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Abstract 
Splicing is a critical step in mRNA maturation with roles in gene regulation and 

proteome diversification. Splice disruptive variants (SDVs) are implicated in diverse 

human diseases, and 10-33% of exonic variants may disrupt splicing. However, 

identifying SDVs remains challenging due to the degeneracy and redundancy of the 

underlying sequence code. Experimental splicing measurements from patient cells or 

mini-gene assays can detect SDVs but have traditionally been low-throughput.   

Massively parallel splicing assays (MPSAs) systematically measure splicing 

impacts at scale and could clarify variant pathogenicity and inform models of splicing 

regulation. In this assay, complex barcoded libraries of mutant exons are synthesized, 

cloned into minigene constructs, and transfected into human cells. Splicing outcomes of 

each mutation are quantified en masse using targeted RNA-seq of minigene-derived 

transcripts, and analyzed with a custom python package.  

In Chapter 2, I apply this assay to the pituitary transcription factor gene POU1F1 

(in collaboration Dr. Sally Camper’s lab). Mutations in POU1F1 cause combined 

pituitary hormone deficiency (CPHD), a clinically and genetically heterogenous disorder 

with prevalence ~1:4000. We targeted exon 2, which has two alterative isoforms (alpha 

and beta) using competing splice acceptors that encode mutually antagonistic proteins. 

We measured the splicing effects of 1,070 SNVs across the exon and surrounding 

introns and identified 96 SDVs - 14 of which were synonymous substitutions. Our 

measurements were concordant with six nearby heterozygous missense and 
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synonymous variants seen in unrelated hypopituitarism patients. This map identifies a 

putative splice silencer motif that represses the use of the normally lowly expressed 

beta isoform.  

In Chapter 3, I apply a MPSA to a critical developmental renal transcription factor 

gene, WT1 (in collaboration with clinical nephrologist Dr. Jen Lai Yee). Mutations in 

WT1 are implicated in nephrotic syndrome and sexual differentiation phenotypes. I 

focus on exon 9 which is alternatively spliced at competing donor sites resulting in two 

isoforms (KTS+ and KTS-). KTS+ and KTS- are normally expressed in ~2:1 ratio, but 

perturbation of the ratio can lead to Frasier’s syndrome – a rare nephrotic syndrome. 

We tested 518 SNVs for splicing defects and identified 8 known Frasier’s Syndrome 

variants as well as 16 additional variants that similarly lowered the KTS ratio. We also 

detected 19 variants increasing the KTS ratio, two of which have been observed in 

patients with sexual differentiation phenotypes. 

Although MPSAs can measure splicing effects of hundreds of variants 

simultaneously, the current scale of variant discovery via exome and genome 

sequencing demands efficient and accurate computational approaches to identify splice 

disruptive variants genome-wide. To evaluate the state of the art within contemporary 

splice prediction algorithms, in Chapter 4 I employed the results of five high throughput 

splicing assays and one literature curated variant set. A unique advantage of MPSAs 

over typical training and validation datasets is that they avoid bias towards essential 

splice site variants. I found the latest deep learning tools, SpliceAI and Pangolin, were 

most concordant with the measured splicing effects. However, all tools showed less 

agreement with exonic splicing outcomes compared to intronic. Some tools’ predictions, 



 xviii 

like SpliceAI’s, were sensitive to specified annotation files. Therefore, there is still room 

for improvement within the next generation of splice prediction algorithms which future 

MPSA studies may facilitate. Thus, MPSAs are critical to identify clinically relevant 

SDVs and improve computational splice prediction. 
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Chapter 1 Introduction 

1.1 Molecular biology of splicing 

Splicing is a key process during mRNA maturation in eukaryotic cells, in which 

introns are excised from pre-mRNAs which can then be exported to the cytoplasm for 

translation (in the case of coding genes). The process of splicing is catalyzed by five 

small nuclear ribonucleoproteins (snRNPs) each composed of one small nuclear RNA 

(snRNA) and additional proteins which form a complex called the spliceosome1-3. Two 

different evolutionarily conserved spliceosome complexes exist in eukaryotes, termed 

the major and minor spliceosomes, each composed of four distinct snRNPs and U5, the 

one shared snRNP3. The major spliceosome directs excision of the large majority of 

introns (>99%), so called U2-style introns (named for the major spliceosome 

component; Figure 1-1)3. The minor spliceosomes excises distinct, U12-style introns 

which in most cases reside within the same gene as other U2-style ones3.  

Both spliceosomes remove intronic portions of pre-mRNAs through an ordered, 

multi-step process involving the recognition of conserved motifs, at the 5’ (donor) and 3’ 

(acceptor) splice sites, facilitated by components of the spliceosome as well as 

conserved sequence features in the pre-mRNAs undergoing splicing. Major 

spliceosome assembly begins when a 5’ splice site with the essential sequence motif 5’-

GU-3’ is recognized via base pairing between those bases in the mRNA and the reverse 

complementary binding sites in the U1 snRNP2-4 (Figure 1-1). Next, upstream of the 3’ 
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splice site, a conserved branchpoint motif (5’-CURAY-3’; R=A/G; Y=U/C), an intronic 

pyrimidine rich polypyrimidine tract downstream of the branchpoint, and the essential 3’ 

splice site (5’-AG-3’) sequence adjacent to downstream exon are bound by the splicing 

factors SF1, U2AF65, and U2AF35 respectively, via RNA binding sites which target 

each of the respective conserved motifs2-4. The U2 snRNP then displaces SF1 and 

binds to the branchpoint with reverse complementary base pairing to recruit a complex 

of three snRNPs – U4, U5, and U62-4. The U6 snRNP replaces the U1 snRNP at the 5’ 

splice site bringing the branchpoint within the vicinity of the 5’ splice site2-4. Next with the 

aid of additional proteins and splicing factors, the branchpoint attacks the proximal 5’ 

splice site forming an intron lariat and excising the upstream exon. Then in a second 

step, the 5’ splice site attacks the 3’ splice site which is bound through complementary 

base pairing to the spliceosome which excises the intronic material from the 

downstream exon and ligates the exons together1-4.  

 

Figure 1-1: Splicing of U2 style introns.  

Diagram of components of the major spliceosome along with models of the motifs 
needed to maintain splicing fidelity. Adapted from Scotti & Swanson, Nat Rev Genet, 
20161. 
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The U12-dependent minor spliceosome removes a minority (<1%) of introns 

characterized by highly conserved - but distinct - motifs around the splice sites and at 

the branchpoint3. However, the minor spliceosome does not depend on recognition of 

the polypyrimidine tract and can remove introns not demarcated by the essential 

canonical dinucleotides3. Although this dissertation will focus on the action of the major 

spliceosome, disruption of the proteins comprising the minor spliceosome as well as 

variants altering the cis sequence elements recognized by the minor spliceosome and 

components of the minor spliceosome itself, are implicated in human developmental 

and neurological disorders5,6.  

Much of the information content needed to define exons and specify their splicing 

is provided by sequence motifs at the branchpoint site, polypyrimidine tract, and 

essential splice site motifs1. The first of these, the branchpoint, is a highly conserved, 

degenerate 5-mer motif (CURAY; R=A/G; Y=U/C) with an obligate adenosine from 

which a 2’-5’ linkage to the first intronic base downstream of the 5’ splice site results in a 

lariat structure7. The majority of branchpoints reside ~30 bp upstream of the 3’ splice 

site, and almost all exons have multiple, redundant branchpoints which may be specific 

to certain tissues or developmental states8,9. Characterizing branchpoint sequences has 

been challenging both computationally and experimentally due to the redundancy and 

degeneracy of the branchpoint sequence and the constant turnover and low stability of 

lariat-containing transcripts, but recently high throughput experimentally validated 
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branchpoints9,10 have led to more sophisticated computational branchpoint prediction 

tools, for instance BranchPointer and BPP11-13.  

Downstream of the branchpoint lies the polypyrimidine tract, which does not have 

a specific motif but is instead cytosine and uracil rich, and is involved in modulating 

splicing efficiency through branchpoint and 3’ splice site selection14.  

Specific sequence motifs are required at the 5’ and 3’ splice sites, with the most 

extreme constraint at the first and last two intronic bases, termed the essential or 

canonical dinucleotides. For U2 type introns, the required sequences are GU and AG, 

respectively, and mutations in these dinucleotides almost without exception abolishes 

their usage, leading to outcomes including exon skipping, intron retention, or usage of 

another nearby splice site. Although not strictly essential, the conserved intronic and 

exonic sequences proximal to the canonical dinucleotides (<8 bp for introns and <3 bp 

for exons) also contribute to exon definition. 

Since splice sites are in fixed locations bordering internal exons, consensus 

motifs for the 5’ and 3’ splice site regions can be defined by tallying nucleotide 

representation at each of the splice site adjacent positions across the genome and then 

identifying the most common nucleotide at each site, to produce a position-weight 

matrix (PWM). Regions more closely resembling the consensus sequence at either site 

give rise to exons which are more constitutively included in the mature mRNA2, implying 

that while these proximal 5’ and 3’ splice site regions undergo less evolutionary 

constraint than the canonical dinucleotides, they help maintain splicing fidelity.  

Despite the well-defined conserved motifs at the branchpoint and both splice 

sites, these elements only contain about half of the information necessary to define 
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authentic exons against the large background of cryptic splice sites present in non-

exonic sequences which comprise >95% of the human genome15. Thus, it was inferred 

that additional sequence motifs beyond the splice sites, polypyrimidine tract, and 

branchpoint motifs must be required to maintain splicing fidelity16. One potential 

mechanism is by the action of RNA binding proteins (RBPs) which recognize and bind 

short (<10 bases) sequences located within introns or exons to antagonize or promote 

splicing2. Motifs bound by such RBPs are categorized by location and direction of 

impact on splicing: exonic splice enhancers (ESE), exonic splice silencers (ESS), 

intronic splice enhancers (ISE), and intronic splice silencers (ISS). Families of RBPs 

involved in splicing regulation include hnRNPs (heterogeneous ribonucleoprotein 

particles), SR (serine- and arginine-rich) proteins, or tissue specific splicing factors such 

as the neuronal NOVA-family proteins and the Rbfox family of factors expressed in 

brain and skeletal muscle2. Although there are notable exceptions, hnRNP family 

proteins generally have suppressive effects while SR family proteins stimulate splicing2. 

The regulatory motifs bound by the RBPs are thought to act as a redundant mechanism 

to maintain and hone splicing efficiency and are found at higher density in and around 

constitutively included exons17-19. 

  As one example, an exonic splice silencer (ESS) helps to guide proper splicing of 

exon 11 of the oncogene RON. The putative ESS near the exon 11 splice acceptor was 

initially identified due to sequence homology to another ESS found in the oncogene 

MADD20. The implicated sequence (5’- ATTGGGCTGGGC-3’) contains two proximal, 

repeated motifs matching the preferred binding site of hnRNPH (underlined) which, like 

most hnRNP family proteins, tends to repress splicing20. A mini-gene assay was 
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implemented to test the potential splice silencing effect of the sequence. The assay 

inserts the native sequence of the targeted exons along with their internal introns into a 

plasmid which was then transfected into human cells. Total RNA is collected and 

analyzed with RT-PCR to detect alterations in the splicing pattern. At baseline, exon 11 

is included at ~50%, both in the endogenous mRNA, and when tested via transfected 

minigenes. Knockdown of hnRNPH by co-transfecting with small interfering RNA 

(siRNA) led to near-complete exon 11 inclusion, and conversely, over-expression of 

hnRNPH promoted skipping of exon 1120. Mutating two sites within the putative 

hnRNPH motifs (5’- ATTGAGCTGAGC-3’; variants bolded) either separately or 

simultaneously encouraged exon 11 inclusion, and the effects were most pronounced 

when both motifs were altered20. Similarly, when both motifs were abolished, both the 

knockdown and over-expression of hnRNPH had no impact on splicing20. Since exon 11 

encodes the transmembrane domain of RON, the skipping of exon 11 leads to 

localization to the cytoplasm and homodimerization resulting in a constitutively active 

receptor implicated in promoting epithelial-mesenchymal transition and tumor 

invasiveness21,22. 

Dissecting the effects of an individual RNA binding site on an exon’s proper 

splicing remains a challenge. RBPs cannot be mapped 1:1 onto splicing regulatory 

motifs as multiple expressed RBPs often share very similar sequence specificities as 

defined by biochemical methods such as SELEX or via occupancy assays such as 

CLIP-seq. In addition, the motifs bound by RBPs tend to be short and degenerate 

making it difficult to map precise binding sites. The grammar – the number and 

arrangement of such sites required to support splicing – is often unclear. Finally, exonic 
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sequences evolve under additional constraints required to encode functional protein, 

making it challenging to identify functional RBP sites by sequence conservation across 

evolution23-25.  

Since many regions harbor multiple potential regulatory motifs, distinguishing 

essential motifs from redundant binding regions has been difficult19,24. Furthermore, a 

motif’s expected impact on splicing may be location dependent – the same regulatory 

element could enhance splicing if positioned within the exon, but silence splicing from 

an intronic region17,24,26.  Attempts have been made to comprehensively identify and list 

potential splicing regulatory motifs both experimentally and computationally17,24,25,27-29, 

but enumerating essential regulatory motifs outside of splice sites sufficient to maintain 

splicing has been elusive and many of the resulting sets of putative regulatory elements 

show little overlap30. So, although splicing regulatory sequences outside of splice sites 

have been thoroughly investigated, predicting the impact of sequence variation in these 

regions and identifying which trans acting RBP factors may be implicated remains 

challenging. 

1.2 Alternative splicing and dysregulation of splicing in disease 

Splicing goes beyond simply processing pre-mRNAs, and also serves to diversify 

the proteome, providing tissue specific gene expression, and a layer of gene regulation 

in development. Almost every human gene undergoes some type of alternative splicing 

event: whole exon skipping, alternative splice site use to truncate or extend existing 

exons, inclusion of pseudo-exons, or whole intron retention (Figure 1-2). The 

combinatorial effect of these events is that a single gene locus may encode multiple 

isoforms which translate into distinct proteins18,31 and have untranslated regions with 
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different regulatory sequence context. The proportion of alternatively spliced genes 

scales with organism complexity32 and neuronal genes in particular express different 

isoforms throughout development33 implicating alternative splicing as a potential 

important functional substrate for evolution. Some alternative splicing events shift the 

frame of the transcript, potentially leading to premature truncation, nonsense mediated 

decay, and consequently, changes in gene dosage. In other cases, splicing changes 

encode stable proteins that have dominant negative activity or toxic gain of function1.   

 

Figure 1-2: Possible outcomes of alternative splicing. 

Examples of alternative splicing of the purple exon and the resulting isoforms. Adapted 
from Keren, Lev-Maor. & Ast, Nat Rev Genet 201018. 

Proper mRNA splicing is disrupted through multiple mechanisms in disease. 

Mutations to the genes that encode components of the splicing machinery may cause 

coordinated changes in exon definition and splice site usage. For instance, in 

myelodysplastic syndromes, somatic mutations to the core spliceosomal factor SF3B1 

are a common driving event34. In another example, retinitis pigmentosa is a disorder 

characterized by gradual vision loss and blindness35 with a variety of underlying loci and 
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modes of inheritance. One of its autosomal dominant forms is caused by missense 

variants in SNRP200, which encodes an RNA helicase responsible for splice site 

recognition as part of the spliceosome complex35. The resulting mutant spliceosome 

preferentially selects cryptic splice sites instead of the native site implying that the 

variants alter the proofreading ability of the spliceosome35. 

What is more common, and the focus of this dissertation, are individual variants 

which disrupt the proper splicing of the single gene in which they reside. Such variants 

may disrupt one of the authentic splice sites, or newly create a splice site in a disruptive 

context. They may occur in the conserved acceptor or donor sequences, or in RBP-

bound splicing regulatory elements, or can act by yet other mechanisms (e.g., by 

altering RNA secondary structure to perturb interactions with the spliceosome)1.  

Although the true proportion of variants which cause Mendelian disorders by 

altering splicing is unknown, recent estimates implicate 10-30% of SNVs causing 

human disease as disrupting splicing36,37. Variants that exert a pathogenic effect 

primarily via splicing disruption are expected to conform to the inverse relationship 

between risk allele frequency and effect size – so, splice disruptive variants with a large 

impact on Mendelian disease phenotypes would be rare in the population due to 

purifying selection38.  

Variants altering splicing in disease can abolish splicing regulatory motifs or 

create decoy sites resulting in mis-spliced mRNA. An intronic variant creating a cryptic 

3’ splice site in HBB was one of the earliest SNVs linked to disease through altered 

splicing39. In the presence of this mutation, the spliceosome selects the cryptic acceptor 

site, extending the exon by 19 bp, and resulting in a frameshifted protein leading to 
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degradation of the mRNA by nonsense mediated decay39,40. The reduction in beta-

globin expression causes haploinsufficient ß+ thalassemia – a disease linked to anemia 

and in many cases requiring lifelong blood transfusions40. Intronic variants can also 

cause disease by altering the essential dinucleotides which is seen in Duchenne’s 

muscular dystrophy (DMD) – an X-linked disorder typified by rapid, progressing muscle 

loss in childhood41. Several point variants at essential splice sites have been identified 

across DMD with more severe clinical presentations occurring when the exon skipped is 

not a multiple of three bases in length. Such disruption events cause frameshift and 

premature truncation rather than in-frame deletions41.  

Variants outside of the canonical sites can also exert pathogenic effects by 

disrupting splicing regulatory motifs. A missense variant in exon 13 of CFTR impacts a 

purine rich sequence (3’-GAAAGAAGAAA-5’) in the middle of the exon. Substitution of 

adenines to thymines (3’-GATTGTTGTTA-5’; variants bolded) within a mini-gene 

construct containing exons 12-14 of CFTR with ~100 bp of flanking introns lead to 

preferential selection of cryptic splice site 248 bp downstream of the native 3’ splice site, 

and this alternate splice site usage was recapitulated with the missense variant cloned 

on a WT background (3’-GAATGAAGAAA-5’; variant bolded)42. The use of the alternate 

3’ splice site shifts the transcript out of frame creating a premature termination codon 

subject to nonsense mediated decay42. When these variants are either in a homozygous 

state or compound heterozygous with another deleterious CFTR variant, patients 

display a cystic fibrosis phenotype with elevated sweat electrolytes and severe fluid 

buildup in the lungs42. 



 11 

1.3 High-throughput splicing assays 

Although there are many splice disruptive variants already associated with 

Mendelian disorders41,43-46, the advent of relatively inexpensive and rapid whole genome 

sequencing has created a bottleneck at the step of interpreting and properly classifying 

the resulting deluge of variation. Across the genome, over 9 billion single-nucleotide 

variants (SNVs) are possible – leaving aside the large space of other variant types.  

Most of the 4.6 million missense variants currently identified in gnomAD are rare (minor 

allele frequency <0.5%) making any statistical association with a disease phenotype 

underpowered47. Only 2% of the variants identified in gnomAD have a clinical 

interpretation in ClinVar47, and of those represented in ClinVar, almost half are listed as 

variants of uncertain significance (VUS) or have conflicting and as yet unresolved 

interpretations (Figure 1-3B). Without functional evidence, most newly discovered 

variants - even those in disease-associated genes - do not reach the burden of proof to 

be reliably classified as deleterious or benign. Currently, over 40% of BRCA1 point 

variants in ClinVar are classified as VUS and another 8% have conflicting 

interpretations despite the long-recognized role of BRCA1 loss of function variants in 

early onset breast and ovarian cancer (Figure 1-3B). This proportion of BRCA1 VUS 

has remained relatively stable since 201748, so the resolution of these variants is at a 

standstill. The lack of clear designation for these variants is frustrating for patients and 

clinicians especially in the case of medically actionable genes like BRCA1 in which 

knowledge of a pathogenic variant would invoke a risk management treatment protocol. 
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Figure 1-3: SNVs within ClinVar by interpretation. 

A. Counts of ClinVar SNVs for the American College of Medical Genetics (ACMG) 
actionable genes (v3.1)49 colored by variant interpretation. B. Proportions of variants, by 
ClinVar variant interpretation, within each of the ACMG actionable genes (v3.1)49 and 
colored as in A. 

Typically, variants discovered in patients would be classified using statistical 

association tests or individual functional assays. However, for variants that are rare in 

the population or private to a family, there is insufficient power for statistical 

associations, and the scale of unclassified variants makes individual functional assays 
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for each variant infeasible. Recently, functional assays have been designed which allow 

testing of multiple variants in parallel within a single experiment50,51. These assays can 

assess protein function of DNA damage response genes48,52, DNA methyltransferase 

function53, enhancer function54, and splicing effects17,19,36,48,55-63 to name a few. These 

approaches use high throughput DNA or RNA sequencing to measure outcomes of 

specific variants, each often tagged with a uniquely identifying barcode. The results of a 

high-throughput assay assessing loss of function effects of missense variants within 

MSH2 have been applied to reclassify ~400 ClinVar VUS as either pathogenic or 

benign64. Since heterozygous loss of function variants in MSH2 cause Lynch Syndrome, 

a predisposition towards early onset colon and endometrial cancers that can be 

mitigated with frequent, early cancer screenings65,66, the reclassification of these 

variants via a high-throughput functional assay can have an immediate impact for 

patients undergoing genetic testing. 

Since a substantial minority of all pathogenic variants act by disrupting mRNA 

splicing, high throughput investigation of splicing effects within disease associated 

genes is warranted. Synonymous variants (which do not alter the protein sequence), 

and intronic variants outside of the essential splice sites dinucleotides are of particular 

interest with respect to candidate pathogenic variants as they are sometimes given low 

priority due to an assumed lack of protein-coding impact.  

One conventional means of assaying variants’ splicing impact is via minigene 

assays. In this approach, cells are transfected with plasmids containing a cloned intron-

exon-intron sequence, optionally between two constitutively included exons, surrounded 

by constant first and last exons. The cloned region contains the variant of interest. After 
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its transient transfection, the mini-gene plasmid is transcribed, RNA is recovered, and 

the resulting splicing outcomes can be measured in low-throughput using RT-PCR and 

gel electrophoresis of the RT-PCR product. Recently, high-throughput versions of this 

approach have been developed, in which multiple variants are cloned in a library with 

each variant being tagged with an identification marker within the mini-gene plasmid 

sequence. The variants are then linked to their identification tag through sequencing 

and transfected into cells within a single experiment. RNA is collected and the splicing 

effects are measured in a high throughput manner using RNA-seq or employing a 

reporter construct such as GFP and using FACS.  

The high throughput splicing assays can measure the effects of individual 

variants across multiple exons simultaneously36,61,62 or the effects of multiple variants 

within a single exon17,19,48,55-60,63, which provide complementary views on variant effects 

in splicing. This dissertation will focus on saturation splicing screens in which the 

splicing effect all possible point variants within a single exon of interest are measured in 

parallel. Since high throughput splicing saturation screens have recently identified a 

handful of putative exonic splicing regulatory regions17,48,55,59, measuring the full 

landscape of splicing effects across an exon provides a means to elucidate the impacts 

of rare variants implicated in disease, and also to better understand the dynamics of key 

splicing motifs outside of the splice sites. The implementation of these screens varies 

slightly across groups, but the assay itself is generally agnostic to the specific exon or 

gene model being interrogated unlike high throughput assays to evaluate protein 

function which are very gene specific (see Jia et al., 202152 vs. Lue et al., 202253 for 

example). To measure splicing outcomes of all possible point variants en masse, a 
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barcode is added to the 3’ UTR of the mini-gene construct and these barcodes are 

linked to a library of individual variants55 (Figure 1-4). Then after transfection, the 

barcodes are read out using RNA-seq and the splicing outcomes are tallied within each 

barcode55(Figure 1-5). Finally, splicing results for each barcode are aggregated into 

variant specific splicing effects allowing the nomination of candidate splice disruptive 

variants55(Figure 1-5).  

 

Figure 1-4: Library creation for massively parallel splicing assays.  

A. Mini-gene construct with promoter (green), constant upstream and downstream 
exons (gray), target exon (dark blue), and 3’UTR (purple). Variant library is constructed 
targeting every single nucleotide variant within the cloned region (light blue) of the exon 
and surrounding introns. Hypothetical variants shown as red lightning bolts. B. To track 
the variants, a barcode (orange) is added to the 3’ UTR. 

A.A.

B.
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Figure 1-5: Processing RNA-Seq data for MPSAs.  

A. Deep sequencing links barcodes (orange) to individual variants (red lightning bolts). 
Plasmids are transfected into cells and the resulting RNA-seq dataset has a forward 
read representing the splicing outcome and a reverse read which contains the 
identifying barcodes and, sometimes, the splicing outcome. Variants are linked to 
multiple barcodes and each individual barcode can contain a diverse set of isoforms. B. 
Each biological replicate is first aligned. The, all possible splicing outcomes are 
collected, numbered, and assigned to named categories. Finally, isoform representation 
is tallied within each barcode and aggregated within variants to summarize the percent 
isoform usage. 

A.

B.
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 I implemented a custom python module to process the RNA-seq reads, compute 

percent isoform usage for each variant, nominate variants as splice disruptive, and 

visualize the resulting data. Relying heavily on pysam and pandas, the module takes 

the aligned RNA-seq reads as input and starts by collecting, numbering, and finally 

categorizing the isoforms represented within each biological replicate (Figure 1-5). 

Typically, a small number of isoforms are named (exon inclusion and exon skipping for 

instance), and many of the isoforms are ushered into a catch-all other category of lowly 

represented, rare isoforms (‘OTHER’). Within each barcode, the counts of each isoform 

category are tallied. Then, using a look-up table that links identifying barcodes to 

individual variants, barcode level isoform counts are aggregated into variant specific 

percent isoform usage. To account for differences in read coverage, each barcode’s 

isoform counts are weighted by the number of associated reads before computing 

variant level summaries. In this way, barcodes represented by more reads have more 

influence over the final isoform usage values. We finally take the median of the percent 

isoform usage across replicates as our final outcome measure. 

 Next, the percent isoform usage tallies are used to nominate candidate splice 

disruptive variants. To discern which variants have isoform usage outside of the 

baseline usage within a given exon, we must first construct a null distribution. To do 

this, we sample barcodes from the distal intronic variants, which usually have minimal 

impact on splicing, with replacement (bootstrapping; Figure 1-6). Since each variant is 

represented by a different number of barcodes, we bootstrap 1,000 samples with a 

matched number of null distribution barcodes for each variant. In this way, our null 

distribution can naturally reflect our uncertainty for variants with sparser barcode 
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representation (Figure 1-6B). Then, within each isoform and variant, we can compare 

the standardized, observed isoform usage with our standardized bootstrapped null 

distribution to arrive at a p-value. We perform this procedure separately for each 

biological replicate to account for any possible batch effects, and we compute isoform 

specific p-values to allow one variant to disrupt multiple isoforms. Finally, our resulting 

p-values are aggregated across replicates using Stouffer’s test.  

 

Figure 1-6: Constructing a null distribution.  

A. Splicing effect map for a hypothetical exon. Percent isoform use (y-axis) by transcript 
position (x-axis) for individual variants. Each variant is represented by a bar and shaded 
by nucleotide substitution. Distal intronic variants used to form the null distribution are 
boxed. B. Boot-strapped null distributions reflect uncertainty about experimental 
measurements. Hypothetical null distributions for variant with sparse (left) and dense 
(right) barcode coverage. Bootstrapped null distributions have a variant matched 
number of barcodes within each sample. 

A.

B.
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Next, we create an exon-specific effect size threshold as another indicator of 

splice disruption. We inform our effect size threshold with expert knowledge about the 

exon, known variants associated with pathological phenotypes, dosage tolerance of the 

exon, and population level frequencies. By carefully selecting an effect size threshold, 

we aim to separate pathogenic variants from those which may alter splicing without 

creating a phenotype. Variants with a significant p-value after FDR correction and 

meeting our effect size threshold criteria are then nominated as splice disruptive. We 

can then plot and visually inspect the resulting splicing effect maps and SDV 

classifications.  

In Chapters 2 and 3, we deploy two massively parallel splicing assays to 

measure the splicing effects of every point variant in and around exon 2 of POU1F155 

and exon 9 of WT156 respectively. POU1F1 is a key pituitary specific transcription factor 

involved in the regulation of growth hormone, prolactin, and other pituitary hormones67. 

Loss of function variants in POU1F1 are associated with hormonal deficiencies, short 

stature, and alteration of pubertal timing68. The use of two competing 3’ splice sites of 

exon 2 of POU1F1 results in two mutually antagonistic isoforms – alpha and beta69. The 

alpha isoform is the predominant, activating isoform while the beta isoform is normally 

lowly expressed and serves a repressive role69-71. Four adjacent missense variants 

within the beta specific region of exon 2 were identified in patients with growth hormone 

deficiencies, and we hypothesized that those variants could be altering splicing by 

increasing the expression of the minor beta isoform55. Chapter 2 outlines the results of 

our massively parallel splicing assay measuring the effects of the four missense 
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variants identified in hypopituitary patients along with the 1,070 other possible point 

variants in and around exon 2 of POU1F1. 

In Chapter 3, we examine the splicing effects of variants within exon 9 of WT1 

which, unlike POU1F1 exon 2, has two alternatively spliced isoforms using competing 5’ 

splice site donors. WT1 is an essential transcription factor that regulates kidney function 

and sexual development72. Loss of function variants within WT1 are associated with an 

array of overlapping nephrotic syndrome phenotypes including Denys-Drash and 

Frasier’s syndrome73. Frasier’s syndrome is caused by splicing dysregulation which 

alters the ratio of two isoforms: KTS+ and KTS-73,74. The function of each isoform has 

not yet been fully elucidated but the KTS- isoform is generally associated with DNA-

binding function as a transcription factor while the KTS+ may bind at a distinct set of 

targets, and separately, has been implicated as an RNA-binding factor, with functional 

roles that remain unclear72,75. The two isoforms differ by three amino acids – KTS – and 

are normally expressed in mature kidneys at a ~2:1 KTS+/KTS- ratio, but in Frasier’s 

syndrome a higher expression of the KTS- isoform is linked to pseudo-hermaphroditism, 

nephrotic syndrome, and tumors73,74,76. Seven adjacent intronic variants downstream of 

the KTS+ donor site have been previously shown to lower the KTS+/KTS- ratio in 

Frasier’s syndrome patients76, and in Chapter 3, we measure the splicing effects of 

those seven variants as well as the other 512 possible point variants in and around WT1 

exon 9 to identify other potential splice altering variants that could cause a nephrotic or 

sexual development phenotype. 
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1.4 Computational prediction of splicing effects 

High throughput functional assays can classify hundreds of variants 

simultaneously and RNA analysis of patient blood or tissue can provide strong evidence 

of splicing defects. However, RNA analysis may not be feasible for tissue specific 

splicing effects within difficult to access tissues, and the extent of unclassified variants 

makes the task of measuring splicing effects genome-wide daunting even with a high 

throughput approach. So, accurate and reliable computational predictions of splicing 

effects are needed to identify pathogenic variants at scale. The challenge of 

bioinformatic prediction of splice sites has been long standing with initial attempts using 

newly annotated genetic sequences to first define the bases comprising consensus 3’ 

and 5’ splice sites and then to design a position weight matrix (PWM) to identify putative 

splice sites with similar motifs in random sequences77. Similar to the identification of 

consensus splice site sequences, PWMs are built by counting the frequency of each 

nucleotide at each position surrounding the fixed splice sites across the genome and 

then converting those frequencies to probabilities. These PWMs can then be applied to 

cryptic or existing splice sites to measure their splice site strength – that is, sequences 

resembling the consensus motif would be more likely to be selected by the spliceosome 

as an authentic splice site. Thus, exons with high inclusion rates would be expected to 

be flanked by splice site motifs closely resembling the consensus sequence and with a 

corresponding high probability score from the PWM. However, classic PWMs treat 

every position as independent, so the next wave of splice prediction tools employed 

Markov models, early neural nets, decision tree methods, and maximum entropy 

models to incorporate information about dependencies between adjacent and non-
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adjacent positions at the splice sites78-81. MaxEntScan is one of the enduring tools from 

this era and uses a maximum entropy distribution trained on the short motifs 

surrounding splice sites to predict relative splice site strength78. The maximum entropy 

model underlying their method uses a greedy search algorithm to select the best set of 

constraints modeling the interdependent nucleotide probabilities. Fitting those 

constraints results in a likelihood ratio interpreted as the probability each motif 

represents a true splice site or the splice site strength of each motif compared to a set 

of cryptic motifs.  

Since there is not enough information content within the conventionally 

recognized splicing motifs (splice sites, branchpoint, polypyrimidine tract) to distinguish 

authentic splice sites from decoys and thereby define exons16, the next task was to 

computationally and experimentally define the short regulatory motifs outside of the 

splice site region. Various groups looked for computational signals of potential splicing 

regulatory motifs by identifying motifs enriched in exons with weak vs. strong splice 

sites27,29,82, motifs enriched in constitutive vs. alternatively spliced exons82,83, motifs 

enriched in exons vs. pseudo exons or UTRs84, motifs depleted in authentic exons84, or 

through sequence conservation24,27,29,85. On the experimental side, the enumeration of 

key splicing regulatory motifs has proceeded through mutagenesis of random short 

motifs within mini-gene constructs. Putative splicing regulatory motifs have been 

identified with the iterative SELEX method paired with RT-PCR86-88, FACS selection in 

which exon skipping would reconstitute a fluorescent reporter89, and more recently, 

saturation mutagenesis of all possible hexamers within two different cloned exons read 

out using RNA-seq17 and saturation mutagenesis of short motifs around the 3’ and 5’ 
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splice sites read out with RNA-seq90. Although the resulting lists of potential regulatory 

motifs was almost exhaustive of all possible motifs and there was little overlap across 

the various sets of putative short regulatory motifs30, the catalogs of short motifs have 

been used as features in a number of bioinformatic splice prediction tools90-93, and 

computational algorithms have been built to detect potential regulatory elements within 

random sequences92,94. One of these, HAL, uses an additive linear model to predict the 

change in percent spliced in (PSI) of the impacted exon based on the presence of 

synthetic short motifs in and around the 5’ and 3’ splice sites derived from saturation 

mutagenesis measurements at the splice sites of entirely synthetic sequences 

subjected to MPSAs90. 

Contemporary bioinformatic splice prediction algorithms rely on deep learning or 

more conventional machine learning algorithms to predict splice site usage, and are 

trained on annotated sequences, curated benign and pathogenic variant sets, and 

evolutionary constraint layered, and features derived from existing prediction algorithms. 

Large-scale genetic variation databases such as gnomAD, reflective of a general adult 

population95, and ClinVar, which is a clearinghouse for clinical variants and their expert 

interpretations (benign, pathogenic, or uncertain)96 serve as one source of training data 

for these tools. However, there are several potential problems with this type of training 

data. For instance, defining benign splice variants based on a high population frequency 

could include most modestly common variants (e.g., minor allele frequency 0.1-1%) that 

alter splicing without causing a Mendelian phenotype. Moreover, not all ClinVar entries’ 

interpretations are based on functional evidence – for instance a synonymous variant 

might be presumed benign without further investigation but could in fact alter splicing. 



 24 

Finally, the available training data have a severe class imbalance, with the sets of 

known pathogenic variants tending to over-represent variants at the essential 

dinucleotides of canonical splice sites, which are straightforward to predict and could 

lead to inflated performance during the testing phase of tool creation. SQUIRLS, 

MMSplice, and S-Cap were all trained and tested using sets of benign and pathogenic 

variants that were either measured in previous massively parallel splicing assays or 

curated from databases like ClinVar and gnomAD91,97,98. All three algorithms use 

sequence features derived from small-scale, defined exonic and intronic regions within 

machine learning frameworks to create their predictions. MMSplice trained on the same 

short motif dataset as HAL and additionally incorporated information from annotations of 

the impacted exons, disease states of ClinVar variants, and splicing effects from broad 

splicing saturation screens as part of training. S-Cap bolstered the predictions of 

SPANR – another bioinformatics splice prediction algorithm – with additional sequence 

features based on short defined sequence regions including evolutionary conservation 

as measured by phyloP, CADD, and LINSIGHT, and disease states from curated 

clinical pathogenic sets v. presumably benign variants found in gnomAD. SQUIRLS 

trained on a custom pathogenic variant set vs benign ClinVar variants and modeled the 

information content within small regions of the impacted exon as well as incorporating 

evolutionary conservation and measured scores of exonic splicing regulatory regions.   

Similar to earlier tools like MaxEntScan78, another set of algorithms is trained 

using information from annotated sequence which avoids some of the inherent flaws 

related to curated sets of deleterious and neutral variants. Bayesian methods drive 

SPANR’s splice effect predictions which were trained from sequence features derived 
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from the annotations of alternatively spliced exons and estimates of exon specific 

percent spliced in (PSI) values99. SPANR extracts sequence features within the 

impacted exon and proximal introns including splice site strength, nucleosome 

positioning, and existence of splicing regulatory motifs. Two recent tools – SpliceAI and 

Pangolin – use deep learning on a long flanking sequence context (10,000 bp) to predict 

the probability that each position in the genome is an acceptor or donor100,101. Neither 

tool used pathogenic/benign labels during training, instead deriving truth labels for each 

chromosomal position in the training set based upon whether that position is an 

acceptor or donor within a set of gene model annotations. These tools’ predictions of 

splice disruption are based on the change in probability between WT and variant 

sequences that each position is a splice site. Pangolin advances the previous efforts of 

SpliceAI by training on both human and other mammalian (primate, rat, and mouse) 

sequence annotations and by providing tissue specific predictions. SpliceAI in particular 

has outperformed other contemporary splice prediction algorithms in recent 

benchmarking studies102-107, so SpliceAI predictions have been used as a feature in 

CADD-Splice, a metaclassifier which predicts overall pathogenicity of each variant and 

is not restricted to splice altering variants108, and in ConSpliceML, which added a metric 

of constraint against splice-disrupting population variation using information from 

gnomAD and SpliceAI predictions. Combining these constraint metrics with SQUIRLS 

and SpliceAI predictions into an ensemble classifier may help to differentiate pathogenic 

and splice disruptive variants since not all splice altering variants create a deleterious 

phenotype105. 
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 In Chapter 4, we will systematically benchmark several current bioinformatics 

tools using saturation splicing screens, which have not yet been extensively used to that 

end. Specifically we will test HAL90, SQUIRLS91, MMSplice93, S-Cap98, SPANR99, 

SpliceAI100, Pangolin101, and ConSpliceML105 using datasets derived from massively 

parallel splicing assays in POU1F155 (Chapter 2), WT156 (Chapter 3), BRCA148, FAS57, 

and RON59 as well as one curated set of neutral and splice disruptive variants from the 

literature with functional evidence in MLH1. By testing each tool against saturation 

splicing screens, we avoid the bias associated with the over-representation of canonical 

sites within manually curated sets of variants. We then report the best performing tool 

overall and within different variant classes and provide specific recommendations for 

areas of improvement within computational splice prediction.
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Chapter 2 High-Throughput Splicing Assays Identify Missense and 
Silent Splice-Disruptive POU1F1 Variants Underlying Pituitary 

Hormone Deficiency 
 

2.1 Abstract 

Pituitary hormone deficiency occurs in ~1:4,000 live births.  Approximately 3% of 

the cases are due to mutations in the alpha isoform of POU1F1, a pituitary-specific 

transcriptional activator.  We found four separate heterozygous missense variants in 

unrelated individuals with hypopituitarism that were predicted to affect a minor isoform, 

POU1F1 beta, which can act as a transcriptional repressor.  These variants retain 

repressor activity, but they shift splicing to favor the expression of the beta isoform, 

resulting in dominant negative loss of function.  Using a high throughput splicing 

reporter assay, we tested 1,070 single nucleotide variants in POU1F1.  We identified 96 

splice disruptive variants, including 14 synonymous variants.  In separate cohorts, we 

found two additional synonymous variants nominated by this screen that co-segregate 

with hypopituitarism. This study underlines the importance of evaluating the impact of 

variants on splicing and provides a catalog for interpretation of variants of unknown 

significance in the POU1F1 gene.   

2.2 Introduction 

POU1F1 (formerly PIT-1, OMIM: 173110) is a signature pituitary transcription 

factor that directly regulates the transcription of growth hormone (GH, OMIM: 139250), 
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prolactin (PRL, OMIM: 176760), and both the alpha (CGA, OMIM: 118850) and beta 

(TSHB, OMIM: 188540) subunits of thyroid stimulating hormone67,109.  In mice, Pou1f1 is 

expressed after the peak expression of Prop1 (OMIM: 601538) at E14.5 and remains 

expressed into adulthood110,111.  A well-characterized mutant of Pou1f1 (Pou1f1dw/dw) 

carries a spontaneous missense mutation (p.Trp251Cys) in the homeodomain that 

disrupts DNA binding111,112.  The homozygous mutant mice have no somatotrophs, 

lactotrophs or thyrotrophs except for the Pou1f1-independent rostral tip 

thyrotrophs111,113,114.  In humans, loss of POU1F1 function typically results in GH, TSH 

and PRL deficiency68. 

 POU1F1 undergoes an evolutionarily conserved program of alternative 

splicing115,116, resulting in a predominant isoform, alpha, that acts as a transcriptional 

activator and a minor isoform, beta, that acts as a transcriptional repressor69,70,109.  In 

the human pituitary gland, the beta isoform comprises approximately 1-3% of POU1F1 

transcripts 115,117.  The POU1F1 beta isoform transcript is created by utilization of an 

alternative splice acceptor sequence for exon 2, located 78 bp upstream of the alpha 

acceptor, resulting in a 26 amino acid insertion that encodes an interaction domain for 

the transcription factor ETS1 (OMIM: 164720).  This insertion, which is absent in the 

alpha isoform, disrupts the POU1F1 transactivation domain at amino acid 48.  The 

POU1F1 alpha and beta isoforms have different activities depending on the context of 

the target gene69.  For example, the POU1F1 alpha isoform activates its own 

expression, but the beta isoform does not, and the beta isoform interferes with alpha 

isoform mediated auto-activation70.  Although alternative splicing of POU1F1 is 
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evolutionarily conserved among vertebrates, the functional significance of the minor, 

beta isoform remains unclear115. 

  The first case of a recessive POU1F1 loss of function was described in a child 

with combined pituitary hormone deficiency (CPHD, OMIM: 613038, 262600, 221750, 

262700, 601538, 173110, 615849, 600577, 182230, 612079, 602146) born to 

consanguineous parents118; since then, many unique variants in POU1F1 have been 

reported in people with CPHD or isolated growth hormone deficiency (IGHD, OMIM: 

307200, 262400, 173100, 612781, 139250, 618157,139191, 262500, 615925, 

618160)119-125(reviewed in 126).  A few dominant negative mutations have been reported 

that likely act by interfering with the function of POU1F1 dimers.  The variant 

p.Pro76Leu  alters the transactivation domain and causes completely penetrant 

IGHD127, p.Lys216Glu interferes with the ability of POU1F1 to interact with retinoic acid 

receptors and CREBBP (p300, OMIM: 600140)128, and p.Arg271Trp interferes with the 

ability of POU1F1 to be tethered to the nuclear matrix through MATR3 (OMIM: 164015), 

SATB1 (OMIM: 602075) and CTNNB1 (OMIM: 116806)129.  All of the reported mutations 

are located in domains shared by the alpha and beta isoforms of POU1F1 and were 

functionally tested using the alpha isoform only.  

 We found four missense variants, in four independent families, that shift splicing 

to favor the POU1F1 beta isoform almost exclusively, while retaining its transcriptional 

repressor activity on the POU1F1 enhancer.  We used a high throughput assay to 

identify in total 132 variants in and around exon 2 that cause exon skipping, isoform 

switching, or cryptic isoform use.  With this splicing effect catalog, we evaluated 

additional families with hypopituitarism and identified two unrelated individuals carrying 
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synonymous POU1F1 variants that affect its splicing without changing the amino acid 

sequence.  This study underscores the importance of evaluating splicing defects as a 

disease mechanism.  

2.3 Methods 

2.3.1 Informed consent 

 The studies were approved by ethical committees: the local Comite de Eticae 

Pesquisa da Faculdade de Medicina da Universidade de São Paulo (CEP-FMUSP) and 

the national Comite nacional de etica em pesquisa (CONEP) CAAE, 

06425812.4.0000.0068; the Ethics Committee of the Faculty of Medicine, University of 

Leipzig (UL), Karl-Sudhoff-Institute for Medical History and Natural Sciences, Käthe-

Kollwitz-Straße 82, 04109 Leipzig, Germany; and the Comité de Ética en Investigación 

(Research Ethics Committee) of the Hospital de Niños Ricardo Gutierrez (HNG), Gallo 

1330, Ciudad autónoma de Buenos Aires, Argentina (CEI Nº 16.06).  The 

GENHYPOPIT network collected anonymized information in a database declared to 

health authorities in accordance with local regulations at Aix-Marseille Université (AMU) 

- Conception Hospital (Assistance Publique - Hôpitaux de Marseille, AP-HM), and a 

declaration was made to the National Commission for Data Protection and Liberties 

(CNIL-France): 1991429 v 0.  Adult individuals or the parents of children signed a 

written informed consent to participate.  Families 1, 3, and 6 are historical cases that 

were referred to the GENHYPOPIT network for genetic testing.  Limited information is 

available for Families 1 and 3, and they were lost for follow up.  The University of 

Michigan Institutional Review Board (UM) found the study exempt because DNA 

samples were anonymized before exome sequencing at UM. 
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2.3.2 Genomic DNA sequencing 

 Individuals from Families 1, 2, 4, and 5 underwent whole exome sequencing 

(WES).  Representative POU1F1 variants in Family 3 and 6 were discovered in a 

traditional CPHD candidate gene screening using Sanger sequencing (PROP1, 

POU1F1, LHX3 and LHX4) (LHX3 OMIM 600577, LHX4 OMIM 602146).  WES of 

Families 1 and 5 was carried out at University of Michigan as previously described119.  

WES of Family 2 was performed at the Broad Institute as previously described130.  WES 

of Family 4 was performed at the Institute of Human Genetics at University of Leipzig.   

2.3.3 Expression vectors and cell culture 

 The open reading frame of either POU1F1 isoform alpha (RefSeq: 

NM_000306.3) or beta (RefSeq: NM_001122757.2) was cloned into pcDNA3.1+/C-(K)-

DYK.  Site directed mutagenesis was used to obtain each of the variant POU1F1 beta 

isoforms: p.Ser50Ala, p.Ile51Ser, p.Leu52Trp, and p.Ser53Ala in the beta isoform 

(Genscript).  A firefly luciferase reporter gene was constructed in pNBm81-luc with 14 

kb of the mouse Pou1f1 5’ flanking sequences that includes early and late enhancers 

and the promoter, and 13 bp of the 5’UTR.  Cloning was performed with Infusion HD 

(Clontech) or NEBuilder HiFi DNA Assembly (New England Biolabs).  Plasmid 

sequences were confirmed by Sanger sequencing.  The pRL-TK renilla (Promega) was 

used as a normalization control and pcDNA3.1(-) (Thermo-Fisher) to keep the total DNA 

constant.  COS-7 and GH3 cells were purchased from the American Type Culture 

Collection.  Cells were maintained in Dulbecco's modified eagle medium (DMEM, Gibco, 

Grand Island, NY, USA) containing 10% fetal bovine serum and pen-strep (Gibco).  

Plasmids were transiently transfected using ViaFect Transfection Reagent (Promega, 
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Madison, WI, USA).  Luciferase activities were measured as suggested by the 

manufacturer (Dual-luciferase assay system; Promega). 

2.3.4 Exon trapping assay  

 Human POU1F1 exon 2, flanked by partial intron 1 (85 bp upstream) and intron 2 

(178 bp downstream), was cloned into the BamHI cloning site of the pSPL3 plasmid 

(Invitrogen) to create an exon trapping plasmid with a total insert size of 413 bp.  

Similarly, a minigene exon trapping plasmid was constructed that included the last 85 

bp of intron 1 and the first 85 bp of intron 5, for a total insert size of 3,442 bp including 

exons 2, 3, 4, and 5.  Site directed mutagenesis was used to create the desired 

variants.  Plasmids were transiently transfected into COS-7 cells.  Total RNA was 

purified with RNeasy mini (Qiagen).  After reverse transcription, we analyzed exon 

trapping using RT-PCR with following primers; Primers SD6 Forward (5'-TCT GAG TCA 

CCT GGA CAA CC- 3') and SA2 reverse (5'- ATC TCA GTG GTA TTT GTG AGC -

3')131.   

2.3.5 POU1F1 Saturation Mutagenesis 

 The cloned POU1F1 fragment in pSPL3 was divided into four overlapping tiles of 

150 bp each, spanning exon 2 plus flanking introns (79 bp upstream to 131 bp 

downstream).  Mutant tile libraries containing every possible single nucleotide variant 

were synthesized as a single 150mer oligonucleotide pool by Twist Bio.  HiFi Assembly 

was used to replace each wild type tile with the respective mutant tile library amplified 

from the oligo pool.  The resulting mutant minigene library pools were transformed in 

10b E. coli (New England Biolabs), with a minimum coverage of 90 clones per mutation.  
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2.3.6 Mutant library barcoding and sequencing 

 To tag each mutant minigene clone with a unique barcode, a random barcode 

sequence (N20) was inserted by HiFi Assembly into the MscI site within the common 3’ 

UTR.  Subassembly sequencing132 was used to pair each 3’ UTR barcode with its linked 

variant(s) in cis.  Briefly, a fragment starting with the POU1F1 insert and ending at the 

N20 barcode (2.2 kb downstream) were amplified from the plasmid library DNA by PCR 

using 5’-phosphorylated primers.  The resulting linear fragment was re-circularized by 

intramolecular ligation using T4 DNA ligase (NEB), to bring each barcode in close 

proximity to the mutagenized region.  From this re-circularized product, paired-end 

amplicon sequencing libraries were generated, such that each reverse read contained a 

plasmid barcode and the paired forward read contained a sequence from the associated 

POU1F1 insert.  Barcode reads were clustered with starcode133 (arguments “-d 1 -r 3”) 

to generate a catalog of known barcodes.  Variants were called within each barcode 

group using freebayes134 and filtered to require majority support, and read depth ≥4 

along the entire region targeted for mutagenesis. Barcode-variant pairing was confirmed 

by Sanger sequencing of 15 clones selected at random from the POU1F1 library; of 

those, 13/15 were found in the final catalog of reconstructed sequences and associated 

barcodes, and all 13 perfectly matched the Sanger-sequenced clones.  

2.3.7 Pooled exon-trap transfection and RNA-seq 

 COS-7 cells were plated at 5x106 cells/60 mm plate.  Each was transfected with 

4 ug of the barcoded mutant exon-trap library using ViaFect reagent (3:1 ratio to DNA).  

After 24 hours, RNA was purified as above, and 5 ug of total RNA was used to prepare 

first-strand cDNA using the SuperScript III First-Strand Synthesis kit (Invitrogen) with 
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oligo dT primers.  Spliced transcript was amplified using nested PCR, initially for 6 

cycles using the SD6F/SA2R primers, followed by 20 cycles using primers 

SD2F/jklab0046 (TGTAGTCAGTGCCATCTTGGATCT).  Paired-end Illumina 

sequencing libraries were generated by tailing PCR (6 cycles) with a forward primer 

within the constant upstream exon 

(GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT 

AGGGCATAGTGCCATCTTGGATCT) and a reverse primer immediately downstream of 

the N20 barcode 

(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGTGAACTGCACTGTG ACA 

AGCTGC).  Unique dual i5/i7 indices were added by a second round of tailing PCR (6 

cycles), and the resulting products were purified by SPRI bead cleanup and submitted 

for Illumina sequencing on a Hiseq 4000 and/or Novaseq instrument.  

2.3.8 RNA-seq processing pipeline 

Reverse reads containing the plasmid barcode were searched for exact match to 

a known barcode from the plasmid library.  Forward reads containing the spliced 

sequence were mapped to a variant-specific reference consisting of the POU1F1 exon 

trap reference sequence with the respective mutation introduced in silico, using 

GMAP135 (arguments “ -t 8 -f samse --microexon-spliceprob=1.0 --allow-close-

indels=2”).  From the spliced reads, an isoform catalog was tallied requiring each 

isoform to be represented by at least three distinct barcodes and nine reads.  Spliced 

reads associated with each barcode were tallied to produce per-barcode isoform usage 

counts, and percent spliced in (PSI) fractions.  Barcodes corresponding to the same 

POU1F1 variant were then aggregated (weighted by the number of reads obtained) to 
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generate for each variant a mean PSI score for all known isoforms.  Isoforms not 

matching a known isoform (beta, skip, or alpha) were placed in a catch-all category 

called “OTHER”.  Barcodes represented by fewer than three reads were discarded from 

further analyses.    

2.3.9 Fold-change and significance testing 

 PSI distributions under the null hypothesis (no splicing difference) were 

approximated by bootstrap sampling. For each tested variant, the equivalent number of 

barcodes was drawn (with replacement) from intronic background region variants 

(defined as intronic variants >20 bp from exon boundaries), repeated 1,000 times, and 

used to derive a null distribution against which each per-variant observed PSI values 

was converted to a z-score.  For each variant, the z-scores were combined across 

replicates using Stouffer’s test.  This process was repeated separately for each isoform.  

For each of the three tested alternative isoforms (beta, skip, other), a fold-change over 

background was calculated for each variant.  This was taken as the PSI value for that 

variant and isoform, divided by the sampling mean PSI for that isoform derived from the 

intron background region barcodes; the median of these values was then computed 

across replicates.  Variants with a z-score > 4.16 (Bonferroni-corrected threshold for p = 

0.05) and at least a 3-fold change from the average null distribution PSI for the beta, 

skip, or other isoform in at least half the replicates were nominated as splice disruptive 

variants (SDV).  Variants which met the z-score threshold but had a fold-change 

between 2 and 3, or which met the SDV criteria overall but failed to meet it individually 

in ≥7 replicates, were labeled as intermediate. 

2.3.10 Comparison of bioinformatic predictors 
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 HAL delta_psi scores90, SPANR zdelta_psi scores99, SpliceAI ds_max scores100, 

and MMSplice delta_logit_psi scores93 were obtained from their original publications 

without modification.  To compute per-variant ESRseq scores17, we took the difference 

between the mean ESRseq z-scores of hexamers overlapping a variant position from 

that of hexamers overlapping the corresponding wildtype position.  Precision-recall 

curves were obtained to summarize each algorithm’s ability to predict the experimental 

determination of splice disruptiveness.  For algorithms which output signed scores, area 

under the curve (prAUC) was separately computed using signed and absolute scores as 

input and the higher prAUC was taken.  

2.3.11 Selection of candidate RNA binding proteins (RBP) 

 RNACompete z-scores23 were obtained from the cisBP-RNA database.  At each 

position, wild-type and variant-containing z scores were taken as the maximum among 

the overlapping k-mers, and the difference taken between the wild-type and variant 

scores.  Motifs with high scoring matches (wildtype z³3) to the wild-type sequence in 

the beta variant cluster (c.143 to c.167) were then pursued further. 

2.3.12 Data availability 

Custom python scripts and notebooks used to process the data are available at 

https://github.com/kitzmanlab/pou1f1_splicing. A look up table of variant effects is 

available both as Table S1 within the original publication55 and on Zenodo136. 

2.4 Results 

2.4.1 Mutations in the POU1F1 beta coding region cause hypopituitarism 
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 We initially focused on four cases of hypopituitarism from different cohorts in 

Europe and South America (Figure 2-1A).  Affected individuals’ presentation was 

variable, ranging from multiple hormone deficiency with pituitary stalk interruption 

(Family 1) to isolated GH deficiency (Family 2) (Table 2-1; Figure 2-2).  The affected 

individuals had severe short stature and responded well to GH therapy (Figure 2-1B).  

To identify causal variants, we performed whole exome sequencing (WES) for 

individuals in three families.  Combined with conventional Sanger sequencing in another 

family, this revealed four missense variants in exon 2 of the POU1F1 beta isoform, each 

in an unrelated family (Figure 2-1A, 2-3A).  The four individual POU1F1 missense 

variants are absent from Genome Aggregation Database (gnomAD) and in-house 

population-matched exome databases137,138, and they are predicted to be damaging by 

several bioinformatic algorithms (Table 2-1).  Remarkably, these variants clustered in 

four consecutive codons within the beta isoform: c.148T>G (p.Ser50Ala), c.152T>G 

(p.Ile51Ser), c.155T>G (p.Leu52Trp), and c.157T>G (p.Ser53Ala)  (Table 2-1).  Only 

one of these (c.155T>G, Family 3) appears to be de novo; the others were dominantly 

inherited and co-segregate with hypopituitarism phenotypes, except for c.148T>G which 

was inherited from the apparently unaffected parent in Family 1, indicating that if causal, 

this variant is incompletely penetrant.  The other parent in Family 1, the two affected 

children, and one unaffected relative also carried a variant of uncertain significance, 

SIX3 p.Pro74Arg (OMIM 603714).  No other variants in known hypopituitarism genes 

were detected. 
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Figure 2-1: Clinical characteristics of the variants of POU1F1 beta coding region. 

Pedigrees and the sequence of POU1F1 variants. Family 1-4 have variants in the 
POU1F1 beta coding region: c.148T>G (p.Ser50Ala), c.152T>G (p.Ile51Ser), c.155T>G 
(p.Leu52Trp), and c.157T>G (p.Ser53Ala). B. Growth curve of the affected individuals 
from Family 2 and 4. GH replacement therapy was effective in reaching ideal height.  
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Table 2-1: Clinical and molecular features of affected individuals 

Feature Family 1 Family 2 Family 3 Family 4 Family 5 Family 6 

Cases II.1 II.2 I.1 II.2 (index) II.4 III.1 II.1 1.2 II.1 I.1 II.1 (index) II.1 (index) II.2 

Sex Male Female Male Female Male Female Female Female Female Male Male Male Male 

Age at diagnosis 1st 
hormone deficiency / 
Hormone 

<5 yr / GH, 
TSH 

<5 yr /  GH, 
TSH 40s / GH <5 yr / GH < 5 yr / GH <5 yr / GH <5 yr / GH, TSH, 

PRL <5 yr  / TSH <5 yr / TSH, GH preteen / GH <5 yr / GH preteen / GH preteen / 
GH 

Height at diagnosis of 
GHD (SDS) na na -3.7 -5 -5.3 na -4 -5.42 -3.45 -4.2 -4.15 na na 

rhGH treatment 
(Yes/No) na na No Yes Yes Yes na Yes Yes Yes Yes Yes na 

Final  height (cm / SDS) na na 150 / -3.7 156.5/-0.9 165/-1.5 na na 150.9 /-2.67 still growing 147.9 / -3.66 still growing na na 

Pituitary hormone 
deficiencies GH, TSH GH, TSH GH GH GH GH GH, TSH, PRL GH, TSH, PRL, (ACTH†) GH, TSH, PRL, 

(ACTH†) GH GH GH GH 

Biochemical 
assessment 

             

       GHSTs  na na clonidine, 
ITT 

clonidine, 
ITT clonidine na na glucagon, insulin, 

clonidine Basal neonatal Insulin- 
Ldopa 

Arginine-
Clonidine ITT ITT 

       Maximum GH peak 
(ng/ml) na na 7.6 0.9 0.5 na na ND ND 2.9° 2.7** 3.7 mUI/l 3.6 mU/l 

       TSH (U/L) na na 0.6 0.7 1.7 na na na 0.28 na 3.4 normal normal 

      Total T4 (ug/dL) na na 6.4 6 5.6-7.3 na na na na na na na na 

       Free T4 (ng/dL) na na 0.7 0.6-1.1 0.6-0.9 na na na 0.4 0.9 1.2 na na 

       Prolactin (ng/mL) na na na 3.8 (pTRH 
12) 3.2-6.6 na na 2.0 mU/l 9 mU/l 8.3 4.4 na na 

       Cortisol (ug/dL) na na na peak ITT 
42 normal na na treated in 20's 36.2 nmol/l 13 13.2 na na 

       LH/FSH na na na early 
puberty 

normal 
puberty na na Delayed puberty, 

spontaneous pregnancy Normal Spontaneous 
puberty 0.1/0.75 spontaneous 

puberty na 

Pituitary MRI Disrupted 
stalk 

Disrupted 
stalk Normal Normal Normal na Normal Normal Normal na APH Normal na 

Extrapituitary brain 
MRI na na na na na na na 1 cm left frontal and 

parietal lobe abnormality Normal Normal Normal na na 

Dysmorphic features  none noted none noted none noted large 
forehead none noted na na 

Intellectual disability, 
delayed puberty, 

strabismus, astigmatism, 
nystagmus, dysplastic 

thyroid gland 

Macroglossia, 
bilateral hearing 

impairment, 
developmental 

delay, dysplastic 
thyroid gland 

none noted 

Short stature, 
frontal bossing, 

high pitched 
voice 

na na 

Molecular findings (all 
in heterozygous state) c.148T T>G c.148T T>G c.152T>G c.152T>G c.152T>G c.152T>G c.155T>G c.157T>G c.157T>G c.150T>G c.150T>G c.153T>A c.153T>

A 

 p.Ser50Ala p.Ser50Ala p.Ile51Ser p.Ile51Ser p.Ile51Ser p.Ile51Ser p.Leu52Trp p.Ser53Ala p.Ser53Ala p.Ser50= p.Ser50= p.Ile51= p.Ile51= 

In silico predictions               

     CADD 22.00 23.4 25.8 18.65     

     SIFT damaging damaging damaging damaging     

     PP2 benign benign probably 
damaging benign     

     Mutation taster disease causing disease causing disease causing disease causing     

na: not available; GHSTs: growth hormone stimulation tests, ND: non-detectable, MRI: magnetic resonance imaging, 
rhGH: recombinant human growth hormone, APH: anterior pituitary hypoplasia; ITT: insulin-tolerance test; *Cut-off 4.8 
ng/ml; °*cut-off 10 ng/ml; †diagnosed in late 20s for I.2 and newborn for II.1
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Figure 2-2: Clinical information for Family 4.  

Brain MRI of individual I.1 (A, B; as a teenager) and II.1 (C-D; as a pre-teen).  Thyroid 
ultrasound of individual I.2 (E) and II.1 (F).  1Arteria carotis communis.   

A B

C D

E

F
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Figure 2-3: Variants in the POU1F1 beta coding region suppress the function of alpha 
isoform and lead to splicing abnormality.  

A. Schematic of the human POU1F1 gene and protein isoforms produced by use of 
alternate splice acceptors at exon 2.  The Pou1f1 beta isoform has an insertion of 26 
amino acids located at amino acid 48 in the transactivation domain. B. COS-7 cells 
were transfected with a Pou1f1-luciferase reporter gene and expression vectors for 
POU1F1 alpha or beta isoforms either singly or together in the ratios indicated (2N and 
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1N).  WT POU1F1 alpha has strong activation at 2N and 1N dosages.  WT and variants 
of POU1F1 beta isoform have no significant activation over background.  A 50:50 mix of 
alpha and WT beta isoforms exhibited reduced activation.  The variant beta isoforms 
suppress alpha isoform mediated activation to a degree similar to WT. C. Diagram of 
the splice acceptor site consensus and the genomic DNA sequence at the boundary 
between intron 1 and splice sites utilized in exon 2 of the POU1F1 gene139 D.  
Evolutionary conservation of the genomic sequence encoding POU1F1 beta isoform in 
mammals and chicken.  E. Exon trapping assay with pSPL3 exon trap vector containing 
exon 2 of POU1F1 and portions of the flanking introns. F. Ethidium bromide-stained gel 
of exon trap products from cells transfected with the indicated plasmid.  Arrowheads 
indicate the expected products for exon skipping (Blue), alpha isoform (Yellow), and 
beta isoform (green). G. POU1F1 minigenes spanning from intron 1 to 5, with all of the 
intervening exons, were engineered with the indicated variants and assayed for splicing.  
WT and p.Pro76Leu POU1F1 splice to produce the alpha isoform, the G>T change in 
the splice acceptor causes exon skipping (red arrow) and the other variants all splice to 
produce POU1F1 beta isoform.  

2.4.2 Sequence variants retain POU1F1 beta isoform repressor function 

 We used a transient transfection assay to determine whether these variants 

disrupt the ability of POU1F1 to transactivate its own, highly conserved distal enhancer 

element140-142 (Figure 2-3B).  As expected, a Pou1f1 promoter reporter was strongly 

activated when co-transfected with cDNA of POU1F1 alpha isoform, which does not 

include the variant sites.  Neither WT POU1F1 beta isoform, nor any of the four 

missense variants found in affected individuals, showed significant activation of the 

Pou1f1-luc reporter.  Consistent with a repressive role for POU1F1 beta, co-transfection 

with alpha at a 1:1 ratio significantly suppressed activation compared to the equivalent 

amount of alpha isoform alone.  The four POU1F1 beta variants and WT beta repressed 

POU1F1 alpha activity to a similar degree.    

2.4.3 Missense variants disrupt normal POU1F1 splicing to favor the beta isoform  

 Alpha is normally the predominant POU1F1 isoform, comprising 97-99% of the 

POU1F1 transcripts in human pituitary gland115, but its splice acceptor is predicted to be 
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much weaker than the beta isoform acceptor 78 bp upstream (MaxEntScan94; scores, 

alpha: -3.63, beta: 6.96) (Figure 2-3C).  The beta isoform splice acceptor sequence and 

coding region are evolutionarily conserved in mammals and birds (Figure 2-3D).  We 

reasoned that splice repressor and/or enhancer sequences in POU1F1 may dictate the 

normal balance of alpha over beta isoforms, and these may be disrupted by the four 

T>G transversions detected in individuals with hypopituitarism.  To test the effect of 

these variants directly, we cloned POU1F1 exon 2 beta and portions of the flanking 

introns into the exon trap splice reporter pSPL3 and introduced each variant by site 

directed mutagenesis (Figure 2-3E).  These small minigenes were transfected into 

COS-7 cells, and RNA was analyzed by RT-PCR.  As expected, the wild type minigene 

produced almost exclusively alpha isoform, while variants carried by affected individuals 

predominantly produced the beta isoform (Figure 2-3F).  We tested these small 

minigenes in GH3 cells, a rat pituitary tumor cell line that secretes growth hormone.  

The results were the same, suggesting that the splicing of rat exon 2 is the same in 

pituitary and non-pituitary cell lines (Figure 2-4).  This is consistent with previous 

studies of Pou1f1 splicing 143.  Finally, we tested splicing with larger minigenes, which 

contain portions of intron 1 and intron 5 with intact exons 2, 3, 4 and 5 as well as introns 

2, 3 and 4, and obtained similar results, indicating the additional sequence context does 

not strongly influence the observed splicing pattern (Figure 2-3G).  We also tested two 

previously reported POU1F1 variants in the longer minigene context.  The c.214+1G>T 

caused skipping of exon 2, as expected, resulting in an in-frame POU1F1 protein that 

lacks 80% of the transactivation domain144.  This variant is associated with mild 

hypopituitarism.  The p.Pro76Leu variant is located in the transactivation domain, 
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enhances POU1F1 interaction with other proteins, and is associated with severe, 

dominant IGHD127.  The effect of this variant on splicing had not been assessed 

previously, and we found that it produced predominantly alpha isoform expression, 

indistinguishable from wild type.   

 

Figure 2-4: Comparison of splicing in pituitary and non-pituitary cell lines.  

Cos-7 cells were transfected with the small minigene containing either wild type (WT) or 
the indicated variants in POU1F1 exon 2.  RT-PCR products were separated by gel 
electrophoresis.  Arrowheads indicate the expected products for exon skipping (Blue), 
alpha isoform (Yellow), and beta isoform (green).  B. The same experiment was 
conducted in GH3 cells.  M = 100 bp marker ladder, native = untransfected cells, NTC = 
no template control for RT-PCR. 

2.4.4 Saturation mutagenesis screen for splice disruptive effects  

 We set out to systematically identify splice disruptive variants in POU1F1 exon 2 

using a massively parallel splice reporter assay.  We designed oligonucleotide pools 

containing every possible single nucleotide variant across exon 2 beta (150 bp) and 210 

bp of the flanking introns (N=1080 variants), and generated libraries of this allelic series 

placed into the pSPL3 reporter.  To track the splicing outcomes associated with each 
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mutation, we placed a degenerate 20mer barcode in the downstream 3’ UTR.  The 

mutant plasmid library was subjected to subassembly sequencing132 to establish the 

pairing between each unique barcode and its associated POU1F1 mutation.  In total, 

the mutant library contained 255,023 distinct barcoded clones, among which 188,772 

(74.0%) had exactly one programmed mutation.  Nearly every targeted mutation 

appeared in this library (1070/1080, 99.1%), with a high degree of redundancy (median 

75.0 distinct barcodes/mutation, Figure 2-5).  

 

Figure 2-5: Completeness and uniformity of saturation mutagenesis.  

Stacked barplot showing, for each POU1F1 variant by position (x-axis) and allele 
(color), the number of distinct barcodes detected in RNA-seq data (median across 
replicates).  

The splice reporter library was transfected as a pool into COS-7 cells and 

processed similarly to the single mutation constructs.  Spliced reporter transcripts were 

read out en masse using paired-end RNA-seq (Figure 2-6A), with each forward read 

measuring an individual splicing outcome and the paired reverse read containing the 3’ 

UTR barcode which identifies the mutation(s) present in the primary transcript.  We 

performed 14 biological replicates, across which 94.2% (81.8-93.4%, mean 87.4%) of 

barcodes associated with single nucleotide variants in the clone library were detected.  

As expected, alpha was the predominant POU1F1 isoform (69.2% of reads overall), 
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followed by exon 2 skipping (25.6%), and beta (1.6%).  We created a catch-all category 

(‘Other’) for the remaining reads (3.6%) derived from the 262 other isoforms detected.  

Most of those noncanonical isoforms were only scarcely used; among them, the top 20 

accounted for >80% of the reads from that category.  For each POU1F1 variant, a 

percent spliced in (PSI) value was computed for each isoform (alpha, skip, beta, other), 

averaged over the associated barcodes.  PSI values were highly reproducible across 

replicates (median pairwise Pearson’s r: 0.92; Figure 2-7), and the effects measured in 

the pooled screen were corroborated by individual assays of 17 variants selected for 

validation (Figure 2-8).  

 

Figure 2-6: Splicing effect map in POU1F1 exon 2 and flanking introns, and 
identification of IGHD families with synonymous changes.  
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A. Percent usage of POU1F1 exon 2 alpha (top panel), beta (second panel), skip (third 
panel), and other isoforms (bottom panel) by variant position, as measured by 
massively parallel minigene assay.  Gray bars denote splicing-neutral variants, while 
shaded bars indicate the base pair change of each splice disruptive variant (dark colors) 
and intermediate variant (light colors).  Cropped intronic regions are shown in Figure 2-
9. B. A cluster of SDVs near the beta isoform splice acceptor leads to increased usage 
of the beta isoform, and in some cases, intermediately increased exon skipping.  
Diamonds colored by the alternate allele indicate variants in individuals with 
hypopituitarism, and empty diamonds indicate variants reported in gnomAD.  Missense 
variants’ labels are in bold text. C. Families 5 and 6 each had two individuals affected 
with IGHD and synonymous variants that were splice disruptive.  Pedigrees and Sanger 
sequence confirmation of variants are shown. 
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Figure 2-7: Inter-replicate correlation.  

A. Pairwise scatterplots of percent isoform use for beta, skip, other, and alpha isoforms 
among the fourteen biological replicates.  The median and range of Pearson’s 
correlation values across samples are shown for each isoform. B. Histogram plotting the 
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number of replicate samples in which variants met the splice disruptive variant (SDV) 
criteria; all SDVs met threshold in ≥8 replicates, with 55/96 found in all 14 replicates. 

 

Figure 2-8: Validation by individual minigene assays.  

Barplots show the proportion of isoform expression for alpha (blue), beta (orange), skip 
(purple) and other (green) isoforms measured by shotgun sequencing of RT-PCR 
products of individual mutant mini-gene transfections. Colored boxes indicate isoforms 
with increased (darkly colored) and intermediate (lightly colored) use, called from the 
pooled screen. Variants predicted as disruptive by SpliceAI100 (squares) or seen in 
individuals with hypopituitarism (diamonds) are shaded in black. 
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Figure 2-9: Uncropped POU1F1 splicing effect map.  

Uncropped version of Figure 2-6A, including cropped intronic regions lacking any splice 
disruptive or intermediate variants.  Isoform usage and variants are plotted as in Figure 
2-6A. Dashed black line indicates average isoform usage across null barcodes. 

2.4.5 Splice disruptive variants (SDVs) across POU1F1 exon 2  

 We measured the impacts upon splicing of 1,070 single nucleotide variants 

(Figure 2-6A and Figure 2-9).  Of these, 96 (9.0%) were splice disruptive variants 

(SDVs), which we defined as those which increased usage of beta, skip, or other 

isoforms by at least three-fold (Bonferroni-corrected p<0.05; mean observed fold-

change 8.10). SDVs using other isoforms or increasing beta usage were the most 

frequent (n = 35/96 variants associated with each outcome) followed by those 

increasing exon skipping (n = 30/96), with some variants (n = 4/96) impacting usage of 

multiple isoforms (Figure 2-10).  Variants leading to each outcome tended to cluster in 

distinct regions; notably, the beta-increasing SDVs were located near the 5’ end of the 

beta isoform.  Intronic SDVs tended to lead to skipping.  A few variants that increased 

skipping were scattered across exon 2, and there was some enrichment in the 5’ end of 

the beta isoform coding region, but most were enriched near splice donor and acceptor 

sites: 25 of 26 intronic SDVs were within +/- 20 bp of exon 2.  We identified an 

additional 36 intermediate variants which had weaker but still significant effects (2 to 3-

fold increase in beta, skip, or “other” isoforms usage; Bonferroni p<0.05). The majority 
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of these intermediate variants increased exon skipping (n = 22/36; 61.1%) and they 

clustered similarly to the SDVs associated with each isoform.  

 

Figure 2-10: Splice disruptive variants by isoform and variant type.  

Distributions of isoform usage z-scores for each subset of subsets are shown as violin 
plots.  Count within each intersection (and % of total) are shown above vertical bars.  
Count within each subset prior to intersection (and % of total) are shown along 
horizontal bars.  UpSet plot showing intermediate and splice disruptive variants (SDVs). 
SDVs are categorized by isoform (beta, skip, and other) and variant type (exonic, 
intronic, essential splice site, and synonymous).  Filled circles denote membership in 
multiple categories (e.g., third column from the left indicates there are 6 essential splice 
site SDVs causing increased exon skipping).  

We next examined the splicing isoforms in the “other” category. The associated 

35 SDVs were nearly all located within the coding region unique to the beta isoform and 
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at the alpha isoform acceptor site (n = 34/35; 97.1%).  Of these, most (n=28/34) create 

a cryptic acceptor AG dinucleotide that outcompetes the more distal, native alpha 

acceptor (Figure 2-11).  Most of these (n=20/28) result in a frame-shifted transcript with 

a premature truncation codon predicted to result in non-sense mediated decay.  In 

contrast, every one of the six possible variants in the native alpha acceptor “AG” 

dinucleotide activate a cryptic acceptor six bases downstream, leading to in-frame 

deletion of two codons (Figure 2-12).  By contrast to the cryptic acceptors, of 99 SNVs 

creating a GT dinucleotide, only one was used as a novel splice donor, c.290:C>T 

located 4 bp upstream of the native exon 2 donor.  

 

Figure 2-11: Splice site strength for novel alternate donors and acceptors.  

Splice site strength as predicted by MaxEntScan78 for novel alternate splice acceptor 
and donor sites.  Upper: P-value corresponds to a t-test comparing the splice site 
strength at acceptor sites created mutation, comparing accepts not used (n = 117) vs. 
those used (n = 28).  Dashed line (purple) represents the splice site strength of the 
native beta acceptor site.  Solid lines (green) indicate the splice site strength of the 
native alpha acceptor site and native donor site respectively.  Splice site strength is 
truncated at -20 in the positional plots, but minimum is as low as -31.6 for novel 
acceptors and donors within this exon. 
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Figure 2-12: Alternate splice sites and frameshift mutations.  

Detailed view of splicing effect measurements, plotted as in Figure 2-6B, focusing on 
native alpha acceptor site (left) and native donor site (right).  Colored and unfilled 
diamonds indicate variants seen in individuals with CPHD/IGHD (colored by alternate 
allele) and gnomAD variants, respectively.  Canonical and cryptic splice sites are boxed, 
red dashed lines demarcate canonical exon boundaries, and coding frame and 
corresponding amino acids are indicated below.  

 We next checked how the splicing disruption map scored the four POU1F1 

missense variants found in Families 1-4.  All four showed strongly increased beta 

isoform usage (beta PSI increased 9.63 to 11.01-fold over background), as seen in 

individual minigene assays (Figure 2-6B).  Our results also recapitulate previously 

described effects of two variants found in CPHD individuals: first, an upstream intronic 

variant c.143-5A>G145 which led to increased beta usage and intermediately elevated 

skipping (Figure 2-6C), and an essential splice donor variant c.292+1G>T which led to 

near-complete skipping (Figure 2-12)144.   

We also examined the incidence of splice disruptive POU1F1 variants in the 

general population.  The gnomAD database contains 93 of the variants measured here; 

among those, six (6.5%) are splice disruptive and four (4.3%) are intermediate, with all 

being individually rare (minor allele frequency ≤ 1.6x10-5; Figure 2-13).  Overall, 
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variants found in gnomAD were not significantly depleted for splice 

disruptive/intermediate effects relative to randomly selected subsets of the tested single 

nucleotide variants (p=0.74 Fisher’s Exact Test).  Thus, POU1F1 SDVs are tolerated to 

a similar extent as other predicted loss of function variants (stop gain, frameshift, splice 

site), which are observed throughout POU1F1 at low frequencies in gnomAD.  

 

Figure 2-13: Splice disruptive variants (SDVs) in gnomAD.  

Violin plots of the log10 allele frequency for each variant found in gnomAD v2.1.1 
(orange) and v3 (green) within each subset are shown. Count within each intersection 
(and % of total) are shown above vertical bars.  Count within each subset prior to 
intersection (and % of total) are shown along horizontal bars. P-value corresponds to a 
Fisher’s exact test comparing the proportion of splice disruptive or intermediate variants 
between gnomAD variants and variants absent from gnomAD. UpSet plots showing 
intersection of neutral, intermediate, and splice disruptive variants with variants in 
gnomAD.   
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2.4.6 Additional SDVs, including silent variants, in individuals with 

hypopituitarism  

 We next examined the splicing impacts of synonymous variants, which would 

typically be given low priority during genetic screening due to their expected lack of 

coding impact.  Of the 108 synonymous variants tested, 14 were splice disruptive and 

an additional 12 were intermediate (13.0% SDV; 11.1% intermediate; Figure 2-13).  We 

identified unrelated individuals with IGHD carrying two of these synonymous SDVs in 

the beta isoform coding region near the 5’ end of exon 2 (Figure 2-6C), both of which 

were absent in gnomAD and population-matched control databases.  The first, 

c.150T>G (p.Ser50=), was found among an Argentinian cohort (n=171) in a family with 

two individuals with severe short stature and IGHD (Table 2-1), for whom WES did not 

reveal any likely pathogenic variants in known CPHD or IGHD genes.  The index case 

had pituitary hypoplasia, and the individual responded well to recombinant GH 

treatment.  The second, c.153T>A (p.Ile51=), was found in a French family in relatives 

with severe IGHD.  The parent’s DNA was not available for testing, and the parent could 

be an unaffected carrier or an example of gonadal mosaicism.  Each of these two silent 

variants increased beta isoform usage to a degree similar to that of the four missense 

variants (beta fold change=10.7 and 4.15 for c.150T>G and c.153T>A, respectively).  

2.4.7 Comparison to bioinformatic splicing effect predictions 

 We examined how scores from splicing effect prediction algorithms compared 

with these experimental measurements.  We scored each single nucleotide variant in 

the targeted region of POU1F1 using SpliceAI93, MMSplice93, SPANR99, HAL90 and 

ESRseq scores17.  Among these, only SpliceAI predicted a high density of SDVs 
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specific to the exon 2 beta region surrounding the disease-causing variants (Figure 2-

14).  To benchmark each bioinformatic predictions, we took our SDV calls as a truth set 

and computed for each algorithm the area under the precision recall curve (Figure 2-

15).  SpliceAI was the most highly concordant with our results for both exonic variants 

(prAUC=0.843 vs other tools’ range: 0.251-0.351) and intronic variants (prAUC=0.663 

versus other tools’ range: 0.549-0.585).  Nevertheless, SpliceAI disagreed with our 

measurements for numerous variants: at the minimum threshold needed to capture all 

six variants seen in individuals with hypopituitarism as disruptive (SpliceAI score≥0.18), 

it achieved 80.2% sensitivity (n=19 SDVs according to the assay but not predicted by 

SpliceAI) and 97.3% specificity (n=26 variants predicted by SpliceAI but not identified by 

our assay) for predicting the SDVs we identified.  The degree of concordance with 

SpliceAI was largely insensitive to the fold change threshold used to call variants as 

splice disruptive (Figure 2-14).  Additional studies will be required to resolve the 

discordant predictions for variants observed during clinical screening.  
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Figure 2-14: In silico predictions of splice disrupting variants (SDV).  

Barplots showing for each variant (color) at every position (x-axis) the splicing effect 
measurements (top y-axis) and splice disruption as predicted by SpliceAI, ESRSeq, 
HAL, SPANR, and MMSplice (from second from the top to bottom y-axes). 
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Figure 2-15: Evaluation of in silico splicing effect predictions.  

A. Precision-recall curve showing the precision (y-axis) and recall (x-axis) of SpliceAI 
(blue)100, ESRseq (orange)17, HAL (green)90, SPANR (purple)99, and MMSplice (gray)97 
to predict SDVs (left) and splice disruptive or intermediate variants (right) in exonic 
regions.  The ‘x’ is the at the minimum threshold where SpliceAI predicts all of the 
variants seen in individuals with CPHD/IGHD as disruptive (SpliceAI score ≥ 0.18).  
Area under the curve (prAUC) is shown within the legend B.  Same as in A but for 
intronic variants. Since HAL and ESRseq values do not apply in noncoding regions so 
they are omitted from this plot.  C. Precision-recall curve of the precision (y-axis) and 
recall (x-axis) for SpliceAI prediction of measured splice disruption across varying fold-
change (fc) thresholds (range: 1 - 5) with the Bonferoni corrected p-value threshold held 
constant (p < .05) to call variants as disruptive. prAUC for each threshold is shown 
within the legend.  D. Scatterplot of SpliceAI prAUC (y-axis) at varying splice disruption 
fold-change thresholds (x-axis). 
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2.5 Discussion 

 We found six unrelated cases with CPHD or IGHD that can be explained by 

variants that shift splicing to favor the repressive beta isoform POU1F1.  The missense 

variants, p.Ser50Ala, p.Ile51Ser, p.Leu52Trp, and p.Ser53Ala, retain repressive 

function.  They act in a dominant negative manner by suppressing the ability of the 

POU1F1 alpha isoform, expressed from the wild-type allele, to transactivate expression 

of POU1F1 and other downstream target genes.  Using saturation mutagenesis coupled 

to a high-throughput RNA-seq splicing readout, we systematically tested nearly every 

possible single nucleotide variant in or near POU1F1 exon 2 for splice disruptive 

potential136.  We identified 96 SDVs and an additional 36 intermediate SDVs which 

similarly activate usage of the beta isoform or cause other aberrant splicing outcomes 

such as exon skipping.  

In addition to the four missense variants we identified initially, this screen also 

nominated 26 synonymous variants which were SDV or intermediately disruptive, 

together accounting for nearly a quarter of the possible synonymous variants in 

POU1F1 exon 2.  We identified two of these in unrelated families with IGHD, c.150T>G 

(p.Ser50=) and c.153T>A (p.Ile51=), each of which increased beta isoform usage 

similarly to the four missense variants that initially drew our attention.  These findings 

underscore the need to closely examine variants for splice disruptive effects, particularly 

synonymous variants that could be overlooked by traditional exome sequencing filtering 

pipelines. 

 The clinical features varied amongst the six families, although they were 

consistent within a family.  Families 1, 3, and 4 presented with CPHD, while Families 2, 
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5, and 6 had IGHD.  Moreover, Family 4 developed cortisol deficiency.  The reason for 

this variability in presentation is unknown.  However, there are precedents for variable 

clinical features and incomplete penetrance with other cases of hypopituitarism120.  

Approximately 50% of IGHD progresses to CPHD, and this can even occur when the 

mutated gene is only expressed in GH-producing cells, i.e. GH1146.  Even individuals 

with the same POU1F1 mutation (i.e. p.Glu230Lys) can present with either IGHD or 

CPHD147, indicating a contributing role for genetic background, epigenetic, and/or 

environmental factors.  Both affected relatives in Family 1 had stalk disruption, a 

phenotype not currently associated with any other POU1F1 variants.  This feature may 

be due to the presence of an additional variant in SIX3, p.Pro74Arg, that was carried by 

two unaffected relatives.  Heterozygous loss of function of SIX3 is associated with 

incompletely penetrant and highly variable craniofacial abnormalities, including CPHD 

and holoprosencephaly, and there is precedent in mice for Six3 loss of function to 

exacerbate the phenotype caused by mutations in other CPHD genes such as Hesx1148-

150.  

 Autosomal dominant inheritance is clear in Family 2, in which there were four 

affected individuals over three generations, as well as Families 4, 5, and 6.  POU1F1 

acts as a heterodimer151.  Some other dominant mutations in POU1F1 act as negative 

effectors due to the ability of the mutant protein to interfere with the action of the wild 

type protein produced from the other allele128,152,153.  The negative effect of POU1F1 

beta on the transactivation properties of POU1F1 alpha are context dependent, with 

differential effects on Gh, Prl and Pou1f1 reporter genes143.  The strongest effect was 

reported for autoregulation of POU1F1 expression via the distal, late enhancer; 
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dampening the auto-activation of POU1F1 expression, and adversely affecting 

differentiation of the entire POU1F1 lineage and result in anterior lobe hypoplasia.  

The lack of significant depletion for POU1F1 SDVs among ostensibly healthy 

adult populations underscores the possibility of variable expressivity and/or penetrance 

for POU1F1 splice-disruptive variants.  This is consistent with the apparently unaffected 

parents in Families 1 and 6.  A subset of these variants, like the variant c.219A>G which 

disrupts the alpha isoform acceptor and causes a frame-preserving two-codon deletion, 

may retain partial or complete function.  Still others, may cause loss-of-function without 

dominant negative effects, and would not be expected to be strongly depleted.  

In human genes, canonical splice site motifs contain less than half of the 

information content needed for proper splicing16.  Additional specificity is provided by 

short (6-10 nt) motifs termed exonic or intronic silencers and enhancers, which are 

bound by RNA binding proteins that promote or antagonize splicing154.  Although 

transcriptome-wide atlases have been developed to map these sites17,61, and derive 

motif models155, it often remains unclear how genetic variants impact their binding and 

in turn the eventual splicing output.  Our splicing effect map identifies a cluster of SDVs 

at the 5’ end of the POU1F1 exon 2 beta, each of which increases the usage of that 

normally repressed isoform.  These results suggest the presence of an exonic splice 

silencer (ESS) which may normally suppress utilization of the beta isoform acceptor.  

We do not expect any cell type specific factors to be involved because wild type 

minigene assays in pituitary cell lines and heterologous cell lines mimic the ratios of 

alpha:beta isoform transcripts found in normal pituitary gland 143.  We mined the cisBP-

RNA database 23 and identified eight candidate motifs with strong matches to the U-rich 
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wild-type sequence in this region (c.143 to c.167) corresponding to known splicing 

factors including ELAVL1 (HuR), RALY, TIA1, and U2AF2 (Figure 2-16).  All six 

hypopituitarism-associated variants replaced a U with another base (G in 5 of 6 bases), 

which may disrupt these motifs at high information content positions (Figure 2-17). 

Other variants predicted to disrupt these motifs tended to be beta-promoting more often 

than intermediate/neutral in our map (p < 0.05, Fisher’s Exact test).  These trends 

suggest that U-rich ESS serves to inhibit production of POU1F1 beta and this inhibition 

is disrupted by CPHD-associated variants, although conclusively identifying the specific 

cognate binding factor will require further study. 
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Figure 2-16: Changes in RNA binding protein motifs scores due to the SNVs in POU1F1 
beta.  

Barplots show the change in maximal RNAcompete38 kmer score (y-axis) by variant and 
position (x-axis), relative to the same motif scored against the wild-type POU1F1 
sequence.  Black stars indicate SDVs that promote the use of the minor beta isoform. 
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Figure 2-17: RNA binding protein (RBP) consensus binding motifs to wild-type (WT) 
sequence.  

Barplots displaying match scores (y-axis) for selected motifs defined by 
RNACompete156 scored against the wild-type POU1F1 sequence beta region (positions 
c.143 to c.167).  

 These results extend the breadth of endocrine disorders caused by disrupted 

splicing.  For example, in a large cohort with IGHD from Itabaianinha, Brazil, affected 

individuals are homozygous for a mutation in the splice donor dinucleotide (c.57+1G > 

A) in the growth hormone releasing hormone receptor gene (GHRHR)157.  In addition, 

most mutations that cause dominant IGHD type II affect splicing of the growth hormone 

(GH1) gene158.  Mutations in splice sites or splice enhancer sequences result in 

skipping exon 3 and production of a dominant-negative 17.5 kD isoform of growth 
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hormone that lacks amino acids 32-71159.  The severity of the disease is variable and 

correlates inversely with the ratio of 17.5 to 20 kD GH.  Finally, severe short stature 

associated with Laron syndrome, or GH resistance, can be caused by generation of a 

cryptic splice site in the GH receptor gene.  Individuals from El Oro and Loja in southern 

Ecuador are homozygous for a p.Glu180= codon variant (GAA to GAG) that do not 

change the amino acid encoded but create a splice acceptor site 24 nt upstream of the 

normally utilized site160.  It is notable that antisense oligonucleotide therapies hold 

promise for treating diseases caused by abnormal splicing, including IGHD161,162. 

 Splicing disruption accounts for a significant minority of the genetic burden in 

endocrine disorders, as in human genetic disease more generally1,163.  Some estimates 

from large-scale screens indicate that 10% of SNV within exons alter splicing, and a 

third of all disease associated SNVs impact splicing efficiency36.  Variants at or near 

canonical spice sites are readily recognized as pathogenic164, and these can be 

identified predicted with high accuracy by algorithms such as SpliceAI.  However, for 

exonic variants, particularly those farther from exon junctions, splicing defects may be 

more challenging to identify bioinformatically165-167.  Efforts to interpret these variants 

will need to account for the functional impacts of changing the encoded protein 

sequence as well as its splicing.  Finally, as our results illustrate, different variants in a 

single gene may lead to distinct splicing outcomes with diverse consequences ranging 

from the straightforward loss-of-function to dominant negative effects.  
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Chapter 3 High-Throughput Splicing Assays Identify Known and 
Novel WT1 Exon 9 Variants in Nephrotic Syndrome 

3.1 Abstract 

3.1.1 Background 

Variants that disrupt mRNA splicing contribute to pathogenesis in nearly every human 

genetic disorder. This includes Mendelian forms of nephrotic syndrome (NS), such as 

Frasier Syndrome (FS), which is caused by splicing disruptive variants (SDVs) near 

WT1 exon 9 splice donors resulting in decreased ratio of two natural splice isoforms, 

KTS+ and KTS-. However, beyond the few specific FS SDVs reported from case 

reports, accurately predicting other SDVs in WT1 remains a challenge. In vitro splice 

minigene assay provides one means to test variants’ splicing effect either one at a time 

or in highly multiplexed fashion. Therefore, we applied multiplex splice minigene assay 

across WT1 exon 9 to prospectively identify WT1 SDVs in a high-throughput manner. 

3.1.2 Methods 

WT1 exon 9 plus 200 bases of the flanking introns were cloned into an established 

minigene plasmid, in between constant synthetic exons. Large scale mutagenesis was 

performed to generate a variant library including every single nucleotide variant across 

the cloned region, each associated with a unique “barcode” sequence in the constant 

downstream exon. This variant library was then transfected into HEK293T and COS7 

cells with multiple replicates. RNA was harvested after 24 hours of transfection and 
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spliced transcripts from the minigene library were analyzed by target RNA-seq. The 

splicing patterns associated with each variant were quantified from the aligned reads.  

3.1.3 Results 

Nearly every possible single nucleotide variant was represented (518/519; 99.8%) with 

a high degree of internal replication (mean=79.7 barcodes per variant). The splicing 

disruption was heavily concentrated near the canonical splice sites, the alternate KTS+ 

and KTS- donors. We successfully identified 8 known FS variants dramatically lowered 

log2 (KTS+/KTS-) to -2.1 or lower, and 16 additional SDVs which disrupted KTS+/KTS- 

comparably to the known FS variants. We also identified 19 variants that increased 

KTS+/KTS-, with two have been observed in patients with disorder of sex development 

(DSD). 

3.1.4 Conclusions 

The pooled minigene assay is highly sensitive and specific for identification of 

pathogenic WT1 exon 9 splice disruption. Our multiplex screen identifies all known FS 

SDVs in WT1 exon 9. We also nominate an additional 16 possible yet unseen FS 

variants with similarly decreased KTS+/KTS-. A set of variants significantly increase 

KTS+ expression, which might be related to DSD. In summary, multiplex functional 

analyses can prospectively score genetic variants in NS and guide the clinical decision. 

3.2 Introduction 

Variants that disrupt proper pre-mRNA splicing contribute a share of the 

pathogenic burden in Mendelian forms of nephrotic syndrome (NS). One NS gene 

sensitive to splicing disruption is WT1, which encodes a key genitourinary transcription 
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factor essential for podocyte development and integrity. Its disruption results in a 

phenotypic spectrum including isolated NS, syndromic NS with tumors and gonadal 

dysgenesis, differences of sexual development, Wilms Tumor and leukemia72. 

 WT1 undergoes alternative splicing, including in exon 9 at a pair of donors which 

result in protein isoforms that differ by the three amino acids, KTS. These isoforms have 

overlapping and district functional roles: both act as transcription factors75 but with 

partially different sequence motif specificities and gene targets168-171. Normally, they are 

expressed in the mature kidney73,76 at a ~2:1 ratio (KTS+:KTS-). Variants which disrupt 

the KTS+ donor reduce this ratio and cause an extremely rare syndrome called Frasier 

Syndrome (FS), consisting of male gonadal dysgenesis, NS, Wilms tumor or 

gonadoblastoma (Figure 3-1)73,74,76. 

 

Figure 3-1: Frasier’s syndrome and WT1 exon 9. 

WT1 exon 9 alternative splice forms KTS+ (blue) and KTS- (yellow). 

 Currently, eight variants downstream of the KTS+ splice donor are known 

to cause FS or focal segmental glomerulosclerosis (FSGS)74,76,172-175. It remains unclear 

if other nearby variants are similarly splice disruptive. Accurate computational prediction 

of variants’ splicing effects remains challenging, so we devised a massively parallel 

splice assay55 to measure the splicing effects of every possible single nucleotide variant 

(SNV) in or near WT1 exon 9 and the flanking introns (N=519 variants). This identified 

all eight known FS/FSGS variants and nominated an additional 49 WT1 SNVs as splice 

disruptive, including two patient variants with uncertain interpretations (Table 3-1). This 
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splicing effect map can support clinical interpretation of novel WT1 variants and improve 

the accuracy of genetic diagnosis. 

Table 3-1: Splice assay scores for previously reported pathogenic variants for Frasier 
Syndrome, focal segmental glomerulosclerosis, or 46,XX OTDSD. 

Variant Genomic 
position 
(hg19) 

Splice 
score 
log2( 

KTS+/KTS-) 

Called  
splice 

disruptive? 

ClinVar 
Interpretation 

Literature 
report as 

pathogenic 

Variant 
consequence 

c.1437A>G 32413528 2.76 YES Conflicting 
interpretations  

YES synonymous 

c.1447+1G>A 32413517 -2.81 YES 
 

 YES intronic 

c.1447+1G>C 32413517 -2.56 YES 
 

 YES intronic 

c.1447+2T>C 32413516 -2.64 YES Likely pathogenic  YES intronic 

c.1447+3G>A 32413515 1.72 YES Uncertain 
significance 

this study intronic 

c.1447+3G>T 32413515 -2.71 YES 
 

 YES intronic 

c.1447+4C>T 32413514 -2.21 YES Pathogenic/Likely 
pathogenic 

 YES intronic 

c.1447+5G>A 32413513 -2.51 YES Pathogenic  YES intronic 

c.1447+5G>T 32413513 -2.69 YES 
 

 YES intronic 

c.1447+6T>A 32413512 -2.58 YES Pathogenic  YES intronic 

3.3 Materials and methods 

3.3.1 Cell culture 

HEK293T and COS-7 cells were obtained from American Type Culture Collection 

(ATCC) and cultured in Dulbecco’s modified Eagle’s medium with high glucose, L-

glutamine and sodium pyruvate (DMEM; GIBCO, Grand Island, NY, USA) containing 

10% fetal bovine serum and 1% penicillin-streptomycin (10,000 U/mL) (GIBCO). Media 

was checked monthly for mycoplasma contamination by PCR. 

3.3.2 Saturation mutagenesis library construction 

A WT1 minigene construct was prepared by cloning a fragment with WT1 exon 9 plus 

414 bp of its flanking introns into the vector pSPL3 (Invitrogen, Carlsbad, CA) at the 
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BamHI site, an intronic context flanked by a synthetic first and last exon.  This construct 

was subjected to saturation mutagenesis as previously described55, targeting the full 

exon +/- 40 bp (173 bp). Briefly, a mutant oligonucleotide pool was designed in which 

each position across the targeted region was successively replaced by three other 

mutant bases. The pool was synthesized by Twist Biosciences (South San Francisco, 

CA), amplified by limited-cycle PCR, and cloned by HiFi Assembly (New England 

Biolabs, Ipswitch, MA) into the vector backbone linearized by inverse PCR. 

3.3.3 Mutant plasmid barcoding 

A library of random 20mer barcode sequences were synthesized by IDT 

(Coralville, IA) and cloned into the downstream 3’ UTR at the MscI site by HiFi 

assembly. The resulting pools of mutant WT1 exon 9 minigenes with barcodes were 

transformed by electroporation into NEB 10-b E. coli, reaching library complexity of 

hundreds of barcoded clones per designed mutation. To enumerate the 3’UTR 

barcodes and identify the specific variant paired with each barcode, subassembly 

sequencing libraries were generated as previously described55,132. 

3.3.4 Minigene library transfection 

Mutant minigene libraries were transiently transfected into HEK293T (8 

replicates) and COS-7 cells (2 replicates). At 24 hours post-transfection, cells were 

lysed by addition of Trizol and total RNA was purified with Direct-zol RNA Miniprep Kits 

(Zymo Research, Irvine, CA). A total of 3-5 ug total RNA was reverse transcribed using 

SuperScript III First-Strand Synthesis kit (Invitrogen) with oligo(dT)20 primer following 

the manufacturer’s protocol. Afterwards, spliced transcript was amplified via semi-
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nested PCR using outer primer pairs, first SD6 forward (5’-

TCTGAGTCACCTGGACAACC-3’) and SA2 reverse (5’-

ATCTCAGTGGTATTTGTGAGC-3’), and inner primer pairs, JKlab232 (5’-

AGTGAACTGCACTGTGACAAGCTGC) and SA2 reverse. Indexed Illumina sequencing 

adaptors were added by PCR and the resulting RNA-seq libraries were submitted for 

paired-end 150-bp sequencing on Illumina HiSeq or NovaSeq instruments.  

3.3.5 RNA-seq processing and splice disruption calling 

RNA-seq reads were processed as previously described55. Briefly, reads 

containing plasmid barcodes were selected with cutadapt, barcodes were clustered with 

starcode176, and filtered to retain only those associated with a single-base variant. The 

paired, splice-informative read was aligned to the reference minigene sequence with the 

splice-aware read aligner STAR177. Custom python scripts 

(https://github.com/kitzmanlab/wt1_splice) were used to identify the isoform 

corresponding to each read: KTS+ (42.6% of all reads), KTS- (37.4%), exon 9 skipping 

(‘SKIP’, 19.1%), or all other isoforms (‘OTHER’; collectively, <1% of all reads). The 

count of reads matching each isoform was tallied per barcode, then aggregated into a 

per-variant, per-isoform percent by taking a read-count weighted mean of the respective 

percentages across the associated barcodes.  

To test the significance of splice disruption, we created for each variant a null 

distribution by bootstrap sampling a matching number of barcodes associated with 

intronic variants >10 bp outside the exon boundaries. Using this null distribution, we 

computed z scores for the observed per-isoform usage, then used Stouffer’s method to 

aggregate z scores across replicates. Splice disruptive variants (SDVs) were defined as 
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those that were (a) significant at the p<0.05 level (after Bonferroni correction for multiple 

testing), and either (b) had either SKIP or OTHER usage at least 20% higher than the 

null or (c) an isoform log-ratio (calculated as log2(KTS+/KTS-)) of >=1.5 or <= -1. 

Variants were defined as intermediate if they (a) passed the same significance test and 

had either (b) SKIP or OTHER usage at least 10% higher than the null or (c) an isoform 

log-ratio of >=1 or <= -.5. Results were highly correlated across replicates; all SDVs 

were also called disruptive at least half of the replicates when processed individually.  

3.3.6 Prediction of splice site strength 

MaxEntScan scores78 for variants at the common WT1 exon 9 acceptor, KTS- 

donor, and KTS+ donor were computed using the maxentpy python module 

(https://github.com/kepbod/maxentpy). We first computed the splice site strength for the 

wild-type and mutant sequences for each and took the signed difference between the 

variant and wild-type scores. 

3.3.7 Data availability 

Custom python scripts are available at https://github.com/kitzmanlab/wt1_splice 

and a look up table of splicing effects will be available within the final publication and are 

currently online at Zenodo136. 

3.4 Results 

3.4.1 Massively parallel splicing assay for WT1 exon 9 

To systematically identify splice disruptive variants, we established a minigene 

assay with WT1 exon 9 and flanking introns (~200 bp on either side). We first 
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individually tested the wild-type sequence and six pathogenic variants near the KTS+ 

donor known to cause FS or FSGS. The wild-type construct showed a roughly even 

balance between the two isoforms (1:1.2 KTS+:KTS- ratio), while each of the known 

pathogenic variants abolished KTS+ usage (Figure 3-2; Figure 3-3). Thus, consistent 

with previous reports178, minigenes can faithfully model WT1 splicing defects associated 

with FS and FSGS.

 

Figure 3-2: Variants in individuals with Frasier’s syndrome alter the KTS ratio. 

Six known Frasier or Focal segmental glomerulosclerosis syndrome (FS/FSGS) variants 
tested individually by minigene assays followed by sequencing, with the percent of 
spliced reads from each isoform shown. 
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Figure 3-3: Altered splicing for Frasier’s syndrome variants in minigene assay. 

Sashimi plot from IGV showing read pileup and splice junction read counts from deep 
sequencing of RT-PCR products from individual minigene assays of (A) wildtype WT1 
exon 9 and flanking introns and (B) six mutant constructs each containing a different 
known FS/FSGS SDV.  KTS- read counts are shown above each track, and KTS+ read 
counts (when present) are shown beneath each. 

We next set out to test the splicing effects of every possible single nucleotide 

variant (SNV) in and around WT1 exon 9 (Figure 3-4A). We applied saturation 

mutagenesis to create a library of all possible SNVs in the exon and for 40 bp into each 

flanking intron. The mutant library was tagged with random 20mers in the 3’UTR to 

serve as barcodes allowing for the splicing effect of each mutation to be tracked. Nearly 

every possible SNV was represented (518/519; 99.8%) with a high degree of internal 

replication (mean=79.7 barcodes per variant; Figure 3-5). 
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Figure 3-4: Screening for all possible splice disruptive variants in WT1 exon 9.  

A. Splicing effect map for all 518 single-nucleotide variants in/around WT1 exon 9 from 
a massively parallel splice assay. Each bar represents a single variant plotted by its 
cDNA position (x-axis), with dark shading for splice disruptive variants, light shading for 
intermediate ones, and gray for variants with no effect upon splicing. The first four 
tracks show the percent usage of KTS+, KTS-, SKIP, and OTHER isoforms. Final y-axis 
track shows the log2(KTS+/KTS-) ratio. B. Zoom to the alternative donors showing 
KTS+/KTS- ratio and reference sequence. Known variants are shown above the plot 
with symbols denoting existing interpretation. 
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Figure 3-5: Completeness and uniformity of saturation mutagenesis.  

Distinct barcode counts for each mutation (mean across replicates) are shown by 
position. Each shows the three different nucleotide substitutions per position. 

We transfected HEK293T cells with the mutant minigene library pool and deeply 

sequenced the resulting spliced RNAs to quantify, for each mutation, the use of the 

KTS+ and KTS- isoforms, exon skipping (‘SKIP’) or all other splicing outcomes 

(‘OTHER’). Mutations’ effects upon isoform usage were reproducible within the 

HEK293T biological replicates (median pairwise Pearson’s r=.94) and between 

HEK293T replicates and a second cell line, COS-7 (median between cell line pairwise 

Pearson’s r=.93; Figure 3-6). 
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Figure 3-6: Correlations among replicates and across cell lines for each measured 
isoform.  

A. KTS+ isoform usage for each replicate - different cell-types are indicated. Here, each 
point represents an individual variant. B. KTS- isoform usage for each replicate. C. 
SKIP isoform usage for each replicate. D. OTHER isoform usage for each replicate. 

The resulting map shows that, as expected, sensitivity to splicing disruption is 

heavily concentrated near the canonical splice sites, in particular the alternate KTS+ 

and KTS- donors (Figure 3-4A). Overall, of the 518 measured SNVs, only 57 (11.0%) 
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altered splicing with an additional 16 (3.1%) having an intermediate effect on 

splicing136(Table 3-1). Of the disruptive variants, all but one were near (+/- 15 bp) either 

the splice acceptor or one of the donors, consistent with disruption of those sites’ 

consensus motifs. The primary disruptive effect for most variants (43/57; 75.4%) was to 

alter the KTS+/KTS- ratio, roughly evenly split between shifting the balance towards 

KTS- and KTS+ (24 variants and 19 variants, respectively). A minority of variants led to 

complete exon skipping (n=14) or activated a cryptic acceptor 17 bp downstream of the 

native one (n=2), each of which would yield frameshifted transcript predicted to undergo 

nonsense mediated decay.  

3.4.2 Identification of known and novel variants disrupting KTS+ usage 

We focused first on the eight known FS/FSGS variants as described in the 

ClinVar database or published case reports74,76,172-175. All eight dramatically lowered the 

KTS+:KTS- balance, as quantified by log2(KTS+/KTS-) scores of -2.21 or lower (Figure 

3-4B, Figure 3-7; Table 3-1). By contrast, our assay scored as neutral all but one of the 

19 variants listed in ClinVar with an interpretation of Likely Benign, as well as an 

additional 17 variants observed in the population database gnomAD136 (log2 ratio 

scores between -0.11 and 0.53; Figure 3-7). The lone exception was c.1447+7A>G, 

listed in ClinVar as Likely Benign, for which we noted a very subtle shift towards KTS- 

(score: -0.52) for which the in vivo impact is unclear. Thus, pooled minigene assays 

effectively discriminate between known pathogenic splice disruptive variants and neutral 

polymorphisms.  
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Figure 3-7: Splicing variants in ClinVar and gnomAD.  

KTS+/KTS- ratios for variants reported in the literature or in ClinVar, grouped by 
interpretation, with population allele frequency shown above the plot for variants present 
in gnomAD. 

We next asked whether this map could prospectively identify as-yet unreported 

variants which disrupt KTS+. We identified sixteen additional SDVs which disrupted 

KTS+ comparably to the known FS/FSGS variants136 (median log2 ratio score: -2.14), 

with all but two corroborated by MaxEntScan splice site strength predictions78 (median 

MaxEntScan score=-2.40; Figure 3-8). Specifically, eleven of the KTS+ disruptive 

variants were predicted by MaxEntScan to weaken the KTS+ donor (maximum 

MaxEntScan score=-1.03), and one variant was predicted to strengthen the KTS- donor 

allowing the KTS- splice site to outcompete the KTS+ donor (MaxEntScan score=2.18). 

Two measured splicing effects were discordant with MaxEntScan scores: one variant 

was predicted to mildly increase KTS+ strength (c.1447:A>C, MaxEntScan score=0.71) 

and MaxEntScan anticipated another KTS+ disruptive variant to have little impact on the 

strength of the KTS- donor (c.1443:A>T, MaxEntScan score=-0.04; KTS+ donor was out 

of MaxEntScan scoring range for this variant). The final two novel variants impacting 

KTS+ donor use were outside the MaxEntScan scoring range (c.1447+7:A>C and A>T). 

Among the addition KTS+ disruptive variants, six were located within the codon region 
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specific to the KTS+ isoform; four of these were synonymous variants, which as a class 

may be overlooked during classification.  None of these is yet deposited in ClinVar nor 

in published reports, but based upon their disruptiveness in this assay, they represent 

potential novel pathogenic variants. 

 

Figure 3-8: MaxEntScan predictions of splice site strength.  

Measured splicing scores for variants surrounding the two KTS donors (top) and 
MaxEntScan predictions of splice site strength for the KTS- (middle) and KTS+ donors. 
Each lollipop represents a single variant plotted by its cDNA position (x-axis), with dark 
shading for variants altering the KTS ratio, light shading for intermediate ones, and gray 
for variants with no effect upon the KTS donors. Variants outside of the MaxEntScan 
scoring range have no associated lollipop within the MaxEntScan tracks. 

3.4.3 Other splice disruptive outcomes 

Finally, we searched this map for variants that disrupt splicing in other ways and 
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patients with 46,XX ovotesticular differences in sexual development (46,XX OTDSD). 

The first, c.1437A>G, is a synonymous variant recently reported179 as a de novo 

mutation in a patient with 46,XX OTDSD. Consistent with the strong shift towards KTS+ 

in our map (score: 2.76), it is predicted by MaxEntScan to weaken the KTS- donor two 

bases downstream (MaxEntScan score = -3.43; Figure 3-8). We observed similar 

effects from an additional 17 variants near the KTS- donor (median log2 ratio score: 

2.83, range: 2.20-2.98). Another variant, c.1447+3G>A (log2 ratio score: 1.72), 

downstream of the KTS+ donor, was observed during clinical exome sequencing in a 

12-year old proband with 46,XX OTDSD. Notably, no renal abnormalities or a history of 

Wilms’ tumor was reported for either of these two individuals. In contrast to the variants 

near the KTS- donor, this and one other variant not yet observed clinically 

(c.1447+4C>A) are predicted to strengthen the KTS+ donor (MaxEntScan scores = 1.72 

and 2.42 respectively; Figure 3-8), possibly leading it to outcompete its upstream 

counterpart. Finally, we identified a cluster of 14 variants within 26 bp of the WT1 

acceptor which led to complete skipping of exon 9, or use of an alternate cryptic 

acceptors, in each case leading a frameshift and premature truncation136. None of those 

variants are yet reported in ClinVar or population databases.  

3.5 Discussion 

Here, we applied a massively parallel splicing assay to systematically test the 

effects of every single-nucleotide variant in and near WT1 exon 9, a hotspot of 

pathogenic variants for multiple genetic forms of nephrotic syndrome including Frasier 

Syndrome. The resulting splicing effect map correctly identified all seven known FS 

variants74,76,172,173,175 as associated with reduced KTS+/KTS- ratio, along with another 
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variant reported to cause isolated steroid resistant NS and FSGS174. By contrast, all but 

one of the 36 tested variants which appear in the ClinVar database with a Likely benign 

interpretation, or the general healthy population database gnomAD, scored as splice-

neutral, indicating this assay is highly sensitive and specific for identification of 

pathogenic WT1 exon 9 splice disruption. 

FS is extremely rare: in all, fewer than 200 cases have been reported, 

represented by only seven distinct FS variants74,76,172,173,175. Two of these seven 

variants (at the +4 and +5 positions) account for most of the FS case reports to date: 

taking the count of ClinVar submissions as a proxy for frequency, c.1447+4C>T and 

c.1447+5G>A together had 24 records, compared with only two records combined 

across the five other known FS variants. The two recurrent variants overlap the only 

CpG dinucleotide in the KTS+ region, and their frequency is likely explained by the ~10-

fold higher de novo mutation rate at germline-methylated CpGs180. Thus, it is 

reasonable to expect that there may be a tail of additional variants which are rare even 

within the context of this rare disorder. Indeed, our results implicate an additional 

sixteen SNVs as similarly decreasing the KTS+/KTS- ratio, and nominate these as new, 

as yet-unreported variants with the potential to cause FS/FSGS. 

Our map also identified nineteen variants which increase the KTS+/KTS- ratio, 

either by weakening the KTS- donor or strengthening the KTS+ donor. One of these 

variants was previously reported179 in an individual with 46,XX OTDSD, and we report 

an additional, unrelated patient with a similar presentation carrying a different variant. 

Our results are consistent with these variants acting to shift the balance of WT1 
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isoforms toward KTS+, which is known to activate SRY, the master regulator of male 

sex determination181. 

In some Mendelian disorders, missense or synonymous variants may alter 

splicing by disrupting regulatory elements beyond the canonical splice sites, termed 

exonic splice enhancers and silencers182. Such effects have been observed by other 

systematic splice assays55 including at other WT1 exons60. Here, though, we observed 

variants to the interior of WT1 exon 9 had little impact upon its splicing. This suggests 

that WT1 exon 9 either does not depend on exonic splice regulatory elements for its 

definition, or that any such elements may be robust to perturbation by single nucleotide 

variants.   

These results may be useful in interpreting variants found in individuals who do 

not display every feature of FS.  For instance, variants disrupting KTS+ in karyotypically 

female individuals (46,XX) may lead to progressive glomerulopathy, but due to the lack 

of gonadal dysgenesis, FS may not be suspected and WT1 genetic testing might not be 

pursued183. In conclusion, our systematic screen provides a lookup table of splice 

disruptive variants in WT1 exon 9, circumventing the need for single variant minigene 

studies.  The availability of functional evidence for newly observed rare variants can 

facilitate their resolution, lessening the burden of variant interpretation upon clinicians, 

and shortening the diagnostic odyssey for NS patients. 
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Chapter 4 Benchmarking Splice Variant Prediction Algorithms Using 
Massively Parallel Splice Assays 

4.1 Abstract 

4.1.1 Background 

Variants that disrupt mRNA splicing account for a sizable fraction of the pathogenic 

burden in many genetic disorders but identifying splice-disruptive variants (SDVs) 

beyond the canonical donor and acceptor dinucleotides remains difficult. Computational 

predictors are often discordant, compounding the challenge of variant interpretation. 

Because these tools are primarily validated using clinical variants, which are heavily 

biased to canonical splice site mutations, it remains unclear how well their performance 

generalizes to other variants.  

4.1.2 Results 

We benchmarked eight widely used splicing effect prediction algorithms, leveraging 

massively parallel splicing assays (MPSAs) as a source of experimentally determined 

ground-truth. MPSAs simultaneously assay many variants to nominate candidate SDVs. 

Across MPSAs of five genes, we compared experimentally measured splicing outcomes 

with bioinformatic predictions at 3,616 variants. Algorithms’ concordance with MPSA 

measurements, and with each other, was lower for exonic vs intronic variants, 

underscoring the difficulty of identifying missense or synonymous SDVs.  Deep 

learning-based predictors (SpliceAI, Pangolin) trained on gene model annotations 
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achieved the best overall performance at distinguishing disruptive and neutral variants 

(area under precision recall curve of .845 and .855 respectively). Controlling for overall 

call rate genome-wide, SpliceAI and Pangolin also showed superior overall sensitivity 

for identifying SDVs. Finally, our results highlight two practical considerations when 

scoring variants genome-wide: finding an optimal score cutoff, and the substantial 

variability introduced by differences in gene model annotation, and we suggest 

strategies for optimal splice effect prediction in the face of these issues.  

4.1.3 Conclusion 

SpliceAI and Pangolin showed the best overall performance among predictors tested, 

however, improvements in splice effect prediction are still needed especially within 

exons. 

4.2 Introduction 

Splicing is the process by which introns are removed during mRNA maturation 

using sequence information encoded in the primary transcript. Sequence variants which 

disrupt splicing contribute to the allelic spectrum of many human genetic disorders, and 

it is estimated that overall as many as 1 in 3 disease-associated single-nucleotide 

variants are splice-disruptive36,37,184-187. Splice-disruptive variants (SDVs) are most 

readily recognized at the essential splice site dinucleotides (GU/AG for U2-type introns), 

with many examples across Mendelian disorders41,43-46. SDVs can also occur at several 

so-called flanking noncanonical positions164, which by some estimates outnumber 

essential splice mutations by several-fold61,185. 
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Variants beyond the splice-site motifs may be similarly disruptive but are more 

challenging to recognize188. For instance, some SDVs disrupt splicing enhancers or 

silencers, short motifs bound by splicing factors to stimulate or suppress nearby splice 

sites, to confer additional specificity and to provide for regulated alternative splicing26. 

These elements are widespread189 and maintained by purifying selection27, but their 

grammar is often unclear as they feature partial redundancy and tolerate some 

mutations. Nevertheless, variants which disrupt splicing regulatory elements have been 

implicated in a number of disorders. A prominent example is in spinal muscular atrophy, 

in which loss of SMN1 cannot be fully complemented by its nearly identical paralog 

SMN2 due to the loss of an ESE in exon 7 of the latter gene154,190, a defect which can 

be therapeutically targeted by antisense oligonucleotides nearby191. Synonymous 

variants, which as a class may be overlooked, may also disrupt existing splice 

regulatory elements or introduce new ones, as in the case of the X-linked parkinsonism 

gene, ATP6PA2192. 

RNA analysis from patient specimens can provide strong evidence for splice-

disruptive variants, and its inclusion in clinical genetic testing can improve diagnostic 

yield163,185,193-195. However, advance knowledge of the affected gene is necessary for 

targeted RT-PCR analysis and RNA-seq-based tests are not yet widespread196,197, and 

both rely upon sufficient expression in the blood or other clinically accessible tissues for 

detection. Therefore, a need remains for reliable in silico prediction of SDVs during 

genetic testing, and a diverse array of algorithms have been developed to this end. For 

instance, S-Cap98 and SQUIRLS91 implement classifiers that use features such as motif 

models of splice sites, kmer scores for splice regulatory elements, and evolutionary 
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sequence conservation trained on sets of benign and pathogenic clinical variants. 

Numerous recent algorithms use deep learning approaches to predict splice sites’ 

probabilities directly from the primary sequence; SDVs can then be detected by 

comparing predictions for wild-type and mutant sequence. Rather than training with 

clinical variant sets, SpliceAI100 and Pangolin101 are trained using gene model 

annotations to label each genomic position as true/false based on whether it appears as 

an acceptor or donor in a known transcript. SPANR99 uses the primary sequence to 

predict percent spliced in (PSI) measurements with training data provided by RNA-seq 

data. HAL90 takes a distinct approach by training on a library of randomized sequences 

and their experimentally observed splicing patterns, while MMSplice97 combines the 

training data from HAL with features derived from primary sequence with additional 

modules trained on annotated splice sites and clinical variants. Finally, ConSpliceML105 

is a metaclassifier that combines SQUIRLS and SpliceAI scores with a population-

based constraint metric which measures the regional depletion of predicted splice-

disruptive variants among apparently healthy adults in population databases. 

Given the proliferation of splicing predictors and their utility in variant 

interpretation, it is important to understand their performance characteristics. Previous 

comparisons have suggested that overall SpliceAI represents the state-of-the art with 

several other algorithms including Pangolin, MMSplice, SQUIRLS, and ConSpliceML 

showing competitive or in some cases better performance91,101-108,198. However, 

benchmarking efforts to date primarily relied upon curated sets of clinical variants91,102-

107,198, which are strongly enriched for canonical splice site mutations99,102,107,199-201, 

likely reflecting the relative ease of their classification. This leaves open the question of 
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how these tools’ performance may generalize, as well as whether certain tools may 

excel in particular contexts (e.g., for exonic cryptic splice activating mutations). A further 

challenge is that some of these tools’ training data may partially overlap with these 

benchmarking validation sets, which risks circularity if overlapping variants are not 

carefully identified and removed. 

Massively parallel splicing assays (MPSAs) provide an opportunity to benchmark 

splicing effect predictors entirely orthogonally to clinical and population variant sets.  

MPSAs measure up to thousands of variants’ splicing effects in a pooled fashion: cells 

are transfected with a library of variants cloned into a minigene construct with deep 

RNA sequencing as a quantitative readout of variants’ splicing outcomes. MPSAs come 

in several different flavors: broad MPSA screens assess many exons and measure one 

or a few variants’ effects at each36,61,62,202, while saturation screens focus on individual 

exons19,48,55-60,63 or motifs17,90 and measure the effects of every possible point variant 

within each target. MPSAs of short motifs and broad MPSAs have been used to train 

algorithms90,97,99 and as features in other bioinformatic splice prediction tools91. 

However, since MPSAs of short motifs could be dependent on the surrounding, fixed 

exonic and intronic sequence they may not reflect the actions of the motifs within 

different exons or across variant types so they could be problematic as training sets or 

machine learning inputs. Two broad MPSA datasets, Vex-seq62 and MaPSy36 were 

recently used to benchmark splicing effect predictors as part of the Critical Assessment 

of Genome Interpretation (CAGI) competition203, and another, MFASS61 has been used 

to validate a recent meta-predictor108. However, a limitation of benchmarking with broad 

MPSAs is that they may reflect an exon’s overall properties while lacking the finer 
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resolution to assess different variants within it. For instance, an algorithm could perform 

well by predicting SDVs within exons with weak splice sites, or with evolutionarily 

conserved sequence, while failing to distinguish between truly disruptive and neutral 

variants within each.  

Here we leverage saturation MPSAs as a complementary, high-resolution source 

of benchmarking data to evaluate eight recent and widely used splice predictors. 

Algorithms using deep learning to model splicing impacts using a long window of 

sequence context, SpliceAI and Pangolin, consistently agreed with measured splicing 

effects across the various performance metrics, while other tools performed well on 

specific exons or variant types. Even for the best performing tools, predictions were less 

concordant with measured effects for exonic variants versus intronic ones, indicating a 

key area of improvement for future algorithms. 

4.3 Methods 

4.3.1  Saturation mutagenesis datasets 

Splice effect measurements were obtained for a total of 3,616 variants in 

POU1F1 (exon 2), RON (exon 11), FAS (exon 6), WT1 (exon 9), BRCA1 (11 exons) 

from the respective studies’ supplementary materials48,55-57,59. Variants were labeled as 

splice disruptive (SDV), intermediate, or neutral according to the classification made by 

each study; intermediate effect variants (n=121) were removed. Intronic variants more 

than 100 bp from either end of the selected exon were also discarded (n=129). The 

RON MPSA used a minigene spanning exons 10, 11, and 12, but as that assay did not 

measure skipping of exons 10 or 12, we only included variants most likely to influence 

exon 11 inclusion (i.e., within exon 11 and proximal halves of its flanking introns). 
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BRCA1 SGE measurements reflect both protein loss of function and mRNA effects, so 

we retained only synonymous and intronic variants to remove variants for which effects 

were independent of splicing, and further restricted to internal coding exons. For MPSAs 

in POU1F1, RON, and WT1 that reported effects upon usage of multiple isoforms, we 

used for each variant the isoform score that was most different than baseline (that is, 

maximum absolute z-score across isoforms per variant). For consistency in direction of 

effect (higher measured scores denoting greater disruptiveness), BRCA1 RNA and 

function scores’ signs were reversed. FAS enrichment scores were used without 

modification. 

4.3.2 Manual curation of clinical MLH1 variants 

A literature search for variants assayed for splicing effects in the tumor 

suppressor gene MLH1 yielded 77 publications (publication years 1995-2021; 

Appendix A). For inclusion, we considered only single-base substitutions, and required 

each variant’s splicing effects be supported either by RT-PCR and sequencing from 

patient blood-derived RNA, or by mini-gene analysis. One exception is that essential 

splice site dinucleotide variants from Lynch Syndrome patients were included without 

molecular evidence, as loss of the native site would be considered strong evidence of 

pathogenicity by ACMG guidelines195. Any splicing outcome other than full exon 

inclusion was considered pathogenic204. Previously reported splice disruptive variants 

which are too common to be compatible with Lynch Syndrome prevalence (gnomAD 

MAF>0.5%) or were seen in a homozygous state were removed. Nine variants had 

conflicting reports (i.e., both pathogenic and benign) and were resolved with a majority 

vote among the reporting publications, with ties being considered pathogenic. The final 
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dataset included 296 variants (mean: 1.8 references per variant), of which 160 were 

splice disruptive. 

4.3.3 Random background variant set 

We randomly drew 500,000 SNVs from within and near protein-coding genes to 

serve as a background set of exonic and proximal intronic variants with the potential to 

effect splicing. We used MANESelect canonical gene model annotations (version 1.0)205 

restricting to protein coding transcripts with at least three coding exons. We discarded 

transcripts that had exons overlapping or within 100 bp of exon(s) of another transcript 

(on either strand), so that the variants’ classification (intronic vs exonic, proximity to 

splice site) would not depend upon the choice of gene model; this left 79.6% of all 

MANESelect transcripts (n=14,618/17,631). SNVs were selected at random from 

internal coding exons (padded by +/- 100 bp), and then these background SNVs were 

scored by splice effect predictors.  

4.3.4 Scoring with eight splice effect predictors 

Pangolin version 1.0.2 was run with masking enabled and a distance equal to the 

length of the scored exon (for MLH1 and BRCA1: the longest exon for each gene; for 

background set SNVs, 300 bp), and the reported Pangolin_max scores were used. 

SpliceAI version 1.3.1 was run via the python interface using a custom wrapper, with 

masking enabled and distance setting following the same process as for Pangolin. For 

the transcriptomic background set, due to the high computational time to run SpliceAI, 

we downloaded version 1.3 precomputed scores from Illumina BaseSpace. SQUIRLS 

version 1.0.0 and MMSplice version 2.2.0 were both run on the command line with 
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default settings to compute SQUIRLS score and delta logit PSI values, respectively. 

HAL was run via the web interface (http://splicing.cs.washington.edu/SE) to predict exon 

skipping effects. HAL requires a baseline percent spliced in (PSI) value for the wildtype 

sequence (a parameter which has some predictive value on its own19,108). For this 

parameter, we used the following values: 90% for MLH1, 90% for POU1F1, 50% for 

FAS, 60% for RON, 80% for BRCA1, and 60% for WT1, based upon WT PSI values 

from the single exon MSPA original publications which were based on either expert 

knowledge or measured from WT mini-genes and then rounded to the nearest 10%. For 

BRCA1 and MLH1, we selected high WT PSI values since alternative splicing in MMR 

genes rarely creates a functional protein204, and thus exon skipping is likely 

incompatible with healthy individuals in the case of dominantly inherited, highly 

penetrant reproductive cancers (BRCA1) and Lynch syndrome (MLH1). For exons in the 

random transcriptomic background, we used 50% to allow for HAL to predict a full range 

of exon skipping (negative values) and increased exon inclusion (positive values), and 

to reflect the practical challenge in determining exon specific WT PSI values genome 

wide. Results with HAL were generally robust to the choices of WT PSI. For SPANR, S-

Cap, and ConSpliceML, we obtained precomputed scores (SPIDEX zdelta PSI scores 

for SPANR; sens scores for S-Cap; ConSpliceML scores for ConSpliceML) from publicly 

accessible databases provided by the tools’ authors. For essential splice site 

dinucleotide scores, S-Cap provides two models (dominant and recessive), and we 

selected the lowest score (most severe predicted impact). We then transformed the S-

Cap scores (taking y=1-x, for input scores x in [0,1]) to match the direction of effect for 

other tools with higher values indicating greater likelihood of splice disruption.  
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 We selected the MANESelect transcript model for each gene tested in the 

benchmarking set: ENST00000350375.7 (POU1F1; corresponding to the predominant 

isoform alpha), ENST00000452863.10 (WT1 KTS+ isoform), ENST00000296474.8 

(RON), ENST00000231790.8 (MLH1), ENST00000652046.1 (FAS), and 

ENST00000357654.9 (BRCA1).  MMSplice, SQUIRLS, SpliceAI, and Pangolin all 

require an accompanying annotation file, and for a fair comparison, we provided each 

tool an identical annotation in which only the canonical transcript within the region of 

interest were included. Pre-computed ConSpliceML scores were selected by matching 

to the genomic position and relevant gene name. SQUIRLS’ annotation file was not 

readily customizable, so we used the default hg19 ENSEMBL annotation files that it 

supplies. We verified that at or near the tested exons, there were no differences 

between the selected gene models provided to other tools and the gene models within 

SQUIRLS’ annotations (ENST00000350375.2 for POU1F1 alpha, ENST00000452863.3 

for WT1 KTS+, ENST00000296474.3 for RON, ENST00000231790.2 for MLH1, 

ENST00000355740.2 for FAS, ENST00000357654.3 for BRCA1). Substantive results 

did not change for MMSplice or SQUIRLS when they were scored using the most 

severe predicted impact from both alternative isoforms within POU1F1 (beta isoform: 

ENST00000344265.8 for MMSplice and ENST00000344265.3 for SQUIRLS) and WT1 

(KTS- isoform: ENST00000332351.9 for MMSplice and ENST00000332351.3 for 

SQUIRLS). For the transcriptomic background set, some variants either did not have a 

precomputed score for some tools, or the precomputed score record mismatched the 

gene name or accession; this led to a small amount of missingness for some tools 

expected to score every SNV (SPANR: 1.6% of background variants excluded, 
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SQUIRLS: 9.4%, SpliceAI: 4.1%). Pangolin and MMSplice each scored every 

background SDV. HAL only scores exonic variants, so all intronic variants were missing 

(56.5% of the background set), and S-Cap scores only some synonymous variants and 

variants within 50 bp of the splice sites, so had missing values for 61.0% of background 

variants. 

4.3.5 Variant classes 

To address performance within different gene regions, we categorized variants 

as follows: (i) essential splice site dinucleotides, (ii) intron near junction (3-10 bp from 

nearest exonic base), (iii) proximal intron (11-100 bp from nearest exonic base), (iv) 

exon near junction (<10 bp from nearest intronic base), and (v) deep exon (≥ 10 bp from 

nearest intronic base). For variants in multiple transcripts, the category with the most 

severe consequence was chosen (order: essential splice > exon near junction > intron 

near junction > deep exon > proximal intron). We assessed the abundance of each 

variant class within previously curated clinical variant sets. In the case of the SPIP 

training set198, we excluded the neutral background set variants; for the S-Cap training 

set we combined the proportions of 5’ core, 5’ core extended, and 3’ core variants listed  

from their clinically derived pathogenic set in Figure 1C98, and for SQUIRLS we tallied 

variant classes across their training data without alterations91. When computing the 

proportion correct within variant regions in Figure 4-11, we defined regions by both 

splicing impacts and location. For this analysis, we included 3 bp of the exon within the 

donor and acceptor regions as variation in those areas is also prone to alter splicing78. 

The ESS region in POU1F1 was defined as the cluster of beta-promoting variants, and 

the remainder of the beta region was so named for the observed sensitivity to variants 
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creating cryptic splice sites – including the alpha acceptor area which when disrupted 

promotes the use of a cryptic acceptor nearby55. Similarly for Figure 4-19B, 3 bp of 

each exon within the acceptor and both donor regions were included as part of the 

splice sites. For the competing donor regions in WT1, we also included 6 bp of each 

respective intron as is commonly defined as the 5’ splice site area78. 

4.3.6 Nominating annotation-sensitive alternatively spliced genes 

To identify genes with alternative splice forms for which choice of annotation 

could influence splicing effect predictions, we obtained exon-exon junction read counts 

from GTEx portal (version 8).  We restricted to protein coding genes (n=19,817) and 

computed, for each of 54 tissues, the median junction read counts per million junction 

reads (junction CPM) across samples of that tissue for junctions that fell within coding 

portions of their respective genes. Junctions with a junction CPM ≥ 0.1 were considered 

expressed (n=16,877 genes had at least one expressed junction in at least one tissue). 

Next, we identified 12,124 genes where at least one splice site was alternatively used in 

multiple junctions meeting this expression criterion. Within each group of alternative 

junctions at a given splice site (e.g., two junctions corresponding to one donor paired 

with either of two different acceptors corresponding to skipping or inclusion of a cassette 

exon), we computed the fractional proportions of each junction’s use and determined 

which alternate junctions were included in SpliceAI’s default annotations. Fractional 

proportions were computed separately for each tissue. We deemed ‘moderately used 

unannotated’ splice sites as any group of alternative junctions with at least one 

unannotated expressed junction which had ≥20% fractional usage in a given tissue.  

4.3.7 Statistical methods 
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Area under the curve metrics were calculated using sklearn in python. For Figure 

4-11 and Figure 4-19B, a single cutoff was selected for each tool that maximized 

Youden’s J for identifying SDVs across the full POU1F1 and WT1 MPSA variant sets 

respectively. Tools with fewer than ten scored variants in each defined region were 

excluded. To compute transcriptome-adjusted sensitivity for each algorithm, we first 

computed the score threshold t(x) at which that algorithm called a given fraction x of the 

transcriptomic background set as disruptive (for all values of x in [0,1]). Transcriptome-

adjusted sensitivity was then the sensitivity for benchmark SDV detection at this 

threshold: (# benchmark SDVs with score≥t(x)) / (# benchmark SDVs). Area under the 

curve was then taken for transcriptome-adjusted sensitivity as a function of the 

background set fraction x, and was computed using the sklearn auc function. 

 To analyze correlation between algorithms and MPSA measurements, the 

absolute value of each algorithm’s score was taken, to accommodate HAL, MMSplice, 

SPANR, and Pangolin, for which signed scores indicates exon skipping vs inclusion. 

FAS was one exception to the rule: since FAS enrichment scores directly measured 

exon skipping (negative values) and exon inclusion (positive values), for signed scoring 

tools (HAL, MMSplice, SPANR, and Pangolin) we compared signed FAS scores with 

tools’ signed values, and for the rest (SpliceAI, SQUIRLS, ConSpliceML, S-CAP), 

compared absolute values of the measured scores with the tools’ scores. For 

classification performance analyses (prAUC, transcriptome-adjusted sensitivity), 

absolute values of tools’ predicted scores were used.  

4.3.8 Data availability 

Scored datasets are available on Zenodo136. 
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4.4 Results 

4.4.1 A validation set of variants and splice effects. 

We aggregated splicing effect measurements for 2,230 variants from four 

massively parallel splice assay (MPSA) studies, focusing on saturation screens 

targeting all single nucleotide variants (SNVs) in and around selected exons55-57,59 

(Figure 4-1A). We also included 1,386 variants in BRCA1 from a recent saturation 

genome editing (SGE) study, in which mutations were introduced to the endogenous 

locus by CRISPR/Cas9-mediated genome editing, with splicing outcomes similarly 

measured by RNA sequencing48. For contrast with these saturation-scale datasets, we 

also prepared a more conventional, gene-focused benchmarking dataset by manually 

curating a set of 296 variants in the tumor suppressor gene MLH1 from clinical variant 

databases and literature reports.  In sum, this benchmarking dataset contained 3,912 

SNVs across 33 exons spanning six genes (Figures 4-2 through 4-6).  
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Figure 4-1: Variant sets used for splice effect predictor benchmarking.   

A. Potential sources include (top panel) clinical variants including known pathogenic 
variants and common polymorphisms in frequently screened disease genes, (middle 
panel) broad massively parallel splice assays (MPSAs) targeting many different exons 
with one or a few variants each, and (bottom panel) saturation MPSAs in which all 
possible variants are created for a few target exons. B. Variant classes defined by 
exon/intron region and proximity to splice sites (upper), with the percent coverage of the 
possible SNVs within each variant class (shaded by variant class), for each dataset in 
the benchmark set (for BRCA1, missense and stop-gain variants were excluded are not 
counted in the denominator).  
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Figure 4-2: Splicing effect map and bioinformatic predictions for FAS exon 6. 

MPSA measured enrichment score of FAS exon 6 (gray, top panel; increased skipping 
– negative values, increased inclusion – positive values), along with bioinformatic 
predictions (subsequent panels), with splice effects/predictions plotted by variant 
position. Each lollipop denotes one variant, shaded by effect in MPSA (gray: neutral, 
colors: SDVs, shaded by mutant base).  
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Figure 4-3: Splicing effect map and bioinformatic predictions for RON exon 11.  

MPSA measured percent usage for different splicing outcomes at RON exon 11 (gray, 
top panel): skipping, other isoforms, full intron retention (“FULL IR”), first intron retention 
(“FIRST IR”), and second intron retention (“SECOND IR”), along with bioinformatic 
predictions (subsequent panels), with splice effects/predictions plotted by variant 
position. Each lollipop denotes one variant, shaded by effect in MPSA (gray: neutral, 
colors: SDVs, shaded by mutant base).  
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Figure 4-4: Splicing effect map and bioinformatic predictions for WT1 exon 9.  

MPSA measurements for different splicing outcomes at WT1 exon 9 (gray, top panel): 
log2ratio(%KTS+/%KTS-), percent exon skipping, and percent other isoforms, along 
with bioinformatic predictions (subsequent panels), with splice effects/predictions plotted 
by variant position. Each lollipop denotes one variant, shaded by effect in MPSA (gray: 
neutral, colors: SDVs, shaded by mutant base).  
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Figure 4-5: Splicing effect map and bioinformatic predictions for POU1F1 exon 2.  

MPSA measured percent usage for different splicing outcomes at POU1F1 exon 2 
(gray, top panel): exon skipping, exon 2 beta, and other isoforms, along with 
bioinformatic predictions (subsequent panels), with splice effects/predictions plotted by 
variant position. Each lollipop denotes one variant, shaded by effect in MPSA (gray: 
neutral, colors: SDVs, shaded by mutant base).  
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Figure 4-6: Splicing effect map and bioinformatic predictions for select BRCA1 exons.  

SGE measurements for BRCA1 exons 17 and 22 (gray, top panel): log2-ratio function 
score and log2ratio RNA score, along with bioinformatic predictions (subsequent 
panels), with splice effects/predictions plotted by variant position. Each lollipop denotes 
one variant, shaded by effect in SGE (gray: neutral, colors: SDVs, shaded by mutant 
base).  
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7) reflecting both intrinsic differences between exons as well as different procedures for 

calling SDVs between MPSA studies. In contrast to the high coverage of the mutational 

space from MPSA and SGE datasets, reported clinical variants only sparsely covered 

the mutational space (1.6% of the possible SNVs in MLH1 exons +/- 100 bp), and were 

heavily biased towards variants near splice sites (59.5% of reported variants were within 

+/-10 bp of a splice site; Figure 4-8). Larger clinical variant sets used to train classifiers 

showed a similar skew: 94.6% of the SQUIRLS training variants91 and 88.9% of the 

pathogenic S-Cap training set98 were within 10 bp of a splice site. Thus, MPSAs offer 

high coverage without the variant class biases present among clinical variant sets. 

 

Figure 4-7: Proportion of splice disruptive variants (SDVs) within benchmarked 
datasets. 

Bar plot showing the proportion of SDVs out of all measured variants (y-axis) within the 
saturation MPSAs (FAS, POU1F1, RON, WT1), SGE (BRCA1), and clinically curated 
variant set (MLH1) (x-axis). Numbers on each bar display the count of splice disruptive 
SNVs per dataset. 

FA
S

PO
U
1F
1

R
O
N

W
T1

BR
C
A1

M
LH
1

Dataset

0

20

40

60

80

100

Pr
op

or
tio

n 
(%

) s
pl

ic
e 

di
sr

up
tiv

e
(n

)

115 96 409 57 223 160

Clinical 
variants

Saturation MPSAs SGE



 107 

 

Figure 4-8: Breakdown of benchmark and background variant sets by variant class. 

Proportions (x-axis) of variant category (color) deep exon (blue) in each benchmark 
variant dataset. Datasets are grouped by study type (MPSAs, SGE, and clinical 
variants), and ‘transcriptome’ denotes the random background set of variants.  Variant 
categories are defined and shaded as in Figure 4-1B. Numbers of each bar indicate 
count of each type of variant per dataset.  
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within exons, both in the MPSA benchmarking set variants (median pairwise r = .43) 

and random background set variants (median r = .39).   

 

Figure 4-9: Correlation among bioinformatic algorithms. 

Heatmaps of Pearson correlations between scores from eight bioinformatic algorithms 
across benchmark set variants (left column) and randomly selected ‘background set’ 
variants (right column). Top row shows correlations across all variants; bottom row 
shows correlations over only exonic variants. 
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effects were much less concordant, reflecting the difficulty of modeling variant effects 

outside canonical splicing motifs.  
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Figure 4-10: Correlations between bioinformatic algorithms’ scores and MPSA 
measurements. 

A. Heatmap showing the Pearson’s correlations between bioinformatic algorithms (x-
axis) and MPSA-measured effects. MLH1 SNVs are omitted as they were curated 
across many different studies and do not have measurements beyond classification as 
deleterious/neutral. B. Scatterplots of absolute measured splicing effects (y-axis) within 
each benchmarked MPSA dataset (columns) and computational predictions (x-axis) for 
each bioinformatic algorithm (rows). Shaded points were measured as splice disruptive 
and measured splice neutral variants are gray. As in A, since MLH1 SNVs only have 
binary outcomes, they are omitted. 

 

Figure 4-11: Agreement between predictors and experiments varies by gene region. 

A. Splicing effect tracks at POU1F1 exon 2 (alternate isoforms beta and alpha). Upper 
panel tracks (gray background) show MPSA-measured percentages of exon skipping, 
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beta exon inclusion, and other (non-alpha/beta/skip) isoform usage; bottom tracks show 
scores from bioinformatic predictors by position. Each lollipop denotes one variant, 
shaded by effect in MPSA (gray: neutral, colors: SDVs, shaded by mutant base). The 
exon and flanking introns are split by region. Full POU1F1 track without truncated 
introns shown in Figure 4-5. B. Heatmap showing of concordance between each 
algorithm’s binary classification of variants as SDV/neutral versus those of the MPSAs, 
using the score threshold for each algorithm that maximized its concordance with the 
MPSA across POU1F1 exon 2. Concordance is shown per algorithm (row) for each 
region (column). Regions with <10 scored variants are omitted (black ‘X’ symbols). 

To systematically benchmark each predictor, we treated the splicing status from 

the experimental assays and curated clinical variant set as ground truth. We quantified 

the ability of each predictor to distinguish between the splice disruptive (n=1,060) and 

neutral (n=2,852) variants in the benchmark set by taking the area under the precision-

recall curve (prAUC) per classifier/gene (Figure 4-12A).  We next asked if classifiers’ 

performance differed by variant type and location. Algorithms consistently performed 

better for intronic than exonic variants (median prAUC for introns: .773; for exons: .419; 

Figure 4-12B), despite a similar density of SDVs in exons and introns (28.4% and 

25.9% SDV, respectively). This difference persisted even when removing canonical 

splice dinucleotides (Figure 4-13). More finely subdividing the benchmark variant set by 

regions (defined as in Figure 4-1B) demonstrated that performance suffers further from 

splice sites, where the overall load of SDVs is lower (Figure 4-14). To summarize 

overall performance, we counted the number of instances in which each predictor either 

had the highest prAUC or was within the 95% confidence interval of the winning tool’s 

prAUC (Figure 4-12C). Every tool scored well for at least one dataset or variant class, 

but Pangolin and SpliceAI had the best performance most frequently (7 and 3 

datasets/variant classes, respectively). 
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Figure 4-12: Splice effect predictors’ classification performance on benchmark variants.  

A. Precision-recall curves showing algorithms’ performance distinguishing SDVs and 
splicing-neutral variants in each dataset. B. Precision-recall curves displaying the 
precision (y-axis) and recall (x-axis) of bioinformatic algorithms (colored as in A) to 
predict splice disruptive variants within exonic (left) and intronic (right) SNVs. C. Top 
panel: tally, for each algorithm, of the number of datasets and variant classes (defined 
as in Figure 4-1B), for which that algorithm had the highest prAUC or was within the 
95% confidence interval of the winning tool. Bottom panel: signed difference between 
the winning tool’s prAUC and a given tool’s prAUC, each dot corresponds to a single 
dataset or variant class.  
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Figure 4-13: Classification performance without essential splice site variants. 

Precision-recall curves showing algorithms’ performance at distinguishing SDVs from 
splicing-neutral variants in each dataset, for exonic variants (identical to Figure 4-12C) 
and intronic variants, after removing variants at essential splice sites.

 

Figure 4-14: Classification performance by variant category.  

A. Proportion of variants which are splice disruptive by variant category. Counts of 
splice disruptive variants in each category are inset. Variant categories are as defined in 
Figure 4-1B. B. Precision-recall curves showing algorithms’ performance at 
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distinguishing SDVs from splicing-neutral variants in each dataset, separated by variant 
category.  

4.4.3 Benchmarking in the context of genome-wide prediction 

In practice, a splicing effect predictor must sensitively identify SDVs while 

maintaining a low false positive rate across the thousands of variants identified in an 

individual genome. We therefore evaluated each tool’s sensitivity for SDVs within our 

benchmark set as a function of its genome-wide SDV call rate. We used a background 

set of 500,000 simulated SNVs drawn at random from internal protein-coding exons (+/- 

100 bp) (Figure 4-15). We scored these background SNVs with each tool and 

computed the fraction of the background set called as SDV as a function of the tool-

specific score threshold. Although the true splice-disruptive fraction of these background 

variants is unknown, we normalized algorithms to each other by taking, for each 

algorithm, the score threshold at which it called an equal fraction (e.g., 10%) of the 

genomic background set as SDV. We then computed the sensitivity across the 

benchmark-set SDVs using this score threshold and termed this the ‘transcriptome-

normalized sensitivity’. Taking SpliceAI as an example, at a threshold of SpliceAI≥0.06, 

10% of the background set is called as SDV. Applying the same threshold 

(SpliceAI≥0.06) to BRCA1 SGE variants in the benchmark set, SpliceAI reaches 98.2% 

sensitivity and 80.7% specificity (Figure 4-16A).  
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Figure 4-15: Background set of random exonic and near-exonic variants. 

Schematic shows criteria used to select gene models and counts of MANESelect 
transcripts remaining at each step. At bottom, counts and proportions of background set 
variants by category.  

All MANESelect canonical transcripts
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Figure 4-16: Transcriptome normalized sensitivity 

A. Example shown for SpliceAI. Upper panel shows SpliceAI scores for the 500,000 
background set variants (teal histogram) and the cumulative fraction (black line) of 
variants above a given score threshold (SpliceAI score≥0.06). Below, histograms of 
SpliceAI scores for BRCA1 SGE benchmark variants, either SDVs (middle) or splicing-
neutral variants (bottom) and the resulting transcriptome-normalized sensitivity and 
specificity at a SpliceAI cutoff of 0.06. B. Transcriptome-normalized sensitivity (at 10% 
background set SDV) versus within-benchmark variant set prAUC (Figure 4-12A), by 
exon. C. Transcriptome-normalized sensitivity on benchmark variants plotted as a 
function of the percent of the background variant set called SDV. 
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recall analyses (Figure 4-12), median transcriptome-normalized sensitivity was lower 

for exonic vs intronic introns for all tools examined, by an average of 36.9%. These 

results were not specific to the transcriptome-wide threshold of 10%: the same three 

algorithms scored highly for thresholds at which 5% or 20% of the background set 

scored as SDV. Performance also varied by exon target (Figure 4-16B); for example, 

many of the SDVs in FAS exon 6 and RON exon 11 were not detected by any algorithm 

at a threshold which would classify 10% of the background set as SDV. The effects 

measured by MPSAs in these specific exons may be particularly subtle, creating difficult 

targets for prediction and suggesting that existing tools may need scoring thresholds 

tuned to specific exons or variant regions. Finally, we quantified the transcriptome-

normalized sensitivity as a function of percent of the background set called SDV and 

calculated the area under the resulting curve (analogous to the prAUC statistic), 

showing the tradeoff between benchmark SDV recall and genome-wide SDV rate, and 

again highlighting consistently lower performance within exons across algorithms and 

datasets (Figure 4-16C). 

4.4.4 Determining optimal score cutoffs 

Integrating splice effect predictors into variant interpretation pipelines requires a pre-

determined score threshold beyond which variants are deemed disruptive. We explored 

whether our benchmarking could inform this by identifying the score threshold that 

maximized the Youden’s J statistic (J=sensitivity+specificity-1). For each algorithm, we 

first identified optimal score thresholds on each dataset individually to explore 

differences across genes and exons. For most tools we evaluated, ideal thresholds 

varied considerably across exons, regions, and variant classes, such that a threshold 
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derived from one was suboptimal for others (Figure 4-17). For some tools, including 

HAL and ConSpliceML, thresholds optimized on individual datasets spanned nearly the 

tools’ entire range of scores, while for others such as SQUIRLS, SpliceAI, and Pangolin, 

the optimal thresholds were somewhat less variable. For the tools that showed the 

consistently highest classification performance and transcriptome-normalized sensitivity, 

SpliceAI, Pangolin, and ConSpliceML (Figures 4-11 and 4-16) - we found that the 

optimal thresholds were usually lower (72.2% of the time) than the threshold 

recommended by the tools’ authors, largely consistent with conclusions of other 

previous benchmarking efforts103,104,107,199. Optimal thresholds also differed by variant 

class, suggesting that tuning cutoffs by variants’ annotated effects, like those 

implemented by S-Cap, may offer some improvement for classification accuracy on 

variants genome-wide.  

 

Figure 4-17: Optimal thresholds to classify splice disruptive variants. 

Optimal score thresholds (y-axis) for each algorithm, across each benchmark variant 
datasets (blue points), by variant type (red points), and compared to previous reports 
(green points). Dashed black line shows tools’ recommended thresholds. Solid lines 
indicate medians. 
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Alternative splicing can present challenges for prediction of nearby variants’ impacts. 

Many splicing effect predictors require gene model annotation as an input, including four 

of the eight tested here (MMSplice, SQUIRLS, SpliceAI, and Pangolin). Effect 

predictions for individual variants may be influenced by the inclusion or exclusion of 

alternative isoforms in these annotations. For instance, SpliceAI and Pangolin by default 

apply a mask which suppresses scores from variants that either strengthen known 

splice sites or weaken unannotated splice sites, under the assumption that neither 

would be deleterious. Although masking may be a useful step to reduce the number of 

high-scoring variants genome-wide, it requires the provided annotation to be complete, 

and assumes there is no functional sensitivity to the relative balance among alternative 

splice forms.  

We examined the effects of annotation choices and masking options at two 

alternatively spliced exons in our benchmark variant set. In the first, POU1F1, two 

functionally distinct isoforms (alpha and beta) result from a pair of competing acceptors 

at exon 2. Alpha encodes a robust transactivator and normally accounts for ≥97% of 

POU1F1 expression in the human pituitary69,109,115,117. Beta exhibits dominant negative 

activity, and SDVs that increase its expression cause combined pituitary hormone 

deficiency55,70. We focused on SpliceAI in which the default annotation file only provides 

the alpha transcript. Predictions were broadly similar after updating annotations to 

include only the beta isoform or both: 13.8% (n=130/941) and 10.5% (n=95/941) of the 

variants, respectively, changed classifications compared to SpliceAI run with default 

annotations (each at an SDV cutoff of SpliceAI≥.08 which was optimal across the 

dataset; Figure 4-18) Among these were several pathogenic SDVs including c.143-
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5A>G145 which is associated with combined pituitary hormone deficiency (CPHD),  

scored as highly disruptive by MPSA55, and was validated in vivo by a mouse model206.  

With the default annotations (alpha isoform only) and when including both isoforms, 

SpliceAI scores c.143-3A>G as disruptive (SpliceAI=.21 and .16 respectively). However, 

when only the beta isoform is considered, this variant is predicted neutral (SpliceAI=0). 

A similar pattern emerged at a cluster of six pathogenic SDVs which disrupt a putative 

beta suppressing exonic splicing silencer55. Therefore, counterintuitively, pathogenic 

SDVs which act by increasing beta isoform usage go undetected when using an 

annotation specific to that isoform. 

 

Figure 4-18: Effects of SpliceAI annotations within POU1F1 exon 2 beta acceptor.  

MPSA measured percent usage of POU1F1 isoforms are shown in the upper tracks 
(gray background), with variants called SDVs shaded with color and denoted as in 
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Figure 4-5. SpliceAI scores are shown in the bottom three tracks, obtained using 
default annotation (alpha isoform only; top), beta isoform only (middle), or both isoforms 
(bottom). Combined pituitary hormone deficiency (CPHD) patient variants are marked 
with black triangles.  

The choice of canonical transcript may be less clear when alternative isoforms’ 

expression are more evenly balanced, as is the case for WT1, a key kidney and 

urogenital transcription factor gene207 covered by our benchmarking set. Exon 9 of WT1 

has two isoforms, KTS+ and KTS-, named for the additional three amino acids included 

when the downstream donor is used72,75. In the healthy kidney, KTS+ and KTS- are 

expressed at a 2:1 ratio73,76. Decreases in this ratio cause the rare glomerulopathy 

Frasier’s Syndrome73,74,76, while increases are associated with differences in a sexual 

development179. We ran SpliceAI using annotations including KTS+ alone (its default), 

KTS- alone, and with both isoforms (Figure 4-19A). A cluster of variants, including one 

(c.1437A>G) associated with DSD179 near the unannotated KTS- donor, appear to 

weaken it but are masked because that donor is absent from the default annotations. 

Conversely, another variant (c.1447+3G>A) also associated with DSD appears to 

increase the KTS+/KTS- ratio, but is also masked because it strengthens the annotated 

KTS+ donor (SpliceAI=0 with default annotation), and similarly scores as neutral when 

the annotation is updated to include both isoforms (SpliceAI=.02). The same variant 

scores somewhat more highly (SpliceAI=.12) when only the KTS- annotation is used, 

but using the KTS- annotation in turn results in failure to capture several known 

Frasier’s Syndrome pathogenic variants near the KTS+ donor73,76,172-175. This case 

illustrates that predictors can fail even when all functionally relevant isoforms are 

included, because masking may suppress SDVs that are pathogenic due to 

strengthening an annotated splice site, resulting in imbalanced expression. This 
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challenge was not specific to SpliceAI; for instance, Pangolin also showed poor 

recovery of KTS- SDVs (only 25% correctly predicted) due to masking these losses of 

an unannotated donor (Figure 4-19B).  
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Figure 4-19: Effects of SpliceAI annotations at WT1 exon 9 donors. 
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A. MPSA measured percent usage of WT1 KTS ratio isoforms is shown in the top tracks 
(gray background), with variants called SDVs shaded with color and denoted as in 
Figure 4-4. SpliceAI scores are shown in the bottom three tracks, obtained using 
default annotation (KTS+ isoform only; top), KTS- isoform only (middle), or both 
isoforms (bottom). Frasier’s syndrome (FS) and differences in sexual development 
(DSD) patient variants are marked with black triangles and diamonds respectively. 
Splicing effect tracks at POU1F1 exon 2 (alternate isoforms beta and alpha). B. Upper 
panel tracks (gray background) show MPSA measurements of KTS ratio, exon skipping, 
and other (non-KTS+/KTS-/skip) isoform usage; bottom tracks show scores from 
bioinformatic predictors by position. Each lollipop denotes one variant, shaded by effect 
in MPSA (gray: neutral, colors: SDVs, shaded by mutant base). The exon and flanking 
introns are split by region. WT1 track without regions shown in Figure 4-4. Heatmap 
showing of concordance between each algorithm’s binary classification of variants as 
SDV/neutral versus those of the MPSAs, using the score threshold for each algorithm 
that maximized its concordance with the MPSA across WT1 exon 9. Concordance is 
shown per algorithm (row) for each region (column). Regions with <10 scored variants 
are omitted (black ‘X’ symbols). 

POU1F1 and WT1 do not represent exceptional cases: using RNA-seq junction 

usage data from the GTEx Consortium117, we estimate 18.0% of all protein coding 

genes (n=3,571/19,817 genes) have at least one alternate splice site that is expressed 

and at least with modestly used (≥20% PSI) in at least one tissue, yet absent from 

SpliceAI default annotations (Figure 4-20). One of these is FGFR2, a tyrosine kinase 

gene with key roles in craniofacial development208-210. Mutually exclusive inclusion of its 

exons IIIb and IIIc results in two isoforms (FGFR2b and FGFR2c) with different ligand 

specificites208,209,211, and disruption of exon IIIc splicing causes Crouzon, Apert, and 

Pfeiffer Syndromes, which share overlapping features including craniosynostosis 

(premature cranial suture fusion)212-215. Pathogenic variants cluster near exon IIIc splice 

sites and at a synonymous site that activates cryptic donor usage within the exon212,214-

234 (Figures 4-21 and 4-22). The default annotation excludes exon IIIc, causing all four 

pathogenic variants at its acceptor to be scored splice neutral, but when IIIc is included 

in the annotation, all four are predicted with high confidence (all ≥.99). Disabling 

masking in order to capture cases such as these is not a viable option, as it greatly 
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reduces overall performance, and drastically increases the number of high-scoring 

variants which must be reviewed108. 

 

Figure 4-20: Annotation sensitive alternatively spliced genes in GTEx 

Barplot showing the proportion of protein coding genes within GTEx (y-axis) that are not 
expressed (CPM < .1) (black), have no expressed alternate splice sites (SS) (gray), 
have all alternative sites annotated by SpliceAI (green, have only seldom used 
unannotated alternate splice sites (orange), and have at least one unannotated 
alternate splice site with modest use (≥20% PSI; red) both across all tissues (first bar – 
Overall) and within tissues (x-axis).  
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Figure 4-21: Effects of annotation choices in FGFR2 exon IIIc.  

SpliceAI scored against the FGFR2b isoform without exon IIIc (default) and the FGFR2c 
isoform with exon IIIc. Bars are individual variants shaded by nucleotide substitution. 
Synonymous and intronic variants classified in ClinVar as likely benign (open square) or 
likely pathogenic/pathogenic (shaded triangles) are indicated. 

 

Figure 4-22: Effects of annotation choices on known variants in FGFR2 exon IIIc.  

SpliceAI scores (y-axis) using the FGFR2b isoform without exon IIIc (default; left) and 
the FGFR2c isoform with exon IIIc (right) annotations (x-axis). Dots shaded by variant 
classification. 
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4.5 Discussion 

We evaluated the performance of eight splice effect predictors using a benchmark 

set of variants from saturation-level massively parallel splicing assays (MPSAs) across 

fifteen exons. By holding the sequence context constant for hundreds of variants per 

exon, these MPSAs afforded an opportunity to systematically evaluate how well each 

tool could distinguish individual variants’ effects without confounding by differences in 

exons’ overall characteristics. Compared to traditional validation sources such as 

clinical variant databases, which are enriched for essential splice site mutations, these 

MPSA datasets had more uniform representation of variant types including those for 

which classification is currently challenging.  

Across most exons tested, the deep learning-based tools Pangolin and SpliceAI had 

the best overall performance. These two were not uniformly superior, however, and 

other tools excelled on certain datasets. ConSpliceML was comparably sensitive at 

identifying SDVs within the benchmarking set, while normalizing for genome-wide call 

rate, and MMSplice performed well for intronic SDVs. Even for the best performing 

tools, SDVs were more difficult to identify within exons compared to introns, highlighting 

an area of focus for future splice prediction algorithms. These results are consistent with 

other recent splice predictor benchmarks using broad MPSAs and clinical variants, 

which also noted low concordance among tools104,108, particularly for exonic variants107, 

and poorer classification performance in exons and with greater distance from splice 

sites61,91,100,198,199. As in our study, in these past comparisons, SpliceAI was often but 

not always the top performer102-104,106-108,198.  Together, these our results suggest 



 129 

opportunities for metaclassifiers to better calibrate existing predictors and to leverage 

each within its strongest domain105,108. 

A key issue this benchmarking study highlights is the challenge of selecting a 

scoring threshold for splicing predictors. This may reflect differences in exons’ and 

genes’ intrinsic vulnerability to SDVs, as a function of factors such as splice site 

strength235 and WT exon inclusion rates19.  For instance, most predictors fared poorly 

on FAS exon 6 and RON exon 11, both of which are intermediately included at baseline, 

and so may be more sensitive to splice disruption19. For moderately included exons 

such as these, more lenient thresholds may be required.  

Another consideration is that these predictors do not directly model differences in 

dosage sensitivity between genes. Recessive disease genes may tolerate SDVs that 

reduce the abundance of properly spliced mRNA by ~50% whereas in more highly 

dosage sensitive genes an equally disruptive SDV would be highly deleterious. At the 

extreme, SDVs that lead to expression of protein isoforms with dominant negative 

effects may be deleterious even at a low level of expression as in the case of POU1F1 

exon 2 beta-promoting SDVs. The nature of the aberrant splice form is also important to 

consider – for instance, while DNM1 loss of function can result in developmental and 

epileptic encephalopathies, specific SDVs yield in-frame insertions which act in a 

dominant negative fashion and cause particularly severe presentation236. Interpreting 

the results of bioinformatic splice effect predictions may therefore depend upon 

knowledge of the individual genes’ dosage sensitivity, which potentially limits the utility 

of readily computed genome-wide scores. Methods such as ConSpliceML offer a means 
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of inferring such thresholds by modeling on a per-gene or per-exon basis the constraint 

against SDVs among healthy individuals105. 

Our results also highlight the major influence of gene model annotation, a required 

input for many splice effect predictors. For two of the MPSA-tested exons in our 

benchmarking set (POU1F1 and WT1), inclusion of alternate splice forms changed 

SpliceAI predictions across >10% of variants. Using RNA-seq data from GTEx, we 

conservatively project that this challenge may impact nearly one in every five genes in 

the human genome. Such annotation changes are inconvenient for end users and are 

not readily accommodated by some tools. Moreover, they may not be possible when the 

functionally relevant isoforms are not known in advance. Using the most comprehensive 

annotation set is not a universal fix, as illustrated by POU1F1, where it resulted in 

poorer concordance with MPSA measurements, and lower specificity in recovering 

pathogenic variants. Some tools, including MMSplice and SQUIRLS, provide splicing 

effect predictions specific to all overlapping transcripts, and could permit investigation of 

isoform specific effects at the cost of reviewing many additional variant scores.   

One limitation of our study is that the splicing assays we drew from made certain 

tradeoffs in exchange for scale. Minigene-based MPSAs necessarily include only 

minimal sequence context, and cannot capture effects from transcription elongation rate 

or nucleosome positioning each of which can influence splicing237. MPSA and SGE 

experiments typically use immortalized cancer cells, in which the splicing factor milieu 

may differ from that of the relevant tissues in vivo. Nevertheless, minigene assays are 

often well correlated across cell lines36,55,56,61,184 and have a sufficient track record of 

concordance with blood RNA analysis that they are often deemed acceptable as 
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functional evidence during clinical variant interpretation199,238,239. Moreover, even when 

minigene assays misidentify a variant’s aberrant splicing outcome(s), they may still 

correctly flag the variant itself as splice disruptive202,240. In the future, improved splice 

effect benchmarking data could result from MPSAs with longer sequence contexts165 or 

delivered to more relevant tissues241, and from emerging approaches for in situ genome 

engineering48,242. Additionally, the growing usage of RNA-seq in genetic testing163,193,194 

provides an opportunity to contribute both SDVs and neutral variants to the training and 

validation of future splice predictors. 

4.6 Conclusion 

Here we have shown that saturation MPSAs provide an opportunity to critically 

evaluate the performance of computational splice effect predictors. Our results 

complement past benchmarking efforts using clinical variants and more broadly targeted 

MPSAs, by testing algorithms’ ability to distinguish individual variants’ effects within the 

context of a single exon. This classification task resembles that faced by clinicians 

during variant interpretation, as even in disease gene exons which are vulnerable to 

splice disruption, there are many rare variants which do not impact splicing. We 

nominated SpliceAI and Pangolin as the top-performing tools, noting shortcomings 

including in exonic variant performance, and identifying practical challenges that end-

users may encounter including selection of thresholds and the need for careful attention 

to gene model annotations. The continued growth of MPSA screens will present an 

opportunity to further improve splice effect predictors to assist in the interpretation of 

variants’ splicing impacts.  
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Chapter 5 Conclusions and Future Directions 
The results presented in this dissertation emphasize the importance of 

considering the functional effects at the level of RNA splicing when conducting whole 

genome sequencing. My studies highlight a continued need for improved in silico splice 

effect prediction algorithms. Chapters 2 and 3 demonstrate the use of high throughput, 

experimental screens of splicing effect, which systematically nominated splice altering 

variants across whole exons within one experiment. Chapter 2 identified 96 splice 

altering SNVs in and around exon 2 of the pituitary specific transcription factor POU1F1 

(n=96/1,070; 9% of all measured SNVs), and importantly 14 of those splice disruptive 

variants were synonymous substitutions (n=14/108 synonymous substitutions; 13%) 

which would be considered low priority during clinical sequencing55. Although most 

variants were not splice disruptive, the massively parallel splicing screen detected a 

putative exonic splice silencer (ESS) region which represses the use of the nearby beta 

acceptor. This acceptor activates the expression of the normally lowly expressed 

dominant negative beta isoform which interferes with the function of the predominant 

alpha isoform69-71. Six families with hypopituitarism had variants within the identified 

ESS region – two of which were synonymous variants, and all variants associated with 

hypopituitary patients within this study increased the use of the repressive beta isoform 

by breaking the regulatory motif. Some of the patient variants also intermediately 

increased exon 2 skipping which also encodes an isoform with a dominant negative 

effect on the normally predominant alpha isoform144. Thus, the high throughput splicing 
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screen simultaneously exposed clinically relevant, splice disruptive variants and 

provided some mechanistic insights into the molecular cause of the patients’ phenotype. 

In Chapter 3, exon 9 of another clinically relevant transcription factor in kidney 

and reproductive tissue, WT1, was likewise systemically tested for splice-disruptive 

variants56. Unlike POU1F1 exon 2 which has competing alternate acceptors, WT1 has a 

set of alternate donors which express the KTS- and KTS+ isoforms. Both isoforms are 

normally expressed at a ratio of ~2:1 (KTS+:KTS-) in healthy individuals73,76, but 

lowered expression of KTS- can lead to a sexual differentiation phenotype179 and, on 

the other hand, reduced expression of KTS+ leads to Frasier’s syndrome which impacts 

kidney function and sexual differentiation73,74,76,172-175. Using a high throughput splicing 

assay, we identified 57 splice disruptive SNVs in and around WT1 exon 9 (n=57/518; 

11.0%), and the proportion of disruptive SNVs was similar to that observed in POU1F1 

exon 2. Of the splice altering variants, the majority altered the KTS ratio (n=43/57; 

75.4%) including 8 variants which were previously observed to reduce KTS+ usage in 

Frasier’s syndrome and a related renal phenotype, focal segmental glomerulosclerosis 

(FSGS)74,76,172-175, and two SNVs which lowered KTS- use and were observed in 

patients with 46,XX ovotesticular differences in sexual development (46,XX OTDSD)179. 

The pooled minigene screen revealed an additional 16 KTS+ reducing SNVs expected 

to cause Frasier’s syndrome and 17 SNVs lowering the usage of KTS- implicating a 

sexual differentiation phenotype. Four of the variants lowering the KTS ratio were 

synonymous so may not be immediately identified as potential causal variants during 

whole genome sequencing. Unlike POU1F1 exon 2, almost all variants altering splicing 

clustered near the splice sites – so, either the splicing fidelity of WT1 exon 9 is not 
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reliant on intronic or exonic splicing regulatory motifs, or alternatively, those motifs may 

be robust to perturbation by individual SNVs. Both Chapters 2 and 3 employed 

massively parallel splicing screens to expedite the discovery of splice altering variants 

within clinically relevant exons, which have not only contributed to the interpretation of 

standing clinical variants, but will also serve as a reference of functional evidence to 

guide the interpretation of future variants potentially shortening patients’ diagnostic 

odysseys. 

Although high throughput functional assays allow the systematic measurement of 

hundreds of variants simultaneously, the vast scale of variants without a clear 

interpretation makes the task of experimentally determining splice altering variants 

daunting. Thus, accurate and reliable computational prediction of splice disruptive 

variants may be the most feasible path to splicing assessments genome-wide. In 

Chapter 4, I benchmarked eight contemporary bioinformatic algorithms90,91,97-101,105 to 

establish the state of the art in splice prediction, and to determine any specific areas for 

improvement. Since clinically derived datasets typically have an overabundance of 

variants at canonical splice sites, which are straightforward to predict, I employed data 

from four massively parallel splicing assays55-57,59 and one saturation genome editing 

experiment48 to evaluate the splice prediction tools. Datasets derived from such 

saturation screens represent a proportion of variant types and locations similar to that 

seen across the transcriptome making them ideal to evaluate algorithms’ performance 

within different variant classes. I also tested the tools against one literature curated 

dataset of MLH1 variants to underscore the differences seen when benchmarking 

against clinical variants instead of data from saturation screens. In concordance with 
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other recent benchmarking studies102-104,107, I found SpliceAI100 and the more recently 

developed tool Pangolin101 – both of which are deep learning tools trained only on 

annotated sequence - to outperform other algorithms within most of my evaluation 

metrics. Other algorithms functioned well at specific tasks – for instance, 

ConSpliceML105 showed high sensitivity to select splice altering variants and 

MMSplice97 detected intronic splice disruptive variants when they were both tested 

using a transcriptome normalized threshold. However, all algorithms exhibited lower 

performance within exons compared to introns, highlighting the ongoing challenge of 

computationally identifying splice disruptive missense and synonymous variants. Similar 

trends have also been observed by other groups61,198,199. Thus, although Pangolin and 

SpliceAI appear to be the most sophisticated of the benchmarked tools, the motivation 

to continue to improve on computational splice effect predictive tools remains. As more 

massively parallel splicing assays become available, experimentally measured splicing 

effects could be used to bolster splice prediction when used as features within machine 

learning frameworks and to train and evaluate the algorithms. 

Chapter 4 also emphasized the difficulties encountered within four tools – 

MMSplice97, SQUIRLS91, SpliceAI100, and Pangolin101 – which all rely on user input 

annotation files. Both MMSplice and Pangolin allow more flexibility in customizing 

annotations – either by accepting standard formats or by providing a script to create the 

required file type from a standard format respectively. Since SQUIRLS required file 

format is not easily reproducible, the versatility of the software may degrade over time 

as updated gene annotations become available.  Although creating a custom annotation 

file for SpliceAI is not cumbersome, computing splice predictions for copious variants 
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using SpliceAI is computationally intensive leading many users to rely on the table of 

pre-computed scores. I highlighted some specific examples of where SpliceAI’s pre-

computed scores are problematic and there are indications that these difficulties may 

impact a non-trivial proportion of protein coding genes genome-wide (18.0%). Pangolin 

is similarly computationally intensive to run, and does not yet provide pre-computed 

splice predictions, however some of the computational burden can be abated by using 

the given GPU installation.  

As a path forward, the next generation of splice prediction tools could apply 

knowledge of regional conservation to prioritize splice sites of functional import instead 

relying on user supplied annotation files. For instance, the beta region of POU1F1 exon 

2 and the KTS- region of WT1 exon 9 are both highly conserved, so variants altering the 

usage of nearby splice sites could be assigned a stronger prior probability of 

pathogenicity. ConSpliceML105, which does not require an annotation input, recently 

attempted to define regional constraints using SpliceAI predictions and healthy 

population variants from the gnomAD database. They endeavored to use their 

constraint metric to infer exons which might be more or less tolerant splice disruption, 

similar to constraint scores that compare, for each gene, the counts of protein-truncating 

variants observed in a population versus the counts expected in the absence of 

selection95,244. Within my benchmarking efforts, ConSpliceML was consistently ranked in 

the top three algorithms for sensitivity at various transcriptomic normalized thresholds 

(5%, 10%, 20%, and the area under the curve across thresholds) both across all 

variants and within exons. However, when examining the specificity across the same 

transcriptomic normalized thresholds and regions, ConSpliceML median scores rank 
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within the bottom three of the benchmarked tools (specificity AUC = .32 overall and .57 

within exons; Figure 5-1). Although there is necessarily a compromise between 

sensitivity and specificity, these results suggest that ConSpliceML may be deeming too 

many variants as splice disruptive. So, there is room for improvement for the next 

generation of splice prediction algorithms to use regional constraints to define functional 

splice sites and exons. 
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Figure 5-1: Specificity by transcriptomic proportion deemed splice disruptive.  

A. Transcriptomic normalized specificity versus % of the genomic background set 
deemed SDV at varying splice predictor cutoff scores, for each of the benchmark 
datasets (rows). Lines are colored by bioinformatic algorithm.  Transcriptome 
normalized specificity (y axis value) at x% background set SDV is defined as the 
specificity observed vs the given benchmark dataset, at the algorithm-specific score 
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cutoff at which x% of the background set of random exonic/near-exonic variants are 
deemed SDV. (Specificity=TN/(FP+TN)). B. Same as A., but split by variant position. 
Plots for variants within exons (left) and variants within introns (right) are shown. 

 The lowered prediction accuracy within exons compared to introns could be due 

to a lack of understanding of the splicing code and in particular the influence of RBP 

motifs on splicing within exons. There have been copious computational and 

experimental attempts to enumerate splicing regulatory elements outside of the splice 

site and branchpoint regions17,24,25,27-29, but the resulting lists of critical motifs have little 

overlap and encompass nearly every possible short regulatory motif30. Recently 

SQUIRLS91 used experimental measurements of a saturation set of 6-mers placed 

within different regions of two exons as part of a high throughput splicing assay17. 

Although SQUIRLS fared no better than the other algorithms at splice prediction within 

exons243, the addition of CLIP-Seq derived binding motifs for known splicing factors 

could potentially improve exonic splice predictions for the next generation of splicing 

tools.  

Although this dissertation focuses on cis sequence elements that alter splicing, 

many other factors including secondary RNA structure, nucleosome positioning, and 

transcriptional elongation to name a few can influence splicing decisions in vivo. Many 

research projects including this dissertation have sought to define the splicing code – a 

term coined by Barash, et al245 – but the number of complex and often competing 

factors which determine and maintain splicing may be too vast to comprehend outside 

the context of artificial intelligence. Although SpliceAI and Pangolin were trained only 

with annotated sequence, the long context used to predict splicing effects may be able 

to decipher more complex events than simply the effects of sequence alteration. For 

instance, SpliceAI’s performance was markedly lower when given shorter sequence 
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context, and the algorithm’s predictions were correlated with nucleosome occupancy 

implying that SpliceAI can predict nucleosome positioning from primary sequence100. 

Thus, at the risk of overfitting models, supplying increasingly complex and highly 

layered artificial intelligence algorithms with our ever expanding databases like genome-

wide CLIP-Seq peaks for instance may be the future of finally unraveling the splicing 

code. Although improvements within in silico splice prediction are warranted, the current 

tools can immediately be used to prioritize variants for mini-gene experiments within 

clinical datasets. 

 Massively parallel splicing assays and splice prediction algorithms can be used in 

tandem to not only expedite the classification of clinical variants of unknown 

significance, but they can also be paired to explore interactions, to target high priority 

exons, and to identify likely variants to create a desired phenotype in animal models. In 

the context of variant effects, epistasis occurs when variants’ effects are non-additive – 

that is, when the combination of two variants’ individual effects is not the same as the 

effects of those variants in combination. Splicing epistatic effects can occur via 

numerous mechanisms, including interactions between cis and trans-acting factors 

(inter-genic epistasis)246, dual amino acid substitutions within individual trans-acting 

splicing factors247, and between two cis-acting sequence variants57-60,248. In keeping with 

the theme of this dissertation, I focus here on the latter: pairs of cis-acting sequence 

variants which alter splicing of the exon in which they reside.  

Cis-acting epistatic splicing effects imply a non-linear interaction among variants’ 

splicing impacts – for instance, two splice neutral variants could have a large 

perturbation on splicing when paired together on the same haplotype. It has been 
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previously shown that compared to alternatively spliced exons, constitutively included 

exons have a higher density of exonic splice enhancing (ESE) regulatory motifs17,19,89 

and that those motifs are more robust to perturbation by SNVs19 suggesting that some 

regulatory motifs may require disruption from two variants before splicing efficiency is 

impacted and representing a possible source of splicing epistasis. Due to purifying 

selection, common SNPs are unlikely to alter splicing individually, but common SNPs in 

cis with other individually splice neutral SNVs could combine epistatically in rare 

instances.  

Although the extent of splicing epistasis is as yet undetermined, massively 

parallel splicing assays have been enlisted to directly measure splicing interactions 

among SNVs. Within the FAS exon I benchmarked in Chapter 4, the splicing effects 

every possible pair of SNVs as well as the SNVs themselves were measured57. They 

observed a broader distribution of splicing effects for the double nucleotide variants 

(DNVs) and a larger impact on splicing when two splice neutral SNVs were paired 

compared to their individual splicing effects. Across all measured SNVs, 40% were 

found to interact with a neutral SNV and, although these interactions were both distal 

and proximal, the set was enriched for proximal pairs suggesting that pairs of variants 

may be breaking the same splicing regulatory motif and thus altering its usage. 

However, the same group later explored all the possible combinations of twelve variants 

within the same FAS exon that differentiates the human exon from that of primates and 

found a much lower proportion of epistasis among DNVs (12%)58. They also only 

observed interaction for DNVs within six bp of each other again implying the epistasis 

could be a result of two hits within the same exonic regulatory motif, and another group 
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similarly found only proximal interactions within their set of DNVs measured within WT1 

exon 560. In contrast, a linear model of additive mutation effects which ignored any 

possible interactions among SNVs had an excellent fit to the measured data within RON 

exons 10-1259. So, sensitivity to epistatic splicing effects could be exon specific or, like 

sensitivity to splice disruption by SNVs, could be related to the wild-type inclusion levels 

of the exon19. 

 Recently, the authors of Pangolin demonstrated the tool’s ability to model 

epistatic interactions computationally101. Their splicing predictions for DNVs and higher 

order combinations of variants from the study of the FAS ancestral exon58 had a higher 

correlation with the measured values than a linear combination of the predicted scores 

for each of the SNVs individually suggesting that in silico modeling of splicing epistasis 

is possible. To my knowledge, SpliceAI has not been benchmarked against any 

measured sets of DNVs or higher order combinations of variants, but the software has 

the capability to score multiple variants on the same haplotype. I wrote a custom 

wrapper to the SpliceAI software allowing me to easily evaluate MLH1 – one of the most 

highly studied genes implicated in the colon cancer predisposition disorder of Lynch 

syndrome249 – for possible epistatic splicing effects. I computationally predicted the 

splicing effects of every possible SNV individually, and all possible pairs of SNVs within 

short (<300 bp), coding exons of MLH1. I focused in particular on exons which would 

create an out of frame transcript if skipped (n=14 exons). Since Lynch syndrome has 

autosomal dominant inheritance and out of frame transcripts would presumably be 

subject to nonsense mediated decay204,249,250, any variants promoting exon skipping in 

those exons would likely be pathogenic.  
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Within the pairs of in cis SNVs from out of frame skip exons, the DNVs had 

higher odds of causing predicted splice disruption (SpliceAI threshold >= 20%) 

compared to SNVs in 67% (n=8/12) of the selected exons (median OR=2.09) as has 

been previously observed57. Of the predicted splice disruptive DNVs in selected exons, 

only 16.0% (n=8,582/53,605) of the SNVs were within 10 bp of each other so a high 

proportion of the variants predicted to act epistatically did so at a greater distance than 

has been observed in recent high throughput assays58,60. 

Computationally predicted maps of SNV splicing effects can nominate exons with 

regulatory regions sensitive to disruption; these exons could then be prioritized for 

future MPSAs. For instance, within MLH1 exon 6, SpliceAI predictions suggest the 

existence of ESE region(s) on the 5’ end of the exon (Figure 5-2). Since skipping of 

exon 6 would create an out of frame transcript, variants promoting exon skipping within 

the putative ESE regions would be pathogenic. Within exon 6, four synonymous 

variants predicted to be splice disruptive are currently classified as likely benign/benign 

(LBB) or with an unclear designation within ClinVar (Figure 5-2). Exons 9 and 15 also 

show evidence of predicted exonic splice regulatory regions, and both exons have a 

handful of predicted splice altering synonymous variants with LBB or 

uncertain/conflicting interpretations within ClinVar (n=4 and 5, respectively). Since 

synonymous variants may not be suspected to cause loss of function a priori, 

computational predictions can be used to prioritize future massively parallel splicing 
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screens to identify clinically relevant pathogenic variants that may otherwise be 

inscrutable.  

 

Figure 5-2 SpliceAI predicted splice disruption in MLH1 exon 6.  

Predicted splicing map showing SpliceAI’s probability of splice disruption (y-axis) for 
every exonic MLH1 exon 6 SNV (top) and every SNV in cis with the common variant 
c.474C>T (bottom) by transcript position (x-axis). Bars colored by the nucleotide 
substitution are predicted to be splice disruptive variants (SDV) at a SpliceAI threshold 
>= 20% and gray variants are predicted to be splice neutral. Synonymous ClinVar 
variants are indicated above the plot. Black lollipop shows the common gnomAD variant 
(gnomAD allele frequency > 1%) at c.474C>T. 

 I next overlaid allele frequencies from gnomAD to explore splicing epistasis 

between common variants (gnomAD allele frequency (AF) > 1%) and other SNVs within 

out of frame skip exons. Specifically, I asked whether any common variants might act to 

sensitize exons to splicing disruption by a second variant in cis. As a specific example, 

the synonymous substitution c.474C>T is listed as likely benign in ClinVar, is common 

within gnomAD (AF = 1.06%), and is predicted to have no effect on splicing (SpliceAI 

score = 14.0%; Figure 5-2). When paired with the common c.474C>T variant, 77 SNVs 

that are predicted to have no effect on splicing individually are expected to have at least 

a 20% probability of altered splicing (28.0% of all possible SNVs) and of those, seven 
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have a > 50% predicted chance of disrupting splicing (2.5% of all SNVs; Figures 5-2 

and 5-3). One of the seven high probability neutral-common neutral DNVs, c.534A>G 

(p.Glu178=), is a synonymous substitution currently classified as likely benign in ClinVar 

so the possibility of two variants presenting as likely benign individually but 

pathogenically altering splicing when on the same haplotype would be an interesting 

result. Several of the neutral SNVs within the high probability neutral-common neutral 

SNV pairs are located within the interior of the exon (median distance from nearest 

splice site=7 bp; max=32 bp) and all are located > 10 bp from the common variant 

(minimum distance=12 bp, median=40 bp) raising questions as to the mechanisms of 

the epistatic effects. However, these are only computational predictions and will require 

experimental investigation to verify the effects and further explore possible mechanisms 

of splicing epistasis. Since epistatic splicing effects with common variants could have 

broad clinical implications, my computational analysis prioritizes MLH1 exon 6 as a 

promising future target for a high throughput splicing screen. 
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Figure 5-3: SpliceAI predictions of MLH1 exon 6 SNVs individually and paired with 
common gnomAD variant.  

Scatterplot showing the SpliceAI predictions of splice disruption within MLH1 exon 6 
SNVs (x-axis) and SpliceAI predictions of splice disruption for every SNV in cis with 
c.474C>T on the same haplotype (y-axis). Dashed horizontal and vertical lines show the 
SpliceAI threshold used to deem variants as splice disruptive. 

 Computational splicing predictions can also be used to identify likely variants to 

create a desired phenotype in animal models. One example is desmoplakin , a cell to 

cell binding protein which links desmosomes to intermediate filaments251. Missense and 

truncating mutations in DSP can cause recessive and dominant forms of 

cardiomyopathy252,253. Most pathogenic DSP variants cause protein truncations and 

lead to left dominant arrhythmogenic cardiomyopathy, early mortality, and specific skin 

and hair phenotypes with dominant inheritance254. The truncating variants present 

uniformly across the gene and phenotypic severity is correlated with RNA and protein 

expression levels implicating haploinsufficiency as the disease mechanism254. Although 

DSP has a mouse ortholog, there is currently no animal model of the cardiac phenotype 

caused by variants in DSP. One challenge in creating a mice model of DSP driven 

cardiomyopathy has been dosage sensitivity – loss of function truncation variants in the 

homozygous state are embryonic lethal and heterozygous mice do not display the 

cardiac phenotype.  As a result, available mouse models are limited by the inability to 

mirror the expression defect that reaches a level of pathogenicity similar to that in 

human. Judicious selection of splicing variants, including those beyond canonical sites, 

might provide the ability to fine-tune DSP dosage  to create models with the desired 

phenotype. I used my custom SpliceAI wrapper on mouse genomic sequence to identify 

probable variants promoting skipping of out of frame exons at various predicted rates 

across the range of SpliceAI predicted probabilities. Thus, we could computationally 
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hone the dosage in a gene acting through haploinsufficiency to accelerate the 

development of an animal model of disease. In this way, the mechanisms of the disease 

and possible treatments can be better understood to inform treatment of 

cardiomyopathy patients. So, accurate computational predictions of splicing can be 

used as a guide to hasten scientific discoveries within human diseases. 

 Altered splicing explains a substantial minority of the burden of pathogenic 

variants in human genetic disease. By applying massively parallel splicing assays to two 

clinically relevant exons, we have shortened the diagnostic odyssey for some patients 

and uncovered some of the mechanisms of splicing perturbations within those exons. 

Pairing experimentally measured splicing results with computational predictions of 

splicing effects could be a path forward to better understanding the complete splicing 

code, and we have employed massively parallel assays to identify the state of the art in 

computational splicing prediction. Although computational predictions may be the only 

feasible route to ascertain splicing effects genome-wide, massively parallel assays are 

critical to hone and validate those predictions. Although only a small part of the work 

necessary, this dissertation aims to move towards deciphering the splicing code as it 

relates to the identification of pathogenic variants in clinically relevant disease genes so 

patients can receive explicit genetic diagnostics leading to a definite course of 

treatment.



 149 

Appendix  
Table A-1: MLH1 literature curated variants 

chrom hgvs variant hg19 pos hg38 pos ref alt PubMedID(s) SDV 
3 c.117-34A>T 37038076 36996585 A T 24090359 FALSE 
3 c.117-11T>A 37038099 36996608 T A 11066084 TRUE 
3 c.117-2A>G 37038108 36996617 A G 32849802 TRUE 
3 c.117-2A>T 37038108 36996617 A T 8521394 TRUE 
3 c.117-1G>C 37038109 36996618 G C 12624141, 19224586.0 TRUE 
3 c.121G>C 37038114 36996623 G C 30233647, 18561205.0 FALSE 
3 c.122A>G 37038115 36996624 A G 15300854, 26247049.0, 32123317.0 TRUE 
3 c.146T>A 37038139 36996648 T A 16395668 FALSE 
3 c.191A>G 37038184 36996693 A G 31332305, 23729658.0 FALSE 
3 c.198C>T 37038191 36996700 C T 19267393, 22949379.0 FALSE 

3 c.199G>A 37038192 36996701 G A 16395668, 16995940.0, 18561205.0, 
22949379.0, 9833759.0 FALSE 

3 c.199G>T 37038192 36996701 G T 16395668, 10480359.0 FALSE 
3 c.200G>A 37038193 36996702 G A 16995940 FALSE 
3 c.207+1G>T 37038201 36996710 G T 15849733 TRUE 
3 c.207+2T>C 37038202 36996711 T C 16142001, 21642682.0 TRUE 
3 c.207+2T>G 37038202 36996711 T G 22480969 TRUE 
3 c.208-3C>G 37042443 37000952 C G 19267393 TRUE 
3 c.208-2A>G 37042444 37000953 A G 8521398 TRUE 
3 c.208-1G>A 37042445 37000954 G A 18931482 TRUE 
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3 c.210A>C 37042448 37000957 A C 15923275 FALSE 
3 c.214G>C 37042452 37000961 G C 15923275 TRUE 
3 c.214G>T 37042452 37000961 G T 15923275 TRUE 
3 c.216T>C 37042454 37000963 T C 15923275 FALSE 
3 c.218T>C 37042456 37000965 T C 22736432 FALSE 
3 c.229T>C 37042467 37000976 T C 18561205, 16395668.0 FALSE 
3 c.230G>A 37042468 37000977 G A 19669161 FALSE 
3 c.238T>G 37042476 37000985 T G 32849802 FALSE 
3 c.244A>G 37042482 37000991 A G 22736432 FALSE 
3 c.277A>G 37042515 37001024 A G 26247049 FALSE 
3 c.292G>A 37042530 37001039 G A 18561205 FALSE 
3 c.299G>C 37042537 37001046 G C 32849802, 23729658.0 FALSE 
3 c.301G>A 37042539 37001048 G A 18561205, 27629256.0 TRUE 
3 c.302G>A 37042540 37001049 G A 18561205, 30233647.0 FALSE 
3 c.303T>G 37042541 37001050 T G 22949379 FALSE 
3 c.304G>A 37042542 37001051 G A 16395668, 12183410.0, 23729658.0 TRUE 
3 c.305A>C 37042543 37001052 A C 31642931 TRUE 
3 c.306+1G>A 37042545 37001054 G A 15849733, 10471527.0 TRUE 
3 c.306+4A>G 37042548 37001057 A G 18561205, 32634176.0 TRUE 

3 c.306+5G>A 37042549 37001058 G A 16142001, 20858721.0, 30233647.0, 
23523604.0 TRUE 

3 c.307-29C>A 37045863 37004372 C A 19267393, 22949379.0 FALSE 
3 c.307-19A>G 37045873 37004382 A G 18561205 FALSE 
3 c.307-2A>C 37045890 37004399 A C 12655568 TRUE 
3 c.307-1G>C 37045891 37004400 G C 14517962 TRUE 
3 c.318C>A 37045903 37004412 C A 16395668 FALSE 
3 c.318C>G 37045903 37004412 C G 29505604 FALSE 
3 c.320T>G 37045905 37004414 T G 16995940, 29505604.0, 8776590.0 FALSE 
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3 c.326A>C 37045911 37004420 A C 29505604 FALSE 
3 c.331G>C 37045916 37004425 G C 29505604 FALSE 
3 c.332C>A 37045917 37004426 C A 29505604 FALSE 
3 c.332C>T 37045917 37004426 C T 29505604, 10777691.0 FALSE 
3 c.338T>A 37045923 37004432 T A 16395668, 29505604.0 FALSE 
3 c.346A>C 37045931 37004440 A C 29505604 FALSE 
3 c.347C>A 37045932 37004441 C A 18561205 FALSE 
3 c.350C>G 37045935 37004444 C G 29505604 FALSE 

3 c.350C>T 37045935 37004444 C T 

16395668, 18561205.0, 19267393.0, 
22949379.0, 29505604.0, 

31332305.0, 11139242.0, 8574961.0, 
10732761.0, 10480359.0 

FALSE 

3 c.375A>G 37045960 37004469 A G 16395668, 9718327.0 FALSE 
3 c.376T>A 37045961 37004470 T A 18561205 FALSE 
3 c.380G>A 37045965 37004474 G A 11112663 TRUE 
3 c.380+1G>A 37045966 37004475 G A 15849733, 12555990.0 TRUE 
3 c.380+2T>A 37045967 37004476 T A 12655568 TRUE 
3 c.380+2T>C 37045967 37004476 T C 18726168 TRUE 

3 c.381-2A>G 37048480 37006989 A G 8971183, 10375096.0, 12624141.0, 
21642682.0, 15024732.0 TRUE 

3 c.389A>G 37048490 37006999 A G 22949379 FALSE 
3 c.394G>C 37048495 37007004 G C 29505604, 23729658.0 FALSE 
3 c.403C>G 37048504 37007013 C G 29505604 FALSE 
3 c.438A>G 37048539 37007048 A G 32849802 FALSE 
3 c.453G>A 37048554 37007063 G A 32634176 TRUE 
3 c.453+1G>T 37048555 37007064 G T 18931482, 19224586.0 TRUE 
3 c.453+1G>A 37048555 37007064 G A 24278394 TRUE 
3 c.453+2T>C 37048556 37007065 T C 11920650 TRUE 
3 c.454-51T>C 37050254 37008763 T C 8776590 FALSE 
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3 c.454-13A>G 37050292 37008801 A G 23729658, 32849802.0 TRUE 
3 c.454-2A>G 37050303 37008812 A G 16395668 TRUE 

3 c.454-1G>A 37050304 37008813 G A 10200055, 8776590.0, 15235038.0, 
15342696.0 TRUE 

3 c.454-1G>C 37050304 37008813 G C 12658575 TRUE 
3 c.454-1G>T 37050304 37008813 G T 9593786 TRUE 
3 c.464T>G 37050315 37008824 T G 16341550 FALSE 
3 c.543C>G 37050394 37008903 C G 26247049 TRUE 
3 c.543C>T 37050394 37008903 C T 28334867 TRUE 

3 c.544A>G 37050395 37008904 A G 16395668, 19459153.0, 10480359.0, 
21642682.0 TRUE 

3 c.545G>A 37050396 37008905 G A 26247049 TRUE 
3 c.545+1G>A 37050397 37008906 G A 15849733, 19669161.0 TRUE 
3 c.545+2T>A 37050398 37008907 T A 21590452 TRUE 

3 c.545+3A>G 37050399 37008908 A G 9218993, 31332305.0, 15253764.0, 
24278394.0 TRUE 

3 c.546-2A>C 37053309 37011818 A C 16830052 TRUE 

3 c.546-2A>G 37053309 37011818 A G 

8521398, 16451135.0, 12052501.0, 
10471527.0, 10732761.0, 
12658575.0, 24278394.0, 

21642682.0 

TRUE 

3 c.546-1G>A 37053310 37011819 G A 32849802, 15342696.0 TRUE 
3 c.554T>G 37053319 37011828 T G 8808596 FALSE 
3 c.572G>T 37053337 37011846 G T 29505604 FALSE 
3 c.577T>C 37053342 37011851 T C 29505604 FALSE 
3 c.588+1G>T 37053354 37011863 G T 22949379 TRUE 
3 c.588+2T>A 37053355 37011864 T A 21681552 TRUE 
3 c.588+2T>C 37053355 37011864 T C 19224586 TRUE 

3 c.588+5G>A 37053358 37011867 G A 15713769, 16341550.0, 18561205.0, 
24090359.0, 15926618.0 TRUE 
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3 c.588+11G>C 37053364 37011873 G C 18561205, 9718327.0 FALSE 
3 c.589-10T>A 37053492 37012001 T A 15926618 TRUE 
3 c.589-2A>C 37053500 37012009 A C 32849802 TRUE 

3 c.589-2A>G 37053500 37012009 A G 19267393, 10882759.0, 10422993.0, 
22949379.0 TRUE 

3 c.589-1G>T 37053501 37012010 G T 12658575 TRUE 
3 c.595G>C 37053508 37012017 G C 29505604 TRUE 
3 c.637G>A 37053550 37012059 G A 16395668, 18561205.0, 29505604.0 FALSE 
3 c.644A>G 37053557 37012066 A G 18561205 FALSE 
3 c.647T>G 37053560 37012069 T G 18561205 FALSE 
3 c.649C>T 37053562 37012071 C T 29505604, 11920458.0, 16425354.0 FALSE 

3 c.655A>G 37053568 37012077 A G 8776590, 10777691.0, 10882759.0, 
9718327.0 FALSE 

3 c.677G>A 37053590 37012099 G A 
16341550, 18561205.0, 10422993.0, 

12373605.0, 29505604.0, 
16736289.0, 8571956.0 

TRUE 

3 c.677G>T 37053590 37012099 G T 16451135, 29505604.0, 12658575.0 TRUE 
3 c.677+1G>A 37053591 37012100 G A 24278394 TRUE 
3 c.677+1G>T 37053591 37012100 G T 12624141, 15342696.0 TRUE 
3 c.677+3A>T 37053593 37012102 A T 24090359 TRUE 
3 c.677+3A>C 37053593 37012102 A C 15365996 TRUE 
3 c.677+3A>G 37053593 37012102 A G 15713769, 15849733.0, 19669161.0 TRUE 
3 c.678-1G>C 37055922 37014431 G C 22949379 TRUE 
3 c.678-1G>T 37055922 37014431 G T 10471527 TRUE 
3 c.702G>A 37055947 37014456 G A 22736432, 22949379.0 FALSE 
3 c.731G>A 37055976 37014485 G A 16995940, 9218993.0 FALSE 
3 c.739T>C 37055984 37014493 T C 16395668 FALSE 
3 c.778C>T 37056023 37014532 C T 18561205 FALSE 
3 c.779T>G 37056024 37014533 T G 27629256, 10882759.0 FALSE 
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3 c.790+1G>T 37056036 37014545 G T 15342696 TRUE 

3 c.790+1G>A 37056036 37014545 G A 

15713769, 16395668.0, 16142001.0, 
15955785.0, 17440950.0, 
12624141.0, 20305446.0, 
12658575.0, 19224586.0, 
21642682.0, 15342696.0 

TRUE 

3 c.790+2T>A 37056037 37014546 T A 15365995, 7757073.0, 32849802.0 TRUE 
3 c.790+2T>C 37056037 37014546 T C 15713769, 12624141.0 TRUE 

3 c.790+3A>T 37056038 37014547 A T 12373605, 8808596.0, 19224586.0, 
21642682.0 TRUE 

3 c.790+4A>G 37056039 37014548 A G 16341550, 10323887.0 TRUE 
3 c.790+4A>T 37056039 37014548 A T 20717847 TRUE 
3 c.790+5G>T 37056040 37014549 G T 18561205, 22766992.0 TRUE 
3 c.790+10A>G 37056045 37014554 A G 18561205, 18561205.0, 22949379.0 FALSE 
3 c.791-7T>A 37058990 37017499 T A 22736432, 30233647.0 TRUE 
3 c.791-5T>G 37058992 37017501 T G 16395668, 18561205.0 TRUE 
3 c.791-3T>G 37058994 37017503 T G 12624141 TRUE 
3 c.791-2A>G 37058995 37017504 A G 11606497, 12624141.0, 21642682.0 TRUE 
3 c.791-1G>C 37058996 37017505 G C 8571956, 26247049.0, 22949379.0 TRUE 
3 c.791-1G>T 37058996 37017505 G T 10422993 TRUE 
3 c.791A>G 37058997 37017506 A G 26761715 FALSE 
3 c.793C>A 37058999 37017508 C A 26247049, 26761715.0 TRUE 

3 c.793C>T 37058999 37017508 C T 
16995940, 18561205.0, 15713769.0, 

26247049.0, 26761715.0, 
32849802.0, 31332305.0 

TRUE 

3 c.794G>A 37059000 37017509 G A 18561205, 26761715.0, 8993976.0 FALSE 
3 c.803A>G 37059009 37017518 A G 26761715 FALSE 
3 c.814T>G 37059020 37017529 T G 26761715 FALSE 
3 c.815T>C 37059021 37017530 T C 26761715 FALSE 
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3 c.842C>T 37059048 37017557 C T 16995940, 26761715.0 TRUE 
3 c.845C>G 37059051 37017560 C G 26761715 TRUE 
3 c.855C>T 37059061 37017570 C T 26761715 FALSE 
3 c.856A>C 37059062 37017571 A C 26761715 FALSE 
3 c.861C>T 37059067 37017576 C T 26761715 FALSE 
3 c.875T>C 37059081 37017590 T C 16341550, 26761715.0 FALSE 
3 c.882C>G 37059088 37017597 C G 26761715 TRUE 

3 c.882C>T 37059088 37017597 C T 16395668, 18561205.0, 26247049.0, 
16736289.0, 26761715.0 TRUE 

3 c.883A>C 37059089 37017598 A C 16451135, 26761715.0, 16830052.0 TRUE 
3 c.883A>G 37059089 37017598 A G 15713769, 26247049.0, 26761715.0 TRUE 
3 c.884G>A 37059090 37017599 G A 22949379, 26761715.0 TRUE 
3 c.884G>C 37059090 37017599 G C 26761715 TRUE 
3 c.884+2T>C 37059092 37017601 T C 15849733, 15955785.0 TRUE 
3 c.884+3A>G 37059093 37017602 A G 31642931 TRUE 

3 c.884+4A>G 37059094 37017603 A G 18561205, 17653898.0, 21034533.0, 
21642682.0 TRUE 

3 c.885-24T>A 37061777 37020286 T A 18561205 FALSE 
3 c.885-5G>T 37061796 37020305 G T 18561205 FALSE 
3 c.923A>C 37061839 37020348 A C 32849802 TRUE 
3 c.935A>C 37061851 37020360 A C 32123317 FALSE 
3 c.960G>C 37061876 37020385 G C 18561205 FALSE 
3 c.974G>A 37061890 37020399 G A 22736432 FALSE 
3 c.977T>C 37061893 37020402 T C 18561205, 8574961.0, 10732761.0 FALSE 
3 c.986A>C 37061902 37020411 A C 31332305, 10323887.0 TRUE 
3 c.1003C>T 37061919 37020428 C T 18561205 FALSE 
3 c.1013A>G 37061929 37020438 A G 18561205, 31332305.0 FALSE 
3 c.1037A>G 37061953 37020462 A G 18561205, 23729658.0, 21642682.0 TRUE 
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3 c.1038G>A 37061954 37020463 G A 12183410, 15555211.0 TRUE 
3 c.1038G>C 37061954 37020463 G C 16341550 TRUE 
3 c.1038G>T 37061954 37020463 G T 18561205, 21642682.0 TRUE 
3 c.1038+1G>C 37061955 37020464 G C 17440950, 21642682.0 TRUE 

3 c.1039-8T>A 37067120 37025629 T A 27629256, 24090359.0, 27629256.0, 
15713769.0, 19669161.0 FALSE 

3 c.1039-2A>G 37067126 37025635 A G 15849733, 19669161.0 TRUE 
3 c.1039-2A>T 37067126 37025635 A T 31332305 TRUE 
3 c.1039-1G>A 37067127 37025636 G A 10200055 TRUE 
3 c.1039-1G>T 37067127 37025636 G T 21642682 TRUE 
3 c.1043T>C 37067132 37025641 T C 27629256 FALSE 
3 c.1098G>T 37067187 37025696 G T 15173238 FALSE 
3 c.1136A>G 37067225 37025734 A G 32849802, 23729658.0 FALSE 
3 c.1139C>T 37067228 37025737 C T 15173238 FALSE 
3 c.1146G>C 37067235 37025744 G C 15173238 FALSE 
3 c.1147A>T 37067236 37025745 A T 15173238 FALSE 
3 c.1151T>A 37067240 37025749 T A 16425354, 10777691.0, 21034533.0 FALSE 
3 c.1166G>A 37067255 37025764 G A 32849802 TRUE 
3 c.1204A>C 37067293 37025802 A C 15173238 FALSE 
3 c.1217G>A 37067306 37025815 G A 31332305, 27629256.0 FALSE 
3 c.1242G>C 37067331 37025840 G C 15173238 FALSE 
3 c.1270G>C 37067359 37025868 G C 15173238 FALSE 
3 c.1283A>T 37067372 37025881 A T 15173238 FALSE 
3 c.1313C>T 37067402 37025911 C T 15173238 FALSE 
3 c.1339T>C 37067428 37025937 T C 15173238 FALSE 
3 c.1360G>C 37067449 37025958 G C 16395668 FALSE 
3 c.1361G>C 37067450 37025959 G C 15173238 FALSE 
3 c.1376C>T 37067465 37025974 C T 15173238 TRUE 
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3 c.1383G>T 37067472 37025981 G T 15173238 FALSE 
3 c.1389A>C 37067478 37025987 A C 15173238 TRUE 
3 c.1401C>T 37067490 37025999 C T 31332305 FALSE 
3 c.1409+1G>A 37067499 37026008 G A 17348456 TRUE 
3 c.1409+1G>C 37067499 37026008 G C 16451135, 10200055.0 TRUE 
3 c.1418A>G 37070283 37028792 A G 31332305 FALSE 
3 c.1420C>T 37070285 37028794 C T 18561205 FALSE 
3 c.1421G>A 37070286 37028795 G A 18561205 FALSE 
3 c.1421G>C 37070286 37028795 G C 27629256 FALSE 
3 c.1558+1G>T 37070424 37028933 G T 12658575, 19224586.0, 21642682.0 TRUE 
3 c.1558+1G>A 37070424 37028933 G A 31332305 TRUE 
3 c.1558+11G>A 37070434 37028943 G A 8863153 FALSE 
3 c.1558+14G>A 37070437 37028946 G A 16395668, 9718327.0, 27629256.0 FALSE 
3 c.1559-3C>G 37081674 37040183 C G 18566915 TRUE 
3 c.1559-2A>C 37081675 37040184 A C 10200055 TRUE 

3 c.1559-2A>G 37081675 37040184 A G 15555211, 12183410.0, 24278394.0, 
21642682.0 TRUE 

3 c.1559-2A>T 37081675 37040184 A T 22949379 TRUE 
3 c.1559-1G>A 37081676 37040185 G A 15849733 TRUE 
3 c.1559-1G>C 37081676 37040185 G C 12624141, 31332305.0, 15926618.0 TRUE 
3 c.1559-1G>T 37081676 37040185 G T 8776590, 21642682.0 TRUE 
3 c.1559T>G 37081677 37040186 T G 19669161 FALSE 
3 c.1569G>T 37081687 37040196 G T 16995940 FALSE 
3 c.1616C>A 37081734 37040243 C A 18561205 FALSE 
3 c.1633A>G 37081751 37040260 A G 26247049 FALSE 
3 c.1646T>C 37081764 37040273 T C 18561205 FALSE 
3 c.1652A>C 37081770 37040279 A C 16395668, 18561205.0, 9833759.0 FALSE 
3 c.1652A>G 37081770 37040279 A G 32849802 FALSE 
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3 c.1653C>T 37081771 37040280 C T 31332305 FALSE 
3 c.1667G>T 37081785 37040294 G T 15300854 TRUE 
3 c.1667+1G>T 37081786 37040295 G T 21642682 TRUE 
3 c.1667+2T>C 37081787 37040296 T C 21056691 TRUE 
3 c.1668-19A>G 37083740 37042249 A G 16395668, 8776590.0, 9718327.0 FALSE 
3 c.1668-3C>T 37083756 37042265 C T 9419403 TRUE 
3 c.1668-2A>G 37083757 37042266 A G 21056691 TRUE 
3 c.1668-1G>A 37083758 37042267 G A 19267393, 14635101.0 TRUE 
3 c.1668-1G>T 37083758 37042267 G T 15342696 TRUE 
3 c.1676T>G 37083767 37042276 T G 29505604 TRUE 
3 c.1681T>C 37083772 37042281 T C 29505604 FALSE 
3 c.1685A>C 37083776 37042285 A C 19669161, 29505604.0 FALSE 

3 c.1731G>A 37083822 37042331 G A 

16451135, 16395668.0, 18561205.0, 
19669161.0, 8808596.0, 24278394.0, 

11112663.0, 19224586.0, 
21642682.0, 14635101.0 

TRUE 

3 c.1731G>C 37083822 37042331 G C 18931482 TRUE 
3 c.1731+1G>C 37083823 37042332 G C 16034045 TRUE 
3 c.1731+2T>G 37083824 37042333 T G 15849733 TRUE 
3 c.1731+3A>T 37083825 37042334 A T 20305446, 18769833.0 TRUE 
3 c.1731+4A>G 37083826 37042335 A G 24278394, 23729658.0, 23729658.0 TRUE 
3 c.1731+5G>A 37083827 37042336 G A 18561205, 19685281.0 TRUE 
3 c.1731+6T>G 37083828 37042337 T G 32849802 TRUE 
3 c.1732-19T>C 37088991 37047500 T C 27629256 FALSE 
3 c.1732-9T>C 37089001 37047510 T C 16395668 FALSE 

3 c.1732-2A>T 37089008 37047517 A T 18566915, 24090359.0, 9245993.0, 
8571956.0 TRUE 

3 c.1732-1G>A 37089009 37047518 G A 15849733, 19267393.0, 15955785.0 TRUE 
3 c.1742C>T 37089020 37047529 C T 16425354 FALSE 
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3 c.1743G>A 37089021 37047530 G A 27629256 FALSE 
3 c.1754T>G 37089032 37047541 T G 18561205 FALSE 
3 c.1757C>A 37089035 37047544 C A 16395668 FALSE 
3 c.1763T>C 37089041 37047550 T C 10777691 FALSE 
3 c.1808C>G 37089086 37047595 C G 18561205 FALSE 
3 c.1814A>C 37089092 37047601 A C 27629256 FALSE 
3 c.1820T>A 37089098 37047607 T A 18561205 FALSE 
3 c.1855G>C 37089133 37047642 G C 18561205 FALSE 
3 c.1865T>A 37089143 37047652 T A 20858721 FALSE 
3 c.1896G>A 37089174 37047683 G A 8571956 TRUE 
3 c.1896G>C 37089174 37047683 G C 17666659 TRUE 
3 c.1896G>T 37089174 37047683 G T 21642682, 15024732.0 TRUE 
3 c.1896+1G>A 37089175 37047684 G A 8993979, 10422993.0 TRUE 
3 c.1896+1G>T 37089175 37047684 G T 15849733, 10471527.0, 21642682.0 TRUE 
3 c.1896+2T>C 37089176 37047685 T C 15849733 TRUE 
3 c.1918C>T 37090029 37048538 C T 18561205, 23729658.0 FALSE 
3 c.1919C>T 37090030 37048539 C T 18561205 FALSE 
3 c.1958T>G 37090069 37048578 T G 16995940 FALSE 
3 c.1959G>T 37090070 37048579 G T 16395668, 18561205.0, 9718327.0 FALSE 
3 c.1961C>T 37090072 37048581 C T 19669161, 16995940.0 FALSE 
3 c.1963A>G 37090074 37048583 A G 18561205, 16995940.0 FALSE 
3 c.1964T>C 37090075 37048584 T C 31332305 FALSE 
3 c.1967T>C 37090078 37048587 T C 18561205 FALSE 
3 c.1976G>C 37090087 37048596 G C 16995940, 10534773.0 TRUE 
3 c.1976G>T 37090087 37048596 G T 10534773 TRUE 
3 c.1984A>C 37090095 37048604 A C 16341550, 31332305.0 TRUE 
3 c.1988A>G 37090099 37048608 A G 10732761, 23729658.0 TRUE 
3 c.1989G>T 37090100 37048609 G T 16395668, 18561205.0, 10480359.0 TRUE 
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3 c.1989G>A 37090100 37048609 G A 32849802 TRUE 
3 c.1989+1G>A 37090101 37048610 G A 15849733, 14635101.0 TRUE 
3 c.1989+1G>T 37090101 37048610 G T 15849733, 10323887.0 TRUE 
3 c.1989+5G>C 37090105 37048614 G C 8993976 TRUE 
3 c.1989+6T>G 37090106 37048615 T G 32123317 FALSE 
3 c.1990-3C>G 37090392 37048901 C G 15993273 TRUE 
3 c.1990-2A>G 37090393 37048902 A G 15365996 TRUE 
3 c.1990-1G>T 37090394 37048903 G T 15849733, 19267393.0 TRUE 
3 c.1990-1G>A 37090394 37048903 G A 11920650, 22949379.0 TRUE 
3 c.1996T>C 37090401 37048910 T C 18561205, 23729658.0 FALSE 
3 c.2027T>C 37090432 37048941 T C 19669161 FALSE 

3 c.2041G>A 37090446 37048955 G A 11139242, 19669161.0, 8880570.0, 
18561205.0 FALSE 

3 c.2059C>T 37090464 37048973 C T 
27629256, 11139242.0, 16395668.0, 

19267393.0, 22949379.0, 
11920458.0 

FALSE 

3 c.2066A>G 37090471 37048980 A G 18561205 FALSE 
3 c.2103G>A 37090508 37049017 G A 26247049 TRUE 
3 c.2103G>C 37090508 37049017 G C 15849733, 16341550.0 TRUE 
3 c.2103+1G>A 37090509 37049018 G A 12658575, 8571956.0, 21642682.0 TRUE 
3 c.2103+1G>T 37090509 37049018 G T 15342696 TRUE 
3 c.2103+3A>G 37090511 37049020 A G 31642931, 23729658.0, 21642682.0 TRUE 
3 c.2104-2A>T 37091975 37050484 A T 10375096 TRUE 
3 c.2104-2A>G 37091975 37050484 A G 32849802, 15365995.0 TRUE 
3 c.2104-1G>A 37091976 37050485 G A 14635101 TRUE 
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