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ABSTRACT

Understanding the functional consequences of regulatory variants is a significant

challenge in genomics. Although Genome-Wide Association Studies (GWAS) have

provided valuable insights into human phenotypes by identifying genetic variations

associated with diseases and complex traits, the functional implications of many of

these genetic variants remain unknown, particularly for non-coding regions of the

human genome, which account for over 90% of all variants.

To address this challenge, my dissertation focuses on functionally characterizing

regulatory elements and their variants in the human genome. Specifically, I define

regulatory variants as single nucleotide polymorphisms (SNPs) that can modify the

binding affinities of transcription factors (TFs) within the regulatory elements. Such

alterations can impact downstream gene expression and potentially contribute to

disease progression and trait development. However, characterizing regulatory vari-

ants has traditionally relied on the laborious experimental dissection of the human

genome, often confined to specific cell types or tissues, thus making it unfeasible to

examine all relevant variants in their appropriate biological context. The advent of

high-throughput sequencing and computation methods has substantially accelerated

the discovery process. In my dissertation, I have developed a series of computational

tools and methods to end-to-end characterize regulatory elements and their variants

(Fig 6.1).

In Chapter II, I developed a peak calling software, F-Seq2, to accurately define

xii



regulatory element regions from open chromatin assays and ChIP-seq assays. F-

Seq2 utilized kernel density estimation and a dynamic “continuous” Poisson test to

account for local biases, outperforming state-of-the-art software including MACS2

in terms of precision and recall. Accurate peak calling is essential for downstream

analysis, such as differential binding or motif analysis, and lays the foundation for

the functional characterization of regulatory variants.

In Chapter III, I advanced a leading regulatory variants database, RegulomeDB,

to its second version. RegulomeDB allows users to query variants and obtain a

comprehensive list of functional evidence for their variants of interest. The new

version of RegulomeDB contains over five times more data than its previous version,

providing an even more comprehensive resource for researchers. Additionally, the

introduction of a suite of scoring models, namely SURF and TURF, enables accurate

summaries of the likelihood that variants function as regulatory variants based on

all available evidence.

In Chapter IV, I developed a machine learning model, TLand, as the next version

of the RegulomeDB scoring model, to annotate and prioritize regulatory variants in

an organ-specific manner. TLand takes advantage of RegulomeDB-derived features

and builds a flexible architecture using stacked generalization to reduce overfitting

and facilitate future continuous learning. TLand outperformed state-of-the-art mod-

els when holding out cell lines or organ allele-specific binding data. By accounting

for common data availability issues that often exist in sequence-based deep learning

models, TLand accurately prioritized the relevant organs for approximately 2 million

GWAS SNPs.

In Chapter V, I introduced a pipeline, Explain-seq, to automatically train and

interpret sequence-based deep learning models given genomic coordinates. I demon-

xiii



strated the utility of Explain-seq by applying it to a recent STARR-seq dataset to

gain insights into enhancer binding patterns in a cell-specific manner. The pipeline

identified both known and de novo motifs in the K562 cell line by comparing them

to the JASPAR database.

Overall, the computational methods and tools that I developed throughout my

dissertation can aid in the discovery and characterization of regulatory elements and

variants in the non-coding regions of the human genome.

xiv



CHAPTER I

Introduction

Characterizing the functional consequences of variants in the non-coding regions

remains a challenge in human genomics. In this dissertation, I developed a series of

computational methods to address this challenge. To begin with, I built a peak calling

software that accurately maps regulatory regions derived from open chromatin and

ChIP-seq assays. I also advanced and extended the leading non-coding regulatory

variant database to its second version. I created a machine-learning model capable of

predicting regulatory variants genome-wide. Lastly, I created a pipeline to automate

the process of training and interpretation of sequence-based deep learning models

within the genomics context.

In this chapter, I will first introduce the biological mechanisms that underpin

regulatory elements and regulatory variants. I will then describe the high-throughput

functional genomic assays and large consortia efforts in making those high-quality

datasets accessible. Next, I will discuss the strategies of current regulatory element

databases and computational tools to predict regulatory variants. Specifically, I

will focus on discussing sequence-based learning models which explore the effects of

genetic variants in the human genome. Lastly, I will discuss the limitations of current

computational methods to predict regulatory elements and variants.

1
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1.1 Overview of cis-regulatory elements and regulatory variants

My dissertation study focused on the cis-regulatory elements (CREs) located in

the non-coding regions of the human genome. These elements, which include en-

hancers, promoters, silencers, and insulators, have a profound impact on gene ex-

pression levels by regulating the binding of transcription factors (TFs) to short DNA

sequences known as motifs [1]. The interplay between these TFs and their target reg-

ulatory elements is what constitutes a gene regulatory network, which plays a vital

role in biological processes such as development, differentiation, and disease progres-

sion. However, deciphering these networks presents a challenge since they not only

depend on the DNA sequence itself but also on chromatin factors such as accessi-

bility, histone modification, and looping. These epigenetic factors exhibit significant

variations between cells, organs, and individuals, making it even more challenging to

interpret their functional consequences [1]. In the following sections, I will delve into

genome-wide assays that are able to capture chromatin factors activities and map to

the human genome to better understand gene regulatory networks.

In addition to characterizing regulatory elements, interpreting the functional con-

sequences of genetic variation within regulatory elements is even more challenging.

The fourth chapter of my dissertation focuses on predicting the functional effects

of single nucleotide polymorphisms (i.e. SNPs, the most common type of genetic

variation) in regulatory elements. SNPs that can alter the binding affinity of TFs to

their target sites, subsequently affecting gene expression regulation downstream are

referred to as regulatory variants or regulatory SNPs (Fig 1.1). There are statistical

association methods developed aiming to pinpoint regulatory variants genome-wide.

Genome-wide association studies (GWAS) identified millions of genetic variants
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Figure 1.1: Schematic of possible mechanisms for a regulatory single nucleotide polymorphism
(SNP) affecting downstream gene expression. The C allele binds with an activator
TF to enhance gene expression. A genotype change from C to A may recruit more TFs
to further enhance gene expression indicated by the number of wavy lines. However,
changing from C to T may disrupt any binding of TFs, thus reducing gene expression.
This figure is a revised version of the one originally presented in [2].

that were associated with human diseases and traits [3]. It involves comparing the

genomes of individuals with and without the trait or disease of interest to identify

genetic differences that may be linked to the trait or disease. For example, to discover

variants associated with human height, genetics and height data for individuals were

collected. A single variant association test was performed for each candidate variant

genome-wide. A multi-test correction was typically conducted to account for a large

number of statistical testing being performed. These findings have led to the iden-

tification of numerous novel risk loci and a better understanding of the underlying

biological mechanisms, with implications for precision medicine. The GWAS Cat-

alog data portal contains over 70,000 variant-trait associations [4]. However, many

associations between variants and traits remain unexplained, particularly for the

∼90% of variants in non-coding regions [3]. Linkage disequilibrium among variants

is a major cause, making it difficult to pinpoint causal variants for complex traits



4

involving many genes. GWAS loci typically have small effect sizes, and identifying

rare causal variants is even more challenging. It is important to note that GWAS

only establishes associations between genetic variants and traits or diseases and does

not confirm causality. To confirm causal variants and their functions, additional

analyses, such as with functional genomic assays, are required.

1.2 High-throughput functional genomic assays to characterize regula-
tory elements genome-wide

Next-generation sequencing has revolutionized genomics research, providing a

range of functional genomics assays to comprehensively study regulatory elements

across the entire genome. These assays allow for a detailed characterization of regu-

latory elements from multiple perspectives (Fig 1.2).

Figure 1.2: High-throughput functional genomics assays characterizing genome-wide regulatory el-
ements from various perspectives. The figure was modified from [5].
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1.2.1 Open chromatin assays and footprints

DNase I hypersensitive sites (DHSs) are genomic regions that exhibit increased

sensitivity to cleavage by DNase I endonucleases [6]. This characteristic is indicative

of a more open and accessible chromatin structure that is accessible to TFs and

plays a crucial role in gene regulation. DNase-seq is a sequencing-based technique

that leverages DNase I cleavage to identify DHSs across the entire genome [7]. DNase-

seq has emerged as a powerful tool for mapping open chromatin regions in different

cell types and under varying treatment conditions. ATAC-seq is a more recently

developed assay that provides an alternative approach to mapping open chromatin

regions [8]. It uses the hyperactive Tn5 transposase to insert sequencing adapters

into accessible chromatin regions. While offering similar sensitivity and specificity

to DNase-seq, ATAC-seq requires fewer starting cell numbers and preparation steps

[8].

Footprints are short regions within open chromatin regions that are bounded by

TFs, thus they are protected from the digestion of DNase I or Tn5 transposase.

By analyzing the genome-wide signal from open chromatin assays, computational

methods are able to identify footprints as the dips within peaks of open chromatin

signals, indicating the exact binding site of TFs and implying the underlying sequence

as regulatory elements. Some of these methods use sequence information from TF

motifs to assign the binding TFs for each footprint [9, 10, 11, 12], while others only

map a union set of TF binding sites [13, 14, 15].

1.2.2 Chromatin Immunoprecipitation sequencing (ChIP-seq)

Chromatin Immunoprecipitation sequencing (ChIP-seq) is a method for identify-

ing the binding sites of DNA-associated proteins, such as transcription factors and
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histone marks, by using antibodies that specifically recognize and pull down the pro-

tein of interest from a sample of cells or tissues [16]. The ChIP process involves

cross-linking the DNA and protein within cells, breaking the chromatin into small

fragments, and then using an antibody specific to the protein of interest to isolate

the protein-DNA complexes. The DNA fragments within these complexes are then

sequenced using next-generation sequencing technologies, allowing for the identifica-

tion and mapping of the genomic regions that are bound by the protein of interest

[16]. By comparing ChIP-seq data from various different conditions, we could gain

insights into the mechanism of gene regulatory networks and other biological pro-

cesses.

Before mapping the sequence data obtained from ChIP-seq experiments to a refer-

ence genome, a quality check is usually performed to filter out reads with low-quality

scores. Peak calling software is then employed to identify regions of the genome that

are enriched for the protein of interest. The accuracy of different peak calling software

algorithms is crucial for downstream analysis, such as differentially binding analy-

sis and motif enrichment analysis [17]. Therefore, choosing a peak calling method

that can provide reliable and accurate results is important to ensure the validity of

subsequent analyses.

1.2.3 Peak calling software to identify regulatory regions

Peak calling algorithms work by analyzing the read coverage of the sequencing

data obtained from the genomic assay. Regions of the genome with a high density

of reads are identified as peaks and are presumed to represent the locations of the

protein-DNA interactions of interest. Many peak calling programs have been de-

veloped, each with its own strengths and weaknesses (see Table 1.1), mostly due to

their various approaches to handling/modeling sequencing reads [18, 19, 20, 21, 22,
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23, 24, 17, 25, 26, 27, 28, 29, 30, 31].

Table 1.1: Comparison of common peak calling software. Columns are common peak calling soft-
ware. Rows are various characteristics that can be grouped into two categories, locating
the potential peaks and ranking of peaks. Green indicates certain peak callers have
specific characteristics. The table was modified from [32].

The accuracy and reliability of peak calling software are crucial for downstream
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analyses. Therefore, it is important to carefully evaluate the performance of dif-

ferent peak calling methods to ensure that the results obtained are both valid and

biologically meaningful. Note that they may perform differently depending on the

specific dataset and research question. In the second chapter of my thesis, I will

introduce our most recently developed peak caller, F-Seq2, and demonstrate its su-

perior performance over the state-of-the-art software on various genomic assays with

corresponding software settings.

1.3 Functional genomic data resources and databases

1.3.1 Large genomic consortia

Creating a comprehensive human regulatory map through individual efforts is

limited. Additionally, individuals may adopt different approaches to analyzing data,

making it difficult to perform comparative analyses and/or draw conclusions from

multiple data sources. Large consortia have been established as collaborative efforts

among multiple research institutions and organizations, such as the Encyclopedia

of DNA elements (ENOCDE) consortium [5], the Roadmap Epigenomics Mapping

Consortium [33], and the IGVF (Impact of Genomic Variation on Function) Con-

sortium [34] which is the successor of ENCODE. These consortia bring together

diverse expertise, resources, and data to accelerate scientific discoveries, identify dis-

ease risk factors, develop new treatments, and advance precision medicine. Uniform

processing pipelines and integrative analysis methods are often developed to ensure

standardized, comparative, and non-redundant results.

As of March 2023, ENCODE hosts 14,805 assays, including over 3,000 TF ChIP-

seq assays, over 3,000 histone ChIP-seq assays, and approximately 1,500 DNase-seq

assays across cell lines and conditions [5]. ENCODE’s focus is on human cells grown

in culture and primary human tissues and cells, while Roadmap focuses on samples
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taken directly from human tissues and cells. In contrast, Roadmap hosts a compre-

hensive collection of 1,320 datasets for 127 consolidated epigenomes, consisting of

105 DNA methylation datasets and 127 consolidated ChIP-seq datasets for a core

set of histone modifications (i.e. H3K4me1, H3K4me3, H3K27me3, H3K36me3, and

H3K9me3) [33].

1.3.2 Cis-regulatory elements databases

Large consortia work in genomics has greatly advanced our understanding of the

genetic basis of complex diseases. However, these efforts often focus on cataloging

large datasets of genomic assays. Efficiently querying and annotating specific regu-

latory elements and variants with comprehensive datasets is needed (Fig 1.3). Cis-

regulatory element databases and web portables have been developed to annotate

regulatory elements and prioritize regulatory variants, for example, SCREEN (Search

Candidate cis-Regulatory Elements by ENCODE) [5], FAVOR (Functional Annota-

tion of Variants) [35], and RegulomeDB [36] which I will mainly discuss in the third

chapter.

Integrative analysis is a key aspect of such databases where they integrate multi-

ple ground-level annotations (e.g. peaks and quantifications for individual data types

produced by the ENCODE uniform processing pipelines) and generate new annota-

tions or summarization scores. SCREEN implemented a Z-score to define high epige-

nomic signal regions as candidate regulatory elements. Specifically, SCREEN started

with 93 million individual DHSs across 706 DNase-seq assays in human datasets. For

each DHS, the Z-scores were computed as the log10 of DNase, H3K4me3, H3K27ac,

and CTCF signals in each biosample data. In total, SCREEN’s current version 3

identified 926,535 human candidate cis-regulatory elements which have high DNase

Z-scores and high H3K4me3, H3K27ac, and/or CTCF ChIP-seq Z-scores (high score
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Figure 1.3: Query regulatory variant information from large consortia databases. The figure was
modified from [5].

defined as Z-score > 1.64, corresponding to the 95th percentile of a one-tailed test).

In contrast, FAVOR employed a single metric summarizing multiple similar anno-

tations measuring the same underlying biological function (variant annotation Princi-

pal Components, aPCs). They are the principal components summarizing the multi-

faceted functional annotation data in FAVOR. For example, aPC-Epigenetics-Active

was defined as the first PC of the standardized scores of EncodeH3K4me1.max, En-

codeH3K4me2.max, EncodeH3K4me3.max, EncodeH3K9ac.max, EncodeH3K27ac.max,

EncodeH4K20me1.max, EncodeH2AFZ.max, in PHRED scale [37]. FAVOR version

2 contains annotations and scores for a total of 8,892,915,237 variants (including

8,812,917,339 SNVs and 79,997,898 indels).

On the other hand, RegulomeDB provides a genome-wide regulatory variant score

map based on a suit of machine learning models, SURF and TURF [38, 39]. The
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regulatory variant score incorporates all the datasets information from ENCODE,

Roadmap, and the Genomics of Gene Regulation Consortium [40], representing the

likelihood of a variant having any regulatory function. RegulomeDB web portal

allows users to query any variants genome-wide in either the GRCh38 or hg19 genome

assembly via rsID or genome coordinates.

Active maintenance and development is another key aspect of such databases.

This allows databases to leverage the continuously growing wealth of genomic data

and provide a valuable resource for researchers to investigate the functional impact of

genetic variation and identify novel therapeutic targets for complex diseases. Keep-

ing up with high-quality datasets is essential for researchers to screen for new targets.

To achieve this, RegulomeDB mirrored the ENCODE portal to stay current with the

latest data. Recently, RegulomeDB has been advanced to its second version, includ-

ing five times more data than the previous version. The database is being actively

maintained and developed, with new scoring models TLand models, being developed

to prioritize regulatory variants in an organ-specific manner. TLand models would

be available in the upcoming third version.

1.4 Computational methods to predict regulatory elements and variants

Computational methods have been developed for predicting regulatory elements

and variants in genomics. As a data-driven field, genomics largely utilizes machine

learning, such as random forest models in SURF and TURF, to uncover dependencies

in data and generate innovative biological hypotheses. In this section, I will first focus

on sequence-based learning as an important approach to studying regulatory regions.

I will explore its advantages and disadvantages, as well as potential avenues for

improvement. Finally, I will examine the general limitations of current computational
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methods in this field.

1.4.1 Sequence-based machine learning models

The ability to predict genomic signatures (e.g. gene expression, chromatin states,

and TF binding sites) purely from DNA sequences have significant potential to ad-

vance our understanding of gene regulatory networks and their impact on human

diseases and traits. Noncoding genetic variants associated with human diseases and

traits can be difficult to understand and study through population-based association

studies such as GWAS, which are often limited to common variants and struggle to

disentangle causality from association due to linkage disequilibrium (LD). Moreover,

the experimental validation of human genetic variants is a time-consuming and dif-

ficult process, limited to cell types or tissues that can be accurately replicated in

the laboratory. As a result, testing all relevant variants of interest in the relevant

biological contexts is often impractical.

Support vector machine

Sequence-based machine learning models have the potential to overcome these

limitations and allow for a more comprehensive understanding of the complex reg-

ulatory mechanisms underlying human diseases and traits. In particular, Support

Vector Machine (SVM) models have proven to be a useful tool in genomics due to

their ability to handle high-dimensional data and non-linear relationships between

variables. One type of SVM model, gkm-SVM, has been specifically designed for

predicting TF binding sites [41]. Authors developed a novel gapped k-mer (i.e. short

sequences of DNA) based approach to train models. The advantages of gkm-SVM

models include their ability to handle variable length input DNA sequences and

capture non-linear dependencies between k-mers in an arbitrarily high dimension.
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Gkm-SVM significantly outperformed other state-of-the-art methods for predicting

regulatory elements as TF binding sites [41].

Convolutional neural networks

However, to effectively extract new insights from the rapidly growing volume

of genomics data, more expressive machine learning models are required. While

traditional machine learning methods like SVM have proven accurate in medium

datasets (e.g. 10,000 samples), the advent of deep learning has transformed fields

like computer vision and natural language processing by effectively leveraging large

datasets. Deep learning is becoming the preferred method for many modeling tasks,

including predicting the impact of genetic variation on gene regulatory mechanisms

such as DNA accessibility and splicing.

Convolutional neural networks (CNNs) have proven particularly useful in genomic

sequence learning tasks because their convolutional filters resemble position weight

matrices (PWMs). For instance, when identifying if genomic regions are bound by

a specific transcription factor (TF) indicated by its ChIP-seq peak regions, k-mers

or PWMs representing the TF binding site patterns are often employed to scan

sequences for matches. This is because TFs bind to DNA by recognizing sequence

motifs or patterns that are resistant to shifts within the sequences. However, patterns

in which transcription factor binding depends on a combination of multiple motifs

with well-defined spacing would not be accurately recognized by PWMs or k-mers

[42]. In addition, the number of potential k-mers increases exponentially with k-mer

length, leading to storage and overfitting issues. On the other hand, a convolutional

layer in a CNN enforces translational invariance by applying the same convolutional

filters to every position in its input sequence. This process can be thought of as

scanning the sequence using multiple PWMs, thereby allowing for the more effective
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capture of complex dependencies among TFs [42, 43].

DeepSEA [44], Basset [45], and DeepBind [46] were the pioneer CNN models

developed within the genomics context. The DeepSEA model takes input as a 1,000

bp DNA sequence to predict the presence of 919 (epi-)genomic features, including

open chromatin, TF binding sites, and histone modifications. Its successor, the Sei

model, simultaneously predicts 21,097 features with a larger receptive field of 4,000

bp sequence [47]. Basset predicted 164 binary targets of open chromatin features

given a 600 bp input sequence. All CNN models substantially outperformed the

gkm-SVM models.

Recurrent neural networks and transformers

Regulatory elements can regulate genes distally by forming 3D loops. Recurrent

neural networks (RNNs) are able to carry over information through infinitely long

sequences via memory theoretically, which is very suitable to be employed to model

such long-range dependencies. In addition, RNNs can take input of widely varying

lengths rather than taking uniform length input as CNNs. RNNs have been shown

to perform better than CNNs with the same training and test datasets in predicting

open chromatin, TF binding sites, and histone modifications [48, 49]. However,

recent systematic comparisons have demonstrated that CNNs can achieve comparable

or even superior performance compared to RNNs in sequence modeling tasks, such

as audio synthesis and machine translation, when combined with various techniques,

including dilated convolutions [50]. Furthermore, RNNs apply a sequential operation

that hinders their parallelization, resulting in much slower computation compared to

CNNs.

A new deep learning architecture, transformer, has made substantial breakthroughs

in the natural language processing field [51]. Transformers are built with attention
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layers that transform each position in the input sequence by computing a weighted

sum across the representations of all other positions in the sequence. This is achieved

by considering the embeddings of their current representation vectors and the dis-

tance between them, which enable models to learn long-range dependencies effi-

ciently. For example, to predict a gene expression level, transformers can collect

information on distal regulatory elements away from the gene, while CNN requires

multiple successive layers to reach the same distal regions due to its local receptive

field. Recently, transformer-based models have been developed in genomic sequence

learning tasks, such as Enformer [52] and DNABERT [53]. Notably, Enformer is able

to model distal regulatory elements up to 100 kb away, while the previous state-of-

the-art CNN models can only reach up to 20 kb.

Despite the effectiveness of large language models such as Enformer in model-

ing the distal dependencies, there are still relationships to be captured which can

not be solely solved by increasing the range of sequence learning. Trans-regulatory

elements can regulate genes on different chromosomes as they encode proteins or

other molecules that can diffuse through the cell and interact with DNA sequences

on different chromosomes. Sequence learning has its upper ceiling limit in predict-

ing genomic signatures since these cross-chromosomal relationships, for example, are

challenging to model. Modeling with multiple modalities rather than solely rely-

ing on genomic sequences gains a more comprehensive understanding of the gene

regulatory networks.

1.4.2 Integrating multimodal methods

Data integration methods can be broadly categorized into three types for de-

veloping a final comprehensive method to study regulatory elements and variants

(Fig 1.4) [54]. Early integration (often referred to as data concatenation) involves
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transforming all datasets into a single feature-based representation, which is used

as input to a final method such as a machine learning model. Projection methods,

such as dimensionality reduction, are often used in early integration to concatenate

low-dimensional representations of high-dimensional data. Late integration (often

referred to as model ensemble), on the other hand, involves building base-level mod-

els for each dataset or data type independently and then combining their predictions

using methods such as majority voting and averaging with weights. Alternatively,

one can train a meta-model to learn the best weights for combining base-level models

using stacked generalization [55]. Multiple layers of base-level models can also be

built to capture more complex dependencies.

Figure 1.4: Categorization of data integration methods. Data integration approaches can be divided
into three categories, early integration, intermediate integration, and late integration.
The figure was modified from [54].

Intermediate integration, also known as multi-modal learning, is another type

of data integration method. For example, to develop a final deep learning model,
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intermediate integration involves learning a joint representation of multiple datasets

by developing different layers that explicitly address the multiplicity of datasets and

fuse them through inference of a joint layer. Intermediate integration preserves the

structure of data and only merges during the analysis stage, leading to superior

performance over the other two data integration methods [54].

1.4.3 Challenges for current computational methods

Advancements in machine learning and emerging applications are opening up ex-

citing possibilities for understanding human non-coding regulatory elements. How-

ever, recent studies have shown that there is no one-size-fits-all approach when it

comes to selecting the best method for a given problem [54, 56]. To achieve optimal

results, methods must be selected based on specific data types, domain models, and

research questions.

Recognizing that a single method may not suffice has led to a focus on integrat-

ing multiple methods to increase accuracy or scale. For example, by combining a

comprehensive set of cell-specific models, a multi-scale model for an organ, or even

for an organism, may capture the full extent of biological complexity. Nevertheless,

integrating approaches are still in the early stages, and the key principles of optimal

design are not yet fully understood.

Another challenge is the limited generalizability of current methods to new con-

ditions [52]. Models may perform well in the context where they are trained, such

as a specific cell line or transcription factor, but their transferability to other condi-

tions remains a cutting-edge research topic. To enable transferability, models must

be trained on a comprehensive set of input features and learn high-level patterns

that can be applied to other conditions, such as another cell line in humans. This

also requires easy access to a comprehensive database for generating the necessary
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features.

In the third and fourth chapters of my dissertation, I will introduce our approach

to navigating those challenges by developing a comprehensive yet easily accessible

database and developing an ensemble machine learning model to prioritize human

regulatory variants in an organ-specific manner.



CHAPTER II

Calling Peaks to Define Regulatory Regions in the Human
Genome

2.1 Abstract

Genomic and epigenomic features are captured at a genome-wide level by us-

ing high-throughput sequencing (HTS) technologies. Peak calling delineates features

identified in HTS experiments, such as open chromatin regions and transcription fac-

tor binding sites, by comparing the observed read distributions to a random expec-

tation. Since its introduction, F-Seq has been widely used and shown to be the most

sensitive and accurate peak caller for DNase I hypersensitive site (DNase-seq) data.

However, the first release (F-Seq1) has two key limitations: lack of support for user-

input control datasets, and poor test statistic reporting. These constrain its ability to

capture systematic and experimental biases inherent to the background distributions

in peak prediction, and to subsequently rank predicted peaks by confidence. To ad-

dress these limitations, we present F-Seq2, which combines kernel density estimation

and a dynamic “continuous” Poisson test to account for local biases and accurately

rank candidate peaks. The output of F-Seq2 is suitable for irreproducible discovery

rate (IDR) analysis as test statistics are calculated for individual candidate summits,

allowing direct comparison of predictions across replicates. These improvements sig-

nificantly boost the performance of F-Seq2 for ATAC-seq and ChIP-seq datasets,

19



20

outperforming competing peak callers used by the ENCODE Consortium in terms

of precision and recall.

2.2 Introduction

High-throughput sequencing (HTS) is a central technology in deciphering genomic

and epigenomic landscapes. Assays for detecting genome-wide chromatin accessi-

bility [7, 8, 57], transcription factor (TF) binding [16], and histone modifications

[58] are among the most commonly used methods. The short read sequences pro-

duced by these assays are usually filtered and mapped back to a reference genome,

then accumulated and piled up in genomic regions. The enrichment (e.g. counts)

of mapped reads can be abstractly viewed as a digital signal of relevant biological

events varying along the genome. The genome-wide enrichment signal can be fur-

ther processed with a peak-calling program, or peak caller, to find the arguments

of local maxima (argmax), representing discrete loci with statistically significant en-

richment over background for the relevant biological event. For example, individual

TF binding sites in a ChIP-seq experiment.

We introduced F-Seq as a general peak caller for DNase-seq and ChIP-seq in 2008

[24]. Unlike other recent methods [21, 20], F-seq calls peaks in HTS signals which are

the probabilistic estimates of the genome-wide short read density at single-nucleotide

resolution reconstructed by a kernel density estimator (KDE) [59, 60]. KDE-based

reconstructed signal is smoother and more accurate than histogram-based methods

(e.g. sliding window), but still interpretable and useful for visualization as the esti-

mate is proportional to the probability of finding a read at a given base pair [61]. A

Gaussian kernel with a chosen bandwidth is centered at each read and kernels are

summed up to obtain the density estimate. Peak regions are then called if the signal
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is higher than the threshold calculated from a simulated background model. F-Seq

has been widely used in the ENCODE project [5] and beyond, which is shown to

be more accurate and sensitive than competing peak callers for DNase-seq data [62].

However, F-Seq lacks native support for a separate control dataset. Consequently,

F-Seq cannot capture or eliminate local biases affecting read distribution along the

genome, such as copy number variation, read mappability, and local chromatin struc-

ture [21]. This limits the performance of F-Seq especially on ChIP-seq data since the

majority of ChIP-seq experiments have corresponding control data which contains

unique information for accurate peak calling [63]. In addition, F-Seq does not report

test statistics (e.g. p-value or q-value) apart from the signal value at each position.

To address these shortcomings, we have developed F-Seq version 2 (F-Seq2), a

complete rewrite of the original F-Seq in Python. F-Seq2 implements a dynamic pa-

rameter to conduct local statistical analysis with an underlying “continuous” Poisson

distribution which is approximated by logarithmic interpolation of p-values. This al-

lows a Poisson test for continuous signal values (i.e. amplitude) at each genomic

position to the local background distribution. By combining the power of the local

test and the KDE, which model the read probability distribution with statistical

rigor, we robustly account for local biases and solve ties that occur when ranking

candidate summits, making results suitable for irreproducible discovery rate (IDR)

analysis [64]. We compared F-Seq2 with four peak callers used by the ENCODE Con-

sortium [5] on simulated and real ChIP-seq and ATAC-seq datasets, demonstrating

performance gains arising from the joint effect of KDE and the local test, especially

in the absence of control data.
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2.3 Methods

2.3.1 Density profiles and peak calling

Density profiles for HTS reads at any base pair position x of the genome are

defined as

ρ̂(x) =
C

b

n∑
i=1

K

(
x− xi

b

)

where K(x) =
exp

(
−x2

2

)
√
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is a Gaussian kernel density function, and b is the bandwidth

parameter controlling the smoothness of the estimation. In contrast to the original

KDE, F-Seq2 density profiles represent unnormalized estimates (i.e. not normalized

to the total read count) for computational convenience of following statistical anal-

ysis. C is a scaling constant so that the sum at any given position is limited to

the number of proximal sample points. For experiments including a control dataset,

scaling between control and treatment datasets was necessary to account for different

sequencing depths. The total control read count was linearly scaled to be equal to

the total treatment read count at the individual chromosome level as the ratios of

total reads fluctuated between different chromosomes. The reconstructed signal by

KDE was treated as a digital signal emitted on a chromosome. Argmax of the sig-

nal, which are the positions of local maxima in the estimated density function, were

established by comparing neighboring values. Only a subset of argmax were retained

as the candidate summits for statistical testing to reduce potential false positives.

Candidates were selected by their local maxima properties; we specified the mini-

mum height and prominence of the local maxima for candidates as the simulated

background threshold and the minimum distances between adjacent local maxima as

the estimated fragment size. Estimation of the fragment size for ChIP-seq data, and

the simulated background threshold for defining and selecting candidate summits
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and delineating final peak regions were implemented the same between F-Seq2 in

Python and the original F-Seq in Java.

We adopted and modified the dynamic testing idea introduced by MACS2 [21]

to assign each candidate summit a statistical enrichment value related to a back-

ground distribution. Rather than using a constant background estimation for all

candidates, a local background distribution was estimated for each candidate, pro-

viding a more accurate method to calculate enrichment p-values due to the local

fluctuations of read enrichment distributions. The Poisson distribution (character-

ized by ) was used to model the number of reads (or signal value) from a genomic

region as this has been proven to be more mathematically powerful compared to

Binomial distribution in peak calling [32]. Specifically, λ for a summit is defined

as λlocal = max (λBG, [λp1, λ1k] , λ5k, λ10k), where λp1 is the maximum signal value

for one pseudo-read, λBG is the estimate of the individual chromosome background,

and λx is the estimate of a x bp window centered at the summit. All estimates

are calculated in the control dataset where available; otherwise, estimates were only

calculated in the treatment dataset, and regions in the square brackets of formula

were excluded to alleviate the background estimation boost by the summit signal

value.

Since the underlying Poisson distribution of the statistical test is a discrete dis-

tribution while the test sample (i.e. the signal value) is continuous, many ties in

test statistics p-value calculated by survival function were observed. Supposing X ∼

Pois(λ), the Poisson survival function is then defined as S(X = x;λ) = 1−
∑x

i=0
λie−λ

i!
.

Ties often occurred when the sequencing data had a low signal-to-noise ratio and

KDE estimated signal values were close to each other (i.e. between two integers),

such as S(2.1, λ) = S(2.9, λ) = S(2, λ). We interpolated the p-value in the logarith-
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mic space of the survival function to allow for continuous input, and break any ties

that occurred. The interpolated p-value in logarithmic space is calculated as

log10(Ŝ(Y = y;λ)) = (y − ⌊y⌋) · log10
(
S(⌈y⌉;λ)
S(⌊y⌋;λ)

)
+ log10(S(⌊y⌋;λ))

where Y is a continuous random variable, ⌊y⌋ is the floor function, and ⌈y⌉ is the

ceiling function. The precision gained by this interpolation improved the rankings of

summits compared to the rankings calculated using discrete values. The interpolation

bridges KDE and the dynamic Poisson testing to combine their power. Multi-test

correction was conducted with the Benjamini-Hochberg approach [65] to calculate

q-values (more precisely, false discovery rate adjusted p-values) from the interpolated

p-values.

2.3.2 Benchmarking with selected peak callers

Four peak callers and F-Seq2 were selected to benchmark our improved method on

100 simulated HTS datasets, 3 real ChIP-seq datasets, and one ATAC-seq dataset.

The comparison methods, which are routinely utilized by the ENCODE Consortium

[5], included Model-based Analysis for ChIP-Seq version 2 (MACS2) [21], SPP [26],

MUltiScale enrIchment Calling for ChIP-Seq (MUSIC) [20], and Genome wide Event

finding and Motif discovery (GEM) [18]. 100 treatment datasets and their paired

control samples were simulated to closely approximate real ChIP-seq datasets [32],

allowing for the evaluation of the peak callers under different scenarios where the

ground truth is known. Real ChIP-seq datasets for 3 different TFs tested in 3 different

cell lines were obtained from ENCODE [5]. As the ground truth is unknown in real

datasets, one common approach is to use the presence of a matched TF binding motif

to indicate true positive peak predictions. Motifs were obtained from the JASPAR

database [66] irrespective of cell line specificity, and used for the 3 real ChIP-seq
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datasets. Similarly, the union set of conservative IDR peaks from 117 independent

ENCODE TF ChIP-seq experiments were used as the “ground truth” for ATAC-seq

benchmarking [5]. Raw ATAC-seq bam files were downloaded from Buenrostro et al.

[8] (see Availability for data accession numbers).

Performance for all peak callers was evaluated across a range of significance thresh-

olds representing a different number of top ranked peaks. The main evaluation metric

was the F-score defined as

Fβ =
(
1 + β2

)
· precision · recall

(β2 · precision ) + recall

precision =
tp

tp+ fp

recall =
tp

tp+ fn

When β = 1, we refer to it as F-score, or more specifically, F1-score; when β = 0.5,

we refer to it as F0.5-score. tp is the number of true positives, fp is the number of

false positives, and fn is the number of false negatives. A higher F-score indicates a

more balanced performance in terms of precision and recall. All peak callers were run

with recommended settings and the least stringent thresholds (i.e. set p-value or q-

value threshold to 1 or fold enrichment threshold to 0; see Availability for parameters

settings).

2.3.3 Evaluation for simulated data

Peak calling results are typically not directly comparable as they possess different

peak widths and estimated p-values or q-values that are generated from different

statistical tests. To address this issue, all tools were first run with the least stringent

threshold to obtain an extensive list of peaks on each simulated dataset for each

tool. All peaks were limited to a 200 bp window centered at the peak summit or

peak centers, depending on available dataset information. Operating characteristics
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can be evaluated by varying the threshold to obtain the same top number of peaks

from each tool, where peaks are ranked by individual significance measurements.

F-score was used as the evaluation metric, which is the harmonic mean of precision

and recall. Specifically in the simulation evaluation, tp was defined as the number

of predicted peaks which overlap with ground truth peaks. Precisionsimulation was

defined as the fraction of tp in all predictions, and recallsimulation as the fraction of

tp in all ground truth peaks. The mean and 95% confidence intervals across 100

peak calling results were estimated by generalized additive models (GAMs) [67] for

each peak caller. A linear GAM was fit to the results for regression analysis. Using

the fitted model to predict on the varying threshold generated the mean curve and

95% prediction intervals, which was defined as 95% confidence intervals for each

peak caller. Since the lengths of the operating characteristics curves varied due to

the different maximum number of peaks called by each peak caller, and different

p-values or q-values sensitivities responding to the varying threshold, the area under

the curve statistics used to summarize the curve were not directly comparable. We

then used the highest F-score and the overall trend of the curve for peak caller

evaluation. The higher the overall curve, the larger the area under the curve, the

more balanced and optimal the performance of a peak caller is in terms of precision

and recall.

2.3.4 Evaluation for ATAC-seq data

Evaluation of F-Seq2 and MACS2 used the union set of conservative IDR peaks

from 117 TF ChIP-seq datasets as the “ground truth”. All IDR peaks were in the

GM12878 cell line to be comparable to the ATAC-seq dataset. Each tool was run

with the least stringent threshold and two main modes: single-end (SE) and paired-

end (PE) mode. Paired-end mode has the advantage of knowing the exact fragment
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length, which is useful when filtering out fragments whose length falls within a cer-

tain range to avoid peak calls on nucleosome centers [8]. Operating characteristics

curves were plotted similarly as described in the evaluation for simulation data by

varying the respective thresholds. The main difference was the evaluation metric was

changed to F0.5-score along with new definitions for true positives, precision and re-

call. We used F0.5-score to put more emphasis on precision versus recall due to the

incompleteness of the “ground truth”. tp was redefined as the number of base pairs

(bp) of the predicted peaks that overlap with ground truth peaks, Precisionatac as

the fraction of correctly predicted base pairs in all predictions, and recallatac as the

fraction of correctly predicted base pairs in all ground truth peaks. New definitions

were required as ATAC-seq peak lengths are usually larger than TF ChIP-seq peak

lengths. We shifted focus from evaluating summits around a window size to the

narrow peak regions for a more comprehensive evaluation.

2.3.5 Evaluation for real TF ChIP-seq data

Evaluations of real TF ChIP-seq peak calling results required JASPAR motif

Position Weight Matrices (PWM) of each TF. K-mers matching to each TF PWM

were identified by the TFM P-value program [68] with the threshold of 4−8. Motif

positions were detected in the hg19 human genome by mapping the K-mers using

the Bowtie program suite [69]. For each ChIP-seq dataset, the selected tool called a

list of significant peaks with their default thresholds. The shortest distances between

the significant peaks and the corresponding TF motifs were obtained and used as the

main evaluation metric. Specifically, we evaluated the fraction of top n up to 1000

peaks, ranked by significance within a 100 bp window of a motif. We also examined

the empirical cumulative distribution of the shortest distance of those top 1000 peaks

for each tool.
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2.3.6 F-Seq2 auto filter design for paired-end ATAC-seq data peak calling

We designed the PE auto filter based on the fragment size distribution partitions

modelled by Buenrostro et al. [8], where fragment lengths under 100 bp, between

180 and 247 bp, between 315 and 473 bp, and between 558 and 615 bp were consid-

ered to originate from nucleosome free, mono-, di-, and tri-nucleosomes, respectively.

Our auto filter included more fragments compared to that of Buenrostro’s analysis

[8], in which they only used fragments under 100 bp for open chromatin analysis

(Fig 2.1). By excluding fragment ranges between the non-overlapping cutoffs, a

large percentage (∼15%) were discarded, leading to a reduction in recall. These

fragments (e.g. between 100 and 180 bp) may contain useful information for identi-

fying open chromatin regions [70]. F-Seq2 takes advantage of more available reads

to accurately estimate background distribution, and only fragments within mono-,

di-, and tri-nucleosomes ranges were excluded. Fragments larger than 558 bp (i.e.

multinucleosome-sized fragments) were also rejected as these fragments are associ-

ated with condensed heterochromatin [8].

2.4 Results

2.4.1 Performance on simulated datasets

To accurately evaluate the peak callers under a variety of scenarios, each method

was benchmarked on 100 sets of paired simulated treatment and control data. F-

Seq2 and MACS2 were found to be the top two performers with the highest overall

F-score operating characteristic curves (Fig 2.2A). The highest F-scores estimated

by generalized additive models across 100 pairs were 0.897, and 0.884 for F-Seq2 and

MACS2, respectively. Both methods outperformed MUSIC, the third-best method,

by a margin of ∼0.1 (MUSIC 0.781). Despite differences in implementing a dynamic
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Figure 2.1: Fragment size distribution of the ATAC-seq datasets in GM12878. In Buenrostro’s
study, the observed fragment distribution was partitioned into four populations of reads,
including nucleosome free, mono-, di-, and tri-nucleosomes, by fitting the distribution to
one exponential function and five Gaussians (2). The probability density was estimated
by KDE. Green dots show the populations of reads included in each method to call peaks
on open chromatin regions. Users can adjust the boundaries in the F-Seq2 program for
a better fit of four populations after observing their fragment size distribution.

parameter λlocal between F-Seq2 and MACS2, the performance gap suggests using a

dynamic parameter λlocal in ranking peaks is a huge advantage, effectively removing

false positives, consistent with the conclusion from Thomas et al. [32]. The number of

peaks called by the default threshold of each peak caller was compared to the number

of peaks in the ground truth (Fig 2.2B). F-Seq2 best correlated with the ground

truth (r=0.88) while MUSIC (r=0.74) had a slightly better correlation compared to

MACS2 (r=0.70). The high correlation observed for F-Seq2 indicates the default

threshold of our program is reliable when estimating the number of significant peaks

under a simulation setting.

Although control data is often essential for modeling background distributions for
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Figure 2.2: Comparison of peak callers on 100 pairs of simulated transcription factor ChIP-seq
datasets. (A) The F-score operating characteristic curve where F-score is plotted as a
function of the log10 top number of peaks called with control data. Generalized additive
models are used to estimate the mean and 95% confidence intervals (shaded areas) of
100 peak calling results for each peak caller. (B) Boxplot of the number of peaks
called by each peak caller with default threshold with control data, and the number
of significant peaks in ground truth. Numbers are shown in log10 scale. Pearson’s
correlation coefficient r is shown above the bridge linking peak caller and ground truth.
(C) The F-score plot without control data. SPP was not able to run without control.
GEM resulted in few peaks which is not shown in the plot. (D) Boxplot without control
data.

candidate summits, F-Seq2 demonstrated a highly balanced performance between

precision and recall on simulated ChIP-seq data without controls (Fig 2.2C& D).

F-Seq2 had the highest overall curve, which stood out among the other peak callers,

including MACS2 and the original F-Seq, and achieved comparable performance

(0.883) to those with control datasets (0.897). These results suggest that a signifi-
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cant amount of control information is contained within treatment dataset at a large

scale. This is also evident in the real FoxA1 ChIP-seq dataset [21] where control

read counts correlated well with treatment read counts in 10 kb windows across the

genome. The observed high correlation and performance of F-seq2 implies that con-

trol information can be robustly extracted from treatment data and can be used to

estimate background distribution for peak calling, given it does not greatly contra-

dict with the treatment data and given a statistically rigorous modeling method for

treatment data (e.g. F-Seq2 KDE). For real ChIP-seq datasets, especially where the

correlation is low between control and treatment data, calling peaks without control

data is less accurate due to the loss of unique information and cannot be recovered

from treatment data [63].

2.4.2 Performance on real datasets

The absence of control data is more often seen in DNase-seq and ATAC-seq exper-

iments compared to ChIP-seq. Therefore, F-seq2 was directly compared to MACS2

on ATAC-seq data to further evaluate performance in the absence of control data

(Fig 2.3). Both F-Seq2 with paired-end (PE) auto mode and MACS2 with single-end

(SE) shift-extend mode, which are two different strategies to avoid calling peaks on

nucleosome centers, precisely identified open chromatin regions with their top ranked

peaks (see Material and Methods for auto filter design details). The higher overall

characteristic curve of F-Seq2 (highest F-0.5 score = 0.62) indicates the filter-based

method is more effective in avoiding peaks called on nucleosomes compared to the

shift-based method. MACS2 SE shift-extend mode outperformed its PE mode (high-

est F-0.5 scores: 0.58 vs. 0.54) at low genome coverage (1% of human genome). This

precision gained by the shift-extend strategy is likely why single-end data is used as

part of the official ENCODE ATAC-seq data analysis pipeline [5]. At larger genome
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coverage (2%), F-Seq2 PE without filter mode, and SE mode showed superior per-

formance versus all other modes (both had the highest value for F-0.5 score = 0.62

at different coverages). This observation suggests that the additional data improved

precision for medium ranked peaks in F-Seq2 in its non-filter-based mode, which

takes advantage of the greater genomic information available for more robust and

accurate background estimations at the cost of precision at low genome coverage.

Figure 2.3: Comparison of F-Seq2 and MACS2 on the ATAC-seq paired-end data in GM12878. The
F0.5-score operating characteristic curve where F0.5-score is plotted as a function of the
genome coverage in base pairs by the top ranked peaks. F0.5-score put more emphasis
on precision than recall due to the incompleteness of our “ground truth”. MACS2 was
run with two modes: SE shift-extend mode and PE mode. SE shift-extend mode first
shifted both 5’ and 3’ ends 75 bp towards outside (5’ end in 3’ to 5’ direction, 3’ end in
5’ to 3’ direction), then extended 150 bp towards inside. This approach smoothed the
counts of cutting events by the extension size, which is used by the ENCODE ATAC-
seq data analysis pipeline [5]. F-Seq2 was run with three modes: PE auto mode, PE
without filter mode, and SE mode. PE auto mode used the F-Seq2 auto filter which
is designed based on nucleosome-related fragment length information (See Methods for
design details). Dots on curves indicate the genome coverage of significant peaks by the
default threshold of each peak caller.

Interestingly, the original F-Seq1 with SE mode had a similar characteristic curve

to F-Seq2 with SE mode, and even better performance at larger genome coverage.

The similar performance observed for both versions validates the assumption F-
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Seq1 made that the peaks with higher signals are more likely to be true positives

(versus false positives) in open chromatin datasets compared to those in ChIP-seq

datasets. This alleviates the need to further conduct the dynamic Poisson tests in

DNase-seq and ATAC-seq datasets while maintaining high F-0.5 scores. Despite the

effectiveness of the dynamic Poisson test at filtering out false positives in ChIP-seq

datasets, it potentially filters out more true positives in ATAC-seq datasets, shown

by the superior performance of the original F-Seq with SE mode at larger genome

coverage. F-Seq peak ranks can be reproduced in F-Seq2 by ranking peaks with

signal values.

Figure 2.4: Comparison of peak callers on the CTCF ChIP-seq in ascending aorta female adult
(51 years). (A) The fraction of top n peaks within 100 bp of a CTCF motif. (B) The
empirical distribution of the shortest distance of the called peaks to a CTCF motif. The
subplot shows the number of significant peaks called by each method using the default
threshold.

F-Seq2 was benchmarked on 3 real ChIP-seq datasets to confirm that the observed

high performance under the simulated situations can be recapitulated using real data.

F-Seq2 had the largest fraction of top n peaks (up to 1000 peaks) within 100 bp of

a CTCF motif (Fig 2.4). GEM was the second largest with slightly better perfor-

mance than MACS2. The empirical distribution of the distance of called peaks to

the nearest CTCF motif showed a clear performance advantage for GEM in detecting
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peaks centered around motifs: 80% of the 1000 most significant peaks were within

4 bp of a CTCF motif. This performance differential is due to GEM’s utilization

of motifs, where the tool intends to improve peak calling accuracy at the expense

of increased run time, and potentially introducing bias by ranking peaks without

motifs lower than those containing a TF motif. MACS2 and F-Seq2 had the short-

est execution time for the CTCF datasets while maintaining favorable performance

relative to GEM (Fig 2.5). Similar trends were observed in the MAFK ChIP-seq

dataset benchmarking results, with SPP being an exception as it had the most vari-

able number of peaks called by a default threshold between the two TFs (Fig 2.6).

However, all peak callers had a much lower and barely distinguishable performance

between each other on STAT1 (Fig 2.7). Karimzadeh and Hoffman [71] showed that

76 out of 220 chromatin factor ChIP-seq peaks lacked relevant sequence motifs, and

STAT1 peaks were low in motif occupancy (below 50%), suggesting that evaluating

peak callers using motifs may not reflect actual performance. As the motif-centered

evaluation is likely problematic, it is necessary to use the more accurate and precise

simulated ground truth data when assessing tool performance.

2.5 Discussion

The highly-balanced performance of F-Seq2 between precision and recall across

different assays is noteworthy. Kernel density estimation (KDE), which is a non-

parametric method to model the read probability distribution, has an advantage

over explicit modeling methods. Confounding experimental and biological factors,

such as antibody specificity, DNA susceptibility to enzymes, and sequencing read

mappability, make it difficult to form explicit assumptions [29], especially across

different assays. The advantage of KDE has been demonstrated by the original
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Figure 2.5: Execution time of peak callers on the CTCF ChIP-seq in ascending aorta female adult
(51 years). F-Seq2, GEM, and SPP support and recommend multiprocessing; their
performance with 10 CPU cores were included in the comparison. F-Seq1 was included
as a baseline for comparison since the program did not accept bam files as input, nor
support a control dataset (i.e. missing the bamtobed conversion time, and reading in
and utilizing the control dataset time). Different sub-tasks were performed by peak
callers, which affected the execution time. For example, GEM conducted the optional
motif analysis to call peaks near the discovered motifs, and F-Seq2 reconstructed the
genome-wide signal despite no output to a bigwig file.

peak caller F-Seq, which is the top-performing peak caller on DNase-seq datasets

[7], and frequently used for FAIRE-seq data peak calling [57]. We designed a new

statistical framework and introduced new features to F-Seq to further improve the

performance in this second version. Adding support for user-input control data

allows for F-Seq2 to more accurately model background reads distribution together

with the treatment reads distribution. With the help of a dynamic parameter λlocal ,

read distributions around candidate summits can be summarized into significance

values accounting for local biases, leading to statistically robust peak ranks and peak
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Figure 2.6: Comparison of peak callers on the MAFK ChIP-seq in HepG2. (A) The fraction of
top n peaks within 100 bp of a MAFK motif. (B) The empirical distribution of the
shortest distance of the called peaks to a MAFK motif. The subplot shows the number
of significant peaks called by each method using the default threshold.

Figure 2.7: Comparison of peak callers on the STAT1 ChIP-seq in GM12878. (A) The fraction of
top n peaks within 100 bp of a STAT1 motif. (B) The empirical distribution of the
shortest distance of the called peaks to a STAT1 motif. The subplot shows the number
of significant peaks called by each method using the default threshold.

calls. The joint effect of KDE and the dynamic parameter demonstrated superior

performance in our benchmarking results, especially without control data. This

suggests control information can be extracted from treatment data, given control and

treatment data are well correlated. The support of control data allows for a more

biologically meaningful signal to be reconstructed by weighting the treatment with

control data, which leads to a better sanity-check when comparing and combining
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signals from different datasets [61].

Whether control data is a dispensable dataset for ChIP-seq peak calling requires

further investigation. Recent papers [63, 72] that predict the linear weights for control

datasets from treatment datasets provide evidence that control information can be

extracted from treatment data. In our simulation results, a comparable performance

was observed when using or omitting control data. F-Seq2 runs using experiments

with real ChIP-seq data showed only a slightly decrease in performance without

control data (data not shown). We suspect that the high correlations between control

and treatment data explain the observation that control data is not required in

a simulation setting. However, conclusions cannot be made based on the small

performance difference on the real ChIP-seq datasets due to evaluation biases with

motifs. We are unable to determine if a large observable discrepancy (low correlation)

between control and treatment data is due to the low quality of either of the datasets,

or to the indispensable information contained within control dataset.

F-Seq2 is compatible and suitable for IDR analysis which we recommend as a

more reliable approach to determine a significance threshold when working with

replicates. The IDR algorithm requires peak callers to run at a relaxed threshold

to include both signal and noise peaks within the output to detect the consistency

transition point between the two groups [64]. During benchmarking, the MACS2

peak width detection was observed to be tied to peak detection. When the q-value

threshold was lowered, by default MACS2 called not only more peaks, but larger

width peaks, and may cause irreproducibility as a side-effect (i.e. changing the

significance scores and ranks of called peaks). We developed F-Seq2 with summit-

focused statistical testing and used separate parameters for peak width detection

and summit detection. F-Seq2 reliably reproduces the same exact summits and
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peaks when lowering the p-value or q-value threshold, and an individual significance

score for each summit is calculated. Having separate scores for each summit and

less rank ties by p-value interpolation are essential for IDR to precisely identify the

transition point, representing the desired threshold. We have built a peak calling

pipeline for a pair of replicates with F-Seq2 followed by an integrated IDR analysis

with our recommended settings, which is directly accessible through the command

line interface.

F-Seq2 further pushes the potential in the mature field of peak calling. The

accuracy of peak calling is essential for downstream analysis, such as differential and

motif analysis, to discover new biological insights and mechanisms with HTS data.

2.6 Availability

Data accessibility and peak caller parameter settings.

Simulated data was reproduced from Thomas et al. [32]. The adapted scripts to

simulate ChIP-seq data, and the scripts to run all peak callers are available at https:

//github.com/Boyle-Lab/F-Seq2-Paper-Supplementary. The accession numbers

of all ENCODE data, and the IDs of all JASPAR motifs used in this study are also

available at this website.

Software availability.

The F-Seq2 software and documentation are available at https://github.com/Boy

le-Lab/F-Seq2. F-Seq2 can be installed through the Python Package Index (PyPI)

and the Conda package manager.

Supplementary Data are available at NAR online.
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2.7 Publication

The study in this chapter has been published in NAR Genomics and Bioinfor-

matics [73]: Zhao, N., & Boyle, A. P. (2021). F-Seq2: improving the feature density

based peak caller with dynamic statistics. NAR Genomics and Bioinformatics, 3(1),

lqab012.



CHAPTER III

Creating a Comprehensive and Accessible Database of
Human Non-coding Regulatory Variants

3.1 Introduction

Nearly 90% of the disease risk-associated variants identified from genome-wide as-

sociation studies (GWAS) are in non-coding regions of the genome. The annotations

obtained from analyzing functional genomics assays can provide additional informa-

tion to pinpoint causal variants, which are often not the lead variants identified from

association studies. However, the lack of available annotation tools limits the use

of such data. To address the challenge, we have previously built the RegulomeDB

database for prioritizing and annotating variants in non-coding regions [74], which

has been a highly utilized resource for the research community (Fig 3.1).

Here we present an update of the RegulomeDB web server, RegulomeDB v2

(http://regulomedb.org). RegulomeDB annotates a variant by intersecting its

position with genomic intervals identified from functional genomic assays and com-

putational approaches. It also incorporates those hits of a variant into a heuristic

ranking score, representing its potential to be functional in regulatory elements. We

improve and boost annotation power by incorporating thousands of newly processed

data from functional genomic assays in GRCh38 assembly, and include probabilistic

scores from the SURF algorithm that was the top-performing non-coding variant

40
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Figure 3.1: Popularity of RegulomeDB. The x-axis is month and year since RegulomeDB first pub-
lished in 2012. The left y-axis is cumulative user count (green). The right y-axis is
cumulative citation count (light blue). The citation count data are derived from Clari-
vate Web of Science. © Copyright Clarivate 2022. All rights reserved.

predictor in CAGI 5 [75].

3.2 Methods

3.2.1 Data sources

Genomic variants

The information of genomic variants was retrieved from dbSNP153 [76], including

the positions and allele frequencies from different projects, such as the 1000 genome

project [77], TOPMED [78], and GnomAD [79].

ChIP-seq and chromatin accessibility experiments

We collected the peaks of ChIP-seq targeting transcription factors (TF), DNase-seq,

and ATAC-seq experiments called by uniform pipeline from the latest release of the

ENCODE portal, which includes the experiments from the Roadmap project [80].

PWM matching



42

We downloaded the PWMs (position weight matrices) of 746 non-redundant TF

motifs from the JASPAR 2020 database [81]. The kmers matching to TF motifs

were called by TFM P-value with a threshold at 4−8 for each PWM [82]. Bowtie

was used to map the kmers on the genome to determine the final PWM matching

positions for the TF motifs [83]. The information content from each PWM was also

integrated into the database and used as a feature to calculate the probabilistic score

from the random forest model.

Footprints

Footprints were predicted with signals from 642 DNase-seq experiments and 591 TF

motifs by the TRACE pipeline: https://www.encodeproject.org/search/?type

=Annotation&internal_tags=RegulomeDB_2_2&annotation_type=footprints&

software_used.software.name=trace [84]. TRACE is a computational method

that incorporates DNase-seq signals and PWMs within a multivariate hidden Markov

model to detect footprint regions with matching motifs.

Chromatin states

Chromatin states in 833 biosamples were called from chromHMM in EpiMap [85]

and were directly retrieved from the ENCODE portal.

eQTLs

The eQTLs from the GTEx project across 49 human tissues were downloaded from

the GTEx portal (https://storage.googleapis.com/gtex_analysis_v8/sing

le_tissue_qtl_data/GTEx_Analysis_v8_eQTL.tar) [86]. The variant-gene pairs

with the corresponding tissue were added as annotations in the database.

caQTLs

The chromatin accessibility QTLs (caQTLs) were collected from 9 publications [87,

88, 89, 90, 91, 92, 93, 94, 95] https://www.encodeproject.org/search/?type=A
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nnotation&internal_tags=RegulomeDB_2_2&annotation_type=caQTLs. Only

SNVs were included and lifted over from hg19 to GRCh38 if necessary [96].

Prediction scores

We provide a heuristic ranking and a probabilistic score for each query variant rep-

resenting its potential of being a functional variant in regulatory elements. The

heuristic ranking is defined in the same way as in the previous version of Regu-

lomeDB [74]. The probabilistic score is calculated from a random forest model,

TURF, trained with allele-specific TF binding SNVs [97]. We used a simplified ver-

sion here only including binary features from functional genomic evidence as used

in the heuristic ranking, as well as numeric features from information content in

matched PWMs. We will include the whole feature set in a future release.

3.2.2 Database and web server design

RegulomeDB annotates a variant by intersecting its position with genomic inter-

vals identified from a massive number of experiments and computational approaches.

The database directly integrates the datasets from the ENCODE portal creating a

genomic data service (https://github.org/ENCODE-DCC/genomic-data-service).

The genomic intervals are parsed from BED formatted files and associated with meta-

data of the source experiments and computational pipelines from the ENCODE por-

tal. These BED files are then indexed in Elasticsearch (https://www.elastic.co/)

as in integer range type to enable efficient search against a query position. In to-

tal, over two billion genomic intervals representing ChIP-seq and DNase-seq peaks,

matches to PWMs and DNase footprints, eQTLS, caQTLs and chromatin states are

indexed in Elasticsearch. After each search, the JSON objects associated with the

intersected intervals are returned and passed on to generate ranking scores from Reg-

ulomeDB 1.1 and new probabilistic scores from TURF [75, 97]. The query results
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are displayed with a web interface (https://github.org/ENCODE-DCC/regulome-e

ncoded) that contains charts and interaction figures, which can be customized by

users.

3.2.3 New interface for variant functionality exploration

The RegulomeDB v2 web server accepts any query variant on the whole genome

in either GRCh38 or hg19 genome assembly. A toggle above the search box allows

users to switch between the two assemblies. The search box allows any user to

input multiple queries (up to 500 at a time) (Fig 3.2). The input query can be

in three formats: 1) rsID (from dbSNP database v153); 2) chromosome position

for a single nucleotide variant; 3) chromosome position for a chromosome region.

In the third case, all variants on the chromosome region at more than 1% allele

frequency from dbSNP153 will be queried. The backend then intersects the variant(s)

position with the genomic intervals of annotations obtained predicted from functional

genomics experiments and returns a sortable summary table of variant scores (Fig

3.2), including a ranking score and a probabilistic score showing its potential of being

a regulatory variant. In addition, a dbSNP rsID will link to the query variant if it

exists.

After clicking on any field of a row in the score table, a more detailed information

page on genomic evidence is shown for the variant of interest (Fig 3.3, Fig 3.4). The

top of the page shows some basic information on the variant position, scores, and

allele frequencies from the dbSNP database. While on the bottom is the initial sum-

mary section on genomic annotations’ hits. Since a single query can hit up to 2,000

results, the initial summary section is divided into five data types; TF binding sites

from ChIP-seq, chromatin states from chromHMM, chromatin accessibility, PWM

matching or footprint predictions, and eQTLs or caQTLs. In addition, a genome
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Figure 3.2: RegulomeDB Query Interface. An example query with the rsIDs of variants from dbSNP
database. Upon clicking the search buttons, a summary table representing prediction
scores for all query variants will be displayed.

browser section is also available to view the specific DNase-seq and ChIP-seq data,

which can aid in variant interpretation.

Each of the six sections can be clicked to display more details on the genomic hits

from specific assays, such as the biosample of DNase peaks and the transcription

factors of ChIP-seq peaks. The chromatin state tab shows the chromHMM state for

each of the 833 biosamples, which also includes an intuitive body map colored by the
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Figure 3.3: RegulomeDB Result Overview Page of rs75982468. For any variant of interest, a results
page with more information on the hits of genomic annotations is available. Each of
the six sections at the bottom can be clicked to expand more details on each data type.

most active chromatin state in each organ. Furthermore, the genome browser tab

provides an interaction view for exploring the gene transcripts along with DNase-seq

and ChIP-seq peaks near the variant of interest (shown as a yellow highlight). The

tracks on the genome browser can be further filtered using a modal that allows one
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Figure 3.4: RegulomeDB Expanded Pages of rs75982468. The expanded pages of each section shows
details on the genomic experiments and annotations, such as the biosample, organ, TF
target and the peak file called from the ENCODE project. The body map under the
chromatin states view is colored by the most active state among all biosamples in each
organ, which gives an intuitive way to explore the candidate organs where the query
variant might be functional. Users can also explore the nearby genes of the query variant
under the genome browser view.

to sub-select by specific organ/cell types, biosample types, file types, assay methods,

or by TF targets.
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3.3 Results

The update of RegulomeDB now includes >650 million and >1.5 billion genomic

intervals in hg19 and GRCh38, respectively, a 5x increase over the previous ver-

sion (Fig 3.5). We included approximately 5,000 transcription factor (TF) ChIP-

seq and chromatin accessibility experiments from the ENCODE project [5, 80], the

Roadmap Epigenomics Consortium [5, 80], and the Genomics of Gene Regulation

Consortium. We also produced a comprehensive set of footprint predictions using

over 800 chromatin accessibility experiments and 591 TF motifs in GRCh38 using the

TRACE pipeline [84]. In addition, we refined the included TF motifs by using the

non-redundant vertebrates set from the JASPAR database [81]. We also integrated

approximately 71 million variant-gene pairs in eQTL studies from the GTEx project

[86], and 450,000 caQTLs (chromatin accessibility QTLs) from 9 recent publications.

Finally, we included chromatin state annotations called from chromHMM in EpiMap

for 833 biosamples [85].

RegulomeDB accepts any query variants genome-wide in either GRCh38 or hg19

genome assembly by rsID or genome coordinates. The query variants can then be

prioritized by functional prediction scores shown in a sortable table. For any variant

of interest, an information page on five types of supported genomic evidence, as well

as a genome browser view is displayed. Each of the six sections can be clicked to

show more detail for functionality exploration (Fig 3.2, Fig 3.3, Fig 3.4).

RegulomeDB enables researchers to quickly separate functional variants from a

large pool of variants and assign tissue or organ specificity for each variant. Here we

showcase this using four verified variants from recent literature [98, 99, 100, 101, 102],

and demonstrate the applicability of RegulomeDB to annotate those variants based
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Figure 3.5: Overview of RegulomeDB Version 2 Data Growth and Refinement. Statistics on
database content. Numbers under each data type include all experiments across differ-
ent treatment conditions and biosamples. All numbers are RegulomeDB v2 stats, in
hg19 or hg38.

on various sources of data (Fig 3.6).

TF motifs and ChIP-seq data together provide evidence about how a variant is

likely to affect phenotype in a cell-specific context. For example, rs213641 is known

to affect behavioral responses to fear and anxiety stimuli [98]. The POLR2A bind-

ing and the active transcriptional start site (TSS) state in the brain indicate that

rs213641 is likely to function in the brain through disrupting the TSS of STMN1.

We also examined rs7789585 where RegulomeDB TF motif evidence suggests that

mutation to the reference allele G would disrupt the binding of GCM1, which may

interrupt the active enhancer state at the locus in the heart. Hocker and colleagues re-

cently confirmed this hypothesis using reporter assays and discovered that rs7789585
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Figure 3.6: Prioritization of Functional Variants with RegulomeDB Version 2. Four example vari-
ants with verified functions in related organs from recent literature. Various sources of
evidence in RegulomeDB are indicated by gray boxes. RegulomeDB heuristic ranking
score and probability score summarized all evidence.

disrupts a KCNH2 enhancer and affects cardiomyocyte electrophysiologic function

[99].

DNase-seq assays and underlying footprint predictions identify open chromatin

regions with mapped TF binding sites in hundreds of biosamples and can also be

used to assign putative function to variants. rs190509934 has been associated with

COVID-19 infection risk by affecting ACE2 expression level [100]. RegulomeDB

shows hits to multiple DNase-seq peaks in lung-related biosamples. Furthermore,

RegulomeDB extends this tissue effect with the hypothesis that ACE2 expression

level may be regulated by CEBP by its overlap with DNase footprints in the lung
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found in the upstream promoter region of ACE2 [101]. In addition, eQTL studies

provide correlation evidence between the variants and their target genes. For ex-

ample, rs72635708 is predicted as a regulatory variant by RegulomeDB with a high

probability of 0.91 due to its locus overlapping with DNase and ChIP-seq peaks,

and footprints, and it is an eQTL associating with LINC01714 gene expression level

in the right lobe liver. Since rs72635708 lies in the FOS motif, it is likely to be a

functional variant in the liver by modulating the AP-1 complex binding level [102].

3.4 Summary

RegulomeDB provides a user-friendly tool to annotate and prioritize variants

in non-coding regions of the human genome, which can aid variant function in-

terpretation and guide follow-up experiments. We welcome user feedback through

regulomedb@mailman.stanford.edu.

3.5 Publication

The study in this chapter has been published in Nature Genetics [103]: Dong,

S.∗, Zhao, N.∗, Spragins, E., Kagda, M. S., Li, M., Assis, P. R., ... & Hitz, B. C.

(2023). Annotating and prioritizing human non-coding variants with RegulomeDB

v.2. Nature Genetics, 2023-04.



CHAPTER IV

Prioritization of Regulatory Variants with Organ-specific
Function in Non-coding Regions of the Human Genome

4.1 Abstract

Identifying non-coding regulatory variants in the human genome remains a chal-

lenging task in genomics. Recently we advanced our leading regulatory variants

database, RegulomeDB, to its second version. Building upon this comprehensive

database, we developed a novel machine-learning architecture with stacked gener-

alization, TLand, which utilizes RegulomeDB-derived features to predict regulatory

variants at cell or organ-specific levels. In our holdout benchmarking, TLand consis-

tently outperformed state-of-the-art models, demonstrating its ability to generalize

to new cell lines or organs. We trained three types of organ-specific TLand models

to overcome the common model bias toward high data availability cell lines or or-

gans. These models accurately prioritize relevant organs for 2 million GWAS SNPs

associated with GWAS traits. Moreover, our analysis of top-scoring variants in spe-

cific organ models showed a high enrichment of relevant GWAS traits. We expect

that TLand and RegulomeDB will further advance our ability to understand human

regulatory variants genome-wide.

52
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4.2 Introduction

Understanding the biological impact of variants located in non-coding regions of

the human genome is a significant challenge. Nearly 90% of disease risk-associated

single nucleotide polymorphisms (SNPs) identified from genome-wide association

studies (GWAS) are within non-coding regions. Similarly, 75% of patients affected

by Mendelian disease have mutations outside of protein-coding regions [104]. The

abundance of disease-associated non-coding variants makes studies focused on these

regions highly desirable and thus facilitates understanding their functional conse-

quences.

Prioritizing non-coding variants requires integrating multiple layers of functional

information, including regulatory annotations identified from high-throughput se-

quencing datasets (e.g. DNase-seq [105], ChIP-seq [106], and ATAC-seq [8]). Such

annotations provide additional information in pinpointing causal variants, which are

often not the lead variants identified in GWAS studies. Despite the benefit of in-

corporating functional genomics assay-based evidence when examining non-coding

variants, the lack of available annotation tools limits the use of such data. The ma-

jority of resources developed for clinical purposes have focused on coding regions as

an application of exome sequencing-based data [107, 108], which captures less than

5% of human variation [109, 110, 77].

Previously we built RegulomeDB, a comprehensive database for prioritizing and

annotating variants in non-coding regions, which was highly sought after in the

research community [36]. RegulomeDB intersects query variants with regulatory re-

gions predicted by functional genomics assays and, by utilizing ranking heuristics,

informs users about putative functional consequences to prioritize variants. Recently,
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RegulomeDB has been upgraded to v2, to improve its annotation power by incor-

porating thousands of new functional genomics assays from the ENCODE project

[5], Roadmap Epigenomics Consortium [80], and the Genomics of Gene Regulation

Consortium. A suite of models, namely SURF and TURF, was developed and inte-

grated in this version to provide accurate probabilistic scores for general and cell-type

specific regulatory activities [38, 39].

However, a current drawback to this model suite is it was only optimized to predict

function in six common cell lines from ENCODE using only the hg19-referenced

datasets available at the time. The resulting models have a bias and lack sufficient

statistical power to make generalized predictions toward less-studied cell lines. As a

result, the RegulomeDB scores are less informative for cell lines, tissues, and organs

that do not have the abundance of data available for the commonly studied cell lines.

This can make it challenging for RegulomeDB users to identify targets of interest

when screening variants and creating hypotheses regarding their regulatory functions

in less-studied cell lines or organs. Nonetheless, we anticipate RegulomeDB to further

grow for years to come as the ENCODE and the IGVF Consortium [111] repository

incorporate more datasets, cells, tissues, and assay types, e.g., high-dimensional

experimental assays like Hi-C [112] and computational annotations like Enformer

[52]. However, the current SURF and TURF models were not designed to incorporate

all of these data efficiently, and continuously, nor can they combat overfitting due to

the expanding feature space.

Here we present TLand, a flexible architecture based on stacked generalization

[55] to learn RegulomeDB-derived features to predict regulatory variants at a cell-

specific level or organ-specific level. TLand took advantage of features derived from

RegulomeDB v2, which now incorporates >650 million and >1.5 billion genomic in-
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tervals in hg19 and GRCh38, respectively, a 5x increase over the previous version

[103]. Additionally, recently developed deep learning model predictions from Sei

[47], the successor of DeepSEA, along with 1372 newly quantile normalized DNase

signals were introduced to the TLand feature space. TLand’s stacked generalization

approach groups feature into biologically meaningful subspaces, training individual

estimators before assembling them to reduce overfitting and enable further inte-

gration of features. Cell-specific TLand consistently outperformed state-of-the-art

models during benchmarking in the hold-out cell line. Organ-specific TLand further

improved upon the cell-specific TLand models in predicting organ-specific regulatory

variants, and accurately prioritized relevant organs for GWAS traits by addressing

the data availability bias by developing a suite of models. Furthermore, analysis

of top-scoring variants in specific organ models showed high enrichment of corre-

lated GWAS traits. Given its superior performance relative to its predecessors and

competing methods, we expect TLAND to address the ongoing challenge of reliably

prioritizing variants, even in less-studied cell lines and organs, thus advancing our

ability to identify regulatory variants genome-wide.

4.3 Methods

4.3.1 Allele-specific binding (ASB) variants

We define a variant that exhibits regulatory function if it affects any TF-binding

regulatory activities. We trained our models on the allele-specific TF binding (ASB)

variants, which are defined as variants that result in significantly different TF binding

affinities between two alleles at heterozygous sites in an individual. We included a

total of 7,530 ASB variants in 6 cell lines (GM12878, HepG2, A549, K562, MCF7, and

H1hESC) called by the AlleleDB pipeline [113]. We also created a negative training

set from non-ASB variants and a randomly selected background set. Details of these
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sets were described in our previous study [39]. In total, we included 14,773 variants in

our training set. The complementary ASB data of IMR-90 and H9 used for evaluation

were downloaded from Adastra [114] at https://adastra.autosome.org/bill-c

ipher/search/advanced?fdr=0.05&es=0&cl=IMR90%20(lung%20fibroblasts)

and https://adastra.autosome.org/bill-cipher/search/advanced?fdr=0.05

&es=0&cl=H9.

4.3.2 Model architecture

TLand is a one-layer stacked architecture that consists of two parts: three base

classifiers and one meta-classifier (Fig 1b and Fig 4.1). TLand takes input as 19

generic features, 40 deep learning prediction-derived features, and 5 cell-specific fea-

tures or 13 organ-specific features (Table 4.1), which are directly derived from Reg-

ulomeDB queries. Features were bagged into 3 subspaces: experimental set (generic

features and cell/organ-specific features), deep learning set (deep learning features

and cell/organ-specific features), and cell/organ-specific set (only cell/organ-specific

features). We selected lightGBM [115], random forest [116], and neural network [117]

as base classifiers due to their distinct decision boundaries. Our base models were

fine-tuned with Optuna [118]. We used 300 estimators in random forest models, 250

boost rounds, and a 0.049 learning rate in lightGBM models, 3 layers with 128 neu-

rons per layer, batch size of 128, adaptive learning rate, and with the max iteration

of 30 in neuron network models. Probabilities were used as the output of base classi-

fiers and to train our meta-classifier. We calculated interaction terms of probabilities

up to the degree of 2 before feeding into our meta-classifier. We customized a ridge

classifier to output probabilities with hyperparameter alpha as 1.9 as our final meta-

classifier. The ridge classifier was trained with 4-fold group cross-validation. We

grouped the training data based on the genomic positions (i.e. variants at the same
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genomic positions regardless of whether cell lines were in the same group). All mod-

els were specified with balanced class weights. LightGBM was implemented with

the Python package [115]. Random forest, neural network, and relevant pipelines

were implemented with scikit-learn [119]. The stacked generalization algorithm was

implemented with mlxtend [120].

Figure 4.1: Cell-specific TLand architecture. Cell-specific TLand was trained to predict human
regulatory variants in a cell-specific manner by using RegulomeDB-derived features.

4.3.3 Model training and evaluation

TLand was trained, validated, and tested on the generated ASB datasets. After

concatenating across six cell lines, 88,638 (i.e. 14,773 x 6) variants were used for

training and validation. The concatenation allowed us to have more data per pre-

diction task. For the task of predicting an unseen cell line, we hold out one cell line

data as a test dataset, then used the rest as a training dataset to train a TLand

model. The test and train split ratio for negative data is 1/6. Similarly, we hold out

one organ as a test dataset and used organ-specific labels rather than cell-specific
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Table 4.1: Derived Features for TLand models.

labels for splitting the data. After evaluation, the final models were trained with all

88638 variants data.

4.3.4 DNase signal quantile normalization

All 1372 DNase bigwig default files on ENCODE processed on GRCh38 assembly

(up to May 2022) were obtained from https://www.encodeproject.org/metada

ta/?control_type%21=%2A&status=released&perturbed=false&assay_title=

DNase-seq&replicates.library.biosample.donor.organism.scientific_na

me=Homo+sapiens&perturbed=true&assembly=GRCh38&files.file_type=bigWi

g&type=Experiment&files.analyses.status=released&files.preferred_def

ault=true. We have designed an efficient pipeline to quantile normalize all signals

to achieve a balance between accuracy, runtime, and storage (Fig 4.2). BigWig files

were first converted to BedGraph files using bigWigToBedGraph [121]. Genome-wide

non-overlapping 10bp average signals were extracted from each BedGraph file using
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bedmap [122]. Output bed files were concatenated and then converted to parquet

format as the input format of qnorm [123]. qnorm is a Python package that enables

us to quantile normalize excessively large files by implementing incremental quantile

normalization with multi-core support [123]. We quantile normalized all 1372 DNase

signals with 10 bp bins, and with a batch size of 343 files per normalization iteration.

Details of storage, runtime, and memory are shown in Fig 4.2.

Figure 4.2: Quantile normalization pipeline. We designed a pipeline to quantile normalizes 1372
DNase BigWig files in a bin size of 10 base pairs. Important details to reproduce,
including tools, parameters of tools, time, and storage it took, are all specified in the
figure.

4.3.5 Benchmarking other models and organ definition

We benchmarked TLand with state-of-the-art models, including GenoNet, DeepSEA,

Sei, and TURF. The pre-calculated scores from GenoNet were downloaded from

https://zenodo.org/record/3336209/files/. The DeepSEA and Sei models

were downloaded from the original paper [44, 47]. The previous best model, TURF,

was re-trained to predict regulatory variants on GRCh38 by querying and inputting

the GRCh38 features [39]. Final predictions were made by averaging predictions of
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cell lines instead of the test unseen cell line models. We averaged relevant cell line

model predictions to estimate the organ level predictions. For example, we averaged

TURF model predictions of A549 and IMR-90 to predict lung regulatory variants.

We used the human organ definition from ENCODE: https://www.encodeproj

ect.org/summary/?type=Experiment&control_type!=*&replicates.library.b

iosample.donor.organism.scientific_name=Homo+sapiens&status=released.

4.3.6 GWAS data and LD data

We downloaded all variants associated with GWAS traits from GWAS Catalog (ht

tps://www.ebi.ac.uk/gwas/api/search/downloads/alternative) and focused

on SNVs. We completed LD-expansion for each SNV, where we included SNVs from

the 1000 genome project that is in strong LD (R2 threshold of 0.6). The R2 values

were downloaded from (s://genomics-public-data/linkage-disequilibrium).

In total, we included 1,974,549 SNVs and calculated their TLand model scores.

4.3.7 Target organs annotations for GWAS traits

Target organs for 44 GWAS traits were annotated with Open Targets (https:

//platform.opentargets.org/), EMBL-EBI Ontology Lookup Service (https:

//www.ebi.ac.uk/ols/index), and ChatGPT [124] for selected GWAS traits (See

Supplementary Table 3 at https://docs.google.com/spreadsheets/d/1xYbwpp

7GLHeBYip36Q-NmOewdgrcT-IxG-jRJACPr3M/edit?usp=share_link). Annotations

were the gold standard to evaluate models for given GWAS traits and SNPs.

4.3.8 Prioritization of relevant organs for GWAS traits

We predicted on 2 million GWAS, and within the same LD block, SNPs across 51

organs. For each manually annotated GWAS trait, we selected all associated SNPs

associated. For each organ, we calculated the p-value from a one-tail t-test [125]
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comparing the sampled organ-specific SNP scores vs. the population distribution,

which was defined as the 2 million SNP score distribution for the organ. We ranked

organs by their p-values, the lower the p-value, the higher the rank. We set the

p-value threshold as 0.05, i.e. we filtered out organs from the ranking whose p-value

was higher than 0.05. We compared the ranked (i.e. prioritized) organs with the

manually annotated target organs for each trait. Accuracy was defined as the number

of overlapping organs between prioritized organs and target organs, then divided by

the number of target organs for a given trait. We only selected the top 4 organs

for each model to calculate accuracy. We combined any two models ranking lists by

taking the union of their list then ranked by p-value, and selected the top 5 organs

for each combination.

4.3.9 GWAS trait enrichment

Top-scoring GWAS variants for each organ were selected; specifically, all variants

with organ-specific scores >0.5 were chosen. For each organ, we traced back to the

traits that those top variants are associated with, then counted the number of ap-

pearances of each trait for those variants and weighted the count with organ-specific

scores. We then filtered out traits whose total count (i.e. trait count of all associ-

ated GWAS SNPs plus SNPs within 0.6 LD) was low for each organ. Organ-specific

GWAS trait enrichment score was calculated as the percentage of the weighted num-

ber of appearances to the total count.

4.4 Results

4.4.1 TLand incorporates comprehensive datasets to predict regulatory variants

The continuously growing amount of genomic data portrays a more and more

comprehensive and complete picture of the human regulatory variants map. Regu-
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lomeDB recently upgraded to version 2 which expanded to >650 million and >1.5

billion genomic intervals in hg19 and GRCh38, respectively [103]. The large discrep-

ancy in the data availability between the two assemblies, for example in ChIP-seq

and open chromatin data (RegulomeDB TF ChIP-seq availability in Fig 4.3a, open

chromatin in Fig 4.4, histone ChIP-seq in Fig 4.5), is due to ENCODE mapped newly

generated data to GRCh38 for better representation of complex variation and cor-

rection of sequencing artifacts [5]. This indicates that GRCh38 is a more resourceful

assembly to derive features for training models. The features used in the new ar-

chitecture to predict regulatory variants, including experimental and computational

features (or evidence), were derived in GRCh38 and the majority of features were

accessed and derived from RegulomeDB v2 (Table 4.1). 1372 DNase-seq BigWig files

were quantile-normalized by 343 files per batch and derived as 5 quantile features for

each genomic locus. The computational feature DeepSEA disease score [44] was sub-

stituted by its successor Sei model features. The Sei model simultaneously predicted

21,907 binary assay labels which were dimension-reduced to 40 features representing

sequence classes [47]. Assembling deep learning model predictions and training with

comprehensive features reduce variances of our final models and generalizes to new

cell lines or less studied organs [126, 127].

We developed a new model architecture, TLand, to predict regulatory variants

from a comprehensive set of features derived from RegulomeDB (Fig 4.3b and Fig

4.1). TLand takes input as genomic positions or dbSNP IDs, queries RegulomeDB

for features, then outputs the probabilities of variants as regulatory variants in a

cell-type specific (Fig 4.1) or organ-specific manner (Fig 4.3b). Training data across

six common cell lines were concatenated to train an agnostic model while the speci-

ficities of input features decided the cell or organ specificities for model predictions.
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Figure 4.3: TLand improves regulatory variant predictions. (a) TF ChIP-seq data availability
across organs on RegulomeDB v2. Green bar plots represent counts on GRCh38. Or-
ange bar plots represent counts on hg19. The total number of counts for each assembly
is in the middle of the gray box. Notice that the summation is not simply adding
all numbers together due to some cell lines having multiple corresponding organs. (b)
Organ-specific TLand architecture. Organ-specific TLand was trained to predict human
regulatory variants in an organ-specific manner by using RegulomeDB-derived features.
(c) Benchmarking TLand performance by AUROC and AUPR. X-axis is holdout cell
lines or organs. Y-axis is AUPR on the top panel and AUROC on the bottom panel.
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Figure 4.4: DNase-seq data availability across organs on RegulomeDB v2. Green bar plots repre-
sent counts on GRCh38. Orange bar plots represent counts on hg19. The total number
of counts for each assembly is in the middle of the gray box. Notice that the summa-
tion is not simply adding all numbers together due to some cell lines having multiple
corresponding organs.

Features were bagged into three biologically meaningful subspaces before each set

was fed into an individual base classifier. Subspaces included experimental features

set, computational features set, and cell/organ-specific features set for regulatory

variants. We adopted the stacked generalization algorithm to stack the output of

individual classifiers and use a meta-classifier to compute the final prediction [55].

Stacking allows for the utilization of the strength of each individual classifier by us-

ing their output as input of a final meta-classifier. Cross-validation is required to

prevent information leaks during the training of the meta-classifier. We made sev-

eral modifications to the algorithm. We used group cross-validation to make base

classifiers to learn the regulatory function as the conditional probability between

generic features and cell/organ-specific features. Interaction terms were calculated

before feeding them into the meta-classifier. We used probability rather than binary
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Figure 4.5: Histone ChIP-seq data availability across organs on RegulomeDB v2. Histone ChIP-
seq data includes five histone marks: H3K4me1, H3K27ac, H3K36me3, H3K4me3, and
H3K27me3. Green bar plots represent counts on GRCh38. Orange bar plots represent
counts on hg19. The total number of counts for each assembly is in the middle of the
gray box. Notice that the summation is not simply adding all numbers together due to
some cell lines having multiple corresponding organs.

prediction in the first layer of base classifiers to train the meta-classifier to obtain

higher accuracy [128].

4.4.2 TLand improves regulatory variant predictions

Cell-specific TLand models substantially outperformed state-of-the-art models for

predicting unseen cell line regulatory variants (Fig 4.3c and Fig 4.6). On average,

across holdout cell lines, cell-specific TLand models outperformed the previous best

model TURF, with the area under the precision-recall curve (AUPR) and the area

under the receiver operating characteristic (AUROC) increasing from 0.389 to 0.471,

and 0.729 to 0.776, respectively. Although GenoNet outperformed TURF in three

cell lines, the higher performance was due to information leakage (i.e. we used the

unseen cell line model of GenoNet to predict and assess the upper limit of the pre-

diction task). Cell-specific TLand models still had superior performance compared
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to GenoNet, improving average AUPR by 0.09 and AUROC by 0.04. The high

performance of cell-specific TLand can be explained in two ways. First, we derived

comprehensive feature sets for predicting regulatory variants from RegulomeDB, cat-

egorizing them into experimental features set and deep learning features set which

are not correlated, but complementary to each other to make more accurate predic-

tions (Fig 4.7). When only deep learning features were used, such as in DeepSEA

and Sei models (average AUPR 0.336 and 0.364), both largely underperformed when

compared to cell-specific TLand, which combines experimental features with deep

learning features (average AUPR 0.471). The other explanation is due to TLand’s

architecture, which models different biological domains separately and then calcu-

lates their conditional probabilities. The meta-classifier was trained to find the best

combinations of the probabilities and subtracted the common redundant information

(i.e. the negative coefficients in Fig 4.8) to de-noise and thus improve the prediction.

The advantage of this architecture was evidenced by comparing TLand and TURF

in the original hg19-derived feature context. TLand improved average AUPR by 0.10

and average AUROC by 0.04 compared to TURF (Fig 4.9). The flexible architec-

ture of TLand allows for the substitution of cell-specific features with organ-specific

features, which can be retrained with organ-specific labels to develop organ-specific

TLand models.

4.4.3 Organ-specific TLand models address data availability bias

Organ-specific TLand models have the ability to predict regulatory variants spe-

cific to organs, even those from less-studied cell lines or tissues within the organ.

These models performed better than their cell-specific counterparts in two out of

four cell-type specific tasks, specifically in HepG2 (AUPR 0.547 vs. 0.514, AUROC

0.781 vs. 0.692) and MCF-7 (AUPR 0.512 vs. 0.512, AUROC 0.879 vs. 0.840).
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Figure 4.6: Benchmarking models on H1, MCF7, and embryo. X-axis is holdout cell lines or organs.
Y-axis is AUPR on the left panel and AUROC on the right panel.

However, GM12878 and K562 cell lines lacked organ-specific models due to conflict-

ing training labels and were thus assessed within the blood organ. The superior

performance of organ-specific models, even in hold-out cell line tasks, can be at-

tributed to the fact that cell-type specific regulatory variants in HepG2 and MCF-7

are well-represented by corresponding organ-specific regulatory variants within the

RegulomeDB database (see Fig 4.10). In the A549 cell line, which is the least repre-

sented lung organ, the organ-specific TLand model underperformed the cell-specific

TLand model holdout on A549 (AUPR 0.329 vs. 0.347) as the organ model predicted

regulatory variants in the lung other than in A549 cell line. To better evaluate model

performance holdout in the lung, the ASB dataset from the second-most represen-

tative cell line in the lung, IMR-90, was added to complement the holdout dataset.

The inclusion of this dataset led to TLand outperforming the cell-specific model when

holding out on the lung with IMR-90 datasets (AUPR 0.483 vs. 0.432, AUROC 0.841
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Figure 4.7: Correlation between deep learning features and experimental features in GM12878 cell
line. Both axes are features derived from RegulomeDB for the GM12878 ASB dataset.
The heatmap was calculated as the correlation between those features, ranging from
[-1, 1]. The green box represents the features belonging to the experimental feature set.
The red box represents the features belonging to the deep learning feature set.

vs. 0.814), indicating the organ-specific TLand model can predict a comprehensive

set of organ-specific regulatory variants.

However, adding the second most representative cell line in the embryo H9, did not

improve the TLand organ-specific model when compared to the cell-specific model
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Figure 4.8: Ridge classifier coefficients. The X-axis is base classifiers and their interaction term
from the final TLand models trained on all data. Y-axis is the coefficient of the meta-
ridge classifier. Blue represents TLand organ-specific model. Orange represents TLand
organ-specific light model which did not have deep learning features (i.e. no dl base
classifiers nor organSp base classifiers). Green represents TLand organ-specific lightest
model which removed organ-specific ChIP-seq features from the light model.

Figure 4.9: Benchmarking TLand and TURF on hg19. X-axis is AUROC, and Y-axis is AUPR.
Colors represent holdout cell lines. Shapes represent models. Specifically, the circle
represents the cell-specific TLand model, and the plus sign represents the TURF model.

when holding out on the embryo organ (AUPR 0.536 vs. 0.597). Deep learning

model features, such as DeepSEA disease impact score [44] and Sei sequence classes

[47], were more representative of the cell lines or organs with more data availability.
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Figure 4.10: Organ representability by cell lines on RegulomeDB v2. X-axis is the representability
percentage of organs, which indicates how well each organ is represented in the Reg-
ulomeDB by the contributing cell lines. The higher the representability, the darker
the green color. Y-axis on the left is contributing cell lines. Y-axis on the right is the
represented organs.

This is because the scores were dimensionally reduced from 919 and 21,907 prediction

tasks of experimental assays for DeepSEA and Sei, respectively (including TF and

histone ChIP-seq and open chromatin assays). The more representative cell lines or

organs regarding data availability dominated the dimension-reduced results. Thus,

we removed deep learning features and developed the organ-specific TLand light

model (Fig 4.11) to predict regulatory variants accounting for low data availability,

such as in the embryo organ. We defined organs with high data availability if their

number of TF ChIP-seq assays were more than 100, and with low data availability if

below 100. We observed that the TLand (full) model consistently outperformed the

TLand light model in organs with high data availability (Fig 4.3a and c; Fig 4.6),

while the light model surpassed the full model in organs with low data availability.

For example, the organ-specific TLand light model was the best model when holding

out on the embryo organ (AUPR 0.639, AUROC 0.774). Those findings indicate that

TLand light models are suitable for predicting regulatory variants for organs with
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low data availability, and TLand (full) models are suitable for organs with high data

availability. After evaluation, we proceeded with our analysis by training the TLand

model and the TLand light model on all data. We trained an additional TLand

model, TLand lightest, where the organ-specific ChIP-seq features were removed to

further reduce bias towards over-represented organs (benchmarking results shown in

Supplementary Table 2 at https://docs.google.com/spreadsheets/d/1xYbwpp

7GLHeBYip36Q-NmOewdgrcT-IxG-jRJACPr3M/edit?usp=share_link).

Figure 4.11: Organ-specific TLand light architecture. Organ-specific TLand light was trained
to predict human regulatory variants in an organ-specific manner by only using
RegulomeDB-derived experimental features.

4.4.4 TLand prioritizes relevant organs for GWAS traits

To systematically evaluate organ-specific TLand models, we predicted on around

2 million GWAS SNPs including SNPs within the same LD blocks across 51 organs

defined by ENCODE [5]. We found that TLand predictions were more highly corre-

lated with TLand light predictions than TLand lightest (e.g. in the heart organ in Fig
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4.12). In addition, TLand models predicted clustered organs of the same or closely

related system. For example, TLand (Fig 4.13a) and TLand light (Fig 4.14) clustered

the brain and spinal cord from the central nervous system, and the eye and ear from

the sensory system together. TLand lightest model, however, was able to cluster

the blood vessel, the arterial blood vessel, and the vascular together as part of the

circulatory system (Fig 4.15), which was missed by the other two models. This indi-

cates that various types of TLand models attended to different organs varying on data

availability. We manually curated a list of GWAS traits with relevant organs. TLand,

TLand light, and TLand lightest models prioritized the relevant organs for 44 GWAS

traits (See Supplementary Table 3 at https://docs.google.com/spreadsheets

/d/1xYbwpp7GLHeBYip36Q-NmOewdgrcT-IxG-jRJACPr3M/edit?usp=share_link)

with an average accuracy of 0.311, 0.340, and 0.466, respectively (Fig 4.13b. See

the definition of accuracy in Methods). By integrating prioritized organs from two

distinct models, TLand and TLand lightest, the average accuracy was increased to

0.482. The overall low accuracy was partially due to the uncertainty of a low score,

whether it was caused by low data availability or if it was a true negative (i.e. not a

functional regulatory variant in the organ), especially for the organs with low data

availability.

Focusing on top-scoring variants for each organ, however, allowed us to attend to

the precision of TLand models, which is a more appropriate metric to evaluate the

low data availability organ models. We found that top-scoring variants by organ-

specific models were enriched with associated GWAS traits that were relevant to

the organs (Methods, Fig 4.13c and all results in Supplementary Table 4 at https:

//docs.google.com/spreadsheets/d/1xYbwpp7GLHeBYip36Q-NmOewdgrcT-IxG-j

RJACPr3M/edit?usp=share_link). For example, atrial fibrillation and resting heart
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Figure 4.12: Pairplot of TLand model prediction scores in the heart. X-axis and Y-axis are TLand,
TLand light, and TLand lightest model prediction scores in order.

rate were identified as two of the three most enriched traits among the total of 2804

GWAS traits by the TLand lightest model (note that not all traits were shown in Fig

4.13c). TLand lung models were not able to prioritize the lung organ for lung-relevant

traits given corresponding GWAS SNPs previously (See Supplementary Table 3 at

https://docs.google.com/spreadsheets/d/1xYbwpp7GLHeBYip36Q-NmOewdgrc

T-IxG-jRJACPr3M/edit?usp=share_link). However, we found that traits such as

physical activity measurement and peak expiratory flow were enriched by top-scoring

variants in the TLand model. Traits that were associated with multiple organs were

able to be pinpointed by multiple organ models. Ankylosing spondylitis, which is

a type of inflammatory arthritis, affects the spine and large joints [129]. Both the

bone element and the immune organ TLand lightest model pinpointed ankylosing

spondylitis as one of the most enriched GWAS traits in their top-scoring variants

(Fig 4.13c), indicating organ-specific TLand models can accurately prioritize relevant

organs given regulatory variants.
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Figure 4.13: TLand prioritizes relevant organs for GWAS traits. (a) UMAP projections of TLand
predictions on GWAS and LD SNPs. They are colored according to human systems.
(b) Performance of TLand models prioritizing organs. X-axis are TLand models. Y-
axis is accuracy (definition see Methods). (c) Prioritization of GWAS traits given top-
scored variants by TLand and TLand lightest models. TF ChIP-seq data availability
plot is re-plotted in the top left where green represents high data availability and TLand
was the model used, and blue represents low data availability and TLand lightest was
the model used. Each circle next to the organs indicates the data availability of each
organ. The colors of enrichment bars correspond to the model used.
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Figure 4.14: UMAP projections of TLand light predictions on GWAS and LD SNPs. They are
colored according to human systems.

4.5 Discussion

The identification and characterization of non-coding regulatory variants in the

human genome is still a major challenge in the field of genomics. With the recent

advancement of RegulomeDB, we have developed a novel model architecture, TLand,

which utilizes the RegulomeDB-derived features to infer regulatory variants at multi-

ple levels, either at the cell-specific or organ-specific level. By incorporating compre-

hensive datasets on GRCh38 with stacked generalization, including experimental and

computational features, TLand models were able to consistently outperform state-

of-the-art models in holdout benchmarking, demonstrating TLand models’ ability to
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Figure 4.15: UMAP projections of TLand lightest predictions on GWAS and LD SNPs. They are
colored according to human systems.

generalize to new cell lines or organs. We accounted for the data availability issue of

various organs, a common issue observed in models such as DeepSEA disease impact

score, by training three types of TLand models to attend to organs with high and

low data availability. Combining TLand models enabled us to prioritize the relevant

organs for GWAS traits accurately.

There are several ways to further improve TLand models. Machine learning mod-

els’ success depends on the training data. One limitation of this study is the limited

number of allele-specific binding (ASB) sites in our training dataset. We generated

our training datasets by using personal genomes of only six common cell lines due

to the limited data availability of other cell lines, which could result in less con-
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fident ASB calling for other cell lines. In addition, there is a large disagreement

between ASB calling methods, which leads to an even smaller set of confident train-

ing datasets. Recently, a new database, Adastra, has been published [114]. It hosts

652,595 ASBs passing 5% FDR across 647 cell lines and 1,043 TFs. However, being

able to call such a comprehensive set of ASBs, the authors had to use statistical dis-

tributions rather than the more accurate personal genomes to call ASBs. Whether

we could use the dataset to improve TLand depends on the further evaluation of the

quality of Adastra ASB calling. Moreover, we aim to continuously incorporate new

datasets into RegulomeDB which could be derived as new features for TLand models,

such as gkm-SVM model predictions [41] and Hi-C contact maps [112]. Due to the

flexible modularity design of TLand architectures, we are able to group features into

biological meaningful sets or create a new feature set, monitor and evaluate them

modularly before making the decision about whether we would include them in the

model.

Despite the aforementioned limitation, TLand presents a valuable contribution

to the field of non-coding variant analysis by incorporating comprehensive datasets

to predict regulatory variants at a cell-specific or organ-specific level. To foster

downstream applications, we have made the pre-trained TLand models available. In

addition, we have made openly available pre-calculated TLand scores for the union of

open chromatin regions. TLand along with RegulomeDB further advance our ability

to identify human regulatory variants genome-wide, and the model’s flexibility allows

for further integration of data and features as they become available.
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4.6 Publication

The work described in this chapter is being prepared for publication. I will be the

first author of the paper.



CHAPTER V

Identifying Patterns in Genomic Sequences with Deep
Learning Models

5.1 Abstract

Interpreting predictive machine learning models to derive biological knowledge

is the ultimate goal of developing models in the era of genomic data exploding.

Recently, sequence-based deep learning models have greatly outperformed other ma-

chine learning models such as SVM in genome-wide prediction tasks. However, deep

learning models, which are black-box models, are challenging to interpret their pre-

dictions. Here we represented an end-to-end computational pipeline, Explain-seq,

to automate the process of developing and interpreting deep learning models in the

context of genomics. Explain-seq takes input as genomic sequences and outputs

predictive motifs derived from the model trained on sequences. We demonstrated

Explain-seq with a public STARR-seq dataset of the A549 human lung cancer cell

line released by ENCODE. We found our deep learning model outperformed the

gkm-SVM model in predicting A549 enhancer activities. By interpreting our well-

performed model, we identified 47 TF motifs matched with known TF PWMs, includ-

ing ZEB1, SP1, YY1, and INSM1. They are associated with epithelial-mesenchymal

transition and lung cancer proliferation and metagenesis. In addition, some motifs

were not matched in the JASPAR database and may be considered de novo enhancer

79
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motifs in the A549 cell line.

5.2 Introduction

Decoding regulatory functions that are encoded in genomic sequences is a major

challenge in understanding how genomic variations are associated with phenotypic

diseases and traits. High-throughput sequencing methods have been developed to

screen for regulatory regions genome-wide. DNase I hypersensitive site sequencing

(DNase-seq) [130] is designed to detect genome-wide chromatin accessibility. Tran-

scription factor (TF) binding and histone modifications are measured using Chro-

matin Immuno-Precipitation sequencing (ChIP-seq) [106, 16]. Enhancers are reg-

ulatory DNA sequences that recruit TFs to up-regulate target gene expression in

a cell-type-specific manner, which governs physiology and development in humans

[131]. STARR-seq is a massively parallel reporter assay to identify potential en-

hancers and provide a direct functional or quantitative readout of enhancer activity

genome-wide [131]. The genome-wide quantitative enhancer map enables interro-

gating enhancers in higher resolution than binary peak regions such as peaks from

DNase-seq.

Deep learning techniques have made substantial progress in modeling genomic se-

quences to predict epigenetic marks such as DNA accessibility, TF, and histone marks

across a range of cell types. Particularly, convolutional neural networks (CNNs),

have been shown to accurately predict epigenomic features with DNA sequences

[132, 133, 44]. For example, DeepSEA, given any 1000 bp DNA sequence, can ac-

curately predict 919 binary labels for the sequence, representing open chromatin

regions, TF binding sites, and histone mark regions altogether in a multi-label CNN

model [44]. The model significantly outperformed the previous state-of-art gkm-
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SVM, which leveraged a gapped-kmer-SVM classifier to predict functional sequence

elements in regulatory DNA [134]. One potential explanation for why CNN is a bet-

ter fit for genomic sequence learning tasks is that filters learned during training are

analogous to position weight matrices (PWMs) of motifs, which are often conserved

and positional invariant.

However, interpreting machine learning models, especially black-box deep learn-

ing models, to derive the biological knowledge learned by models remains elusive.

Specifically, what sub-sequences make contributions to certain predictions, and how

we can summarize those sub-sequences into human-readable motifs? Additionally,

due to the limited quantities of conducted STARR-seq experiments, the relationship

between enhancer sequences and activities across different cell lines is still poorly un-

derstood. There lacks a human enhancer sequence-to-activity model that learns the

cis-regulatory grammar in a cell-type specific manner, which can accurately predict

enhancer activities.

To address these questions, we presented a novel end-to-end pipeline, Explain-seq

(Fig 5.1A), to automate the process of developing and interpreting deep learning

models. ENCODE has recently released 6 STARR-seq datasets for common human

cell lines [5]. These new datasets provide an opportunity to examine and compare

enhancers in a cell-type-specific manner. Here we demonstrated Explain-seq by an-

alyzing a new STARR-seq dataset in the A549 lung cancer cell line. The pipeline

started with training a CNN with a regression layer at the end of the network to pre-

dict cell-line-specific enhancer activity and ended with outputting derived predictive

motifs. Our trained regression model outperformed the gkm-SVM model in terms

of the Pearson correlation coefficient. Also, derived motifs from Explain-seq were

matched to other known TF motifs in the JASPAR database including ZEB1, YY1,
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SP1, and INSM1, which are associated with lung cancer [66]. In addition, there were

derived motifs not similar to any known motifs, for example, one was enriched with

short repeats ATGAAA, which may be considered as de novo motifs. The de novo

motifs discovered by Explain-seq may allow us to design the synthetic enhancers with

desired activity in a cell-line-specific manner.

5.3 Methods

5.3.1 Data access and preparation

ENCODE phase 4 released 6 STARR-seq datasets on June 11, 2020, which include

common human cell lines MCF-7, HCT116, A549, SH-SY5Y, HepG2, and K562 [5].

We downloaded their peak regions in .bed format and signal values in .bigwig format.

To prepare input data for the deep learning model, we first selected all regions

at the summit of each STARR-seq peak and binned them into 499-bp windows. We

limited the input sequence length to 499bp since the size selection in STARR-seq

experiments before cloning to plasmids is 500 bp [135]. We included 3 adjacent re-

gions on either side of each selected summit region by sliding a 100 bp overlapping

window. We randomly selected 500,000 regions of size 499 bp on the hg38 human

genome excluding ENCODE blacklist regions as negative sets [136]. The signal for

each 499-bp window was calculated by the averaging signal value of the whole cor-

responding region. For the regression model, the average signal values were directly

used for training. For the multi-label classification model, we further generated 10

labels using the average value. In total, we have selected 1,027,953 peaks as our input

data. We split our input data by chromosome for training, validation, and testing.

Specifically, we used chr7 for validation, and chr8 and chr9 were held out for testing.
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5.3.2 Overview of Explain-seq pipeline

Explain-seq pipeline is an end-to-end analytical pipeline to discover potential

known and de novo motifs given genomic sequences (Fig 5.1A). It takes input as

genomic region coordinates with labels for classification tasks (in .bed format) or

one-hot encoded sequences with continuous value for regression task (in .mat for-

mat) [137]. In addition, it requires a user-defined deep learning model in PyTorch

[138]. Optionally, weights from the pre-trained model can be transferred to the

new model for transfer learning. After the training and validation loss function

converges, the model and input sequences are piped into DeepLIFT to compute con-

tribution scores with respect to enhancer activities in a single-nucleotide resolution

[139]. TF-Modisco is then used to cluster and summarize motifs with the weighted

input sequences weighted by importance scores [140]. Potential motifs are compared

to known motifs in databases through STAMP [141]. Non-matched motifs are con-

sidered de novo predictive motifs in a specific cell line.

5.3.3 Model architecture, training scheme, and transfer learning

We designed our model as a CNN which takes input as one-hot encoded 499-

bp long DNA sequences (A = [1,0,0,0], C = [0,1,0,0], G = [0,0,1,0], T = [0,0,0,1])

to predict enhancer activities (Fig 5.1B). The architecture is inspired by the Beluga

model, which has double convolutional layers than DeepSEA, to enable later transfer

learning [142]. Specifically, our model includes 6 convolutional layers with an equal

kernel size of 8 and has 320, 320, 480, 480, 640, and 640 filters for each layer,

respectively. ReLU is used as the activation function in each convolutional layer.

Every two convolution layers are followed by a dropout layer with a probability of

0.2 and a max pooling layer with a pooling size of 4. Those 6 convolution layers
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are followed by a fully connected layer with 2003 neurons. We provided two design

choices for the final layer. The first option for multi-label classification is 10 nodes

where each node represents a label in a specific cell line. For example, the first

node representing the probability of the input sequence (or region) has a signal

value in [0, 1), and the last node represents in [9, 10). Here, we used binary cross

entropy as the loss function. The second option for regression setting is one node

for continuous signal value prediction. Mean squared error (MSE) was used as a loss

function in regression. The reason for developing and comparing the two designs is

that the data might be noisy, and it may not have enough statistical power for us

to learn a regression model. Binning the continuous values and learning a multi-

label classification model may help denoise the data and learn a more general and

representative model.

We implemented our model in PyTorch [138]. Considering this is a genome-wide

learning task with large data, transfer learning is useful to speed up the training and

also to improve accuracy [132, 45]. We transferred all the weights of convolutional

layers from the pre-trained Beluga model as initial weights. The weights from the

fully connected layer were excluded since the original Beluga model has an input size

of 2,000 bp. After initialization, we fine-tuned the weights by re-training the model.

To speed up the development, we used the Selene framework to facilitate the training

process [137]. We used Adam optimizer with a learning rate of 1e-5 [143], a batch

size of 128, and used an Nvidia Titan V with 12 GB memory GPU to develop our

model.

5.3.4 Baseline comparisons

We compared our CNN-based regression model with another machine learning

method gkm-SVM [134]. gkm-SVM trains gapped-kmer SVM classifiers for DNA
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sequences to detect functional sequence elements in regulatory DNA. We used the

Pearson correlation coefficient (PCC) as a metric to compare the prediction accu-

racy with the true signals. In addition, we calculated the correlation between the

actual signals in one biological replicate with the actual signals in another biological

replicate to serve as the maximum prediction accuracy threshold for this task.

5.3.5 Derive nucleotide importance scores

DeepLIFT is an algorithm to calculate feature importance scores for neural net-

works by propagating activation differences [139]. We used DeepLIFT to derive

importance scores for all input with signals larger than 3 with respect to the cell-

line-specific activity. The advantages of DeepLIFT compared to other interpretation

methods are: 1) the RevealCancel rule of DeepLIFT allows it to properly handle

saturation cases while integrated-based methods may give misleading results [144].

2) DeepLIFT is a good and faster approximation of the SHapley Additive exPlana-

tion (SHAP) value [139]. 3) Di-nucleotide frequency shuffling mimics true genomic

background to increase importance scores signal-to-noise ratio. As background, we

shuffled 100 times for each input sequence while maintaining di-nucleotide frequency.

The output of DeepLIFT is importance scores in nucleotide resolution, and hypo-

thetical importance scores are similar to mutagenesis indicating what importance

scores would be placed on a different base in the sequence.

5.3.6 Clustering and summarizing sub-sequences into motifs

TF-Modisco is a clustering-based algorithm to consolidate motifs from sequences

with importance scores [140]. The algorithm started with finding potential motifs,

named seqlets, through MEME [145]. TF-Modisco implemented a correlation al-

ternative, continuous Jaccard similarity, to better calculate the similarity between
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seqlets than cross-correlation, and developed the density-adaptive distance to im-

prove clustering on weak motifs when their distances are generally larger [140]. We

specified the final motif size as 15 bp with 5 bp flanking on each side. The target

seqlets false discovery rate was set to 0.15 and the max seqlets per cluster was set

to 20,000. We sampled 4,900 sequences for our null Laplace null distribution. The

output of TF-Modisco contains potential motifs with PWMs, contribution weight

matrices with importance scores, and hypothetical score matrices.

5.3.7 Annotation with known motifs

STAMP was leveraged to annotate motifs from TF-Modisco within a known motif

database, JASPAR [66, 141]. We trimmed off the motif edges with an information

content of less than 0.4 to improve matching accuracy. Since motif-finding procedures

from our pipeline or others using importance scores are different from those generated

by frequency-based methods, PWM representations varied and were required to be

manually compared to known motifs in the final annotation step.

5.4 Results

5.4.1 Explain-seq predicts enhancer activity from DNA sequence

We designed a computational end-to-end pipeline, Explain-seq, to discover known

and potential de novo motifs given genomic sequences (Fig 5.1A and Method). To

learn the cis-regulatory code and grammar embedded in enhancer sequences, we have

developed a CNN-based deep learning model to predict enhancer activity given DNA

sequences (Fig 5.1B). We have downloaded and pre-processed 6 public STARR-seq

datasets in ENCODE Phase 4 (Method). The public genome-wide enhancer activity

maps provide high-quality datasets to build predictive models of enhancer activity in

a cell-line-specific manner. To demonstrate Explain-seq usage, we only focused on the
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A549 cell line to develop our model and pipeline. In total, we had 1,027,953 regions

of size 499 bp on the hg38 genome reference for the A549 cell line. Classification-

based and regression-based two CNN models have been deployed to map 499 bp

DNA sequences to their enhancer activities (Fig 5.1B and Method). The two models’

architectures are similar to that of the Beluga model except for the output layer. The

regression model has only one output node in the final layer, while the multi-label

classification model has 10 output nodes representing different activity ranges which

are then followed by a SoftMax layer to determine the final prediction (Method).

We transferred all the weights in convolutional layers from the well-trained Beluga

model and fine-tuned all parameters when re-trained with STARR-seq datasets (Fig

5.1A). Transfer learning can speed up training when applied to related task model

training, and improve accuracy. Our models’ training and validation loss function

converged within 20 epochs given a genome-wide training task (Fig 5.2A-D). After

training, we accurately predicted the enhancer activity signals for both models (Fig

5.1C).

Our regression model outperformed the multi-label classification model and the

gkm-SVM model when evaluated on test hold-out chromosomes, chr8 and chr9 (Fig

5.1D). The predicted and observed enhancer-activity profiles are similar with Pear-

son correlation coefficient (PCC) 0.31, 0.21, 0.25, for a regression model, multi-

label classification model, and gkm-SVM model, respectively. Our regression model

outperformed the multi-label classification model which indicates that ENCODE

STARR-seq datasets’ signal-to-noise ratios are high enough to be predicted in high

resolution with respect to continuous values instead of categorical labels. Even the

best-performance regression model is not close to the concordance between experi-

mental replicates (PCC=0.96). It indicates the need for additional information, such
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as open chromatin and TF binding in the A549 cell line, rather than DNA sequences

alone to further boost prediction accuracy. Chen et al. trained a model on the same

A549 STARR-seq dataset with input as signal shape to predict binary binding [135].

Although they achieved validation AUROC 0.9984 and AUPR 0.9978 using a binary

classification model with different preprocessing steps and input, their model was

not cell-type specific since the signal shape was transferable between cell lines and

was not able to be leveraged for predictive cell-type specific enhancer motifs. We

trained a final regression model with both replicates to proceed with interpretation

in our pipeline (Fig 5.2B & D).

5.4.2 Explain-seq reveals important TF motifs

Interpreting our regression model with Explain-seq reveals known TF motifs in the

A549 cell line, and potential de novo motifs. Given the regression model, DeepLIFT

calculated the importance scores of each nucleotide in the selected input sequence

whose mean signal is larger than 3 (Fig 5.3A). To summarize all seqlets into read-

able motifs, TF-Modisco clustered 20,000 seqlets into consolidated potential motifs.

Those motifs were then compared to motifs in the JASPAR database using STAMP

to verify with known motifs. Briefly, A549 is the most used human non-small cell

lung cancer cell line, consisting of hypotriploid alveolar basal epithelial cells. By

applying STAMP, we searched for de novo motifs and compared them to known

PWMs. Overall, we identified 47 known motifs including ZEB1, SP1, YY1, and

INSM1 (Fig 5.3B). ZEB1, zinc-finger e-box binding 1, is part of the ZEB family in

humans. ZEB1 is involved in the generation and maintenance of epithelial cell polar-

ity and its expression in epithelial cells results in epithelial-mesenchymal transition

(EMT) [146]. SP1, specificity protein 1, is important for lung cancer cell proliferation

and metastasis during tumorigenesis [147]. Transcription factor Yin Yang 1 (YY1)
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is associated with the EMT process in the A549 cell line and regulates pulmonary

fibrotic progression in lung epithelial cells [148]. INSM1, identified from STAMP

in the A549 cell line, is a sensitive marker for the neuroendocrine differentiation of

human lung tumors [149]. In summary, the determined known motifs are A549 cell

line specific, indicating corresponding biological activities of the hypotriploid alve-

olar basal epithelial cells from the A549 cell line. Additionally, STAMP enables us

to identify de novo motifs (Fig 5.3C). For example, some de novo motifs enrich for

CpG sites. CpG sites are regions of DNA where a cytosine nucleotide is followed by

a guanine nucleotide in the sequence. CpG sites are highly related to DNA methy-

lation that occurs more frequently by hypermethylation in cancers. Given the novel

TF motifs, we are able to explore more biological insights within the A549 cell line.

5.5 Discussion

Deep learning algorithms like CNN have been widely used in DNA sequence anal-

ysis within the whole genome. However, deep learning model interpretation and

biological explanation remain changeling. Here, we introduced a novel end-to-end

computational pipeline, Explain-seq, to automate the process of developing and in-

terpreting deep learning models in the context of genomics. We demonstrated the

usage of Explain-seq with new STARR-seq datasets to predict enhancer activities,

characterize cis-regulatory code, and identify known and de novo motifs using deep

learning algorithms. Explain-seq quantitatively predicts enhancer signals in continu-

ous values. Transfer learning is applied to improve the model accuracy and increase

computational efficiency. Also, Explain-seq provided insights into the interpretation

of the deep learning model and identify biological relevance. Specifically, Explain-seq

reveals the sequence-to-function relationship by calculating nucleotide importance
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scores. Furthermore, by comparing with the existing motif database, Explain-seq

successfully determines cell type-specific known and de novo motifs, which may con-

tribute to the functionality.

Future work will aim to address the challenge of generalizing predictive models

from a single cell line to multiple cell lines and different cell types across organisms.

Almeida et al. [150] demonstrated the potential for generalization by developing

DeepSTARR models trained on Drosophila enhancer data, which were then success-

fully transferred to humans. It is worth noting that both our models (the Deep-

STARR and the CNN models trained with Explain-seq) share similar CNN architec-

tures and interpretation suites, despite being developed independently and around

the same time. We anticipate that by integrating various STARR-seq datasets with

detailed biological interpretations, we will be able to decode gene regulatory infor-

mation across entire genomes.

5.6 Availability

Explain-seq pipeline: https://github.com/nsamzhao/Explain-seq

Data at Zenodo: 10.5281/zenodo.7526380

5.7 Publication

The study in this chapter is on bioRxiv [151]: Zhao, N., Wang, S., Huang, Q.,

Dong, S., & Boyle, A. P. (2023). Explain-seq: an end-to-end pipeline from training

to interpretation of sequence-based deep learning models. bioRxiv, 2023-01.
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Figure 5.1: Explain-seq Predicts Enhancer Activity from Genome-wide DNA sequences. (A)
Overview of Explain-seq pipeline to infer enhancer activities from the A549 cell line
and to identify known and de novo motifs. (B) Architecture of the convolutional neural
network (CNN) that was trained to predict A549 enhancer activities from 499bp se-
quences. Both the regression model and the multi-label classification model employ the
same architecture. (C) Explain-seq predicts enhancer activity genome-wide. The IGV
genome tracks screenshot depicts observed and predicted signals using the regression
model for a locus on the held-out test chromosome 8. (D) Explain-seq with CNN regres-
sion model predicts enhancer activity better than gkm-SVM and the CNN multi-label
classification model. Scatter plots of predicted vs. observed enhancer activity signals
across all DNA sequences in the test set chromosomes are shown for CNN multi-label
classification model, CNN regression model, and gkm-SVM. We also calculated the cor-
respondence between the actual signals in one biological replicate of A549 with the
actual signals in another biological replicate to serve as the maximum prediction accu-
racy threshold for this task.
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Figure 5.2: Multi-label Classification and Regression Model Performances. (A) Loss function along
the iterations of multi-label classification model for replicate 1 (top row). Model per-
formance on the test data using AUPR and AUROC metrics to measure (second row).
(B) Loss function along the iterations of the multi-label classification model for repli-
cate 1 and replicate 2 (top row). Model performance on the test data using AUPR
and AUROC metrics (second metrics). (C) Loss function along the iterations of the
regression model replicate 1. (D) Loss function along the iterations of the regression
model replicate 1 and replicate 2.
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Figure 5.3: Explain-seq reveals known motifs and de novo motifs for enhancer activity. (A) Within
Explain-seq, DeepLIFT calculated the importance scores of each base pair in selected
input sequences whose mean signal is larger than 3. Important sub-sequences are high-
lighted. (B) Explain-seq identified known motifs (C) and Explain-seq revealed some de
novo motifs for the A549 cell line.



CHAPTER VI

Conclusions and Future Directions

6.1 Summary

The main objective of this dissertation is to uncover biological insights from large-

scale high-throughput sequencing genomic datasets, with a specific focus on non-

coding regulatory mechanisms. To achieve this goal, I addressed four key questions:

(1) how to process the raw high-throughput sequencing data into human-readable

and processable data for further downstream analysis, (2) how to store those results

and make them easily accessible to study, such as regulatory elements and variants,

(3) how to prioritize regulatory variants using all available data, and (4) how to

summarize and represent findings, such as into motifs.

With the massive datasets generated in genomics, I developed a series of compu-

tational methods and tools following the map outlined in Fig 6.1 to study non-coding

regulatory elements and variants.

In Chapter II, I first developed a peak calling software, F-Seq2, to accurately

identify the regulatory regions for common genomics assays. F-Seq2 outperformed

the state-of-the-art models including MACS2 when evaluating on DNase-seq, ATAC-

seq, and TF and histone ChIP-seq datasets in terms of precision and recall. It

emphasized the importance of developing such low-level software, which determines

94
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Figure 6.1: Roadmap of developed computational methods and tools.

the accuracy of any downstream analysis to draw any biological conclusions.

In Chapter III, I advanced the leading non-coding regulatory variants database

RegulomeDB to its second version. The new interface design enables users to easily

access comprehensive information about regulatory variants from large consortia,

such as ENCODE and RoadMap. RegulomeDB2 provides a summarization score

that incorporates all the evidence it found during a query, which represents how

likely a query variant is to be a regulatory variant given all the hits of functional

genomics data. The database now includes five times more data than the previous

version and includes the new GRCh38 assembly. In this chapter, I also demonstrated

how to effectively use ReguloemDB2 to form testable hypotheses given the variants

of interest.

In Chapter IV, I developed a machine learning model, TLand, to prioritize reg-

ulatory variants in an organ-specific manner. Generalizing models to new cell lines

or organs is still a challenge in genomics. TLand can accurately generalize to un-
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seen organs by taking advantage of RegulomeDB-derived features, and larger-scale

of modeling (i.e. at the organ level than at the cell level). TLand prioritized the cor-

rect organs for around 2 million GWAS SNPs by taking into account data availability

issues commonly existing in many sequence-based deep learning models.

In Chapter V, I created a pipeline, Explain-seq, to automate the process from

the training of sequence-based deep learning models to interpreting predictive sub-

patterns into motifs. I demonstrated the usage by training on recent STARR-seq

assays for enhancers. Known motifs compared to the JASPAR database, and de

novo motifs were identified in a cell-specific manner.

6.2 Future directions

6.2.1 Integrating multiple data modalities and combining models to improve model
performance

Sequence-based learning models have a potential upper ceiling of performance. As

mentioned earlier in the introduction chapter, regulations such as cross-chromosome

regulations cannot be modeled by only expanding the range of those sequence models.

More types of data are needed to integrate into the final model such as higher-

order structure information through 3D chromatin data Hi-C [112]. Due to the

different data modalities (DNA sequences and Hi-C maps), integrating such data

often involves late integration (i.e. model ensembling) or intermediate integrating

(i.e. multi-modal learning, see both definitions in the introduction). However, the key

principles of the optimal design to integrate higher-order data and other molecular

interaction datasets are still not fully understood. More research is needed to be

conducted in the area.

Combining a comprehensive set of models (e.g. models from the zoo of genomics,

kipoi [152]) could potentially allow us to model higher-scale features, including an
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organism’s phenotypes. However, although the cost and speed of high-throughput

sequencing data have decreased dramatically, the speed of collecting phenotypic data

has not progressed at the same pace. Previously, medical records were the preferred

source of information for medical conditions, but emerging research is exploring in-

ternet and mobile technologies as viable approaches for large population phenotyping

[54]. Compared to medical record reviews, internet-based phenotyping, such as self-

reporting, can be performed quickly. Tung et al. [153] evaluated ¿ 20,000 individuals

for 50 phenotypes, including Crohn’s disease, inflammatory bowel disease, and dia-

betes in 1 year using only a small team. However, the quality of such phenotypic

data should be evaluated carefully before training models.

6.2.2 Interpreting complex models

As machine learning models become more complex to capture complex dependen-

cies in data, the interpretability of such models tends to decrease. One example of

this is linear regression models, which have easily interpretable coefficients that can

be used to understand the impact of individual variables on the outcome. However,

deep learning models, such as neural networks, are more difficult to interpret due to

their complex structure and a high number of parameters.

To address this issue, researchers have developed a variety of methods for inter-

preting deep learning models. One popular approach is to use visualization tech-

niques to gain insight into the internal workings of the model. For example, ac-

tivation maps can be used to visualize which parts of an image are important for

a neural network’s classification decision. Another approach is to use algorithms

such as LIME (Local Interpretable Model-Agnostic Explanations) [154] or SHAP

(SHapley Additive exPlanations) [155] to dissect what the model has learned. LIME

generates “local” explanations for individual predictions by fitting a simpler, inter-
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pretable model to the local region around the prediction. SHAP values are another

way of generating model-agnostic explanations that quantify the contribution of each

feature to a particular prediction using game theory.

However, even with these methods, interpreting deep learning models can still

be challenging. As a result, it is often recommended to use simpler models when

possible, especially when interpretability is a priority. While complex models may

offer improved performance, their lack of interpretability can make it difficult to

understand how and why they are making decisions, which can be a major concern

in fields such as healthcare where the stakes are high. It is a tradeoff between

expressiveness and interpretability, and one needs to choose carefully according to

the task.

6.2.3 Extending gold standards of ASB SNVs

Defining the gold standards of regulatory variants is challenging. We defined reg-

ulatory variants as non-coding variants having any regulatory functions. Since the

delicate regulation of gene expression is achieved by the interplay between regulatory

elements and TFs, any changes in TF binding to specific allele indicates the regula-

tory activities. Thus, we defined ASBs as our gold standard to train our model for

regulatory variants. However, such ASB data is not comprehensive enough due to

the limited TF ChIP-seq data for each cell line to call those ASBs. Moreover, the

existing ASB data did not agree well with each other.

During the development of our TLand model, we attempted to improve its perfor-

mance by ensembling more machine learning models, such as gkm-SVM but found

that this did not yield better results. However, when we supplemented our ASB data

with data from other sources, we saw improved performance. We hypothesized that

our ASB datasets, despite being called using 600 TF ChIP-seq datasets, were not
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comprehensive enough. Furthermore, we only called ASBs in six cell lines, which

may not be representative of all possible cell types. Recently, a new database called

Adastra has been developed that contains 266,940 ASBs passing a 5% false discov-

ery rate across 647 cell types and 1,043 TFs. We believe that training on such a

comprehensive dataset could further improve our model’s performance and enable it

to become a transferable model for prioritizing regulatory variants across different

organs.

6.2.4 Assigning prioritized variants to genes

The next goal of RegulomeDB is to assign the prioritized variants to genes. This

is still an open question in genomics. To address this issue, researchers recently

developed the activity-by-contact (ABC) model [156], which utilizes read counts of

DHS and H3K27ac, as well as Hi-C maps as input. The ABC model is based on the

biochemical concept that an enhancer’s quantitative effect on a gene depends on its

strength as an enhancer (Activity) weighed by how often it comes into 3D contact

with the gene’s promoter (Contact). The ABC model assumes that the relative con-

tribution of an element on a gene’s expression should depend on that element’s effect

divided by the total effect of all elements. This model provides a straightforward

and precise way of linking enhancers to genes. To improve the performance of the

ABC model, we hypothesize that substituting the enhancer activity scores with the

RegulomeDB score, which considers all ENCODE assays including H3K27ac, could

be beneficial. By doing so, we may integrate the ABC model into our database as a

linking method, which could help better prioritize regulatory variants and provide a

comprehensive map of affected genes and gene networks.
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6.3 Concluding remarks

In this dissertation, I developed a series of computational methods and tools to

study regulatory variants. I developed peak-calling software to accurately define

regulatory regions. Then I advanced a leading regulatory variant database into its

second version by integrating a new interface and the latest functional genomics data.

I developed a machine learning model to annotate and prioritize regulatory variants

in an organ-specific manner. Lastly, I created an automation pipeline from training

sequence-based deep learning models to interpreting predictive patterns of the models

to motifs. We hope these methods can have broad applications to help researchers

to characterize both known and de novo regulatory variants, and ultimately have an

impact on precision medicine and developing clinical therapies.
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[132] Ž. Avsec, M. Weilert, A. Shrikumar, S. Krueger, A. Alexandari, K. Dalal, R. Fropf,
C. McAnany, J. Gagneur, A. Kundaje, and J. Zeitlinger, “Base-resolution models of
transcription-factor binding reveal soft motif syntax,” Nat. Genet., vol. 53, pp. 354–366,
Mar. 2021.

[133] D. R. Kelley, Y. A. Reshef, M. Bileschi, D. Belanger, C. Y. McLean, and J. Snoek, “Sequen-
tial regulatory activity prediction across chromosomes with convolutional neural networks,”
Genome Res., vol. 28, pp. 739–750, May 2018.

[134] M. Ghandi, M. Mohammad-Noori, N. Ghareghani, D. Lee, L. Garraway, and M. A. Beer,
“gkmSVM: an R package for gapped-kmer SVM,” Bioinformatics, vol. 32, pp. 2205–2207,
July 2016.



113

[135] Z. Chen, J. Zhang, J. Liu, Y. Dai, D. Lee, M. R. Min, M. Xu, and M. Gerstein, “DECODE:
a deep-learning framework for condensing enhancers and refining boundaries with large-scale
functional assays,” Bioinformatics, vol. 37, pp. i280–i288, July 2021.

[136] H. M. Amemiya, A. Kundaje, and A. P. Boyle, “The ENCODE blacklist: Identification of
problematic regions of the genome,” Sci. Rep., vol. 9, p. 9354, June 2019.

[137] K. M. Chen, E. M. Cofer, J. Zhou, and O. G. Troyanskaya, “Selene: a PyTorch-based deep
learning library for sequence data,” Nat. Methods, vol. 16, pp. 315–318, Apr. 2019.

[138] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
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