Toc141883574
file:///C:/Users/Chris/Google%20Drive/Advisor%20Meetings%20and%20Milestones/Dissertation/Written%20Dissertation%20Revisions/Quarles%20Doctoral%20Dissertation%20v2.docx%23_Toc141883574
file:///C:/Users/Chris/Google%20Drive/Advisor%20Meetings%20and%20Milestones/Dissertation/Written%20Dissertation%20Revisions/Quarles%20Doctoral%20Dissertation%20v2.docx%23_Toc141883580
file:///C:/Users/Chris/Google%20Drive/Advisor%20Meetings%20and%20Milestones/Dissertation/Written%20Dissertation%20Revisions/Quarles%20Doctoral%20Dissertation%20v2.docx%23_Toc141883580


 xiv 

and the equilibrium line. The y-axis represents the increase in well-being divided by the size of 

the investment. ............................................................................................................................ 143 



 xv 

Abstract 

 

The reasons for success and well-being, and therefore of inequality, are numerous. A 

large number of systemic factors influence who succeeds or fails, who is healthy or sick. These 

factors, many of which are hard to understand or measure, interact in important and surprising 

ways. In contrast, humans tend to choose simple explanations of the world. Early humans 

evolved heuristics to help them effectively navigate a highly social, low-data world. Researchers 

choose intuitive, low-dimensional models of complex problems. While these approaches have 

provided humanity with tremendous benefits, they can sometimes fall short when faced with the 

systemic problems of the modern day. Technology plays a central role here, since tech can drive 

economic growth & improvements in health, as well as online polarization. This dissertation 

takes an interdisciplinary approach to examine the multifaceted nature of inequality in four 

studies. The first study presents a conceptual framework for the total effect of these factors on 

education, develops a novel statistical method, and uses administrative data to show universal 

patterns in community college students’ ability to be successful. The second study is an 

experiment involving racially charged language that shows how individuals’ tendencies toward 

simple explanations for inequality can combine with technology to create polarization and 

decrease open democratic discussion. The third study uses mathematics and statistics to develop 

a causal network model of multifactor cumulative (dis)advantage. The fourth study develops a 

conceptual framework for systemic inequality, and then uses models to explore the relationship 

between the causes of inequality and principles for designing effective interventions.  

 



 1 

Chapter 1  

Introduction 

Researchers have found many interacting factors influencing different forms of success (as in the 

case of education) or well-being (as in the case of health). Since inequality is the unequal 

distribution of success or well-being, the causes of inequality are also typically manifold and 

complex. These causal factors interact, since resources that can be used to increase one 

dimension of well-being are also likely to be able to influence other dimensions, either directly 

or indirectly. In addition, due to their idiosyncratic nature, many of the causal factors and 

interactions are hard for both researchers and laypeople to understand and study. However, 

humans benefit from being able to make sense of the world. So we create low-dimensional 

representations of a high-dimensional, and relatively data-scarce, world. Evolution and 

individuals have come up with a variety of such approaches including heuristics (Gigerenzer & 

Gaissmaier, 2011), sense-making (Chater & Loewenstein, 2016), coarse-graining (Saunders & 

Voth, 2013), and theory development (Shalley, 2012). These strategies have led to significant 

benefit and improvements in well-being. However, they can also sometimes be maladaptive in 

the modern, technology-laden world where inequalities are often entrenched. 

The studies in this dissertation use different methods to approach this idea. Chapter Two uses 

low-dimensional administrative data and a novel conceptual framework to show that universal 

forces govern community college student success. Chapter Three is experimental, showing how 

our evolutionary heuristics can be counterproductive and polarizing when combined with the 

systemic affordances of the internet. Chapter Four generates a mathematical and statistical model 

for understanding how success (or the lack thereof) can grow through a multifactor cumulative 

(dis)advantage process. Chapter Five uses models to draw general conclusions about systemic 

inequality and the interventions that aim to address it.  



 2 

1.1 Chapter Two – Patterns of Student Success are Universal and Suggest a Latent Limited 

Resource 

Hundreds of thousands of students drop out of school each year, despite billions of dollars of 

funding and myriad educational reforms (Shapiro et al., 2018; U.S. Department of Education., 

2017). Existing research tends to look at the effect of easily measurable student characteristics. 

However, a vast number of harder-to-measure student traits, skills, and resources affect 

educational success (J. Johnson & Rochkind, 2009; Pascarella & Terenzini, 2005; Porchea et al., 

2010). Furthermore, community colleges often refer to easily measurable variables when 

measuring student success, such as term-to-term retention or completion of college-level math & 

English. This can lead to a tail-wagging-the-dog approach to decision-making, where 

interventions focus on improving measurable metrics rather than improving students’ ability to 

be successful (Wood et al., 2019). 

Chapter Two addresses these ideas by presenting a conceptual framework for the cumulative 

effect of all factors influencing student success. We call this quantity student capital. The 

framework assumes that degree-seeking students apply their resources to achieving their goal in 

their own way and on their own time, rather than using measurable quantities chosen by 

academics or administrators. We develop a method for estimating student capital in groups of 

students and find that student capital is distributed exponentially in each of 140 cohorts of 

community college students. Students’ ability to be successful does not behave like standard tests 

of intelligence. Instead, it acts like a limited resource, distributed unequally. The results suggest 

that rather than removing barriers related to easily measured characteristics, interventions should 

focus on building up the skills and resources needed to be successful in school. 

1.2 Chapter Three – Conflicts in Understanding of Language on Social Media Can Be 

Counterproductive and Increase Polarization 

The language used in online discussions affects who participates in them and how they respond 

(Zhu et al., 2017), which can influence perceptions of public opinion (McGregor, 2019; 

Neubaum & Krämer, 2017). However, language itself is a dimensional reduction technique, 

facilitating the understanding and communication of complex topics. Furthermore, language use 
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varies between geographic regions, demographic groups, and political factions. Even definitions 

of words can vary between groups (Banton, 2015). The internet brings these diverse groups 

people together, creating potential misunderstanding and conflict. The term white privilege is a 

useful instrument for understanding these effects, since its definition encompasses multiple 

factors (McIntosh, 1990) and because it targets a group identity which is personal for many 

people.  

Chapter Three examines how the term white privilege affects communication on social media. In 

two lab experiments, US residents were given a chance to respond to a post asking their opinions 

about renaming college buildings. Using the term white privilege in the question decreased the 

percentage of whites who supported renaming. In addition, those whites who remained 

supportive when white privilege was mentioned were less likely to create an online post, while 

opposing whites and non-whites showed no significant difference. The term also led to more 

low-quality posts among both whites and non-whites. We find evidence that the effects of the 

term white privilege on the content of people’s responses is primarily affective – based in 

feelings. Overall, use of the term white privilege seems to create internet discussions that are less 

constructive, more polarized, and less supportive of racially progressive policies. The findings 

suggest that individuals who hope to gain broad support, promote meaningful conversations 

between diverse parties, and reduce polarization should try to use language that creates a shared 

understanding across groups 

1.3 Chapter Four – Success Arises from Many, Interacting Factors 

Even though success and well-being arise from many factors, these factors are often hard to 

measure. There is solid research examining the effects of various idiosyncratic factors on well-

being, such as mindsets (Yeager & Walton, 2011), dominance (Hawley, 2002), or 

conscientiousness (Bogg & Roberts, 2004). However, these studies are costly, and typically use 

methods designed to isolate the effects of the studied factor. In reality, the causes of success and 

well-being are manifold, interrelated, and hard to study together (Blau & Duncan, 1967; 

Hovmand, 2014; Levy et al., 2020).  

Chapter Four builds on the idea of causal networks to develop a model of multi-factor well-being 

as an accumulation process. It assumes that, when individuals can use a resource to improve their 
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other resources, some will do so. This creates a situation where positively construed traits, skills, 

and resources are often mutually causally related in a complex web. I build a network of these 

relationships, and examine how growth in each of the factors happens over time. The 

contributions of this chapter are conceptual, mathematical, and methodological. I present a novel 

way of understanding how well-being changes through a high-dimensional cumulative advantage 

(or disadvantage) process. I prove theorems about the model, showing that this process leads to 

stable one-dimensional distributions. I create a method to connect the model to large, one-

dimensional datasets – a process which can lead to deeper understanding about the process that 

generated the data. 

1.4 Chapter Five – Systemic Inequality  

Inequality between and within groups is often hard to change. Despite simple explanations of 

this persistence, many forms of success or well-being arise from a large number of related skills, 

traits, and resources, including one’s ability to participate in social & economic institutions 

(Braveman et al., 2022). Being disadvantaged in one way can make it harder to succeed in other 

ways, as that disadvantage makes everything else just a little bit harder (Dannefer, 2003; Torche, 

2018). This idea has been studied in a variety of specific contexts (Dannefer, 2003; Kraus & 

Park, 2017; Lorenc et al., 2013; McLanahan & Jacobsen, 2015). However, studying any 

particular context is costly and academics tend to be siloed. So there is value in attempting to 

provide more generalizable results about systemic inequality. 

Chapter Five presents a general conceptual framework for systemic inequality and uses two 

models to draw general principles about how systemic inequality grows and how best to tailor 

interventions. I define systemic inequality as arising from many interacting causes which are 

often hidden from analysts. I provide examples of systemic and non-systemic inequality, and 

give historical examples of how non-systemic inequality evolved into systemic inequality over 

time. I then use the accumulation model from Chapter Four to (a) show the causes and indicators 

of success need not be the same, (b) demonstrate that making some factors more useful can 

increase systemic inequality, and (c) explore how adding a new potential cause of success might 

either increase or decrease inequality. To explore the effects of interventions on high-

dimensional inequality, I use a Cobb-Douglas utility model as well as more general mathematics. 
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I demonstrate, using both simple examples and simulations, how the best interventions for 

addressing systemic inequality are targeted towards specific groups and involve many factors at 

once. 
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Chapter 2  

The Shape of Educational Inequality 

2.1 Introduction1 

Over 500,000 high school students and over 600,000 college students drop out of school every 

year (Shapiro et al., 2018; U.S. Department of Education., 2017). Practitioners, researchers, and 

pundits have proposed a variety of explanations for why so many students are unable to achieve 

their goals. However, despite a variety of different education policies and billions of dollars 

spent ensuring no children are left behind, millions of children and adults are unable to achieve 

their academic goals. Unfortunately, there is no simple explanation that can point to simple 

interventions. The process of becoming successful in school can be complicated and difficult, 

requiring the right combination of social, personal, academic, and financial traits and skills. 

Researchers and policy makers have not yet found the secret to consistently cultivating success 

in students. So it is no surprise that so many students are unable to successfully navigate the 

educational system. 

2.1.1 Student Capital   

In this paper, we present a conceptual framework for studying students’ capacity to be successful 

in school, which we call student capital. We also demonstrate an analytical method for 

measuring this quantity in community college students. Broadly speaking, we define student 

capital as the cumulative amount of resources a student can bring to bear to be successful in a 

particular school context. These resources might come in many forms, such as economic 

resources, social, cognitive, non-cognitive and academic skills. Like other forms of capital, these 

resources both help drive students toward their goals and insulate them against the random 

shocks that affect all of us. For example, consider the unlucky situation of a commuter college 

 
1 A version of this chapter was published as: 

Quarles, C.L., Budak, C. & Resnick, P. (2020) The shape of educational inequality. Science Advances. 6(29). doi: 

10.1126/sciadv.aaz5954 
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student whose car has broken down, and therefore may have to miss class. If the student has a 

supportive social network, then she might be able to catch a ride with a friend. Strong academic 

skills might ensure that missing a class does not affect her learning. Cultural capital and self-

confidence might give her the ability to communicate clearly with her instructor to minimize any 

effects on grades. Economic resources might have allowed her to live in a campus dormitory, 

possibly at a more elite college, thus avoiding the situation in the first place. And of course the 

more resources she has, the better off she will probably be. 

 There is a rich body of literature examining the factors that affect student persistence in 

college. An incomplete list of personal factors related to college success includes academic 

preparation (Long et al., 2012; Scott-Clayton et al., 2014), students’ self-discipline, self-

confidence, commitment to college, amount of social activity, race, age, full-time/part-time 

enrollment, degree expectations, distance between home and school, number of hours worked at 

a job, parents’ income, parents’ education level (Porchea et al., 2010), perceptions of faculty, 

peer groups, campus engagement (Pascarella & Terenzini, 2005), familial responsibilities, 

interest in school, lack of money (J. Johnson & Rochkind, 2009), unreliable housing, and food 

insecurity (Goldrick-Rab, 2018). In addition, the skills required to be successful in a classroom 

can be confusing and vary from class to class (Boaler, 1998; Cox, 2015), with some researchers 

calling classrooms a “black box” (Cuban, 2013; Grubb, 2001). So college success may be partly 

attributable to a student’s ability to learn new classroom expectations. Many researchers have 

attempted to disentangle this web of causal relationships (Mayhew et al., 2016). They face 

significant challenges from selection bias and hidden variables. Our goal is not to wade into that 

discussion, but to consider the cumulative effects of all factors as a single variable. 

 We call this quantity student capital to fit with prior literature on other forms of capital, 

which can be used for both a source of investment income and a reserve of resources to insulate 

against shocks. Social scientists have examined a variety of forms of capital, including 

economic, social, and human capital. Social capital is some form of social relationship that can 

be used to benefit individuals or groups, such as membership in neighborhood groups (Putnam, 

2001), networks of parents (Coleman, 1988), or professional connections (Granovetter, 1983). 

Human capital is the set of skills embodied in a given workforce, typically measured in terms of 

economic benefit. For example, researchers have examined the wage benefits of specific skills, 

on-the-job training, and a variety of college degrees (Becker, 1994; Castex & Dechter, 2014; 
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Deming, 2017). Different forms of capital can manifest in multiple ways, and there have been 

many debates about how to measure them (Becker, 1994; Coleman, 1988; Killewald et al., 2017; 

Mulder et al., 2009; Putnam, 2001). Economic and social capital are most often defined in terms 

of what they consist of: money and social relationships, respectively. In contrast, human capital 

is usually defined in terms of economic benefit, and can consist of many types of embodied skills 

and traits. Student capital is more like human capital, since it is defined by the educational 

success it can provide. 

2.1.2 Operationalizing Student Capital 

  We consider student capital as the amount of success that a student is able to achieve. In 

our study, this is the number of credits they could earn if that many credits were required for 

their goals. To use a metaphor with more financial forms of capital: In an economic system 

without a standardized currency, an individual’s wealth can only be determined by what it can be 

traded for. Depending on the circumstances, a bag of gold might be worth more or less than a 

bag of rice. Similarly, a supportive family or good social skills may have a varying effect on a 

student’s outcome, depending on a variety of situational factors. Furthermore, those factors 

might interact in a way that helps or hinders the student. We operationalize student capital as the 

total amount of educational success (credits completed) that can be “bought” by a student, in 

their particular context, using their skills, traits, and resources. This runs the risk of conflating 

student capital with the returns on student capital. However, given the striking universalities in 

our results, we think this metric measures something meaningful.  

 It is important to distinguish student capital from student outcomes, which might include 

whether a student graduated or transferred to a four-year school. Outcomes are measurable 

representations of whether a student reached a certain goal, rather than giving a measure of how 

well they could have done. Student capital is harder to measure in individuals. The student 

capital of students who have dropped out of school can be directly observed as the number of 

credits they earned.  However, students who graduated or transferred may not have run out of 

student capital. We only know their capacity to earn credits is greater than or equal to the number 

they earned. This is good for those students, but makes data analysis more challenging. It makes 

it impossible to measure the student capital of every student. Instead, we can estimate the 
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distribution of student capital in a group using right-censored maximum likelihood estimation. 

This is still useful, since statistics like this are commonly used to describe groups of students. 

2.1.3 The Shape of Inequality 

 Despite humankind’s best efforts, inequality has always been with us (Milanovic et al., 

2011). However, the amount of inequality has varied, depending on the era and location 

(Killewald et al., 2017; Milanovic et al., 2011). This suggests that, beyond the idiosyncratic 

forces unique to specific groups, there are systemic forces that keep resources allocated 

unequally. To better understand those forces, we look at the shape of educational inequality. In a 

more economic context studying the shape of inequality might involve examining income or 

wealth distributions (Nirei & Souma, 2007; Tao et al., 2019). In the context of education, we 

look at the shape of student capital distributions. If we find that these distributions have the same 

universal shape across colleges, then this will give us insight into the underlying macro-scale 

processes that create educational inequality. 

 To analyze the shape of educational inequality, we used data from 156,712 students from 

28 Washington community colleges. We grouped students into 140 cohorts, all of whom started 

at the same college during the same academic year. We focus on degree-seeking community 

college students who aim to transfer to a four-year college. This group has the benefit of being 

fairly diverse (Goldrick-Rab et al., 2017), while sharing the same goals and educational context. 

This allows us to measure their student capital on the same credit-based scale. For each student, 

we calculated the total number of community college credits they had earned within five years of 

enrolling, and whether the student dropped out of school without earning a degree or transferring 

to a four-year college.  

2.1.4 Models for Student Capital Distribution   

To explore the shape of educational inequality, we consider a number of different models for 

how student capital might be distributed. Each model represents a universe with plausible 

educational behavior that leads to a particular distribution of student capital. Graphical 

comparison of the models is shown in Figure 1. In the next section, we test whether these models 

fit the data. 
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Figure 1: (top) The probability distribution function for each model. (bottom) The hazard rate of dropping out 

specified by each model. Specifically, the vertical axis gives the probability that a student who has 𝑘 units of student 

capital will stop their education before earning 𝑘 + 1 units. In both cases, the trends suggested are qualitative, 

designed to show the shape of the distribution rather than any specific numbers. 

 

 The cognitive ability model comes from the claim that educational outcomes are largely 

determined by, or equivalent to, cognitive ability as measured by achievement tests such as IQ 
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(Herrnstein & Murray, 1994). This model is consistent with the common practice in the 

education literature of using standardized tests such as the SAT as measures of ability or 

achievement (Dillon & Smith, 2017; Sirin, 2005). These tests measure specific cognitive abilities 

or knowledge at the time the student takes the test. The cognitive ability model assumes that 

student capital, which is nominally a student’s ability to navigate successfully through the 

complex social, personal, and academic demands of a school system, is mostly dependent on IQ 

or cognitive abilities. Since these cognitive abilities, as measured, tend to be normally 

distributed, this model suggests that student capital might also be shaped like a bell curve.  

  It could also be possible that, like forms of financial capital, a given community has a 

limited amount of student capital that can be generated in their college-going population. 

Collectively, parents, family, and friends may have a finite amount of experience, noncognitive 

skills, social stability, and financial resources to share with children and college-bound adults. 

Some communities, particularly wealthier and more educated ones, have more of this resource 

than others. This is consistent with the well-established fact that children of wealthier and more 

educated parents tend to have more of the skills necessary for academic success (Lareau, 2011; 

Porchea et al., 2010; Sirin, 2005). The finite resource model assumes that the only thing 

constraining students’ capacity to complete college is the limited nature of this resource in a 

population. For this model, we assume that resources are at least partially substitutable, so that 

we can treat these resources as coming from a single pool. For instance, a student whose home is 

too unstable to study at may be able to spend money to work at a coffee shop. If society 

distributes this finite student capital in the least informative way, we would expect to see an 

exponential distribution of student capital for a given community. Put another way: If, in a given 

population, the only major limitation is that student capital is finite, then there are many ways 

that it could be distributed to individuals. However, in this case the vastly most probable 

distribution is exponential – or something very close. More details and examples of the principle 

of maximum entropy, which underlies this model, can be found in (De Martino & De Martino, 

2018; Harte, 2011; Montroll, 1981; A. G. Wilson, 1970). A similar model was proposed in 

(Drǎgulescu & Yakovenko, 2000) to explain why income distributions between the 10th and 90th 

percentiles are distributed exponentially (Nirei & Souma, 2007).  

 The rich-get-richer model assumes that the student capital gained from a new resource is 

roughly proportional to the student capital they already have. For instance, a student with good 
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study skills might be able to benefit more from increased wealth, because they might be able to 

use the time not working at a job to study more efficiently. The rich-get-richer phenomenon has 

been well-studied in a variety of other areas (Easley & Kleinberg, 2010; Muchnik et al., 2013; 

Yakovenko & Rosser, 2009) and leads to a heavy-tailed distribution such as a power law or log-

normal distribution.  Since these distributions often have similar behavior and can be difficult to 

distinguish from each other, we focus on whether the distribution of student capital fits a power 

law.  

 Of course another mental model, often implicitly assumed among those who do 

educational interventions, is that (a) interventions and college policies can have a significant 

effect on student progress at various points in the college process, and (b) the policies and 

supports in different colleges vary enough to see this effect.  If this context-specific model were 

true, we would expect distributions of student capital to have varying, idiosyncratic shapes 

depending on the school itself and perhaps even the year. For example, a college with a strong 

student onboarding program might have a mode at 15 or 30 credits, while other colleges with 

regular enrollment cycles might have periodic distributions of student capital. In this case, 

institutional structures would be more important for student success than the resources, skills and 

traits student brought with them. Student capital would be a relatively unimportant consideration 

in educational success. This model is not shown in Figure 1, because the context-specific model 

would imply that each cohort of students has its own distinctive curve.   

2.2 Results  

Unfortunately, we cannot directly measure the number of credits that every student could have 

earned. Instead, we only have data for the number of credits students actually earned, and 

whether they dropped out, graduated, or transferred. Figure 2 shows the distribution of credits, 

graduation, and transfer for two colleges. White bars represent students who dropped out, so that 

their observed number of credits is equal to their student capital.  Blue, green, and yellow 

students represent censored data points. These individuals’ student capital is greater than or equal 

to the observed number of credits shown on the graph. The number of successful students peaks 

around 90-100 credits, because associate’s degrees in Washington require at least 90 credits. 

Note that Figure 2 does not show student capital, just the observed number of earned credits. 

Most graduating/transferred students will have student capital values larger than the number of 
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credits they earned. So we can imagine what the student capital of successful students might look 

like by flattening the colored bars to the right.  The distribution of student capital might look like 

Figure 2, but with a smaller bump. Or it could be continually decreasing, so that the number of 

students who have 𝑘 credits of student capital decreases as 𝑘 increases. 

 

Figure 2: Distribution of Credits Earned Each graph corresponds to the distribution of students in one college in 

the dataset within 5 years of enrolling. White bars represent students who dropped out. 

 

2.2.1 Testing the Models     

The cognitive ability, finite resource, and rich-get-richer models each assumed that the 

distribution of student capital follows a given parametric model: normal, exponential, or power 

law. So we explored them all using the same approach. We assumed that student capital is 

distributed according to the specified model, with a censoring process corresponding to 

graduation/transfer which is estimated individually at each credit level. We used right-censored 

maximum likelihood estimation to estimate the parameters for each model. We then examined 

goodness of fit for each model using both the Akaike information criterion (AIC) and quantile-

quantile (QQ) plots.  

 AIC is a standard information-theoretic method for comparing distribution fit. If a model 

has 𝐾 parameters and log-likelihood ℒ, then 𝐴𝐼𝐶 = 2𝐾 − 2ℒ. We used AIC to compare the fit of 

the three parametric models on each of the 140 cohorts. The finite resource/exponential model 

gave the best fit to the data on every cohort. So the inferred distribution of student capital fits an 

exponential distribution better than a normal or power law distribution. 
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 While the AIC analysis shows which of the chosen distributions is better, it does not 

show if that fit is good. To qualitatively examine goodness-of-fit, we used QQ plots. To generate 

a QQ plot for a given cohort of students, we fit the parameters for each of the three models and 

then used those parameters to generate a set of simulated students. We then compared the 

distribution of simulated students’ credits earned to the actual distribution of credits earned. 

Figure 3 shows QQ plots using this process for three representative cohorts and also for the 

combined set of all students.   
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Figure 3: QQ plots for the three parametric models. Each plot compares a real data set to a simulated population 

generated using a fitted model. The columns correspond to discrete normal, geometric, and zeta distributions, 

respectively. The first three rows each correspond to a single college-year cohort. The bottom row infers the 

distributions for the complete set of 156,712 students from all 28 colleges. Points close to the red line indicate that 

the quantiles of the simulated data are very close to the quantiles of the actual data, signifying that the model fits the 

data better. 
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 The finite resource model fit the data remarkably well. Using both QQ plots and AIC, 

this model fit best across colleges and across years.  After accounting for the censoring effect of 

students graduating and transferring, student capital seems to follow an exponential distribution. 

 The rich-get-richer model fit the data very poorly. The power law seems to expect more 

students dropping out early and more students with very high student capital than is found in the 

real data. The heavy-tailed behavior found in the power law distribution is inconsistent with our 

data, suggesting that other heavy-tailed distributions such as log-normal would be poor fits as 

well.  

 Because students in our data set only earned positive integer numbers of credits, we used 

a truncated discrete normal distribution for the cognitive ability model. At first glance, the 

cognitive ability model seems to fit the data almost as well as the finite resource model. The QQ 

plots for the normal distribution are reasonably close to the diagonal. However, the results were 

not consistent with what we would consider a normally distributed population. In such a 

population, the mean will be between the minimum value and the maximum value. However, for 

every cohort in our data set, the inferred mean was 𝜇̂ = 1. This was the minimum possible 

number of credits earned, and also the minimum allowed 𝜇̂ using our algorithm. Inferred 

standard deviations 𝜎̂ were distributed between 90.5 and 169.0 credits (mean(𝜎̂)=120.1, 

sd(𝜎̂)=12.7). This inferred standard deviation is larger than the number of credits earned by most 

degree-receiving students. These pathological results are consistent with a continually decreasing 

probability distribution of student capital. The best way to fit a normal distribution to a 

decreasing distribution is to just fit the right tail. The resulting simulated data is missing the 

characteristic bell curve shape of the normal distribution. Therefore, we can not say that the 

cognitive ability model is supported by our results. 

 The context-specific model assumes that the shape of the distribution of student capital is 

highly dependent on the college. Evidence for this model would involve very different 

distributions of student capital, with some colleges having high dropout rates for students with 

low numbers of credits, and others having high dropout rates at higher credit levels. However, 

our previous analysis shows that distributions of student capital, across years and across colleges, 

all fit an exponential model very well. It seems that colleges do not have a significant impact on 

the shape of educational inequality. At every college, there are more low-resourced students than 

high-resourced students. 
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2.2.2 Student Capital as a Finite Resource  

We now explore the finite resource/exponential model in more depth. Colleges often want to 

compare the experiences of different groups of students. Because the exponential distribution can 

be uniquely characterized by a single parameter, we can use our model to assign a number to any 

group of students. This number can be used like any other statistic, such as graduation rate. One 

possible such parameter is the per-credit retention rate 𝑞, which is one minus the traditional 

exponential decay rate. For example, one college might find that 95% of their students, at any 

credit level, will take one more 5-credit class. This corresponds to 𝑞5 = .95, or 𝑞 = .9898. 

Another such parameter is the mean of the distribution 𝜇𝑆 =
1

1−𝑞
 . This has the units of credits, 

and is reasonably easy to interpret as the average student capital in the student population. 

Equivalently, 𝑛𝜇𝑆 is the total amount of student capital collectively possessed by a group of 

students. Both 𝑞 and 𝜇𝑆 can be easily inferred with the algorithm we used.   Figure 4(A) shows 

the distribution of average student capital 𝜇𝑆 for the 140 cohorts in the dataset. Student 

populations in most of the colleges we studied have an average student capital between 90 and 

130 credits, with a peak around 110 credits. It may seem surprising that most students drop out 

of school, given that the average student capital in most cohorts is larger than the typical 90-100 

credits required for an associate’s degree in Washington. The high dropout rate comes from the 

fact that the exponential distribution is right-skewed. Some students would be able to achieve 

very high levels of education, which pulls up the average student capital but only increases the 

number of graduates by one. Note that the values in Figure 4(A) are specific to Washington state 

community colleges. Schools that measure credits differently, such as those on a semester 

system, will not be able to compare their average student capital with Washington’s quarter 

system. 
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Figure 4: Further analysis of the finite resource model. (A) Histogram of average student capital. Each data value 

is the average student capital of a single college-year cohort. (B) Comparison of actual dropout rates and the dropout 

rates estimated by the finite resource model (n = 140). Each point corresponds to one college-year cohort. The red 

line corresponds to both values being equal. The blue line is the line of best fit. 

 

 Typically, education regression models include 𝑅2 values to show how well the model 

explains variation in a set of data. So we calculated the amount of variance in college dropout 

rates explained by our model. Again, our process is: (a) Select a cohort of students. (b) Fit the 

finite resource model, which involves inferring the decay rate for the exponential model, and 

inferring the full distribution of success points. (c) Generate 10,000 simulated students using this 

new fitted model. (d) Compare the percentage of simulated students who dropped out with the 

percentage of actual students who dropped out. Figure 4(B) is a plot of these percentages, with 

one point for each college-year cohort. The figure shows that the estimated dropout rate is close 

to the actual dropout rate. However, the estimates are systematically biased so that the model 

estimates are systematically higher than the true values. Notably, the relationship is very strongly 

linear (R2 = .982, F(1, 138) = 7731, p < .001), which means that the actual dropout rate could be 

reconstructed with high accuracy from this biased estimate. This reconstructability means that 

the combination of the exponential parameter and the distribution of success points contain 

effectively all of the information contained in college dropout rates.  

 This approach assumes the full distribution of success points, which involves estimating 

the percentage of graduating/transferring students at every credit level. In pursuit of simplicity, 

we repeated the process without such a strong assumption. For each cohort, we took the mean of 
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the success point distribution, effectively assuming that all students would graduate or transfer at 

the same credit value. This simplified two parameter model still explained 92.4% of the variation 

in dropout rates by cohort (F(1, 138) = 1680, p < .001). 

2.3 Discussion  

 This paper has presented a conceptualization of student capital as a many-faceted 

resource, operationalized it, and shown that there is a universal shape to educational inequality. 

This shape suggests that, in a given population, the amount of student success is finite. The 

results have ramifications for how colleges think about student success and interventions. In 

addition, the informationally-equivalent parameters mentioned here: the per-credit retention rate 

q and the average student capital 𝜇𝑆, might be used to compare groups of students. For instance, 

they could be used to compare demographic groups.  

 We defined student capital using an input-based approach: as the resources that students 

can marshal toward achieving their academic goals. In contrast, the more common practice of 

measuring student outcomes is an output-based approach. The cohorts in this study started in 

different years, and came from colleges with different policies, geographies, and populations. 

However, in all cases, the shape of educational inequality was the same.  

Student capital distributions across colleges and years were surprisingly all exponential 

distributions. This model explained 98% of the variation in graduation rates of cohorts in our 

data set.  

 Our explanation for this systemic inequality is that student capital is a finite resource in a 

given population. Society has a limited amount of student capital to distribute to the community 

college-going population, and distributes that capital in the least informative way possible. 

Student capital as a finite resource makes sense if ability to be successful in school is truly a 

form of capital that one gathers from parents, mentors, and friends. Throughout their life, people 

gain things like social skills (Lareau, 2011), academic skills (S. Reardon, 2011), emotional 

regulation (Morris et al., 2007), and economic resources (Pfeffer & Killewald, 2018) from their 

environment. Geographic areas that are less educated and poorer have fewer resources like this. 

So they have less ability to share that student capital with their college-bound population. 

 We have also discarded a number of hypotheses that are common in scholarly and 

popular conceptions of academic achievement. Many of the colleges were running interventions 
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focused on student success (Jenkins et al., 2009; Moore et al., 2013), which we might expect 

would change the shape of the student capital distribution. Despite their attempts, the general 

shape of the student capital distribution was remarkably similar across cohorts. It seems that 

small-scale interventions don’t have a significant effect without affecting students throughout the 

college-going process. 

 Students’ ability to earn college credits has a fundamentally different distribution than 

that of intelligence and academic achievement tests. This is consistent with previous research 

showing that tests of knowledge have limited relationship with more comprehensive measures of 

ability to be successful in school, like GPA (Quarles & Davis, 2017; Scott-Clayton et al., 2014). 

Even students who are academically knowledgeable are subject to different types of knowledge 

tests and to instructors with wildly varying grading practices (Brimi, 2011; Starch & Elliott, 

1912, 1913) and pedagogical practices (Boaler, 1998; Cox, 2015). Successfully navigating 

school at least partially amounts to learning and adapting to the particular expectations of 

teachers and school bureaucracy. The results also caution researchers against cavalier use of the 

word ability to describe test scores. An individual’s ability to do well on standardized tests, 

which might more aptly be called cognitive ability, is clearly not the same as student capital, the 

ability to complete schooling. 

 Nor does student capital follow the power law behavior of a rich-get-richer model. In 

some sense, this is unsurprising. Many of the examples we have of power law behavior, such as 

social media follower networks (Myers et al., 2014) and academic citation (Price, 1976) require a 

negligible cost for each additional unit of capital. Given that each additional college credit has, at 

minimum, a financial cost, we would not expect to see power law behavior in this regime. 

However, wealth and income distributions do have heavy tails at the high end (Drǎgulescu & 

Yakovenko, 2001; Nirei & Souma, 2007). So it would not be surprising if there was an 

unobserved tail of students who had nearly unlimited ability to be successful in school. 

 We think that these results will be useful for the design of student success interventions. 

These interventions often focus on finding and reducing barriers in the college-going process. 

However, students face a great many barriers, most of which are outside of the college’s 

influence (J. Johnson & Rochkind, 2009). This paper suggests that successful educational 

interventions should be focused on building up resources and skills in students, rather than 

minimizing barriers. Interventions that focus on resource-building are also likely to improve life 
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outcomes in the broader sense. Results from comprehensive, resource-building interventions 

show significant returns (Kolenovic et al., 2013). Even though these interventions are more 

costly, the benefit to society is lower than the cost (Levin & Garcia, 2013). 

 A common concept in community colleges is student momentum. Our results suggest that 

we might instead think of student capital as a form of energy. The exponential distribution of 

student capital is very similar to the Boltzmann-Gibbs distribution in physics, which has been 

used to study economic capital (Drǎgulescu & Yakovenko, 2001). In this formulation, the 

average student capital 𝜇𝑆 is a state variable corresponding to the average energy of the students 

in the system. Colleges might conceptualize interventions that focus on increasing the energy of 

their student body. 

 A few notes of caution are warranted to readers trying to generalize or extend our work. 

For our analytical technique to work, there needs to be a sufficient number of uncensored data 

points to infer the distribution. These are dropouts which, sadly, community colleges have in 

plenty. High schools and more selective colleges likely have too few dropouts to accurately 

make an inference.  

 It is also worth emphasizing that randomness can play a significant role in a student’s 

ability to be successful. An inspirational teacher or an unexpected financial challenge may have a 

huge effect on a student’s outcomes. This randomness creates error in the use of credits to 

measure individuals’ student capital. When looking at groups of students, this error should 

average out. Some people will have the inspirational teachers and some won’t.  

 The institutional context also plays a role in student persistence and completion. For 

example, the skills necessary to thrive in a low-income high school may be very different from 

those required in an elite university. So a student who has a lot of student capital in one school 

may have less in another. Most differences in student persistence by college are associated with 

the differences between two and four-year institutions and college selectivity. After controlling 

for the student populations, other factors seem to have a relatively small effect (Clotfelter et al., 

2013; Mayhew et al., 2016; Pascarella & Terenzini, 2005). 

2.4 Materials and Methods 

2.4.1 Data 
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We use deidentified data provided by the Washington State Board for Community and Technical 

Colleges (SBCTC), which included all students who started at 30 of the 31 community/technical 

colleges in Washington within the five year period between Summer 2006 and Spring 2011. One 

college declined to participate. The original dataset contained 303,390 students. To create a 

group of people with nominally similar goals, we only included degree-seeking students who 

self-identified as academic transfer students during their first quarter.  We excluded reverse 

transfer students, dual-enrollment high school students enrolled through Washington’s Running 

Start program, and anyone who enrolled but earned zero credits. We also excluded two colleges 

that had less than 100 transfer students. The remaining colleges each had over 1000 transfer 

students. This reduced the dataset to 156,712 students, split into 140 college-year cohorts. Data 

exploration was initially performed on four of the 28 colleges. These four were chosen to have 

different general shapes and to have a sufficient sample size. Once the statistical methods were 

designed and written, we then examined the remaining colleges. 

 There were two main observable variables of interest. The first was 𝑥𝑖, the number of 

community college credits each student earned within five years of enrolling in the Washington 

community college system. We did not differentiate between credits based on when they were 

earned. We assume that students are putting resources into being successful in college at the rate 

that is optimal for them. Our other observable variable is 𝑦̌𝑖, a binary variable which describes 

whether a student dropped out. We say a student graduated if they earned an associate’s or 

bachelor’s degree in the SBCTC system within five years of initial enrollment. All degrees 

required at least 90 credits, though some students brought credits into the SBCTC system and 

graduated with fewer than 90 credits in our data. We say a student transferred if they enrolled at 

a four year college within five years of initial community college enrollment. Transfer data was 

obtained by SBCTC from the National Student Clearinghouse. A student dropped out if they did 

not transfer or graduate. Analysis was performed using R version 3.5.1 (R Core Team, 2018) 

using the VGAM package (Yee, 2018). 

2.4.2 Statistical Analysis  

 The parametric models assume that each student has two independent latent variables: 

their student capital 𝑦𝑖, which is the number of credits they can earn before they have to dropout, 

and their success point 𝑔𝑖, the credit level where they achieve their academic goals by 
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transferring or graduating with an associate’s degree. The observed number of credits is then 

𝑥𝑖 = min (𝑦𝑖, 𝑔𝑖). Students who have dropped out (𝑦̂𝑖 = 1) correspond to the case where 𝑦𝑖 <

𝑔𝑖. Otherwise, 𝑦̂𝑖 = 0.  

 To test the parametric models, we assume that 𝑦𝑖 and 𝑔𝑖 are drawn from theoretical 

probability distributions, infer the parameters of those distributions, and then compare the 

inferred distributions with the real data. Let 𝑌𝑘 be the probability that a randomly drawn student 

will have a student capital of exactly 𝑘 credits. Let 𝐺𝑘 be the probability that a randomly drawn 

student has a success point of exactly 𝑘 credits. This gives the likelihood function: 

ℒ =∑[𝑌𝑥𝑖  ∑ 𝐺𝑘

∞

𝑘=𝑥𝑖+1

 ]

𝑦̌𝑖

[𝐺𝑥𝑖 ∑ 𝑌𝑘

∞

𝑘=𝑥𝑖

]

1−𝑦̌𝑖

𝑖

 

Taking logs and simplifying gives the log-likelihood function 

 

log ℒ = [∑𝑦̌𝑖 log 𝑌𝑥𝑖 + (1 − 𝑦̌𝑖) log(∑ 𝑌𝑘

∞

𝑘=𝑥𝑖

)

𝑖

 ]  +  [ ∑(1 − 𝑦̌𝑖) log𝐺𝑥𝑖 + 𝑦̌𝑖 log( ∑ 𝐺𝑘

∞

𝑘=𝑥𝑖+1

)

𝑖

]  

 

Notice that the only distribution in the left sum is 𝑌𝑘, while the right sum only includes 𝐺𝑘. So 

we can maximize the log-likelihood by maximizing each term separately. The distribution 

{𝑌𝑘} that best fits student capital does so regardless of distribution of success point {𝐺𝑘}. 

 We tested the three different parametric models for {𝑌𝑘}: the discrete normal distribution 

𝑌𝑘(𝜇, 𝜎) =
1

𝐴(𝜇,𝜎)
𝑒
−(𝑘−𝜇)2

2𝜎2  where 𝐴(𝜇, 𝜎) is a normalizing constant calculated numerically, the 

geometric distribution 𝑌𝑘(𝑞) = (1 − 𝑞)𝑞
𝑘−1, and the zeta distribution 𝑌𝑘(𝛼) =

1

𝜁(𝛼)
𝑘−𝛼 where 

𝜁(𝛼) is the Riemann zeta function. To validate the model, we had to create simulated students, 

which meant inferring {𝐺𝑘} as well. Unlike {𝑌𝑘}, where we were trying to find a simple 

parametric form with few parameters, we were only interested in {𝐺𝑘} as a validation tool. Since 

{𝐺𝑘} definitely is dependent on college policies and transfer options, we did not expect a 

parametric form for it. So for each value of 𝑘 we inferred 𝐺𝑘 as its own parameter.  
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Chapter 3  

How the Term White Privilege Affects Participation, Polarization, 

and Content in Online Communication 

 

3.1 Introduction2  

Billions of people use the internet and social media as a window to the world. Rather than being 

made of glass, this window is manufactured and shaped by the collective choices and language 

of billions of people. Online behavior is shaped by a community’s language (Danescu-

Niculescu-Mizil et al., 2013), norms (Rajadesingan et al., 2020), moderation policies (Gillespie, 

2018), initial posts (Salganik et al., 2006), and the perceived demographic and social status of the 

participants (Munger, 2017). 

This study aims to understand how the content that is posted online is affected by one particular 

piece of controversial language: the term white privilege. While the term white privilege existed 

in academic writings as early as the 1980s (McIntosh, 1990), the general public has become 

increasingly aware of it amid the heightened racial tension of the past decade (Saad, 2020). At 

the same time, social media has increased the availability of extreme, and often vitriolic, views 

online. A search for “white privilege” on any major social media platform will show a range of 

posts representing strong feelings from multiple ideological angles. 

Social media has given people more options than ever for how to spend their time. Individuals 

today can scroll through a near-infinite stream of cat videos or talk about their favorite video 

game instead of engaging in uncomfortable discussions of race. Small changes in initial language 

have the potential to create large effects in both the content that gets posted and the traits of those 

engaged. To understand the effects of the term white privilege on social media discussions, we 

 
2 A version of this chapter was published as: 

Quarles, C.L., Bozarth, L. (2022) How the term ‘white privilege’ affects participation, polarization, and content in 

online communication. PLOS ONE 17(5): e0267048. doi: 10.1371/journal.pone.0267048 
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ran two experiments in a simulated online environment. Respondents were asked, “Should 

colleges rename buildings that were named after people who actively supported X?” where X is 

either racial inequality or white privilege. We studied how people responded by looking at stance 

(pro/con), the frames (arguments, topics, and ideas) used in the response, and response quality. 

We also examined who would respond to the post by looking at both stated and actual likelihood 

of response. In addition, we use the posts to simulate the composition of responses in a real 

online forum.  

3.1.1 How people respond to white privilege 

Privilege is “unearned advantage derived from one’s group membership” (Phillips & Lowery, 

2018). In the present study, white privilege refers to racial privilege in the American context. The 

concept of white privilege is central in areas such as contemporary diversity training (Case & 

Rios, 2017) and whiteness studies scholarship (Doane, 2003). However, in public discussion, the 

term is more controversial. Popular media has variously talked about white privilege as a topic to 

be taught to children (M. Brown, 2020), a racist term (Adams, 2020), and a distraction from the 

root causes of racial inequality (Malik, 2020). To be clear, this study does not directly examine 

the concept of white privilege itself, or whether whites think they have advantages due to their 

race. Instead, our goal here is to look at behavior: How individuals respond to the term in the 

context of an online forum. We expect that whites will respond differently to the term white 

privilege than other groups for two reasons.  

Social identity theory suggests that we often define ourselves, and others, in terms of the groups 

that we are members of (Tajfel & Turner, 1979). A person’s behavior or perception of their 

social status might change based on which group membership is most salient at the time (Tajfel 

& Turner, 1979). The term white privilege evokes images of whites as a coherent group with 

representative traits. So we expect that the term will lead to increased salience of racial identity 

among whites, which will affect their responses.  

In addition, whites have different views, on average, than members of other races about the 

advantages that whites have. In a recent Pew study, 47% of whites said that whites benefit either 

a great deal, or a fair amount, from advantages that Blacks don’t have (Pew Research Center, 

2019a). In contrast, 89% of Blacks and 74% of Hispanics said that whites benefited from these 

advantages. While this difference in perception may come from motivated reasoning (Lowery et 
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al., 2007) or from genuinely different life experiences (McIntosh, 1990), by itself it is likely to 

affect how whites respond to the term white privilege. 

Some individuals identify more strongly with their race than others. The strength of this pre-

existing identification can give a differential effect on responses to racial priming, which has 

been shown in a variety of contexts with a variety of identities (R. P. Brown et al., 2008; Doosje 

et al., 1998; Lowery & Wout, 2010). American whites have repeatedly shown less identification 

with their race, on average, than other groups (Pew Research Center, 2019b), likely because 

being in the minority reinforces category differences and increases the salience of racial identity 

(Steck et al., 2003; Yang et al., 2008). However, whites vary in the strength of their racial 

identity, and this affects their thoughts, feelings, and behavior (Branscombe et al., 2007). While 

the current study does not include a measure of strength of racial identification, it is reasonable 

to expect that different groups of whites may respond differently to the term white privilege. 

Responses to the term white privilege do not come purely from a place of reasoned disagreement. 

One meta-study found that emotions were twice as important as beliefs in predicting 

discrimination (Talaska et al., 2008). Just like we can define ourselves using group stereotypes 

(Abrams & Hogg, 2010), the theory of intergroup emotions describes how group membership 

can cause us to feel emotions (Mackie et al., 2000). Anger has been shown to mediate the effects 

of perceived injustice on retributive action (Seip et al., 2014). And guilt has been shown to 

mediate framing effects on support for Dutch-Indonesian reparations (Doosje et al., 1998) and on 

perceptions of American racial inequality (Powell et al., 2005) among members of the dominant 

group. Those emotions do not stop when people go on social media (Duncombe, 2019). Since 

discussions of white privilege create uncomfortable feelings among some people, these 

heightened race group-based emotions may cause individuals to avoid engaging in online 

discussions. 

3.1.2 Online conversations 

Online information plays a significant role in shaping twenty-first century society. From the 24-

hour clickbait-based news cycle, to discussion forums with infinite scrollers, to group-based 

conversations with friends on messaging apps, online media affects how we think about current 

events (Diehl et al., 2016), who our friends are (John & Dvir-Gvirsman, 2015), and how we feel 

about ourselves (Woods & Scott, 2016). However, our perceptions built using the online world 
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don’t always represent reality (Bunker & Varnum, 2021; Lerman et al., 2016). The artificial 

reality we see online is sensitive to affordances and moderation policies of individual platforms 

(Budak et al., 2017; Gillespie, 2018) and is highly dependent on initial conditions (Salganik et 

al., 2006). In addition, media consumers interpret what they read based on pre-existing beliefs 

and biases (Taber et al., 2009). Ultimately, online media enables different groups of people to 

have very different perceptions of truth. Race is especially problematic in this respect, since 

differences in offline lived experiences have the potential to create barriers to a shared reality. 

We look at that online reality by examining four individual-level dimensions: avoidance, 

conversation quality, stance (support or opposition towards a topic under discussion), and the 

frames that are used in responses. To understand the system-level impressions of public opinion 

on a real discussion forum, we also examine the overall composition of posts. 

Avoidance: Individuals’ decisions about whether to participate in discussions play a central role 

in the social media landscape. Individuals avoid posting for a variety of reasons, including lack 

of time or interest, concern about offending someone or giving a bad representation of 

themselves  (Sleeper et al., 2013). Individuals are also less likely to share negative and emotion-

laden content (Bazarova et al., 2015), and are less likely to post in general if they are female, 

afraid of isolation, didn’t feel strongly, or felt like their opinion didn’t match the way the country 

was moving (Fox & Holt, 2018). While avoidance has the potential to be protective of social 

relationships, it can also lead to adverse personal effects from stifling expression (Butler et al., 

2003). More systemically, avoidance is a key component of the “spiral of silence” (Noelle-

Neumann, 1974), which leads to perceived minority opinions being underrepresented on social 

media (Lee & Kim, 2014). Of course, the vast majority of social media consumers are lurkers – 

people who consume content without contributing (Sun et al., 2014). And even regular posters 

read more than they post. In the context of race, people have been shown to distance themselves 

from sources of identity threat (Goff et al., 2008). So we expect that whites will be more likely to 

avoid responding to the white privilege question, particularly those whites who might feel like 

their ideas are in the minority or who experience identity threat. 

Conversation Quality: Incivility and toxicity are important metrics for online spaces, and race-

related topics are more likely to draw uncivil comments (Salminen et al., 2020). Even if posts 

can be categorized as civil, they may be confusing or add little to the conversation. So we 

operationalized a low-quality response as one that attacked people, challenged the question itself, 
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contained little content, or was hard to understand. Given the toxic nature of some online 

conversations around race (Mittos et al., 2020) and the discomfort many whites have with the 

concept of white privilege (Lowery et al., 2007; Pew Research Center, 2019a), we expect that the 

term will lead to lower average conversation quality among whites. 

Stance & Frames: We measure the content of a post in two ways. Stance describes whether an 

individual supports or opposes the proposed topic. We also look at the topics, or arguments, 

mentioned in each response. These could be described as the ideas that the writers have about the 

topic. Alternatively,  if we think of social media consumption, those same ideas become a way of 

framing the conversation. In this paper, we will use the term frames to describe this concept.  

In the current context, we know that many whites do not believe they have race-based 

advantages (Pew Research Center, 2019a). The idea of white privilege is not consistent with their 

understanding of the world. Consequently, we hypothesize that fewer whites will be supportive 

of renaming building when white privilege is brought up.  

Note that stance and frames are separate, but highly related. Supporters of a proposition typically 

find certain frames more salient than opponents do. For instance, abortion opponents often frame 

the procedure as ending a life, which puts the fetus at the center of attention. While pro-choice 

advocates tend to frame the issue around the needs and rights of the mother. Speakers and writers 

will influence support for a topic by framing the issue in different terms (Jacoby, 2000). In our 

experiments, we expect treatment condition to influence both stance and frames. Previous work 

suggests that that white privilege will have a primarily affective effect on individuals (Lieberman 

et al., 2005; Talaska et al., 2008). We expect this blunt mechanism to influence stance, instead of 

the frames used in complex reasoning. In this case, frame use would arise from motivated 

reasoning, as individuals tried to explain the stance that they had already chosen. So we 

hypothesize that there will be no significant difference in frames after controlling for stance. 

Composition of Posts: Social media is used by individuals (Neubaum & Krämer, 2017), 

researchers (Prichard et al., 2015), journalists (McGregor, 2019) and policy makers (McGregor, 

2020) to understand public opinion. However, responses on social media are not usually 

representative of the population as a whole (Hargittai, 2018).  Online behavior depends on the 

community members, the affordances of the forum, and framing. To understand how the term 

white privilege affects this perception, we summarize the composition of responses in each 

treatment condition. By this we mean the set of responses, taken as a whole, as a reader might 
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perceive them. Unlike the other four dimensions, which focus on individual behavior, this 

variable describes the system’s behavior. For instance, does an online community seem 

supportive of renaming buildings? Or does the community seem to oppose it? This composition 

can also create higher-order effects on the community, as individuals make decisions about what 

to post (Matthes et al., 2018; Sleeper et al., 2013). Given the relatively strong responses to the 

term white privilege online, and the lack of debate about whether racial equality is an important 

social value in the U.S., we expect that white privilege and racial inequality will create simulated 

communities with different compositions. 

In summary, the literature suggests the following hypotheses:  

Hypothesis 1 (Avoidance): Whites will be less likely to respond when asked about white 

privilege. 

Hypothesis 2 (Stance): Whites will, on average, be less supportive of renaming buildings when 

asked about white privilege. 

Hypothesis 3 (Conversation Quality): Whites will, on average, have lower quality responses 

when asked about white privilege. 

Hypothesis 4 (Frames): Supporters and opponents of renaming buildings will bring up different 

sets of frames. And, after controlling for support, asking about white privilege will not affect the 

frames used. 

While not a formal hypothesis, prior work suggests non-whites will either show no mean 

difference between treatment conditions in these first four dimensions, or show a trend in the 

opposite direction from whites. Overall, the first four hypotheses should lead to: 

Hypothesis 5 (Composition of responses): In an online conversation, the use of the terms racial 

inequality and white privilege will result in a different composition of posts. 

3.2 Study design 

We explored these hypotheses through two experiments. Experiment A enabled us to gather 

responses from both individuals who would have posted online and those who would have self-

censored. Because Experiment A asked people to self-rate their likelihood of responding, 

Experiment B examined revealed preferences by giving respondents a choice of questions to 

answer. A lab experiment was chosen to isolate the effects of language, avoid higher-order 
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network effects on peoples’ responses, and ensure that we could gather data about people who 

would otherwise avoid responding. 

3.2.1 Respondents 

Participants were US residents, drawn from Amazon Mechanical Turk (MTurk), who had 

completed 1000 tasks with 98% or higher acceptance rate. Both experiments were listed as the 

same task in the MTurk system. US resident MTurkers have been shown to be generally 

representative of the national population (Coppock, 2019). Participants were randomly assigned 

to experiment (A or B) and to treatment condition (racial inequality or white privilege). After 

excluding respondents who did not respond to the prompt, we were left with 478 people in 

Experiment A and 446 in Experiment B. Descriptive statistics about the sample are in Table 1. 

 

Table 1: Demographics of respondents 

 

 

 

We expected that people who identified only as white (74%) would tend to respond differently to 

the term white privilege than those who identified, at least in part, as a member of another race. 

To describe this latter group, we use the term non-white to signify that we don’t expect them to 

have the same white identity as those who identify as only white. Four respondents did not 

provide a race. They are included in any analyses which don’t involve race. 

3.2.2 Instrument 
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Respondents in both studies received an online survey broken into two parts. After giving 

informed consent, respondents were sent to the Part 1 that corresponded to their experiment. In 

Part 1, each respondent was randomly assigned one of the two questions: “Should colleges 

rename buildings that were named after people who actively supported racial inequality?” or  

“Should colleges rename buildings that were named after people who actively supported white 

privilege?” The question language was chosen based on conversations with colleagues and 

vetting interviews during the study design phase. We purposely tried to use general language that 

might evoke a broad, identity-based response. Racial inequality was chosen as a counterpoint to 

white privilege because it seemed less likely to increase the salience of racial identity. Equality is 

an American ideal that we thought most respondents would support. And the topic of renaming 

college buildings seemed to give enough opinion diversity to see meaningful differences in the 

data.  

In Part 1 of Experiment A, each respondent was randomly shown either the racial inequality or 

white privilege question. They were then asked: (a) “How likely would you be to respond to this 

question if you saw it in an online community?” and (b) “If you did reply to this question, what 

would you post in the online forum? Write the reply exactly as you might post it online.” 

Responses to (a) were on a 5-point Likert scale from very likely (2) to very unlikely (-2). 

Responses to (b) were free-written into a text box. After submitting Part 1, respondents were sent 

to Part 2. 

Each participant in Experiment B was also randomly assigned to either the racial inequality or 

the white privilege condition. However in this case, for Part 1 participants were given the choice 

of two questions in a randomly chosen order. They were told that they could respond to either 

question, but only one. The questions were the renaming-buildings question (which depended on 

their treatment condition): “Should colleges rename buildings that were named after people who 

actively supported racial inequality/white privilege?” and the college-loans question: “Should 

college tuition loans be forgiven for people who choose to go into public service, such as social 

workers and teachers?” The college-loans question was chosen to avoid race and provoke a 

similarly diverse range of opinions. Text responses to the college-loans questions were not coded 

or used. After responding to their chosen question in a text box, respondents were sent to the 

same Part 2 as in Experiment A. 
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The benefit of the design of Experiment B is that it elicits behavior in a way that better 

approximates a real social media site. Attention is a precious commodity online. Ads and posts 

vie for time on consumers’ screens. The option of an alternative question simulates that 

environment. Unlike in Experiment A, however, we do not get the censored responses from 

individuals who chose not to respond to the renaming-buildings question. These data are 

sensitive to the attractiveness of the other question. If the college-loans question is something 

that many or few of the sample would reply to, this will affect the effect size. The results are also 

sensitive to the college-loans question being differentially attractive to special groups, which has 

the potential to bias the sample in a way unrelated to our hypotheses.  

Part 2 was a survey which asked primarily multiple-choice demographic questions. These 

included gender, age, race/ethnicity, preferred political party, and highest level of education. Part 

2 was the same for both experiments. 

3.2.3 Coding for stance and frames 

The survey gave text responses for the renaming-buildings question from participants in 

Experiment A and from those who chose this question in Experiment B. We manually coded text 

responses to the renaming-buildings question for both stance and for the frames used in the 

response. Based on its written content, every text response was assigned to one of five stance 

categories: pro (supported renaming buildings), con (opposed renaming buildings), neutral, 

conditional (it depends on the person/situation), and unclear (when we could not discern 

support). For the purposes of analysis, we focused mainly on the pro and con categories. 

To create the framing codebook, each member of the research team initially independently coded 

100 responses according to labels from Moral Foundations Theory (Graham et al., 2009), the 

Media Frames codebook (Boydstun et al., 2014), and with frames generated by the responses 

themselves. We then collectively tried to synthesize our frames into a set of consistent, 

reasonable codes. Ultimately, neither Moral Foundations nor the Media Frames Codebook 

aligned with our sample’s responses on renaming college buildings. So we developed and used 

our own set of codes through an iterative process: We coded a new set of responses using the 

previously created labels and with frames found in the new data. We then met and synthesized 

the codebook. This process repeated until the set of codes stabilized. Our codebook was 
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informed by the other two sets of frames, but definitions are different. For instance, our 

definition of harm does not exactly match the one used in Moral Foundations.  

Once the codebook was created, each author independently coded every response in sets of about 

100 responses. After each set, we met to discuss our codes until a consensus was reached on 

every response. Coders were blinded, so we did not know the treatment condition or 

respondents’ demographics. Many responses had multiple frame codes. In the rare cases where 

there were more than three frames used in a response, we chose the three frame codes that were 

repeated the most often. In the case of ties, we chose the frames that were used earlier in the 

response. To calculate test-retest reliability, we performed this process again on a randomly 

chosen subset of 100 responses. This led to a test-retest reliability, using fuzzy kappa (Kirilenko 

& Stepchenkova, 2016), of 𝜅 =  .817. 

3.2.4 Frames 

Here is the list of frame codes and the criteria used:  

Erasing history – Any reference to erasing history or rewriting the past. 

History as lesson – Mentions how we can learn from history and/or historical building names. 

College’s role – Refers to the college’s image, relationship between the college and the 

community, or the values of the college. Must explicitly mention the college. 

Cost – Mentions a scarcity of resources, or the amount of work required to take an action. 

Progress – Reference to moving on from a problematic past, making progress on social issues, 

or solving problems today that we had in the past. Includes metaphors of motion or growth from 

a past state. 

History is past – History is in the past, and is therefore not important or less important than 

contemporary issues. 

Fairness – Equal treatment or preferential treatment. Interpreted narrowly. For example, a 

reference to equality doesn’t automatically fall into this category. 

Same people, different times – People are the same as they always have been. Or different 

times have different standards. 

Individuals’ contributions – The specific contributions of the individuals who the buildings 

were named after should be considered. Includes references to relative contributions of different 
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people, looking up to them as role-models, not honoring people who have done bad things, and 

references to worthiness due to monetary contributions. 

Unintended consequences – There will be an unintended or surprising effect if buildings are 

renamed (or not renamed). 

Inconsistency – There are inconsistencies in the present/future that would be created by 

renaming/not renaming. Typically referred to hypocrisy arising from some things being renamed 

when others aren’t. 

Different action – Suggests a different action, besides renaming buildings. 

Harm – Someone will be harmed in the present or future. Includes people taking offense, 

disrespect, damage to social well-being, and supporting students. Both increasing harm and 

reducing harm fall in this category. 

Authority – Any reference to the individuals who have the right to make the decision. 

Doesn’t matter – The decision to rename buildings will not have a practical impact. Or the 

discussion about renaming doesn’t matter. 

Ad hominem* – Attacks the parties involved in the debate, rather than focusing on the merits of 

renaming. Includes criticizing their character, calling names, suggesting they are hypocrites, or 

implying they have the wrong mentality. 

Challenges question* – Attacks the language used in the question or challenges the question 

itself. 

Other* – Response unrelated to the question, using a frame not listed above, or no clear frame. 

Includes simple answers like “yes”. Originally coded as three categories: off topic, other frame, 

and no frame. However, it was hard to separate these categories, since these responses were often 

not clearly written. 

 

*Any response that included either the ad hominem, challenges question, or other frame was 

coded as a low-quality response.  

 

To test for differences in proportions, we used Boschloo’s test (Boschloo, 1970) using the Exact 

library (Calhoun, 2019) in R (R Core Team, 2018). The Fisher exact test is inappropriate to 

analyze contingency tables if column sums are not fixed by design. Boschloo’s test adapts 

Fisher’s approach by comparing p-values across different column sums. It is uniformly more 
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powerful than Fisher’s design. All Boschloo’s tests were one-tailed. The Plotrix library (Lemon, 

2006) was also used for visualization. 

3.2.5 Comparing frames 

We were interested in inferring whether two groups C and D, such as whites and non-whites, 

were likely to use a different set of frames in their responses. This statistical analysis is 

challenging, since each response may have used 0, 1, 2, or 3 frames. In addition, there is no 

obvious statistical model which might explain how the groups use different frames.  

So we used a random assignment Monte Carlo approach to infer whether two groups had similar 

frame use. We assumed as a null hypothesis that membership in Group C and Group D was 

independent of the probability of using each frame. We created a sampling distribution under the 

null by first tossing out the original group labels. We then randomly assigned every response to 

either Group C or Group D, ensuring that simulated groups had the same size as the actual 

groups. We calculated the test statistic under this simulated division. This process was repeated 

until we had 10,000 simulated test statistics. Our p-value is the percentage of these simulated test 

statistics which are larger than the test statistic for the actual sample. 

For a test statistic, we used a variant of the Kullback-Liebler (KL) divergence (Kullback & 

Liebler, 1951). Let 𝑝𝑓
𝐶 be the observed proportion of responses from Group C that use frame 𝑓. 

Set 𝑝𝑓
𝐷 in a similar fashion. For the null hypothesis, let 𝑞𝑓 be the proportion of responses in the 

complete sample 𝐶 ∪ 𝐷 that used frame 𝑓. Then, the test statistic is: 

∑𝑝𝑓
𝐶  𝑙𝑜𝑔 (

𝑝𝑓
𝐶

𝑞𝑓
)

𝑓

+∑𝑝𝑓
𝐷 𝑙𝑜𝑔 (

𝑝𝑓
𝐷

𝑞𝑓
)

𝑓

 

Note that this is not a true KL divergence, which is typically defined on a probability space 

where probabilities sum to one. In our case, each response can have multiple frames, so ∑ 𝑞𝑓𝑓 >

1. However, like KL divergence, this test statistic does measure how different the observed 

group probabilities 𝑝𝑓
𝐶, 𝑝𝑓

𝐷 are from the reference distribution 𝑞𝑓 corresponding to the null 

hypothesis. 

All respondents gave informed consent through a digital interface. The University of Michigan 

institutional review board approved this study. 
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3.3 Experiment A results:  

Experiment A was designed to understand both the responses of people who would respond in an 

online forum, as well as responses from people who would avoid posting online. So we asked 

everyone in the sample to respond to the prompt, and then self-rate how likely they would be to 

respond to it in an online community.  

For the purposes of this analysis, we defined someone as a likely responder if they said they 

would be somewhat likely or very likely to respond to the question. We used this group to 

understand what might actually be posted online. 

Table 2 gives some results from Experiment A. 

 

Table 2: Experiment A - Likelihood of responding, stance, and response quality by treatment group and race 

 

 

3.3.1 Avoidance 

Based on their self-reported likelihood of responding, whites were less likely to respond to the 

white privilege question than the racial inequality question (t(344) = 2.73, p = .003). In contrast, 

non-whites were not significantly more likely to respond to the white privilege question (t(121) = 

-0.33, p = .372). 

3.3.2 Stance 

Because we had coded multiple categories for stance, we separately report the percentages of 

people who supported (pro) and opposed (con) renaming buildings. The other stance categories 

did not have enough responders to draw reliable conclusions. 

Whites in Experiment A were less likely to support (p < .001) and more likely to oppose (p = 

.008) renaming buildings when the question was phrased in terms of white privilege. This overall 
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shift in stance among whites was surprising. When asked about racial inequality, whites were 

67% more likely to be supportive than opposing. However, when white privilege was mentioned, 

74%  more whites opposed renaming college buildings than supported it. 

As with avoidance, the choice of racial inequality versus white privilege did not affect average 

support (p = .505)  or opposition (p = 0.667) among non- whites. This reinforces previous work 

that shows individuals have different responses when primed to think about their own group 

compared with another group. 

Among likely responders, the term white privilege significantly decreased support for renaming 

buildings. In the white privilege condition, support dropped by 26 percentage points (p < .001), 

and opposition increased by 20 percentage points (p < .001). Unlike the results for whitesand 

non- whites, these differences are caused by differences in who would respond in addition to 

stance changes. 

3.3.3 Response Quality 

Framing the question in terms of white privilege increased the percentage of low-quality 

responses. This was true among whites (p = .001), non-whites (p = .069), and likely responders 

(p = .003). The percentages for all groups were similar, so the decreased significance among 

non-whites is likely due to a smaller sample size. 

3.3.4 Frames 

As predicted, the biggest difference in frame use was between supporters and opposers of 

renaming buildings (p < .001). The frequency of frame use for supporters and opposers is shown 

in Figure 5. We did not find a difference between the frames that whites and non-whites used in 

their responses (p = 0.768). This result held when we restricted the analysis to only those who 

received the racial inequality (p = 0.912) and white privilege (p = 0.649) questions.  
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Figure 5: Percentage of responses in Experiment A that used each frame. Squares give the proportion of 

responses that used a given frame, among all responses that supported renaming buildings. Diamonds represent 

frame use among all responses that opposed renaming buildings. Starred frames were categorized as low-quality. 

 

Treatment condition did affect the frames that people used in their responses in both the 

complete sample (p = 0.018) and among likely responders (p = 0.029).  Was this because the 

terms racial inequality and white privilege bring up different ideas in peoples’ minds? Or was it 

due to the fact that there are more supporters in the racial inequality condition, and supporting 

arguments generally use different frames?  

To answer this, we performed a mediation analysis. We ran a logistic regression predicting the 

use of each frame based on treatment condition, controlling for support and opposition: 

𝑙𝑜𝑔𝑖𝑡(𝐹𝑖) = 𝛼 + 𝛽(𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖) + 𝛾(𝑝𝑟𝑜𝑖) + 𝛿(𝑐𝑜𝑛𝑖) + 𝜖𝑖 

Here F  indicates whether individual 𝑖 used the chosen frame, treatment tells whether the 

individual received the racial inequality or white privilege question, and pro/con are binary 

variables that describe whether the individual supported or opposed renaming buildings. We ran 

this regression on every frame except the low-quality frames, which as described above did seem 

to show a difference between treatment conditions, and the consistency frame, which was used so 

rarely that the regression was not valid.  
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If the frames that people use in each treatment condition can be explained by their stance, then 

we would expect the coefficient of treatment to be uniformly distributed and mostly 

statistically insignificant. Though we do expect statistical significance (α = .05) to occur by 

random chance around 5% of the time. This is what we found. Of the 17 regressions only one 

frame, erasing history, had a p-value less than .05 (p = .014). The p-values seemed uniformly 

distributed, with the largest p-value for authority (p = .862). The effect of the term white 

privilege on framing was explained by individuals’ stances. 

3.3.5 Composition of responses 

How does the question language affect the overall composition of responses that get posted 

online? We turn to the set of likely responders to analyze this question. Figure 6 gives a snapshot 

of what an online conversation might look like in each condition. The racial inequality question 

led to a set of likely responses that was overwhelmingly supportive of renaming buildings, with 7 

supporters for every 2 opponents. In contrast, the white privilege framing led to a more divided 

set of responses, with roughly equal numbers of supporters and opponents. Different frames were 

brought up in the two conditions as well. Though, as mentioned, this seemed completely driven 

by differences in support. The white privilege question brought 80% more low-quality responses 

than the racial inequality question. 
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Figure 6: Composition of posts in a hypothetical online conversation among 100 responders who are 

representative of our sample. For Experiment A, the figure represents likely responders. For Experiment B, the 

figure represents those who responded to the renaming-buildings question. Shape corresponds to the race of each 

responder. Points are colored based on support for renaming buildings. The Other category includes responses that 

were neutral, unclear, or said that it should depend on the situation. 

 

3.3.6 Avoidance differences between whites 

The effect of using the term white privilege did not affect all whites equally, as shown in Figure 

7. Supportive whites were less likely to respond to the white privilege question than the racial 

inequality question (t(62) = 3.03, p = .004). However, whites who opposed renaming buildings 

were approximately equally likely to respond in both conditions (t(114) = -0.48, p = .635). 

Language choice did not affect the likelihood of responding among either supportive or opposing 

non-whites.  
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Figure 7: Average self-reported likelihood of responding in Experiment A. Respondents rated their likelihood of 

responding on a scale from 2 = very likely to respond to -2 = very unlikely to respond. Error bars represent standard 

errors. 

 

Overall, the results show that the shift from a set of overwhelmingly supportive responses under 

racial inequality to the divided responses under white privilege comes from two factors: (a) 

whites were, on average, less supportive of the white privilege question, and (b) supportive 

whites were less likely to respond to the white privilege question. 

3.4 Experiment B results 

As a counterpoint to Experiment A, where people self-rated their likelihood of responding, 

Experiment B was designed to examine revealed behavior and see how people might respond in 

a simulated online environment. Respondents were given (a) the renaming-buildings question 

that corresponded to their randomly assigned treatment group and (b) the college-loans question. 

They were told to respond to only one of the questions.  
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37 respondents filled in the text boxes under both questions. This meant they provided a response 

for the college loans question, but that it was unclear whether they preferred to answer that 

question. Since our analysis focused on people who chose to respond to the renaming-buildings 

question over the college loans question, we excluded those 37 data points from the analysis in 

this section. For completeness, we performed a robustness check with those individuals included. 

The results were qualitatively similar to the results below but with smaller effect sizes. 

 

Table 3: Experiment B - Probability of responding, stance, and response quality by treatment group and race 

 

 

 

The results in Table 3 tell a story consistent with the results from Experiment A. However, these 

results have generally weaker statistical significance. In particular, some of the effect sizes for 

non-whites seem to be similar to whites’ effect sizes, but without sufficiently small p-values. 

This is likely due to a smaller sample size. The alternate question about college loans seems to 

have been too attractive, with only about 1/3 of respondents answering the renaming-buildings 

question. This preference for the financial question over the race-related question held regardless 

of race or treatment condition, and warrants investigation in future studies.  

3.4.1 Avoidance 

As in Experiment A, whites were less likely to respond to the white privilege question by nine 

percentage points (p = .035). Non-whites in the sample were 10 percentage points more likely to 

respond to the white privilege question (p = .160), but this did not rise to the level of statistical 

significance. So the effect for non-whites could be due to sampling variation. These results 

support Hypothesis 1. 
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3.4.2 Stance 

Whites who responded to the racial inequality question were, on average, more positive about 

renaming college buildings than those who responded to the white privilege question. They were 

16 percentage points more likely to be supportive (p = .058) and 19 percentage points more 

likely to oppose (p = .030).  Interestingly, non-white responders also seemed more positive about 

the racial inequality question. Though the sample size was small enough that neither the 

difference in support (p = .202) nor opposition (p = .427) were significant. When we consider the 

set of people who responded to the renaming buildings as a whole, the people who received the 

racial inequality question were more likely to be supportive (p = .043) and less likely to oppose 

(p = .091). 

3.4.3 Response quality 

Responses to the white privilege question garnered a higher percentage of low-quality responses 

among whites (p = .047), non-whites (p = .010), and all responders (p =. 010). 

3.4.4 Frames  

As in Experiment A, there was a large difference in frame use between supporters and opponents 

of renaming buildings (p < .001). There also was a significant difference in the frames between 

treatment conditions (p < .001). To analyze the effect of stance on frame use, we ran a logistic 

regression for each frame as described in Experiment A. The frames unintended consequences 

and cost were omitted from this analysis due to low use. The low-quality frames were also 

omitted. After controlling for stance, there was no effect of treatment condition on frame use 

beyond what we would expect by chance. The p-values were distributed fairly uniformly with 

the smallest p-value corresponding to the consistency frame (p = .040) and the largest 

corresponding to erasing history (p = .076). Again, the effect of question (racial inequality/white 

privilege) on frame use was completely explained by stance. These results support Hypothesis 4. 

3.4.5 Composition of responses 

Figure 6 shows the overall composition of responses. As before, racial inequality led to more 

supportive responses and fewer low-quality responses than when the question was framed in 

terms of white privilege. As in Experiment A, there were equal numbers of supporters and 

opponents when asked about white privilege, and responders were generally supportive when 
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asked about racial inequality. There were 1.9 supporters for every opposer in the racial 

inequality condition. This was weaker than in Experiment A, where the support/opposition ratio 

was 3.5. It is unclear whether this weaker support is caused by the attractiveness of the college-

loans question, a difference between stated preferences (Experiment A) and revealed preferences 

(Experiment B), or random chance. 

3.5 Summary of Results 

These results shed light on our hypotheses. Hypothesis 1 and Hypothesis 2 are both confirmed by 

the data. Whites who received the white privilege questions were less likely to respond and less 

supportive of renaming buildings. We also found support for Hypothesis 3. Use of the term white 

privilege led to more low-quality responses. This result was not only true among whites, but also 

among non-whites. The results also support Hypothesis 4, which focused on motivated 

reasoning. Supporters and opponents of renaming college buildings used different arguments. 

However, differences in framing between people who received the white privilege and racial 

inequality question disappeared after taking into account their stance. These experiments also 

provided evidence for Hypothesis 5. The term racial inequality created a set of responses that 

supported renaming college buildings. White privilege led to a more divided, polarized set of 

posts. While the effects of the term white privilege on whites was unambiguous, the effect on 

non-whites was less clear due to a combination of smaller sample sizes and seemingly weaker 

effects. The only reliable result among non-whites was that white privilege led to more low-

quality responses. 

3.6 Discussion 

Using two experiments, we studied how individuals respond to the term white privilege in an 

online environment. Mentioning white privilege was enough to flip white support for renaming 

college buildings from primarily supportive to primarily opposing. Furthermore, the term white 

privilege deters some supportive whites from engaging in the conversation. Surprisingly, we did 

not see this avoidance effect among opposing whites. In addition, the term white privilege led to 

less constructive responses among both whites and non-whites.  

If these were posts on a real online discussion board, asking about racial inequality would give 

the impression of general support for renaming college buildings. Asking about white privilege 

would lead to a seemingly less supportive, more divided public opinion with lower-quality online 
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debate. This decreased support is driven by two factors: (a) whites were, on average, less 

supportive when white privilege was brought up, and (b) supportive whites were more likely to 

avoid talking about white privilege. 

Responses to white privilege tended to use different arguments from arguments about racial 

inequality. However, that difference was completely explained by differences in stance toward 

renaming buildings. This lends credence to the claim that the term white privilege leads first to a 

change in stance, followed by motivated reasoning to support that stance. If the causality went 

the other way, where the choice of language first affects the ideas people have, which leads to 

them changing their support, then we might expect at least some of the frames to be unexplained 

by stance.  

Prior literature suggests that both emotion (Mackie & Smith, 2015; Powell et al., 2005) and the 

strength of racial identity (Doosje et al., 1998) play a significant role in our results. We 

hypothesize that the increased tendency of supportive whites to avoid discussing white privilege 

is mediated by both these factors. It could be that the term made racial identity more salient for 

all whites, but was more likely to generate guilt and therefore avoidance in supportive whites.  

Another possibility is that opposing whites tended to identify highly with their race already, so 

that mentions of white privilege had a greater average effect on both racial identity salience and 

emotion on lower-identifying whites. Future research might test these hypotheses.  

In writing about this study, we had to refer to groups, such as “non-whites” and “supportive 

whites”. There is a lot of variation among the individuals in any group, especially racially-

defined groups with millions of members. However, humans have an unfortunate tendency to 

generalize a statement about a group of people to each individual member (Abrams & Hogg, 

2010). This overgeneralization can cause harm, for instance through stereotyping (Zaniboni et 

al., 2019). Our study, like many research studies, is about averages. So we have been careful to 

use language that minimizes overgeneralization to individuals. For instance, instead of writing, 

“Whites were less supportive of the white privilege question”, we wrote “Whites were, on 

average, less supportive of the white privilege question.” Our results should be interpreted as 

describing how language affects large-scale social dynamics, not as a way to understand traits or 

behaviors of individuals. 

3.6.1 Limitations 
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In a real online site, social desirability bias, the design of the forum, and back-and-forth between 

posters may magnify or dampen the effects we saw here. Another limitation comes from the fact 

that most social media users post very rarely. Online, the desires for information and 

entertainment are major drivers of behavior. Indeed, some researchers emphasize the value of 

active listening (Thill, 2015), which can bring a more diverse set of perspectives. All participants 

in our study were motivated to respond. It is unclear how the desire to read others’ points of view 

might affect these results. In addition, Experiment A and Experiment B had quantitatively 

different but qualitatively similar results. So in a true online environment, we might expect a 

similar effect, but with potentially different effect sizes. 

The present study does not capture long-term attitude changes. Further research is required to 

understand the circumstances under which long-term exposure to the term white privilege affects 

support for racially progressive policies, whether it increases animosity and polarization, and 

how this effect might differ between demographic groups. 

While we chose the language in the study to broadly evoke group-based identity, the terms racial 

inequality and white privilege do have different literal meanings. The survey prompt asked 

individuals to think about buildings named after people who supported these two separate 

concepts. It’s not clear whether that difference in meaning affected their responses. Concerns 

about building names have cited a variety reasons, from the honoree being a Confederate to 

supporting eugenics. Perhaps white privilege and racial inequality suggest different reasons, 

which led to different responses by treatment group. 

3.6.2 Implications 

Our study has several practical implications. The first is already known, but often ignored: 

Opinions on social media do not represent public opinion. Social media posts are highly 

dependent on how a question is phrased, as well as the norms, community members, and 

moderation practices of the site. Individual and system-level forces, such as self-categorization 

(Abrams & Hogg, 2010), the spiral of silence (Matthes et al., 2018), and algorithmic filters 

(Thorson et al., 2021) affect what shows up on our feeds. In our study, which did not include the 

moderation found on social media platforms, a two-word change in language was sufficient to 

shift a community from appearing divided to appearing supportive. This result will not be 

surprising to survey researchers, who need to be very attentive to choice of language (Fowler & 
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Cosenza, 2008). However, policy-makers (McGregor, 2020), journalists (McGregor, 2019), and 

others who use social media to understand the opinions of others may want to turn to more valid 

sources. 

Those who want inclusive online conversations around race and/or support for racially sensitive 

policies should think carefully about the use of language like white privilege that targets the 

racial identity of specific groups. This language can deter the targeted group from participating. 

It has the potential to increase affective polarization by creating the image of a politically divided 

online space. Using slightly different language, such as racial inequality, that has more of a 

shared meaning across cultures can lead to conversations with broader participation and greater 

shared support.  

In discussing this study with academic colleagues, a common response was, “Even if the term 

white privilege makes whites feel uncomfortable, they still need to hear it. It’s part of learning 

about race.” Indeed, numerous scholars have argued for raising awareness of race-based 

privilege (Case & Rios, 2017). Spending time thinking about racial advantages and 

disadvantages can affect individuals’ perceptions of systemic discrimination (Branscombe et al., 

2007; Stewart et al., 2012). However, these effects vary significantly depending on the details of 

the intervention and the individuals involved (Branscombe et al., 2007; Case & Rios, 2017; 

Stewart et al., 2012). Our results, which focused on a simple change of language in an 

impersonal context, show that mention of white privilege can decrease engagement and lead to 

opinion shifts opposite to what was intended. It’s reasonable to expect that this identity-based 

disengagement decreases learning for some whites – an effect which has been documented in 

other settings (Heikamp et al., 2020; Steele, 2010; Zhao et al., 2019).  Humanity has an 

evolutionarily useful, but usually incorrect, tendency to treat all members of a group as being the 

same (Abrams & Hogg, 2010; Turchin, 2007). As commonly used, the phrase white privilege 

draws on this tendency to conflate individual traits with group averages, in a way that creates 

unpleasant emotions. A more effective approach might be to distinguish between individuals’ 

experiences and group averages through a combination of personal storytelling and large-scale 

data in a way that is consciously inclusive of whites (Plaut et al., 2011). 
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3.7 Conclusion to Chapter Three 

With online political polarization on the rise (Iyengar et al., 2019) and race in the forefront of 

today’s news, it is important to make cross-cultural online communication effective and 

inclusive. The present work adds to what we know about communication on racially challenging 

topics. This study has shown that the term white privilege in online conversations tends to 

decrease support for racially ameliorative policies among whites, cause some supportive whites 

to avoid participating in discussions, decrease overall online conversation quality, and lead 

online forums to seem more polarized. Other, more inclusive, ways of speaking about race 

online, such as the term racial inequality are more likely to create a sense of shared purpose. 

There are very real racial inequities in society today. Choosing language that promotes 

constructive conversation will not solve those problems. But it is an important step towards 

collectively understanding their dimensions and working together towards a solution. 
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Chapter 4  

Modeling the Accumulation of Success 

4.1 Introduction 

Decades of social science and health research have shown that the factors influencing success 

and well-being are highly interrelated. It is clear that a highly connected web of relationships 

underlies our social system. In this chapter, I develop a model describing multifactor cumulative 

advantage leading to a probability distribution of outcomes which can be interpreted in terms of 

real data. I then calculate the relationship between the inequality in the outcome distribution and 

the cumulative advantage process that generated it. I show that, under certain conditions, such a 

model can be approximated by a one-dimensional model which can be used to understand the 

higher dimensional context. I explore the behavior of these one dimensional models and, to the 

extent that their moments exist, I build a “dictionary” relating outcome distributions with the 

processes that generate them. I then explore various examples of generating processes and 

outcome distributions, including the accumulated Bernoulli, accumulated Pareto, and 

accumulated exponential. The results provide a pathway for researchers to understand 

multifactor cumulative advantage and how it might influence outcomes. 

4.1.1 Literature Review 

It has long been recognized in social science that various resources, traits, and skills reinforce 

themselves to create what we call professional success or well-being. In The American 

Occupational Structure (1967), Blau & Duncan used an impressive set of data and path analyses 

to point out the fundamental relationships between parent and child’s socioeconomic status. This 

approach was adapted by others, for instance by adding new variables to create greater precision 

(Sewell et al., 1969) or putting the idea of path analysis in a new context (Tyree et al., 1971).  

This approach to examining the relationships between quantities has propagated widely in the 

research literature, much as its initial proponents called for. For instance, Sewell, Haller & Portes 
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called for the inclusion of social psychological variables in the Blau & Duncan model (1969). In 

the years since, a plethora of research has examined how myriad social & psychological 

variables influence success (Heckman et al., 2006; Kraus & Park, 2017; Yeager & Walton, 

2011), delving into more and more detail. In one fine-grained review, Farrington, et al., (2012) 

explored the effects of noncognitive factors on academic performance. They highlighted five 

categories of skills which influenced each other as well as educational success: academic 

behaviors, academic perseverance, academic mindsets, learning strategies, and social skills. In 

their classification, each category was made up of multiple, more fine-grained skills.  

Path diagram models used in research are often acyclic. That is, they do not include pathways 

that either allow a factor to influence itself. However, there is a recognition in the research 

literature that the factors influencing success can be mutually reinforcing (Cortright, 2006; 

Hovmand, 2014; Levy et al., 2020). And a priori, it makes sense that factors influencing success 

should reinforce themselves in a cycle of cumulative advantage (DiPrete & Eirich, 2006). For 

instance, good health might mean fewer sick days, leading to a higher income, which in turn 

could provide money and insurance to visit the doctor and better health. 

This mutually reinforcing nature of causal relationships shows up in health as well. The term 

syndemic describes the situation where multiple, reinforcing health and/or social conditions co-

occur (Singer et al., 2020). Aging researchers have documented the condition of frailty, a term 

which encompasses a wide variety of physical states related to old age. Frailty is best defined in 

a systems biology framework, as it is characterized by a large number of interacting factors that 

occur between the cellular and human scales, as outlined in (Fried et al., 2005). At the genetic 

level, the omnigenic model of complex physical traits highlights how almost all genes have an 

important role to play in human health (Boyle et al., 2017).  

A number of models have explored how multiple factors can simultaneously influence success 

and inequality. Critical quantitative researchers have explored intersectionality, the simultaneous 

effect of being in multiple categories, using latent class analysis (Landale et al., 2017; A. S. P. 

Wilson & Urick, 2022). This strategy groups individuals based on multivariate categorical data, 

looking for commonly shared identities which can then be used as variables in further analyses. 

Bloome (2015) used a transition matrix approach to examine the forces governing black-white 

income inequality trends. She classified individuals into bins based on family structure, income 

quintile, and age, and then used a Markov chain approach by building a stochastic transition 
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matrix describing the probability of moving between bins each year. The Social Genome Model 

used a series of regressions to predict behavior at five different stages of life (Sawhill & Reeves, 

2016). Each regression predicted an individual’s outcome using circumstances at birth and the 

outcomes of previous life stages. This allowed them to simulate experiments using the model to 

show, for instance, that early and repeated interventions can improve outcomes for 

disadvantaged children (Sawhill & Karpilow, 2015). In studying frailty, Mitnitski, Bao & 

Rockwood (2006) developed a model based on the “accumulation of deficits” (clinically 

measurable health issues). They used a Markov chain approach using a Poisson process, where 

the average number of deficits gained at the next time step is a linear function of the number of 

deficits one already has. In essence, their model treated all deficits as practically equivalent, and 

having an additive effect on future outcomes. Interestingly, their model was highly predictive 

(𝑅2 = .979) despite being functionally independent of age. Though it is not clear whether they 

used out-of-sample validation to calculate this R^2. This suggests that physiological age is a 

much stronger predictor of future health decay than chronological age. 

The work in this chapter builds on these ideas. However, this model varies from most of the 

earlier work in an important aspect: I do not name or put a limit on the number of variables. Nor 

do I assume that the variables involved are measurable in practice. This disconnects the model 

from fine-grained microdata like Blau & Duncan used. Rather than validating or training the 

model on inputs, we can only examine the outputs to see if they are similar to variables of 

interest. However, many of the factors that influence our outcomes are truly hard to measure. So 

my hope is that this “fuzzing of the eyes” allows deeper understanding in some ways. 

In particular, a major goal of this work is to connect distributions of outcome data, such as 

income or mental health to the accumulative processes that might generate them. 

 

4.2 Model 

4.2.1 A Thought Experiment 

Consider a situation where everyone possesses three non-negative valued traits, which we’ll call 

social skills, professional network strength, and knowledge, {𝑠, 𝑝, 𝑘}. Now these are useful traits, 

any of which, to the extent possible, people will tend to “reinvest” to gain improve the other 

traits. For instance, a person can use their social skills to gain a wider professional network. In 
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turn, they can gain knowledge from a large network of colleagues and friends. Consistent with 

this framework, evidence shows these variables are correlated (Algan et al., 2022; Wang et al., 

2018). An individual’s social skills 𝑠𝑡 at time 𝑡 might be described by a linear equation. (The 

coefficients in this subsection have been arbitrarily chosen for demonstration purposes.) 

𝑠𝑡+1 = 𝑠𝑡 + .01𝑠𝑡 + .01𝑝𝑡 + .005𝑘𝑡  

The 𝑠𝑡 term means that they keep whatever social skills they had a the previous time step. And 

there is, for instance, a 0.5% “return” on knowledge as the benefit pertains to social skills. 

Similar equations could be written for 𝑝𝑡+1 and 𝑘𝑡+1. Combining equations for all three variables 

might give us the following causal network and matrix equation. 

Figure 8: Example matrix of interactions between social skills, professional network strength, and knowledge. 

Numbers are for demonstration only. 

 

 

(

𝑠𝑡+1
𝑝𝑡+1
𝑘𝑡+1

) = (
1.01 . 01 . 005
. 03 1.005 . 015
. 002 . 012 1.005

)(

𝑠𝑡
𝑝𝑡
𝑘𝑡

) 

If we call this matrix 𝐴, then the long term behavior of these traits is determined by 𝐴𝑡. 
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In fact, for large 𝑡 the Perron-Frobenius Theorem, which we discuss later, tells us that, in this 

model, social skills, professional network, and knowledge will grow according to: 

(

𝑠𝑡
𝑝𝑡
𝑘𝑡

)~𝐶 (
2.9
4.7
2.4
) (1.031)𝑡 

The constant 𝐶 is dependent on each person’s initial values {𝑠0, ℎ0, 𝑘0}. For instance, in this 

simple model, people’s professional networks will be roughly three times the value of their 

social skills over the long term.  

We could then put these variables into a regression model predicting, say, income.  

𝑖𝑡 = 𝑏0 + 𝑏𝑠𝑠𝑡 + 𝑏𝑝𝑝𝑡 + 𝑏𝑘𝑘𝑡 

This would tell us both how income grows exponentially over time and how inequality changes. 

If we know the distribution of traits at time 𝑡1 then we can easily predict the distribution at time 

𝑡2.  

A key idea of this paper is this approach to reducing complex causal relationships to low-

dimensional representations. 

The model so far is deterministic, in that late life outcomes are completely determined by one’s 

initial state. This is not realistic. We might, by chance, get an excellent teacher who is good at 

imparting knowledge. Or we might stumble onto a best friend who is a professional hub. So we 

will tweak this model by assuming that, at each time step, everyone receives a non-negative 

amount added to each factor. The balance between this additive growth and the multiplicative 

growth from the matrix will be our primary source of interesting behavior.  

An alternative framing might be as an accumulation of deficits, like that used in aging & frailty 

research (Rockwood & Howlett, 2019). Using this viewpoint, 𝑠, 𝑝, 𝑡 represent problems, with 

bigger numbers referring to worse situations. A person who has trouble exercising due to arthritis 

will have worse heart health. Lower heart health may, in turn, increase cognitive decay. This is a 

cumulative disadvantage approach, whereas the social skills/health/knowledge viewpoint 

corresponds to cumulative advantage (DiPrete & Eirich, 2006). The model works either way, but 

we will focus on the positive framing for this paper. 

4.2.2 Model Limitations 

Before delving deeper into the details of the model, it is worth pointing out some limitations to 

this approach. Since individual traits do not typically grow exponentially throughout the lifespan 
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(Lam, 1997), I will interpret time periods flexibly. Some time periods will be shorter than others. 

For instance, while children may grow quickly, working adults spend much of their potential 

learning time working to earn an income. So an adult may have fewer time points per year than a 

child. Also, it’s clear that the reinvestment strategies of children and adults will differ, as will the 

strategies of adults in significantly different professions. However, there are quantities that grow 

exponentially on average, such as income within a country or frailty (Shi et al., 2011). 

In addition, this approach assumes the population consists of a cohort with relatively 

homogeneous goals and environments. An individual’s tendency to reinvest, say, social skills 

into professional network strength will depend on a variety of factors. Rural and urban workers 

may use those social skills differently, as might professional salespeople use social skills 

differently than bus drivers. So the matrix 𝐴 will be different for very different groups of people. 

The causal network model proposed here is a model of cumulative (dis)advantage. It assumes all 

positive relationships, which might not be the case. For instance, it may be that having strong 

social skills increases both your economic mobility and improves ties with your family. 

However, if your family is lower income, then those family ties may tend to decrease mobility. 

Thus social skills could have an increasing and decreasing effect on mobility. Similarly, we 

could imagine a case with a negative feedback loop, where social skills indirectly and causally 

leads to lower social skills. Some of these issues can be resolved by flipping the sign of a 

particular variable, or by making the following argument: If people can invest a resource in their 

well-being, then some people will. So the model may be valid for cohorts more than for 

individuals. Exploring these cases is outside the scope of this present work. 

This model does not take into account exogenous variables that are not influenced by other 

variables as shown in Figure 9. Parental socioeconomic status, genetics, or inherited epigenetics 

(Torche, 2018) are examples of traits which might be minimally influenced by other traits in 

someone’s life. In the context of the work below, this will mean that the matrix 𝐴 is not 

irreducible. Instead of the adjacency matrix 𝐴 being a primitive matrix, exogenous variables 

would lead it to be block triangular matrix.  
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Figure 9: Exogenous variables (blue) may be uninfluenceable (or minimally influenceable) by other variables in the 

model.  

   

4.2.3 The Accumulation Model 

To describe the model, we modify a standard linear regression equation. 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 +⋯+ 𝑏𝑀𝑥𝑀 + 𝜖 

We will not worry, for the moment, about whether each independent variable is directly 

measurable. This allows us to assume that the set of {𝑥𝑖} is large enough to encompass both the 

constant and error terms. We also center 𝑦 around its mean, if necessary. The regression model 

can then be written in vector notation as a dot product or in terms of a matrix transpose. 

𝑦 = 𝑏1𝑥1 + 𝑏2𝑥2 +⋯+ 𝑏𝑀𝑥𝑀 = 𝑏⃗ ⋅ 𝑥 = 𝑏⃗ 
⊤𝑥  

Each individual, which could be a person or a larger discrete community, then has a set of 𝑀 

non-negative, real-valued variables {𝑥1,𝑡, 𝑥2,𝑡, … , 𝑥𝑀,𝑡} at time 𝑡. Each 𝑥𝑖 provides a resource, 

which individuals desire and can be reinvested. At each time step, two things happen: 

1) Each variable 𝑥𝑖 gains an amount proportional to each other variable 𝑥𝑗, with an “interest rate” 

of 𝑎𝑗𝑖  which adds up to 𝑥𝑖,𝑡+1 → 𝑎𝑖1𝑥1,𝑡 + 𝑎𝑖2𝑥2,𝑡 +⋯+ 𝑎𝑖𝑀𝑥𝑀,𝑡 

2) The individual gains a random amount in each variable defined by a random vector 𝑋 =

⟨𝑋1, 𝑋2, … , 𝑋𝑀⟩. We assume the distribution of 𝑋𝑖  is time independent. 

Overall this means that: 
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𝑥𝑖,𝑡+1 = 𝑎𝑖1𝑥1,𝑡 + 𝑎𝑖2𝑥2,𝑡 +⋯+ 𝑎𝑖𝑀𝑥𝑀,𝑡 + 𝑋𝑖 

Writing with matrix notation: 

𝑥 𝑡+1 = 𝐴𝑥 𝑡 + 𝑋  

Steps (1) and (2) can be written more briefly as a multiplicative process: 

𝑥 → 𝐴𝑥  

And an additive process: 

𝑥 → 𝑥 + 𝑋  

 

Let 𝑋 𝑡 be random vectors identically distributed to 𝑋 , which represent an individual’s realization 

of 𝑋  at time 𝑡. If 𝑥 0 = 0, then the value of the output 𝑥 𝑇 is itself a random vector: 

𝑍 𝑇 = 𝑥 𝑇 = 𝑋𝑇 + 𝐴𝑋𝑇−1 + 𝐴
2𝑋𝑇−2 +⋯+ 𝐴

𝑇−1𝑋 1 

𝑍 𝑇 =∑𝐴𝑇−𝑡𝑋 𝑡

𝑇

𝑡=1

 

Equation 1 

For a fixed set of coefficients 𝑏⃗ , the outcome of the regression 𝑦 at time 𝜏 is also a random 

variable. 

𝑊𝑇 = 𝑏⃗ 
⊤∑𝐴𝑇−𝑡𝑋 𝑡

𝑇

𝑡=1

 

Equation 2 

To summarize: 

Definition: An accumulation model is defined by (𝑋 , 𝐴, 𝑇), where 𝑋  is a non-negative real-

valued random vector of length M, 𝐴 is an 𝑀 ×𝑀 primitive matrix, and 𝑇 is a positive integer 

representing time. Let 𝑋𝑡~𝑋 be a set of independent, identically distributed (iid) variables. Then 

an accumulation model produces a random vector: 

𝑍 𝑇 =∑𝐴𝑇−𝑡𝑋 𝑡

𝑇

𝑡=1

 

Which describes the distribution of variable values at time 𝑇. In addition, if a vector of 

regression coefficients 𝑏⃗  is specified, then we have the random output variable: 
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𝑊𝑇 = 𝑏⃗ 
⊤∑𝐴𝑇−𝑡𝑋 𝑡

𝑇

𝑡=1

 

In this case, the distribution of 𝑊𝑇 will be called an accumulated distribution.  

 

Alternatively, we can view an accumulation model in terms of a weighted, directed causal 

network whose adjacency matrix is 𝐴 and a random vector 𝑋  on the nodes of the matrix. This 

format is quite flexible. For instance, we can extract 𝑥𝑖 by setting 𝑏𝑖 = 1 and 𝑏𝑗≠𝑖 = 0. So 

statements about 𝑊𝑇 can be used to reconstruct results about 𝑍 𝑇.  

In an empirical setting, data that arises from a multifactor cumulative advantage process can be 

thought of as repeated draws of the random variable 𝑊𝑇. So the distribution of 𝑊𝑇 should match 

distributions of empirical data. 

Since {𝑋 𝑡} are iid variables, accumulation models have similarities to the Central Limit Theorem. 

Indeed, if 𝐴 is the identity matrix and 𝑏⃗ = ⟨
1

𝑀
,
1

𝑀
, … ,

1

𝑀
⟩, then 𝑍 𝑇 is the mean of iid random 

variables and therefore distributed normally for large 𝑇 due to the Central Limit Theorem.  

 

4.2.4 Basic Properties of the Accumulation Model 

The means and variances of the outcomes in an accumulation model can be written in terms of 

𝐸(𝑋 ) and 𝑉𝑎𝑟(𝑋 ). 

𝐸(𝑍 𝑇) =∑𝐴𝑇−𝑡𝐸(𝑋 )

𝑇

𝑡=1

 

𝐸(𝑊𝑇) = 𝑏⃗ 
⊤∑𝐴𝑇−𝑡𝐸(𝑋 )

𝑇

𝑡=1

 

𝑉𝑎𝑟(𝑍 𝑇) =∑𝐴𝑇−𝑡𝑉𝑎𝑟(𝑋 )(𝐴𝑇−𝑡)⊤
𝑇

𝑡=1

 

𝑉𝑎𝑟(𝑊𝑇) = 𝑏⃗ 
⊤ [∑𝐴𝑇−𝑡𝑉𝑎𝑟(𝑋 )(𝐴𝑇−𝑡)⊤

𝑇

𝑡=1

] 𝑏⃗  
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4.2.5 Stories All the Way Down 

One issue with using potentially unmeasurable variables is that no one need determine the 

precision with which the variable gets defined. Should we use a single variable for social skills, 

or should there be individual variables for written and verbal social skills? Or should it be further 

fine-grained, like “social skills when interacting with a teacher in a classroom context”? One 

strength of accumulation models is that they are consistent with finer-grained substitution of 

variables, as long as the relationships between these sets of variables obey some intuitive 

constraints. The next definition sets up these constraints in the context of a set of variables 𝒳′ 

which is finer-grained and “fits inside” another set of variables 𝒳. 

 

Definition: Assume that we have two sets of variables 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑀} and 𝒳′ =

{𝑥1, 𝑥2, … , 𝑥𝑀′} with 𝑀′ > 𝑀, and that there is a surjective map 𝜙:ℝ𝑀
′
→ ℝ𝑀. Further assume 

that (𝑋 , 𝐴, 𝑇, 𝑏⃗ ) and (𝑋 ′, 𝐴′, 𝑇, 𝑏⃗ ′) describe accumulation models in 𝒳 and 𝒳′, respectively. We 

say that (𝑋 ′, 𝐴′, 𝑇, 𝑏⃗ ′) is finer than (𝑋 , 𝐴, 𝑇, 𝑏⃗ ) if: 

• 𝜙𝑋 ′ = 𝑋  as random vectors, 

• 𝜙𝐴′ = 𝐴𝜙 as matrices, and 

• 𝑏⃗ ′ ⋅ 𝑣 = 𝑏⃗ ⋅ 𝜙𝑣   for any 𝑣 ∈ ℝ𝑀
′
 

The three conditions are equivalent to intuitive notions for how this map should behave.  For 

instance, part of the map 𝜙 could be  

𝜙(𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑠𝑘𝑖𝑙𝑙𝑠, 𝑣𝑒𝑟𝑏𝑎𝑙 𝑠𝑘𝑖𝑙𝑙𝑠) = 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑠𝑘𝑖𝑙𝑙𝑠 + 𝑣𝑒𝑟𝑏𝑎𝑙 𝑠𝑘𝑖𝑙𝑙𝑠 = 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑘𝑖𝑙𝑙𝑠 

If your written skills increase by 1 and your verbal skills increase by 2, then your communication 

skills should increase by 3. Similarly, both the accumulation processes 𝐴, 𝐴′ and the regression 

function given by 𝑏⃗  and 𝑏⃗ ′ should be consistent with the relationship between variables. 

Note: The proof of the following theorem and most other theorems are in the appendix. 

 

Theorem (Stories All the Way Down): If one accumulation model is finer than another, then 

their outputs are equivalent. In other words 𝑊𝑇 = 𝑊𝑇
′ . 

 

4.2.6 Inequality in an Accumulation Model 
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We can estimate the amount of inequality in the accumulation model when 𝑇 is large. To 

measure inequality, we will use the coefficient of variation, which is given by: 

𝑐𝑣(𝑋) =
𝑠𝑑(𝑋)

𝐸(𝑋)
=
√𝑉𝑎𝑟(𝑋)

𝐸(𝑋)
 

The coefficient of variation is convenient for measuring inequality, since the mean and variance 

behave nicely with regards to sums and scalar multiplication. Like the Gini coefficient, the 

coefficient of variation is scale-independent. If we double everyone’s wealth, then both the Gini 

coefficient and the coefficient of variation remain unchanged. We will see later how a non-scale-

independent measure of inequality, the variance, grows almost exponentially over time. 

Accumulated Inequality Theorem: Consider the accumulated random variable 

𝑊𝑇 = 𝑏⃗ ⋅ 𝑍 𝑇 = 𝑏⃗ 
⊤∑𝐴𝑇−𝑡𝑋 𝑡

𝑇

𝑡=1

 

Where 𝑊𝑇 is a linear function of variables in the accumulation model. In this case, 𝑏⃗  can be 

considered a vector representing regression coefficients, 𝐴 corresponds to the primitive 

accumulation matrix, and 𝑋 𝑡~𝑋  are iid random vectors. Further, let 𝑢⃗  and 𝑤⃗⃗  be the dominant left 

and right eigenvectors and 𝑎 the dominant eigenvalue of 𝐴. Then for large 𝑇: 

𝑐𝑣(𝑊𝑇) ~
√𝑎 − 1

√𝑎 + 1
 𝑐𝑣(𝑢⃗ ⋅ 𝑋 ) 

Or, in terms of the variable 𝜓 =
𝑏⃗ ⋅𝑤⃗⃗ 

𝑢⃗⃗ ⋅𝑤⃗⃗ 
𝑢⃗ ⋅ 𝑋  from the Accumulation Reduction Theorem. 

𝑐𝑣(𝑊𝑇) =
√𝑎 − 1

√𝑎 + 1
 𝑐𝑣(𝜓𝑇) 

 

Interestingly, the inequality in the accumulated variable 𝑊𝑇 is independent of the choice of 𝑏⃗ . In 

other words, any linear combination of the variables in the model will have the same amount of 

inequality. The inequality in, say, 𝑥1 will be the same as in 𝑥1 + 𝑥2 + 𝑥3 +⋯+ 𝑥𝑀. 

The inequality in the accumulated variable 𝑊𝑇 is a product of two quantities. One quantity, 

𝒄𝒗(𝒖⃗⃗ ⋅ 𝑿⃗⃗ ), represents the inequality embedded in how the additive benefits 𝑋  (schooling, etc.) 

are distributed unequally, weighted by their usefulness in gaining other skills, traits, and 

resources.  
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The other quantity,  
√𝒂−𝟏

√𝒂+𝟏
 , is a monotone function of the multiplier 𝑎 as shown in Figure 10 

below. When 𝑎 = 1, this factor is zero. In this case, 𝑍𝑇 is the sum of iid random variables 𝜓𝑡. 

For large 𝑇, the mean is 𝐸(𝜓) 𝑇, and the standard deviation grows like √𝑇 𝜎𝜓. So 𝑐𝑣(𝑍𝑇)~
√𝑇 𝜎𝜓

𝑇𝐸(𝜓)
 

which goes to zero as 𝑇 gets large. When 𝑎 is large, this factor goes to one. So the inequality in 

𝑊𝑇 is bounded above by the inequality in 𝑢⃗ ⋅ 𝑋 . In other words, the inequality in an accumulated 

distribution will always be less than the inequality embedded in the process that generates it.  

 

Figure 10: The relationship between 𝑎 and its effect on inequality. 

 

While it may seem intuitive that cumulative advantage processes increase inequality, this need 

not be the case (Allison et al., 2018). In this model, the decrease in inequality for small 𝑎 is 

caused by the weighted sums. Adding additional random variables decreases the variance 

relative to the mean, just as in the Central Limit Theorem. 

 

4.3 Reduction to One Dimension 

The accumulation model’s generality allows it to describe a broad set of situations at the cost of 

specificity. While it can describe situations where 3 or 1,000 factors are involved in success, 

accurately inferring all the parameters in a 1,000 variable model is nigh impossible. Luckily, for 

large values of time, all accumulation models behave like simpler, one-dimensional 

accumulation models. This allows us to infer the behavior of the high-dimensional accumulation 

models by understanding how one-dimensional accumulated models behave.  
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A one-dimensional accumulation distribution is of the form: 

𝑍 =∑𝑎𝑇−𝑡𝑋𝑡

𝑇

𝑡=1

 

Where 𝑎 > 1 is a real number and 𝑋𝑡  are iid copies of a non-negative random variable 𝑋. 

 

This section will use an important result from linear algebra, the Perron-Frobenius Theorem, to 

show that all accumulated distributions behave like a 1-dimensional accumulated distribution for 

large 𝑇. However, we first must justify the assumption of primitivity. 

Recall that each factor 𝑥𝑖 represents a resource, or a positive trait that individuals find useful. It’s 

reasonable to assume that, to the extent possible, all of those resources will be reinvested in other 

resources and that having more of any resource will eventually help individuals in every other 

resource. For instance, being a fast runner may not directly help a student in school. However, 

being a good runner may encourage someone to run, which increases their overall health, which 

increases their performance in school. In terms of the causal network, this means there is a path 

from the node (running ability) to (academic achievement) with all positive coefficients. 

So we assume that each variable causatively, positively, and perhaps indirectly influences the 

other variables over time. In terms of the matrix 𝐴, direct positive influence of 𝑖 on 𝑗 corresponds 

to the condition 𝐴𝑗𝑖 > 0. Indirect positive influence means that 𝐴𝑗𝑖
𝑘 > 0 for large 𝑘. More 

specifically, we will assume that 𝐴 is a primitive matrix. 

 

Definition: A matrix 𝐴 is primitive if there exists a 𝐾 > 0, such that for every 𝑘 > 𝐾, the matrix 

𝐴𝑘 has all positive entries. 

 

Perron-Frobenius Theorem (C. R. Johnson & Tarazaga, 2004): Let 𝐴 be a primitive matrix. 

Then: 

a) 𝐴 has a unique dominant real, positive eigenvalue 𝑎 which is larger than the magnitude of all 

other eigenvalues. 

b) Up to scalar multiplication, there exists a unique right eigenvector 𝑤⃗⃗  corresponding to 𝑎 (so that 

𝐴𝑤⃗⃗ = 𝑎𝑤⃗⃗ ) which can be chosen to have all positive entries. 

c) Up to scalar multiplication, there exists a unique left eigenvector 𝑢⃗  corresponding to 𝑎 (so that 

𝑢⃗ ⊤𝐴 = 𝑎𝑢⃗ ⊤) which can be chosen to have all positive entries 
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d) lim
𝑇→∞

𝐴𝑇

𝑎𝑇
=

1

𝑤⃗⃗ ⋅𝑢⃗⃗ 
 𝑤⃗⃗  𝑢⃗ ⊤  

 

The Perron-Frobenius Theorem tells us that any primitive matrix 𝐴 has a largest eigenvalue 𝑎 

and eigenvectors 𝑢⃗  and 𝑤⃗⃗ , and that for large 𝑇, 𝐴𝑇 is a map (almost completely) into the vector 

space spanned by 𝑤⃗⃗ . In other words, if there is a time-based process that involves multiplying a 

vector 𝑣  by 𝐴 at each time step, then for large 𝑇, 𝐴𝑇𝑣  ~ 𝑎𝑇 (
𝑢⃗⃗ ⋅𝑣⃗ 

𝑤⃗⃗ ⋅𝑢⃗⃗ 
) 𝑤⃗⃗  . 

The next theorem uses this idea, but generalizes it to the sums inherent in the accumulation 

model. It says that, after controlling for exponential growth, accumulation models all eventually 

behave as a one-dimensional model.  

 

Accumulation Reduction Theorem: All accumulated distributions of the random variable 𝑊𝑇 

converge in mean to a 1-dimensional accumulated distribution, after controlling for exponential 

growth. More precisely: Let 𝑋  be a non-negative random 𝑀-dimensional vector, 𝐴 be a primitive 

matrix, and 𝑏⃗ ∈ ℝ𝑀 a nonzero vector. So that  

𝑊𝑇 = 𝑏⃗ 
⊤∑𝐴𝑇−𝑡𝑋𝑡

𝑇

𝑡=1

 

Let 𝑎, 𝑢⃗ , 𝑤⃗⃗  be the eigenvalue and eigenvectors of 𝐴 described in the Perron-Frobenius Theorem. 

Define the random variables 𝜓𝑡 =
𝑏⃗ ⋅𝑤⃗⃗ 

𝑢⃗⃗ ⋅𝑤⃗⃗ 
𝑢⃗ ⋅ 𝑋 𝑡 so that all 𝜓𝑡 are independent, identically 

distributed random variables. Then we can create the one-dimensional accumulated random 

variable 

𝑍𝑇 =∑𝑎𝑇−𝑡𝜓𝑡

𝑇

𝑡=1

 

Under these conditions: 

lim
𝑇→∞

𝐸 (
1

𝑎𝑇
|𝑊𝑇 − 𝑍𝑇|) = 0 

 

Corollary: For large 𝑇, the variables below grow according to the relationships: 

𝑍 𝑇 ~ 
1

𝑢⃗ ⋅ 𝑤⃗⃗ 
[∑𝑎𝑇−𝑡(𝑢⃗ ⋅ 𝑋 𝑡)

𝑇

𝑡=1

] 𝑤⃗⃗  
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𝑥𝑖,𝑇 ~ 
1

𝑢⃗ ⋅ 𝑤⃗⃗ 
[∑𝑎𝑇−𝑡(𝑢⃗ ⋅ 𝑋 𝑡)

𝑇

𝑡=1

]𝑤𝑖 

𝐸(𝑍 𝑇) ~ 
1

𝑢⃗ ⋅ 𝑤⃗⃗ 
 𝐸(𝑢⃗ ⋅ 𝑋 ) (

𝑎𝑇 − 1

𝑎 − 1
) 𝑤⃗⃗  

Specifically, for large 𝑇: 

• Each 𝑥𝑖 will tend to grow roughly exponentially over time, with a growth multiplier of 𝑎. 

• An individual’s growth will be larger if their random draws of 𝑋 𝑡 lead to large dot products 𝑢⃗ ⋅ 𝑋 𝑡. 

In other words, 𝑢⃗  gives the “weights” of each factor in causally influencing the long-term growth 

of 𝑍 𝑇. 

• The factors will grow proportionally to each other over time, with outcomes weighted according 

to the components of 𝑤⃗⃗ . I.e., for any two factors 𝑖, 𝑗,we know that  
𝐸(𝑥𝑖,𝑇)

𝐸(𝑥𝑗,𝑇)
 ~

𝑤𝑖

𝑤𝑗
 . 

 

The Accumulation Reduction Theorem suggests that over time, the portfolio of skills, traits, and 

resources of people will tend to become similar to other people in the same circumstances. 

Though some people may have more or less of these traits, the ratio between any two traits will 

tend toward the same value. Of course, this only applies for individuals who stay in the same 

situation, with similar values. In reality, people adapt their behavior and values to cultural, 

societal and economic forces in a complex, many-player game (Fe & Sanfelice, 2022; 

Kahneman, 2011; Markus & Hamedani, 2019). 

 

4.4 One-Dimensional Accumulated Distributions 

I have shown that 𝑀-dimensional accumulated models reduce to 1-dimensional accumulated 

distributions as time goes by. This section digs deeper into those one-dimensional accumulated 

distributions, providing tools to understand accumulated models more broadly. The random 

variable 𝑍𝑇 associated with a one-dimensional accumulated model (𝑋, 𝑎, 𝑇) has the form: 

𝑍𝑇 =∑𝑎𝑇−𝑡𝑋𝑡

𝑇

𝑡=1

 

Where we assume 𝑎 > 1. The goal here is to more closely connect distributions of data 

(represented by 𝑍𝑇) with the processes that generate it (given by 𝑎 and 𝑋). So I prove a number 
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of theorems about the shape and mean of a one-dimensional accumulated distribution. In 

particular, I show that: 

• For large 𝑇, one-dimensional accumulated distributions can be uniquely characterized by 

their mean and their shape. 

• The mean of a one-dimensional accumulated distribution grows roughly exponentially 

with time.  

• The accumulation process 𝑋 → 𝑊𝑇 → 𝑍𝑇 preserves heavy tails (or the lack thereof), so 

that an accumulated distributions is heavy-tailed if and only if one of the components in 

the random vector 𝑋  is heavy-tailed.  

• For a given 𝑎 > 1 and 𝑇, there is a one-to-one relationships between the cumulants of 𝑋 

and the cumulants of its accumulated distribution 𝑍𝑇.  

o If 𝑋 is not heavy-tailed, then this creates a one-to-one relationship between 𝑋 and 

𝑍𝑇. 

• For a given 𝑎 > 1 and random variable 𝑋, the shape of the accumulated distribution 

converges to a “shape” distribution given by 𝑌∞. This shape is unique to 𝑋. In other 

words, two datasets generated by an accumulation process with the same shape and the 

same 𝑎 will come from the same distribution 𝑋.  

o If 𝑋 is not heavy-tailed, then this creates a one-to-one relationship between 𝑋 and 

𝑌∞. 

• Only normal distributions create exactly normal accumulated distributions. 

o Despite this, many accumulated distributions tend toward normality. 

 

4.4.1 General Features of 1-Dimensional Accumulated Distributions 

The formula for a one-dimensional accumulated distribution is quite similar to the formula for 

regular investments in an account with a constant interest rate. 

𝑍𝑇 =∑𝑎𝑇−𝑡𝑋𝑡

𝑇

𝑡=1

 

The value of 𝑋𝑡 is the random amount an individual can invest at the beginning of each time 

period with an interest rate of 𝑟 = 𝑎 − 1. The constant can then be decomposed into 𝑎 = 1 + 𝑟, 
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where the 1 ensures the initial investments remains in the account. This makes sense when 

thinking about accumulation models as describing investment in oneself.  

It will be useful to create a few additional random variables, which will help us understand the 

shape of 𝑍𝑇. 

Definition: The random variables 𝑌𝑇 and 𝑌∞ associated with a one-dimensional accumulation 

model (𝑋, 𝑎, 𝑇) are given by: 

𝑌𝑇 =
𝑎 − 1

𝑎𝑇 − 1
𝑍𝑇 =

𝑎 − 1

𝑎𝑇 − 1
∑𝑎𝑇−𝑡𝑋𝑡

𝑇

𝑡=1

 

𝑌∞ = (𝑎 − 1)∑
1

𝑎𝑡
𝑋𝑡

∞

𝑡=1

 

 

Theorem: The mean and variance of the accumulated distributions are: 

𝜇𝑍𝑇 =
𝑎𝑇 − 1

𝑎 − 1
𝜇𝑋                                                𝜎𝑍𝑇

2 =
𝑎2𝑇 − 1

𝑎2 − 1
𝜎𝑋
2 

                 𝜇𝑌𝑇 = 𝜇𝑋                                                              𝜎𝑌𝑇
2 =

(𝑎 − 1)

(𝑎 + 1)

(𝑎𝑇 + 1)

(𝑎𝑇 − 1)
𝜎𝑋
2 

             𝜇𝑌∞ = 𝜇𝑋                                                              𝜎𝑌∞
2 =

𝑎 − 1

𝑎 + 1
𝜎𝑋
2                  

These can be shown by using properties of the mean and variance: 𝜇𝑋1+𝑋2 = 𝜇𝑋1 + 𝜇𝑋2,  𝜇𝑏𝑋1 =

𝑏𝜇𝑋2, 𝜎𝑋1+𝑋2
2 = 𝜎𝑋1

2 + 𝜎𝑋2
2 , and 𝜎𝑏𝑋

2 = 𝑏2𝜎𝑋
2. 

 

Stable Shape Theorem: If 𝑋 has a finite mean and 𝑎 > 1, then the sequence of random 

variables {𝑌𝑇} converges in distribution to 𝑌∞. More generally, the shape of 𝑍𝑇  stabilizes for 

large 𝑇. 

 

These theorems explain why 𝑌𝑇 and 𝑌∞ correspond to the shape of an accumulated distribution.  

We can rewrite 𝑍𝑇 =
1

𝜇𝑋
𝜇𝑍𝑇𝑌𝑇. So that, given 𝜇𝑋, 𝑍𝑇 is uniquely characterized by its mean 𝜇𝑍𝑇 

and its shape 𝑌𝑇. Alternatively, we could have defined 𝑌𝑇 to have a mean of one, but that would 

make later calculations more complicated.  

This decomposition allows us to see that the mean of 𝑍𝑇 grows almost exponentially with time. 

By dividing by this mean, we can see that the shape of an accumulated distribution actually 
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converges to the distribution 𝑌∞. So we can think of 𝑌∞ as describing the shape of 𝑍𝑇 after a long 

time has progressed – a situation which is common in research on systems which have been 

around for a while. Splitting up the mean and shape will let us develop tools for understanding 

accumulated distributions without having to repeatedly account for values that grow 

exponentially over time. 

 

4.4.2 Characterizing 1-D Accumulated Distributions 

If a researcher has data for a variable which they think represents multifactor cumulative 

advantage, they might want to understand more about the process that generated the data. In the 

language of our one-dimensional model: If a researcher has 𝑍𝑇, what can they say about 𝑎 and 

𝑋?  

To build intuition, consider what happens as we vary 𝑎 along the interval [1,∞). When 𝑎 is very 

large, then 𝑍𝑇 = ∑ 𝑎𝑇−𝑡𝑋𝑡
𝑇
𝑡=1  is dominated by the first term 𝑋1. For example, if 𝑎 ≥ 2, then the 

first draw, 𝑋1, is more influential, on average, than the rest of the draws combined. To see this, 

note that if 𝑎 = 2: 

𝑍𝑇 = 2
𝑇−1𝑋1 +∑2𝑡𝑋𝑖

𝑇−2

𝑡=1

 

The right sum has a total average value of: 

𝐸 (∑2𝑡𝑋𝑖

𝑇−2

𝑡=1

) = 𝐸(𝑋)∑2𝑡
𝑇−2

𝑡=1

= 𝐸(𝑋)(2𝑇−1 − 1) 

So the average contribution of the first draw alone is 2𝑇−1𝐸(𝑋), while the remaining draws have 

a smaller total average contribution of (2𝑇−1 − 1)𝐸(𝑋). In this case, the distribution of outcome 

data will look very much like the variable that generated it, and individuals’ outcomes will 

largely be determined by their start in life.  

In contrast, when 𝑎 is almost equal to 1, then 𝑍𝑇 is quite close to the sum of iid variables. In this 

case, the Central Limit Theorem says that 𝑍𝑇 will be distributed close to a normal distribution. 

Individuals’ outcomes will be the result of a number of factors, and early-life circumstances will 

not have a significant effect on later outcomes. 

We can think of 𝑎 as a “dial” with a normal distribution on the 𝑎 = 1 end, and a distribution 

similar to that of 𝑋 on the 𝑎 > 2 end. At both extremes, the multifactor cumulative advantage 
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process has little to add. However, some of the more interesting behavior happens, both 

mathematically and practically, when 𝑎 is close to 1. If 𝑎 is near 1, then individuals can reinvest 

their skills, traits, and abilities a little bit, but no one has an amazing advantage at birth.  

 

To be more precise, this section will use the values of 𝑎 and 𝑇 as a cipher to generate a 

“dictionary” which relates 𝑋 with 𝑍𝑇, and with the shape variables 𝑌𝑇, and 𝑌∞.  This dictionary is 

given by the Accumulated Moment Theorem, which first requires some machinery. Luckily, 

much of that machinery already exists. 

Definition (Characteristic Function): The characteristic function of a random variable is 𝜑𝑋 =

∫ 𝑒𝑖𝑡𝑥𝑓𝑋(𝑥)𝑑𝑥ℝ
= 𝐸(𝑒𝑖𝑡𝑋).  

 

Properties of Characteristic Functions: 

a) 𝜑𝑏1𝑋1+𝑏2𝑋2(𝑠) = 𝜑𝑋1(𝑏1𝑠)𝜑𝑋2(𝑏2𝑠) 

b) 𝜑𝑋(0) = 1 

c) 𝜑𝑋
(𝑘)(0) = 𝑖𝑘𝐸(𝑋𝑘)  where it exists 

d) The characteristic function 𝜙𝑋(𝑠) uniquely determines the distribution of 𝑋 

 

Definition (Cumulant Generating Function): We define the cumulant generating function of 𝑋 

in a neighborhood of 𝑠 = 0 to be  

𝐺𝑋(𝑠) = log(𝜑𝑋(𝑠)) 

 

The output of 𝜑 will be a complex number, so we will have to choose a branch of the complex 

plane to define this logarithm on. The only use this function will get in this manuscript is around 

𝑠 = 0. Since 𝜑𝑋(0) = 1 and 𝜑𝑋 is defined in a neighborhood 𝒰 ⊂ ℝ of 𝑠 = 0, we can take this 

branch of the logarithm to be defined on the complex plane minus the negative real line.  

𝐺𝑋: 𝑈 
𝜑𝑋
→  ℂ\{ℝ≤0}

log
→  ℂ 

This may lead to 𝐺𝑋(𝑠) having a smaller domain than 𝜑𝑋(𝑠), but it will give us the results we 

need in a neighborhood of 𝑠 = 0. 

What we are calling the cumulant generating function is called other things elsewhere, such as 

the “second characteristic” (Lukacs, 1970). 
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Definition (Cumulants): The cumulants of a distribution 𝑋 are given in terms of the 

distribution’s cumulant generating function: 

𝜅𝑛(𝑋) = −(−𝑖)
𝑛𝐺𝑋

(𝑛)(0) 

Cumulants do not always exist. When they do, they can be written as polynomial functions of the 

central moments of 𝑋.  

𝜅1 = 𝜇𝑋 

𝜅2 = 𝑉𝑎𝑟(𝑋) 

𝜅3 = 𝐸((𝑋 − 𝜇𝑋)
3) 

𝜅4 = 𝐸((𝑋 − 𝜇𝑋)
4) − 3[𝑣𝑎𝑟(𝑋)]2 

Higher-order cumulants cannot generally be written elegantly in terms of central moments of 𝑋. 

 

Properties of Cumulants: Let 𝑋1, 𝑋2 be real-valued random variables, and let 𝑏 be a real 

number. Then: 

• 𝜅𝑛(𝑋1 + 𝑋2) = 𝜅𝑛(𝑋1) + 𝜅𝑛(𝑋2) 

• 𝜅𝑛(𝑏𝑋1) = 𝑏
𝑛𝜅𝑛(𝑋1)  

 

Properties of the Cumulant Generating Function: Let 𝑏1, 𝑏2 be positive real numbers, and let 

𝑋, 𝑋1 and 𝑋2 be real-valued random variables. Then: 

• 𝐺𝑏1𝑋1+𝑏2𝑋2(𝑠) = 𝐺𝑋1(𝑏1𝑠) + 𝐺𝑋2(𝑏2𝑠) 

• 𝐺𝑋(0) = 0 

 

The next property gives a nice way of finding the characteristic function of 𝑋 if we know the 

characteristic function of 𝑌∞. 

Properties of 𝒀∞: For a given 𝑎 and 𝑋, if 𝑌̃∞ is independent of and identically distributed to 𝑌∞, 

then: 

a) 𝑌∞ ~
1

𝑎
𝑌̃∞ +

𝑎−1

𝑎
 𝑋 

b) 𝜑𝑋((𝑎 − 1)𝑠) =
𝜑𝑌∞(𝑎 𝑠) 

𝜑𝑌∞(𝑠)
 

Proof: The proof of (a) is a direct calculation. 
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𝑎 − 1

𝑎
 𝑋 +

1

𝑎
𝑌̃∞ = 

𝑎 − 1

𝑎
 𝑋 +

𝑎 − 1

𝑎
∑

1

𝑎𝑡
𝑋𝑡

𝑇

𝑡=1

 

= (𝑎 − 1) [
1

𝑎
𝑋 +

1

𝑎2
𝑋1 +

1

𝑎3
𝑋2 +⋯]~ (𝑎 − 1)∑

1

𝑎𝑡
𝑋𝑡

∞

𝑡=1

= 𝑌∞ 

The proof of (b) follows from (a) and the properties of characteristic functions. 

 

Corollary: If 𝑋1 and 𝑋2 are different distributions and 𝑎 > 1, then the shape of the accumulated 

distribution 𝑌∞ associated with (𝑋1, 𝑎) and (𝑋2, 𝑎) are also different.  

Alternatively: For a fixed 𝑎 > 1, there is a one-to-one relationship between the distributions 𝑋 

and 𝑌∞. 

 

We can see the corollary is true, because 𝑌∞ uniquely determines the characteristic function of 𝑋 

which in turn uniquely determines 𝑋.  

Example (Distributions that Keep their Shape when Accumulated): Consider the case where 

the accumulated distribution is distributed normally. Note that this case does not satisfy one of 

our assumptions, which is that 𝑋 and therefore 𝑌∞ are positive random variables. However, this 

case will be illustrative regardless. The characteristic function of 𝑌∞~𝑁(𝜇, 𝜎
2) is 𝜑𝑌∞(𝑠) =

𝑒−𝑖𝜇𝑠+
1

2
𝜎2𝑠2

. For a given 𝑎, we can then calculate the characteristic function of 𝑋. 

𝜑𝑋((𝑎 − 1)𝑠) =
𝜑𝑌∞(𝑎 𝑠) 

𝜑𝑌∞(𝑠)
 

=
𝑒−𝑖𝜇𝑎𝑠+

1
2
𝜎2𝑎2𝑠2

𝑒−𝑖𝜇𝑠+
1
2
𝜎2𝑠2

 

= 𝑒−𝑖𝜇𝑠
(𝑎−1)+

1
2
𝜎2(𝑎2−1)𝑠2

 

Using the change of variables (𝑎 − 1)𝑠 = 𝑟, we get: 

𝜑𝑋(𝑟) = 𝑒
−𝑖𝜇𝑟+

1
2
𝜎2(

𝑎2−1
(𝑎−1)2

)𝑟2

 

This is the characteristic function of a normal distribution, so 𝑋 ~ 𝑁 (𝜇,
𝑎2−1

(𝑎−1)2
𝜎2).  

In retrospect, this shouldn’t be surprising, since the sum of normal random variables is normal, 

and 𝑌∞ = lim
𝑇→∞

∑
𝑎−1

𝑎𝑡
𝑋𝑡

𝑇
𝑡=1 . If the original distribution is exactly normal, then the shape of the 
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accumulated distribution will also be normal. However as we’ll see later, if 𝑎 is close to 1, then 

the accumulated distribution of many distributions will be close to normal. But it will never 

become normal. 

A similar argument shows that the Lévy distribution, with characteristic function 𝜑𝑋 =

𝑒𝑖𝜇−√−2𝑖𝑐𝑡 also has this property: 𝑋 is Lévy if and only if 𝑌∞ is Lévy. More generally, a random 

variable 𝑋 is called strictly stable if a linear combination of two copies of 𝑋 is equivalent in 

distribution to a constant times 𝑋 (Nolan, 2020). Strictly stable variables have the property that 

they keep their shape after being accumulated.  

 

 

Accumulated Moment Theorem: Let 𝑋 be a non-negative real-valued random variable, 𝑎 > 1, 

and 𝑇, 𝑍𝑇 , 𝑌𝑇 , 𝑌∞ as above. Further let 𝑀𝑛(𝑋) be the 𝑛th raw moment of 𝑋 and 𝜅𝑛(𝑋) be the 𝑛th 

cumulant. For a given 𝑛, all of the following exist if and only if any one of them does: 

 (1) 𝑀𝑛(𝑋)   (2) 𝜅𝑛(𝑋)   

 (3) 𝑀𝑛(𝑍𝑇)   (4) 𝜅𝑛(𝑍𝑇)  

 (5) 𝑀𝑛(𝑌𝑇)   (6) 𝜅𝑛(𝑌𝑇)  

 (7) 𝑀𝑛(𝑌∞)   (8) 𝜅𝑛(𝑌∞)  

Furthermore, if these exist for a given 𝑛, then all lower-order moments and cumulants exist. 

Also, the cumulants are related as follows: 

𝜅𝑛(𝑍𝑇) =
𝑎𝑛𝑇 − 1

𝑎𝑛 − 1
𝜅𝑛(𝑋) 

𝜅𝑛(𝑌𝑇) =
(𝑎𝑛𝑇 − 1)

(𝑎𝑇 − 1)𝑛
(𝑎 − 1)𝑛

(𝑎𝑛 − 1)
𝜅𝑛(𝑋) 

𝜅𝑛(𝑌∞) =
(𝑎 − 1)𝑛

𝑎𝑛 − 1
𝜅𝑛(𝑋) 

 

While there is some disagreement over the definition of a heavy-tailed distribution, if we take the 

definition of a heavy-tailed function as one which has some non-existent moments, then we 

come to the following conclusion. 

Corollary: An accumulated distribution is heavy-tailed if and only if the distribution that 

generated it is heavy-tailed. 
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A similar result holds more generally for 𝑀-dimensional accumulation models (𝑋 , 𝐴, 𝑇), where 

the additive amount at each time step is a vector 𝑋 = ⟨𝑋1, 𝑋2, … , 𝑋𝑀⟩. The accumulated 

distribution given by 𝑊𝑇 is heavy-tailed if and only if one of the components of 𝑋  is heavy-

tailed. To see this, consider how the 𝑀-dimensional model reduces to a one-dimensional model, 

whose shape can then be described in terms of 𝑌∞.  

∑𝐴𝑇−𝑡𝑋 𝑡

𝑇

𝑡=1

→∑𝑎𝑇−𝑡𝜓𝑡

𝑇

𝑡=1

→ 𝑌∞ 

Where  𝜓𝑡 =
𝑏⃗ ⋅𝑤⃗⃗ 

𝑢⃗⃗ ⋅𝑤⃗⃗ 
𝑢⃗ ⋅ 𝑋 𝑡 is a weighted sum of the components of 𝑋 𝑡. Note that the sum of non-

negative random variables has a heavy-tail if and only if one of the random variables has a heavy 

tail. So 𝜓𝑡 is heavy-tailed if and only if one or more of the terms in 𝑢1𝑋1,𝑡 + 𝑢2𝑋2,𝑡 +⋯+

𝑢𝑀𝑋𝑀,𝑡  is heavy-tailed. Furthermore, since 𝐴 is primitive, each component of 𝑢⃗  is nonzero. So 

𝜓𝑡 (and hence 𝑌∞) is heavy-tailed iff one or more of the components of 𝑋 𝑡 is a heavy-tailed 

variable. In other words, for large 𝑇, heavy tails in outcome data represent either a heavy tail in 

the distribution of some resources that individuals receive (𝑋𝑖), or model breakdown. 

 

4.4.3 Dictionary of Distributions 

We now have a “dictionary” of cumulants to understand the relationship between the 1-

dimensional accumulated distributions that correspond to distributions of outcome data, and the 

processes that generate them. For a given 𝑎 > 1 and 𝑇, the following table gives the cumulants 

of 𝑋, 𝑍𝑇 , 𝑌𝑇 , and 𝑌∞. 
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Table 4: Cumulants of Accumulated Distributions 

𝑛 𝑋 𝑍𝑇 𝑌𝑇 𝑌∞ 

1 𝜇𝑋 
𝑎𝑇 − 1

𝑎 − 1
𝜇𝑋 𝜇𝑋 𝜇𝑋 

2 𝜎𝑋
2 

𝑎2𝑇 − 1

𝑎2 − 1
𝜎𝑋
2 

(𝑎𝑇 + 1)

(𝑎𝑇 − 1)

(𝑎 − 1)

(𝑎 + 1)
𝜎𝑋
2 

𝑎 − 1

𝑎 + 1
 𝜎𝑋
2 

3 𝜅3(𝑋) 
𝑎3𝑇 − 1

𝑎3 − 1
𝜅3(𝑋) 

(𝑎3𝑇 − 1)

(𝑎𝑇 − 1)3
(𝑎 − 1)3

(𝑎3 − 1)
𝜅𝑛(𝑋) 

(𝑎 − 1)2

𝑎2 + 𝑎 + 1
𝜅𝑛(𝑋) 

𝑛 𝜅𝑛(𝑋) 
𝑎𝑛𝑇 − 1

𝑎𝑛 − 1
𝜅𝑛(𝑋) 

(𝑎𝑛𝑇 − 1)

(𝑎𝑇 − 1)𝑛
(𝑎 − 1)𝑛

(𝑎𝑛 − 1)
𝜅𝑛(𝑋) 

(𝑎 − 1)𝑛

𝑎𝑛 − 1
𝜅𝑛(𝑋) 

 

4.4.4 Dictionary of Distributions for 𝒂 ~ 𝟏 

The formulae in Table 4 are fairly complicated. However, when 𝑎 is close to one (though it will 

never be less than one), we can find approximations that are more interpretable. We will do this 

be expanding each coefficient in terms of (𝑎 − 1), which will give us accurate behavior for 𝑎 

close to one.  

The expression 
1

𝑎𝑛−1
 shows up repeatedly in the formulas in Table 1. Since 𝑎𝑛 − 1 =

(𝑎 − 1)(𝑎𝑛−1 + 𝑎(𝑛−2) +⋯+ 𝑎 + 1), we know that 
1

𝑎𝑛−1
 has a pole of order one at 1. So we 

find a Laurent expansion: 

1

𝑎𝑛 − 1
=
1

𝑛

1

(𝑎 − 1)
+ (

1

2𝑛
−
1

2
) + 𝑜(𝑎 − 1) 

Then we can expand the expressions in Table 4: 

𝜅𝑛(𝑌∞) =
(𝑎 − 1)𝑛

𝑎𝑛 − 1
𝜅𝑛(𝑋) 

= (𝑎 − 1)𝑛 [
1

𝑛

1

(𝑎 − 1)
+ (

1

2𝑛
−
1

2
) + 𝑜(𝑎 − 1)] 𝜅𝑛(𝑋) 

= [
1

𝑛
(𝑎 − 1)𝑛−1 + (

1

2𝑛
−
1

2
) (𝑎 − 1)𝑛 + 𝑜((𝑎 − 1)𝑛+1)] 𝜅𝑛(𝑋) 

To smallest order in (𝑎 − 1): 

𝜅𝑛(𝑌∞) =
1

𝑛
(𝑎 − 1)𝑛−1𝜅𝑛(𝑋) 
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We can create a similar approximation for 𝑍𝑇 by expanding 𝑎𝑛𝑇 − 1 around 𝑎 = 1 

𝑎𝑛𝑇 − 1 = 𝑛𝑇(𝑎 − 1) +
1

2
𝑛𝑇(𝑛𝑇 − 1)(𝑎 − 1)2 + 𝑜((𝑎 − 1)3) 

So that  

𝜅𝑛(𝑍𝑇) = (𝑎
𝑛𝑇 − 1) (

1

𝑎𝑛 − 1
)𝜅𝑛(𝑋) 

= [𝑛𝑇(𝑎 − 1) +
1

2
𝑛𝑇(𝑛𝑇 − 1)(𝑎 − 1)2 + 𝑜((𝑎 − 1)3)] [

1

𝑛

1

(𝑎 − 1)
+ (

1

2𝑛
−
1

2
)

+ 𝑜(𝑎 − 1)] 𝜅𝑛(𝑋) 

= 𝑇 + [𝑛𝑇 (
1

2𝑛
−
1

2
) +

1

2
𝑛𝑇(𝑛𝑇 − 1) (

1

𝑛
)] (𝑎 − 1) + 𝑜((𝑎 − 1)2)𝜅𝑛(𝑋) 

𝜅𝑛(𝑍𝑇) = [𝑇 +
1

2
𝑛𝑇(𝑇 − 1)(𝑎 − 1) + 𝑜((𝑎 − 1)2)] 𝜅𝑛(𝑋) 

The first order relationship 𝜅𝑛(𝑍𝑇) ~ 𝑇𝜅𝑛(𝑋) is not incredibly surprising, at least for the first 

three cumulants. For 𝑛 ≤ 3, it’s true that 𝜅𝑛(𝑋1 + 𝑋2) = 𝜅𝑛(𝑋1) + 𝜅𝑛(𝑋2). And when 𝑎 is very 

close to 1, so that 𝑎𝑡~1: 

𝜅𝑛(𝑍𝑇) =∑𝜅𝑛(𝑎
𝑡𝑋𝑡)

𝑇

𝑡=1

 

~ ∑𝜅𝑛(𝑋𝑡)

𝑇

𝑡=1

 

=∑𝜅𝑛(𝑋)

𝑇

𝑡=1

 

= 𝑇𝜅𝑛(𝑋) 

A more precise approximation might be 

𝜅𝑛(𝑍𝑇) = [𝑇 +
1

2
𝑛𝑇(𝑇 − 1)(𝑎 − 1)] 𝜅𝑛(𝑋) 

A similar calculation shows that, to lowest order, 𝜅𝑛(𝑌𝑇) =
1

𝑇𝑛−1
𝜅𝑛(𝑋).  

 

 

Table 5: Approximate Cumulants of Accumulated Distribution for a~1 
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𝑛 𝑋 𝑍𝑇 𝑌∞ 

1 𝜇𝑋 𝜇𝑋 𝜇𝑋 

2 𝜎𝑋
2 [𝑇 + 𝑇(𝑇 − 1)(𝑎 − 1)]𝜎𝑋

2 
1

2
(𝑎 − 1) 𝜎𝑋

2 

3 𝜅3(𝑋) [𝑇 +
3

2
𝑇(𝑇 − 1)(𝑎 − 1)] 𝜅3(𝑋) 

1

3
(𝑎

− 1)2𝜅3(𝑋) 

𝑛 𝜅𝑛(𝑋) [𝑇 +
1

2
𝑛𝑇(𝑇 − 1)(𝑎 − 1)] 𝜅𝑛(𝑋) 

1

𝑛
(𝑎

− 1)𝑛𝜅𝑛(𝑋) 

 

We can understand more about accumulated distributions be comparing with the normal 

distribution, which has only two nonzero cumulants  𝜅1 = 𝜇 and 𝜅2 = 𝜎
2.  

• If the cumulants of 𝑋 grow slowly with 𝑛, then the accumulated distribution will be close to 

normal. To see this, consider 𝑎 = 1 + 𝜖 where 𝜖 < 1 is reasonably small. Then the 𝑛th cumulant 

of 𝑌∞ is 
1

𝑛
𝜖𝑛𝜅𝑛(𝑋). If the cumulants of 𝑋 do not grow to fast, then this expression quickly gets 

close to zero for large 𝑛. So the distribution of 𝑌∞ will be close to normal. 

• The 𝑛 ≥ 3 cumulants of a normal distribution are all zero. Since the cumulants 𝜅𝑛(𝑌∞) are 

multiples of 𝜅𝑛(𝑋), this tells us again that 𝑋 is normal if and only if 𝑌∞ is normal. 

• More generally, the table shows that 𝜅𝑛(𝑌∞) < 𝜅𝑛(𝑋) for 𝑛 > 1. So the shape of the 

accumulated distribution is “more normal” than the shape of the original distribution 𝑋. 

 

4.5 Examples 

Another way to explore the relationship between generating distributions 𝑋, which might 

represent training or opportunities, and accumulated distributions 𝑍𝑇 , 𝑌𝑇 , 𝑌∞, which correspond to 

outcome data, is through numerical simulations. This section gives the results of numerical 

simulations for some accumulated distributions, along with the algebraic derivation of the 

accumulated exponential distribution functions. Figure 11 gives the US income distribution in 

2019, which is similar to income distributions in developed countries around the world (Tao et 

al., 2019). Though this work does not directly address distribution-fitting, such as through 
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maximum likelihood estimation, some of the simulation results seem to qualitatively match 

distributions of income.  

 

Figure 11: Income distribution in the United States for individuals between ages 25 and 65. Data from 2019 

American Community Survey. 

 

4.5.1 Numerical Simulation: Accumulated Bernoulli 

Imagine a scenario where, at each time point, an individual either receives a benefit of 1 with 

probability 𝑝, and 0 the rest of the time. The benefit could be the occurrence of a professional 

connection, a published research paper, or other just a lucky break. In this case, 𝑋 is a Bernoulli 

random variable. 
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𝑓𝑋(𝑥) = {
 1   𝑖𝑓 0 ≤ 𝑥 ≤ 𝑝
 0   𝑖𝑓         𝑥 > 𝑝 

 

The accumulated Bernoulli distribution is practically interesting, because it models the situation 

where the additive amounts at each time step are discrete. This case is mathematically 

interesting, because it demonstrates how the accumulation process behaves for various values of 

𝑎. In the examples here, 𝑝 = 0.1. Unless explicitly labeled, vertical axes are not comparable. 

 

 

Figure 12:Accumulated Bernoulli 𝑌𝑇 for various values of 𝑇, with 𝑎 = 1.01 and 𝑝 = 0.1.  

 

The line on the left of each graph for 𝑇 ≤ 50 is not an artifact. This corresponds to people who 

got no successes on their draws. The graph shows the normalized distribution 𝑌𝑇, rather than the 

non-normalized 𝑍𝑇. So, in the 𝑇 = 5 graph, the peak at 0.2 corresponds to people who’ve gotten 

one “success” in their five draws of the random variable 𝑋. The peaks for 𝑇 ≤ 30 get wider as 𝑇 

increases, which arises from the fact that individuals who got a success earlier get more 

“interest”.  Since 𝑎 = 1.01 is close to 1, the distribution eventually becomes close to normal. 

Also notice that the distribution stabilizes for large 𝑇, as predicted by the Stable Shape Theorem. 
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Figure 13: Accumulated Bernoulli 𝑌𝑇 for various values of 𝑇, with 𝑎 = 1.05 and 𝑝 = 0.1 

 

Again, note the marked peaks at 𝑥 = 0. The trends here are similar to the 𝑎 = 1.01 case, except 

there is more variation around the peaks in 𝑇 = 5. This arises because 𝑎 = 1.05 gives a larger 

relative benefit to early successes in 𝑋 than 𝑎 = 1.01 does. 
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Figure 14: Accumulated Bernoulli 𝑌𝑇 for various values of 𝑇, with 𝑎 = 1.2 and 𝑝 = 0.1 

 

We can see here the effects of 𝑎 = 1.2 by noticing relatively large proportion of individuals near 

zero, even for large 𝑇. When 𝑇 = 200, 15% of individuals have values below the first percentile, 

and all of them have at least one success. With a 20% interest rate, individuals with early 

successes end up being much more successful than those who don’t. The peaks in the later 

graphs are stable, and each corresponds to individuals who got a success at a given early 

timepoint. 
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Figure 15: Accumulated Bernoulli 𝑌∞ for various values of 𝑎, with 𝑝 = 0.1. Plotted with a simulated probability 

distribution function. 

 

Recall that the mean in each graph is 0.1. The values of 𝑍𝑇 grow near-exponentially with 𝑇. As 𝑎 

increases, the normal distribution gives way to a distribution where most are proportionally close 

to zero. In the 𝑎 = 1.01 regime, an individual’s value of 𝑌𝑇 arises primarily from the additive 

process 𝑥 → 𝑥 + 𝑋𝑡. In the large 𝑎 regime, an individual’s relative value comes from the 

multiplicative process 𝑥 → 𝑎𝑥. 

 

4.5.2 Numerical Simulation: Accumulated Normal Distribution 

If the additive bonus 𝑋 at each time step comes from a large number of potentially small 

opportunities, then 𝑋 could be normally distributed. For instance, children might receive an 

increase in knowledge through schooling every year, with the amount gained being normally 

distributed. Technically, the normal distribution is excluded by our assumption that 𝑋 only take 

on non-negative values. Instead, we can use a truncated normal distribution with probability 

distribution function 
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𝑓𝑋(𝑥) = {
  0              𝑖𝑓 𝑥 < 0

𝐶𝑓𝑊(𝑥)    𝑖𝑓 𝑥 ≥ 0
 

Here 𝑊 ~ 𝑁𝑜𝑟𝑚(1, 0.04) and 𝐶 is chosen to ensure that the integral is one. The random variable 

𝑋 is non-negative and matches the normal distribution 𝑊 on .9999997 of its mass. 

 

Figure 16:Accumulated normal distribution 𝑌𝑇 for various values of 𝑇 with 𝑎 = 1.1, 𝜇 = 1, 𝜎 = 0.2 

  

The variance is also the second cumulant. As predicted by the cumulant table, the variance 

decreases as 𝑇 increases until it reaches a limiting value. 

 

4.5.3 Numerical Simulation: Accumulated Pareto 

It might be the case that most individuals receive only a little bonus at each time step, while a 

small number get very lucky. This would lead to heavy-tailed distributions, which are quite 

common in economic data (Davies & Shorrocks, 2000; Heinrich Mora et al., 2021) and measures 

of popularity (Myers et al., 2014; Price, 1976) To understand heavy-tailed accumulated 

distributions this simulation uses a Pareto distribution 𝑃(𝑋 < 𝑥) =
𝐶

(𝑥+1)2
 which has infinite 

variance.  
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Figure 17: Accumulated Pareto distribution 𝑌𝑇 for various values of 𝑇 with exponent 2 and 𝑎 = 1.1. Plotted with a 

simulated probability distribution function. 

Notice that the mode gradually moves right as 𝑇 increases, despite the mean remaining constant. 

This is due to the long tail of the Pareto distribution contracting as 𝑇 increases. Regardless of 𝑇, 

however, the accumulated Pareto remains a heavy-tailed distribution. 

 

4.5.4 Numerical Simulation: Accumulated Exponential 

In many cases, the probability of gaining a large bonus will be less than the probability of 

gaining a small bonus. Pareto distributions have this property, and have heavy tails. The 

exponential distribution 𝑓𝑋(𝑥) = 𝑠𝑒
−𝑠𝑥 is a good example of a light-tailed random variable with 

a monotonically decreasing probability distribution function.  
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Figure 18: Accumulated exponential distribution 𝑌∞ for various values of 𝑎 with constant 𝑠 = 1. Plotted with a 

simulated probability distribution function. 

 

4.5.5 Explicit Distribution Functions of Accumulated Exponential 

The accumulated exponential provides one of the few distributions which allows an explicit 

formula for its distribution functions. In fact, the accumulated exponential distribution has a 

special property: Recall that 𝑍𝑇 = ∑ 𝑎𝑇−𝑡𝑋𝑡
𝑇
𝑡=1 , so that 𝑓𝑍𝑇(𝑥) = 𝑓𝑋 ∗ 𝑓𝑎𝑋 ∗ 𝑓𝑎2𝑋 ∗ ⋯ ∗

𝑓𝑎𝑇−1𝑋(𝑥), where ∗ is the convolution operator.  

(𝑓 ∗ 𝑔)(𝑥) = ∫ 𝑓(𝑧)𝑔(𝑥 − 𝑧)𝑑𝑧
∞

−∞

 

I will show that, for the accumulated exponential, we can write this convolution as a sum in 

terms of the component distribution functions 𝑓𝑍𝑇(𝑥) = ∑ 𝑐𝑘,𝑇𝑓𝑎𝑘𝑋(𝑥)
𝑇−1
𝑘=0  for some constants 

𝑐𝑘,𝑇.  This is quite an elegant result, since it allows us to write the convolution of exponential 

functions as a sum of those functions. Convolutions are very difficult to calculate, while sums 

are straightforward. 
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To show this, we need some machinery. Accumulated random variables are defined as linear 

combinations of random variables, which means we need to turn our attention to some well-

known properties of convolutions. 

Proposition: Let 𝑋 and 𝑌 be independent random variables, 𝑏 ∈ ℝ, and ∗ the convolution 

operator. Then: 

1) 𝑓𝑋+𝑌(𝑥) = (𝑓𝑋 ∗ 𝑓𝑌)(𝑥) = ∫ 𝑓𝑋(𝑧)𝑓𝑌(𝑥 − 𝑧)𝑑𝑧Ω
, and 

2) 𝑓𝑏𝑋 =
1

𝑏
𝑓 (

𝑥

𝑏
) 

Where, for a fixed value of 𝑥, Ω is the shared domain of z-values of 𝑓𝑋(𝑧) and 𝑓𝑌(𝑥 − 𝑧). 

 

Definition: The q-Pochhammer symbols are given by: 

(𝑏; 𝑞)𝑛 =∏(1 − 𝑏𝑞𝑘)

𝑛−1

𝑘=0

 

(𝑏; 𝑞)∞ =∏(1 − 𝑏𝑞𝑘)

∞

𝑘=0

 

Note that 𝑞 must be less than one in order for the product to converge. We will use a specific 

instance of the q-Pochhammer symbol, where 𝑏 = 𝑞. 

(𝑞; 𝑞)𝑛 =∏(1 − 𝑞𝑘)

𝑛

𝑘=1

 

(𝑞; 𝑞)∞ =∏(1 − 𝑞𝑘)

∞

𝑘=1

 

We also assume the convention that  (𝑞; 𝑞)0 = 1. 

 

Theorem (PDF of Accumulated Exponential): Let 𝑋 be an exponentially distributed random 

variable so that 

𝑓𝑋(𝑥) = {
𝑠𝑒−𝑠𝑥      𝑖𝑓 𝑥 ≥ 0
0                 𝑖𝑓 𝑥 < 0

 

Then the probability distribution functions 𝑍𝑇 , 𝑌𝑇 , 𝑌∞ for the accumulated exponential are 

𝑓𝑍𝑇(𝑥) = ∑
𝑠

𝑎𝑘
𝑐𝑘,𝑇𝑒

− 
𝑠

𝑎𝑘
𝑥

𝑇−1

𝑘=0

=∑𝑐𝑘,𝑇𝑓𝑎𝑘𝑋(𝑥)

𝑇−1

𝑘=0
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𝑓𝑌𝑇(𝑥) =  ∑
𝑠𝛾𝑇
𝑎𝑘
𝑐𝑘,𝑇𝑒

− 
𝑠𝛾𝑇
𝑎𝑘
𝑥

𝑇−1

𝑘=0

=∑𝑐𝑘,𝑇𝑓𝑎𝑘
𝛾𝑇
𝑋
(𝑥)

𝑇−1

𝑘=0

 

𝑓𝑌∞ =∑(
𝑎

𝑎 − 1
) 𝑎𝑘𝑠𝑑𝑘

∞

𝑘=0

𝑒−(
𝑎
𝑎−1

)𝑎𝑘𝑠𝑥 =∑𝑑𝑘𝑓𝑎−1
𝑎𝑘+1

𝑋
(𝑥)

∞

𝑘=0

 

 

Where 𝛾𝑇 =
𝑎𝑇−1

𝑎−1
  and  

𝑐𝑘,𝑇 =
(−1)𝑇−𝑘−1

(
1
𝑎 ;
1
𝑎)𝑘

(
1
𝑎 ;
1
𝑎)𝑇−𝑘−1

𝑎− 
(𝑇−𝑘)(𝑇−𝑘−1)

2                                                                              

𝑑𝑘 =
(−1)𝑘

(
1
𝑎 ;
1
𝑎)𝑘

(
1
𝑎 ;
1
𝑎)∞

𝑎
−𝑘(𝑘+1)

2                                                                            

With appropriate assumptions when 𝑘 is 0 or 𝑇 − 1, we can also write: 

𝑐𝑘,𝑇 = 𝑎
𝑘(𝑘+1)
2

1

(𝑎𝑘 − 1)

1

(𝑎𝑘−2 − 1)
⋯

1

(𝑎 − 1)
⋅ 1 ⋅

1

(1 − 𝑎1)

1

(1 − 𝑎2)
⋯

1

(1 − 𝑎𝑇−𝑘−1)
 

 

While the first expression for 𝑐𝑘,𝑇 is more elegant, the second expression is potentially more 

computable since both the numerator and denominator are bounded for large 𝑇. 

The next theorem follows directly from the previous one, and the fact that ∫ 𝑒−𝑏𝑧𝑑𝑧
∞

𝑥
=
1

𝑏
𝑒−𝑏𝑥. 

Theorem (CCDF of Accumulated Exponential): Let 𝑋 be an exponentially distributed random 

variable with parameter 𝑠. And let 𝐹̅𝑍𝑇(𝑥) = 𝑃(𝑍𝑇 > 𝑥) = ∫ 𝑓𝑍𝑇(𝑥)𝑑𝑥
∞

𝑥
 denote the 

complementary cumulative distribution functions (ccdf). Then 

𝐹̅𝑍𝑇(𝑥) = ∑𝑐𝑘,𝑇

𝑇−1

𝑘=0

𝑒
− 
𝑠

𝑎𝑘
𝑥
=∑𝑐𝑘,𝑇 𝐹̅𝑎𝑘𝑋(𝑥)

𝑇−1

𝑘=0

 

𝐹̅𝑌𝑇(𝑥) =  ∑ 𝑐𝑘,𝑇

𝑇−1

𝑘=0

𝑒
− 
𝑠(𝑎𝑇−1)

𝑎𝑘(𝑎−1)
𝑥
=∑𝑐𝑘,𝑇 𝐹̅𝑎𝑘

𝛾𝑇
𝑋
(𝑥)

𝑇−1

𝑘=0

 

𝐹̅𝑌∞(𝑥) = ∑𝑑𝑘

∞

𝑘=0

𝑒−(
𝑎
𝑎−1

)𝑎𝑘𝑠𝑥 =∑𝑑𝑘𝐹̅𝑎−1
𝑎𝑘+1

𝑋
(𝑥)

∞

𝑘=0
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The cumulative distribution functions 𝐹(𝑥) = 1 − 𝐹̅(𝑥) can be calculated using the ccdf 

formulae. 

 

4.6 Conclusion 

In this chapter, I have developed a model of a high-dimensional cumulative advantage (or 

disadvantage) process. I calculated basic properties of this process and its outcome distributions, 

and showed that the high-dimensional model can be approximated by a one-dimensional model. 

Specifically I found: 

• Formulas for the output variables in the model, including the mean and variance. 

• The model is consistent with respect to intuitive “changes of variables” to accommodate 

the idea of stories all the way down. 

• For large time, multifactor cumulative advantage processes can be approximated by a 

one-dimensional process, with provides a single “systemic interest rate” for the many-

dimensional process. 

• Each factor influencing success has a weight which determines its causal strength in 

affecting well-being (determined by the left eigenvector of 𝐴). Individuals who increase 

the heavily-weighted factors early on tend to be the most well-off. 

• Another set of weights (given by the dominant right eigenvector of 𝐴) describes how the 

factors grow in proportion to each other over time, and how strong of an indicator each 

factor is of overall well-being. 

• For a given systemic interest rate 𝑎 and time 𝑇, there is a one-to-one relationship between 

accumulated distributions corresponding to outcomes and the distribution of the additive 

process that generated the data. 

I also gave examples of various one-dimensional accumulated distributions, and explicitly 

derived the functional form of accumulated exponential distributions. 

Notably, the examples of accumulated distributions tend to have distribution functions which are 

skewed right with either a single peak, or decreasing from zero. These are similar to distributions 

of data that show up in student capital (Quarles et al., 2020), income (Bandourian et al., 2002), 

frailty (Rockwood et al., 2004), and mental health (Tomitaka et al., 2018). While an explicit 

method for data-fitting using a technique like maximum likelihood estimation is outside the 
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scope of this paper, these connections do suggest promise in using the accumulation model to 

understand the processes generating standard metrics of well-being. 

 

4.6.1 Future Work 

The current chapter provides a number of evidence-based, conceptual, and statistical 

opportunities for future research. A method could be developed to connect the model to 

distributions of data. Such a model would, for a given one-dimensional variable, infer a family of 

distributions 𝑋 and a parameter 𝑎. This could generate a deeper understanding of how well-being 

(or negative processes like aging) accumulate in a population. For instance, a distribution-fitting 

method might provide a most reasonable systemic interest rate, helping us understand where the 

rich are getting richer fastest. 

In the context of socioeconomic variables, the fact that the high-dimensional accumulation 

model reduces to one-dimension is interesting. It suggests that there might be a single-

dimensional construct embedded in a high-dimensional socioeconomic dataset, which could be 

found using PCA or some other dimension reduction technique. This construct would likely 

represent socioeconomic status (SES). Interestingly, the model suggests that SES arises as a 

useful tool because those are the traits that people value and can reinvest in. For instance, 

income and health are correlated because (a) people value both traits, (b) people can turn their 

money toward better health, and (c) people with better health can earn more money. Repeat this 

argument for every pair of positively construed variables, and there is likely to be a latent 

dimension of well-being which is socially constructed by individuals’ choices. Future work 

could examine socioeconomic status in the context of this model and high-dimensional data. 

In addition, there is some statistical refinement that could be done on the model itself. To 

generate example distribution, I primarily relied on numerical simulations. However, it is not 

clear how to numerically simulate 𝑌∞, which is given by an infinite sum. So I used 𝑌𝑇 to 

approximate 𝑌∞, since 𝑌𝑇 → 𝑌∞ for large 𝑇. In practice, this convergence seems to happen quite 

quickly. This is good, because simulations of 𝑌𝑇 can take a long time, which grows linearly with 

𝑇. Future work could examine how quickly the convergence happens, to better enable 

simulations of the stable distribution 𝑌∞ while minimizing computational time. 
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I’ve used cumulants to show that, when all the cumulants exist, there is a one-to-one relationship 

between 𝑋 and 𝑌∞ for a given value of 𝑎. I hypothesize that this will also be true when all the 

cumulants do not exist (i.e. when 𝑋 and 𝑌∞ are heavy-tailed). Since many economic variables are 

heavy-tailed, this would be an interesting area for future examination. 

 

4.7 Proofs of Major Theorems 

Proof of the Stories All the Way Down Theorem: We want to show that, if (𝑋 ′, 𝐴′, 𝑇, 𝑏⃗ ′) is 

finer than (𝑋 , 𝐴, 𝑇, 𝑏⃗ ), then the two expressions below are equivalent. 

𝑊𝑇 = 𝑏⃗ ⋅∑𝐴𝑇−𝑡𝑋 𝑡

𝑇

𝑡=1

 

𝑊𝑇
′ = 𝑏⃗ ′ ⋅∑(𝐴′)𝑇−𝑡𝑋 ′𝑡

𝑇

𝑡=1

 

The calculation is straightforward. We start by using 𝜙𝑋 ′ = 𝑋 . 

𝑊𝑇 = 𝑏⃗ ⋅∑𝐴𝑇−𝑡𝑋 𝑡

𝑇

𝑡=1

 

= 𝑏⃗ ⋅∑𝐴𝑇−𝑡 𝜙𝑋 𝑡
′

𝑇

𝑡=1

 

Since 𝜙𝐴′ = 𝐴𝜙, we also know that 𝜙(𝐴′)𝑇−𝑡 = 𝐴𝑇−𝑡𝜙. 

= 𝑏⃗ ⋅∑𝜙(𝐴′)𝑇−𝑡𝑋 𝑡
′

𝑇

𝑡=1

 

= 𝑏⃗ ⋅ 𝜙∑(𝐴′)𝑇−𝑡𝑋 𝑡
′

𝑇

𝑡=1

 

By the third property, 𝑏⃗ ′ ⋅ 𝑣 = 𝑏⃗ ⋅ 𝜙𝑣  for any 𝑣 ∈ ℝ𝑀
′
. So 

= 𝑏⃗ ′ ⋅∑(𝐴′)𝑇−𝑡𝑋 𝑡
′

𝑇

𝑡=1

= 𝑊𝑇
′  

This concludes the proof. 

 

 

Proof of Accumulated Inequality Theorem: 

From the Accumulation Reduction Theorem, for large 𝑇, 
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𝑊𝑇 ~ 
𝑏⃗ ⋅ 𝑤⃗⃗ 

𝑢⃗ ⋅ 𝑤⃗⃗ 
[∑𝑎𝑇−𝑡(𝑢⃗ ⋅ 𝑋 𝑡)

𝑇

𝑡=1

] 

To calculate the coefficient of variation, we first look at the mean, variance, and standard 

deviation of 𝑍𝑇. 

𝑬(𝑾𝑻) ~ 
𝒃⃗⃗ ⋅ 𝒘⃗⃗⃗ 

𝒖⃗⃗ ⋅ 𝒘⃗⃗⃗ 
 𝑬(𝒖⃗⃗ ⋅ 𝑿⃗⃗ ) (

𝒂𝑻 − 𝟏

𝒂 − 𝟏
) 

𝑉𝑎𝑟(𝑊𝑇) = (
𝑏⃗ ⋅ 𝑤⃗⃗ 

𝑢⃗ ⋅ 𝑤⃗⃗ 
)

2

𝑉𝑎𝑟 [∑𝑎𝑇−𝑡(𝑢⃗ ⋅ 𝑋 𝑡)

𝑇

𝑡=1

] 

                         = (
𝑏⃗ ⋅ 𝑤⃗⃗ 

𝑢⃗ ⋅ 𝑤⃗⃗ 
)

2

[∑𝑎2(𝑇−𝑡)𝑉𝑎𝑟(𝑢⃗ ⋅ 𝑋 𝑡)

𝑇

𝑡=1

] 

                            = (
𝑏⃗ ⋅ 𝑤⃗⃗ 

𝑢⃗ ⋅ 𝑤⃗⃗ 
)

2

[∑𝑎2(𝑇−𝑡)
𝑇

𝑡=1

]  𝑉𝑎𝑟(𝑢⃗ ⋅ 𝑋 ) 

𝑽𝒂𝒓(𝑾𝑻) = (
𝒃⃗⃗ ⋅ 𝒘⃗⃗⃗ 

𝒖⃗⃗ ⋅ 𝒘⃗⃗⃗ 
)

𝟐

[
𝒂𝟐𝑻 − 𝟏

𝒂𝟐 − 𝟏
]  𝑽𝒂𝒓(𝒖⃗⃗ ⋅ 𝑿⃗⃗ ) 

𝜎𝑊𝑇 = √𝑉𝑎𝑟(𝑊𝑇) 

𝝈𝑾𝑻 = (
𝒃⃗⃗ ⋅ 𝒘⃗⃗⃗ 

𝒖⃗⃗ ⋅ 𝒘⃗⃗⃗ 
)√
𝒂𝟐𝑻 − 𝟏

𝒂𝟐 − 𝟏
 𝝈𝒖⃗⃗ ⋅𝑿⃗⃗   

This means that the coefficient of variation is: 

𝑐𝑣(𝑊𝑇) =
√𝑉𝑎𝑟(𝑍𝑇)

𝐸(𝑍𝑇)
 

                                                         =

(
𝑏⃗ ⋅ 𝑤⃗⃗ 
𝑢⃗ ⋅ 𝑤⃗⃗ 

)√
𝑎2𝑇 − 1
𝑎2 − 1

√ 𝑉𝑎𝑟(𝑢⃗ ⋅ 𝑋 )

𝑏⃗ ⋅ 𝑤⃗⃗ 
𝑢⃗ ⋅ 𝑤⃗⃗ 

 𝐸(𝑢⃗ ⋅ 𝑋 ) (
𝑎𝑇 − 1
𝑎 − 1

)

 

                                             =
√𝑎

2𝑇 − 1
𝑎2 − 1

 

   (
𝑎𝑇 − 1
𝑎 − 1

)   

√ 𝑉𝑎𝑟(𝑢⃗ ⋅ 𝑋 )

𝐸(𝑢⃗ ⋅ 𝑋 )
 

                                          =
√𝑎

2𝑇 − 1
𝑎2 − 1

 

   (
𝑎𝑇 − 1
𝑎 − 1

)   

√ 𝑉𝑎𝑟(𝑢⃗ ⋅ 𝑋 )

𝐸(𝑢⃗ ⋅ 𝑋 )
 

We can reduce the first fraction. 
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√𝑎
2𝑇 − 1
𝑎2 − 1

 

   (
𝑎𝑇 − 1
𝑎 − 1

)   
= (

𝑎 − 1

𝑎𝑇 − 1
)√
𝑎2𝑇 − 1

𝑎2 − 1
 

=
(𝑎 − 1)√𝑎𝑇 − 1√𝑎𝑇 + 1

(𝑎𝑇 − 1)√𝑎 − 1 √𝑎 + 1
 

=
√𝑎 − 1

√𝑎 + 1

√𝑎𝑇 + 1

√𝑎𝑇 − 1
 

=
√𝑎 − 1

√𝑎 + 1

√1 +
1
𝑎𝑇

√1 −
1
𝑎𝑇

 

For large 𝑇 this goes to 
√𝑎−1

√𝑎+1
 . And 

√ 𝑉𝑎𝑟(𝑢⃗⃗ ⋅𝑋⃗ )

𝐸(𝑢⃗⃗ ⋅𝑋⃗ )
= 𝑐𝑣(𝑢⃗ ⋅ 𝑋 ), which gives us 

𝑐𝑣(𝑍𝑇) ~
√𝑎 − 1

√𝑎 + 1
 𝑐𝑣(𝑢⃗ ⋅ 𝑋 ) 

Since the coefficient of variation is unitless, we can also write this in terms of 𝜓 =
𝑏⃗ ⋅𝑤⃗⃗ 

𝑢⃗⃗ ⋅𝑤⃗⃗ 
𝑢⃗ ⋅ 𝑋 . 

𝑐𝑣(𝑍𝑇) =
√𝑎 − 1

√𝑎 + 1
 𝑐𝑣(𝜓𝑇) 

This concludes the proof. 

 

 

Proof of the Accumulation Reduction Theorem 

To prove the Accumulation Reduction Theorem, we need a few lemmas. 

Lemma: Let 𝐴 be a matrix, with a left eigenpair (𝑢⃗ , 𝑎) and right eigenpair (𝑣 , 𝜆), where 𝜆 ≠ 𝑎. 

Then 𝑢⃗ ⋅ 𝑣 = 0. 

Proof: Because 𝑢⃗  is a right eigenvector with eigenvalue 𝑎, 𝑢⃗ ⊤𝐴𝑣 = 𝑢⃗ ⊤𝑎𝑣 = 𝑎𝑢⃗ ⋅ 𝑣 . But also 

𝑢⃗ ⊤𝐴𝑣 = 𝑢⃗ ⊤𝜆𝑣 = 𝜆𝑢⃗ ⋅ 𝑣 . Therefore 𝑎𝑢⃗ ⋅ 𝑣 = 𝜆𝑢⃗ ⋅ 𝑣 . Since 𝜆 ≠ 𝑎, we know that 𝑢⃗ ⋅ 𝑣 = 0. 

 

Lemma: Assume 𝐴 is a primitive matrix, and 𝑎, 𝑢⃗ , 𝑤⃗⃗  as in the Perron-Frobenius Theorem. Then 

the matrix 𝐵 = 𝐴 −
𝑎

𝑢⃗⃗ ⋅𝑤⃗⃗ 
 𝑤⃗⃗ 𝑢⃗ ⊤ has all the same eigenvectors and eigenvalues of 𝐴, except that the 

eigenvalue corresponding to 𝑢⃗  and 𝑤⃗⃗  is 0 instead of 𝑎. Furthermore, the spectral radius of 𝐵, 

𝜌(𝐵), (which is the maximum modulus of 𝐵’s eigenvalues) is strictly less than 𝑎. In other words, 

if 𝜆 is an eigenvalue of 𝐵, then |𝜆| < 𝑎.  

Proof: We will first show that 𝑤⃗⃗  is a right eigenvector of B with eigenvalue 0. 

𝐵𝑤⃗⃗ = (𝐴 −
𝑎

𝑢⃗ ⋅ 𝑤⃗⃗ 
 𝑤⃗⃗ 𝑢⃗ ⊤) 𝑤⃗⃗  
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= 𝐴𝑤⃗⃗ −
𝑎

𝑢⃗ ⋅ 𝑤⃗⃗ 
 𝑤⃗⃗ 𝑢⃗ ⊤𝑤⃗⃗  

= 𝑎𝑤⃗⃗ −
𝑎

𝑢⃗ ⋅ 𝑤⃗⃗ 
 (𝑢⃗ ⊤𝑤⃗⃗  )𝑤⃗⃗  

= 𝑎𝑤⃗⃗ − 𝑎𝑤⃗⃗ = 0𝑤⃗⃗  

 

If (𝑣 , 𝜆) is any other right eigenpair, then: 

𝐵𝑣 = (𝐴 −
𝑎

𝑢⃗ ⋅ 𝑤⃗⃗ 
 𝑤⃗⃗ 𝑢⃗ ⊤) 𝑣  

= 𝐴𝑣 −
𝑎

𝑢⃗ ⋅ 𝑤⃗⃗ 
 𝑤⃗⃗ 𝑢⃗ ⊤𝑣  

By the previous lemma, 𝑢⃗ ⊤𝑣 = 0. So this is 

= 𝐴𝑣 − 0 

= 𝐴𝑣 = 𝜆𝑣  

The proofs for the left eigenvector are similar. Since the spectral radius of a matrix is the 

magnitude of its largest eigenvalue the Perron-Frobenius Theorem says that 𝜌(𝐴) = 𝑎. However, 

since 𝑎 is not an eigenvalue of 𝐵, the spectral radius of 𝐵 is the magnitude of the second largest 

eigenvalue of 𝐴. The Perron-Frobenius Theorem tells us that this is strictly smaller than 𝑎. So 

𝜌(𝐵) < 𝑎. 

 

Proof of Accumulation Reduction Theorem: We want to show that  

lim
𝑇→∞

𝐸 (
1

𝑎𝑇
|𝑊𝑇 − 𝑍𝑇|) = 0 

We can rewrite the statement inside parentheses: 

1

𝑎𝑇
|𝑊𝑇 − 𝑍𝑇| =

1

𝑎𝑇
|𝑏⃗ ⊤∑𝐴𝑇−𝑡𝑋 𝑡

𝑇

𝑡=1

−∑𝑎𝑇−𝑡𝜓𝑡

𝑇

𝑡=1

| 

=
1

𝑎𝑇
|𝑏⃗ ⊤∑𝐴𝑇−𝑡𝑋 𝑡

𝑇

𝑡=1

−∑𝑎𝑇−𝑡
1

𝑢⃗ ⋅ 𝑤⃗⃗ 
𝑤⃗⃗  𝑢⃗ ⊤𝑋 𝑡

𝑇

𝑡=1

| 

=
1

𝑎𝑇
|𝑏⃗ ⊤∑(𝐴𝑇−𝑡 −

𝑎𝑇−𝑡

𝑢⃗ ⋅ 𝑤⃗⃗ 
𝑤⃗⃗ 𝑢⃗ ⊤)𝑋 𝑡

𝑇

𝑡=1

| 

Note that, if 𝐵 = 𝐴 −
𝑎

𝑢⃗⃗ ⋅𝑤⃗⃗ 
 𝑤⃗⃗ 𝑢⃗ ⊤, then (𝐴𝑗 −

𝑎𝑗

𝑢⃗⃗ ⋅𝑤⃗⃗ 
𝑤⃗⃗ 𝑢⃗ ⊤) = 𝐵𝑗. So we can rewrite this as: 

=
1

𝑎𝑇
|𝑏⃗ ⊤∑𝐵𝑇−𝑡𝑋 𝑡

𝑇

𝑡=1

| 

It will be helpful to reindex 𝑗 = 𝑇 − 𝑡. 

=
1

𝑎𝑇
|𝑏⃗ ⊤∑𝐵𝑗𝑋 𝑇−𝑗

𝑇−1

𝑗=0

| 

We can now rephrase our goal in terms of 𝐵. We want to show that: 
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𝐸 (
1

𝑎𝑇
|𝑏⃗ ⊤∑𝐵𝑗𝑋 𝑇−𝑗

𝑇−1

𝑗=0

|) → 0 

Now let {(𝑢⃗ 𝑘, 𝜆𝑘)} be a complete set of left eigenvectors of 𝐴, chosen so that 𝑢⃗ 1 = 𝑢⃗  and 𝜆1 = 𝑎. 

Since {𝑢⃗ 𝑘} spans ℝ𝑀, we can write 𝑏⃗ ⊤ = ∑ 𝑏𝑘𝑢⃗ 𝑘
⊤𝑀

𝑘=1  as a linear combination of the left 

eigenvectors.  

𝐸 (
1

𝑎𝑇
|𝑏⃗ ⊤∑𝐵𝑗𝑋 𝑇−𝑗

𝑇−1

𝑗=0

|) = 𝐸 (
1

𝑎𝑇
|∑𝑏𝑘𝑢⃗ 𝑘

⊤
∑𝐵𝑗𝑋 𝑇−𝑗

𝑇−1

𝑗=0

𝑀

𝑘=1

|) 

=∑𝑏𝑘𝐸 (
1

𝑎𝑇
|𝑢⃗ 𝑘

⊤
∑𝐵𝑗𝑋 𝑇−𝑗

𝑇−1

𝑗=0

|)

𝑀

𝑘=1

 

We will show each term of this sum goes to zero, by looking at each eigenvector 𝑢⃗ 𝑘. There are 

two cases.  

The first case is when 𝑢⃗ = 𝑢⃗ 1. Recall that 𝑢⃗ ⊤𝐵 = 0𝑢⃗ ⊤. So this case is: 

𝐸 (
1

𝑎𝑇
|𝑢⃗ ⊤∑𝐵𝑗𝑋 𝑇−𝑗

𝑇−1

𝑗=0

|) = 𝐸 (
1

𝑎𝑇
|∑ 𝑢⃗ ⊤𝐵𝑗𝑋 𝑇−𝑗

𝑇−1

𝑗=0

|) 

=  𝐸 (
1

𝑎𝑇
|∑0𝑢⃗ ⊤𝑋 𝑇−𝑗

𝑇−1

𝑗=0

|) = 0 

For 𝑘 > 1, 𝑢⃗ 𝑘
⊤𝐵 = 𝜆𝑘𝐵 where |𝜆𝑘| < 𝑎. So we get: 

𝐸 (
1

𝑎𝑇
|𝑢⃗ 𝑘

⊤
∑𝐵𝑗𝑋 𝑇−𝑗

𝑇−1

𝑗=0

|) = 𝐸 (
1

𝑎𝑇
|∑ 𝑢⃗ 𝑘

⊤
𝐵𝑗𝑋 𝑇−𝑗

𝑇−1

𝑗=0

|) 

=  𝐸 (
1

𝑎𝑇
|∑ 𝜆𝑘

𝑗
𝑢⃗ 𝑘
⊤
𝑋 𝑇−𝑗

𝑇−1

𝑗=0

|) 

≤
1

𝑎𝑇
∑|𝜆𝑘|

𝑗𝐸(|𝑢⃗ 𝑘
⊤
𝑋 𝑇−𝑗|)

𝑇−1

𝑗=0

 

But all the 𝑋 𝑇−𝑗 are identical variables, so 𝐸(|𝑢⃗ 𝑘
⊤
𝑋 𝑇−𝑗|) = 𝐸(|𝑢⃗ 𝑘

⊤
𝑋 |), which we can pull out 

of the sum. 

=
1

𝑎𝑇
𝐸(|𝑢⃗ 𝑘

⊤
𝑋 |)∑|𝜆𝑘|

𝑗

𝑇−1

𝑗=0

 

=
1

𝑎𝑇
𝐸(|𝑢⃗ 𝑘

⊤
𝑋 |) (

|𝜆𝑘|
𝑇 − 1

|𝜆𝑘| − 1
) 



 92 

= (
𝜆𝑘
𝑎
)
𝑇

(

1 − 1
𝜆𝑘
𝑇⁄

𝜆 − 1
)𝐸(|𝑢⃗ 𝑘

⊤
𝑋 |) 

Note that (
𝜆𝑘

𝑎
) < 1, so (

𝜆𝑘

𝑎
)
𝑇

→ 0 for large 𝑇. The other factors in the expression remain 

bounded, so each term of the expansion in 𝑏𝑘 goes to zero. This concludes the proof. 

 

 

 

Proof of the Stable Shape Theorem 

To prove the Stable Shape Theorem, we also need a theorem attributed to Lévy. 

Lévy’s Continuity Theorem (Fristedt & Gray, 1997) 

A sequence of random variables {𝑊𝑇} with characteristic functions 𝜑𝑊𝑇(𝑠) converges in 

distribution to a random variable 𝑊∞ if and only if 𝜑𝑊𝑇(𝑠) converges pointwise to a function 

𝜑(𝑠) which is continuous at 0. If so, then 𝜑 = 𝜑𝑊∞. 

 

Proof of the Stable Shape Theorem: Lévy’s Continuity Theorem tells us that if (a) the 

characteristic functions 𝜑𝑌𝑇(𝑠) converge pointwise to 𝜑𝑌∞  in a neighborhood of the origin, and 

(b) that the function 𝜑𝑌∞  is continuous at the origin, then 𝑌𝑇 converges to 𝑌∞. It will help for us 

to work with the function 𝐺𝑋(𝑠) = log(𝜑𝑋(𝑠)). Because the logarithm function is analytic in a 

neighborhood of 1, and 𝜑𝑋(𝑠) is continuous and differentiable in a neighborhood of 0, we need 

only show that (a) 𝐺𝑌𝑇(𝑠) converges pointwise to 𝐺𝑌∞(𝑠) in a neighborhood of 0 and (b)  𝐺𝑌∞(𝑠) 

is continuous at the origin. Statement (b) is true for free, since the characteristic function of any 

random variables is continuous in a neighborhood of the origin, and log() is analytic. So we need 

only show (a). 

We can rewrite the characteristic function of 𝑌𝑇 =
𝑎−1

𝑎𝑇−1
∑ 𝑎𝑇−𝑡𝑋𝑡
𝑇
𝑡=1  using properties of 

characteristic functions. 

𝜑𝑌𝑇(𝑠) = 𝜑 𝑎−1

𝑎𝑇−1
∑ 𝑎𝑇−𝑡𝑋𝑡
𝑇
𝑡=1

(𝑠) =∏𝜑𝑋 (
𝑎 − 1

𝑎𝑇 − 1
𝑎𝑇−𝑡𝑠)

𝑇

𝑡=1

 

=∏𝜑𝑋 (
𝑎 − 1

𝑎𝑡 −
1
𝑎𝑇−𝑡

𝑠)

𝑇

𝑡=1

 

Then, taking the logarithm gives us: 

𝐺𝑌𝑇(𝑠) = log [∏𝜑𝑋 (
𝑎 − 1

𝑎𝑡 −
1
𝑎𝑇−𝑡

𝑠)

𝑇

𝑡=1

] 
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=∑log [𝜑𝑋 (
𝑎 − 1

𝑎𝑡 −
1
𝑎𝑇−𝑡

𝑠)]

𝑇

𝑡=1

 

=∑𝐺𝑋 (
𝑎 − 1

𝑎𝑡 −
1
𝑎𝑇−𝑡

𝑠)

𝑇

𝑡=1

 

A similar argument shows that  

𝐺𝑌∞(𝑠) =∑𝐺𝑋 (
𝑎 − 1

𝑎𝑡
𝑠)

∞

𝑡=1

 

We want to show that 𝐺𝑌𝑇(𝑠) converges to 𝐺𝑌∞(𝑠) pointwise for every 𝑠 in a neighborhood of 

the origin. At a given 𝑠, we can bound the difference of the functions using the triangle 

inequality. 

lim
𝑇→∞

|𝐺𝑌𝑇(𝑠) − 𝐺𝑌∞(𝑠)| = lim
𝑇→∞

|∑𝐺𝑋 (
𝑎 − 1

𝑎𝑡 −
1
𝑎𝑇−𝑡

𝑠)

𝑇

𝑡=1

−∑𝐺𝑋 (
𝑎 − 1

𝑎𝑡
𝑠)

𝑇

𝑡=1

| 

≤ lim
𝑇→∞

∑|𝐺𝑋 (
𝑎 − 1

𝑎𝑡 −
1
𝑎𝑇−𝑡

𝑠) − 𝐺𝑋 (
𝑎 − 1

𝑎𝑡
𝑠)|

𝑇

𝑡=1

 

Since 𝑋 has a finite mean,  we know 𝜑𝑋 and 𝐺𝑋 are continuous and differentiable in a 

neighborhood 𝒱 ⊂ ℝ properly containing the origin. Therefore, given a finite-length interval 𝑈 ∈

𝒱, there is an ℎ > 0 such that, for any two points 𝑠1, 𝑠2 ∈ 𝑈, the difference of 𝐺𝑋 is bounded:  

|𝐺𝑋(𝑠1) − 𝐺𝑋(𝑠2)| ≤ ℎ|𝑠2 − 𝑠1|.  We can use this to bound the summands in the expression 

above. 

Choose 𝑈 = [−𝑠, 𝑠] (or [𝑠, −𝑠] if 𝑠 is negative) and the ℎ that corresponds to 𝑈. Since 𝑎 > 1, the 

two points 
𝑎−1

𝑎𝑡−
1

𝑎𝑇−𝑡

𝑠  and 
𝑎−1

𝑎𝑡
𝑠 fall within 𝑈 for all 𝑇 > 1 and 𝑡 ∈ [1, 𝑇]. So 

|𝐺𝑋 (
𝑎 − 1

𝑎𝑡 −
1
𝑎𝑇−𝑡

𝑠) − 𝐺𝑋 (
𝑎 − 1

𝑎𝑡
𝑠)| ≤  ℎ |(

𝑎 − 1

𝑎𝑡 −
1
𝑎𝑇−𝑡

𝑠) − (
𝑎 − 1

𝑎𝑡
𝑠)| 

Which means 

lim
𝑇→∞

|𝐺𝑌𝑇(𝑠) − 𝐺𝑌∞(𝑠)| ≤ lim
𝑇→∞

∑ℎ|(
𝑎 − 1

𝑎𝑡 −
1
𝑎𝑇−𝑡

𝑠) − (
𝑎 − 1

𝑎𝑡
𝑠)|

𝑇

𝑡=1

 

= lim
𝑇→∞

∑ℎ|𝑠|(𝑎 − 1) |(
1

𝑎𝑡 −
1
𝑎𝑇−𝑡

) − (
1

𝑎𝑡
)|

𝑇

𝑡=1

 

= ℎ|𝑠|(𝑎 − 1) lim
𝑇→∞

∑|
𝑎𝑇−𝑡

𝑎𝑇 − 1
−
1

𝑎𝑡
|

𝑇

𝑡=1
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Finding a common denominator for the part inside the sum gives us:  

= ℎ|𝑠|(𝑎 − 1) lim
𝑇→∞

∑|
𝑎𝑇

𝑎𝑡(𝑎𝑇 − 1)
−
(𝑎𝑇 − 1)

𝑎𝑡(𝑎𝑇 − 1)
|

𝑇

𝑡=1

 

= ℎ|𝑠|(𝑎 − 1) lim
𝑇→∞

∑
1

𝑎𝑡(𝑎𝑇 − 1)

𝑇

𝑡=1

 

= ℎ|𝑠|(𝑎 − 1) lim
𝑇→∞

(
1

𝑎𝑇 − 1
∑

1

𝑎𝑡

𝑇

𝑡=1

) 

= ℎ|𝑠|(𝑎 − 1) lim
𝑇→∞

(
1

𝑎𝑇 − 1

1 − (
1
𝑎)
𝑇

𝑎 − 1
) = 0 

This actually shows a stronger result: That 𝐺𝑌𝑇(𝑠) converges uniformly to 𝐺𝑌∞(𝑠) on any finite-

length interval in 𝒱. This concludes the proof. 

 

 

Proof of the Accumulated Moment Theorem 

Lemma LM: If the 𝑛th moment 𝑀𝑛 = 𝐸(𝑋
𝑛) of a non-negative real-valued random variable 𝑋 

exists, then so does 𝑀𝑗 for all 𝑗 < 𝑛.  

Proof: If 𝑓𝑋 is the probability distribution function of 𝑋, and 𝑗 < 𝑛 then   

𝐸(𝑋𝑗) = ∫ 𝑥𝑗𝑓𝑋(𝑥)𝑑𝑥
∞

0

= ∫ 𝑥𝑗𝑓𝑋(𝑥)𝑑𝑥
1

0

+∫ 𝑥𝑗𝑓𝑋(𝑥)𝑑𝑥
∞

1

 

The left integral always exists, since it’s bounded on a finite interval. Since 𝑥𝑗 ≤ 𝑥𝑛 on (1,∞),  

∫ 𝑥𝑗𝑓𝑋(𝑥)𝑑𝑥
∞

1

≤ ∫ 𝑥𝑛𝑓𝑋(𝑥)𝑑𝑥
∞

1

 

We know the right integral exists by assumption. So the integral ∫ 𝑥𝑗𝑓𝑋(𝑥)𝑑𝑥
∞

0
= 𝐸(𝑋𝑗) exists. 

Lemma MK: The 𝑛th moment of a random variable exists if and only if the 𝑛th cumulant exists. 

The relationship between the moment and cumulant are given by Faà di Bruno’s formula, which 

can be found, for instance in Lukacs (1970), section 2.4.  

 

Proof of Accumulated Moment Theorem: If we can show the equivalence of statements (1)-

(8), the Lemma LM gives us the existence of lower-order cumulants and moments for free. To 

prove the equivalence of (1)-(8), first note that, by Lemma MK, the 𝑛th cumulant exists if and 

only if the 𝑛th moment also exists. This gives us the horizontal relationships in the Accumulated 

Moment Theorem. We only need show the vertical relationships. For each constructed 

distribution (𝑍𝑇, 𝑌𝑇, 𝑌∞), we will show that the existence of its 𝑛th cumulant is equivalent to the 

existence of the 𝑛th cumulant of 𝑋. 
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𝜿𝒏(𝑿) exists iff 𝜿𝒏(𝒁𝑻) exists: This follows directly from the properties of cumulants. We know 

that 𝑍𝑇 = ∑ 𝑎𝑇−𝑡𝑋𝑡
𝑇
𝑡=1  is a finite sum of iid variables. So using the properties: 

𝜅𝑛(𝑍𝑇) = 𝜅𝑛 (∑𝑎𝑇−𝑡𝑋𝑡

𝑇

𝑡=1

) 

=∑𝜅𝑛(𝑎
𝑇−𝑡𝑋𝑡)

𝑇

𝑡=1

 

=∑𝑎𝑛(𝑇−𝑡)𝜅𝑛(𝑋𝑡)

𝑇

𝑡=1

 

= 𝜅𝑛(𝑋)∑𝑎𝑛(𝑇−𝑡)
𝑇

𝑡=1

 

= 𝜅𝑛(𝑋)∑(𝑎𝑛)𝑗
𝑇−1

𝑗=0

 

= 𝜅𝑛(𝑋)
𝑎𝑛𝑇 − 1

𝑎𝑛 − 1
 

This shows that 𝜅𝑛(𝑋) exists iff 𝜅𝑛(𝑍𝑇) does, and gives an explicit formula. 

𝜿𝒏(𝑿) exists iff 𝜿𝒏(𝒀𝑻) exists: The proof of this, and the derivation of the relationship between 

these quantities is similar to that for 𝑍𝑇. 

𝜿𝒏(𝑿) exists iff 𝜿𝒏(𝒀∞) exists: For this, we can use the relationship 

𝑌∞ ~
1

𝑎
 𝑌∞ +

𝑎 − 1

𝑎
𝑋 

Taking cumulants gives 

𝜅𝑛(𝑌∞) = 𝜅𝑛 (
1

𝑎
 𝑌∞ +

𝑎 − 1

𝑎
𝑋) 

=
1

𝑎𝑛
𝜅𝑛( 𝑌∞) + (

𝑎 − 1

𝑎
)
𝑛

𝜅𝑛(𝑋) 

Solving for 𝜅𝑛(𝑌∞) algebraically then gives the relationship 𝜅𝑛(𝑌∞) =
(𝑎−1)𝑛

𝑎𝑛−1
𝜅𝑛(𝑋), which also 

shows the existence statement. 

 

 

Proof for the Distribution Formulas of Accumulated Exponential 

Proving the PDF theorem will be rather involved, and will require some lemmas. 

Lemma Exp1: If 𝑟, 𝑠 are distinct positive numbers, then  

∫𝑒−𝑟𝑧𝑒−𝑠(𝑥−𝑧)𝑑𝑧

𝑥

0

=
1

𝑠 − 𝑟
𝑒−𝑟𝑥 +

1

𝑟 − 𝑠
𝑒−𝑠𝑥 
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Proof: 

∫𝑒−𝑟𝑧𝑒−𝑠(𝑥−𝑧)𝑑𝑧

𝑥

0

= 𝑒−𝑠𝑥∫𝑒−𝑟𝑧𝑒𝑠𝑧𝑑𝑧

𝑥

0

 

= 𝑒−𝑠𝑥∫𝑒(𝑠−𝑟)𝑧𝑑𝑧

𝑥

0

 

= 𝑒−𝑠𝑥 [(
1

𝑠 − 𝑟
) 𝑒(𝑠−𝑟)𝑧]

0

𝑥

 

= 𝑒−𝑠𝑥 [(
1

𝑠 − 𝑟
) 𝑒(𝑠−𝑟)𝑥 −

1

𝑠 − 𝑟
] 

=
1

𝑠 − 𝑟
𝑒−𝑟𝑥 +

1

𝑟 − 𝑠
𝑒−𝑠𝑥 

 

Lemma Exp2: Let 𝑟1, 𝑟2, … , 𝑟𝑛 be a sequence of distinct positive numbers. 

∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛−1
𝑗=1
𝑗≠𝑖

⋅
1

(𝑟𝑖 − 𝑟𝑛)

𝑛−1

𝑖=1

=
1

∏ (𝑟𝑗 − 𝑟𝑛)
𝑛−1
𝑗=1

 

Proof: By induction on 𝑛. The base case is 𝑛 = 2. In this case, the left hand side becomes: 

∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
1
𝑗=1
𝑗≠𝑖

⋅
1

(𝑟𝑖 − 𝑟𝑛)

1

𝑖=1

=
1

𝑟1 − 𝑟2
=

1

∏ (𝑟𝑗 − 𝑟2)
1
𝑗=1

 

For the inductive step, assume the result is true for any set of 𝑛 numbers. We will show it’s true 

for any set of 𝑛 + 1 numbers. Specifically, we want to show: 

∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛
𝑗=1
𝑗≠𝑖

⋅
1

(𝑟𝑖 − 𝑟𝑛+1)

𝑛

𝑖=1

=
1

∏ (𝑟𝑗 − 𝑟𝑛+1)
𝑛
𝑗=1

 

Start by splitting the 𝑖 = 𝑛 term out of the left hand side: 

∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛
𝑗=1
𝑗≠𝑖

⋅
1

(𝑟𝑖 − 𝑟𝑛+1)

𝑛

𝑖=1

= (∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛
𝑗=1
𝑗≠𝑖

⋅
1

(𝑟𝑖 − 𝑟𝑛+1)

𝑛−1

𝑖=1

)+
1

∏ (𝑟𝑗 − 𝑟𝑛)
𝑛−1
𝑗=1

⋅
1

(𝑟𝑛 − 𝑟𝑛+1)
 

Now we use the fact that the result is true for 𝑛, to replace part of the right term: 

=∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛
𝑗=1
𝑗≠𝑖

⋅
1

(𝑟𝑖 − 𝑟𝑛+1)

𝑛−1

𝑖=1

+∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛−1
𝑗=1
𝑗≠𝑖

⋅
1

(𝑟𝑖 − 𝑟𝑛)

𝑛−1

𝑖=1

⋅
1

(𝑟𝑛 − 𝑟𝑛+1)
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= ∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛
𝑗=1
𝑗≠𝑖

⋅
1

(𝑟𝑖 − 𝑟𝑛+1)

𝑛−1

𝑖=1

+∑
−1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛
𝑗=1
𝑗≠𝑖

⋅
1

(𝑟𝑛 − 𝑟𝑛+1)

𝑛−1

𝑖=1

 

=∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛
𝑗=1
𝑗≠𝑖

⋅ [
1

(𝑟𝑖 − 𝑟𝑛+1)
−

1

(𝑟𝑛 − 𝑟𝑛+1)
]

𝑛−1

𝑖=1

 

= ∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛
𝑗=1
𝑗≠𝑖

⋅ [
(𝑟𝑛 − 𝑟𝑛+1) − (𝑟𝑖 − 𝑟𝑛+1)

(𝑟𝑖 − 𝑟𝑛+1)(𝑟𝑛 − 𝑟𝑛+1)
]

𝑛−1

𝑖=1

 

=∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛
𝑗=1
𝑗≠𝑖

⋅ [
𝑟𝑛 − 𝑟𝑖

(𝑟𝑖 − 𝑟𝑛+1)(𝑟𝑛 − 𝑟𝑛+1)
]

𝑛−1

𝑖=1

 

Now notice that the 𝑟𝑛 − 𝑟𝑖 on the top will cancel out the factor with 𝑗 = 𝑛 in the product. 

= ∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛−1
𝑗=1
𝑗≠𝑖

⋅
1

(𝑟𝑛 − 𝑟𝑖)
[

𝑟𝑛 − 𝑟𝑖
(𝑟𝑖 − 𝑟𝑛+1)(𝑟𝑛 − 𝑟𝑛+1)

]

𝑛−1

𝑖=1

 

= ∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛−1
𝑗=1
𝑗≠𝑖

⋅
1

(𝑟𝑖 − 𝑟𝑛+1)
⋅

1

(𝑟𝑛 − 𝑟𝑛+1)

𝑛−1

𝑖=1

 

=
1

(𝑟𝑛 − 𝑟𝑛+1)
∑

1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛−1
𝑗=1
𝑗≠𝑖

⋅
1

(𝑟𝑖 − 𝑟𝑛+1)

𝑛−1

𝑖=1

 

Where we pulled out the factor without any 𝑖 or 𝑗 in it. Now we can use induction again, since 

the sum is exactly the left side of the equation with 𝑛 − 1. Except in this case, 𝑟𝑛 is replaced with 

𝑟𝑛+1. That’s ok, since the result is true regardless of what we label the numbers. Replacing the 

sum, we get: 

=
1

(𝑟𝑛 − 𝑟𝑛+1)

1

∏ (𝑟𝑗 − 𝑟𝑛+1)
𝑛−1
𝑗=1

 

=
1

∏ (𝑟𝑗 − 𝑟𝑛+1)
𝑛
𝑗=1

 

This proves the inductive step, and the lemma. 

 

Lemma Exp3: Let 𝑟1, 𝑟2, … , 𝑟𝑛 be a sequence of distinct positive numbers, and set  

𝑓𝑖(𝑥) = {
𝑟𝑖𝑒

−𝑟𝑖𝑥      𝑖𝑓 𝑥 ≥ 0
0                 𝑖𝑓 𝑥 < 0

    Then 

𝑓1 ∗ 𝑓2 ∗ ⋯ ∗ 𝑓𝑛(𝑥) = 𝑟1𝑟2⋯𝑟𝑛 [∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛
𝑗=1
𝑗≠𝑖

𝑒−𝑟𝑖𝑥
𝑛

𝑖=1

] 
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Proof: By induction on 𝑛. If 𝑛 = 1, then this is trivially true. 

Now assume the result is true for 𝑛 − 1, so that: 

𝑓1 ∗ 𝑓2 ∗ ⋯∗ 𝑓𝑛−1(𝑥) = 𝑟1𝑟2⋯𝑟𝑛−1 [∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛−1
𝑗=1
𝑗≠𝑖

𝑒−𝑟𝑖𝑥
𝑛−1

𝑖=1

] 

Then the convolution with 𝑛 functions becomes: 

(𝑓1 ∗ 𝑓2 ∗ ⋯∗ 𝑓𝑛−1) ∗ 𝑓𝑛 = ∫𝑟1𝑟2⋯𝑟𝑛−1 [∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛−1
𝑗=1
𝑗≠𝑖

𝑒−𝑟𝑖𝑧
𝑛−1

𝑖=1

] 𝑟𝑛𝑒
−𝑟𝑛(𝑥−𝑧)𝑑𝑧

𝑥

0

 

Note that the upper limit is x. This is because 𝑓𝑖(𝑦) is zero for all negative values of 𝑦. So 

𝑓𝑛(𝑥 − 𝑧) = 0 for all 𝑥 − 𝑧 < 0, or equivalently for all 𝑧 > 𝑥. Pulling out the constants, we get: 

= 𝑟1𝑟2⋯𝑟𝑛−1𝑟𝑛∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛−1
𝑗=1
𝑗≠𝑖

∫ 𝑒−𝑟𝑖𝑧
𝑥

0

𝑒−𝑟𝑛(𝑥−𝑧)𝑑𝑧

𝑛−1

𝑖=1

 

We can rewrite the integral using Lemma Exp1: 

= 𝑟1𝑟2⋯𝑟𝑛−1𝑟𝑛∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛−1
𝑗=1
𝑗≠𝑖

𝑛−1

𝑖=1

[
1

𝑟𝑛 − 𝑟𝑖
𝑒−𝑟𝑖𝑥 +

1

𝑟𝑖 − 𝑟𝑛
𝑒−𝑟𝑛𝑥] 

We can distribute across the brackets to get: 

= 𝑟1𝑟2⋯𝑟𝑛−1𝑟𝑛∑[
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛−1
𝑗=1
𝑗≠𝑖

1

𝑟𝑛 − 𝑟𝑖
𝑒−𝑟𝑖𝑥 +

1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛−1
𝑗=1
𝑗≠𝑖

1

𝑟𝑖 − 𝑟𝑛
𝑒−𝑟𝑛𝑥]

𝑛−1

𝑖=1

 

Splitting up the sum gives us: 

= 𝑟1𝑟2⋯𝑟𝑛−1𝑟𝑛 [∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛−1
𝑗=1
𝑗≠𝑖

1

𝑟𝑛 − 𝑟𝑖
𝑒−𝑟𝑖𝑥

𝑛−1

𝑖=1

+∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛−1
𝑗=1
𝑗≠𝑖

1

𝑟𝑖 − 𝑟𝑛
𝑒−𝑟𝑛𝑥

𝑛−1

𝑖=1

] 

The denominator in the first sum just becomes the product over all 𝑟𝑖 with 𝑖 ≠ 𝑗 including 𝑟𝑛: 

= 𝑟1𝑟2⋯𝑟𝑛−1𝑟𝑛 [∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛
𝑗=1
𝑗≠𝑖

𝑒−𝑟𝑖𝑥
𝑛−1

𝑖=1

+∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛−1
𝑗=1
𝑗≠𝑖

1

𝑟𝑖 − 𝑟𝑛
𝑒−𝑟𝑛𝑥

𝑛−1

𝑖=1

] 

We can rewrite the right sum using Lemma Exp2: 

= 𝑟1𝑟2⋯𝑟𝑛−1𝑟𝑛 [∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛
𝑗=1
𝑗≠𝑖

𝑒−𝑟𝑖𝑥
𝑛−1

𝑖=1

+
1

∏ (𝑟𝑗 − 𝑟𝑛)
𝑛−1
𝑗=1

𝑒−𝑟𝑛𝑥] 

The rightmost term is just the 𝑖 = 𝑛 term in the sum. So we can combine and get: 
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= 𝑟1𝑟2⋯𝑟𝑛−1𝑟𝑛∑
1

∏ (𝑟𝑗 − 𝑟𝑖)
𝑛
𝑗=1
𝑗≠𝑖

𝑒−𝑟𝑖𝑥
𝑛

𝑖=1

 

Which is what we want. 

 

Lemma Exp4: Let 𝑏 < 1 and 𝑐 ∈ ℝ, and set  

𝑓𝑖(𝑥) = {
𝑐𝑏𝑖𝑒−𝑐𝑏

𝑖𝑥      𝑖𝑓 𝑥 ≥ 0
0                 𝑖𝑓 𝑥 < 0

    Then 

𝑓1 ∗ 𝑓2 ∗ ⋯∗ 𝑓𝑛(𝑥) = 𝑐∑[
(−1)𝑛−𝑖

(𝑏; 𝑏)𝑖−1(𝑏; 𝑏)𝑛−𝑖
𝑏
1
2
[(𝑛−𝑖)2+(𝑛+𝑖)]] 𝑒−𝑐𝑏

𝑖𝑥

𝑛

𝑖=1

 

 

Proof: Setting 𝑟𝑖 = 𝑐𝑏
𝑖 allows us to use Lemma Exp3.  

𝑓1 ∗ 𝑓2 ∗ ⋯ ∗ 𝑓𝑛(𝑥) = 𝑐𝑏
1𝑐𝑏2⋯𝑐𝑏𝑛 [∑

1

∏ (𝑐𝑏𝑗 − 𝑐𝑏𝑖)𝑛
𝑗=1
𝑗≠𝑖

𝑒−𝑐𝑏
𝑖𝑥

𝑛

𝑖=1

] 

Since the product inside the sum has 𝑛 − 1 factors, there are 𝑛 − 1 𝑐’s in each term. We can 

cancel these with all but one of the 𝑐’s outside the sum. 

= 𝑐𝑛𝑏1𝑏2⋯𝑏𝑛 [∑
1

𝑐𝑛−1
1

∏ (𝑏𝑗 − 𝑏𝑖)𝑛
𝑗=1
𝑗≠𝑖

𝑒−𝑐𝑏
𝑖𝑥

𝑛

𝑖=1

] 

= 𝑐𝑏1𝑏2⋯𝑏𝑛 [∑
1

∏ (𝑏𝑗 − 𝑏𝑖)𝑛
𝑗=1
𝑗≠𝑖

𝑒−𝑐𝑏
𝑖𝑥

𝑛

𝑖=1

] 

Rewriting this: 

= 𝑐∑[
𝑏1𝑏2⋯𝑏𝑛

∏ (𝑏𝑗 − 𝑏𝑖)𝑛
𝑗=1
𝑗≠𝑖

] 𝑒−𝑐𝑏
𝑖𝑥

𝑛

𝑖=1

 

Let us focus on the part inside the brackets, and let’s temporarily invert it for convenience. 

1

𝑏1𝑏2⋯𝑏𝑛
∏(𝑏𝑗 − 𝑏𝑖)

𝑛

𝑗=1
𝑗≠𝑖

=
1

𝑏1𝑏2⋯𝑏𝑛
[∏(𝑏𝑗 − 𝑏𝑖)

𝑖−1

𝑗=1

] [∏ (𝑏𝑗 − 𝑏𝑖)

𝑛

𝑗=𝑖+1

] 

Recall that 𝑏 < 1. In the left product 𝑗 is always less than 𝑖, while the opposite is true in the right 

product. We’ll rewrite these so they look like q-Pochhammer symbols. 

=
1

𝑏1𝑏2⋯𝑏𝑛
[∏𝑏𝑗(1 − 𝑏𝑖−𝑗)

𝑖−1

𝑗=1

] [∏ 𝑏𝑖(𝑏𝑗−𝑖 − 1)

𝑛

𝑗=𝑖+1

] 
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=
1

𝑏1𝑏2⋯𝑏𝑛
[𝑏1(1 − 𝑏𝑖−1)𝑏2(1 − 𝑏𝑖−2)⋯𝑏𝑖−1(1 − 𝑏1)][𝑏𝑖(𝑏 − 1)𝑏𝑖(𝑏2 − 1)⋯𝑏𝑖(𝑏𝑛−𝑖

− 1)] 

=
1

𝑏1𝑏2⋯𝑏𝑛
[𝑏1𝑏2𝑏3⋯𝑏𝑖−1∏(1− 𝑏𝑘)

𝑖−1

𝑘=1

] [(𝑏𝑖)
𝑛−𝑖
(−1)𝑛−𝑖∏(1− 𝑏𝑘)

𝑛−𝑖

𝑘=1

] 

=
𝑏1𝑏2𝑏3⋯𝑏𝑖−1 ⋅ (𝑏𝑖)

𝑛−𝑖

𝑏1𝑏2⋯𝑏𝑛
(−1)𝑛−𝑖 (𝑏; 𝑏)𝑖−1(𝑏; 𝑏)𝑛−𝑖 

Focusing on that mass of 𝑏’s 

𝑏1𝑏2𝑏3⋯𝑏𝑖−1 ⋅ (𝑏𝑖)
𝑛−𝑖

𝑏1𝑏2⋯𝑏𝑛
= (

𝑏1

𝑏1
⋅
𝑏2

𝑏2
⋅
𝑏3

𝑏3
⋯
𝑏𝑖−1

𝑏𝑖−1
) ⋅ (

𝑏𝑖

𝑏𝑖
⋅
𝑏𝑖

𝑏𝑖+1
⋅
𝑏𝑖

𝑏𝑖+2
⋯

𝑏𝑖

𝑏𝑛−1
) ⋅
1

𝑏𝑛
  

= 1 ⋅
1

𝑏
⋅
1

𝑏2
⋯

1

𝑏𝑛−𝑖−1
⋅
1

𝑏𝑛
 

=
1

𝑏
(𝑛−𝑖)(𝑛−𝑖−1)

2
+𝑛 

 

=
1

𝑏
1
2
[(𝑛−𝑖)2+(𝑛+𝑖)]

 

Putting this all together gives the inverse of each coefficient as: 

1

𝑏1𝑏2⋯𝑏𝑛
∏(𝑏𝑗 − 𝑏𝑖)

𝑛

𝑗=1
𝑗≠𝑖

= (−1)𝑛−𝑖𝑏−
1
2
[(𝑛−𝑖)2+(𝑛+𝑖)](𝑏; 𝑏)𝑖−1(𝑏; 𝑏)𝑛−𝑖 

Which means the coefficient is: 

(−1)𝑛−𝑖𝑏
1
2
[(𝑛−𝑖)2+(𝑛+𝑖)]

(𝑏; 𝑏)𝑖−1(𝑏; 𝑏)𝑛−𝑖
 

And  

𝑓1 ∗ 𝑓2 ∗ ⋯∗ 𝑓𝑛(𝑥) = 𝑐∑[
(−1)𝑛−𝑖

(𝑏; 𝑏)𝑖−1(𝑏; 𝑏)𝑛−𝑖
𝑏
1
2
[(𝑛−𝑖)2+(𝑛+𝑖)]] 𝑒−𝑐𝑏

𝑖𝑥

𝑛

𝑖=1

 

 

 

Lemma Exp5: Let 𝑏 > 1 and 𝑐 ∈ ℝ, and set 

𝑓𝑖(𝑥) = {
𝑐𝑏𝑖𝑒−𝑐𝑏

𝑖𝑥      𝑖𝑓 𝑥 ≥ 0
0                 𝑖𝑓 𝑥 < 0

    Then 

𝑓1 ∗ 𝑓2 ∗ ⋯∗ 𝑓𝑛(𝑥) = 𝑐∑[
(−1)𝑖−1

(
1
𝑏
;
1
𝑏
)
𝑖−1
(
1
𝑏
;
1
𝑏
)
𝑛−𝑖

𝑏−
1
2
𝑖2+

3
2
𝑖] 𝑒−𝑐𝑏

𝑖𝑥

𝑛

𝑖=1
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Proof: The difference between Lemmas Exp4 and Exp5 is that 𝑏 > 1 here, so we’ll need to work 

with (1 − (
1

𝑏
)
𝑘
). From the proof of Lemma Exp4 

𝑓1 ∗ 𝑓2 ∗ ⋯∗ 𝑓𝑛(𝑥) = 𝑐∑[
𝑏1𝑏2⋯𝑏𝑛

∏ (𝑏𝑗 − 𝑏𝑖)𝑛
𝑗=1
𝑗≠𝑖

] 𝑒−𝑐𝑏
𝑖𝑥

𝑛

𝑖=1

 

Where the inverse of the coefficient is again 

1

𝑏1𝑏2⋯𝑏𝑛
∏(𝑏𝑗 − 𝑏𝑖)

𝑛

𝑗=1
𝑗≠𝑖

=
1

𝑏1𝑏2⋯𝑏𝑛
[∏(𝑏𝑗 − 𝑏𝑖)

𝑖−1

𝑗=1

] [∏ (𝑏𝑗 − 𝑏𝑖)

𝑛

𝑗=𝑖+1

] 

Rewriting this in terms of (1 −
1

𝑏𝑘
): 

=
1

𝑏1𝑏2⋯𝑏𝑛
[∏𝑏𝑖(𝑏𝑗−𝑖 − 1)

𝑖−1

𝑗=1

] [∏ 𝑏𝑗(1 − 𝑏𝑖−𝑗)

𝑛

𝑗=𝑖+1

] 

=
1

𝑏1𝑏2⋯𝑏𝑛
[∏𝑏𝑖 (

1

𝑏𝑖−𝑗
− 1)

𝑖−1

𝑗=1

] [∏ 𝑏𝑗 (1 −
1

𝑏𝑗−𝑖
)

𝑛

𝑗=𝑖+1

] 

=
1

𝑏1𝑏2⋯𝑏𝑛
[(𝑏𝑖)

𝑖−1
(−1)𝑖−1 (1 −

1

𝑏𝑖−1
) (1 −

1

𝑏𝑖−2
)⋯(1 −

1

𝑏1
)] ⋅ 

                                     [𝑏𝑖+1𝑏𝑖+2⋯𝑏𝑛 (1 −
1

𝑏1
) (1 −

1

𝑏2
)⋯(1 −

1

𝑏𝑛−𝑖
)] 

=
(𝑏𝑖)

𝑖−1
𝑏𝑖+1𝑏𝑖+2⋯𝑏𝑛

𝑏1𝑏2⋯𝑏𝑛
(−1)𝑖−1 [∏(1 − (

1

𝑏
)
𝑘

)

𝑖−1

𝑘=1

] [∏(1 − (
1

𝑏
)
𝑘

)

𝑛−𝑖

𝑘=1

] 

=
(𝑏𝑖)

𝑖−1
𝑏𝑖+1𝑏𝑖+2⋯𝑏𝑛

𝑏1𝑏2⋯𝑏𝑛
(−1)𝑖−1 (

1

𝑏
;
1

𝑏
)
𝑖−1
(
1

𝑏
;
1

𝑏
)
𝑛−𝑖

 

Simplifying the portion in the front gives 

=
(𝑏𝑖)

𝑖−1

𝑏1𝑏2⋯𝑏𝑖
(−1)𝑖−1 (

1

𝑏
;
1

𝑏
)
𝑖−1
(
1

𝑏
;
1

𝑏
)
𝑛−𝑖

 

=
1

𝑏𝑖
⋅ (𝑏1 ⋅ 𝑏2⋯𝑏𝑖−1)(−1)𝑖−1 (

1

𝑏
;
1

𝑏
)
𝑖−1
(
1

𝑏
;
1

𝑏
)
𝑛−𝑖

 

=
1

𝑏𝑖
⋅ 𝑏1+2+⋯+(𝑖−1)(−1)𝑖−1 (

1

𝑏
;
1

𝑏
)
𝑖−1
(
1

𝑏
;
1

𝑏
)
𝑛−𝑖

 

= 𝑏−𝑖 ⋅ 𝑏
1
2
𝑖2−

1
2
𝑖(−1)𝑖−1 (

1

𝑏
;
1

𝑏
)
𝑖−1
(
1

𝑏
;
1

𝑏
)
𝑛−𝑖

 

= 𝑏
1
2
𝑖2−

3
2
𝑖(−1)𝑖−1 (

1

𝑏
;
1

𝑏
)
𝑖−1
(
1

𝑏
;
1

𝑏
)
𝑛−𝑖

 

Plugging this inverse coefficient back into the formula gives us the conclusion: 
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𝑓1 ∗ 𝑓2 ∗ ⋯ ∗ 𝑓𝑛(𝑥) = 𝑐∑[
(−1)𝑖−1

(
1
𝑏
;
1
𝑏
)
𝑖−1
(
1
𝑏
;
1
𝑏
)
𝑛−𝑖

𝑏−
1
2
𝑖2+ 

3
2
𝑖] 𝑒−𝑐𝑏

𝑖𝑥

𝑛

𝑖=1

 

 

Proof of PDF Theorem: We’ll start by calculating the probability distribution function of 𝑍𝑇. 

Now 𝑍𝑇 = ∑ 𝑎𝑇−𝑡𝑋𝑡
𝑇
𝑡=1 . This means that  

𝑓𝑍𝑇(𝑥) = 𝑓𝑋𝑇+𝑎𝑋𝑇−1+⋯+𝑎𝑇−1𝑋1(𝑥) 

= (𝑓𝑋𝑇 ∗ 𝑓𝑎𝑋𝑇 ∗ 𝑓𝑎2𝑋𝑇⋯∗ 𝑓𝑎𝑇−1𝑋𝑇)(𝑥) 

And since 𝑋 is exponential with parameter 𝑠, 

𝑓𝑋(𝑥) = {
𝑠𝑒−𝑠𝑥      𝑖𝑓 𝑥 ≥ 0
0                 𝑖𝑓 𝑥 < 0

 

And 𝑓𝑏𝑋(𝑥) =
1

𝑏
𝑓𝑋 (

1

𝑏
𝑥), so 

𝑓𝑎𝑖𝑋(𝑥) = {

𝑠

𝑎𝑖
𝑒−𝑠𝑥/𝑎

𝑖
      𝑖𝑓 𝑥 ≥ 0

0                 𝑖𝑓 𝑥 < 0
 

So the expression (𝑓𝑋𝑇 ∗ 𝑓𝑎𝑋𝑇 ∗ 𝑓𝑎2𝑋𝑇⋯∗ 𝑓𝑎𝑇−1𝑋𝑇)(𝑥) is exactly like in Lemma Exp4 where 𝑐 =

𝑠𝑎 and 𝑏 =
1

𝑎
. So that 𝑟𝑖 = 𝑐𝑏

𝑖 =
𝑠𝑎

𝑎𝑖
=

𝑠

𝑎𝑖−1
. Lemma Exp3 says that: 

(𝑓𝑋𝑇 ∗ 𝑓𝑎𝑋𝑇 ∗ 𝑓𝑎2𝑋𝑇⋯∗ 𝑓𝑎𝑇−1𝑋𝑇)(𝑥) =∑[
𝑟1𝑟2⋯𝑟𝑇

∏ (𝑟𝑗 − 𝑟𝑖)
𝑇
𝑗=1
𝑗≠𝑖

] 𝑒−𝑟𝑖𝑥
𝑇

𝑖=1

 

Let’s focus on the inverse of the coefficient in brackets: 

1

𝑟1𝑟2⋯𝑟𝑇
∏(𝑟𝑗 − 𝑟𝑖)

𝑇

𝑗=1
𝑗≠𝑖

=
1 ⋅ 𝑎 ⋅ 𝑎2⋯𝑎𝑇−1

𝑠𝑇
∏(

𝑠

𝑎𝑗−1
−

𝑠

𝑎𝑖−1
)

𝑇

𝑗=1
𝑗≠𝑖

 

There are 𝑇 − 1 factors of 𝑠 in the numerator, since the 𝑖 = 𝑗 term is omitted. This leaves only 

one 1/𝑠.  

=
1 ⋅ 𝑎 ⋅ 𝑎2⋯𝑎𝑇−1

𝑠
∏(

1

𝑎𝑗−1
−

1

𝑎𝑖−1
)

𝑇

𝑗=1
𝑗≠𝑖

 

We can clear the fractions by multiplying by the highest power of 𝑎 in each factor. For 𝑗 < 𝑖, this 

means multiplying through by 𝑎𝑖−1. For 𝑗 > 𝑖, it means multiplying through by 𝑎𝑗−1. 

=
1 ⋅ 𝑎 ⋅ 𝑎2⋯𝑎𝑇−1

𝑠
[∏(

1

𝑎𝑗−1
−

1

𝑎𝑖−1
)

𝑖−1

𝑗=1

] [∏ (
1

𝑎𝑗−1
−

1

𝑎𝑖−1
)

𝑇

𝑗=𝑖+1

] 

=
1 ⋅ 𝑎 ⋅ 𝑎2⋯𝑎𝑇−1

𝑠
[∏

1

𝑎𝑖−1
(𝑎𝑖−𝑗 − 1)

𝑖−1

𝑗=1

] [∏
1

𝑎𝑗−1
(1 − 𝑎𝑗−𝑖)

𝑇

𝑗=𝑖+1

] 
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=
1 ⋅ 𝑎 ⋅ 𝑎2⋯𝑎𝑇−1

𝑠

1

𝑎(𝑖−1)(𝑖−1)
1

𝑎𝑖𝑎𝑖+1⋯𝑎𝑇−1
[∏(𝑎𝑖−𝑗 − 1)

𝑖−1

𝑗=1

] [∏ (1 − 𝑎𝑗−𝑖)

𝑇

𝑗=𝑖+1

] 

There is an 𝑎𝑖𝑎𝑖+1⋯𝑎𝑇−1 in both the numerator and denominator. Canceling these gives 

=
1

𝑠
(
𝑎1 ⋅ 𝑎2⋯𝑎𝑖−1

𝑎(𝑖−1)(𝑖−1)
) [∏(𝑎𝑖−𝑗 − 1)

𝑖−1

𝑗=1

] [∏ (1 − 𝑎𝑗−𝑖)

𝑇

𝑗=𝑖+1

] 

The exponent of the numerator is 𝑎
(𝑖−1)𝑖

2 . Simplifying then gives: 

=
1

𝑠𝑎
(𝑖−1)(𝑖−2)

2

[∏(𝑎𝑖−𝑗 − 1)

𝑖−1

𝑗=1

] [∏ (1 − 𝑎𝑗−𝑖)

𝑇

𝑗=𝑖+1

] 

The products can be reindexed. 

=
1

𝑠𝑎
(𝑖−1)(𝑖−2)

2

[∏(𝑎𝑗 − 1)

𝑖−1

𝑗=1

] [∏(1 − 𝑎𝑗)

𝑇−𝑖

𝑗=1

] 

Inverting this gives: 

𝑠𝑎
(𝑖−1)(𝑖−2)

2 [∏
1

(𝑎𝑗 − 1)

𝑖−1

𝑗=1

] [∏
1

(1 − 𝑎𝑗)

𝑇−𝑖

𝑗=1

] 

Plugging this back into the equation, we get: 

(𝑓𝑋𝑇 ∗ 𝑓𝑎𝑋𝑇 ∗ 𝑓𝑎2𝑋𝑇⋯∗ 𝑓𝑎𝑇−1𝑋𝑇)(𝑥) =∑𝑠𝑎
(𝑖−1)(𝑖−2)

2 [∏
1

(𝑎𝑗 − 1)

𝑖−1

𝑗=1

] [∏
1

(1 − 𝑎𝑗)

𝑇−𝑖

𝑗=1

] 𝑒
− 

𝑠

𝑎𝑖−1
𝑥

𝑇

𝑖=1

 

 

=∑
𝑠

𝑎𝑖−1
𝑎
(𝑖−1)𝑖
2 [∏

1

(𝑎𝑗 − 1)

𝑖−1

𝑗=1

] [∏
1

(1 − 𝑎𝑗)

𝑇−𝑖

𝑗=1

] 𝑒
− 

𝑠

𝑎𝑖−1
𝑥

𝑇

𝑖=1

 

We then reindex 𝑘 = 𝑖 − 1. 

=∑
𝑠

𝑎𝑘
(𝑎

𝑘(𝑘+1)
2 [∏

1

(𝑎𝑗 − 1)

𝑘

𝑗=1

] [ ∏
1

(1 − 𝑎𝑗)

𝑇−𝑘−1

𝑗=1

]) 𝑒
− 
𝑠

𝑎𝑘
𝑥

𝑇−1

𝑘=0

 

The expression in parentheses is the first expression for 𝑐𝑘,𝑇. To get the second form, we use 

Lemma Exp4. 

(𝑓𝑋𝑇 ∗ 𝑓𝑎𝑋𝑇 ∗ 𝑓𝑎2𝑋𝑇⋯∗ 𝑓𝑎𝑇−1𝑋𝑇)(𝑥) = 𝑠𝑎∑[
(−1)𝑇−𝑖

(
1
𝑎 ;
1
𝑎)𝑖−1

(
1
𝑎 ;
1
𝑎)𝑇−𝑖

(
1

𝑎
)

1
2
[(𝑇−𝑖)2+(𝑇+𝑖)]

] 𝑒
− 

𝑠

𝑎𝑖−1
𝑥

𝑇

𝑖=1

 

= 𝑠∑[
(−1)𝑇−𝑖

(
1
𝑎 ;
1
𝑎)𝑖−1

(
1
𝑎 ;
1
𝑎)𝑇−𝑖

𝑎− 
1
2
[(𝑇−𝑖)2+(𝑇+𝑖)]+1] 𝑒

− 
𝑠

𝑎𝑖−1
𝑥

𝑇

𝑖=1
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We can reindex: 𝑘 = 𝑖 − 1. The exponent of the 𝑎 becomes 

− 
1

2
[(𝑇 − 𝑖)2 + (𝑇 + 𝑖)] + 1 = −

1

2
[𝑇2 − 2𝑖𝑇 + 𝑖2 + 𝑇 + 𝑖 − 2] 

= −
1

2
[𝑇2 − 2(𝑘 + 1)𝑇 + (𝑘 + 1)2 + 𝑇 + (𝑘 + 1) − 2] 

= −
1

2
[𝑇2 − 2𝑘𝑇 − 2𝑇 + 𝑘2 + 2𝑘 + 1 + 𝑇 + 𝑘 − 1] 

= −
1

2
[𝑇2 − 2𝑘𝑇 − 𝑇 + 𝑘2 + 3𝑘] 

= −
1

2
[(𝑇 − 𝑘)(𝑇 − 𝑘 − 1) + 2𝑘] 

=
−(𝑇 − 𝑘)(𝑇 − 𝑘 − 1) − 2𝑘

2
 

=∑[
𝑠

𝑎𝑘
(−1)𝑇−𝑘−1

(
1
𝑎 ;
1
𝑎)𝑘

(
1
𝑎 ;
1
𝑎)𝑇−𝑘−1

𝑎−
(𝑇−𝑘)(𝑇−𝑘−1)

2 ]

𝑇−1

𝑘=0

𝑒
− 
𝑠

𝑎𝑘
𝑥
 

 

To show the formula for 𝑌𝑇, we need only note that 𝑌𝑇 =
𝑎−1

𝑎𝑇−1
𝑍𝑇. So if we set 𝛾𝑇 =

𝑎𝑇−1

𝑎−1
 then 

we get: 

𝑓𝑌𝑇(𝑥) = 𝑓 1
𝛾𝑇
𝑍𝑡
(𝑥) = 𝛾𝑇𝑓𝑍𝑇(𝛾𝑇𝑥) 

=
𝑎𝑇 − 1

𝑎 − 1
 ∑

𝑠

𝑎𝑘
𝑐𝑘,𝑇

𝑇−1

𝑘=0

𝑒
− 
𝑠(𝑎𝑇−1)

𝑎𝑘(𝑎−1)
𝑥
 

This is gives the formula for 𝑌𝑇. To get the formula for 𝑌∞, we first find the pdf of the partial 

sum variable 

𝑌̅𝑇 = (𝑎 − 1)∑
1

𝑎𝑡
𝑋𝑡

𝑇

𝑡=1

 

The sequence {𝑌̅𝑇} converges to 𝑌∞ pointwise. So lim
𝑇→∞

𝑓𝑌̅𝑇(𝑥) = 𝑓𝑌∞(𝑥) for all 𝑥 ∈ [0,∞). We 

need only calculate 𝑓𝑌̅𝑇(𝑥) and examine its behavior in the limit. 

𝑓𝑌̅𝑇(𝑥) = 𝑓𝑎−1
𝑎
𝑋
(𝑥) ∗ 𝑓𝑎−1

𝑎2
𝑋
(𝑥) ∗ 𝑓𝑎−1

𝑎3
𝑋
(𝑥) ∗ ⋯∗ 𝑓𝑎−1

𝑎𝑇
𝑋
(𝑥) 

Now we use Lemma Exp5 with 𝑏 = 𝑎 and 𝑐 =
𝑠

𝑎−1
  so that 𝑟𝑖 =

𝑠𝑎𝑖

𝑎−1
.  

𝑓𝑖(𝑥) = 𝑓𝑎−1
𝑎𝑖
𝑋
(𝑥) = {

𝑎𝑖𝑠

(𝑎 − 1)
𝑒
−

𝑎𝑖

(𝑎−1)
𝑠𝑥
      𝑖𝑓 𝑥 ≥ 0

0                                𝑖𝑓 𝑥 < 0

 

𝑓1 ∗ 𝑓2 ∗ ⋯∗ 𝑓𝑇(𝑥) =
𝑠

𝑎 − 1
∑[

(−1)𝑖−1

(
1
𝑎 ;
1
𝑎)𝑖−1

(
1
𝑎 ;
1
𝑎)𝑇−𝑖

𝑎−
1
2
𝑖2+

3
2
𝑖] 𝑒

−
𝑎𝑖

(𝑎−1)
𝑠𝑥

𝑇

𝑖=1
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Rescaling 𝑘 = 𝑖 − 1 gives us 

=
𝑠

𝑎 − 1
∑[

(−1)𝑘

(
1
𝑎 ;
1
𝑎)𝑘

(
1
𝑎 ;
1
𝑎)𝑇−𝑘−1

𝑎
−𝑘(𝑘−1)+2

2 ] 𝑒−(
𝑎
𝑎−1

)𝑎𝑘𝑠𝑥

𝑇−1

𝑘=0

 

=∑
𝑠𝑎

𝑎 − 1
𝑎𝑘 [

(−1)𝑘

(
1
𝑎 ;
1
𝑎)𝑘

(
1
𝑎 ;
1
𝑎)𝑇−𝑘−1

𝑎
−𝑘(𝑘+1)

2 ] 𝑒−(
𝑎
𝑎−1

)𝑎𝑘𝑠𝑥

𝑇−1

𝑘=0

 

For a given 𝑎 > 1, the constant (
1

𝑎
;
1

𝑎
)
𝑇−𝑘−1

 is bounded as 𝑇 gets larger, and converges to 

(
1

𝑎
;
1

𝑎
)
𝑇−𝑘−1

. The higher order terms die off quickly, so this series converges as 𝑇 → ∞. 

So lim
𝑇→∞

𝑓𝑌̅𝑇(𝑥) converges to  

=
𝑠

𝑎 − 1
∑[

(−1)𝑘

(
1
𝑎 ;
1
𝑎)𝑘

(
1
𝑎 ;
1
𝑎)∞

𝑎
−𝑘(𝑘−1)+2

2 ] 𝑒−(
𝑎
𝑎−1

)𝑎𝑘𝑠𝑥

∞

𝑘=0

 

This concludes the proof. 
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Chapter 5  

Systemic Inequality 

5.1 Introduction 

5.1.1 Understanding Systemic Inequality 

Entrenched problems of inequality are a target for billions of dollars of intervention investment. 

Despite this, certain problems remain seemingly intractable. In the United States, pre-tax income 

of the bottom 60% has grown less than 1% per year on average since 1979, while the incomes of 

the top 1 percent have grown at 3% per year (Stone et al., 2020). The high school dropout rate 

has held steady at about 5% (McFarland et al., 2018). Inequality in physical and mental health 

have also been stubbornly persistent over time (Cook et al., 2017; Olfson et al., 2015; 

Zimmerman & Anderson, 2019). These types of problems all fall under the category of systemic 

inequality. 

In the research literature, the term systemic inequality is often not clearly defined, or it is taken 

for granted that the reader understands its meaning. In addition, the terms “systemic”, 

“structural” and “systematic” are often used to refer to similar forces. Various authors have 

referred to systemic inequality in terms of norms, social structures, and formal institutions 

(Lashitew et al., 2023), or in terms of disadvantages to certain groups that manifest in multiple 

ways simultaneously (Cech & Waidzunas, 2021). Some authors focus on a variety of component 

systems of society that might influence individual opportunity, such as “political, legal, 

economic, health care, school, and criminal justice systems” (Braveman et al., 2022). However, 

these systems themselves interact, and are part of a larger societal system in which every factor 

is endogenous (El-Sayed & Galea, 2017; Page & Zelner, 2020). 

I define systemic inequality as the unequal distribution of well-being that arises from a large 

number of heterogeneous factors which are often causally related, many of which are hard or 

practically impossible for humans to measure, understand, and/or influence on a large scale. 
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Systemic inequality typically arises over time from complex systems in which individuals make 

decisions and aim to improve their well-being, though often non-optimally.  

This framework includes all definitions from previous research by considering each individual in 

a space which not only represents their personal abilities and resources, but also their capacity to 

navigate the norms, structures, and institutions that are necessary for success. While the 

definition focuses on individuals, this does not discount the role that institutions play. In this 

approach, institutional decisions designed to increase equity can be represented as improvements 

in the ability of previously disadvantaged individuals to navigate those institutions. For instance, 

Amis, Mair & Munir found five organizational practices, such as hiring and promotion, that play 

a role in reproduction of inequality (Amis et al., 2020). An intervention that encouraged more 

equitable promotion practices could be construed as an individual-level improvement in some 

individuals’ ability to navigate the business. 

One example of systemic inequality is income inequality, either within a population or between 

populations such as racial groups. Research has shown a large number of factors related to 

income which plausibly have a causal influence. Some of these factors include: food insecurity 

(Wight et al., 2014), education (Boshara et al., 2015), self-perception of socioeconomic status 

(Tan et al., 2020), marital status (McLanahan & Percheski, 2008), residence location (S. F. 

Reardon & Bischoff, 2011), parenthood (Jones & Tertilt, 2008), race (Semega et al., 2021), skin 

color (Keith & Herring, 1991), the government policies that one lives under (Tazhitdinova, 

2022), wealth (Killewald et al., 2017), skills (Edin et al., 2022), and genetics (Bowles & Gintis, 

2002). Teasing out the complex causal web connecting these factors, as many have tried and 

failed to work their way up the economic ladder. 

5.1.2 Hidden Variables 

An astute reader will note that my list of factors related to income includes relatively easy-to-

measure variables. For good reason, researchers and the media will often focus their attention on 

available data. But this creates a streetlight problem (Freedman, 2010) where the seeming 

solution set to a problem consists only of the easily viewable causes. However, any adult can 

explain with personal experience how subtle traits or experiences have affected their own life 

path. These might include the presence of a helpful mentor (Campbell & Campbell, 1997), 

parents who promoted certain mindsets (Yeager & Walton, 2011), how straight our teeth are 
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(Hamermesh, 2011), how strongly we react to stress (Boyce, 2019), whether we had a 

mathematically-oriented sibling which consequently influenced our academic interests (Joensen 

& Nielsen, 2018). While each of the listed cases has been studied, their complete and collective 

effects on individuals are out of the reach of researchers. Likely, there are many more factors yet 

unstudied. 

The causes of our circumstances may be subtle, idiosyncratic, and hard for us to explain even 

within our own life path. Trying to understand many of these factors at scale is nigh impossible. 

A given factor may only have a small effect on each individual, or a large effect but only 

influence a few individuals. Each of these unmeasured causes is likely to only have a small effect 

overall, often strongly influenced by random chance. But since there are so many of them, they 

collectively create a significant amount of variance unexplainable by standard data sets (Salganik 

et al., 2020). And individuals move through various states of well-being throughout their lives, 

for instance by moving in and out of poverty (Fritzell & Henz, 2021), which means the factors 

influencing well-being are also idiosyncratic throughout time. 

5.1.3 Reinforcing Networks 

In addition, we know that these causal factors are often causally related to each other, creating a 

multidimensional cumulative advantage process (DiPrete & Eirich, 2006). Having a reliable car 

might increase someone’s income in multiple ways: Showing up to work on time increases job 

stability. Time saved in transit allows more time for training. Increased geographic mobility 

leads to social opportunities, which can create a professional network. In turn, job stability, free 

time, and a robust social network may reinforce each other.  

These mutually reinforcing relationships might also be framed in terms of negative traits, in a 

network of cumulative disadvantage. For example, chronic joint pain can reduce the likelihood 

of exercise (Breivik et al., 2006), which can contribute to poorer health outcomes (Pinckard et 

al., 2019). In reality, each individual is subject to forces that both promote and detract from well-

being and success.  

There are dimensions of well-being which are shared among almost all people (UN General 

Assembly, 1948). However, different individuals define well-being or success differently. Skills 

and values which are useful in one environment may be maladaptive in others (Anderson, 2000; 

Uskul et al., 2019; Yosso, 2005). Researchers often get past this complication by being specific 
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in the quantities being measured and allowing the reader to decide whether those quantities are 

important. This chapter takes a different approach, assuming that individuals are members of a 

cohort with similar goals and constraints.  

 

Systemic inequality arises in other domains such as obesity (Vandenbroeck et al., 2007), 

education (Quarles et al., 2018), GDP between countries (Hidalgo, 2015), physical health (Cech 

& Waidzunas, 2021), and mental health (Alegría et al., 2018). Unsurprisingly, income, 

education, and health are correlated, as people well-off in one factor use that advantage to help 

them become well-off in others. 

While this chapter focuses primarily on social inequality, there is also evidence that similarly 

interrelated, multifactor processes happen on a biological level (Boyle et al., 2017). So it may be 

possible to generalize these results to non-societal contexts. 

5.1.4 Progression of Inequality over Time 

The most long-lasting forms of inequality do seem to be systemic, likely because the many, 

mutually reinforcing causes make decreasing gaps difficult. However, there are forms of 

inequality that are not systemic. Some situations, such as policy changes or natural disasters, 

create conditions of inequality that have a single cause. Indeed, researchers typically try to use 

Figure 19: Graphical representation of systemic inequality 
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these natural experiments to isolate simple causal effects (Dunning, 2008). The separation of 

Germany into East and West after World War II was, in some, sense a natural experiment in the 

short term. Germany was suddenly divided into two pieces with very different political and 

economic systems. This created, at the time of separation, non-systemic inequality in many 

dimensions with a single cause. However, after 40 years of separate cultural and economic 

systems, those differences became systemic as people adapted to their new situation. At the time 

of reunification, East & West Germany had significant gaps in income, unemployment, life 

satisfaction (Petrunyk & Pfeifer, 2016), female workforce participation (Matysiak & Steinmetz, 

2008), and culture (Krüger & Degel, 2022; Meier & Mutz, 2016). Over time, there has been 

convergence in these factors. However gaps between the East and West remain due to the 

embedded, systemic nature of those differences. If history is any indication, differences between 

East & West Germany will remain for a long time (Uskul et al., 2019). The multi-factor, 

mutually reinforcing nature of systems then (a) perpetuates and magnifies these average 

differences and (b) causes inequality to propagate to traits where they might not have been 

historically, such as life satisfaction. Similar systemization effects can be seen in other areas: 

Children in utero during the Dutch Hunger Winter in World War II suffered decreased labor 

outcomes 50 years later (Scholte et al., 2015). Two generations after the abolition of slavery in 

the US, economic indicators for descendants of slaves were the same as for descendants of free 

blacks (Sacerdote, 2005) creating enduring black-white success gaps that persist to this day. 

Unfortunately, experiments, natural or otherwise, cannot detangle the complex causality 

embedded in systemic inequality. Experimentation is designed to isolate a single factor to 

determine its causal effect. However, when causality is indirect, perhaps mediated by many 

variables, or when there are nonlinear interaction effects between many variables, 

experimentation misses the complexity of interactions.  

5.1.5 Inequality Between Groups 

Inequality can be considered within a population or between populations. These two cases are 

worth discussing briefly, because of the way inequality is measured differently in each of them. 

Within-population inequality is often measured in ways relative to the spread of the distribution, 

using measures such as the Gini index or the coefficient of variation. Figure 20A gives a 

demonstration of how we might visualize within population inequality by looking at how spread 
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out the probability distribution function is. In contrast, between-population inequality is often 

examined using measures of center, such as median or mean. In Figure 20B, we can see how 

there is between-group inequality between whites and blacks, since these groups’ median 

earnings are $40,000 and $30,000, respectively. However, there is greater within-group 

inequality among whites than there is among blacks, because the distribution of white earnings is 

more spread out while black earnings are bunched up closer to zero. This graph also shows the 

significant amounts of heterogeneity that are hidden within any large population. Looking at 

median or mean differences is useful. However, using any single summary statistic to describe 

complex situations can draw the reader’s mind toward overly simple explanations. Racial 

inequality and other group differences do not typically arise because one group is advantaged in 

a single dimension, but because many heterogeneous factors interact to create average 

differences. The many-factor approach I take here aims to partially address that heterogeneity.  

 

Figure 20: Distribution of Income (A) Earnings distribution for adult Americans. (B) Earnings distributions and 

medians for white and black Americans.  Data taken from 2019 American Community Survey, and includes all 

people age 25-65 with positive earnings. 

 

5.1.6 Models of Inequality 

As this chapter uses two models to study inequality, it is worth reviewing some of the many 

models that have been used to study inequality. There is a long tradition dating back to Pareto 
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(1897) of using a small number of simple principles to model distributions of inequality, like 

those in Figure 20. Dagum (1977) used differential equations to generate his eponymous 

distribution. Others have followed his approach with, for instance, trickle-up (Henle et al., 2008), 

trickle-down (Sarabia et al., 2017), and conservation of money-based first principles (Drǎgulescu 

& Yakovenko, 2000). These single-variable approaches achieve surprisingly good descriptions 

of static distributions, given that they do not account for the many factors contributing to 

economic success. The findings, and the universality of income distributions across countries 

(Tao et al., 2019), points to potential underlying universal principles governing income. 

One approach to modeling static inequality caused by multiple factors is to look for natural 

groups or latent variables in the data. Landale (2017) used latent class analysis to group whites 

and Hispanics in the LA area, and compare their perceptions of discrimination. Wilson & Urick 

(2022) took a similar approach to examining the opportunity gap in science. The economic 

complexity literature analyzes the economics of geographic regions by looking at exports, patent 

data (Hidalgo, 2021), or added value (Koch, 2021). The complexity of these metrics, as 

measured through a dimensional reduction technique, correlates with measures such as GDP and 

wage inequality (Sbardella et al., 2017).  

Other researchers have built time-based models to predict longitudinal outcomes along many 

dimensions simultaneously. Sawhill & Reeves (2016) developed a simulation around a series of 

linear regressions, with one for each time point. Each regression took into account both 

circumstances of birth and previous life outcomes. Bloome (2015) built a Markov chain model, 

grouping individuals along family structure, income, and age, and then examined inequality 

dynamics as individuals progressed through their lives. Farrell, et al. (2018) used a scale-free 

network to examine health deficits in aging. In their model, each node represents a potential 

health deficit which gets repaired by homeostatic forces at a rate dependent on the state of 

neighbor nodes. Farrell’s model is most similar to the one in Chapter Four and this chapter’s 

Section 5.2. My model differs from Farrell’s in that it examines temporally increasing behavior 

created by cumulative advantage rather than the balancing forces of homeostasis. In addition, my 

model delves more deeply into the conceptual and mathematical underpinnings related to growth 

and inequality. 

The analysis in this chapter is split into two sections. Section 5.2 examines the growth of 

systemic inequality over time within a population by using the accumulation model from Chapter 
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Four. Section 5.3 examines the effects of interventions on systemic inequality using a utility 

function which maps multiple factors into a single dimension of well-being or success. 

5.2 Systemic Inequality Arising Over Time 

To examine how systemic inequality builds up over time, I use the accumulation model from 

Chapter Four. I assume every causal factor is a non-negative real-valued variable 𝑥𝑖 which could 

represent an individual’s income, social skills, ability to navigate the educational system, or 

many other things. When possible, each person uses their success in 𝑥𝑖 to improve other factors. 

Between any two factors 𝑖 and 𝑗, there is a “reinvestment rate” 𝑎𝑗𝑖. This leads to a causal network 

which describes the relationships between factors. And at each time step, an individual’s value of 

𝑥𝑗 gains an amount for each 𝑖 equal to 𝑎𝑗𝑖𝑥𝑖. Additionally, at each time step, individuals receive a 

random amount added to each factor corresponding to schooling or gains from interacting with 

the world.  

An individual therefore has, at time 𝑇, a random vector of factors given by: 

𝑍 𝑇 =∑𝐴𝑇−𝑡𝑋 𝑡

𝑇

𝑡=1

 

Here 𝐴 is the sum of the identity matrix and the matrix defined by (𝑎𝑖𝑗), and 𝑋 𝑡~𝑋  is the random 

vector of additive gains whose probabilities are assumed to be independent of time.  

Chapter Four points out the strengths and limitations of this model. The model does capture 

general distributional and time-based trends found in nature and society. It does not represent the 

effects of exogenous variables such as genetics or parental investments. It also represents a 

unidirectional cumulative (dis)advantage process, in that factors grow over time, but do not 

shrink. However, the model can handle a variety of conceptual approaches. For example, an 

individual’s “agency” could be represented as a combination of luck (random additive effects) 

and strategic experience & behavioral traits (which could be represented as a variable 𝑥𝑖). 

The results of Chapter Four show a number of results which will be relevant to our discussion: 

There is a systemic growth rate which gives the multiplicative growth of all factors in the 

long term. The per-unit-time growth rate is 𝑎 − 1, where 𝑎 is the largest eigenvalue of the 

matrix 𝐴. In some sense, the value of 𝑎 is the systemic “reinvestment rate” which emerges from 

the individual relationships between individual factors (which are given individually by 𝑎𝑖𝑗). 
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There is a vector 𝒘⃗⃗⃗  which describes the long-term ratio of each factor to each other. In 

other words, for any individual and large 𝑇, the ratio of 𝑥𝑖/𝑥𝑗 is equal to 𝑤𝑖/𝑤𝑗. The vector 𝑤⃗⃗  is 

the right eigenvector of 𝐴 corresponding to the eigenvalue 𝑎. 

There is a vector 𝒖⃗⃗  which describes the overall causal effect of each factor on growth. In 

other words, if 𝑢𝑖 is twice as large as 𝑢𝑗 , then increasing 𝑥𝑖 will cause twice the growth of 

increasing 𝑥𝑗. This growth happens for large 𝑇 and affects all other factors. The vector 𝑢⃗  is the 

left eigenvector of 𝐴 corresponding to the eigenvalue 𝑎. 

More precisely, for large 𝑇, the following result holds: 

𝑍 𝑇 ~ 
1

𝑢⃗ ⋅ 𝑤⃗⃗ 
[∑𝑎𝑇−𝑡(𝑢⃗ ⋅ 𝑋 𝑡)

𝑇

𝑡=1

] 𝑤⃗⃗  

Or, if we are interested in the results of a regression 𝑣 = 𝑏1𝑥1 + 𝑏2𝑥2 +⋯𝑏𝑀𝑥𝑀, the model 

creates a random variable for 𝑣 at a given time: 

𝑉𝑇 = 𝑏⃗ ⋅ 𝑍 𝑇 ~ 
1

𝑢⃗ ⋅ 𝑤⃗⃗ 
[∑𝑎𝑇−𝑡(𝑢⃗ ⋅ 𝑋 𝑡)

𝑇

𝑡=1

] (𝑏⃗ ⋅ 𝑤⃗⃗ ) 

Each of the individual variables 𝑥𝑖 can also be represented as the result of such a regression 

using 𝑏⃗ = ⟨0, 0, … , 1, … ,0,0⟩.  

5.2.1 Statistics of Systemic Inequality Change 

The graphs in Figure 21 show what happens to summary statistics of 𝑉𝑇 as the value of 𝑎 and 𝑇 

vary.  
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Figure 21: Summary statistics of accumulation models with different growth rates over time. (A) Median 

values as 𝑎 varies. (B) Standard deviation of outcomes. (C) Relative social mobility, as measured by the probability 

that an individual below the median at time 𝑡 would have a value above the median some time before 𝑡 + 50. (D) 

Inequality, as measured by the coefficient of variation. 

  

The median (Figure 21A) grows linearly at first, as the dominant source of growth comes from 

additive amounts 𝑋  such as schooling. However, much like an investment account, as well-being 

(or success) becomes larger, growth becomes exponential as it is dominated by reinvestment. 

This exponential growth happens more quickly for larger values of 𝑎. The red lines (𝑎 = 1) 
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correspond to a “control” case where there is no reinvestment. For instance, when 𝑎 = 1, the 

median grows linearly since the only source of growth is a constant average additive amount at 

each time step. Graphs of means were similar to the graphs of the medians. 

The gap between the advantaged and the disadvantaged, measured by the standard deviation, 

also grows faster for larger growth rates (Figure 21B). However, we can see that the spread 

grows less slowly than the mean, as inequality (Figure 21D) decreases over time. For reference, 

the red line corresponding to 𝑎 = 1, goes like 𝑐𝑣 ~
1

√𝑇
  which can be explained by the Central 

Limit Theorem.  

Relative social mobility also decreases over time (Figure 21C). The explanation for this is related 

to the old adage, “It’s harder to climb to the top of the socioeconomic ladder when the rungs are 

farther apart.” As gaps increase, additive effects like schooling are less effective, and growth in 

well-being comes more from reinvestments of pre-existing resources. People with fewer 

resources have less to reinvest, which makes it less likely they’ll move up the ladder. We can 

also see that, with a larger rate of return on those reinvestments (i.e. as the growth multiplier 𝑎 

increases), social mobility decreases. 

When considering large-scale societal trends, these results should be interpreted with caution. 

The model predicts decreasing inequality over time, which does not represent inequality in the 

US (Stone et al., 2020). The assumed homogeneity of goals and opportunity in the simulated 

population does not take into account market segmentation or the effects of policies. However, 

we can see behavior in the model which has been observed elsewhere. The spread is significantly 

smaller than the observed growth, consistent with the economic observation that growth drives 

absolute mobility (Hout, 2015). If we think of different geographic regions having different 

systemic growth multipliers, 𝑎, then the medians in Figure 21A predict significant between-

region inequality. This is consistent with evidence (Lakner & Milanovic, 2013; Manduca, 2019). 

Methodological details for Figure 21: Each colored line represents the same simulation. For 

any pair of values 𝑖, 𝑗 ∈ {1, 2, … ,𝑀}, the effect of factor 𝑗 on factor 𝑖 is generated using a 

combination of the outgoing/causal importance of factor 𝑗 and the incoming/indicator importance 

of factor 𝑖. Specifically, the 𝑖𝑗 element of 𝐴 is 𝑎𝑖𝑗 plus 1 if 𝑖 = 𝑗, where: 

𝑎𝑖𝑗 = 𝑏𝑖𝑗 + 𝑐𝑖𝑗 

𝑏𝑖𝑗 ∈ 𝐸𝑥𝑝 (
1

𝑏̅∗𝑗
) 
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𝑐𝑖𝑗 ∈  𝐸𝑥𝑝 (
1

𝑐𝑖̅∗
) 

𝑏̅∗𝑗 ∈ 𝐸𝑥𝑝 (
𝑀

𝜂
) 

𝑐𝑖̅∗ ∈ 𝐸𝑥𝑝 (
𝑀

𝜂
) 

I call a matrix generated this way an exponential-exponential matrix (or exp-exp matrix, for 

short). I will denote the space of 𝑀 ×𝑀 random exp-exp matrices with parameter 𝜂 as 

𝐸𝑥𝑝𝐸𝑥𝑝(𝜂,𝑀). The random amount added at each time step is 𝑋𝑖 ∈ 𝐸𝑥𝑝(1). Due to the 

randomness of the matrices, the eigenvalue 𝑎 varies for the same starting parameter 𝜂 values but 

different random seeds. The simulations above use matrices drawn using 𝑀 = 20 and 𝜂 =

0, 0.01, 0.02, 0.03, respectively.  The outcome variable used to calculate summary statistics was 

the sum of all factors ∑ 𝑥𝑖𝑖 , which corresponds to the regression where 𝑏⃗ = ⟨1, 1, 1, … , 1〉. Other 

values of 𝑏⃗  give similar results. 

5.2.2 The Causes of Success Need Not be the Indicators of It 

Recall the three-factor toy model from Chapter Four shown in Figure 22. Each individual in the 

model has three factors: social skills 𝑠, professional network strength 𝑝, and knowledge 𝑘. As 

time progresses, individuals are able to reinvest their success in one factor into the others. This 

leads to time progression given by the matrix equation: 

(

𝑠𝑡+1
𝑝𝑡+1
𝑘𝑡+1

) = (
1.01 . 01 . 005
. 03 1.005 . 015
. 002 . 012 1.005

)(

𝑠𝑡
𝑝𝑡
𝑘𝑡

) 
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The results from Chapter Four showed that, in the long term, the values 𝑠, 𝑝, 𝑘 go like: 

(

𝑠𝑡
𝑝𝑡
𝑘𝑡

)~𝐶 (
2.9
4.7
2.4
) (1.031)𝑡 

Where 𝐶 is some constant and 𝑤⃗⃗ = ⟨2.9, 4.7, 2.4⟩ is the right eigenvector of the causal matrix. 

The values of 𝑤⃗⃗  are the relative size of each factor in the long term. Since all of these traits can 

be construed as forms of success, successful people will have very large professional networks 

(𝑝𝑡). For large 𝑡, the ratio of professional network to social skills will be 4.7/2.9 = 1.6 in the units 

used to measure these quantities. So one’s professional network will be a strong indicator of their 

success. 

However, professional networks are not the main driver of success in this example. The long-

term relative causal strength of each factor is given by the left eigenvector of the causal matrix, 

𝑢⃗ = ⟨4.5, 2.9, 2.6⟩. In this model, the most important factor in creating success is social skills. In 

fact, social skills are 
4.5

2.9
− 1 = 55% more important than professional skills.  

Figure 22: Causal relationship between social skills, professional network, 

and knowledge in a toy model. 
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Consider the example of three people, Ayesha, Brian, and Chloe, who are given a set of skills in 

their childhood, but no further contributions as adults. Ayesha is given a professional network 

but no skills to use them, so her initial state is ⟨𝑠0, 𝑝0, 𝑘0⟩ = ⟨0,3,0⟩. Brian is given a balance of 

skills ⟨1,1,1⟩. Chloe has only social skills ⟨3,0,0⟩. The now-adults use the skills they’ve learned 

according to the process described above for 50 time steps. At 𝑡 = 50, their social skills, 

professional network, and knowledge are:  

Ayesha: ⟨𝑠50, 𝑝50, 𝑘50⟩ = ⟨2.9, 6.6, 2.9⟩ 

Brian:    ⟨𝑠50, 𝑝50, 𝑘50⟩ = ⟨4.0, 6.3, 3.5⟩ 

Chloe:    ⟨𝑠50, 𝑝50, 𝑘50⟩ = ⟨7.0, 8.0, 2.5⟩ 

Because social skills are more influential than the other traits, Chloe now has a stronger 

professional network than either Ayesha or Brian. This makes sense intuitively, since social 

skills might be more important in generating a professional network than vice versa.  

Of course, the numbers in this model are made up. However, evidence from research supports 

the idea that the indicators of success are not always the causes. For instance, noncognitive traits 

in childhood, such as self-esteem and having an internal locus of control, are shown to influence 

later life outcomes such as wages and criminality (Heckman et al., 2006). This is true despite the 

fact that adult success is not typically measured in self-esteem. 

The benefit of this model is that it shows how the causal strength of a single factor accumulates 

primarily through indirect effects filtered through the network. This is called eigenvector 

centrality in some contexts (Newman, 2018). In a weighted, directed network like this, the 

relative size of the components of left eigenvector (causal strength) need not be related to those 

of the right eigenvector (outcome size). Figure 23 shows the distribution of correlations between 

causal strength and relative outcome size for 10,000 randomly generated matrices, where the 

mean correlation is effectively zero. 
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Figure 23: Distribution of correlations between causal weights 𝒖⃗⃗  and relative outcome size 𝒖⃗⃗  of randomly 

generated exp-exp matrices. 10,000 matrices were drawn from 𝐸𝑥𝑝𝐸𝑥𝑝(. 04, 40). For each matrix, the correlation 

between the dominant left and right eigenvector was calculated. 

 

 

These matrices were generated assuming that 𝑎𝑖𝑗, the causal effect of factor 𝑗 on factor 𝑖, is 

independent of  𝑎𝑗𝑘, the causal effect of factor 𝑘 on factor 𝑗. However, this might not be the case, 

since humans make strategic decisions. Most people recognize that, say, income has a large 

causal effect on well-being. So, people regularly attempt to invest skills and other resources into 

earning a larger income. The matrix 𝐴 is a result of many strategic decisions. Consequently, it’s 

not realistic to expect no correlation between causes and indicators of success. However, there is 

a limitation to the extent that individuals are able to or choose to reinvest in any particular factor. 

So it’s justifiable to say that the causes of success may be very different from the indicators. 

5.2.3 Increasing relationship between causal factors increases inequality 

One type of societal change involves allowing skills and resources to be more effectively used to 

increase other skills and resources without careful consideration of equity. For example, 

advanced degrees allow those with the resources to become more skilled. Gap-year programs 

allow those with parental support to gain professional connections and get into prestigious 

schools. Workplaces that reward long work hours benefit those without family constraints. And 
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states funding universities at a higher rate than community colleges give students with more 

privileged backgrounds the opportunity to use the skills that their (on average) more educated 

parents taught them. 

Increasing these relationships also increases growth, as resources become used more efficiently. 

However, they can also increase inequality. In fact, according to the accumulation model, the 

primary driver of increased inequality in these scenarios is growth.  

Figures 24 and 25 show what happens as the process described above happens, and the average 

relationship between the causes of success, 𝑚𝑒𝑎𝑛(𝑎𝑖𝑗), increases. A larger average causal effect 

leads to both increased inequality and increased growth, as measured by the systemic growth 

factor. The results suggest that efforts to increase opportunity to use more advanced resources 

should keep a focus on equity as well. 

 

Figure 24: Relationship between the average effect of each factor on another 

factor and inequality. The blue line gives the mean, and the gray bar gives the 

standard deviation. Both mean and standard deviation were calculated using a sliding 

window using a total of 30,000 iterations. 
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Simulation Details and Mathematics: 

To generate these simulated data, a 20-factor accumulation model was used. At each iteration, a 

matrix 𝐴 was drawn from 𝐸𝑥𝑝𝐸𝑥𝑝(𝜂, 20), where 𝜂 varied from 0 to 0.2. The dominant 

eigenvalue 𝑎 of 𝐴 was calculated as the growth rate. The average causal effect of any factor on 

another was calculated using the formula 𝑚𝑒𝑎𝑛𝑖𝑗(𝐴𝑖𝑗) − 1/𝑀, where the 1/𝑀 accounts for the 

1’s on the diagonal of 𝑀. Inequality was calculated by first generating a population of 10,000 

people using the matrix, where the random amount added to each individual’s factor 𝑥𝑖 at each 

time step is 𝑋𝑖 ∈ 𝐸𝑥𝑝(1). Then the coefficient of variation was taken over that population. 

Figure 25: Relationship between the average effect of each factor on another factor and 

growth. The blue line gives the mean, and the gray bar gives the standard deviation. Both 

mean and standard deviation were calculated using a sliding window using a total of 30,000 

iterations. 
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This relationship shows up in the mathematics behind the accumulation model. Using the 

accumulation model, the primary mechanism through which inequality arises is by increasing the 

systemic interest rate, 𝑎. Inequality in the accumulation model, as measured by coefficient of 

variation, is: 

𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =  
√𝑎 − 1

√𝑎 + 1
 𝑐𝑣(𝑢⃗ ⋅ 𝑋 ) 

The formula 
√𝑎−1

√𝑎+1
  gives an increasing function of 𝑎, which goes from zero when 𝑎 = 1 to one as 

𝑎 gets large. In other words, as growth increases, so does inequality. The other component is 

𝑐𝑣(𝑢⃗ ⋅ 𝑋 ), which does not change as the relationship between factors increases. 

5.2.4 Adding a new factor that contributes to success 

We can also consider what might happen when a new factor appears, as shown in Figure 26. This 

is most relevant when discussing new technologies, such as the personal computer or generative 

AI. The introduction of a powerful new technology has the potential to improve well-being in a 

lot of ways also has the potential to increase inequality, as people who are more effective with 

that tool use the tool more effectively in a lot of ways. Meanwhile, the people who are not able to 

use the tools effectively won’t necessarily decrease in their pre-existing skills, traits, and 

abilities, they just fall behind those who can adapt to the new tech.  

Figure 26: Graphical representation of the accumulation network 

with social skills, professional network strength, knowledge, and 

an added new factor (red) which we can call computer skills. 
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The internet is a great example, since it has the potential to be an equalizer. The internet allows 

people to gain information about their health (Fry et al., 2015), learn about new job opportunities 

(Böhm, 2013), improve their professional networks (Davis et al., 2020), and find love (Bruch & 

Newman, 2019). If the importance of computer skills is relatively low compared with other 

factors, then the causes of success become diversified and inequality decreases. However, 

computer skills have become very important. Without them, people can find health 

misinformation (Bin Naeem & Kamel Boulos, 2021), spend far too much time playing addictive 

games (King & Delfabbro, 2020), feel connected to extremists through social media (Brady et 

al., 2021), and waste time looking for a mate in an unwelcome online market (Sparks et al., 

2022). In this regime, where a single factor is very important, computer skills can increase 

inequality.  

Figure 27 shows what happens as a new factor is introduced in the accumulation model. When 

the factor has a relatively low impact, inequality decreases. As the impact of the new factor 

becomes larger, so does inequality. Unlike with the previous simulation, where increasing 

inequality was only driven by growth, Figure27D shows that inequality here is driven by both 

growth and by inequality in short-term investments of well-being.  

This result could be construed as an argument for a diversified economy. Having a large number 

of relatively important traits & skills that could lead to success has the potential to keep 

inequality low while increasing growth. In the case where only a handful of factors are 

responsible for success, inequality in those factors will lead to inequality in the economy as a 

whole. Alternatively, this result can be viewed in the context of Goldin & Katz’s race between 

education and technology (Goldin & Katz, 2008). If technological change happens more quickly 

than societies can adapt, then the small number of people who are able to use that technology 

will be able to benefit disproportionately. 



 125 

 

Figure 27: Effects on Inequality of a New Factor (A) Effect of new factor on overall inequality at time 𝑡 = 50 as 

a function of the factor’s effect as a proportion of the effects of the other factors. (B) Systemic growth multiplier 𝑎. 

(C) Inequality in short-term investments 𝑐𝑣(𝑢⃗ ⋅ 𝑋 ). (D) Percent change of overall inequality broken up in terms of 

the two factors √
𝑎−1

𝑎+1
 and 𝑐𝑣(𝑢⃗ ⋅ 𝑋 ). The y-values on the purple curve are the product of the y-values from the red 

and blue curves.  

 

Mathematical Details: 

Overall, inequality in this model is given by the relationship:  
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𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =  
√𝑎 − 1

√𝑎 + 1
 𝑐𝑣(𝑢⃗ ⋅ 𝑋 ) 

Where 𝑎 represents the overall growth multiplier (so 𝑎 − 1 is the per-unit-time growth rate), 𝑢⃗  is 

the causal strength of all the factors in determining success (including the new one), and 𝑋  is the 

random additive amount gained at each time (assumed to be from schooling, community support, 

etc.).  

This means that 𝑢⃗ ⋅ 𝑋  is a random variable which describes the results of training and other 

supports at a given time point weighted by its causal effect on well-being overall. The quantity 

𝑐𝑣(𝑢⃗ ⋅ 𝑋 ) describes inequality in these amounts, and this is independent of the causal effects of 

the matrix and more systemic growth. Figure 27C shows how this quantity changes with the 

relative effect of the new factor.  

When there are many independent factors contributing to well-being, inequality is low as a 

central limit theorem-type behavior takes hold. The coefficient of variation is the standard 

deviation divided by the mean, and for 𝑀 independent variables with roughly the same mean, 

𝑐𝑣 ~
𝑠𝑑

𝑚𝑒𝑎𝑛
~
√𝑀

𝑀
=

1

√𝑀
 . So adding another variable will just decrease inequality.  

However, as the effects of the new factor become more important the variance of the new factor 

𝑣𝑎𝑟(𝑋𝑀+1) comes to dominate the variance of 𝑢⃗ ⋅ 𝑋 . Much of the increasing inequality we see in 

Figure 27 is the inequality inherent in who gets contributions to the new factor 𝑋𝑀+1. 

Simulation Details for Figure 27 

I used an accumulation model to generate simulated data. Each iteration used the same 𝑀 ×𝑀 

matrix 𝐴, and then varied the effects of the new factor (factor 𝑀 + 1). The matrix 𝐴 was drawn 

from 𝐸𝑥𝑝𝐸𝑥𝑝(. 03, 30). The relative causal effect (𝑟𝑐𝑓) of factor 𝑀+ 1 was calculated as 

follows 

𝑟𝑐𝑓 =
∑ 𝐴𝑖 𝑀+1
𝑀
𝑖=1

(∑ ∑ 𝐴𝑖𝑗
𝑀
𝑗=1

𝑀
𝑖=1 ) − 𝑀

 

The value of 𝑀 was subtracted from the denominator to account for the ones on the diagonal. 

Then a new (𝑀 + 1) × (𝑀 + 1) matrix 𝐴′ was made by putting 𝐴 in the first 𝑀 ×𝑀 slots. The 

causal effect of factor 𝑀 + 1 on each other factor 𝑖, were 𝐴𝑖 𝑀+1 for 𝑖 ≤ 𝑀. These values were 

drawn from an exponential distribution, then normalized so that their sum was 𝑟𝑐𝑓. The 𝑀+ 1 

diagonal element and the causal effects of other factors on factor 𝑀+ 1 were drawn to be 
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consistent with the generating process of 𝐴. Each iteration involved 1,000 randomly generated 

individuals. And for each value of 𝑟𝑐𝑓, 2000 iterations were run to make the bands in Figure 27. 

Different random seeds and parameters provided qualitatively similar results. 

5.3 Interventions 

This section focuses on designing the most effective interventions to address systemic inequality. 

In particular, it focuses on direct interventions – where an individual receives a direct benefit to 

some aspect(s) of their well-being. These could include a monetary donation, some form of 

education, socially-oriented outreach at a retirement home, or a visit to the doctor. Section 5.2 

examined how inequality propagated over a span of time. Here, I examine near-term responses to 

interventions and how the most effective intervention might vary depending on how systemic a 

problem is.  

5.3.1 Model 

We again assume that each person has a set of 𝑀 factors (continuous, positive variables) 𝑥 =

⟨𝑥1, 𝑥2, … , 𝑥𝑀⟩. However, in this case, we are interested in how changing those factors increases 

a person’s well-being or success. To do this, we use a positive-valued utility function 𝑣 =

𝑓(𝑥1, 𝑥2, … , 𝑥𝑀) where 𝑣 represents some form of well-being or success. We will examine the 

effects of direct interventions on well-being by assuming that policy makers have the ability to 

distribute a set amount of increases to individuals and factors to their choice of factors. To allow 

comparison of investments in different factors, I assume that all the 𝑥𝑖’s have the same units. 

Interventions have a constant effect on each factor 𝑥𝑖 regardless of the current value of 𝑥𝑖, and all 

values are scaled in the units of the intervention. An intervention is assumed to be a scalar 𝛿 that 

describes the total contribution and a unit vector 𝑝  that describes how the contribution is 

distributed among causal factors, which leads to a change 𝑥 → 𝑥 + 𝛿𝑝 .  For instance, an 

intervention of 𝛿 dollars could all go towards 𝑥1, leading to a utility (well-being) of 

𝑓(𝑥1 + 𝛿, 𝑥2, 𝑥3, … , 𝑥𝑀). Or, the 𝛿 dollars could be distributed evenly among factors, which 

would give a utility of 𝑓 (𝑥1 +
𝛿

𝑀
, 𝑥2 +

𝛿

𝑀
, 𝑥3 +

𝛿

𝑀
, … , 𝑥𝑀 +

𝛿

𝑀
).  

To better represent reality, this utility function should satisfy a few intuitive conditions, which 

can also be represented mathematically: 
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• (A) Continuous and has continuous first and second derivatives. A small investment 

should lead to a comparably small return.  

• (B) Positive returns. Since each value 𝑥𝑖 is a positively-construed resource, having more 

of 𝑥𝑖 is always better. 

o 
𝜕𝑓

𝜕𝑥𝑖
> 0 for every 𝑖  

• (C) Diminishing marginal returns within each variable. While it might be good to 

have more of a good thing, the hundredth unit of the good thing does not increase your 

well-being as much as the first. For instance, going from 0 steps walked every day to 

5000 steps provides more benefit than going from 10,000 to 15,000. However, having a 

nutritionist choose your meals will only be a little better than planning your own balanced 

meals. 

o 
𝜕2𝑓

𝜕𝑥𝑖
2 < 0 for every 𝑖 

• (D) Eventually small returns. For any two factors 𝑥𝑖 and 𝑥𝑗, there is a point where an 

individual has so much of 𝑥𝑖 that it benefits them more to gain 𝑥𝑗.
3 

o For every 𝑖, 𝑗, increasing 𝑥𝑖 while holding all other variables constant will 

eventually lead to a point where 
𝜕𝑓

𝜕𝑥𝑖
<

𝜕𝑓

𝜕𝑥𝑗
  

• (E) Positive interactions between factors. Factors should provide synergy, in that a 

larger value of one should provide a greater return on others. Having access to healthy 

food is more useful if one has the knowledge to know how to balance a diet and the time 

to cook a healthy meal.  

o 
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
> 0  

 

As long as 0 < 𝛼𝑖 < 1 for each 𝑖, the Cobb-Douglas utility function  

𝑓(𝑥 ) = 𝑥1
𝛼1𝑥2

𝛼2⋯𝑥𝑀
𝛼𝑀 

satisfies all of the conditions above. The value 𝛼̃ = ∑ 𝛼𝑖𝑖  gives the fastest possible rate of growth 

of this function. For instance, if 𝛼̃ = 2, then well-being can grow at most quadratically as a 

 
3 We could also assume the stronger condition of “vanishing marginal returns” where the derivative 

𝜕𝑓

𝜕𝑥𝑖
 goes to zero 

for large 𝑥𝑖, holding other variables constant. 
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function of the amount invested.  In simulations in this section, I will use Cobb-Douglas utility 

functions with randomly generated exponents. 

By assumption, all interventions increase well-being for their recipients. However, some 

interventions may be more effective than others, or cause the rich to get richer. These are the 

questions we explore in this section. 

5.3.2 A Note about the Difference between Gaps and Inequality 

Inequality metrics commonly used for income and wealth inequality, such as the Gini coefficient 

or the coefficient of variation, are scale-independent since they need to account for inflation. If 

everyone gets a 3% raise, then inequality does not increase. However, when talking about 

interventions, this can create counterintuitive results. For instance assume Bertie has a wealth of 

$100, Slim has $500, and we have $300 to gift which we can split up any way we want. Intuition 

says that it is unfair to give Bertie $100 and Slim $200, since we’re helping the rich get richer. 

However, this allocation decreases wealth inequality using standard inequality metrics. Since 

Slim has five times as much as Bertie, the allocation that would leave inequality unchanged is to 

give Bertie $50 and Slim $250. Both things can happen at the same time: scale-independent 

metrics inequality are decreasing, and the rich can get richer at a faster rate than the poor. 

Scale-independent inequality metrics are not as useful for studying direct interventions targeted 

at systemic inequality, for a number of reasons. The first is that interventions typically target a 

subset of the population rather than the economy as a whole. Giving Bertie and Slim money will 

not influence macroeconomic inflation. In addition, systemic inequality involves many, often 

non-monetary, factors. Returns to education, for instance, are not likely to scale like income.   

There is a statistical reason to focus on gaps as well. For the model used here, scale invariance 

can create overly sensitive dependence on initial values. Consider the coefficient of variation, 

which is the standard deviation of a group divided by the mean. 

𝑐𝑣 =
𝑠𝑑

𝑚𝑒𝑎𝑛
 

This function can be very sensitive to changes in the denominator when the denominator is 

small. So, for instance, if the initial mean of the population is 1 and an intervention increases the 

mean by 1, any changes in the standard deviation will likely play a secondary role to the fact that 

the intervention doubled the denominator.  
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While it can be useful to look at inequality through multiple lenses, in this section, references to 

inequality refer to gaps, rather than scale-independent economic measures of inequality. Our 

central question here is: Which interventions cause gaps between the rich and the poor to 

decrease? Does a given intervention help the rich get richer, or do the poor get richer in 

comparison to the rich? Gaps can be measured using simple subtraction (in the case of two 

individuals), difference in means (in the case of two groups), or standard deviation (in the case of 

a single group). 

5.3.3 Targeted Interventions 

In a systemic inequality regime, blanket interventions that are not targeted at specific groups 

have the potential to increase inequality. To see this, we start with a simple example, and work 

our way up to a more complicated intervention between groups.  

Consider the (overly simplistic) case where a person’s health ℎ is a product of their knowledge 𝑘 

and wealth 𝑤, so that4 ℎ = 𝑓(𝑘,𝑤) = 𝑘𝑤. Staying healthy requires the knowledge about what to 

do and the money to take advantage of the knowledge by paying for health care, gym 

memberships, healthy food, etc. In our scenario, two people, Gregor and Johann, have equally 

little knowledge about health, 𝑘 = 1. However, Gregor has more wealth than Johann. Johann’s 

wealth is 3, so his health is 1 ⋅ 3 = 3. Gregor’s wealth is 5, so he has better health of 1 ⋅ 5 = 5. A 

public information intervention helps both Gregor and Johann learn about fitness, increasing 

their knowledge by 2. Figure 28 shows what happens to their health.  

 
4 This function does not have diminishing returns, and therefore does not count as a utility function as we’ve defined 

it. However, using simple values will prove illustrative at first. 
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Figure 28: Effects of a uniform intervention on two individuals. 

 

While both Gregor (brown) and Johann (blue) have the same initial and ending knowledge, 

Gregor’s health increases more because he has more resources to take advantage of the greater 

knowledge. 

The result is an increase in inequality, through a rich-get-richer mechanism. The gap between 

Gregor and Johann increases from 2 to 8. Holding each person’s wealth constant, Gregor’s health 

is given by ℎ = 5𝑘, while Johann’s health is ℎ = 3𝑘. Each additional bit of knowledge gives 

Gregor a larger benefit, because he has the wealth to take better advantage of it. Perhaps Gregor 

can afford that gym membership that he has just learned he should have. 

Now let’s consider a slightly different scenario with utility function5 𝑓(𝑘,𝑤, 𝑢) = 𝑘0.5𝑤0.7𝑢0.2. 

In this case, 𝑢 describes a hidden factor that influence one’s health, but that might not be obvious 

or easy for researchers to measure. Such factors might include proficiency in communicating 

 
5 This utility function does have decreasing marginal returns in each variable. 
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with doctors (Riedl & Schüßler, 2017), conscientiousness (Bogg & Roberts, 2004), or sensitivity 

to one’s environment (Boyce, 2019). Further, let us introduce Emmy who, with respect to 

knowledge and wealth, is identical to Johann. However, Emmy was given the confidence and 

skills to recognize health concerns and communicate clearly with health care workers. As shown 

in Table 6, Emmy has more of the hidden factor than Gregor or Johann. 

 

Table 6: Initial values of knowledge, wealth, and the hidden factor 

 
Knowledge 

(Initial) 
Wealth 

Hidden 

Factor 

Health Pre-

Intervention 

Health Post-

Intervention 

Effect of 

Intervention 

Johann 1 3 1 2.2 4.3 2.1 

Gregor 1 5 1 3.1 6.2 3.1 

Emmy 1 5 5 4.1 8.1 4.0 

 

 

As before, Gregor and Emmy, who have more wealth, benefit more from the intervention than 

Johann does. However, Emmy received more benefit from the intervention than Gregor did. The 

hidden variables increased the effect of the rich-get-richer mechanism. In regression models, this 

effect can be seen when errors are correlated with predictor variables after controlling for other 

available variables (and assuming the model is appropriately specified). 
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Figure 29: Effects of the health intervention on Emmy, Gregor, and Johann 

 

One mechanism that can counteract the rich-get-richer mechanism comes from diminishing 

returns. Giving a poor person $1000 will likely provide a lot more benefit than giving a 

millionaire $1000. As gaps between the well-off and the not-so-well-off get larger, interventions 

that provide the same benefit to everyone will tend to decrease inequality. In practice, and in this 

model, there is a counterbalancing effect between the mechanisms of rich-get-richer and 

diminishing marginal returns. In practice, though, if we want to reduce the gaps between Emmy, 

Johann, and Gregor, we should focus our intervention on helping Gregor. A targeted intervention 

will be more helpful in this case. 
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Simulation 

Rather than focusing on a few people, we now turn our attention to gaps between groups caused 

by systemic inequality. Our intuition from Emmy, Johann, and Gregor tells us that a non-

targeted, universal intervention has the potential to increase inequality between groups due to the 

large number of (potentially hidden) factors, and that hidden factors may exacerbate that effect.  

The approach here is two consider two populations (call them “Group High” and “Group Low”). 

An individual’s well-being, regardless of their group, is a function of ten factors. In ℎ of the 

factors, which I’ll call inequality-generating variables, Group Low is disadvantaged compared 

with Group High. However, the groups are similar in the remaining dimensions. We can consider 

these groups to be rich kids and poor kids within an economically segregated school district, 

racial groups within a country, populations of different countries, or just any two groups where 

one group has a structural advantage compared with the other.  

I consider a two-by-two simulated experimental design. One treatment dimension focuses on 

whether the intervention is targeted or not: Either resources are split evenly among all 

individuals, or the resources are given only to those in the group with lower well-being. The 

other treatment dimension focuses on whether the inequality-generating variables are hidden: 

Either interventionists are aware of all variables, and can intervene in the variables where there 

are gaps. Or the variables that cause differences between groups are hidden, so interventions can 

only intervene on variables where groups do not differ substantially. 
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Figure 30: Effects of interventions on the average well-being gap between Group High and Group Low. Each 

gray distribution represents 1000 simulations. Positive y-values correspond to interventions that increase inequality. 

The two graphs on the top correspond to the case where interventions are given to all individuals, while the graphs 

on the bottom represent the case where interventions are targeted only at the disadvantaged Group Low. The left 

graphs correspond to where the variables that cause inequality are hidden, so interventions focus on a single known 

variable where both groups are similar. In the right graphs, interventions focus on one of the dimensions where 

Group High is better off. Inequality becomes more larger and more systemic as the number of inequality-generating 

variables increases. 

 

The top row of Figure 30 shows that non-targeted interventions tend to increase pre-existing 

gaps. The clear exception to this case is where there is only one non-hidden inequality-

generating variable. In this case, interventions targeting this single factor have the potential to 

close gaps due to the diminishing marginal returns experience by Group High.  
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The bottom row gives the results of targeted interventions received only by the disadvantaged 

group. Targeted interventions clearly decrease gaps between the advantaged and disadvantaged. 

However, as the number of causes of inequality increases, intervening in a single factor become 

less useful overall, as an intervention in one factor becomes less able to counteract the systemic 

differences between groups. 

Overall, the results show that targeted interventions are more effective at reducing inequality 

than non-targeted interventions. However, as inequality becomes more larger and more systemic, 

the effects of the same single-factor intervention dwindle.  

These results suggest that interventions which do not target disadvantaged populations risk 

increasing inequality – a result consistent with prior research (Lorenc et al., 2013; Veinot et al., 

2018). In addition, there is value to uncovering the “hidden” variables that create differences 

between groups. Targeting the factors that influence overall inequality, rather than just those that 

are easy to intervene on, can decrease inequality more effectively. 

 

Simulation Details: 

This simulation involved ten variables, ℎ of which are inequality-generating. The simulation was 

run 1000 times for each value of ℎ, with 10,000 individuals split equally into two groups of 

5,000. For each iteration, 10 Cobb-Douglas exponents 𝛼𝑖 were randomly chosen from a uniform 

distribution, and then normalized so that they added to 3. For each member of Group High, the 

value of factor 𝑥𝑖 was drawn from an exponential distribution with mean 2𝛼𝑖. For Group Low, 

the values of the 10 − ℎ non-inequality-generating (IG) variables were drawn in the same way as 

for Group High. However, on the ℎ IG variables, all members of Group Low were assigned a 

value of 0.1. 

Once initial values for all agents were generated, their pre-intervention well-being was calculated 

using the Cobb-Douglas function 𝑓(𝑥 ) = ∑ 𝑥𝑖
𝛼𝑖

𝑖 . A 2 × 2 set of interventions was then given. In 

each treatment case, the well-being of individuals pre and post intervention was subtracted, 

averaged among the group, and then plotted in Figure 30. pre-post intervention difference in 

average well-being between Group High and Group Low was calculated. One treatment 

dimension (targeted vs non-targeted) involved who received the intervention: In the non-targeted 

case, all individuals received a boost 𝑥𝑖 → 𝑥𝑖 + 0.5 in the intervention variable. In the targeted 

case, all resources were allocated toward Group Low, so that members of Group Low received a 
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double-boost 𝑥𝑖 → 𝑥𝑖 + 1, while members of Group High received no intervention. The other 

treatment dimension (hidden vs not-hidden IG variables) involved changing the variables that 

received an intervention. In the hidden case, the intervention happened to a randomly-chosen 

non-IG variable, along which both groups were similar. In the non-hidden case, where 

interventions ostensibly understand all the causes of inequality, the intervention happened on one 

of the IG variables. Qualitatively similar patterns were shown as the model parameters were 

varied. 

 

5.3.4 Single vs Multifactor Interventions 

I’ve shown that targeted interventions are more effective for decreasing inequality than those that 

impact everyone universally. So this subsection focuses only on interventions that target 

disadvantaged groups. This allows us to examine the types of targeted interventions that are most 

effective, rather than having to focus on gaps between groups. In particular, I compare 

interventions where resources are allocated to a single factor with those where the same resource 

are allocated to many factors at once.  

I will show that, for an individual or group who is disadvantaged in only one factor, a single 

factor intervention will generally be the best choice. However, if the individual or group is 

disadvantaged on many factors, as in the case of systemic inequality, then multi-factor 

interventions will be more effective than single-factor interventions. As before, we start with an 

intuitive example, and then lead into simulations and mathematics. 

Optimal Interventions for Individuals 

Consider success that is caused by two factors, knowledge 𝑘 and wealth 𝑤, and a utility function 

𝑓(𝑘,𝑤) with the previously stated properties of a utility function. Intuitively, we can say that it’s 

better to have more wealth. However, too much wealth isn’t as helpful if you don’t know what to 

do with it. A similar argument holds for having knowledge without the resources to make your 

ideas come to life. 

Consider an individual with a given value of (𝑘, 𝑤). What type of intervention is most effective 

for this person? Should the intervention go completely in to knowledge (𝑘 → 𝑘 + 𝛿) ? Or wealth 

(𝑤 → 𝑤 + 𝛿) ? Or should the intervention go into wealth and knowledge simultaneously in some 

proportion (𝑘, 𝑤) → (𝑘 + 𝑝1𝛿,𝑤 + 𝑝2𝛿), where 𝑝1 + 𝑝2 = 1? 
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Figure 31: Optimal interventions when success is dependent on two factors. The blue line is the equilibrium 

value. Arrows represent optimal intervention types for points in different regions. 

 

Figure 31 gives a visual explanation of the answer to these questions. The formal proofs of these 

results for the Cobb-Douglas utility function in 𝑀 factors are given in the Appendix. An 

individual who has very little wealth, but a lot of knowledge (orange star) will benefit the most 

through an intervention that provides only wealth. Similarly, someone with a lot of wealth but 

low knowledge (green square) will benefit most from a single-factor, knowledge-based 

intervention. Eventually, however, as diminishing returns come into play, the benefits of a 
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single-factor intervention decrease until single-factor interventions in both factors are equally 

effective (black line). The equilibrium6 curve is the point where single-factor interventions in 

both knowledge and wealth are equally useful.  

For very small interventions, an individual on the equilibrium line would benefit equally from a 

knowledge intervention, a wealth intervention, or any multi-factor intervention between the two. 

However, for larger interventions, the most effective intervention for someone at equilibrium 

involves multiple factors. To see why, consider the red, blue, and purple arrows. To get to the 

end of the purple arrow, which by assumption is at a higher level of well-being than the purple 

point, there are two possibilities. One possibility is a single-factor intervention in wealth (red) 

and then a single-factor intervention in knowledge (blue). Another possibility is a multi-factor 

intervention along the equilibrium line (purple). However, since the cost of an intervention is just 

the distance along the path, the multi-factor intervention gets the person to the same point with 

less cost. This is because the single-factor interventions suffer diminishing returns as we move 

away from the equilibrium line. The most effective intervention will be in the proportions given 

on the equilibrium line. For this purple dot, the most effective intervention of 𝛿 dollars is 

(𝑘, 𝑤) → (𝑘 +
1

3
𝛿,𝑤 +

2

3
𝛿). 

Note that this model does not account for the time-based effects discussed in Section 5.2. For 

instance, giving teenagers with no money financial training about how to handle their wealth 

might quickly be forgotten without an opportunity to use that knowledge. In this case, the long-

term effectiveness of an intervention providing knowledge would be decreased by the lack of 

wealth. Alternatively, providing large amounts of wealth to a teenager may provide them access 

to a financial planner who could teach them long-term strategies. 

For the Cobb-Douglas utility function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑀) = 𝑥1
𝛼1𝑥2

𝛼2⋯𝑥𝑀
𝛼𝑀 , we can explicitly write 

out some formulas. In this case the equilibrium curve is the straight line defined by the 

equations: 

𝑥1
𝛼1
=
𝑥2
𝛼2
= ⋯ =

𝑥𝑀
𝛼𝑀

 

 
6 What I call the equilibrium curve might also be called the path of steepest ascent or a maximal growth path. For the 

Cobb-Douglas function, the rate of steepest ascent is 𝛼̃ = ∑ 𝛼𝑖𝑖 . 



 140 

We can explicitly calculate the proportional loss generated by a single-factor intervention for an 

individual at equilibrium.7 The proportional loss is the lost benefit from investing in a single-

factor intervention divided by the total benefit of the optimal multi-factor intervention. To first 

order, the proportional loss from investing 𝛿 dollars in factor 𝑗 alone is: 

𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑜𝑠𝑠 =
(multi-factor benefit − single-factor benefit)

multi-factor benefit
 

=
1

2
[
1

𝛼𝑗
−
1

𝛼̃
] 𝛾𝛿 

Where 𝛼̃ = ∑ 𝛼𝑖𝑖  and 𝛾 =
𝛼1

𝑥1
= ⋯ =

𝛼𝑀

𝑥𝑀
.   

As the size of the intervention, 𝛿, increases, so does the proportional loss. This suggests that 

larger, more costly interventions should target multiple factors, since they might create the 

largest waste. The factor 𝛾 is larger for more disadvantage individuals (when 𝑥𝑖 is small). So 

interventions that target the worse off (which, by assumption, is all targeted interventions) should 

focus on multiple factors.  

To understand the effect of [
1

𝛼𝑗
−
1

𝛼̃
], it will help to think of 𝛼𝑗 as a measure of the importance of 

factor 𝑗 in an individual’s well-being8. Similarly, 𝛼̃ can be thought of as the total importance of 

all factors in an individual’s well-being. So [
1

𝛼𝑗
−
1

𝛼̃
] gets larger as factor 𝑗 is less important, as 

shown in Figure 32. If 𝛼𝑗 is reasonably large compared to 𝛼̃, so that well-being is mostly caused 

by a single factor, say wealth, then single-factor interventions in wealth are not as inefficient. 

However, as we move into the systemic inequality regime, where many factors contribute to 

inequality (and 𝛼𝑗 ≪ 𝛼̃), then single-factor interventions become very inefficient. 

 

 
7 A detailed derivation of this is in the appendix. 
8 One way to see this is to look at a point on the equilibrium line. On that line, the ratio of two factors is equal to the 

ratio of their exponents 
𝑥𝑖

𝑥𝑗
=
𝛼𝑖

𝛼𝑗
 .  So, if for instance, 𝛼𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒  is twice as big as 𝛼𝑤𝑒𝑎𝑙𝑡ℎ, then at equilibrium an 

individual’s knowledge would be twice their wealth. 
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Optimal Interventions for Groups 

The previous discussion focused on individuals. Groups, in contrast, often have significant 

heterogeneity which should influence the optimal choice of intervention. We’ll see that, when all 

members of a group are disadvantaged for a single reason, it makes sense to invest in that factor. 

However, when group members are disadvantaged in many dimensions, then a multi-factor 

intervention is again the best choice. 

Consider the two groups shown in Figure 33. The black line is the line of equilibrium, where 

single-factor investments in knowledge and wealth give the same return. Group A has a mean 

knowledge of 15 and a mean wealth of 10. Group B has a mean knowledge of 10 and a mean 

wealth of 15. In a real-world scenario, we might notice many people in Group A dropping out of 

school because they don’t have enough money to pay for it. In the case of Group B, which is 

more in the systemic inequality regime, students would likely have very different explanations 

for dropping out.9  

 

 
9 This is the case for many young adults who leave school without graduating (J. Johnson & Rochkind, 2009). 
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𝛼̃ = 1. A similar shape holds for other values of 𝛼̃. 
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Figure 33: Two heterogeneous groups of people. Group A has knowledge, but less wealth. Group B is more 

balanced in their relative amounts of wealth and knowledge. 

 

Our previous discussion shows that the best intervention for every member of Group A is a 

single-factor intervention focused on wealth. However, each side of the equilibrium line contains 

members of Group B. Very finely-tuned individual-level interventions might give some portion 

of Group B wealth, while others would get knowledge. However, in practice, such finely-tuned 

interventions are not possible due to measurement error and administrative challenges. This is 

especially true in the case with many dimensions. If we have to choose a single intervention for 

all members of Group B, we would expect that a multi-factor intervention would increase 

average well-being the most, since it helps those who are disadvantaged in wealth, 

disadvantaged in knowledge, and those who are balanced between the two factors. 

An important caveat is necessary: Very large or very small interventions do not follow our 

intuition here. For instance, a very large wealth intervention for Group A (for instance by adding 

30 to wealth) would lead to diminishing returns, where Group A needs more knowledge to 

manage their wealth. Similarly, a very small multi-factor intervention for Group B would likely 

not be much of an improvement over a single-factor intervention for the reasons outlined earlier. 

A more robust simulation also fits our intuition. Consider a group of people whose well-being is 

determined by ten factors, but the group is systematically disadvantaged on one of those factors 
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by being below equilibrium. Figure 34 examines the relative effectiveness of an intervention as 

we make that group more or less disadvantaged in the single factor.  

 

Figure 34: Comparative return to single-factor vs multi-factor interventions as a group moves closer to 

equilibrium. The x-axis describes the distance between the centroid of the data and the equilibrium line. The y-axis 

represents the increase in well-being divided by the size of the investment. 

 

When the group is significantly lower in a single factor (the right side of Figure 34), then single-

factor interventions are more effective. However, as improvements get made which move the 

average of the group toward the equilibrium line, the causes of well-being become more various 



 144 

and idiosyncratic (left side of Figure 34). In this case, which represents more systemic inequality, 

multi-factor interventions become more effective.  

These results support the idea that, when inequality is systemic, interventionists should focus on 

improving many factors at once. Intervening in multiple factors at once has been shown a 

powerful approach in education (Levin & García, 2018; Miller & Weiss, 2022) and aging 

(Shaposhnikov et al., 2022). Furthermore, multi-pronged approaches are represented in the 

recommendations of many professional bodies (Lichtenstein et al., 2006; National Research 

Council, 2001; WHO, 2022). 

Simulation Details: Figure 34 was created using a simulated experiment with a 10-factor Cobb-

Douglas utility function. Cobb-Douglas exponents were chosen randomly from a uniform 

distribution, sorted so that 𝛼𝑖 < 𝛼𝑖+1, and then normalized so they summed to two. A single 

population was created, where each individual 𝑘’s initial values of 𝑥𝑖 (for 𝑖 ≠ 5) were drawn 

from a normal distribution which depended on the value of 𝛼𝑖. 

𝑥𝑖,𝑘 ∈ 𝒩(𝜇𝑖, 𝜎𝑖) 

𝜇𝑖 ∈ {
𝑈𝑛𝑖𝑓(8𝛼𝑖, 10𝛼𝑖)   if 𝑖 ≠ 5 

𝑈𝑛𝑖𝑓(6𝛼𝑖, 7𝛼𝑖)   if 𝑖 = 5
 

𝜎𝑖 ∈ 𝑈𝑛𝑖𝑓(𝛼𝑖, 3𝛼𝑖) 

The middle value of 𝑥5 was chosen to be different since it had an average effect on well-being 

compared with the other variables. Very small values of 𝑥𝑖,𝑘 were rounded up to 0.01 to avoid 

singularities in the model. This rounding up involved less than 0.01% of values. The initial 

population values were then roughly on the equilibrium line 
𝑥1

𝛼1
= ⋯ =

𝑥𝑀

𝛼𝑀
 , except for 𝑥5 which 

was below what would be expected at equilibrium. Initial population values were then varied 

continuously as function of 𝑡 along a line until the centroid of the population was 

⟨10𝛼1, 10𝛼2, … , 10𝛼𝑀⟩. This mean the points varied from being off the equilibrium line in the 

direction of small 𝑥5 to being on the equilibrium. For each 𝑡, both a single-factor and multi-

factor intervention were given equivalent to 
10𝛼5−𝜇5

2
, which was 0.29 in this simulation. The 

benefit of each intervention on average well-being was calculated, and then divided by 0.29 to 

get the return on investment. 
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5.4 Conclusion 

In this chapter, I first provided a framework for thinking of systemic inequality as arising from a 

large number of causally interrelated factors, many of which are hard to understand or influence 

at scale. The research literature supports the idea that some of the stickiest types of inequality do 

arise from complex webs of causes that propagate through time, embedded in individuals, 

families, institutions, and societal structures. This framework was broad, in that can take into 

account many different analytical approaches. I then gave two specific modeling approaches for 

understanding systemic inequality. Because these approaches rely on abstract models, they 

provide generalizable results for the reader to apply to a broad array of areas. The first approach 

involved the accumulation model from Chapter Four, which explores how multifactor 

cumulative advantage or disadvantage process change over time. Section 5.2 showed how the 

indicators of success need not be the causes, and that, without a focus on equity, opportunities 

for individuals to more effectively use their skills could increase inequality. It also examined 

how the addition of a factor influencing success, such as a new technology, could either (a) 

decrease inequality if it provided a relatively independent way for individuals to be successful, or 

(b) increase inequality if the new factor had a large enough impact on overall success. The 

second approach involved a utility function with diminishing marginal returns to examine the 

interventions that are most effective at dealing with systemic inequality. In Section 5.3 I showed 

that, when inequality is systemic, interventions targeted at the most disadvantaged groups and at 

many factors simultaneously will tend to reduce inequality most effectively. However, in the 

non-systemic regime, when there is only one known factor which generates the inequality, 

interventionists would do well to focus on that single factor. 

Given the modern day availability of data, a reader might ask why this modeling approach is 

valuable. There are a few reasons. First, regardless of a researcher’s care in explaining the 

difference between causality and correlation, the choice of variables to study directs a reader’s 

mind to certain causal relationships and hides others. For instance, consider the fact that the 

number of successful friends a person has is predictive of their economic mobility (Chetty et al., 

2022). Many people may consider this as advice about how to move up the economic ladder. 

However, those readers may be ignoring the causal effects of, say, growing up in a high-income 

neighborhood. To their credit, Chetty, Jackson, and colleagues explore some of these questions. 

However, not all researchers are able to explore these questions. And even with sophisticated 
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causal inference methods, any conclusions about causal effects are at most bounded. So it is 

worth highlighting one of the key results of this chapter – that the strongest indicators of success 

need not have the strongest causal effect. 

Second, the abundance of causal variables and practical measurement challenges mean that data-

focused approaches will always be ignoring some of the systemic inequality story. Using models 

with arbitrarily large numbers of variables provides a different set of insights. Of course, the 

method taken in this chapter also has its limitations. However, the results are broadly 

generalizable to domains which are data-scarce. Leaders and policy makers often need to make 

decisions without the benefit of multi-pronged randomized controlled trials. These results give 

insight into how to proceed when empirical causal results are limited. Even more, this paper 

makes an argument that randomized controlled trials are limited in their ability to understand 

systemic inequality. Using the scientific method of changing one variable at a time ignores 

potentially synergistic effects that arise from many interacting factors. 

 

5.5 Appendix to Chapter 5  

This appendix supplements Chapter Five. It has results about the optimal intervention for an 

individual with 𝑀 factors and a Cobb-Douglas utility function determining their well-being.  

Theorem A1: Consider the case of a small, finite investment 𝛿 which can be invested into 𝑀 

factors {𝑥1, 𝑥2, … , 𝑥𝑀} according to some allocation vector 𝑝  (with ∑ 𝑝𝑖𝑖 = 1). Let an 

individual’s well-being be given by a  Cobb-Douglas utility function 𝑈 = 𝑓(𝑥 ) = 𝑥1
𝛼1𝑥2

𝛼2⋯𝑥𝑀
𝛼𝑀  

with 0 < 𝛼𝑖 < 1, and set 𝛼̃ = ∑ 𝛼𝑖𝑖 . Assume that the variables {𝑥𝑖} are scaled so that an 

investment of 𝛿 dollars increases every variable 𝑥𝑖 to 𝑥𝑖 + 𝛿, and that, pre-intervention, the 

values are 𝑥 0 = ⟨𝑥1,0, 𝑥2,0, … , 𝑥𝑀,0⟩. Furthermore, and without loss of generality, assume that 

𝛼1

𝑥1,0
≥

𝛼2

𝑥2,0
≥ ⋯ ≥

𝛼𝑀

𝑥𝑀,0
. 

(A) If 
𝛼1

𝑥1,0
>

𝛼2

𝑥2,0
  at 𝑥 0, then the optimal intervention is to invest completely in 𝑥1. (i.e. 𝑝 =

⟨1,0,0, … ,0⟩) 

(B) If 
𝛼1

𝑥1,0
=

𝛼2

𝑥2,0
>

𝛼3

𝑥3,0
 at 𝑥 0, then the optimal intervention is 𝑝 =

1

𝛼1+𝛼2
⟨𝛼1, 𝛼2, 0, 0, … ,0⟩ 
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(C) If 
𝛼1

𝑥1,0
=

𝛼2

𝑥2,0
= ⋯ =

𝛼𝑘

𝑥𝑘,0
>

𝛼𝑘+1

𝑥𝑘+1,0
 at 𝑥 0, then the optimal intervention is 𝑝 =

1

∑ 𝛼𝑖
𝑘
𝑖=1

⟨𝛼1, 𝛼2, … , 𝛼𝑘, 0, … ,0⟩ 

(D) If 
𝛼1

𝑥1,0
=

𝛼2

𝑥2,0
= ⋯ =

𝛼𝑀

𝑥𝑀,0
 at 𝑥 0, then the optimal intervention is 𝑝 =

1

𝛼̃
⟨𝛼1, 𝛼2, … , 𝛼𝑀⟩. 

 

Corollary: The optimal path as investments increase is given by the process in the Theorem. In 

other words, the optimal intervention for an individual becomes more and more multi-factor as 

the total amount of investment increases. 

In other words, as individuals get to “higher states of well-being”, they need more 

comprehensive interventions. For someone in a poor country, providing food and basic medical 

care may increase well-being significantly. However, for someone in a richer country where food 

and basic medicine are available (and who is therefore better off than the person in the poor 

country), improving well-being may require nutrition education, opportunities to exercise, and 

sophisticated forms of health insurance.  

The result above is only about optimal interventions for individuals, not groups. Groups are more 

complicated, since any intervention needs to account for the heterogeneity in the group. Chapter 

Five examines this case. 

 

Theorem A2: In cases (B)-(D) of Theorem A1, the proportional loss of utility from investing in 

a single factor, rather than the optimal multi-factor intervention, is given by: 

𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑜𝑠𝑠 =
(multi-factor benefit − single-factor benefit)

multi-factor benefit
 

=
1

2
[
1

𝛼𝑗
−

1

∑ 𝛼𝑖
𝑘
𝑖=1

] 𝛾𝛿 

Where  𝛾 =
𝛼1

𝑥1
= ⋯ =

𝛼𝑀

𝑥𝑀
. 

Proof of Theorem A1: Statements for (B)-(D) are identical, if we just vary 𝑘 from 2 to 𝑀. So it 

suffices to show (A) and then (C). The proof will use a Taylor expansion of 𝑓.   

First, we observe that  
𝜕𝑓

𝜕𝑥𝑖
=
𝛼𝑖

𝑥𝑖
𝑓(𝑥 ).  

For a finite investment 𝛿 allocated according to 𝑝 , the first order Taylor approximation of 𝑓 

around gives the change in utility: 
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Δ𝑈 = ∇𝑓(𝑥 0) ⋅ ∇𝑥  

= ⟨
𝛼1
𝑥1
𝑓(𝑥 0),

𝛼2
𝑥2
𝑓(𝑥 0),⋯ ,

𝛼𝑀
𝑥𝑀
𝑓(𝑥 0)⟩ ⋅ ⟨δp1, 𝛿𝑝2, ⋯ , 𝛿𝑝𝑀⟩ 

= 𝛿𝑓(𝑥 0)∑
𝛼𝑖
𝑥𝑖,0
 𝑝𝑖

𝑀

𝑖=1

 

Our goal is to choose 𝑝  that maximizes this express. The first part, 𝛿𝑓(𝑥 0) is independent of 𝑝 . 

So we need only maximize the dot product: 

⟨
𝛼1
𝑥1,0

,
𝛼2
𝑥2,0

, ⋯ ,
𝛼𝑀
𝑥𝑀,0

⟩ ⋅ 𝑝 =∑
𝛼𝑖
𝑥𝑖,0
 𝑝𝑖

𝑀

𝑖=1

 

Subject to the linear constraint ∑ 𝑝𝑖𝑖 = 1. This is a linear function in each 𝑝𝑖, subject to a linear 

constraint. So it hits its maximum on the boundary of the 𝑀-simplex given by ∑ 𝑝𝑖𝑖 = 1. Since 

𝛼1

𝑥1,0
 is strictly larger than any of the other coefficients 

𝛼𝑖

𝑥𝑖,0
, the maximum can be found by setting 

𝑝1 = 0 and all the other values to 0. In other words, invest completely in factor 𝑥1. This shows 

(A). 

To show (C), we first note that if 
𝛼1

𝑥1,0
=

𝛼2

𝑥2,0
= ⋯ =

𝛼𝑘

𝑥𝑘,0
>

𝛼𝑘+1

𝑥𝑘+1,0
, then the first 𝑘 terms of the first-

order Taylor expansion are equivalent: 

Δ𝑈 ~ 𝛿𝑓(𝑥 0) [
𝛼1
𝑥1,0

 𝑝1 +
𝛼2
𝑥2,0

 𝑝2 +⋯+
𝛼𝑀
𝑥𝑀,0

 𝑝𝑀] 

=  𝛿𝑓(𝑥 0) [
𝛼1
𝑥1,0

 𝑝1 +
𝛼1
𝑥1,0

 𝑝2 +⋯+
𝛼1
𝑥1,0

 𝑝𝑘 +
𝛼𝑘+1
𝑥𝑘+1,0

 𝑝𝑘+1 +⋯+
𝛼𝑀
𝑥𝑀,0

 𝑝𝑀] 

=  𝛿𝑓(𝑥 0) [
𝛼1
𝑥1,0

 (𝑝1 + 𝑝2 +⋯+ 𝑝𝑘) +
𝛼𝑘+1
𝑥𝑘+1,0

 𝑝𝑘+1 +⋯+
𝛼𝑀
𝑥𝑀,0

 𝑝𝑀] 

The coefficient of the part in blue is larger than the other coefficients by assumption. A similar 

argument to the one above shows that any investment restricted to the first 𝑘 factors is optimal. 

As long as 𝑝1 + 𝑝2 +⋯+ 𝑝𝑘 = 1 and 𝑝𝑗 = 0 for 𝑗 > 𝑘, this expression is optimized.  

So in the case of (C), there are an infinite number of allocations that optimize the first-order 

approximation of utility. This makes sense. The slope in each of the first 𝑘 directions is the same 

at 𝑥 0. So the tangent hyperplane at this point will not give us sufficient information. We need to 

examine the second-order Taylor series to figure out how to allocate our resources optimally. 
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Δ𝑈 = 𝛿𝑝 ⋅ ∇𝑓(𝑥 0) +
1

2
𝛿2𝑝 ⊤ [

𝜕2𝑓

𝜕𝑥 2
]
𝑥 =𝑥 0

 𝑝   

Here 
𝜕2𝑓

𝜕𝑥 2
 is the Hessian matrix of 𝑓 which has an 𝑖𝑗 entry equivalent to the second derivative 

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
. These second derivatives are given by: 

𝜕2𝑓

𝜕𝑥𝑖
2 =

𝛼𝑖(𝛼𝑖 − 1)

𝑥𝑖
2 𝑓(𝑥 ) 

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
=
𝛼𝑖
𝑥𝑖

𝛼𝑗

𝑥𝑗
𝑓(𝑥 ) 

When 𝑖 ≠ 𝑗.  

Since the first-order term is equivalent for all allocations in (only) the first 𝑘 variables, we will 

assume from here out that 𝑝𝑗 = 0 for 𝑗 > 𝑘 and focus on the second-order term. 

1

2
𝛿2𝑝 ⊤

𝜕2𝑓

𝜕𝑥 2
 𝑝 =

1

2
𝛿2∑∑𝑝𝑖𝑝𝑗

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗

𝑘

𝑗=1

 

𝑘

𝑖=1

 

=
1

2
𝛿2𝑓(𝑥 )∑𝑝𝑖 [

𝛼𝑖(𝛼𝑖 − 1)

𝑥𝑖
2 𝑝𝑖 +∑

𝛼𝑖
𝑥𝑖

𝛼𝑗

𝑥𝑗
𝑝𝑗

𝑘

𝑗≠𝑖

] 

𝑘

𝑖=1

 

I will be omitting the little 0’s from here out. The reader should remember that everything 

happens at a specific point. We want to choose the 𝑝𝑖 that optimize this expression subject to 

∑ 𝑝𝑖𝑖 = 1.  This is again a linear optimization problem. In this case, we will find the expression 

on the interior of the simplex.  This becomes a Lagrange multiplier problem with a Lagrangian.  

ℒ =
1

2
𝛿2∑∑𝑝𝑖𝑝𝑗

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗

𝑘

𝑗=1

 

𝑘

𝑖=1

+ 𝜆(∑𝑝𝑖
𝑖

− 1) 

We can then use the method of Lagrange multipliers to find 𝑝 . 

0 =
𝜕ℒ

𝜕𝑝𝑛
=
1

2
𝛿2 [

𝜕

𝜕𝑝𝑛
(𝑝𝑛

2
𝜕2𝑓

𝜕𝑥𝑛2
) + 2

𝜕

𝜕𝑝𝑛
∑𝑝𝑛𝑝𝑗

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥𝑗

𝑘

𝑗≠𝑛

] + 𝜆 

=
1

2
𝛿2 [2𝑝𝑛

𝜕2𝑓

𝜕𝑥𝑛2
+ 2∑𝑝𝑗

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥𝑗

𝑘

𝑗≠𝑛

] + 𝜆 
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= 𝛿2 [𝑝𝑛
𝛼𝑛(𝛼𝑛 − 1)

𝑥𝑛2
𝑓(𝑥 ) +∑𝑝𝑗

𝛼𝑛
𝑥𝑛

𝛼𝑗

𝑥𝑗
𝑓(𝑥 )

𝑘

𝑗≠𝑛

] + 𝜆 

= 𝛿2𝑓(𝑥 ) [𝑝𝑛
𝛼𝑛
2

𝑥𝑛2
− 𝑝𝑛

𝛼𝑛
𝑥𝑛2
+∑𝑝𝑗

𝛼𝑛
𝑥𝑛

𝛼𝑗

𝑥𝑗

𝑘

𝑗≠𝑛

] + 𝜆 

The first term is equivalent to the expression inside the sum for 𝑗 = 𝑛. So we can combine them. 

= 𝛿2𝑓(𝑥 ) [−𝑝𝑛
𝛼𝑛
𝑥𝑛2
+∑𝑝𝑗

𝛼𝑛
𝑥𝑛

𝛼𝑗

𝑥𝑗

𝑘

𝑗=1

] + 𝜆 

Remember that 
𝛼𝑗

𝑥𝑗
=
𝛼𝑛

𝑥𝑛
=
𝑎1

𝑥1
 as long as 𝑗, 𝑛 ≤ 𝑘. So we can rewrite the part inside the sum, and 

reduce using the restriction that ∑ 𝑝𝑖
𝑘
𝑖=1 = 1: 

∑𝑝𝑗
𝛼𝑛
𝑥𝑛

𝛼𝑗

𝑥𝑗

𝑘

𝑗=1

=∑𝑝𝑗
𝛼𝑛
𝑥𝑛

𝛼𝑛
𝑥𝑛

𝑘

𝑗=1

 

=
𝛼𝑛
2

𝑥𝑛2
∑𝑝𝑗

𝑘

𝑗=1

 

=
𝛼𝑛
2

𝑥𝑛2
 (1) =

𝛼𝑛
2

𝑥𝑛2
=
𝛼1
2

𝑥1
2  

So our Lagrange multiplier problem reduces to the set of equations (one for each 𝑛): 

0 = 𝛿2𝑓(𝑥 ) [−𝑝𝑛
𝛼𝑛
𝑥𝑛2
+
𝛼1
2

𝑥1
2] + 𝜆 

Simplifying, we get: 

0 = 𝛿2𝑓(𝑥 ) [−
𝑝𝑛
𝑥𝑛

𝛼𝑛
𝑥𝑛
+
𝛼1
2

𝑥1
2] + 𝜆 

0 = 𝛿2𝑓(𝑥 ) [−
𝑝𝑛
𝑥𝑛

𝛼1
𝑥1
+
𝛼1
2

𝑥1
2] + 𝜆 

0 = 𝛿2𝑓(𝑥 )
𝛼1
𝑥1
[−
𝑝𝑛
𝑥𝑛
+
𝛼1
𝑥1
] + 𝜆 

−
𝜆

𝛿2𝑓(𝑥 )

𝑥1
𝛼1
= −

𝑝𝑛
𝑥𝑛
+
𝛼1
𝑥1
  

𝑝𝑛
𝑥𝑛
=
𝛼1
𝑥1
+

𝜆

𝛿2𝑓(𝑥 )

𝑥1
𝛼1
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The expression on the left, while complicated, is independent of 𝑛. And the expression above 

must hold for all 𝑛 ≤ 𝑘. So we conclude that the optimal solution arises when: 

𝑝1
𝑥1
=
𝑝2
𝑥2
= ⋯ =

𝑝𝑘
𝑥𝑘

 

This is very similar to our assumption that: 

𝛼1
𝑥1,0

=
𝛼2
𝑥2,0

= ⋯ =
𝛼𝑘
𝑥𝑘,0

 

Any vector 𝑝  which is a linear multiple of ⟨𝛼1, 𝛼2, … , 𝛼𝑘, 0, … ,0⟩ will optimize Δ𝑈. Since 

∑ 𝑝𝑖𝑖 = 1, our optimal investment is then: 

𝑝 =
1

∑ 𝛼𝑖
𝑘
𝑖=1

 ⟨𝛼1, 𝛼2, … , 𝛼𝑘, 0, … ,0⟩ 

This proves (C), as well as (B) and (D). 

  

Proof of Theorem A2: We can calculate the second-order Taylor approximations of the 

improved utility from the single-factor intervention 𝑝 1 = ⟨1, 0, 0, … , 〉 . (Again, omitting the 

subscript 0’s.) 

Δ𝑈1 = 𝛿𝑝 1 ⋅ ∇𝑓 +
1

2
𝛿2𝑝 1

⊤ 𝜕
2𝑓

𝜕𝑥 2
 𝑝 1 

= 𝛿
𝜕𝑓

𝜕𝑥1
+
1

2
𝛿2  
𝜕𝑓2

𝜕𝑥1
2 

Substituting the explicit expression for the derivatives gives us: 

Δ𝑈1 = [𝛿
𝛼1
𝑥1
+
1

2
𝛿2  
𝛼1(𝛼1 − 1)

𝑥1
2 ] 𝑓(𝑥 ) 

= [𝛿
𝛼1
𝑥1
+
1

2
𝛿2
𝛼1
2

𝑥1
2 −

1

2
𝛿2
𝛼1

𝑥1
2] 𝑓(𝑥 ) 

We can do the same for the optimal multi-factor intervention 𝑝 𝑚 =
1

𝛼̅
 ⟨𝛼1, 𝛼2, … , 𝛼𝑘, 0, … ,0⟩, 

where we set 𝛼̅ = ∑ 𝛼𝑖
𝑘
𝑖=1 : 

Δ𝑈𝑚 = 𝛿𝑝 𝑚 ⋅ ∇𝑓 +
1

2
𝛿2𝑝 𝑚

⊤ 𝜕
2𝑓

𝜕𝑥 2
 𝑝 𝑚 

=
𝛿

𝛼̅
∑𝛼𝑖

𝜕𝑓

𝜕𝑥𝑖

𝑘

𝑖=1

+
𝛿2

2𝛼̅2
∑∑𝛼𝑖

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
𝛼𝑗

𝑘

𝑗=1

𝑘

𝑖=1
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=
𝛿

𝛼̅
𝑓(𝑥 )∑𝛼𝑖

𝛼𝑖
𝑥𝑖

𝑘

𝑖=1

+
𝛿2𝑓(𝑥 )

2𝛼̅2
[∑∑𝛼𝑖

𝛼𝑖
𝑥𝑖

𝛼𝑗

𝑥𝑗
𝛼𝑗

𝑘

𝑗=1

𝑘

𝑖=1

−∑𝛼𝑖
2
𝛼𝑖

𝑥𝑖
2

𝑘

𝑖=1

] 

The extra sum inside the brackets accounts for the “-1” when we differentiate with respect to the 

same variable twice:  
𝜕2𝑓

𝜕𝑥𝑖
2 =

𝛼𝑖(𝛼𝑖−1)

𝑥𝑖
2 𝑓(𝑥 ).  We can, again, substitute 

𝛼𝑖

𝑥𝑖
=
𝛼1

𝑥1
 to get: 

Δ𝑈𝑚 =
𝛿𝑓(𝑥 )

𝛼̅
∑𝛼𝑖

𝛼1
𝑥1
 

𝑘

𝑖=1

+
𝛿2𝑓(𝑥 )

2𝛼̅2
[∑∑𝛼𝑖 (

𝛼1
𝑥1
)
2

 𝛼𝑗

𝑘

𝑗=1

𝑘

𝑖=1

−∑𝛼𝑖
𝛼1
2

𝑥1
2

𝑘

𝑖=1

] 

=
𝛿𝑓(𝑥 )

𝛼̅

𝛼1
𝑥1
 ∑𝛼𝑖

𝑘

𝑖=1

+
𝛿2𝑓(𝑥 )

2𝛼̅2
(
𝛼1
𝑥1
)
2

 [∑∑𝛼𝑖𝛼𝑗

𝑘

𝑗=1

𝑘

𝑖=1

−∑𝛼𝑖

𝑘

𝑖=1

] 

Note that ∑ 𝛼𝑖
𝑘
𝑖=1 = 𝛼̅. So we can remove the sums. 

=
𝛿𝑓(𝑥 )

𝛼̅

𝛼1
𝑥1
 𝛼̅ +

𝛿2𝑓(𝑥 )

2𝛼̅2
(
𝛼1
𝑥1
)
2

 [𝛼̅2 − 𝛼̅] 

Δ𝑈𝑚 = [𝛿
𝛼1
𝑥1
 +
1

2
𝛿2 (

𝛼1
𝑥1
)
2

−
1

2
𝛿2
α1

𝑥1
2  (
𝛼1
𝛼̅
)] 𝑓(𝑥 ) 

Combining expressions to find the absolute loss: 

Δ𝑈𝑚 − Δ𝑈1 = [𝛿
𝛼1
𝑥1
 +
1

2
𝛿2 (

𝛼1
𝑥1
)
2

−
1

2
𝛿2
α1

𝑥1
2  (
𝛼1
𝛼̅
)] 𝑓(𝑥 ) − [𝛿

𝛼1
𝑥1
+
1

2
𝛿2
𝛼1
2

𝑥1
2 −

1

2
𝛿2
𝛼1

𝑥1
2] 𝑓(𝑥 ) 

 

= [+
1

2
𝛿2
𝛼1

𝑥1
2 −

1

2
𝛿2
α1

𝑥1
2  (
𝛼1
𝛼̅
)] 𝑓(𝑥 ) 

=
1

2
𝛿2𝑓(𝑥 )

𝛼1

𝑥1
2  (1 −

𝛼1
𝛼̅
) 

Pulling out a 𝛼1 gives us: 

 Δ𝑈𝑚 − Δ𝑈1 =
1

2
𝛿2𝑓(𝑥 )

𝛼1
2

𝑥1
2  (

1

𝛼1
−
1

𝛼̅
) 

This is the absolute loss. The relative loss gives us a unitless measure of inefficiency: how much 

we lost as a percentage of how much we could have gained. Since 𝛿 is assumed to be small, we 

use the first order approximation for the denominator, which gives the expected formula. 

Δ𝑈𝑚 − Δ𝑈1
Δ𝑈𝑚

 ~

1
2 𝛿

2𝑓(𝑥 )
𝛼1
2

𝑥1
2  (

1
𝛼1
−
1
𝛼̅)

𝛿
𝛼1
𝑥1
𝑓(𝑥 ) 
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=
1

2
𝛿
𝛼1
𝑥1
 [
1

𝛼1
−
1

𝛼̅
] 
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Chapter 6  

General Discussion 

 

This dissertation examined how many causally related, and often hidden, factors can influence 

inequality. It explored how our simple explanations for systemic inequality may be 

counterproductive, and the role that technology can play in magnifying those simple stories or in 

influencing growth and inequality.  

In Chapter Two, we showed that students’ ability to be successful in school can be measured by 

viewing success from their point of view. We developed original statistical methods and used 

administrative data to show universal trends in community college student capital. We showed 

that student ability to be successful had the same distribution across 140 cohorts of students. This 

suggests that student capital behaves like a limited resource.  

In Chapter Three, we examined how the term white privilege could increase polarization, 

decrease civility, and erode support for progressively racial policies. Individuals who would 

otherwise be supportive of those policies were more likely to remove their support or avoid the 

conversation altogether, due to different ways the language was received. 

A major contribution of this dissertation is its transdisciplinarity.  An examination of literature 

across disciplines points out connections between the different factors behind success and well-

being. Chapter Four drew on this connectedness to develop a model for multi-factor cumulative 

advantage using a causal network. I showed that a number of concepts fall out of such a model, 

including the systemic interest multiplier 𝑎, as well as vectors describing both the relative causal 

strength and long-term growth ratios of various factors. In addition, I showed that distributions of 

outcome variables generated through this process were eventually stable and tended to be 

qualitatively similar to distribution in student capital, income (Tao et al., 2019), and depression 

(Tomitaka et al., 2015).  

In Chapter Five, I presented a discipline-independent framework for systemic inequality and 

connected it with the research literature. I used models to show how the causes and indicators of 
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success need not be the same, that opportunities to use skills and resources more effectively can 

increase both inequality and growth, and that adding a new causal factor can either increase or 

decrease inequality. I then explored the effects of interventions on systemic inequality, showing 

that the most effective interventions (a) target disadvantaged individuals and (b) aim to improve 

multiple factors simultaneously. 

6.1 Implications for Policymakers and Interventionists 

This work was motivated by the hard work of people trying to improve well-being for others. 

The primary implications are therefore targeted towards creating more effective policies and 

interventions. Systemic inequality is generated by a large number of interacting and often hidden 

factors. Practitioners can recognize systemic inequality when (a) individuals collectively refer to 

a large number of problems causing their disadvantage or (b) repeated, single-factor 

interventions have not recently made a significant impact. 

• Start with data-gathering. Change-makers should first try to understand the variety of 

factors influencing success. All humans have blind spots, so there should be a purposeful 

and inclusive effort to understand the problem from multiple angles. Approaches might 

include qualitative surveys of both advantaged and disadvantaged populations, expert 

opinions from practitioners working on the problem, established research, and large scale 

administrative data. Rather than rejecting any particular factor(s), the process should be 

inclusive of potential causes of inequality, while also recognizing that culturally-

generated narratives may make some factors seem more impactful than they really are. 

• Target disadvantaged individuals. Since advantaged individuals have more resources, 

they are often better positioned to take advantage of opportunities. This can both increase 

inequality and increase average growth, as the people at the top benefit more than those at 

the bottom. So, when possible, interventions and policies should target those 

people/groups that need the most help. Even for interventions that cannot or should not 

be restricted to disadvantaged groups, special attention can be paid to the least well-off. 

This can be done through targeted outreach, financial support, or other mechanisms. This 

special attention is particularly reasonable for profitable technological innovations, where 

some economic growth can be diverted toward equity. 
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• Recognize that advantage/disadvantage is usually a continuum, not a set of discrete 

groups. Since systemic inequality is characterized by many causes, it typically does not 

split people cleanly into groups. It may be practically useful for interventions or policies 

to target discrete groups. However, these groups will typically contain significant 

heterogeneity.  

• Focus on building up resources and capabilities within disadvantaged individuals 

and communities. Interventions that aim to reduce barriers might help people progress 

through those particular sticking points. However, it will not make it easier for them to 

bypass the next barrier that arises. Instead, interventionists should focus on giving people 

the skills, traits, and resources that they need to effectively surpass a wide variety of 

barriers on their own. 

• Target many factors simultaneously. If inequality has a single cause, it makes sense to 

target that cause. However, if inequality is more systemic, then multi-factor interventions 

will typically be more effective.  

• Attempt, where possible, to target factors that have been previously been ignored or 

misunderstood. If a problem has been around for a long time, previous attempts at 

improvement have likely targeted – and improved – the obvious, easy-to-impact causes of 

inequality. So effective interventions might focus on the less obvious factors. If these 

idiosyncratic factors are hard to identify or influence, then policies and interventions 

might focus on providing resources and skills (such as money, social networks, or 

communication skills) that individuals can use to shore up the areas that they decide need 

improvement. 

6.2 Implications for Researchers 

This dissertation also suggests a variety of directions for future research. Since inequality tends 

to become more systemic over time (Petrunyk & Pfeifer, 2016; Sacerdote, 2005; Scholte et al., 

2015), a deeper examination of these forces is warranted. One approach, following work on the 

fundamental causes of health inequalities literature (Phelan & Link, 2005), would be to more 

thoroughly explore how well-being and increase inequality over time. One potential mechanism 

comes from interventions: It is quite likely that the interventions that get implemented attempt to 

improve factors which are (i) easier to understand and implement, (ii) more broadly effective, 
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and (iii) more isolatable. This leaves those factors which are (i) harder to understand and 

influence, (ii) affect only a small number of people, and (iii) more interrelated with other factors. 

This process by itself could explain the rise of systemic inequality. Another possible mechanism 

is the multivariate Matthew effect outlined in Chapter Four: Individuals with resources can often 

use those resources to improve their well-being in other ways, leading to the “multivariately 

rich” getting richer in many ways. This process by itself could also explain increasing systemic 

inequality. Of course, these processes could be occurring simultaneously at multiple levels. 

Communities with more resources may have made more significant investments in the well-

being of their citizens at the same time as those wealthier citizens are reinvesting their own 

money into various forms of well-being. The data supports this, since as the GDP of a city10 

increases, so do (i) all quintiles of its citizens income and (ii) inequality in the city (Heinrich 

Mora et al., 2021). This differential arises because the richest citizens’ incomes grow much more 

quickly than the poorest (Heinrich Mora et al., 2021). Future studies could tease out the relative 

effects of these different drivers of systemicity in inequality. 

The concept of student capital as a coarse-grained combination of many traits, resources, and 

skills has not been thoroughly studied in the research literature. Our method of estimating 

student capital was specific to community colleges, since it relied on the rather large dropout 

rates of these students. Dropout rates throughout most of K-12 and in selective colleges tend to 

be much lower, which hides the information our method used. Another method that might work 

for K-12 or selective colleges can be found in (A. B. Mitnitski et al., 2001). They operationalized 

frailty by adding up the number of health “deficits” that an individual had. A similar approach 

could be used to measure student capital at a given age. For instance, student capital in second 

grade might be the sum of an inventory of multiple, observed binary outcomes: whether a child 

could add two digit numbers, communicate respectfully with classmates, write a complete 

sentence with correct punctuation, sit still for a certain length of time, etc. This metric would 

emphasize breadth, rather than the depth that is sought for in standard learning assessments. 

Alternatively, a deficit approach could be used, where each item corresponds to an area where 

 
10 More precisely, the population of a city scales with inequality and income quintiles. However, the population of a 

city is strongly related to its GDP (Bettencourt, 2013). So population size is a measure of the economic strength of a 

city. 
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the child is falling short of grade-level expectations. I hypothesize that such a measure could be a 

strong predictor of long-term student outcomes. 

A different study, inspired by Chapter Three, could examine the effects of racial salience on 

long-term behavior. Our study found a short-term intersectional effect, where whites showed 

different responses to the term white privilege. Research on social media has found that exposure 

to views or people who are different from us can reinforce our pre-existing views (Bail et al., 

2018) or make us more open (Pettigrew & Tropp, 2006). The difference in effects is due to a 

variety of factors (Cottrell & Neuberg, 2005; Munger, 2017). It would be interesting to examine 

the heterogeneity in the long-term effects on different groups of whites of repeated exposure to 

terms like white privilege.  

In addition, more work could be done to better adapt the methods in this dissertation to data. The 

analytical model in Chapter Two was able to estimate the “average student capital” in a cohort of 

students. This is a point estimate of a population parameter which could be used much like 

graduation or transfer rates in college administration. However, to create more robust analyses, it 

would be useful to know the standard error and bias in generating this point estimate. One 

promising approach is to use Fisher Information to give a measure of confidence in the estimate 

of average student capital. In addition, we model required waiting five years after a student’s 

initial enrollment, which gave students the opportunity to complete college. This long wait is a 

problem for colleges (as it is with waiting for graduation rates), because colleges need to make 

decisions on a quicker time scale. Future work could find a method to estimate the average 

student capital in a cohort after only a few terms, along with providing time-dependent standard 

error measurements. These analyses would allow institutional researchers to know whether the 

average student capital was a practically useful metric of student success.  

The model in Chapter Four could be more effectively adapted to data. The model itself starts 

with the assumption that things like income, student capital, and frailty arise from an 

accumulation process. So an important goal of that work would be to fit the model to, say, 

income distributions and infer information about the systemic interest rate 𝑎 or other components 

of the model. Currently, it is possible to fit the model to a dataset representing an accumulated 

distribution, as long as one knows the cumulants of the data distribution. However, estimating 

the cumulants of a population using sample data is notoriously difficult (Chan et al., 2020). 

Cumulants give information about the tail of the distribution, which is often where things like 
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sampling bias seep in. Further work could develop a method using some variant of maximum 

likelihood estimation to fit the model to data. Such a method could give insight into how 

inequality becomes systemic and leads to the stable distributions that we see in society. 

Another study could examine socioeconomic status (SES) in the context of the accumulation 

model in Chapter Four. The model in Chapter Four led to long-term trends that were one-

dimensional in nature. The matrix 𝐴 contained the information about how individuals reinvest 

their skills, traits, and resources based on their ability and goals. The causal network then led to a 

set of weights, where each factor’s weight corresponded to its size relative to the other factors in 

the long-term. This created a latent variable which explained a larger and larger proportion of the 

variance in the data as time progressed. SES is just such a variable. Researchers have used 

dimension reduction techniques to examine SES as a latent variable explaining various forms of 

well-being (Cowan et al., 2012). I hypothesize that the principal components found through SES 

represents the set of indicator weights in my model. A variety of tests could be used to test this 

hypothesis. One approach could examine whether SES explains an increasing amount of 

variance as individuals age, as my model predicts. Another approach could examine whether 

different demographic groups have different first components which represent different values 

and opportunity to reinvest resources. Those components might then correspond to existing 

literature about skills required or valued in certain environments (Anderson, 2000; Uskul et al., 

2019; Yosso, 2005). 

6.3 Conclusion 

Millions of people have made contributions toward improving societal well-being. This has led 

to tremendous progress in a multitude of dimensions. Future progress needs to account for the 

fact that well-being is multifaceted. When generations have already invested considerable effort 

in making the world a better place, the old ideas may become less effective. Simple stories that 

effectively described the challenges people faced may not apply in our interconnected world. 

Technology can be, and has been, a boon. But it can also create opportunities for the well-off to 

benefit more, or reinforce simple stories about complex problems thereby exacerbating 

inequality. This dissertation has taken an interdisciplinary approach to shed light on how many 

intertwined and often hidden factors influence inequality, and explored some ways to analyze 

and influence systemic inequality. 
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