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ABSTRACT

Autonomous vehicles technologies have greatly advanced in recent years, with

promises of various benefits, including improved safety, efficient transportation, in-

creased accessibility, etc. However, ensuring safety is one of the major challenges in

bringing them into reality. On one hand, autonomous vehicles may need to share

the road with other road users (including human-driven vehicles, cyclists, pedestri-

ans, etc.). On the other hand, the manufacturers have to cope with multiple sources

of variability in these vehicles due to part-to-part differences, aging, degradation, or

even in-field modifications. This dissertation focuses on addressing these challenges

by developing a behavior planner that is able to account for interaction with human

drivers and model-free learning-based safety supervisors that are able to adapt to

different systems or operating environments.

This dissertation first presents the design of a game-theoretic interaction-aware

behavior planner. Inspired by Stackelberg Competition, predictive models for human

interactions are developed based on the Leader-Follower Game, and a decision-making

framework is proposed that integrates game-theoretic predictions, online estimation

of other driver’s uncertain interactions and optimal control with explicit safety char-

acterization. The proposed approach is applied to forced merging scenarios, where

interaction and negotiation with other drivers are typically required. A comprehensive

set of simulation-based case studies and validations on naturalistic driving dataset are

presented, where the proposed approach demonstrates a high success rate.

The dissertation then introduces two model-free learning algorithms to design

safety supervisors suitable for non-safety critical systems and for safety critical sys-

tems. The design of the safety supervisor relies on the reference governor scheme,

which is an add-on scheme to enforce pointwise-in-time state and control constraints.

In non-safety critical control systems, where the violation of the constraints is not de-

sirable but does not lead to severe consequences, such systems may initially operate

with constraint violations and learn over time to avoid them through less aggres-

sive maneuvering. In safety critical cases, in which constraint violation may lead

to catastrophic consequences, systems will initially operate conservatively, and then

improve their performance as they learn more about constraint boundaries and ma-

xi



neuvers that approach the constraint boundary. The results include developments

and demonstrations of novel algorithms and supporting theory for autonomous on-

line learning to operate systems safely and non-conservatively. Several applications

are considered including power management of electric vehicles, rollover avoidance of

ground vehicles, and tanker truck rollover avoidance under liquid sloshing effects.
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CHAPTER I

Introduction

This chapter provides an overview of the dissertation. It begins with the back-

ground information, which introduces the recent advancements in autonomous driving

technology. Subsequently, the remaining challenges and research gaps that this dis-

sertation focuses on are discussed in Section 1.2. Section 1.3 summarizes the original

contributions made by this dissertation, and Section 1.4 offers an overview of each

chapter.

1.1 Background and Motivations

Autonomous driving technologies have made significant advancements in recent

years, promising a wide range of benefits. One of the potential benefits is improved

road safety and the significant reduction of fatal accidents that involve personal in-

juries. Additionally, these technologies have the potential to greatly improve modern

mobility by making driving more accessible to everyone, especially seniors and peo-

ple with disabilities. Furthermore, they can lead to more efficient land and energy

use, making transportation more environmentally friendly. Through optimal routing

and speed planning, autonomous driving can reduce traffic congestion and fuel/energy

consumption, providing more efficient and economic travel. By making transportation

more sustainable and efficient, these technologies have the potential to transform the

way we travel, making it safer, more accessible, and more environmentally-friendly.

The concept of autonomous vehicles or “driveless” cars has been brought up since

1927 [1], though it was a pure science fiction for decades, as shown in Figure 1.1. In

1958, Chrysler released the first car in the world that is equiped with cruise control

[2]. Researchers and car manufacturers soon dedicated themselves to developing such

advanced technologies. In 1995, VaMP, developed by researchers in Bundeswehr Uni-

versity of Munich and Mercedes-Benz, was one of the first fully autonomous vehicles

1



that are able to drive almost autonomously for 2000 (km) [3]. Since the initiation of

the DARPA Grand Challenges in 2004 in the United States [4], autonomous driving

has undergone rapid developments over the past 20 years. Notable examples include

the start of Google self-driving car project in 2009 [5], the release of Tesla Autopilot

in 2015 [6], etc.

Figure 1.1: A 1950s illustration of autonomous vehicles [7]

Autonomous vehicles are not just a vision for the future, they are already present

on the roads today, although not yet fully autonomous. According to SAE Inter-

national [9] (and as adopted by the U.S. Department of Transportation), there are

six levels of automation for autonomous vehicles, and many car manufacturers have

already released vehicles with level-2 autonomy features. Examples of these features

include Tesla’s Autopilot, Ford’s Blue Cruise, and GM’s Super Cruise. In 2023, Mer-

cedes released level-3 autonomous vehicles, which require the driver to be attentive

enough to promptly take control if necessary but enable the vehicle to handle “all

aspects of the driving” when engaged [10]. This is a significant step up from level-2

autonomy and demonstrates the progress that has already been made in autonomous

driving technology.

In other words, autonomous vehicles are not just a concept for the future, but a

reality that is already present on our roads. Many of the vehicles currently driving

on the road are equipped with advanced autonomous technologies, and the trend is

expected to continue to grow in the coming years.
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Figure 1.2: Levels of driving automation defined by SAE International [8]

1.2 Challenges and Research Gaps

While autonomous vehicles have the potential to bring many benefits, safety is

always the top priority. Developing and deploying autonomous vehicles requires en-

suring the safety of both the vehicles and their passengers. This is a major concern

that has to be addressed by combined advances in perception, decision-making, and

control.

In particular, ensuring the safety of autonomous vehicles requires significant progr-

ess in decision-making and control. These fields are essential for designing autonomous

systems that can operate safely and efficiently in complex environments. As a part

of my dissertation research, I am focusing on advancing these fields and tackling the

challenges associated with them.

1.2.1 Interaction-awareness for safe road sharing with other road users

While level-2 and level-3 autonomous vehicles are already available in the market,

the penetration of autonomous vehicles is still expected to be relatively low in the

coming years. According to [12], only 12 percent of new passenger cars sold by 2030

will have level-3 or higher autonomous technologies, and this number is expected to

increase to 37 percent by 2035. This means that vehicles with advanced autonomous

3



Figure 1.3: Autonomous vehicles need to share road with other road users [11].

driving technologies will need to share the road with vehicles with lower autonomy,

which are mainly driven by humans. Even if all vehicles are fully autonomous and

centrally coordinated, other traffic participants (such as pedestrians and cyclists) will

likely not be. This presents a significant challenge to autonomous vehicle manufac-

turers. Autonomous vehicles need to ensure safe and efficient operations in a mixed

traffic environment, where there is no direct coordination with other traffic partici-

pants, such as cases shown in Figure 1.3.

Forced merging scenarios present a particularly intense interaction between ve-

hicles, where the merging vehicle needs to make a mandatory lane change while

negotiating with other vehicles already in the target lane. Interactions with other

drivers throughout the merging process is essential, as the merging ego vehicle may

need to slow down and yield to other vehicles or force them to slow down and yield

to it, especially towards the end of the current lane.

However, interacting with human drivers is inherently difficult. Beginner drivers

may struggle during such scenarios, and learning stickers are available to assist them.

Identifying and tracking other drivers’ intentions over time, as well as understanding

their behavior, is necessary throughout the interaction process. Autonomous vehicles

developers need to account for the fact that human drivers may not follow fixed rules

and exhibit varying levels of aggressiveness, distraction, and generosity.

There exists an extensive literature on modeling human driver interactions and

autonomous vehicle decision-making during lane change or merging. To handle in-

teraction uncertainties (e.g., due to varied cooperation intentions of other vehicles),

the Partially Observable Markov Decision Process (POMDP) framework has been

4



exploited, where the uncertainties are modeled as latent variables and estimated on-

line based on observed trajectories [13, 14, 15, 16, 17, 18, 19]. However, solving a

POMDP problem with a large state and/or action space is computationally very de-

manding [20]. Consequently, conventional POMDP-based approaches typically only

consider the interaction of the ego vehicle with one interacting vehicle at a time to

minimize the state space dimension. However, in reality a merging scenario can in-

volve simultaneous interactions with multiple vehicles. Some researchers use specific

designed intention models, and online inferring other vehicle intentions [21, 22], but

these methods generally do not have a comprehensive set of validations.

Reinforcement Learning (RL) is another popular approach to developing control

policies [23, 24, 25, 26], especially for lane change or merge scenarios [27, 28, 29,

30]. An RL-based policy can account for the vehicle interactions in certain scenarios

through training in an environment capable of representing such interactions [31, 32,

33]. In order to obtain RL driving policies that behave like human drivers, several

researchers chose to use inverse RL to estimate the human’s reward function for

driving [34, 35, 36, 37]. To be able to model different human driver styles and/or

interaction intentions, [38] incorporates cooperativeness into the intelligent driver

model and [39] formulates different reward functions for different drivers and performs

RL based on the models. Although RL-based approaches are appealing in terms

of their potential to handle complex traffic scenarios with multi-vehicle interactions,

potential drawbacks of these approaches that hinder their practical application include

their lack of interpretability and explicit safety guarantees, because safety is typically

only promoted through certain terms in the reward function rather than enforced

through hard constraints.

To achieve more interpretable control, it has been proposed to explicitly incorpo-

rate a prediction model for vehicle interactions in the control algorithm. For instance,

several researchers have leveraged deep learning methods (in particular, recurrent

neural networks [40] and graphical neural networks [41]) to predict human drivers’

behaviors. Multi-modal trajectory prediction methods [42, 43, 44, 45] are able to

predict a distribution of possible other vehicles’ future trajectories. However, such

prediction models are mostly designed for open-loop predictions (i.e., they do not

respond to ego vehicle’s actions), and utilizing these prediction models may not ac-

count for driver’s interactions to certain ego’s actions within the planning horizon.

Reference [46] uses a Social Generative Adversarial Network (Social GAN) to generate

predictions of other vehicles’ future trajectories in response to ego vehicle’s actions.

However, the Social GAN does not account for variations of drivers’ styles and inten-

5



tions and needs to be trained with sufficient traffic data [47]. For the latter, it has

been reported that multi-vehicle interaction scenarios in released traffic datasets are

insufficient [48]. Game-theoretic methods have also been investigated for modeling

vehicle interactions in lane change or merge scenarios [17, 49, 50, 51, 52, 53]. It is pos-

sible to account for varied driving styles and/or intentions with these game-theoretic

methods, for instance, through modeling and online estimation of drivers’ cognitive

levels [50] or aggressiveness [54, 55].

1.2.2 Ensuring safety in uncertain or unpredictable situations

Ensuring the safety of autonomous vehicles involves more than just avoiding col-

lisions with other vehicles and preventing personal injuries. It also involves operating

within critical limits to prevent damage to various systems. These limits can in-

clude thermal limits to prevent overheating of the battery or other thermal systems,

power limits to prevent damage to the powertrain, traction limits to avoid slipping,

rollover limits to prevent rollover accidents, and more. These limits are essential for

the safe operation of autonomous vehicles and must be taken into account in their

development and deployment.

As a result, these critical limits require special attention during the design process,

particularly in the development of the control system. However, the operation of au-

tonomous vehicle systems can be influenced by various factors such as manufacturing

variability, aging, and degradation, which can operate under uncertain environmental

conditions. Additionally, in-field modifications of some systems may be entirely un-

predictable during design time. Moreover, the boundary of critical limits that need

to be followed may be uncertain during design time and can change based on the op-

erating environment and system condition. Maneuvers that can lead to violations of

critical limits may be unknown beforehand. These challenges significantly affect the

ability of autonomous vehicle developers to ensure safety without violating critical

limits during the design phase.

To address the uncertainties that arise in operating environments and uncertain

limit boundaries, a common approach is to operate autonomous systems conserva-

tively to avoid constraint violations in the worst-case “tolerance stack-up” scenario.

While such conservative operation ensures safety, it can significantly limit vehicle per-

formance and mobility. Therefore, it is essential to develop novel approaches that can

balance the tradeoff between robustness and performance while ensuring the safety

of autonomous systems.

A novel, emerging approach to address such constraints is to exploit learning (or

6



adaptation) capabilities of future autonomous vehicles and systems. Reinforcement

learning (RL) [56] has been pursued in the literature to directly learn a controller.

While RL has been investigated for control of systems with input constraints [57, 58],

traditional RL algorithms do not address state/output constraints other than through

penalty functions, and they do not provide explicit guarantees on eventual constraint

enforcement. Although safe RL techniques have recently been developed to handle

state/output constraints, they are typically model-based [59, 60, 61] or require a

robust controller for the nominal dynamics of the system [62, 63], which require

significant amount of knowledge about the system.

Model predictive control (MPC) is a common approach to enforce constraints

[64, 65, 66]. For systems which do not have an accurate model, learning-based model

predictive control (LMPC) has been proposed, which integrates model-based MPC

with learning [67, 68, 69, 70]. Safety guarantees for LMPC have been developed

in [71], however, a nominal linear model and a bound on deviations of the system

dynamics is required. LMPC algorithms frequently learn/estimate a model that can

represent the system dynamics, and then use this learned/estimated model to compute

control signals [72]. Gaussian processes have been employed for LMPC in [73], [74],

however, a theoretical guarantee of safety is missing from these approaches. Adaptive

MPC approaches exist which can handle model uncertainty through online parameter

estimation [75], [76]. However, such approaches which assume that the model is

known except for the parameters require more knowledge of the system compared to

the proposed approach.

In addition to LMPC, adaptive and learning control barrier function methods have

been proposed to handle systems with parametric uncertainty [77], [78], but they rely

on a known nominal system model and only ensure safety for a certain class of model

uncertainty. Iterative learning control (ILC) is another technique that learns from

prior experience to improve the controller performance [79]. However, the focus of

ILC is typically on improving the tracking performance over a repeated operation

[80]. Extensions of ILC that do not require repetitions such as in [81] still require

that trajectories executed by the system are related by a time-scale transformation.

1.3 Summary of Contributions

My dissertation research addresses the challenges mentioned in Section 1.2 through

the development of a novel planning/control framework that accounts for human-

driven vehicles’ reactions in different traffic scenarios when interacting with autonomo-
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us vehicles. At the same time, in uncertain or unknown situations, a novel and emerg-

ing approach, which relies on the integration of prediction and learning/adaptation,

is developed to ensure safety while not sacrificing performance. In particular, these

approaches can be utilized to design new decision-making systems for autonomous ve-

hicles where safety is explicitly accounted for either during interactions with humans

or operating under unknown circumstances. Methodologically, to account for safety

during interactions with human drivers, models representing interactions are devel-

oped based on the applications of the game theory and are used to predict human

reactions. The decision-making process during the interaction is formulated using

the model and optimal control and solved in real-time by modern techniques involv-

ing machine learning. In circumstances where the autonomous vehicle is operating

in uncertain environments or conditions, learning algorithms are designed based on

control theory and set theory to gradually learn to operate the system safely and

non-conservatively by exploring the maximum response due to different commands.

A more detailed summary of the original contributions of my dissertation research

can be summarized as follows:

1. To account for the interaction and cooperation of humans drivers during inter-

actions, predictive models of human reactions in interactive environments are

developed based on game theory. A decision-making framework is developed

based on such predictive models, where the interaction uncertainties are esti-

mated online based on observed human reactions, and safety requirements are

explicitly accounted for by setting a probabilistic safety bound.

2. The game-theoretic predictive models and the associated decision-making frame-

work is integrated with machine learning to expedite the online computations

and to achieve real-time implementations. The decision framework is evalu-

ated and verified through a comprehensive set of simulation-based case studies

that include cases where other vehicles are controlled by various types of driver

models and cases where their motion follows actual vehicle trajectories presented

in publicly available datasets (e.g., NGSIM US101 Highway Dataset [82]). The

proposed decision-making framework demonstrates a high success rate (in terms

of safely achieving the goal) in these verifications and exhibits a practical poten-

tial to overcome the challenge for autonomous vehicles to interact with humans

safely and effectively.

3. To ensure the safety of autonomous systems when operating in unknown circum-

stances and to address the performance-robustness trade-off mentioned above,
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two learning schemes for systems to autonomously explore their limits are de-

veloped. These two learning schemes are suitable for different situations. One

scheme starts with an aggressive design and gradually learns to avoid safety

violations. The other scheme will initially operate the system conservatively

and gradually improve its performance as it gains more information about the

system and the environment.

4. The autonomously learning algorithms, which ensure the systems to operate

safely and non-conservatively after learning, has been theoretically analyzed.

The effectiveness of the learning algorithms has been verified based on several

applications including power management of electric vehicles, ground vehicle

rollover avoidance, and tanker truck rollover avoidance under liquid sloshing

effects.

Most of the contribution outlined above have been documented and published in

peer-reviewed journals or conference proceedings, including [83, 84, 85, 86, 87, 88].

Some additional contributions made during my PhD but not covered in this dis-

sertation are as follows:

1. A C++ solver/toolbox has been developed for solving stochastic control prob-

lems in Partially Observable Markov Decision Processes (POMDPs) based on

the framework proposed in [16]. The aim of this toolbox is to enable fast

and real-time capabilities of the proposed algorithm. The toolbox includes the

game-theoretic decision-making systems proposed in [83] as well as several other

driver models 1.

2. The Leader Follower Game proposed in Chapter II can also be utilized for

simulations of human reactions during complex traffic environments. Such sim-

ulations can be used to evaluate and verify different control strategies. A simu-

lation and testing environment is established based on the Simulation of Urban

Mobility (SUMO) [89], and its implementation is documented in [90].

3. The learning-based approaches proposed in Chapters III and IV have potential

for broader applications to other autonomous systems beyond ground vehicles.

The approaches have been successfully demonstrated in aerospace applications

of spacecraft rendezvous and proximity maneuvering, as described in [91] and

1The toolbox is available on github and can be found at https://github.com/kevinyt001/MPC_
CPOMDP.
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[92]. These applications are safety-critical and require precise control and con-

straint satisfaction. The use of learning-based approaches can enable more

efficient and adaptable control of these systems while still maintaining safety

and constraint satisfaction.

1.4 Dissertation Overview

This dissertation is motivated by the need to create effective methods for safe

and non-conservative operation of automated vehicles in mixed traffic with human

participants. Our focus is on ensuring that autonomous vehicles can interact seam-

lessly with other road users and adapt to diverse driving conditions. With this goal

in mind, we will develop advanced techniques that enable autonomous vehicles to

navigate through complex traffic scenarios, make real-time decisions, and respond to

unexpected events.

Figure 1.4: Overview of this dissertation.

The autonomous driving technology stack comprises several components [93, 94],

as illustrated in Figure 1.4. This dissertation focuses on the behavior planning module

and the safety supervisor module, which are critical for ensuring safe and effective

operation of autonomous vehicles. Specifically, this dissertation will delve into the

design, implementation, and evaluation of the proposed solutions for these modules.

By advancing the state of the art in behavior planning and safety supervision, we aim

to contribute to making autonomous driving a practical and trustworthy solution for

the transportation industry.

Chapter II will mainly focus on the behavior planning module of the autonomous

vehicles, where we present the design of interaction-aware autonomous vehicle plan-

ning and control strategy. The interaction between autonomous vehicle and other
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vehicles is represented using models and concepts from game theory [95]. More

specifically, we leverage the Stackelberg Competition models and make appropri-

ate modifications to accommodate the differences between the economic markets and

the actual driving situations. This chapter then considers a specific application to

forced merge scenarios, which are scenarios with heavy interactions among vehicles

requiring an automated vehicle to nudge its way into traffic. In this chapter, a novel

game-theoretic controller, called the Leader-Follower Game Controller (LFGC), is

introduced, where the interactions between the autonomous ego vehicle and other

vehicles with a priori uncertain driving intentions is modeled as a partially observ-

able leader-follower game. The LFGC estimates the other vehicles’ intentions online

based on observed trajectories, and then predicts their future trajectories and plans

the ego vehicle’s own trajectory using Model Predictive Control (MPC) to simulta-

neously achieve probabilistically guaranteed safety and merging objectives. To verify

the performance of LFGC, we test it in simulations and with the naturalistic driving

dataset provided by NGSIM [82], where the LFGC demonstrates a high success rate

of 97.5% in merging.

Chapter III presents a novel approach to designing a safety supervisor that can

adapt to different operating conditions or environments, with an emphasize on non-

safety critical systems. This chapter relies on an emerging approach to address the

above performance-robustness tradeoff, which utilizes the integration of prediction

and learning/adaptation. Specifically, we propose a model-free learning algorithm

that modifies the parameters of an explicit reference governor (ERG) scheme over

time to avoid violations of pre-specified constraints. The ERG modifies setpoint com-

mands to a nominal closed-loop system, and our learning algorithm adjusts the ERG

parameters based on observed constraint violations during a learning phase. After

the learning phase is completed, the modified ERG ensures that constraint violations

are eliminated while maintaining satisfactory performance. Theoretical properties of

the algorithm are analyzed, and several examples are presented to demonstrate its ef-

fectiveness. This approach is particularly useful in non-safety critical scenarios where

occasional constraint violations are undesirable but do not result in catastrophic con-

sequences.

Chapter IV focuses on designing a safety supervisor for safety-critical systems,

where even occasional constraint violations may result in catastrophic consequences.

In such systems, learning must be performed in a way that ensures constraint sat-

isfaction at all times. Instead of relying on ERG as in Chapter III, this chapter

integrate learning with traditional reference governor that guard the nominal sys-
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tem against violation of pre-specified constraints by modifying set-point commands.

More specifically, a model-free learning algorithm is developed to gradually improve

the performance of the reference governor in terms of response speed while ensuring

constraint satisfaction for all time. After introducing the learning algorithm and out-

lining its theoretical properties, this chapter investigates its applications to ground

vehicle rollover avoidance and fuel truck (tank truck) rollover avoidance under slosh-

ing effects. Through simulations based on CarSim (a high-fidelity vehicle dynamics

simulation software) and a fuel truck model that accounts for liquid fuel sloshing

effects, we show that the proposed approach can effectively protect ground vehicles

and fuel trucks from rollover accidents under various operating conditions.

Finally, Chapter V provides the conclusion of this dissertation and outlines future

research directions. The chapter summarizes the contributions of each chapter and

discusses their significance in the context of autonomous driving. Moreover, this

chapter goes beyond the conclusion and provides an extensive discussion of potential

areas for future research.
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CHAPTER II

Interaction-aware Control for Autonomous Driving

with Applications to Forced Merge

In this chapter, we present and describe an innovative interaction-aware control

strategy. In particular, we propose a novel game-theoretic controller, called the

Leader-Follower Game Controller (LFGC), in which the interactions between the

autonomous ego vehicle and other vehicles with a priori uncertain driving intentions

is modeled as a partially observable leader-follower game. The LFGC estimates the

other vehicles’ intentions online based on observed trajectories, and then predicts

their future trajectories and plans the ego vehicle’s own trajectory using Model Pre-

dictive Control (MPC) to simultaneously achieve probabilistically guaranteed safety

and driving objectives. A particular application of the proposed control strategy is

to forced merge scenarios, which are typically interaction-intense, is considered and

presented in this chapter.

2.1 Introduction

Advances in autonomous vehicle technologies are projected to reduce vehicle

crashes and fatalities, improve mobility especially for elderly and disabled people,

reduce fuel/energy consumption and emissions, and to promote more efficient land

uses [96, 97, 98]. Despite these benefits, there are still many challenges that need to

be addressed to deliver a highly (level 4 or level 5) autonomous vehicle [9]. One chal-

lenging scenario for both human drivers and autonomous vehicles is highway forced

merge, where the merging vehicle needs to choose a proper gap in the highway traffic

and potentially force the upstream traffic to slow down so that it can safely merge

into that gap. Forced merge typically occurs in mandatory merge scenarios where

the current lane is ending, such as at highway on-ramps. When the traffic is dense,
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Figure 2.1: The autonomous vehicle (blue) needs to merge onto the highway before
the on-ramp section ends. In dense traffic, there may not be a sufficient gap for the
autonomous vehicle to merge into. In this case, the autonomous vehicle needs to force
the other vehicles to cooperate and let it cut in. However, interacting vehicles that
are aware of the autonomous vehicle’s merging attempt (red) may choose to proceed
or yield depending on their intentions.

interactions and/or cooperation between the merging vehicle and vehicles driving in

the target lane are often needed. In particular, a vehicle in the target lane may choose

to ignore the merging vehicle (i.e., proceed) and consequently the merging vehicle can

only merge behind. Alternatively, the vehicle in the target lane may choose to yield

to the merging vehicle (i.e., let the merging vehicle merge in front of it). In order to

successfully merge into a busy traffic, an autonomous vehicle controller needs to ap-

propriately respond to the intentions to proceed or yield of other vehicles. An overly

conservative controller may yield to all other vehicles (including those that intend to

yield to the autonomous ego vehicle) and eventually fail to merge, while an overly

aggressive controller may have conflicts with the vehicles that intend to proceed and

lead to vehicle crashes. Meanwhile, the decision whether to proceed or to yield to

another vehicle depends not only on the traffic situation (e.g., the relative position

and velocity between the two vehicles) but also on its driver’s general driving style,

personality, mood, etc. For instance, in a similar situation, an aggressive driver may

be inclined to proceed while a cautious/conservative driver may tend to yield. This

poses a significant challenge to autonomous vehicle planning and control.

In this chapter, we propose a novel high-level control algorithm, called the Leader-

Follower Game Controller (LFGC), for autonomous vehicle planning and control in

forced merge scenarios. In the LFGC, drivers’ interaction intentions (to proceed

or yield) and their resulting vehicle behaviors are represented by an explicit game-

theoretic model with multiple concurrent leader-follower pairs, called a leader-follower
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game [99]. To account for interaction uncertainties, the pairwise leader-follower rela-

tionships among the vehicles are assumed to be a priori uncertainty and modeled as

latent variables. The LFGC estimates the leader-follower relationships online based

on observed trajectories and makes optimal decisions for the autonomous ego vehicle

using a Model Predictive Control (MPC)-based strategy. The proposed approach thus

adapts to the inferred leader-follower relationship estimates to simultaneously achieve

probabilistically guaranteed safety and the merging objectives. The LFGC presented

in this chapter possesses superior properties in several aspects: 1) Instead of relying

on discretization of the state space (and the POMDP framework) [100, 101, 102],

the LFGC is designed assuming a continuous state space, which results in smoother

trajectories for lower-level controllers to track and which alleviates the computational

difficulty associated with discrete spaces. 2) Unlike using a small number of actions

(or motion primitives) to represent vehicle behavior [103, 104, 105], the LFGC predicts

and plans vehicle motion using two much larger sets of trajectories (162 trajectories

for the merging ego vehicle and 81 trajectories for each of the highway interacting

vehicles), which leads to finer-resolution controls and the potential for higher perfor-

mance. 3) The LFGC is validated based on a comprehensive set of simulation-based

test cases including cases where other vehicles are controlled by various types of driver

models and cases where their motion follows real traffic data.

The contributions and novelties of the proposed LFGC and this chapter are as

follows:

1. The LFGC uses a game-theoretic model for vehicle trajectory prediction while

accounting for interactions and cooperation and while leading to interpretable

control solutions (because the control solutions are based on model predictive

control with an interpretable game-theoretic prediction model).

2. The LFGC handles interaction uncertainties due to varied cooperation inten-

tions of other vehicles by modeling these uncertainties as latent variables and

estimating them online based on observed trajectories and Bayesian inference.

3. The LFGC represents vehicle safety requirements (e.g., collision avoidance) as

constraints and pursues optimization subject to satisfying an explicit probabilis-

tic safety characterization (i.e., a user-specified probability bound of safety) in

the presence of interaction uncertainties.

4. The LFGC is designed in a continuous state space setting, which can avoid space

discretization associated with POMDP-based approaches (such as pursued in

15



[83]) or other discrete state space-based approaches. This allows LFGC to treat

higher-dimension problems and to handle more complex scenarios that involve

interactions with multiple vehicles.

5. The LFGC is validated based on a comprehensive set of simulation-based case

studies that include cases where other vehicles are controlled by various types

of driver models and cases where their motion follows actual vehicle trajectories

in the NGSIM US Highway 101 dataset [82]. For the latter, the LFGC demon-

strates a high success rate (in terms of safely completing merges) of 97.5%.

2.2 Models and Control Strategy Descriptions

In this section, we introduce our proposed control architecture, models to represent

the vehicle and traffic dynamics and the MPC-based strategy for the ego vehicle’s

trajectory planning.

2.2.1 Control architecture

Figure 2.2: Proposed control architecture for forced merge scenarios.

Figure 2.2 shows the proposed control architecture considered in this chapter that

focuses on the design of Leader-Follower Game Controller (LFGC), which consists of a

belief estimator and a trajectory planner. LFGC takes observation of the environment

as an input, estimates other drivers’ intentions based on the leader-follower game,

and utilizes game-theoretic prediction and model predictive control to generate a

planned trajectory. As is common in the literature [106, 107, 108], we assume that the

vehicle has an existing lower-level controller that can execute the planned trajectory

respecting the vehicle dynamics.
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2.2.2 Vehicle dynamics

We use the kinematic bicycle model [109] to represent the motion of each vehi-

cle. The kinematic bicycle model is defined by the following set of continuous-time

equations,

ẋ = v cos(ψ + β),

ẏ = v sin(ψ + β),

v̇ = a,

ψ̇ =
v

lr
sin(β),

β = tan−1

(
lr

lr + lf
tan δf

)
,

(2.1)

where we have assumed only front-wheel steering δf and no rear-wheel steering (i.e.,

δr = 0); x and y are the longitudinal and lateral positions of the vehicle; v is the

speed of the vehicle; ψ and β are the yaw angle and the slip angle of the vehicle; lf

and lr represent the distances from the CG of the vehicle to the front wheel and rear

wheel axles; a is the acceleration along the direction of speed v. The control inputs

are the acceleration and front-wheel steering, u = [a, δf ]
T .

While vehicle models other than (2.1) could be used, the above kinematic bicycle

model (2.1) is suitable for our purpose of trajectory prediction and planning in forced

merge scenarios – it can produce sufficiently accurate predictions of vehicle trajectories

under given acceleration and front-wheel steering profiles [110] while it is simple and

thus computationally efficient. Note also that planned trajectories are passed to

the vehicle controller which tracks them while potentially relying on higher fidelity

dynamic models of the vehicle.

2.2.3 Traffic dynamics

We consider a traffic scenario involving n + 1 vehicles, including the ego vehicle,

denoted by 0, and n other interacting vehicles k, k ∈ {1, . . . , n}, which correspond to

vehicles that are aware of the ego vehicle’s merging attempt. Note that vehicles that

are not aware of the merging vehicle can still be considered as the interacting vehicle,

and their intents can be classified as not yielding to the merging vehicle in the actual

application. For the purpose of analyzing and inferring human drivers’ intentions,

we assume all interacting vehicles are aware of the ego vehicle’s merge. Therefore,

the traffic state and its dynamics are characterized by the aggregation of all n + 1

vehicles’ states and dynamics. Specifically, we describe the traffic dynamics using the
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following discrete-time model,

s̄t+1 = f(s̄t, ūt), (2.2)

where s̄t = (s0t , s
1
t , s

2
t , . . . , s

n
t ) denotes the traffic state at the discrete time instant

t, with s0t denoting the ego vehicle’s state and skt , k ∈ {1, . . . , n}, denoting the

kth interacting vehicle’s state; and similarly, ūt = (u0t , u
1
t , u

2
t , . . . , u

n
t ) denotes the

aggregation of all n+ 1 vehicles’ control inputs at the time constant t. In particular,

each vehicle’s state skt , k ∈ {0, 1, . . . , n}, consists of its x and y positions, speed,

and yaw angle, i.e., skt = [xkt , y
k
t , v

k
t , ψ

k
t ]

T , and each vehicle’s control inputs are ukt =

[akt , δ
k
f,t]

T . Accordingly, the function f in (2.2) that represents the transition of traffic

state from s̄t to s̄t+1 as a result of all vehicles’ control inputs ūt is an aggregation of

(n+ 1)-copies of the kinematic bicycle model (2.1) converted to discrete time with a

specified sampling period ∆T and using the Euler method.

2.2.4 Reward function

The reward function R(s̄t, ūt) is a mathematical representation of the driving goals

of the driver. Here, we start by considering the interactions between the ego vehicle

and one other vehicle, i.e., s̄t = (s0t , s
1
t ) and ūt = (u0t , u

1
t ). In this case, the traffic

state is composed of the states of these two vehicles, and the reward received by the

ego vehicle depends on the states and control inputs of both vehicles. Following [83],

we consider

R
(
s̄t, u

0
t , u

1
t

)
= wT r, (2.3)

where r = [r1, r2, r3, r4, r5]
T and w ∈ R5

+ is a vector of weights. The reward terms

r1, . . . , r5 are defined to represent the following common considerations during driving:

1) safety (r1, r2), i.e., not colliding with other vehicles and not getting off the road; 2)

liveness (r3, r4), i.e., approaching the destination; and 3) perceived safety and comfort

(r5), i.e., maintaining a reasonable separation from other vehicles.

More detailed definitions of r1, . . . , r5 are the following,

• r1 is an indicator for vehicle collisions. A vehicle is represented by a 7 (m) ×
2.5 (m) bounding box. If the ego vehicle’s bounding box overlaps with that of

another vehicle, then r1 = −1; r1 = 0 otherwise. The weight for r1 is chosen

to be large to prioritize vehicle safety over other considerations. Note that for

actual dataset validation, the bounding box size is adjusted according to the

actual vehicle’s dimension.
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• r2 is an indicator for getting outside road boundaries. The road boundaries

represent safety and hard position limit for the autonomous merging task. The

ego vehicle is considered outside road boundary if it either enters the target

lane too early (before the start of the acceleration lane) or does not accomplish

merge when reaching the end of the acceleration lane.

• r3 and r4 capture the liveness properties of a vehicle, defined according to

r3 = x0, r4 = − |y0 − yr|, (2.4)

where yr corresponds to the center of target lane. We assign a higher weight to

r4 than r3 to promote merging whenever appropriate.

• r5 penalizes the ego vehicle for getting too close to other vehicles. We consider

a larger, 11 (m) × 3 (m) bounding box for each vehicle, and r5 = −1 if this

larger bounding box of the ego vehicle overlaps with that of another vehicle;

r5 = 0 otherwise. This term is used to encourage the ego vehicle to maintain a

reasonable separation distance from other vehicles to improve safety and com-

fort. Note that for actual dataset validation, the bounding box size is adjusted

proportional to the actual vehicle’s dimension.

2.2.5 Selecting trajectories as vehicle actions

Instead of considering a discrete set of acceleration a and steering δf values as

in [83], we consider a sampled set of vehicle motion trajectories over a planning

horizon of T = N∆T (s) as the action space for each vehicle. Directly using vehicle

motion trajectories has been widely used in the literature [111, 112]. Specifically,

each trajectory is a time history of vehicle state st = [xt, yt, vt, ψt]
T starting from

the vehicle’s current state s0. Note that the time history of control inputs ut =

[at, δf,t]
T corresponding to each trajectory can be computed from the vehicle dynamics

model (2.1). Compared to representing vehicle motion using discrete acceleration and

steering levels as in [83], the method here can lead to smoother trajectories and finer-

resolution controls, which will be illustrated in Section 2.5.

For interacting vehicles driving in the target lane, we only consider their longitu-

dinal motion, which corresponds to the assumption that these vehicles do not change

lanes. Assuming ψ = 0 and δf = 0, the kinematic bicycle model (2.1) for these
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vehicles reduces to

ẋ = v, ẏ = 0, v̇ = a, ψ̇ = 0, β = 0. (2.5)

In this case, a trajectory starting with a given initial condition depends only on the

profile of acceleration a over [0, T ]. In particular, at each sample time instant, we

consider 81 acceleration profiles, which translates into 81 trajectories through (2.5),

for each interacting vehicle k driving in the target lane, and we treat these trajectories

as its admissible actions. Note that we also enforce the speed limits vkt ∈ [vmin, vmax]

when we generate these trajectories. We denote each such trajectory as γkm(s
k
0), with

m = 1, 2, . . . , 81, and the collection of such trajectories as Γk(sk0) := {γkm(sk0)}81m=1.

Figure 2.3: A sampled 5th-order polynomial lane change trajectory.

The merging vehicle’s maneuvers include both lane keeping and lane change. Tra-

jectories or pieces of trajectories that represent lane keeping are generated using (2.5)

in a similar way as above. For a lane change, we use 5th-order polynomials to repre-

sent lane change trajectories [113], where a sample lane change trajectory is shown in

Figure 2.3. Specifically, a lane change trajectory is produced by the solution to the

following boundary value problem: Find the coefficients a1, . . . , a5 and b1, . . . , b5 such

that the 5th-order polynomials

x(ζ) = a0 + a1ζ + a2ζ
2 + a3ζ

3 + a4ζ
4 + a5ζ

5,

y(ζ) = b0 + b1ζ + b2ζ
2 + b3ζ

3 + b4ζ
4 + b5ζ

5,
(2.6)

satisfy specified initial and terminal conditions (xini, ẋini, ẍini, yini, ẏini, ÿini) and

(xterm, ẋterm, ẍterm, yterm, ẏterm, ÿterm), where (xini, ẋini, ẍini, yini, ẏini, ÿini) corresponds to

either the vehicle’s current state or its state at the start of a lane change, and
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(xterm, ẋterm, ẍterm, yterm, ẏterm, ÿterm) corresponds to the vehicle’s state after the com-

pletion of a lane change. The variable ζ in (2.6) denotes continuous time. We let

ζ = 0 correspond to the current sample time instant and assume that 1) the vehicle

can start a lane change at any sample time instant ζ = t∆T , with t = 0, . . . , N − 1,

over the planning horizon, and 2) a complete lane change takes a constant time du-

ration of Tlc = 3 (s) [113]. Then, for the case where at the current sample time

instant the vehicle is in the middle of a lane change (i.e., the vehicle started the lane

change ∆Tlc (s) ago), (xini, ẋini, ẍini, yini, ẏini, ÿini) corresponds to the vehicle’s current

state and is satisfied by (2.6) at ζ = 0, while (xterm, ẋterm, ẍterm, yterm, ẏterm, ÿterm) is

satisfied by (2.6) at ζ = Tlc−∆Tlc. For the case where the vehicle starts a lane change
at a future sample time instant t∆T , (xini, ẋini, ẍini, yini, ẏini, ÿini) corresponds to the

vehicle’s state at the start of the lane change and is satisfied by (2.6) at ζ = t∆T ,

while (xterm, ẋterm, ẍterm, yterm, ẏterm, ÿterm) is satisfied by (2.6) at ζ = t∆T + Tlc. Fur-

thermore, we allow the vehicle, when it is in the middle of a lane change, to abort

the lane change at any sample time instant ζ = t∆T over the planning horizon.

This represents a “change of mind” of the driver when a previously planned lane

change becomes no longer feasible/safe. A trajectory for aborting a lane change is

generated in a similar way as a lane change trajectory, but the terminal condition

(xterm, ẋterm, ẍterm, yterm, ẏterm, ÿterm) corresponds now to the vehicle’s state after its

returns to its original lane. Finally, we glue together pieces of trajectories for lane

keeping, lane change, and aborting lane change to construct complete trajectories over

the planning horizon. This way, we obtain a total of 162 trajectories for the merging

vehicle that we treat as admissible actions. Each of these trajectories is characterized

by 1) whether and when to start a lane change and 2) whether and when to abort an

improper lane change. Figure 2.4 illustrates a sampled set of such trajectories when

the vehicle has not started a lane change and those when the vehicle is in the middle

of a lane change. We denote each such trajectory as γ0m(s
0
0), with m = 1, 2, . . . , 162,

and the collection of such trajectories as Γ0(s00) := {γ0m(s00)}162m=1.
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Figure 2.4: Sample trajectories for the merging vehicle. Left figure shows some sample

trajectories of the ego merging vehicles before the merging starts. Right figure shows

some sample trajectories of the ego merging vehicle after it starts the merging process.

We have defined the choice of a trajectory over a planning horizon for the merging

vehicle as its action. Note that the time history of control inputs ut = [at, δf,t]
T

corresponding to each of these trajectories can be calculated according to the vehicle

dynamics model (2.1). In the actual implementation, the chosen trajectory can also

be commanded to a lower level vehicle motion controller, and in this chapter, it is

assumed that the motion according to (2.6) is accurately realized.

2.2.6 Model predictive control strategy

We first consider an MPC-based trajectory planning strategy for the autonomous

ego vehicle accounting for the presence of a single interacting vehicle: At each sample

time instant t, the ego vehicle computes an optimal trajectory, (γ0t )
∗, that maximizes

its cumulative reward over the planning horizon according to

(γ0t )
∗ ∈ argmax

γ0
t ∈Γ0(s0t )

N−1∑
τ=0

λτR
(
s̄t+τ , u

0
t+τ , u

1
t+τ

)
, (2.7)

s.t. s̄t+τ+1 = f
(
s̄t+τ , u

0
t+τ , u

1
t+τ

)
,

s̄t+τ ∈ Ssafe, ∀τ = 1, . . . , N,

where s̄t+τ = (s0t+τ , s
1
t+τ ) represents the predicted traffic state at the discrete time

instant t + τ , while u0t+τ and u1t+τ represent, respectively, the predicted ego vehicle’s

and interacting vehicle’s control inputs at t+τ . The parameter λ ∈ (0, 1) is discount-

ing future reward thereby prioritizing immediate reward. In (2.7), R
(
s̄t+τ , u

0
t+τ , u

1
t+τ

)
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represents the reward received by the ego vehicle at t+ τ , which is described in Sec-

tion 2.2.4, and Ssafe represents a set of safe traffic states, used to enforce strict safety

specifications (such as collision avoidance, road boundary constraints, etc). After

an optimal trajectory (γ0t )
∗ is obtained, the ego vehicle applies the control inputs

corresponding to this trajectory, (u0t )
∗ = [(a0t )

∗, (δ0f,t)
∗]T , over one sampling period

to update its state, and then repeats the above procedure at the next sample time

instant t+ 1.

Note the following points: 1) The expression (2.7) corresponds to the case where

the ego vehicle interacts with only one other vehicle (k = 1). We will extend our MPC

strategy to handle multiple vehicle interactions in Section 2.4.2. 2) The ego vehicle’s

control inputs over the planning horizon, {u0t , . . . , u0t+N−1}, correspond to its planned

trajectory γ0t and are calculated using γ0t and the vehicle dynamics model (2.1), as

has been discussed in Section 2.2.5. 3) The interacting vehicle’s control inputs over

the planning horizon, {u1t , . . . , u1t+N−1}, are unknown variables. In what follows, we

introduce a game-theoretic approach that enables predictions of {u1t , . . . , u1t+N−1} in
response to the ego vehicle’s actions so that the MPC problem (2.7) is solvable.

2.3 Game-Theoretic Model for Vehicle Cooperation Behav-

iors and Explicit Representation Using Imitation Learn-

ing

In this section, we introduce the leader-follower game employed in this chapter

for modeling the interaction/cooperation between the merging vehicle and vehicles

driving in the target lane. In order to simplify the online computations associated with

this game-theoretic model, imitation learning is utilized to derive a neural network-

based explicit representation of the model, which is used online for predicting the

interacting vehicles’ trajectories in response to the merging ego vehicle’s actions in

our MPC-based trajectory planning strategy.

2.3.1 Leader-follower game-theoretic model

During a highway forced merge process, the merging vehicle (ego vehicle) inter-

acts with other vehicles driving in the target lane, who may choose to proceed or

yield to the merging vehicle depending on the traffic situation and individual driver’s

preference. In this chapter, we consider a game-theoretic model based on pairwise

leader-follower interactions, called a leader-follower game, to represent drivers’ coop-
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eration intentions and their resulting vehicle behaviors. In this model, a vehicle (or,

a driver) who decides to proceed before another vehicle is a leader in this vehicle pair

and the one who decides to yield to another vehicle is a follower in the pair. The

leader and the follower use different decision strategies. This leader-follower game-

theoretic model was originally proposed in [99], where it demonstrated the ability

to effectively model drivers’ intentions to proceed or yield (e.g., caused by common

traffic rules and etiquette) in driving through intersections scenarios. Here, we briefly

review this game-theoretic model and introduce its application to our highway forced

merge scenarios.

Denote the trajectories of the leader and the follower as γl,t ∈ Γl(s̄t), and γf,t ∈
Γf (s̄t), respectively, where Γl(s̄t) and Γf (s̄t) are the sets of admissible trajectories of

the leader and the follower. We assume that both vehicles make decisions to maximize

their cumulative rewards, denoted as Rl(s̄t, γl,t, γf,t) and Rf (s̄t, γl,t, γf,t), respectively,

and defined according to

Rσ

(
s̄t, γl,t, γf,t

)
=

N−1∑
τ=0

λτRσ

(
s̄t+τ , ul,t+τ , uf,t+τ

)
, (2.8)

where σ ∈ L = {leader, follower} represents the leader or follower role in the game,

Rσ

(
s̄t+τ , ul,t+τ , uf,t+τ

)
is the reward function for the leader or the follower defined as in

Section 2.2.4, ul,t+τ and uf,t+τ , τ = 0, . . . , N −1, are the control inputs corresponding

to γl,t and γf,t as described in Section 2.2.5, and λ is the discount factor.

Specifically, we model the leader’s and the follower’s interactive decision processes

as follows:

γ∗l (s̄t) ∈ argmax
γl,t∈Γl(s̄t)

Ql(s̄t, γl,t), (2.9)

γ∗f (s̄t) ∈ argmax
γf,t∈Γf (s̄t)

Qf (s̄t, γf,t), (2.10)

where γ∗l (s̄t) (resp. γ
∗
f (s̄t)) is an optimal trajectory of the leader (resp. follower) given

the current traffic state s̄t, and Ql and Qf are defined as

Ql(s̄t, γl,t) = min
γf,t∈Γ∗

f (s̄t)
Rl(s̄t, γl,t, γf,t), (2.11)

Qf (s̄t, γf,t) = min
γl,t∈Γl(s̄t)

Rf (s̄t, γl,t, γf,t), (2.12)

where Γ∗
f (s̄t) = {γ′f,t ∈ Γf (s̄t) : Qf (s̄t, γ

′
f,t) ≥ Qf (s̄t, γf,t), ∀γf,t ∈ Γf (s̄t)}.

24



The decision model (2.9)-(2.12) can be explained as follows: A follower represents

a driver who intends to yield. Due to uncertainty about the other driver’s action, the

follower decides to take an action that maximizes her worst-case reward through (2.10)

and (2.12). Such a “max-min” decision strategy of the follower models the yielding

behavior because it assumes the other driver can take actions freely. Similarly, a

leader represents a driver who intends to proceed and assumes the other driver will

yield. Therefore, the leader uses the follower model to predict the other driver’s

action and takes an action that maximizes the leader own reward under the predicted

follower’s action through (2.9) and (2.11).

Note that this leader-follower strategies set-up is not symmetric. We let the fol-

lower adopt the worst-case assumptions (which is reasonable since the follower does

not know the leader’s action/strategy), but let the leader adopt the best-case assump-

tions (which imply that the follower will take the conservative worst-case strategy).

The worst-case assumptions of the follower are realized by considering all possible

actions of the leader during the minimization (2.12), whereas the best-case assump-

tions of the leader are achieved by only considering actions in Γ∗
f (s̄t), as shown in

(2.11). Γ∗
f (s̄t) is follower’s set of rational actions, which consists of all actions in the

current state s̄t that can maximize the worst-case reward. We purposely introduce

this asymmetry to provoke aggressive actions from the leader of the game.

With the above review of the game-theoretic model originally introduced in [99],

we explain below the strategy in the context of a main lane traveling vehicle making

decisions in the situations where an on-ramp vehicle is likely to perform a forced

merge maneuver under heavy traffic. A follower in the game represents a cautious

or conservative driver, who tends to yield to an on-ramp merging vehicle. Due to

uncertainty about all possible on-ramp merging vehicles’ actions, the follower is as-

sumed to take a “max-min” strategy to secure his reward in the worse-case, which

is achieved through (2.10) and (2.12). A leader, on the contrary, represents an ag-

gressive driver and may favor proceeding before the on-ramp merging vehicle. This

aggressive behavior is induced by assuming the other player, the on-ramp vehicle, is

being a follower and taking the worst case “max-min” strategy described by (2.9) and

(2.11).

Note that while the above decision model is inspired by a Stackelberg game model

[114], however, as stated in (2.9)-(2.12) it differs from a Stackelberg game model and

the associated Stackelberg equilibrium. A Stackelberg game model relies on stronger

assumptions such as the follower can instantaneously know and respond to the leader’s

action, and this is usually not the case during drivers’ interactions due to the fact

25



that a driver’s decision can only be revealed over time and is further impeded by

human reaction delay. In contrast, (2.9)-(2.12) do not rely on such an assumption.

Although the asymmetric leader-follower roles in the decision model (2.9)-(2.12)

are used to represent drivers’ intentions and tendencies to proceed or yield, the model

does not imply that a main lane vehicle will always choose to proceed when it encoun-

ters a follower on-ramp vehicle. Neither does it imply an on-ramp merging vehicle will

always force a merge if it encounters a follower vehicle in the main lane. For instance,

a merging vehicle may merge in front of a leader interacting vehicle in the following

two situations: 1) The merging vehicle is ahead of the interacting vehicle with a suffi-

ciently large distance to allow safe merging. 2) The merging vehicle is about to reach

the end of its lane. In the second situation, getting off the road would yield a large

penalty (see Section II-C), and the merging vehicle may choose to merge ahead of the

interacting vehicle to avoid the large penalty as long as its merge is not ‘likely’ (to be

quantified in a later section) to lead to a collision. The above observations clarify that

the leader-follower roles in our decision model (2.9)-(2.12) are not determined simply

by vehicle spatial positions (i.e., a leader is not necessarily a vehicle in front). More-

over, this model facilitates the highway merging human driver behavior we have all

observed – an on-ramp vehicle may choose to merge and force the traffic in the main

lane to slow down, if necessary. As the merging vehicle approaches the end of its lane,

it is increasingly inclined to merge to avoid the penalty of getting off the road even

if all the interacting vehicles on the target/main lane are leaders (whose drivers are

inclined to proceed) and the current gaps are not large enough for a typical constant

speed comfortable merge. As for the aggressive behaviors of human drivers of the

main lane vehicles, the model (2.9)-(2.12) enhances the safety aspects of these leader

interacting vehicles, as they will be able to predict the on-ramp vehicle’s upcoming

merging maneuver. Then, for their own safety and comfort, these aggressive drivers

may still choose to slow down and yield despite playing a leader’s role. Therefore, our

leader-follower model (2.9)-(2.12) is suitable for trajectory prediction and planning in

tight and competitive traffic scenarios where forced merges are commonly observed.

2.3.2 Explicit representation of leader-follower game policy through im-

itation learning

Based on (2.9)-(2.12), we are able to predict other vehicles’ decision and trajecto-

ries given the knowledge of drivers’ intentions and the current traffic state information.

Hence, we can denote leader’s optimal action policy as γ∗l (s̄t) and follower’s optimal

action policy as γ∗f (s̄t). Obtaining γ∗l (s̄t) and γ
∗
f (s̄t) require going through (2.9)-(2.12),
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and the repeated online computations involving (2.9)-(2.12) can be time consuming.

As a result, we want to explicitly represent γ∗l and γ∗f .

Here, γ∗σ(s̄t), σ ∈ L are maps that map current traffic state to a predicted tra-

jectory that other vehicles will follow. These maps are determined according to

(2.9)-(2.12). Instead of algorithmically determining γ∗l (s̄t) and γ
∗
f (s̄t), we follow [115]

and exploit the use of supervised learning, more specifically, imitation learning, to

represent γ∗σ(s̄t).

Imitation learning can be considered as a supervised learning problem, where an

autonomous agent tried to learn a policy by observing expert’s demonstrations. The

expert demonstration can be generated either by a human operator or an artificial

intelligent agent. In this work, we treat γ∗σ(s̄t) obtained by (2.9)-(2.12) as the expert

policy.

Algorithm 2.1 Imitation learning algorithm to obtain Leader-Follower Game policies

1: Initialize γ̂0k to an arbitrary policy
2: Initialize dataset D = ∅
3: for n = 1 : nmax do
4: Initialize the simulation environment
5: for t = 0 : tmax − 1 do
6: if ego vehicle fails or succeeds then
7: Break
8: end if
9: if γ̂n−1

k (s̄t) ̸= γk(s̄t) then
10: D = D ∪ (s̄t, γk(s̄t))
11: end if
12: Randomly select γ0 ∈ Γ0

13: s̄t+1 = f(s̄t, γ0, γ̂
n−1
k (s̄t))

14: end for
15: Train classifier γ̂nk on D
16: end for
17: γ̂k = γ̂nmax

k

Mathematically, the imitation learning process can be formulated as,

γ̂σ ∈ argmin
γθ

Es̄∼P(s̄|γ∗
σ)

(
L(γ∗σ(s̄), γθ(s̄))

)
, (2.13)

where γθ represents a policy that is optimized with respect to and is parametrized

by θ (e.g. neural network weights), L represents a loss function, and Es̄∼P(s̄|γ∗
σ)(·) is

defined as,

Es̄∼P(s̄|γ∗
σ)(·) =

∫
(·)dP(s̄|γ∗σ). (2.14)
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From (2.13) and (2.14), one important feature is that the expectation is with

respect to the probability distribution P (s̄|γ∗σ), which represents the distribution of s̄

with respect to the expert policy γ∗σ.

As investigated in [115], traditional imitation learning followed by (2.13) and

(2.14) suffers from sampling bias issues because only the state that can be reached by

executing the expert policy γ∗σ will be included in the dataset, and this sampling bias

can make the error between the expert policy γ∗σ and the trained policy γ̂σ propagate

over time. More specifically, a bias prediction of the trained policy at one time may

lead the system to reach a new state that is not in the training dataset, and the

trained policy will need to make a prediction at the new state, which may cause the

predicted state and actual state become farther and farther away over time.

To overcome this drawback, the “Dataset Aggregation” algorithm has been used

to obtain the policy γ̂σ. The overall learning objective for the Dataset Aggregation

algorithm can be described by,

γ̂σ ∈ argmin
γθ

Es̄∼P(s̄|γ̂θ)

(
L(γ∗σ(s̄), γθ(s̄))

)
, (2.15)

Es̄∼P(s̄|γθ)(·) =
∫

(·)dP(s̄|γθ). (2.16)

Intuitively, the difference between (2.13) and (2.15) is that the later optimizes

the expectation with respect to the probability distribution induced by the policy γθ.

This can effectively resolve the propagation of errors due to sampling bias, because

the dataset contains information of states s̄ reached by executing γθ.

Algorithm 2.1 presents how we obtain an explicit representation of the leader or

follower decision policies through imitation learning. In Algorithm 2.1, nmax rep-

resents the total number of learning epochs and tmax the simulation length of each

learning epoch. For each learning epoch, simulation environment is first initialized

(Line 4), which means the force merge scene is created with ego vehicle and one

interacting vehicle. When the ego vehicle either merges successfully or fails (means

collision or fail to merge by the end of current lane), the algorithm will restart with

another learning epoch (Line 6-8).

With the aid of such explicit representation of (2.9)-(2.12) through imitation learn-

ing, we are able to reduce the online computation of γ∗l (st) and γ∗f (st) by over 300

times, from 0.325 (s) (by going through (2.9)-(2.12)) to 0.001 (s) (by accessing the

imitated policy). These timing results are based on averaging over 500 random gen-

erated st, and the tests are performed on the computer listed in Section 2.5. The
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drawback of this imitation learning approach is that it requires training of the neural

network to represent the policy and a sufficient set of data for training.

2.4 Decision Making under Cooperation Intention Uncer-

tainty

In this section, we describe the decision making algorithm, called the Leader-

Follower Game Controller (LFGC), for the highway forced merge scenario under co-

operation intention uncertainty. During the forced merge process, we generate an

estimate of other driver’s cooperation intention, as described in this section. Based

on the estimate of cooperation intention, we apply the control strategy presented in

(2.7) under multi-vehicle interactions settings by considering pairwise interactions.

2.4.1 Estimation of interacting vehicle’s cooperation intention

According to Section 2.3, the model (2.9)-(2.12) and the imitation learning policies

can be used to predict the other vehicles’ decisions and future trajectories under the

knowledge of their drivers’ cooperation intentions. However, in a given traffic scenario,

we may not know the other drivers’ cooperation intentions a priori, because a driver’s

intention depends not only on the traffic situation (e.g., the relative position and

velocity between two vehicles) but also on the driver’s style/type (e.g., aggressive

versus conservative). To deal with prior uncertainties in other vehicles’ cooperation

intentions, in what follows we describe an approach where such uncertainties are

modeled as latent variables, other vehicle’s cooperation intentions are estimated, and

the trajectory is generated through the application of predictive control. We can

model other driver’s behavior based on their cooperation intentions using the leader-

follower game. A yielding vehicle may have similar behavior as a follower in the game,

while a proceeding (not yielding) vehicle may be modeled as a leader in the game. In

this sense, we can estimate interacting vehicle’s cooperation intention by estimating

their leader or follower roles in the leader-follower game.

To achieve that, we consider the traffic dynamics model (2.2) and the leader or

follower’s optimal actions (2.9) and (2.10). From the perspective of the ego vehicle, the

interacting vehicle is playing a leader-follower game with it, and the traffic dynamics

model can be written as

s̄t+1 = f(s̄t, u
0
t , u

1
t ) = f

(
s̄t, u

0
t , (u

1
σ,t)

∗(s̄t)
)
, (2.17)
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where u0t is the control of ego vehicle, u1t is the control of the interacting vehicle

and is determined by the leader-follower game, σ ∈ L = {leader, follower} represents
either leader of follower, and (u1σ,t)

∗(s̄t) is the first control input corresponding to the

optimal trajectory of γ∗σ(s̄t) in (2.9) and (2.10). Now the only input to (2.17) is the

control of the ego vehicle u0t .

However, in reality, the interacting vehicle’s decision does not necessarily follow

the optimal policy computed from (2.9) and (2.10). In order to account for the

difference between the leader-follower policy and the actual policy of the interacting

vehicle, we assume the system is propagated by (2.17) with an additive Gaussian

noise, i.e.,

s̄t+1 = f
(
s̄t, u

0
t , (u

1
σ,t)

∗(s̄t)
)
+ w, w ∼ N(0,W ), (2.18)

where w is the additive Gaussian noise with 0 mean and covariance W .

The ego vehicle is assumed to have a prior belief on σ, denoted as P(σ = l), with

l ∈ L = {leader, follower}. Then based on all previous traffic states and on all actions

taken by the ego vehicle,

ξt = {s̄0, s̄1, . . . , s̄t, u00, u01, . . . , u0t−1}, (2.19)

the ego vehicle needs to compute or maintain a posterior belief of the interacting

vehicle’s leader or follower role, P(σ = l|ξt).
The conditional posterior belief of interacting vehicle’s leader or follower’s role is

computed using the hybrid estimation algorithm proposed in [116].

Specifically, identification of the interacting vehicle’s leader or follower role can be

achieved by

P(σ = l|ξt) =
Λl,t

ct

∑
k∈L

πlkP(σ = k|ξt−1), (2.20)

where P(·|·) is the conditional probability; πlk denotes the transition probability of

the interaction vehicle’s role from k to l; and Λl,t is the likelihood function of the

interacting vehicle as role l, defined by

Λl,t = N (rl,t, 0,W ),

rl,t = s̄t − f(s̄t−1, u
0
t−1, (u

1
l,t)

∗(s̄t−1)),
(2.21)

whereN (rl,t, 0,W ) denotes the probability density function of the normal distribution

with mean 0 and covariance W evaluated at rl,t; and ct is a normalization constant.

Assuming the interacting vehicle’s role remains unchanged over the merge period,
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i.e., πlk = 1 when l = k and πlk = 0 when l ̸= k, the posterior belief of the interacting

vehicle’s leader or follower role can be updated using

P(σ = l|ξt) =
N (rl,t, 0,W )P(σ = l|ξt−1)∑

k∈LN (rk,t, 0,W )P(σ = k|ξt−1)
, (2.22)

where P(σ = l|ξt−1) is the previous belief of the interacting vehicle’s leader or follower

role. Note that the belief in (2.22) is updated from previous to posterior at the 4

(Hz) decision frequency; hence the approach still allows to account for changing roles

of the interacting vehicle during the merge period.

2.4.2 Control strategy for multi-vehicle interactions

When the traffic is busy, there may exist multiple vehicles on highway that may

interfere with the ego vehicle’s merge, such as in the case shown in Figure 2.1. One

low complexity solution would be for the ego vehicle to only consider interaction with

the first vehicle, and after the first vehicle becomes farther away, the ego vehicle starts

to interact with the second vehicle. However, this may slow down the estimate of later

vehicles’ intentions, and in the case of highway forced merge, this can lead to the ego

vehicle missing an opportunity to merge.

Another solution is to interact with multiple vehicles at the same time. In this

case, a model needs to be constructed to predict interacting vehicle’s actions. Al-

though the 2-player leader-follower game described in Section 2.3 can be extended to

multi-player leader-follower game by considering a multi-level decision hierarchy and

then solving for the Nash-equilibrium, such extensions may exponentially increase the

computational time as the number of players increase. The Stackelberg equilibrium

can be hard to obtain when there are more than 3 players [117]. As a result, we pro-

pose a computationally tractable approach to extend the framework to multi-vehicle

interactions by considering pairwise interactions.

When there arem interacting vehicles, we consider pairwise interactions of the ego

vehicle and each interacting vehicle. Then we can construct m traffic states denoted

as s̄k, k ∈ {1, . . . ,m} which contains the states of the ego vehicle and kth interacting

vehicle, and the dynamic model of each s̄k is given by

s̄kt+1 = f(s̄kt , ū
k
t ) = f(s̄kt , u

0
t , u

k
t ). (2.23)

Similarly, we can denote by σk ∈ L = {leader, follower} the pairwise leader or

follower role of the kth interacting vehicle and by ξkt the collection of all previous
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pairwise traffic states and actions taken by the ego vehicle, i.e.,

ξkt = {s̄k0, s̄k1, . . . , s̄kt , u00, u01, . . . , u0t−1}. (2.24)

Then we can utilize (2.22) to update the belief of each interacting vehicle’s leader

or follower role, P(σk = l|ξkt ), l ∈ L = {leader, follower}. The MPC-based control

strategy presented in (2.7) can be reformulated as

(γ0)∗∈argmax
γ0∈Γ0(s0t )

m∑
k=1

E
{N−1∑

τ=0

λτR
(
s̄kt+τ , u

0
t+τ , û

k
σk,t(s̄

k
t+τ )

)∣∣∣∣ξkt}, (2.25)

s.t. s̄kt+τ+1 = f
(
s̄kt+τ , u

0
t+τ , û

k
σk,t(s̄

k
t+τ )

)
,∀k = 1, . . . ,m

m∑
k=1

P
(
s̄kt+τ ∈ Ssafe, ∀τ = 1, . . . , N

∣∣∣ξkt ) ≥ m− ε,

where ûkσ,t(s̄
k
t+τ ) is the first control input corresponding to the trajectory of the trained

policy γ̂σ(s̄
k
t+τ ) in (2.15), and ε ∈ [0, 1] represents a (user-specified) required prob-

ability level of constraint satisfaction. Please note that we treat the selection of

the trajectory (time-history of states) as the vehicle’s control action, and (2.25) is

solved by evaluating all pre-computed trajectories in the carefully chosen trajectory

set Γ0(s0t ). By carefully constructing the trajectory set as described in Section 2.2.5,

we are able to ensure computational efficiency and to guarantee optimality within the

pre-computed trajectory set.

The expectation in the objective function can be computed according to

E
{N−1∑

τ=0

λτR
(
s̄kt+τ , u

0
t+τ , û

k
σk,t(s̄

k
t+τ )

)∣∣∣∣ξkt}

=
∑
l∈L

N−1∑
τ=0

λτR
(
s̄kl,t+τ , u

0
t+τ , û

k
l,t(s̄

k
l,t+τ )

)
P(σk = l|ξkt ),

(2.26)

where s̄kl,t+τ is the predicted traffic state given that the interacting vehicle’s role is l,

s̄kl,t+τ+1 = f
(
s̄kl,t+τ , u

0
t+τ , û

k
l,t(s̄

k
l,t+τ )

)
(2.27)

and the last constraint in (2.25) can be evaluated by

P
(
s̄kt+τ ∈ Ssafe,∀τ = 1, . . . , N

∣∣∣ξkt ) =
∑
l∈L

min
1≤τ≤N

ISsafe
(s̄kl,t+τ )P(σk = l|ξkt ), (2.28)
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where IB(b) is the indicator function of b in set B.

Note that the last constraint in (2.25) enforces the following condition,

P
( m⋂

k=1

s̄kt+τ ∈ Ssafe,∀τ = 1, . . . , N
∣∣∣ξkt ) ≥ 1− ε, (2.29)

which means that the probability of any pairwise interactions entering unsafe states

(e.g., collision and out of road boundaries) is less than ε.

To derive (2.29), we first denote the event Ak := {s̄kt+τ ∈ Ssafe,∀τ = 1, . . . , N |ξkt },
then

P
( m⋂
k=1

Ak
)
= 1− P

( m⋃
k=1

(Ak)c
)
≥ 1−

m∑
k=1

P
(
(Ak)c

)
= 1−

m∑
k=1

(1− P(Ak)) =
m∑
k=1

P(Ak)−m+ 1,

and applying the last constraint in (2.25), it follows that

P
( m⋂
k=1

Ak
)
≥

m∑
k=1

P(Ak)−m+ 1 ≥ 1− ε.

The major differences between (2.7) and (2.25) are the following: 1)

{u1t , u1t+1, . . . , u
1
t+N−1} presented in (2.7) are unknown, while in (2.25), they are ob-

tained based on trained policy from the imitation learning; 2) The maximization of

the cumulative reward in (2.7) is changed to maximization of the expected cumula-

tive reward in (2.25) to account for probabilistic belief about the interacting vehicle’s

leader/follower role; 3) The expected cumulative reward is changed to the sum of the

expected reward of all pairwise interactions to account for uncertain behavior of mul-

tiple vehicles; 4) The hard constraint is changed to a probabilistic chance constraint

with ε ∈ [0, 1] being a design parameter.

The decision making algorithm proceeds as follows: At the sampling time t, the

ego vehicle measures the current states of each pairwise interaction and adds them

together with the previous control input to the observation vectors ξkt . The belief

about each vehicle’s leader or follower role is updated according to (2.22) based on

ξkt . Then, the MPC-based control strategy (2.25) is utilized to obtain the optimal

trajectory (γ0)∗ by searching through all trajectories introduced in Section 2.2.5, and

the ego vehicle applies the first control input (u0t )
∗ over one sampling period to update

its states. The whole procedure is repeated at the next sampling time.
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Note that the control strategy (2.25) is “interaction-aware” due to the following

reasons: 1) It predicts other vehicles’ trajectories under varied interaction intentions

based on the leader-follower game-theoretic model (2.9)-(2.12). 2) The predictions

are closed-loop. Specifically, for different trajectory plans of the ego vehicle, γ0 ∈
Γ0(s0t ), the corresponding trajectory predictions of the other vehicles under certain

intentions are different. This is the case because the predicted other vehicles’ actions

are traffic state-dependent while the predicted traffic states depend on the planned ego

vehicle’s trajectory. 3) The objective function in (2.25) is a conditional expectation

and the constraint to represent safety is a conditional probability, both of which

are conditioned on the latest estimates of other vehicles’ intentions (i.e., leader or

follower), P(σk = l|ξkt ). Meanwhile, the other vehicles’ intentions are estimated based

on their previous interaction behaviors.

2.5 Simulation and Validation Results

In this section, we present validation results of applying the proposed Leader-

Follower Game Controller (LFGC) for autonomous vehicle forced merge problems.

Specifically, we consider three sets of simulation validations, and in these simulations,

the LFGC assumes that interacting vehicles are playing a leader-follower game with

the ego vehicle and estimates their leader/follower roles in the game. We also assume

that once in the mandatory lane change situation, the ego vehicle prepositions itself

towards the lane marker with turn signals to declare its merge intention and starts the

forced merge process. As a result, interacting vehicles are aware of the ego vehicle’s

merging intention and react accordingly. We first validate the LFGC with interacting

vehicles controlled by leaders or followers in the leader-follower game. Then we test

the LFGC versus interacting vehicles controlled by other types of drivers or actual

traffic data. Specifically, we test the cases where interacting vehicles are controlled

by the intelligent driver model (IDM) and where interacting vehicles are following the

actual US Highway 101 traffic data present in the Next Generation Simulation website

[82]. In the first two sets of tests (interacting vehicles controlled by leader-follower

game and IDM), three interacting vehicles moving at high velocity are considered,

and in the third set of test, a real traffic dataset corresponding to a fairly dense traffic

is considered. In these simulation studies, ∆T for planning is chosen as 1 (s), and

the LFGC makes decisions at a frequency of 4 (Hz). Note that our simulations are

performed in MATLAB R2019a on an PC with Intel Xeon E3-1246 v3 @ 3.50 GHz

CPU and 16 GB RAM.
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2.5.1 Interacting vehicles driven by leader/follower

We first test our proposed LFGC when interacting vehicles are simulated and

controlled by leaders/followers in the game. The scenario we considered is shown in

Figure 2.5, where the autonomous ego vehicle (blue) in the acceleration lane needs

to merge onto the highway before the end of acceleration lane while multiple other

vehicles (red, pink, green) are currently driving on the highway. The ego vehicle starts

the forced merge process by biasing towards lane markers and flashing turn signals at

the moment shown in Figure 2.5. In such a scenario, the autonomous vehicle needs

to interact with other vehicles to merge safely.

Figure 2.5: Illustration of highway forced merge scenarios for validations of the LFGC
when highway vehicles are controlled by leaders/followers in the game.

For the LFGC, the planning horizon is selected as N = 4 and the chance constraint

parameter is chosen as ε = 0.1. Note that a larger N may result in better long-

term performance but also lead to longer computational time, while a smaller N

may emphasize on immediate benefits and hence fail to merge in many scenarios.

For highway forced merge considered in this chapter, N , in general, needs to be

chosen such that it is longer than the duration of the lane change (i.e., N∆T ≥ Tlc).

The initial beliefs are set to ∀k ∈ {1, 2, 3}, P(σk = leader) = P(σk = follower) =

0.5. Figure 2.6 shows the results when the ego vehicle is interacting with different

combinations of leaders and followers. In Figure 2.6, the left column ((a-1) to (d-1))

shows the ego vehicle belief about each of the other vehicles being a leader in the

game, P(σk = leader), k = 1, 2, 3. The right column shows the time history results of

the ego vehicle and other vehicles’ behaviors during this forced merge process.

Figure 2.6(a) shows the results when the ego vehicle is interacting with three

leaders. The ego vehicle is able to capture interacting vehicle’s intentions that all

vehicles are more likely to be leaders in the game as shown in Figure 2.6(a-1). After

obtaining this information, the ego vehicle decides to slow down after t = 1 (s) and

waits to merge after all interacting vehicles pass. Shown in Figure 2.6(b) are the

results of the ego vehicle interacting with two leaders (vehicles 1 and 2) and one
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(a-1) (a-2)

(b-1) (b-2)

(c-1) (c-2)

(d-1) (d-2)

Figure 2.6: Results of the proposed LFGC against other drivers following
leader/follower policy with different leaders and followers combinations: (a) three
leaders; (b) one leader (vehicle 1) and two followers (vehicles 2 and 3); (c) two leaders
(vehicles 1 and 2) and one follower (vehicle 3); (d) three followers. The left column
(a-1) to (d-1) shows the ego vehicle’s belief on other vehicles’ being a leader in the
game, P(σk = leader), k = 1, 2, 3. The right column (a-2) to (d-2) shows the time his-
tory results of the ego and other vehicles behaviors during this forced merge process.
Specifically, in the right column, the boundary line color of each block distinguishes
different vehicles, the number in the block represents time in seconds, the color of each
block describes the speed of the vehicle at that time instant, and the blue dotted line
represents the ego vehicle’s trajectory. Note that vehicles 1-3 share the same vertical
positions, and some offsets in vertical direction are added to better distinguish them
in the figure.

follower (vehicle 3). In this case, the ego vehicle observes that vehicles 1 and 2 speed

up and do not yield to it, so the ego vehicle decides to slow down and merge between

vehicles 2 and 3. When the ego vehicle is interacting with one leader (vehicle 1)

and two followers (vehicle 2 and 3), the ego vehicle recognizes interacting vehicle’s

36



intentions correctly as shown in Figure 2.6(c-1). Then the ego vehicle starts to slow

down after t = 1 (s), and successfully merges between vehicles 1 and 2, which is shown

in Figure 2.6(c-2). We also perform the test when the ego vehicle interacts with three

followers, and the results are shown in Figure 2.6(d), where the ego vehicle observes all

vehicles yielding intentions, speeds up and merges in front of all interacting vehicles.

The average computational time for solving (2.25) at each time step is 0.182 (s).

For all cases shown in Figure 2.6, the initialized beliefs are the same, which means

the ego vehicle does not know ahead of time whether the interacting vehicle is a

leader or a follower. As a result, the ego vehicle relies on its observations to estimate

interacting vehicles leader/follower role. The proposed LFGC can capture interacting

vehicles’ intentions and making decisions accordingly when all interacting vehicles are

controlled by the leader/follower in a leader-follower game.

2.5.2 Interacting vehicles driven by intelligent driver model

The validation results shown in Section 2.5.1 assumes that other drivers make

decisions based on the leader-follower game. The LFGC assumes other drivers are

playing leader-follower game with the ego vehicle, estimates their roles in the game,

and makes decision accordingly. This means that the environment in Section 2.5.1

behaves just as the LFGC expects. However, the actual behavior of other drivers

might be different from the leader-follower game’s policy. As a result, we want to

further investigate how the framework responds to other types of driver models.

In this section, we employ the intelligent driver model (IDM) to control other

vehicles and interact with the ego vehicle. The ego vehicle is still controlled by

the LFGC and tries to estimate interacting vehicles’ intentions by estimating their

corresponding leader or follower roles. IDM is a continuous-time car-following model

and is described by (2.30) to (2.32) [118]. The equations for IDM are

ẋ = v, (2.30)

v̇ = am

(
1−

( v
v0

)δ
−
(ϕ∗(v,∆v)

ϕ

)2)
, (2.31)

where x is the longitudinal position; v is the longitudinal velocity; v0 is the desired

velocity of the vehicle; ϕ = x − xt − lt is the following distance with xt being the

position of the target vehicle and lt being the length of the target vehicle; ∆v = v−vt
is the velocity difference of the vehicle and the target vehicle; ϕ∗(v,∆v) is obtained
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according to,

ϕ∗(v,∆v) = ϕ0 + vT +
v∆v

2
√
amb

, (2.32)

where am, ϕ0, T, b are parameters of the IDM model. The physical interpretation

of these parameters are the maximum acceleration am, the minimum car following

distance ϕ0, the desired time headway T , and the comfortable deceleration b.

For the validation tests, we consider the scenario shown in Figure 2.7. In Fig-

ure 2.7, there is another vehicle ahead of all vehicles (black vehicle 4), and it is

driving at a constant speed. The ego vehicle is still the same as in Section 2.5.1 and

is controlled by the LFGC, which means that from the ego vehicle perspective, it is

playing a leader-follower game with all interacting vehicles. For these three interact-

ing vehicles (vehicle 1 to 3), they are controlled by IDM to follow either the front

vehicle (vehicle 4) or the ego vehicle with a certain time headway T . The IDM model

parameters are listed in Table 2.1. Note that the ego vehicle regards vehicle 4 as the

environmental vehicle and assumes it is driving at constant speed.

Different desired time headways in IDMmay reflect conservativeness of the drivers.

If the interacting vehicle intends to yield to the ego vehicle, we model it to use IDM

to follow the ego vehicle with certain time headway. This means each interacting

vehicle has an option to follow either the front vehicle or the ego vehicle.

Figure 2.7: Illustration of highway forced merge scenarios for validations of the LFGC

when highway vehicles are controlled by IDM.

For the LFGC, the setting is the same as in Section 2.5.1. The planning horizon

is selected as N = 4 and the chance constraint parameter is chosen as ε = 0.1. The

initial beliefs are set to ∀k ∈ {1, 2, 3}, P(σk = leader) = P(σk = follower) = 0.5.

Figure 2.8 shows the results when the ego vehicle is interacting with other vehicles

controlled by IDM with different target vehicles and different desired time headways.

In Figure 2.8(a), the first interacting vehicle (vehicle 1) intends to yield to the

ego vehicle, so it chooses to follow the ego vehicle with 1 (s) time headway, while

the last two interacting vehicles are following the front vehicles with 0.5 (s) headway.
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Parameters Values

Desired velocity v0 32 m/s
Minimum spacing ϕ0 2 m

Maximum acceleration am 4 m/s2

Comfortable deceleration b 3 m/s2

Acceleration exponent δ 4
Desired time headway T 0.5 to 2.5 s

Table 2.1: Intelligent driver model parameters.

From Figure 2.8(a-1), the ego vehicle thinks that vehicle 1 has a high probability of

being a follower in the game and chooses to merge in front of vehicle 1 as depicted in

Figure 2.8(a-2). Figure 2.8(b) shows another case where the first interacting vehicle

(vehicle 1) follows the front vehicle with 0.5 (s) headway, and the second interacting

vehicle intends to yield to the ego vehicle and follows the ego vehicle with 0.5 (s)

headway. Then in this case, from the ego vehicle perspective, vehicle 1 has higher

probability of being a leader in the game, while vehicle 2 has a higher probability of

being a follower in the game, and hence the ego vehicle successfully merges in front of

vehicle 2 in this case. Two other non-yield cases are shown in Figure 2.8(c) and (d).

Figure 2.8(c) shows the results of all interacting vehicles following the front vehicle

with 0.5 (s) headway. From the ego vehicle perspective, all interacting vehicles are

more likely to be leaders in the game, so the ego vehicle successfully merges after

all vehicles pass. In Figure 2.8(d), all interacting vehicles follow the front vehicle

with 1.5 (s) headway. In this case, the ego vehicle finds that vehicle 2’s behavior

is conservative and thinks vehicle 2 has a higher probability of being a follower in

the game. Hence, the ego vehicle successfully merges between vehicles 1 and 2. The

average computational time for solving (2.25) at each time step is 0.198 (s).

For all cases shown in Figure 2.8, the ego vehicle starts with the same initial

belief. This means that the ego vehicle does not know other drivers conservativeness

(represented by desired time headway) and intentions (represented by target vehicles)

a priori. The ego vehicle relies on the LFGC to estimate their intentions, make

decisions accordingly and is able to merge successfully.

2.5.3 Interacting vehicles following traffic data

We have already tested the LFGC with other vehicles driven by leader/follower in

the leader-follower game and by IDM models. We want to further test the controller’s

performance against real traffic data. Specifically, we use the US highway 101 traffic
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(a-1) (a-2)

(b-1) (b-2)

(c-1) (c-2)

(d-1) (d-2)

Figure 2.8: Results of the LFGC against other vehicles controlled by IDM with dif-
ferent target vehicles and desired time headways: (a) vehicle 1 yields (follows the ego
vehicle) with time headway T = 1 (s) and vehicles 2 and 3 follow the front vehicle
with T = 0.5 (s); (b) vehicle 2 yields (follows the ego vehicle) with T = 0.5 (s) and
vehicles 1 and 3 follow the front vehicle with T = 0.5 (s); (c) all vehicles follow the
front vehicle with T = 0.5 (s); (d) all vehicles follow front vehicle with T = 1.5 (s).
The left column (a-1) to (d-1) shows the ego vehicle’s belief on other vehicles’ being a
leader in the game, P(σk = leader), k = 1, 2, 3. The right column (a-2) to (d-2) shows
the time history results of the ego and other vehicles behaviors during this forced
merge process. Specifically, in the right column, the boundary line color of each block
distinguishes different vehicles, the number in the block represents time in seconds,
the color of each block describes the speed of the vehicle at that time instant, and
the blue dotted line represents the ego vehicle’s trajectory. Note that vehicles 1-4
share the same vertical positions, and some offsets in vertical direction are added to
better distinguish them in the figure. Note also that since vehicle 4 (grey boundary)
drives at constant speed, the time history results of vehicle 4 is only shown in (a) but
omitted in (b) to (d) for clarity.
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dataset from the Next Generation Simulation (NGSIM) website [82], which is collected

by the United States Federal Highway Administration and is considered as one of the

largest publicly available sources of naturalistic driving data. The US highway 101

dataset has been extensively studied in the literature [119, 120, 121].

More specifically, we consider a portion of the US101 traffic dataset that contains

30 minutes of vehicles trajectories on the US101 highway. The time period ranges

from 7:50 to 8:20 am, which represents the buildup of congestion around the morning

peak hours. The dataset contains position and velocity trajectories as well as vehicle

dimensions for around 6000 vehicles, and the information is recorded every 0.1 (s).

The top view of the portion of the US101 highway that is used for collecting the data

is shown in Figure 2.9. The studied section consists of five main lanes of the highway,

one on-ramp to the highway, one off-ramp exiting the highway, and also one auxiliary

lane that is used to merge into the highway and exit the highway.

As discussed in [122], the US101 dataset contains a significant amount of noise

due to video analysis and numerical differentiation. To overcome this drawback,

the Savitzky-Golay filter [123] is utilized to smooth vehicles’ positions and update

their corresponding velocities. The Savitzky-Golay filter performs well for signal

differentiation and smoothing the US101 dataset with window length 21 [120]. One

original vehicle trajectory and the corresponding smoothed vehicle trajectory are

shown in Figure 2.10.

For the validation tests of the LFGC, we focus on the on-ramp and the auxiliary

lane to identify all merging vehicles. After identifying the merging vehicles and the

corresponding scenario, we identify the interacting vehicles according to Figure 2.11.

Specifically, we consider the first vehicle in the target lane that is within 2 (s) time

headway in front of the ego vehicle as the first interacting vehicle and regard the

consecutive vehicles as the second and third vehicles. For all other vehicles present in

the scenario, the ego vehicle will regard them as environmental vehicles and assume

they drive at constant speed. One identified merging scenario is shown in Figure 2.12.

For each merging scenario, instead of letting the ego vehicle follow the traffic data,

we use the LFGC to control ego vehicle’s action and resulting trajectory. For all other

vehicles, including interacting vehicles and environmental vehicles, they follow their

original trajectories in the US101 traffic dataset. Then, the LFGC needs to estimate

interacting vehicles’ intentions and control the ego vehicle to merge appropriately. In-

teracting vehicles and environmental vehicles may interact with the merging vehicle

in the actual traffic during the data collection. Note, however, that interacting ve-

hicles’ or environmental vehicles’ behaviors are pre-determined by the traffic dataset
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Figure 2.9: Top view of the highway that is used for collecting the US101 traffic data
[82]. The section of interest includes five main lanes of the highway, one on-ramp
to the highway, one off-ramp exiting the highway, and also one auxiliary lane that is
used to merge into the highway and exit the highway.

and in this test do not change in response to ego vehicle’s actions.

Time: 06/15/2015 7:50 to 8:05 am 8:05 to 8:20 am Total

Number of Merges 119 79 198
Success 116 77 193

Fail to Merge 2 2 4
Collision 1 0 1

Success Rate 97.5% 97.5% 97.5%

Table 2.2: Statistics of validating the LFGC using the US101 traffic dataset. “Suc-
cess” means the ego vehicle successfully merges to the target lane without any col-
lisions. “Fail to Merge” means that the ego vehicle fails to merge by the end of the
auxiliary lane. “Collide” means the ego vehicle collides with other vehicles.

Statistics of validating the LFGC based on the US101 traffic dataset are shown in

Table 2.2. There are a total of 198 merge cases present in the dataset that happen

from 7:50 to 8:20 am. The average computational time for solving (2.25) at each time

step among all merge cases is 0.259 (s). In 193 merge cases, the LFGC successfully

maneuvers the ego vehicle to merge to the target lane. The LFGC fails in 5 cases

including 4 “Fail to Merge” cases and 1 “Collision” case. The reason for these failure

cases is primarily due to either 1) the LFGC cannot obtain a high belief on interacting

vehicles’ driving intentions and hence needs to take conservative action to avoid col-
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Figure 2.10: Smooth vehicle trajectories from the US101 traffic dataset using the
Savitzky-Golay filter.

Figure 2.11: Selection of interacting vehicles: The ego vehicle (blue vehicle) considers
vehicles inside the selection box (red box) as the interacting vehicles. The front end
of the selection box is 2 (s) time headway in front of the ego vehicle. The first vehicle
in the target lane within the selection box is regarded as the first interacting vehicle,
and the following vehicles are regarded as second and third interacting vehicles. For
all other vehicles on the highway, they are treated as environmental vehicles and are
assumed to maintain a constant speed.

lision, or 2) the traffic is dense such that there is no safe margin for the ego vehicle to

merge without intersecting with other vehicles’ collision boxes. The “Collision” case

is a case where the collision is caused by a vehicle behind rear-ending the ego vehicle

when both vehicles are in the auxiliary lane. Note that in our validation method all

surrounding vehicles are following their original trajectories in the dataset. In this

collision case, the vehicle behind is not reacting to the autonomous ego vehicle that

is driving in its front. This case does not represent a failure of our LFGC controller

(because in reality the vehicle behind will adjust its speed to avoid rear-ending) but

represents a limitation of our current validation method with traffic data, i.e., the

traffic environment is not responsive to the ego vehicle’s behavior. While the above

highlights some limitations of the testing with recorded traffic data, such an approach
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Figure 2.12: One merge scenario identified from the US101 traffic dataset. In this
scenario, vehicle 0 (blue vehicle) is the merge vehicle, and we let the LFGC control
vehicle 0. Based on our criteria of selecting interacting vehicles, vehicle 1 (red vehicle)
and vehicle 2 (pink vehicle) are selected as the interacting vehicles, and all other
vehicles (black vehicles) are regarded as environmental vehicles, which are assumed
to drive at constant speed.

is common see, e.g., [53, 124], as it allows to compare the decisions with those of the

human drivers.

In Figure 2.13, we present screenshots for one successful merge. In these figures,

the blue vehicle is controlled by the LFGC, and the grey box represents the actual

position of the ego vehicle in the dataset. All other vehicles (including red interacting

vehicles and black environmental vehicles) are following their corresponding trajecto-

ries in the dataset. The ego vehicle controlled by the LFGC makes similar decisions

compared to the human driver (grey box): Both the LFGC and the human driver

try to speed up and merge in front of the truck (Vehicle 1) at first. However, after

recognizing that the truck is more likely to proceed without yielding, the ego vehicle

decides to slow down and merges after the truck. 1

2.6 Summary

In this chapter, we proposed and presented a Leader-Follower Game Controller

(LFGC) for autonomous vehicle planning and control with an application in forced

merge scenarios. The LFGC treats interaction uncertainties due to different driver

intentions as latent variables, estimates on-board other driver intentions, and chooses

actions to facilitate the ego vehicle’s merge. In particular, the LFGC is able to per-

form a receding horizon optimization subject to an explicit probabilistic safety char-

1Animations of LFGC validating against US Highway 101 dataset can be found at https://

youtu.be/_2Z9E57yTIQ.
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Figure 2.13: An illustration of a successful merge when validating the LFGC against
the US Highway 101 dataset. The blue vehicle is the ego vehicle controlled by the
LFGC, and the grey box is the position of the ego vehicle present in the dataset.

acterization i.e., subject to constraints representing vehicle safety requirements. By

considering pairwise interactions of the ego vehicle and interacting vehicles, the LFGC

is able to handle interactions with multiple vehicles in a computational tractable way.

Finally, three sets of simulation-based validations are performed to demonstrate ef-

fectiveness of the LFGC, including scenarios that other vehicles are following leaders

or followers in the game, the Intelligent Driver Model (IDM), and actual US High-

way 101 data. In the first and second sets of tests, we considered three interacting

vehicles demonstrating good performance against very dense traffic moving at high

velocity. In the third set of tests, we considered evaluation against a real traffic

dataset corresponding to fairly dense traffic.
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CHAPTER III

Model-free Learning to Avoid Constraint

Violations for Non-safety Critical Systems

As depicted in Figure 1.4, the behavior planner will generate certain trajectories

or commands for the system to track. In order to further ensure safety, the behav-

ior planner is followed by a safety supervisor, which serves to guard the system and

potentially modify the planner’s or human operator’s commands to prevent safety

issues. Safety does not only refer to avoiding collisions but can be broadly defined as

not violating specified constraints. The emphasis of this chapter is non-safety critical

systems or constraints, where constraint violations are not desirable but do not lead

to severe consequences. This chapter introduces a model-free learning algorithm that

over time modifies the parameters of an explicit reference governor (ERG) scheme so

that violations of pre-specified constraints are avoided after a sufficiently informative

learning phase. The ERG is an add-on scheme that modifies set-point commands to

a nominal closed-loop system. Our learning algorithm modifies the ERG parameters

based on observed constraint violations during a learning phase so as to eliminate con-

straint violations after learning is completed. Theoretical properties of the algorithm

are analyzed and several examples that illustrate its effectiveness are presented.

3.1 Introduction

In recent years, autonomous systems, including autonomous vehicles, have seen

significant advancements in technology and capabilities. These systems have the

potential to revolutionize transportation and improve efficiency in a variety of in-

dustries. By removing the need for human intervention in many tasks, autonomous

systems can increase productivity, reduce costs, and improve safety. As these systems

may operate in uncertain environment and are subject to manufacturing variability,
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aging, degradation and damage, the constraint boundaries are often uncertain and

maneuvers that can cause constraint violations are often unknown a priori.

In this chapter, we propose an algorithm with the ability to learn to enforce

state/output constraints. The proposed learning algorithm exploits only the knowl-

edge of time instants at which constraints are violated to infer certain system prop-

erties and use them for enforcing constraints. In non-safety critical cases, where

constraint violations are undesirable but do not lead to catastrophic consequences,

the systems may operate initially with occasional constraint violations and learn over

time to avoid them through reducing aggressive maneuvering by a necessary but

minimum amount.

Specifically, we exploit the explicit reference governor (ERG) [125, 126, 127], which

is an add-on scheme to a pre-stabilized nominal system that pre-filters commands (set-

points) passed to the nominal controller to avoid potential constraint violations. Such

an add-on scheme is appealing for integration with the U.S. military legacy systems as

it does not need to change the existing/legacy controllers. The ERG is enhanced with

learning functionality so that after learning is completed, the ERG is able to enforce

constraints on a system whose model is unknown. Results characterizing convergence

properties of the learning algorithm under suitable assumptions are presented, and

it is shown that the algorithm can be applied to nonlinear systems with non-convex

constraints.

To illustrate our learning algorithm functionality, three simulation examples are

reported in this chapter. The first example represents control of a robotic arm on a

moving platform with a constraint on the motor temperature, and is used to illustrate

our results characterizing the algorithm’s theoretical properties under given assump-

tions. The second example deals with velocity control and battery management of

an electric vehicle with constraints on the battery temperature and the time rate of

change in the battery state-of-charge. Finally, the third example concerns rollover

avoidance for a ground vehicle. The second and third examples are used to illustrate

the application of our algorithm to more complicated systems.

The contribution and novelties of the proposed approach in this chapter are as

follows:

1. This chapter proposes a novel learning algorithm that is able to enforce system

constraints and guarantee constraint satisfaction after a sufficiently informative

learning phase. The ERG, which is leveraged by the learning algorithm, is an

add-on scheme to the close-loop system. This algorithm learns from constraint

violation occurrences and is suitable for non-safety critical systems.
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2. Assumptions and supporting theories of the proposed algorithm are analyzed. In

particular, theoretical guarantees of constraint enforcement, convergence of the

proposed learning algorithm, feasibility of the learning algorithm, and asymp-

totic convergence of the modified reference (output of the ERG) to the original

constant commands are provided.

3. This chapter demonstrates the effectiveness and broad applicability of the learn-

ing algorithm by considering applications to control of delivery robots, power

management of electrical vehicles, and ground vehicle rollover avoidance.

3.2 Problem Formulation

In this chapter, we consider systems that are represented as

ẋ(t) = f
(
x(t), ν(t)

)
, (3.1)

where x(t) ∈ Rn denotes the state at time t ∈ [0,∞), ν(t) denotes the reference input

at t, taking values in a compact and convex set V ⊂ Rnν , and f : Rn × Rnν → Rn is

a nonlinear function. In applications, (3.1) typically represents a closed-loop system

consisting of the plant being controlled and its nominal controller, while ν(t) defines

the set-point.

Given an original command, r(t) ∈ V , provided by an operator or by a higher-level

control algorithm (e.g., the interaction-aware control strategy introduced in Chap-

ter II), our objective is to modify r(t) to the reference input ν(t) ∈ V to enforce the

pointwise-in-time constraints

x(t) ∈ X, ∀ t ∈ [0,∞), (3.2)

where X ⊂ Rn is closed with nonempty interior. We assume that the command signal

r is piecewise continuous in t.

To solve this problem, we exploit the explicit reference governor (ERG) approach

[126], which leads to a dynamic feedback law for ν(t) in the form of

ν̇(t) = ρ
(
ν(t), r(t), x(t)

)
, (3.3)

where ρ : Rnν × Rnν × Rn → Rnν is to be designed.

The following assumptions are made:
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Figure 3.1: Diagram of a nominal closed-loop system augmented with a learning-based
ERG to enforce constraints.

Assumption 3.1. The solutions of (3.1), x : [0,∞) → Rn, to any initial conditions

x(0) = x0 ∈ Rn and any continuous signals ν : [0,∞)→ V exist and are unique.

Assumption 3.1 is reasonable for practical systems.

Assumption 3.2. For any constant ν ∈ V , the autonomous system

ẋ(t) = f
(
x(t), ν

)
, x(0) = x0, (3.4)

has a unique equilibrium point xν = xν(ν), which is asymptotically stable globally in

x0 ∈ Rn and uniformly in ν ∈ V . Specifically, 1) for any ν ∈ V and ϵ > 0, there exists

δ = δ(ϵ) > 0 (independent of ν) such that ∥x0 − xν∥ ≤ δ =⇒ ∥x(t)− xν∥ ≤ ϵ for all

t ∈ [0,∞), and 2) for any ν ∈ V , x0 ∈ Rn, and ϵ > 0, there exists t1 = t1(ν, x0, ϵ) ∈
[0,∞) such that ∥x(t) − xν∥ ≤ ϵ for all t ∈ [t1,∞), i.e., limt→∞ x(t) = xν , where

x : [0,∞)→ Rn is the solution of (3.4).

Assumption 3.2 is reasonable when (3.1) represents a closed-loop system that has

been pre-stabilized. The assumptions on uniqueness and global stability of xν can be

relaxed by introducing additional constraints to let the feasible region X be contained

in the domains of attraction of user-desired equilibria xν . To accomplish this, X may

need to be replaced by X(ν) in (3.2).

Assumption 3.3. The equilibrium-point mapping xν : V → Rn is a continuous

function of ν. Furthermore, xν(V ) ⊂ int(X).

Assumption 3.3 implies that constraints are strictly satisfied in steady state. Thus,

ERG is used to avoid transient constraint violations.

Assumption 3.4. There exists a pair of continuous functions (ε,Γ), ε : Rn×V → R
and Γ : V → R, such that 1)

ε(x0, ν) ≤ Γ(ν) =⇒ x(t) ∈ X, ∀ t ∈ [0,∞), (3.5)
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where x : [0,∞) → Rn is the solution of (3.4) (with a constant ν), and 2) for any

ν ∈ V , there exists σ = σ(ν) > 0,

ε(xν , ν) ≤ Γ(ν)− σ(ν). (3.6)

Assumption 3.4 is reasonable. For example, if ε(·, ν) is a Lyapunov function for

the system (3.4) and the equilibrium xν , and {x : ε(x, ν) ≤ Γ(ν)} represents the

largest sublevel set of ε(·, ν) that is contained in X, then, (3.5) is satisfied. Some

other candidates for the pair (ε,Γ) are discussed in [126] and in Proposition 3 of

this chapter. Indeed, the pair (ε,Γ) represents a way to define the so-called dynamic

safety margin (DSM) defined in [126]1.

Furthermore, the following assumptions are made:

Assumption 3.5. The function f : Rn × Rnν → Rn and the set X are unknown.

Assumption 3.6. The value of ε
(
x(t), ν(t)

)
and the value of I

(
x(t) ∈ X

)
2 are

measured for all t ∈ [0,∞).

The assumption thatX is unknown but I
(
x(t) ∈ X

)
can be measured is reasonable

in many systems, such as systems that operate in changing environments where con-

straint boundaries can shift and sensors are available to detect constraint violations.

For instance, in a gasoline engine, borderline spark values may change depending on

fuel type (and other variables), while knock sensors can indicate constraint violations.

Similarly, the onset of compressor surge can be detected from pressure oscillations,

but the surge boundary may shift depending on the ambient conditions (such as icing

or high angle of attack in gas turbine engines).

3.3 Learning Explicit Reference Governor

In this section, we will introduce the Explicit Reference Governor (ERG) and the

proposed learning algorithm that evolves the design of the ERG through observed

constraint violations. Theoretical properties of the ERG and the learning algorithm

are also analyzed and provided in this section.

1Note that the extra requirement that ε(x0, ν) = Γ(ν) =⇒ ε(x(t), ν) ≤ Γ(ν) for all t ∈ [0,∞)
was imposed in the definition of DSM in [126]. However, as also shown by various examples of DSM
given in the same chapter, this requirement is not strictly needed and can be dropped.

2indicator function, equal to 1 if the argument is true and 0 otherwise.
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3.3.1 Enforcing constraints using ERG

Suppose that a pair of functions (ε,Γ) satisfying Assumption 3.4 is known. Then,

we choose a dynamic feedback law for ν(t) as

ν̇(t) =


Kp(r(t)−ν(t))

max{∥r(t)−ν(t)∥,η} , if ε
(
x(t), ν(t)

)
< Γ

(
ν(t)

)
,

0, otherwise,
(3.7)

where Kp ∈ Rnν×nν is a diagonal matrix with (typically large) positive elements on

the diagonal, and η > 0 is a (typically small) positive scalar.

We now discuss the properties of constraint enforcement and asymptotic con-

vergence of ν(t) to steady-state constraint-admissible constant commands rs for the

dynamic feedback law (3.7). These properties are similar to the corresponding prop-

erties in [125] when Lyapunov functions are used and, with slight differences, are in

line with the general theory on definition of DSM functions presented in [126].

Proposition 3.1. Under Assumptions 3.1, 3.4, and the feedback law (3.7),

if ε
(
x(0), ν(0)

)
≤ Γ

(
ν(0)

)
, then x(t) ∈ X for all t ∈ [0,∞).

Proof. Under the system dynamics (3.1) and the feedback law (3.7), x and ν are

continuous in t. As ε − Γ is continuous in x and ν, φ(t) = ε(x(t), ν(t)) − Γ(ν(t))

is continuous in t. Since φ(0) ≤ 0, for any t1 ∈ [0,∞), if φ(t1) > 0, then by the

intermediate value theorem, there exists t0 ∈ [0, t1) such that φ(t0) = 0 and φ(t) > 0

for t ∈ (t0, t1]. Then, by (3.7), ν(t) = ν(t0) for all t ∈ [t0, t1]. By (3.5), x(t) ∈ X for

all t ∈ [t0, t1]. Because t1 ∈ [0,∞) is arbitrary, x(t) ∈ X for all t ∈ [0,∞). ■

Proposition 3.2. Under Assumptions 3.1, 3.2, 3.4, and the feedback law (3.7), if

there exists ts ∈ [0,∞) such that r(t) = rs ∈ V for all t ∈ [ts,∞), then limt→∞ ν(t) =

rs.

Proof. Consider the function V(ν) = 1
2
(ν − rs)⊤(ν − rs) ≥ 0. It holds that V̇(ν(t)) =

(ν(t)−rs)⊤ν̇(t) ≤ 0 under the feedback law (3.7). Let Σ = {ν ∈ V : V̇(ν) = 0} and Ω

be the largest invariant set in Σ. By LaSalle’s invariance principle, for arbitrary ν(ts),

limt→∞ dist(ν(t),Ω) = 0. It remains to show that Ω = {rs}. Suppose that ν(t) is a

trajectory contained completely in Ω. Then, at any t0, either ν(t0) = rs, or ν(t0) ̸= rs

and ε
(
x(t0), ν(t0)

)
≥ Γ

(
ν(t0)

)
. For the former case, under (3.7), ν(t) = rs for all

t ∈ [t0,∞). For the latter case, there must exist a time instant t1 ∈ (t0,∞) such

that ν̇(t1) ̸= 0. This can be proven by contradiction. Indeed, suppose that ν̇(t) = 0

for all t ∈ [t0,∞). Then, by Assumption 3.2, limt→∞ x(t) = xν(ν(t0)), i.e., for any
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δ > 0, there exists t1 = t1(δ) ∈ [t0,∞) such that ∥x(t1) − xν(ν(t0))∥ < δ. Since ε is

continuous in x, given the σ = σ(ν(t0)) > 0 defined in (3.6), there exists δ = δ(σ)

such that ∥x(t1)−xν(ν(t0))∥ < δ → ∥ε
(
x(t1), ν(t0)

)
−ε
(
xν(ν(t0)), ν(t0)

)
∥ < σ. Then,

by (3.6), ε
(
x(t1), ν(t0)

)
< ε
(
xν(ν(t0)), ν(t0)

)
+ σ ≤ Γ

(
ν(t0)

)
. Then, by the feedback

law (3.7), if ν(t0) ̸= rs, then ν̇(t1) ̸= 0. This contradicts the assumption that ν(t) is

a trajectory contained completely in Ω. Therefore, ν(t) = rs is the only trajectory

contained in Ω, i.e., Ω = {rs}. Please see [126] for more details. ■

Propositions 3.1 and 3.2 rely on Assumption 3.4. We now show that under As-

sumptions 3.1 to 3.3, there exist many candidates for the pair (ε,Γ) to satisfy As-

sumption 3.4.

Proposition 3.3. Suppose that Assumptions 3.1 to 3.3 hold and that 1) y = g(x)

is a measured output signal, where g is a continuous function; 2) for each ν ∈ V ,

the steady-state output yν = g(xν) is known; and 3) there exists a class-K function κ

such that for any x and ν, κ
(
∥x−xν∥

)
≤ ∥y−yν∥. Then, if we let ε(x, ν) = ∥y−yν∥,

there exists Γ(ν) = h(ν), where h is a positive continuous function, such that (ε,Γ)

is a pair of functions satisfying Assumption 3.4. Here, ∥ · ∥ can be an arbitrary norm.

In the case of y = x, ε(x, ν) can be chosen as ε(x, ν) = ∥x− xν∥.

Proof. First note that ε(x, ν) = ∥y− yν∥ = ∥g(x)− g
(
xν(ν)

)
∥, where g(x) and xν(ν)

are continuous functions =⇒ ε(x, ν) is continuous in x and ν.

By Assumption 3.3, for any ν ∈ V , xν ∈ int(X), where X is a closed set. Then,

there exists ϵ = ϵ(ν) > 0 such that ∥x − xν∥ ≤ ϵ =⇒ x ∈ X. By Assumption 3.2,

there exists δ = δ
(
ϵ(ν)

)
> 0 such that ∥x0 − xν∥ ≤ δ =⇒ ∥x(t) − xν∥ ≤ ϵ =⇒

x(t) ∈ X for all t ∈ [0,∞). Let h(ν) satisfy 0 < h(ν) ≤ κ(δ). Firstly, κ is a class-K
function and δ > 0 =⇒ κ(δ) > 0. Secondly, if ε(x0, ν) = ∥g(x0)−yν∥ ≤ h(ν) ≤ κ(δ),

then κ
(
∥x0 − xν∥

)
≤ ∥g(x0)− yν∥ ≤ κ(δ) =⇒ ∥x0 − xν∥ ≤ δ =⇒ x(t) ∈ X for all

t ∈ [0,∞).

It remains to show that there exists a continuous function h(ν) satisfying 0 <

h(ν) ≤ κ
(
δ(ν)

)
for all ν ∈ V . Since V is compact and xν(ν) is continuous, xν(V )

is compact, which is contained completely in int(X). Then, there exists ϵ > 0 such

that xν(V ) ⊕ B(0, ϵ) ⊂ X. Let ϵ(ν) = ϵ and h(ν) = κ
(
δ(ϵ)

)
for all ν ∈ V . Then,

such a constant h(ν) is an example satisfying the needed properties, thus, verifies the

existence of such functions.

Note that (3.6) holds since ε(xν , ν) = ∥yν − yν∥ = 0 and Γ(ν) = h(ν) > 0. ■

Proposition 3.3 shows that for a proper choice of ε, there exists a corresponding

Γ such that (ε,Γ) satisfies Assumption 3.4. Such a Γ may not be unique. We denote
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by Π(ε) the set of functions Γ satisfying Assumption 3.4. Suppose that a Γ ∈ Π(ε)

is known, then the dynamic feedback law (3.7) can be used to adjust the reference

input ν(t) to track the command r(t) during which satisfaction of the constraints

(3.2) is guaranteed and any steady-state constraint-admissible constant commands

rs can be asymptotically approached. We next describe an algorithm to learn a Γ

function corresponding to a specified ε function under Assumptions 3.5 and 3.6.

3.3.2 Learning algorithm for enforcing constraints

The learning algorithm to find a Γ function corresponding to a specified ε function

to eliminate constraint violations is conceptually described as follows: The algorithm

starts with a sufficiently large guess of Γ so that ERG drives ν(t) to track r(t) through

a first-order filter without intervention (see (3.7)). Whenever a constraint violation is

observed at a time instant τ , the algorithm modifies the corresponding Γ(ν(τ)) value,

more specifically, reduces it by a proper amount, while keeping Γ satisfying certain

functional properties. As a result, when a state-input pair in a neighbourhood of the

present state-input pair (x(τ), ν(τ)) occurs in future operation, ERG modifies the

evolution of ν(t), more specifically, slows down the response of ν(t), which in turn

slows down the response of x(t), so that a constraint violation may be avoided. Such

a procedure continues until the performance in terms of constraint enforcement is

satisfactory. The learning algorithm described above is formally presented as Algo-

rithm 3.1.

In Step 7 of Algorithm 3.1, the λk > 0 is a tunable parameter. Firstly, the choice

of λk must ensure Γ
k(
ν(τ1)

)
> 0. Secondly, its choice affects the learning speed and

the resulting conservativeness in the response (the larger λk is, the faster the learning

is to achieve constraint enforcement and the more conservative the resulting response

may be).

Note that in Algorithm 3.1 the following properties hold: 1) [τ3, τ4] ⊂ [τ1, τ2] under

the feedback law (3.8); and 2) any Γ ∈ Π(ε) satisfies

Γ
(
ν(τ1)

)
< min

t∈[τ1,τ4]
ε
(
x(t), ν(t)

)
. (3.10)

Proposition 3.4. In Algorithm 3.1, for any t ∈ [0,∞), there exists t′ ∈ [t,∞) such

that ν̇(t′) ̸= 0.

Proof. It suffices to consider the cases where ν̇(t) = 0. Suppose that ν̇(t′) = 0 for all

t′ ∈ [t,∞), then ν(t′) = ν(t) ∈ V for all t′ ∈ [t,∞). By Assumptions 3.2 and 3.3,

limt′→∞ x(t′) = xν
(
ν(t)

)
∈ int(X). Then, there exists t′ ∈ [t,∞) such that x(t′′) ∈ X

53



Algorithm 3.1 Learning algorithm for enforcing constraints

1: Select ε in the form of ε(x, ν) = ∥y − yν∥;
2: Initialize Γ

0
(ν) = γ for all ν ∈ V with γ > 0 sufficiently large, and select the

parameters Kp and η;
3: Set t0 = 0 and initialize the system (3.1) with an arbitrary initial condition x(0);
4: for k = 1 : kmax do
5: Randomly generate rk ∈ V \ {ν(tk−1)}, e.g., based on a uniform distribution;
6: Use the dynamic feedback law

ν̇(t) =

0,
if ε
(
x(t), ν(t)

)
≥ Γ

k−1(
ν(t)

)
or I(x(t) ∈ X) = 0,

Kp(rk−ν(t))

max{∥rk−ν(t)∥,η} , otherwise,

(3.8)

to adjust the reference input ν(t) over the time interval [tk−1, tk] where tk ∈
(tk−1,∞) is sufficiently large;

7: If ν(t) = ν(τ1) on [τ1, τ2] and I(x(t) ∈ X) = 0 on [τ3, τ4] ⊂ [τ1, τ2], then update

Γ
k−1 → Γ

k
so that

Γ
k(
ν(τ1)

)
= min

(
Γ
k−1(

ν(τ1)
)
, min
t∈[τ1,τ4]

ε
(
x(t), ν(t)

))
− λk, (3.9)

and Γ
k
is continuous in ν and satisfies 0 < Γ

k
(ν) ≤ Γ

k−1
(ν) for all ν ∈ V ;

otherwise let Γ
k
= Γ

k−1
.

8: end for

for all t′′ ∈ [t′,∞). As y = g(x) where g is continuous, limt′→∞ ∥y(t′) − yν(ν(t))∥ =
limt′→∞

∥∥g(x(t′)) − g
(
xν(ν(t))

)∥∥ = 0. Note that here xν
(
ν(t)

)
is a constant. As

Γ
k−1(

ν(t)
)
> 0, there exists t′ ∈ [t,∞) such that ε

(
x(t′′), ν(t)

)
= ∥y(t′′)−yν(ν(t))∥ <

Γ
k−1(

ν(t)
)
for all t′′ ∈ [t′,∞). Thus, there exists t′ ∈ [t,∞) such that

ν̇(t′) =
Kp(rk − ν(t′))

max{∥rk − ν(t′)∥, η}
̸= 0. (3.11)

Note that (3.11) follows from rk ̸= ν(t′), which holds for all t′ ∈ [t,∞) since 1)

rk ̸= ν(tk−1) and 2) the finite-time convergence of ν to rk cannot occur due to the

η > 0 in the denominator of (3.11). Since (3.11) contradicts the assumption ν̇(t′) = 0

for all t′ ∈ [t,∞), the proof is completed. ■

Proposition 3.4 says that the reference input ν(t) getting stuck at a constant value

for an infinitely long period of time so that learning cannot proceed will not occur.

Proposition 3.5. In Algorithm 3.1, as k →∞, Γ
k
converges pointwise, i.e., for every

ν ∈ V , limk→∞ Γ
k
(ν) exists.
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Proof. For every ν ∈ V , the sequence
{
Γ
k
(ν)
}∞
k=0

is monotone non-increasing and is

bounded by 0 from below. Thus, by the monotone convergence theorem,
{
Γ
k
(ν)
}∞
k=0

converges, i.e., Γ
k
converges pointwise. ■

In practical implementations of Algorithm 3.1, a function approximator, such as

a lookup table + interpolation or a neural network, can be used to represent the

function Γ
k
and get updated as k increases; a sufficiently small constant λk ≡ λ > 0

can be used; and the sequence {rk}kmax
k=1 can also be generated using quasi-random,

low-discrepancy sequences [128] to cover V more quickly and evenly. The algorithm

is run for a sufficiently large but finite number of iterations until the constraints can

be enforced satisfactorily.

3.4 Applications and Results

In this section, we consider several applications of the proposed learning algo-

rithm. The first example is the constrained control of a delivery robot. This example

satisfies the required assumptions and is able to demonstrate the desired properties of

the learning algorithm. Subsequently, we consider more practical and complicated ap-

plications, which consist of power management of electric vehicles and vehicle rollover

avoidance.

3.4.1 Constrained control of a delivery robot

As the first example, we consider a delivery robot as shown in Figure 3.2(a) [129].

The blue platform moves on a rail; the green robotic arm holds a mass – the arm

adjusts the angle so that it can put the mass in a particular position after the platform

arrives at a particular location. A motor is used to provide torque to the arm. The

equations of motion of the system are given by:

ṡ = v,

θ̇ = ω,

(m1 +m2 +m3)v̇ + (
1

2
m2 +m3)lω̇ cos(θ)− (

1

2
m2 +m3)lω

2 sin(θ) = F,

(
1

3
m2 +m3)l

2ω̇ + (
1

2
m2 +m3)lv̇ cos(θ) + (

1

2
m2 +m3)gl sin(θ) = τ,

(3.12)

where s and v are the horizontal position and velocity of the platform, θ and ω are

the angle and the angular velocity of the delivery robot arm, m1 is the mass of the

platform, m2 is the mass of the robot arm, m3 is the mass of the load, l is the length
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of the robot arm, F is the force applied to the platform along the position s-axis, and

τ is the torque generated to move the robot arm. All these variables are shown in

Figure 3.2(a).

Since the objectives of the system are to reach commanded position-and-angle

pairs (s, θ), we first design the following proportional-derivative controls:

F = −kFp (s− s̄)− kFd v,

τ = (
1

2
m2 +m3)gl sin(θ̄)− kτp(θ − θ̄)− kτdω,

(3.13)

to stabilize the system.

A motor is used to provide the required torque. The following model is used to

describe the motor temperature:

τ = IKτ ,

Ṫ = −α(T − Tamb) + βI2R,
(3.14)

where T is the temperature of the motor, Kτ is the motor torque constant, I is the

current to generate the torque, Tamb is the ambient temperature, and I2R is the heat

generated by the current I and the motor resistance R.

We consider the following constraint on the motor temperature:

T ≤ Tmax = 65 (oC). (3.15)

We apply Algorithm 3.1 to evolve an ERG to adjust reference commands r = (s, θ)

to modified reference inputs ν = (srg, θrg) and pass modified reference inputs ν to the

nominal controller (3.13) for enforcing the constraint (3.15).

In the implementation of Algorithm 3.1, we use the following ε function:

ε(x, ν) = a1|s− sν |+ a2|v − vν |+ a3|θ − θν |+ a4|ω − ων |+ a5|T − Tν |, (3.16)

where (s, v, θ, ω, T ) are the system states, (sν , vν , θν , ων , Tν) are their steady-state

values corresponding to the current reference input ν, and ai > 0, i = 1, · · · , 5, are
weights that can are tuned. In principle, the choices of ai influence the learning

speed and the eventual system performance. Their optimization is left to future

research. We note that (3.16) satisfies the conditions of Proposition 3.3, and hence,

a Γ satisfying Assumption 3.4 is guaranteed to exist.

The set for reference command (s̄, θ̄) is V = [0, 100] (m)× [−π/3, π/3] (rad), and
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the duration of each reference command is randomly generated in the interval [40, 60]

(s).

We note that in the implementation of our algorithm, the system model, including

(3.12), (3.13), and (3.14), is treated as a black-box.

The simulation results are reported in Figure 3.2. In Figure 3.2(b), the violation

rate is defined as the proportion of time over a 1000 (s) time window during which the

system is in a constraint-violation state. At the beginning of the learning, constraint

violation occurs with a relatively high rate. The constraint violation rate gradually

decreases as the learning progresses and converges to 0. Figure 3.2(c) shows the tem-

perature response over time – the temperature is maintained below the constraint

65 (oC) at the end of the learning. Figure 3.2(d) shows how the ERG modifies com-

mands to constraint-admissible references for enforcing the constraints at the end of

the learning. When there is no danger of constraint violation, the ERG passes the

original command (red-dashed) to the nominal controller as the reference input (blue-

solid) with a negligible delay. When there is a danger of constraint violation if the

original command is directly passed to the nominal controller, the ERG slows down

the change in the controller inputs and thus reduces the maneuver aggressiveness by

a necessary but minimum amount to avoid a constraint violation. Furthermore, the

modified reference input converges to the command, which implies a convergence of

the response of the system augmented with the ERG to the desired response of the

nominal system.

3.4.2 Electric vehicle velocity control and battery management

The second example we consider deals with the constrained velocity control and

battery management for an electric vehicle (EV). The model of the EV including its

battery power system is given as follows [130]:

Ṫ =
I2batRbat + Q̇

mbatCth,bat

,

˙SOC = − Ibat
Cnom

,

v̇ = a,

(3.17)
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Figure 3.2: (a) Delivery robot diagram. (b) Violation rate profile during learning. (c)
Temperature profile during learning. (d) Original command profile versus modified
reference profile at the end of learning.

and

Ptraction = v
(1
2
ρv2AfCd + Cfmg +ma

)
,

Ptemp =

ah |Q̇|, if Q̇ ≥ 0,

ac |Q̇|, if Q̇ < 0,

Ibat =
Uoc −

√
U2
oc − 4Rbat(Ptraction + Ptemp)

2Rbat

,

(3.18)

where T is the battery temperature, SOC is the battery state-of-charge, v is the

vehicle velocity, and the vehicle acceleration a and the heat flow rate Q̇ are the control

inputs. The Ptraction is the required traction power to overcome the aerodynamic drag,

the rolling resistance, and to provide the desired acceleration; Ptemp is the power
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employed to generate the heating (Q̇ ≥ 0) or cooling (Q̇ < 0) for stabilizing the

temperature of the battery and is assumed to be proportional to |Q̇|; and Ibat is the
current, which depends on the open circuit voltage UOC and the internal resistance

of the battery Rbat. Both UOC = UOC(T, SOC) and Rbat = Rbat(T, SOC) depend on

the battery temperature T and state-of-charge SOC based on lookup tables.

Nominal controllers are first designed to control the vehicle acceleration a to track

velocity commands, v̄, and to control the heat flow Q̇ to stabilize the temperature of

the battery T to a reference temperature, Tref. The nominal controllers are designed

as follows:

a = kv(v̄ − v),

Q̇ = kT,1(Tref − T )− kT,2v̄2.
(3.19)

We consider the following tight constraints on the battery temperature and on the

time rate of change of SOC:

T ∈ [24, 26] (oC),

˙SOC ∈ [−1, 1]× 10−4.
(3.20)

We apply Algorithm 3.1 to evolve an ERG to adjust velocity commands v̄ to ν for

enforcing the constraints (3.20). Some results as the learning progresses are shown in

Figure 3.3. The constraints (3.20) are enforced after the learning is completed.
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Figure 3.3: Learning algorithm application to electric vehicle velocity control and
battery management. (a) Violation rate profile during learning. (b) Temperature
and time rate of change of SOC profiles during learning.

The way the ERG modifies the velocity command and the performance of the
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vehicle in tracking the velocity command at the beginning of the learning and at the

end of the learning are shown in Figure 3.4. The red dashed lines represent the velocity

commands. The green dash-dotted lines represent the ERG outputs, i.e., the reference

velocities the nominal controller actually tracks. At the beginning of the learning,

the ERG does not modify the command and, as a consequence, the constraints (3.20)

are violated, which can be seen from the early phase of the violation rate, T , and
˙SOC profiles during the learning in Figure 3.3. At the end of the learning, the ERG

modifies the command profile to a constraint-admissible reference profile for the EV

to track. The blue solid lines represent the velocity responses of the EV. Comparing

the blue lines in Figure 3.4(a) and (b), the velocity response has been slightly slowed

down after the learning – the average 2% settling time of tracking 1000 randomly

generated velocity commands is 10.7 (s) at the beginning of the learning, and is

12.7 (s) at the end of the learning. With the small sacrifice in response speed, the

constraints are enforced, which can be seen from the late phase of the violation rate,

T , and ˙SOC profiles during the learning in Figure 3.3.
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Figure 3.4: Reference and velocity responses of the vehicle, (a) at the beginning, and
(b) at the end, of learning.

3.4.3 Vehicle rollover avoidance

At last, we consider the application of the scheme to ground vehicle rollover avoid-

ance. A model-based design for rollover avoidance based on a reference governor

scheme is presented in [131]. Differently from [131], the application of our scheme

does not rely on an explicit model of the system. In this chapter, we use a model
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in CarSim (Figure 3.5) to generate vehicle responses, and we treat this model as a

black-box.

Figure 3.5: Utility truck CarSim model.

Specifically, we use the utility truck model in the standard CarSim vehicle config-

uration for this example. The scenario to be considered is that the truck is driving

on a track at a constant speed of 80 (km/h). The steering wheel angle (SW) is the

input command.

We apply Algorithm 3.1 to evolve an ERG to adjust SW commands for preventing

the vehicle from rollover. In the implementation of Algorithm 3.1, we use the following

ε function:

ε(x, ν) = a1|ϕ− ϕν |+ a2|p− pν |+ a3|v − vν |+ a4|γ − γν |, (3.21)

where ϕ is the vehicle roll angle, p is the vehicle roll rate, v is the vehicle lateral

velocity, γ is the vehicle yaw rate, and (ϕν , pν , vν , γν) are their steady-state values

corresponding to the current reference input ν = SW. The choice of this ε function

is based on the reduced-order vehicle model in [131].

The rollover constraints are defined through the load transfer ratio (LTR):

LTR :=
Fz,R − Fz,L

mg
, (3.22)

where Fz,R and Fz,L are, respectively, the total vertical force on the right-side tires

and that on the left-side tires, mg is the vehicle weight. The LTR measures how much

of the vehicle vertical load is concentrated on one side of the vehicle. Based on the
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LTR, the rollover constraints are imposed as

−LTRlim ≤ LTR ≤ LTRlim. (3.23)

Remark 3.1. The absolute value of LTR can be larger than 1 even when the wheels do

not lift off, which is due to the suspension roll moment and aerodynamic forces. Also,

even if wheels lifting off occurs, it does not imply rollover, because vehicle rollover

requires additional work to move the gravity center of the vehicle up. Thus, in this

application, the constraint LTRlim is tuned to a value that best describes the situation

of rollover. Specially, we use LTRlim = 1.35.

For the learning phase, the SW command is randomly generated from the set

V = [−300, 300] (deg), and the duration of each reference command is randomly

distributed over the interval [10, 20] (s).

Some results as the learning progresses are shown in Figure 3.6. The violation

rate is defined similarly to that in Figure 3.2(b). The rate decreases and converges

to 0. The LTR is maintained in the range [−LTRlim,LTRlim] after the learning is

completed.
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Figure 3.6: Learning algorithm application to vehicle rollover avoidance. (a) Violation
rate profile during learning. (b) LTR profile during learning.

We test the vehicle using a standard sine-and-dwell test profile [132] at different

phases of the learning. The corresponding reference and vehicle responses are shown

in Figure 3.7 and Figure 3.8. The simulations terminate if the vehicle rolls over, which

is also reflected from the curves for k = 0, 300, 600.

The original sine-and-dwell test profile causes the vehicle to roll over if directly
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Figure 3.7: (a) The SW trajectories and (b) the vehicle trajectories on the (x, y)-plane
for the sine-and-dwell test corresponding to different phases of learning.

passed to the vehicle as steering wheel command. However, after the learning is

completed, the ERG modifies the steering wheel command and prevents the vehicle

from rolling over.

3.5 Summary

In this chapter, we proposed an algorithm to avoid constraint violations based

on an explicit reference governor scheme and learning. The operation of the algo-

rithm does not rely on an explicit model of the system. Several properties, including

constraint enforcement, asymptotic convergence of modified reference to steady-state

constraint-admissible constant command, and convergence of the learning were dis-

cussed. Three examples including constrained control of a delivery robot, velocity

control and battery management of an electric vehicle, and application to vehicle

rollover avoidance were reported to illustrate the algorithm.
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Figure 3.8: (a) The roll angle, (b) the roll rate, (c) the lateral velocity, and (d) the
yaw rate responses for the sine-and-dwell test corresponding to different phases of
learning.
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CHAPTER IV

Mode-free Learning to Avoid Constraint

Violations for Safety Critical Systems

In Chapter III, we presented a model-free learning algorithm to design a safety su-

pervisor for non-safety critical systems, where constraint violations are allowed during

the learning phase. However, in safety-critical control systems, constraint violations

can have catastrophic consequences, and the method developed in Chapter III may

not be applicable.

This chapter presents a learning-based approach to design a safety supervisor for

the safety-critical control systems, which utilizes standard reference governor instead

of the Explicit Reference Governor as in Chapter III. A reference governor is an

add-on scheme used to guard the nominal system against violation of pre-specified

constraints by modifying set-point commands. A learning algorithm is developed in

this chapter to evolve the reference governor parametrization to gradually improve

its performance in terms of response speed. In particular, the learning algorithm

does not rely on an explicit model of the control system, i.e., it is model-free, and

guarantees constraint satisfaction for all time, both during and after learning. To

illustrate its functionality and characteristics, the approach is applied to case studies

of ground vehicle rollover avoidance and fuel truck (tank truck) rollover avoidance

under sloshing effects.

4.1 Introduction

Safety-critical systems are common in various areas, including transportation con-

trol, aerospace applications, nuclear plants, medical applications, etc. The safety con-

ditions can often be expressed as pointwise-in-time state and control constraints, such

as actuator range and rate limits, thermal and power limits, safety and comfort limits,
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as well as obstacle avoidance requirements. In these applications, the controller needs

to enforce constraints during the system operation, as constraint violation can lead

to catastrophic consequences.

The Reference Governor (RG) is an add-on scheme to a nominal closed-loop sys-

tem, acting as a pre-filter to modify set-point commands to guard the system against

potential constraint violations [133]. Such an add-on scheme is suitable for integra-

tion with legacy systems as it does not need to change the existing/legacy controllers.

Typical RG designs are model-based. For the case when the model is unknown, a

model-free learning-based approach to enforcing state/output constraints based on

an RG scheme has been proposed in Chapter III for non-safety-critical control sys-

tems, where constraint violations are undesirable but do not lead to catastrophic

consequences. The learning algorithm proposed in Chapter III evolves an Explicit

Reference Governor (one variant of RG) based on observed constraint violations dur-

ing the learning phase and gradually eliminates these violations.

In this chapter, we focus on the learning reference governor (LRG) design for

safety-critical systems, where constraints need to be enforced both during and after

learning. As an application of LRG, we focus on the steering control of ground vehi-

cles and tank trucks that are used in transporting chemical and petroleum products.

Accidents associated with these ground vehicles and tank trucks may lead to severe

injury and property damage. According to Federal Motor Carrier Safety Administra-

tion, rollover involves as the first harmful event in 4% of all fatal crashes associated

with large trucks [134]. Since these trucks are partially filled most of the time, liquid

sloshing is the main cause of the rollover accidents [135], [136] as the free space in the

partially-filled tank allows liquid sloshing to happen when the vehicle state changes,

and the truck’s driving stability is severely affected due to the sloshing force. Al-

though many techniques have been pursued to reduce the effect of sloshing, such as

placing baffles inside the tank, these methods cannot cancel the sloshing effects. Con-

sequently, we focus on solutions that minimally modify vehicle steering for vehicles

with active front steering (including automated vehicles) if it becomes necessary to

avoid vehicle rollover. Model-based reference governor solutions for rollover protec-

tion have been proposed in [131]. As accurate and suitable for online use models of

fuel sloshing effects are presently unavailable, we consider the application of LRG,

which does not need an accurate model.

In spacecraft applications, a pendulum-mass analogy [137] or a spring-mass anal-

ogy [138] have been considered to capture sloshing modes. A trammel pendulum

model is proposed in [139] to study the driving stability of tank trucks under sloshing
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effects. We choose the latter approach to establish a model for simulations of LRG,

which itself does not require an accurate model.

The contributions of this chapter and the proposed safe LRG are as follows:

1. We present a novel safe LRG algorithm that integrates safe learning with the RG

framework to achieve constraint management of safety-critical systems. This

safe LRG algorithm is different from the non-safety-critical algorithm proposed

in Chapter III. The proposed safe LRG algorithm relies on minimal prior knowl-

edge of the system, where the required prior knowledge can be obtained by

running a series of experiments before learning. Then, such LRG can be used

to perform learning on systems’ hardware or their black box models.

2. We conduct a thorough analysis of the properties of the proposed algorithm and

clearly outline the required assumptions. At the same time, we provide theo-

retical guarantees of constraint enforcement during learning and after learning

is completed. We also provide theoretical guarantees of convergence of the pro-

posed learning algorithm, and finite time convergence of the modified reference

(output of LRG) to the original constant commands.

3. We demonstrate the effectiveness of the algorithm through a case study of

ground vehicle rollover avoidance. We first apply the algorithm to a linearized

vehicle model where all of the assumptions (and hence propositions) hold. Then,

the LRG is integrated with CarSim and is demonstrated to be effective on pro-

tecting the ground vehicles from rollover accidents while assuming minimal prior

knowledge of the vehicle.

4. We demonstrate an application of LRG to fuel truck rollover avoidance under

sloshing effects. An equivalent mechanical model for lateral fuel sloshing based

on [140] is first described, and a vehicle dynamics model is integrated with

the lateral fuel sloshing model for the simulation study. Simulation results

are reported which illustrate the learning process and vehicle responses after

learning for step commands, sine-and-dwell tests and when driving conditions

change.

The notations used in this chapter are standard. In particular, for a right-

continuous signal θ : [0,∞)→ Θ, we use θ(t−) to denote the left-sided limit limt′↗t θ(t
′),

and for a better distinction, we also use θ(t+) to denote θ(t).
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4.2 Problem Formulation

In this chapter, we consider a stable (or a pre-stabilized) system, the dynamics of

which can be represented by the following equations:

ẋ(t) = f
(
x(t), ν(t)

)
, (4.1a)

y(t) = g
(
x(t), ν(t)

)
, (4.1b)

where x(t) ∈ Rn denotes the system state at time t ∈ [0,∞), y(t) ∈ Rm denotes

the system output, ν(t) denotes the reference input, taking values in a compact and

convex set V ⊂ Rnν and determining the set-point of the system, and f : Rn×Rnν →
Rn and g : Rn×Rnν → Rm are nonlinear functions. We note that such a pre-stabilized

system typically consists of a plant to be controlled and a nominal controller, as

illustrated in Figure 4.1. Also note that we assume the system dynamics (4.1) (i.e.,

f and g) do not change over time.

Figure 4.1: Diagram of a nominal closed-loop system augmented with a learning-based
reference governor for handling constraints.

We assume that the system must operate without violating a prescribed set of

specifications, which are represented as pointwise-in-time constraints on the outputs

of the form:

y(t) ∈ Y, ∀t ∈ [0,∞), (4.2)

where Y ⊂ Rm is a closed set with a nonempty interior.

We make the following assumptions:

Assumption 4.1. For any initial condition x(0) = x0 ∈ Rn and piecewise continuous

reference input signal ν : [0,∞)→ V , the solution to the differential equation (4.1a),

x : [0,∞)→ Rn, exists and is unique.
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Assumption 4.2. For any constant reference input ν ∈ V , the autonomous system,

ẋ(t) = f
(
x(t), ν

)
, (4.3)

has a unique equilibrium point, xν = xν(ν), which is globally asymptotically stable

(GAS).

We note that since (4.1) represents a system that has been stabilized by a nomi-

nal/legacy controller (see Figure 4.1), Assumptions 4.1 and 4.2 are reasonable.

Assumption 4.3. The steady-state mapping in (A2), xν : V → Rn, and the output

function in (4.1b), g : Rn × Rnν → Rm, are continuous functions.

The above Assumptions 4.1 to 4.3 characterize the class of systems to be treated.

Although the system (4.1) is stable (or pre-stabilized), the nominal controller may

not have the ability to enforce the imposed constraints (4.2). In addition, for many

practical systems, the functions f and g in their corresponding models (4.1) can be

highly complex or not given explicitly (e.g., when the model is given as a black-box

simulation code). Moreover, in some circumstances, the system may not even have

an accurate model, as is the case for a vehicle that has undergone in-field modifica-

tions. Therefore, the proposed LRG scheme relies on learning rather than explicit

knowledge of f and g to achieve constraint enforcement. For situations where the

system does not have a model, the learning process may be performed directly on the

hardware. In such a case, it can be important to ensure constraint satisfaction even

during the learning process, especially for safety-critical systems, in which constraint

violations may cause catastrophic consequences such as damage to the hardware or

to the human operator. The proposed control scheme achieves such a safe learning

based on Assumptions 4.4 to 4.6 stated below.

Firstly, let ψ(·, x0, ν) : [0,∞)→ Rn denote the solution to (4.3) corresponding to

the initial condition x(0) = x0 and constant reference input ν ∈ V , and let ϕ(·, x0, ν) =
g
(
ψ(·, x0, ν), ν

)
denote the corresponding output trajectory y. Then, let D : Rnν ×

Rnν × Rn → R be defined as

D(ν, δν, δx) := sup
t∈[0,∞)

∥∥ϕ(t, xν(ν) + δx, ν + δν
)
− yν(ν)

∥∥, (4.4)

where yν(ν) = g
(
xν(ν), ν

)
denotes the steady-state output corresponding to the ref-

erence ν, and ∥ · ∥ = ∥ · ∥Rm denotes an arbitrary vector norm on Rm.

The above function D represents the maximum deviation of the output trajectory

y from the steady-state output yν(ν) when the initial condition x(0) is deviated from
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the equilibrium xν(ν) by δx and the reference input ν(t) is deviated from ν by a

constant δν. Note that according to its definition, D(ν, 0, 0) = 0 for all ν ∈ Rnν .

This function D will be exploited in the proposed control scheme for constraint

enforcement. However, in general, there does not exist an explicit formula for D,

even when the functions f and g in the model (4.1) are explicitly known. Therefore,

we employ a data-driven approach to learn/estimate D. In particular, as discussed

above, constraint satisfaction should be ensured during the process of data collection

and learning. For this, we rely on the following assumptions on the function D:

Assumption 4.4. There is a known pair of constants L > 0, β ≥ 1 such that for any

z1, z2 ∈ Rnν × Rnν × Rn, it holds that

∣∣D(z1)−D(z2)
∣∣ ≤ L ∥z1 − z2∥

1
β , (4.5)

where ∥ · ∥ = ∥ · ∥Rnν×Rnν×Rn denotes an arbitrary vector norm on Rnν × Rnν × Rn.

Note that this Hölder continuity assumption is a weaker and more general assumption

than the Lipschitz continuity assumption relied upon in our preliminary works [86]

and [88], because when β = 1, (4.5) reduces to the Lipschitz continuity condition.

The above Hölder continuity assumption for D is reasonable. For instance, in

Lemmas A.1 and A.2 in the Appendix A, we show that this assumption holds true for

all asymptotically stable linear time-invariant (LTI) systems, where we also provide

formulas to compute estimates of the constants L and β in (4.5) when the LTI system

has an explicit model. For nonlinear systems with explicit models, the technique in

[141], which derives an explicit bound on the system responses to deviations in the

initial condition and reference input using the logarithmic norms, can be used to

check Assumption 4.4 and estimate L and β. In practice, the constants L and β

may also be estimated based on engineering insight or by a data-driven approach

using sampled trajectories, in both cases avoiding the need for explicit knowledge of

the functions f and g in (4.1). On the one hand, estimating constants L and β can

be much easier than identifying f and g globally from data. On the other hand, in

principle, for a fixed β, the estimate of L can be arbitrarily conservative as long as it

is a finite number. Note, however, that a more conservative estimate of L may result

in a slower learning rate; this will be further shown in our simulation case study in

Section 4.6.

We next make the following assumption:

Assumption 4.5. At each time instant t ∈ [0,∞), the state x(t), the output y(t),

and the distance from the steady-state output, yν
(
ν(t)

)
, associated with the current
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reference input, ν(t), to the constraint boundary,

d
(
ν(t)

)
:= dist

(
yν
(
ν(t)

)
, Y C

)
= inf

y∈Y C

∥∥yν(ν(t))− y∥∥, (4.6)

can all be measured. In (4.6), Y C denotes the complement of the constraint set Y ,

i.e., Y C = Rm\Y .

We note that measuring d
(
ν(t)

)
requires knowledge of the steady-state output

mapping yν(·) = g
(
xν(·), ·

)
: V → Rm. When f and g are not explicitly known,

the mapping yν , or the distance mapping d(·) = dist
(
yν(·), Y C

)
: V → R, can be

estimated using data of preliminary steady-state experiments with the system, and

be function-fitted or stored as a look-up table for online use, as done in [142].

Assumption 4.6. There is a known pair (T, ε), with ε > 0 being sufficiently small,

such that for any (ν, δν, δx) ∈ Rnν × Rnν × Rn satisfying ν, ν + δν ∈ V , it holds that

D̃(ν, δν, δx) := max
t∈[0,T ]

∥∥ϕ(t, xν(ν) + δx, ν + δν
)
− yν(ν)

∥∥+ ε ≥ D(ν, δν, δx). (4.7)

Assumption 4.6 is reasonable and ensures that the value of D(ν, δν, δx), which

is defined in (4.4) as a supremum over an infinite interval, can be estimated using

trajectory data of finite length (of length T ) with high accuracy (with error bounded

by ε). Note that according to their definitions in (4.4) and (4.7), D(ν, δν, δx) and

D̃(ν, δν, δx) also satisfy D(ν, δν, δx)+ ε ≥ D̃(ν, δν, δx). Therefore, we have D ≤ D̃ ≤
D + ε pointwise on Rnν × Rnν × Rn.

4.3 Learning Reference Governor

We adopt a reference governor approach to enforce the constraints. The RG is

an add-on scheme to the nominal closed-loop system, illustrated by Figure 4.1. It

acts as a pre-filter, which monitors the commanded reference input, r(t), and adjusts

it to a modified reference input, ν(t), to ensure constraint satisfaction. Differently

from conventional RG schemes, the design of which requires explicit knowledge of the

model (4.1) [133], the proposed RG relies on learning and is thereby referred to as

learning reference governor (LRG).
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4.3.1 Reference Governor

The LRG updates the reference input at sample time instants {tk}∞k=0 ⊂ [0,∞)

(with tk →∞ as k →∞) based on the following reference update law,

ν(t+) = ν(t−) + κ
(
x(t), r(t), ν(t−)

)(
r(t)− ν(t−)

)
, (4.8)

where ν(t−) and ν(t+) denote the reference input values before and after the update,

respectively, and κ : Rn × Rnν × Rnν → [0, 1] is a scalar function. The LRG main-

tains ν(t) as constant over each interval [tk, tk+1). This way, the resulting reference

input signal ν : [0,∞) → Rnν is piecewise constant and right continuous, and by

Assumption 4.1, the system (4.1) has a unique solution.

The following lemma is exploited by the LRG to enforce the constraints (4.2).

Lemma 4.1. Given a pair (x0, ν) ∈ Rn × V , suppose that ϕ(t, x0, ν) ∈ Y for all

t ∈ [0,∞). Then, any adjustment δν satisfying ν + δν ∈ V and

D
(
ν, δν, x0 − xν(ν)

)
≤ d(ν), (4.9)

guarantees ϕ(t, x0, ν + δν) ∈ Y for all t ∈ [0,∞).

Proof. Firstly, ϕ(t, x0, ν) ∈ Y for all t ∈ [0,∞) implies yν(ν) ∈ Y , since xν(ν) is GAS

by Assumption 4.2, g is continuous by Assumption 4.3, and Y is closed.

Then, we consider two cases separately: 1) d(ν) = 0, and 2) d(ν) > 0. For the

former case, i.e., if d(ν) = 0, we have

0 ≤ D
(
ν, δν, x0 − xν(ν)

)
= sup

t∈[0,∞)

∥∥ϕ(t, x0, ν + δν)− yν(ν)
∥∥ ≤ d(ν) = 0, (4.10)

which implies ϕ(t, x0, ν + δν) ≡ yν(ν) ∈ Y .

For the latter case d(ν) > 0, according to the definition of d(ν) in (4.6), it holds

that the closed ball centered at yν(ν) with radius d(ν) is contained entirely in the

constraint set Y , i.e., B
(
yν(ν), d(ν)

)
:=
{
y ∈ Rm

∣∣∥yν(ν) − y∥ ≤ d(ν)
}
⊆ Y . This

is because for any y′ ∈ Y C , we have ∥yν(ν) − y′∥ ≥ infy∈Y C ∥yν(ν) − y
∥∥ = d(ν),

which implies the open ball B
(
yν(ν), d(ν)

)
:=
{
y ∈ Rm

∣∣∥yν(ν) − y∥ < d(ν)
}
⊆ Y .

Since B
(
yν(ν), d(ν)

)
is the closure of B

(
yν(ν), d(ν)

)
and Y is closed, it holds that

B
(
yν(ν), d(ν)

)
⊆ Y .

Then, according to the definition of D in (4.4), D
(
ν, δν, x0−xν(ν)

)
≤ d(ν) implies

ϕ(t, x0, ν + δν) ∈ B
(
yν(ν), d(ν)

)
⊆ Y for all t ∈ [0,∞). ■
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In principle, while guaranteeing the satisfaction of (4.2), minimizing the deviation

of the modified reference ν(t+) from the commanded value r(t) is desired, which,

according to the reference update law (4.8), corresponds to maximizing the value of

κ
(
x(t), r(t), ν(t−)

)
in [0, 1]. Note also that when κ

(
x(t), r(t), ν(t−)

)
= 1, we have

ν(t+) = r(t), i.e., the commanded reference input is reached.

On the basis of Lemma 4.1, if the function D, which is defined in (4.4), is known,

then one can design the function κ in the reference update law (4.8) (or equivalently,

determine the reference adjustment δν at each sample time instant) such that the

condition (4.9) is satisfied, which in turn guarantees the satisfaction of (4.2) after the

reference update. However, as discussed in Section 4.2, the function D is typically

not known a priori. Therefore, in what follows we introduce a safe learning algorithm

to learn/estimate D from data, and at the same time evolve the design of κ. Here,

“safe” means that the algorithm guarantees the constraints (4.2) to be satisfied over

the entire process of data collection and learning.

4.3.2 Safe learning algorithm

The proposed learning algorithm is formally presented as Algorithm 4.1 with the

Kappa function in line 5 determined according to Algorithm 4.2. This learning algo-

rithm continually improves the estimate of D and at the same time evolves κ as more

data are collected.

In Algorithm 4.1, the sampling period T in lines 3, 5 and 7 is the T in Assump-

tion 4.6. The ∥ · ∥’s in (4.14) and (4.15) are the norm ∥ · ∥ = ∥ · ∥Rnν×Rnν×Rn used in

(4.5) restricted to the subspaces {0}×Rnν ×{0}, Rnν ×{0}×Rn, and {0}×{0}×Rn,

respectively, i.e., ∥δν∥ = ∥(0, δν, 0)∥, ∥(ν, δx)∥ = ∥(ν, 0, δx)∥, and ∥δx∥ = ∥(0, 0, δx)∥.
We note also that (4.15) is the solution to the following optimization problem,

max κ ∈ [0, 1], subject to (4.16)∥∥κ(r − ν)− 0
∥∥ ≤ (d− 0

L

)β

−
∥∥∥∥
[

ν

x− xν(ν)

]
−

[
ν

0

]∥∥∥∥,
which has the same form as (4.14), but with (νi, δνi, δxi, D̃i) replaced by (ν, 0, 0, 0).

We note that Algorithm 4.1 continually improves the following estimate of D,

D(ν, δν, δx) = min

(
min
i∈D

(
D̃i + L

∥∥∥∥∥
 νδν
δx

−
 νiδνi
δxi

∥∥∥∥∥
1
β
)
, L

∥∥∥∥
[
δν

δx

]∥∥∥∥ 1
β

)
. (4.17)

73



Algorithm 4.1 Safe learning algorithm

1: Initialize the system (4.1) with a strictly constraint-admissible steady state
xν
(
ν(0−)

)
as the initial condition, i.e., x(0) = xν

(
ν(0−)

)
with ν(0−) ∈ V and

satisfying y(0−) = g
(
x(0), ν(0−)

)
∈ int(Y ), and initialize the dataset D ← ∅;

2: for n = 0 : nmax − 1 do
3: Generate rn ∈ V \

{
ν
(
nkmaxT

−)} either randomly (e.g., based on a uniform
distribution) or according to a training profile {ri}∞i=0 that covers the operating
range of the system;

4: for k = 0 : kmax − 1 do
5: At the sample time instant t = (nkmax + k)T , compute

κ(t) = Kappa
(
x(t), rn, ν(t

−), d
(
ν(t−)

)
,D
)
; (4.11)

6: Adjust the reference input according to

ν(t+) = ν(t−) + κ(t)
(
rn − ν(t−)

)
; (4.12)

7: At the next sample time instant t′ = t + T , measure D̃(t) =
D̃
(
ν(t−), δν(t), δx(t)

)
, where δν(t) = κ(t)

(
rn − ν(t−)

)
and δx(t) = x(t) −

xν
(
ν(t−)

)
;

8: Add the new data point
(
ν(t−), δν(t), δx(t), D̃(t)

)
to the dataset D, i.e.,

D ← D ∪
(
ν(t−), δν(t), δx(t), D̃(t)

)
. (4.13)

9: end for
10: end for
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Algorithm 4.2 Kappa(x, r, ν, d,D)
1: for (νi, δνi, δxi, D̃i) ∈ D do
2: Compute κi as the solution to the following optimization problem,

max κ ∈ [0, 1], subject to (4.14)∥∥κ(r − ν)− δνi∥∥ ≤ (d− D̃i

L

)β

−
∥∥∥∥ [ ν
x− xν(ν)

]
−
[
νi
δxi

] ∥∥∥∥,
if a solution exists, and κi = 0 otherwise;

3: end for
4:

κ′ = sat
[0,1]

(
d

L

)β
1

∥r − ν∥
− ∥x− xν(ν)∥

∥r − ν∥
, (4.15)

5: return κ = max (maxi κi, κ
′).

In particular, under Assumptions 4.4 and 4.6, (4.17) is an upper bound for D. This

is because for any (ν, δν, δx) ∈ Rnν × Rnν × Rn, on the one hand, Assumptions 4.4

and 4.6 imply

D(ν, δν, δx) ≤ D(ν ′, δν ′, δx′) + L

∥∥∥∥∥
 νδν
δx

−
 ν

′

δν ′

δx′

∥∥∥∥∥
1
β

≤ D̃(ν ′, δν ′, δx′) + L

∥∥∥∥∥
 νδν
δx

−
 ν

′

δν ′

δx′

∥∥∥∥∥
1
β

, (4.18)

for all measured data
(
ν ′, δν ′, δx′, D̃(ν ′, δν ′, δx′)

)
; and, on the other hand, Assump-

tion 4.4 and the fact that D(ν, 0, 0) = 0 for all ν ∈ Rnν imply

D(ν, δν, δx) ≤ D(ν, 0, 0) + L

∥∥∥∥∥
 νδν
δx

−
ν0
0

∥∥∥∥∥
1
β

= L

∥∥∥∥
[
δν

δx

]∥∥∥∥ 1
β

. (4.19)

Then, (4.14) and (4.15) maximize κ ∈ [0, 1] such that D(ν, δν, δx) ≤ d(ν).

The optimization problem (4.14) is a convex program with a scalar decision vari-

able and can generally be solved with a bisection method. For the following two

special cases, which are commonly encountered in practical situations, closed-form

solutions to (4.14) exist:

Firstly, if the norm ∥ · ∥ = ∥ · ∥Rnν×Rnν×Rn in (4.5) restricted to the subspace

{0} × Rnν × {0} is a quadratic norm, i.e.,
∥∥κ(r − ν) − δνi∥∥ =

∥∥κ(r − ν) − δνi∥∥Q =
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√
(κ(r − ν)− δνi)⊤Q(κ(r − ν)− δνi) for some positive-definite matrix Q ∈ Rnν×nν ,

then (4.14) admits the following closed-form solution,

κi = sat
[0,1]

1

(r − ν)⊤Q(r − ν)

(
(r − ν)⊤Qδνi+ (4.20)√(

(r − ν)⊤Qδνi
)2 − (r − ν)⊤Q(r − ν)

(
δν⊤i Qδνi −Θi

))
,

where

Θi =

((d− D̃i

L

)β
−
∥∥∥∥
[

ν

x− xν(ν)

]
−

[
νi

δxi

]∥∥∥∥)2

. (4.21)

Secondly, if the reference input is a scalar, i.e., nν = 1, and
∥∥κ(r − ν) − δνi∥∥ =∣∣κ(r − ν)− δνi∣∣, then the closed-form solution (4.20) further reduces to

κi = sat
[0,1]

max
1

r − ν

(
δνi ±

((d− D̃i

L

)β
−
∥∥∥∥
[

ν

x− xν(ν)

]
−

[
νi

δxi

]∥∥∥∥)). (4.22)

The learning algorithm terminates either after the maximum number of training

commands, nmax, has been reached or when the moving average of the tracking error

between the commanded reference input r(t) and the modified reference input ν(t),

defined as 1
Twin

∫ t

t−Twin
∥r(s) − ν(s)∥ ds with Twin > 0 denoting the window size, con-

verges lower than a specified threshold value. After termination of the learning phase,

the system is ready for operation. In principle, learning can be stopped at any time

and the resulting reference governor will enforce the constraints, however, its perfor-

mance in terms of moving average of the tracking error can be more conservative than

after training is completed.

During the operating phase, the LRG uses (4.8) to adjust the reference input

ν(t) at each sample time instant t ∈ {tk}∞k=0, where κ
(
x(t), r(t), ν(t−)

)
is determined

according to (4.11) and Algorithm 4.2 with the dataset D obtained from the learning

phase. We note that the LRG can use a different sampling period for the operating

phase than for the learning phase and smaller values in the operating phase can

improve performance.

4.3.3 Theoretical properties

The LRG algorithm introduced in Sections 4.3.1 and 4.3.2 guarantees constraint

satisfaction during both the learning and the operating phases, pointwise convergence

of the estimate of D, and finite-time convergence of the modified reference input ν(t)
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to constant, strictly steady-state constraint-admissible reference command r(t) during

the operating phase. These properties are presented as the following propositions.

Proposition 4.2. During the learning phase, constraints y(t) ∈ Y are guaranteed to

be satisfied for all t ∈ [0,∞).

Proof. Let τ = σT , σ = 0, 1, 2, . . . , be an arbitrary sample time instant during the

learning phase. Suppose ϕ(t′, x(τ), ν(τ−)) ∈ Y for all t′ ∈ [0,∞), where

ϕ(·, x(τ), ν(τ−)) = g
(
ψ(·, x(τ), ν(τ−)), ν(τ−)

)
denotes the output trajectory of (4.3)

with the initial condition x0 = x(τ) and constant reference input ν = ν(τ−). Then,

for any δν satisfying

∥∥δν − δνi∥∥ ≤ (d(ν(τ−))−D̃i

L

)β

−
∥∥∥∥
[

ν(τ−)

x(τ)−xν
(
ν(τ−)

)]− [ νi
δxi

]∥∥∥∥, (4.23)

for some i ∈ D, it holds that

D
(
ν(τ−), δν, x(τ)− xν(ν(τ−))

)
≤ D̃i + L

∥∥∥∥∥
 ν(τ−)

δν

x(τ)− xν(ν(τ−))

−
 νiδνi
δxi

∥∥∥∥∥
1
β

≤ D̃i + L

(∥∥∥∥
[

ν(τ−)

x(τ)− xν(ν(τ−))

]
−

[
νi

δxi

]∥∥∥∥+ ∥δν − δνi∥) 1
β

≤ d
(
ν(τ−)

)
, (4.24)

where we have used the triangle inequality to derive the second inequality. Then,

according to Lemma 4.1, (4.24) implies ϕ(t′, x(τ), ν(τ−) + δν) ∈ Y for all t′ ∈ [0,∞).

Similarly, for any δν satisfying

∥δν∥ ≤
(
d
(
ν(τ−)

)
L

)β

−
∥∥x(τ)− xν(ν(τ−))∥∥, (4.25)

it holds that

D
(
ν(τ−), δν, x(τ)−xν(ν(τ−))

)
≤L

∥∥∥∥
[

δν

x(τ)−xν(ν(τ−))

]∥∥∥∥ 1
β

≤ L
(∥∥x(τ)− xν(ν(τ−))∥∥+ ∥δν∥) 1

β ≤ d
(
ν(τ−)

)
, (4.26)

which implies ϕ(t′, x(τ), ν(τ−) + δν) ∈ Y for all t′ ∈ [0,∞). Therefore, for ν(τ+)
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determined according to (4.11), (4.12), and Algorithm 4.2, it must hold that

ϕ(t′, x(τ), ν(τ+)) ∈ Y for all t′ ∈ [0,∞). Note that if there exists no δν satisfying

(4.23) or (4.25), then Algorithm 2 returns κ(t) = 0. In this case, we have ν(τ+) =

ν(τ−), and thus, ϕ(t′, x(τ), ν(τ+)) = ϕ(t′, x(τ), ν(τ−)) ∈ Y .

Since the learning algorithm is initialized with x(0) = xν
(
ν(0−)

)
such that

ϕ(t′, x(0), ν(0−)) ≡ g
(
x(0), ν(0−)

)
∈ Y for all t′ ∈ [0,∞), the above result says

ϕ(t′, x(0), ν(0+)) ∈ Y for all t′ ∈ [0,∞), which also implies ϕ(t′, x(T ), ν(T−)) =

ϕ(t′ + T, x(0), ν(0+)) ∈ Y for all t′ ∈ [0,∞). Then, by induction on τ = 0, T, 2T, . . . ,

we obtain that ϕ(t′, x(τ), ν(τ+)) ∈ Y for all t′ ∈ [0,∞) and all sample time instants τ .

Now let t ∈ [0,∞) be arbitrary and consider the sample time instant τ immediately

before t (i.e., τ ≤ t < τ + T ). It holds that y(t) = ϕ(t − τ, x(τ), ν(τ+)) ∈ Y . This

proves y(t) ∈ Y for all t ∈ [0,∞). ■

Proposition 4.2 certifies that our algorithm is a safe learning algorithm, i.e., en-

sures constraint satisfaction over the entire learning process.

Corollary 4.3. During the operating phase, constraints y(t) ∈ Y are guaranteed to

be satisfied for all t ∈ [0,∞). In particular, this guarantee does not depend on the

length of the learning phase.

Proof. The constraint satisfaction result established in the proof of Proposition 4.2

depends only on the reference update law used by LRG, neither on the sampling

period T nor on the number of data points in the dataset D. Therefore, the same

proof can be used to prove Corollary 1, with T now corresponding to the sampling

period for the operating phase. ■

Corollary 4.3 establishes the constraint enforcement property of our LRG after

training. Although the guaranteed constraint satisfaction does not depend on the

length of learning, the performance, in terms of reference tracking, will be improved

as learning proceeds. The following proposition formalizes such a result.

Proposition 4.4. Let D
σ
denote the estimate of D, (4.17), after the sample time

instant τ = σT during the learning phase. The following properties hold: (i) D ≤
D

σ+1 ≤ D
σ
pointwise on Rnν × Rnν × Rn for all σ = 0, 1, . . . ; (ii) D

σ
converges

pointwise on Rnν×Rnν×Rn as σ →∞; and (iii) the pointwise limitD
∞

:= limσ→∞D
σ

satisfies D
∞ ≥ D and is Hölder continuous with constants L and β on Rnν×Rnν×Rn.

Proof. Firstly, D ≤ D
σ
for all σ = 0, 1, . . . follows from the expression (4.17) and

the inequalities (4.18) and (4.19). Then, D
σ+1 ≤ D

σ
follows from the fact that the
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dataset corresponding to D
σ+1

, denoted as Dσ+1, over which the second minimum

in the expression (4.17) is taken, is a superset of that corresponding to D
σ
, Dσ. We

have Dσ+1 ⊇ Dσ because as learning proceeds, more data points are collected into D.
This proves (i).

For each (ν, δν, δx) ∈ Rnν × Rnν × Rn, since 0 ≤ D(ν, δν, δx) ≤ D
σ+1

(ν, δν, δx) ≤
D

σ
(ν, δν, δx) for all σ = 0, 1, . . . , by the monotone convergence theorem, the sequence{

D
σ
(ν, δν, δx)

}∞
σ=0

must converge. This proves the pointwise convergence of D
σ
on

Rnν × Rnν × Rn as σ →∞.

For (iii), D
∞ ≥ D follows from the fact that D

σ ≥ D for all σ = 0, 1, . . . It

remains to show that D
∞

is Hölder continuous with constants L and β.

Let σ = 0, 1, . . . be arbitrary and denote the corresponding dataset as Dσ. It is

easy to see that for each i ∈ Dσ, the following function,

D
σ,i
(ν, δν, δx) := D̃i + L

∥∥∥∥∥
 νδν
δx

−
 νiδνi
δxi

∥∥∥∥∥
1
β

, (4.27)

is Hölder continuous with constants L and β. Because D
σ,i

for all i ∈ Dσ and

D
′
(ν, δν, δx) := L

∥∥∥∥
[
δν

δx

]∥∥∥∥ 1
β

share the same Hölder constants L and β, we have that

D
σ
= min

(
mini∈Dσ D

σ,i
, D

′)
is also Hölder continuous with constants L and β. Note

that this result holds for all σ = 0, 1, . . .

SinceD
∞
is the pointwise limit of the non-increasing sequence of functions {Dσ}∞σ=0,

it can also be expressed as D
∞

= infσ=0,1,...D
σ
. In this case, because D

σ
for all

σ = 0, 1, . . . share the same Hölder continuous with constants L and β, we can con-

clude that D
∞

= infσ=0,1,...D
σ
is Hölder continuous with constants L and β. This

completes the proof of (iii). ■

Recall that Algorithm 4.2 maximizes κ ∈ [0, 1] such that D(ν, δν, δx) ≤ d(ν).

According to Proposition 4.4(i), as learning proceeds, the estimate D(ν, δν, δx) be-

comes less conservative (i.e., smaller), and correspondingly, the feasible region for κ

is enlarged. In turn, κ can take more aggressive values for ν(t) to track r(t), which

transfers to improved reference tracking performance.

After the learning process, the dataset D may contain a large number of data

points. For online implementation of our LRG, Algorithm 4.2 needs to run fast

enough to produce κ(t) for updating the reference input ν(t) in real time. This is

possible because, on the one hand, the optimization problem (4.14) may admit closed-

79



form solutions, such as (4.20) and (4.22); and on the other hand, the computational

tasks of (4.14) for different data points i ∈ D are ready to be performed in parallel.

Furthermore, one may partition the space Rnν×Rnν×Rn by bounded subsets {Ui}∞i=1,

such as cubes, with diameter diam(Ui) = sup{∥z1 − z2∥ | z1, z2 ∈ Ui} ≤ m for all i,

and post-process the dataset D such that if there are multiple data points in the

same Ui, then only one of them is kept and the others are dropped. This way, the

number of data points in D will be reduced, and in turn, the computational cost of

Algorithm 4.2 will become lower.

Denote the estimateD corresponding to the dataset before post-processing asD
pre

and that corresponding to the dataset after post-processing as D
post

. The following

result can be used to guide the design of the parameter m to balance the tradeoff

between estimation performance and dataset complexity.

Proposition 4.5. After post-processing, the estimate, D
post

, satisfies D
pre ≤ D

post ≤
D

pre
+ 2Lm

1
β + ε pointwise on Rnν × Rnν × Rn.

Proof. Firstly, the dataset before post-processing, Dpre, is a superset of that after

post-processing, Dpost. Thus, according to the expression (4.17), we have D
pre ≤

D
post

.

Secondly, for each (ν, δν, δx) ∈ Rnν × Rnν × Rn, according to (4.17), we have

D
pre

(ν, δν, δx)=min

(
D̃j + L

∥∥∥∥∥
 νδν
δx

−
 νjδνj
δxj

∥∥∥∥∥
1
β

, L

∥∥∥∥
[
δν

δx

]∥∥∥∥ 1
β

)
, (4.28)

for some data point j ∈ Dpre. The post-processing procedure introduced above

ensures that there exists some data point k ∈ Dpost such that ∥(νk, δνk, δxk) −
(νj, δνj, δxj)∥ ≤ m. Therefore, we have
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D
post

(ν, δν, δx) = min

(
min

i∈Dpost

(
D̃i + L

∥∥∥∥∥
 ν

δν

δx

−
 νi

δνi

δxi

∥∥∥∥∥
1
β
)
, L

∥∥∥∥
[
δν

δx

]∥∥∥∥ 1
β

)

≤ min

(
D̃k + L

∥∥∥∥∥
 ν

δν

δx

−
 νk

δνk

δxk

∥∥∥∥∥
1
β

, L

∥∥∥∥
[
δν

δx

]∥∥∥∥ 1
β

)

≤ min

(
D̃k + (D̃j −Dj) + L

(∥∥∥∥∥
 ν

δν

δx

−
 νj

δνj

δxj

∥∥∥∥∥+
∥∥∥∥∥
 νk

δνk

δxk

−
 νj

δνj

δxj

∥∥∥∥∥
) 1

β

, L

∥∥∥∥
[
δν

δx

]∥∥∥∥ 1
β

)

≤ min

(
D̃k + (D̃j −Dj) + L

∥∥∥∥∥
 ν

δν

δx

−
 νj

δνj

δxj

∥∥∥∥∥
1
β

+ L

∥∥∥∥∥
 νk

δνk

δxk

−
 νj

δνj

δxj

∥∥∥∥∥
1
β

, L

∥∥∥∥
[
δν

δx

]∥∥∥∥ 1
β

)

≤ min

(
D̃j + L

∥∥∥∥∥
 ν

δν

δx

−
 νj

δνj

δxj

∥∥∥∥∥
1
β

, L

∥∥∥∥
[
δν

δx

]∥∥∥∥ 1
β

)

+ (D̃k −Dj) + L ∥(νk, δνk, δxk)− (νj , δνj , δxj)∥
1
β

≤ D
pre

(ν, δν, δx) + 2Lm
1
β + ε, (4.29)

where we have used D̃j −Dj ≥ 0, by Assumption 4.6, and the triangle inequality

to derive the second inequality, and the triangle inequality variant with exponents

1/β ∈ (0, 1] to derive the third inequality, and have used the following result to

derive the last inequality,

D̃k −Dj ≤ Dk + ε−Dj

≤
∣∣D(νk, δνk, δxk)−D(νj, δνj, δxj)

∣∣+ ε

≤ L ∥(νk, δνk, δxk)− (νj, δνj, δxj)∥
1
β + ε

≤ Lm
1
β + ε, (4.30)

in which the third inequality is due to Assumption 4.4. This proves D
post ≤

D
pre

+ 2Lm
1
β + ε. ■

We next study the convergence of the modified reference ν(t) to the commanded

value r(t). To achieve an enhanced convergence property, following the approach in

81



[141], we exploit the following two sets,

V1(r) :=
{
ν ∈ V

∣∣ d(ν) ≥ min (d(r), δ)
}
,

V2(ν, r) :=
{
ν ∈ V

∣∣ ∥ν − r∥ ≤ max (∥ν − r∥ − λ, 0)
}
,

(4.31)

where δ > 0 is arbitrarily small and λ = λ(r) ∈
(
0,
(min (d(r),δ)

L

)β)
, and we slightly

modify the reference update law (4.8) during the operating phase to

ν(t+) = ν̃(t+)χ(t) + ν(t−)
(
1− χ(t)

)
,

ν̃(t+) = ν(t−) + κ
(
x(t), r(t), ν(t−)

)(
r(t)− ν(t−)

)
,

(4.32)

where χ(t) = 1 if ν̃(t+) ∈ V1
(
r(t)

)
∩ V2

(
ν(t−), r(t)

)
, and χ(t) = 0 otherwise.

Proposition 4.6. Consider the operation of the reference governor based on the

update law (4.32). Suppose that there exists ts ∈ [0,∞) such that r(t) = rs for all

t ∈ [ts,∞), with rs ∈ V satisfying d(rs) > 0. Suppose also that for any ν on the

line segment connecting ν(t−s ) and rs, we have ν ∈ V1(rs). Then, with the reference

update law (4.32), there exists tf ∈ [ts,∞) such that ν(t) = r(t) for all t ∈ [tf ,∞).

In particular, this result does not depend on the length of the learning phase.

Proof. Let Jk := ∥ν(t+k )− rs∥. Because in the reference update law (4.32), κ, deter-

mined by Algorithm 2, takes values in the interval [0, 1], the sequence {Jk}∞k=ks
, with

tks denoting the first sample time instant after ts, is non-increasing. Since {Jk}∞k=ks
is

also bounded from below by 0, by the monotone convergence theorem, Jk converges

as k →∞. Let Ĵ := limk→∞ Jk.

In particular, due to the requirement ν̃(t+) ∈ V2
(
ν(t−), rs

)
=
{
ν ∈ V

∣∣ ∥ν − rs∥ ≤
max (∥ν(t−)− rs∥− λ, 0)

}
in (4.32) for the reference input ν(t+) to be updated from

ν(t−) to ν̃(t+), it must hold that Jk+1 ≤ max(Jk − λ, 0) whenever Jk+1 ̸= Jk. Note

that the λ here is a positive constant. In this case, the sequence {Jk}∞k=ks
converges

to Ĵ through at most a finite number of jumps. In other words, there exists kf ∈ N0

such that Jk = Ĵ for all k ≥ kf . Under (4.32), this also implies ν(t) = ν(t+kf ) := ν̂ for

all t ∈ [tkf ,∞), i.e., the modified reference ν(t) converges to ν̂ in finite time.

We now show that Ĵ = 0 and ν̂ = rs by contradiction.

Suppose ν̂ ̸= rs. First note that the requirement ν̃(t+) ∈ V1(rs) in (4.32) for

ν(t+) to be updated from ν(t−) to ν̃(t+) ensures ν̂ = ν(t+kf ) ∈ V1(rs), which implies(d(ν̂)
L

)β − λ ≥ (min (d(rs),δ)
L

)β − λ > 0. Then, since ν(t) = ν̂ for all t ∈ [tkf ,∞) and

xν(ν̂) is GAS by Assumption 4.2, there exists τ ∈ {tk}∞k=kf
such that ∥x(τ)−xν(ν̂)∥ ≤(

d(ν̂)
L

)β − λ, which can also be expressed as
(d(ν̂)

L

)β − ∥x(τ)− xν(ν̂)∥ ≥ λ > 0.
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Then, according to (4.15), the κ produced by Algorithm 4.2 at the sample time

instant τ satisfies either κ ≥ (d(ν̂)/L)β−∥x(τ)−xν(ν̂)∥
∥rs−ν̂∥ > 0 or κ = 1. In this case, ν̃ :=

ν̂ + κ(rs − ν̂) satisfies either

∥ν̂ − rs∥ − ∥ν̃ − rs∥ = ∥ν̂ − rs∥ − ∥ν̂ + κ(rs − ν̂)− rs∥

= κ ∥ν̂ − rs∥ ≥
(d(ν̂)

L

)β
− ∥x(τ)− xν(ν̂)∥ ≥ λ, (4.33)

or ν̃ = ν̂+κ(rs− ν̂) = rs, leading to ∥ν̃− rs∥ = 0. In either case, ν̃ = ν̂+κ(rs− ν̂) ∈
V2(ν̂, rs). Note also that with the reference update law (4.32), all of

{
ν(t+k )

}∞
k=ks

lie on the line segment connecting ν(t−s ) and rs, including ν̂ = ν(t+kf ). In this case,

ν̃ = ν̂ + κ(rs− ν̂) also lies on the line segment connecting ν(t−s ) and rs. Then, by the

second assumption in the proposition statement, we have ν̃ ∈ V1(rs).
Since κ > 0 and ν̃ = ν̂ + κ(rs− ν̂) ∈ V1(rs)∩ V2(ν̂, rs), under (4.32), the reference

input should be updated from ν̂ to ν̃ at the sample time instant τ ∈ {tk}∞k=kf
. This

contradicts our assumption that ν(t) converges to some ν̂ ̸= rs at t = tkf . Since in

the above we have shown that ν(t) indeed converges to some ν̂ at t = tkf , we can

conclude that ν̂ = rs. This completes the proof.

It is clear that the above proof does not depend on the number of data points in

the dataset D. Therefore, this finite-time convergence result does not depend on the

length of learning. ■

4.4 Ground Vehicle Rollover Avoidance

Rollover is a type of vehicle accident in which a vehicle tips over onto its side or

roof. Rollovers have a higher fatality rate than other types of vehicle crashes. The

rollover propensities of a vehicle may change if the vehicle carries a load or is driven

on a different road surface [131], and as a result, a model that can accurately represent

the vehicle dynamics under the current operating condition is often not a priori at

hand. In such a case, a learning-based approach may be desired, with experiments

performed either on the real vehicle or on a high fidelity vehicle model.

In this section, we apply our learning-based reference governor algorithm to guard-

ing a vehicle against rollover. We first use a simplified model to represent the vehicle

dynamics. This model satisfies our Assumptions 4.1 to 4.6, and thus Propositions 4.2

to 4.6 are guaranteed to hold. We then use a high-fidelity CarSim model to represent

the vehicle dynamics, to illustrate the effectiveness of the algorithm in a more com-

plex application scenario. Note that both the simplified model and the high-fidelity
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CarSim model are treated as black-box and only used to simulate vehicle responses.

4.4.1 Application to a reduced-order linear model

We consider a scenario where the vehicle is driven with a constant longitudinal

speed and the command is the steering wheel angle (SW), generated by a human

operator or a higher-level planning algorithm. The reference governor is used to

modify the SW command to avoid potential rollover.

Following [131], we use a linear model with the four states: vehicle roll angle q,

roll rate p, lateral velocity v, and yaw rate γ, to represent the vehicle dynamics. The

rollover constraints are defined through the load transfer ratio (LTR):

LTR :=
Fz,R − Fz,L

mg
, (4.34)

where Fz,R and Fz,L represent, respectively, the total vertical force on the right-side

tires and that on the left-side tires, and mg is the vehicle weight. Based on LTR, the

rollover constraints are imposed as

−LTRlim ≤ LTR ≤ LTRlim. (4.35)

Note that |LTR| > 1 means wheels lifting off, so we set LTRlim = 1 in this example.

The linear model is represented as

ẋ = Ax+Bν,

y = Cx,
(4.36)

where x = [q, p, v, γ]⊤, ν = SW, and y = LTR. The parameters are identified based

on a CarSim model of a standard utility truck driving at a constant speed of 80
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(km/h)1, and are as follows:

A =


0.00499 0.997 0.0154 −6.81× 10−5

−78.3 −12.2 −65.3 −3.89
−0.932 −0.799 −6.20 −1.57
1.52 3.32 8.27 −1.49

 ,
B =

[
−5.76× 10−5 2.80 0.278 0.655

]⊤
,

C =
[
0.120 0.0124 −0.0108 0.0109

]
.

(4.37)

We use the 1-norm for every ∥ · ∥ involved in our learning algorithm. Suppose

(4.36) and (4.37) are known, then it can be shown by analytical calculations that for

β = 1, any L ≥ 0.132 satisfies (4.5). In this example, we choose L = 0.3 to illustrate

that a conservative estimate of L is sufficient for our learning algorithm. During

the learning phase, the commands rn can be randomly generated. However, to better

visualize how the learning algorithm gradually pushes the system to its mobility limit,

in this example we use a repeated profile for rn, switching between ±100 (deg) with

a duration of 20 (s).

The learning progress is illustrated in Figure 4.2. In Figure 4.2(a), the tracking

error is defined as the average of |r−ν| over a time window of the most recent 1000 (s).

At the beginning of learning, the tracking error is relatively high, indicating that the

reference governor operates conservatively and significantly modifies the command.

The tracking error gradually decreases as the learning progresses and converges to a

low value. Figure 4.2(b) shows the LTR response during learning. As the learning

progresses, the vehicle can operate with maneuvers that cause the LTR response to

reach the constraint boundary but without violating it. Note that constraints are

satisfied during the entire learning process.

Figure 4.3 shows the SW and LTR responses of tracking step SW commands

(plotted in solid black) when without the reference governor (dashed red) and when

with the reference governor before (dotted green) and after learning (solid blue).

Without the reference governor, the input to the system tracks the command perfectly,

but this results in occasional constraint violations. Before learning, the reference

governor operates conservatively and is not able to satisfactorily track the command.

After learning with n = 750 commands, the reference governor passes the command

unchanged to the system when there is no danger of constraint violation, and modifies

1To be more precise, the vehicle is tracking the constant reference speed of 80 (km/h) based on
a feedback control on the gas pedal.

85



0 5000 10000 15000

Time[s]

20

40

60

80

100

120
T

ra
c
k
in

g
 E

rr
o

r 
[d

e
g

]

0 5000 10000 15000

Time[s]

0

0.2

0.4

0.6

0.8

1

1.2

|L
T

R
|

5120 5130 5140
0

0.5

1

(a) (b)

Figure 4.2: Learning algorithm application to vehicle rollover avoidance based on
a linear model. (a) Tracking error profile during learning. (b) LTR profile during
learning.

the command by a minimal amount when necessary to ensure constraint satisfaction.

Furthermore, the modified reference input converges to the original command in a

small amount of time.
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Figure 4.3: (a) Tracking results for step SW commands and (b) corresponding LTR
responses without reference governor and with reference governor before and after
learning.

4.4.2 Application to a high-fidelity CarSim model

We consider the same scenario as before, where the vehicle is driving at the con-

stant speed of 80 (km/h) and the maneuver command is the steering wheel angle

(SW), but we now apply the learning algorithm directly to the high-fidelity CarSim
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model of standard utility truck.

In the implementation, we still treat [q, p, v, γ]⊤ as x in defining the function D

(see (4.4)), although the high-fidelity CarSim model has a much larger number of

states. The steady-state maps xν and yν are now estimated by applying samples of

constant ν = SW until the x = [q, p, v, γ]⊤ and y = LTR converge. In this example,

we choose again β = 1 and L = 0.3. The rollover limit is again defined through

(4.35). However, as noted in Remark 3.1 in Section 3.4, LTR going above 1 does not

necessarily lead to rollover due to suspension roll moment and aerodynamic forces

and also due to the fact that additional work is needed to move the gravity center

of the vehicle up for rollover. Therefore, following Remark 3.1, LTRlim is tuned to a

value that best describes the situation of rollover. In this example, LTRlim is chosen

as 1.3.

In this example, we use a repeated profile for rn, switching between ±200 (deg)

with a duration of 10 (s). In practice, the training profile can be randomly generated.

The learning progress is illustrated in Figure 4.4. The tracking error is defined in

the same way as that in Figure 4.2(a). The tracking error gradually decreases and

converges to a much smaller value compared to that at the beginning of learning. Note

that the final tracking error of this example being larger than that in Figure 4.2 is due

to the fact that we now consider a wider range of SW commands, [−200, 200] (deg),
compared to the [−100, 100] (deg) for Figure 4.2. The LTR is always maintained in

the range of [−LTRlim,LTRlim] during the entire learning process.
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Figure 4.4: Learning algorithm application to vehicle rollover avoidance based on
high-fidelity CarSim model. (a) Tracking error profile during learning. (b) LTR
profile during learning.

We test the vehicle system augmented with the reference governor using the stan-
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dard sine-and-dwell profile [132] at different phases of learning. The corresponding

modified SW inputs and vehicle responses are shown in Figures 4.5 and 4.6.
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Figure 4.5: (a) SW trajectories, (b) LTR responses, and (c) vehicle trajectories on
the (x, y)-plane for the sine-and-dwell test at different phases of learning. (d) CarSim
visualizations of the sine-and-dwell test for no RG case (red) and n = 1000 case (blue)
at t = 2.2 (s).

Without the reference governor, the original sine-and-dwell SW profile causes

the vehicle to roll over. The augmentation with the reference governor is able to

protect the vehicle from rollover accidents. At early phases of learning, the reference

governor makes relatively large modifications to the SW command and results in

conservative responses. As learning progresses, the reference governor is able to track

the command with decreased error while maintaining constraint satisfaction, as shown

in Figure 4.5(b).
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Figure 4.6: The (a) roll angle, (b) roll rate, (c) lateral velocity, and (d) yaw rate
responses for the sine-and-dwell test corresponding to different phases of learning.

4.5 Fuel Truck Dynamic Model under Sloshing Effects

We now consider an application of the proposed learning reference governor (LRG)

to fuel truck rollover avoidance. In what follows, we introduce models to represent

the roll dynamics of a fuel truck with a partially filled tank. These models were

originally proposed in [139, 140], where sloshing dynamics of liquid fuel in the tank

are accounted for and modeled by an equivalent trammel pendulum. We summarize

them here for the sake of completeness.

4.5.1 Equivalent trammel pendulum model of liquid sloshing

A trammel pendulum model, shown in Figure 4.7, is used to describe the sloshing

dynamics of liquid fuel in the tank. In particular, the model divides the liquid mass

ml into two parts: the fixed mass mf , which is fixed relative to the tank, and the

pendulum mass mp, which accounts for the dynamic motion of liquid. The pivot A of
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the pendulum can move along the zp axis, and the pivot B can move along the yp axis.

The rod linking pivots A, B and the pendulum mass mp is assumed to be massless

and rigid, i.e., the lengths ap and bp are constants. Consequently, this pendulum

system has only one degree of freedom, which can be defined by the pendulum angle

θ in Figure 4.7. This angle θ is related to the tilt angle of liquid free surface and

is assumed to be measured (e.g., using a combination of wave gauges, and level and

optical sensors [143]) for our LRG implementation. The following equation of motion

for θ in the tank-fixed inertia frame can be derived [140],

θ̈(a2p sin
2 θ + b2p cos

2 θ) +
1

2
θ̇2(a2p − b2p) sin 2θ + gbp cos θ = 0, (4.38)

where g = 9.81 (m/s) is the acceleration due to gravity.

Figure 4.7: Diagram of the trammel pendulum model.

For a given fuel tank with a given liquid fill ratio, the trammel pendulum param-

eters mf , mp, ap and bp are estimated according to,

mf =ml −mp, (4.39)

mp =(m1 +m2∆+m3Λ +m4∆
2 +m5∆Λ

+m6Λ
2 +m7∆

3 +m8∆
2Λ +m9∆Λ2)ml, (4.40)

ap =Λ bp, (4.41)

bp =(b1 + b2∆+ b3Λ + b4∆
2 + b5∆Λ

+ b6Λ
2 + b7∆

3 + b8∆
2Λ + b9∆Λ2) b, (4.42)

where ∆ is the liquid fill ratio, which is defined as the ratio between the height of
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liquid’s free surface and the height of the tank, Λ is the ratio between the tank’s width

and its height, i.e., Λ = b
a
, ml is the liquid mass, and b is half of the height of the tank.

The coefficients m1 to m9 and b1 to b9 can be determined by fitting the dynamics

of this pendulum model to liquid sloshing dynamics simulated by high-fidelity fluid

simulation software (such as ANSYS Fluent).

Figure 4.8: Illustration of motion of the trammel pendulum system.

Now taking into account the motion of the tank when the truck is making a turn

(illustrated in Figure 4.8), the following equations of motion of the trammel pendulum

system in the tank-fixed non-inertia frame can be derived [140],

θ̈(a2p sin
2 θ + b2p cos

2 θ) + ϕ̈(apbp + apb sin θ)

+ ϕ̇2
[1
2
(a2p − b2p) sin 2θ − bpb cos θ

]
+

1

2
θ̇2(a2p − b2p) sin 2θ

− ẍ(ap sin θ cosϕ+ bp cos θ sinϕ) + g(bp cos θ cosϕ− ap sin θ sinϕ) = 0,

(4.43)

ϕ̈
[
(b+ bp sin θ)

2 + a2p cos
2 θ
]
+ 2θ̇ϕ̇

[1
2
(b2p − a2p) sin 2θ + bpb cos θ

]
+ θ̈(apbp + apb sin θ)− ẍ(b cosϕ+ ap cos θ sinϕ+ bp sin θ cosϕ)

+ θ̇2apb cos θ − g
[
(b+ bp sin θ) sinϕ− ap cos θ cosϕ

]
= 0,

(4.44)

where ϕ denotes the roll angle of the tank, which is also the roll angle of the truck,

and x represents the translation of the bottom point of the tank in the horizontal

direction.
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Figure 4.9: Top view and back view of the tank truck dynamic model.

4.5.2 Tank truck dynamic model

The model representing the tank truck dynamics is illustrated in Figure 4.9.

Firstly, considering forces acting on the truck in the lateral direction and accord-

ing to Newton’s second law, in the earth-fixed inertia frame we have,

(mt +mf )as +muau +mpaf = Fy,f + Fy,r, (4.45)

where mt is the sprung mass of the tank truck without load, mu is the unsprung

mass of the truck, mf and mp are defined as above. as, au, and af are the lateral

acceleration of the sprung mass, the unsprung mass, and the pendulum mass mp,

respectively. Fy,f = Fy,fL +Fy,fR and Fy,r = Fy,rL +Fy,rR are the front tire cornering

force and rear tire cornering force, respectively.

The lateral accelerations of the sprung mass and the unsprung mass can be ex-

pressed as [140],

as = V (β̇ + r)− hsϕ̈+ cṙ,

au = V (β̇ + r)− e1ṙ,
(4.46)

where V is the vehicle’s driving speed and is treated as a parameter, β is the vehicle’s

slip angle, r is the vehicle’s yaw rate, hs (shown in Figure 4.9) is the distance between

the roll center and center of gravity (CG) of the sprung mass, c (shown in Figure 4.9)

is the longitudinal distance between the CG of the sprung mass and that of the tank

truck, and e1 (shown in Figure 4.9) is the longitudinal distance between the CG of the
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unsprung mass and that of the tank truck. The lateral acceleration of the pendulum

mass can be expressed as [140],

af = ẍ−D1ϕ̈−D2θ̈ + 2D3ϕ̇θ̇ +D4ϕ̇
2 +D5θ̇

2, (4.47)

where ẍ is defined as in (4.43) and satisfies ẍ = V β̇, and

D1 = b cosϕ+ ap cos θ sinϕ+ bp sin θ cosϕ,

D2 = ap sin θ cosϕ+ bp cos θ sinϕ,

D3 = ap sin θ sinϕ− bp cos θ cosϕ,

D4 = b sinϕ− ap cos θ cosϕ+ bp sin θ sinϕ,

D5 = −ap cos θ cosϕ+ bp sin θ sinϕ.

(4.48)

Figure 4.10: Illustration of the rotational dynamics of the trammel pendulum system
about the roll center.

The roll angle of the pendulum mass about the roll center, ∠, can be expressed

as (see Figure 4.10),

∠ = ϕ+ ψ, (4.49)

where ϕ is defined as above and ψ satisfies

ψ = arctan
AB

BO
= arctan

−ap cos θ
hs + b+ bp sin θ

. (4.50)
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Then, the roll rate and roll angular acceleration in the earth-fixed inertia frame can

be expressed as follows [140],

∠̇ = ϕ̇+ ψ̇, ∠̈ = ϕ̈+ ψ̈, (4.51)

where

ψ̇ =
E2θ̇
E1
, ψ̈ =

E4θ̈ − E5θ̇2

E3
, (4.52)

in which

E1 =(hs + b+ bp sin θ)
2 + (ap cos θ)

2,

E2 = ap

[
(hs + b) sin θ + bp

]
,

E3 = E21 , E4 = E1ap
[
(hs + b) sin θ + bp

]
,

E5 =2ap cos θ
[
(hs + b) sin θ + bp

]
×
[
bp(hs + b+ bp sin θ)− a2p sin θ

]
− E1ap(hs + b) cos θ.

(4.53)

Furthermore, according to Newton’s second law for rotation and using the expres-

sions in (4.51), the vehicle’s roll moment balance and yaw moment balance can be

expressed as follows [140],

Iz ṙ − Ixzϕ̈−mfase2 −mpafe2 − Ixzp(ϕ̈+ ψ̈) + Izzpṙ

− Ixyp(ϕ̇+ ψ̇)2 − Iyzpr(ϕ̇+ ψ̇) = Fy,f lf − Fy,rlr,
(4.54)

Ixϕ̈− Ixz ṙ +mthsV (β̇ + r) +mfhfas + (hs + b)mpaf

+ Ixxp(ϕ̈+ ψ̈)− Ixzpṙ + Ixypr(ϕ̇+ ψ̇) + Iyzpr
2

= −kϕϕ− cϕϕ̇+ ϕ
(
mthsg +mfhfg + (hs + b)mpg

)
−mpgap cos θ,

(4.55)

where lf (resp. lr) is the longitudinal distance between the CG of the tank truck

and the front wheel axle (resp. the rear wheel axle), e2 (shown in Figure 4.9) is the

longitudinal distance between the CG of the tank truck and that of the liquid tank, hf

(shown in Figure 4.9) is the vertical distance between the CG of the liquid fixed mass

mf and the roll center, kϕ is the suspension roll stiffness, and cϕ is the suspension roll

damping. Moreover, Ixxp and Izzp are the moments of inertia of the pendulum mass

mp about the x-axis and z-axis, respectively; Ixyp, Ixzp, and Iyzp are the products of

inertia of the pendulum mass about the x- and y-axes, the x- and z-axes, and the y-

and z-axes, respectively; and Ix, Iz, and Ixz are determined according to the parallel
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axis theorem of the moment of inertia as follows [140],

Ix = Ixxs + Ixxf +mth
2
s

Iz = Izzs + Izzu + Izzf +mtc
2 +mue

2
1,

Ixz = Ixzs + Ixzf +mthsc,

(4.56)

where Ixxs and Izzs (resp. Ixxf and Izzf ) are the moments of inertia of the sprung

mass mt (resp. the liquid fixed mass mf ) about the x-axis and z-axis, respectively;

Izzu is the moment of inertia of the unsprung mass mu about the z-axis; and Ixzs and

Ixzf are the product of inertia of the sprung mass and that of the liquid fixed mass

about the x- and z-axes.

The tire cornering forces Fy,f and Fy,r are determined according to the magic

formula [109],

Fy,i = D sin

(
C arctan

(
Bαi − E

(
Bαi − arctanBαi

)))
, (4.57)

with i ∈ {f, r}, where B, C, D, and E are constant parameters to be fitted, and αf

and αr are the front and rear tire sideslip angles, computed as

αf = δf − arctan

(
V β + rlf

V

)
,

αr = δr − arctan

(
V β − rlr

V

)
,

(4.58)

where δf is the front wheel steering angle, and δr is the rear wheel steering angle and

is assumed to be 0 in this chapter (corresponding to a truck with only front wheel

steering).

To sum up, equations (4.43)-(4.58) define a 6-order system with the vehicle’s roll

angle ϕ, roll rate ϕ̇, slip angle β, yaw rate r, the pendulum angle θ, and angular

velocity θ̇ as its states and with the front wheel steering angle δf as its scalar input.

We again choose to use the load transfer ratio (LTR) to represent rollover con-

straints [131], which are defined as:

LTR :=
Fz,R − Fz,L

mg
, (4.59)

where Fz,R and Fz,L are the total vertical forces on the right-side tires and on the

left-side tires, respectively, and mg = (mt + mu + ml)g is the total weight of the

vehicle. The LTR measures how much of the vehicle vertical load is concentrated
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on one side of the vehicle. In particular, the absolute value of LTR being greater

than 1 implies that the tires on one side of the vehicle may have been off the ground.

Following [144], the LTR is estimated as,

LTR ≈ − 2

mgW
(kϕϕ+ cϕϕ̇), (4.60)

where W is the width of the vehicle.

4.6 Fuel Truck Rollover Avoidance

In this section, we present the results of the simulation study. Firstly, the trammel

pendulum model is verified against the FLUENT simulation results in [139]. Then, we

present and compare the simulation results of the tank truck dynamic model under

no load, solid load, and liquid load scenarios. Finally, we apply learning reference

governor (LRG) to protect the tank truck from rollover accidents, and the results

during learning process and after learning with different rollover tests are reported.

4.6.1 Validation of modeling liquid sloshing using the trammel pendulum

The fuel sloshing dynamics are represented by an equivalent trammel pendulum

model. The parameter values of the trammel pendulum model for generating our

simulation results are taken from [139], which correspond to a typical fuel tank in the

market.

To verify the fuel sloshing model, we focus on the natural frequency of the fuel

sloshing dynamics and the force exerted by the fuel on the tank. The natural fre-

quency of the trammel pendulum is shown in Figure 4.11 (a). Higher tank fill ratio

results in higher frequency of the trammel pendulum, and this reasonably accurately

matches the FLUENT simulation results in [139]. Next, we consider the maximum

force exerted on the tank due to fuel sloshing. In the trammel pendulum model, this

force is calculated as [139],

Fl = max
t

mpap(−θ̇ sin θ + θ̈ cos θ). (4.61)

Shown in Figure 4.11 (b) is the maximum force exerted by the trammel pendulum

on the tank per unit liquid mass as we vary the tank fill ratio. This also matches the

FLUENT simulation results in [139].
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Figure 4.11: (a) Natural frequency of the trammel pendulum and (b) forces exerted
by the pendulum on the tank as functions of tank fill ratio compared with FLUENT
simulation results presented in [139].

4.6.2 Simulation results of tank truck dynamics

A series of simulations has been performed based on the tank truck dynamic model

described in Section 4.5 under different load conditions. Some parameters used in the

simulations are shown in Table 4.1.

Parameters Values

V 25 m/s
mu 300 kg
hs 0.8580 m
lf 1.160 m
lr 1.750 m
Ixxs 1280 kg/m2

Izzs 2800 kg/m2

Ixzs 0
cϕ 7471 N·m·s/rad
kϕ 95707 N·m

Table 4.1: Tank truck simulation parameters.

The first scenario we considered is the truck running without any load, i.e., mt =

1700 (kg), ml = 0 (kg). We apply constant steering inputs of 0.02 (rad) and 0.05

(rad) to the system (these steering angles correspond to the actual steering of the

front wheels).

From Figure 4.12, we can observe convergence of states to an equilibrium under

different steering wheel angles. Note also that larger steering wheel angle results in
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Figure 4.12: The roll angle, roll rate, slip angle, and yaw rate responses for step
commands in the no load scenario (mt = 1700 (kg) and ml = 0 (kg)).

larger roll angle, slip angle and yaw rate at steady state.

The second scenario we consider is the case where there is 2000 (kg) solid load only,

and the load weight is added to the sprung mass, i.e., mt = 3700 (kg), ml = 0 (kg).

Constant steering commands are applied and the results are shown in Figure 4.13.

Comparing Figure 4.12 and Figure 4.13, the solid load case exhibits larger over-

shoot in roll rate and higher propensity for rolling over. Note that in both the no load

and the solid load cases, the response of the pendulum angle θ and the pendulum

angular velocity θ̇ are not shown, because in both cases the pendulum mass mp is 0

(kg).

Next, we consider another scenario where the truck carries a circular liquid tank

with radius 1 (m), and the tank is 50% filled. The mass of the liquid is ml = 2000

(kg). The response is shown in Figure 4.14. Due to the effect of liquid fuel sloshing,

it takes longer for states to converge to the equilibrium.

The resulting load transfer ratio (LTR) responses of all three scenarios are shown in
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Figure 4.13: The roll angle, roll rate, slip angle, and yaw rate responses for step
commands in the solid load scenario (mt = 3700 (kg) and ml = 0 (kg)).

Figure 4.15, which indicates that the vehicle with the liquid load has higher propensity

for rolling over under the same steering command.

4.6.3 Applying learning reference governor (LRG) to the tank truck

The liquid load scenario is chosen to demonstrate the effectiveness of our learning

algorithm described in Section 4.3. The tank is a circular tank (a = b = 1 (m)); the

sprung mass is mt = 1700 (kg); the liquid load is ml = 2000 (kg); and the tank fill

ratio is ∆ = 0.5. Other parameters are as listed in Table 4.1.

To implement LRG, the Hölder constants L and β in (4.5) are required. With

β > 1, the estimated D by the LRG in (4.17) can be sensitive to small changes in

(ν, δν, δx) due to the nature of the exponent 1/β. This sensitivity to small changes

can lead to longer learning time for LRG to achieve its maximal aggressiveness. As

a result, in the application of tanker truck, we assume β = 1 and estimate L in

(4.5), which corresponds to estimating the Lipschitz constant of D. The estimation
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Figure 4.14: The roll angle, roll rate, slip angle, yaw rate, pendulum angle, and
pendulum angular velocity responses for step commands in the liquid load scenario
(mt = 1700 (kg) and ml = 2000 (kg)).

of a Lipschitz constant is a common problem in optimization. For example, [145]

and [146] use sampled or ordered evaluation points to construct an under-estimate

of a Lipschitz constant, and a Lipschitz constant is obtained by multiplying the

under-estimate value by a factor greater than 1. References [147] and [148] use order

statistics to estimate a Lipschitz constant for univariate functions. Reference [149]
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Figure 4.15: The LTR responses of the no load scenario (top left), solid load scenario
(top right), and the liquid load scenario (bottom).

proposes an interval-based global optimization algorithm to numerically estimate a

Lipschitz constant for arbitrary nonlinear functions. In this chapter, points in the

space of (ν, δν, δx) are sampled and the corresponding derivatives ofD are numerically

estimated. Specifically, 80 points were sampled and from them, an estimate of L is

inferred, which gives L ≥ 0.28. We therefore consider choices of L = 0.3 and L = 0.5

to illustrate that a conservative estimate of L is sufficient for our learning algorithm.

Note that in the simulations, a constant ratio kδf between the steering wheel angle

and the forward tires steering angles is assumed. The control input is the steering

wheel angle SW and

δf = kδfSW (4.62)

where kδf = 1/20.

Based on the LTR, the rollover constraints are imposed as

−LTRlim ≤ LTR ≤ LTRlim. (4.63)
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According to Remark 3.1, |LRT| > 1 may lead to wheels lifting off, so we set LTRlim =

1 in this example. Note that |LRT| > 1 does not indicate rollover happening because

additional work is required to move the gravity center of the truck up. However, for

heavy-duty trucks carrying hazard liquid, wheels lifting off is already very dangerous,

so we set the constraint to be the case where the truck wheels may start lifting off.

During the learning phase, the commands rn can be randomly generated. However,

to better visualize how the learning algorithm gradually pushes the system to its

mobility limits, in this example we use a repeated profile for rn, switching between

±50 (deg) with a duration of 20 (sec).

The learning progress is illustrated in Figure 4.16. In Figure 4.16(a), the track-

ing error is defined as the average of |r(t) − ν(t)| over a past time window of 1000

(sec). At the beginning of learning, the tracking error is relatively high, and LRG

operates conservatively with significant modifications of the command. The tracking

error gradually decreases as the learning progresses and converges to a low value.

Figure 4.16(b) shows the LTR response during learning. As the learning progresses,

the vehicle gains the ability to operate with maneuvers that cause the LTR response

to reach the constraint boundary but without violating it. Note that constraints are

satisfied during the entire learning process.
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Figure 4.16: Learning algorithm application to fuel truck rollover avoidance based on
the tank truck dynamic model developed: (a) Tracking error profile during learning;
(b) LTR profile during learning.

After the learning is completed, the vehicle response to step commands is exam-

ined. Figure 4.17 shows the response of the system without LRG, with LRG before

learning and after learning respectively. Without LRG, the steering wheel command

is directly applied to the fuel truck system as shown in Figure 4.17(a), and constraint
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violations occur in the resulting LTR response in Figure 4.17(b). Before learning,

LRG operates conservatively permitting almost no changes in response to the com-

mand. After learning is completed, LRG is significantly less conservative and allows

the modified reference input to converge to the original command within a relatively

short time period for the same step commands.
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Figure 4.17: (a) Steering angle and (b) LTR responses for the step command test.

We next consider vehicle response to the standard sine-and-dwell steering angle

profile. The corresponding steering angle, LTR, and states responses are shown in

Figure 4.18 and Figure 4.19.
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Figure 4.18: (a) Steering angle and (b) LTR responses for the sine-and-dwell test.

Without LRG, the sine-and-dwell steering angle profile causes constraint viola-

tions, which may lead to the fuel truck rolling over. By augmenting LRG, rollover
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accidents can be avoided. Before learning, LRG makes relatively large modifications

to the steering commands and results in conservative responses. After learning is

completed, LRG is able to enforce the constraints with significantly less command

modifications. Note that our simulations are performed in MATLAB R2019a on an

PC with Intel Xeon E3-1246 v3 @ 3.50 GHz CPU and 16 GB RAM. After learning

is completed, the dataset D contains 5600 data points, and the computation of Algo-

rithm 4.2, which generates the reference output given the current state and command,

takes on average 0.57 (ms).

4.6.4 Applying LRG to variable load and speed scenarios

In the previous section, LRG is applied to the fuel truck that has specified constant

fill ratio and velocity. When the fuel truck’s fill ratio and velocity change, the LRG

needs to be re-trained to estimate D, or it can be trained at different load conditions

and speeds from the beginning, and D in (4.17) can be made a function of these

additional parameters.

With the latter approach followed, two cross-sections of the resulting D are shown

in Figure 4.20. In Figure 4.20(a), for the same δν, higher vehicle speed and larger

tank fill ratio will result in higher value of D, which reflects the fact that the truck is

easier to rollover. In Figure 4.20(b), D increases significantly when the tank fill ratio

approaches 1 and the vehicle speed approaches 30 (m/s). Note that D is constructed

using (4.17) based on collected measurements and L, β. This means D(ν, δν, δx)

will be close to D(ν, δν, δx) when there are measurements near (ν, δν, δx). On the

other hand, D(ν, δν, δx) relies on L and β to extrapolate values and can be con-

servative when all measurements are far from (ν, δν, δx). The significantly higher

value of D shown in Figure 4.20(b) is due to the fact that when the tank fill ratio

and vehicle speed are large (e.g., V = 30 (m/s) and ∆ = 0.9), δν = −25 (deg) re-

sults in constraint violations. As no measurements were collected around the point

(ν = 0, δν = −25, δx = 0), the LRG relies on a conservative estimate of D at these

loads and speeds.

After D is made dependent on tank fill ratio and vehicle speed, the sine-and-

dwell test is performed again with the truck accelerating or decelerating. Following

[150] and guidelines in [151], the acceleration rate is selected as 1 (m/s2), and the

deceleration rate is chosen as -3 (m/s2). The tank fill ratio is 0.5 and is not changing

as we perform the sine-and-dwell test.

In Figure 4.21(a), the sine-and-dwell test is performed while the truck is deceler-

ating. Compared with Figure 4.18, where the truck is driving at a constant speed of
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Figure 4.19: The roll angle, roll rate, slip angle, yaw rate, pendulum angle, and
pendulum angular velocity responses for the sine-and-dwell test.

25 (m/s), rollover constraint violations occur when the truck is performing positive

steering, which is attributed to the larger speed at the beginning. As a consequence,

LRG modifies the positive steering command so that the constraints are enforced.

Figure 4.21(b) shows the sine-and-dwell test results when the truck is accelerating.

LRG makes smaller modifications when responding to the negative steering com-
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(a) (b)

Figure 4.20: Estimated D values at different speeds and fill ratios with (a) ν = −25
(deg), δν = 25 (deg), δx = 0 and (b) ν = 0 (deg), δν = −25 (deg), δx = 0.

mand compared with Figure 4.18 because of the lower speed before 5 (sec). In either

Figure 4.21(a) or (b), LRG is able to guard the fuel truck from violating rollover

constraints in presence of speed changes.

4.7 Summary

In this chapter, we presented a learning reference governor (LRG) approach for

safety-critical systems to enforce state and control constraints through the modifica-

tion of the reference command in systems where an accurate model is unavailable.

The LRG uses learning to improve the command tracking performance without caus-

ing constraint violations. Theoretical guarantees of safety, convergence of the learning

algorithm and finite-time convergence of the modified reference command to the orig-

inal constant reference command have been given. Finally, the applications of the

proposed approach to ground vehicle rollover avoidance and fuel truck rollover avoid-

ance under fuel sloshing effects has been considered. Simulation results have been

presented that demonstrate LRG can protect the ground vehicle and the fuel truck

from rollover and the conservatism can be reduced through learning, pushing this

vehicle to its mobility limits. Furthermore, LRG can be configured to support vehicle

operation at different tank fill ratios and varying vehicle speeds. A similar approach

could be employed to handle variability due to road surface conditions, and bank and

incline angles.
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Figure 4.21: Vehicle speed, steering angle, and LTR responses for the sine-and-dwell
test when the truck is (a) decelerating from 30 (m/s) to 20 (m/s) at a rate of -3
(m/s2) and (b) accelerating from 20 (m/s) to 30 (m/s) at a rate of 1 (m/s2).
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CHAPTER V

Conclusion and Future Work

This chapter provides a conclusion to the thesis by summarizing the key contribu-

tions and outlining potential areas for future research. In particular, this thesis pro-

poses an interaction-aware behavior planner based on game theory and demonstrates

its effectiveness in the forced merge scenarios. Two learning-based safety supervisor

schemes, which are able to adapt to different systems/conditions with minimal system

information, are proposed with applications to non-safety critical systems and safety

critical systems.

5.1 Conclusion

As outlined in Figure 1.4, the main contributions of this thesis are in two areas:

behavior planner and safety supervisor.

In order to appropriately account for interactions when sharing the road with

human drivers, Chapter II introduces an interaction-aware control strategy, where

the interactions between autonomous vehicle and other drivers are formulated based

on game theory (more specifically, Leader-Follower Game). A specific application of

forced merging is considered where the autonomous vehicle needs to negotiate with

other drivers to facilitate its merging. The proposed Leader-Follower Game Controller

(LFGC) is able to handle uncertainties in other drivers’ intentions by modeling them

as a latent state and estimating it online based on observed trajectories. The LFGC

integrates the game-theoretic model with an model predictive control based strate-

gies which online-optimizes the performance (e.g., reaching the goal faster) and the

liveness (e.g., avoiding collisions). An extensive set of simulation-based evaluations is

performed on the LFGC, which includes vehicles controlled by various driver models

and following the naturalistic driving dataset. The proposed strategy demonstrates

a high success rate in all of these evaluations.
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Chapters III and IV then introduce the design of the safety supervisor to further

ensure safety for autonomous systems. Model-free designs of such safety supervisors

are pursued in these chapters due to unknown/varying operating environments, un-

availability of accurate system models, uncertain constraint boundaries, etc. Relying

on the integration of prediction and learning/adaptation, these chapters are able to

design specific safety supervisory schemes that can guard the system from violating

critical limits without sacrificing performances. More specifically, Chapter III intro-

duces a model-free learning safety supervisor design for non-safety critical systems (or

constraints), where the violation of the constraints is not desirable but does not lead

to severe consequences. To handle non-safety critical systems (or constraints), we

leverage Explicit Reference Governor (ERG) theory and design a learning algorithm

to gradually evolve the design of the ERG through observed constraint violations.

Such a learning algorithm may have constraint violations during learning but will

eliminate them after learning is completed. Theoretical properties of the designed

learning algorithm have been analyzed and provided, and several examples are pro-

vided to illustrate its effectiveness.

Chapter IV focuses on safety-critical systems (or constraints), where constraint

violations will lead to catastrophic consequences (e.g., personal injury, property loss,

etc.). The design of the safety supervisor is based on the standard reference governor

to enforce state and control constraints through modification of the command to the

control systems. Under the assumption that there is no accurate model available,

a learning algorithm is designed to gradually improve the command tracking per-

formance of the reference governor without causing any constraint violations. The-

oretical guarantees are provided in this chapter, which include convergence of the

algorithm, guaranteed safety both during learning and after learning is accomplished,

as well as finite-convergence of the modified reference command to the original con-

stant reference command. The effectiveness of the algorithm is then demonstrated

in case studies of ground vehicle rollover avoidance and fuel (tank) truck rollover

avoidance under sloshing effects.

5.2 Future Work

Along the line of work presented in this dissertation, there are still many open

research questions that can further advance the state-of-the-art of the current design

of the behavior planner and the safety supervisor.

In light of the behavior planner designed based on game theory, there can be mul-
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tiple future directions to further explore and improve the performance and adaptivity.

1. The current reward function design is based on certain indicators (such as colli-

sion, distance to goal) with associated weights. Such a reward function formula-

tion is a common design in the literature. However, this reward function design

may require significant weight tuning to correctly represent drivers’ behaviors,

and the function may need to be re-tuned when the driving condition changes

(e.g., different merge lane lengths, different speed limits, different traffic density,

etc.). Bear in mind that each driver may have a different and potentially unique

reward, the reward function design can be further advanced by leveraging ma-

chine learning techniques (e.g., inverse reinforcement learning), game-theoretic

models, and geographical or temporal information.

2. In some situations, there might be a lot of traffic participants that can influ-

ence each other’s behaviors. The application of game-theoretic models to these

scenarios can be limited due to the significant computational demand when

solving for the Nash equilibrium with multiple players. This can potentially

be improved by considering different game-theoretic frameworks and leveraging

neural networks to improve online computational speed.

3. The robustness to perception errors/failures can be further studied. The de-

velopment of current behavior planner assumes an accurate state measure-

ments/perception. There might be cases where the states of surrounding agents

are corrupted by errors, or some agents are missing due to perception errors or

in-feasibility. In adversarial cases, it is hard to develop specific safety guaran-

tees. Further studies can be made to leverage game-theoretic models to help

detect missing agents/objects (e.g., cross-walk pedestrians blocked by other

cars/trucks) or help correct other agents’ states.

For the model-free learning-based safety supervisor design, there are various future

directions that are applicable to both non-safety critical and safety critical systems

(constraints).

1. For both algorithms introduced in Chapters III and IV, it may take a significant

amount of time to learn or train a specific safety supervisor. This might be time-

consuming and expensive if training is performed directly on hardware. Further

investigation on how to improve the learning speed can be performed. Potential

approaches can include leveraging machine learning techniques to predict un-
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trained state/command regions, designing specific training profiles, analyzing

and obtaining a specific form of the target functions before training, etc.

2. The current algorithms will need retraining when systems dynamics change.

This can significantly limit the applicability of the proposed algorithm. Further

studies can be made to realize the adaptability of the algorithm after learning

is accomplished. For example, when only certain parameters of the system have

changed, we can transfer the learning results to the newly changed system and

quickly adapt to the new dynamics instead of starting the training from scratch.

3. Another limitation of the current work is that it assumes accurate state mea-

surements. Such assumption is not feasible in real world applications. Further

studies can be performed to enable the algorithms to handle stochastic systems.

Potential directions may include leveraging stochastic optimization techniques

and achieving probabilistic guarantees of constraint satisfactions.

4. Additionally, the model-free learning natures of the proposed algorithms do not

exclude the model-based methods or model information. Additionally, the pro-

posed methods can be further explored to combine with model-based methods,

where certain model information or a simplified model is available, so that the

learning speed can be improved. Such a combination can be extremely use-

ful since many models have already been developed for control applications,

and using these models can greatly accelerate the learning speed while enabling

adaptivity to the actual systems through the proposed learning algorithms.
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APPENDIX A

Derivation of Hölder Continuity on Linear Systems

Here we show that the Hölder continuity assumption, Assumption 4.4, for the

function D defined in (4.4) holds true for all stable linear time-invariant systems. In

particular, D for stable linear time-invariant systems are actually Lipschitz continuous

(Hölder continuous with β = 1).

Lemma A.1. For linear time-invariant systems in the following form:

ẋ(t) = Ax(t) +Bν(t), (A.1a)

y(t) = Cx(t) + Fν(t), (A.1b)

where A is a stable matrix, i.e., every eigenvalue of A has strictly negative real part.

The function D defined in (4.4) for the system (A.1) satisfies the Hölder continuity

condition (4.5) with β = 1 and some finite L > 0.
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Proof. For any (ν1, δν1, δx1), (ν2, δν2, δx2) ∈ Rnν × Rnν × Rn, we have

∣∣D(ν1, δν1, δx1)−D(ν2, δν2, δx2)
∣∣

=
∣∣ sup
t∈[0,∞)

∥∥ϕ(t, xν(ν1) + δx1, ν1 + δν1
)
− yν(ν1)

∥∥−
sup

t∈[0,∞)

∥∥ϕ(t, xν(ν2) + δx2, ν2 + δν2)− yν(ν2)
∥∥ ∣∣

≤ sup
t∈[0,∞)

∥∥ϕ(t, xν(ν1) + δx1, ν1 + δν1)−

ϕ(t, xν(ν2) + δx2, ν2 + δν2)−
(
yν(ν1)− yν(ν2)

)∥∥
= sup

t∈[0,∞)

∥∥Cψ(t, xν(ν1 − ν2) + (δx1 − δx2), (ν1 − ν2)+

(δν1 − δν2)
)
+ F

(
(ν1 − ν2) + (δν1 − δν2)

)
− yν(ν1 − ν2)

∥∥
≤ sup

t∈[0,∞)

∥∥Cψ(t, xν(ν1 − ν2) + (δx1 − δx2), (ν1 − ν2)+

(δν1 − δν2)
)∥∥+ ∥∥F((ν1 − ν2) + (δν1 − δν2)

)
− yν(ν1 − ν2)

∥∥,
where we have used the superposition property for linear systems and all suprema

are finite as A is stable.

Using xν(ν) = −A−1Bν, yν(ν) = (−CA−1B+F )ν, ψ(t, x0, ν) = eAtx0+A
−1(eAt−

I)Bν, and the fact that A is a stable matrix, it is easily seen from the above inequal-

ity that there exists some finite L′ > 0 that is independent of (ν1, δν1, δx1) and

(ν2, δν2, δx2) such that

∣∣D(ν1, δν1, δx1)−D(ν2, δν2, δx2)
∣∣ ≤ L′(∥ν1 − ν2∥+ ∥δν1 − δν2∥+ ∥δx1 − δx2∥).

Since ∥ν∥+∥δν∥+∥δx∥ defines a norm on Rnν×Rnν×Rn, using the equivalence of

norms for finite-dimensional vector spaces, we obtain (4.5) with some finite L > 0 and

exponent β = 1. Under Euclidean norm, L′ can be expressed as L′ = max
(
η∥C∥, (η+

1)∥CA−1∥∥B∥+ ∥F∥
)
, where η = supt∈[0,∞) ∥eAt∥. ■

In the next lemma, we show an example of a nonlinear system, to which the

corresponding function D in (4.4) satisfies our Hölder continuity Assumption 4.4 and

is not necessarily Lipschitz continuous. This example also illustrates the fact that

the Hölder continuity assumption made in this chapter, Assumption 4.4, is a weaker

and more general assumption than the Lipschitz continuity assumption relied upon

in our previous work [86] and [88].
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Lemma A.2. For systems in the following form:

ẋ(t) = Ax(t) +Bν(t)
1
β , (A.2a)

y(t) = Cx(t) + Fν(t)
1
β , (A.2b)

where β ≥ 1, and A is a stable matrix, and the state space X ⊂ Rn is bounded, and

ν(t) ∈ R is a scalar, the function D defined in (4.4) for the system (A.1) satisfies the

Hölder continuity condition (4.5) with exponent 1/β and some finite L > 0.

Proof. Let u = ν
1
β . Then we can regard u as the input to the (A.2) and apply the

results obtained in Lemma A.1. For any (ν1, δν1, δx1), (ν2, δν2, δx2) ∈ R×R×X, we

obtain

∣∣D(ν1, δν1, δx1)−D(ν2, δν2, δx2)
∣∣ ≤ L′(∥u1 − u2∥+ ∥δu1 − δu2∥+ ∥δx1 − δx2∥),

where u = ν
1
β and δu = (ν + δν)

1
β − ν

1
β . Substitute u and δu with ν and δν,

∣∣D(ν1, δν1, δx1)−D(ν2, δν2, δx2)
∣∣

≤L′(∥ν 1
β

1 − ν
1
β

2 ∥+ ∥δx1 − δx2∥+ ∥(ν1 + δν1)
1
β − ν

1
β

1 − (ν2 + δν2)
1
β + ν

1
β

2 ∥
)

≤L′(2∥ν 1
β

1 − ν
1
β

2 ∥+ ∥δx1 − δx2∥+ ∥(ν1 + δν1)
1
β − (ν2 + δν2)

1
β ∥
)

≤L′(2∥ν1 − ν2∥ 1
β + ∥δx1 − δx2∥+ ∥ν1 + δν1 − ν2 − δν2∥

1
β
)

≤L′(3∥ν1 − ν2∥ 1
β + ∥δx1 − δx2∥+ ∥δν1 − δν2∥

1
β
)

≤L′(3∥ν1 − ν2∥ 1
β +K∥δx1 − δx2∥

1
β + ∥δν1 − δν2∥

1
β
)
,

where the second and fourth inequalities are derived from the triangle inequality, and

the third inequality is obtained from the inverse triangle inequality with exponent

1/β, and K = maxδx1,2∈X ∥δx1 − δx2∥
1− 1

β .

Note that functions f(x) = x
1
β with β ≥ 1 is concave on x ∈ [0,∞). Then,

∣∣D(ν1, δν1, δx1)−D(ν2, δν2, δx2)
∣∣

≤L′(a1∥ν1 − ν2∥+ a2∥δx1 − δx2∥+ a3∥δν1 − δν2∥
) 1

β ,

where a1 = 12β

4
, a2 = 4βKβ

4
, and a3 = 2β−1. Since a1∥ν∥ + a2∥δx∥ + a3∥δν∥ defines

a norm on R × R × X, using the equivalence of norms for finite-dimensional vector

spaces, we obtain (4.5) with some finite L > 0 and exponent 1/β. L′ can be expressed

as L′ = max
(
η∥C∥, (η + 1)∥CA−1∥∥B∥+ ∥F∥

)
, where η = supt∈[0,∞) ∥eAt∥. ■
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[114] Tamer Başar and Geert Jan Olsder. Dynamic noncooperative game theory.
SIAM, 1998.

[115] Ran Tian, Nan Li, Ilya Kolmanovsky, Yildiray Yildiz, and Anouck R Girard.
Game-theoretic modeling of traffic in unsignalized intersection network for au-
tonomous vehicle control verification and validation. IEEE Transactions on
Intelligent Transportation Systems, 2020.

[116] Inseok Hwang, Hamsa Balakrishnan, and Claire Tomlin. State estimation for
hybrid systems: Applications to aircraft tracking. IEE Proceedings-Control
Theory and Applications, 153(5):556–566, 2006.

127



[117] Jehong Yoo and Reza Langari. A predictive perception model and control
strategy for collision-free autonomous driving. IEEE Transactions on Intelligent
Transportation Systems, 20(11):4078–4091, 2018.

[118] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic states
in empirical observations and microscopic simulations. Physical Review E,
62(2):1805, 2000.

[119] Xiao-Yun Lu and Alexander Skabardonis. Freeway traffic shockwave analysis:
exploring the NGSIM trajectory data. In 2007 Annual Meeting of the Trans-
portation Research Board. Citeseer, 2007.
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