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ABSTRACT

Traffic signal re-timing is one of the most cost-effective methods for reducing congestion and

energy consumption in urban areas based on the existing road infrastructure. However, high

installation and maintenance costs of vehicle detectors have prevented the widespread implementation

of adaptive traffic signal control system (ATSC). In the past few years, vehicle trajectory data has

become increasingly available and offers many advantages over detectors and other infrastructure-

based sensors for traffic monitoring. However, one major challenge of using vehicle trajectory data

for traffic signal re-timing is the data sparsity and incompleteness caused by the limited penetration

rate.

This dissertation aims at providing systematic methods for traffic signal optimization with

vehicle trajectory data at the current market penetration rate (≤ 10%). The main contribution is

the newly proposed stochastic traffic flow model under Newellian coordinates, which is established

based on Newell’s simplified car-following model. We show that a point-queue model under the

Newellian coordinates can sufficiently capture the whole spatial-temporal traffic state through the

PTS diagram. This simplification is made feasible by ignoring the stochastic driving behavior

since most of the system uncertainty comes from the stochastic traffic demand as well as sparse

observation at a low penetration rate.

The main advantage of the proposed model is that it is a stochastic model with much lower

dimensions and can be directly calibrated by taking the vehicle trajectory data as the input. It

enables us to apply different statistical estimation algorithms to estimate both stationary traffic

parameters (i.e., penetration rate, average arrival rate, etc.) and real-time traffic state (queue

length). Based on the estimated traffic state and parameters, we also develop different optimization

xviii



programs for the re-timing of fixed-time traffic signals and a rule-based queue clearance control

(QCC) for real-time traffic signals.

With the proposed methods, we develop an integrated traffic signal re-timing system called

Optimizing traffic Signals as a Service (OSaaS). In April 2022, a citywide field test of OSaaS was

conducted in Birmingham, Michigan, with 34 signalized intersections. 2 corridors and 2 isolated

intersections were implemented with new fixed-time signal timing plans, resulting in decreases in

both the delay and number of stops by up to 20% and 30%, respectively. OSaaS is a closed-loop

iterative system including performance evaluation, traffic state estimation, traffic signal diagnosis,

and optimization. By not requiring installation or maintenance of vehicle detectors, OSaaS provides

a more scalable, sustainable, resilient, responsive, and efficient solution to traffic signal re-timing

based on vehicle trajectory, which could be applied to every traffic signal in the world.
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CHAPTER 1

Introduction

1.1 Background

Annually, drivers in the United States experience roughly $22.9 billion in direct and indirect
congestion costs at signalized intersections (Son, 2019). Much of this delay is the result of outdated
or improper traffic signal operations, which the 2019 National Traffic Signal Report Card gave a
C+ (Son, 2019). Traffic signal re-timing is widely regarded by traffic engineers as one of the most
cost-effective methods for reducing congestion and energy consumption in urban areas as it doesn’t
require any major changes to the existing infrastructure. Large benefit-to-cost ratios (ranging from
20:1 to 83:1) have been reported by traffic agencies across the country (Sunkari, 2004; Chien et al.,
2006; Department and Howard/Stein-Hudson Associates, 2010).

However, a large proportion of the 320,000 signalized intersections in the US do not have
detectors and are controlled by fixed-time traffic signals (Son, 2019). Many agencies must rely on
in-person data collection to monitor traffic demand at these intersections. This is a time-consuming
process that has narrow observation windows (2 days at most), limiting the potential for traffic
signal performance improvements. As traffic demand undergoes natural changes or growth, signal
timing plans become outdated, which increases congestion and energy costs. Traffic management
authorities might feel pressure to recover as much of these costs as possible because of infrequent
re-timing opportunities.

Some intersections with detection capability use vehicle-actuated control or ATSC, which are
more responsive to the time-varying traffic demand compared to fixed-time traffic signals. While in
many cases ATSC has proven to be effective, sometimes improving travel times by up to 50 percent
or more, their widespread implementation has been prevented by high installation, maintenance,
and software licensing costs (Dobrota et al., 2020). In addition, actuated signal control has also
been discouraged by the National Association of City Transportation Officials (NACTO) because
of the maintenance requirements and detection upkeep on streets (NACTO, 2015). Since a single
unreliable detector can jeopardize the effectiveness of an entire ATSC or actuated system, these
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detectors require frequent monitoring and maintenance. Many agencies have also discovered that
ATSC cannot simply be installed and left alone for long periods of time. Some, especially those
who are not knowledgeable of the inner workings of ATSC, have been forced to switch back
to traditional fixed-timed plans after the original ATSC settings are unable to handle long-term
changes in traffic patterns (Dobrota et al., 2022). As a result, although the first ATSC systems
were developed in the early 1970s, only a small percentage of signalized intersections in the U.S.
(2− 5%) have been outfitted with this technology (Zhao and Tian, 2012).

1.2 Vehicle trajectory data

1.2.1 Introduction to trajectory data

In the past few years, vehicle trajectory data has become increasingly available and has been
explored as an alternative to detector-based traffic management; it can be collected from a variety
of existing resources. For example, it can be extracted from basic safety message (BSM) through
dedicated short-range communication (DSRC) when the vehicle equipped with on-board unit
(OBU) is within the communication range of the road-side unit (RSU) (Bezzina and Sayer, 2014;
Wang et al., 2020). It can also be collected from ride-hailing services (Uber, Lyft, etc.) and
navigation systems (Google maps). There are also different open-source trajectory data such as
NGSIM (Kovvali et al., 2007) and pNEUMA data (Barmpounakis and Geroliminis, 2020) that are
frequently used by researchers.

Although different types of trajectory data have different available channels, they all have
common essential attributes including unique device or trip ID, timestamp, and GNSS coordinates
(latitude and longitude). Accuracy and frequency are the most important metrics of data quality.
Unlike safety-related applications that have a high requirement for both accuracy and frequency
of the trajectory data, efficiency-related traffic operational applications have a much lower
requirement for data quality. It is already sufficient if the time interval is within 5 seconds and
the accuracy of GNSS coordinates is not larger than 10 meters.

1.2.2 Characteristics of vehicle trajectory data

Monitoring traffic through vehicle trajectory data offers many advantages over detectors and
sensors (Saldivar-Carranza et al., 2021; Wang et al., 2022a). It has a much larger coverage area
than detector data, and is available at almost every intersection, especially those with higher traffic
volumes. For example, Figure 1.1 shows the comparison of the coverage between vehicle trajectory
data and vehicle detectors: vehicle trajectory data covers the whole road network while detectors
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are only installed at certain locations.

Intersection with detectors

S
peed (m

/s)

Displayed GPS scatters: 2022/03/08 10:00-11:00 

Figure 1.1: Scatter plots of vehicle trajectories and locations of detectors (Birmingham, Michigan).

Detector data and vehicle trajectory data provide different traffic measurements. While detector
data provides more complete information at certain locations including traffic counts and speed,
vehicle trajectory data spans the spatial-temporal space and provides more enriched information
(Figure 1.2). Accurate travel time and delay measurements including stop durations and locations
can be easily extracted. Besides, trajectory data can also provide path information that is not
directly available in detector data.

In general, vehicle trajectory data provides a more economical solution to traffic monitoring
compared to detectors by not requiring any new additional equipment for complete monitoring
ability across an entire urban network. A monitoring system made up of vehicle trajectory data is
more resilient to equipment failure as it will not completely lose traffic monitoring capability at
any specific location if one vehicle’s transponder malfunctions. With the continued advancement of
connected and automated vehicles, it can be foreseen that more vehicle trajectories will be available
in the future and will be a more sustainable and scalable solution to urban traffic monitoring and
management.

Although vehicle trajectory data has many advantages over traditional detectors and sensors,
there are some difficulties in using the currently available vehicle trajectory data for traffic signal
optimization, including sparse observation caused by the limited penetration rate and the lack of a
suitable stochastic traffic flow model. More details will be discussed in Section 1.4.
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Figure 1.2: Illustration of vehicle trajectory data in the time-space diagram.

1.2.3 Trajectories used in this dissertation

Two different trajectory data sets are used in this dissertation: 1) trajectory data collected by
Ann Arbor Connected Vehicle Test Environment (AACVTE) (Wang et al., 2020) and 2) vehicle
telemetry data collected by General Motors. AACVTE trajectory data is extracted from BSM; it
has a higher frequency of 10 Hz but the penetration rate is low (less than 3%). GM trajectory
data is collected from General Motors vehicles, which are equipped with GNSS receivers and
inertial measurement unit (IMU). The time interval of GM trajectory data is around 3 seconds
and the penetration rate is estimated between 5% and 10%. Another major difference between
these two data sets is that AACVTE trajectory data is only available when the vehicle is within
the communication range of intersections equipped with RSUs while GM trajectories have long
continuous trips from origin to destination. Due to their different characteristics, AACVTE
trajectory data is more suitable for safety-related applications while GM data is better for
efficiency-related applications. With both data available for this dissertation, GM data is used
more frequently.

However, both AACVTE data and GM data do not have the ground truth: they only have the
connected vehicle data without knowing the background traffic. Although there are still cross-
validation methods to verify the proposed methods without knowing the ground truth, it is better
to have the overall traffic for verification purposes. Therefore, this dissertation also contains some
experiments utilizing the simulated data generated from Simulation of Urban MObility (SUMO)
(Lopez et al., 2018).
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1.3 Literature review

1.3.1 Trajectory and map data preprocessing

Trajectory data preprocessing is the basis for all advanced applications based on vehicle trajectory
data. Many existing studies have explored different aspects of trajectory processing including
data cleaning (Wang et al., 2013; Fazzinga et al., 2014; Li et al., 2020), map matching (Newson
and Krumm, 2009; Quddus and Washington, 2015; Yang and Gidofalvi, 2018), encoding, and
compression (Zheng, 2015; Wang et al., 2021; Chen et al., 2019). In addition to the vehicle
trajectory data, map and network data is another important part. OpenStreetMap (2019) is the
most frequently used open-source map data but it cannot be easily used without further cleaning
and reformatting. There are some existing tools that can be used to extract, clean, and reformat
the OpenStreetMap data including OSMnx (Boeing, 2017) and OSM2GMNS (Lu and Zhou,
2022). However, neither constructs a movement-level network which is essential for many traffic
operational applications.

1.3.2 Traffic models for urban traffic networks

Traffic flow models play an important role in traffic state estimation, prediction, and traffic control.
Although data-driven methods have received much attention in recent years (Avila and Mezić,
2020; Cui et al., 2020), model-based methods are more reliable and interpretable, particularly
with missing data or incomplete observations. Commonly available traffic data cannot provide a
complete observation of the overall traffic state: detector-based data and vehicle trajectory data are
limited by detection availability (installation) and penetration rate, respectively. In this case, it is
important to incorporate traffic flow models as the prior knowledge for data assimilation (Wang
et al., 2022c). Other than traffic state estimation, traffic flow models are also critical for model-
based traffic control and optimization where the traffic state can be predicted under different traffic
signal parameters (Lo, 1999; Aboudolas et al., 2009).

Traffic flow models have different scales from microscopic to macroscopic. These scales have
different applications with the trade-off between model accuracy and computational efficiency. A
macroscopic traffic flow model is usually sufficient for efficiency-related studies such as traffic
signal optimization. First-order models like the Lighthill-Whitham-Richards (LWR) model (Light
and Whitham, 1955; Richards, 1956) are the most commonly used traffic flow models for urban
traffic networks which are characterized by the interrupted flow controlled by traffic signals.
Different versions and formulations have been proposed based on the LWR model, including the
cell and link transmission models (Daganzo, 1994; Yperman et al., 2005), variational formulation
(Daganzo, 2005a,b), and Hamilton-Jacobi based formulations (Laval and Leclercq, 2013).
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In addition to LWR-based models, there are other traffic flow models that can be used to
model urban traffic networks with signalized intersections. Compared with LWR models, which
are usually referred to as physical or spatial queue models, point-queue models have simpler
traffic state representations and dynamics because they ignore vehicle lengths. For example,
Aboudolas et al. (2009) proposed the store-and-forward model as well as different traffic signal
optimization formulations based on it. Due to its simplicity, it is also used by most pressure-
based control methods for the theoretical derivation of network stability (Varaiya, 2013; Wang
et al., 2022b; Levin, 2023). Queueing models are another family of point-queue models which
are more often used to study steady-state traffic performance (Van Woensel and Vandaele, 2007;
Viti and Van Zuylen, 2010; Osorio and Bierlaire, 2009; Flötteröd and Osorio, 2017; Boon and van
Leeuwaarden, 2018; Oblakova, 2019). Besides, Wu and Liu (2011) proposed a shockwave profile
model by tracking the different shockwaves of each movement.

Most of these traffic flow models, except for the queueing models, are deterministic. However,
in the real world, both traffic demand and driving behavior are stochastic. Compared with
deterministic traffic flow models, stochastic traffic flow models are more realistic and can be easily
used for stochastic traffic state estimation with incomplete or flawed observations. Therefore,
researchers have spent much effort developing different stochastic traffic flow models. For
example, Sumalee et al. (2011) and Flötteröd and Osorio (2017) proposed the stochastic version of
the cell and link transmission model, respectively. Jabari and Liu (2012) proposed a stochastic
traffic flow model in which the randomness originated from the drivers’ gap choice. Jabari
and Liu (2013) also derived the Gaussian approximation of the model and utilized it for traffic
state estimation using loop detector data. While most of these models were established based
on Eulerian coordinates, Zheng et al. (2018) proposed a stochastic traffic flow model based on
Lagrangian coordinates.

Although different stochastic traffic flow models have been proposed, they can hardly be used
for traffic state estimation based on vehicle trajectory data with a certain penetration rate. LWR
models are built based on the Eulerian coordinates, which split the spatial-temporal space into
grids and define the traffic state as the density in each grid. Trajectory data does not provide
measurements in Eulerian coordinates and hence cannot be directly used to calibrate the traditional
LWR models. Besides, LWR models like the cell transmission model already have a high
dimension by splitting the roadway into cells. It becomes much more complicated when it is
extended to a stochastic setting. Queueing models can either be directly used since they ignore the
length of the vehicle and cannot model the spatial propagation or distribution of the vehicles.
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1.3.3 Traffic state estimation using vehicle trajectories

Readers can refer to Guo et al. (2019) and Maripini et al. (2023) for a more complete review of
traffic state estimation with vehicle trajectory data. Existing methods can be roughly divided into
shockwave-based methods and statistical estimation methods. For shockwave-based methods, the
basic idea is to detect the shockwave in the time-space diagram and use shockwave theory (Light
and Whitham, 1955; Richards, 1956; Newell, 2002) to estimate the traffic state (Cheng et al., 2011;
Ban et al., 2011; Hao et al., 2012). One of the typical works is from Cheng et al. (2011), which
used a classification method to detect the featured points when the observed trajectories change
their motions to construct the shockwave in the time-space diagram and used the shockwave to
estimate the cycle-by-cycle queue length. Instead of directly constructing the shockwave by using
the featured points from the observed trajectory, Ban et al. (2011); Hao et al. (2012) used travel
time to construct the shockwaves and estimate the queue length and signal timing plan. However,
these shockwave-based methods are deterministic estimation methods. They cannot utilize prior
information in historical data and thereby cannot provide a reliable estimation result in a low
penetration rate environment.

Most stochastic estimation methods are formulated based on the stop locations of connected
vehicles: the observed stopped connected vehicles at certain snapshots are used as the input to
estimate the unknown parameters or states (Comert and Cetin, 2009; Comert, 2016; Zheng and Liu,
2017; Wong et al., 2019; Zhao et al., 2019a,b, 2021). These methods are derived based on different
assumptions such as the Poisson (Zheng and Liu, 2017) or general arrival (Zhao et al., 2019b)
processes and independent (Zhao et al., 2019b) or correlated (Zhao et al., 2021) queue length
distribution. The intuition of these studies is similar although different assumptions are adopted.
Compared with deterministic estimation methods (Sun and Ban, 2013; Ramezani and Geroliminis,
2015; Ban et al., 2011), stochastic estimation methods can better utilize prior information and also
provide stochastic estimation results including estimation uncertainty.

However, most of the existing stochastic estimation methods only look into the stop locations
of collected vehicle trajectories at certain snapshots (Comert and Cetin, 2009, 2011; Zhao et al.,
2019a,b, 2021). They did not perform the traffic state estimation based on a stochastic traffic flow
model. Consequently, these statistical estimation methods exhibit certain limitations:

1. They only utilize stop locations at specific time slots, failing to fully leverage additional
available information such as stop duration and the time at which vehicles join the queue.

2. Due to the absence of a dynamic model, these methods struggle to incorporate cycle-by-
cycle correlations, particularly when the vehicle is not completely cleared within a single
cycle.
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3. Typically, these methods offer only specific estimated values, such as penetration rate and
traffic volumes, without providing a complete spatial-temporal traffic state.

4. These methods cannot be directly used for traffic state prediction due to the lack of traffic
dynamics.

As a result, these limitations hinder the effectiveness and completeness of the statistical
estimation methods, highlighting the need for better approaches to address these shortcomings.

1.3.4 Traffic signal control and optimization

There are many survey papers on traffic signal control and optimization Guo et al. (2019); Wei
et al. (2019); Li et al. (2023). Besides, readers can also refer to the traffic signal manual (Urbanik
et al., 2015) for a more comprehensive introduction.

According to the responsiveness and complexity, traffic signal control systems can be divided
into three categories: 1) fixed-time; 2) vehicle-actuated; and 3) adaptive control. Fixed-time
control is usually used by intersections without any detection capability. For these intersections,
traffic signal timing parameters are pre-determined and optimized by using offline historical data.
Many offline tools, such as SYNCHRO (Husch and Albeck, 2004), TRANSYT-7F (Hale, 2005),
and PASSERTM V (Chaudhary and Chu, 2002), can be used to generate the offline signal timing
parameters. However, the main limitation of fixed-time control is that it cannot respond to the
time-varying traffic demand. Vehicle-actuated control overcomes this problem by applying a more
responsive rule-based strategy using the data from detectors (Urbanik et al., 2015). The vehicle-
actuated control keeps the same phase if the headway between vehicles is less than a certain
threshold, subjecting to the minimum and maximum green at the same time.

Compared with vehicle-actuated control which is a rule-based control with fixed parameters,
adaptive traffic signal control is usually built based on certain traffic models and parameter
selection (optimization) programs. Therefore, it is more flexible and complicated. The most
commonly used adaptive signal control systems in the world include SCOOT (Hunt et al., 1981)
and SCATS (Lowrie, 1990). Besides, there are also other adaptive traffic signal control systems
such as OPAC and RHODES (Gartner, 1983; Mirchandani and Head, 2001). However, such
adaptive signal control systems are not commonly deployed due to the computational complexity
and hardware installation requirements Zhang and Wang (2010).

During the past decades, traffic signal control and optimization continue drawing attention
from researchers. Different methods have been used for both fixed-time and real-time traffic
signal optimization, including rule-based methods, model-based optimal control methods, and
reinforcement learning (RL) methods, etc. The vehicle-actuated control, as aforementioned,
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is a rule-based control method with given pre-determined parameters. Except for the rule-
based methods, optimization-based methods are also frequently used to determine traffic signal
parameters or states. Rolling-horizon optimization (i.e., receding-horizon optimization, model
predictive control) has been widely used to formulate the real-time traffic signal control problem
(Lo, 1999; Wada et al., 2017; Li and Ban, 2018), which minimizes the total delay of the system
while subjecting to the traffic flow model and traffic signal constraints.

Reinforcement Learning (RL) has become a popular approach for traffic signal control, as
evidenced by several studies (Arel et al., 2010; Khamis and Gomaa, 2014; Yau et al., 2017;
Chu et al., 2019; Wei et al., 2019). RL can directly learn an end-to-end control policy from
the observation by interacting with the simulation environment iteratively. Most of the existing
literature using RL for traffic signal control focuses on the design of the input state space and
reward (Wei et al., 2019) while utilizing different RL techniques such as the multi-agent algorithms
(Chu et al., 2019). Despite the abundance of research utilizing RL for traffic signal optimization,
there remains a significant gap before deploying these methods in the real world. One of the
main concerns is the reliability of RL-based approaches. RL controllers trained offline in a
simulation environment may not perform well in real-world scenarios due to the limited fidelity
of the simulation. On the other hand, training RL controllers directly in the real world raises
additional challenges, particularly in managing the risks associated with exploration during the
learning process.

The development of connected and automated vehicles (CAV) brings new challenges and
opportunities for traffic signal control and optimization. Both automated vehicles (AV) and
connected vehicle (CV) could serve as mobile sensors, which provide data such as vehicle
trajectories and their observations (for AVs with detection ability) that can be used to optimize the
traffic signal operation (Feng et al., 2015). Moreover, AVs have the potential to serve as moving
regulators to further improve the stability of the traffic flows (Feng et al., 2018; Yu et al., 2018;
Stern et al., 2018). Readers can refer to survey papers written by (Guo et al., 2019) and Li et al.
(2023) for a more comprehensive review. Although many studies have proposed different signal
control methods with CAV and demonstrated promising results in the simulation environment, they
can hardly be used in the field since the current market penetration rates for both CV and AV are
much less than what is assumed in these research studies.

1.4 Bottlenecks of using trajectory data

Based on the characteristics of the trajectory data as well as the status of the existing literature,
this section discusses the main bottlenecks of using vehicle trajectory data for traffic signal
optimization.
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1.4.1 Limited penetration rate

The main limitation of vehicle trajectory data is the sparse and incomplete observation caused by
the current market penetration rate (usually below 10%). It is challenging to estimate or reconstruct
the overall traffic state only with sparsely observed vehicle trajectory data. Although some studies
have developed statistical methods to estimate certain traffic states or parameters such as queue
length, penetration rate, etc. They are not built based on a traffic flow model and hence have
certain limitations as aforementioned (Section 1.3.3).

1.4.2 Lack of a suitable traffic flow model

The utilization of stochastic traffic flow models enables the estimation and prediction of overall
traffic states based on incomplete observations. However, the majority of existing traffic flow
models mentioned in Section 1.3.2 are not well-suited for vehicle trajectory observations. These
models primarily operate using Eulerian and Lagrangian coordinates, which are the two commonly
used coordinate systems to describe traffic state.

Eulerian coordinates involve dividing the spatial-temporal space into grids and defining
the traffic state as the density within each grid. However, trajectory data does not provide
measurements in Eulerian coordinates, making it challenging to directly calibrate traditional
models like the LWR model and its variations. Vehicle trajectory data, on the other hand, is
represented in Lagrangian coordinates, which track the movement of individual vehicles. However,
traffic flow models based on Lagrangian coordinates suffer from high dimensions and are not easily
applicable to large-scale scenarios. Moreover, models utilizing both Eulerian and Lagrangian
coordinates become much more complicated at higher dimensions when extended to stochastic
settings.

Consequently, there is a need for a new stochastic traffic model specifically designed to
accommodate vehicle trajectory data. This would allow for the closure of the right-hand-side
loop illustrated in Figure 1.3, completing the integration of trajectory data into the overall traffic
modeling framework.

1.4.3 Difficulties for real-world implementation

Other than the methodological challenges mentioned before, there are also other difficulties in
utilizing vehicle trajectory data for real-world implementations. One of the main challenges is
the preprocessing of trajectory data. Raw trajectory data cannot be directly used without being
matched to traffic networks. Map data, signal phase and timing (SPaT) data, and trajectory data
need to be integrated together to support different types of applications. There is no such toolkit
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Figure 1.3: Current practice and the proposed method.

or software available that provides essential processing including matching the trajectory data to a
large-scale movement-level traffic network.

In addition, real-world traffic networks present numerous corner cases, including intricate road
topology or geometry, as well as the impact of side streets like on-street parking, pick-up and drop-
off activities, and other factors. Furthermore, different traffic management agencies or stakeholders
may have varying preferences or priorities. Therefore, it is essential for the system to be flexible
and customizable to accommodate diverse needs and requirements.

1.5 Dissertation overview

1.5.1 Research scope

This dissertation aims at providing generic and systematic methods for traffic modeling, traffic
state estimation, and traffic signal optimization with vehicle trajectory data at the current market
penetration rate. We propose a novel stochastic traffic flow model, which is essentially a point-
queue model under newly proposed “Newellian coordinates”. This point-queue model can be
transformed to obtain the spatial-temporal traffic state through the PTS diagram. Consequently, it
is demonstrated that a simple point-queue model with lower dimensions can sufficiently capture
the spatial-temporal traffic state. Besides, the proposed traffic flow model builds the connection
between observed vehicle trajectory data with unknown traffic states and parameters, which
enables us to apply different statistical estimation methods to estimate these unknown values.
Based on the same calibrated traffic flow model with estimated traffic state and parameters, we
also develop different optimization programs for the re-timing of fixed-time traffic signals and a
rule-based QCC for real-time traffic signal control.

With the proposed methods, we develop a complete integrated traffic signal re-timing system
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Figure 1.4: OSaaS (Optimizing traffic Signal as a Service) system framework.

called OSaaS. As shown by Figure 1.4, OSaaS is a closed-loop iterative system including
performance evaluation, traffic state estimation, traffic signal diagnosis, and optimization. The
system is able to diagnose specific congestion of causes at these intersections such as green split
imbalances, offset issues, inefficient cycle lengths, and suboptimal TOD boundaries. The new
signal timing plans are based on the existing signal timing plan while moving a certain step
toward the direction guided by the diagnostic results. OSaaS significantly shortens each re-timing
iteration, so a more responsive and strategic traffic signal re-timing is feasible. By not requiring the
installation or maintenance of vehicle detectors, it provides a more scalable, sustainable, resilient,
and efficient solution to traffic signal re-timing based on vehicle trajectory, which could be applied
to every traffic signal in the world.

1.5.2 Contributions

The contributions of this dissertation are listed as the following:

1. We propose a novel stochastic traffic flow model (a point-queue model) under Newellian
coordinates. Through the PTS diagram, the point-queue model with much lower dimensions
can describe the complete spatial-temporal traffic state.

2. Utilizing the proposed traffic flow model, we apply different statistical estimation methods to
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estimate both the traffic state and parameter using the low penetration rate vehicle trajectory
data. We also quantify the uncertainty of all these estimated values.

3. We design different optimization programs to generate new signal timing plans for fixed-time
traffic signals and a rule-based QCC for real-time traffic signal control.

4. We develop a complete system called OSaaS (Figure 1.4) and test it in the field, which
showed improvement for both delay and number of stops for the implemented intersections.

In summary, this dissertation provides generic and comprehensive methods as well as an
integrated system for traffic signal optimization with sparsely observed vehicle trajectory data.
The right-hand-side loop in Figure 1.3 is closed with this dissertation.

1.5.3 Overview and organization of this dissertation

Other than this introduction Chapter 1 and the final summary Chapter 7. There are five chapters
that cover content from performance evaluation, traffic flow model, traffic state estimation, and
traffic signal optimization (Figure 1.5). These chapters together make the complete OSaaS system
in Figure 1.4.

Trajectory data processing and traffic 
performance evaluation

Stochastic traffic flow model in 
Newellian coordinates

Traffic state & parameter estimation 
with uncertainty quantification

Fixed-time and real-time traffic 
signal control methods

Chapter 2

Chapter 3

Chapter 4

Chapter 5 & 6

Figure 1.5: Dissertation overview.

Chapter 2 introduces the trajectory preprocessing and calculation platform we have built that
helps to process the raw vehicle trajectory data to support different traffic operational applications

13



in large-scale traffic networks. The developed platform integrates map data, SPaT, and vehicle
trajectory by matching both SPaT and vehicle trajectories to a well-defined network representation.
Besides, we also develop robust algorithms to calculate traffic performance measurements such as
control delay and number of stops from trajectories with noise and errors. This trajectory data
processing platform is the foundation for all the remaining studies that use real-world trajectory
data as the input.

Chapter 3 introduces the proposed stochastic traffic flow model. By assuming that all vehicles
follow a deterministic Newell’s car-following model, we establish the Newellian coordinates,
which enables us to use a point-queue representation to describe the spatial-temporal traffic state.
The PTS diagram is then derived to obtain the spatial-temporal trajectory distribution from the
stochastic point-queue representation. This stochastic traffic flow model connects the sparsely
observed vehicle trajectory data with unknown traffic states and parameters, making it possible to
estimate all these unknown values with observed vehicle trajectories.

Chapter 4 shows how the traffic state and parameter can be estimated by utilizing statistical
estimation methods with the proposed stochastic traffic flow model. For fixed-time traffic signals,
by assuming stationary traffic parameters within a certain TOD period, we apply the method of
moments (MM) estimator to estimate both penetration rate and arrival rate. It is demonstrated
that, even at a low penetration rate, we can accumulate multi-day historical data to reconstruct the
recurrent traffic state. Besides, we also utilize the Bayesian estimation methods to estimate both
the stationary traffic parameters and cycle-by-cycle traffic state. The posterior distribution obtained
by Bayesian methods can directly quantify the uncertainty of all the estimated values.

Chapter 5 and 6 focus on traffic signal control for fixed-time and real-time traffic signals,
respectively. For fixed-time traffic signals, we develop essential programs to identify the optimality
gap with different traffic signal parameters and generate new signal timing plans for those
intersections with corresponding issues. We also did a field implementation for the re-timing
of fixed-time traffic signals in the city of Birmingham, Michigan. Implementation of new
signal timing plans resulted in significant reductions in control delay and the number of stops
at both isolated intersections and corridors. For real-time traffic signals, we also design a rule-
based controller called QCC. A simulation environment with an isolated intersection is used to
demonstrate the effectiveness of the proposed controller.
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CHAPTER 2

Trajectory Preprocessing and Traffic Performance
Evaluation

2.1 Introduction

2.1.1 Background and related works

In recent years, vehicle trajectory data from different sources such as connected vehicles, ride-
hailing services, and online navigation software has become readily available. Such data can be
utilized for different applications including traffic state estimation and safety evaluations. However,
it is difficult to use raw trajectory data without matching them to traffic networks. In addition, noise
and errors in the real-world trajectory data need to be filtered and smoothed.

As aforementioned in Section 1.3.1, although there are many existing studies that focus on the
preprocessing of the trajectory data and map data. There is no existing software or toolkit that
can process the trajectory data to support movement-level traffic operational applications. It is not
trivial to process the trajectory and map data to a usable format. The absence of such a toolkit
causes a major bottleneck that prevents researchers use trajectory data for different applications in
a large-scale traffic network.

Besides, traffic performance evaluation is one of the most important applications of trajectory
data (Herrera et al., 2010; Lu et al., 2017; Saldivar-Carranza et al., 2021). It provides guidance
for urban traffic control and helps traffic engineers quickly pinpoint critical locations for further
analysis. For example, Saldivar-Carranza et al. (2021) utilized vehicle delay and a number of stops
to generate different visualization plots. Herrera et al. (2010) conducted a comprehensive field
experiment including trajectory data collection and travel speed estimation using the collected
data.
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2.1.2 Overview of the chapter

In this chapter, we develop a comprehensive trajectory data processing platform to serve
different traffic operational applications in large-scale traffic networks. The trajectory processing
pipeline includes several main steps: matching the raw trajectory data to a well-defined network
representation, extracting distance information from the raw GNSS coordinates, and splitting each
vehicle trip into different movements at each signalized intersection. Essential smoothing and
filtering algorithms are also required which can reduce noise and errors in real-world data.

We also provide a robust calculation of standard traffic performance measurements (control
delay, number of stops, etc.) from trajectory data with noise and errors. Both the trajectory
data processing methods and the performance index calculation algorithms are designed with an
emphasis on scalability and robustness. In this way, we can extract high-quality trajectory and
performance indices from large-scale raw noisy trajectory data.

2.1.3 Contributions and organization of the chapter

The main contributions of this chapter are twofold:

1. A complete trajectory data processing pipeline that can support different traffic operational
applications, especially for movement-level traffic signal performance evaluation.

2. Robust and scalable algorithms for calculating standard traffic performance indices including
control/stop delay, number of stops, queue distance, and space-mean speed.

This chapter is organized as follows: Section 2.2 introduces the trajectory data and urban traffic
network representation. Section 2.3 introduces the trajectory data processing procedure including
trajectory data map matching, trajectory splitting, basic smoothing and filtering algorithms, etc.
With the processed trajectory data, Section 2.4 introduces the algorithms that calculate different
traffic performance metrics. Section 2.5 includes case studies that verify the proposed methods
and algorithms. We conclude this chapter in Section 2.6.

2.2 Trajectory data in urban traffic networks

2.2.1 Vehicle trajectory data requirements

There is no specific requirement with regard to either the type or resource of trajectory data, it only
needs to follow the requirements below:
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1. Attributes Each trajectory point should have at minimum a unique trajectory ID, timestamp,
and geometric coordinates (e.g., latitude and longitude). Additional attributes such as
velocity and acceleration are preferred but not required.

2. Resolution The temporal resolution should be within a few seconds depending on the
application of interest; otherwise, additional interpolation might be required and the
algorithm’s performance will suffer. For most traffic operational applications (instead of
safety-related applications) in this dissertation, 1− 5 seconds should be sufficient.

3. Location This dissertation mainly deals with trajectories in urban traffic networks.

4. Accuracy The accuracy of the GNSS coordinates does not affect the overall processing
methods. Although higher accuracy is always preferable, a standard derivation within 3− 5

meters is sufficient for traffic performance evaluation purposes.

2.2.2 Network representation

It is difficult to use the raw vehicle trajectory data if it is not matched to a traffic network. Network
representation and intersection geometry are the basis for urban traffic network applications. In
this dissertation, we design our own urban traffic network representation composed of different
basic elements including links, segments, and junctions as shown in Figure 2.1. Generally, an
urban traffic network is a directed graph composed of junctions and links G = {N ,L}. The
junction set N can be further categorized into end junctions N e and intersection junctions N i, i.e.,
N = N e ∪ N i. Intersection junctions include signalized and unsignalized intersections, while
end junctions are entry or exit points of the network. As illustrated by Figure 2.1, junction n is an
example of an intersection junction while junction m is an example of an end junction. A link is
defined as a directed road that connects junctions, shown by the blue lines in Figure 2.1.

As shown in Figure 2.1, a link that connects two junctions can be further divided into a list of
segments. A segment is defined as a road segment that has homogeneous road parameters such
as road class, number of lanes, speed limit, etc. For example, the link p in Figure 2.1 is split into
two segments i and i + 1 since there is an additional dedicated left-turn lane as it approaches the
junction.

We also define a movement as a pair of links at an intersection: one upstream of the intersection
and the other downstream. This definition of movement is consistent with the NEMA dual
ring structure for signalized intersections (Koonce and Rodegerdts, 2008). In most cases, each
movement at a signalized intersection corresponds to a traffic signal phase. A standard four-leg
intersection has four through movements and four left-turn movements.
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Figure 2.1: Urban traffic network representation

We do not match the trajectory data to the lane-level network but only movement level since it
would already be sufficient for most offline traffic operational applications. Therefore, lane-level
map data is not required. We use OpenStreetMap (2019) as the raw map data in this dissertation.
In general, efficiency-related studies do not require a high-definition map compared with safety-
related studies. In the following section, we will also see that, for high-resolution trajectory
data, the map data is only used for trajectory map matching and providing the location of each
intersection, the accuracy of the map geometry does not influence the calculation of the distance
from the raw GNSS trajectory data.

2.3 Trajectory data processing

Figure 2.2 illustrates the overall pipeline of the trajectory data processing. The input is the raw
trajectory data given by raw GNSS coordinates (latitude and longitude); the output is the matched
trajectory points with map and distance information. There are three main trajectory processing
procedures as shown in the pipeline including trajectory data map matching, splitting the trajectory
into movements, and extracting distance information from the raw GNSS coordinates. There are
also several data smoothing/filtering steps labeled over the arrows in the figure. In this section, we
will first go through the three main procedures and then briefly discuss about data smoothing and
filtering.

18



Trajectory data 
map matching

Split trajectory 
into movements

Convert GNSS 
coordinates to

distances

Smoothing 
and filtering

Filter the off-
road points

Time-space
diagram smoothing

Raw GNSS 
coordinates

Output 
matched

trajectories

Figure 2.2: Overall procedure of the trajectory data processing

2.3.1 Trajectory data map matching

Trajectory data map matching matches raw trajectory data to the urban traffic network according
to the GNSS coordinates. To match the trajectory data to the network representation introduced
in the previous section, we only need to match each trajectory point to a segment. With the
segment information, it is easy to add all the other network components such as link, segment,
and upstream/downstream junctions to each trajectory point.

+

+

+
+

+

+ + +

Route 1

Route 2

*

A

C

B
M

*

*
A’

B’

Figure 2.3: Hidden Markov trajectory map matching model.

The hidden Markov model is the most commonly used formulation for trajectory data map
matching (Newson and Krumm, 2009). The goal is to find the most likely route considering both
the distance of the raw trajectory points to the route and path feasibility (Figure 2.3). The blue line
and the blue cross points are raw trajectory points while the two pink lines are candidate routes.
If we only consider the distance between the trajectory and the candidate route, Point A and Point
B will be assigned to Route 2. However, this violates path feasibility since clearly the trajectory
belongs to Route 1 prior to Point A and it cannot jump to Route 2 directly. With the matched
segment for each trajectory point, it is easy to find the matched points (A’ and B’ in Figure 2.3) of
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the original trajectory (the closest points on the roadway to the original GNSS points A and B). The
distance between the matched trajectory point A’ and the raw GNSS point A is denoted as dA. We
can also calculate the distance between the matched trajectory point to the upstream/downstream
junctions as shown by sA in the figure.

For more details on trajectory map matching, refer to Newson and Krumm (2009). If the
trajectory data is collected within a certain range of a specific intersection, like BSM collected
from a RSU through DSRC, a simpler algorithm proposed in Wang et al. (2020) can be directly
used. In this dissertation, we implement the method proposed by Yang and Gidofalvi (2018). The
underlying philosophies are the same for all mentioned map-matching algorithms. In summary,
map matching can provide the complete network information of each trajectory point including
its segment, link, upstream/downstream junctions, matched GNSS coordinates, distance to the
matched point, and the distances to the upstream or downstream junctions. In this dissertation, we
do not match the trajectory data to the lane level since the algorithms and methods proposed in this
dissertation do not rely on lane information.

2.3.2 Split trajectories into movements

With all additional network information added to each trajectory point through the trajectory data
map matching, we can split trajectories into different movements. A movement is defined as an
upstream and downstream link pair connected by a junction. The method to split the trajectories
into different movements is straightforward: whenever the trajectory traverses a junction over a
certain distance, it will enter a new link from the upstream link; then we can truncate the trajectory
and assign it to the corresponding movement.

Figure 2.4 (a) is an illustration of trajectory splitting. The example trajectory in the figure
traveled across the whole arterial from the west to the east and markers in the map are locations
of signalized intersections (junctions). The complete trajectory is split into different movements
labeled as different colors; it is truncated whenever it passes the junction over 20 meters.

Splitting trajectories into different movements provides convenience for movement-level
analysis of signalized intersections. As aforementioned, the movement defined in urban networks
follows NEMA dual ring structure; generally, each movement will correspond to a certain traffic
signal phase. By associating both trajectory data and SPaT data to the corresponding movement,
we can get the controlled signal state for each given trajectory. We do not necessarily need to know
the lane information to get the controlled signal state; the movement information inferred from the
upstream/downstream links is sufficient.
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Figure 2.4: Convert GNSS coordinates to distance information after splitting trajectory into
junctions.

2.3.3 GNSS coordinates to distance

After splitting trajectory data into different movements, we can convert original GNSS coordinates
(latitude and longitude) to distance information. As shown before in Figure 2.1, trajectory data map
matching can provide the matched trajectory point A’ and distance sA from A’ to the downstream
junction M. sA can be roughly regarded as the distance to the downstream junction of Point A.
However, this estimation method will have a large estimation error if the road geometry is not
accurate enough. For example, the widely-used open-source map data (OpenStreetMap, 2019)
usually does not have accurate geometry for different lanes but only the center of the roadway
even for two-way roads.

21



Wang et al. (2020) provided another method to convert GNSS coordinates to distance which
is suitable for high-resolution trajectory data. The intuition is to first calculate cumulative travel
distance given GNSS coordinates and then set a certain point as zero distance point. For example,
we can set the center of the intersection as the reference point and find the closest point in the
trajectory as the zero distance point as shown by point C in Figure 2.3. In this way, the map
data is only used for trajectory data map matching and providing the location of the intersection.
The distance is calculated from the trajectory itself and it is not dependent on the map geometry.
Therefore, the accuracy of the distance will not be influenced by the map data.

Figure 2.4 (b-c) shows an example of converting the original GNSS coordinates to distance
using such method. The example trajectory traveled from the west to the east while the color
shows the velocity of each trajectory point; the pink marker is the center of junction which is set
as the zero distance point. Figure 2.4 (c) shows the time-space diagram, i.e., distance to the center
of the intersection with respect to time; a negative distance corresponds to the upstream of the
junction while a positive distance corresponds to the downstream. For traffic signal evaluation,
we might need the distance to stopbar instead of the center of the intersection. It would be easy
to either directly set the location of the stopbar as the zero distance reference point or shift the
time-space diagram by the distance between the stopbar and the center of the intersection.

2.3.4 Data filtering and smoothing

Data smoothing and filtering are important for real-world data with noise and errors. Since the
choice of the smoothing and filtering methods are largely dependent on different features of
different data sources, we will not go to details but briefly introduce some essential data filtering
and smoothing steps shown in Figure 2.2.

Raw trajectory point filtering and smoothing Given the raw trajectory points in GNSS coordinates,
we can first remove outliers and then apply some basic smoothing algorithms. The outlier removal
algorithm is usually developed based on specific causes of the error from the different data sources.
For the data smoothing, there are many choices such as the median filter, Gaussian filter, local
regression, etc. In this dissertation, the outlier points are detected as points with large spatial or
temporal shifts and a simple Gaussian filter is applied to smooth the raw GNSS coordinates.

Remove off-road trajectories The trajectory map matching can provide the distance between the
raw GNSS point to the matched point shown by dA for point A in Figure 2.3. This distance can be
used as a metric to evaluate the trajectory data map matching results. If network data is correct, a
large distance dA indicates that point A is away from the network roadways and could be removed.

Time-space diagram smoothing After converting the raw GNSS coordinates to distances, we can
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apply another round of the data smoothing using the basic smoothing algorithms. More advanced
algorithms such as the Kalman filter would perform better if the speed and acceleration are also
available for each trajectory point.

2.4 Traffic performance evaluation

This section provides several algorithms to generate traffic performance metrics using the trajectory
data processed before. These performance indices include vehicle delay, number of stops, and
signal coordination-related measurements. We will also introduce space-mean speed estimation
by using linear interpolation at last.

2.4.1 Trajectory state segmentation

Before we go to specific traffic performance index calculation, we will first introduce a trajectory
state segmentation algorithm. The trajectory state segmentation algorithm splits the entire
trajectory into different states including free-flow state, transition state, and stop state according to
its speed profile. Free-flow state is defined as the state when a vehicle travels at a high speed while
stop state is defined as the state when a vehicle stops; the transition state connects the free-flow
state and stop state.

Figure 2.5 shows the details of the trajectory state segmentation algorithm. The overall
algorithm includes two steps, the first step is to get the preliminary trajectory state split according
to the speed profile; the second step is to filter the preliminary state split results. In the first step,
a vehicle is considered to be in the stop state if the speed is less than a threshold vs while in the
free-flow state if the speed is larger than a threshold vt; the state between the two thresholds is
assigned to the transition state. The stop speed threshold vs is chosen as 1 m/s while the free-flow
speed threshold vt should be related to the speed limit of the roadway; in this dissertation, 80% of
the speed limit is used.

After getting preliminary segmentation results according to the speed profile, the second step
is vehicle state filtering. Vehicle state filtering is designed to improve the robustness of the overall
vehicle state segmentation algorithm by removing some outliers such as short states caused by
noise of the speed profile or abnormal driving behavior. Figure 2.5 shows details of the vehicle
state filtering. Generally, there are two filtering steps for both stop state and free-flow state: state
consolidation and short state removal. State consolidation is to combine two close states of the
same category if the time and distance gap are both less than certain thresholds. As shown in
Figure 2.5 point A, there are two stop states split by a short transition state; if the duration of the
transition state and the distance traveled during this period are both less than predefined thresholds,
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Figure 2.5: Illustration of trajectory state segmentation.

then the two stop states will be combined together as a longer stop. In this dissertation, the duration
threshold is chosen as 3 s while the distance gap threshold is chosen as 10 m. Short state removal
is to convert short stop state to transition state as shown in Figure 2.5 point B. If the duration of the
stop state is less than a certain threshold (which is chosen as 3 s), the stop state will be converted
to a transition state. After the state consolidation and short state removal for stop state, we can do
the same for free-free state. Then we will be able to get the final segmentation results shown by
the time-space diagram at the bottom in Figure 2.5.

As aforementioned, vehicle state filtering is to improve the robustness of the trajectory
segmentation algorithm. Stop state consolidation can help to avoid over-estimation of number
of stop states. As shown in Figure 2.5, the stopped vehicle moved forward a short distance at point
A; this could happen when the driver just slightly reduces the following distance with the leading
vehicle. We should consider this situation as a long continuous stop instead of two stops. The short
stop state removal is designed to reduce the influence of the noise; a valid stop state should at last
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for a certain duration. More examples of vehicle state filtering will be discussed in the case study
section.

2.4.2 Traffic performance index calculation

With the trajectory state segmentation introduced before, this subsection will introduce the traffic
performance index calculation for each trajectory. Figure 2.6 is the illustration of the algorithm
based on the trajectory segmentation results while Table 2.1 is the full list of the performance
indices.

Distance ( )

Time ( )

Stop bar

* *

Total stop delay

Queue 
distance

Control delay

A

B

C*
D

*
Transition interval Free-flow interval Stop interval

E F

G
H

Length of the 
dedicated left-
turn lane

Length of the 
upstream link

Free-flow
speed

Figure 2.6: Traffic performance index calculation for single trajectory

Free-flow speed, free-flow arrival time Free-flow speed is defined as the desired speed of the
vehicle when not blocked or influenced by the background traffic (Manual, 2010). Free-flow speed
is an important parameter to estimate the control delay as well as whether a vehicle will arrive
during the green time. Different drivers have different free-flow speeds due to various driving
behaviors. With the trajectory segmentation results, free-flow speed can be estimated as the 80th
percentile of the speed during all the free-flow states denoted by the green color in Figure 2.6. The
80th percentile is better than the average speed or the median value since the free-flow state might
contain a small proportion of slowing-down or start-up period. With the free-flow speed, we can
calculate the free-flow arrival time, which is defined as the estimated arrival time if the vehicle is
not blocked by any background traffic or traffic signal. As shown in Figure 2.6, we can extend the
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first trajectory point A by a dashed line with the slope as the free-flow speed to get the free-flow
arrival time at point B. That is,

tB =
sB − sA
vf

= −sA
vf

(2.1)

where sB = 0 if we set the location of the stopbar as the distance zero point.

Arrival on green A vehicle is referred to as arrival on green if it will arrive at the green time
traveled by free-flow speed. It is determined by the traffic signal state at the free-flow arrival time
tB. Arrival on green is an important parameter to evaluate the coordination among intersections;
good coordination will lead to a high proportion of vehicles that arrive at the green time.

Control delay, level of service Control delay is defined as the temporal difference between the
actual travel time and free-flow travel time (Manual, 2010; Saldivar-Carranza et al., 2021). With
the free-flow arrival time at point B, the control delay tc can be easily calculated as:

tc = tD − tB (2.2)

where tB is the actual time that the vehicle passes the stopbar. Based on control delay, highway
capacity manual (HCM) (Manual, 2010) also provides the rating from A to F as level of service
(LOS).

Stop delay, number of stops, and queue distance Vehicle stop is another important measurement
for traffic performance. With the stop state obtained from the trajectory segmentation, total stop
delay is calculated as the total duration of all stop states shown in Figure 2.6. The number of stops
just equals the number of stop states while queue distance is defined as the distance to the stopbar
of the first stop state.

Split failure Split failure occurs when green time is not enough for a certain movement. Split
failure detection is important for traffic signal optimization since it usually leads to a large delay
and might be improved significantly by optimizing the green split or the cycle length. The typical
phenomenon of split failure is that a vehicle trajectory fails to pass the intersection within one
cycle; as a result, the control delay of the vehicle will be larger than the red time of a cycle. Based
on this observation, a trajectory is labeled as a split failure if both conditions are satisfied: 1) its
control delay is larger than the red light duration; 2) number of stops is larger than 1.

Spill-over warning Spill-over refers to the situation when stopped vehicles occupy the whole
roadway or dedicated left-turn lane. Spill-over could lead to gridlock of urban traffic networks,
which would cause a significant capacity drop for the whole urban traffic network. Spill-over can
be divided into left-turn spill-over and through movement spill-over. Left-turn spill-over occurs
when stopped vehicles occupy the dedicated left-turn lane while through movement spill-over
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occurs when stopped vehicles occupy the whole link. In this dissertation, we use queue length
occupation rate to estimate the risk of left-turn spill-over and through movement spill-over. Queue
length occupation rate is defined as the queue distance divided by length of dedicated left-turn lane
or the entire link for the left-turn and through movement spill-over accordingly. If the queue length
occupation rate for a certain trajectory is larger than 80%, we will post it as a spill-over warning.

2.4.3 Space-mean speed calculation

At last, we will introduce an algorithm to estimate space-mean speed; which is another important
traffic performance measurement for urban traffic networks (Turner et al., 1998). As shown in
Figure 2.7, the time-space diagram is split into different cells with a certain time interval ∆t and
distance interval ∆s. Then we can apply linear interpolation to find the exact point that each
trajectory traverses the boundaries of cells. After linear interpolation, we can calculate the total
travel time tc and the total travel distance sc for all trajectories within each cell. With total travel
time and total travel distance, the space-mean speed is calculated as:

vc =
sc
tc
, ∀c. (2.3)

Distance ( )

*
*

*
*

X

X

X

X

X
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Space mean speed
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Time ( )

Figure 2.7: Trajectory grid interpolation and space mean speed calculation.

Based on this space-mean speed calculation, the speed heatmap can be plotted to visualize the
overall traffic performance which will be introduced in the next section. Besides, the travel time
of a certain route (e.g., a corridor) might also be estimated without requiring the trajectory to pass
the complete route. We leave this for future study.
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2.5 Results

The proposed data processing platform is tested for both AACVTE and GM vehicle trajectory
data. Section 2.5.1 introduces typical cases for traffic performance index calculation. Section 2.5.2
and 2.5.3 show some plots for isolated movements and corridors accordingly. Results in Section
2.5.1 are based on AACVTE trajectory data while the other two are using GM trajectory data. An
introduction to both data sets is available in Section 1.2.1.

2.5.1 Typical cases of traffic performance index calculation

Figure 2.8 shows the time-space diagram of some typical cases for the traffic performance index
calculation. Time-space diagrams are plotted by different colors representing different states
including stop state, free-flow state, and transition state. For all four cases, distance 0 is the
location of the stop bar while a negative distance indicates that the vehicle is from the upstream of
the intersection. The dashed blue lines are free-flow arrival curves; dashed black horizontal lines
show locations of the start of the dedicated left-turn lane or upstream link for left-turn and through
movement accordingly. Traffic signal timing is also plotted as a horizontal line with different
colors at the stop bar (distance=0). The legend in each figure shows some basic information and
the calculated traffic performance indices. With the general introduction of Figure 2.8, then we
will go to these four typical cases individually.

Common case Figure 2.8 (a) shows a common case of the trajectory time-space diagram; the
vehicle stopped around 48 meters in front of the stop bar. There is clearly one stop labeled by pink
color. There is no split failure or spill-over warning for this trajectory.

Stop state consolidation Figure 2.8 (b) is an example showing why the stop state consolidation
introduced before is necessary, especially for an accurate estimation of the number of stops. The
example trajectory experienced a long stop while moving forward a short distance in the middle.
If not applying the stop state consolidation, the number of stops will probably be overestimated,
which might lead to a false alarm of split failure.

Split failure Figure 2.8 (c) is an example of split failure. This vehicle is in a left-turn movement,
it failed to pass the intersection for the first green time and waited for another red light. We can
clearly see the two characteristics of the split failure trajectory: 1) control delay larger than the
red time and 2) multiple stops. It is also a good comparison between Figure 2.8 (b) and (c) for
the identification of the number of stops. With our trajectory segmentation algorithm introduced
in before, two valid stop states should have a large distance and time gap; otherwise, they will be
combined as one continuous stop.
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(a) Common case (b) Stop state consolidation

(c) Split failure (d) Left-turn spillover

Figure 2.8: Typical cases for the traffic performance index calculation

Spillover warning Figure 2.8 (d) shows a trajectory posted as a spillover warning. This trajectory
is in a left-turn movement and the black dashed line is the start of the dedicated left-turn lane.
This trajectory is labeled as a spillover warning since the maximum queue distance is larger than
the length of the dedicated left-turn lane. The first stop occurred before the start of the dedicated
left-turn lane; this indicated that the vehicle was blocked by the residual queue before entering the
dedicated left-turn lane.

2.5.2 Performance evaluation and trajectory aggregation

Although trajectories provide accurate delay measurements, observed trajectories are usually
sparse due to low connected vehicle penetration rates. Because movements experience similar
traffic demands for each day, historical trajectory data from multiple dates can be aggregated
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(a) Number of trajectories (b) Control delay scatters

Figure 2.9: Performance evaluation figures for an example movement.

together to get more robust evaluations. Figure 2.9 are performance evaluation plots of an example
movement from aggregated trajectory data of continuous five weekdays. Figure 2.9 (a) shows the
number of observed trajectories across a whole day where different colors represent the numbers of
stops experienced by those trajectories. More green means better performance while red indicates
spill-over. The delay scatter plot given by Figure 2.9 (b) can show how control delay changes
throughout the day. Each cross represents a trajectory’s point when it passes the intersection
(horizontal axis) and control delay (vertical axis). Blue and red crosses represent normal and
split-failure trajectories, respectively.

Since fixed-time traffic signal states are cyclic within a certain TOD, trajectories from different
cycles can also be aggregated to one cycle to get the aggregated time-space diagram as shown
in Figure 2.10; different colors also represent different numbers of stops. When aggregating
the trajectory to one cycle, we shift each trajectory by an integer number of cycles to get their
arrival times within the same cycle. Since the trajectories are aggregated according to their arrival
times, the departure time might extend to the following cycle if some vehicles failed to pass the
intersection within the cycle they arrived at. The aggregated time-space diagram shows the average
traffic pattern of the movement at a certain TOD and demonstrates recurrent congestion issues such
as bad coordination and split failure.

2.5.3 Space-mean speed of a corridor

A corridor, or any coordinated path, is composed of a series of movements traversing multiple
intersections. Figure 2.11 shows the aggregated time-space diagram of an example corridor at
a certain TOD, created by combining the movement time-space diagrams along the path. For
visualization purposes, the aggregated time-space diagrams for each movement are repeated over
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(a) Original time-space diagram

(b) Aggregated time-space diagram

Figure 2.10: Aggregated time-space diagram for an example movement.

several cycles. While Figure Figure 2.11 visualizes the northbound direction, a similar figure can
be plotted for the opposite direction. The corridor aggregated-time space diagram clearly depicts
how vehicles traverse the whole corridor and can be used to evaluate coordination performance.
The corridor aggregated time-space diagram can be converted to the space-mean speed heatmap
as shown by Figure 2.12. The spatial-temporal space is split into mesh grids by setting certain
temporal and spatial intervals (e.g., 3 seconds and 20 meters); and the space-mean speed within
each grid is the total travel distance divided by the total travel time of all the trajectories within the
grid. Red indicates stopped vehicles, or queues, for each intersection and is where delay occurs.
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Figure 2.11: Aggregated time-space diagram of Adams Rd., Birmingham, MI.

Figure 2.12: Space-mean speed of Adams Rd., Birmingham, MI.

2.6 Summary

This chapter proposes a trajectory data processing pipeline that serves different traffic operational
applications in large-scale traffic networks. The trajectory data processing pipeline includes
matching trajectory data to a well-defined network representation, splitting the trajectory data into
different movements, and extracting distance information from raw GNSS coordinates. Smoothing
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and filtering algorithms are also required to reduce the influence of noise and errors in real-world
data. Based on the processed trajectory data, we also propose a series of efficient and robust
algorithms for mobility evaluation of the signalized intersections including estimating the vehicle
delay and number of stops, evaluating the coordination among intersections, etc.

Both AACVTE and GM trajectory data are used to test the proposed methods and algorithms.
Different plots are generated to visualize the traffic performance of the studied corridor.
The trajectory processing pipeline and mobility evaluation algorithms suit well for real-world
implementation in a large-scale network with vehicle trajectory data, which can serve as a stepping
stone for city-level traffic control and management. This chapter is the foundation for all remaining
chapters that use real-world trajectory data as the input.
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CHAPTER 3

Stochastic Traffic Flow Model in Newellian
Coordinates

3.1 Introduction

3.1.1 Background and related works

Stochastic traffic flow models can be used to estimate and predict the overall traffic state from
incomplete observations. Please refer to Section 1.3.2 for a more comprehensive literature review
of the traffic flow models.

Most existing traffic flow models do not fit with vehicle trajectory observations. Eulerian and
Lagrangian coordinates are the two most used coordinate systems in existing models (Figure 3.1).
Eulerian coordinates split the spatial-temporal space into grids and define the traffic state as the
density in each grid. Trajectory data does not provide measurements in Eulerian coordinates and
hence cannot be directly used to calibrate the traditional LWR model and its variants. Vehicle
trajectory data is in the form of Lagrangian coordinates which keep track of each individual
vehicle’s movement, but traffic flow models under Lagrangian coordinates suffer from high
dimensionality and are not applicable to large-scale applications.

In addition, models utilizing both Eulerian and Lagrangian coordinates become more
complicated at higher dimensions when extended to stochastic settings (Jabari and Liu, 2012, 2013;
Sumalee et al., 2011; Flötteröd and Osorio, 2017; Zheng et al., 2018). As a result, the lack of a
suitable traffic flow model for vehicle trajectory data is one of the main bottlenecks of using such
data for traffic signal optimization.

3.1.2 Overview of the chapter

To overcome this challenge, this chapter introduces a stochastic traffic flow model under newly
proposed Newellian coordinates (Figure 3.1). By assuming that all vehicles follow a uniform
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Figure 3.1: Eulerian, Lagrangian, and the proposed Newellian coordinates and corresponding
traffic state representations.

deterministic Newell’s car-following model, the Newellian coordinates allow us to use a point-
queue representation to describe the complete spatial-temporal traffic state. The probabilistic time-
space (PTS) diagram is then utilized to derive the spatial-temporal vehicle trajectory distribution
given the stochastic point-queue model.

The proposed stochastic traffic flow model builds the connection between the sparsely observed
vehicle trajectory data and the unknown traffic states & parameters, which enables us to apply
different statistical estimation algorithms to estimate these unknown values.

3.1.3 Contributions and organization of the chapter

The contributions of this chapter are summarized as follows:

1. We demonstrate that a point-queue model under the newly proposed Newellian coordinates
can sufficiently describe the spatial-temporal traffic state.

2. We propose the PTS diagram, which can be used to derive the spatial-temporal distribution
of vehicle trajectories with a point-queue representation.

3. The proposed model is compatible with the measurement provided by vehicle trajectory data.
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It builds the connection between observed vehicle trajectory data and unknown traffic state
and parameters.

This chapter is organized as follows: Section 3.2 introduces the Newellian coordinates, point-
queue representation, and the PTS diagram. Section 3.3 shows the derivation of the stationary
distribution of fixed-time traffic signals. Section 3.4 includes more details of the queueing model
and PTS diagram when there is a residual queue at the end of a cycle. Section 3.5 is a case study
that demonstrates how the proposed model is related to observed vehicle trajectory data. Section
3.6 shows some numerical examples and Section 3.7 is the summary of this chapter.

3.2 Newellian coordinates, point-queue representation, and
probabilistic time-space diagram

3.2.1 Discrete approximation

The proposed stochastic traffic flow model is established based on a discrete approximation.
For a certain movement, let qm and z denote the saturation flow rate and the number of lanes,
respectively. For each time interval ∆t, the unit flow per time step ∆u at saturation flow rate will
be determined by:

∆u = qmz∆t. (3.1)

The discrete approximation assumes atomic traffic flow in units of ∆u. If the time interval is chosen
properly, each unit flow could represent exactly one vehicle. For example, if a movement has two
lanes, z = 2, and saturation flow rate qm = 1800 veh/(lane · hour), then a unit traffic flow ∆u

will be one vehicle if ∆t = 1 sec. Let ho be the jam space headway with unit meter/(veh · lane),
which is assumed to be a known constant. Then the jam space headway h per unit flow (unit:
meter/∆u) is given by:

h =
∆u · h0

z
= qmh0∆t. (3.2)

Without loss of generality, we will use ∆t = 1 to simplify the notation in the rest of this
dissertation, which means that time t directly represents the number of time steps. Besides,
although ∆u does not necessarily refer to one vehicle, for convenience, we directly use “one
vehicle” to represent its complete rigorous description, i.e., “unit traffic flow ∆u”.

3.2.2 Newellian coordinates and point-queue model

Figure 3.2 is an illustration of the proposed Newellian coordinates, which are established on the
assumption that all vehicles follow a homogeneous deterministic Newell’s car-following model
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(Newell, 2002). This assumption holds since stop-and-go is the dominant vehicle trajectory feature
in urban areas with traffic signals. Most of the uncertainty arises from the stochasticity of traffic
demand rather than stochastic driving behaviors, particularly at a low penetration rate. According
to the previously introduced discrete approximation, for each time interval ∆t, traffic flow comes
atomically with either 0 or ∆u (could refer to one or several vehicles). The Newellian coordinates
are then defined as (t, n) where t represents the free-flow arrival time (in units of ∆t) while n
denotes the number of unit traffic flows (in units of ∆u). The “distorted grid” in Figure 3.2 is
an illustration of such coordinates, which are parameterized by the free-flow speed vf , jam space
headway h, and time interval ∆t. As shown in Figure 3.1, the transformation between the time-
space coordinates (t′, s′) and Newellian coordinates (t, n) is given by:{

t′ = t− n·h
vf

s′ = n · h
. (3.3)
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Figure 3.2: Illustration of Newellian coordinates and point-queue representation.
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The major difference between these coordinate systems is that Newellian coordinates use the
free-flow arrival time as time t. The free-flow arrival time can be interpreted as the time when a
vehicle would have arrived at the intersection if it traveled at the free-flow speed and did not have
to slow down or stop because of background traffic or the traffic signal. Based on the Newellian
coordinates, one trajectory with one stop, taking trajectory k in Figure 3.2 as an example, can be
encoded as (ak, Xk, bk) where ak is the free-flow arrival time, Xk is the stop location, and bk is
the departure time when it leaves the intersection. The difference between the departure time and
free-flow arrival time |bk − ak| is the control delay (Manual, 2010; Wang et al., 2022a).

Newellian coordinates enable us to convert all vehicle trajectories to a point-queue
representation. Let Xn(t) represent the spatial queue length (in units of ∆u) at time t, which
is determined by the physical position of the last stopped vehicle. It can be further transformed to
X(t) through:

X(t) = Ψt(X
n(t)), where Ψt(n) =

{
n− (t− tr)+ n > 0

0 n = 0
(3.4)

where Ψt(·) denotes the mapping function at time t, (t− tr)+ ≡ max{0, t− tr}, and tr is the end
of the red light. X(t) refers to the number of stopped vehicles at time t. The dynamic equation of
X(t) is given by:

X(t) = X(t− 1) + A(t)−B(t) (3.5)

where A(t) and B(t) is the arrival and departure, respectively. X(t) behaves as a point queue since
it does not have spatial information. In this way, we have converted the spatial-temporal traffic
state under the Newellian coordinates to a point-queue representation.

Due to the uncertainty caused by the sparsely observed vehicle trajectory data, a stochastic
model is required. The deterministic point-queue model can be easily converted to a stochastic
version (i.e., a stochastic queueing model) by applying a stochastic arrival process. Although
stochastic queueing models have been widely studied to model urban traffic networks (Viti and
Van Zuylen, 2010; Boon and van Leeuwaarden, 2018; Osorio and Bierlaire, 2009; Osorio and
Wang, 2017; Osorio and Yamani, 2017), few have established their connection with partially
observed vehicle trajectory data (Maripini et al., 2023).

For the stochastic discrete queueing model, the arrival A(t) is assumed to be binary which
follows a Bernoulli distribution with arrival probability a(t), that is, A(t) ∼ Bernoulli(a(t)). For
simplification, arrivals at different time steps are assumed to be independent. The queue length is
updated by:

X(t) = X(t− 1) + A(t)−B(t) = X ′(t)−B(t) (3.6)

where X ′(t) is the intermediate queue length after the new arrival at time t. In each time step,
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the arrival happens before the departure since vehicles can directly pass the intersection without
stopping. Otherwise, every vehicle in the model would need to wait at least one time step before
passing the intersection. The departure B(t) is also binary and controlled by the traffic signal state
S(t):

P(B(t) = 1) ≡ b(t) = P(X ′(t) ≤ 1) · S(t). (3.7)

where S(t) = 0 and S(t) = 1 correspond to red and green lights, respectively. Equation (3.7)
means that the departure will happen whenever the queue is not empty, and the traffic signal state
is green. Let x(t, k) be the pmf (probability mass function) of the queue length, which is the
probability that the queue length is k at time t. Given an input arrival profile a(t), the queue length
distribution and departure can be updated recursively according to the following equations:

x′(t, k + 1) = x(t− 1, k) · a(t) + x(t− 1, k + 1) · (1− a(t)) (3.8a)

x(t, k) = x′(t, k + 1) · S(t) + x′(t, k) · (1− S(t)), ∀k ≤ 1 (3.8b)

x(t, 0) = x′(t, 1) · S(t) + x′(t, 0) (3.8c)

b(t) =
∞∑
k=1

x′(t, k) · S(t) (3.8d)

3.2.3 Probabilistic time-space (PTS) diagram

Even though the point-queue model uses a simple representation without considering spatial
information, it can be projected back to the spatial-temporal space using the probabilistic time-
space (PTS) diagram to capture complete vehicle movement and queue propagation (Figure 3.3).
Here ρn(t, n) and ρt(t, n) denote the probability that there are vehicles traveling on the vertical and
horizontal edges, corresponding to the free-flow and stop states, respectively. The probability at
each edge can be calculated given the point-queue representations including arrival, queue length,
and departure. Each edge is drawn using transparency to represent probability. Consequently, the
PTS diagram directly shows the spatial-temporal distribution of vehicle trajectories.

As shown in Figure 3.3, edges in the grid can be divided into three categories including the
arrival, departure, and stop states. For the stop state, the probability of each edge can be calculated
by:

ρt(t,Ψ−1
t (n)) = P(X(t) ≤ n) =

∞∑
k=n

x(t, k) (3.9)

where Ψ−1
t (·) is the inverse function of Ψt(·) in Equation (3.4). Ψ−1

t (·) is given by:

Ψ−1
t (n) =

{
n+ (t− tr)+ n > 0

0 n = 0
(3.10)
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Figure 3.3: Probabilistic time-space (PTS) diagram.

which projects the point queue X(t) = n to the spatial queue Xn(t) = Ψ−1
t (n). In this way,

ρt(t,Ψ−1
t (n)) is the probability that there is a vehicle waiting from time t to t + 1 at point queue

X(t) = n. Equation (3.9) can be interpreted as the probability that there is a vehicle stopped at
point queue X(t) = n, which is equal to the total probability that X(t) ≤ n.

For the departure edges as shown in Figure 3.3, the probability is calculated by:

ρn(t, 0 : Ψ−1
t (−1)) = P(B(t) = 1) = b(t) (3.11)

where ρn(t, 0 : Ψ−1
t (−1)) represents all the departure edges at time t starting from the departure

shockwave until leaving the intersection as shown in Figure 3.3.
For the arrival edges, the probability is calculated by:

ρn(t,Ψ−1
t (n)) = P(A(t) = 1) · P(X(t) < n) = a(t) ·

n−1∑
k=0

x(t, k), n ≤ 1. (3.12)

ρn(t,Ψ−1
t (n)) represents the probability a vehicle travelling from X(t) = n+1 to X(t) = n. This
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event happens when there is a new arrival A(t)=1 and the queue length X(t) is less than n.
Equation (3.9-3.12) shows how the probability of a vehicle trajectory traveling on each edge

in Figure 3.3 is calculated from the discrete queueing model given by Equation (3.6-3.8). The
probability of each edge is used as the edge’s transparency in the diagram. In this way, the discrete
queueing model is mapped to the probabilistic time-space (PTS) diagram and directly shows the
spatial-temporal distribution of the vehicle trajectories.

Algorithm 1: Calculation of the stationary queue length distribution
Input 1) Arrival profile a = [a(1), a(2), . . . , a(T )]. 2) traffic signal state
s = [s(1), s(2), . . . , s(T )]. and 3) stopping criteria ϵ = 1e− 6.

Initiation: 1) Queue length distribution X0 ∈ RT×N of iteration 0 where x0(t, k) is the
probability that queue length at time step t is k. To start with, the queue is empty at
t = 0: x0(0, 0) = 1, xo(0, k) = 0, k ≥ 1; and 2) Departure profile b0 = [b0(1), . . . , b0(T )]
at iteration 0 and b(t)0 = 0,∀t ∈ {1, . . . , T}.

while for iteration i = 0, 1, 2, ... do
Initiate the queue length distribution at the start of the cycle:

xi+1(0, k) = xi(T, k), ∀n (3.13)

for time in cycle t = 1, 2, ..., T do
Update the queue length distribution after new arrival:

xi+1(t, k+1)′ = xi+1(t−1, k) ·a(t)+xi+1(t−1, k+1) · (1−a(t)), ∀k (3.14)

Update the queue length distribution after new departure:

xi+1(t, k) = xi+1(t, k + 1)′ · s(t) + xi+1(t, k)′ · (1− s(t)), ∀k ≥ 1 (3.15a)

xi+1(t, 0) = xi+1(t, 1)′ · s(t) + xi+1(t, 0)′ (3.15b)

Get the departure probability b(t):

bi+1(t) =

(
N∑
k=1

xi+1(t, k)′

)
· si(t) (3.16)

if ∥X i+1 −X i∥F ≥ ϵ then
Set b = bi+1, X = X i+1 and terminate the iteration.

Return: departure probability b and queue length distribution X .
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3.3 Stationary cycle for fixed-time traffic signals

For fixed-time traffic signals, since both the traffic signal state and input arrival rate are cyclic
with cycle T , that is, S(t + kT ) = S(t) and a(t + kT ) = a(t) for any cycle k, both the resulting
departures and queue lengths will converge to a stationary traffic cycle if the average traffic demand
is within the traffic signal capacity:

lim
k→∞

X(t+ kT ) → X̄(t), lim
k→∞

B(t+ kT ) → B̄(t), ∀t ∈ {1, 2, . . . , T} (3.17)

where X̄(1 : T ) and B̄(1 : T ) represent the stationary queue length and departure in a traffic cycle
which can be calculated iteratively over cycles according to Equation (3.8) (Algorithm 1). Equation
(3.17) also requires that the movement is under-saturated on average:

∑T
t=1 a(t) <

∑T
t=1 S(t).

This assumption holds in the real world since the queue length of each movement is restricted by
the length of the roadway, and the arrival rate will always be less than the capacity in the long term.

With the stationary arrival Ā(t) and queue length X̄(t), the PTS diagram for the stationary
traffic cycle can be drawn according to the same Equations (3.9-3.12). and the average delay can
be calculated according to Little’s law (Little and Graves, 2008):

d̄ =

∑T
t=1 E[X̄(t)]∑T
t=1 E[Ā(t)]

. (3.18)

3.4 Traffic flow model with residual queue

3.4.1 Discrete queueing model with residual queue

Section 3.2 has demonstrated how the discrete queueing model can be mapped to the probabilistic
time-space (PTS) diagram without considering any residual queue or over-saturation (see Remark
3.1). To make the model more generic so that it can also deal with the over-saturation case, we
need to keep track of the queue length of each individual cycle.

Remark 3.1. For clarification, in the rest of the dissertation, the “over-saturation” means that

there is an unignorable probability that some vehicles cannot pass the intersection within the first

cycle or there is a residual queue at the end of the green end time. As aforementioned in Section

3.3, all movements are under-saturated by average if a constant arrival rate is assumed: the

average arrival rate needs to be strictly less than the capacity, otherwise, the queue will increase

to infinity. Although the arrival rate is less than the capacity by average, there will still be a

certain probability that the vehicle is not completely cleared due to the stochastic arrival process.

Therefore, when it comes to “over-saturation” afterward, it does not mean the movement is over-
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Figure 3.4: Residual queue.

saturated by average but with a high traffic volume (more rigorously, a large volume-to-capacity

ratio) so that there is likely a residual queue at the end of the cycle.

Figure 3.4 illustrates how to decompose the total queue into queues for each individual cycle.
A cycle c starts with a red light at time tc and the queue length starts to increase. Let Xc(t) and
Xn

c (t) denote the point and spatial queue lengths of cycle c, respectively. For each cycle, the spatial
and point queue lengths have the following mapping relationship:

Xn
c (t) = Ψ−1

c,t (Xc(t)), where Ψ−1
c,t (n) =

{
n+ (t− trc)

+, n > 0

0 n = 0
. (3.19)

where Ψ−1
c,t (·) is the mapping function that projects the point queue Xc(t) to the spatial queue

Xn
c (t). The mapping function Ψc,t(·)/Ψ−1

c,t (·) is similar to Equation (3.4) and Equation (3.10). The
only difference is that we further specify the cycle c since different cycles have different red light
end times trc. Let X(t) represent the total point queue at time t. We have:

X(t) = Xc(t) +Xc−1(t). (3.20)
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By using X(t) as the total queue length, it is easy to verify that the discrete queueing model
given by Equation (3.6-3.8) still holds. However, we are no longer able to get the spatial queue
information from the total queue length because queues of different cycles are mixed together. The
total queue X(t) needs to be decomposed into the different cycles so that the spatial queue can be
derived according to Equation (3.19). As shown in Figure 3.4, the queue lengthXc(t) is essentially
the downstream of the residual queue Xc−1(t) from the previous cycle and the internal flow Y (t)

denotes vehicles that depart the residual queue and join the new queue.
Let Tc be the set of time steps of cycle c, then for each cycle c and t ∈ Tc, the discrete queueing

model can be written as:

Xc−1(t) = Xc−1(t− 1) + A(t)− Y (t) = X ′
c−1(t)− Y (t) (3.21)

Xc(t) = Xc(t− 1) + Y (t)−B(t) = X ′
c(t)−B(t) (3.22)

where Y (t) and B(t) are determined by:

P(B(t) = 1) = b(t) = P(X ′
c(t) ≥ 1) · S(t); (3.23)

P(Y (t) = 1) ≡ y(t) = P(X ′
c−1(t) ≥ 1) · 1. (3.24)

The internal flow given by Equation (3.24) can be considered to be controlled by a constant green
light since the vehicles in the residual queue Xc−1(t) are not blocked and will join the new queue
Xc(t) continuously. Figure 3.5 shows the probabilistic graphical model by decomposing the queue
length into different cycles (residual queue and queue of the current cycle). The left-hand-side
figure shows the time steps within the cycle c while the right-hand-side figure shows the transition
between different cycles. Note that we need to assume that the queue length will only extend to
the following cycle. See Assumption 3.1 for more details.

Assumption 3.1. The queue length of a cycle does not extend to the cycle after the following

cycle. This assumption holds when the traffic volume is slightly larger than capacity for some of

the cycles, which is true in most real-world cases. One simple counterexample of this assumption

is a highly congested movement where some vehicles need to wait for more than 2 cycles to pass

the intersection. The same method proposed in this section can be used but it will lead to a more

complicated formulation, and hence we do not spend effort repeating the same procedure.

By adding Equation (3.21) and Equation (3.22), we have:

Xc(t) +Xc−1(t)︸ ︷︷ ︸
X(t)

= Xc(t− 1) +Xc−1(t− 1)︸ ︷︷ ︸
X(t−1)

+A(t)−B(t). (3.25)

45



Time steps within cycle Cycle Cycle 

(a) Graphical model within cycle c (b) Graphical model between cycles

Figure 3.5: Probabilistic graphical models with the residual queue.

This is the same as Equation (3.6) in Section 3.2, which means that the total queue length X(t) has
the same dynamics but it is decomposed into different cycles.

Let x(t, kr, k) represent the joint distribution of the residual queue Xc−1 = kr and queue of the
current cycle Xc = k. The transition of Equation (3.21-3.24) can be written as:

x′(t, kr + 1, k) = x(t− 1, kr, k) · a(t) + x(t− 1, kr + 1, k) · (1− a(t)) (3.26a)

x′′(t, kr − 1, k) = x′(t, kr, k + 1), kr ≥ 1 (3.26b)

x(t, kr, k) = x′′(t, kr, k + 1) · S(t) + x′′(t, kr, k) · (1− S(t)), k ≥ 1 (3.26c)

x(t, kr, 0) = x′′(t, kr, 1) · S(t) + x′′(t, kr, 0) (3.26d)

We also have the internal flow y(t) and departure b(t) determined by:

y(t) =
∞∑

kr=1

∞∑
k=0

x′(t, kr, k) (3.27)

b(t) =
∞∑

kr=0

∞∑
k=1

x′′(t, kr, k) · S(t) (3.28)

3.4.2 PTS diagram with residual queue

This subsection shows how to project the discrete queueing model to the corresponding PTS
diagram when considering residual queues. As shown in Figure 3.6, for each cycle c and time
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step t ∈ Tc = {tc, tc + 1, . . . , tc + Tc}, there are five different parts: 1) arrivals to the residual
queue, 2) residual queue stop state, 3) internal flows from the residual queues to the new queues,
4) stop state of the new queue, and 5) departures. The probability of each part is given below.

Time

CycleCycle

1. Arrivals to 
residual queue

2. Residual queues
3. Internal arrivals
to the new queue

4. New queues

5. Departures

Figure 3.6: Probabilistic time-space diagram with a residual queue.

The arrival to the residual queue is similar to Equation (3.12) in Section 3.2. ∀t ∈ Tc, we have:

ρn
(
t,Ψ−1

c−1,t(n)
)
= P(A(t) = 1) · P (Xc−1(t) < n)) = a(t) ·

n−1∑
kr=0

∞∑
k=0

x(t, kr, k). (3.29)

The residual queue stop state is similar to Equation (3.9) in Section 3.2. ∀t ∈ Tc, we have:

ρt
(
t,Ψ−1

c−1,t(n)
)
= P(Xc−1(t) ≥ n) =

∞∑
kr=n

∞∑
k=0

x(t, kr, k). (3.30)

The internal arrival to the new queue is given by (∀t ∈ Tc):

ρn
(
t,Ψ−1

c,t (n)
)
= P

(
X ′

c−1(t) ≥ 1 & Xc(t) < n
)
=

∞∑
k=1

n−1∑
k=0

x′(t, kr, k). (3.31)

Equation (3.31) shows the probability that an internal flow departs from the residual queue and
arrives at the new queue at location Xc(t) = n. It happens whenever the residual queue X ′

c−1(t) is
not empty and the new queue Xc(t) is less than n at the same time.
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New queues:

ρt
(
t,Ψ−1

c,t (n)
)
= P(Xc(t) ≥ n) =

∞∑
kr=0

∞∑
k=n

x(t, kr, k). (3.32)

Final departures:
ρn
(
t, 0 : Ψ−1

c,t (−1)
)
= P(B(t) = 1) = b(t). (3.33)

3.5 Case study: proposed model and vehicle trajectory data

Previous sections have shown how we convert the spatial-temporal traffic state to a point-queue
representation under the newly proposed Newellian coordinates and how the PTS diagram can
project a stochastic point-queue model back to the whole spatial-temporal space. This means
that a point-queue model can sufficiently capture the spatial-temporal traffic state with much less
dimensionality and can be easily converted to a stochastic model.

This section will demonstrate another major advantage of the proposed model with a case
study: it suits the sparsely observed vehicle trajectory data well. Assuming that at time 2, the
queue length distribution is given by Table 3.1, the penetration rate ϕ = 20%, and the arrival rate
at time 2 is a = 0.4 veh/sec.

X(2) 0 1 2 ≥3
Probability 0.2 0.5 0.3 0

Table 3.1: Assumed queue length distribution at time 2.

Based on these given conditions, Figure 3.5 shows all possible observed vehicle trajectories at
time 3 and the corresponding probabilities:

• Case 1: no observed trajectory, which will happen when there is no arrival or an unobserved
arrival. The calculation of the probability is given in the figure.

• Case 2: there is one observed new arrival at time 3 which directly passes the intersection
without a stop. This event will happen when there is an observed arrival and at the same
time the existing queue length is 0.

• Case 3-4: there is one observed new arrival that stops at locations 2 and 3, respectively.

This example illustrates how the proposed model is related to the observed vehicle trajectory
data. In fact, the probability of each case is the likelihood given different observed vehicle
trajectories as well as the traffic parameters. The next chapter will utilize this likelihood function
to estimate both unknown traffic states and parameters.
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Figure 3.7: Possible observed trajectories given initial conditions.
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3.6 Numerical examples

3.6.1 PTS diagram without the residual queue

This section will show some numerical examples of the PTS diagram. A single isolated movement
controlled by a fixed-time traffic signal is built in the SUMO simulation environment. This
movement has two lanes with a length of 250 m. The traffic signal is fixed-time with a cycle
of 90 s; the green duration for this movement is 35 s. The average free-flow speed of all vehicles
is 30 mph and the jam space headway is a deterministic constant with a value of 7.5 m/(veh·lane).
The vehicle arrival follows a Poisson process with an average traffic arrival rate of 720 vph. The
volume-to-capacity (v/c) ratio is approximately 0.52.

(a) Agg. time-space diagram (b) PTS diagram

(c) Spatial queue profile Xs(t) (d) Point queue profile X(t)

Figure 3.8: PTS diagram and point/spatial queue profiles (without the residual queue).

Figure 3.8 (a) is the aggregated time-space diagram of the test movement. Vehicle trajectories

50



from 800 cycles are aggregated into the same cycle according to the aggregation method as
aforementioned in Section 2.5.2. This aggregated time-space diagram shows the recurrent
(average) pattern of the test movement in a cycle. Given the same parameters including the traffic
volume as well as the traffic signal timing plan, Figure 3.8 shows the resulting PTS diagram,
which represents the spatial-temporal distribution of the vehicle trajectories. Figure 3.8 (b) matches
Figure 3.8 (a) well, demonstrating the effectiveness of the PTS diagram.

Figure 3.8 (c) and (d) show the corresponding spatial and point queue profiles. The spatial
queue Xs(t) refers to the physical location of the last stopped vehicle while the point queue X(t)

refers to the number of stopped vehicles. Notice that there are two different notations for the spatial
queue which have different units: Xs(t) is in units of meters (measured by distance) while Xn(t)

is in units of ∆u (measured by unit traffic flow). They can be converted to each other through
Xs(t) = h · X(t), where the space headway h is a constant. Since the figure shows the effective
green time directly, the point queue X(t) starts to decrease once the traffic signal turns green.
However, the spatial queue Xs(t) starts to decrease until the last stopped vehicle starts to move,
which is later than the green start time. Both spatial queue Xs(t) and point queue X(t) are based
on the proposed Newellian coordinates: the queue profiles show the queue length at the free-flow
arrival time t of the Newellian coordinates instead of normal time t′. Please refer to Section 3.2.2
and Equation (3.3) for a recap of their difference and mapping relationship.

As shown in Figure 3.8 (c) and (d), the blue color denotes the queue profile extracted from the
PTS diagram while the red color denotes the aggregated time-space diagram, which is considered
to be the ground truth. The solid lines are mean values while shadow areas show the standard
derivation (std). In general, the PTS model matched the ground truth very well for both spatial and
temporal queues, as well as mean and std. Compared with the point queue in Figure 3.8 (d), the
spatial queue of PTS diagram in Figure 3.8 (c) performs slightly worse since the PTS diagram uses
a Newell’s car-following model without considering vehicle slow-down and speed-up behaviors.

3.6.2 PTS diagram with residual queue

Figure 3.9 and Figure 3.10 show the aggregated time-space diagram, PTS diagram, and the
spatial/point queue profiles of the same movement but with a higher traffic volume and,
consequently, a higher probability that the queue is not cleared within one cycle. For this scenario,
the average traffic volume is 1296 vph and the corresponding v/c ratio is approximately 0.92.
Although this is still a strictly under-saturated case by average, the number of arrivals could be
larger than the capacity for some cycles since the arrival is stochastic which follows a Poisson
distribution (see Remark 3.1).

Both the aggregated time-space diagram and PTS diagram in Figure 3.9 are drawn with three
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Figure 3.9: PTS diagram and point/spatial queue profiles (with the residual queue).

repeated cycles for visualization purposes. Three cycles are the same while some annotations are
put to the first two cycles. As shown in both figures, a small proportion of vehicles fail to pass the
intersection within the cycle they arrived at. These split-failure trajectories stop once in region M
(M’) and proceed to experience another stop in region N (N’). The residual queue will also lead to
a different “arrival shockwave”, which is defined as the boundary between the upstream moving
vehicles and downstream stopped vehicles. For the scenario in the previous section without the
residual queue, this arrival shockwave has a constant slope due to the constant Poisson arrival rate.
In this case, as shown in Figure 3.9, the arrival shockwave has two segments: segment A-B (A’-B’)
has a slightly larger slope compared with segment B-C (B’-C’) since there are also vehicles from
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the residual queue arriving during A-B (A’-B’) other than the new arrival. This is consistent with
the shockwave theory (Light and Whitham, 1955; Richards, 1956). Compared with the traditional
shockwave or kinematic wave theory which has a deterministic shockwave, the shockwave in the
PTS diagram is not a deterministic line but stochastic.

(a) Spatial queue profile Xs(t)

Departure 
process

Red light 
arrival

(b) Point queue profile X(t)

Figure 3.10: Spatial and point queue profiles (with the residual queue).

Figure 3.10 shows the spatial and point queue profiles extracted from both the aggregated time-
space diagram and PTS diagram in Figure 3.9. All queue profiles are the queue length of an average
traffic cycle Xc(t) instead of the total queue length X(t). Please refer to Section 3.4, particularly
Figure 3.4, for a recap of their difference and relationship. Therefore, all queue profiles start from
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0 at the beginning of the cycle and extend to the following cycle. As shown in Figure 3.10 (b),
the point queue profile of the PTS diagram is slightly different from the ground truth. For the
departure process, the PTS diagram initially over-estimates the departure rate and ends up with
an underestimation. This is because the PTS diagram only allows for a constant saturation flow
rate (i.e., maximum departure rate) while it is monotonically increasing in the real world since the
headway between vehicles decreases (Urbanik et al., 2015). As a result, the PTS diagram slightly
over-estimate the residual queue at the end of the cycle. This is also the reason why the blue curve
is above the red curve during the red light arrival part since the PTS model has more residual
queue from the previous cycle. Compared with the point queue profile, the spatial queue profile as
shown in Figure 3.9 (a) has a larger difference as well as variance since the start-up and slow-down
behaviors will exaggerate their differences. Nevertheless, the PTS diagram and the resulting queue
profiles match the ground truth very well, which could be further improved by adjusting some of
the parameters.

3.7 Summary and discussions

3.7.1 Summary

This chapter introduces a stochastic traffic flow model which is established based on the newly
proposed Newellian coordinates. It is assumed that all vehicles follow a uniform deterministic
car-following model. This assumption ignores the stochastic driving behavior but works well
when the uncertainty caused by stochastic traffic demand outweighs the former. Under the
Newellian coordinates, we demonstrate that a point-queue model can sufficiently capture the
spatial-temporal traffic state through the PTS diagram. At last, we also show how the proposed
traffic flow model builds the connection between observed vehicle trajectory data and unknown
traffic state/parameters, which will be utilized in the following chapter for statistical traffic state
estimation.

In summary, the proposed stochastic traffic flow model has two major advantages:

1. By utilizing a point-queue representation, the proposed stochastic traffic flow has much lower
dimensions and can capture the entire spatial-temporal traffic state.

2. It is compatible with the measurements provided by vehicle trajectory data, which means
that it can be easily calibrated by directly taking vehicle trajectories as the input.

3.7.2 Discussions

Here are some brief discussions of the limitations of the current model and possible solutions.
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Heterogeneous stochastic driving behavior Apparently, one major limitation of the proposed
model is that it requires a deterministic first-order car-following behavior with constant free-flow
speed and jam density. As aforementioned, this simplification does not undermine the model’s
accuracy if the major uncertainty comes from the stochastic traffic demand (upstream arriving
traffic volumes). This is true when the penetration rate is low but becomes less valid with a higher
penetration rate.

Platoon dispersion A uniform deterministic car-following model with a constant free-flow
speed means that the current model cannot capture the platoon dispersion from the upstream
intersection to the downstream intersection. However, this could be included if the proposed
model is only utilized to model the traffic state nearby the signalized intersection (the queueing
area where vehicle stop happens) while applying another platoon dispersion model to model the
traffic connecting queueing areas of different signalized intersections that are far away from each
other.

Deterministic departure, permissive movements The current model utilizes a deterministic
departure process when the vehicle is able to depart the intersection whenever the signal state is
green. However, this is not true for many cases such as the permissive movements, start-up period,
etc. Some of the cases are discussed in Appendix A.3, note that Appendix A.3 is also relied on
in the next chapter. Therefore, we recommend readers refer to it after finishing reading the next
chapter.

Shared lane of different movements Another implicit assumption of the proposed model is
that queues of different movements are separate and do not influence each other. However, this is
not the case when vehicles of different movements share the same lane. For example, it is very
common that the right-turn movement and through movement share the same lane. In this case,
we would still need to assume that queues of different movements are separate and do not interfere
with each other. One possible approximation is to use the “equivalent lane number”. For example,
if there is a case that the through movement and the right-turn movement share a single lane and
the traffic volume ratio is 3 : 1 (through : right-turn), then we can assign 0.75 lanes to the through
movement and 0.25 lanes to the right-turn movements. However, this is just an approximation
since different queues are still separate and the blocking between them cannot be modeled.
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CHAPTER 4

Traffic State and Parameter Estimation with
Uncertainty Quantification

4.1 Introduction

4.1.1 Background and related works

One of the primary limitations of the existing vehicle trajectory data, as discussed in Section 1.4,
is the sparsity and incompleteness resulting from a limited penetration rate. It is crucial to estimate
the overall traffic state, which serves as an essential input for traffic signal control and optimization.

Please refer to Section 1.3.3 for a more detailed literature review for traffic state estimation
with vehicle trajectory data. Most related works to this chapter include Comert and Cetin (2011);
Comert (2013, 2016); Zheng and Liu (2017); Zhao et al. (2019a,b); Wong et al. (2019), which
utilize the stop locations of connected vehicles to estimate the traffic states or parameters such as
queue length (distribution), penetration rate, and arrival rate. However, none of these studies utilize
a stochastic traffic flow model and hence they have certain limitations: 1) they only utilize the
stop locations of connected vehicles at certain time slots, which do not fully utilize the connected
vehicle information which also contains the time when the vehicle joins the queue and the stop
duration; 2) they can only estimate certain parameters such as Poisson arrival rate or penetration
rate; they cannot provide the complete spatial-temporal traffic state; 3) they almost do not have the
prediction ability due to the lack of a model or dynamics; 4) few of them provide the reliability or
uncertainty quantification of the estimated values.

4.1.2 Overview of the chapter

Based on the proposed stochastic traffic flow model in Chapter 3, this chapter applies different
statistical estimation methods to estimate both traffic states and parameters. The overall estimation
problem can be decomposed into two sub-problems: 1) traffic parameter estimation and 2) traffic
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state estimation. Traffic parameters (arrival rate, penetration rate, etc.) can be regarded as prior or
hyper-parameters to the real-time traffic state (queue length).

For fixed-time traffic signals, we will show how the methods of moments (MM) can be used
to estimate the unknown traffic parameters by assuming they are stationary within a certain TOD.
The stationary traffic state can then be directly derived given the estimated traffic parameters. It
is demonstrated that, by aggregating sufficient historical data, the recurrent traffic pattern can be
accurately reconstructed by the proposed method.

We also apply the Bayesian estimation techniques for traffic state and parameter estimation.
The Bayesian methods not only provide the point estimation of estimated values but uncertainty
quantification.

4.1.3 Contributions and organization of the chapter

The contributions of this chapter are listed below:

1. We apply different statistical estimation methods (MM estimation and Bayesian estimation)
to estimate both traffic state and parameter based on the previously proposed stochastic traffic
flow model.

2. The Bayesian estimation also quantifies the uncertainty of the estimated values.

This chapter is organized as follows: Section 4.2 introduces the probabilistic model which is
used for traffic state estimation. Section 4.3 shows how the MM can be used to estimate traffic
parameters for fixed-time traffic signals. Section 4.4 and Section 4.5 are about applying Bayesian
methods for estimation and uncertainty quantification. Section 4.6 is a summary of this chapter.

4.2 Probabilistic model and estimation problem formulation

4.2.1 Probabilistic graphical model

Based on the stochastic point-queue model and PTS diagram, the overall probabilistic graphical
model (a Bayesian network) is given by Figure 4.1. There are three main parts: 1) Parameters
Θ include the penetration rate and arrival rate. It could also contain other pre-determined and
calibrated parameters such as free-flow speed, jam density, and turning ratios (Appendix B). These
parameters are assumed to be stationary within a certain TOD. 2) Traffic state X including arrivals,
departures, and queue lengths. 3) Observation O comes from the vehicle trajectory data. This
probabilistic model enables us to use different statistical estimation methods to estimate both
unknown traffic states and parameters from sparsely observed vehicle trajectories.
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Arrival rate Signal stateQueue lengthVehicle arrival
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Observed arrival Observed queue

Traffic state 

Figure 4.1: Probabilistic graphical model (Bayesian network) with observed vehicle trajectory and
unknown traffic state & parameters.

4.2.2 Estimation problem decomposition

Based on the probabilistic model given in Figure 4.1, the traffic estimation problem can be
decomposed into two problems: 1) stationary parameter estimation and 2) traffic state estimation.
Traffic parameters are estimated first since they provide prior information for the traffic state.

Let us take maximum likelihood estimation (MLE) as an example. The parameter estimation
can be formulated as:

Θ̂MLE = argmax
Θ

p(O|Θ) = argmax
Θ

∫
p(O,X|Θ)dX . (4.1)

As shown by this equation, the estimation of Θ is also dependent on the latent variable X . This is
why expectation-maximization (EM) algorithm is frequently used in the related literature (Zheng
and Liu, 2017; Zhao et al., 2019a,b). With estimated parameters Θ̂, the hidden traffic state can be
estimated by finding its posterior:

X̂ ∼ p(X|O, Θ̂). (4.2)

These two equations show how we can decompose the estimation problems into two sub-
problems. They are closely related and can also be formulated as a joint problem. Instead of using
MLE, this chapter will first introduce an easier method by using the methods of moments (MM) to
estimate the unknown parameters and stationary traffic state for fixed-time traffic signals. Bayesian
estimation is applied afterward for both traffic state and parameter estimation with uncertainty
quantification.
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4.3 Method of the moments (MM) estimation for fixed-time
traffic signals

4.3.1 Methodology

By assuming that the penetration rate and arrival rate are stationary within a specific TOD, different
frequentist methods can be used to estimate these parameters by aggregating historical data. This
section uses the methods of moments (MM) estimator. The intuition is to find the parameters such
that the observed average delay and the model-estimated delay are equivalent:

E
[
d̂(Θ̂MM)

]
= d̃ (4.3)

where d̂(Θ) is the estimated average delay given input parameter Θ while d̃ is the average control
delay directly measured from the observed trajectories. Throughout the entire dissertation, we
use the superscript tilde (∼) to indicate that this variable is obtained from the observed vehicle
trajectory.

Historical data from multiple cycles is needed for the method of moments (MM) estimator. Let
ã(t) represent the total number of observed arrivals in a cycle (arrival histogram in Figure 4.3) by
aggregating trajectories from Nc cycles. Given the penetration ϕ, the arrival rate of each time in
the cycle can be estimated as:

â(t) =
ã(t)

Nc∆uϕ
, ∀t ∈ {1, . . . , T}. (4.4)

Utilizing this estimated arrival profile as the input, the average delay will be a function of
penetration rate ϕ and can be written as d̂(ϕ). d̂(ϕ) is the model-estimated average control delay
which is calculated according to Section 3.3. Then the penetration rate can be estimated according
to the following equation:

ϕ∗ = argmin
ϕ

[
d̂(ϕ)− d̃

]2
. (4.5)

We also apply this method to estimate the penetration rates of multiple movements in a network
of signalized intersections. For a movement with upstream arrival, the arrival from the upstream
movement is estimated by an affine transformation of the upstream departure through a shift and
scaling down (Appendix A.3). The shift duration is determined by the free-flow travel time and
the relative offset, while the scaling coefficient is the turning ratio which can be directly calculated
from the observed vehicle trajectory data. Since the penetration rates of different movements are
close but different, the following centralized formulation is used to estimate the penetration rates
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of multiple movements in a network (M is the set of movements):

ϕ∗ = argmin
ϕ

∑
i∈M

ñi

[
d̂i(ϕi)− d̃i

]2
+ βV(ϕ) (4.6)

where ϕ is a column vector consisting of penetration rates of all the movements, ñi is the total
number of observed trajectories of movement i, and V(ϕ) is the variance of the penetration rates
weighted by total delay ñid̃i:

V(ϕ) =
1∑

i∈M ñid̃i

∑
i∈M

ñid̃i · (ϕi − ϕ̄)2 (4.7)

where
ϕ̄ =

1∑
i∈M ñid̃i

∑
i∈M

ñid̃i · ϕi. (4.8)

The first term of Equation (4.6) is the summation of the delay difference between the traffic
model and the observed trajectories weighted by the number of vehicles ñi. The second term is a
regularization through the dispersion of penetration rates. β is the coefficient of the regularization
term. A larger β will lead to more densely distributed penetration rates. If β is sufficiently
large, each movement will have the same penetration rate. Based on this centralized formulation,
more congested movements with more delay will have a larger influence on the overall estimation
program and will improve the estimation accuracy of the less congested movements.

A trajectory point of a 
connected vehicle

Trajectory 
Control delay =
Number of stops: 1

(a) TS diagram (b) Aggregated TS diagram

Figure 4.2: Aggregated time-space diagram of the example movement.
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Cycle length

Green light

Penetration rate 

(a) Arrival/departure histograms (b) Scaled histogram

Figure 4.3: Point-queue arrival and departure profiles.

4.3.2 Case studies with real-world trajectories

Figure 4.2-4.5 is an illustration of parameter estimation for a specific movement (i.e., direction
through an intersection). Figure 4.2 (a) shows a short period (3 cycles) of the time-space (TS)
diagram where the observed trajectories are sparse due to the low penetration rate. Since fixed-
time traffic signal states are cyclic and traffic demand is assumed to be stationary within a certain
TOD (also periodic within the same cycle), the stochastic point-queue model of the movement will
converge to a stationary traffic cycle. Correspondingly, as shown in Figure 4.2 (b), trajectories can
be aggregated to one cycle to get the aggregated TS diagram. By assuming that the observable
connected vehicles are randomly distributed among all vehicles, the aggregated TS diagram shows
the average and recurrent traffic state which directly corresponds to the stationary cycle of this
movement. Figure 4.3 (a) shows arrival and departure time histograms of all the trajectories in
Figure 4.2 (b). Note that since vehicle trajectories are aggregated according to their free-flow
arrival times, some vehicles might depart in the following cycle if they fail to pass the intersection
within the cycle in which they arrived.

Given sufficient vehicle trajectory data, the arrival and departure probability profiles can be
estimated by scaling down the histograms (ã(t) and b̃(t) in Figure 4.3 (a)) according to Equation
(4.4). The red and blue bars in Figure 4.3 (b) show the scaled arrival and departure probability
profiles. Using the scaled arrival probability as the cyclic input arrival profile â(t) (red dashed line
in Figure 4.3 (b)), the blue dashed line is the resulting departure probability profile b̂(t) estimated
from the stochastic queueing model. The average delay per vehicle d̂(ϕ) can also be calculated.
Figure 4.4 shows how the model-estimated average delay d̂(ϕ) changes with different penetration
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Sensitivity

Figure 4.4: Penetration rate estimation of an isolated movement.

rates ϕ. Therefore, the optimal penetration rate ϕ∗ can be determined under which the model-
estimated average delay d̂(ϕ) matches the measurement d̃ from the observed trajectories.

(a) Agg. TS diagram (b) Reconstructed PTS diagram

Figure 4.5: Original aggregated TS diagram and reconstructed PTS diagram.

With the estimated penetration rate, Figure 4.5 shows the comparison between the PTS diagram
and the aggregated TS diagram. To evaluate and validate the constructed PTS diagram, both
diagrams in Figure 4.5 are split into small grids given certain spatial and temporal intervals and the
traffic densities of each cell are calculated. The root-mean-square derivation (RMSD) of the traffic
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Derby Rd. 
Mohegan St.

Buckingham
Rd. 

E Maple Rd.

Bowers Rd.

E Lincoln St.

(a) Aggregated TS diagram

Derby Rd.
Mohegan St.

Buckingham
Rd. 

E Maple Rd.

Bowers Rd.

E Lincoln St.

(b) Reconstructed PTS diagram

Figure 4.6: Original aggregated TS diagram and reconstructed PTS diagram (corridor).

densities (unit: veh/100m) quantifies their difference. A similar estimation method can also be
applied to a corridor consisting of multiple movements. Figure 4.6 shows the results of the traffic
state estimation of a corridor (northbound direction as an example, similar plots can be generated
for the southbound). Figure 4.6 (a) is the corridor aggregated TS diagram, which is generated
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by combining the aggregated TS diagrams of all movements along the path. For visualization
purposes, the aggregated TS diagrams for each movement are repeated over several cycles so that
trajectories can traverse the whole corridor. Figure 4.6 (b) shows the corresponding PTS diagram,
which matches the aggregated corridor TS diagram well and demonstrates the effectiveness of the
method for traffic state and parameter estimation.

4.4 Bayesian estimation

4.4.1 Motivation

The previous section introduces a simple and intuitive method to estimate the penetration rate and
arrival rate by matching the control delay between the model-estimated value and the observed
value. Although it is a simple, effective, and practical algorithm, there are some limitations: 1)
it only estimates the stationary traffic state and is more suitable for fixed-time traffic signals; 2) it
cannot quantify the uncertainty of estimated values.

In this section, we will introduce a more formal method using Bayesian estimation that can 1)
estimate both stationary parameters and real-time traffic states; 2) provide the distribution of the
estimated value instead of a single value. Besides, we will see in the discussion (Section 4.6) that
Bayesian models are more flexible and can be easily extended to fit more complex settings and
assumptions.

4.4.2 Hidden Markov model

Based on the proposed stochastic traffic flow model, the overall system with observed vehicle
trajectory data under a certain penetration rate is essentially a hidden Markov model. The dynamics
of the hidden state X(t) have been introduced in Chapter 3. It is easy to verify that, X(t) is a
discrete Markov chain according to the transition given by Equation (3.6) or Equation (3.21-3.22).
This subsection will focus on the observation model.

Figure 4.7 is an illustration of the observation model and the encoding of observed vehicle
trajectory data. There are three observed trajectories that arrive at time t = 3, t = 5, and t = 11.
Therefore, we have the observed arrival Ã(t) = 1 for t = 3, 5, 11 and Ã(t) = 0 for the rest of the
time slots. These three observed trajectories represent different cases:

1. The first trajectory arrives at time 3 is a typical trajectory that stops once before passing the
intersection. Other than the observed arrival Ã(3) = 1, we also have the observed queue
length X̃n

i (3) = 2 since the trajectory stops at location 2. The superscript s indicates that
this is the spatial queue while the subscript i is the index of the cycle.
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Time 1 2 3 4 5 6 7 8 9 10 11 12

Arrival 0 0 1 0 1 0 0 0 0 0 1 0

Queue / / 2 / 4 1 / / / / 0 /

Cycle / / / / / / / /

Space (# of vehicles)

Time1 2 6

1

2

3

4

5

3 4 5 7 8

Unobserved Observed CV

109 11 12

Cycle Cycle 

Observed arrival
Observed queue

Shockwave 

Shockwave 

Figure 4.7: Observation model and encoding of observed vehicle trajectories.

2. The second trajectory (arrives at time 5) is an over-saturated case that stops twice before
passing the intersection. For the first stop, we have the observed queue length X̃n

i (5) = 4.
Besides, we also have the second stop X̃n

i+1(6) = 1. Note that the subscripts are different
since these two stops belong to different cycles.

3. The third trajectory (arrives at time 11) directly passes the intersection without a stop.
Therefore, we have the observed queue length X̃n

i+1(11) = 0.

It turns out the over-saturated case (with the residual queue) is similar to the under-saturation
case but is more complicated and tedious. Therefore, we will only focus on a simple scenario when
there is no over-saturation or residual queue.

Figure 4.7 shows the overall hidden Markov model (without the residual queue) based on the
stochastic traffic flow model and the observation model. The hidden layer consists of the queue
length X(t) and arrival A(t) of all vehicles (both observable and unobservable). The transition of
the hidden state is given by the stochastic traffic flow model introduced in Chapter 3. For each
newly arrived vehicle trajectory, we have probability ϕ (penetration rate) to observe it. Whenever
we observe a new arrival, that is, Ã(t) = 1, we can also observe the corresponding stop location
X̃n(t).

Here we will provide the mathematical formulation of the hidden Markov model. The overall
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Figure 4.8: Hidden Markov model (without the residual queue).

probabilistic model can be written as:

p(O(1 : T ),X (1 : T ),Θ) = p(Θ)p(X (1 : T )|Θ)p(O(1 : T )|X (1 : T ),Θ) (4.9)

where p(Θ) is the prior of the traffic parameters, which can be set as a uniform distribution, i.e.,
p(Θ) = 1, if there is no prior information. The hidden layer p(X (1 : T )|Θ) is the stochastic traffic
flow model which can be decomposed as:

p(X (1 : T )|Θ) = p(X (1))
T∏
t=1

p(X (t+ 1)|X (t),Θ), (4.10)

p(X (t+ 1)|X (t),Θ) = p(A(t+ 1)|α(t+ 1))p(X(t+ 1)|X(t), A(t+ 1), S(t+ 1)). (4.11)

where p(X(t+ 1)|X(t), A(t+ 1), S(t+ 1)) is determined by Equation (3.6-3.7) in Section 3.2.2.
The observation model can be written as:

p(O(1 : T )|X (1 : T ),Θ) =
T∏
t=1

p(O(t)|X (t), ϕ), (4.12)

p(O(t)|X (t), ϕ) = p(Ã(t)|A(t), ϕ)p(X̃n(t)|X(t), Ã(t)). (4.13)

As mentioned before, the observation model can be decomposed into 1) whether a new arrival is
observed p(Ã(t)|A(t), ϕ) and 2) what is the observed queue length p(X̃(t)|Xn(t), Ã(t)).
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The observed arrival p(Ã(t)|A(t), ϕ) is determined by:

p(Ã(t) = 1|A(t) = 1, ϕ) = ϕ (4.14a)

p(Ã(t) = 0|A(t) = 1, ϕ) = 1− ϕ (4.14b)

p(Ã(t) = 0|A(t) = 0, ϕ) = 1 (4.14c)

Equation (4.14a-4.14b) means that we have probability ϕ and 1 − ϕ to observe or miss a new
arrival, respectively. Equation (4.14c) means that we cannot observe an arrival if there is no new
arrival at all. Note that to make sure Equation (4.14) holds, each vehicle trajectory needs to exactly
correspond to one unit traffic flow. This can be easily achieved by choosing a proper time interval
∆t such that ∆u = 1 in Equation (3.1) (refer to the discrete approximation in Section 3.2.1).
Otherwise, one new observed arrival at time t will not be consistent with A(t) = 1.

The observed queue length p(X̃n(t)|X(t), Ã(t)) is determined by:

X̃n(t) =

{
Ψ−1

t (X(t)) Ã(t) = 1

∅ Ã(t) = 0
. (4.15)

which means that whenever we observe a new arrival Ã(t) = 1. We will also see the true queue
length Ψ−1

t (X(t)). As a simplification, we assume no noise or errors in the observed queue length
(Assumption 4.1). Although this assumption might lead to a slight underestimation of the system
uncertainty, it is much less compared with the uncertainty caused by incomplete observation,
especially at a low penetration rate. However, it will undermine the estimation performance when
the penetration rate is high. This assumption can be addressed by applying an additional noise
model. See discussions in Section 4.6.2 for more details.

Assumption 4.1. It is assumed that there are no errors or noise in the observed queue length.

This means that we assume that 1) there is no noise or errors in the collected GNSS coordinates;

2) queue lengths of multiple lanes are equivalent; and 3) jam space headway is a deterministic

constant. These assumptions can be relaxed by using a more accurate noise model; refer to

discussions in Section 4.6.2 for more details.

4.4.3 Filtering and marginal likelihood calculation of the hidden Markov
model

The previous section has provided the complete mathematical formulation of the hidden Markov
model with hidden layer {A(t), X(t)} and the observation layer {Ã(t), X̃n(t)}. Other than the
unknown hidden layer, traffic parameters Θ including the arrival rate and the penetration rate are
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also unknown. Therefore, there are also two estimation problems: 1) traffic parameter estimation
and 2) traffic state (hidden state) estimation. This subsection will briefly introduce the recursive
algorithm that is used by both estimation problems. Readers can refer to Doucet et al. (2009) for
more details on the derivation.

The Bayesian estimation of traffic parameter Θ is to find the posterior distribution:

p(Θ|O(1 : T )) = p(Θ)p(O(1 : T )|Θ) (4.16)

where p(Θ) is the prior and p(O(1 : T )|Θ) is the so-called marginal likelihood function:

p(O(1 : T )|Θ) =

∫
p(O(1 : T ),X (1 : T )|Θ)dX (1 : T ). (4.17)

Traffic state estimation is to find the posterior distribution:

p(X (1 : T )|O(1 : T )) =

∫
p(X (1 : T )|O(1 : T ),Θ)p(Θ|O(1 : T ))dΘ. (4.18)

In practice, instead of finding the posterior according to Equation (4.18), we usually only perform
the following real-time estimation:

p(X (t)|O(1 : t)) =

∫
p(X (t)|O(1 : t),Θ) p(Θ|O(1 : T ))︸ ︷︷ ︸

Eq. (4.16)

dΘ, ∀t. (4.19)

In the literature, Equation (4.18) is called smoothing while Equation (4.19) is called filtering. The
former one finds the posterior of the hidden state at time t based on all available observations from
1 : T while the latter one finds the posterior at time t only based on the current and previous
observations from 1 : t. The filtering problems only require a forward recursive calculation while
the smoothing problems need both forward and backward calculations.

Here we will show how we can calculate Equation (4.17) and Equation (4.19) through a
recursive method:

p(X (t+ 1)|O(1 : t+ 1),Θ) =
p(O(t+ 1)|X (t+ 1),Θ)p(X (t+ 1)|O(1 : t),Θ)

p(O(t+ 1)|O(1 : t),Θ)
(4.20)

where:

p(X (t+ 1)|O(1 : t),Θ) =

∫
p(X (t+ 1)|X (t),Θ)p(X (t)|O(1 : t))dX (t), (4.21)
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p(O(t+ 1)|O(1 : t),Θ) =

∫
p(X (t)|O(1 : t),Θ)p(X (t+ 1)|X (t),Θ)

· p(O(t+ 1)|X (t+ 1),Θ)dX (t : t+ 1).

(4.22)

Equation (4.21) is called the prediction step, which can be derived by moving one time step
further based on the previous estimation p(X (t)|O(1 : t)). Equation (4.20-4.22) is a recursive
process since the input is the previous estimation p(X (t)|O(1 : t)) while the output is the
estimation of the next time p(X (t+ 1)|O(1 : t+ 1)).

Equation (4.22) can also be used to calculate the marginal likelihood function in Equation
(4.17) through the following factorization:

p(O(1 : T )|Θ) = p(O(1)|Θ)
T−1∏
t=1

p(O(t+ 1)|O(1 : t),Θ). (4.23)

In practice, we calculate the log-likelihood function defined below:

L(O(1 : T ),Θ) = log(p(O(1 : T )|Θ)) = log(p(O(1)|Θ))+

T∑
t=1

log(p(O(t+ 1)|O(1 : t),Θ)).
(4.24)

This subsection only provides a high-level mathematical formulation while the next subsection
will introduce the actual detailed algorithms that are used to estimate both unknown traffic
parameters and states.

4.4.4 Estimation algorithms

Algorithm 2 is an implementation of the recursive calculation introduced in the previous
subsection. Given input traffic parameters Θ including arrival rate and penetration rate, Algorithm
2 outputs 1) the real-time estimation results of the hidden traffic state (filtering): p(X (t)|O(1 :

t),Θ); and 2) the overall marginal log-likelihood given the current input parameters: L(O(1 :

T ),Θ) = log(p(O(1 : T )|Θ)). All the following estimation algorithms are based on Algorithm 2.

Remark 4.1. Selection of the initial queue length distribution in Algorithm 2. We can either run

multiple cycles as a warm-up period to get the initial queue length distribution or use the stationary

queue length distribution as described in Section 3.3.

Based on the marginal log-likelihood function calculated through Algorithm 2, as a frequentist
method, the traffic parameter can be estimated through MLE:

Θ̂MLE = argmax
Θ

L(O(1 : T ),Θ), (4.35)
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Algorithm 2: Recursive calculation of the hidden Markov models
Input: Arrival rate a = [a(1), . . . , a(T )] and penetration rate ϕ; observed arrival
[Ã(1), . . . , Ã(T )] and observed queue lengths [X̃n(1), . . . , X̃n(T )] (Figure 4.7); Traffic
signal state S = [S(1), . . . , S(T )]; maximum queue N .

Initiation: Initial queue length distribution x(1, k) at time 0 (Remark 4.1), initial marginal
log-likelihood function L(0) = 0 where L(t) = L(O(1 : t)|Θ).

for t = 1, 2, ..., T do
Given observed arrival Ã(t) ∈ {0, 1}, the estimated arrival probability at time t:

â(t) =

{
1 Ã(t) = 1

a(t) · (1− ϕ) Ã(t) = 0.
(4.25)

Prediction step of the queue length distribution:
for k = 0, 1, ..., N do

x̄′(t, k) = x̂(t− 1, k − 1) · â(t) + x̂(t− 1, k) · (1− â(t)) (4.26)

if S(t) = 1 then
x̄(t, 0) = x̄′(t, 0) + x̄′(t, 1) (4.27)

x̄(t, k) = x̄′(t, k + 1), ∀k = 1, . . . , N − 1 (4.28)

x̄(t, N) = 1−
N−1∑
i=0

x̄(t, i) (4.29)

else
x̄(t, k) = x̄′(t, k),∀k (4.30)

Update the log-likelihood calculation:
if â(t) = 1 then

There is an observed queue X̃n(t), point queue X(t) = Ψt(X
n(t))

L(t) = L(t− 1) + log(a(t) · ϕ) + log(x̄(t,X(t))) (4.31)

else
L(t) = L(t− 1) + log((1− a(t)) + a(t) ∗ (1− ϕ)) (4.32)

Update step of the queue length distribution:
if â(t) = 1 then

x̂(t, k) =

{
1 k = X(t)
0 otherwise.

(4.33)

else
x̂(t, k) = x̄(t, k),∀k (4.34)

Return: Marginal likelihood function L(T ) = L(O(1 : T ),Θ) and estimated queue
length distribution x̂(t, k), ∀t ∈ {1, . . . , T} given parameter Θ.
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which will provide a point estimation of the traffic parameters. However, this point estimation
cannot quantify the uncertainty of the estimated values. Instead of using the frequentist method,
the Bayesian method will be used to get the posterior distribution of the unknown parameters
p(Θ|O(1 : T )) so that we will directly have a distribution of the estimated values.

The Bayesian estimation of the traffic parameters is based on the following Bayes’ theorem:

p(Θ|O(1 : T )) =
p(O(1 : T )|Θ)p(Θ)

p(O(1 : T ))
→ p(Θ|O(1 : T )) ∝ p(O(1 : T )|Θ) · p(Θ) (4.36)

where p(Θ) is the prior of the traffic parameters.
There are different numerical methods to estimate the posterior distribution given by Equation

(4.36). For example, if we assume that the arrival process is a homogeneous Poisson process
with a single parameter, there are only two parameters (arrival rate α and penetration rate ϕ) to
be estimated. In this low-dimension case, grid sampling can be used to approximate the posterior
distribution: with given ranges and resolutions of both parameters, the parameter space can be
split into a mesh grid and the likelihood of each point in the mesh grid can be calculated. Then the
probability of each point can be estimated by normalizing the total probability.

However, grid sampling is a low-efficient algorithm. There are many other more advanced
and efficient sampling methods such as the importance sampling and Markov chain Monte Carlo
(MCMC) (Gelman et al., 2013). Here we will introduce one specific estimation procedure based
on importance sampling. There are four main steps:

1. Finding the maximum a posterior (MAP). The MAP is given by:

Θ̂MAP = argmax
Θ

= p(Θ|O(1 : T )) = argmax
Θ

p(Θ)p(O(1 : T )|Θ) (4.37)

which will have the same results as the MLE when selecting a uniform prior p(Θ) = 1.

2. Applying Laplace’s approximation (see MacKay (2003) for more details). The observed
Fisher information is given by:

J (O(1 : T ), Θ̂MAP) = −∇Θ∇T
ΘL(O(1 : T ),Θ)|Θ̂MAP

(4.38)

Laplace’s approximation will give a Gaussian approximation of the posterior distribution:

Θ̂Laplace ∼ N (Θ̂MAP,J −1(O(1 : T ), Θ̂MAP)) (4.39)

where the covariance matrix of the Gaussian distribution is the inverse of the observed Fisher
information.
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3. Importance sampling of the traffic parameters. Since it turns out that Laplace’s
approximation provides a good approximation of the posterior distribution, we can
use importance sampling with the approximated Gaussian distribution as the proposal
distribution. We will not provide the details of the importance sampling since it is a simple
and standard algorithm (Tokdar and Kass, 2010). The output of the importance sampling
will be a set of sampled points with the corresponding weights: {(Θi, wi),∀i}.

4. Real-time queue length estimation. Based on the results of the importance sampling
{(Θi, wi), ∀i}, the real-time traffic state estimation is determined by:

p(X (t)|O(1 : t)) =
1∑
iwi

∑
i

wi · p(X (t)|O(1 : t),Θi) (4.40)

which is a weighted sum of all the sampled points according to the associated weights.

This procedure is much more efficient since it requires much less calculation of Algorithm
2. In practice, this procedure can be further simplified if an accurate posterior distribution is not
required: Laplace’s approximation in step 2 can be directly used as the Bayesian estimation of the
traffic parameter and the real-time traffic state can be directly derived based on the single MAP
value.

4.5 Simulation studies of Bayesian traffic state estimation

4.5.1 Simulation configuration

We use a simulation environment to test the proposed methods introduced in the previous section.
Figure 4.9 is an illustration of the setup of the testing scenario. There is only one movement with
two lanes; different parameters are included in the figure. It is also assumed that the vehicle arrival
is a Poisson process with a constant arrival rate and the penetration rate is also a constant. The next
two subsections will show the estimation results for traffic parameters and real-time queue length,
respectively.

4.5.2 Parameter estimation

Figure 4.10 shows the log-likelihood function and the corresponding posterior distribution by using
the grid sampling estimation. The arrival rate ranges from 540 vph to 900 vph with an interval of 9
vph (vehicle per hour) while the penetration rate ranges from 5% to 15% with an interval of 0.5%.
Figure 4.10 (b) is the final result of the posterior distribution by using a uniform prior. As shown in
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�SUMO setup
• Single movement
• Number of lanes: 
• Departure lane: random
• Simulation 
• Arrival: uniform
• SPaT: 
• Jam density:
• Total simulation time: 
• Stop bar distance:

�Other parameters
o Stop speed threshold: 
o Reaction time 
o Warm-up period: cycles

250 m

Figure 4.9: Simulation setup for Bayesian traffic state estimation.

(a) Log-likelihood function (b) Posterior distribution

Figure 4.10: Log-likelihood function and posterior distribution.

the figure, the estimated result is given by a distribution instead of a single value. The peak value of
the distribution (the intersection of two black dashed lines) can also be used as a point estimation,
which is essentially the MLE or MAP since a uniform prior is used. The red dot is the ground
truth. Another observation in this figure is that the estimated penetration rate and the penetration
rate are negatively correlated, that is, cov(α, ϕ) < 0. This is because the production of these two
values is approximately the number of observed vehicles, which is a given constant. This means
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that an overestimation of one of these two parameters might lead to the underestimation of another
one.

10 cycles 40 cycles

120 cycles 360 cycles

Figure 4.11: Parameter estimation with different data sizes.

Figure 4.11 shows the estimated posterior distribution by using the same grid sampling methods
but different numbers of cycles’ data. As expected, when the number of cycles increases, the
posterior distribution becomes more concentrated and gradually converges to the ground truth.
Figure 4.12 shows the estimation results for each individual traffic parameter and how it changes
with different sizes of input data. The horizontal axis is the duration of the input data while the
vertical axis is the corresponding traffic parameter. The red dashed line is the ground truth; the blue
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(a) Arrival rate estimation (b) Penetration rate estimation

Figure 4.12: Parameter estimation with uncertainty quantification.

line is the mean value of the posterior distribution while the blue area denotes the 95% confidence
interval.

interval:

(a) Laplace’s approximation (b) Importance sampling

Figure 4.13: Laplace’s approximation and importance sampling.

However, as aforementioned, the grid sampling is low-efficient. The likelihood function
needs to be calculated according to Algorithm 2 for each point in the mesh grid to obtain the
entire heatmap. We propose another procedure based on Laplace’s approximation and importance
sampling in Section 4.4.4. Figure 4.13 shows the results of Laplace’s approximation and the
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importance sampling by using the former one as the proposal distribution. Laplace’s approximation
finds the observed Fisher information, which is the second-order derivative at the peak value of the
log-likelihood given by Figure 4.10 (a). A Gaussian distribution is then used to approximate the
posterior distribution, of which the center is the peak value and the variance is the inverse of the
observed Fisher information.

Laplace’s approximation in Figure 4.13 (a) provides a Gaussian distribution to approximate the
posterior in Figure 4.10 (b). Notice that performing Laplace’s approximation is much more cost-
efficient compared with grid sampling: the former only requires getting the peak value (by using
optimization-based methods) and estimating the second-order derivative nearby while the latter
needs to calculate the likelihood of each grid in the heatmap. Therefore, Laplace’s approximation
provides a much cheaper way to get both the estimated value and reasonable metrics (variance) to
quantify its uncertainty.

Given that Laplace’s approximation provides a fairly good approximation of the posterior
distribution, the importance sampling can be further utilized by using it as the proposal distribution
to obtain a more accurate result. Figure 4.13 (b) shows the result of the importance sampling: each
point is the sampled point and the transparency is the associated importance weight.

One of the major advantages of the Bayesian estimation method is that it can not only provide
the estimated value but also the distribution as well as the associated uncertainty. Figure 4.14
shows the estimation uncertainty of the traffic parameters under different conditions. The relative
standard derivation (RSD) is used to quantify the uncertainty of the estimated value, which is
determined by the standard derivation divided by the mean value (unit: %). For each of the figures,
the horizontal axis is the number of input cycles while the vertical axis is the RSD of the estimated
parameters. Generally, the estimation uncertainty decreases with the increase of the input data.
The left figures show how different parameters influence the arrival rate estimation while the right
figures are about the penetration rate estimation.

Figure 4.14 (a) shows the estimation uncertainty under different arrival rates (traffic volumes).
For both the arrival rate and penetration rate, the estimation uncertainty quantified by RSD
decreases with the increases in traffic volumes. When the traffic volume is larger, more trajectories
can be observed, which leads to a more accurate estimation for both parameters. Figure 4.14
(b) shows the results under different penetration rates. As expected, when the penetration rate
increases, more trajectories can be observed and the resulting posterior distributions are denser
with smaller RSD. Figure 4.14 (c) shows the results under different green splits. When the green
split is smaller, there are more vehicle stops and the estimated arrival rate distribution is denser.
However, the penetration rate estimation seems not influenced a lot by the green split.
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(a) Estimation uncertainty under different arrival rates (traffic volumes)

(b) Estimation uncertainty under different penetration rates

(c) Estimation uncertainty under different green splits

Figure 4.14: Uncertainty of parameter estimation (left: arrival rate estimation, right: penetration
rate estimation.)
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(a) Observed vehicle trajectories

(b) Estimated PTS diagram

(c) Real-time queue length estimation

Figure 4.15: Example of real-time queue length estimation.
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4.5.3 Real-time traffic state estimation

This subsection introduces the results of the real-time traffic state (queue length under Newellian
coordinates) estimation. It is assumed that the penetration rate and arrival rate are known or already
accurately estimated. It is slightly different from the previously introduced method in Section 4.4.4,
which finds:

p(X (t)|O(1 : t)) =
∑
Θ

p(X (t),Θ|O(1 : t)) =
∑
Θ

p(X (t)|Θ,O(1 : t))p(Θ), (4.41)

in Step 4, where p(Θ) represents the distribution of the traffic parameters which is estimated in the
previous subsection. Equation (4.41) requires performing the real-time estimation for every traffic
parameter Θ, which is time-consuming and turns out to be unnecessary. Instead, we calculate
p(X (t)|O(1 : t),Θ), which means that we only calculate the real-time estimation for a single
traffic parameter Θ.

Figure 4.15 is an example of the real-time queue length estimation. Figure 4.15 (a) shows
the time-space diagram including both observed and unobserved trajectories, denoted by orange
and black lines, respectively. Figure 4.15 (b) is the estimated PTS diagram while Figure 4.15 (c)
directly shows the estimated queue length profile. As shown in Figure 4.15 (c), whenever a new
vehicle is observed, the queue length is updated. Since we assume that the observed queue length
is accurate (Assumption 4.1), it is directly set as the observed queue length, and uncertainty is
0. There could be a discontinuous “jump” of the estimated queue length when a new observation
is used to update it. This discontinuity is caused by the filtering algorithm, which only finds the
posterior of the queue length given all previous observations, i.e., p(X(t)|O(1 : t)). This can be
improved if a smoothing algorithm is applied instead.

Figure 4.16 shows the estimation error of the maximum queue in a cycle under different arrival
rates and penetration rates. The maximum queue length in a cycle is used since it is the most useful
and representative metric for real-time traffic signal control. Let Xmax

i and X̂max
i denote the ground

truth and estimated maximum queue of cycle i. Two different metrics are used to evaluate the
maximum queue length estimation: root-mean-square error (RMSE) and mean absolute percentage
error (MAPE), which are calculated according to:

RMSE =

√√√√∑N
i=1

(
Xmax

i − X̂max
i

)2
N

(4.42)

and

MAPE =
1

N

N∑
i=1

∣∣∣∣∣Xmax
i − X̂max

i

Xmax
i

∣∣∣∣∣ . (4.43)
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(a) RMSE (b) MAPE

Figure 4.16: Estimation error of maximum queue length under different penetration rates and
arrival rates.

Each point in Figure 4.16 is generated by using an 8-hour simulation (320 cycles). Both RMSE and
MAPE decrease with the increase in the penetration rate. However, they have different trends with
regard to the arrival rate (traffic volumes): MAPE monotonically decreases with the increase in
the arrival rate while the RMSE does not show the same trend. When the traffic volume becomes
larger, more vehicle trajectories can be observed, which can improve the accuracy of the queue
length estimation. This is why MAPE decreases with the increase in traffic volumes. On the other
side, however, a larger traffic volume will lead to a larger variance in the maximum queue length,
making it harder to be estimated. RMSE is influenced by both factors and hence does not show a
clear trend with the change in traffic volumes.

Although both RMSE and MAPE have a decreasing trend in Figure 4.16, they do not decrease
to 0 when the penetration rate is 100%. Ideally, the estimation error should be completely
eliminated with a 100% penetration rate since all vehicles are observable in this case. This
demonstrates the limitation of the proposed estimation methods based on the proposed stochastic
traffic flow model: they are designed for low-penetration scenarios. Many of the assumptions
introduced before work well under a low penetration rate but become less effective when the
penetration rate gets higher. More discussion is available in Section 4.6.2, which also provides
possible solutions to improve some of the assumptions.

Figure 4.17-4.18 show how the number of observed vehicle trajectories as well as the stop
locations of the observed trajectories influence the estimation performance. Figure 4.17 is the
RMSE with different numbers of observed trajectories in a cycle. The blue line shows the results
by utilizing the accurate traffic parameters (prior) as the input while the orange line uses a biased
prior with a 25% over-estimation of the arrival rate. As expected, with more observed trajectories,
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Figure 4.17: RMSE of maximum queue estimation with different numbers of observed trajectories.

RMSE decreases for both accurate and biased input prior. This decrease is more significant when
the input prior is not accurate. Figure 4.18 shows how the stop locations of the observed trajectories
influence the estimation performance. For all those cycles of which only one trajectory is observed,
RMSE decreases with the increase of the observed queue length. This means that the observed
vehicle trajectory with a large stop distance to the stop bar (a larger observed queue length) contains
more useful information.

Figure 4.18: RMSE of the maximum queue length estimation with different observed queue
lengths (for all those cycles with only one observed trajectory).
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4.6 Summary and discussions

4.6.1 Summary

This chapter focuses on the estimation of both traffic state and parameter based on the previously
introduced stochastic traffic flow model. Two different estimation methods are used. For the
estimation and reconstruction of the traffic state of fixed-time traffic signals, we propose to utilize
the MM estimator to match the average control delay between the model-estimated value and
observation. This is a simple and efficient algorithm that can be easily applied to practice. We also
use the real-world trajectory to validate the proposed method, which demonstrates that, even at a
low penetration rate, the recurrent average traffic state can still be reconstructed by aggregating
more historical data.

Other than the point estimation, the reliability of the estimation is also important. We apply
formal Bayesian techniques to obtain the complete posterior distribution of the estimated values,
which can be directly used to quantify the uncertainties of these values. Both traffic state and
parameter can be estimated within the same recursive estimation program based on a well-
formulated hidden Markov model. Simulated data is used to validate the proposed method. We also
design simulation experiments to study how different factors influence the estimation uncertainties
of different values.

4.6.2 Discussions

To make the main content in this chapter more logical and clean, we made several assumptions and
simplifications to avoid those complicated and tedious considerations. Many of these assumptions
and simplifications work well under a low penetration rate but become less valid when the
penetration rate is high. Firstly, the stochastic traffic flow model and Newellian coordinates
ignore the stochastic driving behaviors, which will play an important role under a high penetration
rate. Secondly, Assumption 4.1 ignores the noise of the observed queue length, which will also
significantly undermine the accuracy of the observation model for multiple-lane scenarios under a
high penetration rate.

The rest of this subsection will briefly discuss how some of these issues could be modeled
more accurately. At last, we will also introduce the hierarchical Bayesian model, which can be
utilized to further facilitate estimation accuracy, especially in the real world with more uncertainty
and randomness.

Multiple-lane scenario To simplify the estimation algorithm, it was assumed that all the queue
lengths are the same for different lanes of the same movement. However, they are usually different
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but similar. Additional assumptions about lane choice need to be made if one wants to get a
more accurate estimation result. Two commonly used assumptions include: 1) drivers of the same
movement will always choose the lane with a shorter queue; 2) drivers randomly choose the lane,
which means that the queue lengths of different lanes are i.i.d.. After introducing either lane
choice assumption, the observation model given by Equation (4.15) can be modified accordingly.
The current observed queue length model is a deterministic model given by Equation (4.15) since
we assume no error and all the queue lengths are homogeneous. It will become a stochastic model
based on the newly introduced lane choice assumption. A simple change to the observation model
given by Equation (4.15) will not change much for both the structure of the probabilistic model and
the estimation algorithms. It will still be a hidden Markov model and the same recursive program
can be used.
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Figure 4.19: Stochastic jam space headway.

Stochastic jam space headway It was also assumed in Assumption 4.1 that the jam space
headway is a constant. This is usually not a major concern but a more accurate model can certainly
be used to consider the stochastic jam space headway. Figure 4.19 is an illustration of how it can
be considered. Let Xn be the queue length in units of the number of vehicles while Xs is the
queue length with actual observed distance in units of meters. The mapping between Xs and Xn is
deterministic if a constant jam space headway is used. However, it will become a stochastic model
if the jam space headway is stochastic. For example, one reasonable assumption is that it follows a
Gaussian distribution with a certain mean and variance. This will also change the observed queue
length model given by Equation (4.15), which can be reformulated according to the illustration in
Figure 4.19.
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(a) Joint (centric) model (b) Separate model (c) Hierarchical model

Figure 4.20: Different structures of probabilistic models.

Hierarchical Bayesian model The Bayesian estimation in this chapter only considers one single
movement with a constant arrival rate and penetration rate. Both parameters are also assumed to
be deterministic and all the uncertainty of the estimation comes from the incomplete observation.
Real-world cases could be much more complicated: the arrival rate changes over time and the
penetration rate might also be different in different locations. In this context, we will briefly
mention how the hierarchical Bayesian model can be used to improve estimation accuracy. Figure
4.20 is an illustration of different structures of the probabilistic models. ϕ is the parameter to
be estimated and Oi is the observation that can be used to infer ϕ. For example, ϕ and Oi

can be regarded as the unknown penetration rate and observed vehicle trajectories, accordingly.
The subscript i denotes the index of movement, which means that we are now dealing with the
estimation for multiple movements. There are three different designs as illustrated by Figure 4.20.
The joint model assumes a uniform penetration rate for different movements, which might ignore
the possible difference at different locations. The separate model assumes each penetration rate
to be different and independent from each other; this could lead to different penetration rates but
we might not get sufficient data for certain movements. A better design might be the hierarchical
model given by Figure 4.20 (c), instead of a joint or a separate model, penetration rates of different
movements are assumed to follow the same distribution parameterized by a hyper-parameter ψ. In
this way, we essentially transfer our knowledge of the penetration rate of different movements to
that movements with few observations can have a more accurate estimation result. This is similar
to the idea in Equation (4.6) but in a more formal method. Other than the penetration rate, we can
apply the same technique to the arrival rate. For example, instead of assuming a constant arrival
rate within the same TOD, we can assume it follows a Gaussian process.

84



CHAPTER 5

Fixed-Time Traffic Signal Optimization and Field
Implementation

5.1 Introduction

5.1.1 Background and related works

Traffic signal control systems can be divided into 1) fixed-time control, 2) vehicle-actuated control,
and 3) adaptive traffic signal control. Limited by the availability of loop detectors, there is still a
large proportion of traffic signals that do not have effective monitoring ability and still use fixed-
time traffic control. Traffic signal timing plans for these intersections only get re-timed every 3−5

years. As a result, these intersections easily get outdated when the traffic demand and conditions
change over time.

To fill the gap, this chapter will focus on the re-timing of these fixed-time traffic signals
utilizing vehicle trajectory data. The calibrated traffic flow model in the previous section can
be directly used for the optimization of the fixed-time traffic signal parameters, which is also the
main advantage of the proposed method compared with most existing studies (Zheng et al., 2018;
Liu and Zheng, 2019; Ma et al., 2020).

5.1.2 Overview of the chapter

In this chapter, we aim to develop effective and practical traffic re-timing strategies for fixed-
time traffic signals based on the calibrated traffic flow model introduced in Chapter 3-4. Instead
of a one-shot optimization, we propose an iterative diagnosis and optimization framework since
the vehicle trajectory can be collected continuously over time. For each re-timing iteration, the
traffic diagnosis module finds the optimality gap with respect to different traffic signal timing
parameters, and the newly suggested signal timing parameters move towards the optimal direction
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for a certain step size. As a result, the signal re-timing process can be regarded as a gradient
descent optimization in the long run.

This chapter also introduces the field implementation in Birmingham, Michigan, including
citywide offline monitoring, diagnosis, and optimization of all 34 signalized intersections using one
month of trajectory vehicle data as the only input. Implementation of the new timing plans resulted
in significant reductions in control delay and the number of stops at both isolated intersections and
corridors. For isolated intersections, changes in green split allocations reduced these measures
by up to 8% and 12%, respectively. A TOD split change reduced the number of stops by 21%.
At corridors, offset adjustments reduced control delay and the number of stops along the entire
corridor by up to 22% and 28% during the morning peak hours.

5.1.3 Contributions and organization of the chapter

The contributions of this chapter are summarized below:

1. We develop an iterative traffic signal diagnosis and optimization method for isolated
intersections based on the calibrated traffic flow model.

2. We propose a pairwise traffic signal coordination diagnosis method to detect the suboptimal
offsets of coordinated intersections. A coordinate-descent program is utilized to generate the
new offsets.

3. A field implementation at the City of Birmingham demonstrated the effectiveness of the
overall traffic signal optimization system.

The remainder of this chapter is organized as follows: Section 5.2 introduces the proposed
diagnosis and optimization algorithms. Section 5.3 introduces case studies of traffic signal
diagnosis using GM data including both a corridor and an isolated intersection. Section 5.4 shows
the result of the field implementation. Section 5.5 is a summary of this chapter.

5.2 Diagnosis & optimization algorithms

5.2.1 Traffic signal timing parameters and optimization

Before going to the details of the traffic signal diagnosis and optimization, this subsection
introduces the traffic signal timing parameters and the formulation of the traffic signal optimization.
Figure 5.1 shows the main parameters of the fixed-time traffic signals, including the TOD plans,
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cycle, splits, and offsets of each TOD. Let s represent the traffic signal parameters:

s =
{
τ = [τ 1, τ 2, . . . , τK−1], {sk = (Ck, gk,ok)}

}
, (5.1)

where τ is the TOD splits and τ k is the boundary between TOD k and k + 1, K is the number
of TODs; sk refers to the signal timing plan of TOD k, including the common cycle Ck, green
splits for each movement gk, and offset for each intersection ok. Then the all-day performance
index (PI) is composed of all TOD intervals:

I(s) =
K∑
k=1

Ik(s) =
K∑
k=1

[
Dk(sk) + αLk(sk)

]
(5.2)

where the PI of each TOD k is a weighted sum (with parameter α) of total estimated delay Dk(·)
and total estimated number of stops Lk(·). Given the calibrated traffic demand, both the total
estimated delay and stops are determined by the traffic signal parameters sk. The traffic signal
optimization problem can be formulated as:

s∗ = argmin
s

I(s) (5.3)

which finds the optimal traffic signal parameters that minimize the overall delay and stops.

5.2.2 General idea of traffic signal diagnosis and optimization

The proposed traffic signal diagnosis module finds optimality gaps with respect to different signal
timing parameters as aforementioned. Since the calibrated traffic flow model explicitly takes traffic
signal parameters as an input, it can be directly used to predict network performance under different
signal parameters by assuming unchanged traffic demand. The optimality gap can then be easily
identified through either gradient-based or line search methods.

Figure 5.2 shows the flowchart of traffic signal diagnosis. The output diagnostic results can be
categorized into different specific issues such as green split imbalances, insufficient cycle length,
etc. These diagnostic results are directly used for generating new signal timing plans which move
a certain step size in the gradient direction. Instead of a one-shot optimization, we propose an
iterative diagnosis and optimization framework: for each re-timing iteration which can be 2 − 3

weeks depending on whenever sufficient data is collected, the traffic flow model is calibrated with
newly collected data and used for the generation of the new signal timing plan. The overall
continuous iterative traffic signal diagnosis and optimization framework can be regarded as a
gradient descent solution algorithm of Equation (5.3).
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Figure 5.1: Traffic signal timing parameters (fixed-time).
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Figure 5.2: Traffic signal diagnosis.

5.2.3 Isolated intersections

For the signal timing parameters of isolated intersections such as cycle lengths and green splits,
gradient-based methods are used since they usually do not require major changes. The sign of the
gradient indicates the direction that could improve the system performance while the magnitude
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of the gradient quantifies the potential benefits. The gradient of the performance of an isolated
intersection can be written as:

∇I(s) =
K−1∑
k=1

∂I(s)

∂τ k
dτ k +

K∑
k=1

[
∂Ik(Sk)

∂gk
dgk +

∂Ik(Sk)

∂Ck
dCk +

∂Ik(Sk)

∂ok
dok

]
(5.4)

Without having the closed analytical form, the partial derivative is estimated by numerical method.
Taking the cycle length Ck of the kth TOD as an example, the partial derivative is given by:

Ik(·)
∂Ck

=
Ik(·, C +∆C)− Ik(·, C)

∆C
(5.5)

Equation (5.5) has a clear physical meaning which quantifies how the system PI changes by
adding unit cycle length. Such gradient information can be used as an indication to the traffic
signal diagnosis. The sign of the gradient indicates the direction that could improve the system
performance while the magnitude of the gradient quantifies the potential benefits. As shown
in Equation (5.4-5.5), the total derivative of the system performance can be decomposed into
different terms with regard to different traffic signal parameters where their gradients are estimated
separately. These gradients with clear physical meanings lead to different well-tagged diagnostic
results including green time imbalances, suboptimal cycle lengths, and inaccurate TOD splits as
shown in Figure 5.2.

Based on the diagnostic results given by these gradients, the traffic signal optimization is
essentially a gradient-descent algorithm in the long run. For each iteration, roughly 2 − 3 weeks,
new data is collected, and new gradients are estimated from the calibrated traffic flow model. The
new signal timing plan will be based on the original timing plan and moves along the derivative
direction for a certain step size. Note that it is not necessary to update all the traffic signal
parameters each time, only those with large gradients. This is a simple yet practical and effective
algorithm, especially for the update of the green split, cycle length, and TOD splits. They do not
require major changes in most cases. The traffic patterns might also change over time and hence
it is probably better to make minor adjustments each iteration while keeping the overall update
process continuously.

5.2.4 Coordinated intersections

We also propose a pair-wise coordination diagnosis method that efficiently detects better
coordination opportunities for coordinated intersections. Figure 5.3 demonstrates some basic
traffic coordination concepts including green band, offsets, and relative offsets. The main objective
of traffic coordination is to optimize the offsets of each intersection such that vehicles stop less
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Figure 5.3: Traffic signal diagnosis.

when they traverse multiple intersections. For pair-wise coordination diagnosis, each pair of
adjacent intersections are extracted as a sub-network. We then conduct a line search on the relative
offset between them to identify potential opportunities for better coordination.

Offsets of intersections do not have much influence on the intersection capacity but could
lead to better coordination among intersections. Therefore, unlike other traffic parameters which
usually do not need to change much, major changes can be applied to the offsets. If we look into a
specific TOD, the offset optimization problem can be formulated as:

∆o∗ = argmin
∆o=[∆o1,...,∆oN−1]

I(∆o1,∆o2, . . . ,∆oN−1) (5.6)

where I(·) is the PI of the calibrated traffic flow model which is determined by the relative offset
vector ∆o = [∆o1, . . . ,∆oN−1]. ∆oj is the relative offset between intersection j and j+1 as shown
in Figure 5.3. Given the relative offsets ∆o, the offset oj of intersection j can be determined as:

oj =

(
j−1∑
i=1

∆oi

)
mod T (5.7)

where T is the common cycle length. The optimization problem given by Equation (5.6) can
be solved by a coordinate-descent algorithm. For each iteration i, relative offsets are optimized

90



sequentially according to:

∆oij = argmin
∆oj

I(∆oi1, . . . ,∆o
i
j−1,∆oj,∆o

i−1
j+1, . . . ,∆o

i−1
N−1), ∀j = {1, 2, . . . , N − 1} (5.8)

which can be solved through a line search program. This iterative program will stop when the
improvement in the last iteration is less than a certain threshold.

This proposed offset optimization program outperforms traditional green-band-based method
(Little et al., 1981; Gartner et al., 1991; Yan et al., 2019) in two aspects: 1) it explicitly considers the
vehicle distribution through the stochastic traffic flow model calibrated from vehicle trajectories;
2) it directly takes the total delay and number of stops as the objective function instead of the green
band which does not always indicate good coordination.

5.3 Case studies of traffic signal diagnosis

5.3.1 Isolated intersection diagnosis

For isolated intersections, we can diagnose three specific issues in the existing signal timing plan:
green split imbalances, suboptimal cycle lengths, and inefficient TOD splits. Each issue is analyzed
individually while keeping the other parameters constant. For instance, the impacts of different
green split allocations are explored while keeping the cycle length constant.

Figure 5.4: Case study of traffic signal diagnosis for isolated intersections.

We use a PI that calculates the sum of the total delay and the weighted number of stops (1 stop
= 10 seconds), as this is what is commonly used in signal optimization software such as Synchro,
TRANSYT, VISSIM, and Vistro. The PI is hence measured in “equivalent seconds” or “equivalent
hours”. With this PI, the partial derivative of a parameter is calculated by evaluating the change in
the PI after an increase in the respective parameter.
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An example intersection diagnostic is demonstrated in Figure 5.4. This isolated intersection
utilizes a two-phase signal operation, where the major phase controls the major street, and the
minor phase controls the minor street. The diagnosis uses aggregated data from 3 work weeks
(M-F from March 7th - 25th, 2022).

Current Split

Minimum Split

1 stop = 10 seconds

Current 
Cycle

Minimum Cycle

1 stop = 10 seconds

(a) Green split diagnosis (b) Cycle length diagnosis

Figure 5.5: Green split and cycle length diagnosis.

Figure 5.5 (a) is an illustration of the green split diagnosis of the morning peak hours. Orange
and blue bars represent predicted number of stops and control delay under different green split.
The green line indicates the current split, and the dashed red line represents the minimum minor
phase green split (24 seconds) calculated from the pedestrian crossing time. Overall, the negative
gradient indicates that increasing the major green split (see the black arrow in the figure) by one
second will decrease the hourly PI cost by 0.27 equivalent hours. In this case, the current signal
timing plan would be diagnosed with a green split imbalance and can be adjusted by increasing
time for the major green split.

The cycle length during the morning peak hours can be evaluated in a similar way. Figure
5.5 (b) illustrates how the hourly PI cost changes at different cycle lengths. The red dashed line
indicates the minimum allowable cycle length at the current green split ratio (from the minimum
green split). The traffic flow model predicts that reducing the cycle length by one second will
reduce the hourly PI costs by 0.10 equivalent hours. Therefore, we can identify the current signal
timing plan as having an inefficient cycle length and can be adjusted in the retiming.

5.3.2 Pairwise coordination diagnosis

Figure 5.6 is an illustration of the pairwise traffic signal coordination diagnosis, which can
be applied to detect better coordination opportunities. Each pair of adjacent intersections are
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Figure 5.6: Pair-wise traffic signal coordination diagnosis.

extracted as a sub-network and an additional relative offset is added to compare with the existing
performance. Taking the first two intersections as an example, Figure 5.6 shows the predicted total
delay and the number of stops under different additional offsets. According to these curves, by
adding an additional 36-second relative offset, the total delay and number of stops of these two
intersections would decrease by about 11% and 25%, respectively.

5.4 Field implementation

5.4.1 Overview of the test bed

The proposed system was tested in the city of Birmingham, Michigan, United States as shown in
Figure 5.7. Birmingham has a total of 34 signalized intersections including three main corridors
and some other isolated intersections. More than three quarters of these intersections had not
been retimed in more than 2 years. One-month offline data was used for performance evaluation,
diagnosis, and optimization. Two isolated intersections were detected with cycle/split issues and
two of the three corridors were identified with coordination improvement opportunities. New
signal timing plans of these intersections were also generated and implemented in late March
2022. Three weeks’ data both before and after the implementation was used to evaluate the new
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Figure 5.7: Signalized intersections in the City of Birmingham

signal timing plans.

5.4.2 Corridor coordination optimization

For both corridors including Adams Rd. and Old Woodward Ave., offsets of three different TOD
intervals were changed including the morning peak hours (AM, 07:00-10:00), mid-day (MD,
10:00-15:00), and the evening peak hours (PM, 15:00-19:00). Table 5.1 and 5.2 shows the original
offsets, new offsets, and the relative changes. New offsets of each TOD were generated from the
offset diagnosis and optimization program introduced before.

Table 5.1: Adams Rd. offset adjustment

Side street Time of day Original offset New offset Change (s)

Buckingham Ave.
7:00 - 10:00 (AM) 40 20 -20

10:00 - 15:00 (MD) 40 20 -20
15:00 - 19:00 (PM) 40 30 -10

Bowers St.
7:00 - 10:00 (AM) 35 13 -22

10:00 - 15:00 (MD) 35 13 -22
15:00 - 19:00 (PM) 25 23 -2

Derby Rd.

7:00 - 10:00 (AM) 89 20 -69
10:00 - 15:00 (MD) 89 21 -68
15:00 - 15:15 (PMa) 89 31 -58
15:15 - 15:40 (PMb) 89 31 -58
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Table 5.2: Old Woodward Ave. offset adjustment

Side street Time of day Original offset New offset Change (s)

Merrill St.
7:00 - 10:00 (AM) 69 14 -55
10:00 - 15:00 (MD) 52 22 -30
15:00 - 19:00 (PM) 53 22 -31

Willits St. 7:00 - 10:00 (AM) 58 32 -26
15:00 - 19:00 (PM) 77 39 -38

Brown St.
7:00 - 10:00 (AM) 39 22 -17
10:00 - 15:00 (MD) 10 30 20
15:00 - 19:00 (PM) 15 30 15

Oakland Ave. 7:00 - 10:00 (AM) 69 50 -19

Different metrics such as the average control delay and number of stops were used to evaluate
the performance of these two corridors. The average control delay and average number of stops
of the corridor are calculated by the total control delay and number of stops divided by the
total number of “traversed trajectories”; which is counted by one vehicle passing one signalized
intersection. The space-mean speed of the corridor is calculated as the total travel distance along
the through movements divided by the total travel distance. All these three metrics are used to
evaluate the travel efficiency of the corridor. The average number of stops is also closely related
to energy consumption and emissions; since it would take more energy consumption as well as
emissions for a vehicle to come to a complete stop and then accelerate back to normal speed.
Since only the offsets were changed and the green splits stayed the same, side street traffic is not
influenced and hence it is not included in the performance evaluation.

Table 5.3 shows the comparison of these three metrics before and after the offset optimization.
For overall three optimized TODs from 07:00 to 19:00, the average control delay of Adams Rd.
was decreased by around 12% while the average number of stops was decreased by over 18%. All
three TODs performed better than before for both the average control delay and average number
of stops. Less improvements were observed in the Old Woodward Ave. through all three TODs;
however, certain TODs have much better performance: the average delay was decreased by over
15% during the morning peak hours (AM) while the average number of stops was decreased by
over 10% during the evening peak hours. Some TOD intervals such as the mid-day period of the
Old Woodward Ave. did not improve much since the original offsets worked well and there was
not a large optimality gap.

Figure 5.8 shows more details on how the new offsets led to better traffic signal coordination
along the corridors. Figure 5.8 (a-b) shows the aggregated time-space diagram of the Adams Rd.
before and after the offset optimization. All the figures are generated using three consecutive
weeks’ data collected at the mid-day (10:00-17:00) during the weekdays. As shown in the figure,
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the average delay and number of stops of the northbound through traffic were decreased by around
20% and 40%; the southbound also outperformed the previous with a slight decrease of 4% for
both the average delay and number of stops.

M

N

Southbound

K

Northbound

(a) Before optimization

M
’

N
’

Southbound

Average stops: −4.1%
Average delay: −4.5%

K
’

Average stops: −42.4%
Average delay: −18.7%

Northbound

(b) After optimization

Figure 5.8: Aggregated time-space diagram before and after offset optimization.

Rectangular areas M, N, K in Figure 5.8 (a) and the associated areas M’, N’, K’ in Figure 5.8
(b) illustrate where the coordination became better. Before the offset optimization, trajectories
that departed from the upstream queue in rectangular areas M, N, and K arrived at downstream
intersections during the red time and most of them stopped at least once before passing the
downstream intersections. On the contrary, most of these trajectories from the upstream queue
directly passed the downstream intersections without any stops as shown in M’, N’, and K’.
By explicitly considering the trajectory arrival and departure distributions within each cycle, the
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(a) Quarton Rd. & Cranbrook Rd.

(b) Lincoln Rd. & Pierce St.

Figure 5.9: TOD change of isolated intersections.

proposed offset optimization program will assign more green bands to the green time with more
trajectories passing by. As shown by the rectangular area W in Figure 5.8 (b), although there was
also a clear wide green band from the upstream to the downstream before the offset optimization;
few trajectories traveled within the green band. This coordination failure can be easily identified
by the proposed method.

5.4.3 Isolated intersections

New signal timing plans were implemented at two intersections. The TOD boundary changes and
their respective cycle lengths are shown in Figure 5.9. All the parameter changes are reported in
Table 5.5 and Table 5.6. The results for selected analysis periods are reported in Table 5.4. At
Quarton Rd. & Cranbrook Rd, a 4 second increase in the major split resulted in a 9.13% decrease
in the PI during the AM TOD. The intersection also benefited from changing the PM TOD start
time from 3:00 PM to 2:00 PM (results shown by the PM* analysis period). The increased cycle
length during this hour resulted in a 21.45% reduction in the number of stops. The EVE TOD also
experienced reductions in delay and the number of stops.

Lincoln Rd. & Pierce St. also experienced improvements in the PI for certain analysis periods.
The boundary start change for the PM TOD resulted in a 9.83% reduction in the PI. However, a
close look at Table 1a shows that the only parameters that changed during this time period were
the green splits. The large improvement for this specific hour may indicate that new TODs may
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need to be formed as this hour improved much more compared to the MD and PM TODs that
experienced the same change.

Table 5.5: Quarton Rd. & Cranbrook Rd. Parameter Changes

TOD
Original
Cycle

New
Cycle

Original
Major Split

New Major
Split

Original
Minor Cycle

New Minor
Split

MN 80 80 54 56 26 24
AM 120 120 90 94 30 26
MD 80 80 54 56 26 24
PM 120 120 90 94 30 26
EVE 80 80 54 56 26 24

Table 5.6: Lincoln Rd. & Pierce St. Parameter Changes

TOD
Original
Cycle

New
Cycle

Original
Major Split

New Major
Split

Original
Minor Cycle

New Minor
Split

MN 80 60 55 38 25 22
AM 80 80 55 55 25 25
MD 80 80 55 58 25 22
PM 80 80 55 58 25 22
EVE 80 60 55 58 25 22

5.5 Summary and discussions

5.5.1 Summary

This chapter introduces the iterative traffic signal diagnosis and optimization framework that
is used for the traffic signal re-timing of fixed-time traffic signals. We also demonstrate the
effectiveness of the whole signal re-timing system through a field test. The field test was conducted
in Birmingham, Michigan included monitoring, diagnoses, and optimization of 34 coordinated and
isolated signalized intersections. The system was able to diagnose specific congestion of causes
at these intersections such as green split imbalances, offset issues, inefficient cycle lengths, and
suboptimal TOD boundaries. The new signal timing plans are based on the existing signal timing
plan while moving a certain step toward the direction guided by the diagnostic results. These
new plans resulted in decreases in both the delay and number of stops by up to 20% and 30%,
respectively. The field test shows the potential of the proposed system to improve signal timing
plans from only vehicle trajectory data.
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5.5.2 Discussions

Here we briefly discuss some issues that need to be further improved or explored in the future for
the re-timing of fixed-time traffic signals.

Practical considerations and corner cases There are many detailed practical considerations and
corner cases which are not fully covered by the proposed methods. For example, pick-up and drop-
off zones, bus stations, street parking, and side street traffic would require further consideration for
the traffic signal re-timing. Besides, some intersections that have weird geometry also need a
customized design of the signal timing plan.

Traffic signal optimization considering vehicle re-routing The current method assumes the
traffic demand does not change with a different input traffic signal timing. This is not true in
many cases since drivers might adjust their routes in reaction to the change in traffic signal timing.
Although this is well aware by researchers, few of them consider it for traffic signal optimization,
which will lead to a bi-level formulation that is hard to solve. The influence of vehicle re-routing is
dependent on the network topology as well as the pattern of the OD demand. For example, it can
be ignored if we only look into one corridor but might play an important role in a more complicated
network with many alternative routes for a single OD. Considering route choice for traffic signal
optimization is not an easy problem. It not only needs an efficient algorithm to solve the bi-level
formulation but also requires a new network model with OD demand instead of simple link flow.

Geometry optimization Geometry design of an intersection is also important in intersection
management, which includes lane assignment, storage lane design, etc. This is another interesting
problem that can be investigated using vehicle trajectory data.

100



CHAPTER 6

Real-Time Traffic Signal Control

6.1 Introduction

6.1.1 Background and related works

The previous chapter focuses on the re-timing of fixed-time traffic signals. However, the fixed-time
control cannot react to time-varying traffic conditions. By taking the real-time traffic state as the
input, a real-time traffic signal control could outperform a fixed signal timing plan by dynamically
adapting to new traffic conditions. Therefore, this chapter focuses on the development of a real-
time signal controller with vehicle trajectory data.

Many existing works have explored traffic signal control with vehicle trajectory data. Li
and Ban (2018) utilized the trajectory of each vehicle to minimize both travel time and energy
consumption, however, a 100% penetration rate is assumed which is not available currently. Feng
et al. (2015) developed an adaptive traffic signal control system with trajectory data, the traffic
state is estimated by identifying the boundary between the free-flow region, slow-down region,
and queueing region. A large penetration rate of no less than 25% is also required. Although
different methods have been proposed for traffic signal control with vehicle trajectory data (Lee
et al., 2013; Liang et al., 2020; Yao et al., 2020), the real bottleneck under the current market
penetration rate (≤ 10%) is to get an accurate estimation of the overall traffic state with limited
observations. Most existing works are limited by the lack of a suitable stochastic traffic flow model
and a reliable real-time traffic state estimation method.

6.1.2 Overview of the chapter

Leveraging the real-time traffic state estimation method proposed in Chapter 4, this chapter aims at
developing a real-time traffic signal controller with vehicle trajectory data. Following the logic of
the vehicle-actuated control with loop detectors, we propose a simple rule-based Queue Clearance
Control (QCC). By taking the real-time estimated queue length in Chapter 4 as the input, QCC

101



terminates the currently active phase and switches to the following phase whenever the queue
length is cleared with a certain confidence level.

A simulation with an isolated intersection is built to test the proposed QCC. Both the fixed-
time control and vehicle-actuated control are used to compare with the proposed controller. We
also study how the different parameters and lag time will influence the controller’s performance.

6.1.3 Contributions and organization of the chapter

The contributions of this chapter are summarized below:

1. A rule-based QCC is proposed to utilize the vehicle trajectory data for real-time traffic signal
control.

2. A simulation environment with an isolated intersection is used to demonstrate the
effectiveness of the proposed controller. Different insights are provided in terms of the
parameter selection and how the lag time could influence the controller’s performance.

This chapter is organized as follows: Section 6.2 introduces the rule-based QCC and Section
6.3 shows the simulation results. Section 6.4 includes both a summary and some discussions of
this chapter.

6.2 Rule-based queue clearance control (QCC)

6.2.1 Control logic

This section will focus on the design of a rule-based real-time traffic signal controller with
vehicle trajectory data. Without solving any complicated optimization program, rule-based control
methods are usually more robust and easier to be implemented in the real world. If designed
properly, a rule-based controller might have comparable or even better performance with optimal
control methods.

For the current practice, vehicle-actuated control is one of the most commonly used real-time
control methods with installed loop detectors. Figure 6.1 (a) is an illustration of the vehicle-
actuated control (Urbanik et al., 2015). The key of the actuated control is the mechanism to
terminate the currently active phase, including gap out and max out. The gap out means that
the current phase will be terminated if the headway between two vehicles is larger than a certain
threshold called minimum gap. The max out refers to the termination of a phase whenever it
reaches the maximum green time (or maximum extension). With these two phase-termination
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Minimum green

Maximum green

Vehicle detected of 
conflicting movement

Detector actuation of 
the active phase

Unit extension

(a) Vehicle-actuated control

Queue length

Time ( )

Observed vehicle 
trajectories

Minimum 
green

Maximum green

Terminate the green time if

(b) Queue clearance control (QCC)

Figure 6.1: Vehicle-actuated control and the proposed QCC.

mechanisms, the vehicle-actuated control operates in the currently active phase as long as vehicles
keep going through until it reaches the maximum green time.

Inspired by the vehicle-actuated control, we design a rule-based controller called QCC
illustrated by Figure 6.1 (b). Chapter 4 has introduced the real-time estimation method which
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can be used to estimate the real-time queue length with observed vehicle trajectories. The
proposed QCC directly uses this estimated queue length as the input. As shown in Figure 6.1
(b), the estimated queue length distribution will be more dense whenever a vehicle trajectory is
observed, denoted by the pink dashed line. Like the vehicle-actuated control, QCC also has the
minimum/maximum green time and very similar mechanisms to determine the phase switching.
For the traffic signal control system with sparsely observed vehicle trajectory data, the headway
between vehicles cannot be directly measured like detector data but the estimated queue length
distribution is available. Therefore, instead of using the gap out like vehicle-acuated control, QCC
terminates the current phase whenever the queue is cleared. Since the queue length estimation
result also has the distribution information, the following condition is used to determine whether
the queue is cleared:

P(X̂i(t) ≥ 1) ≤ pc (6.1)

where pc is the pre-determined confidence level. For example, a pc of 85% means that we choose
to terminate the current phase if we are 85% sure that the queue of this phase has been fully
discharged.

The max out remains the same for QCC. As a result, QCC has a similar control logic with the
vehicle-actuated control. It has three parameters for each phase: minimum green, maximum green,
and the confidence level pc that the queue is fully discharged.

Although QCC has a similar intuition with the vehicle-actuated control, they have several
differences. The major difference is the “gap out” mechanism. With installed detectors at the
stop bar that can detect every vehicle passing through, the vehicle-actuated control determines
whether to maintain the current phase through the time headway between two adjacent vehicles.
On the contrary, the proposed QCC determines the phase time according to the queue length
distribution, which can be estimated by combining the prior arrival rate and sparsely observed
vehicle trajectories (Chapter 4). Theoretically, the vehicle-actuated control will lead to a larger
green time for each phase compared with QCC, since it will not terminate the active phase
immediately when the queue is cleared but until the time headway is less than the minimum gap.

6.2.2 QCC with lag time

In practice, a timely real-time estimation of the queue length is not always available due to the
existence of lag time. Figure 6.2 shows how the real-time queue length distribution can be
estimated with a lag time tl. Assuming the current time is t, the lag time tl is the temporal difference
between the current time t and the time when the most recent estimation is available. This latency
could come from a variety of origins including the trajectory data collection delay, data processing
time, and the time cost by the estimation algorithms, etc. The trajectory data collection alone
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might be up to minutes due to the communication delay. Not all connected vehicle trajectories are
directly collected by RSUs, some data might go through a long routing process before it is readily
used.

Queue length

Time ( )

Current time 𝑡Most recent 
estimation

Lag time 𝑡𝑙

Observed vehicle 
trajectories

𝑝(𝑋(𝑡− 𝑡𝑙)|𝒪(:𝑡− 𝑡𝑙))

𝑝(𝑋(𝑡)|𝒪(:𝑡− 𝑡𝑙))

Figure 6.2: Estimated queue length distribution with the lag time.

Due to the latency tl, at each time t, only the observation earlier than t − tl can be utilized,
which is denoted by O(: t − tl). As shown in Figure 6.2, the most recent estimation X̂(t − tl)

is given by the posterior distribution p(X̂(t − tl)|O(: t − tl)). To get queue length X(t) at time
t, the best approach is to perform the prediction with the traffic flow model based on the most
estimated queue length X̂(t − tl). In this way, the estimated queue length X̂(t) is determined by
the posterior p(X(t)|O(: t− tl)), of which only the observation earlier than t− tl is used. Without
the observation between time t− tl and t, the queue length estimation will be certainly undermined
and has a larger uncertainty.

6.3 Simulation studies

6.3.1 Simulation setup

Figure 6.3 shows the setup of the simulation environment (based on SUMO) that is used to test the
proposed real-time traffic controller. The simulation environment has an isolated intersection with
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four approaches and 8 movements. Each movement has a single lane with the same length 250 m.
All left-turn movements are protected with a dedicated left-turn lane.

250 m

250 m

Phase 1

Phase 2

Phase 3

Phase 8

Phase 6

Phase 5

Phase 4Phase 7

Phase 
5

Phase 
6

Phase 
7

Phase 
8

Phase 
1

Phase 
2

Phase 
3

Phase 
4

• 4-leg intersection with 8 phases
• Each phase has a lane with same lane length 250 m

Figure 6.3: Simulation setup for real-time traffic signal control.

Table 6.1 shows the traffic volumes of all movements (phases). All movements have a Poisson
arrival process with a uniform arrival rate. There are two different demand levels: peak hours with
a v/c (volume to capacity) ratio of 0.8 and off-peak hours with a v/c ratio of 0.6.

v/c ratio Traffic volumes (vph)
Phase 1 & 5 Phase 2 & 6 Phase 3 & 7 Phase 4 & 8

Peak 0.8 216 540 288 396
Off-peak 0.6 144 432 216 288

Table 6.1: Traffic volume configuration for the simulation environment.

Table 6.2 reports all the traffic signal parameters that are used by different traffic controllers.
Both fixed-time and actuated control are used as benchmark controllers. For the fixed-time traffic
signal timing plan, the cycle length is determined by Webster’s equation while the green time of
each movement is proportional to the corresponding traffic volumes. For the actuated control, the
maximum green is obtained by scaling up the green time of the fixed-time plan while the minimum
green time is set as 5 s for each phase. Maximum and minimum green times are used by both the
proposed QCC and vehicle-acuated control.

Two different metrics are used to evaluate each traffic signal control method: 1) average
control delay and 2) split failure ratio. The average control delay quantifies the overall average
performance of the intersection and is used to determine the LOS (Manual, 2010). Split failure
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Phase index 1 & 5 2 & 6 3 & 7 4 & 8 Total (cycle)
Peak

Green time (fixed-time) 14 31 17 23 85
Maximum green 16 41 21 29 107
Minimum green 5 5 5 5 -

Off-peak
Green time (fixed-time) 7 21 10 14 52

Maximum green 10 30 15 20 75
Minimum green 5 5 5 5 -

Table 6.2: Fixed-time parameters and max/min green of each phase.

occurs when a vehicle is unable to clear the intersection within the cycle it arrives at, resulting
in a delay that exceeds the duration of a single cycle. Therefore, split failures are often a cause
of driver dissatisfaction and draw additional attention from traffic engineers. While the average
control delay provides a measurement of the average system performance, the split failure can be
regarded as a measurement of the worst-case performance.

6.3.2 Main results

Figure 6.4 shows the average delay and split failure ratio of QCC with different pc values under
different penetration rates (using peak-hour traffic volumes in Table 6.1). Both fixed-time and
actuated control are also labeled in the figure. Each controller is evaluated by a 5-hour simulation
test. As shown in Figure 6.4 (a), for each QCC controller, the average control delay decreases
with the increase of the penetration rate. When the penetration rate goes higher, the benefits
become marginal. There are two potential reasons: 1) the proposed estimation methods fit the
low penetration rate case better; it is not designed for the high penetration rate case (see discussion
in Section 4.6.2); 2) the improvement brought by an accurate traffic state estimation is marginal.
Due to the first reason particularly, we only show the results when the penetration rate is less than
50%.

Another observation from Figure 6.4 (a) is that the average control delay monotonically
increases with the increase of the pc value. That is, the controller performs worse with a large
required clearance confidence pc. This is because a large pc will lead to an overly conservative
control strategy: the green time is larger than usually what is needed for each phase. Although
we might expect that a large pc will have better split-failure performance on the other side, this
is not always consistent with the results given by Figure 6.4 (b): pc = 0.6 is always better than
pc = 0.5 but increasing pc to 0.7 and 0.8 makes it even worse. This might be because when pc
gets higher, the average performance is too bad according to Figure 6.4 (a), which also limits the
worst-case performance of the system given by Figure 6.4 (b). When pc is not too large (less than
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(a) Avg. stop delay (b) Split failure ratio

Figure 6.4: Avg. stop delay and split failure ratio of QCC control (peak hours).

0.7), we can still observe the trade-off between the average and worst-case performance of the
system, quantified by average control delay and split failure ratio, respectively.

Nevertheless, Figure 6.4 clearly demonstrates the effectiveness of the proposed QCC method.
When selecting pc as 0.5, the average delay as shown by the blue line in Figure 6.4 (a) outperforms
both fixed-time (black dashed line) and actuated control (red dashed line) when the penetration
rate is larger than 8%. When the penetration rate is 15%, particularly, the QCC with pc = 0.5

has approximately 20% and 10% less delay, compared with the fixed-time and actuated control,
respectively. For the split failure ratio as shown in Figure 6.4 (b), all QCC controllers with different
pc values perform between the fixed-time and actuated control.

However, this result does not intend to show that the proposed QCC with vehicle trajectory data
outperforms the vehicle-actuated control with detector data. QCC and vehicle-actuated control use
similar control strategies. Vehicle-actuated control should have better performance since detectors
can provide complete traffic information while vehicle trajectory data with a low penetration rate
cannot. The current vehicle-actuated control has a split-failure ratio less than 4%, which is less
than all QCC controllers as shown in Figure 6.4 (a), indicating that it is more conservative. This is
the reason why vehicle-actuated control performs worse than the QCC with pc = 0.5 in Figure 6.4
(a) when the penetration rate is larger than only 8%.

Figure 6.5 shows the statistics of the resulting cycle length and green split (Phase 2) of
different traffic signal controllers, which also verifies some of the previous explanations. Figure
6.5 (a) shows the mean of the cycle lengths. For QCC, the cycle length monotonically decreases
with the increase of the penetration rate. As illustrated by Figure 6.6, this is because when the
penetration rate gets higher, the estimated (posterior) distribution of the queue length becomes
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(a) Mean of cycle length (b) Std of cycle length

(c) Mean of green split (d) Std of green split

Figure 6.5: Resulting statistics of cycle length and green split (Phase 2) of QCC control (peak
hours).

more concentrated with more observed vehicle trajectories. Consequently, less green time is
needed for each movement to ensure the same queue clearance probability (pc value). This might
be the same reason that the green split of Phase 2 monotonically decreases as shown in Figure 6.5
(c). Phase 2 has a larger traffic volume and thereby more vehicle trajectories, which means that it
might need less green time compared with other phases.

We can also see based on Figure 6.5 (a), even with the same min/max green time, the vehicle-
actuated control has a larger cycle length compared with QCC since it will not terminate the current
phase immediately when the queue is cleared. It will keep the current phase unchanged as long as
the time headway is less than the minimum gap until the maximum green time is reached.

Figure 6.5 (b) and (d) show the standard derivation (std) of cycle length and green split. Both
parameters increase with a larger penetration rate. This is because when the penetration rate goes
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Figure 6.6: Change of the queue length percentile under different penetration rates.

higher, more observation is available and enables a more responsive control.

6.3.3 More insights

This subsection will show more results that can provide us with more insights. Figure 6.7 shows
the system performance of different traffic controllers under the off-peak demand given by Table
6.1. In this light traffic scenario, a larger queue clearance confidence interval pc can be used.
Unlike the previous results under heavy traffic (Figure 6.4) in which the average system performs
significantly worse with a larger pc, QCC under light traffic performs well until pc = 0.70. As
shown in 6.7 (b), the split failure ratio now monotonically decreases with the increase of pc value.
Based on this observation, a less pc value should be used for a larger traffic demand level. Besides,
much less improvement is observed under light traffic compared with the previous heavy traffic
scenario. This is simply because much fewer trajectories can be observed when the traffic volume
is low, which is consistent with the sensitivity analysis of the traffic state estimation in Section
4.5.3.

Figure 6.8 shows how the time lag tl influences the performance of QCC (peak hours, pc = 0.5

as an example). As shown in Figure 6.8 (a), the QCC performs worse with an increase of the
average stop delay when the lag time tl increases. When tl = 120 s, which is larger than one
cycle, the QCC behaves like a fixed-time control. With a lag time of 30 − 60 seconds, QCC at
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(a) Avg. stop delay (b) Split failure ratio

Figure 6.7: Avg. stop delay and split failure ratio of QCC control (off-peak hours).

a penetration rate of 15% can only have similar performance with QCC without latency at a 5%

penetration rate. A large lag tl means that the most recently available observed vehicle trajectory
and the resulting estimated queue length become outdated, making it less useful for real-time traffic
signal control.

(a) Avg. stop delay (b) Split failure ratio

Figure 6.8: Influence of the lag time tl (pc = 0.5, peak hours).
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6.4 Summary and discussions

6.4.1 Summary

This chapter proposes a rule-based real-time traffic signal control strategy called QCC. Inspired
by the vehicle-acuated control, QCC switches the phase whenever the estimated queue length
is cleared with a certain confidence interval pc, subjecting to the min/max green constraint. A
simulation environment with an isolated intersection is built to test the proposed QCC and compare
it with both fixed-time and vehicle-actuated control. Different traffic conditions and parameters are
tested for QCC, including light/heavy traffic, queue clearance confidence interval pc, and the time
lag tl.

Unlike the recurrent traffic state that can still be accurately estimated even at a low penetration
rate by aggregating sufficient historical data, real-time traffic state estimation faces inherent
fundamental limits caused by sparse and incomplete observation, which will also hinder the
performance of real-time traffic signal control. The latency of data collection also has a significant
influence on the controller’s performance.

Nevertheless, this chapter demonstrates the benefits of utilizing vehicle trajectory data for real-
time traffic signal control, particularly for those intersections with large traffic volumes.

6.4.2 Discussions

The proposed QCC in this chapter directly takes the real-time estimated queue length under the
Newellian coordinates as the input. Figure 6.9 illustrates one potential limitation of such a method.
Recap that the Newellian coordinates system uses a different time t. Instead of using the actual
time t′, it uses the free-flow arrival time t′, and their mapping is given by Equation (3.3) in Chapter
3. As shown in Figure 6.9, the black dashed line shows the normal time t′ while the pink line
shows the Newellian time t. The real-time queue length estimation methods introduced in Chapter
4 find the posterior of the current traffic state given all previous observations under the Newellian
coordinates, i.e., p(X(t)|O(1 : t)). This posterior distribution is used as the input for QCC in
this chapter. The observable region under Newellian coordinates from the initial time to time t is
labeled by the green color in the figure. However, at time t′, the overall observable region is given
by the red region (O′(1 : t′)). Their difference is the blue triangle denoted by Õ.

By taking the real-time estimated queue length under the Newellian coordinates as the input,
the proposed QCC only utilizes the observation within the green region. If there are any connected
vehicle trajectories in the blue region, they will be ignored although can be observed at the current
time. This is a fundamental limitation of using the Newellian coordinates for real-time traffic signal
control, which is not only for the proposed QCC but for all real-time traffic signal controllers that
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Figure 6.9: Limitation of the real-time traffic state estimation with Newellian coordinates.

use the same input. It has a similar effect with the time lag as shown in Figure 6.2. In practice, this
is not a severe issue since the blue region is much less than that caused by the time lag.

For future works, there are multiple directions that can be further explored. For example,
the QCC proposed in this chapter is only a simple rule-based method, it will be interesting to
investigate other control methods such as the optimal control methods, the max pressure control,
and some other model-free data-driven methods. Besides, this chapter only shows the real-time
control of an isolated intersection, it needs to be extended to a larger scale such as a corridor
or even a general traffic network. Last but certainly not least, we look forward to testing these
real-time control methods in the field.
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CHAPTER 7

Summary and Future Directions

7.1 Summary of the dissertation

This dissertation focuses on traffic signal optimization with vehicle trajectory data at a low
penetration rate. While most existing traffic signal control systems are established based on loop
detectors, vehicle trajectory data provides an alternative that is more scalable, accessible, and cost-
efficient. Instead of traffic counts and speed at certain locations installed with detectors, vehicle
trajectory data provides different and more enriched information including vehicle delay, stop,
and path, etc. However, the major limitations of utilizing such data for traffic signal optimization
include sparse observation caused by the low penetration rate and the lack of a suitable traffic flow
model. The incorporation of a stochastic traffic flow model is important for an accurate traffic state
estimation when the observation is incomplete.

To overcome these challenges, this dissertation presents a systematic approach and framework
built upon a novel stochastic traffic flow model introduced in Chapter 3. This traffic flow model
is established based on a newly proposed Newellian coordinates system. By assuming all vehicles
follow a uniform deterministic Newell’s car-following model, vehicle trajectories can be projected
to a point queue process under the Newellian coordinates. A point-queue representation has much
lower dimensions and can be easily extended to a stochastic setting. We also propose the PTS
diagram that can project the stochastic point queue process back to the spatial-temporal space.
In this way, a complete mapping between the point-queue representation and the spatial-temporal
traffic state is established so that the simple point-queue model under the Newellian coordinates
can sufficiently capture the spatial-temporal traffic state.

Other than being a stochastic traffic flow model with much lower dimensions, another major
advantage of the proposed model is that it can be directly calibrated by taking vehicle trajectory
data as input. This model enables us to build a probabilistic graphical model (a Bayesian network)
to connect unknown traffic states & parameters with observed vehicle trajectories. Based on
the same probabilistic model, Chapter 4 proposes two different methods for the traffic state and
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parameter estimation. The first method is the MM estimation, which is a frequentistic method and
can be used to estimate stationary traffic state and parameters by matching the model-estimated
delay with observed delay from vehicle trajectories. The second method is based on the Bayesian
estimation, which not only provides the estimation of both traffic state and parameters but the
uncertainty of these values in the form of the posterior distribution.

Estimated traffic state and parameter given by Chapter 4 are directly used for the traffic
signal optimization methods in Chapter 5 and Chapter 6. Chapter 5 develops traffic signal
retiming methods for fixed-time traffic signals. A gradient-based method is used for isolated
intersections while a coordinate-descent method is proposed to improve the coordination of
coordinated intersections like a corridor or any coordinated critical path. Chapter 6 proposes a rule-
based method named QCC. Either simulation or field implementation is used to test the proposed
traffic signal optimization methods in these two chapters.

The content of this thesis encompasses a comprehensive integrated traffic signal control system
called OSaaS, which includes data preprocessing (Chapter 2), traffic modeling (Chapter 3), traffic
state estimation (Chapter 4), and traffic signal optimization (Chapter 5-6). A citywide field
test of OSaaS was conducted in Birmingham, Michigan included monitoring, diagnosis, and
optimization of 34 coordinated and isolated signalized intersections. Two corridors and two
isolated intersections were detected with a relatively large optimality gap and new signal timing
plans were generated and implemented. These new plans resulted in decreases in both the delay and
number of stops by up to 20% and 30%, respectively. As a closed-loop iterative system, OSaaS
significantly shortens each re-timing iteration, so a more responsive and strategic traffic signal
retiming is feasible. By not requiring installation or maintenance of vehicle detectors, OSaaS
provides a more scalable, sustainable, resilient, and efficient solution to traffic signal re-timing
based on vehicle trajectory, which could be applied to every fixed-time traffic signal in the world.

7.2 Future directions

At last, this dissertation will provide some future directions including both research problems and
practical issues in real-world implementation.

Real-world implementation Most of the methods proposed in this dissertation are designed for
real-world implementation. Some methods have been tested in the field using real-world trajectory
data. However, some of them are not, particularly for real-time traffic signal control. We are
looking forward to also implementing those methods in the real world. Besides, this dissertation
aims at proposing a generic methodology and framework for traffic signal control with vehicle
trajectory data. Many assumptions are used for simplification purposes so that more clean and
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logical content can be presented. However, real-world traffic conditions could be much more
complicated. There are many corner cases and details need to be taken into account.

Data-driven methods Most methods proposed in this dissertation are model-based methods. As
just mentioned above, one significant drawback of model-based approaches is their limited ability
to handle various corner cases that are beyond the scope of the proposed universal method. In
recent decades, data-driven methods have drawn tremendous attention and achieved remarkable
success, particularly in some fields like computer vision and natural language processing.
Although these methods cannot be directly or easily used for sparsely observed vehicle trajectory
data, it is worthwhile to invest more effort in exploring this direction. Another technique path
is to combine both data-driven and model-based methods; many researchers have already made
promising explorations in this regard (Cai et al., 2021; Li et al., 2022; Di et al., 2023).

Network-level traffic signal control with re-routing The traffic signal optimization approach
in this dissertation is limited to an isolated intersection or a corridor (a coordinated path).
Although a network is usually decomposed into corridors and isolated intersections for traffic
signal management, network-level traffic signal control requires additional considerations. One
assumption used in this dissertation is that the traffic demand does not change much over time.
However, the traffic demand in the real world is elastic, which can be induced by a better service
level (Lee Jr et al., 1999). Drivers might also change their route in response to a different traffic
signal timing. Therefore, network-level traffic signal optimization should proactively consider
the change in the network traffic demand pattern, particularly in the long run. This is not an easy
research direction. As aforementioned in Section 5.5, proactively considering drivers’ route choice
will lead to a bi-level formulation which is hard to solve. Besides, it needs the OD traffic demand
as the input, which is much harder to be estimated with vehicle trajectory data considering the
potential bias of the data collection process.

Other applications with vehicle trajectory data While this dissertation focuses on traffic signal
optimization, there are many other potential applications utilizing vehicle trajectory data. For
example, it can be used to study the network-level traffic demand including the OD estimation
(Liu et al., 2023). It can also be used for parking-cruising detection (Weinberger et al., 2020), map
generation (Shi et al., 2009), and safety-related applications.
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APPENDIX A

Additional Details of the Traffic Flow Model

A.1 Effective green time

Due to the perception-reaction time (PRT) and vehicle acceleration after the green light starts,
effective green time is known to be slightly different from the display green time. Similarly, after
the green time ends, there is still a certain probability that some vehicles clear the intersection
during the yellow time. Figure A.1 shows how the effective green time can be derived based on
the raw SPaT information. For this specific movement, the green time and yellow time are G and
Y , respectively. Let µg be the average PRT while µy = G + Y/2 is the time of half of the yellow
time. Here we will show two different methods to get effective green time under different uses.

Traffic 
signal state

1

(mean PRT) ( )
Time ( )

Figure A.1: Effective green time.

The generation of the PTS diagram requires a deterministic binary traffic signal state.
Therefore, a rectangular effective green time S(t) will be used in this case which is determined
by:

S(t) =

{
1 t ∈ [µg, µy]

0 otherwise
. (A.1)
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If we only care about the point-queue representation (arrival/departure profile, delay, etc.) of
the movement without requiring the PTS diagram, the traffic signal state can also be a decimal
number. We can use a cumulative Gaussian to model the green start-up time and the yellow light
interval as shown by the purple curve S ′(t) as shown in Figure A.1. Let Φµ,σ2(x) be the cumulative
density function (cdf) of a Gaussian distribution with mean µ and variance σ2, S ′(t) is determined
by:

S ′(t) =

{
Φµg ,σ2(t) t ≤ G

1− Φµy ,σ2(t) t > G
. (A.2)

The variance σ2 is chosen as 1. Since the time is discrete with interval ∆t, let S∗(t) be the discrete
approximation of S ′(t):

S∗(t) =
1

∆t

∫ t+∆t

τ=t

S ′(t)dτ (A.3)

Figure A.2 demonstrates some real-world examples of S(t) and S∗(t) and how the predicted
departures for both methods compare to the observations. The x-axis plots the signal light
indication given by the traffic signal while the dashed green lines indicate the calculated signal
states for each method. The model is able to match the observed departures fairly well with both
methods, but S∗(t) is a little more detailed, particularly during the green start-up time.

A.2 Permissive movements

This subsection will introduce how we approximate the effective green time or traffic states of
permissive movements that must yield to other protected movements. Figure A.3 shows two
examples. In the first case, the left-turn and through movement from the opposing direction share
the same green duration and the left-turn movement i needs to yield the opposing protected through
movement p. For the second case, the right-turn movement i can turn right during the red time
while yielding to the protected through movement p. We will only show the details of the first
case. The intuition is to use a gap acceptance model to get the left-over capacity for the permissive
movements after subtracting the through movement utilization.

As shown in Figure A.3a, let Sp(t) andBp(t) represent the traffic signal states and the departure
profile of the protected movement accordingly. The departure profile essentially represents the
utilization of the traffic signal state of the movement. Define the Bc

p(t) as the left-over capacity,
we have:

Bc
p(t) =

{
Sp(t)−Bp(t) t ≤ G

1−Bp(t) G < t ≤ G+ Y
. (A.4)

We use 1−Bp(t) to calculate the left-over capacity for the yellow time since left-turn vehicles can
usually clear the intersection during the entire yellow time. Instead of directly using the left-over
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Figure A.2: Predicted vs. observed departures using S∗(t) and S(t)

capacity as the traffic state for the permissive movement, a gap acceptance model is further applied
since vehicles in the permissive movement might require the protected movement to be empty for
a few consecutive time steps. Let ζ be the number of time steps of the gap acceptance model. The
traffic signal state of the permissive movement is eventually determined by:

Si(t) =
t∏

τ=t+1−ζ

Bc
p(τ). (A.5)

We can apply the gap acceptance model to get the traffic signal states for right turn on reds in
Figure A.3.

The real-world example in Figure A.4 illustrates how this method can accurately capture the
observed departure profiles and the measured delays. The intersection analyzed in this figure
is controlled by two phases, one for each street. As a result, the left-turn movement and the
oncoming protected through movement share the same SPaT information and left turning vehicles
must wait for a reasonable gap in the protected movement departures before proceeding through
the intersection. When considering the protected movement, the predicted departure profile
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Figure A.3: Illustration of permissive movements.
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resembles the observed departure profile because it doesn’t immediately allow vehicles to clear
the intersection. One limitation of this model is that it will usually predict zero departures in the
early stages of the green time because the model will predict maximum protected departures when
the queue is first released (there is no leftover capacity when the light first turns green). Left turn
departures could happen earlier in the green time during some random cycles where the conflicting
movement’s queue is small, but this is a rare occurrence and does not impact the model’s ability to
capture the average traffic state of the movement.

Movement 
of Interest

Protected 
Movement 𝑝

Figure A.4: Permissive Left Turn Movement Example: Quarton Road and Cranbrook RD WBL
Movement - PM TOD

A.3 Approximation of a network of movements

We also use single-queue decomposition approximation to model a general network consisting of
multiple movements. For a movement within a traffic network as shown in Figure A.5, the arrival
can be decomposed into the external arrival coming from external demand and the internal arrival
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from upstream movements. The arrival is determined by:

P (Ai(t) = 1) =
∑

k∈Mu
i

(
P(Bk(t− Tki) = 1) · rki

∆uk
∆ui

)
+ P(Ei(t) = 1) (A.6)

where Mu
i is the set of upstream movements of movement i, rki is the turning ratio, Tki is the

free-flow travel time from movement k to movement i; Ei(t) is the exogenous arrival. ∆ui is the
unit flow of movement i which is defined in the main paper as the saturation flow within the time
interval ∆t. The arrival given by Equation (A.6) is also assumed to follow a Bernoulli distribution
and arrivals at different time steps are also independent. Based on this assumption, the whole
network is then decomposed into a set of movements; the stationary distribution of each movement
queue length can be calculated according to the network topology from upstream to downstream.

Arrival/departure
probability

Time

Upstream departure

Downstream arrival (coordinated)

Exogenous (Uncoordinated) arrival

Downstream departure

Turning ratio
and offsetSource 

demand 

Arrival/departure 
probability

Movement

Movement 

(a) Coordinated movement arrival (b) Internal arrival

Figure A.5: Arrival of the coordinate movement.

Note that the arrival coming from the upstream is actually correlated and will be dependent on
all the previous states (Osorio and Wang, 2017; Boon and van Leeuwaarden, 2018). Therefore,
the actual stationary distribution of a network is hard to obtain, and the proposed method is only
a single-queue decomposition approximation. Besides, the upstream platoon might also disperse
when vehicles travel along the link (Robertson and Bretherton, 1991) and the downstream vehicles
might also block the upstream vehicles (Osorio and Bierlaire, 2009). In this paper, we use the
simplest approximation without considering these complicated scenarios.
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APPENDIX B

Pre-Determined and Calibrated Parameters

B.1 Saturation flow rate estimation

The saturation flow rate qmi for each movement i ∈ M in the traffic network can be estimated from
the vehicle trajectory data. For each trajectory k, the departure time after the green start tk and
queue distance qk are illustrated by Figure B.1 (a). By assuming that the jam space headway is
h0, there will be qk/h0 vehicles in the queue, and this means that it takes time tk to allow qk/h0

vehicles to clear the intersection. The saturation flow rate can then be estimated according to the
following equation:

qmi =
∆n

∆t
=

∆q
h0

∆t
=

∆q

∆t
· 1

h0
(B.1)

where ∆n is the number of vehicles clearing the intersection within the time interval ∆t. The
first equality is the definition of the saturation flow rate. ∆q/∆t is the slope of the q − t scatter
as shown in Figure B.1 (b). This means that the saturation flow rate can be estimated through a
linear regression over the q − t scatters for all the collected trajectories. For a set of observations
Oi =

{
tki , q

k
i ,∀k

}
of movement i, we first eliminate trajectories that departed during the “start-up

loss time”. The RANSAC regression (Derpanis, 2010) is then used to further remove the outliers
and get an accurate q − t slope.

Figure B.2 illustrates an example of the saturation flow rate estimation where the estimated
queue discharge rate is 3.54 m/s. Inlier points that are included in the final regression estimate are
shown in green, while the outliers are shown in yellow. Around 92% of the total observed points
were considered in the estimation. The R2 value of 0.93 is a measure of linear regression accuracy.
According to Equation (B.1) and using an assumed jam space headway of 7 meters per vehicle, the
estimated saturation flow rate of this movement will be 1, 820 vphpl (vehicle per hour per lane).
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Figure B.1: Saturation Flow Rate Estimation

Figure B.2: Saturation Flow Rate Estimation Example: Maple Road and Adams Road WB
Movement - PM TOD

B.2 Other parameters

Jam space headway Jam space headway refers to the space headway when vehicles stop at the
signalized intersections. It is usually a constant determined by the vehicle length and the space
between stopped vehicles (front bumper to front bumper). This paper assumes a constant jam
space headway of 7 meters per vehicle.
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Free-flow speed The free-flow speed of each movement is determined by the average free-flow
speed extracted from each individual vehicle trajectory of the movement (Wang et al., 2022a).

Turning ratios Since the trajectory data includes path information, the turning ratio can be
estimated from the observed trajectories. For example, let movement j be the downstream of
movement i, ñi is the total number of observed trajectories of movement i while ñij is the total
number of observed trajectories that travels to movement j from movement i, then the turning ratio
rij is estimated as:

r̂ij =
ñij

ñi

. (B.2)

Lane numbers There are cases when some movements share the same lane, for example, right-
turn movement and through movement share one lane. Since this paper assumes that the queue
lengths of different movements are separate, the equivalent lane number for each movement is
proportional to the number of observed trajectories under this case.
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